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PREFACE

Subjects like Engineering Thermodynamics and Fluid Mechanics are envisaged as one of the 

fundamental subjects of many engineering disciplines. The two subjects, although have proliferated 

separately to a great extent, are still considered complementary to each other. Thermodynamics is the 

branch of Science that deals with the study of energy, predominantly in the form of heat and work, 

      *              *                �         7                                                    *  

Fluid Mechanics                                    '   7        %                                      

motion. The close relationship that exists between the two subjects can be understood from the fact that 

in a system, simple or complex, energy interactions take place between the system and surroundings by 

*             >    *    *                         %     !          'Q                              

areas such as steam power plants, gas turbine power plants, refrigeration and air conditioning, internal 

combustion engines and process plants, to name just a few. It, therefore, becomes immensely important 

and is worthwhile to study both the subjects simultaneously including their vast application potential 

            *            7                             '  >       

Numerous textbooks on these subjects are available in the market separately for Thermodynamics 
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the teaching fraternity for more than 10 years. During this period, we have had the onus of teaching 

        'Q                             *                '      @!+                      L         
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dearth of a good combined book on this subject, we felt the need to write one that would be a combined 

and comprehensive textbook and shall form the backbone of higher study for the students. With this 

'  >                *                            *      >                *     *        %    
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manufacturing or production engineering, chemical or process engineering, civil engineering to acquire 

 *    '                    ~  

This book emphasises on fundamental concept building, necessary mathematical analysis coupled with 

                                    *                      *          '  *L   7     '       #        

of the text, ample illustrations, and summaries highlighted to understand the objective of the topics 

                                 *     �                                      ~   -          7  
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numerical problems, are provided at the end of each chapter for practice, better understanding and to 

imbibe problem-solving ability. 
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Salient Features
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 ∑ Separate chapters dedicated to elucidate the three laws of thermodynamics

 ∑ "          7          *                       %                 %             >   *         %    
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 ∑ Thoroughly updated solved examples and chapter-end exercises with answers to enhance prob-

lem-solving skills

 ∑ <~                `

 ∑ Solved Examples: 154

 ∑ Multiple Choice Questions: 171

 ∑ Review Questions: 146

 ∑ Numerical Problems: 136

 ∑ Illustrations: 158

Chapter Organisation

The text is written taking utmost care regarding the chronology of the presentations. The book comprises 

[^                                [X   7       *     *                   7   %    *          <    

chapter begins with the fundamental aspects of the topics and related areas.

Chapter 1 deals with the basis of thermodynamics such as applications, dimensions, and processes 

and cycles. Chapter 2 is a dedicated chapter on heat and work. Chapter 3  ~                       

    *     *                >  %   7   *   *               '                         Chapter 4. 

The second law of thermodynamics covering topics like thermal energy, heat engines, Kelvin–Planck 

statement are explained in Chapter 5. Chapters 6 and 7 elucidate on entropy, its properties and 

principles,  and properties of pure substances. Properties of gas are explained in Chapter 8. Chapters 

9 and 10 deal with air standard cycles like Otto cycle, diesel cycle, and analysis of power cycles, and 

Chapters 11 to 14                          %                                           %                

                 O     �                   >   *         %    %           *       %     

Appendix I comprises Thermodynamic Proporties of Water (Steam Tables), Appendix II comprises 

answers to multiple-choice questions, and Appendix III comprises answers to numerical problems 

  7                    -  7   @!+  �                RX[R�RX[]    7  '       7            '  > 

end for students to practice on.

Note: Wherever required, necessary mathematics is incorporated. All the mathematical analysis 

is accompanied by necessary schematic arrangements and graphical plots. Representations of 

thermodynamic processes on various coordinate systems (P-V, T-s, and P-h) are indispensable to its 

study and there is no dearth of such representations in this text. Variations of several performance 

    ~                        >           O                                                    7    '       

to study the behaviour of the system(s). There can be quite a good number of situations where more 

than one independent variable governs the desired output and, hence, extensive study of such situations 

helps trade-off amongst these variables and their level in the light of desired output. Adequate attention 

has been paid in this direction in the present text. 
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Closed, open and isolated systems, Concept of thermodynamic state; State postulate, Definition of
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Ideal Equation of State: Processes; Real Gas—Definition of ideal gas; Ideal gas equations of state,

Thermodynamic processes for ideal gas, P-V plots, Work done, Heat transferred for isothermal,

isobaric, isochoric, isentropic and polytropic processes, Equations of state of real gases: van der

Waal’s equation, Virial equation of state.

Properties of Pure Substances: p-v and P-T diagrams of pure substance like H2O, Introduction to

steam table with respect to steam generation process, Definition of saturation, Wet and superheated

status, Definition of dryness fraction of steam, Degree of superheat of steam.

GO TO

CHAPTER 1. Thermodynamic Concepts and Zeroth Law

CHAPTER 2. Heat and Work

CHAPTER 3. First Law of Thermodynamics

CHAPTER 7. Properties of Pure Substances

CHAPTER 8. Properties of Gas

Module 2: First Law of Thermodynamics

Definition of stored energy and internal energy, First Law of Thermodynamics for cyclic processes,

Non-flow energy equation, Flow energy and definition of enthalpy, Conditions for steady state steady

flow: Steady state steady flow energy equation.

GO TO

CHAPTER 2. Heat and Work

CHAPTER 3. First Law of Thermodynamics

CHAPTER 4. First Law Applied to Flow Processes



Module 3: Second Law of Thermodynamics

Definition of sink, Source reservoir of heat, Definition of sink, Source reservoir of heat, Thermal

efficiency of heat, Heat Engines and coefficient of performance of refrigerators, Kelvin – Planck and

Clausius statements of second law of thermodynamics, Absolute or thermodynamic scale of

temperature, Clausius integral, Entropy, Entropy change calculation for ideal gas processes, Carnot

cycle and Carnot efficiency, PMM-2; Definition and its impossibility.

GO TO

CHAPTER 5. Second Law of Thermodynamics

CHAPTER 6. Entropy

CHAPTER 8. Properties of Gas

Module 4: Air Standard Cycles for IC Engines

Otto cycle; Plot on P-V, T-S planes; Thermal efficiency, Diesel cycle; Plot on P-V, T-S planes; Thermal

efficiency.

Rankine Cycle of Steam - h-s chart of steam (Mollier’s Chart), Simple Rankine cycle plot on P-V, T-S,

h-s planes, Rankine cycle efficiency with and without pump work.

GO TO

CHAPTER 7. Properties of Pure Substances

CHAPTER 9. Air Standard Cycles

CHAPTER 10. Power Cycle

Module 5: Properties and Classification of Fluids

Ideal and real fluids, Newton’s law of viscosity; Newtonian and Non-Newtonian fluids, Compressible

and incompressible fluids.

Fluid Statics - Pressure at a point.

Measurement of Fluid Pressure - Manometers: Simple and differential, U-tube, Inclined tube.

Fluid Kinematics - Stream line, Laminar and turbulent flow, External and internal flow, Continuity

equation.

Dynamics of Ideal Fluids - Bernoulli’s equation, Total head; Velocity head; Pressure head, Application

of Bernoulli’s equation.

Measurement of Flow Rate: Basic Principles - Venturimeter, Pilot tube, Orifice meter.

GO TO

CHAPTER 11. Properties of Fluids

CHAPTER 12. Fluid Statics

CHAPTER 13. Kinematics of Fluid Flow

CHAPTER 14. Dynamics of Ideal Fluids
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A Area, 2
m
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HPCOP Coefficient of performance of a heat pump

C Coefficient of Pitot tube

cC Coefficient of contraction

dC Coefficient of discharge

pC Specific heat at constant pressure, kJ/kgK

vC Specific heat at constant volume, kJ/kgK

vC Coefficient of velocity

 e Specific energy, kJ/kg

 E Total energy, kJ

 E Compressibility, N/m2

g Acceleration due to gravity, 2
m /s

h Specific enthalpy, kJ/kg

fh Specific enthalpy of saturated liquid, kJ/kg

igh Latent heat of sublimation, kJ/kg

fgh Latent heat of vapourisation, kJ/kg

gh Specific enthalpy of saturated vapour, kJ/kg

H Enthalpy, kJ

KE Kinetic energy, kJ

m Mass, kg

m� Mass flux, kg/s

fm Mass of liquid, kg



gm Mass of vapour, kg

 M Molecular weight, kg/kmol

MEP Mean effective pressure

 n Polytropic index

 N Number of moles

 P Pressure, 2
kN/m  or kPa

atmP Atmospheric pressure,  kPa

crP Critical pressure,  kPa

PE Potential energy, kJ

 Q Heat transfer, kJ

1Q Heat transfer from high-temperature reservoir, kJ

2Q Heat transfer to low-temperature reservoir, kJ
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 R Characteristic gas constant, kJ/kg.K
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 Re Reynolds number
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gs Specific entropy of saturated vapour, kJ/kg.K

 S Entropy, kJ/K

 t Temperature, C∞

 T Temperature, K

crT Critical temperature, K

1T Temperature of source, K

2T Temperature of sink, K
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 u Specific internal energy, kJ/kg
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fu Specific internal energy of saturated liquid, kJ/kg

fgu Change in the specific internal energy due to vapourisation, kJ/kg

gu Specific internal energy of saturated vapour, kJ/kg

 U Internal energy, kJ

 v Specific volume, 3m /kg

crv Critical specific volume, 3m /kg

fv Specific volume of saturated liquid, 
3

m /kg

fgv Change in the specific volume due to vapourisation, 3
m /kg

gv Specific volume of saturated vapour, 
3

m /kg

 V Volume, 3m

 V Velocity, m/s

pW Pump work, kJ

TW Turbine work, kJ

W Work done, kJ

W� Rate of work done, kW

 x Quality or dryness fraction
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Greek Symbols
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LIST OF IMPORTANT FORMULAE

∑ For simple compressible closed system, quasi-equilibrium work due to moving boundary between

two end points 1 and 2 can be expressed as

2

1

1 2

V

V

W PdV- = Ú

∑ The expression for quasi-equilibrium work due to moving boundary for different processes are

given as

Constant pressure process: 1 2 2 1( )W P V V- = -

Constant volume process: 1 2 0W - =

Hyperbolic process: 1 2W -
2 1

1 1 1 1

1 2

ln ln
V P

PV PV
V P

= =

Polytropic process: 2 2 1 1 1 1 2 2
1 2

1 1

P V PV PV P V
W

n n
-

- -
= =

- -

Adiabatic process: 1 1 2 2
1 2

1

PV P V
W -

-
=

g -

∑ First law of thermodynamics for a closed system undergoing a cycle is given by W Q
� �

d = dÚ Ú
∑ First law of thermodynamics for any system undergoing any process can be expressed in

differential form as

Q W dUd - d =

∑ The mass balance equation for a single stream entering and a single stream leaving the control

volume when the flow is steady can be written as

1 1 2 2

1 2

AV A V

v v
=

where A1 and A2  are the cross-sectional area of fluid stream at inlet and outlet respectively, V1

and V2  are the average velocity of fluid stream at inlet and outlet respectively, v1 and v2 are the

specific volume of fluid at inlet and outlet respectively.

∑ The steady flow energy balance equation for a single stream entering and a single stream leaving

the control volume can be written as



2 2
1 2

1 1 2 2( ) ( )   
2 2

V V
m h gz Q m h gz W� �� �+ + + = + + +

where m�  is the mass flux, 1h  and 2h  are the specific enthalpies of fluid at inlet and outlet

respectively, 1z  and 2z  are the elevation of inlet  and outlet with respect to some arbitrary datum

respectively, Q�  is the rate of heat transfer and W� is the rate of work done.

∑ Thermal efficiency of a cyclic heat engine is given by

1 2 2
ther

1 1 1

1
Q Q QW

Q Q Q

-
h = = = -  = 1 2 2

1 1

1
Q Q Q

Q Q

-
= -

where 1Q  is the heat transfer from source to heat engine, 2Q  is the heat rejection from the heat

engine to sink and W is the work done by the heat engine.

∑ The efficiency of a Carnot heat engine is given by

2
ther, Carnot

1

1
T

T
h = -

where 1T   and 1T  are  the temperature of source and  sink respectively.

∑ The coefficient of performance (COP) of refrigerator and heat pump are given by

2
R

1 2

COP
Q

Q Q
=

-

1
HP

1 2

COP
Q

Q Q
=

-

where 2Q  is the heat transfer from sink to the device (refrigerator or heat pump) and 1Q  is the

heat transfer from the device to the source.

∑ The coefficient of performance of Carnot refrigerator and heat pump are given by

2
R

1 2

COP  
T

T T
=

-

1
HP

1 2

COP
T

T T
=

-

∑ For a cyclic process, 0
Q

T�

d
£Ú

If 0
Q

T�

d
=Ú  then the cyclic process is possible and reversible.
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If 0
Q

T�

d
<Ú  then the cyclic process is possible and irreversible.

If 0
Q

T�

d
>Ú  then the cyclic process is impossible.

∑ The change in the entropy of a system is given by RQ
dS

T

d
=  for  reversible process.

∑ Thermodynamic property relations are given by

Tds du Pdv= +

Tds dh vdP= -
which are applicable to all processes whether reversible or irreversible.

∑ Properties of a liquid-vapour mixture may be found by relations such as

f fgv v xv= +

f fgh h xh= +

f fgs s xs= +

f fgu u xu= +

where x is the quality or dryness fraction of liquid-vapour mixture,  and the subscripts f and g

denote the properties of liquid and vapour respectively.

∑ The equation of state of an ideal gas can be expressed as

PV nRT=

Pv RT=
PV mRT=

Pv RT=
where P is the pressure, V is the total volume of the gas, v  is the molar volume (i.e., volume per

unit mole) , n is the number of moles of the gas, m is the mass of the gas, v is specific volume of

the gas, R  is the universal gas constant, R is the characteristic gas constant and T is the

temperature of the gas in K.

∑ Change in specific internal energy of a calorically perfect gas between states 1 and 2 is

2 1 2 1( - )vu u C T T- =

∑ Change in specific enthalpy of  a calorically perfect gas between states 1 and 2 is

2 1 2 1( – ) ph h C T T- =

∑ Change in specific  entropy of a calorically perfect gas between states 1 and 2 is

2 2
2 1

1 1

ln lnv

T V
s s C R

T V
- = +
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1 1
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T P
C R

T P
= -

2 2

1 1

ln lnp v

V P
C C

V P
= +

∑ The thermal efficiency of the Otto cycle can be expressed as

1

1
1Otto

r
g -

h = -

where r is the compression ratio and g is the specific heat ratio.

∑ The thermal efficiency of the Diesel cycle can be expressed as

1

11 1
1

1

c
Diesel

c

r

rr

g

g -

-
h = -

g -

where cr  is the cut-off ratio, r is the compression ratio and g is the specific heat ratio.

∑ The thermal efficiency of the Rankine cycle is given by

1 1

net T PW W W

Q Q

-
h = =

where TW  is the turbine work, PW  is the pump work and 1Q  is the heat input in the boiler.

∑ According to Newton's law of viscosity, for one-dimensional flow shear stress is given by

du

dy
t = m

where m is the coefficient of viscosity.

∑ Capillary rise of or depression is given by

4 cos
h

gd

s q
=

r

where s is the surface tension coefficient, q is the area wetting contact angle, r is the density of

fluid, and d is the diameter of tube.

∑ Three-dimensional continuity equations in differential form is given by

( ) ( ) ( ) 0u v w
t x y z

∂r ∂ ∂ ∂
+ r + r + r =

∂ ∂ ∂ ∂

∑ Euler's equation of motion along a streamline is given by

0
dP

VdV gdz+ + =
r

which is valid for steady and inviscid flow.
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∑ Bernoulli's equation along a streamline is given by

2

constant
2

P V
gz+ + =

r

∑ Discharge by Venturimeter is given by

1 2

2 2
1 2

2 1d m

w

C A A
Q gh

A A

rÊ ˆ
= -Á ˜Ë ¯r-

where 1A  and 2A  are the cross-sectional areas of the venturimeter at its inlet and throat

respectively, mr  and wr are the density of the manometric fluid and the working fluid

respectively, h is the difference in height of the manometric fluid in the two limbs of the

manometer, and dC  is the coefficient of discharge of the venturimeter.

∑ Volume flow rate by orificemeter is given by

( ) ( )1 1 2
1 2

2 2 2
1

2v C o

C o

C C A A P P
Q g z z

gA C A

-È ˘
= + -Í ˙rÎ ˚-

where cC  is the coefficient of contraction , vC  is the coefficient of velocity, and oA  is the area

of orifice.

∑ The velocity measured by Pitot tube is given by

2V C gh=

where C is the coefficient of Pitot tube and h is the difference in stagnation and static pressure

head.

∑ The velocity measured by Pitot - static tube is given by

2
P

V C g
D

=
r
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Thermodynamic Concepts
and the Zeroth Law

1.1 INTRODUCTION

Thermodynamics is the science which deals with energy in the form of heat and work and its trans-

formation into each other and the effect of energy transformation on the properties of systems.

Thermodynamics is the science of three E namely, energy, equilibrium and entropy. But since

these terms have not yet been defined, an alternative definition with which we are already familiar is:

Thermodynamics is the science that deals with the relations between heat, work and those properties

of systems that bear relation to heat and work.

The name thermodynamics stems from the Greek words therme (heat) and dynamics (force),

which were used in early days to describe the effort to convert heat into power. But in the present

context, the name thermodynamics is used to interpret all aspects of energy and energy transforma-

tions, including power production, refrigeration, and relationships among the properties of matter.

Like all sciences, thermodynamics is also based on experimental observations. The findings from

these observations have been expressed in the form of some fundamental laws.

The principles of thermodynamics are summarized in the form of four fundamental laws known as

the zeroth, first, second and third law of thermodynamics.

The zeroth law of thermodynamics deals with thermal equilibrium and provides a means for meas-

uring temperature. The first law of thermodynamics deals with the conservation of energy and intro-

duces the concept of  internal  energy. The   second  law of thermodynamics asserts that energy has

quality as well as quantity and actual processes occur in a certain direction from high-quality energy

to low-quality energy but not in the reverse direction spontaneously. It introduces the important

concept of entropy. The third law of thermodynamics defines the absolute zero of entropy.

CHAPTER
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1.2 Engineering Thermodynamics and Fluid Mechanics

1.2 APPLICATIONS OF THERMODYNAMICS

All engineering activities involve an interaction between energy and matter. It is difficult even to

imagine an area which does not relate to thermodynamics in some respect. In fact, the human body

itself is an interesting application in the area of thermodynamics.

Engineering thermodynamics finds applications in diverse areas such as power-producing devices,

refrigeration and air-conditioning, compressors and turbines, jet engines and rockets, the combustion of

hydrocarbon fuels such as coal, oil and natural gases and cooling of electronic devices such as TVs and

computers.

1.3 CLASSICAL AND STATISTICAL THERMODYNAMICS

The study of thermodynamics can be classified into two: classical thermodynamics and statistical

thermodynamics. In classical thermodynamics, we study the time averaged effects of the molecules.

For example, the pressure of a gas in a container is the result of momentum transfer between the

molecules and the walls of the container. But to determine the pressure in the container, we need not

know the behaviour of the individual molecules of the gas. This macroscopic approach to the study of

thermodynamics is called classical thermodynamics.

An elaborate approach, considering the behaviour of a large number of individual particles is called

statistical thermodynamics. In short, the macroscopic approach and the microscopic approach to the

study of energy are, respectively, called the classical thermodynamics and statistical thermodynamics.

1.4 DIMENSIONS AND UNITS

A dimension is a physical variable used to specify some characteristic of a system. Mass, length and

time are examples of dimension, whereas a unit is a particular amount of a physical quantity. For

example, time can be measured in seconds, minutes, hours, etc.

The dimension mass (M), length (L) and time (T) are considered to be the basic dimensions, from which

other dimensions are derived. For example, the dimension of velocity is LT–1, and of acceleration is LT–2.

In mentioning a unit, it is recommended that small letters (lower case) be used when abbreviated, and

complete word using only small letters when expanded. For example, the unit of time is s or second, and

for length is m or metre. But when a unit is named after a person, a capital letter is used when it is

abbreviated. For example, Newton (N), Pascal (Pa), Watt (W). Multiples in powers of 10 are indicated

by prefixes, which are also abbreviated. The internationally accepted prefixes are given in Table 1.1.
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Table 1.1 SI Unit Prefixes

Multiple Prefix Abbreviation Multiple Prefix Abbreviation

10 deca da 10–1 deci d

102 hecto h 10–2 centi c

103 kilo k 10–3 milli m

10
6

mega M 10
–6

micro m

10
9

giga G 10
–9

nano n

1012 tera T 10–12 pico p

1015 peta P 10–15 femto f

1018 exa E 10–18 atto a

Dimensions are those names which are used to characterize physical qualities. Common examples

of dimensions include mass (M), length (L), time (t), temperature (T), force (F), etc. The most

important reasons for the importance of dimensions in engineering analysis is that any equation which

relates physical quantities must be dimensionally homogeneous. By dimensionally homogeneous we

mean that the dimensions of terms on one side of an equation equal to those on the other side.

Equations relating physical quantities which do not fulfill the condition of dimensional homogeneity

are not correct.

In order to make numerical computation with equations involving physical quantities, there is the

additional requirement that units, as well as the dimensions, be homogeneous. Units are those arbitrary

magnitudes and names assigned to dimensions which are adopted as standards for measurements. For

example, the primary dimension of time may be measured in units of second, minute, hour, etc.

1.4.1 Base Units

The basic units of mass, length, time and temperature in the SI units are described below:

(i) Mass: The basic SI unit for mass is kilogram (abbreviated to kg). A standard alloy block of

platinum and iridium maintained at the International Bureau of Weights and Measures at Sevres,

Paris, is taken as the base unit of mass.

(ii) Length: The basic SI unit for length is metre (abbreviated to m). The distance between two marks

on a platinum–iridium bar, kept at the International Bureau of Weights and Measures at Sevres,

Paris, France, when measured at 0°C is taken as the base unit of length.

(iii) Time: The basic SI unit for time is the second (abbreviated to s). For many years, the accepted

basic unit, second was defined as 
1

86400
 of the mean solar day.

(iv) Temperature: The basic SI unit for temperature is the Kelvin (abbreviated to K). In 1967, the

Thirteenth Conference Generale des Poids et Measures defined Kelvin as the fraction 
1

273.16
 of

the thermodynamic temperature of the triple point of water.
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1.4.2 Derived Units

The secondary quantities are expressed in terms of the derived units, which in turn are formed from

the base units. The relation between the derived units and the base units depends on a definition or a

law. For example, velocity is defined as v = 
d

d

L

t
; where L is length and t is time. The unit of velocity

is m/s. The units of force can be derived from the equation F = mf (Newton’s second law) as

kg-m/s2. In honour of Newton, the unit of force has been named Newton and is abbreviated to N.

The dimensions and units of some of the physical quantities commonly used in thermodynamics are

given in Table 1.2.

Table 1.2 Dimensions and Units of some physical quantities

Quantity Dimensions Units Abbreviation

Mass M kilogram kg

Length L metre m

Time T second s

Temperature q Kelvin K

Velocity LT
–1

m/s —

Acceleration LT
–2

m/s
2

—

Force MLT
–2

kg m/s
2
(N) Newton

Pressure ML–1T–2 kg/ms2(N/m2) Pascal

Energy ML2T–2 kg m2/s2(N-m) Joule

Power ML2T–3 kg m2/s3(J/s) Watt

Density ML–3 kg/ m3 —

Viscosity ML–1T–1 kg /ms(Ns/m2) Pas

Kinematic viscosity L2T–1 m2/s

Surface tension MT
–2

N/m

1.5 THERMODYNAMIC SYSTEM

A system is defined as a fixed identifiable quantity of mass or region in space upon which attention is

focused for the study of energy transfer.

The mass or region outside the system is called its surroundings. The real or imaginary surface

that separates the system from its surroundings is called the system boundary (refer Fig 1.1). The

system boundary has zero thickness and thus it can neither contain any mass nor occupy any volume

in space. The system boundary can be classified as the following:

∑ Rigid or movable depending upon whether it allows a change in volume of the system. A rigid

boundary is said to be restrictive with respect to the volume, whereas a movable boundary is

said to be nonrestrictive with respect to the volume.

∑ Adiabatic or diathermal depending upon whether it allows the exchange of energy in the form of

heat. An adiabatic boundary is said to be restrictive with respect to energy flow in the form of

heat whereas a diathermal boundary is said to be non-restrictive with respect to energy flow

in the form of heat.

The system and the surroundings as a whole is called the universe.
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System
Surroundings

System

Boundary

Figure 1.1 A thermodynamic system

∑ On the basis of mass and energy transfer through system boundary, a system may be consid-

ered as an open, closed or isolated system.

A closed system (also known as control mass system) consists of a fixed amount of mass, and no

mass can cross its boundary. But, energy in the form of heat and work, can cross the boundary. Volume

of a closed system does not have to be fixed. A certain quantity of fluid in a cylinder bounded by a piston

constitutes a closed system as shown in Fig. 1.2. The inner surfaces of the piston and the cylinder

form the boundary, and since no mass is crossing this boundary, it is a closed system. Everything

outside the fluid, including the piston and the cylinder, is the surroundings.

Thus, a closed system has the following characteristics:

1) It has fixed mass. The mass does not cross the system boundary.

2) Energy, both in the form of heat and work, can cross the boundary.

3) The boundary can move.

Weight

Piston

System
boundary

Heat

Gas

Surroundings

Figure 1.2 Example of a closed system

An open system (also known as control volume) is a properly selected region in space. The

boundary, which remains fixed in space, enveloping this control volume is called the control surface.

Both mass and energy can cross the control surface. An example of open system is sketched in Fig.

1.3. In most engineering problems in thermodynamics, the mass of the system is not fixed, for

example, an air compressor, a turbine, a car radiator, a water heater. The characteristics of an open

system are the following:

(1) The system has a fixed volume called the control volume, and a fixed control surface.

(2) Both heat and work can flow across the control surface.

(3) Mass can also enter and leave the control surface.
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Gas Control
surface

Surroundings

Heat

High pressure
gas out

Low pressure

gas in

Weights

Piston

Gas Compressor

Figure 1.3 Example of an open system

A system which exchanges neither mass nor energy with the surroundings is called an isolated

system. It is thus a closed system having no energy interaction with the surroundings (Fig. 1.4). By

definition, the universe is an isolated system.

Surroundings

System

No mass or

energy transfer

Figure 1.4 Example of an isolated system

On the basis of phase (physically distinct, chemically homogeneous and mechanically separable

portion of a substance), a system can be divided into homogeneous and heterogeneous systems. A

system consisting of a single phase is called a homogeneous system. A mixture of air and water vapour

is an example of a homogeneous system. On the other hand, a system consisting of more than one phase

is known as a heterogeneous system. Ice plus water is an example of a heterogeneous system.

1.6 THERMODYNAMIC PROPERTIES

Any identifiable/observable characteristic of a system by which the physical condition of the system

may be described is called property of the system. Some familiar properties are pressure, tempera-

ture, volume and mass.

Properties may be divided into two categories, viz. extensive and intensive. The properties that

depend on the extent of the system are known as extensive properties. A property is called extensive

if its value for an overall system is the sum of its values for the parts into which the system is divided.

Mass, volume, momentum are extensive properties.



Thermodynamic Concepts and the Zeroth Law 1.7

Intensive properties are those that are independent of the mass of a system, such as temperature,

pressure, and density. Intensive properties are not additive. Their values are independent of the size or

extent of a system and may vary from place to place within the system at any instant. Thus, intensive

properties may be functions of both position and time, whereas extensive properties vary at most with time.

Mass of the whole system is equal to the sum of the masses of the various parts. But, temperature of

the whole system is not equal to the sum of the temperatures of the constituent parts.

Generally, upper-case letters are used to denote extensive properties (with mass m being a

major exception), and lower-case letters are used for intensive properties (with pressure P and

temperature T being exceptions).

Extensive properties per unit mass are called specific properties, e.g., specific volume, specific

energy, etc. and hence becomes intensive properties.

1.7 STATE AND EQUILIBRIUM

The thermodynamic  state  of a  system  at any instant of time is  its  condition as characterized by certain

identifiable/observable thermodynamic properties, i.e., the set of properties completely describes the

state of a system.

Thermodynamics deals with equilibrium states. The word equilibrium implies a state of balance. In

an equilibrium state, there are no unbalanced potentials or driving forces within the system. A system is

said to be in equilibrium when it manifests no changes with time. There are many types of equilibrium,

and a system is not in thermodynamic equilibrium unless the conditions of all the relevant types of

equilibrium are satisfied.

In thermal equilibrium, all parts of a system are at the same temperature; also this temperature is the

same as that of the surroundings. When these conditions are not satisfied, a change of state will take

place until thermal equilibrium is reached.

When there is no unbalanced force or torque between a system and its surroundings and in the interior

of a system, the system is said to be in a state of mechanical equilibrium. A system will be in chemical

equilibrium only if its chemical composition does not change with time, i.e., no net chemical reaction occurs.

A system will be in thermodynamic equilibrium only when it satisfies the conditions for all modes

of equilibrium.

When the conditions of any one of the equilibrium is not satisfied, a system is said to be in a non-

equilibrium state. If the non-equilibrium is due to temperature difference between the system and

surroundings then the temperature distribution is not uniform within the system. Similarly, if the

nonequilibrium is due to an unbalanced pressure difference between the system and its surroundings,

the pressure varies from one part of the system to the other.

1.8
STATE POSTULATE

A system is said to be comprised of a simple compressible substance if the electrical, magnetic,

gravitational, and surface tension effects are insignificant in comparison to pressure, volume and

temperature change effects characterizing the system. A relatively small number of independent prop-

erties suffice to fix all other properties and thus the state of the system. The number of properties

required to fix the state of a system is given by the state -postulate which states that the state of a

simple compressible substance is completely specified by two independent, intensive properties.
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1.9 PROCESSES AND CYCLES

If the value of even one property changes, the state will change to a different one. Any change that a

system undergoes from one equilibrium state to another is called a process. The series of states

through which a system passes during a process is called the path of the process. Figure 1.5 depicts

a process between the states 1 and 2.
P

ro
p
er

ty
y

Property x

State 2

State 1

Figure 1.5 Process

To describe a process completely, it is necessary to specify the initial and final states of the process

and the path the system followed during the change of state.

The prefix iso is often used to designate a process for which a particular property remains constant.

For example, isothermal process is one during which the temperature remains constant, isobaric is a

process during which the pressure remains constant, and isochoric is a constant volume process.

A system is said to have undergone a thermodynamic cycle, (Fig. 1.6)

if it returns to its initial state at the end of the process. Thus, for a cycle,

the initial and final states are identical. The change in the value of any

property for a cyclic process is zero.

For example Ú� dP = 0, Ú� dV = 0, Ú� dT = 0

1.9.1 Quasi-Static (or Quasi-equilibrium) Process

When a process proceeds in such a manner that its state deviates to an

infinitesimally small extent from the corresponding equilibrium state at all

times, it is called a quasi-equilibrium or quasi-static process. Quasi

means almost.

A quasi-static process is a sufficiently slow process that allows the system to adjust itself internally

in such a manner that all the properties in one part of the system do not change faster than those at any

other parts.

2

1

P
ro

p
er

ty
y

Property x

Figure 1.6 Cycle
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Slow compression

(quasi-equilibrium)

Fast compression

(nonquasi-equilibrium)

(a) (b)

Figure 1.7 Quasi-equilibrium and nonquasi-equilibrium compression processes

When the piston is moved slowly (Fig. 1.7a), the molecules have a sufficient time to redistribute

themselves such that they do not pile up in front of the piston. As a result, the pressure inside the

cylinder will always be nearly uniform and will rise at the same rate at all locations. This is a quasi-

equilibrium process. When the piston is moved fast (Fig. 1.7b), the molecules will pile up in a small

region in front of the piston, thus creating a high

pressure region. Therefore, the pressure inside the

cylinder will not be uniform and will make the

process nonquasi-

equilibrium.

All actual processes are nonquasi-equilibrium

because they take place with finite pressure or

temperature difference between a system and

surroundings. Engineers are interested in quasi-static

processes for the following reasons:

(a) They are easy to analyze.

(b) Work producing devices deliver maximum

work and work absorbing devices consume

minimum work when they operate on quasi-

equilibrium processes.

A quasi-equilibrium compression process is

shown in Fig. 1.8. A nonquasi-equilibrium process is

usually denoted by a dashed line between the initial

and final states.

1.9.2 Reversible Process

A process is said to be reversible if at the conclusion of the process, both the system and the

surroundings can be restored to their respective initial states without producing any changes in the

rest of the universe. Otherwise, the process is said to be irreversible.

A system can, however, always be restored to its initial state, but this does not imply that the

process is reversible. Only if the surroundings are also simultaneously restored to their initial states,

the process becomes reversible.

P

2

1

V2 V1

V

Figure 1.8 Quasi-equilibrium compression

process on a P–V diagram
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If the piston moves under such conditions so that the forces are exactly balanced, the system is

said to undergo a reversible process.

The characteristics of irreversible processes are the following:

(a) an irreversible process can be carried out in one direction only.

(b) an irreversible process occurs at a finite rate.

1.10 ZEROTH LAW AND TEMPERATURE

Although we know that temperature is a measure of hotness or coldness, it is not easy to give a

precise definition for it. Based on physiological sensations, we express the level of temperature quali-

tatively with words like red-hot, hot, warm, cold and freezing cold. However, from physiological

sensations, we cannot assign numerical values to temperatures.

The zeroth law of thermodynamics states that if two bodies are in thermal equilibrium with a

third body separately, they are also in thermal equilibrium with each other. The zeroth law of

thermodynamics was first formulated by R.H. Fowler in 1931. The first and second laws of

thermodynamics were formulated much before 1931. It was named the zeroth law of thermodynamics

since it should have preceded the first and the second laws of thermodynamics.

The temperature of a system is a property that determines whether or not a system is in thermal

equilibrium with other systems.

Temperature is a property of great importance in thermodynamics, and its value can be obtained

easily by indirect measurement with calibrated instruments. The temperature of a system is determined

by bringing a second body, a thermometer, into contact with the system and allowing thermal

equilibrium to be reached. The value of the temperature is found by measuring some temperature

dependent property of the thermometer. Any such property is called a thermometric property.

Commonly used property of materials in different thermometers are given in Table 1.3.

Table 1.3 Thermometers and thermometric properties

Thermometer Thermometric Property

1. Mercury-in-glass gas Length

2. Electric resistance Resistance

3. Thermocouple Electromotive force of two dissimilar solids

4. Constant pressure gas Volume

5. Constant volume gas Pressure

6. Radiation Black body radiation

1.11 TEMPERATURE SCALES

Consider the temperature t of a system, which is a dependent property and is a function of any two

independent properties of the system, say, x and y, viz.,
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t = f(x, y)

Consider thermometer to be the system. The most simple and convenient way to measure the

temperature is to keep one property, say y, as constant that the temperature becomes a function of x

only, viz.,

t = f(x)

In this way, temperatures t1, t2, t3, etc., can be measured in terms of values x1, x2, x3, etc., of the

thermometric property as shown in Fig. 1.9.

For example, in the case of liquid-in-glass thermometer, the two independent properties are the

length (L) of the liquid and the pressure (p) of the gas above. By keeping vacuum inside, the pressure

is maintained constant as zero value. The temperature becomes a function of the length L of the

thermometric substance.

y y = constant

x

t1 t2
t3

t4

x1 x2 x3 x4

Figure 1.9 Temperature t as a function of single thermometric property

Therefore,

t = f(L)

To establish a temperature scale, the relationship between the temperature and the thermometric

property must be expressed. For this purpose, we have the following different mathematical forms:

Direct proportionality: t = ax

Linear relation: t = bx + c

Polynomial: t = d + ex + fx2+gx3

In each relation, a certain number of constants are to be determined.

A familiar device for temperature measurement is the liquid-in-glass thermometers as shown in

Fig. 1.10. It consists of glass capillary tube connected to a bulb filled with a liquid (such as mercury or

alcohol) and sealed at the other end. The space above the liquid is occupied by the vapour of the liquid

or an inert gas. As temperature increases, the liquid expands in volume and rises in the capillary. The

length (L) of the liquid in the capillary depends on the temperature. The liquid is the thermometric

substance and the length is the thermometric property. Although, this type of thermometer is commonly

used for ordinary temperature measurements, it is not suitable for applications where extreme accu-

racy is required.
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Any body with at least one measurable property that changes as its temperature changes can be

used as a thermometer. Such a property is called a thermometric property. The particular substance

that exhibits change in the thermometric property is known as a thermometric substance.

Liquid

L

Figure 1.10 Liquid-in-glass thermometer

All temperature scales are based on some easily reproducible states, such as freezing and boiling

point of water, also known as the ice point and steam point.

A mixture of ice and water which is in equilibrium with air saturated with vapour at 1 atm pressure is

said to be the ice point.

A mixture of liquid water and water vapour with no air in equilibrium at 1 atm pressure is said to be

at the steam point.

The thermodynamic temperature scale in the SI system is the Kelvin scale, named after Lord Kelvin

(1824–1907). The temperature unit on this scale is the Kelvin, which is designated by K.

The thermodynamic temperature scale in the English system is the Rankine scale, named after

William Rankine (1820–1872). The temperature unit on this scale is the Rankine, which is designated

by R.

1.11.1 Method in Use Before 1954

Until 1954, the temperature scales were based on two fixed points, the steam point (the temperature of

equilibrium between pure water and pure steam at 1 atm pressure) and the ice point ( the temperature at

which pure ice coexisted in equilibrium with air-saturated water at 1 atm pressure).

The temperature scales used in the SI and in the English system are the Celsius scale and the

Fahrenheit scale, respectively. On the Celsius scale, the ice and steam points were originally assigned

the values of 0°C and 100°C, respectively. The corresponding values on the Fahrenheit scale are 32 and

212°F.

The relations for the temperature in terms of values of the thermometric property in the Celsius and

Fahrenheit scale are given as

t, ºC = 100 i

s i

X X

X X

-
-
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t, °F = 32 + 180 i

s i

X X

X X

-

-

where Xi and Xs are the values of the thermometric property at the ice point ad the steam point

respectively and X is the value of the thermometric property at the temperature to be measured.

1.11.2 Method in Use After 1954

Kelvin suggested that only a single fixed point was necessary to establish a temperature scale. He

pointed out that the triple point of water (the states in which the solid, liquid and the vapour phases of

water coexist in equilibrium) could be used as the single fixed point. At the tenth CGPM in 1954, the

value of the triple point of water was set at 0.01°C or 273.16 K in the Kelvin scale.

t = 273.16 
TP

X

X

1.12 IDEAL GAS THERMOMETER

In an ideal gas thermometer, either change of pressure of an ideal gas at constant volume, or the

change in volume of an ideal gas at constant pressure as a function of temperature, serves as the

thermometric substance.

Consider a fixed mass of an ideal gas that undergoes a change in temperature. If the gas is enclosed in

a bulb, and the pressure readings at two different temperatures are taken in such a way that the volume

of the gas is kept constant, then

2

1

T

T
= 2

1

P

P

Taking the volume readings keeping pressure as constant, we have

2

1

T

T
= 2

1

V

V

In both the cases, one temperature is taken as a known reference temperature and the other as the

temperature to be measured.

When volume is kept constant, the thermometer is known as a constant volume gas thermometer.

When pressure is kept constant, it is known as a constant pressure gas thermometer.

We will discuss constant-volume gas the thermometer, used to measure temperature, in this chapter.

1.12.1 Constant-Volume Gas Thermometer

The constant-volume gas thermometer is shown in Fig. 1.11. The thermometric substance is the gas

(normally hydrogen or helium), and the thermometric property is the pressure exerted by the gas. The

gas is contained in a bulb, and the pressure exerted by it is measured by an open-tube mercury

manometer. As temperature increases, the gas expands forcing up in the pen tube. The gas is kept at

constant volume by raising or lowering the reservoir.
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Capillary

Gas bulb

Manometer

Mercury
reservoir

L

Figure 1.11 Constant-volume gas thermometer

For measuring a temperature, the gas bulb is first placed in a constant temperature bath at the triple

point of water. Let the pressure reading taken at this temperature TTP be PTP. Then the bulb is placed in

a location where the temperature is to be measured. Let the new pressure reading be P. Then the required

temperature is given by

T = 273.16 
TP

P

P

SUMMARY

Thermodynamics is the science which deals with energy in the form of heat and work

and its transformation into each other and the effect of energy transformation on the

properties of systems.

A thermodynamic system is defined as a fixed identifiable quantity of mass or region

in space upon which attention is focused for the study of energy transfer. The mass or

region outside the system is called its surroundings. The real or imaginary surface that

separates the system from its surroundings is called the system boundary.

The system and the surroundings as a whole is called the universe.

A closed system (also known as control mass system) consists of a fixed amount of

mass, and no mass can cross its boundary. But, energy in the form of heat and work

can cross the boundary.

An open system (also known as control volume) is a properly selected region in space.

The boundary, which remains fixed in space, enveloping this control volume is called

the control surface. Both mass and energy can cross the control surface.

A system which exchanges neither mass nor energy with the surroundings is called an

isolated system.

Any identifiable/observable characteristic of a system by which the physical condition

of the system may be described is called a property of the system. The properties that

depend on the extent of the system are known as extensive properties. Intensive

properties are those that are independent of the mass of a system.
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The thermodynamic state of a system at any instant of time is its condition as charac-

terized by certain identifiable/observable thermodynamic properties, i.e., the set of

properties completely describes the state of a system.

A system is said to be in equilibrium when it involves no changes with time. In thermal

equilibrium, all parts of a system are at the same temperature; also this temperature is

the same as that of the surroundings. When there is no unbalanced force or torque

between a system and its surroundings and in the interior of a system, the system is

said to be in a state of mechanical equilibrium. A system will be in chemical equilibrium

only if its chemical composition does not change with time, i.e., no net chemical

reaction occurs. A system will be in thermodynamic equilibrium only when it satisfies

the conditions for all modes of equilibrium.

If the value of even one property changes, the state will change to a different one. Any

change that a system undergoes from one equilibrium state to another is called a

process. The series of states through which a system passes during a process is

called the path of the process.

A system is said to have undergone a thermodynamic cycle, if it returns to its initial

state at the end of the process.

When a process proceeds in such a manner that its state deviates infinitesimally small

from corresponding equilibrium state at all times, it is called a quasi-static process.

Quasi means almost.

A process is said to be reversible if at the conclusion of the process both the system

and the surroundings can be restored to their respective initial  states without

producing any changes in the rest of the universe. Otherwise, the process is said to be

irreversible.

The zeroth law of thermodynamics states that if two bodies are in thermal equilibrium

with a third body separately, they are also in thermal equilibrium with each other.

REVIEW QUESTIONS

1.1 Define the terms system, boundary, surroundings and universe. Discuss various types of systems

giving examples of each.

1.2 Define state, property, change of state, path, process and cycle.

1.3 Discuss briefly about the concept of thermodynamic equilibrium and its importance in engineering

thermodynamics.

1.4 Distinguish between an adiabatic system and isolated system.

1.5 Distinguish between extensive property and intensive property.

1.6 What is a quasi-static process and how does it differ from a reversible process?

1.7 What is the basic difference between a process and a cycle?

1.8 Discuss whether or not the following quantities can be used as properties:

(a) Ú PdV

(b) Ú VdP

(c) Ú PdV + Ú VdP

(d)
d dT V

P
T V

+
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1.9 State the zeroth law of thermodynamics.

1.10 Explain mechanical, chemical and thermal equilibrium.

1.11 Specify whether the following properties are intensive or extensive:

(a) mass (b) weight (c) volume (d) density

(e) velocity (f) energy (g) pressure (h) temperature

MULTIPLE-CHOICE QUESTIONS

1.1 Mixture of ice and water form a

(a) closed system

(b) open system

(c) isolated system

(d) heterogeneous system

1.2 A closed system is one in which

(a) mass does not cross boundaries of the system, though energy may do so

(b) mass crosses the  boundary, but not the energy

(c) neither mass nor energy crosses  the boundaries of a system

(d) both energy and mass cross the boundary of the system

1.3 An open system is one in which

(a) mass does not cross boundaries of the system, though energy may do so

(b) mass crosses the  boundary, but not the energy

(c) neither mass nor energy crosses  the boundaries of a system

(d) both energy and mass cross the boundary of the system

1.4 An isolated system is one in which

(a) mass does not cross boundaries of the system, though energy may do so

(b) mass crosses the  boundary, but not the energy

(c) neither mass nor energy crosses  the boundaries of a system

(d) both energy and mass cross the boundary of the system

1.5 Extensive property of a system is one whose values

(a) depends on the mass of the system, like volume

(b) does not depend on the mass of the system, like temperature , pressure, etc.

(c) is not dependent on the path followed but on the state

(d) is dependent on the path followed and not on the state

1.6 Intensive property of a system is one whose values

(a) depends on the mass of the system, like volume

(b) does not depend on the mass of the system, like temperature , pressure, etc.

(c) is not dependent on the path followed but on the state

(d) is dependent on the path followed and not on the state

1.7 A system will be in thermodynamic equilibrium only if it is in

(a) thermal equilibrium

(b) mechanical equilibrium

(c) chemical equilibrium

(d) all of the above

1.8 Which of the following is a microscopic property?

(a) pressure

(b) temperature
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(c) density

(d) molecular internal energy

1.9 Centrifugal fan is an example of

(a) closed system

(b) open system

(c) isolated system.

(d) none of these

1.10 Which of the following quantities is not a property of a system?

(a) pressure

(b) temperature

(c) specific volume

(d) heat

1.11 Measurement of temperature is based on

(a) first law of thermodynamics

(b) second law of thermodynamics

(c) zeroth law of thermodynamics

(d) third law of thermodynamics





Heat and Work

2.1 ENERGY

Energy can exist in various forms such as mechanical, chemical, thermal, kinetic, potential, electrical,

magnetic etc. and the sum of all forms of energy is called the total energy of the system. Thermodynamics

deals with the change of total energy, not with the absolute value of the total energy. Thermodynam-

ics is the science of study of energy in the form of heat and work. In fact energy can cross the system

boundary of a closed system in two distinct forms: heat and work. Therefore, it is important to distinguish

between these two forms of energy.

2.2 ENERGY TRANSFER BY HEAT

Heat is defined as the form of energy transferred across the boundaries of a system because of

temperature difference between a system and its surroundings, and in the direction from higher

temperature to lower temperature

Heat is energy in transit. It is recognized only as it crosses the system boundary. Consider a hot metal

body as a system. The outer surface of the body represents the system boundary. It contains energy

but this energy is called heat only as it passes through the outer surface of the body (the system

boundary) to reach the surroundings. Once in the surroundings, the transferred heat becomes part of

the internal energy of the surroundings. Thus, in thermodynamics, heat simply means the heat

transfer.

2.3 UNITS OF HEAT

The transfer of heat into a system is called heat addition, and the transfer of heat out of a system is

called heat rejection. A process during which there is no heat transfer is called an adiabatic process.

The word adiabatic comes from the Greek word adiabatos, which means not to be passed. An adiabatic

CHAPTER
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boundary/wall, commonly known as heat insulator, prevents heat transfer just as a rigid wall prevents

work transfer in a hydrostatic system. A diathermic wall, commonly called a heat conductor, allows

heat transfer, just as a deformable wall allows work transfer. An adiabatic process should not be

confused with an isothermal process. Even though there is no heat transfer during an adiabatic proc-

ess, the energy content and thus the temperature of a system can still be changed by other means such

as work.

The amount of heat transferred during a process between two states 1 and 2, is denoted by Q1-2.

The universally accepted sign convention for heat is as follows (refer Fig. 2.1):

∑ Heat transfer to a system is positive.

∑ Heat transfer from a system is negative

SurroundingsSystem

System

boundary

Heat transfer to
the system
(positive)

Heat transfer from the
system (Negative)

Figure 2.1 Sign convention for heat transfer

2.4 HEAT TRANSFER MODES

Heat transfer takes place in three different modes: conduction, convection and radiation.

Conduction is the mode of heat transfer in which a medium transporting the heat remains at rest.

When a temperature gradient exists in a stationary medium, which may be solid or a fluid, the heat

transfer which occurs across the medium is referred to as conduction.

Conduction is the mode of heat transfer in which energy exchange takes place from the region of

high temperature to that of low temperature by the kinetic motion or direct impact of molecules, as in

the case of a fluid at rest, and by the drift of electrons, as in the case of metals. In a solid which is a

good electric conductor, a large number of free electrons move about in the lattice; hence materials

that are good electric conductors are generally good heat conductors (i.e., copper, silver, etc.)

The empirical law of heat conduction based on experimental observations originates from Biot but

is generally named after the French mathematical physicist Joseph Fourier who used it in his analytic

theory of heat. This law states that the rate of heat flow by conduction in a given direction is propor-

tional to the area normal to the direction of heat flow and to the gradient of temperature in that

direction. For heat flow in the x direction, for example, the Fourier law is given as

Qx =
d

d
x

T
k A

x



Heat and Work 2.3

or, qx =
d

d

x
x

Q T
k

A x
=

where Qx is the rate of heat flow through area A in the positive x direction and qx is called the heat flux

in the x direction. The constant of proportionality is called the thermal conductivity, which is a

physical property of the substance and is defined as the ability of a substance to conduct heat.

Similarly, the rate of heat transfer along y and z directions are given by

Qy =
d

d
y

T
k A

y

Qz =
d

d
z

T
k A

z
A material having kx= ky = kz = k , is called an isotropic material. For an isotropic material, the heat

transfer equation Qx =
d

.
d

T
kA

x
If temperature decreases in the positive x direction, then dT/dx is negative; hence qx becomes a

positive quantity because of the presence of the negative sign. Therefore, the minus sign is included to

ensure that qx is a positive quantity when the heat flow is in the positive x direction. Conversely, when

the right-hand side is negative, the heat flow is in the negative x direction.

The unit of thermal conductivity k in SI units is W/m-K.

Heat convection is due to the capacity of moving matter to carry heat energy such as transporting

a load from one place to another. The heat transfer that occurs between a surface and a moving fluid

when they are at different temperatures is called convection.

In engineering applications, to simplify the heat transfer calculations between a heat surface at Tw

and a cold fluid flowing over it at a bulk temperature Tf , a heat transfer coefficient h is defined as

q = h( Tw – Tf )

where q is the heat flux (W/m2) from the hot wall to the cold fluid. The unit of heat transfer coeffi-

cient in SI system is W/m2-K.

Heat radiation is due to the property of matter to emit and to absorb different kinds of radiation and

to the fact that an empty space is perfectly permeable to radiation and that matter allows them to pass

either more radiation or less of it.

2.5 ENERGY TRANSFER BY WORK

The concept of work is usually introduced in the study of mechanics. Mechanical work is defined as

the product of a force F and the displacement caused by the force when both are measured in the

same  direction.  The expression for differential  quantity  of work dW resulting from differential

displacement ds is given by

dW = Fds

Work is a scalar quantity. The total work for a finite displacement is obtained from the integration of

Fds .

Work in the thermodynamic sense is defined as the energy transformed because of a property

difference other than temperature difference. Thermodynamic work is also sometimes defined as
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follows: “Work is transferred from the system during a given operation if the sole effect of the system

behaviour can be reduced to lifting a weight”.

We define work as follows: Work is done by a system if the sole effect on the surroundings could

be the raising of a weight. This definition of work is based on the definition first suggested by

M. Planck and later developed by J.H. Keenan. This definition does not state that the mass is actually

raised by the application of the force—what it states is that the sole effect, external to the system,

could be the raising of a mass through a distance against gravitational force.

The basic unit of work in the SI system is the Newton-metre (N-m) called the Joule (J).We shall

use the more conventional kilojoule (kJ) which is 103 N-m.

Surroundings

System

System
boundary

Work done on
the system
(Negative)

Work done by the
system (Positive)

Figure 2.2 Sign convention for work transfer

The universally accepted sign convention for work transfer is as follows (refer Fig. 2.2):

∑ Work done by a system is positive.

∑ Work done on a system is negative.

2.6 PATH AND POINT FUNCTIONS

The magnitude of a path function depends on the path followed during a process as well as on the end

states. On the other hand, the magnitude of a point function depends only on the end states. Path functions

are designated by the symbol d. Therefore, a differential amount of heat or work is represented by dQ or

dW, respectively, instead of dQ or dW. Properties are point functions and they have exact differentials

designated by the symbol d.

For example, a small change in pressure is represented by dP and the total pressure change during

a process 1–2 between states 1 and 2 is

2

1

dPÚ = P2 – P1

But the total heat transfer during the same process 1–2 is
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2

1

WdÚ = W1–2 π W2 – W1 and hence is an inexact differential.

2.7 COMPARISON OF HEAT AND WORK

Heat and work are energy transfer mechanisms between a system and its surroundings, and there are

many similarities between them:

(a) Heat and work are both transient phenomena. Systems never possess heat or work, but when a

system undergoes a change of state heat and work cross the system boundary.

(b) Both heat and work are boundary phenomena i.e., both are recognized at the boundaries of a

system as they cross the boundaries.

(c) Both are associated with a process, not a state. Unlike properties, heat or work has no meaning

at a state.

(d) Both heat and work are path functions and inexact differentials.

2.8 P–dV WORK OR DISPLACEMENT WORK OR MOVING BOUNDARY
WORK

Let the gas in the cylinder be a system (Fig. 2.3) having initially the pressure P1 and volume V1. The

inner surfaces of the piston and the cylinder form the boundary. The piston is the only boundary

which moves due to gas pressure. Let the piston moves out to a new position 2, where the pressure

and volume are P2 and V2 respectively.

At any intermediate point in the travel of the piston, let the pressure be P and the volume V. When

the piston moves an infinitesimal distance dl and if A be the area of the piston, the force acting on the

piston F = PA and the infinitesimal amount of work done by the gas on the piston

dW = F.dl = PA.dl = PdV

where, dV = Adl = infinitesimal displacement volume.

Weights

Gas
system

Piston

2

1

Surroundings

P
V

1

1

Figure 2.3 A piston–cylinder device
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When the piston moves out from position 1 to 2 with the volume changing from V1 to V2 , the

amount of work W done by the system will be

W1–2 =

2

1

d

V

V

P VÚ (2.1)

This integral can be evaluated only if we know the functional relationship between P and V during

the process.

P

V

P V,

2

dV

1

Figure 2.4 P–V diagram for a quasi-equilibrium expansion process

The area under the process curve on a P–V diagram is equal in magnitude to the work done during

a quasi-equilibrium expansion or compression process of a closed system.

2.8.1 Limitations of the Use of Ú dP V

For dP VÚ to represent work, the following conditions must be satisfied:

(i) The system is a closed one and the process taking place is a non-flow process.

(ii) The process is quasi-static. Such a process is often referred to as a reversible process since a

quasi-static expansion process according to a particular P–V relationship between two states

can be reversed as a quasi-static compression process according to the same P–V relationship

between the same states.

(iii) The boundary of the system should move in order that work may be transferred.

2.9 P–dV WORK OR DISPLACEMENT WORK OR MOVING BOUNDARY
WORK FOR DIFFERENT QUASI-STATIC PROCESSES

Most of the cycles or processes that are normally encountered in thermodynamics analysis of sys-

tems can be identified any one or a combination of the following processes.
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(a) Constant pressure process

(b) Constant volume process

(c) Hyperbolic process

(d) Polytropic process

(e) Adiabatic process

2.9.1 Constant-Pressure Process

The work is given by

W1–2 = ( )2

1

2 1

V

V
PdV P V V=Ú (2.2)

2.9.2 Constant-Volume Process

The work for the constant volume process is zero, since dV = 0. Therefore,

W1–2 =
2

1

0
V

V
PdV =Ú (2.3)

2.9.3 Hyperbolic Process

Hyperbolic process is one for which the quantity PV remains constant. Thus, from Eq. (2.1), one

may write

W1–2 =
2

1
Ú

V

V
PdV

=
2

1
Ú

V

V

C
dV

V

where 1 1 2 2= = =PV C PV P V .

Integrating above Eq. and substituting the constant, C, we get

W1–2 =
2 2 2

1 1 2 2

1 1 1

ln ln ln= =
V V V

C PV P V
V V V

 (2.4)

Note: For an ideal gas the hyperbolic process becomes an isothermal process.

2.9.4 Polytropic Process

When a gas undergoes a process in which energy is transferred as heat, the process frequently occurs

in such a manner that a plot of ln P versus ln V yields a straight line. For such a process, pressure and

volume are related by PV n = constant, where n is the polytropic index of expansion or compression.

Such processes are called polytropic processes. Polytropic index n may be of any value from –μ to

+μ, depending on the particular process.
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For a polytropic process between two end states 1 and 2, functional relationship between pressure

and volume can be expressed as

1 1 2 2=n n
PV P V  (2.5)

Taking logarithms of both sides of Eq. (2.5), we get

1 1 2 2ln ln ln ln+ = +P n V P n V

or,
( )
( )

1 2

2 1

ln

ln
=

P P
n

V V
(2.6)

For a process in which PVn = constant, pressure, P can be expressed as =
n

C
P

V
, where C is a constant. Then

Eq. (2.1) becomes

W1–2 =
2 2

1 1

=Ú Ú
V V

nV V

C
PdV dV

V

=
1 1

2 1

1

- + - +-
-

n n
V V

C
n

=
1 1

1 2

1

- + - +-
-

n n
CV CV

n

Since, the constant, C, can be written as 1 1
n

PV  or as 2 2
n

P V , we get

W1–2 =
1 1

1 1 1 2 2 2

1

- + - +-
-

n n n nPV V P V V

n

W1–2 =
1 1 2 2

1

-
-

PV P V

n
(2.7)

This expression is valid for all values for n except n = 1. The case n = 1 is discussed in Section 2.9.5.

2.9.5 Adiabatic Process

The relationship between pressure and volume for an adiabatic process is given by the expression

g =PV C  where g is the specific heat ratio .

Following a procedure similar to the one adopted for polytropic process, one may obtain the

displacement work done during an adiabatic expansion process as

W1–2 =
1 1 2 2

1

PV P V

g

-
-

(2.8)
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Example 2.1 Obtain an expression for displacement work done by a system undergoing an iso-

thermal expansion from initial volume V1 to final volume V2. The macroscopic prop-

erties of the system obey the following relationship:

2

a
P

V

Ê ˆ+Á ˜Ë ¯
(V – b) = mRT, where a, b and R constants.

Solution Given that

( )
2

a
P V b mRT

V

Ê ˆ
+ - =Á ˜Ë ¯

or
2

mRT a
P

V b V
= -

-
The displacement work is found from equation (2.1) to be

2

1

1 2

V

V

W PdV- = Ú
2

1

2
( )

V

V

mRT a
dV

V b V
= -

-Ú

2

1 2 1

1 1
ln

V b
mRT a

V b V V

È ˘-
= + -Í ˙- Î ˚

Example 2.2 1 kg of fluid initially at 500 kPa with 0.01 m3 volume undergoes a reversible

expansion to volume 0.05 m3 and pressure 100 kPa according to a linear law.

Calculate the work done.

Solution The expansion takes place according to a linear law. Let the pressure and volume

relationship is P = aV + b

where a and b are constants and can be evaluated from the initial and final conditions.

500 0.01a b= +

100 0.05a b= +
After solving the above two equations, we get

10000,  600a b= - =
The pressure and volume relationship can be written as

10000 600P V= - +
Work done is found to be

2

1

1 2

V

V

W PdV- = Ú
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( )
0.05

0.01

10000 600V dV= - +Ú
0.05

2

0.01

10000 600
2

V
V= - +

( ) ( )2 25000 0.05 0.01 600 0.05 0.01= - - + -

= 12 kJ

Example 2.3 Determine the total work done by a gas system following an expansion as shown in

Fig. 2.5.

P, kPa

1 2
300

PV Cn=

3
100

V, m3

0.1 0.3 0.7

Figure 2.5

Solution Work done for the process 1–2 :

W1–2 =

2

1

d

V

V

P VÚ  = P(V2 – V1) = 300(0.3 – 0.1) = 60 kJ

For the process 2–3 :

P2V2
n = P3V3

n

n =

2

3

3

2

300ln ln
100
0.7

lnln
0.3

P

P

V

V

=  = 1.3

Work done for the process 2–3 :

W2–3 =

2

1

2 2 3 3 300 0.3 100 0.7
d 66.67 kJ

1 1.3 1

V

V

P V PV
P V

n

¥ ¥
= = =Ú

Total work done : W1–3 = W1–2 + W2–3 = 60 + 66.67 = 126.67 kJ
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Example 2.4 2 kg of a gas is contained in a piston–cylinder assembly at initial conditions of 2 m3

and 100 kPa. The gas is allowed to expand to a final volume of 5 m3. Determine the

amount of work done for the following processes:

(a) Pressure remains constant

(b) Product PV is a constant

(c) Product PV
2
 is a constant

Solution (a)       Work done, W1–2 = P(V2 – V1) =100(5 – 2)=300 kJ

(b) P1V1 = P2V2

Final pressure, P2 =
1

1

2

2
100 40 kPa

5

V
P

V
= ¥ =

Work done = P1V1ln 2

1

V

V
 = 

5
100 2ln 183.26 kJ

2
¥ =

(c) P1V1
2 = P2V2

2

Final pressure, P2 =

2 2

1
1

2

2
100 16 kPa

5

V
P

V

Ê ˆ Ê ˆ
= ¥ =Á ˜Á ˜ Ë ¯Ë ¯

Work done, W1–2 = 1 1 2 2 100 2 16 5
120 kJ

1 2 1

PV P V

n

¥ ¥
= =

Note: Example 2.4 illustrates that out of the three processes (P = const. PV = const.

PV2 = const.) between the same end states, constant pressure process gives the

maximum output.

Example 2.5 Consider a gas contained in a piston–cylinder assembly as the system. The gas is

initially at a pressure of 1000 kPa and occupies a volume of 0.1 m3. The gas is taken

to the final state where pressure is equal to 200 kPa, by the following two different

processes.

(i) The volume of the gas inversely proportional to the pressure.

(ii) The process follows the path  =constant, where n =1.4.

Calculate the work done by the gas in each case.

Solution

Initial pressure 1 1000 kPaP =

Initial volume
3

1 0.1 mV =

Final pressure 2 200 kPaP =
(i) From the given condition, we get

2 1

1 2

V P

V P
=
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or 31
2 1

2

1000
0.1 0.5 m

200

P
V V

P
= = ¥ =

The work done is computed from equation (2.4) to be

2
1 2 1 1

1

ln
V

W PV
V

- =

0.5
1000 0.1 ln 160.94 kJ

0.1
= ¥ ¥ =

(ii) From the given condition, we have

1 1 2 2
n n

PV P V=

or 1.4 1.4
21000 0.1 200 V¥ = ¥

or 3
2 0.3157 mV =

The work done is found from equation (2.7) to be

1 1 2 2
1 2

1

PV P V
W

n
-

-
=

-

1000 0.1 200 0.3157
92.15 kJ

1.4 1

¥ - ¥
= =

-

 Example 2.6 A mass of gas is compressed in a quasi-static process from 80 kPa, 0.1 m
3
 to

0.4 MPa, 0.03 m3. Assuming that the pressure and volume are related by

PV n = constant, find the workd done by the gas system.

Solution

Initial pressure 3
1 80 kPa 80 10  PaP = = ¥

Initial volume
3

1 0.1 mV =

Final pressure 6
2 0.4 MPa 0.4 10  PaP = = ¥

Final volume 3
2 0.03 mV =

The polytropic index of compression is found from Eq. (2.6) as

1

3
2

2

1

80
ln ln

0.4 10 1.337
0.03

lnln
0.1

P

P
n

V

V

¥= = =

The work done is found from equation (2.7) to be
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1 1 2 2
1 2

1

PV P V
W

n
-

-
=

-
3 6

80 10 0.1 0.4 10 0.03

1.337 1

¥ ¥ - ¥ ¥
=

-

11869.44 J 11.869 kJ= - = -

Negative sign indicates that work is done on the gas.

Example 2.7 A piston–cylinder device with air at an initial temperature of 30°C undergoes an

expansion process for which pressure and volume are related as given below:

P(kPa) 100 37.9 14.4

V(m3) 0.1 0.2 0.4

Calculate the work done by the system.

Solution Let the expansion process be represented by a polytropic process

P1V1
n = P2V2

n

where n is the polytropic index of expansion.

The polytropic index of expansion is found from Eq. (2.6) as

n =

1

2

2

1

ln

ln

P

P

V

V

n =

100
ln

37.9
0.2

ln
0.1

 = 1.4

n =

37.9
ln

14.4
0.4

ln
0.2

 = 1.4

The process obeys the relation PV1.4 = constant.

The work done is found from Eq. (2.7) to be

W1–3 = 1 1 3 3

1

PV P V

n

-
-

=
100 0.1 14.4 0.4

10.6 kJ
1.4 1

¥ - ¥
=

-
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Example 2.8 A piston–cylinder device contains 1 kg of fluid at 20 atmospheric pressure. The

initial volume is 0.04 m3. The fluid is allowed to expand reversibly following a proc-

ess PV1.45 = C so that the volume becomes double. The fluid is then cooled reversibly

at constant pressure until the piston comes back to the original position. Keeping the

position of the piston unaltered, heat is added reversibly to restore the initial pressure.

Calculate the cyclic work done. Plot the process in P–V coordinates, given that 1

atmospheric pressure = 101.325 kN/m2.

Solution The processes are shown in Fig. 2.6.
P.kPa

1

23

2026.5

741.74

PV = constant21.45

0.04 0.08
V.m3

Figure 2.6

From the given data, P1 = 20 atm = 20 ¥ 101.325 = 2026.5 kN/m2

V1 = 0.04 m3; V2 = 2 V1 = 0.08 m3,

1 1 2 2=n nPV P V

\ P2 =

1.45

1
1

2

1

2

n
V

P
V

Ê ˆ Ê ˆ¥ = Á ˜Á ˜ Ë ¯Ë ¯
¥ 2026.5 kPa = 741.74 kPa.

The work done during the polytropic expansion 1-2 is

\ W1–2 = 1 1 2 2 2026.5 0.04 741.74 0.08

1 1.45 1

- ¥ - ¥
=

- -
PV P V

n
 kJ

= 48.27 kJ

The work done during the constant pressure process 2-3 is

W2–3 = P2(V3 – V2) = P2(V1 – V2) = 741.74 (0.04 – 0.08) kJ

= – 29.67 kJ

Since the volume does not change during the process 3-1, the work done 3-1W  is zero.

The cyclic work done is 
1 2 2 3 3 1W 48.27 29.67 + 0 = 18.6 kJW W W- - -= + + = -Â
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Example 2.9 An ideal gas is heated at a constant volume until its temperature is doubled and then

cooled at constant pressure until it is returned to the original temperature. Finally, the

gas is allowed to expand at constant temperature until it is returned to the original

volume. Derive an expression for net work done by the gas.

Solution The processes are shown in Fig. 2.7.

P

3

2

1

V

Figure 2.7

It is given that 2 12T T=

For the constant volume process 1-2, we have

1 1

2 2

1

2

P mRT

P mRT
= = 2 12T T=È ˘Î ˚∵

Work done for the constant volume process 1-2 is 1 2 0W - =

It is further given that 13 3 2andT PT P==

From the characteristics equation of state for an ideal gas, we can write

1 1 1PV mRT=

2 2 2 12P V mRT mRT= = 2 12T T=È ˘Î ˚∵

3 3 3 1P V mRT mRT= = 13T T=È ˘Î ˚∵

The work done for the constant pressure process 2-3 is

2 3 2 3 2 3 3 2 2( )W P V V P V P V= - = -

1 1 12mRT mRT mRT= - = -

For the isothermal process 3-1, we have

3 3 1 1P V PV=

or  31 2

3 1 1

2
PV P

V P P
= = = 3 2P P=È ˘Î ˚∵

The work done for the process 3-1 is found from Eq. (2.7) to be
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1
3 1 3 3

3

ln
V

W P V
V

- =

1 1ln 2 0.6931mRT mRT= =

Total work done 1 1 10.6931 0.3069mRT mRT mRT= - + = -

2.10 DIFFERENT PROCESSES IN THE PROCESS-DIAGRAM

It is important to mention here that the quasi-equilibrium processes presented in this chapter can be

expressed as

PVn = constant

Each quasi-equilibrium process is associated with a particular value for n as follows:

Constant pressure: n = 0

Constant temperature: n = 1

Adiabatic : n = g
Constant volume : n = •
The processes are shown on P–V diagram in Fig. 2.8.

n = 1

n = 1

n = g

n = g
n = a

n = 0 n = 0

n = a
Expansion

Initial state

V

P

Compression

Figure 2.8 Different processes on a P–V diagram

Starting from the initial state the lower right quadrant shows the expansion processes and the upper

left quadrant shows the compression processes.

The important observations from the process diagram are summarized below:

(i) As the value of polytropic index increases, the area included by the curve in the P-V diagram

decreases, hence the work done by the process decreases.

(ii) As the value of polytropic index increases, the process curve comes closer to y-axis.
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The larger the value of n, the more nearly does the polytropic curve approach the vertical line

representing the constant volume process. This can be demonstrated by differentiating

constant=nPV  to give

V ndP + PnV n–1dV = 0

or,
dP

dV
=

P
n

V
Thus the slope of the curve increases in the negative direction with increase of n.

2.11 WORK TRANSFER: NOT A PROPERTY OF A SYSTEM

Let the system be taken from the state 1 to the state 2 by different quasi-equilibrium paths such as 1-a-

2, 1-b-2 or 1-c-2 (refer Fig. 2.9). Since the area under the curve on the process diagrams represents

the quasi-equilibrium work done and the area under the curve is different for different paths, so the

work done is different for each path. The work done in a process depends not only on the initial and

final states, but also the path followed by a system during a change of state, i.e., work transfer is a

path function and not a property of a system.

1

c
b

a

2

V

P

Figure 2.9

2.12 OTHER MODES OF WORK

2.12.1 Flow Work

The flow work is the work required to make the fluid flow across the control volume. The flow work

is significant only in a flow process.

Consider an element of fluid mass m and volume V (Fig.

2.10). If the fluid pressure is P and the cross-sectional area of

the fluid element is A, the force applied on the fluid element by

the imaginary piston is F = PA. Imaginary
position

CV

v
p
m

L

A

F

Figure 2.10 Flow work
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To  push  the  entire  fluid  element  into  the  control volume, the force must act through a distance

L. Thus, the flow work or the work done in pushing the fluid element across the boundary,

Wflow = F.L = PAL = PV

The flow work per unit mass

Wflow = Pv

2.12.2 Spring Work

When a force is applied on a spring, the length of the spring changes. When the length of the spring

changes by a differential amount dx under the influence of a force F, the work done is

dWspring = Fdx

For linear elastic springs, the displacement is proportional to the force applied. That is, F = kx,

where k is spring constant.

dWspring = kxdx

Total work done necessary to stretch the spring from a length x1 to x2 is,

Wspring = ( )
2 2

1 1

2 2
2 1

1

2
= =Ú Ú

x x

x x

Fdx kxdx k x x

2.12.3 Electrical Work

Whenever there is a current flow through a resistor (taken as a system), work transfer takes place

into the system. The potential difference is the force that drives the charge through the resistor. The

current I is related to the charge by

dC
I

dt
=

where C is the charge and   is the time. Thus, during the time interval  dt, dC, is the charge that

crosses the system boundary.

If V is the potential (voltage) difference, the non-equilibrium work done is

W VdCd =
VIdt=

Total work done is

2

1

W VIdt= Ú
The electrical power (or the rate of doing work) will be

0
lim
dt

W
W VI

tÆ

∂
= =

∂
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2.13 SOME EXCEPTIONAL CASES

2.13.1 Free Expansion Process—Situation in which ÚP Vd  is

Finite but Work Done is Zero

Let us consider a gas in a compartment with an initial pressure P1 and volume V1 that is separated from

a vacuum. Let both the compartments be properly insulated so that heat transfer is zero. As the partition

is removed, the gas rushes to fill the vacuum. The expansion of gas against a vacuum is known as free

expansion. Is any work done in the free expansion process?

Let us consider the gas and vacuum together as the system as shown in Fig. 2.11 (a) . We know that

work transfer is a boundary phenomena, i.e., work transfer is identified only when work crosses the

system boundary. During this free expansion, work done is zero since no work crosses the system

boundary.

Let consider the gas in the compartment to be a system as shown in Fig. 2.11 (b). If the partition

is removed, the volume of the system changes from V1 to V2. However, this is not a quasi-equilibrium

process.  Therefore, work cannot be calculated from the expression 

2

1

d .Ú P V

If we divide the vacuum into a large number of small compartments by partitions and the partitions

are removed slowly one by one then the process will be a quasi-equilibrium process. For that, work can

be calculated from the expression 

2

1

dÚ P V . However, Pext = 0, i.e., external pressure is zero at the

system boundary. No work is done in the process, since external pressure is zero.

Therefore, free expansion is an example of an expansion process in which dÚ P V is finite but

work transfer is zero.

Gas

Partitions

Gas Vacuum

Partition

Vacuum

(a) (b)

Figure 2.11 Free expansion

2.13.2 Paddle-Wheel Work—Situation in which ÚP Vd  is Zero

but Work Done is Finite
Consider a fixed mass of fluid in a rigid and insulated vessel as a system as shown in Fig. 2.12.. The

vessel is provided with a paddle wheel. As the paddle wheel runs, work is done on the system. It

increases the stored energy of the system. The temperature of the fluid increases as the work is done
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on the system. The system changes its state from 1 to 2. But there is no movement of the system

boundary. Hence dÚ P V is zero, although work has been done on the system. This form of work can

be done in one direction only, that is, work is done on the system by the surroundings.

System

Weight

Rigid and
insulated vessel

Figure 2.12 Paddle-wheel work

SUMMARY

Heat is the form of energy transferred across the boundaries of a system because of

temperature difference between a system and its surroundings, and in the direction of

higher temperature to lower temperature.

A process during which there is no heat transfer is called an adiabatic process.

Work in the thermodynamic sense is defined as the energy transformed because of a

property difference other than temperature difference. Thermodynamic work is also

defined as follows: “Work is transferred from the system during a given operation if the

sole effect of the system behaviour can be reduced to lifting a weight”.

P–dV work or displacement work, or moving boundary work, is a form of mechanical

work which is associated with the expansion or compression of a fluid in a piston–

cylinder device.

When the piston moves out from position 1 to 2 with the volume changing from V1 to V2,

the amount of displacement work done by the system can be expressed as

W1–2  = Ú
V

V

P V

2

1

d .

The expression for displacement work done for different processes are given as

follows:

Isobaric process: W1–2 = P(V2 – V1)

Isochoric process: W1–2 = 0

Isothermal process: W1–2 = P1V1ln
2

1

V

V
= P1V1ln 1

2

P

P
= P1V1(lnP1 – lnP2)
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Polytropic process: W1–2 = 2 2 1 1

1

PV PV

n
=

-
1 1 2 2

1

PV PV

n

Adiabatic process: W1–2 =
g

1 1 2 2

1

PV PV

The flow work is the work required to make the fluid flow across the control volume.

Wflow = F.L = PAL = PV

Free expansion is a process in which Ú dP V is finite but work done is zero

Paddle-wheel work is an example in which Ú dP V is zero but work done is finite.

REVIEW QUESTIONS

2.1 What is a polytropic process?

2.2 Derive an expression for displacement work in a process where PVn = constant

2.3 Prove that for a polytropic process, W1–2 = 
2 2 1 1

1

P V PV

n
.

2.4 Show that work done in isothermal process from the state 1 to the state 2 is given by

W1–2 = P1V1(lnP1 – lnP2)

2.5 What do you understand by path function and point function?

2.6 Show that work transfer is not a property of a system.

2.7 Show that heat transfer is not a property of a system.

2.8 Why does free expansion have zero work transfer?

2.9 What do you understand by flow work?

NUMERICAL PROBLEMS

2.1 Air of 0.02 m3 at 200 kPa and 30 C is compressed to a volume of 0.002 m3 according to the law

PV 1/3 = constant. What is the final temperature and work done during compression?

2.2 1 kg of fluid initially at 6 bar with 0.01 m3 volume undergoes the following operations.

(i) reversible expansion to volume 0.05 m3 and pressure 2 bar according to a linear law

(ii) reversible cooling at constant pressure

(iii) reversible compression according to law PV = constant.

This brings the fluid back to initial conditions of 6 bar and 0.01 m3.

Calculate (a) work done in each process. State whether the work is done on or by the fluid, and (b) net-

work of the cycle.

2.3 Helium contained in a cylinder fitted with a piston expands reversibly according to the law  PV =

constant. The initial pressure, temperature and volume are 5 bar, 222 K and 0.055 m3. After expansion,

the pressure is 2 bar, calculate the work done during the process.
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2.4 A gas is contained in a cylinder fitted with a piston loaded with a small number of weights. The initial

pressure of the gas is 1.3 bar, and the initial volume is 0.03 m3. The gas is now heated until the volume

of the gas increases to 0.1 m3.  Calculate the work done by the gas in the following processes

(a) pressure remains constant

(b) temperature remains constant

(c) pv = constant during the process.

Show the processes on P-V diagram.

2.5 A system contains 0.15 m3 of air at 3.8 bar and 150°C. A reversible adiabatic expansion takes places till

the pressure falls to 1.03 bar.  Determine the total work done.

2.6 Air at 300°C and 10 bar expands to 3 bar reversibly following the law PV 1.35 = constant. Determine the

work done per kg of air if Cp = 1kJ/kg-K and C v = 0.714 kJ/kg-K.

2.7 Three kg of air undergoes a three-process cycle as shown in Fig. 2.13. Calculate the network.
P, kPa

50

PV = Constant

32

1 4
V(m )3

Figure 2.13

2.8 The force necessary to compress a linear spring is given by F = 10x N, where x is the distance the spring

is compressed, measured in m. Calculate the work required to compress the spring from 0.3 to 0.6 m.

MULTIPLE-CHOICE QUESTIONS

2.1 Work done in an adiabatic process between a given pair of end states depends on

(a) the end states only (b) particular adiabatic process

(c) the value of index n (d) mass of the system

2.2 Which of the following is true for reversible polytropic process

(a) temperature remains constant (b) entropy  remains constant

(c) some heat transfer takes place (d) internal energy remains constant

2.3 Maximum work done by an expansion of a gas in a closed system is possible when process takes place

at constant

(a) pressure (b) temperature

(c) volume (d) entropy

2.4 A diathermic wall is one in which

(a) prevents thermal interaction (b) permits thermal interaction

(c) encourages thermal interaction (d) discourage thermal interaction

2.5 An adiabatic wall is one in which

(a) prevents thermal interaction (b) permits thermal interaction

(c) encourages thermal interaction (d) discourages thermal interaction

2.6 Which of the following have the same unit?

(a) work and power (b) work and energy

(c) power and energy (d) all of these



Heat and Work 2.23

2.7  In a closed system, a gas undergoes a reversible process as per the law P = (–4V + 10) N/m2 and the

volume of the gas, V changes from 1 m3 to 2 m3. The work done will be

(a) 10 J output (b) 4 Joutput

(c) 6 J input (d) 4 J input

2.8 Work done in a free expansion process is

(a) positive (b) negative

(c) zero (d) maximum

2.9. In free expansion process

(a) 0, 0W pdV∂ π =Ú Ú (b) 0, 0W pdV∂ = =Ú Ú
(c) 0, 0W pdV∂ = πÚ Ú (d) 0, 0W pdV∂ π πÚ Ú

2.10. Isochoric process is one in which

(a) free expansion takes place

(b) no mechanical work is done by the system

(c) very little mechanical work is done by the system

(d) all parameters remain constant

2.11 Polytropic index n is given by

(a) 2 1 1 2ln lnP P V V (b) 1 2 1 2ln lnP P V V

(c) 1 2 2 1ln lnV V P P (d) 2 1 2 1ln lnV V P P





First Law of
Thermodynamics

3.1 JOULE’S EXPERIMENT

A series of experiments carried out by the English Scientist J. P. Joule between 1843 to 1848, forms the

basis for the first law of thermodynamics. In Joule’s paddle-wheel experiment, a known amount of water

was taken in a rigid and insulated vessel as shown in Fig. 3.1. The vessel was provided with a paddle-wheel

driven by a free-falling mass m by means of a pulley. Work was done on the system by lowering the mass

m through a distance h. The work done on the system was computed in terms of the change in the potential

energy of the mass m. The thermometer, immersed in the water, was used to determine the change in the

state of the system. The temperature of the water was found to increase after work had been performed on

the system. Once the system had come to rest, it was brought into contact with a water bath and the system

was allowed to come to the initial state. The amount of energy transferred as heat from the system to the

bath was estimated in terms of the temperature rise of the bath. The system underwent a series of processes

that constitute a cycle.

Figure 3.1 Schematic arrangement of Joule’s paddle-wheel experiment

CHAPTER

3



3.2 Engineering Thermodynamics and Fluid Mechanics

By repeating the experiment for different systems and for different amounts of work interactions and

measuring the corresponding amounts of heat transfers in each case for bringing the system back to the

initial state, Joule found that the net work input was always proportional to the net amount of heat transfer

from the system measured in their conventional units. It is now found that the two were equal in magnitude

when expressed in the same units. It is concluded that whenever a system undergoes a cyclic change, the

algebraic sum of the work transfers is equal to the algebraic sum of the energy transfers as heat.

3.2 FIRST LAW OF THERMODYNAMICS

The first law of thermodynamics, also known as the principle of conservation of energy, provides a basis

for the study of the relationship among the various forms of energy and energy transformation. Based on

the experimental observations, the first law of thermodynamics states that energy can neither be created

nor destroyed, it can only change forms. In other words, during an interaction between a system and its

surroundings, the amount of energy gained by the system is exactly equal to the amount of energy lost

by the surroundings.

For a closed system or a fixed mass, the first law may be expressed as follows:

Net energy transferred to (or from) the system as heat and work=Net increase (or decrease) in the

total energy of the system

Q – W = DE

= DU + DKE + DPE + ... (3.1)

Neglecting the effects of magnetic and electric fields and surface tension, the above equation

reduces to

Q – W = DU + DKE + DPE (3.2)

For a stationary closed system (the extrinsic effects on a closed system, such as the effects of

motion and gravity, are neglected)

Q – W = DU (3.3)

Eq. (3.3) can be written in differential form as

dQ – dW = dU (3.4)

And per unit mass basis, Eqs ( 3.3) and (3.4) become

q – w = u (3.5)

dq – dw = du (3.6)

Internal energy is defined as the sum of all the microscopic forms of energy of a system. It is the

energy associated with the molecular structure, and the molecular activity of the constituent particles

of the system. It may be viewed as the sum of the kinetic and potential energies of the molecules.

3.2.1 First Law of Thermodynamics for a Closed System
Undergoing a Cycle

If a system executes a cycle transferring heat and work through its boundary, the net work transfer

is equivalent to the net heat transfer.
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Mathematically,

Ú dW = Ú dQ (3.7)

3.2.2 First Law of Thermodynamics for a Non-flow,
Non-cyclic Process

The net algebraic sum of heat and work during a process is equal to the change in internal energy

during the same process.

Mathematically,

dQ – dW = dU (3.8a)

Since for a quasi-equilibrium process, d =W PdV , Eq. (3.8a) becomes

dQ – PdV = dU (3.8b)

Example 3.1 A system undergoes a cycle composed of four processes, 1–2, 2–3, 3–4 and 4–1. The

rate of energy transfers are tabulated below:

Process Q(kW) W(kW) DU(kW)

1–2 400 150 A

2–3 200 B 300

3–4 –200 C D

4–1 0 75 E

(i) Calculate the value of A, B, C, D and E.

(ii) Determine the rate of work in kW.

Solution For process 1–2, Q1–2 = DU+ W1–2

400 = A + 150

A = 250 kW

For process 2–3, Q2–3 = DU + W2–3

200 = 300 + B

B = – 100 kW

For process 4–1, Q4–1 = DU + W4–1

0 = E + 75

E = – 75 kW

Now, Ú U = 0

A + 300 + D + E = 0

250 + 300 + D – 75 = 0
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D = – 475 kW

For process 3–4, Q3–4 = DU + W3–4

– 200 = D + C

– 200 = – 475 + C

C = 275 kW

Since Ú dQ = Ú dW

Net cyclic work done = 400 + 200 – 200 + 0 = 400 kW

Negative sign indicates that heat is lost from the system.

Example 3.2 A system undergoes a process 1-2 in which it absorbs 200 kJ energy as heat while it

does 100 kJ work. Then it follows path 2-3 in which it rejects 50 kJ energy as heat

when 80 kJ work is done on it. If it is required to restore the system to state 1 through

an adiabatic path, calculate the work and heat transfer along the adiabatic path. Also

calculate net heat transfer.

Solution From the given data, we have

1 2 200 kJ- =Q , 1 2 100 kJ- =W ,

2 3 50 kJ- = -Q , 2 3 80 kJ- = -W

3 1 0- =Q

The processes 1-2, 2-3 and 3-1 together constitute a cycle. Thus from Eq. (3.7), we

have

=Â ÂQ W

or,
1 2 2 3 3 1 1 2 2 3 3 1- - - - - -+ + = + +Q Q Q W W W

or,
3 1200 50 0 100 80 -- + = - + W

or,
3 1 130 kJ- =W W31=130 kJ

Net heat transfer is 1 2 2 3 3 1 200 50 0 150 kJ- - -+ + = - + =Q Q Q

Example 3.3 One kg of fluid initially at 1000 kPa and 0.2 m3 undergoes a quasi-equilibrium ex-

pansion to 200 kPa and 1.2 m3 according to a linear relationship between pressure

and volume. The internal energy of the fluid is given by the relation

2 45  kJ = +U PV

where P is in kPa and V is in m3. Calculate the net work done, heat transfer, and the

change in internal energy.
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Solution The expansion takes place according to a linear law. Let the pressure and volume

relationship be = +P aV b

where a and b are constants and can be evaluated from the initial and final conditions

as follows

1000 0.2= +a b

200 1.2= +a b

After solving the above two equations, we get

800,  1160= - =a b

Thus, the pressure and volume relationship can be written as

800 1160= - +P V

The work done for the quasi-equilibrium expansion is found to be

 W1–2 =
2

1

Ú
V

V

PdV

( )
1.2

0.2

800 1160= - +Ú V dV

1.22

0.2

800 1160
2

= - +
V

V

( ) ( )2 2400 1.2 0.2 1160 1.2 0.2= - - + -

600 kJ=

Change in internal energy is

( ) ( )2 1 2 2 1 12 1
2 45 2 45  =  2( ) - = + - + -U U PV PV P V PV

2(200 1.2 1000 0.2)      = ¥ - ¥

80 kJ  =
Heat transfer is then

1-2 2 1 1-2= - +Q U U W

80 600 680 kJ= + =

Example 3.4 A domestic refrigerator is loaded with food and the door is closed. During a certain

period the refrigerator consumes 1kWh of energy and the internal energy of the sys-

tem drops by 5000 kJ. Find the net heat transfer for the system.
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Solution From the given data, we have

5000 kJD = -U

1 kWh 3600 kJ= - = -W (According to sign convention of work transfer, energy

consume by the refrigerator is negative)

From first law of thermodynamics, we have

= D +Q U W

5000 3600 8600 kJ 8.6 MJ= - - = - = -
Negative sign indicates that the heat transfer takes place from the refrigerator to the

surroundings.

3.3 COROLLARIES OF THE FIRST LAW OF THERMODYNAMICS

Corollary-1 There exists a property of a closed system such that a change in its value is equal to

the difference between heat supplied and work done during the change of state.

Proof

Let the system be taken from state 1 to state 2 by the two different processes 1-a-2 and 1-b-2  as

shown in Fig. 3.2.

Let us consider,

( ) ( )d - d π d - d
a bQ W Q W (3.9)

where dQ the net heat is supplied to the  system and dW is the net work done by the  system during

a process. Let the system be taken from state 2 to 1 through path 2-c-1.Now the processes 1-a-2 and

2-c-1 together constitute a cycle. From the first law of thermodynamics for a cyclic process, we can

write

d = dÚ Ú  Q W

d + d = d + da c a cQ Q W W

( ) ( )d - d = - d - d
a cQ W Q W (3.10)

1

c

b

a

2

V

P

Figure 3.2
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Similarly, the processes 1-a-2 and 2-c-1 together constitute a cycle for which the first law of

thermodynamics becomes

d = dÚ Ú  Q W

d + d = d + db c b cQ Q W W

( ) ( )d - d = - d - d
b cQ W Q W (3.11)

If inequality (3.9) is true, then Eqs (3.10) and (3.11) contradict each other which implies that these

quantities must be equal. Therefore ( )d - dQ W  is independent of the path the system follows during

a change of state. If the property denoted by U, the corollary can be expressed mathematically as

d - d =Q W dU .

The property U is called the internal energy of the system. The adjective “internal” has been

adopted to distinguish this form of energy from the mechanical forms of energy.

Corollary-2 The internal energy of a closed system remains unchanged if the system is isolated

from the surroundings.

Proof

A system which exchanges neither mass nor energy with the surroundings is called an isolated

system. It is thus a closed system having no energy interaction ( 0d =Q , 0d =W ) with the surroundings.

Then the first law of thermodynamics in differential form becomes

0=dU

or, Constant=U

Figure 3.3 shows an isolated system. All that happens during a process is a spontaneous redistribu-

tion of energy between parts of the system which continues until a state of equilibrium is reached.

There is no change in the total energy within the system during the process.

Surroundings

System No mass or energy
transfer between
system and
surroundings

Figure 3.3 An isolated system

Corollary-3 A perpetual motion machine of first kind is impossible.

Proof A hypothetical device which would produce work continuously without absorbing any

energy from its surroundings is called a perpetual motion machine of the first kind. A perpetual

motion machine of the first kind must operate on a cycle to produce work continuously. If it does not

operate on a cycle, its state would change continuously and it could not go on indefinitely. For such

a device there cannot be any energy transfer in the form of heat from the surroundings, hence
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0d =Ú Q . Therefore, 0d =Ú W , that means the work delivered by it is zero. Therefore, it is

impossible to construct a perpetual motion machine of the first kind. A perpetual motion machine of

the first kind is a machine which violates the first law of thermodynamics.

It is always possible to devise a machine to deliver a limited (certain) quantity of work without

requiring a source of energy in the surroundings. For example, a compressed gas in a piston-cylinder

arrangement will expand and do work at the expense of the internal energy of the gas. Such a device

can not produce work continuously.

3.4 HEAT TRANSFER: NOT A PROPERTY OF A SYSTEM

Let the system be taken from state 1 to state 2 by the two different processes 1-a-2 and 1-b-2. Let the

system be taken from state 2 to 1 through path 2-c-1.Now the processes 1-a-2 and 2-c-1 together

constitute a cycle.

Applying the first law of thermodynamics for the cyclic process

d = dÚ Ú  Q W

1 2 2 1 1 2 2 1- - - - - - - -
d + d = d + dÚ Ú Ú Úa c a c

Q Q W W (3.12)

1

c

b

a

2

V

P

Figure 3.4

Similarly, the processes 1-b-2 and 2-c-1 together constitute a cycle for which

1 2 2 1 1 2 2 1- - - - - - - -
d + d = d + dÚ Ú Ú Úb c b c

Q Q W W (3.13)

 Subtracting Eq. (3.13) from Eq. (3.12), we get

1 2 1 2 1 2 1 2- - - - - - - -
d - d = d - dÚ Ú Ú Úa b a b

Q Q W W (3.14)

Since work transfer is a path function,

1 2 1 2
0

- - - -
d - d πÚ Úa b

W W (3.15)
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Therefore,

1 2 1 2
0

- - - -
d - d πÚ Úa b
Q Q (3.16)

That is the heat transfer in a process depends not only the initial and final states, but also the path

followed by system during a change of state, i.e., heat transfer is a path function and not a property

of a system.

3.5 SPECIFIC HEATS, INTERNAL ENERGY AND ENTHALPY

The specific heat or heat capacity of a substance is the amount of heat required to change temperature

of the unit mass of the substance by one degree. Denoting by C, from definition, we have

C =
1 Q q

m T T

d dÊ ˆ =Á ˜Ë ¯d d

The unit of specific heat in SI system is J/kg-K (or kJ/kg-K). In general, this energy needed to

change the temperature depends on how the process is executed. In thermodynamics, we are inter-

ested in two kinds of specific heats, namely specific heat at constant volume, Cv and specific heat at

constant pressure, Cp.

Physically, the  constant volume specific heat, Cv is defined as the energy required to raise the

temperature of the unit mass of a substance by one degree as the volume is maintained constant. The

energy required to do the same as the pressure is maintained constant is the specific heat at constant

pressure, Cp. The Cp is always greater than Cv because at constant pressure the system is allowed to

expand and the energy for this expansion work must also be supplied to the system. Both Cv and Cp can

be expressed in terms of thermodynamic properties as discuss in the next Section for an ideal gas

(Section 3.5.1).

According to the state -postulate we know that the state of a simple compressible substance is

completely specified by two independent, intensive properties. Consider the specific internal energy

to be a function of temperature and specific volume, that is

u = ( , )u T v (3.17)

Using the chain rule, we can write

du =
v T

u u
dT dv

T v

∂ ∂
+

∂ ∂
(3.18)

The constant-volume specific heat, Cv is defined as

Cv =
v

u

T

∂
∂

(3.19)

It has been demonstrated mathematically and experimentally that for an ideal gas both the internal

energy and enthalpy is a function of the temperature only. That is for an ideal gas

T

u

v

∂
∂

 = 0 (3.20)
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Combining Eq. (3.18), (3.19) and (3.20), we have

du = vC dT (3.21)

Now, consider a constant-pressure quasi-equilibrium process for which the work done between

two end states 1 and 2 is given by

W1–2 = 2 1( )P V V- (3.22)

Then, the first of thermodynamics for the process can be expressed in the form

Q1–2 = 2 1 1 2U U W -- +

 = 2 1 2 2 1 1U U P V PV- + -

      = 2 1( ) ( )U PV U PV+ - +

The quantity in the parentheses occurs frequently in thermodynamics, and is called the enthalpy, H

of the system, that is

H = U PV+ (3.23)

It is important to note that the enthalpy is a property of the system since it is a combination of the

properties.

The specific enthalpy, h is found by dividing Eq. (3.23) by the mass. Thus

h = u Pv+ (3.24)

The first of thermodynamics for a constant-pressure quasi-equilibrium process is then

Q1–2 = 2 1H H- (3.25)

Similar to internal energy, considering specific enthalpy to be a function of temperature and pres-

sure, we have

dh =
P T

h h
dT dP

T P

∂ ∂
+

∂ ∂
(3.26)

The constant pressure specific heat, Cp is defined as

Cp =
P

h

T

∂
∂

(3.27)

Likewise internal energy, enthalpy of an ideal gas is also a function of the temperature only. That is

for an ideal gas

T

h

P

∂
∂  = 0 (3.28)

Combining Eqs (3.26), (3.27) and (3.28), we have

dh = pC dT (3.29)

The change in specific internal energy and enthalpy can be found by integrating the Eqs (3.21) and

(3.29) respectively. For an ideal gas with constant specific heats, one can write

2 1u u-  = ( )2 1vC T T- (3.30)

2 1h h-  = ( )2 1pC T T- (3.31)
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3.5.1 Relation between Cp  and Cv  for an Ideal Gas

Equation (3.24) can be written in differential form as

dh = ( )du d Pv+ (3.32)

From the specific heat relations for an ideal gas (Eqs ( 3.21)and (3.29)), we have

dh = pC dT  and vdu C dT=

From the characteristic equation of state for an ideal gas, one can write

Pv = RT

or, d(Pv) = RdT

Thus, from Eq. (3.32), one can write

pC dT  = vC dT RdT+ (3.33)

Dividing by dT, Eq. (3.33) becomes

Cp = vC R+ (3.34)

It is evident from Eq. (3.34) that although Cp and Cv for ideal gases are function of temperatures

only, the difference between them is always a constant (since R is constant).

The specific heat ratio, g is defined as

g =
p

v

C

C
(3.35)

From Eqs (3.34) and (3.35), we have

Cp =
1

Rg
g -

(3.36)

Cv =
1

R

g -
(3.37)

For air we will use 1.005 kJ/kg-KpC =  and 0.718 kJ/kg-KvC =  unless otherwise stated.

At low pressures all real gases approach ideal-gas behaviour, and therefore, their specific heats

depend on temperature only. The specific heats of gases with complex molecules (molecules with two

or more atoms) are higher and increase with temperature. The variation of specific heats with tempera-

ture is smooth and may be approximated as linear over small temperature intervals. The ideal-gas

specific heats of monatomic gases such as argon, neon, and helium remain constant over the entire

range of temperature.

It can be shown by the classical kinetic theory of gases that the values of g are 5

3
(1.67) for mon-

atomic gases and 
7

5
(1.4) for diatomic gases. For polyatomic gases g is 

4

3
(1.67).
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3.6 FIRST LAW OF THERMODYNAMICS FOR DIFFERENT PROCESSES

A thermodynamic process can be defined as the evolution of a thermodynamic system encouraged by

energy transfer that causes a change of state. Paths through the space of thermodynamic variables are

often specified by holding certain thermodynamic variables constant. Here, we will discuss the

analysis of first law of thermodynamics for different processes that are normally encountered in

thermodynamics analysis of systems.

3.6.1 Constant Volume Process (Isochoric)

An isochoric process is one during which the volume remains constant, implying that the work done

by the system will be zero. It therefore follows that any heat energy transferred to the system exter-

nally will be absorbed as internal energy. An isochoric process is also known as an isometric process

or an isovolumetric process and is represented by a vertical line in the P-V diagram.

Consider a gas confined in a rigid vessel of volume V as the system. Since the vessel has rigid walls,

the displacement work done by the system is zero. Let the system be brought into contact with a heat

source so that it can exchange energy in a quasi-equilibrium manner.

First law of thermodynamics for the constant volume process in differential form becomes

dQ = dU (3.38)

When the system changes its state from 1 to 2,  Eq. (3.38) becomes

Q1–2 = 2 1U U- (3.39)

Hence, the heat interaction is equal to the change in the internal energy of the system.

For constant vC , we get

Q1–2 = ( )2 1vmC T T- (3.40)

Example 3.5 Air is contained in a 1 m3 rigid volume at 40°C and 200 kPa. Calculate the heat

transfer needed to increase the pressure to 500 kPa. The Cv for air is constant and

equal to 0.718 kJ/kg- C∞ .

Solution The mass of air (considering an ideal gas) is found to be

m =
( )( )

( )( )

3200 kPa 1 m
2.226 kg

0.287kJ/kg.K 313K

PV

RT
= =

The work is zero for this constant-volume process. Consequently, the first law of

thermodynamics gives

Q = ( )2 1v vm u mC T mC T TD = D = -

The ideal-gas law, PV mRT= , allows us to write

1

1

P

T
 = 2

2

P

T
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or,
200

313
 =

2

500

T

2T\  = 782.5 K

The heat transfer is then found from Eq. (3.40) as

Q = ( )( )( )2.226 kg 0.718 kJ/kg-K 782.5 313 K 750.39 kJ- =

3.6.2 Constant Pressure Process ( Isobaric)

Consider a certain quantity of gas in a cylinder bounded by a piston as a system. Let the system

undergoes a quasi-equilibrium constant-pressure heating process without changes in potential and

kinetic energy. The only work done associated with the process is the displacement work done, which

is

W1–2 = 2 1( )P V V- (3.41)

The heat transfer is found by applying the first of thermodynamics for a constant-pressure quasi-

equilibrium process as (see Eq. (3.25))

Q1–2 = 2 1H H- (3.42)

It is important to note that from Eq. (3.42) that the heat transfer in the constant pressure quasi-

equilibrium process is equal to the change in enthalpy. It includes the change in internal energy and

the work for the process.

For constant pC , we get

Q1–2 = ( )2 1pmC T T- (3.43)

Example 3.6 The gas in a system receives heat which causes expansion against a constant pres-

sure of 4 bar. An agitator in the system is driven by an electric motor using 200 W.

For 6 kJ of heat supplied, the volume increase of the system in 30 s is 0.05 m3.

Estimate net change in the energy of the system.

Solution The rate of work on the system through agitator is = –200 W = –200 J/s (According

to the sign convention of work transfer, work done on the system is negative).

Thus, during the 30 s of operation the work done is 200 30 6000 J = 6 kJ= - ¥ = - -

Quasi-equilibrium expansion work is

W1–2 = 2 1( )P V V-  = 
5 3

4 10 0.05 20 10  N-m 20 kJ¥ ¥ = ¥ =

Net work done is therefore = 20 – 6 =14 kJ

From first law of thermodynamics, we can write

Q1–2 = 1 2U W -D +
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or, 6 = 14UD +

or, DU = 8 kJ-

Note that the negative sign indicates that the energy of the system decreases.

3.6.3 Constant Temperature Process (Isothermal)

Consider certain quantity of gas in a cylinder bounded by a piston as a system. The system is allowed

to undergo a quasi-equilibrium expansion process while in contact with a constant temperature bath.

Let the system change its state from 1 to 2. Applying the first law of thermodynamics for the path 1-

2, we get

1 2 1 2Q W- --  = DU (3.44)

Suppose the gas under consideration is an ideal gas. Since, for an ideal gas the internal energy is a

function of temperature only, change in internal energy for constant temperature process is zero, that

is DU = 0.

Then the Eq. (3.44) becomes

Q1–2 = W1–2 (3.45)

The heat transfer as well as the work transfer for a quasi- equilibrium process then can be found to be

Q1–2 =
2 2 1

1 2 1 1 1 1

1 1 2

ln ln  = ln
V V P

W PV mRT mRT
V V P

= = (3.46)

Example 3.7 An ideal gas undergoes a thermodynamic cycle consisting of the following quasi-

equilibrium processes

(i) Process 1-2: Constant volume 2 1 30 kJU U- =
(ii) Process 2-3: Isothermal expansion

(iii) Process 3-1: Constant pressure P=1 bar, 3
3 1 310 kJ, 0.2 mW V- = - =

The changes of KE and PE are negligible. Sketch the cycle on the P-V diagram.

Calculate the net work for the cycle. Also calculate the heat transfer for the process

3-1.

Solution The cycle on the P-V diagram is shown in Fig. 3.5

P, bar

PV = Constant

3

2 2

1 1

0.1 0.2
V m3

Figure 3.5
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For the constant-volume process 1-2, the work done is zero that is W1–2 = 0

The first law of thermodynamics for the constant-volume process 1-2 is

1 2 2 1Q U U- = -

or 1 2 30  kJQ - =

For an ideal gas, isothermal expansion process 2-3 gives

2 3U U=
Work done for the isothermal expansion 2-3 is (Eq. (3.46))

W2–3 = 3 3
2 2 3 3

2 2

ln ln
V V

P V P V
V V

=

= 2 20.2 0.2
1 bar 0.2m ln 100kPa 0.2m ln 13.86 kJ

0.1 0.1
¥ ¥ = ¥ ¥ =

Net work done for the cycle is 1 2 2 3 3 1 0 13.86 10 3.86 kJnetW W W W- - -= + + = + - =
The first law of thermodynamics for the constant-pressure process 3-1 is

Q3–1 = 3 1 3 1 2 1 3 1U U W U U W- -- + = - + 3 2U U=È ˘Î ˚∵

= 30 10 20 kJ- =

For the constant-pressure process 3-1, we have

3 1 1 3( )W P V V- = -

110 100 ( 0.2)V- = ¥ -

or 3
1 0.1 mV =

For the isothermal process 2-3, we can write

2 2 3 3P V P V=

or    3
2 3

2

0.2 
1 2bar

0.1 

V
P P

V
= = ¥ =

3.6.4 Polytropic Process

Consider certain quantity of gas in a cylinder bounded by a piston as a system. The system is allowed

to undergo a quasi-equilibrium expansion process in such a way that the functional relationship be-

tween pressure and volume during the expansion process follow the relation constantnPV = . Such

process in thermodynamics is called as polytropic process. For a polytropic process ( constantn
PV = )

between two end states 1 and 2, the work done is calculated as

W1–2 =
2 2

1 1

V V

nV V

C
PdV dV

V
=Ú Ú  (where 1 1 2 2

n n
C PV P V= = )
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 =
1 1

2 1

1

n n
V V

C
n

- + - +-
-

 =
1 1

1 2

1

n n
CV CV

n

- + - +-
-

=
1 1

1 1 1 2 2 2

1

n n n n
PV V P V V

n

- + - +-
-

or, W1–2 = 1 1 2 2

1

PV P V

n

-
-

(3.47)

By applying the first law of thermodynamics to a quasi-equilibrium polytropic process between

states 1 and 2, we get

Q1–2 =

2

2 2 1 1
2 1

1

( )
1

P V PV
U PdV U U

n

-
D + = - +

-Ú

Q1–2 = 2 2 1 1
2 1( )

1
v

P V PV
mC T T

n

-
- +

-
(3.48)

(since 2 1 2 1( ) ( )vU U mC T T- = -  for an ideal gas with constant specific heats).

Using the ideal-gas equation PV mRT= , the Eq. (3.48) becomes

Q1–2 = 2 1
2 1

( )
( )

1
v

mR T T
mC T T

n

-
- +

-

 = ( )2 1
1

v

R
m C T T

n

Ê ˆ+ -Á ˜Ë ¯-

Using the relationships p vC C R- =  and 
p

v

C

C
=g ,  it yields

Q1–2 = ( )2 1
1

p v

v

C C
m C T T

n

-Ê ˆ
+ -Á ˜Ë ¯-

Q1–2 = ( ) ( )2 1 2 1

1 1 1
1

1 1
v v

n
m C T T m C T T

n n

- - + -Ê ˆ Ê ˆ+ - = -Á ˜ Á ˜Ë ¯ Ë ¯- -
g g

Q1–2 = ( )2 1
1

v

n
m C T T

n

-Ê ˆ -Á ˜Ë ¯-
g

(3.49)

Equation (3.49) gives the heat transfer for a quasi-equilibrium polytropic process between states 1

and 2. From Eq. (3.49), specific heat, Cn, of an ideal gas during a quasi-equilibrium polytropic process

can be expressed as
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Cn =
1

v

n
C

n

-Ê ˆ
Á ˜Ë ¯-
g

(3.50)

The functional relationship among temperature-volume and temperature-pressure for an ideal gas

during a quasi-equilibrium polytropic process can be expressed as

2

1

T

T
 =

1

1

2

n
V

V

-
Ê ˆ
Á ˜Ë ¯

(3.51)

2

1

T

T
 =

1

2

1

n

nP

P

-

Ê ˆ
Á ˜Ë ¯

(3.52)

(Equations (3.51) and (3.52) can be derived by using 1 1 2 2
n nPV P V= , 1 1 1PV mRT=  and 2 2 2P V mRT= )

Note that Eq. (3.50) has been derived for an ideal gas with constant specific heats.

Example 3.8 A mass of 8 kg gas expands within a flexible container so that the P-V relationship is

of the form PV1.2 = constant. The initial pressure is 1000 kPa and the initial volume is

1 m3. The final pressure is 5 kPa. If specific internal energy of the gas decreases by

40 kJ/kg, find the heat transfer in magnitude and direction.

Solution From the given data, we have

1 1000 kPaP = , 3
1 1 mV = , and 2 5 kPaP =

Final volume can be found as follows

1.2
1 1PV  =

1.2
2 2P V

or, V2 = 82.7 m3

Work done during polytropic expansion is

W1–2 =
1 1 2 2

1

PV P V

n

-
-

=
1000 1 5 82.7

1.2 1

¥ - ¥
-

= 2932.5 kJ

Change in internal energy is ( )8 40 kJ 320 kJUD = ¥ - = -  (Negative sign signifies

that the energy decreases)

From first law of thermodynamics, we get

Q1–2 = 1 2U W -D +

 = 320 2932.5 2612.5 kJ- + =

Since heat transfer is positive, heat is transferred to the gas.
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Example 3.9 Air at 227°C and 800 kPa expands to 200 kPa in a quasi-equilibrium process follow-

ing the law 1.3PV C= , where C is a constant. Determine the work done and heat

transfer per kg of air. Specific heats of air are given as 1.0 kJ/kg-K=pC and

0.714 kJ/kg-KvC = .

Solution Characteristic gas constant for air is found to be

R = 1 0.714 0.286 kJ/kg-Kp vC C- = - =

Ratio of specific heat is 
1

1.4
0.714

p

v

C

C
= = =g

Initial temperature of air is 1 227 C = 500 KT = ∞

Final temperature of air is found to be (Eq. (3.52))

2T  =

1 1.3 1

1.32
2 1

1

200
500 363.1 K

800

n

nP
T T

P

- -
Ê ˆ Ê ˆ= = =Á ˜Á ˜ Ë ¯Ë ¯

Quasi-equilibrium work done is

W1–2 =
( )1 21 1 2 2

1 1

mR T TPV P V

n n

--
=

- -

=
( )( )( )1 0.286 500 363.1

130.51 kJ/kg
1.3 1

-
=

-

Heat transfer during the process1-2 is found to be (Eq. (3.49))

Q1–2 = ( )2 1
1

v

n
m C T T

n

-Ê ˆ -Á ˜Ë ¯-
g

=
1.4 1.3

1 0.714(363.1 500) 32.58 kJ/kg
1 1.3

-Ê ˆ - =Á ˜Ë ¯-

3.6.5 Adiabatic Process

Consider certain quantity of gas in a cylinder bounded by a piston as a system. The system is

allowed to undergo an expansion process while the cylinder wall is insulated from all sides so that

during the expansion process there is no heat transfer. For an adiabatic process, the first law of ther-

modynamics in differential form can be written as

–dW = dU (3.53)
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For a quasi-equilibroum process, Eq. (3.53) becomes

–PdV = dU

or, PdV + dU = 0 (3.54)

For an ideal gas ( PV mRT= ), Eq. (3.54) can be written as

v

mRT
dV mC dT

V
+  = 0

or, vC dT

R T
 =

dV

V
- (3.55)

Integrating Eq. (3.55) (assuming constant specific heats ), we get

2

1

lnvC T

R T
 = 2 1

1 2

ln ln
V V

V V
- =

or, 2

1

T

T
 =

1

1 1

2 2

v

R

CV V

V V

-
Ê ˆ Ê ˆ

=Á ˜ Á ˜Ë ¯ Ë ¯

g

(3.56)

Using the ideal gas law, Eq. (3.56) can be written as

2

1

T

T
 =

1

2 2 2 1

1 1 1 2

P V P P

P V P P

Ê ˆ
= Á ˜Ë ¯

g

or, 2

1

T

T
 =

1

2

1

P

P

-

Ê ˆ
Á ˜Ë ¯

g

g
(3.57)

Combining Eqs (3.56) and (3.57), we get

2

1

P

P
 = 1

2

V

V

Ê ˆ
Á ˜Ë ¯

g

(3.58)

Example 3.10 One liter of hydrogen at 273 K is adiabatically compressed to one-half of it initial

volume. Find the change in temperature of the gas, if the ratio of two specific heats

for hydrogen is 1.4.

Solution The temperature-volume relationship between two states for an adiabatic process is

found from Eq. (3.56) as

2

1

T

T
 = ( )

1
1.4 11

2

2
V

V

-
-Ê ˆ

=Á ˜Ë ¯

g

or, T2 = 360.22 K

The change in temperature is 2 1 360.22 273 87.22 KT T TD = - = - =
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Example 3.11 Three grams of air at 600 kPa and 160°C is expanded adiabatically to double of its

initial volume, then compressed at constant pressure to its initial volume and then

compressed it again at constant volume to its initial state. All the processes are quasi-

equilibrium. Calculate the net work done on the gas. Sketch the processes on the

P-V diagram.

Solution The processes on the P-V diagram are shown in Fig. 3.6.

P, kPa

23

600 1

V m3

Figure 3.6

The temperature at state 2 is found from Eq. (3.56) as

( )
1

1.4 11
2 1

2

433 0.5 328.15 K
V

T T
V

g -
-Ê ˆ

= = ¥ =Á ˜Ë ¯

The work done for the quasi-equilibrium adiabatic expansion process 1-2 is

W1–2 =
( )1 21 1 2 2

1 1

mR T TPV P V

g g

--
=

- -

=
( )0.003 0.287 433 328.15

0.225 kJ 
1.4 1

¥ ¥ -
=

-
Work done for the quasi-equilibrium constant pressure process 2-3 is

W2–3 = ( ) ( ) Ê ˆ Ê ˆ
- = - = - = -Á ˜ Á ˜Ë ¯ Ë ¯

1 1
2 3 2 2 1 2 2 2 2

2 2

1 1
V V

P V V P V V P V mRT
V V

= 1 1
2 2 2

2 2

1 1
V V

P V mRT
V V

Ê ˆ Ê ˆ
- = -Á ˜ Á ˜Ë ¯ Ë ¯

= ( )0.003 0.287 328.15 0.5 1 0.141 kJ¥ ¥ ¥ - = -

For the constant-volume process 3-1, 3 1 0W - =

Thus, the net work done is 0.225 0.141 0.084 kJdW = - =Ú 
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SUMMARY

The first law of thermodynamics also known as the principle of conservation of energy,

provides a basics for the study of the relationship among the various forms of energy

and energy transformations. Based on the experimental observations, the first law of

thermodynamics states that energy can neither be created nor be destroyed, it can

only change forms. In other words, during an interaction between a system and its

surroundings, the amount of energy gained by the system is exactly equal to the

amount of energy lost by the surroundings.

For a closed system or a fixed mass, the first law may be expressed as net energy

transferred to (or from) the system as heat and work = net increase (or decrease) in the

total energy of the system. In differential form, it can be expressed as

dQ – dW = dE

For a stationary closed system (the extrinsic effects on a closed system, such as the

effects of motion and gravity, are neglected)

dQ – dW = dU

Internal energy is defined as the sum of all the microscopic forms of energy of a sys-

tem. It is the energy associated with the molecular structure, and the molecular activity

of the constituent particles of the system. It may be viewed as the sum of the kinetic and

potential energies of the molecules.

The first law of thermodynamics for a closed system undergoing a cycle states that if a

system executes a cycle transferring heat and work through its boundary, the net work

transfer is equivalent to the neat heat transfer.

dÚ W  = dÚ Q

The first law of thermodynamics for a non-flow non-cyclic quasi-equilibrium process is

as follows: The net algebraic sum of heat and work during a process (non-flow, non-

cyclic, quasi-equilibrium) is equal to change in internal energy during the same proc-

ess.

dQ – PdV = dU

REVIEW QUESTIONS

3.1 State the first law of thermodynamics and prove that for non-flow process, it leads to Q = W + DU

3.2 State the first law of thermodynamics for a closed system undergoing a cycle.

3.3 Define internal energy and prove that it is a property of the system.

3.4 Define enthalpy of a system and prove that the change in enthalpy for a non-flow constant pressure

process is equal to the heat exchange.

3.5 What is a perpetual motion machine of first kind (PMM1)? Is it possible to devise a PMM1? If not,

explain why?

3.6 What are the limitations of the first law of thermodynamics? Illustrate with examples.

3.7 Prove that heat transfer is a path function.

3.8 Is the first law of thermodynamics applicable to irreversible processes also? Explain.

3.9 Derive an expression for the heat transfer in a non-flow reversible polytropic process.

3.10 Define the specific heats in terms of property changes.

3.11 What is the relation between temperature and pressure for an ideal gas, if it undergoes a reversible

adiabatic process?
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NUMERICAL PROBLEMS

3.1 A system contains air initially at 40 kPa, 0.2 m3 and 150°C. It is expanded to10 kPa according to the

law PV1.35 = constant. The gas is then heated at constant pressure till its enthalpy increases by 60 kJ.

Calculate the total work done.

3.2 Starting from the non-flow energy equation, show that the specific heat, Cn, of an ideal gas with

constant specific heats during a quasi-equilibrium polytropic expansion may be expressed by

Cn =
1

v

n
C

n

Ê ˆg -
Á ˜-Ë ¯

3.3 One kg of air expands from 6.5 bar and 0.0135 m3to a final volume of 0.1 m3 in a quasi-equilibrium

isothermal process. Find the final pressure, final temperature, work done and change in internal

energy and heat interaction.

3.4 Air at 300°C and 10 bar expands to 3 bar reversibly following the law pv1.35 = C. Determine the

work done per kg of air and heat transfer if Cp = 1 kJ/kg-K and Cv = 0.714 kJ/kg-K.

If 15 % of the work is dissipated in friction with heat transfer with surroundings unaltered, deter-

mine the final temperature and work done.

3.5 1.5 kg of a certain gas is contained in a frictionless piston–cylinder system. The gas expands from

initial volume of 0.3 m3 and 5-bar pressure through a pressure ratio of 5. The process of expansion

follows the law Pv1.2 = constant. The specific internal energy u is related to the pressure P and

specific volume v by the following relation u = 60 Pv + 4500, where P is in bar and V is in m3/kg

For a quasi-equilibrium expansion, determine the changes of internal energy, heat transfer to or from

the system and work done on or by the system.

If during expansion, 10 kJ of heat were transferred to the system, what would then be the work

done?

3.6 One kg of gas expands reversibly and adiabatically, its temperature falling from   240°C to 115°C

while its volume is doubled. The gas does 90 kJ of work in the process. Find the values of specific

heats Cp and Cv, and the molecular weight of the gas.

3.7 A quantity of air occupying a volume of 1 m3 at 4 bar and 150°C is allowed to expand isentropically

to 1 bar. Its enthalpy is then raised by  70 kJ by heating at constant pressure. What is the total work

done during the pocess?

If the process is to be replaced by a reversible polytropic expansion which will result in the same

final state being reached, what index of expansion is required? Will the work done be greater or less

than in the original process?

3.8 A system contains 0.15 m3 of air at 3.8 bar and 150°C. A reversible adiabatic expansion takes place

till the pressure falls to 1.03 bar. The gas is then heated at constant pressure till enthalpy increases

by 60.7 kJ. Determine the total work done.

If these processes are replaced by a single reversible polytropic  process giving the same work

between the same initial and final states, determine the index of expansion. Given, Cp = 1kJ/kg-K and

Cv = 0.714 kJ/kg-K.

3.9 One kg of air is compressed in a quasi-static way from an initial state of 1 kPa and 300 K to a final

state of 400 kPa and 300 K. Compare the work required for the following processes:

(i) Isothermal compression

(ii) Heating at constant volume followed by cooling at constant pressure.

For air, Cp = 1.005 kJ/kg.K and Cv = 0.718 kJ/kg.K.
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3.10 A system undergoes a cycle consisting of four processes. The energy transfers are given in the

table below:

Process Q(kW) W(kW) DU(kW)

1–2 –100 A 0

2–3 400 B C

3–4 D 300 200

4–1 0 E –600

Find the value of A, B, C, D and E?

3.11 One kg of air is initially at 400 kPa and 400°C. It expands in a quasi-equilibrium constant pressure

to a volume of 2.5 m3. Then the pressure of the air falls to 80 kPa in a constant volume process.

Finally the system restores its initial state in a quasi-equilibrium isothermal process. Find the work

output and the net heat transfer.

MULTIPLE-CHOICE QUESTIONS

3.1 The internal energy of a system is a function of only

(a) pressure (b) temperature (absolute)

(c) volume (d) pressure and temperature

3.2 In an isothermal process, the internal energy of an ideal gas

(a) increases (b) decreases

(c) remains constant (d) shows unpredictable behaviour

3.3 Work done is zero for the following processes:

(a) Constant volume (b) Free expansion (c) Constant pressure (d) Both (a) and (b)

3.4 Change of enthalpy of a system is the heat supplied at

(a) constant pressure (b) constant temperature

(c) constant volume (d) constant entropy

3.5 The total heat of a substance is also known as

(a) entropy (b) enthalpy (c) internal energy (d) thermal capacity

3.6 First law of thermodynamics is the law of

(a) conservation of mass (b) conservation of energy

(c) conservation of momentum (d) conservation of heat

3.7 A perpetual motion machine is a

(a) thermodynamic machine

(b) non-thermodynamic machine

(c) hypothetical machine

(d) hypothetical   machine   whose   operation   would   violate   the   laws   of thermodynamics

3.8 When 2 kg of ice at 0°C is mixed with 2 kg of water at 80°C, the temperature of the mixture becomes

(a) 40°C (b) 80°C (c) 0°C (d) 60°C
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3.9 First law of thermodynamics furnishes the relationship between

(a) heat, work and properties of the system (b) various properties of the system

(c) various thermodynamic processes (d) heat and internal energy

3.10 Change in the specific internal energy of small temperature change DT for ideal gases is expressed

by the relation

(a) vu C TD = D (b) pu C TD = D

(c) u R TD = D (d) u k TD = D

3.11 Change in the specific enthalpy of small temperature change DT for ideal gases is expressed by the

relation

(a) vh C TD = D (b)
ph C TD = D

(c) h R TD = D (d) h k TD = D



First Law Applied to
Flow Processes

4.1 CONTROL VOLUME

In flow processes we normally are concerned with the flow of fluids through devices such as an air

compressor, a turbine, a nozzle, a pump, a blower, a fan, a car radiator, a water heater etc. In these cases

it is difficult to focus attention on a fixed identifiable quantity of mass. It is much more convenient, for

analysis, to focus attention on a volume in space through which the fluid flows.

A control volume is a properly selected region in space. The boundary, which remains fixed in space,

enveloping this control volume is called the control surface.

4.2 STEADY FLOW PROCESSES AND DEVICES

A steady flow is defined for a control volume as that type of flow in which the thermodynamic properties

at a given position within or at the boundaries of the control volume are invariant with time. The proper-

ties include temperature, pressure, density, internal energy as well as velocity and acceleration of the

flow stream. However, in a steady flow process the state of the fluid can change as it passes through the

control volume.

Many engineering devices such as turbines, pumps, compressors, boilers, condensers, etc., oper-

ate over long periods of time under the same working conditions and they are classified as steady-flow devices.

4.3 MASS BALANCE AND ENERGY BALANCE FOR A STEADY FLOW
PROCESS

The following assumptions are made in the analysis.

(a) The properties of the fluid at any point within the control volume do not vary with time.

CHAPTER

4
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(b) The fluid properties are uniform over the inlet and outlet flow areas.

(c) The potential, kinetic, internal and flow energies are only considered in the analysis.

(d) There is no change in chemical composition of the fluid.

Let us consider a steady flow process as shown in Fig.  4.1 in which there is a single stream entering

and a single stream leaving the control volume. Fluid enters at the Section 1 and leaves at the Section 2.

1
Control surface

1
2

2

V1

V2

W

Control volume

Q

Reference datum

z1

z2

Figure 4.1 Steady flow through a control volume

From the law of conservation of mass, for a control volume, we can write

Net amount of mass

added to the control volume

Ê ˆ
Á ˜Ë ¯

=
Net increased in mass

of the control volume

Ê ˆ
Á ˜Ë ¯

(4.1)

For a steady flow process the right-hand side of Eq. (4.1) becomes zero, and we have

Net amount of mass

added to the control volume

Ê ˆ
Á ˜Ë ¯

= 0

Amount of mass Amount of mass

entering thecontrol volume leaving from thecontrol volume

Ê ˆ Ê ˆ
-Á ˜ Á ˜Ë ¯ Ë ¯

 = 0

Amount of mass

entering the control volume

Ê ˆ
Á ˜Ë ¯

=
Amount of mass

leaving thecontrol volume

Ê ˆ
Á ˜Ë ¯

(4.2)

m1 = m2
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where m1 = total mass flow at inlet

m2 = total mass flow at outlet

In engineering applications, it is more convenient to use the mass flow rate. Then the Eq. (4.2)

becomes

Rate of mass

flow into the control volume

Ê ˆ
Á ˜Ë ¯

=
Rate of mass

flow out of the control volume

Ê ˆ
Á ˜Ë ¯

1m = 2m (4.3)

1 1

1

AV

v
= 2 2

2

A V

v
(4.3a)

where 1m = mass flow rate at inlet

2m = mass flow rate at outlet

A1 = cross-sectional area of fluid stream at inlet

A2 = cross-sectional area of fluid stream at outlet

V1 = average velocity of fluid stream at inlet

V2 = average velocity of fluid stream at outlet

v1 = specific volume of fluid at inlet

v2 = specific volume of fluid at outlet

Equations (4.3) and (4.3a) are all forms of mass balance equations for a single stream of inlet and

a single stream of outlet.

When more than one stream of fluid enters or leaves the control volume, the mass balance equation

becomes

all streams
entering

mÂ  =

all streams
leaving

mÂ  (4.3b)

all streams
entering

AV

v
Â =

all streams
leaving

AV

v
Â (4.3c)

Equations (4.3b) and (4.3c) are all forms of mass balance equations for more than one stream of

inlet and outlet.

From the first law of thermodynamics, we can conclude for a control volume.

Net amount of energy

added to the control volume

Ê ˆ
Á ˜Ë ¯

=
Net increased in stored energy

of the control volume

Ê ˆ
Á ˜Ë ¯

(4.4)

When a fluid enters a control volume, the stored energy of the control volume is increased by an

amount equal to the stored energy of the entering fluid. Similarly, when a fluid leaves a control

volume, the stored energy of the control volume is decreased by an amount equal to the stored energy

of the leaving fluid. If we distinguish this transfer of stored energy of fluid crossing the control

surface from heat and work, Eq. (4.4) becomes
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Net amount of Stored energy Stored energy

energy added to of the fluid of the fluid

the control volume entering the control leaving the control

as heat and work volume volume

Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ Á ˜+ -
Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ ÁË ¯ Ë ¯ Ë ¯̃

=

Net increased in

stored energy

of the control

volume

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

(4.5)

For a steady-flow process, the right-hand side of Eq. (4.5) becomes zero, and we have

Net amount of Stored energy
Stored energy of

energy added to of the fluid
the fluid leaving

the control volume entering the
the control volume

as heat and work control volume

Ê ˆ Ê ˆ
Ê ˆÁ ˜ Á ˜
Á ˜Á ˜ Á ˜+ -
Á ˜Á ˜ Á ˜
Ë ¯Á ˜ Á ˜Ë ¯ Ë ¯

= 0 (4.6)

For the control volume as shown in Fig. 4.1, Eq. (4.6) becomes

Q – W + mP1v1 + E1 – mP2v2 – E2 = 0 (4.7)

where Q = net amount of heat added to the control volume

W = net amount of work done by the control volume during the same time

m = total mass flow through the control volume

mP1v1 = flow work done on the control volume by the entering fluid

mP2v2 = flow work done by the control volume on the leaving fluid

E1 = stored energy of the fluid entering the control volume

E2 = stored energy of the fluid leaving the control volume

The stored energy of a simple compressible system consists of three parts—internal, kinetic and

potential energy—and is given by

E =
2

2

mV
U mgz+ +

where U is the internal energy, V is the velocity and z is the elevation of the system relative to some

external reference point. On a unit mass basis

e =
2

2

V
u gz+ + (u is the specific internal energy)

E = m

2

2

V
u gz

Ê ˆ
+ +Á ˜Ë ¯

Now Eq. (4.7) can be written as

2 2
1 2

1 1 1 1 2 2 2 2
2 2

V V
Q W mPv m u gz mP v m u gz

Ê ˆ Ê ˆ
- + + + + - - + +Á ˜ Á ˜Ë ¯ Ë ¯

= 0 (4.8)

2
1

1 1 1 1
2

V
m u gz mPv Q

Ê ˆ
+ + + +Á ˜Ë ¯

=
2

2
2 2 2 2

2

V
m u gz mP v W

Ê ˆ
+ + + +Á ˜Ë ¯
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2
1

1 1 1 1
2

V
m u Pv gz Q

Ê ˆ
+ + + +Á ˜Ë ¯

=
2

2
2 2 2 2

2

V
m u P v gz W

Ê ˆ
+ + + +Á ˜Ë ¯

2
1

1 1
2

V
m h gz Q

Ê ˆ
+ + +Á ˜Ë ¯

=

2
2

2 2
2

V
m h gz W

Ê ˆ
+ + +Á ˜Ë ¯

(4.9)

(h = u + Pv)

Per unit mass passing through the control volume basis, Eq. (4.9) can be written as

2
1

1 1
2

V
h gz q+ + + =

2
2

2 2
2

V
h gz w+ + + (4.9a)

q – w = ( )
2 2

2 1
2 1 2 1

2

V V
h h g z z+ + (4.9b)

Per unit time basis, Eq. (4.9) can be written as

2
1

1 1
2

V
m h gz Q

Ê ˆ
+ + +Á ˜Ë ¯

   = 
2

2
2 2

2

V
m h gz W

Ê ˆ
+ + +Á ˜Ë ¯

  (4.10)

Equations (4.9), (4.9a), (4.9b), (4.10) are all forms of steady flow energy equations for a single

stream of inlet and a single stream of outlet.

All the terms in Eq. (4.9a) represent energy per unit mass of fluid and in Eq. (4.10) represent

energy per unit time.

When there is more than one inlet and outlet, the steady flow energy equation becomes

2

all streams
entering

2

V
m h gz Q

Ê ˆ
+ + +Á ˜Ë ¯

Â  = 

2

all streams
leaving

2

V
m h gz W

Ê ˆ
+ + +Á ˜Ë ¯

Â (4.11)

2

all streams
leaving

2

V
m h gz Q

Ê ˆ
+ + +Á ˜Ë ¯

Â    = 

2

all streams
leaving

2

V
m h gz W

Ê ˆ
+ + +Á ˜Ë ¯

Â   (4.12)

4.4 APPLICATIONS OF ENERGY EQUATION

The steady flow energy equation (SFEE) developed earlier is a generalized one and the same can be

applied to numerous devices such as boiler, compressor, turbine heat exchanger, nozzle, diffuser -

intended for specific purpose(s). In essence, all the aforesaid devices are open system and hence

mass as well as energy transfer takes place across the boundary.
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4.4.1 Nozzles and Diffusers

A nozzle is a device of uniformly varying cross-section (either converging or converging followed by

diverging) to increase the velocity of the working fluid passing through it at the cost of pressure drop.

The pressure drop is accompanied by fall in enthalpy which is converted to gain the kinetic energy of

the fluid. The inner wall of the device is made extremely smooth and outside wall is thermally insulated

to prevent heat loss. Nozzle finds its application in thermal power plant, jet engines, rockets, space-

craft, etc.

Diffuser is a device that functions just opposite to that of a nozzle that is the working fluid passes

through it gains pressure at the outlet by loosing its kinetic energy. Diffuser is used in hydraulic power

pack and mounted at the exit of the return line that brings the oil back to the tank (to reduce the speed

of the oil so as to avoid turbulence).

We have Q = 0 because in nozzles and diffusers, the rate of heat transfer between the fluid flowing

through them and the surroundings is usually insignificant, even when they are not insulated from one

another. This is mainly because of the fact that the fluid has high velocity and thus passes through a

nozzle or diffuser quickly without any significant heat transfer taking place.  Therefore, the flow

through a nozzle or diffuser can be assumed to be adiabatic.

We have W = 0 because the nozzles and diffusers are properly shaped ducts to achieve flow

acceleration and deceleration, without involving work like shaft work, and so on.

We have DKE π 0, since the devices involve very high velocity and the fluid experiences large

changes in the velocity.

We have DPE = 0, that is, the fluid usually experiences little or no changes in its elevation as it flows

through a nozzle or diffuser. Moreover, if the fluid is in gaseous state, gravitational effects can be

neglected even if there is a significant variation in elevation.

Thus, the steady flow energy equation reduces to

2
1

1
2

V
h + =

2
2

2
2

V
h + (4.13)

Example 4.1 The steam flows through a nozzle with negligible heat transfer. At the inlet the

enthalpy of steam is 3159.3 kJ/kg and the velocity is 30 m/s. At the exit, the enthalpy

is 2855.4 kJ/kg. The mass flow rate of steam is 7 kg/s. At the exit the specific

volume of steam is 0.2275 m3/kg. Determine the velocity at exit from the nozzle and

the exit area of the nozzle.

Solution

Mass flow rate 7 kg/sm = 

Enthalpy at inlet
3

1 3159.3 kJ/kg 3159.3 10  J/kgh = = ¥

Velocity at inlet 1 30 m/sV =

Enthalpy at exit
3

2 2855.4 kJ/kg 2855.4 10  J/kgh = = ¥

Specific volume at exit 3
2 0.2275 m /kgv =
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The steady flow energy equation for the nozzle is given by Eq. (4.13) as

2 2
1 2

1 2
2 2

V V
h h+ = +

or
22

3 3 230
3159.3 10 2855.4 10

2 2

V
¥ + = ¥ +

or                2 780.19 m/sV =

 Mass flow rate can be expressed as

2 2

2

A V
m

v
= 

or  2 780.19
7

0.2275

A ¥
=

or            2
2 0.002 mA =

 Example 4.2 Fluid flows through a horizontal nozzle with negligible heat loss from it. At the inlet,

the enthalpy of the fluid passing is 3000 kJ/kg and the velocity is 60 m/s. At the exit,

the enthalpy is 2762 kJ/kg. (a) Find the velocity at exit from the nozzle, (b) If the

inlet area is 0.1 m2 and the specific volume at inlet is 0.187 m3/kg , find the mass

flow rate, and (c) If the specific volume at the nozzle exit is 0.498 m3/kg, find the

exit area of the nozzle.

Solution

Velocity at inlet 1 60 m/sV =

Enthalpy at inlet 3
1 3000 kJ/kg 3000 10  J/kgh = = ¥

Enthalpy at exit 3
2 2762 kJ/kg 2762 10  J/kgh = = ¥

Nozzle inlet area 2
1 0.1 mA =

Specific volume at inlet 3
1 0.187 m /kgv =

Specific volume at exit 3
2 0.498 m /kgv =

(a) The steady flow energy equation for the nozzle is given by Eq. (4.13) as

2 2
1 2

1 2
2 2

V V
h h+ = +

or
22

3 3 260
3000 10 2762 10

2 2

V
¥ + = ¥ +

or                     2 692.53 m/sV =
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(b) Mass flow rate is found to be

1 1

1

A V
m

v
= 

0.1 60
32.08 kg/s

0.187

¥
= =

(c) Mass flow rate can also be expressed in terms of exit area of the nozzle as

2 2

2

A V
m

v
= 

or 2 692.53
32.08

0.498

A ¥
=

or     
2

2 0.023 mA =

 Example 4.3 Air expands through a nozzle from a pressure of 600 kPa to a final pressure of

100 kPa. The enthalpy decreases by 150 kJ/kg during the flow of air. If the entering

velocity and loss of heat rate are neglected, compute the exit velocity.

Solution

Change in enthalpy 3
1 2 150 kJ/kg 150 10  J/kgh h- = = ¥

The steady flow energy equation for the nozzle is given by Eq. (4.13) as

2 2
1 2

1 2
2 2

V V
h h+ = +

or      
2

2
1 2

2

V
h h= - 1  neglectedVÈ ˘Î ˚∵

or      
2

32 150 10
2

V
= ¥

or        2 547.72 m/sV =

4.4.2 Turbines, Compressors, Pumps, Fans and Blowers

In steam, gas or hydroelectric power plants, the turbine is the device used to drive the electric

generators. As the fluid passes through the turbine, work is done against the turbine blades which are

attached to its shaft. As a result, the shaft rotates and the turbine produces work. Compressors,

pumps, fans, etc., are devices used to increase the pressure of a fluid. A compressor is capable of

compressing a gas to a very high pressure. Pumps work very much like compressors except that they

handle liquids instead of gases.
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We have Q  = 0, because the rate of heat transfer in respect of these devices is generally small

compared to the shaft work unless there is internal cooling (as in the case of some compressors).

We have W π 0, since there is shaft work involved.

The change of potential energy DPE ª 0.

The steady-flow energy equation then becomes

1

2
1

2

V
m h

Ê ˆ
+Á ˜Ë ¯

 =

2
2

2
2

V
m h W

Ê ˆ
+ +Á ˜Ë ¯

  (4.14)

Example 4.4 A turbine operates under steady flow conditions. The rate of steam flow through the

turbine is 1.1 kg/s. At the entry the steam velocity and enthalpy are 60 m/s and

2700 kJ/kg, respectively. At the turbine exists, the steam leaves at 110 m/s with an

enthalpy of 1800 kJ/kg. Determine the power output of the turbine. Neglect the

changes in potential energy.

Solution

Mass flow rate of steam 1.1 kg/sm = 

Enthalpy of steam at inlet
3

1 2700 kJ/kg 2700 10  J/kgh = = ¥

Velocity of steam at inlet 1 60 m/sV =

Enthalpy of steam at exit
3

2 1800 kJ/kg 1800 10  J/kgh = = ¥

Velocity of steam at exit 2 110 m/sV =
The steady flow energy equation for the turbine is given by Eq. (4.14) as

2 2
1 2

1 2
2 2

V V
m h m h W

Ê ˆ Ê ˆ
+ = + +Á ˜ Á ˜

Ë ¯ Ë ¯
   

or
2 2

3 360 110
1.1 2700 10 1.1 1800 10

2 2
W

Ê ˆ Ê ˆ
¥ ¥ + = ¥ ¥ + +Á ˜ Á ˜Ë ¯ Ë ¯

 

or 985325 J/s  985.325 kW W = = 

Example 4.5 Steam flows steadily through a turbine at the rate of 0.42 kg/sec. The steam enters

the turbine at the following state: pressure 1.2 MPa, temperature 188°C, enthalpy

2785 kJ/kg, velocity 33.3 m/sec and elevation 3 m. The steam leaves the turbine at

the following state: pressure 20 kPa, enthalpy 2512 kJ/kg, velocity 100 m/sec and

elevation 0 m. Heat is lost to the surroundings at the rate of 0.29 kJ/kg. Compute the

power output of the turbine.

Solution

Mass flow rate of steam 0.42 kg/sm = 
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Enthalpy of steam at inlet 3
1 2785 kJ/kg 2785 10  J/kgh = = ¥

Velocity of steam at inlet 1 33.3 m/sV =

Elevation at inlet 1 3 mz =

Enthalpy of steam at exit 3
2 2512 kJ/kg 2512 10  J/kgh = = ¥

Velocity of steam at exit 2 100 m/sV =

Elevation at exit 2 0 mz =

Rate of heat transfer
30.29 kJ/kg 0.29 0.42 kJ/s 0.29 0.42 10  J/sQ = - = - ¥ = - ¥ ¥ 

(negative sign because heat is lost to the surroundings)

The steady flow energy equation for the turbine is given by

2 2
1 2

1 1 2 2
2 2

V V
m h gz Q m h gz W

Ê ˆ Ê ˆ
+ + + = + + +Á ˜ Á ˜

Ë ¯ Ë ¯
    

or
2

3 3

2
3

33.3
0.42 2785 10 9.81 3 0.29 0.42 10

2

100
                            0.42 2512 10 0

2
W

Ê ˆ
¥ ¥ + + ¥ - ¥ ¥Á ˜Ë ¯

Ê ˆ
= ¥ ¥ + + +Á ˜Ë ¯

 

or 112683.4 W 112.68 kWW = = 

Example 4.6 A steam turbine receives a steam flow rate of 1.6 kg/s and delivers 700 kW of

power. The velocity of steam at the entrance and exit are 50 m/s and 350 m/s

respectively. The inlet pipe is 4 m above the exhaust pipe. The heat loss from the

turbine casing is negligible. Find the change of enthalpy across the turbine.

Solution

Mass flow rate of steam 1.6 kg/sm = 

Rate of work transfer 3700 kW 700 10  WW = = ¥ 

Velocity of steam at inlet  1 50 m/sV =

Velocity of steam at exit 2 350 m/sV =

Elevation difference 1 2 4 mz z- =
The steady flow energy equation for the turbine gives

2 2
1 2

1 1 2 2
2 2

V V
m h gz m h gz W

Ê ˆ Ê ˆ
+ + = + + +Á ˜ Á ˜

Ë ¯ Ë ¯
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or
2 2

1 2
1 1 2 2

2 2

V V W
h gz h gz

m
+ + = + + +

 

 

or
2 2

2 1
1 2 2 1( ) 

2

V V W
h h g z z

m

-
- = + - +

 

 

2 2 3350 50 700 10
9.81 ( 4) 

2 1.6

- ¥
= + ¥ - +

497460.76 J/kg 497.46 kJ/kg= =

Example 4.7 A steam turbine in a power plant develops 5000 kW. The heat supplied to the steam

in the boiler is 4700 kJ/kg, the heat rejected by the steam to the cooling water in the

condenser is 2200 kJ/kg. The feed-pump work required to pump the condensate

back into the boiler is 10 kW. Calculate the mass flow rate of the steam.

Solution

Heat supplied to the steam in the boiler 1 4700 kJ/kgQ =

Heat rejected by the steam in the condenser 2 2200 kJ/kgQ =

Power developed by the turbine 5000 kWTW = 

Power required to run the pump 10 kWPW = 

Boiler

Turbine

Condenser

Pump

WT

WP

Q1

Q2

Control
surface

Figure 4.2
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The steady flow energy equation for the control volume as shown in Fig. 4.2 is

( ) ( )1 2 T Pm Q Q W W- = -   

or ( ) ( )4700 2200 5000 10m - = - 

or 1.996 kg/sm = 

Example 4.8 The compressor of a large gas turbine receives air from the ambient at 100 kPa,

20°C, with a negligible velocity. At the compressor discharge, air exits at 1 MPa,

400°C, with velocity of 100 m/s. The power input to the compressor is 4000 kW.

Determine the mass flow rate of air through the unit.

Solution

Temperature of air at inlet 1 20 CT = ∞

Rate of work transfer 34000 kW= 4000 10  WW = - - ¥ 

(negative sign, because it consumes power)

Velocity of air at inlet 1 0V ª

Velocity of air at exit 2 100m/sV =
Temperature of air at exit 2 400 CT = ∞

Specific heat of air 1.005 kJ/kg.K=1005 J/kg.KpC =

The steady flow energy equation for the compressor gives

2 2
1 2

1 2
2 2

V V
m h m h W

Ê ˆ Ê ˆ
+ = + +Á ˜ Á ˜

Ë ¯ Ë ¯
   

or
2

2
1 2

2

V W
h h

m
= + +

 

 

or ( )
2

2
2 1

2
p

VW
C T T

m
- = - +

 

 

or
3 2

( 4000 10 ) 100
1005(400 20)

2m

- ¥
- = - +

 

or 10.34 kg/sm = 

Example 4.9 A compressor receives air at 100 kPa and 20°C. The air is compressed adiabatically

to 800 kPa. The power input to the compressor is 400 kW. Determine the mass flow

rate. The changes in kinetic and potential energies are negligible.

Solution

Inlet pressure 1 100 kPaP =
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Inlet temperature 1 20 C 20 273 293 KT = ∞ = + =

Outlet pressure 2 800 kPaP =

Rate of work transfer 3400 kW= 400 10  WW = - - ¥  (Since it consumes power)

The temperature after compression is found to be

1

2 2

1 1

T P

T P

g

g

-

Ê ˆ
= Á ˜Ë ¯

or

1.4 1

1.4

2

800
293 530.75 K

100
T

-

Ê ˆ
= ¥ =Á ˜Ë ¯

The steady flow energy equation for the compressor gives

1 2mh mh W= +    

or ( )1 2m h h W- =   

or ( )1 2pmC T T W- =   

or ( ) 31005 293 530.75 400 10m ¥ - = - ¥ 

or 1.674 kg/sm = 

Example 4.10 A blower handles 1 kg/s of air at 293 K and consumes a power of 15 kW. The inlet

and outlet velocities of air are 100 m/s and 150 m/s respectively. Find the exit air

temperature, assuming adiabatic conditions. Take Cp of air as 1.005 kJ/kg-K.

Solution

Mass flow rate of air 1 kg/sm = 

Temperature of air at inlet 1 293 KT =

Rate of work transfer 15 kW= 15000 WW = - - 

(negative sign, because it consumes power)

Velocity of air at inlet 1 100m/sV =

Velocity of air at exit 2 150m/sV =
Specific heat of air 1.005 kJ/kg.K=1005 J/kg.KpC =

The steady flow energy equation for the blower under the adiabatic condition (Q = 0) is given by

Eq. (4.14) as

2 2
1 2

1 2
2 2

V V
m h m h W

Ê ˆ Ê ˆ
+ = + +Á ˜ Á ˜

Ë ¯ Ë ¯
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or ( )
2 2

1 2
2 1

2 2

V V
m h h m W

Ê ˆ
- = - -Á ˜

Ë ¯
   

or
2 2

1 2
2 1( )

2 2
p

V V
mC T T m W

Ê ˆ
- = - -Á ˜

Ë ¯
   

or ( )
2 2

2

100 150
1 1005 ( 293) 1 15000

2 2
T

Ê ˆ
¥ ¥ - = ¥ - - -Á ˜Ë ¯

or 2 301.7 KT =

4.4.3 Throttling Devices

The main purpose of the throttling process is a significant pressure drop without any work interac-

tions or changes in kinetic or potential energy. Flow through a restriction such as a valve or a porous

plug fulfills the necessary condition. A throttling valve is shown in Fig. 4.3. By decreasing the cross-

sectional area for flow, a greater flow resistance is introduced. For a given mass flow rate, the greater

flow resistance requires a greater pressure drop across the valve.

Figure 4.3 Throttling valve

Although the velocity may be quite high in the region of the restriction, measurements upstream

and downstream from the actual valve area will indicate that the change in velocity, and hence the

change in kinetic energy, across the restriction is very small. Since no rotating shaft is present, no

work interaction is involved.

In most applications, either the throttling devices are properly insulated or the heat transfer is

insignificant.

h1 = h2

Thus for a throttling process, the enthalpy change is zero.

Throttling devices are in commonly used in most domestic refrigerators.
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4.4.4 Heat Exchangers

A heat exchanger is one of the important steady-flow devices in engineering applications. A heat

exchanger is a device where heat is transferred between two or more fluids. The radiators of an

automobile, steam condenser in the steam power plant are the example of heat exchangers. The

simplest form of a heat exchanger is shown in Fig. 4.4 where heat transfer takes place between two

fluids.

The main objective of the heat exchanger is to transfer heat from one fluid to another. The changes

of kinetic and potential energies are usually negligible. A heat exchanger involves no work interac-

tions. The pressure drop through the heat exchanger is usually small. The heat exchanger is usually

properly insulated to prevent heat loss to the surroundings.

The steady flow energy balance equation for the heat exchanger shown in Fig. 4.4 becomes

( )1 2hm h h = ( )4 3cm h h 

m h = mass flow rate of hot fluid

m c = mass flow rate of cold fluid

Hot fluid

in

1 1

Hot fluid
out

Cold

fluid out

Cold

fluid in

4

4

2 2

3

3

Figure 4.4 Heat exchanger

SUMMARY

A control volume is a properly selected region in space. The boundary, which remains

fixed in space, enveloping this control volume, is called the control surface.

The mass balance equation for a single stream entering and a single stream leaving

the control volume when the flow is steady can be written as
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m1 = m2

1 1

1

AV

v = 2 2

2

A V

v

When more than one stream of fluid enters or leaves the control volume, the mass

balance equation becomes

Â  

all streams
entering

m = Â  

all streams
leaving

m

Â
all streams
entering

AV

v
= Â

all streams
leaving

AV

v

The steady flow energy balance equation for a single stream entering and a single

stream leaving the control volume can be written as

  
Ê ˆ

+ + +Á ˜
Ë ¯

2
1

1 1
2

V
m h gz Q =   

Ê ˆ
+ + +Á ˜

Ë ¯

2
2

2 2
2

V
m h gz W

All the terms in the above energy equation represent energy per unit time.

When there is more than one inlet and outlet, the steady flow energy equation be-

comes

Ê ˆ
+ + +Á ˜

Ë ¯
Â   

2

all streams
entering

2

V
m h gz Q =

Ê ˆ
+ + +Á ˜

Ë ¯
Â   

2

all streams
leaving

2

V
m h gz W

The steady flow energy equation for nozzles and diffusers reduces to

+
2

1
1

2

V
h = +

2
2

2
2

V
h

The steady flow energy equation turbines, compressors, pumps, fans and blowers

reduces to

Ê ˆ
+Á ˜

Ë ¯
 

2
1

1
2

V
m h =

Ê ˆ
+ +Á ˜

Ë ¯
  

2
2

2
2

V
m h W

For a throttling process, the enthalpy change is zero.

REVIEW QUESTIONS

4.1 What do you mean by ‘control volume’?

4.2 What is steady-flow process?

4.3 Write the steady-flow energy equation for a single stream entering and a single stream leaving a

control volume and explain the various terms in it.

4.4 Show that enthalpy remains constant during a throttling process.
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NUMERICAL PROBLEMS

4.1 The steam flows through a nozzle with negligible heat transfer. The mass flow rate of steam is

0.15 kg/s. The initial and final pressures are 1.2 MPa and 12 kPa. The initial and final velocities are 100

and 1100 m/s. Compute the change in enthalpy.

4.2 Air expands adiabatically and quasi-statically through a nozzle. At the inlet to the nozzle, pressure

is 800 kPa and temperature is 400°C. The exit pressure is 100 kPa and the area is 0.2 m2. The inlet

velocity is negligible. Determine the exit velocity and the mass flow rate.

4.3 A fluid passes through a turbine at a rate of 1.75 kg/s. The inlet and exit velocities are 40 m/s and 130

m/s, respectively. The initial and final enthalpies are 2900 and 2600 kJ/kg, respectively. The heat loss

to the surroundings is 40 kW. Compute the power output from the turbine.

4.4 Calculate the power required by a compressor if air flows at a rate of 0.7 kg/s. Air enters at

100 kPa, 20°C, with a velocity of 50 m/s, and leaves at 250 kPa, 100°C, with a velocity of 110 m/s. The

enthalpy of the air increases by 70 kJ/kg as it passes through the compressor. The internal energy

increases by 50 kJ/kg. There is a heat transfer of 20 kJ/kg from the air to the cooling water.

4.5 A blower supplying air to an engine takes in air at 90 kPa, 20°C with a velocity of 0.2 m/s. It

discharges air into the engine at 106 kPa, 30°C with a velocity of 30 m/s. Calculate the power

consumption of the blower.  The properties of air at 90 kPa, 20°C are: specific volume = 0.93 m3/kg,

enthalpy = 209.2 kJ/kg, and at 106 kPa, 30°C are: specific volume = 0.81 m3/kg, enthalpy

= 303.3 kJ/kg.

4.6 Steam flows through a turbine at a rate of 2.5 kg/s. The inlet and exit enthalpy of steam are

2700 kJ/kg and 1800 kJ/kg respectively. Velocity of steam at inlet and exit are 35 m/s and 250 m/s

respectively. There is a heat loss to the surroundings of 40 kW. Calculate the power output from the

turbine.

4.7 A gas flows steadily through a turbine at a rate of 1.2 kg/s, through a cross- sectional area of 0.02 m2. At

the inlet to the turbine the conditions are found to be pressure = 5 bar,  temperature =  650°C,

enthalpy = 875  kJ/kg,  internal  energy = 704 kJ/kg. At the exit from the turbine the conditions are found

to be: pressure = 1 bar, temperature = 500°C, enthalpy = 675 kJ/kg, internal energy = 543 kJ/kg. The inlet

velocity is negligible. The power output from the turbine is 200 kW. Calculate the rate of heat

transfer.

4.8 A hydraulic turbine is located slightly lower than the level of the water surface downstream of the

dam in which the turbine is placed. The flow rate through the turbine is 1.12 m3/s. Water entering the

turbine has a velocity of 3 m/s, and that leaving has a velocity of 1.5 m3/s. The difference in water

level between the upstream and downstream sides of the dam is 16 m. Calculate the power output of

the turbine.

4.9 In an adiabatic flow through nozzle, air flows at the rate of 500 kg/hr. The initial velocity of air is

200 m/s. At inlet to the nozzle, pressure is 2 MPa and temperature is 127°C. The exit pressure is 0.4

MPa. Determine (a) the exit velocity of air and (b) inlet and exit area of nozzle.

4.10 A centrifugal pump delivers water at the rate of 2500 kg/min from initial pressure of 80 kPa ( absolute)

to a final pressure of 250 kPa ( absolute). The suction is 1 m below and the delivery is 4 m above the

center of pump. The diameters of the suction and delivery pipes are 15 cm and 10 cm respectively.

Determine the power required to run the pump.
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MULTIPLE-CHOICE QUESTIONS

4.1 During throttling process

(a) heat exchange does not take place

(b) no work is done by the expanding steam

(c) there is no change in internal energy of steam

(d) all of the above

4.2 During throttling process

(a) internal energy does not change

(b) pressure does not change

(c) enthalpy does not change

(d) volume does not change

4.3 The work done in a steady flow process is given by

 (a) PdVò (b) PdV-ò (c) VdPò (d) VdP-ò



Second Law of Thermodynamics

5.1 INTRODUCTION

The first law of thermodynamics gives a quantitative relationship of heat and work interactions between

a system and the surroundings if the system undergoes a thermodynamic process or a cycle. However, it

does not say whether the process or the cycle in a particular direction would occur at all or not.

All spontaneous processes in nature proceed in one direction only. Reversal of these processes is

not possible without the assistance of any external agency. For example, a hot cup of tea left in a cool

surrounding eventually cools down.  The reverse process, i.e., hot cup of tea getting even hotter in a

cool surrounding can never take place, even though doing so would not violate the first law of thermo-

dynamics.

There exists a directional law which determines the direction in which a spontaneous process will

take place. This law is called the second law of thermodynamics.

Work can be converted to heat completely, but heat cannot be completely converted to work. The

first law of thermodynamics does not say anything regarding it. The first law of thermodynamics is

concerned with the energy transformation from one form to another quantitywise with no regard of its

quality. The second law of thermodynamics asserts that energy has quality as well as quantity.

5.2 THERMAL ENERGY RESERVOIR

A thermal energy reservoir (TER) is a hypothetical body with a relatively large thermal energy capac-

ity that can supply or absorb finite quantities of energy as heat without changing its temperature.

A thermal energy reservoir at high temperature, which supplies energy in the form of heat is called

source, and on the other hand, one which absorbs energy in the form of heat is called a sink.

Large bodies of water such as lakes and oceans and the atmosphere behave as thermal energy

reservoirs.

CHAPTER

5
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5.3 HEAT ENGINES

Work can easily be converted to other forms of energy but converting other forms of energy to work

is not easy. Work can be converted to heat directly and completely, but converting heat to work

requires the use of special devices. These devices are called heat engines. A schematic diagram of a

heat engine is shown in Fig. 5.1.

Although heat engines differ considerably from one another, there are some common characteristic

feature of all heat engines.

(a) They receive heat from high temperature sources.

(b) They convert part of this heat to useful work.

(c) They reject the remaining heat to a low temperature sink.

(d) They operate on a cycle.

Heat engines usually involve a substance which receives energy from the source and which rejects

energy to the sink. This substance is called the working fluid or working medium.

Thermal energy
reservoir (source) t1

Q1

W

Thermal energy

reservoir (sink) t2

ER

Q2

Heat
engine

Figure 5.1 Schematic diagram of a heat engine

5.3.1 Thermal Efficiency of  Heat Engine

An index of performance of a heat engine is expressed by the thermal efficiency hther, which is defined

as the ratio of the net work done to the energy absorbed as heat.

Thermal efficiency, hther =
Work done

Heat supplied

Let Q1 = magnitude of heat transfer between the heat engine and the source

Q2 = magnitude of heat transfer between the heat engine and the sink

W = Work done by the heat engine
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hther =
1

W

Q
(5.1)

Again, applying the first law of thermodynamics, W = Q1 – Q2

hther = 1 2 2

1 1

1
-

= -
Q Q Q

Q Q
(5.2)

The thermal efficiency of a heat engine is a measure of how successfully it converts the heat

received to work. It is always less than unity. Engineers are constantly trying to improve the

efficiencies of heat engines.

5.4 REFRIGERATORS AND HEAT PUMPS

We know that heat is transferred spontaneously from a high temperature medium to a low tempera-

ture medium. The reverse process, however, cannot occur by itself. The transfer of heat from a low-

temperature medium to a high temperature medium requires special devices called refrigerators and

heat pumps.

Refrigerators and heat pumps are simply heat engines operated in the reverse direction.

A heat pump is a device which works on a cycle, maintains temperature of a body which is more

than the temperature of surroundings.

The objective of a refrigerator is to maintain the refrigerated space at a low temperature by remov-

ing heat from it. A refrigerator operates between the ambient temperature and a low temperature

(Fig. 5.2(a)).

The objective of a heat pump is to reject heat to a high temperature body. A heat pump operates

between the ambient temperature and a high temperature (Fig. 5.2(b)).

High temperature

reservoir (ambient
atmosphere) t1

Refrigerator

W

Q2

Low temperature reservoir

t2

High temperature
reservoir, t1

Heat pump

W

Q2

Low temperature reservoir
(ambient atmosphere) t2

Q1Q1

(a) (b)

Figure 5.2 Schematic diagram of (a) a refrigerator and (b) a heat pump
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The most popular refrigeration cycle is the vapour-compression cycle (Fig. 5.3). In this cycle, the

working fluid, known as the refrigerant, is compressed in the vapour phase, then condensed to a

liquid, following which the pressure is dropped so that the refrigerant can evaporate at a low pressure.

Atmosphere, t1

Q1

Condenser

WC

Compressor

Evaporator

Q2

Refrigerated space,
t2

Expansion
valve

Figure 5.3 Schematic arrangement of vapour compression refrigeration plant

5.4.1 Coefficient of Performance of a Refrigerator and a Heat Pump

For a refrigerator, the performance parameter is not called efficiency, because that term is usually

reserved for the ratio of output to input. The ratio of output to input would be misleading applied to a

refrigeration system because the output is usually wasted. The concept of performance parameter of

the refrigeration cycle is tantamount to efficiency of the heat engine. However, any such parameter is

defined keeping the desired objective in mind.

In case of refrigeration, the prime objective is cooling and this is possible only at the expense of

some work. The performance index in the refrigeration cycle is therefore, expressed (quantified) by

a separate parameter called the coefficient of performance (abbreviated as COP).

Hence, [COP]R =
Useful refrigeration

Net work 

In a household refrigerator, the freezer compartment where heat is absorbed by the refrigerant

serves as the evaporator and the coils usually behind the refrigerator where heat is dissipated to the

surroundings serve as the condenser. For refrigerator, COP an be expressed as

COPR = 2

1 2-
Q

Q Q
(5.3)

where Q1 is the heat rejected to the high-temperature medium and Q2 is the heat absorbed from the

low temperature medium.
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Similarly, the objective of a heat pump is to pump in heat to a chamber for the purpose of heating

and this is also possible only when some work is expended.

Hence, [COP]HP =
Heat delivered to the chamber

Net work 

COPHP = 1

1 2-
Q

Q Q
(5.4)

From the expression of COP of refrigerator and heat pump, it is evident that the two are related by

the following expressions.

COPHP = COPR + 1

The COP of a heat pump is greater than the COP of a refrigerator by unity.

The coefficient of performance of a heat pump is always greater than unity since COPR is a

positive quantity.

5.4.2 Heat Pump vs Electric Resistance Heater

For the purpose of heating, the use of a heat pump is more economical than an electric resistance heater.

COPHP = COPR + 1 (5.5)

Since, COPR is a positive quantity, from Eq. (5.5) it is clear that COPHP is always greater than unity.

If W is the energy consumption of an electric resistance heater, the heat released by the heater to

the space will be W only.

Now, if the same amount of energy is utilized to run a heat pump, the heat pumped to the space will

be

Q1 = COPHP . W (5.6)

From Eq. (5.6), Q1 will always be greater than W.

Room t1
Room t1

Q1

Heat pump

W Q= W

Ambient atmosphere t2

Ambient atmosphere t2

Q2

(a) (b)

Figure 5.4 Heating of a room by (a) an electric resistance heater and (b) a heat pump
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Let the COPHP be 3.

The power consumption by an electric resistance heater

 W = 1
 Q

The power consumption by a heat pump is

 W = 1 1

COP 3
=

  

HP

Q Q

Thus, the power consumption of the heat pump is lower than that of the electric resistance heater.

Therefore, heat pump is more effective than electric resistance heater.

5.5 KELVIN–PLANCK STATEMENT OF THE SECOND LAW

The Kelvin-Planck statement of the second law of thermodynamics states that “It is impossible to

construct a device, which operating in a cycle, will produce no effect other than the absorption of

energy as heat from a single reservoir and produces an equivalent amount of work.”

The statement implies that a heat engine which will receive heat Q1 from a high temperature

reservoir, and convert it completely into work, is impossible (Fig. 5.5). The alternative is that there

must be at least another low-temperature reservoir to which heat must be rejected by the heat engine.

Q1

Thermal energy
reservoir t1

W QR = 1ERHeat
engine

Q =2 0

Thermal energy
reservoir t2

Figure 5.5 Heat engine exchanging heat with one TER: Impossible

5.5.1 Perpetual Motion Machine of the Second Kind

Wilhelm Ostwald introduced the concept of a perpetual motion machine of the second kind. A per-

petual motion machine of the second kind is a device which would perform work solely by absorbing

energy as heat from a single reservoir. Such a device does not violate the first law of thermodynamics

because it would perform work at the expense of the internal energy of a body. It is to be noted that

the efficiency of the perpetual motion machine of the second kind is 100%. The heat engine shown in

Fig. 5.5 is an example of a perpetual motion machine of second kind. A perpetual motion machine of

the second kind is a machine which violates the second law of thermodynamics.
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5.6 CLAUSIUS STATEMENT OF THE SECOND LAW

The Clausius statement of the second law of thermodynamics states that “It is impossible to construct a

device, which, operating in a cycle, will produce no effect other than transfer of energy in the form of

heat from a low temperature body to a high temperature body.”

Q1

Thermal energy
reservoir t1

WR = 0

Refrigerator

Q2

Thermal energy
reservoir t2

Figure 5.6 Refrigerator without any work input: Impossible

The statement implies that a refrigerator which will receive heat from a low-temperature reservoir

and transfer it to a high-temperature reservoir is impossible (Fig. 5.6). The alternative is that there

must be some work input.

5.7 EQUIVALENCE OF KELVIN–PLANCK AND CLAUSIUS STATEMENTS

At first, it appears as if the Kelvin–Planck and Clausius statements are different together. However, it

can be shown that the Kelvin-Planck and Clausius statements are in fact, equivalent.

The equivalence of the Kelvin–Planck and Clausius statements is demonstrated by showing that the

violation of each statement implies the violation of the other.

To prove that violation of the Kelvin–Planck statement leads to a violation of the Clausius statement,

let us suppose that the Kelvin–Planck statement is wrong. That is, it is possible to construct a heat engine,

which, operating on a cycle, absorbs heat (Q1) from a source at temperature t1 and produces an equiva-

lent amount of work (W = Q1) (Fig. 5.7).

Suppose that a heat pump also operates between the same two reservoirs and uses up all the work

produced by the heat engine. The engine and pump together constitute a heat pump that transfers heat

from the low-temperature reservoir to the high-temperature reservoir without producing any changes

elsewhere. Therefore, the engine and the pump together constitute a heat pump (Fig. 5.7) that violates

the Clausius statement.
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Thermal energy
reservoir t1

W1

HP HPER ER

W1

Q1

Q2 = 0

Q1 +Q2 Q1 +Q2
Q1

Q2 = 0Q2 Q2

Thermal energy
reservoir t2

Thermal energy
reservoir t2

Figure 5.7 Violation of the Kelvin–Planck statement leads to a violation of the Clausius statement

To prove that the violation of the Clausius statement leads to a violation of the Kelvin–Planck

statement, let us suppose that the Clausius statement is wrong. Consider a heat pump (Fig. 5.8) that

requires no work to transfer heat from a low-temperature to a high-temperature reservoir and that,

therefore, violates the Clausius statement.

Thermal energy
reservoir t1

W
HP HPER ER

Q1

Q2

Q1 Q1
Q1

Q2Q1 Q1

Thermal energy reservoir
t2

Thermal energy
reservoir t2

WW = 0 W = 0

Figure 5.8 Violation of the Clausius statement leads to a violation of the Kelvin–Planck statement
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Let us assume a heat engine operates between the same two reservoirs in such a way that the

engine draws an amount of heat which is delivered by the heat pump. The engine and pump together

constitute a heat engine (Fig. 5.8) that produces no effect other than the absorption of energy as heat

from a single reservoir and produces an equivalent amount of work. Therefore, the engine and the

pump together constitute a heat engine that violates the Kelvin–Planck statement.

5.8 REVERSIBLE AND IRREVERSIBLE PROCESSES

A process is said to be reversible if at the conclusion of the process, both the system and the sur-

roundings can be restored to their respective initial states without producing any changes in the rest of

the universe. Otherwise, the process is said to be irreversible.

A system can, however, always be restored to its initial state, but this does not imply that the

process is reversible. Only if the surroundings are also simultaneously restored to their initial states,

the process becomes reversible.

A process is called internally reversible if no irreversibilities occur within the system boundary

during the process. The quasi-equilibrium process is an example of an internally reversible process.

A process is called externally reversible if no irreversibilities occur outside the system boundary

during the process.

A process is called reversible if no irreversibilities occur within or outside the system boundary

during the process.  That is, a process is reversible if it is internally as well as externally reversible.

The characteristics of irreversible processes are the following:

(a) An irreversible process can be carried out in one direction only.

(b) An irreversible process occurs at a finite rate.

An irreversible process cannot be reversed without causing permanent changes in the surroundings.

During an irreversible process, the system is not in equilibrium.

Factors that make processes irreversible are

(i) heat transfer through normal a temperature difference

(ii) friction

(iii) free expansion

(iv) mixing of substances

(v) combustion

5.9 THE CARNOT CYCLE

According to the second law of thermodynamics, a perpetual motion machine of the second kind is

impossible, i.e., without exchanging with two thermal energy reservoirs at two different temperatures,

it is impossible to produce work in a cycle.

From the second law of thermodynamics, it has been observed that the efficiency of a heat engine

cannot be equal to unity. It is, therefore, important to answer the following questions:

(a) What is the maximum thermal efficiency of a heat engine?

(b) What are the characteristics of such an engine?
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These can be answered by considering the Carnot cycle. French military engineer, Nicholas Sadi

Carnot (1796–1832), was the first to introduce the idea of a reversible cycle which is named after him.

The theoretical heat engine that operates on the Carnot cycle is called the Carnot heat engine. The

Carnot cycle has four basic processes. These are

∑ a reversible isothermal process in which heat is transferred from the high temperature reservoir

∑ a reversible adiabatic process in which the temperature of the working fluid decreases from high

temperature to low temperature

∑ a reversible isothermal process in which heat is transferred to the low temperature reservoir

∑ a reversible adiabatic process in which the temperature of the working fluid increases from the

low temperature to the high temperature.

A Carnot cycle on the P–V diagram is shown in Fig. 5.9.

1

4

3

Q1

2
T = constant

T = constant
Q2

V

P

Figure 5.9 Carnot cycle on P–V diagram

5.9.1 The Reversed Carnot Cycle

All the processes of the Carnot heat engine cycle are reversible. If the directions of energy interactions

are reversed, then the cycle becomes Carnot refrigeration cycle (or reversed Carnot cycle). A reversed

Carnot cycle on the P–V diagram is shown in Fig. 5.10.

1

2

3

Q1

4
T = constant

T = constantQ2

V

P

Figure 5.10 Reversed Carnot cycle on P–V diagram
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5.10 COROLLARIES OF THE SECOND LAW OF THERMODYNAMICS

Clausius statement of the second law is known as the first corollary of the second law of thermody-

namics.

Corollary 2: It is impossible to construct a heat engine operating between only two reservoirs,

which will have a higher efficiency than a reversible heat engine operating between the same two

reservoirs.

Thermal energy
reservoir t1

Thermal energy
reservoir t2

Q1IQ1R

ER EIWR WI

Q2IQ2R

Figure 5.11 Two heat engines operating between the same two reservoirs

Let us assume that Corollary 2 (also known as Carnot Theorem 1) is wrong, i.e., it is possible to

construct an irreversible heat engine EI, which operates between the same thermal energy reservoirs as

that of a reversible heat engine ER such that the efficiency of the irreversible engine is greater than that

of the reversible engine (Fig. 5.11). By assumption, the efficiency of the reversible engine ER is less

than the efficiency of the irreversible engine EI.

hI > hR

Let the rate of working of the engines be such that Q1R = Q1I

Thermal efficiency of reversible engine hR = 
1

R

R

W

Q

Thermal efficiency of irreversible engine hI = 
1

I

I

W

Q

Since, hI > hR

WI > WR
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Therefore, for the same amount of energy input, the reversible engine ER does less work than the

irreversible engine EI. Since the heat engine ER is a reversible, it can be executed in a reversed order i.e.,

the magnitudes of energy transfer will remain the same, but the direction will be the reversed. Since WI is

greater than WR, some part of WI (equal to WR) may be fed to execute the reversed heat engine ER.

Thermal energy

reservoir t1

Thermal energy

reservoir t2

ER EI

Q2IQ2R

Q1R = Q1I

W WI R–
WR

Figure 5.12 Combined system violates the Kelvin–Planck statement of the second law

Now, ER and EI together constitute a heat engine as shown in Fig. 5.12, which, operating in a cycle,

delivers net work WI – WR. The combined device absorbs energy as heat (Q2R – Q2I) from the thermal

energy reservoir at t2, and does equivalent amount of work without rejecting energy to thermal energy

reservoir at t1. Thus, it becomes a perpetual motion machine of the second kind which violates the

Kelvin–Planck statement of the second law of thermodynamics. Hence, the assumption that the effi-

ciency of the irreversible engine is greater than the efficiency of the reversible engine is wrong.

Therefore, hR ≥ hI

Corollary 3: All reversible heat engines operating between the same two reservoirs have the same

efficiency.

Consider two reversible heat engines ER1 and ER2 are operating between the same two thermal

energy reservoirs as shown in Fig. 5.13.

Let us assume that the efficiency of the reversible heat engine ER1 is greater than the efficiency of

the reversible heat engine ER2.

hR1 > hR2

Let the rate of working of the engines be such that Q11 = Q12

Thermal efficiency of reversible engine ER1, hR1 = 
11

R
W

Q

Thermal efficiency of reversible engine ER2, hR2 = 2

12

W

Q

Since, hR1 > hR2
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W1 > W2

Since the heat engine ER2 is a reversible one, it can be executed in a reverse order, i.e., the

magnitudes of energy transfer will remain the same, but the direction will be reversed. Since W1 is

greater than W2, some part of W1 (equal to W2) may be fed to execute the reversed heat engine ER2.

Thermal energy

reservoir t1

Thermal energy

reservoir t2

ER1 ER2

Q22Q21

W2

Q12Q11

W1

Figure 5.13

Now, ER1 and ER2 together constitute a heat engine as shown in Fig. 5.14, which operating in a

cycle, delivers net work W1 – W2. The combined device absorbs energy as heat (Q22 – Q21) from the

thermal energy reservoir at t2, and does equivalent amount of work without rejecting energy to the

thermal energy reservoir at t1. Thus, it becomes a perpetual motion machine of second kind which

violates the Kelvin–Planck statement of the second law of thermodynamics. Hence the assumption

that the efficiency of the reversible engine ER1 is greater than the efficiency of the reversible engine

ER2 is wrong.

Therefore, hR2 ≥ hR1 (5.7)

Thermal energy

reservoir t1

Thermal energy

reservoir t2

ER1 ER2

Q22Q21

W – W1 2

Q = Q11 12

W1

Figure 5.14 Combined heat engines ER1 and ER2 violates the Kelvin–plank statement of the second law
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Now, let us assume that the efficiency of the reversible heat engine ER2 is greater than the effi-

ciency of the reversible heat engine ER1.

The reversible heat engine ER1 can be executed in a reversed, utilizing part of work done by ER2. By

following a similar argument we can arrive at the result that

hR1 ≥ hR2 (5.8)

From Eqs (5.7) and (5.8), it can be concluded that

hR1 = hR2 (5.9)

This is also known as Carnot Theorem 2. This theorem states that the efficiency of a reversible

heat engine is independent of the nature of the working substance and depends only on the tempera-

ture of the reservoirs between which it operates.

Corollary 4: A scale of temperature can be defined which is independent of any thermometric

substance, and which provides an absolute zero of temperature.

Consider three reversible heat engines E1, E2, and E3 operating between temperatures t1 and t3 as

shown in Fig. 5.15. Heat engine E3 extracts heat from high temperature at t1 and rejects it to the low

temperature reservoir at t3. Heat engine E1 operates between the high temperature reservoir at t1 and an

intermediate reservoir at t2, while the heat engine E2 operates between the intermediate reservoir at t2
and the low-temperature reservoir at t3. Let heat engines E1 and E3 receive the same amount of heat

from the high temperature source at t1.

The efficiency of the combined reversible heat engines (E1 and E2) must be the same as the single

reversible heat engine (E3), since as per Corollary 3, the efficiency of all reversible heat engines

operating between the same source and sink is equal.

The amount of heat rejected by the combined reversible heat engines (E1 and E2) will be same as that of

E3 i.e., Q3

Reservoir t3

Reservoir t1

Reservoir t1

Reservoir t3

E3

E2

E1

Q1

Q3

Q1

Q2

Q3

W2

W1

t2

W3

Figure 5.15 Schematic arrangement of heat engines to develop the thermodynamic temperature scale
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As per Corollary 3, the efficiency of reversible heat engine E1

h1 = ( )2
1 2

1

1 ,- =
Q

f t t
Q

In terms of a new function,

1

2

Q

Q
= j(t1, t2)

Similarly, for reversible heat engines E2 and E3, we have

2

3

Q

Q
= j(t2, t3)

1

3

Q

Q
= j(t1, t3)

Now, 1

2

Q

Q
=

( )
( )

1

1 33

2 2 3

3

,

,

j
=

j

Q

t tQ

Q t t

Q

1

2

Q

Q
= ( )1 2,t tj  = 

( )
( )

1 3

2 3

,

,

j

j

t t

t t
(5.10)

Since t3 does not appear in the left hand side of the Eq. (5.10), t3 must, therefore, drop out from the

ratio on the right hand side of equation. The numerator can be written as 1( )tf  and the denominator as

2( )tf , where f is another unknown function of one temperature.

The ratio 1

2

Q

Q
 depends only on t1 and t2 and is independent of t3.

1

2

Q

Q
=

1
1 2

2

(t )
( , )

(t )
t t =

f

f

In 1848, Kelvin proposed a linear function of temperature because all the scientific and engineering

data had been obtained from the mercury-in-glass thermometer, which is essentially linear over its

useful range.

1

2

Q

Q
 = 1 1

2 2

+
=

+
t c T

t c T
(5.11)

where c is a constant and T is the absolute temperature.

This temperature scale is called the Kelvin scale, and the temperatures on this scale are called

absolute temperature. The triple point of water is taken as the standard reference point. At the Interna-

tional Conference on Weights and Measures held in 1954, the triple point of water was assigned the

value of 273.16 K.

1

TP

Q

Q
 =

TP

T

T

T = 273.16 
TP

Q

Q
(5.12)
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Consider, a series of reversible heat engines (Fig. 5.16), each operating between only two reservoirs

and each producing same quantity of work:

1

2

Q

Q
= 1

2

T

T

1 2

2

-Q Q

Q
= 1 2

2

-T T

T

Q1 – Q2 = (T1 – T2)
2

2

Q

T

Similarly, Q2 – Q3 = (T2 – T3) ( )3 2
2 3

3 2

= -
Q Q

T T
T T

Q3 – Q4 = (T3 – T4)
2

2

Q

T

T1 – T2 = T2 – T3 = T3 – T4 = ...

If sufficient number of heat engines are placed in series to make the total work output equal to the

heat input to the first heat engine then the heat rejected from the last engine will be zero.

 If the heat rejected from the last heat engine is  zero then the temperature of the last reservoir  will

be zero. However, if the heat rejection from  a cyclic heat engine is zero, then it violates the Kelvin–

Planck statement of the second law of thermodynamics.

Reservoir T1?

W

Q2

Q3

E1

E3

Q1

T2

W

W

Q4

T3

T3

E3

Figure 5.16 Heat engines in series
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5.11 CARNOT HEAT ENGINE, REFRIGERATOR AND HEAT PUMP

5.11.1 Carnot Heat Engine

The heat engine that operates on the Carnot cycle is called the Carnot heat engine. The thermal effi-

ciency of any heat engine is given by

hther = 1 2

1

-Q Q

Q
 = 1 – 2

1

Q

Q

where Q1 is the heat transferred to the heat engine from a high temperature reservoir at T1 and Q2 is the

heat rejected to a low temperature reservoir at T2.

From the thermodynamic temperature scale

1

2

Q

Q
= 1

2

T

T

Then the efficiency of a Carnot heat engine becomes

hther, Carnot =
2

1

1 -
T

T
(5.13)

5.11.2 Carnot Refrigerator and Carnot Heat Pump

A refrigerator of a heat pump that operates on the reversed Carnot cycle is called a Carnot refrigerator

or a Carnot heat pump. The coefficient of performance of any refrigerator or heat pump is given by

COPR = 2

1 2-
Q

Q Q
(5.14)

COPR = 1

1 2-
Q

Q Q
(5.15)

where Q1 is the heat rejected to the high-temperature medium (T1) and Q2 is the heat absorbed from

the low-temperature medium (T2).

From the thermodynamic temperature scale

1

2

Q

Q
 = 1

2

T

T

Then the coefficient of performance becomes

COPR = 2

1 2-
T

T T
(5.16)

COPHP = 1

1 2-
T

T T
(5.17)
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Example 5.1 Which is the more effective way to increase the efficiency of a Carnot Engine?

(i) to increase T1, keeping T2 constant

(ii) to decrease T2, keeping T1 constant.

Solution: The efficiency of a Carnot engine is given by h = 1 – 2

1

T

T

Let T1 be increased by DT, keeping T2 constant. Then, efficiency becomes

h1 = 1 – 2

1 + D
T

T T

Let T2 be decreased by same  DT, keeping T1 constant. Then, efficiency becomes

h2 = 1 – 2

1

- DT T

T

h2 – h1 = 1 – 2

1

- DT T

T
 – 1 + 2

1 + D
T

T T

=
( ) ( )

( )
1 2 1 2

1 1

- + D - D

+ D

T T T T T T

T T T

=
( ) ( )

( )

2

1 2

1 1

T T T T

T T T

+ D + D

+ D

Since T1>T2, h2 - h1 > 0

The more effective way to increase the efficiency of Carnot engine is to decrease the

lower temperature T2.

Example 5.2 If the thermal efficiency of a Carnot engine is 
1

6
, calculate the coefficient of per-

formance of (i) a Carnot heat pump, and (ii) a Carnot refrigerator.

Solution The efficiency of a Carnot engine is given by Eq. (5.13) as 2
Carnot

1

1
T

T
h = -

where, T1 is the source temperature and T2 is the sink temperature.

Therefore,  hCarnot = 2

1

1
1

6
- =

T

T
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or, 1 2

1

T T

T

-
=

1

6

or, 1

1 2

T

T T-
= 6

The coefficient of performance of Carnot heat pump is (Eq. (5.17))

COPHP = 1

1 2

6
T

T T
=

-

From Eq. (5.5), we have

COPHP = COPR + 1

Therefore, the coefficient of performance of Carnot refrigerator is COPR = 5.

Example 5.3 A Carnot heat engine operates between a source at 1000 K and a sink at 300 K. If the

heat engine is supplied with heat at a rate of 800 kJ/min. Determine (a) the thermal

efficiency, and (b) the power output of this heat engine.

Solution Temperature of source, T1 = 1000 K

Temperature of sink, T2 = 300 K

(a) Thermal efficiency of a Carnot cycle is to be (Eq. (5.13))

hCarnot = 1 – 2

1

T

T

=
300

1 0.7 or 70%
1000

- =

(b) From Eq. (5.1), one can write

hth, Carnot = net net

1

0.7
800

60

W W

Q
= =

  

 

or, netW = 9.33 kJ/s = 9.33 kW

Example 5.4 A Carnot heat engine receives 650 kJ of heat from a source of unknown temperature

and rejects 250 kJ of it to a sink at 24ºC. Determine the thermal efficiency of the heat

engine and the temperature of the source.

Solution Temperature of sink is given, T2 = 24ºC = 297 K

Let the temperature of source be T1 K

Heat transferred to the Carnot engine is, Q1 = 650 kJ
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Heat rejected by the Carnot engine is 2 250 kJQ =

Thermal efficiency of the heat engine is found to be (Eq. (5.1))

th,Carnoth  = 2

1

250
1 1 0.6154

650

Q

Q
- = - =

The efficiency of a Carnot cycle is found to be (Eq. (5.13))

Carnoth  = 2

1

1
T

T
-

Thus,
1

297
1

T
-  = 0.6154

or, T1 = 772.23 K = 499.23 C

Example 5.5 A heat engine operates between a source at 550°C and a sink at 25°C. If heat is

supplied to the heat engine at a steady rate of 1200 kJ/min.  Determine the maximum

power output of this heat engine.

Solution A heat engine delivers maximum power only when it is a Carnot heat engine.

Thermal efficiency of Carnot heat engine is

th, Carnot  = 2

1

25+273 298
1 1 =1 0.6379

550+273 823

T

T
- = - - =

Rate of heat transferred to the engine is given as 1 1200 kJ/min = 1200 kJ/60sQ = 

= 20 kJ/s = 20 kW

Now, from the condition of maximum power delivery, we get

th, Carnot  = max

1

W

Q

 

or, maxW  = max 1 0.6379 20 12.76 kWQh ¥ = ¥ =  

Example 5.6 A Carnot heat engine is operating between a source at T1 and a sink at T2. If it is

desired to double the thermal efficiency of this engine by changing only the source

temperature keeping sink temperature constant, what should be the new source tem-

perature be?

Solution The efficiency of a Carnot engine is given by Eq. (5.13) as 2
Carnot

1

1
T

T
h = -

Let newT  be the source temperature so that the efficiency becomes Carnot2h . Thus,
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2

new

1
T

T
-  = Carnot2h

or, 2

new

1
T

T
-  = 2

1

2 1
T

T

Ê ˆ
-Á ˜Ë ¯

or 2

new

1
T

T
-  = 2

1

2
2

T

T
-

or, 2 2

new 1

2T T

T T
-  = 1

or,  2

new

T

T
 = 2

1

2
1

T

T
-

or, Tnew =
2

2

1

2
1

T

T

T
-

Example 5.7 Consider a heat engine that receives heat at the rate of 1 MW at a high temperature of

550°C and rejects energy to the ambient at 27°C while work is produced at the rate of

450 kW. Find out how much heat is discarded to the ambient and engine efficiency.

Also compare both of these values with a Carnot heat engine operating between the

same two reservoirs.

Solution Rate of Heat transferred to the engine is 1 1 MW 1000 kWQ = = 

Rate of work output is 450 kWW = 

Thermal efficiency of engine is found to be

th, Engineh =
1

450
0.45

1000

W

Q
= =

 

 
 or 45%

Rate of heat discarded by the engine is 2 1 1000 450 550 kWQ Q W   = - = - =

Thermal efficiency of Carnot heat engine is found to be

th, Carnoth  = 2

1

27+273 300
1 1 1 0.6355 or 63.55%

550+273 823

T

T
- = - = - =

Rate of work output by Carnot heat engine

CarnotW  = Carnot 1 0.6355 1000 635.5 WQh = ¥ = 

engine

Carnot heat engine

h

h
 =

0.45
0.708

0.6355
=
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Example 5.8 An inventor comes to an industrialist and claims to have developed a heat engine that

receives 700 kJ of heat from a source at 500 K and produces 300 kJ of net work while

rejecting the waste heat to a sink at 290 K. What would you advise to the industrialist,

he should invest or not.

Solution The maximum possible efficiency of a heat engine is the same as the efficiency of a

Carnot heat engine operating between the same source and sink and is given by

th, maxh  = 2
Carnot

1

1
T

T
h = -

where, T1 is the source temperature and T2 is the sink temperature.

The efficiency of a Carnot heat engine is

Carnoth  = 2

1

290
1 1 0.42

500

T

T
- = - =

The efficiency of the heat engine is

therh  =
1

300
0.4285

700

W

Q
= =

Since the efficiency of the heat engine is higher than the efficiency of Carnot heat

engine operating between the same source and sink, his claim is not reasonable.

Example 5.9 An inventor claims to have developed a refrigeration system that removes heat from

the closed region at –12°C and transfers it to the surroundings at 25°C while main-

taining a COP of 6.5. Is this a reasonable claim? Why?

Solution The maximum COP of a refrigeration system is the same as the COP of a Carnot

refrigeration system operating between the same source (T1) and sink (T2) and is

given by (see Eq. (5.16))

CarnotCOP  = 2

1 2

261
7.05

298 261

T

T T
= =

- -

Actual COP of the refrigeration system is given as 6.5.

Since the actual COP is less than that of Carnot refrigeration system, the claim is

reasonable.

Example 5.10 Two Carnot heat engines work in series between the source and sink temperatures of

600 K and 300 K respectively. If both engines develop equal power, determine the

intermediate temperature.

Solution The arrangement is shown in Fig. 5.17.

Let the intermediate temperature be T2.
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For the heat engine 1,

1

2

Q

Q
= 1

2

T

T

1 2

2

Q Q

Q

-
= 1 2

2

T T

T

-

2

W

Q
= 1 2

2

T T

T

-
(5.18)

For the heat engine 2,

3

2

Q

Q
= 3

2

T

T

2 3

2

Q Q

Q

-
= 2 3

2

T T

T

-

2

W

Q
= 2 3

2

T T

T

-
(5.19)

Equating Eqs (5.18) and (5.19), we get

T1 – T2 = T2 – T3

T2 = 1 3 600 300
450 K

2 2

T T+ +
= =

The intermediate temperature is 450 K.

Example 5.11 Two Carnot heat engines work in series between the source and sink temperatures of

900 K and 400 K respectively. If both engines have equal efficiencies, determine the

intermediate temperature.

Solution The arrangement is shown in Fig. 5.18.

For the heat engine 1,

2

1

Q

Q
= 2

1

T

T

1 2

1

Q Q

Q

-
= 1 2

1

T T

T

-

Reservoir = 600 KT1

W

Q2

Q3

E1

E2

Q1

T2

W

Reservoir = 300 KT3

Figure 5.17
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h1 = 1 2

1

T T

T

-
(5.20)

For the heat engine 2,

3

2

Q

Q
= 3

2

T

T

2 3

2

Q Q

Q

-
= 2 3

2

T T

T

-

h2 = 2 3

2

T T

T

-
       (5.21)

Equating Eqs (5.20) and (5.21), we get

T2
2 = T1T3

T2 =
1 3 900 400 600 KT T = ¥ =

The intermediate temperature is 600 K.

Example 5.12 A reversible power cycle is used to drive a reversible heat pump cycle. The power

cycle takes in Q1 heat units at T1 and rejects Q2 heat units at T2. The heat pump

abstracts Q4 from the sink at T4 and discharges Q3 at T3. Develop an expression for

the ratio 3

1

Q

Q
 in terms of the four temperatures.

Reservoir T1

WHeat
engine

Reservoir T2

Q2

Q1

Reservoir T3

Heat
pump

Reservoir T4

Q4

Q3

Figure 5.19

Reservoir = 900 KT1

W2

Q2

Q3

E1

E2

Q1

T2

W1

Reservoir = 400 KT3

Figure 5.18
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Solution The arrangement is depicted in Fig. 5.19. From reversible heat engine cycle, we get

h = 2

1 1

1
TW

Q T
= -

or, W = 2
1

1

1
T

Q
T

Ê ˆ
-Á ˜Ë ¯

From reversible heat pump cycle, we have

COPHP = 3Q

W
 = 3

3 4

T

T T-

or, W = Q3
4

3

1
T

T

Ê ˆ
-Á ˜Ë ¯

Since heat engine drives the heat pump, therefore

Q3
4

3

1
T

T

Ê ˆ
-Á ˜Ë ¯

= 2
1

1

1
T

Q
T

Ê ˆ
-Á ˜Ë ¯

3

1

Q

Q
=

1 2

3 1 21

3 4 1 3 4

3

( )

( )

T T

T T TT

T T T T T

T

-
-

=
- -

Example 5.13 A reversible heat engine which takes in heat from a reservoir at 840ºC and rejects

heat to a reservoir at 60 ºC. The heat engine drives a reversible heat pump which

takes in heat from a reservoir at 5 ºC and delivers heat to a reservoir at 60 ºC. The

reversible heat engine also drives a machine that absorbs 30 kW. If the heat pump

extracts 17 kJ/s from the 5 ºC reservoir, determine (i) the rate of heat supply from the

840 ºC source, and (ii) the rate of heat ejection to 60 ºC sink.

Solution The arrangement is schematically presented in Fig. 5.20.

The efficiency of the reversible heat engine is

hHE = 2

1

1
T

T
-

=
333

1 0.7008
1113

- =

The coefficient of performance of the reversible heat pump is

COPHP = 3 3

HP 3 4

333
6.05

333 278

Q T

W T T
= = =

- -
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Heat
engine

Q2

Q1

Heat
pump

Q4

Q3

Reservoir
= 60 °C = 333 K2T

Reservoir
= 5 °C = 278 K4T

Reservoir
= 60 °C = 333 K3T

Reservoir
= 840 °C = 1113 K1T

WM = 30 Wk

WHPWHE

Figure 5.20

Further, COP can be expressed as

COPHP = 3

3 4

6.05
Q

Q Q
=

-

 

  

or 3Q = 30.37 kW 4 17 kWQÈ ˘=Î ˚ ∵

Thus, HPW =
3 4 20.37 17 3.37 kW= = - =  Q Q

The rate of work done by the heat engine is

HEW = 30 + 3.37 = 33.37 kW

Further, the efficiency of the heat engine can be expressed as

hHE = HE

1

0.7008=
 W

Q

or 1Q = HE

HE

33.37
47.62 kW

0.7008
= =

h

 W

Thus 2Q = 1 HE 47.62 33.37 14.25 kWQ W- = - =  

Rate of heat rejection to 60 ºC sink is 2 3 14.25 20.37 34.62 kWQ Q+ = + =  
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Example 5.14 Electric solar cells can produce power with 12 % efficiency. Assume a heat engine

with a low temperature heat rejection at 27ºC driving an electric generator with 85 %

efficiency. What should the effective high temperature in the heat engine be to have

the same overall efficiency as the solar cells?

Solution Given data:

Efficiency of solar cell,

hSC = 0.12

Efficiency of electric generator,

hEG = 0.85

Temperature of sink of heat engine,

T2 = 27ºC = 300K

Efficiency of heat engine,

hHE = 2

1 1

1
W T

Q T
= -

Now, overall efficiency of heat engine and electrical generator,

hoverall = hHE ¥ hEG

Again, hoverall = hSC = 0.12

0.12 = hHE ¥ hEG

hHE = overall 0.12
0.141

0.85EG

h
= =

h

2

1

1
T

T
- = 0.141

2

1

T

T
= 0.859

T1 = 2 300
349.24 K

0.859 0.859

T
= =

Corollary 5: The efficiency of any reversible engine operating between more than two reservoirs

must be less than that of a reversible engine operating between two reservoirs which have tempera-

tures equal to the highest and lowest temperatures of the fluid in the original engine.

Let a reversible heat engine operates between more than two reservoirs say 3 as shown in Fig. 5.21.

Reversible heat engine E1 operates between heat reservoirs A, B and C at temperatures TA, TB and TC

(TA>TB > TC) respectively. The engine receives QA and QB quantities of heat from reservoir A and B

respectively and rejects QC heat to reservoir C. Let the efficiency of the above mentioned engine be h1.
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Then

h1 = 1

+A B

W

Q Q

= 1 -
+
C

A B

Q

Q Q
(5.22)

From fourth corollary of the second law of thermodynamics,

+A B

A B

Q Q

T T
= C

C

Q

T

Reservoir TA Reservoir TAReservoir TB

QA QB

E1 W1

Qc

Reservoir Tc

Q1

E2 W2

Reservoir Tc

Figure 5.21

Equation (5.22) becomes

h1 = 1 – 

Ê ˆ
+Á ˜Ë ¯

+

A B
C

A B

A B

Q Q
T

T T

Q Q

= 1

Ê ˆ
+Á ˜Ë ¯

-
+

C A
A B

A B

A B

T T
Q Q

T T

Q Q



Second Law of Thermodynamics 5.29

Let a reversible heat engine E2 operates between heat reservoirs A and C at

temperatures TA and TC respectively. Let the efficiency of the above mentioned engine

is h2, then

h2 = 1 – C

A

T

T

Since, TA > TB, therefore ( )
Ê ˆ

+ > +Á ˜Ë ¯
A

A B A B

B

T
Q Q Q Q

T
. Thus, from the above two equations, we get

h1 < h2.

Example 5.15 A reversible engine operates between heat reservoirs A, B and C. The engine receives

equal quantities of heat from reservoir A and B at temperatures Ta and Tb respectively

and rejects heat to reservoir C at temperature Tc. If the efficiency of the above men-

tioned engine is a times the efficiency of another reversible engine operating between

the  reservoir A and C only at temperature Ta and Tc , prove that a = ½Ta/Tb

[(Tb – Tc)/(Ta – Tc ) + Tb/Ta].

Solution

Heat engine

Reservoir Ta Reservoir Tb
Reservoir Ta

Reservoir Tc

Reservoir Tc

Q1 Q1

ER1

Q2

Q1

ER2 W2

Q2W1

Figure 5.22
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The arrangement is depicted in Fig. 5.22.

Efficiency of reversible heat engine ER1 operating between reservoirs A, B and C

(Fig. 5.22) is given by

h1 = 1

12

W

Q

From the thermodynamic temperature scale, we have

1 1

a b

Q Q

T T
+  = 2

c

Q

T

Applying first law of thermodynamics to heat engine ER1, we get

Q2 = 1 12Q W-

or, 1

1 1

a b

Q
T T

È ˘
+Í ˙

Î ˚
 = 1 12

c

Q W

T

-

or, 1

c

W

T
 = 1

2 1 1

c a b

Q
T T T

È ˘
- -Í ˙

Î ˚

or, 1

12

W

Q
 =

2 1 1

2

c

c a b

T

T T T

È ˘
- -Í ˙

Î ˚

Efficiency of reversible heat engine ER2 operating between reservoirs A and C

(Fig. 5.22) is given by

h2 = 1 c

a

T

T
-

Since, 1 2h = ah , we have

2 1 1

2

c

c a b

T

T T T

È ˘
- -Í ˙

Î ˚
 = 1 c

a

T

T

Ê ˆ
a -Á ˜Ë ¯

or, a =
2 1 1

2

a c

a c c a b

T T

T T T T T

È ˘
- -Í ˙- Î ˚

or, a =
1 1

2
2

a c b
b c

a c b a

T T T
T T

T T T T

È ˘
- -Í ˙- Î ˚

or, a = ( )1 1

2

a a c
b c b

a c b a

T T T
T T T

T T T T

-È Ê ˆ˘
- +Í ˙Á ˜Ë ¯- Î ˚

or, a =
( )
( )

1

2

b ca b

b a c a

T TT T

T T T T

-È ˘
+Í ˙-Î ˚
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Example 5.16 Two reversible heat engines are arranged in series in such a way that the heat re-

jected by the first engine is absorbed by the second engine. The first engine receives

400 kJ of heat from a reservoir maintained at temperature 600°C while the second

engine rejects heat to a reservoir having temperature 0°C.  If the work output of the

first engine is twice that of the second, determine

(a) efficiency of both the engines

(b) heat rejected by the second engine

(c) intermediate temperature.

Solution The above arrangement is schematically pre-

sented in Fig. 5.23. An imaginary reservoir

having temperature T2 is incorporated which

will act as sink for the first engine as well as

source for the second engine.

The heat rejected by the first engine (Q2) to the

intermediate reservoir will be utilized for heat

supply to the second engine.

From the given data, we have. Q1 = 400 kJ;

T1 = 873 K, T3 = 273 K and W1 = 2W2.

Since the heat engines are reversible, we have

1 2

1 2

Q Q

T T
= and 32

2 3

QQ

T T
=  which yields

3

1

Q

Q
= 3

1

T

T

=
273 400

kJ
873

¥
 = 125 kJ

\ heat rejected by the second engine is 125 kJ.

Now h1 = 2 1

1 1

1
T W

T Q
- =

and h2 = 3 2

2 2

1
T W

T Q
- =

And since 1 22W W= ¥

2
1

1

1
T

Q
T

Ê ˆ
¥ -Á ˜Ë ¯

= 3
2

2

2 1
T

Q
T

Ê ˆ
¥ ¥ -Á ˜Ë ¯

1 2
2

2 1

1
T T

Q
T T

Ê ˆ
¥ ¥ -Á ˜Ë ¯

= 3
2

2

2 1
T

Q
T

Ê ˆ
¥ -Á ˜Ë ¯

1

2

1
T

T
- = 3

2

2 1
T

T

Ê ˆ
¥ -Á ˜Ë ¯

Reservoir T1

E1

E2

T2

W1

Reservoir T3

Q1

Q2

Q3

W2

Figure 5.23
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T2 = 1 32 873 2 273
473K 200 C

3 3

T T+ + ¥
= = = ∞

\ temperature of the intermediate reservoir is 200°C.

Hence, 2
1

1

473
1 1 0.4582

873

T

T
= - = - =  and 3

2

2

273
1 1 0.423

473

T

T
= - = - =

\ Efficiency of the two engines becomes 45.82% and 42.3% respecively.

Example 5.17 A reversible heat engine operates between three reservoirs at temperatures 600 K,

300 K and 200 K. The engine receives 3200 kJ of heat from the reservoir at 600 K

and gives an output of 1800 kJ. Calculate the heat interactions with other reservoirs.

Solution The arrangement is shown in Fig. 5.24.

Since the reservoirs having temperatures of 300 K and 200 K are not categorically

told as whether source or sink, these can be considered anything—either a source or

sink.

Let us consider the reservoir having a temperature of 300 K as source and a reservoir

having a temperature of 200 K as sink.

Then from 1st law of thermodynamics; 1 2 3Q Q Q W+ - =

\ 3200 + Q2 – Q3 = 1800

2 3Q Q- = – 1400 (5.23)

Further, for the complete system, according to Corollary 5, 0
dQ

T
=Ú 

\ 31 2

1 2 3

QQ Q

T T T
+ - = 0

323200

600 300 200

QQ
+ - = 0

2 32 3Q Q- = – 3200 (5.24)

Solving Eqs (5.23) and (5.24), we have

Q2 = – 1000 kJ and Q3 = 400 kJ.

Since Q2 is of negative magnitude, this implies our consideration of reservoir having

temperature 300 K as source, is wrong.

So both the reservoirs would be sinks.
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Q2Q1

Reservoir
= 600 KT1

WER

Q3

Reservoir = 200 KT3

Reservoir
= 300 KT2

Figure 5.24

5.12 CARNOT EFFICIENCY

We have already seen that the efficiency of Carnot heat engine is independent of the working substance and

is dependent on the temperature of source and sink. In this section, we will derive the expression for

efficiency of Carnot engine. A Carnot cycle on the P-V diagram is shown in

Fig. 5.25.

P Adiabatic
( = 0)Q

1

2

3

4

T = constant

Adiabatic ( = 0)Q

V

T = constant

Figure 5.25 Carnot cycle on P–V diagram
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The heat transfer for each of the four processes is found as follows:

Q1–2 =
2

1

2
1 2 1

1

ln
V

V

V
W PdV mRT

V
- = =Ú

Q2–3 = 0

Q3–4 =
4

3

4
3 4 2

3

ln
V

V

V
W PdV mRT

V
-- = - = -Ú  (Negative sign is given, since in

thermal efficiency Q3–4 is a positive quantity)

Q4–1 = 0

The thermal efficiency is then

Carnoth  =

4
2

3 4 3

21 2
1

1

ln

1 1

ln

V
mRT

Q V

VQ
mRT

V

-

-
- = - (5.25)

For the reversible adiabatic processes 2-3 and 4-1, we know that (see Eq. (3.56))

2

1

T

T
 =

1

2

3

V

V

g -
Ê ˆ
Á ˜Ë ¯

(5.26)

2

1

T

T
 =

1

1

4

V

V

g -
Ê ˆ
Á ˜Ë ¯

(5.27)

From Eqs (5.26) and (5.27), we get

2

3

V

V
 = 1

4

V

V

or, 4

3

V

V
 = 1

2

V

V
(5.28)

From Eqs (5.25) and (5.28), we get

Carnoth  = 2

1

1
T

T
- (5.29)

Example 5.18 A Carnot engine operates on air with the cycle shown in Fig. 5.26. Determine the

thermal efficiency and the power output for each cycle of operation,

P, kPa
1

2

3

4

T = 450 K

90

T = 300 K

5
v, m /kg3

Figure 5.26
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Solution The thermal efficiency of the Carnot engine is given by

hCarnot =
2

1

300
1 1 0.3333 or 33.33%

450

T

T
- = - =

Specific volume at 4 is

v4 = 32

4

0.287 300
0.957 m /kg

90

RT

P

¥
= =

Specific volume at 1 is (see Eq. (3.56))

v1 =

1 1

1 1.4 1 34
4

1

300
0.957 0.347 m /kg

450

T
v

T

g - -Ê ˆ Ê ˆ= =Á ˜Á ˜ Ë ¯Ë ¯

Specific volume at 2 is

v2 =

1 1

1 1.4 1 33
3

2

300
5 1.814 m /kg

450

T
v

T

g - -Ê ˆ Ê ˆ= =Á ˜Á ˜ Ë ¯Ë ¯

The heat transfer during the process 1-2 is

q1–2 =
2

1

2
1 2 1

1

ln
V

V

v
w Pdv RT

v
- = =Ú

 =
1.814

0.287 450 ln 213.61 kJ/kg
0.347

¥ =

The work done for each cycle is

cyclew  =
Carnot 1 2 0.3333 213.61 71.2 kJ/kgq -h = ¥ =

SUMMARY

All spontaneous processes in nature proceed in one direction only and never in the

reverse direction. Reversal of these processes is not possible without the assistance of

any external agency. There exists a directional law which determines the direction in

which a spontaneous process will take place. This law is called the second law of

thermodynamics.

A thermal energy reservoir (TER) is a hypothetical body with a relatively large thermal

energy capacity that can supply or absorb finite quantities of energy as heat without

changing its temperature.

A thermal energy reservoir at high temperature, which supplies energy in the form of

heat is called source, and on the other hand one which absorbs energy in the form of

heat is called a sink.
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Heat engines are cyclic devices used to convert heat to work. The thermal efficiency of

the heat engine is defined as the ratio of the net work done to the energy absorbed as

heat and given by.

hther = 1 2 2

1 1 1

= =1
Q Q QW

Q Q Q

where, Q1 is the heat transfer from source to heat engine , Q2 is the heat rejection

from the heat engine to sink and W is the work done by the heat engine.

Refrigerators and heat pumps are simply heat engines operated in the reverse direc-

tion. The transfer of heat from a low-temperature medium to a high temperature me-

dium requires special devices called refrigerators. The objective of a refrigerator is to

maintain the refrigerated space at a low temperature by removing heat from it. A

refrigerator operates between the ambient temperature and a low temperature. A heat

pump is a device which works on a cycle, absorbing heat from a low temperature

reservoir and rejecting heat to a high temperature reservoir. The objective of a heat

pump is to reject heat to a high temperature body. A heat pump operates between the

ambient temperature and a high temperature. The coefficients of performance of the

refrigerator and the heat pump are defined as

COPR = 2 2

1 2

Q Q
=

W Q Q

COPHP = 1

1 2

1Q Q
=

W Q Q

The COP of a heat pump is greater than then COP of a refrigerator by unity. The

coefficient of performance of a heat pump is always greater than unity.

The Kelvin–Planck statement of the second law is as follows:

It is impossible to construct a device, which operating in a cycle, will produce no effect

other than the absorption of energy as heat from a single reservoir and produces an

equivalent amount of work.

A perpetual motion machine of the second kind is a device which would perform work

solely by absorbing energy as heat from a single reservoir. Such a device does not

violate the first law of thermodynamics because it would perform work at the expense

of the internal energy of a body.

The Clausius statement of the second law is as follows:

It is impossible to construct a device, which operating in a cycle, will produce no effect

other than transfer of energy in the form of heat from a low temperature body to a high

temperature body.

A process is said to be reversible if at the conclusion of the process both the system

and the surroundings can be restored to their respective initial states without produc-

ing any changes in the rest of the universe. Otherwise, the process is said to be irreversible.
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A process is called internally reversible if no irreversibilities occur within the system

boundary during the process. The quasi-equilibrium process is an example of an

internally reversible process.

A process is called externally reversible if no irreversibilities occur outside the system

boundary during the process.

A process is called reversible if no irreversibilities occur within or outside the system

boundary during the process.  That is, a process is reversible if it is internally as well as

externally reversible.

The Carnot cycle consists of four processes—two reversible isothermal and two re-

versible adiabatic processes.

It is impossible to construct a heat engine operating between only two reservoirs, which

will have a higher efficiency than a reversible heat engine operating between the same

two reservoirs.

All reversible heat engines operating between the same two reservoirs have the same

efficiency.

The efficiency of a reversible heat engine is independent of the nature of the working

substance and depends only on the temperature of the reservoirs between which it

operates.

A scale of temperature can be defined which is independent of any thermometric

substance, and which provides an absolute zero of temperature.

From the thermodynamic temperature scale

Q T

Q T

1 1

2 2

=

The efficiency of a Carnot heat engine is given by

hther, Carnot = 
T

T

2

1

1

where T1  and T2 are the temperatures of source and sink respectively.

  The efficiency of the Carnot engine is the maximum possible efficiency of any real

engine operating between same two reservoirs.

   The coefficients of performance of a Carnot refrigerator and heat pump are given by

COPR = 
T

T T

2

1 2

COPHP = 
T

T T

1

1 2

REVIEW QUESTIONS

5.1 Define heat engine, refrigerator and heat pump.

5.2 What is the difference between a refrigerator and a heat pump?

5.3 What are the characteristics of all heat engines?
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5.4 What is a thermal energy reservoir? Give some examples.

5.5 Is there any way to increase the efficiency of a Carnot heat engine other than by increasing T1 or by

decreasing T2?

5.6 Show that COPHP = COPR+1, when both the heat pump and refrigerator have the same Q1 and Q2.

5.7 What is a perpetual motion machine of the second kind?

5.8 State the second law of thermodynamics.

5.9 Define thermal efficiency of a heat engine.

5.10 Define the coefficient of performance of a refrigerator. Can it be greater than unity?

5.11 Define the coefficient of performance of a heat pump. Can it be greater than unity?

5.12 Show that the Kelvin–Planck statement and the Clausius statement of the second law are equivalent.

5.13 Prove that it is impossible to construct an engine operating between two reservoirs, which will have

higher efficiency than a reversible engine operating between the same reservoirs.

5.14 Prove that all reversible engines operating between the same two heat reservoirs have the same effi-

ciency.

5.15 Explain why the performance of heat engines is measured in terms of efficiency but that of refrigera-

tors and heat pumps in terms of COP? Why does the expression for COP differ for refrigerators and

heat pumps?

5.16 Why is direct heating thermodynamically wasteful?

5.17 What is a reversible process?

5.18 What are the causes of irreversibility of a  process?

5.19 What is a Carnot cycle?

5.20 Show that the efficiency of a reversible heat engine is independent of the nature of the working sub-

stance.

NUMERICAL PROBLEMS

5.1 Two Carnot engines work in series between the sources and sink temperatures of 500 K and 300 K. If

both engines develop equal power, determine the intermediate temperature.

5.2 Three Carnot engines A, B and C work in series between the temperature limits of 1000 K and

300 K. The amount of work developed is in the proportion of Wa: Wb: Wc = 5:4:3. Determine the

intermediate temperatures.

5.3 A Carnot cycle operates between two heat sources at temperatures T1 and T2 (T1> T2  ). However, the

temperature of the working fluid is q1 and q2, where q1< T1 and q2 > T2. If T1  = (q1 + kQ1)

and T2  = (q2 – kQ2 )  where Q1 and Q2  are the amounts of heat extracted from hot source and rejected

to sink respectively and K is a constant. Show that the efficiency of the engine is given by

h = 1 - T2/(T1 - 2 KQ1).

5.4 Consider an engine in outer space, which operates on the Carnot cycle. The only way in which heat can

be transferred from the engine is by radiation. The rate at which heat is radiated is proportional to the

fourth power of the absolute temperature and to the area of the radiating surface. Show that for a given

power output and at given T1, the area of the radiator will be minimum when T2/T1 = ¾.

5.5 Prove that the COP of a reversible refrigerator operating between two given temperatures is the

maximum.

5.6 A car engine operates with a thermal efficiency of 35 %. Assume the air-conditioner has a coefficient

of performance that is one-third of the theoretical maximum and it is mechanically pulled by the

engine. How much fuel energy should be spent extra to remove 1 kJ at 15ºC when the ambient is at

35ºC ?
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5.7 We propose to heat a house in the winter with a heat pump. The house is to be maintained at 20ºC at all

times. When the ambient temperature outside drops to –10ºC, the rate at which heat is lost from the

house is estimated to be 25 kW. What is the minimum electrical power required to drive the heat pump?

5.8 A heat pump has a COP that is 50 % of the theoretical maximum. It maintains a house at 20ºC, which

leaks energy of 0.6 kW per degree temperature difference to the ambient. For a maximum of 1.0 kW

power input, find the minimum outside temperature for which the heat pump is a sufficient heat source.

5.9 A heat pump cools a house at 20ºC with a maximum of 1.2 kW power input. The house gains 0.6 kW per

degree temperature difference to the ambient and the heat pump COP is 60 % of the theoretical

maximum. Find the maximum outside temperature for which the heat pump provides sufficient cooling.

5.10 At certain locations geothermal energy in underground water is available and used as the energy source

for a power plant. Consider a supply of saturated liquid water at 150ºC. What is the maximum possible

thermal efficiency of the cyclic heat engine using this source of energy with the ambient at 20ºC ?

Would it be better to locate a source of saturated vapour at 150ºC than to use the saturated liquid at

150ºC?

5.11 A refrigerator is to remove heat from the cooled space at a rate of 300 kJ/min to maintain its temperature

at –8ºC. If the air surrounding the refrigerator is at 25ºC, determine the minimum power input required

for this refrigerator.

5.12 A Carnot refrigerator operates in a room in which the temperature is 22ºC and consumes 2 kW of power

when operating. If the food compartment of the refrigerator is to be maintained at 3ºC, determine the rate

of heat removal from the food compartment.

5.13 A heat engine that receives heat at the rate of 800 kW at a high temperature of 427°C and rejects heat to

the ambient at 27°C while work is produced at the rate of 350 kW. Find out how much heat is discarded

to the ambient and the engine efficiency. Also compare both of these values with a Carnot heat engine

operating between the same two reservoirs.

5.14 A heat engine operating between two reservoirs at 100 K and 300 K is used to drive heat pump which

extracts heat from reservoir at 300 K at a rate twice that at which engine rejects heat to it. If the

efficiency of the engine is 40% of the maximum possible and the coefficient of performance of the heat

pump is 50% of the maximum possible, determine the temperature of the reservoir to which the heat

pump rejects heat. Also calculate the rate of heat rejection from the heat pump if the rate of heat supply

to the engine is 50 kW.

5.15 A house hold refrigerator is maintained at a temperature of 275 K. Every time the door is opened,

warm material is placed inside, introducing an average of 300 kJ, but making only a small change in

the temperature of the refrigerator. The door is opened 25 times a day, and the refrigerator operates at

20% of the ideal COP. The cost of work is Rs. 4.00 per kWhr. What is the bill for the month for this

refrigerator? The atmosphere is at 300 K.

MULTIPLE-CHOICE QUESTIONS

5.1 The efficiency of a Carnot heat engine operating between absolute temperatures T1 and T2 is

(a) 1

2

T

T
(b) 1 2

1

T T

T

-
(c) 2

1

T

T
(d) 1 2

2

T T

T

-

5.2 The more effective way of increasing efficiency of a Carnot engine is

(a) increase higher temperature (b) decrease higher temperature

(c) increase lower temperature (d) decrease lower temperature
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5.3 Kelvin–Planck’s law deals with

(a) conservation of heat (b) conservation of work

(c) conversion of heat into work (d) conversion of work into heat

5.4 In a Carnot cycle, heat is transferred at

(a) constant pressure (b) constant volume

(c) constant temperature (a) any one of the above

5.5 If a system after undergoing a series of processes, returns to the initial state then

(a) processes are thermodynamically in equilibrium

(b) its entropy will change due to irreversibility

(c) sum of heat and work transfer will be zero

(d) process are executed in close system cycle

5.6 According to Clausius statement,

(a) heat flows from a cold surface to a hot surface, unaided

(b) heat flows from a hot surface to a cold surface, unaided

(c) heat can flow from a cold surface to a hot surface with the aid of external work

(d) both b and c above

5.7 Efficiency of a Carnot engine with t1 = 200ºC and t2 = 30ºC is

(a) 86 % (b) 47 % (c) 36 % (d) 15 %

5.8 A heat engine supplied heat at the rate of 30 kJ/sec and gives an output of 9 kW. The thermal efficiency

of the engine will be

(a) 30% (b) 33% (c) 40% (d) 50%

5.9 If Q1 is the heat transfer between a hot temperature source and a machine, and Q2 is the heat transfer

between cold temperature source and machine, the COP of the heat pump will be equal to

(a) Q1/ (Q1 – Q2) (b) Q2/ (Q1 – Q2) (c) (Q1 – Q2)/Q1 (d) (Q1 – Q2)/Q2

5.10 The efficiency of a Carnot engine is 0.75. If cycle direction is reversed, COP of the reversed Carnot

refrigeration cycle will be

(a) 0.25 (b) 1.25 (c) 1.33 (d) 0.33

5.11 Which of the following relationships is valid for reversible processes undergone by a closed system of

simple compressible substance (neglect changes in kinetic and potential energy)?

(a) dQ = dU + dW (b) TdS = dU + pdV (c) TdS = dU + dW (d) dQ = dU + pdV

5.12 If a heat engine attains 100% thermal efficiency, it violates the

(a) zeroth law of thermodynamics (b) first law of thermodynamics

(c) second law of thermodynamics (d) none of the above.

5.13 A refrigerator and a heat pump operate between the same temperature limits. If the COP of the

refrigerator is 4, the C.O.P. of the heat pump would be

(a) 3 (b) 4 (c) 5 (d) none of these
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6.2 TWO REVERSIBLE ADIABATIC PATHS CANNOT INTERSECT EACH
OTHER

Consider a reversible adiabatic process represented by

the path AB as shown in Fig. 6.1. Let us assume that it

is possible for the system to undergo a reversible iso-

thermal process BC and then the system be restored to

its original state by another reversible adiabatic process

CA. These three reversible processes together consti-

tute a cycle. The area enclosed by the cycle represents

the reversible work done. However, there is no heat

transfer during the processes AB and CA. We

therefore have a system undergoing a cycle and

developing net work while exchanging heat with a sin-

gle reservoir. It violates the Kelvin–Planck statement

of the second law of thermodynamics. Therefore, the

process AB and CA cannot intersect each other at the

point A. There can be only one reversible adiabatic path

passing through one point.

6.2 CLAUSIUS INEQUALITY

Consider a reversible heat engine operating between two reservoirs at temperatures T1 and T2 as

shown in Fig. 6.2.

Considering the heat engine as a closed system undergoing a cyclic process, we have

Q

T

d
Ú = 1 2

1 2

Q Q

T T
- (6.1)

CHAPTER

6

B
C

A

V

P

Figure 6.1
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Since heat transfer from a system is negative, therefore Q2 is

negative.

From fourth Corollary, for a reversible heat engine, we have

(see Eq. (5.11))

=1 2

1 2

Q Q

T T

or - =1 2

1 2

0
Q Q

T T
(6.2)

Combining Eq. (6.1) and (6.2), we have

=Ú 0
Q

T

d
(6.3)

It physically implies that the cyclic integral of 
Q

T

d
 for a

reversible cycle is equal to zero. This is known as Clausius'

theorem.

Now, consider an irreversible heat engine operating between the same two reservoirs at temperatures

T1 and T2 as shown in Fig. 6.3.

Thermal energy reservoir
T1

Q1

WIEI

Q¢2

Heat
engine

Thermal energy reservoir
T2

Figure 6.3

Since the efficiency of the irreversible engine is less than that of the reversible engine, we have

I RW W<

or 1 2 1 2Q Q Q Q- < -¢ 1 2 1 2,  and I RW Q Q W Q Q= - = -¢È ˘Î ˚∵

or 2 2Q Q>¢

Thermal energy reservoir
T1

Q1

WRER

Q2

Heat
engine

Thermal energy reservoir
T2

Figure 6.2
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Equation (6.3) is then modified to

1 2

1 2

0
Q Q

T T

¢
- <

For the irreversible heat engine cycle

1 2

1 2

0
Q QQ

T T T

d ¢
= - <Ú (6.4)

Combining Eqs (6.3) and (6.4), we have generalized expression

0
Q

T

d
£Ú (6.5)

Similarly, it can be proved that 0
Q

T

d
£Ú  for any cyclic device operating between more than two

reservoirs.

Equation (6.5) is known as the Clausius inequality. The significance of the Clausius Inequality is

as follows:

From Clausius inequality we can conclude

(i) whether a cyclic process is feasible or not, and

(ii) even if feasible then whether it is reversible or irreversible.

If 0
Q

T

d
=Ú , then the cyclic process is possible and reversible.

If 0
Q

T

d
<Ú , then the cyclic process is possible and irreversible.

If 0
Q

T

d
>Ú , then the cyclic process is not possible .

The Clausius inequality is also known as the 6th corollary of the second law of thermodynamics

which states that whenever a system undergoes a cycle, Ú 
Q

T
 is zero if the cycle is reversible and

negative if irreversible i.e., in general Ú 
Q

0
T

£ .

6.3 ENTROPY—A PROPERTY OF A SYSTEM

Let a closed system undergo a reversible process from the state 1 to the state 2 along a path A, and let

the cycle be completed along path C, which is also reversible as

shown in Fig. 6.4.

According to the Clausius theorem, for a reversible cycle, we

can write

Q

T

d
Ú = 0

2 1

1 2A C

Q Q

T T

d dÊ ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú = 0     (6.6)

1

C

B

A

2

V

P

Figure 6.4
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Let the system be taken from state 1 to state 2 by another reversible path B.

Let us consider 

2 2

1 1A B

Q Q

T T

d dÊ ˆ Ê ˆ
πÁ ˜ Á ˜Ë ¯ Ë ¯Ú Ú (6.7)

Now the reversible processes 1-B-2 and 2-C-1 together constitute a cycle for which

Q

T

d
Ú = 0

2 1

1 2B C

Q Q

T T

d dÊ ˆ Ê ˆ
+Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú = 0     (6.8)

If the inequality (6.7) is true, then equations (6.6) and (6.8) contradict each other which imply that

these quantities must be equal. Therefore, 

2

1

Q

T

dÊ ˆ
Á ˜Ë ¯Ú  is independent of the path the system follows during

a change of state.

\
2

1 A

Q

T

dÊ ˆ
Á ˜Ë ¯Ú =

2

1 B

Q

T

dÊ ˆ
Á ˜Ë ¯Ú

2

rev1

Q

T

dÊ ˆ
Á ˜Ë ¯Ú = S2 – S1 (6.9)

In differential form,

dS =
rev

Q

T

dÊ ˆ
Á ˜Ë ¯

 (6.10a)

or revQd  = TdS (6.10b)

The property S is called the entropy of the system. The unit of entropy is J/K and that of specific

entropy is J/kg-K. Entropy is an extensive property of a system. Unlike energy, entropy is a non-

conserved property.

This is also known as the 7th corollary of the second law of thermodynamics which states that

there exists a property of a closed system such that a change in its value is equal to Ú
2

1

Q

T
 for any

reversible process undergone by the system between states 1 and 2.

Example 6.1 A lump of steel of mass 15 kg at 557°C is dropped in 120 kg of oil at 25°C. The

specific heats of steel and oil are 0.5 kJ/kg-K and 3.5 kJ/kg-K respectively. Calculate

the entropy change of the steel, the oil and the universe.

Solution Let the final temperature be Tf . From the principle of calorimetry, we have

15 ¥ 0.5(557 – Tf) = 120 ¥ 3.5(Tf – 25)

Tf = 34.33°C = 307.33 K
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Entropy change of steel = 

1
1

ln

fT

f

p

T

TQ
mC

T T

d
=Ú

=
307.33

15 0.5ln 7.45 kJ/K
830

¥ = -

Entropy change of oil = 

2
2

ln

fT

f

p

T

TQ
mC

T T

d
=Ú

=
307.33

120 3.5ln 12.95 kJ/K
298

¥ =

Since there is no heat transfer to the surroundings, entropy change of the surroundings

is zero.

Entropy change of universe = Entropy change of steel + Entropy change of oil

= – 7.45 + 12.95 = 5.5 kJ/K

Example 6.2 Consider 1 kg of ice at – 20 °C as a system. It is exposed to surroundings at 25 °C.

The ice melts to water ultimately coming to equilibrium with the surroundings. Calculate

the entropy change of the system, the surroundings and the universe. Specific heat

of ice and water are 2.1 kJ/kg-k and 4.2 kJ/kg-K respectively and the latent heat

of fusion of ice is 333.5 kJ/kg.

Solution Process 1–2 Sensible heating of ice from – 20 °C to 0 °C

Process 2–3 Melting of ice from and at 0 °C

Process 3–4 Sensible heating of water from 0 °C to 25 °C

Total heat transfer from the surroundings = 1[2.1(0 + 20) + 333.5 + 4.2(25 – 0)]

= 480.5 kJ

Change of entropy of ice  during process 1–2, (DS)1–2 =
273

ln 1 2.1ln
253

f

p
i

T
mC

T
= ¥

= 0.1598 kJ/K

Entropy change during process 2–3, (DS)2–3 =
1 335.5

273

¥
 = 1.2216 kJ/K

Entropy change during process 3–4, (DS)3–4 =
298

ln 1 4.2 ln 0.368kJ/K
273

f

p
i

T
mC

T
= ¥ =

Entropy change of system (DS)system = (DS)1–2 + (DS)2–3 + (DS)3–4

= 0.1598 + 1.2216 + 0.368 = 1.7494kJ/K

Entropy change of surroundings (DS)surr =
480.5

1.6124kJ/K
298

-
= -  (negative sign

because heat is transferred from the Surroundings)

Entropy change of universe (DS)Uni = (DS)system + (DS)surr

= 1.7494 – 1.6124 = 0.137kJ/K
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Example 6.3 Calculate the entropy change of 1 kg of water at 27 °C, when it is converted to ice at

–20 °C. Specific heat of ice and water are 2.18 kJ/kg-K and 4.18 kJ/kg-K respectively.

The latent heat of fusion of ice at 0°C is 335 kJ / kg.

Solution Mass of water, m = 1 kg

Initial temperature of water, T1 = 27 °C = 300 K

Final temperature of ice, T2 = – 20 °C = 253 K

Specific heat of water, CPwater = 4.18 kJ/kg-K

Specific heat of ice, CPice = 2.18 kJ/kg-K

Latent heat of fusion of ice, Lice = 335 kJ/gm

Change of entropy when water changes its temperature from 27 °C to 0 °C

=

273

300

d 273
1 4.18ln 0.3942 kJ/K

300

pmC T

T
= ¥ = -Ú

Change of entropy when water solidifies into ice from and at 0 °C

=
1 335

1.227kJ/K
273

¥
- = -  (negative sign because

heat is transferred from the water during solidification)

Change of entropy when water changes its temperature from 0 °C to – 20 °C

=

253

273

d 253
1 2.18ln 0.1659 kJ/K

273

pmC T

T
= ¥ = -Ú

Total entropy change = – 0.3942 – 1.227 – 0.1659 = – 1.7871 kJ/K

Example 6.4 A Carnot cycle receives heat at 427 °C causing an increase in entropy equal to 10 kJ/kg-

K. The engine delivers 4000 kJ/kg of work. Determine the efficiency of the cycle

and temperature of the sink.

Solution

Temperature of source T1 = 427 C 427 273 700 K∞ = + =

Change of entropy 2 1 10kJ/kgKs s- =

Net work done  W = 4000 KJ/kg

Now, 1 2 1( ) 700 10 7000 kJ/kgQ T s s= - = ¥ =
= 700 ¥ 10 = 7000 kJ/kg

Efficiency of the cycle is

1

4000
0.5714

7000

W

Q
h = = =

The efficiency of a Carnot cycle can be expressed in terms of source temperature and sink

temperature (T2) as ( see Eq. (5.13))
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2

1

1
T

T
h = -

or 21 0.5714
700

T
- =

or 2 300.02 K 27.02 CT = = ∞

Example 6.5 A body of mass m at temperature Ti and of constant heat capacity Cp is brought in

contact with a thermal reservoir at temperature Tf (Tf >Ti). The pressure remains

constant while the body attains equilibrium with the reservoir. Show that change

in entropy of the universe is equal to ( )[ ]ln 1 )pmC x x- + , where x = 
-

- f i

f

T T

T

Solution The heat transfer from the reservoir to the body will continue until the later attains the

temperature of the reservoir. Since the heat transfer takes place at constant pressure,

Q = ( )p f imC T T-

From the very definition of reservoir, its temperature remains unchanged, irrespec-

tive of the amount of heat transfer. Thus, the entropy change of the reservoir is

( )
( )

res

p f i

f

mC T T
S

T

-
D = -  (Negative sign because heat is transferred from the reservoir)

Entropy change for the body is ( )
body

ln

f

i

T

p f

p
iT

mC dT T
S mC

T T
D = =Ú

Since there is no heat transfer to the surroundings, entropy change of the surround-

ings is zero.

Hence entropy changes of the universe is then

( )univ
SD  = ( ) ( )

body res
S SD + D

=
( )

( )[ ]1
ln ln ln 1

1

f f i

p p p
i f

T T T
mC mC x mC x x

T T x

È ˘- È ˘- = + = - +Í ˙ Í ˙+Î ˚Í ˙Î ˚

6.4 TEMPERATURE ENTROPY DIAGRAM

The infinitesimal change in entropy dS due to infinitesimal heat transfer dQ of a reversible process at

temperature T (see Eq. 6.10b) is

dQR = TdS

Total amount of heat transfer in a reversible process 1–2 (Fig. 6.5) is given by

Q1–2/R =

2

1

dT SÚ (6.11)
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The integral can be interpreted graphically as the curve under a process curve on a diagram in

which T is plotted along the  y-axis and S along the x-axis. Such a diagram is called a temperature–

entropy (T–S) diagram, i.e., the area under a curve on the T–S diagram represents the reversible heat

transfer during the process.

The shape of the curve on the T–S diagram is determined by the kind of reversible process that the

system undergoes.

T

S

dS

1
T S,

2

heat

Figure 6.5

6.4.1 Reversible Isothermal Process on T–S Diagram

An isothermal process is represented by a horizontal line as shown in Fig. 6.6.

T

S

1 2

Figure 6.6

Q =

2

2 1

1

d ( )T S T S S= -Ú

S2 – S1 =
Q

T
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6.4.2 Reversible Adiabatic Process on T–S Diagram

For reversible adiabatic process, dQR = 0

If T is not zero then dS = 0, S = constant.

A reversible adiabatic process is represented by a vertical line as shown in Fig. 6.7.

T

S

2

1

Figure 6.7

6.4.3 Carnot Cycle on T–S Diagram

It consists of two reversible isothermal processes and two reversible adiabatic processes.

Process 1–2 Reversible isothermal heat addition process

Process 2–3 Reversible adiabatic expansion

Process 3–4 Reversible isothermal heat rejection process

Process 4–1 Reversible adiabatic compression

T

S

1

3

2

4

Q1

T1

Q2

T2

Figure 6.8 Carnot cycle on T–S diagram
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Efficiency of Carnot cycle is then,

Carnoth  =
( )
( )

2 3 42 2

1 1 2 1 1

1 1 1
T S SQ T

Q T S S T

-
- = - = -

-

6.5 ENTROPY PRINCIPLE AND APPLICATIONS

The 8th corollary of the second law of thermodynamics states that the entropy of any closed system

which is thermally isolated from the surroundings either increases, or if the process undergone by

the system is reversible remains constant.

The universe is an example of an isolated system.

Mathematically,

dSuniverse = dSsystem + dSsurr ≥ 0 (6.12)

The equality holds if the process is reversible and the inequality holds if the process is irreversible.

Since all the natural processes in the universe are irreversible, it implies from the equation (6.12)

that the entropy of the universe is continuously increasing. The only processes that can actually

occur in nature are those in which the entropy of the universe increases. The processes in which the

entropy of the universe decreases, cannot take place at all.

6.5.1 Heat Transfer Through a Finite Temperature Difference

Consider the steady-state heat transfer from the reservoir 1 at the temperature T1 to the reservoir 2 at

temperature T2 (T1 > T2) through an intermediate body connecting the reservoirs as shown in Fig. 6.9.

Let Q be the rate of heat transfer.

Change in entropy of the reservoir 1, DS1 = 
1

Q

T
-  (Negative sign because heat is transferred from

reservoir 1).

Change in entropy of the reservoir 2, DS2 = 
2

Q

T
+ .

The entropy change of the intermediate body is zero since it neither gains nor loses heat under

steady-state conditions.

Net change in the entropy of the universe DSuni = 1 2
1 2

Q Q
S S

T T
D + D = - +

=
1 2

2

T T
Q

T

-
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T1

Reservoir 1

T2

Q

Reservoir 2

Figure 6. 9 Heat transfer through a finite temperature difference

Since T1 > T2 , DSuni is positive. Hence, heat transfer through a finite temperature difference is an

irreversible process.

For the case when T1 = T2 , DSuni is zero and the process is reversible.

For the case when T1 < T2 , DSuni is negative and the process is impossible.

Example 6.6 A mass of “m” kg of liquid at a temperature T1 is mixed with an equal mass of same

liquid at temperature T2 (T1 > T2), and then the system is thermally insulated. Show

that the change in entropy of the universe is given by net( ) 2 pS mCD =

( ){ }1 2 1 2ln / 2T T T T+ . Also prove that it is necessarily positive

Solution Let fT  be the final temperature after mixing. Thus,

1( )p fmC T T-  = 2( )p fmC T T-

or, Tf =
1 2

2

T T+

The change in entropy of liquid of initial temperature T1 is ( )1
1

ln
f

p

T
S mC

T
D = .

The change in entropy of liquid of initial temperature T2 is ( )2
2

ln
f

p

T
S mC

T
D = .

Since, the system is thermally insulated, therefore, there is no heat transfer to the

surroundings and hence, the change in entropy of the surroundings is zero.

The entropy change for the universe is calculated as

net( )SD  = ( ) ( )1 2
0S SD + D +

=
1 2

ln ln
f f

p p

T T
mC mC

T T
+

=

1 22

1 2 1 2 1 2

2ln 2 ln 2 ln
f f

p p p

T T
T T

mC mC mC
T T T T T T

+

= =

Note that 1 2

2

T T+
 and 1 2T T  are the arithmetic and geometric mean of T1 and T2

respectively.
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As we know that arithmetic mean is greater than that of geometric mean, therefore

1 2

2

T T+
 is greater than 1 2T T .

1 2

1 2

2ln

T T

T T

+

 is greater than zero.

Net entropy change is positive.

Example 6.7 Two bodies, each of equal mass m and heat capacity CP, are at temperatures T1 and T2

respectively (T1 > T2). The first body is used as a source of heat for reversible engine

and the second body as the sink. Show that the maximum work obtainable from such

an arrangement is ( )21 2PmC T T- .

Solution As heat is transferred from the first body and heat is rejected to the second body, the

temperature of the first body will be decreasing and that of the second body will be

increasing. When both the bodies attain the same temperature, the heat engine will

stop operating.

Let Tf be the final temperature.

Total heat transfer from the first body, Q1 = mCP ( T1 – Tf)

Total heat rejected to second body, Q2 = mCP ( Tf – T2)

Work done by the heat engine, W = Q1 – Q2

W = mCP ( T1 + T2 – 2Tf)

For minimum value of Tf value of W will be maximum.

Q1

W

Q2

Heat
engine

First body initially at
T1

Second body initially at
at T2

Figure 6.10
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Change of entropy of the first body DS1 =

1
1

d
ln

fT

p f
p

T

mC T T
mC

T T
=Ú

Change of entropy of the second body DS2 = 

2
2

d
ln

f
T

p f

p

T

mC T T
mC

T T
=Ú

We know that the heat engine is a cyclic device, and cyclic integral of any property

is zero. Since entropy is a property of a system,

entropy change for the heat engine,DSHE = 0
Total entropy change of the universe

(DS)uni = DS1 + DS2 + DSHE

=
1 2

ln ln
f f

p p

T T
mC mC

T T
+

=

2

1 2

ln
f

p

T
mC

T T

From the entropy principle (Eq. 6.12), we have

(DS)uni ≥ 0

2

1 2

ln
f

p

T
mC

T T
≥ 0

For minimum value of Tf

2

1 2

ln
f

p

T
mC

T T
= 0

2

1 2

ln
fT

T T
= 0 = ln 1

Tf = 1 2T T

Maximum work obtainable

Wmax = 1 2 1 2( 2 )+ -pmC T T T T

= ( )21 2-pmC T T
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6.6 ENTROPY GENERATION IN A CLOSED SYSTEM

The entropy generation is one of the most important attributes in thermodynamics. Entropy generation

is a measure of the entropy created during the irreversible processes. The entropy of any closed

system can be changed by two ways:

(a) By heat exchange between system and the surroundings.

(b) Due to internal irreversibility arising from dissipative effects.

Mathematically, one can write

( )total
dS  = ext int( ) ( )dS dS+ (6.13a)

or, ( )total
dS  = int( )

Q
dS

T

d
+ (6.13b)

The term 
Q

T

d
 is associated with external heat transfer whereas int( )dS  is realized due to internal

dissipative effects like friction, if the process is irreversible. The sign of the term 
Q

T

d
 depends on the

direction on heat transfer (positive when heat is transferred to the system, whereas negative when

heat is rejected from the system), whereas int( )dS  is always positive.

It is therefore concluded that in case of heat rejection total( )dS  may be zero implying that entropy

remains constant. Hence, irreversible process may also be an isentropic process. But if the process is

reversible, int( )dS  is zero. Under such condition, total( )dS  would be zero if 
Q

T

d
 is zero, i.e., the process

is no other than adiabatic. In a summary, we can conclude that an isentropic process needs not to be

an adiabatic process, but if the isentropic process is reversible, it must be adiabatic.

6.7 ENTROPY AND DISORDER

Entropy can be viewed as a measure of molecular disorder or randomness. The entropy of a substance

is the highest in the gas phase and lowest in the solid phase. This is because the molecules of a

substance are less predictable when they are in gas phase. However, in the solid phase, the position of

the molecules can be predicted with a good certainty. Actually, in the solid phase the molecules of a

substance continually oscillate about their equilibrium positions and these oscillations fade as the

temperature is decreased. At absolute zero temperature, molecules supposedly become motionless.

Therefore, the entropy of a pure crystalline substance at absolute zero temperature is zero. This is

known as the third law of thermodynamics. The third law of thermodynamics provides an absolute

reference point for the determination of entropy.
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6.8 THERMODYNAMIC PROPERTY RELATIONS

Mathematically, first law of thermodynamics for a reversible infinitesimal change can be expressed as

revQd  = dU PdV+

or, revQd  = dH VdP-  ( H U PV= +∵ , or dH dU PdV VdP= + + )

The heat transfer during a reversible infinitesimal change can be expressed as (see Eq. (6.10a))

revQd  = TdS

Comparing the above equations, we have

TdS = dU PdV+ (6.14)

TdS = dH VdP- (6.15)

Dividing both sides of equations (6.14) and (6.15) by mass m, one can write

Tds = du Pdv+ (6.16)

Tds = dh vdP- (6.17)

The Eqs (6.16) and (6.17) are the well-known T-ds equations. Although the equations are derived

for a reversible process only, but they are applicable to all processes whether reversible or

irreversible, since the equation establishes relation amongst properties, which are independent of the

path. These equations are referred to thermodynamic property relations.

If the relationship among various properties such as P,V, U (or H) and T is known, then Eqs (6.14)

and (6.15) can be used to determine the change in entropy between any two equilibrium states.

Example 6.8 One kg of air is initially contained in a piston–cylinder arrangement at 15 kPa and 40 °C.

The air undergoes the following cyclic process:

1–2 Constant volume heating until pressure is 60 kPa

2–3 Isentropic expansion to the initial pressure

3–1 Constant pressure cooling to the initial state

(i) Sketch the cycle on the P-V and T-S diagram.

(ii) Determine the thermal efficiency of the cycle.

Take 1.005 kJ/kg-KpC = and 0.718 kJ/kg-KvC =

Solution Initial pressure, P1 = 15 kPa

Initial temperature, T1 = 40 °C = 313K

P2 = 60 kPa

The processes on P–V and T–S diagrams are shown in Fig. 6.11
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2

31

V

P

S

T

3

2

1

Figure 6.11

For the constant volume process, 1–2

2

1

T

T
=

2

1

60
4

15

P

P
= =

or         2 14 4 313 1252 KT T= = ¥ =

2

3

T

T
=

1 1
1.4 1

2 2 1.4

3 1

4
P P

P P

g - g -
-g gÊ ˆ Ê ˆ

= =Á ˜ Á ˜Ë ¯Ë ¯

T3 = 2

1.4 1 1.4 1

1.4 1.4

1252
842.53 K

4 4

T
- -= =

Heat transfer during the constant volume process 1–2

Q1–2 = mCv ( T2 – T1)

Q1–2 = ( )( )1 0.718 (1252 313) 674.202 kJ- =

Work done during constant volume process 1–2

W1–2 = 0

Heat transfer during isentropic expansion process 2–3

Q2–3 = 0

Work done during isentropic expansion process 2–3

W2–3 =
2 2 3 3 2 3( )

1 1

P V PV mR T T- -
=

- -

=
1 0.287(1252 842.53)

1.4 1

¥ -
-

 = 293.795 kJ

Heat transfer during constant pressure process 3–1

Q3–1 = mCP ( T1 – T3)
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= 1 ¥ 1.005(313 – 842.53)

= –532.178 kJ

Work done during constant pressure process 3–1

W3–1 = P(V1 – V3) = mR(T1 – T3)

= 1 ¥ 0.287(313 – 842.53) = –151.975 kJ

Thermal efficiency is found to be net

1 2

293.795 151.975

674.2

W

Q -

-
= = = 0.210 or 21%

Example 6.9 Prove the following relationship for an ideal gas. p v

dv dP
ds C C

v P
= +  and hence

prove that for an isentropic change of state constant.Pvg =

Solution From the property relationship (Eq. (6.17)), we have

Tds = dh vdP-

or, ds =
dh vdP

T T
-  since for ideal gas Pv RT=

or, ds = p

dT dP
C R

T P
- (6.18)

( )since for an ideal gas  =  and
v R

dh RdT
T P
=

Further, from the characteristic equation of state for an ideal gas, we have

Pv = RT

Differentiating, we get

Pdv vdP+  = RdT

or,
dv dP

v P
+  =

dT

T
(6.19)

From Eqs (6.18) and (6.19), we get

ds =
( )p v

p

C C dPdv dP
C

v P P

-È ˘+ -Í ˙Î ˚
 (since for an ideal gas p vC C R- = )

or, ds = p v

dv dP
C C

v P
+

Since, for an isentropic process, 0ds = , we get

p v

dv dP
C C

v P
+  = 0

Dividing both sides of the above equation by Cv, we have
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dv dP

v P
g +  = 0

or, ln ln
dv dP

v P
g +  = ln (constant)

or, Pvg
 = constant

SUMMARY

Whenever a system undergoes a cyclic process, the algebraic sum of all the heat

interactions divided by the absolute temperature at which the heat interactions are

taking place, for the whole cycle, is less than or equal to zero.

Mathematically,
d

£Ú 0
Q

T

If
d

=Ú 0
Q

T
 then the cyclic process is possible and reversible.

If
d

<Ú 0
Q

T
 then the cyclic process is possible and irreversible.

If
d

>Ú 0
Q

T
 then the cyclic process is not possible .

The change in the entropy of a system is given by

dS = 
d RQ

T
 for reversible process.

The entropy of any closed system which is thermally isolated from the surroundings

either increases, or if the process undergone by the system is reversible, remains

constant.

Entropy can be viewed as a measure of molecular disorder or randomness. The

entropy of a pure crystalline substance at absolute zero temperature is zero. This is

known as the third law of thermodynamics.

The thermodynamics property relations can be expressed as

Tds = du + Pdv

Tds = dh – vdP

Although the equations are derived for a reversible process only, but they are applica-

ble to all processes whether reversible or irreversible.

REVIEW QUESTIONS

6.1 How is entropy defined?

6.2 State the Clasius inequality and explain its significance.

6.3 Why is the Carnot cycle on the T–s plot a rectangle?

6.4 What do you understand by the entropy principle?
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6.5 Why does an isochoric curve plotted on a TS diagram have a greater slope than an isobaric curve at

the same temperature?

6.6 Establish the Clasius inequality.

6.7 Show that entropy is a property of a system.

6.8 Why is an isentropic process not necessarily an adibatic process?

6.9 Show that heat transfer through a finite temperature difference is an irreversible process.

6.10 Can the entropy of a system ever decrease? If yes, explain with an example.

6.11 Show that a reversible adiabatic process is an isentropic process.

NUMERICAL PROBLEMS

6.1 Consider 1 kg of ice at 30 °C as a system. It is exposed to surroundings at 20 °C. The ice melts to

water ultimately coming to equilibrium with the surroundings. Calculate the entropy change of the

system, the surroundings and the universe. Specific heat of ice and water are 2.187 kJ/kgK and 4.187

kJ/kgK respectively and the latent heat of fusion of ice is 333.5 kJ/kg.

6.2 An aluminium block of 8 kg at 350 °C is dropped in a container having 8 kg of water at 25 °C. The

container is open to the atmosphere. Calculate the entropy change of the aluminium block and the

universe. Specific heat of aluminium and water are 0.9 kJ/kgK and 4.2 kJ/kgK respectively.

6.3 An insulated container initially contains 6 kg of water at 30 °C. If 2 kg of ice at 0 °C is dropped into the

container, determine the final equilibrium temperature and the entropy change associated with the process.

Specific heat of water is 4.187 kJ/kgK respectively and the latent heat of fusion of ice is 333.5 kJ/kg.

6.4 One kg of air is compressed in a closed system from 100 kPa, 30 C to 600 kPa isothermally. Find the

change in entropy. Assume that Cp and Cv are constant over this range of temperature.

6.5 One kg of air initially at 100 kPa and a volume of 1 m3 is heated at constant pressure until the volume is

doubled. It is then compressed isothermally until the volume is back to its initial value. It is then cooled

at constant volume until the pressure is again 100 kPa. Sketch the processes on P-V and T-S diagrams.

Compute the entropy changes for the individual processes, and also find the total entropy change.

6.6 A Carnot cycle rejects heat at 27 °C causing a decrease in entropy equal to 5 kJ/kgK. The engine

receives 2500 kJ/kg of heat from a source. Determine the efficiency of the cycle and temperature of the

source.

6.7 Initially, two identical bodies of constant specific heat are maintained at the same temperature. These

two bodies of finite size are the used as reservoirs for a refrigerator. Heat is removed from one body and

rejected to the other body. As a result, the temperature of one body continues to decrease and that of

the other continually increases. The operation is at constant pressure, and it is assumed that neither

body undergoes a phase change. Show that the minimum work required to decrease the temperature of

the cooled body to some value Tf, which is less than Ti, the initial temperature of both bodies, is

2

min 2i
p f i

f

T
W mc T T

T

Ê ˆ
= + -Á ˜

Ë ¯
6.8 One kg of air expands isothermally from 6 MPa to 200 kPa. The initial volume and temperature of air are

500 cm3 and . Calculate the net heat transfer and net entropy change.

6.9 Air expands from 
3 30.2 m to 1 m  in a cylinder while the pressure is held constant at 600 kPa. The

initial temperature of air is 20 °C. Calculate the heat transfer and the entropy change. The specific heats

of are 1.005 kJ / kg C
p

C  and 0.718 kJ/kg Cv
C  .
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6.10 A Carnot engine operates between reservoirs at 850 °C and 60 °C. It delivers 100 kW of power. Calculate

the entropy change of each reservoir and the net entropy change of the reservoirs after 10 min of

operation.

6.11 Two bodies of thermal capacities C1 and C2 at temperatures T1 and T2 are brought to the same

temperature T by means of a reversible heat engine. Show that the final temperature can be expressed

as

1 1 2 2

1 2

ln ln
ln

C T C T
T

C C

MULTIPLE-CHOICE QUESTIONS

6.1 Entropy change depends on

(a) heat transfer (b) mass transfer

(c) change of temperature (d) thermodynamic state

6.2 For a reversible adiabatic process, change in entropy is

     (a) maximum (b) minimum

(c) zero (d) negative

6.3 When a gas flows through a very long pipe of uniform cross section, the flow is approximately

(a) isentropic (b) isothermal

(c) isobaric (d) isochoric

6.4 The value of entropy at 0 K is taken as

(a) 1 (b) 0

(c) –1 (d) any value

6.5 The slope of constant pressure line on T-S diagram is given by

(a) Cp/T (b) T/Cp

(c) S/T (d) T/S

6.6 Steam flow through a nozzle is considered as

(a) constant flow (b) isothermal flow

(c) adiabatic (d) constant volume flow

6.7 An  isentropic process on T-S diagram is represented by a

(a) horizontal line (b) vertical line

(c) inclined line (d) curved line

6.8 A process occurs spontaneously if its entropy

(a) increases (b) decreases

(c) remains same (d) becomes zero

6.9 The property of a working substance which increases or decreases as the heat is supplied or removed

in a reversible manner, is known as

(a) enthalpy (b) entropy

(c) internal energy (d) external energy

6.10  For in irreversible process entropy change is

(a) greater than 
Q

T
(b) equal to 

Q

T

(c) less than 
Q

T
(d) equal to zero
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6.11 Tds = dh – vdp equation can be applied for

       (a) reversible process (b) irreversible process

       (c) all of the above (d) none of the above

6.12 Choose the correct statement:

(a) entropy is an intensive property (b) density is an extensive property

(c) density is an intensive property (d) pressure is an extensive property.

6.13 Strictly speaking all engineering processes are

(a) quasi-static (b) reversible

(c) irreversible (d) thermodynamically in equilibrium

6.14 For an irreversible process, entropy change is

(a) greater than  dQ/T (b) less than  dQ/T

(c) equal to  dQ/T (d) equal to zero

6.15 The value of  S(dQ/T ) for reversible process is equal to

(a) +ve value (b) –value

(c) zero (d) any one  of the above

6.16 The value of S(dQ/T) for irreversible process is

(a) equal to zero (b) less than zero

(c) greater than zero (d) any one of the above

6.17 The change of entropy when heat is absorbed by the gas is

(a) positive (b) negative

(c) positive or negative (d) none of these

6.18 An isentropic process

(a) must be reversible and adiabatic (b) need not be reversible adiabatic

(c) decreases the entropy of a system (d) none of these





Properties of Pure
Substances

7.1 INTRODUCTION

A pure substance is defined as one that is homogeneous and invariable in chemical composition throughout

its mass. The relative proportion of the chemical elements, constituting the substance, is also constant.

Atmospheric air, steam–water mixture and combustion products of a fuel are regarded as pure

substance. A phase is a physically distinct, chemically homogeneous and mechanically separable portion

of a substance.

7.2 PROPERTY DIAGRAMS

The property diagrams for a pure substance are of immense importance from thermodynamic point of

view. In this Chapter, we will discuss the pressure-volume (P–V), pressure-temperature (P–T), tem-

perature-entropy (T–S) and enthalpy-entropy (h–s) diagram for water.

7.2.1 Pressure–Volume Diagram

Water is one of the commonly used pure substances that can exist in three different phases—solid, liquid

and gas. Addition of heat at constant pressure causes its phase to change that result to a change of its

volume. Water is a rare category of pure substance which unlike other substances manifests decrease in

volume when it is converted from solid to liquid, i.e., when ice is converted to water. To study the

complete behaviour of the pure substance, it is imperative to plot P–V diagram for the same. This is

portrayed in Fig. 7.1.

Let us consider a mass of ice at say –20ºC at atmospheric pressure. Addition of heat to ice will cause

its temperature to increase up to 0ºC accompanied by increase in volume. The initial state is denoted by

1 and the final state is denoted by 2. Further heating will cause change in phase from ice to water without

increase in temperature. The substance will absorb latent heat of fusion for change in phase. The final

CHAPTER

7
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volume is represented by the point 3. It is interesting to note that this time volume decreases. Addition of

further heat is responsible for rise in temperature of water from 0ºC to 100ºC. Consequently volume

increases from 3 to 4. At the point 4, the entire liquid attains its boiling point temperature. Continuation

of heating at this stage will convert water (liquid) to steam or vapour (gas) by taking latent heat of

vapourization. The final state is represented by the point 5 and is called saturated vapour. The increase

in volume during this part is significantly high. Further heating will convert the saturated steam to what

is called superheated steam. The temperature of superheated steam is higher than that of saturated steam.

The states 2, 3, 4 and 5 are called saturation states implying that at this point change in phase occurs.

Water (liquid) being at the middle of three different phases (solid to liquid and liquid to vapour) there

are two saturated liquid states. In the state 3, the liquid is saturated in regard to solidification whereas

at 4, the liquid is saturated with respect to vaporization. The temperature at which water is converted to

complete steam is called saturation temperature corresponding to that particular pressure. The

difference in temperature between the superheated steam and the corresponding saturation temperature

is called degree of superheat.

A liquid existing at a temperature lower than the saturation temperature corresponding to its pressure

is called compressed liquid or subcooled liquid. Vapour existing at a temperature higher than the

saturation temperature corresponding to its pressure is called superheated vapour.

If this heating is carried out at different pressures, similar states would be obtained. The Locus of all the

saturated solid states is called saturated solid line. Likewise, locus of all the points corresponds to point 3

and 4 are called saturated liquid lines. The line joining all the points 3 is called saturated liquids line with

respect to solidification, whereas the line joining all the points, 4 is called saturated liquid line with

respect to vaporisation. Similarly, the line joining all the points, 5 gives rise to saturated vapour line.

The zone that lies on the left side of the saturated solid line is the solid zone. Similarly, other zones

are established. The zones are established by the following series.

Solid Æ Solid + Liquid Æ Liquid Æ Liquid + Vapour Æ Vapour

4

1 5 6

4

Triple point line

Saturated vapour line

Saturated liquid line w.r.t.

vaporization Critical state

Saturated solid
line

Saturated
liquid line
w.r.t.

solidif ication

Liquid+vapour

solid+vapour

V

P
6

6

1

1

Figure 7.1 P–V diagram of pure substance (e.g. water) that expands on freezing
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Triple Point It is a line on the P–V diagram where all the three phases can exist in equilibrium.

Although it is a line but it is called triple point. At this line the pressure and temperature of three

different phases of the substance remains same but specific volumes are different. For water, the triple

point temperature and pressure are 0.01ºC and 0.6117 kPa respectively. At pressure below the triple

point, no substance can exist in stable equilibrium in liquid phase. Addition of heat to solid below this

pressure, directly converts it to vapour by absorbing latent heat of sublimation. Hence, the zone below

the triple point line denotes the solid and vapour zone.

Critical Point It is interesting to note that as the pressure increases, the transition zone from liquid to

vapour becomes narrow. This implies that saturated liquid line (locus of points 4) and saturated vapour

line are inclined towards each other. At a specific pressure, the transition zone is converted to a point.

The point, at which the saturated liquid state and saturated vapour state are identical, is called

critical point. At pressures above this point, the liquid, if heated, immediately flashes into vapour

without manifesting a clear transition zone. Conversely, cooling of vapour converts it to water all of a

sudden. The pressure, specific volume and temperature at critical point are called critical pressure,

critical specific volume and critical temperature respectively. The critical point data for water are

given below.

Pcr = 221.2 bar vcr = 0.00317 m3/kg tcr = 374.15ºC

It must be remembered that phase change takes place only at constant pressure and temperature.

For constant pressure heating, liquid is converted to vapour only at a particular temperature called

saturation temperature. Similarly, if the temperature remains constant, this phase change takes place at

a definite pressure called saturation pressure.

7.2.2 Pressure–Temperature Diagram

The change in volume of pure substance at constant pressure heating is analyzed by the P–V diagram.

The pressure-temperature (P-T) portrays the variations in temperature at constant pressure heating.

This is plotted in Fig. 7.2.

T

P

Fusion curve

Sublimation curve

Vapourization curve

Triple point

Solid
phase
region

Liquid phase region

Vapour phase region

2,3 4,5 6

2,3 4,5 6

1

1

Figure 7.2 P–T diagram of a pure substanace (e.g. water) that expands on freezing
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The variation of temperature at any particular pressure is represented by a horizontal line. Several

such curves may be obtained which are parallel. However, heating at higher pressure is accompanied by

increase in saturation temperature. Note that on any particular curve, points 2 and 3 and points 4 and 5

coincides. This is due to the fact that between 2 and 3 there is change in phase (from solid to liquid)

and between 4 and 5, liquid is converted to vapour. Since during phase change the substance absorbs

or rejects only latent heat, the temperature during phase change remains unaltered. The curve passing

through the series of 2, 3 points is called the fusion curve while the curve when drawn through points

4 and 5 is called the vaporization curve. The sublimation curve is the locus of vapour pressure at

different temperatures. Three aforementioned curves meet at the triple point.

7.2.3 Temperature–Entropy Diagram

Temperature-entropy (T-S) diagram for pure substance is of immense importance from the

thermodynamic point of view. Water being one of the popular working substance for power plants, it

is imperative to investigate the nature of T–S plot when the substance is heated gradually.

Two different situations are encountered while heating ice (at –20ºC) so as to convert it to a

superheated steam at 200ºC.

(i) Temperature is increased continuously so long there is no change in phase.

(ii) Temperature remains constant during change in phase.

In the first case, change in entropy between any two finite temperature range Tf and Ti can be

calculated as ln

f f

i i

T T

p f

f i p
iT T

mC dT TdQ
S S S mC

T T T
D = - = = =Ú Ú

And if temperature remains constant, DS becomes 
mL

T
.

The T–S plot is shown in Fig. 7.3. Several such curves are plotted when heating is carried out at

different pressures. The dome–shaped region formed by the saturated liquid line and saturated

vapour line is called vapour dome.
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Figure 7.3 T–S diagram of a pure substance
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7.2.4 Enthalpy–Entropy Diagram

In this context, the enthalpy vs entropy plot or h–s diagram is found to be valuable in the analysis of

steady-flow devices like turbines, compressors, nozzles etc.The h–s diagram is popularly known as

Mollier diadram.

From the thermodynamic property relationship (see Eq. (6.17)), we have

Tds = dh vdp-
For constant pressure, the above equation becomes

Tds = dh

or,
P

h

s

∂Ê ˆ
Á ˜Ë ¯∂

 = T (7.1)

Equation (7.1) implies that the slope of the constant pressure lines is equal to the corresponding

saturation temperatures. As the pressure increases, the saturation temperature also increases. This is

the reason for which constant pressure lines (isobar) are divergent on the h-s diagram. The h-s dia-

gram (Mollier diagram) for water is shown in Fig. 7.4. The saturated liquid line and saturated vapour

line meets at critical point.

Triple point line
Solid + vapour

Critical point

Vapour
Liquid

L V+

S

h

1 2

3 4

43
2

1

5

6 6

5

Figure 7.4 h–s (Mollier diagram) of a pure substance (water)

Constant temperature lines are distinctly visible in the superheat region. However, in the wet region

these lines coincide with constant pressure lines. It is noteworthy that in the superheated region,

enthalpy is more dependent on temperature alone. As the degree of superheat increases, the constant

temperature lines tend to become horizontal. Constant dryness fraction lines are also added in the

curve to calculate different properties of wet steam. From the curve, it is evident that reduction in

pressure at constant enthalpy results in the drying and superheating of wet vapour.
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7.3 P-V-T SURFACE

According to state postulate (see Section 1.8), the state of a substance is described by two

independent, intensive properties. Once these are completely specified, all the other properties become

dependent properties. Any equation with two independent variables in the form f = f (x, y) represents

a surface in space; it is possible to represent the P-V-T behaviour of a substance as a surface in space

as shown in Fig. 7.5. Here, T and V are considered as independent variables and P as dependent. All

the points in the surface represent equilibrium states. Hence the quasi-static processes must lie on the

surface.

Essentially, this is a three-dimensional view where three different dimensions are P, V and T. It can be

concluded therefore, that the popularly used P–V diagrams and T–V diagram are merely the orthographic

projections of the original-three dimensional objects. Although such a three-dimensional view is very

comprehensive, in thermodynamic analysis use of two-dimensional diagrams are more popular.

V

TSolid + vapour

Solid Liquid

Critical state

P

Vapour

Liquid + vapour

Triple state

Figure 7.5 A P-V-T surface for a substance which expands on freezing

7.4 QUALITY OR DRYNESS FRACTION

Quality or dryness fraction of a liquid-vapour mixture is defined as the ratio of mass of saturated

vapour to the total mass of mixture. That is,
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x =
mass of saturated vapour

total mass of mixture

or, x =
g g

f g

m m

m m m
=

+
(7.2)

where fm  is the mass of saturated liquid, gm  is the mass of saturated vapour and m is the total

mass of liquid-vapour mixture.

Let V be the total volume of the mixture, fV  be the volume of the saturated liquid and gV  be the

volume of the saturated vapour.

Total volume of liquid and vapour can be expressed in terms of their specific volume as

Vf = f fm v

Vg = g gm v

where vf and vg are the specific volume of saturated liquid and  saturated vapour respectively.

Specific volume of the mixture is then

v =
f gV VV

m m

+
=

=
f f g g

f g

m v m v

m m

+

+

=
f f g g

f g f g

m v m v

m m m m
+

+ +

 = (1 ) f gx v xv- +

 = ( )f g fv x v v+ -

 = f fgv xv+

Similarly, one can write

h = f fgh xh+

s = f fgs xs+

and

u = f fgu xu+

7.5 STEAM TABLES

From the foregoing discussion, it is possible to know the various properties of steam when it is either

saturated liquid or saturated vapor provided its pressure or temperature is known. The subscripts f
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and g refer to saturated liquid and saturated vapour respectively. Steam table is nothing but a complete

data book that contains various properties of water in different phases for a given pressure or tem-

perature. It is given in the Appendix I. The properties of steam are given in three different tables:

saturated steam table-temperature base (Appendix I, Table A.1), saturated steam table-pressure base

(Appendix I, Table A.2), and superheated steam table (Appendix I, Table A.3),. In the saturated steam

tables, the properties of saturated liquid and saturated vapour are presented. It is known that the

pressure and temperature both remain constant during the phase transition. That means both are not

independent variables. One is independent and the other is dependent. When the temperature is chosen

as independent variable and the properties of steam are tabulated, the steam table is referred to as the

saturated steam table-temperature base. For saturated steam table-pressure base, pressure is the

independent variable. There is a separate table for superheated steam for different amount of degree of

superheat.

Example 7.1 Using the steam tables, estimate the saturation temperature and specific volume,

specific enthalpy and specific entropy of saturated liquid and vapour at 3 MPa.

Solution From the saturated steam table based on pressure (Appendix I, Table A.2), it is found

that saturation temperature of water corresponds to 3 MPa is sat 233.9 Ct =

Specific volume of saturated liquid is 
30.001216 m /kgfv =

Specific volume of saturated vapour is 
30.06668 m /kggv =

Specific enthalpy of saturated liquid is 1008.4 kJ/kgfh =

Specific enthalpy of saturated vapour 2804.1 kJ/kggh =

Specific entropy of saturated liquid is 2.6462 kJ/kg-Kfs =

Specific entropy of saturated vapour is 6.1878 kJ/kg-Kgs =

Example 7.2 Using the steam tables, estimate saturation pressure and the specific volume, specific

enthalpy and specific entropy of saturated liquid and vapour at 200°C.

Solution From the saturated steam table based on temperature (Appendix I, Table A.1), it is

found that saturation pressure of water corresponds to 200°C  is 
sat 1.554 MPaP = .

Specific volume of saturated liquid is 
30.001156 m /kgfv =

Specific volume of saturated vapour is 
30.1274 m /kggv =

Specific enthalpy of saturated liquid is 852.4 kJ/kgfh =

Specific enthalpy of saturated vapour 2793.2 kJ/kggh =

Specific entropy of saturated liquid is 2.3313 kJ/kg-Kfs =

Specific entropy of saturated vapour is 6.4331 kJ/kg-Kgs =
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Example 7.3 Calculate the specific volume, specific enthalpy and specific entropy of wet steam of

dryness fraction or quality of 0.9 at 2 MPa pressure.

Solution From the saturated steam table (Appendix I, Table A.2), at 2 MPa

Specific volume of saturated liquid is 
30.001177 m /kgfv =

Specific volume of saturated vapour is 
30.09963 m /kggv =

Specific enthalpy of saturated liquid is 908.8 kJ/kgfh =

Specific enthalpy of saturated vapour 2799.5 kJ/kggh =

Specific entropy of saturated liquid is 2.4478 kJ/kg-Kfs =

Specific entropy of saturated vapour is 6.3417 kJ/kg-Kgs =

Dryness fraction of the mixture is given as 0.9x =
The specific volume of the wet steam is

v = ( )f g fv x v v+ -

= 3
0.001177 0.9(0.09963 0.001177) 0.08978 m /kg+ - =

The specific enthalpy of the wet steam is

h = ( )f g fh x h h+ -

    = 908.8 0.9(2799.5 908.8) 2610.43 kJ/kg+ - =

The specific entropy of the wet steam is

s = ( )f g fs x s s+ -

     = 2.4478 0.9(6.3417 2.4478) 5.9523 kJ/kg-K+ - =

Example 7.4 If the specific entropy of steam at 1 MPa is 5.82 kJ/kg-K  , determine its state.

Solution From the saturated steam table based on pressure (Appendix I, Table A.2), it is found

that at 1 MPa the specific entropy of saturated liquid and saturated vapour are

2.1391 kJ/kg-Kfs =  and 6.5873 kJ/kg-Kgs =  respectively

Since the given specific entropy lies between sf and sg, the state will be within the

vapour dome. Thus, temperature of the steam is same as the saturation temperature

corresponds to 1 MPa pressure. From Appendix I, Table A.2, we get sat 179.9 Ct =

Let x be the quality of the steam.

s = ( )f g fs x s s+ -

5.82 = 2.1391 (6.5873 2.1391)x+ -
or, x = 0.8275
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Example 7.5 Find the specific volume, specific enthalpy and specific entropy of steam at 5 bar and

400°C.

Solution From the saturated steam table (Appendix  I, Table A.2), it is found that saturation

temperature of water corresponds to 5 bar is sat 151.86 Ct =

Since the temperature is greater than that of saturation temperature, the state would

be in the superheated region.

From the superheated steam table (Appendix I, Table A.3),

Specific volume of steam is 30.6173 m /kgv =
Specific enthalpy of steam is 3271.9 kJ/kgh =
Specific entropy of steam is 7.7938 kJ/kg-Ks =

Example 7.6 A rigid vessel of volume 0.2 m3 contains 1 kg of steam at a pressure of 0.8 MPa.

Evaluate the specific volume, temperature, dryness fraction, enthalpy and entropy of

steam.

Solution Specific volume of the steam 30.2
0.2 m /kg

1

V
v

m
= = =

From the saturated steam table (Appendix I, Table A.2), it is found that at 0.8 MPa

the specific volume of saturated liquid and saturated vapour are

30.001115 m /kgfv =  and 
30.2404 m /kggv =  respectively.

Since the given specific volume lies between vf and vg, the state will be within the

vapour dome. From the saturated steam table, it is found that saturation temperature

of water corresponds to 0.8 MPa is sat 170.4 Ct =

Let x be the quality of the steam. Thus,

v = ( )f g fv x v v+ -

0.2 = 0.001115 (0.2404 0.001115)x+ -
or, x = 0.8312

The specific enthalpy of the wet steam is

h = ( )f g fh x h h+ -

    = 721.1 0.8312(2769.1 721.1) 2423.4 kJ/kg+ - =

The total enthalpy of the wet steam is then

H = ( )( )1kg 2423.4 kJ/kg 2423.4 kJmh = =
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The specific entropy of the wet steam is

s = ( )f g fs x s s+ -

    = 2.0466 0.8312(6.6636 2.0466) 5.8843 kJ/kg-K+ - =

The total entropy of the wet steam is

S = ( )( )1kg 5.8843 kJ/kg-K 5.8843 kJ/Kms = =

Example 7.7 10 kg of wet steam at a pressure of 0.2 MPa is contained in a rigid tank of volume

6.058 m3. The tank is heated until the steam becomes dry saturated. Determine the

final pressure and the heat transfer to the tank.

Solution Specific volume of the steam 36.058
0.6058m /kg

10

V
v

m
= = =

From the saturated steam table (Appendix  I, Table A.2), it is found that at 0.2 MPa

the specific volume of saturated liquid and saturated vapour are 
30.001061 m /kgfv =

and
30.8857 m /kggv =  respectively.

Since the given specific volume lies between vf and vg, the state will be within the

vapour dome. From the saturated steam table, it is found that saturation temperature

of water corresponds to 0.2 MPa is sat 120.2 Ct =

v = ( )f g fv x v v+ -

0.6058 = 0.001061 (0.8857 0.001061)x+ -
or, x = 0.6836

The specific enthalpy of the wet steam is

h = ( )f g fh x h h+ -

    = 504.7 0.6836(2706.6 504.7) 2009.92 kJ/kg+ - =

From the saturated steam table, it is found that for 
30.6058m /kggv = , the corre-

sponding pressure is 0.3 MPa

At 0.3 MPa, the specific enthalpy of saturated vapour 2725.3 kJ/kggh =

Specific heat transfer to the tank is 2725.3 2009.92 715.38 kJ/kggq h h= - = - =

Total heat transfer is then ( )( )10kg 715.38 kJ/kg 7153.8 kJQ mq= = =

Example 7.8 One kg of water at 75ºC is heated at a constant pressure of 0.8 MPa until it becomes

superheated vapor at 200ºC. Find the change in volume, enthalpy, entropy and inter-

nal energy.
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Solution From the steam table (Appendix  I, Table A.2), it is found that saturation temperature

of water corresponds to 0.8 MPa is sat 170.4 Ct =
The conversion of water at 75ºC to superheated steam at 200ºC can be divided into

the following distinct steps

(i) Conversion of water at 75ºC to saturated water at 170.4ºC

The increase in enthalpy for this change is 1 sat( )pw iH m C T TD = ¥ ¥ -

 = 1 4.18 (170.4 75) 398.72 kJ¥ ¥ - =

(ii) Conversion of saturated water to saturated steam without change in temperature.

The increase in enthalpy for this process is 2 ( )g fH m h hD = -

From the saturated steam table (Appendix  I, Table A.2), at 0.8 MPa

721.1 kJ/kgfh =  and 2769.1 kJ/kggh =

Hence, DH2 = ( )1kg (2769.1 721.1)kJ/kg = 2048 kJ-

(iii) Conversion of saturated steam into superheated steam of 200ºC

From superheated steam table (Appendix  I, Table A.3), it is found that at 0.8 MPa

and  200ºC, 2839.3 kJ/kgh =

The increase in enthalpy associated with this change is

DH3 = ( )gm h h-

           = ( )1kg (2839.3 2769.1) kJ/kg = 70.2 kJ-

Therefore total change in enthalpy becomes

DH = 1 2 3H H HD + D + D

        = 398.72 2048 70.2 2516.92 kJ+ + =

From the superheated steam table it is found that v = 0.2608 m3/kg  and vf = 0.001115 m3/kg

Therefore change in volume becomes

 DV = ( )( ) 3 3( ) 1kg 0.2608 0.001115 m /kg 0.2597mfm v v- = - =

From the relationship h u Pv= +  we have 1 1 1h u Pv= +  and 2 2 2h u Pv= +

Hence, change in internal energy is

2 1U U-  = 2 1( )H H P V- - ¥ D

               =  ( )( )32516.92 800 kPa 0.2597 m 2309.16 kJ- =
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Following the logic followed for enthalpy computations,

Change of entropy of water during conversion from 75ºC to saturated water at

170.4ºC is

DS1 =
170.4 273

ln 1 4.18ln 1.0127 kJ/K
75 273

sat
p

i

T
mC

T

+
= ¥ =

+

Change of entropy of water Conversion of saturated water to saturated steam is

DS2 = ( ) 1 (6.6636 2.0466) 4.617 kJ/Kg fm s s¥ - = ¥ - =

Change of entropy of water during conversion of saturated steam into superheated

steam of 200ºC is

DS3 = ( )gm s s¥ -  = 1 (6.8158 6.6636) 0.1522 kJ/K¥ - =

Hence total change in entropy becomes

DS = 1 2 3 1.0127 4.167 0.1522 5.7819 kJ/KS S SD + D + D = + + =

Example 7.9 A vessel of volume 0.08 m3 contains a mixture of saturated water and saturated

steam at a temperature of 200°C. The mass of the liquid present is 10 kg. Find the

pressure, the mass, the specific volume, the enthalpy, the entropy and the internal

energy.

Solution From temperature based saturated steam table (Appendix  I, Table A.1), at 200°C,

saturation pressure is 
sat 1.554 MPaP =

Specific volume of saturated liquid is 30.001156 m /kgfv =

Specific volume of saturated vapour is 
30.1274 m /kggv =

Specific enthalpy of saturated liquid is 852.4 kJ/kg fh =

Specific enthalpy of saturated vapour is 2793.2 kJ/kg gh =

Specific entropy of saturated liquid is 2.3313 kJ/kg-Kfs =

Specific enthalpy of saturated vapour is 6.4331 kJ/kg-Kgs =

Specific internal energy of saturated liquid is 850.6 kJ/kgfu =

Specific internal energy of saturated vapour is 2595.3 kJ/kggu =

Total Volume of liquid is f f fV m v=

   = ( )( )3 310kg 0.001156m /kg  0.01156 m=

Total Volume of vapour is 
30.08 0.01156 0.06844 mg fV V V= - = - =
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Mass of vapour is found to be

mg =
0.06844

0.5372 kg
0.1274

g

g

V

v
= =

Total mass of liquid-vapour mixture is 10 0.5372 10.5372 kgf gm m m= + = + =

Quality (or dryness fraction) of the mixture is 
0.5372

0.05
10.5372

gm
x

m
= = =

Specific volume of the mixture is

v = ( )f g fv x v v+ -

 = 30.001156 0.05(0.1274 0.001156) 0.00747 m /kg+ - =

Specific enthalpy of the mixture is

h = ( )f g fh x h h+ -

     = 852.4 0.05(2793.2 852.4) 949.44 kJ/kg+ - =
Total enthalpy of the mixture is then

H = ( ) ( )10.5372kg 949.44 kJ/kg 10004.44 kJmh = =

Specific entropy of the mixture is

s = ( )f g fs x s s+ -

     = 2.3313 0.05(6.4331 2.3313) 2.5364 kJ/kg-K+ - =

Total entropy of the mixture is then found to be

S = ( )( )10.5372kg 2.5364 kJ/kg-K 26.7266 kJ/Kms = =

Specific internal energy of the mixture is

u = ( )f g fu x u u+ -

    = 850.6 0.05(2595.3 850.6) 937.835 kJ/kg+ - =
Total internal energy of the mixture is

U = ( )( )10.5372kg 937.835 kJ/kg 9882.15 kJmu = =

SUMMARY

A pure substance is defined as one that is homogeneous and invariable in a chemical

composition throughout its mass.

A phase is a physically distinct, chemically homogeneous and mechanically separable

portion of a substance.
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The pressure and temperature under which two phases can exist in equilibrium are

called saturation pressure and saturation temperature.

A liquid existing at a temperature lower than the saturation temperature corresponding

to its pressure is called compressed liquid or subcooled liquid. Vapour existing at a

temperature higher than the saturation temperature corresponding to its pressure is

called superheated vapour.

The condition of pressure and temperature under which all the three phases of a pure

substance can exist in equilibrium is called the triple point of the substance.

The point, at which the saturated liquid state and saturated vapour state are identical,

is called the critical point. At pressures above this point, a liquid, if heated, immediately

flashes into vapour without manifesting a clear transition zone. Conversely, cooling of

vapour converts it to water all of a sudden. The pressure, specific volume and

temperature at the critical point are called critical pressure, critical specific volume and

critical temperature respectively.

Quality or dryness fraction is defined as the ratio of mass of saturated vapour to the

total mass of mixture. That is,

x =
m mg g

m m + mgf

=

where mf  is the mass of saturated liquid, mx  is the mass of saturated vapour and m

is the total mass of liquid-vapour mixture.

Properties of a liquid–vapour mixture may be found by relations such as

v = f fgv + xv

h = f fgh + xh

s =
f fgs + xs

u = f fgu + xu

REVIEW QUESTIONS

7.1 What is a pure substance?

7.2 What is a phase?

7.3 What is a saturated state?

7.4 What is saturation temperature and saturation pressure?

7.5 What is a compressed liquid?

7.6 What is superheated vapour?

7.7 Define the quality of dryness fraction of a liquid–vapour mixture.

7.8 What is the critical point? State the values of critical pressure and critical temperature of water.

7.9 Sketch the P–V diagram for a pure substance and show the isotherms and constant quality lines on it.

7.10 Is it possible to convert a liquid into vapour phase without ever observing the phase transition? If so,

sketch the process on a P–T diagram.
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NUMERICAL PROBLEMS

7.1 Using the steam tables, estimate the specific volume, specific enthalpy and specific entropy of

saturated liquid and vapour at 30 bar.

7.2 Using the steam tables, estimate the specific volume, specific enthalpy and specific entropy of

saturated liquid and vapour at 250ºC.

7.3 Calculate the specific volume, specific enthalpy and specific entropy of wet steam of dryness fraction

of quality 0.9 at 30 bar pressure.

7.4 If the specific entropy of steam at 30 bar is 5.22 kJ/kg-K, determine its state.

7.5 Find the saturation temperature specific volume, specific enthalpy and entropy of saturated vapour at

5 bar. Also find the latent heat of vaporisation of steam at that pressure.

7.6 A rigid vessel of volume 0.3 m3 contains 10 kg of steam at a pressure of 5 bar. Evaluate the specific

volume, temperature, dryness fraction, enthalpy and entropy of steam.

7.7 A vessel of volume 0.03 m3 contains a mixture of saturated water and saturated steam at a pressure of

30 bar. The mass of the liquid present is 6 kg. Findthe pressure, the mass, the specific volume, the

enthalpy, the entropy and the internal energy.

7.8 Suppose a closed and rigid vessel is initially filled with saturated water and saturated vapour at

100 kPa. On transferring energy as heat, the water is found to pass through the critical point.

Determine the volume of saturated vapour to the volume of saturated liquid with which the vessel is

initially filled.

7.9 A vessel of volume 0.03 m3 contains a mixture of saturated water and saturated steam at a temperature

of 250°C. The mass of the liquid present is 8 kg. Find the pressure, the mass, the specific volume, the

enthalpy, the entropy and the internal energy.

MULTIPLE-CHOICE QUESTIONS

7.1 In a P-V-T surface, the zone below the triple point is known as

(a) liquid zone (b) vapour zone (c) sublimation zone (d) none of these

7.2 Triple point of a pure substance is a point at which

(a) liquid and vapour exist together (b) solid and vapour exist together

(c) solid and liquid  exist together (d) solid, liquid and vapour exist together

7.3 The latent heat of vapourization at the critical point is

(a) equal to zero (b) less than zero (c) greater than zero (d) none of these

7.4 The phase change from liquid to vapour is referred to as

(a) melting (b) vapourization (c) sublimation (d) solidification

7.5 The point that connects the saturated liquid line to the saturated vapour line is called the

(a) triple point (b) superheated point (c) critical point (d) compressed liquid point
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8.1 EQUATION OF STATE OF A GAS

An equation of state is a relationship among the properties x, y and z, such that

f (x,y,z) = 0

In thermodynamics, the equations which relate pressure P, specific volume v and temperature T,

are of particular interest. Therefore, an equation that furnishes the relationship among pressure P,

specific volume v and temperature T of a substance is called an equation of state.

The PvT relationship for most of the substances is quite complex, so that accurate equations of

state for wide ranges of pressure and temperature have been developed for only a few substances.

8.2 IDEAL GAS

An ideal gas is defined as one for which the equation of state is

Pv = RT (8.1)

where R  the universal gas constant and v  is the molar volume (i.e., volume per unit mole).

From Boyle’s, Charles, and Gay-Lussac’s experimental observations, it has been found that P v T

behaviour of many gases at low pressure and moderate temperatures can be approximated quite well by

the ideal-gas equation. Gases deviate from ideal gas behaviour at high pressure and low temperature.

8.2.1 Ideal Gas Equation of State

A. Unit mole basis Equation (8.1) i.e. Pv = RT  is the equation of state of an ideal gas based on unit

moles.

The value of the universal gas constant is the same for all gases. It can be found from Avogadro’s

law. According to Avogadro’s law at NTP, 1 kg mole of all gases occupy the same volume and the

volume of 1 kg mole of all gases at NTP (273.15 K and 1.0132 bar) is 22.4146 m3.

CHAPTER

8
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R =
Pv

T

=
5

1.0132 10 22.4146

273.15

¥ ¥
 = 8314.3 J/kg mol-K

= 8.3143 kJ/kg mol - K

B. Total number of moles basis If V is the total volume and n is the number of moles of the gas,

then

v =
V

n

Now, the equation of state for an ideal gas can be written as

PV = nRT (8.2)

C. Total mass basis If M is the molecular mass and m is the total mass of the gas then

n =
m

M

From the equation (8.2), we have

PV =
m

RT
M

PV =
R

m T
M

PV = mRT (8.3)

where R is characteristic gas constant which is constant for a particular gas and different for different

gases.

The characteristic gas constant for any particular gas can be obtained from

R =
R

M
(8.4)

For air,

Rair =
8314.3

287J / kgK 0.287kJ / kgK
28.96

= =

For nitrogen,

2NR =
8314.3

296.94 J / kgK
28

=

D. Unit mass basis Dividing by the mass of the gas on both sides of the equation (8.3), we have

Pv = RT (8.5)

where v is the specific volume of the gas.
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8.3 SPECIFIC HEATS, INTERNAL ENERGY AND ENTHALPY OF AN
IDEAL GAS

It has been demonstrated mathematically that for an ideal gas both the internal energy and enthalpy is

a function of the temperature only. Thus, for an ideal gas, one can write (see Chapter 3, for more

details)

du = CvdT and dh = CpdT

Further, from the definition of specific enthalpy, we have

h = u + Pv

or dh = du + d(Pv)

For an ideal gas, the above equation becomes

CpdT = CvdT + RdT

or Cp = Cv + R (8.6)

The specific heat ratio, g is defined as

p

v

C

C
g = (8.7)

From equations (8.6) and (8.7), we have

1
p

R
C

g

g
=

-
(8.8)

1
v

R
C

g
=

-
(8.9)

 Example 8.1 A certain gas has Cp = 1.005 kJ/kgK and Cv = 0.718 kJ/kgK. Find its molecular

weight and the gas constant. Identify the gas.

Solution The characteristic gas constant can be found from equation (8.6) as

1.005 0.718 0.287 kJ/kgKp vR C C= - = - =

The molecular weight of the gas is obtained from equation (8.4) as

8.3143
28.96 kg/kg mol

0.287

R
M

R
= = =

From the values of R, one can conclude that the gas is air.

 Example 8.2 From experimental results, the specific heat ratio for helium is found to be 1.667.

Determine the two specific heats.

Solution For helium, characteristic gas constant is
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8314.3
2.078 kJ/kgK

4
HeR = = 4kg/kmolHeM =È ˘Î ˚∵

The two specific heats can be found from equations (8.8) and (8.9) as

1.667 2.078
5.193 kJ/kgK

1 1.667 1
p

R
C

g

g

¥
= = =

- -

2.078
3.115 kJ/kgK

1 1.667 1
v

R
C

g
= = =

- -

  Example 8.3 Calculate the mass of air contained in a room 6 ¥ 8 ¥ 3 m in the summer, when the

temperature is 37°C and pressure is 101 kPa.

Solution

Volume of room  3 36 8 3 m 144 mV = ¥ ¥ =

Temperature of air  37 C 37 273 310 K T = ∞ = + =

Pressure of air  101 kPaP =
Mass of air can be found from equation (8.3) as

PV
m

RT
=

101 144
163.47 kg

0.287 310

¥
= =

¥

  Example 8.4 During an experiment, 1 kg of an unknown gas is heated from 30°C to 130°C. It is

observed that 43.6 kJ of heat is required at constant pressure and 14 kJ of heat is

needed at constant volume. Find the characteristic gas constant and the molecular

weight of the gas.

Solution

Mass of air 1 kg m =

Initial temperature 1 30 CT = ∞

Final temperature 2 130 CT = ∞

Heat needed to raise the temperature at constant pressure 43.6 kJ p constQ = =

Heat needed to raise the temperature at constant volume 14 kJv constQ = =
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From the given conditions, we have

( )2 1p const pQ mC T T= = -

( )2 1v const vQ mC T T= = -

Substituting the values, we get

( )43.6 1 130 30pC= ¥ -

( )14 1 130 30vC= ¥ -
From the above two equations, we find

0.436 kJ/kgKpC =  and 0.14 kJ/kgKvC =

The characteristic gas constant can be found from equation (8.6) as

0.436 0.14 0.296 kJ/kgKp vR C C= - = - =

The molecular weight of the gas is obtained from equation (8.4) as

8.3143
28 kg/kg mol

0.296

R
M

R
= = =

8.4 INTERNAL ENERGY, ENTHALPY AND ENTROPY CHANGE OF
AN IDEAL GAS

8.4.1 Internal Energy and Enthalpy Change of an Ideal Gas

Change in specific internal energy between two states 1 and 2, for a calorically ideal gas (specific

heats are constant) is

2 1 2 1( )vu u C T T- = - (8.10)

Change in specific enthalpy between two states 1 and 2, for a calorically ideal gas (specific heats

are constant) is

2 1 2 1( ) ph h C T T- = - (8.11)

8.4.2 Entropy Change of an Ideal Gas

For an ideal gas Pv = RT and ,v pdu C dT dh C dT= =
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From the thermodynamic property relation (equation (6.16)), we have

Tds du Pdv= +

du P
ds dv

T T
= +

or vC dT dv
ds R

T v
= + (8.12)

Integrating between any two states 1 and 2 for a calorically ideal gas (specific heats are constant),

change in specific entropy between two states 1 and 2 can be written as

2 2
2 1

1 1

ln lnv

T v
s s C R

T v
- = + (8.13)

From the thermodynamic property relation (equation (6.17)), we have

Tds dh vdP= -

dh v
ds dP

T T
= -

PC dT dP
R

T P
= -

Integrating between any two states 1 and 2 for a calorically ideal gas (specific heats are constant),

change in specific entropy between two states 1 and 2 can be expressed as

2 2
2 1

1 1

ln lnp

T P
s s C R

T P
- = - (8.14)

or 2 2
2 1

1 1

ln ( ) lnp p v

T P
s s C C C

T P
- = - -

or 2 1 2
2 1

1 2 1

ln lnp v

T P P
s s C C

T P P
- = +

or 2 2
2 1

1 1

ln lnp v

v P
s s C C

v P
- = + (8.15)

 Example 8.5 Air expands from 300 kPa, 227°C to 100 kPa, 127°C. Calculate the changes

in specific internal energy, enthalpy ad entropy. The specific heats of air are Cp =

1.005 kJ/kgK and Cv = 0.718 kJ/kgK. Assume that Cp and Cv are constant over this

range of temperature.

Solution

Initial pressure 1 300 kPaP =

Initial temperature 1 227 C 227 273 500 K T = ∞ = + =
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Final pressure 2 100 kPaP =

Final temperature 2 127 C 127 273 400 K T = ∞ = + =
Change in specific entropy is found from Eq. (8.14) as

s2 – s1 = 2 2

1 1

ln lnp

T P
C R

T P
-

500 100
1.005ln 0.287 ln 0.54 kJ/kgK

400 300
= - =

Change in specific internal energy is obtained from Eq. (8.10) as

u2 – u1 = 2 1( )vC T T-

0.718(500 400) 71.8 kJ/kg= - =
Change in specific enthalpy is found from Eq. (8.11) as

h2 – h1 = 2 1( )pC T T-

 = 1.005(500 400) 100.5 kJ/kg- =

 Example 8.6 A constant volume chamber of 0.2 m3 capacity contains 1 kg of air initially at 10°C.

Heat is transferred to the gas until the temperature becomes 80°C. Find the changes

in internal energy, enthalpy and entropy. Also find the heat transferred, and the work

done. The specific heats of air are Cp = 1.005 kJ/kgK and Cv = 0.718 kJ/kgK. Assume

that Cp and Cv are constant over this range of temperature.

Solution

Mass of air 1 kg m =

Initial temperature 1 10 C 10 273 283 K T = ∞ = + =

Final temperature 2 80 C 80 273 353 K T = ∞ = + =
The changes in internal energy is (see Eq. (8.10))

2 1 2 1( )vU U mC T T- = -
1 0.718 (80 10) 50.26 kJ= ¥ ¥ - =

The changes in enthalpy is (see Eq. (8.11))

2 1 2 1( )pH H mC T T- = -

1 1.005 (80 10) 70.35 kJ= ¥ ¥ - =

Change in entropy for a constant volume process (see Eq. (8.13))

2
2 1

1

lnv

T
S S mC

T
- =

353
1 0.718ln 0.157 kJ/K

283
= ¥ =
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The heat transferred is same as the change in enthalpy.

1 2 70.35 kJQ - =

Application of the first law to this closed system for a change of state from 1 to 2 gives

1 2 1 2 2 1Q W U U- -= + -

or 1 2 1 2 2 1( )W Q U U- -= - -

70.35 50.26 20.09 kJ= - =

 Example 8.7 One kg of air is compressed in a closed system from 0.1 MPa, 20°C to 0.4 MPa

isothermally. Find the changes in internal energy, enthalpy and entropy. Also find the

work done, and the heat transferred. Assume that Cp and Cv are constant over this

range of temperature.

Solution

Initial pressure 1 0.1 MPaP =

Initial temperature 1 20 C 20 273 293 K T = ∞ = + =

Final pressure 2 0.4 MPaP =
Since internal energy and enthalpy of an ideal gas is a function of absolute temperature only, the

changes in internal energy and enthalpy both are zero for an isothermal process.

Change in entropy for the isothermal process (see Eq. (8.14))

2
2 1

1

ln
P

S S mR
P

- = -

0.4
1 0.287ln 0.398 kJ/K

0.1
= - ¥ = -

Work done during the isothermal process 1-2 is

1
1 2 1 1

2

ln
P

W PV
P

- =

1
1

2

ln
P

mRT
P

= 1 1 1PV mRT=È ˘Î ˚∵

1

0.1
1 0.287 293 ln 116.57 kJ

0.4
RT= ¥ ¥ = -

Negative sign physically signifies that the work is done on the air.

From the first law of thermodynamics, one can write

1-2 1 2 2 1Q W U U-= + -

1 2 116.57 kJW -= = - 2 1 0U U- =È ˘Î ˚∵

The heat transferred is same as the work done.
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 Example 8.8 One kg of air initially at 100 kPa and a volume of 1 m3 is heated at constant pressure

until the volume is tripled. It is then compressed isothermally until the volume is back

to its initial value. It is then cooled at constant volume until the pressure is again

100 kPa. Sketch the processes on P-V and T-S diagrams. Compute the entropy

changes for the individual processes, and also find the total entropy change. The

specific heats of air are 1.005 kJ/kgKpC =  and 0.718 kJ/kgKvC = . Assume that Cp

and Cv are constant over this range of temperature.

Solution

The processes on the P-V and T-S diagrams are shown in Fig. 8.1.

P
3

21

3 2

1

V S

T

Figure 8.1

Mass of air 1 kg m =

Initial pressure 1 100 kPaP =

Initial volume
3

1 1 m  V =
From the given conditions, we have

2 1 3 1 3 23 , andV V V V T T= = =
From Eq. (8.3), one can write

1 1 1PV mRT=

2 2 2P V mRT=

3 3 3P V mRT=
From the above three equations and the given conditions, we have

32 2

1 1 1

3
TT V

T T V
= = =

Entropy change for the constant pressure process 1-2 is given by Eq. (8.14)

2
2 1

1

lnp

T
S S mC

T
- =

1 1.005ln3 1.104 kJ/K= ¥ =
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Entropy change for the isothermal process 2-3 is given by Eq. (8.13)

3
3 2

2

ln
V

S S mR
V

- =

1
1 0.287ln = 0.315 kJ/K

3
= ¥ -

Entropy change for the constant volume process 3-1 is given by equation (8.13)

1
1 3

3

lnv

T
S S mC

T
- =

1
1 0.718ln = 0.789 kJ/K

3
= ¥ -

Total entropy change 1.104 0.315 0.789 0= - - =

 Example 8.9 Show that for an ideal gas the slope of the constant volume (isochoric) line on the

T-s diagram is more than that of the constant pressure (isobaric) line.

Solution The slope of constant volume line on the T-s diagram is 
v

T

s

∂Ê ˆ
Á ˜Ë ¯∂

 and that of constant

pressure line is .
P

T

s

∂Ê ˆ
Á ˜Ë ¯∂

From the thermodynamic property relation (Eq. (6.16)), we have

Tds du Pdv= +

or vTds C dT Pdv= +  ( Since for an ideal gas du = CvdT)

For constant volume process (dv = 0), the above equation becomes

vTds C dT=

or
vv

T T

s C

∂Ê ˆ
=Á ˜Ë ¯∂

(8.16)

From the thermodynamic property relation (Eq. (6.17)), we have

Tds dh vdP= -

or pTds C dT vdP= - ( Since for an ideal gas dh = CpdT)

For constant pressure process (dP = 0), the above equation becomes

pTds C dT=

or
pp

T T

s C

∂Ê ˆ
=Á ˜Ë ¯∂

(8.17)
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Since for an ideal gas, p v

v p

T T
C C

C C

Ê ˆ
> >Á ˜

Ë ¯
, from Eq. (8.16) and (8.17), we get

v P

T T

s s

∂ ∂Ê ˆ Ê ˆ
>Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂

 Example 8.10 An ideal gas initially at temperature T1 is heated at constant pressure to a temperature

T2. It is then expanded in a reversible process following the law PV = constant, until

the temperature once again T1. If the changes of entropy during the two processes

are equal, find the value of n.

Solution Change in specific entropy for constant pressure is found from Eq. (8.14) as

2
2 1

1

lnp

T
s s C

T
- =

or
1 1

2 2 1
2 1

1 1 2

ln ln ln
1

R R

T T T
s s R

T T T

g g

g gg

g

-
- -Ê ˆ Ê ˆ

- = = =Á ˜ Á ˜- Ë ¯ Ë ¯
Change in specific entropy for polytropic process is found from Eq. (8.13) as

3 3
3 2

2 2

ln lnv

T v
s s C R

T v
- = +

or 31
3 2

2 2

ln lnv

vT
s s C R

T v
- = + 3 1T T=È ˘Î ˚∵

or 1 1
2 1

1 2

ln ln
1 1

T TR R
s s

T n Tg
- = +

- -

1 1

1 1
3 2 2

2 3 1

n nv T T

v T T

- -
È ˘

Ê ˆ Ê ˆÍ ˙= =Á ˜ Á ˜Í ˙Ë ¯Ë ¯Í ˙Î ˚

∵

or ( )( )

( )
( )( )1 1

1 1
2 1

2 2

ln ln
1 1

n R

nT Tn
s s R

n T T

g

gg

g

-
- -Ê ˆ-

- = = Á ˜- - Ë ¯
Since the changes in entropy during the two processes are equal, we have

( )
( )( )1 1 1

1 1

2 2

ln ln

n RR

nT T

T T

gg

g g

-
-

- - -Ê ˆ Ê ˆ
=Á ˜ Á ˜Ë ¯ Ë ¯

or ( )( )1 1 1

n
R R

n

g g

g g

-
- =

- - -

or ( )1

n

n

g
g

-
- =

-

or
2

1
n

g

g
=

+
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 Example 8.11  The specific heats of a certain gas vary linearly with temperature and the variation

are given by vC a kT= +  and pC b kT= + , where a, b and k are constants and T is

in Kelvin. Show that for an isentropic expansion of this gas is given by

constanta kT b a
T e v

- =
where v is the specific volume of the gas.

Solution The characteristic gas constant can be found from Eq. (8.6) as

p vR C C b kT a kT b a= - = + - - = -

Change in specific entropy is found from Eq. (8.12) as

v

dT dv
ds C R

T v
= +

or ( ) ( )dT dv
ds a kT b a

T v
= + + -

or ( )dT dv
ds a kdT b a

T v
= + + -

Since for an isentropic process, change in entropy is zero, we have

0ds =

or ( ) 0
dT dv

a kdT b a
T v

+ + - =

or ( )ln ln constanta T kT b a v+ + - =

or constanta kT b a
T e v

- =

8.4 REAL GAS

As stated earlier from Boyle’s, Charles’s and Gay-Lussac’s experimental observations, it has been

found that P v T behaviour of many gases at low pressure and moderate temperatures can be

approximated quite well by the ideal-gas equation. This is because of the fact that at low pressure and

moderate temperature, the intermolecular force of attraction as well as the volume occupied by the

individual molecules compared with the total volume of the gas is very small. But at high pressure and

low temperature, the intermolecular force of attraction is noticeable and the volume occupied by the

individual molecules is comparable with the total volume of the gas. Therefore, the real gases deviate

from ideal gas behaviour at high pressure and low temperature.

van der Walls proposed the following equation of state for a real gas

( )
2

a
P V b mRT

V

Ê ˆ
+ - =Á ˜Ë ¯

(8.18)

where a and b are constants. The above equation is known as van der Waals equation of state. The

term
2

a

V
 takes into account the intermolecular forces of attraction and the constant b takes care the
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finite volume of the molecules. The term 
2

a

V
 is called the force of cohesion, whereas the constant b

is known as co-volume.

A virial equation of state presents the product PV as a series expansion. The most common

expansion is

( ) ( )
2

B T C TmRT
P

V V V
= + + + (8.19)

Important to note that B(T) represents the first-order correction to the ideal-gas law and hence

attention is focused on it.

SUMMARY

An ideal gas is defined as one for which the equation of state is

Pv  = RT

where P is the pressure, v  is the molar volume (i.e., volume per unit mole), R the

universal is gas constant, and T is the temperature of the gas in K

The equation of state of an ideal gas can also be expressed as

PV = nRT

PV = mRT

Pv = RT

where V is the total volume of the gas, n is the number of moles of the gas, m is the

mass of the gas and v specific volume of the gas.

Change in specific internal energy of a calorically perfect gas between states 1 and 2 is

-u u2 1  = VC T T2 1( )

Change in specific enthalpy of  a calorically perfect gas between states 1 and 2 is

-h h2 1  = PC T T2 1( ) 

Change in specific  entropy of a calorically perfect gas between states 1 and 2 is

-s s2 1  = +v

T V
C R

T V
2 2

1 1

ln ln

 = -p

T P
C R

T P
2 2

1 1

ln ln

= 2 2

1 1

ln + lnp v

V P
C C

V P

REVIEW QUESTIONS

8.1 What is an equation of state?

8.2 Define an ideal gas.

8.3 What is the characteristic gas constant?

8.4 What is the universal gas constant?
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8.5 Show that specific entropy change for an ideal gas can be expressed as

s2 – s1 = 2 2

1 1

ln lnp

T P
C R

T P
-

= 2 2

1 1

ln lnV

T V
C R

T V
+

8.6 Show that the entropy change for a polytropic process between the states 1 and 2, can be expressed as

s2 – s1 = 
( )( )

2

1

ln
1 1

-
- -

Tn
R

n T

g

g

8.7 Why does an isochoric curve plotted on a T–S diagram have a greater slope than an isobaric curve

at the same temperature?

8.8 Derive the expression of work transfer and heat transfer for an ideal gas in a reversible isothermal

process.

8.9 Express the changes in internal energy and enthalpy of an ideal gas in an isentropic process in terms of

the pressure ratio. Also find the expression of work transfer and heat transfer.

NUMERICAL PROBLEMES

8.1 A closed rigid tank contains 0.2 m
3
 of air initially at 100 kPa and 200 °C. 10 kJ of heat is added to the

air. The final pressure of air is 200 kPa. Calculate the work done.

8.2 0.03 kg of N2 gas contained in a cylinder is compressed from 1.01 bar, 15 °C to 4.2 bar reversibly and

isothermally. Sketch the process on P–v and T– S diagram. Calculate the change of entropy, heat

transfer and work done.

8.3 Air initially expands from 300 kPa, 50 °C reversibly and isothermally to a pressure of 150 kPa, then

reversibly and adiabatically to a pressure of 100 kPa. Sketch the processes on P – V and T – S

diagrams. Calculate the heat transfer and changes in internal energy and entropy for individual

processes.

8.4 One kg of air is contained in a piston–cylinder arrangement at 20 kPa and 50 °C. The gas undergoes

the following cyclic process:

1-2: constant volume heating until pressure is 75 kPa

2-3: Isentropic expansion to the initial pressure

3-1: Constant pressure cooling to the initial state

(i) Sketch P–V and T–S diagrams for the cycle.

(ii) Calculate the change of entropy, heat transfer and work done for the individual processes and

the cycle.

MULTIPLE-CHOICE QUESTIONS

8.1 The slope of constant pressure line of an ideal gas on T – S diagram is given by

(a) Cp/T (b) T/Cp

(c) S/T (d) T/S

8.2 The slope of constant volume line of an ideal gas on a T – S diagram is given by

(a) Cp/T (b) T/Cp

(c) S/T (d) T/CV
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8.3 The internal energy of an ideal gas is a function of only

(a) pressure (b) temperature ( absolute)

(c) volume (d) pressure and temperature

8.4 Which one of the following is the characteristic equation of a real gas?

(a)  Pv RT= (b) Pv nRT=

(c) ( )
2

a
P v b RT

v

æ ö+ - =ç ÷è ø (d) ( )
2

a
P v b RT

v

æ ö- + =ç ÷è ø





Air-Standard Cycles

9.1 INTRODUCTION

From the point of view of purpose of the cycles, they are classified into two: power cycles and

refrigeration cycles.

The devices that produce a net power output are called engines and the cycles on which engines

operate are called power cycles. On the other hand, devices that produce refrigeration are called

refrigerators (or air-conditioners, heat pumps). They are also operated on a cycle, which is called

refrigeration cycle.

On the basis of the phase of a working fluid, cycles are classified into two: gas cycles and vapour

cycles.

Cycles can also be classified into thermodynamic (closed) and mechanical (open) cycles. In

thermodynamic cycles, the working fluid is returned to the initial state at the end of the cycle and is

recirculated, whereas in mechanical cycles, the working fluid is renewed at end of the each cycle.

Familiar examples of gas power cycles are the Otto cycle and the Diesel cycle.

9.2 ANALYSIS OF POWER CYCLES

The study of power cycles is an exciting and important part of thermodynamics. The cycles of actual

devices are difficult to analyse because of the presence of friction and non-availability of sufficient time

for the establishment of equilibrium conditions during the cycle.

The complexities associated with the actual cycles can be significantly simplified with the following

approximations, commonly known as air-standard assumptions.

(i) The working fluid is air, which behaves like an ideal gas with constant specific heats.

(ii) The working fluid is continuously recirculated in a closed loop.

(iii) All the processes that make up the cycle are quasi-equilibrium.

(iv) The combustion process is replaced by a heat addition process from an external source.

(v) The exhaust process is replaced by a heat rejection process.

The cycle with the above-mentioned assumptions is often called an air-standard cycle.

CHAPTER

9



9.2 Engineering Thermodynamics and Fluid Mechanics

9.3 ENGINE TERMINOLOGY

The basic components of a reciprocating engine are shown in Fig. 9.1. The piston reciprocates in the

cylinder between two fixed positions called the top dead centre (TDC) and the bottom dead centre

(BDC). The piston is said to be at the top dead centre when it has moved to the position where the

cylinder volume is a minimum. When the piston has moved to the position of the maximum cylinder

volume, the piston is at the bottom dead centre. The bore of the cylinder is its diameter. The distance

between the TDC and the BDC is the largest distance that the piston can travel in one direction. The

stroke is the largest distance the piston moves in one direction. The fresh charge (air or air-fuel mixture)

is drawn into the cylinder through the intake valve, and the products of combustion are thrown out

from the cylinder through the exhaust valve. The minimum volume in the cylinder with piston at TDC

is called the clearance volume. The volume displaced by piston movement between TDC and BDC is

called the displacement volume. The ratio of the maximum volume formed in the cylinder to the

minimum volume is called the compression ratio r of the engine. That is,

r =
max

min

V

V

The mean effective pressure is another important term associated with reciprocating engines. It is

a fictitious pressure and is defined as that pressure which when acting on the piston during the entire

power stroke, would produce the same amount of net work as that produced during the actual cycle.

Wnet = MEP ¥ piston area ¥ stroke

Wnet = MEP ¥ displacement volume

Wnet = MEP ¥ (Vmax – Vmin)

MEP = 
net

max min

W

V V-
(9.1)

If the combustion of the air-fuel mixture is initiated by a spark plug,

the reciprocating engine is called a spark-ignition (SI) engine, and if the

combustion is by self-ignition as a result of compression of the mixture

above its self-ignition temperature, the engine is called a compression-

ignition (CI) engine.

9.4 OTTO CYCLE

The complexities associated with the actual spark-ignition (SI) engine can be significantly simplified

with the air-standard assumptions. The resulting cycle which closely resembles the actual operating

conditions is the ideal Otto cycle. It consists of two reversible adiabatic processes and two reversible

constant volume (isochors) processes. Different processes of the Otto cycle on the P– V and T –S

diagrams are shown in Fig. 9.2.

Exhaust
valve

Intake
valve

Bore

Stroke

Figure 9.1 Nomenclatures

for reciprocating

engines
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Air is compressed in the process 1–2 reversibly and adiabatically. Heat is then added to air reversibly

at constant volume in the process 2–3. Work is done by air in expanding reversibly and adiabatically

in process 3–4. Heat is then rejected by air reversibly at constant volume in the process 4–1, and the

system comes back to its initial state. Heat transfer processes have been substituted for the

combustion and blow-down processes of the engine. The intake and exhaust processes of the engine

cancel each other.

1

2

3

4

P

V

T

S

WE

Q1

WC

PV Cg =

Q2

V
= C

V
= C

1

2

3

4

WE
Q1

Q2WC

(a) (b)

Figure 9.2 Otto cycle on (a) P–V diagram and (b) T–S diagram

Let m be the fixed mass of air undergoing the cycle of operation.

Heat supplied = -1 3 2( )vQ mC T T

Heat rejected = -2 4 1( )vQ mC T T

Thermal efficiency of the cycle is

hOtto =
-

= = -1 2 2

1 1 1

1netW Q Q Q

Q Q Q

=
-

-
-

4 1

3 2

( )
1

( )

v

v

mc T T

mc T T

=
-

-
-

4 1

3 2

1
T T

T T

or hOtto =

-
-

-

4

1 1

32

2

1

1

1

T

T T

TT

T

                (9.2)

Now for reversible adiabatic process 1-2, we have

2

1

T

T
=

-
Ê ˆ
Á ˜Ë ¯

g 1

1

2

V

V
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And for reversible adiabatic process 3-4, we get

3

4

T

T
=

- -
Ê ˆ Ê ˆ

=Á ˜ Á ˜Ë ¯Ë ¯

g g1 1

4 1

3 2

V V

V V
= =È ˘Î ˚∵ 4 1 3 2,V V V V

Therefore, from the above two equations, one can write

2

1

T

T
= 3

4

T

T

or 4

1

T

T
= 3

2

T

T

Thus Eq. (9.2) become

hOtto =
-

- = -
Ê ˆ
Á ˜Ë ¯

g

1

1
2

1

2

1
1 1

T

T V

V

or hOtto =
--

g 1

1
1

r
(9.3)

where = 1

2

V
r

V
 is the compression ratio.

It is evident from Eq. (9.3) that the thermal efficiency of the Otto cycle is dependent only on the

compression ratio for a given value of specific heat ratio; the higher the compression ratio, the higher

the thermal efficiency. This is true for real spark-ignition engine, quantitatively. The variations of

thermal efficiency of the Otto cycle with compression ratio for different values of specific heat ratio

are shown in Fig. 9.3.  Figure 9.3 shows that the increase in the thermal efficiency is not so

pronounced beyond certain values of the compression ratios.

10
r

1

h

g = 1.3

g = 1.67 g = 1.4

Figure 9.3 Variation of efficiency of Otto cycle with compression ratio for different

values of specific heat ratio
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Note that the compression ratio of the spark-ignition engines is restricted below a certain limit

(about 8 to 10) because of the phenomenon of knocking. It is the premature ignition of the fuel which

produces an audible noise. Knocking occurs at higher compression ratios because at higher

compression ratios the temperature of the air-fuel mixture rises above the auto-ignition temperature of

the fuel during the combustion process. Thermal efficiency of the spark-ignition engines can be

improved by utilizing higher compression ratios (upto 12) without knocking by using fuel (gasoline)

blends that have good antiknock characteristics.

Another parameter that influences the thermal efficiency of the Otto cycle is the specific heat ratio.

Thermal efficiency of the Otto cycle increases with the specific heat ratio for a given compression

ratio. Figure 9.3 depicts that for a fixed compression ratio, Otto cycle using a monatomic gas as the

working fluid will have the highest thermal efficiency.

The actual efficiency of spark-ignition engine is much less than that of the Otto cycle.

Example 9.1 An engine equipped with a cylinder having a bore of 15 cm and a stroke of 45 cm

operates on an Otto cycle. If the clearance volume is 2000 cm
3
, compute the air

standard efficiency.

Solution Bore D = 15 cm, stroke L = 45 cm, Clearance volume, Vc = 2000 cm3

Displacement volume, Vs = 
2 2ð ð

(15) 45
4 4

D L = ¥ = 7952.156 cm3

Compression ratio, max

min

2000 7952.156
4.976

2000

c s

c

V V V
r

V V

+ +
= = = =

Air standard efficiency, hcycle = 
ã 1 0.4

1 1
1 1 0.4737

4.976r
-- = - = or 47.37%

Example 9.2 For an engine operating on air standard Otto cycle, the clearance volume is 10% of

the swept volume. If the specific heat ratio of air is 1.4, compute the air standard

cycle efficiency.

Solution

Clearance volume = 0.1 c sV V , where Vs is swept volume.

Specific heat ratio g = 1.4

Compression ratio of the engine is

+
= = = + = + =max

min

1 1 11
0.1

c s s s

c c s

V V V V V
r

V V V V

The air standard cycle efficiency is then

-
h = - = - =

g 1 0.4

1 1
1 1 0.6168 or 61.68%

11r

 Example 9.3 A spark-ignition engine working on air standard Otto cycle, the compression ratio is

7, and compression begins at 35°C, 100 kPa. The maximum temperature of the cycle

is 1100°C. Find (a) temperature and pressure at the cardinal points of the cycle,

(b) the heat supplied per kg of air (c) the cycle efficiency, (d) the work done per kg

of air, and (e) the mean effective pressure (MEP).
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Solution The four processes that form the Otto cycle on P-V diagram is shown in Fig. 9.4.

4

1

V

P

3

2

Q1

Q2

WE

WC

Figure 9.4

Compression ratio r = 7

Minimum pressure of the cycle P1 = 100 kPa

Minimum temperature of the cycle T1 = ∞ = + =35 C 35 273 308 K

Maximum temperature of the cycle T1 = ∞ = + =1100 C 1100 273 1373 K

 (a) Since the process 1–2 is isentropic, we have

2

1

T

T
=

-
Ê ˆ
Á ˜Ë ¯

g 1

1

2

V

V

or T2 = ( )
-

Ê ˆ
= ¥ =Á ˜Ë ¯

g 1

0.41
1

2

308 7 670.82 K
V

T
V

2

1

P

P
=
Ê ˆ
Á ˜Ë ¯

g

1

2

V

V

or P2 = ( )Ê ˆ
= ¥ =Á ˜Ë ¯

g

1.41
1

2

100 7 1524.53 kPa
V

P
V

For the constant volume process 2–3, we find that

2

2

P

T
= 3

3

P

T

or P3 = = ¥ = =3
2

2

1373
1524.53 3120.33 kPa 3.12 MPa

670.82

T
P

T

For the isentropic process 3–4, we have

3

4

T

T
=

-
-Ê ˆ

= = =Á ˜Ë ¯

g

g

1

1 0.44

3

7 2.178
V

r
V

or T4 = = =3 1373
630.39 K

2.178 2.178

T
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4

3

P

P
=
Ê ˆ
Á ˜Ë ¯

g

3

4

V

V

or P4 =
Ê ˆ

= = =Á ˜Ë ¯ Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯Ë ¯

g

g g g

3 3 3 3
3

4
14

23

V P P P
P

V rVV

VV

or P4 = =
1.4

3.12
0.205 MPa

7

(b) Heat supplied per kg of air is

Q1 = - = - =3 2( ) 0.718(1373 670.82) 504.17 kJ/kgvC T T

(c) The cycle efficiency is

hOtto =
( )-

- = - =
g 1 0.4

1 1
1 1 0.5408 or 54.08%

7r

(d) Work done per kg of air is

Wnet = 1 Otto 504.17 0.5408 272.66 kJ/kgQ h = ¥ =

(e) The MEP is found from Eq. (9.1) as

MEP = 
-1 2

netW

V V

We have

V1 =
¥

= = 31

1

0.287 308
0.884 m /kg

100

RT

P

V2 = = = 31 0.884
0.126 m /kg

7 7

V

Thus

MEP = = =
- -1 2

272.66
359.71 kPa

0.884 0.126

netW

V V

 Example 9.4 An engine working on Otto cycle is supplied with air at 1 bar, 27°C. The

compression ratio is 8. Heat supplied is 1500 kJ/kg. Calculate the maximum pressure

and temperature of the cycle, the cycle efficiency, and the mean effective pressure.

For air Cp = 1.005 kJ/kgK and Cv = 0.718 kJ/kgK.

Solution The four processes that form the Otto cycle on P-V diagram is shown in Fig. 9.5.
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4

1

V

P

3

2

Q1

Q2

WE

WC

Figure 9.5

Compression ratio r = 8

Minimum pressure of the cycle P1 = 1 bar

Minimum temperature of the cycle T1 = 27 °C = 27 + 273 = 300 K

Heat supplied to the cycle Q1 = 1500 kJ/kg

For the isentropic process 1–2, we have

2

1

T

T
=

-
Ê ˆ
Á ˜Ë ¯

g 1

1

2

V

V

or T2 =

-
Ê ˆ

= ¥ =Á ˜Ë ¯

g 1

0.41
1

2

300 8 689.22 K
V

T
V

2

1

P

P
=
Ê ˆ
Á ˜Ë ¯

g

1

2

V

V

or P2 =
Ê ˆ

= ¥ =Á ˜Ë ¯

g

1.41
1

2

1 8 18.38 bar
V

P
V

Heat supplied per kg of air is given by

Q1 = -3 2( )vC T T

or 1500 = -30.718( 689.22)T

or T2 = 2778.36K

For the constant volume process 2–3, we find that

2

2

P

T
= 3

3

P

T

or P3 = = ¥ =3
2

2

2778.36
18.38 74.09 bar

689.22

T
P

T

The cycle efficiency is

hOtto = - -
- = - =

g 1 1.4 1

1 1
1 1 0.5647 or 56.47%

8r
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Work done per kg of air is

Wnet = ¥ = ¥ =h1 1500 0.5647 847.05 kJ/kgOttoQ

The MEP is found from equation (9.1) as

MEP = 
-1 2

netW

V V

We have

V1 =
¥

= = 31

1

0.287 300
0.86 m /kg

100

RT

P

V2 = = = 31 0.86
0.11 m /kg

8 8

V

Thus

MEP = = = =
- -

2

1 2

847.05
1129.4 kN/m 11.294 bar

0.86 0.11

netW

V V

 Example 9.5 An engine working on the Otto cycle has an air standard cycle efficiency of 56% and

rejects 544 kJ/kg of heat. The pressure and temperature of air at the beginning of

compression are 0.1 MPa, and 30 °C respectively. Compute the compression ratio of

the engine, the work done per kg of air, the pressure and temperature at the end of

compression, and the maximum pressure in the cycle.

Solution The four processes that form the Otto cycle on P-V diagram is shown in Fig. 9.6.

4

1

V

P

3

2

Q1

Q2

WE

WC

Figure 9.6

Compression ratio r = 8

Minimum pressure of the cycle P1 = 0.1 MPa

Minimum temperature of the cycle T1 = 30 °C = 30 + 273= 303 K

Heat supplied to the cycle Q1 = 544 kJ/kg

Air standard cycle efficiency hOtto = 0.56
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The cycle efficiency is

hOtto =
-

- =
g 1

1
1 0.56

r

or r = 7.79

The thermal efficiency can also be expressed as

hOtto = - =2

1

1 0.56
Q

Q

or 2

1

Q

Q
= - =1 0.56 0.44

or Q1 = = =2 544
1236.36 kJ/kg

0.44 0.44

Q

Work done per kg of air is Wnet = Q1 ¥ hOtto = 1236.36 ¥ 0.56 = 692.36 kJ/kg

For the isentropic process 1–2, we have

2

1

T

T
=

-
Ê ˆ
Á ˜Ë ¯

g 1

1

2

V

V

or T ¢2 =

-
Ê ˆ

= ¥ =Á ˜Ë ¯

g 1

0.41
1

2

303 7.79 688.74 K
V

T
V

2

1

P

P
=
Ê ˆ
Á ˜Ë ¯

g

1

2

V

V

or P2 =
Ê ˆ

= ¥ =Á ˜Ë ¯

g

1.41
1

2

0.1 7.79 1.77 MPa
V

P
V

Again, Q1 = ( ) ( )- = - =3 2 30 718 688.74 1236.36 kJ/kgvC T T . T

or T3 = 2410.69 K

For the constant volume process 2–3, we can write

2

2

P

T
= 3

3

P

T

or P3 = ¥ = ¥ =3
2

2

2410.69
1.77 6.195 MPa

688.74

T
P

T
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 Example 9.6  (a) Show that the net shaft work output from the air-standard Otto cycle per unit

mass of air is given by 
-

-

È ˘
= - - +Í ˙

Î ˚
g

g

1 3
net 3 1 11v

T
W C T T r T

r
, where T3 and T1

are the maximum and minimum temperatures in the cycle and r is the

compression ratio.

(b) In practical engines T1 is fixed at ambient temperature and T3 is fixed by the

maximum temperature that can avoid the knocking phenomenon. Show that

for fixed values of T1 and T3, the compression ratio for maximum work output

per unit mass of air flowing round the cycle is given by 
-Ê ˆ

= Á ˜Ë ¯

g

1

2(1 )
1

3

T
r

T

Solution (a) The net shaft work output from the air-standard Otto cycle per unit mass of

air is given by (see Fig. 9.2)

Wnet = ( ) ( )- - -3 2 3 2v vC T T C T T (9.4)

For the isentropic process 1 Æ 2, we have

T2 =

-
-Ê ˆ

=Á ˜Ë ¯

g

g

1

11
1 1

2

V
T T r

V
(9.5)

Similarly, for the isentropic process , we get

T3 =

-
-Ê ˆ

=Á ˜Ë ¯

g

g

1

14
4 4

3

V
T T r

V
(9.6)

From Eqs. (9.4), (9.5) and (9.6), we have

Wnet =
-

-

È ˘
- - +Í ˙

Î ˚
g

g

1 3
3 1 11v

T
C T T r T

r

(b) For fixed values of T1 and T3, Wnett, will be maximum when =net 0
dW

dr

or
-

-

È ˘
- - + =Í ˙

Î ˚
g

g

1 3
3 1 11

0v

Td
C T T r T

dr r

or
- - - - -- - + - =g g

g g
1 1 ( 1) 1

1 3( 1) ( 1) 0T r T r

or
- -=g g 2

3 1T r T r

or - =g2(1 ) 1

3

T
r

T

or
-Ê ˆ

= Á ˜Ë ¯

g

1

2(1 )
1

3

T
r

T
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9.5 DIESEL CYCLE

The Diesel cycle was developed by Rudolf Diesel (1858–1913) in 1893. This cycle is extensively used

by large and small stationary engines. Most of the present day transport trucks, buses, and cars are

operate on diesel because of the low cost of the diesel oil.

Air is compressed in the process 1–2 reversibly and adiabatically. Heat is then added to air reversibly

at constant pressure in the process 2–3. Work is done by air in expanding reversibly and adiabatically in

the process 3–4. Heat is then rejected by air reversibly at constant volume in the process 4–1, and the

system comes back to its initial state. Heat transfer processes have been substituted for the combustion

and blow-down processes of the engine. The intake and exhaust processes of the engine cancel each

other. Different processes of the Otto cycle on P–V and T–S diagrams are shown in Fig. 9.7.

P

Q1

WE

WC

Q2

V S

T

1

2 3

4

p
c

=

v
c

=

WE

Q2

Q1

1

2

3

4
WC

(a) (b)

(a) (b)

Figure 9.7 Diesel cycle on (a) P–V diagram and (b) T–S diagram

Let m be the fixed mass of air undergoing the cycle of operation.

The constant-pressure heat addition Q1 = -3 2( )pmC T T

The constant-volume heat rejection Q2 = -4 1( )vmC T T

The thermal efficiency of the Diesel cycle is expressed as

hDiesel =
-

= = -net 1 2 2

1 1 1

1
W Q Q Q

Q Q Q

=
-

-
-

4 1

3 2

( )
1

( )

v

p

mC T T

mC T T

=
-

-
-g

4 1

3 2

1
( )

T T

T T

or hDiesel =

Ê ˆ
-Á ˜Ë ¯

-
Ê ˆ

-Á ˜Ë ¯

g

4

11

2 3

2

1
1

1

1

T

TT

T T

T

(9.7)
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The expression for the thermal efficiency is often written in terms of the compression ratio

r (= V1/V2) and the cut-off ratio rc (= V3/V2) which is defined as the ratio of volume at cut-off to the

clearance volume.

For the isentropic compression process 1–2, we have

-
-Ê ˆ

= =Á ˜Ë ¯

g

g

1

12 1

1 2

T V
r

T V

For the constant-pressure process 2–3, one can write

= =3 3

2 2

c

T V
r

T V

For the isentropic expansion process 3–4, we have

- - - -Ê ˆ Ê ˆ Ê ˆ Ê ˆ
= = = = Á ˜Á ˜ Á ˜ Á ˜ Ë ¯Ë ¯ Ë ¯ Ë ¯

g g g g1 1 1 1

3 3 34 2

3 4 1 2 1

cV V V rT V

T V V V V r

Substituting 32 4

1 2 3

, and
TT T

T T T
 in Eq. (9.7), we obtain

hDiesel =

Ê ˆÊ ˆ
-- Á ˜Á ˜Ë ¯ Ë ¯

- = -
Ê ˆ Ê ˆ

- -Á ˜ Á ˜Ë ¯ Ë ¯

g g

34 24

3 2 111 1

2 23 3

2 2

11
1 1

1 1

1 1

TT TT

T T TTT T

T TT T

T T

= ( )

-
-

-

Ê ˆ
-Á ˜Ë ¯

-
-

g

g

gg

1

1

1

1
1 1

1
1

c
c

c

r
r r

r

rr

or hDiesel =
-

-

-
-

-

g

g
g

1

1

11 1
1

1

c

c

r

rr
(9.8)

As cut-off ratio rc > 1, 
-
-

g

g

11

1

c

c

r

r
 is greater than unity. Therefore, for a given compression ratio r,

the efficiency of the Diesel cycle is less than that of an Otto cycle. For example, if r = 10 and rc = 2,

the Otto cycle efficiency is 60.2% and the Diesel cycle efficiency is 53.4%. In practice, however, a

compression ratio of 20 or so can be achieved in a diesel engine (compression ratio of the gasoline

engines is restricted below about 8 to 10); using r = 20 and rc = 2, we would find  h = 64.7%. Thus,

because of the higher compression ratio, a diesel engine typically operates at a higher efficiency than

a gasoline engine.

As the cut-off ratio rc increases, the Diesel cycle efficiency decreases.
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 Example 9.7 In a diesel engine the compression ratio is 14:1 and fuel is cut off at 7% of the stroke.

Find the air-standard efficiency of the engine. Take g for air = 1.4.

Solution The four processes that form the Otto cycle on P–V diagram is shown in Fig. 9.8.

P

Q1

WE

WC

Q2

V

1

2

4

3

Figure 9.8

Compression ratio = =1

2

14
V

r
V

Fuel is cut off at 7% of the stroke. It means

- = -3 2 1 20.07( )V V V V

or
- -

=3 2 1 2

2 2

( )
0.07

V V V V

V V

or
Ê ˆ

- = -Á ˜Ë ¯
3 1

2 2

1 0.07 1
V V

V V

or ( )= + - =3

2

1 0.07 14 1 1.91
V

V

Thus the cut-off ratio is rc = 1.91

Efficiency of the Diesel cycle is given by

hDiesel = -

-
-

-

g

g g1

11 1
1

1

c

c

r

rr

=
-

-
- = =

-

1.4

1.4 1

1 1 1.91 1
1 0.5973 59.73%

1.4 1.91 114

 Example 9.8 In an air standard Diesel cycle, the compression ratio is 15. Compression begins at

0.1 MPa, 40 °C. The heat added is 1.675 MJ/kg . Find (a) the maximum pressure and

temperature of the cycle, (b) the cut-off ratio, (c) the cycle efficiency, (d) the work

done per kg of air, and (e) the temperature at the end of the isentropic expansion.
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Solution The four processes that form the Otto cycle on P–V diagram is shown in Fig. 9.9.

3

Q2

Q1

1

2

4
WC

P

V

WE

Figure 9.9

Compression ratio r = 15

Minimum pressure of the cycle P1 = 0.1 MPa

Minimum temperature of the cycle T1 = 40 C 40 273 313 K∞ = + =

Heat supplied to the cycle Q1 = = ¥ 31.675 MJ/kg 1.675 10  kJ/kg

(a) For the isentropic process 1 – 2, we have

2

1

P

P
=
Ê ˆ
Á ˜Ë ¯

g

1

2

V

V

or P2 =
Ê ˆ

= ¥ =Á ˜Ë ¯

g

1.41
1

2

0.1 15 4.43 MPa
V

P
V

This is the maximum pressure of the cycle.

2

1

T

T
=

-
Ê ˆ
Á ˜Ë ¯

g 1

1

2

V

V

or T2 =

-
Ê ˆ

= ¥ =Á ˜Ë ¯

g 1

0.41
1

2

313 15 924.66 K
V

T
V

Heat supplied per kg of air is given by

Q1 = Cp(T3 – T2)

or 1.675 = 103 = 1.005 (T3 – 924.66)

or T3 = 2591.33 K

This is the maximum temperature of the cycle.

(b) For the constant pressure process 2-3, we can write

2

2

V

T
= 3

3

V

T

or 3

2

V

V
= = =3

2

2591.33
2.8

924.66

T

T
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The cut-off ratio is

(c) The cycle efficiency is rc = 2.8

hDiesel = -

-
-

-

g

g
g

1

11 1
1

1

c

c

r

rr

=
-

-
- =

-

1.4

1.4 1

1 1 2.8 1
1 0.5665 or 56.65%

1.4 2.8 115

(d) Work done per kg of air is found to be

Wnet = ¥ h = ¥ ¥ =3
1 1.675 10 0.5665 948.89 kJ/kgDieselQ

(e) For the isentropic process 3–4, we have

3

4

T

T
=

- -
Ê ˆ Ê ˆ

=Á ˜ Á ˜Ë ¯ Ë ¯

g g1 1

4 1 2

3 2 3

V V V

V V V

or 3

4

T

T
=

-
Ê ˆ Ê ˆ= Á ˜Á ˜ Ë ¯Ë ¯

g 1 0.4
15

2.8c

r

r

or T4 = =
Ê ˆ
Á ˜Ë ¯

0.4

2591.33
1324.19 K

15

2.8

 Example 9.9 In an air standard Diesel cycle, the pressure and temperature at the intake are

100 kPa bar and 27 °C respectively. The maximum pressure in the cycle is 4 MPa

and heat supplied during the cycle is 1000 kJ/kg. Determine (a) the compression

ratio, (b) the temperature at the end of the compression, (c) the temperature at the

end of the combustion, (d) the cut-off ratio, and (e) the air-standard efficiency.

Assume g = 1.4 and Cp = 1.005 kJ/kg-k for air.

Solution The four processes that form the Otto cycle on P–V diagram is shown in Fig. 9.10.

3

Q2

Q1

1

2

4
WC

P

V

WE

Figure 9.10
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Minimum pressure of the cycle P1 = 100 kPa

Minimum temperature of the cycle T1 = 27 °C = 27 + 273 = 300 K

Maximum pressure of the cycle P3 = P2 = 4 MPa = 4000 kPa

Heat supplied to the cycle Q1 = 1000 kJ/kg

(a) For the isentropic process 1–2, we have

2

1

P

P
=
Ê ˆ
Á ˜Ë ¯

g

1

2

V

V

or 1

2

V

V
=
Ê ˆ Ê ˆ= =Á ˜Á ˜ Ë ¯Ë ¯

g

1 1

1.4
2

1

4000
13.94

100

P

P

Thus, the compression ratio is r = 13.94

(b) For the isentropic process 1–2, we get

2

1

T

T
=

-
Ê ˆ
Á ˜Ë ¯

g 1

1

2

V

V

or T2 =

-
Ê ˆ

= ¥ =Á ˜Ë ¯

g 1

0.41
1

2

300 13.94 860.65 K
V

T
V

This is the temperature at the end of the compression.

(c) Heat supplied per kg of air is given by

Q1 = Cp(T3 – T2)

or 1000 = 1.005(T3 – 860.65)

or T3 = 1855.67 K

This is the temperature at the end of the combustion.

(b) For the constant pressure process 2–3, we can write

2

2

V

T
= 3

3

V

T

or 3

2

V

V
= = =3

2

1855.67
2.16

860.65

T

T

The cut-off ratio is rc = 2.16

(c) The cycle efficiency is

hDiesel = -

-
-

-

g

g
g

1

11 1
1

1

c

c

r

rr

=
-

-
- =

-

1.4

1.4 1

1 1 2.16 1
1 0.5838 or 58.38%

1.4 2.16 113.94
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 Example 9.10 Show that the mean effective pressure of an air-standard Diesel cycle is

- - -
=

- -

g g
g

g
1

( 1) ( 1)
MEP

( 1)( 1)

c cr r r r
P

r

where  is the compression ratio, rc is the cut-off ratio, g is the specific heat ratio, and

P1 is the pressure at the beginning of the compression.

Solution Let m kg be the mass of working fluid.

The heat addition for the diesel cycle is given by (see Fig. 9.7)

= -1 3 2( )pQ mC T T

Efficiency of a Diesel cycle is given by

h = -

-
= -

-

g

g1
1

11 1
1

1

net c

k
c

W r

Q rr

or Wnet = -

È ˘-
h = - -Í ˙

-Í ˙Î ˚

g

g
1 3 2 1

11 1
( ) 1

1

c
p k

c

r
Q mC T T

rr

= -

È ˘-
- -Í ˙

- -Í ˙Î ˚

g

g

g

g
3 2 1

11 1
( ) 1

1 1

c

c

rR
m T T

k rr

È ˘
=Í ˙-Î ˚

∵

g

g 1
p

R
C

= -

È ˘-
- -Í ˙

- -Í ˙Î ˚

g

g

g

g g

2
3 2 1

11 1
( ) 1

1 1

c

c

rP
V V

rr

Mean effective pressure is given by

MEP = 
-

È ˘-
= - -Í ˙

- - - -Í ˙Î ˚

g

g

g

g g

2
3 2 1

1 2 1 2

11 1
( ) 1

( 1)( ) 1

net c

c

W rP
V V

V V V V rr

= -

È ˘-
- -Í ˙

- - -Í ˙Î ˚

gg

g

g

g g

1

1

11 1
( 1) 1

( 1)( 1) 1

c
c

c

rPr
r

r rr

È ˘
= = =Í ˙

Î ˚
∵

g 31
2 1

2 2

,   and c

VV
P P r r r

V V

=
- - -
- -

g g
g

g
1

( 1) ( 1)

( 1)( 1)

c cr r r r
P

r
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9.6 COMPARISON OF OTTO AND DIESEL CYCLE

Otto and Diesel cycles can be compared on the basis of either the same compression ratio or the same

maximum pressure and temperature.

For the same compression ratio and heat rejection, Otto cycle and Diesel cycle on the P–V and T–s

diagrams are shown in Fig. 9.11. Here,

1-2-3-4 -Otto cycle

1-2-5-4 -Diesel cycle

1

2

4

P

V

2

3
3

4

1

T5

S
C

=

Pv Cg =

S
C=

V
C

=

P = C

V C=

5

S

Figure 9.11 Comparison of Otto and Diesel Cycle for the same compression ratio

For the same heat rejection, the higher the heat addition, the higher is the cycle efficiency. In the

T–s diagram, the area under 2-3 represents heat addition for the Otto cycle, the area under 2-5

represents heat addition for the Diesel cycle.

Since the area under 2-3 is greater than that of 2-5, the efficiency of Otto cycle is greater than that

of Diesel cycle.

Otto Dieselh > h

For the same maximum pressure and temperature and heat rejection, Otto cycle and Diesel cycle

on the P–V and T–s diagrams are shown in Fig. 9.12. Here,

1-2-3-4 -Otto cycle

1-5-3-4 -Diesel cycle

1

2 4

P

V

2

3

3

4

1

T

5

Pv Cg =

V
C=

P = C

V C=

5

S

Pmax

Tmax

Figure 9.12 Comparison of Otto and Diesel Cycle for the same maximum pressure and temperature
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For the same heat rejection, the higher the heat addition, the higher is the cycle efficiency. In the

T–s diagram, the area under 2-3 represents heat addition for the Otto cycle, the area under 5-3

represents heat addition for the Diesel cycle.

Since the area under 5-3 is greater than that of 2-3, the efficiency of Diesel cycle is greater than

that of Otto cycle.

Diesel Ottoh > h

SUMMARY

The air-standard assumptions reduce the complexities associated with the actual

cycles.

In reciprocating engine, the piston reciprocates in the cylinder between two fixed

positions called the top dead centre (TDC) and the bottom dead centre (BDC). The

piston is said to be at the top dead centre when it has moved to the position where the

cylinder volume is a minimum. When the piston has moved to the position of

maximum cylinder volume, the piston is at the bottom dead centre. The bore of the

cylinder is its diameter. The distance between the TDC and the BDC is the largest

distance that the piston can travel in one direction. The stroke is the largest distance

the piston moves in one direction.

The compression ratio r of the reciprocating engine is the ratio of the maximum volume

formed in the cylinder to the minimum volume.

r = max

min

V

V

The mean effective pressure is a fictitious pressure and is defined as that pressure

which when acting on the piston during the entire power stroke, would produce the

same amount of net work as that produced during the actual cycle.

MEP = net

max min

W

V V-

The Otto cycle is the ideal cycle for spark-ignition (SI) engine. It consists of four

processes: isentropic compression, quasi-equilibrium constant-volume heat

addition, isentropic expansion and quasi-equilibrium constant-volume heat rejection.

The thermal efficiency of the Otto cycle can be expressed as

hOtto  = 
g --

1

1
1

r

where r is the compression ratio and g is the specific heat ratio. The thermal efficiency

of an Otto cycle is dependent only on the compression ratio for a given value of specific

heat ratio; the higher the compression ratio, the higher the thermal efficiency.

The Diesel cycle is the ideal cycle for compression-ignition (CI) engine. The difference

between the diesel and the Otto cycle is that, in the Diesel cycle, the heat is added

during a constant-pressure process.

The thermal efficiency of the Diesel cycle can be expressed as
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hDiesel  = 
g

g -

-
-

g -1

11 1
1

1

c

c

r

rr

where rc is the cutoff ratio and is defined as the ratio of cylinder volume to the volume

of the cylinder when the fuel injection is cut-off. The diesel cycle efficiency decreases

with increase in the cut-off ratio.

The efficiency of the Diesel cycle is less than that of the Otto cycle for the same

compression ratio and heat rejection. On contrary, for the same maximum pressure

and temperature, and heat rejection, the efficiency of the Diesel cycle is greater than

that of the Otto cycle.

REVIEW QUESTIONS

9.1 Define the compression ratio.

9.2 What is an air-standard cycle?

9.3 State the four processes of the Otto cycle.

9.4 State the four processes of the Diesel cycle.

9.5 Sketch an air-standard Otto cycle on P–V and T–S diagrams.

9.6 Sketch an air-standard Diesel cycle on P–V and T–S diagrams.

9.7 How does the Diesel cycle differ from the Otto cycle?

9.8 Define the cut-off ratio for an air-standard Diesel cycle.

9.9 Derive an expression for the efficiency of an air-standard Otto cycle in terms of its compression ratio.

9.10 Derive an expression for the efficiency of an air-standard Diesel cycle.

9.11 For the same compression ratio and heat rejection, explain with the help of P–V and T–s diagrams

why the efficiency of Otto cycle is greater than that of Diesel cycle.

9.12 For the same maximum pressure and temperature of the cycle and the same heat rejection, which

cycle is more efficient: Otto or Diesel? Explain with the help of P–v and T–s diagrams.

NUMERICAL PROBLEMS

9.1 The bore and stroke of a four-stroke spark ignition engine are 250 mm and 300 mm respectively. The

clearance volume is 0.002 m
3
. If the specific heat ratio k = 1.4, compute the air standard efficiency.

9.2 A four-cylinder petrol engine working on an air-standard Otto cycle has a swept volume of 2000 cm
3
,

and the clearance volume in each cylinder is 60 cm
3
. Determine the cycle efficiency.

9.3 For an engine operating on air-standard Otto cycle, the clearance volume is 15% of the swept volume.

If the specific heat ratio of air is 1.4, compute the air-standard cycle efficiency.

9.4 In an air-standard Otto cycle the compression ratio is 8.5, and compression begins at 27 °C, 0.1 MPa.

The heat addition to the cycle is 1500 kJ/kg. Find (a) temperature and pressure at the cardinal points of

the cycle, (b) the cycle efficiency, and (c) the work done per kg of air.

9.5 In an air-standard Otto cycle the compression ratio is 7.5, and the temperature, the pressure and volume

at the beginning of he compression stroke are 27 °C, 0.1 MPa and 0.25 m
3
 respectively. The maximum

temperature of the cycle is 2727 °C. Find (a) the work done and (b) the cycle efficiency.

9.6 The four temperatures in an Otto cycle (Fig. 9.2) using air are T1 = 300 K, T2 = 754 K, T3 = 1600 K, T4 =

637 K. A pressure of exists at state 1. Find (a) pressure at state 2 (b) the heat added to the cycle per

kg of air, and (c) the compression ratio of the cycle. Assume constant specific heats.
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9.7 In an air-standard Diesel cycle, the compression ratio is 18. Compression begins at 0.1 MPa, 27 °C. The

cut-off ratio is 2. Find (a) the maximum temperature of the cycle, (b) the work done per kg of air, and

(c) the cycle efficiency.

9.8 In an air standard Diesel cycle, the compression ratio is 15. Compression begins at 0.1 MPa, 27 °C. The

maximum temperature of the cycle is 1727 °C. Find   (a) the work done per kg of air, and (b) the cycle

efficiency.

9.9 In an air-standard Diesel cycle, the compression begins at 0.1 MPa, 300 K. The maximum temperature of

the cycle is 1800 K. The heat addition to the cycle is 700 kJ/kg. Find the cycle efficiency.

9.10 In an air-standard Diesel cycle, the compression ratio is 15. The compression begins at 0.1 MPa, 300 K.

The maximum temperature of the cycle is 1800 K. The heat addition to the cycle is 1200 kJ/kg. Find

(a) the maximum pressure and temperature of the cycle, (b) the cut-off ratio, (c) the cycle efficiency, and

(d) the work done per kg of air.

MULTIPLE-CHOICE QUESTIONS

9.1 A petrol engine theoretically operates on

(a) constant pressure cycle (b) constant volume cycle

(c) constant temperature cycle (d) constant entropy cycle

9.2 A Diesel engine theoretically operates on

(a) constant pressure cycle (b) constant volume cycle

(c) constant temperature cycle (d) constant entropy cycle

9.3 The cycle with constant volume heat addition and heat rejection is also called

(a) Carnot cycle (b) Joule cycle

(c) Rankine cycle (d) Otto cycle

9.4 The cycle with constant pressure heat addition and constant volume heat rejection is also called

(a) Carnot cycle (b) Diesel cycle

(c) Rankine cycle (d) Otto cycle

9.5 Air-standard efficiency of an Otto cycle is dependent upon

(a) ratio of specific heats (b) cut off ratio

(c) compression ratio (d) both (a) and (c)

9.6 For the same compression ratio and heat rejection, the efficiency of Otto cycle is

(a) greater than Diesel cycle (b) less than Diesel cycle

(c) equal to Diesel cycle (d) none of the above

9.7 For the same maximum pressure and temperature of the cycle  and for the same heat rejection, the

efficiency of Otto cycle is

(a) greater than Diesel cycle (b) less than Diesel cycle

(c) equal to Diesel cycle (d) none of the above

9.8 Air-standard efficiency of a diesel cycle is dependent upon

(a) ratio of specific heats (b) cut-off ratio

(c) compression ratio (d) all of the above

9.9 A cycle consisting of two isentropic and two constant volume processes is known as

(a) Otto cycle (b) Diesel cycle

(c) Joule cycle (d) Rankine cycle

9.10 A cycle consisting of two isentropic, one constant volume and one constant pressure processes is

known as



Air-Standard Cycles 9.23

(a) Otto cycle (b) Diesel cycle

(c) Joule cycle (d) Rankine cycle

9.11 The efficiency of diesel cycle with decrease in cut off

(a) increases (b) decreases

(c) remains unaffected (d) first increases and then decreases





Power Cycles

10.1 INTRODUCTION

Various thermodynamic cycles are developed by scientists and researchers to achieve a predetermined

objective. From this point of view, they are classified into two different categories: power cycles and

refrigeration cycles.

On the basis of the phase of a working fluid, cycles are further classified into two: gas cycles and

vapour cycles.

Cycles can also be classified into thermodynamic (closed) and mechanical (open) cycles. In ther-

modynamic cycles, the working fluid is returned to the initial state at the end of the cycle and is re-

circulated, whereas in mechanical cycles, the working fluid is renewed at the end of each cycle.

Since the working substance in a vapour power cycle is steam/water, it is often referred as the

steam power cycle. Steam has many desirable characteristics such as high enthalpy of evaporation,

low cost, easy availability.

The four basic components of a steam power plant are boiler, turbine, condenser and pump—all

are put in a logical sequence as shown below in Fig. 10.1.

Water at an ambient temperature is supplied to the boiler by means of a pump. Heat is added (Q1) to

the water in the boiler to convert the working substance to steam. Steam so produced, having high

pressure and temperature, is allowed to expand in the turbine. Expansion of the steam in the turbine

causes the turbine blades to be rotated thus giving external work as output (WT). This mechanical work

is converted to the electrical energy by coupling a generator with the rotor of the turbine. The pressure

and temperature of the steam after expansion by turbine comes down and the condition of steam

becomes wet. However, to facilitate complete conversion of steam into water, further cooling is re-

quired at constant pressure and temperature (by rejecting latent heat). This is accomplished in the

condenser. Condenser is nothing but a heat exchanger that uses two fluids having different temperature

for mutual interaction of heat. The steam rejects latent heat (Q2) for complete conversion to water. This

water at low pressure and temperature is fed back to the boiler for further use by means of a feed pump,

requiring some work (WP) to be expended. This is how the cycle is continued.

CHAPTER

10
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Turbine

Boiler

Condenser

Pump

WT

WP

Q1

Q2

1

2

3

4

Figure 10.1 Schematic arrangement of simple steam power plant

10.2 CARNOT VAPOUR POWER CYCLE

A Carnot vapour power cycle comprises of two reversible isothermal and two reversible adiabatic

processes as shown in Fig. 10.2. Dry saturated steam enters the turbine and expands reversibly and

adiabatically to condenser pressure. The steam is then condensed at constant pressure and temperature.

The wet steam leaving the condenser is then compressed reversibly and adiabatically into the boiler

pressure. The saturated liquid is then evaporated in the boiler to complete the cycle.

P
1

23

4

V S

T
1

23

4

Figure 10.2 Carnot Vapour Cycle on P–v and T–s diagrams
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A Carnot cycle is not practicable for a steam power plant because of the following drawbacks:

(i) The isentropic compression process involves the compression of wet steam to a saturated

liquid. It is not practical to design a pump that can handle wet steam.

(ii) The rate of delivery of work is less, because of very large pump work.

(iii) The turbine that takes saturated vapour at the inlet produces wet steam with low quality. Thus the

turbine has to handle steam with high moisture content. The impingement of liquid droplets on the

turbine blades causes the erosion of the blades.

10.3 RANKINE CYCLE

The Rankine cycle is an ideal cycle for vapour cycles. The cycle is shown in Fig. 10.3 on P–v, T–s,

and h–s diagrams. The Rankine cycle comprises of the following processes:

4–1: Reversible constant pressure heat addition in a boiler

1–2: Reversible adiabatic expansion in a turbine

2–3: Reversible constant pressure heat rejection in a condenser

3–4: Reversible adiabatic compression in a pump

Dry saturated steam enters the turbine and expands reversibly and adiabatically to condenser pres-

sure. The steam is then condensed at constant pressure and temperature to a saturated liquid. The

saturated liquid leaving the condenser is then pumped reversibly and adiabatically into the boiler

pressure. The compressed liquid is first heated to the saturation temperature at boiler pressure and

then evaporated to the state 1 to complete the cycle.

p1

1

2

3
4

p2

h

S

P

V

T

S

1

23 4

1

2
3

4

Figure 10.3 Rankine Cycle on P–v, T–s and h–s diagram

10.4 RANKINE CYCLE EFFICIENCY

In the thermodynamic analysis of power cycles, our main objective is to estimate the thermal effi-

ciency. The thermal efficiency measures how successfully the energy input to the working fluid

passing through the boiler is converted to net work output.
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Considering unit mass of working fluid and neglecting the changes in kinetic and potential energy,

the first law of thermodynamics applied to each of the steady-flow devices (Fig. 10.1) gives

Boiler:

+ =1 4 1Q h h

or = -1 1 4Q h h (10.1)

Turbine:

= +1 2 Th h W

or = -1 2TW h h (10.2)

Condenser:

= +2 2 1h Q h

or = -2 2 3Q h h (10.3)

Pump:

+ =3 4Ph W h

or = -4 3PW h h (10.4)

The efficiency of the Rankine cycle is given by

- - --
h = = =

-
1 2 4 3

1 1 1 4

( ) ( )net T PW h h h hW W

Q Q h h
 (10.5)

The way to determine the enthalpy change across the pump is to use the thermodynamic property

relation Tds = dh – vdP for an isentropic process. It becomes

=dh vdP

or D = Úh vdP

The pump handles liquid which is incompressible (specific volume is independent of pressure).

Therefore, one can write

D = Dh v P

or - = -4 3 3 1 2( )h h v P P (10.6)

Note that the work required in the pumping process (Pump work) is quite small compared to the

turbine work and is sometimes neglected. Then, we have @4 3h h .

The efficiency of the Rankine cycle then becomes

-
h =

-
1 2

1 4

h h

h h
(10.7)
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 Example 10.1 A steam power plant is designed to operate on

Rankine cycle. Steam enters the turbine as

saturated vapour at 30 bar and leaves as saturated

liquid in the condenser at 10 kPa. The mass flow

rate of steam is 1 kg/s. Determine the net power

output of the cycle and the thermal efficiency of

the Rankine cycle.

Solution

The T-s diagram of the Rankine cycle is shown in the Fig 10.4.

From the saturated steam table based on pressure (Appendix 1.2),

it is found that at 30 bar

= =1 12804.1 kJ/kg, 6.1878 kJ/kgKh s ,

Similarly from Appendix 1.2, we get at 10 kPa

= = = =30.6491 kJ/kgK, 8.1510  kJ/kgK, 191.8 kJ/kgf g fs s h h ,

= = = 3
32392.8 kJ/kg, 0.00101 m /kgfg fh v v

To locate state 2, we recognize that = =1 2 6.1878 kJ/kgK.s s  Hence,

( )=
=

= + -
10

10
1 2P kPa

P kPa

f g fs s x s s

( )= + -26.1878 0.6491 8.1510 0.6491x

\ =2 0.7383x

This allows us to find the specific enthalpy at the exit from the turbine, h2 to be

= + = + ¥ =2 2 191.8 0.7383 2392.8 1958.4 kJ/kgf fgh h x h

The specific work output from the turbine is

= - = - =1 2 2804.1 1958.4 845.7 kJ/kgTW h h

The pump work requirement for this ideal cycle is (refer to Fig. 10.1)

( ) ( )3 1 2 0.00101 30 100 10 3.02 kJ/kgPW v P P= - = ¥ - =

Net work output of the cycle is = - = - =845.7 3.02 842.68 kJ/kgnet T PW W W

Net power output of the cycle is = ¥ mass flow rate of steamnetW

= ¥ =842.68 1 842.68 kW

The specific enthalpy at the pump outlet, state 4, is the inlet specific enthalpy h3 plus WP. Thus,

4 3 191.8 3.02 194.82 kJ/kgPh h W= + = + =

P2 = 10 kPa

P1 = 30 bar
T

S

1

2
3

4

Figure 10.4
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To calculate the thermal efficiency, we must know the boiler heat input. It is

= - = - =1 1 4 2804.1 194.82 2609.28 kJ/kgQ h h

The thermal efficiency of the Rankine cycle is then calculated to be

h = = =
1

842.68
0.3230 or 32.3%

2609.28

netW

Q

 Example 10.2 A thermal power plant is to be operated on an ideal Rankine cycle. Steam enters the

turbine at 30 bar and 400°C and leaves as saturated liquid in the condenser at 10 kPa.

The mass flow rate of steam is 1.5 kg/s. Determine the net power output of the cycle

and the thermal efficiency of the Rankine cycle.

Solution

The T-s diagram of the Rankine cycle is shown in the Fig 10.5.

P2 = 10 kPa

P1 = 30 bar
T

S

1

2
3

4

400 °C

Figure 10.5

From the superheated steam table (Appendix 1.3), it is found that at 30 bar and  400°C

= =1 13230.9 kJ/kg, 6.9212 kJ/kgKh s ,

From the saturated steam table based on pressure (Appendix 1.2), it is found that at 10 kPa

= = = =30.6491 kJ/kgK, 8.1510  kJ/kgK, 191.8 kJ/kgf g fs s h h

= = = 3
32392.8 kJ/kg, 0.00101 m /kgfg fh v v

To locate state 2, we recognize that = =1 2 6.9212 kJ/kgK.s s  Hence,

( )=
=

= + -
10

10
1 2P kPa

P kPa

f g fs s x s s

( )= + -26.9212 0.6491 8.1510 0.6491x

\ =2 0.8361x
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This allows us to find the specific enthalpy at the exit from the turbine, h2 to be

= + = + ¥ =2 2 191.8 0.8361 2392.8 2192.42 kJ/kgf fgh h x h

The specific work output from the turbine is

= - = - =1 2 3230.9 2192.42 1038.48 kJ/kgTW h h

The pump work requirement for this ideal cycle is (refer to Fig. 10.1)

( ) ( )3 1 2 0.00101 30 100 10 3.02 kJ/kgPW v P P= - = ¥ - =

Net power output of the cycle is = ¥ mass flow rate of steamnetW

( )= - ¥ mass flow rate of steamT PW W

( )= - ¥ =1038.48 3.02 1.5 1553.19 kW

The specific enthalpy at the pump outlet, state 4, is the inlet specific enthalpy h3 plus Wp. Thus,

4 3 191.8 3.02 194.82 kJ/kgPh h W= + = + =

To calculate the thermal efficiency, we must know the boiler heat input. It is

= - = - =1 1 4 3230.9 194.82 3036.08 kJ/kgQ h h

The thermal efficiency of the Rankine cycle is then calculated to be

-
h = = =

1

1038.48 3.02
0.3411 or 34.11%

3036.08

netW

Q

 Example 10.3 An ideal Rankine cycle operating between temperature of 500°C and 50°C. Calculate

the cycle efficiency and the quality of steam at the turbine outlet if the pump outlet

pressure is 2 MPa.

Solution The T-s diagram of the Rankine cycle is shown in the Fig 10.6.

50 °C

P1 = 2 MPa
T

S

1

2
3

4

500 °C

Figure 10.6
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From the superheated steam table (Appendix 1.3), it is found that at 2 MPa and 500°C

= =1 13467.6 kJ/kg, 7.4317 kJ/kgKh s

From the saturated steam table based on temperature (Appendix 1.1), it is found that at 50°C

= = = =30.7036 kJ/kgK, 8.0771  kJ/kgK, 209.3 kJ/kgf g fs s h h

= = = =3
3 22382.8 kJ/kg, 0.001012 m /kg, 0.01235 MPafg fh v v P

To locate state 2, we recognize that  Hence,

( )
10 kPa

10 kPa
1 2P

P

f g fs s x s s
=

=

= + -

( )= + -27.4317 0.7036 8.0771 0.7036x

\ =2 0.9125x

This allows us to find the specific enthalpy at the exit from the turbine, h2 to be

= + = + ¥ =2 2 209.3 0.9125 2382.8 2383.8 kJ/kgf fgh h x h

The specific work output from the turbine is

= - = - =1 2 3467.6 2383.6 1084 kJ/kgTW h h

The pump work requirement for this ideal cycle is (refer to Fig. 10.1)

( ) ( ) 3
3 1 2 0.001012 2 0.01235 10 2.01 kJ/kgPW v P P= - = ¥ - ¥ =

The specific enthalpy at the pump outlet, state 4, is the inlet specific enthalpy h3 plus WP. Thus,

4 3 209.3 2.01 211.31 kJ/kgPh h W= + = + =

The thermal efficiency of the Rankine cycle is then calculated from equation (10.5) as

- -
h = = = =

- -1 1 4

1084 2.01
0.3323 or 33.23%

3467.6 211.31

net T PW W W

Q h h

 Example 10.4 A steam power plant is designed to operate on Rankine cycle. Steam enters the

turbine at 4 MPa and 500°C and leaves as saturated liquid in the condenser at 10 kPa.

Calculate (a) the thermal efficiency with pump work included, (b) the thermal

efficiency neglecting pump work, and (c) the percentage error in efficiency

neglecting pump work.

Solution The T-s diagram of the Rankine cycle is shown in the Fig 10.7.
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P2 = 10 kPa

P1 = 4 MPa
T

S

1

2
3

4

500 °C

 Figure 10.7

From the superheated steam table (Appendix 1.3), it is found that at 4 MPa and 500°C

= =1 13445.3 kJ/kg, 7.0901 kJ/kgKh s

From the saturated steam table based on pressure (Appendix 1.2), it is found that at 10 kPa

= = = =30.6491 kJ/kgK, 8.1510  kJ/kgK, 191.8 kJ/kgf g fs s h h

= = = 3
32392.8 kJ/kg, 0.00101 m /kgfg fh v v

To locate state 2, we recognize that = =1 2 7.4317 kJ/kgKs s . Hence,

( )=
=

= + -
10

10
1 2P kPa

P kPa

f g fs s x s s

( )= + -27.0901 0.6491 8.1510 0.6491x

\ =2 0.8586x

This allows us to find the specific enthalpy at the exit from the turbine, h2 to be

= + = + ¥ =2 2 191.8 0.8586 2392.8 2246.26 kJ/kgf fgh h x h

The specific work output from the turbine is

= - = - =1 2 3545.3 2246.26 1199.04 kJ/kgTW h h

(a) The pump work requirement for this ideal cycle is (refer to Fig. 10.1)

( ) ( )3
3 1 2 0.00101 4 10 10 4.03 kJ/kgPW v P P= - = ¥ ¥ - =

The specific enthalpy at the pump outlet, state 4, is the inlet specific enthalpy h3 plus WP. Thus,

4 3 191.8 4.03 195.83 kJ/kgPh h W= + = + =

The thermal efficiency of the Rankine cycle is then calculated from equation (10.5) as

h = = = =
- -1 1 4

1199.04
0.369 or 36.9%

3445.3 195.83

net netW W

Q h h
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(b) Neglecting the pump work, we have ª =4 3 191.8 kJ/kgh h

Then the thermal efficiency of the Rankine cycle becomes

h = = = =
- -1 1 4

1199.04
0.3685 or 36.85%

3445.3 191.8

net netW W

Q h h

(c) The percentage error in efficiency neglecting pump work is

-
= =

0.369 0.3685
0.001357 or 0.1357%

0.3685

 Example 10.5 A thermal power plant is to be operated on an ideal Rankine cycle. Steam enters into

the turbine at 2 MPa, 360°C and leaves as saturated liquid in the condenser at 8 kPa.

The pump feeds the water back into the boiler. Assume ideal processes, find, per kg

of steam, the net work and the cycle efficiency.

Solution The T-s diagram of the Rankine cycle is shown in the Fig 10.8.

P2 = 8 kPa

P1 = 2 MPa
T

S

1

2
3

4

360 °C

Figure 10.8

At 2 MPa and 360 °C steam is in superheated state. However, at that condition, properties are not

given in the steam table (Appendix 1.3). Properties are then obtained by linear interpolation of the

properties at 2 MPa , 350°C and 2 MPa, 400°C.

From the superheated steam table (Appendix 1.3), it is found that

at 2 MPa and 350 °C  3137.0 kJ/kg, 6.9563 kJ/kgKh s= =

at 2 MPa and 400 °C  3247.6 kJ/kg, 7.1271 kJ/kgKh s= = ,

Using linear interpolation, specific enthalpy and entropy at 2 MPa and 360°C are found to be

1 13137.0 6.9563 360 350

3247.6 3137.0 7.1271 6.9563 400 350

h s- - -
= =

- - -

1 13159.12 kJ/kg, 6.9905 kJ/kgKh s= =

From the saturated steam table based on pressure (Appendix 1.2), it is found that at 8 kPa

30.5924 kJ/kgK, 8.2295  kJ/kgK, 173.9 kJ/kgf g fs s h h= = = =
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3
32403.1 kJ/kg, 0.001008 m /kgfg fh v v= = =

To locate state 2, we recognize that 1 2 7.4317 kJ/kgKs s= = . Hence,

( )
10

10
1 2P kPa

P kPa

f g fs s x s s
=

=

= + -

( )26.9905 0.5924 8.2295 0.5924x= + -

\ 2 0.8378x =

This allows us to find the specific enthalpy at the exit from the turbine, h2 to be

2 2 173.9 0.8378 2403.1 2187.22 kJ/kgf fgh h x h= + = + ¥ =

The specific work output from the turbine is

1 2 3159.12 2187.22 971.9 kJ/kgTW h h= - = - =

The pump work requirement for this ideal cycle is (refer to Fig. 10.1)

( ) ( )3
3 1 2 0.001008 2 10 8 2.008 kJ/kgPW v P P= - = ¥ ¥ - =

Net work output of the cycle is 971.9 2.008 969.892 kJ/kgnet T PW W W= - = - =

The specific enthalpy at the pump outlet, state 4, is the inlet specific enthalpy h3 plus Wp. Thus,

4 3 173.9 2.008 175.908 kJ/kgPh h W= + = + =

To calculate the thermal efficiency, we must know the boiler heat input. It is

1 1 4 3159.12 175.908 2983.212 kJ/kgQ h h= - = - =

The thermal efficiency of the Rankine cycle is then calculated to be

1

969.892
0.3251 or 32.51%

2983.212

netW

Q
h = = =

 Example 10.6 A steam power plant is designed to operate on Rankine cycle. Steam enters into the

turbine at 2 MPa, 400°C and leaves as saturated liquid in the condenser at 10 kPa.

The mass flow rate of steam is 1 kg/s. Find out the power developed by the turbine

and the efficiency of the cycle. Assume the efficiencies of the turbine and the pump

as 0.85 and 0.8 respectively.

Solution The T-s diagram of the Rankine cycle is shown in the Fig 10.9.
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P2 = 10 kPa

P1 = 2 MPaT

S

1

2
3

4

400 °C

2s

4s

Figure 10.9

From the superheated steam table (Appendix 1.3), it is found that at 2 MPa, 400°C

1 13247.6 kJ/kg, 7.1271 kJ/kgKh s= = ,

From the saturated steam table based on pressure (Appendix 1.2), it is found that at 10 kPa

30.6491 kJ/kgK, 8.1510  kJ/kgK, 191.8 kJ/kgf g fs s h h= = = =

3
32392.8 kJ/kg, 0.00101 m /kgfg fh v v= = =

To locate state 2, we recognize that 1 2 7.1271 kJ/kgK.s s= =  Hence,

( )
10

10
1 2P kPa

P kPa

f g fs s x s s
=

=

= + -

( )27.1271 0.6491 8.1510 0.6491sx= + -

\ 2 0.8645sx =

This allows us to find the specific enthalpy at the exit from the turbine, h2 to be

2 2 191.8 0.8635 2392.8 2257.98 kJ/kgs f s fgh h x h= + = + ¥ =

The specific work output from the turbine is

( ) ( )1 2 1 2 0.85 3247.6 2257.98 841.18 kJ/kgT T sW h h h hh= - = - = - =

The pump work is

( ) ( )
10

3
1 2 0.00101 2 10 10

2.51 kJ/kg
0.8

P kPa
f

P

P

v P P

W
h

=

- ¥ ¥ -
= = =

This allows us to find h4 to be

4 3 191.8 2.51 194.31 kJ/kgPh h W= + = + =

The heat input is found using 1 1 4 3247.6 194.31 3053.29 kJ/kgQ h h= - = - =

Net work output of the cycle is 841.18 2.51 838.67 kJ/kgnet T PW W W= - = - =
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Net power output of the cycle is mass flow rate of steamnetW= ¥

838.67 1 838.67 kW= ¥ =

The thermal efficiency of the Rankine cycle is then calculated to be

1

838.67
0.2747 or 27.47%

3053.29

netW

Q
h = = =

SUMMARY

A cycle which continuously converts heat into work is called a power cycle.

A cycle which produces refrigeration effect is called a refrigeration cycle.
The Carnot vapour cycle serves as an ideal cycle for vapour power cycle, but not

practicable for a steam power plant.
The Rankine cycle is an ideal cycle for vapour power cycle.
The thermal efficiency of the Rankine cycle is given by

h = net

1 1

T PW W W
=

Q Q

REVIEW QUESTIONS

10.1 What are the four basic components of a steam power plant working on Rankine cycle? Show by a

block diagram.

10.2 Draw the nature of P–V and T–S plots of a Rankine cycle (with saturated steam at turbine inlet).

10.3 Draw the nature of P–V and T–S plots of a Rankine cycle (with superheated steam at turbine inlet).

10.4 Why is a Carnot cycle not practicable for a steam power plant?

NUMERICAL PROBLEMS

10.1 Steam is the working fluid in a Rankine cycle. Steam enters the turbine as saturated vapour at 40 bar and

leaves as saturated liquid in the condenser at 10 kPa. Determine the thermal efficiency of the Rankine

cycle.

10.2 A steam power plant is operated on an ideal Rankine cycle. Steam enters the turbine as saturated

vapour at 150 bar and leaves as saturated liquid in the condenser at 20 kPa. Determine the thermal

efficiency of the Rankine cycle.

10.3 A steam power plant is operated on an ideal Rankine cycle. Steam enters the turbine at 20 bar, 400 ºC

and leaves as saturated liquid in the condenser at 8 kPa. Determine the thermal efficiency of the Rankine

cycle.

10.4 A steam power plant operates between the pressures of 10 kPa and 2 MPa with a maximum temperature of

400°C. What is the maximum efficiency possible from the power cycle?

10.5 A steam power plant operates on a Rankine cycle with a condenser outlet temperature of 80°C and

boiler outlet temperature of 500°C. The pump outlet pressure is 2 MPa. Determine the maximum

possible thermal efficiency of the cycle.
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MULTIPLE-CHOICE QUESTIONS

10.1 Thermal power plant works on

(a) Carnot cycle (b) Otto cycle (c) Rankine cycle (d) Joule cycle

10.2 Carnot cycle is

(a) a reversible cycle (b) an irreversible cycle

(c) a semi-reversible cycle (d) an adiabatic irreversible cycle

10.3 The working substance for a Carnot cycle is

(a) atmospheric air (b) air-fuel mixture (c) ideal gas (d) steam



Properties of Fluids

11.1 INTRODUCTION

Mechanics is a subject dealing with the conditions under which a body can remain at rest or in motion.

Mechanics can be classified into two: solid mechanics and fluid mechanics. Fluid mechanics is that

branch of science which deals with the behaviour of fluids at rest as well as in motion and the subse-

quent effects of fluid upon its boundaries which may be either solid surfaces or interfaces with other

fluids. Both liquids and gases are classified as fluids. The number of fluids in engineering applications

are enormous: breathing, blood flow, swimming, pumps, fans, blowers, turbines, ships, rivers,

airplanes, missiles, rockets, engines, jets, etc. Almost everything on this planet either is a fluid or moves

within or near a fluid.

The field of fluid mechanics has been divided into three branches—fluid statics, fluid kinematics and

fluid dynamics. Fluid statics is concerned with the behavior of a fluid at rest. Fluid kinematics deals

with the motion of fluids without reference to forces that cause the motion. Fluid dynamics involves the

study of a fluid motion as a consequence of forces that causes the motion.

11.2 DEFINITION OF FLUID

From the point of view of fluid mechanics, all matter consists of only two states, fluid and solid. A solid

can resist a shear stress by a static deformation, a fluid cannot. Any shear stress applied to a fluid, no

matter how small, will result in motion of that fluid. The fluid moves and deforms continuously as long

as shear stress is applied. A fluid is a substance that deforms continuously when subjected to a shear

stress, however small the shear stress may be. A fluid may be either a liquid or a gas.

11.2.1 Difference between a Solid and a Fluid

∑ The fundamental difference between a fluid and a solid lies in the response to a shear stress of the

respective materials. For a solid, the strain is a function of the applied stress, provided that the

elastic limit is not exceeded. For a fluid, the rate of strain is proportional to the applied stress.

CHAPTER
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∑ The strain in a solid is independent of the time over which the force is applied and, if the elastic

limit is not exceeded, the deformation disappears when the force is removed. A fluid continues

to flow for as long as the force is applied and will not recover its original form when the force

is removed. Consider a rectangular solid element ABCD as shown in Fig. 11.1 (a). Under the

action of a shear force F the element assumes the shape ¢ ¢ABC D . If the solid is perfectly

elastic, it goes back to its shape ABCD when the force is withdrawn. In contrast, the element of

the fluid ABCD (refer Fig. 11.1 (b)) confined between parallel plates deforms to shapes such as

¢ ¢ABC D  and  ¢¢ ¢¢ABC D  as long as he force F is maintained on the upper plate.
∑ Within elastic limit, a solid has perfect memory because solid always relaxes back to its pre-

ferred shape, whereas a fluid has zero memory.

∑ The molecules of a solid are closer together than those of a fluid. The attractive forces between

the molecules of a solid are so large that a solid tends to retain its shape. However, fluids cannot

retain their shape, because the attractive forces between the molecules are smaller.

F
D D¢ C¢

A B

(a) (b)

D¢¢
F

D D¢
C

C¢¢C

A B

C¢

Figure 11.1 Deformation of solid and fluid elements: (a) solid and (b) fluid

11.2.2 Difference between Liquids and Gases

The difference between the two classes of fluids, liquids and gases, is all about the effect of cohesive

forces. A liquid, being composed of relatively close-packed molecules with strong cohesive forces,

tends to retain its volume and will form a free surface in a gravitational field if unconfined from above.

Since gas molecules are widely spaced with negligible cohesive forces, a gas is free to expand until it

encounters confining walls. A gas has no definite volume, and when left to itself without confinement,

a gas forms an atmosphere which is essentially hydrostatic.

11.3 THE CONCEPT OF CONTINUUM

The fluid flow analysis can be attempted from two different view points. One approach, popularly

known as microscopic, stems from molecular point of view. It relies on the consideration that fluid

essential comprises of molecules the motion of which is characterized by the laws of dynamics. The

behaviour of the fluid then can be described by summing up the properties of the molecules following
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statistical approach. However, it has got certain limitations in regard to its applications in gases of higher

density and in case of liquids. The other approach is the macroscopic one where the gross behaviour is

considered rather than an individual molecule. The macroscopic approach treats the fluid as continuous

and the variations of the property values of the individual molecules are not reflected. This approach

gives the concept of continuum where fluids can be treated as a continuous medium disregarding the

discontinuity in the microscopic entities. In the continuum approach at each point of the continuous fluid

there is a unique value of the field variables such as pressure, velocity, density. This continuous matter

follows the conservation laws of mass, momentum and energy. These laws can be derived using a set of

differential equations. In most of the engineering applications, the concept of continuum yields very

good results and hence accepted well.

11.4 FLUID PROPERTIES

Certain characteristics of a continuous fluid are independent of the motion of the fluid. These

characteristics are called basic properties of the fluid. Here, elaborate discussions on a few such basic

properties are included.

Fluid property is defined to be a characteristic of the material structure of the fluid. Flow property,

is something whose value is determined in part by how the fluid is moving. The colour of a fluid is

purely a fluid property, while the velocity of a fluid is purely a flow property. The density, pressure,

temperature, viscosity, etc, are actually flow properties whose precise values depend on the nature of

the fluid and type of flow.

11.4.1 Density

The density of a fluid is mass per unit volume. If a fluid element enclosing a point has a volume DV

and mass Dm then density (r) at that point is written as

r =
Ä

Ä d
lim

Ä dV V*

m m

V VÆ
=

where *
VD  is the smallest elemental volume over which the continuum hypothesis is valid.

The dimension of density is ML–3 and the unit of density in SI system is kg/m3.

The density of liquids may be considered as constant while that of gases changes with the variation

of pressure and temperature.

A thermodynamic property of a fluid density has a certain value defined by the pressure and

temperature of the fluid. The relationship is expressed by the characteristic equation of state. Since

pressure and temperature are generally functions of position and time of flow, density must also be a

function of position and time. Thus, density is flow property. The accepted value of density of air at

sea level at 1.0133 bar and 288.15 K is 1.225kg/m3.

The density of most gases is proportional to pressure and inversely proportional to temperature.

The variation of density of liquids with pressure is usually negligible. For example, at 20ºC, the

density of water changes from 998 kg/m3 at 1 atm to 1003 kg/m3 at 100 atm (0.5% change). The

density of liquids depends more strongly on temperature than it does on pressure. For example, at 1

atm, the density of water changes from 998 kg/m3 to 975 kg/m3 at 75ºC (only 2.3 % change).
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11.4.2 Specific Weight

The specific weight is the weight of fluid per unit volume.

Specific weight (g) = 
Weight of fluid Mass of fluid

Acceleration due to gravity
Volume of fluid Volume of fluid

= ¥

g = rg

Specific weight is ML–2T –2 and the unit of specific weight in SI system is N/m3.

11.4.3 Specific Volume

The specific volume of a fluid is the volume occupied by unit mass of fluid.

The dimension of specific volume is L3T –1 and the unit of specific volume in SI system is m3/kg.

Specific volume is the reciprocal of density i.e. v = 
1

r

11.4.4 Specific Gravity (or Relative Density)

Specific gravity or relative density is defined as the ratio of the density of some standard reference

fluid at a specified temperature and pressure.

The standard fluid is water for liquid and is air for gases. For liquids, the specified temperature and

pressure are 4ºC and 101 kN/m2, for which the density of water is 1000 kg/m3.

Sliquid =
liquid

water

ñ

ñ

Sgas =
gas

air

ñ

ñ

Specific gravity is a dimensionless parameter. Engineers find these dimensionless ratios easier to

remember than the actual numerical values of density of a variety of fluids.

11.5 COMPRESSIBLE FLUID AND INCOMPRESSIBLE FLUID

Fluids can be classified into incompressible and compressible on the basis of density change with

change in pressure. A fluid is usually called incompressible if its density does not change significantly

with change in pressure. A fluid is compressible when it has a change in density because of change in

pressure. There is no fluid in reality which is incompressible. Liquids are considered incompressible

fluids, since the change in density for liquids with pressure is so small as to be negligible.

11.6 IDEAL FLUID AND REAL FLUID

An ideal fluid is a fully hypothetical fluid which is assumed to have no viscosity and no compressibility.

The concept of an ideal fluid has been utilized in the analytical treatment of fluid-flow problems. The
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mathematical analysis of the flow problem can be considerably simplified by assuming the fluid to be

non-viscous and incompressible. Such a fluid does not exist in reality.

In a real fluid, shear stresses occur whenever the fluid is in motion. In other words, fluid friction

exists when a real fluid is in motion. Shear stresses in a real fluid in motion are possible due to a

property called the viscosity of the fluid.

11.7 VISCOSITY

The property which characterizes the resistance that a fluid offers to applied shear forces is termed

viscosity. The resistance depends on the rate of deformation.

Let us consider a fluid contained between two large parallel plates, separated by a distance L, as

shown in Fig. 11.2. The lower plate is assumed to be stationary, while the upper one is moving parallel

to it with a velocity V under the influence of the applied shearing force F.

The fluid particles sticking to the moving plate move with the same velocity V, and the shear stress

t acting on this fluid layer is

t =
F

A

where A is the area of contact between the plate and the fluid.

A B

C¢CD¢D

Vdt

y
L

x

dq dq

u V=

u = 0

Figure 11.2

The fluid in contact with the lower plate assumes the velocity same as that of the plate, which is

zero. If the gap separating the two plates is small or the velocity V is high, the velocity distribution will

be a straight line. The equation of velocity can be written as

u(y) =
y

V
L

where y is the vertical distance measured from the lower plate.

The velocity gradient will be

d

d

u

y
=

V

L
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During a differential time interval dt, the element of the fluid deforms through a differential angle dq
while the upper plate moves a differential distance dx.

dx = Vdt

The angular deformation can be expressed as

dq ª
d d d

tanè .d
d

x V t u
= = t

L L y
=

The rate of angular deformation ( or the shear strain) of a fluid element is equivalent to the velocity

gradient
d

d

u

y
.

For a well-ordered flow whereby fluid particles move in straight, parallel lines (parallel flow),

Newton’s law of viscosity states that the for certain fluids, called Newtonian fluids, the shear stress

(t) on an interface tangent to the direction of flow is proportional to the distance rate of charge of

velocity
du

dy

Ê ˆ
Á ˜Ë ¯

, wherein the differentiation is taken in a direction normal to the interface.

Mathematically, Newton’s law of viscosity can be expressed as

t μ
d

d

u

y

t = m
d

d

u

y
(11.1)

where, the constant of proportionality m is known as the viscosity coefficient or simply the viscosity

which is the property of the fluid and depends on its state.

Common fluids, such as water, air, mercury, obey Newton’s law of viscosity and are known as

Newtonian fluids. Other fluids that do not obey Newton’s law of viscosity are known as non-

Newtonian fluids.

A Newtonian fluid is one in which the shear stress is linearly proportional to the rate of shear

deformation. The constant of proportionality is the viscosity, m. Air would be considered a low-

viscosity Newtonian fluid, while water would be a medium-viscosity Newtonian fluid. Motor oil and

maple syrup are high-viscosity Newtonian fluids. Fluids that do not follow the Newtonian behaviour

law include toothpaste, blood and paints. Note that the equation 11.1 is applicable only for one–

dimensional flow field and Newtonian fluid.

11.7.1 Dimensional Formula and Units of Viscosity

The dimension of viscosity can be determined from Newton’s law of viscosity (Eq. 11.1) as

m =
du

dy

t
 = 

2
2

1

FL
FTL

LT

L

-
-

- =
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The dimensions of viscosity may also be expressed as 1 1ML T- - . The unit of viscosity if SI system

is N-s/m2, or kg/m-s.

The unit of dynamic viscosity in CGS system is Poise (P), named after Jean Louis Marie Poiseuille.

–3

–2

g 10 kg
1 Poise   1    0.1 kg/m-s

cm-s 10 m-s
= = =

31
1 centiPoise(cP)    poise 10  kg/m-s

100

-= =

11.7.2 Variation of Viscosity with Temperature

The viscosity of a liquid decreases with temperature, but the viscosity of a gas increases with

temperature (Fig. 11.3). The causes of viscosity are two—the intermolecular cohesive forces and the

molecular momentum transfer. A liquid, with molecules much more closely spaced than a gas, has

cohesive forces much larger than a gas. Although molecular momentum transfer exists, intermolecular

cohesive forces predominate in the case of a liquid. Now, since intermolecular cohesive forces

decrease with temperature, viscosity of liquids decreases with temperature. On the other hand, a gas

has very small cohesive forces and molecular momentum transfer predominates. Since molecular

momentum transfer increases with temperature, viscosity of gases also increases with temperature.

According to kinetic theory of gases, viscosity of gases should be proportional to the square root of

the absolute temperature. In practice, it increases more rapidly.

V
is
co
si
ty

Liquids

Gases

Temperature

Figure 11.3 Variation of viscosity of liquids and gases with temperature

11.7.3 Newtonian and Non-Newtonian Fluids

Fluids for which the shear stress is proportional to the rate shear deformation are called Newtonian

fluids after Sir Isacc Newton, who expressed it first in 1687. Newtonian fluids can be represented by

a straight line. The slope of this line is determined by the viscosity.

The study of the response of materials to stress is called rheology.

There are certain fluids where the linear relationship between the shear stress and the deformation

rate (velocity gradient in parallel flow) is not valid. Because of the deviation from Newton’s law of

viscosity they are commonly termed non-Newtonian fluids.
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Many common fluids exhibit non-Newtonian behaviour. Two familiar examples are toothpaste and

paint. Toothpaste behaves as a fluid when squeezed from the tube. However, it does not run out by

itself when the cap is removed. There is a yield stress below which toothpaste behaves as a solid.

Paint is very thick when in the can, but becomes thin when sheared by brushing.

Non-Newtonian fluids are classified as having time-independent or time-dependent behaviour.

Examples of time-independent behaviour are shown in the rheological diagram (Fig. 11.4 (a)).

The abscissa in the rheologigal diagram represents the behaviour of ideal fluids since for the ideal

fluids the resistance to shearing deformation rate is always zero, and hence they exhibit zero shear

stress under any condition of flow. The ordinate represents the behaviour of an ideal solid for any

condition, since there is no deformation of an ideal solid for any load.

The Newtonian fluids behave according to Newton’s law of viscosity that shear stress is linearly

proportional to the velocity gradient for parallel flow. Thus, for Newtonian fluids, the plot of shear

stress against velocity gradient is a straight line passing through the origin.

du

dy

Pseudoplastic
fluids ( < 1)n

Bingham
plastic

Plastics

Id
ea
l
so
li
d
s

Ideal
plastics

Newtonian fluid ( – 1)n

Dilatant fluids ( > 1)n

Ideal fluids

t

Figure 11.4 (a) Rheological diagram
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Pseudoplastic

Dilatant

Newtonian

du

h

dy

Figure 11.4 (b) Rheological diagram

Time-independent non-Newtonian fluids The mechanistic behaviour of a variety of non-

Newtonian fluids can be described by the Power Law model.

According to Power Law model,

t =

1
d d d

d d d

n n
u u u

m m
y y y

-

= (11.2)

where m is known as the flow consistency index and n is the flow behaviour index.

Again according to Newton’s law of viscosity,

t =
d

ì
d

u

y

Hence, viscosity for the Power Law fluid obeying the above model can be described as

h =

1
d

d

n
u

m
y

-

It is readily observed that the viscosities of non-Newtonian fluids are functions of deformation

rates and are often termed apparent or effective viscosity (h). Most non-Newtonian fluids have

apparent viscosities that are relatively high compared with the viscosity of water.

When n = 1, h equals to m(= m), the model identically satisfies Newtonian model as a special case.

Fluids in which the apparent viscosity decreases with increasing deformation rate (n < 1) are called

pseudoplastic (or shear thinning) fluids. Most non-Newtonian fluids fall into this group. Examples of

pseudoplastic fluids are blood, milk, gelatine, paper pulp, polymer solutions, colloidal suspensions, etc.

If the apparent viscosity increases with increasing deformation rate (n > 1) the fluid is termed dilatant

(or shear thickening). Sugars in water, suspensions of starch and of sand, and butter are examples of

dilatant fluids.

For plastic the shear stress must reach a certain minimum value before flow commences. Thereafter,

shear stress increases with the rate of shear according to the relationship
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t =
d

d

n
u

A B
y

Ê ˆ
+ Á ˜Ë ¯

where A, B and n are constants.

A fluid that behaves as a solid until a minimum yield stress is exceeded and subsequently exhibits a

linear relation between shear stress and rate of shear deformation is refered as a Bingham plastic after

E.C. Bingham who did pioneering work on fluid viscosity for the U.S. National Bureau of Standards in

the early twentieth century. Toothpaste, clay suspensions, sewage sludge and drilling muds are examples

of substances exhibiting this behaviour. The mathematical relationship between shear stress and rate of

shear deformation is 
d

d

n
u

A B
y

Ê ˆ
+ Á ˜Ë ¯

where n = 1.

Time-dependent non-Newtonian fluids The study of non-Newtonian fluids is further

complicated by the fact that apparent viscosity may be time dependent.

Some fluids require a gradual increasing shear stress to maintain a constant strain rate and are called

rheopectic. Otherwise, rheopectic fluids are those for which apparent viscosity increases with the time

for which shearing forces are applied. Gypsum in water, whipping cream, bentonite clay solutions are

examples of rheopectic fluids.

Thixotropic substances are those for which the apparent viscosity decreases with time (refer

Fig. 11.5) for which the shearing forces are applied. Many paints, printer’s ink, lipstick, enamels, crude

oils are thixotropic.

Rheopectic

Common fluid

Thixotropic

h

Time

Figure 11.5 Time-dependent non-Newtonian fluids

11.8 KINEMATIC VISCOSITY

In fluid mechanics, the ratio of dynamic viscosity to density appears frequently. The ratio is given the

name kinematic viscosity and is designated by Greek letter (nu)v. It is expressed as 
ì

õ =
ñ

.
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The kinematic viscosity is considered as a kinematic quantity, since its unit does not contain any

unit of mass. Physically, the kinematic viscosity represents the ratio of the ability to diffuse a

disturbance in momentum relative to the ability of sustaining the original momentum.

The dimensional formula of kinematic viscosity is 2 1L T - . Kinematic viscosity has an SI unit of m2-s–1,

and a CGS unit of cm2-s–1. The CGS unit is also known as Stokes, in honor of the famous

mathematician Stokes.

1 stoke =
2 2

2 2 4 2cm m
 1  = (10 ) = 10  m /s

s s

- -

1 centisoke = 6 21
  = 10  m /s

100
stoke

-

Viscosity is practically independent of pressure and depends upon temperature only. The kinematic

viscosity of liquids and of gases at a given pressure is substantially a function of temperature.

Example 11.1 The specific gravity and the dynamic viscosity of a fluid are 13.6 and 0.002 N.s/m2

respectively. Calculate its (i) density, and (ii) kinematic viscosity.

Solution Sliquid =
liquid

water

ñ

ñ

rliquid = water liquid
ñ S¥

rliquid =
31000 13.6 13600 kg/m¥ =

Kinematic viscosity, v = 7 2ì 0.002
1.47 10  m /s

ñ 13600

-= = ¥

Example 11.2 The velocity profile of a fluid over a plate is a parabola having a vertex of 10 cm from

the boundary. The velocity at the vertex is 1.2 m/s. Calculate the velocity gradients

for y = 0, 5 and 10 cm. Also calculate the shear stress at these points if the fluid

viscosity is 0.004 Ns/m2.

Solution Let the equation of velocity profile (parabolic) be

u = Ay2 + By + C

where A, B and C are constants and their values are determined from boundary

conditions as given by

(i) u = 0 at y = 0

(ii) u = 1.2 m/s at y = 10 cm

(iii)
d

0 at 10 cm
d

u
y

y
= =
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From the first boundary condition

0 = 0 0A B C¥ + ¥ +
C = 0

From the second boundary condition

1.2 = A ¥ (0.1)2 + B ¥ 0.1 + 0

1.2 = 0.01 A + 0.1 B (11.3)

From the third boundary condition

d

d

u

y
= 2Ay + B

0 = 2A ¥ 0.1 + B (11.4)

After solving equations (11.3) and (11.4),

A = - 120 and B = 24

The velocity profile becomes

u = – 120y2 + 24y

d

d

u

y
= – 240 24y +

Velocity gradient,
d

d

u

y
= – 240 24y +

At y = 0, velocity gradient 

0

d
240 0 24 24/s.

d
y

u

y =

Ê ˆ
= - ¥ + =Á ˜Ë ¯

At y = 0.05 m, velocity gradient 

0.05 m

d
– 240 0.05 24 12 /s.

d =

Ê ˆ
= ¥ + =Á ˜Ë ¯

y

u

y

At y = 0.1 m, velocity gradient 

0.1

d
– 240 0.1 24 0 /s.

d
y

u

y =

Ê ˆ
= ¥ + =Á ˜Ë ¯

Shear stress is given by 
d

ô ì
d

u

y
=

Shear stress at y = 0 m, 
2

0

d
ô ì 0.004 24 0.096 N/m

d
y

u

y =

Ê ˆ
= = ¥ =Á ˜Ë ¯

Shear stress at y = 0.05 m, 
2

0.05

d
ô ì 0.004 12 0.048 N/m

d
y

u

y =

Ê ˆ
= = ¥ =Á ˜Ë ¯

Shear stress at y = 0.1 m, 

0.1

d
ô ì 0.004 0 0

d
y

u

y =

Ê ˆ
= = ¥ =Á ˜Ë ¯

umax = 1.2 m/s

y

Figure 11.6



Properties of Fluids 11.13

Example 11.3 The space between two parallel plates kept 5 mm apart is filled with a fluid with a

dynamic viscosity of 1 Ns/m2. The upper plate is moving with a velocity of 2 m/s.

What is the shear stress on the lower plate, which is stationary?

Solution Since the gap between the plates is very small, we can assume that the velocity

distribution is a linear one.

Velocity gradient,
d

d

u

y
=

–3

2
400  per 

5 10

V

h
= =

¥
 second

Shear stress on the bottom plate, 2d
ô ì 1 400 400  N/m

d

u

y
= = ¥ =

 Example 11.4 A rectangular solid block of 1 m by 1 m that weighs 30 N slides down a 30° inclined

plane as shown in Fig. 11.7. The plane is lubricated by a 5 mm thick film of oil of

viscosity of 0.04 Ns/m2.  Calculate the terminal velocity of the block.

V m/s

W sin q

Oil of viscosity of
0.04 Ns/m2

q
W

W cos q

t A

Figure 11.7

Solution

Thickness of the film 35 mm 5 10 mh
-= = ¥

Area of the block 21 1 1mA = ¥ =
Weight of the block 30 NW =

Viscosity of oil
20.04 Ns/mm =

Component of weight along the slope is W sin q.

Velocity gradient is found to be

0du V V

dy h h

-
= =

where h is the thickness of the oil film.

Viscous resistance F is given by

shear stress areaF At= ¥ =
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or
du V

F A A
dy h

m m= =
Ê ˆ=Á ˜Ë ¯

t mFrom Eq. (11.1),
du

dy

At the terminal condition, equilibrium occurs. Hence, the viscous resistance to the motion should

be equal to the component of the weight of the solid block along the slope. Thus,

sin
V

A W
h

m q=

or
3

0.04 1 30sin30
5 10

V
-¥ ¥ = ∞

¥
or V = 1.875 m/s

 Example 11.5 A liquid is filled in the annular space between two concentric cylinders 30 cm long.

The inner cylinder of radius 10 cm rotates inside the outer cylinder which is

stationary and has an internal radius of 10.05 cm.  Determine the viscosity of the

liquid if a torque of 10 N-m is required to maintain an angular velocity of 60 rpm.

Solution

Radius of the inner cylinder 10 cm 0.1mR = =

Radius of the outer cylinder 10.05 cm 0.1005 moR = =

Length of the cylinder 30 cm 0.3mL = =

Speed of inner cylinder   60 rpmN =
Tangential velocity of the inner cylinder is

2 2 60
0.1 0.628 m/s

60 60

N
u R

p p ¥
= ¥ = ¥ =

Radial clearance between the cylinders is

 difference between radius of outer and inner cylinderh =

 0.1005 0.10 0.0005 moR R= - = - =

Surface area of the cylinder is

= ¥ = pcircumference length of the pipe 2A RL

22 0.1 0.3 0.1885 mp= ¥ ¥ =
 For the small space between the cylinders, the velocity profile may be assumed to be linear. Then,

the velocity gradient is found to be

0 0.628
1256 per s

0.0005

du u

dr h

-
= = =

Let m be the viscosity of the liquid.

The shear stress at the wall is obtained from Eq. (11.1) as
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1256
du

dr
t m m= =

Shear force is given by

shear stress areaF At= ¥ =

1256 0.1885 236.75m m= ¥ =

Then, the resisting torque by the fluid is

Force radius of inner cylinderT F r= ¥ = ¥

236.75 0.1 23.675m m= ¥ =

Applied torque should be same as the resisting torque by the fluid. Therefore, one can write

23.675 10m =

or 20.42N-s/mm =

 Example 11.6 A 150 mm diameter shaft rotates at 1500 rpm in a 200 mm long journal bearing with

150.5 mm internal diameter. The uniform annular space between the shaft and the

bearing is filled with oil of dynamic viscosity 0.8 poise. Calculate the power

dissipated as heat.

Solution The arrangement is shown in Fig. 11.8.

Bearing

0.25 mm

D = 150 mm

w

L = 200 mm

Oil of viscosity
0.8 poise

Figure 11.8

Diameter of the inner shaft 150 mm 0.15 mD = =

Radius of the shaft
0.150

0.075 m
2

R = =

Radius of the bearing
150.5 0.1505

mm m 0.07525 m
2 2

oR = = =

Length of the bearing 200 mm 0.2 mL = =
Speed of shaft 1500 rpmN =

Viscosity of oil
1 20.8 poise 0.8 10  N s/mm

-= = ¥ -
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Thickness of the oil film is

difference between radius of bearing and shaftdy =
 0.07525 0.075 0.00025 moR R= - = - =

Surface area of the bearing is

= ¥circumference of the shaft length of the bearingA

20.15 0.2 0.094 mDLp p= = ¥ ¥ =

Circumferential velocity of the shaft is

angular velocity of the shaft adius of the shaftu r= ¥
2 2 1500 0.150

11.78 m/s
60 60 2

N
r

p p ¥
= ¥ = ¥ =

Velocity gradient is found to be

11.78 0
47120 per s

0.00025

du

dy

-
= =

Shear stress t is found from Newton's law of viscosity (Eq. (11.1)) as

1 2
0.8 10 47120 3769.6 N/m

du

dy
t m

-= = ¥ ¥ =

Shear force on the shaft is then

shear stress areaF At= ¥ =

3769.6 0.094 354.34 N= ¥ =

Torque T on the shaft is then

Force radius of inner cylinderT F R= ¥ = ¥

354.34 0.075 26.58 N-m= ¥ =

Power dissipated as heat P is found to be

2
Torque×angular velocity

60

N
P T T

p
w= = ¥ = ¥

2 1500
26.58

60

p¥ ¥
= ¥

4175.18 W 4.175 kW= @

 Example 11.7 A hydraulic ram 200 mm diameter and 1.2 m long moves within a concentric cylinder

200.4 mm diameter. The annular clearance is filled with oil of relative density 0.85

and kinematic viscosity 400 mm2/s. What is the viscous force resisting the motion

when the ram moves at a speed of 120 mm/s?
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Solution

Kinematic viscosity of oil 2 6 2400 mm /s 400 10  m /sn -= = ¥

Relative density of oil 0.85oilS =

Density of water
31000 kg/mwaterr =

Speed of ram 120mm/s 0.120m/sV = =
Length of ram 1.2 mL =

Diameter of ram 200 mm 0.2 mD = =

Radius of ram 0.1 mR =

Diameter of cylinder 200.4 mm 0.2004 moD = =

Radius of cylinder
0.2004

m 0.1002 m
2

oR = =

Radial clearance is given by 0.1002 0.1 0.0002 mody R R= - = - =

Velocity gradient is
0 0.120 0

600 per s
0.0002

du V

dy dy

- -
= = =

Density of the oil r is found as

Specific gravity of the oil density of waterr = ¥

oil waterS r=

30.85 1000 850 kg/m= ¥ =

Dynamic viscosity of oil m is found to be

m rn=

( )6 2850 400 10 0.34 N s/m-= ¥ ¥ = -

Shear stress is found from Newton's law of viscosity (Eq. (11.1)) as

20.34 600 204 N/m
du

dy
t m= = ¥ =

Shear area is

= ¥circumference of the ram length of the ramA

20.2 1.2 0.754 mDLp p= = ¥ ¥ =
Viscous force F resisting the motion is

shear stress area 204 0.754 153.82 NF At= ¥ = = ¥ =



11.18 Engineering Thermodynamics and Fluid Mechanics

 Example 11.8 The space between two large flat and parallel walls 25 mm apart is filled with a liquid

of absolute viscosity 0.7 N-s/m
2
. Within this space a thin flat plate is towed at a

velocity of 0.15 m/s at a distance of 6 mm from one wall, the plate and its movement

being parallel to the walls. Assuming linear variations of velocity between the plate

and the walls, determine the force exerted by the liquid on the plate.

Solution

Area of the plate 2 225 cm 25 cm 625 cm 0.0625 mA = ¥ = =

Viscosity of liquid
20.7 N s/mm = -

Velocity of plate 0.15 m/sV =

Let F1  and F2 be the shear forces on the upper surface and lower surface of the thin plate

respectively. Let us also consider that the distance of the thin plate from the top wall is 6 mm as

shown in Fig. 11.9.

6 mm

0.15 m/s

Stationary plate

Stationary plate

Figure 11.9

From Newton's law of viscosity (Eq. (11.1)), shear stress on the upper surface of the plate t1 is

given by

1

du

dy
t m=

where
3distance between top wall and thin plate 6mm 6 10 mdy

-= = = ¥

or
2

1 3

0.15
0.7 17.5N/m

6 10
t -= ¥ =

¥
Shear force on the upper surface of the plate is

F1 = 1shear stress area At¥ =

17.5 0.0625 1.094N= ¥ =
From Newton's law of viscosity (Eq. (11.1)), shear stress on the lower surface of the plate t2 is

given by
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2

du

dy
t m=

where 3distance between bottom wall and thin plate 25 6 19mm 19 10 mdy -= = - = = ¥

or
2

2 3

0.15
0.7 5.526N/m

19 10
t -= ¥ =

¥
Shear force on the bottom surface of the plate is

F2 = 2shear stress area At¥ =

= 5.526 0.0625 0.345N¥ =

Force exerted by the liquid on the plate is the sum of the forces on either side of the plate.

Therefore, total force exerted by the liquid is

1 2 1.094 0.345 1.439 NF F F= + = + =

 Example 11.9 A circular disc of radius R is kept at a small height h above a fixed bed by means of

a layer of oil of dynamic viscosity,  as shown in Fig. 11.10. If the disc is rotated at an

angular velocity, w, obtain an expression for the viscous torque on the disc. Assume

linear variation of velocity within the oil film.

Solution Angular velocity of the disc = w

Consider an element of disc at a radial distance r with width dr as shown in Fig.11.10. For linear

variation of velocity with depth, the velocity gradient is given by

du u r

dy h h

w
= =

Oil

R

w

dr

h

r

Figure 11.10

Elemental shear stress is then

du r

dy h

w
t m m= =
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Elemental shear force is given by

2
r

dF dA rdr
h

w
t m p= =

Viscous torque acting on the element is

32 2
r

dT dFr rdrr r dr
h h

w w
m p m p= = =

 Total viscous torque on the disc is then

4 4
3

0

2
2

4 2

R
R R

T dT r dr
h h h

w pmw pmw
m p= = = =Ú Ú

 Example 11.10 A solid cone of radius R, and vertex angle 2q  is to rotate at an angular velocity, w,

as shown in Fig. 11.11. An oil of viscosity m and thickness h fills the gap between

the cone and the housing. Determine the torque T required to rotate the solid cone.

R

r

dr
h

q

dl

w

  Figure 11.11

Solution

Consider an element at a radial distance r with width dr as shown in Fig. 11.11. Assuming linear

variation of velocity, the velocity gradient is given by

du u r

dy h h

w
= =

From the geometry, we have

sin

dr
dl

q
=

Elemental area is then

2 2
sin

dr
dA rdl rp p

q
= =
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Shear stress on the inclined wall is then

du r

dy h

w
t m m= =

Elemental shear force is given by

2
sin

r dr
dF dA r

h

w
t m p

q
= =

Viscous torque acting on the element is

32 1
2

sin sin

r dr
dT dFr r r r dr

h h

w pw
m p m

q q
= = =

Viscous torque required to rotate the solid cone is found to be

3 4

0

2 1

sin 2 sin

R

T dT r dr R
h h

pwm
m

q q
= = =Ú Ú

11.9 NO-SLIP CONDITION

Consider the flow of fluid over a solid wall that is impervious (i.e., impermeable to the fluid). All

experimental observations indicate that a fluid in motion comes to a complete stop at the wall and

assumes zero velocity relative to the wall. That is, on a solid wall, the fluid can be assumed to stick to

the wall and there is no slip along the solid wall the way a different solid might. This is known as the

no-slip condition. The physical reason for the no-slip condition is that the fluid molecules hitting the

solid wall collide so frequently with the solid wall molecules that they have no average motion that is

different from the wall molecules.

11.10 COMPRESSIBILITY

Compressibility of any substance is the measure of its change in volume under the action of external

forces. The normal compressive stress of any fluid element at rest is known as hydrostatic pressure

P and arises as a result of innumerable molecular collisions in the entire field. The degree of

compressibility of a substance is characterized by the bulk modulus of elasticity E defined as

E =
Ä Ä

Ä
lim

ÄV V*

P

V

V

Æ

-

where DV* is the smallest elemental volume over which the continuum hypothesis is valid and DV and

DP are the changes in the volume and pressure respectively, and V is the initial volume. The negative

sign indicates that an increase in pressure is associated with a decrease in volume.
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Values of E for liquids are very high compared with those of gases. Therefore, liquids are usually

termed as incompressible. Density of water increases only 1 per cent if the pressure is increased by a

factor of 220.

Since
V

V

D
is a dimensionless ratio, the dimensions and units for E are the same as those for

pressure i.e. FL–2 and N/m2.

11.11 COHESION, ADHESION AND SURFACE TENSION

11.11.1 Cohesion

A definite amount of fluid mass is envisaged as an aggregation of several molecules of the fluid in close

association with each other. Any particular molecule is attracted in all the directions by an equal amount

of force exerted by the surrounding molecules. Cohesion is the property of the fluid by virtue of which

liquid molecules are connected with each other so as to form a continuous mass.

11.11.2 Adhesion

Adhesion is the property of the fluid by virtue of which liquid adheres another body that comes in its

contact. For instance, if a rod is immersed in water and subsequently taken out, it is found that the rod

becomes wet since the water molecules adhere to the rod. The same phenomenon occurs when a liquid

is contained in a vessel and it is emptied.

It is noteworthy that some fluids may not exhibit adhesion. Example: mercury.

11.11.3 Surface Tension

A molecule (molecule A in Fig. 11.12) within the liquid and below the free surface is attracted equally

in all directions by the other molecule surrounding it by virtue of cohesion. This ensures that such

molecules remain in equilibrium. However, the same situation does not exist for the molecules in the

free surface (molecules B and C in Fig. 11.12). This is due to the fact that such molecules although

are attracted towards the inside mass by its neighboring molecules (lower molecules), but no liquid

molecules is available on the upper side to counteract the pull force generated by the former molecules.

This causes imbalances and thus molecules lying on the surface, experience a net downward pull

force towards the interior of the liquid. An amount of energy/work is therefore required to bring the

molecule to the free liquid surface which acts like an elastic membrane. This is called surface tension.

It represents the surface energy per unit area, and is denoted by Greek letter s (sigma). It has

dimensions of FL–1 or MT2 and units of N/m or kg/s2 in SI units. Surface tension decreases slightly

with increasing temperature.
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A

B C

Free surface of liquid

Figure 11.12

Surface tension on liquid droplet

Let the liquid droplet is cut into two halves. Half of the droplet is shown in Fig. 11.13 (a).

Tensile force due to surface tension acting around the circumference of the cut portion as shown

in Fig. 11.13 (a) is

Circumference Surface tension= ¥

dp s=
Pressure force acting on the half of the droplet (Fig. 11.13 (a)) is

Area pressure= ¥

2

4

d
P

p
= D

The pressure force in the droplet is balanced by the surface tension force around the

circumference. Hence, equating the above two forces, we have

2

4

d
P d

p
p sD =

or,
4

P
d

s
D = (11.5)

rds

2 ¥ pds

pd2

4
DP

pd2

4
DP

(a) (b)

Figure 11.13 Free body diagram of (a) half a droplet and (b) half a bubble
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Surface tension on a soap (or hollow) bubble

In a soap bubble, there are two interfaces as shown in Fig. 11.14 (b). Therefore, the tensile force due

to surface tension acting around the circumference of the cut portion as shown in Fig. 11.14 (b) is

Circumference Surface tension= ¥

dp s=
Pressure force acting on the half of the droplet (Fig. 11.14 (b)) is

Area pressure= ¥

2

4

d
P

p
= D

The pressure force is balanced by the surface tension force on the two circumferences. Hence

2

2
4

d
P d

p
p sD = ¥

or,
8

P
d

s
D = (11.6)

Surface tension on a liquid jet

Consider a liquid jet of diameter d and length L. Semi circular jet is shown in Fig. 11.15.

d

Ls

s

Figure 11.14 Forces on liquid jet

Force due to surface tension 2 2L Ls s= ¥ =

Force due to pressure dL P= D
Equating the above two forces, one can write

2 L dL Ps = D

or,
2

P
d

s
D = (11.7)

Example 11.11 If the pressure difference between the inside and outside of an air bubble of

diameter 0.01 mm is 29.2 kPa, what will be the surface tension at the air-water

interface?
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Solution Pressure difference between the inside and outside of an air bubble

3 229.2 kPa 29.2 10  N/mPD = = ¥

Diameter of the bubble 30.01mm 0.01 10  md -= = ¥
The pressure difference between the inside and outside of an air bubble can be found from Eq.

(11.5) as

DP = 
4ó

d

s = 
3 3

Ä 29.2 10 0.01 10
0.073 N/m

4 4

-¥ ¥ ¥
= =

Pd

 Example 11.12 Find the internal pressure in a soap bubble of 4 cm diameter, when the surface

tension at the soap-air interface is 0.08 N/m.

Solution

Diameter of the soap bubble 24cm 4 10  md -= = ¥
Surface tension at the soap-air interface 0.08 N/m s =

Since for a soap bubble, there are two interfaces, the pressure difference is (Eq. (11.6))

8
p

d

s
D =

2

2

8 0.08
16 N/m

4 10
-

¥
= =

¥
 above atmospheric pressure

 Example 11.13 A circular jet of water 0.5 mm in diameter issues from an opening. What is the

pressure difference between the inside and outside of the jet. The surface tension at

the water-air interface is 0.073 N/m.

Solution

Radius of the glass tube = =1 mm 0.001 mr

Diameter of the circular jet 
-= = ¥ 30.5 mm 0.5 10  md

Surface tension at the water-air interface 0.073 N/m s =
The pressure difference between the inside and outside of a circular jet can be found from

Eq. (11.7) as

2
P

d

s
D =

Substituting the values of s and r, we have

2

3

2 0.073
292 N/m

0.5 10
P -

¥
D = =

¥
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11.12 CAPILLARITY

When a glass tube of small diameter is dipped into a vessel or container that contains water, it is found

that water rises in the tube to a level higher than that of the level of water in the container. Conversely,

when mercury is used instead of water, the liquid level falls as compared to the level of the container.

This phenomenon of rise or fall of a liquid surface in a small diameter tube relative to the adjacent

general level of liquid when the tube is held vertically in liquid is called capillary or meniscus effect or

capillarity. Such narrow tubes are called capillaries.

Rise of the liquid surface is called capillary rise (Fig. 11.14) and fall of the liquid surface is called

capillary depression (Fig. 11.14).

Capillarity is due to both force of cohesion and adhesion. When the force of adhesion predomi-

nates, the liquid will wet a solid surface with which it is in contact and rise at the point of contact. If

force of cohesion predominates the liquid surface will be depressed at the point of contact. The

curved free surface of a liquid in a capillary tube is called the meniscus. The strength of the capillary

effect is quantified by the area wetting the contact angle, q, which is defined as the angle that the

tangent to the liquid surface makes with the solid surface at the point of contact. A liquid is said to wet

the surface when q < 90° and not to wet the surface when q > 90º.

Weight of column of liquid h is found to be

mass of liquid acceleration due to gravity= ¥
density of liquid volume of liquid having height  h g= ¥ ¥

2 2

4 4
d h g d gh

p p
r r= ¥ ¥ =

where d is the diameter of the capillary tube, r is the density of liquid and g is the acceleration due

to gravity.

Vertical component of the surface tension force is

( )Surface tension Circumference cosq= ¥

cosdsp q=

where s is the surface tension coefficient and q is the area wetting contact angle.

For equilibrium, weight of column of liquid h should be equal to vertical component of the surface

tension force. Thus, equating the above two forces, we get

2 cos
4

d gh d
p

r sp q=

or
4 cos

h
gd

s q

r
= (11.8)

Capillary rise is inversely proportional to the diameter of the tube. Therefore, thinner the tube is, the

greater the rise or fall of the liquid in the tube. The capillary effect is usually negligible in tubes whose

diameter is greater than 1 cm.
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The density of the fluid should be high to avoid the capillary rise. In a tube of 5 mm diameter, the

capillary rise of water will be approximately 4.5 mm, while for mercury the capillary depression will

be 1.4 mm.

For pure water in contact with air in a clean glass tube, the capillary rise takes place q = 0. The

value of q may be different from zero in practice where cleanliness of a high order is seldom found.

Mercury causes capillary depression with an angle of contact of about 130º in a clean glass in contact

with air.

Figure 11.15 Capillary effects

Example 11.14 Calculate the capillary depression in a glass tube of 1 mm radius when immersed

vertically in water. Take the surface tension of water in contact with air as 0.073

N/m and the area wetting contact angle as 0º. Density of water is 1000 kg/m3.

Solution

Radius of the glass tube r = 1 mm = 0.001 m

Diameter of the glass tube d = 2 mm = 0.002 m

Surface tension of water in contact with air s = 0.073 N/m

Density of water r = 1000 kg/m3

Area wetting contact angle q = 0°

From Eq. (11.8), capillary rise is found to be

4 cos
h

gd

s q

r
=

4 0.073 cos0
 0.0149 m 1.49 cm

1000 9.81 0.002

¥ ¥ ∞
= = =

¥ ¥

Example 11.15 Calculate the capillary depression in a glass tube of 1 mm radius when immersed

vertically in mercury. Take the surface tension of mercury in contact with air as

0.44 N/m and the area wetting contact angle as 130°. Density of mercury is

13600 kg/m3.
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Solution

Radius of the glass tube r = 1 mm = 0.001 m

Diameter of the glass tube d = 2 mm = 0.002 m

Surface tension of mercury in contact with air s = 0.44 N/m

Density of mercury r = 13600 kg/m3

Area wetting contact angle q = 130°

From Eq. (11.8), capillary rise is found to be

4 cos
h

gd

s q

r
=

4 0.44 cos130
 0.0042 m 4.24 mm

13600 9.81 0.002

¥ ¥ ∞
= = - = -

¥ ¥
The minus sign indicates that there is a capillary depression.

SUMMARY

A fluid is a substance that deforms continuously when subjected to a shear stress,

however small the shear stress may be. A fluid may be either a liquid or a gas.

A solid can resist a shear stress by a static deformation, a fluid cannot. Any shear

stress applied to a fluid, no matter how small, will result in motion of that fluid. The fluid

moves and deforms continuously as long as shear stress is applied.

The density of a fluid is mass per unit volume.

The specific weight is the weight of fluid per unit volume.

The specific volume of a fluid is the volume occupied by unit mass of fluid.

Specific gravity or relative density is defined as the ratio of the density of some stand-

ard reference fluid at a specified temperature and pressure.

An ideal fluid is a fully hypothetical fluid which is assumed to have no viscosity and no

compressibility.

In a real fluid, shear stresses occur whenever the fluid is in motion.

The property which characterizes the resistance that a fluid offers to applied shear

forces is termed viscosity.

According to Newton’s law of viscosity, the shear stress is proportional to the rate of

shear strain.

Mathematically, for one-dimensional flow, Newton’s law of viscosity can be expressed

as t = m
du

dy

where, the constant of proportionality m is known as the viscosity coefficient or simply

the viscosity which is the property of the fluid and depends on its state. Common

fluids, such as water, air, mercury, obey Newton’s law of viscosity and are known as

Newtonian fluids. Other fluids that do not obey Newton’s law of viscosity are known as

non-Newtonian fluids.

The viscosity of a liquid decreases with temperature, but the viscosity of a gas in-

creases with temperature.

The study of the response of materials to stress is called rheology.

The ratio of dynamic viscosity to density is known as kinematic viscosity.
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Compressibility of any substance is the measure of its change in volume under the

action of external forces. The degree of compressibility of a substance is characterized

by the bulk modulus of elasticity E defined as

D ÆD

-D
=

D*
lim

V V

P
E

V

V

Cohesion is the property of the fluid by virtue of which liquid molecules are connected

with each other so as to form a continuous mass.

Adhesion is the property of the fluid by virtue of which a liquid adheres to another body

that comes in its contact.

When a glass tube of small diameter is dipped into a vessel or container that contains

water, it is found that water rises in the tube to a level higher than that of the level of

water in the container. Conversely, when mercury is used instead of water, the liquid

level falls as compared to the level of the container. This phenomenon of rise or fall of

a liquid surface in a small diameter tube relative to the adjacent general level of liquid

when the tube is held vertically in the liquid is called capillary or meniscus effect or

capillarity. Such narrow tubes are called capillaries.Rise of the liquid surface is called

capillary rise and fall of the liquid surface is called capillary depression.
Capillary rise or depression is given by

4ócosè
=

ñ d
h

g

where s is the surface tension coefficient, q is the area wetting contact angle and d is

the diameter of tube.

REVIEW QUESTIONS

11.1 What is a fluid? How does it differ from a solid?

11.2 Differentiate between liquids and gases.

11.3 Define density, specific weight, specific volume and specific gravity.

11.4 State and explain Newton’s law of viscosity.

11.5 What is the effect of temperature on viscosity of water and that of air?

11.6 Distinguish between ideal fluids and real fluids.

11.7 Why does the viscosity of a liquid decreases with increase in temperature while that of a gas in-

creases with increase in temperature.

11.8 What is the difference between dynamic viscosity and kinematic viscosity?

11.9 Define Newtonian and non-Newtonian fluids.

11.10 Explain the no-slip condition of a viscous fluid.

11.11 Define compressibility. How is it related to bulk modulus of elasticity?

11.12 Discuss the shear characteristics of different fluids. Give at least one example of each type of fluid.

What is the Ostwald-de Waele equation?

11.13 What do you mean by surface tension? What are the factors that affect surface tension?

11.14 What is bulk modulus of elasticity?
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NUMERICAL PROBLEMS

11.1 The specific gravity and the kinematic viscosity of a fluid are 0.8 and 2 ¥ 10–6 m2/s respectively.

Calculate its (i) density and (ii) dynamic viscosity.

11.2 A hot plate of area 0.125 m2 is pulled at 0.25 m/s with respect to another parallel plate 1 mm distant from

it the space between the plates containing water of viscosity 0.001 Ns/m2. Find the force necessary to

maintain this velocity and also the power required.

11.3 A 10 cm diameter shaft rotates at 1000 rpm in a 10 cm long journal bearing of 10.05 cm internal diameter.

The annular space in the bearing is filled with oil having dynamic viscosity of 0.1 N.s/m2. Estimate the

power dissipated as heat.

11.4 Two large plane surfaces are 15 mm apart and the gap contains a liquid of viscosity 0.8 N-/m
2
. Within

the gap a thin plate of cross-sectional area 0.5 m
2
 is to be pulled at a velocity of 0.5 m/s at a distance

of 5 mm from one surface. Determine the force required for pulling the plate.

11.5 A piston of 20 cm diameter and 40 cm length works in a cylinder of 20.50 cm diameter. The annular

space of the piston is filled with an oil of viscosity 0.5 N-s/m2. If an axial load of 25 N is applied to the

piston, calculate the speed of movement of the piston.

11.6 A vertical shaft has a hemispherical bottom of radius R which rotates inside a bearing of identical

shape at its end. An oil film of thickness h and viscosity m is maintained in the bearing. Estimate the

viscous torque in the shaft when it rotates with an angular velocity w.

11.7 A thin plate of very large area is placed in a gap of height h with oils of viscosities m1 and m2 on the two

sides of the plate. The plate is pulled at a constant velocity V. Calculate the position of the plate so

that

(i) the shear force on the two sides of the plate is equal

(ii) the force required to drag the plate is minimum

11.8 During the flow of a non-Newtonian fluid it is observed that the velocity distribution within the fluid

film can be expressed by

3

max

1
2

2

u y y

u h h

Ê ˆ Ê ˆ= -Á ˜ Á ˜Ë ¯ Ë ¯

where h is the film thickness and umax the maximum velocity, y is measured from the solid surface. The

viscosity of the fluid is 0.5 N-s/m2 and n = 1.3. Calculate the shear stress at the solid surface when umax

= 0.4 m/s and h = 10 mm. What should be the viscosity of a Newtonian fluid to induce the same shear

stress value for similar velocity profile and the same maximum velocity?

11.9 Calculate the capillary depression in a glass tube of 1 mm radius when immersed vertically in mercury.

Take the surface tension of mercury in contact with air as 0.44 N/m and the area wetting the contact

angle as 130°.

11.10 A space of 2.5 cm wide between two large plane surface is filled with a liquid of absolute viscosity of
2

0.785 N-s/m . What force is required to drag a very thinplate 0.75 m2 in area with a speed of 0.5 m/s

if the plate remains equidistant fromthe two surfaces?

11.11 The space between two square flat parallel plates is filled with oil. Each side of the plate is 30 cm long

the thickness of oil film is 14 mm. The upper plate whichmoves at 2.5 m/s requires a force of 120 N to

maintain the speed. Determine (a) dynamic viscosity of oil, and (b) kinematic viscosity of oil, if the sp.

gravity of oil is 0.8.
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11.12 A thin plate is placed between two flat surfaces h apart such that the viscosity of liquids on the top

and bottom of the plate are m1 and m2 respectively. Determinethe position of the plate such that the

viscous resistance to uniform motion of theplate is minimum.

11.13 Calculate the capillary depression in a glass tube of 1 mm radius when immersed vertically in mercury.

Take the surface tension of mercury in contact with air as 0.44 N/m and the area wetting contact angle

as 130°.

11.14 Find the pressure difference between inside and outside of an air bubble of diameter 0.02 mm if the

surface tension at air-water interface is 0.073 N/m.

MULTIPLE-CHOICE QUESTIONS

11.1 An ideal fluid is defined as a fluid which

(a) is incompressible (b) is compressible

(c) is incompressible and non-viscous (d) has negligible surface tension

11.2 Newton’s law of viscosity states that

(a) shear stress is directly proportional to the velocity

(b) shear stress is directly proportional to the velocity gradient

(c) shear stress is directly proportional to shear strain

(d) shear stress is directly proportional to the viscosity

11.3 A Newtonian fluid is defined as a fluid which

(a) is incompressible and non-viscous (b) obeys Newton’s law of viscosity

(c) is highly viscous (d) is compressible and non-viscous

11.4 Kinematic viscosity is defined as equal to

(a) dynamic viscosity ´ density (b) dynamic viscosity / density

(c) dynamic viscosity ´ pressure (d) pressure ´ density

11.5 Dynamic viscosity has the dimensions

(a) MLT
–2

(b) ML
–1

T
–1

(c) ML
–1

T
–2

(d) M
–1

L
–1

T
–1

11.6 Poise is the unit of

(a) density (b) kinematic viscosity (c) viscosity (d) velocity gradient

11.7 The increase in temperature

(a) increases the viscosity of a liquid (b) decreases the viscosity of a liquid

(c) increases the viscosity of a gas (d) decreases the viscosity of a gas

(e) both (b) and (d)

11.8 Stoke is the unit of

(a) surface tension (b) kinematic viscosity

(c)  viscosity (d) none of the above

11.9 Surface tension has the unit of

(a) force per unit area (b) force per unit length

(c) force per unit volume (d) none of the above

11.10 Fluid is a substance that

(a) cannot be subjected to shear stress

(b) always expands until it fills any container

(c) has the same shear stress at a point regardless of its motion

(d) cannot remain at rest under action of any shear stress
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11.11 Practical fluids

(a) are viscous (b) possess surface tension

(c) are compressible (d) possess all the above properties

11.12 Property of a fluid by which its own molecules are attracted is called

(a) adhesion (b) cohesion (c) surface tension (d) viscosity

11.13 Property of a fluid by which molecules of different kinds of fluids are attracted is called

(a) adhesion (b) cohesion (c) surface tension (d) viscosity

11.14 The conditions of no-slip at rigid boundaries is applicable to

(a) flow of Newtonian fluids only (b) flow of ideal fluids only

(c) flow of all real fluids (d) flow of non-Newtonian fluids only

11.15 Typical example of a non-Newtonian fluid of pseudoplastic variety is

(a) water (b) air (c) blood (d) printing ink

11.16 The relationship between the shear stress t and the rate of shear strain 
d

d

u

y
 is expressed as

d

d

n
u

m
y

é ù
t = ê ú

ë û
. The fluid with the exponent n < 1 is known as

(a) Pseudoplastic fluid (b) Bingham fluid (c) Dilatant fluid (d) Newtonian fluid

11.17 Shear stress for a general fluid motion is represented by 
d

d

n
u

y

æ ö
t = mç ÷è ø

+ A, where n and A are constants.

A Newtonian fluid is given by

(a) n > 1 and A = 0 (b) n = 1 and A = 0 (c) n > 1 and A ¹ 0 (d) n < 1 and A = 0

11.18 A fluid which obeys the relation 
d

d

u

y

t
m =

(a) real fluid (b) perfect fluid (c) Newtonian fluid (d) dilatant fluid

11.19 Newton’s law of viscosity depends upon the

(a) viscosity and shear stress (b)stress and strain in a fluid

(c) shear stress and rate of strain (d) shear stress, pressure and velocity

11.20 The coefficient of viscosity is a property of the

(a) fluid (b) boundary condition

(c) flow velocity (d) body over which flow occurs

11.21 Paper pulp can be regarded as

(a) Dilatant (b) Newtonian fluids (c) Bingham plastic (d) Pseudoplastic fluids

11.22 Which of the following is the bulk modulus of elasticity K of fluid?

(a)
d

ñ
dñ

P
(b)

d

ñdñ

P
(c)

dñ

ñdP
(d)

ñdñ

dP

11.23 The dimension of surface tension is

(a) FL–1T –1 (b) FL–1 (c) FL2T –1 (d) FLT –2

11.24 The dimension of viscosity is

(a) L2T –1 (b) ML–1T –1 (c) MT –2 (d) L2T –1
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11.25 The unit of surface tension is

(a) J/m (b) J/m2 (c) W/m (d) N/m2

11.26 If p is the gauge pressure within a spherical droplet, the gauge pressure within a bubble of the same

fluid and of same size will be

(a) P/4 (b) P/2 (c) 2P (d) P

11.27 Spherical shape of droplets of mercury is due to

(a) high density (b) high surface tension

(c) high adhesion (d) low vapour pressure

11.28 Which fluid does not experience shear sress during flow?

(a) Pseudoplastic (b) Dilatant (c) Inviscid (d) Newtonian

11.29 The bulk modulus of elasticity

(a) is independent of temperature

(b) increases with the pressure

(c) has the dimensions of 
1

r
(d) is larger when the fluid is more compressible

(e) is independent of pressure and viscosity

11.30 The bulk modulus of elasticity for a gas at a constant temperature T is given by

(a)
P

r (b) RT (c) Pr (d) rRT

(e) none of these

11.31 The property of a fluid by virtue of which it offers resistance to shear strain is called

(a) surface tension (b) viscosity (c) adhesion (d) cohesion





Fluid Statics

12.1 INTRODUCTION

Fluid statics deals with problems associated with fluids at rest. Fluid statics is generally referred to as

hydrostatics when the fluid is a liquid and as aerostatics when the fluid is a gas.  In fluid statics, there

is no relative motion between adjacent fluid layers. That means, there is no shear stress acting on the

fluid. The only stress acting on the fluid element is the normal stress, which is manifested in the form

of pressure.

12.2 PRESSURE

A fluid will exert a force normal to a solid boundary or any plane drawn through the fluid. Consider a

small area dA in a stationary fluid. Let dF be the force acting on the area dA in the normal direction.

Mathematically, the pressure at a point in a stationary fluid is

P =
0

lim
A

F

Ad Æ

d
d

If the force is uniformly distributed over the area A, then the pressure at any point is given by

P =
F

A

12.3 PASCAL’S LAW FOR PRESSURE AT A POINT

Pascal’s law stats that pressure (or intensity of pressure) at a point in a static fluid is equal in magnitude

in all directions.

CHAPTER

12
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To demonstrate it, let a small wedge shaped fluid element in static condition be considered. Let us

assume that P1, P2, and P3 are the pressures acting on the three surfaces as shown in Fig. 12.1. Since

static condition, the tangential force exerted by the surrounding fluid elements is zero, the forces

acting on the fluid element are pressure forces on the surfaces and the gravity forces. Let us also

assume that the gravity forces are acting along negative y direction.

Figure 12.1 Static equilibrium of a fluid element

From Newton’s second law, a force balance in the x and y direction gives:

xFÂ = 0

1 3 sinPdydz P dzdl- q = 0   (12.1)

yFÂ = 0

2 3

1
cos ( cos )

2
P dxdz P dldz gdl dy dz- q - r q = 0 (12.2)

where r is the density and 
1

( cos )
2

gdl dy dzr q  is the weight of the fluid element. From the figure

(right angle triangle) cosdx dl= q  and sindy dl= q .

Substituting these on Eq. (12.1) and (12.2)

P1 – P3 = 0

or, P1 = P3 (12.3)

2 3

1
sin

2
P P gdl- - r q = 0 (12.4)

As dl Æ 0 (the fluid element shrinks to a point), we have

P2 = P3 (12.4a)

Therefore, from Eq. (12.3) and (12.4a) P1 = P2 = P3 i.e., the pressure at a point in a fluid has the

same magnitude in all possible directions.
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12.4 BASIC EQUATION OF FLUID STATICS

Consider a differential fluid element at rest in rectangular Cartesian Co-ordinates with z axis vertically

upward, as shown in Fig. 12.2. The forces acting on the fluid element at rest, are of surface forces and

body forces. The only body force acting is the gravity force.

The body force due to gravity acting on the fluid element is rgDxDyD z which is acting vertically

downward. Therefore, the body force acting along the z direction is – rgDxDyD z.

Since the fluid element is at rest, the shear stress acting on the element will be zero. The only

surface force is the pressure force.

Let the pressure at the center of the element be P. the surface forces acting on the different faces are

shown in Fig. 12.2.

Figure 12.2 Variation of fluid pressure

The pressure at the bottom face (normal to z axis) of the element is
2

P z
P

z

∂ D
-

∂

The pressure at the top face (normal to z axis) of the element is 
2

P z
P

z

∂ D
+

∂

The forces acting on faces normal to y direction are 
2

P y
P x z

y

∂ DÊ ˆ- D DÁ ˜Ë ¯∂
and

2

∂ DÊ ˆ+ D DÁ ˜Ë ¯∂
P y

P x y
y

respectively.

Similarly the surface forces acting on the left and right faces (normal to x direction) are

2

P x
P y z

x

Ê ˆ∂ D
- D DÁ ˜Ë ¯∂

 and 
2

P x
P y z

x

Ê ˆ∂ D
+ D DÁ ˜Ë ¯∂

 respectively

The forces acting on faces normal to y direction are 
2

P y
P x z

y

Ê ˆ∂ D
- D DÁ ˜Ë ¯∂

 and 
2

P y
P x z

y

Ê ˆ∂ D
+ D DÁ ˜Ë ¯∂

respectively.
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Net forces acting on the element in the x direction is  .
∂

d = - D D D
∂x

P
F x y z

x

Similarly, net forces acting on the fluid element in the y and z direction are y

P
F x y z

y

∂
d = - D D D

∂
, and

z

P
F x y z g x y z

z

∂
d = - D D D - r D D D

∂
 respectively.

From Newton’s second law, a force balance in the x, y and z directions gives:

xFÂ = max = 0

or,
P

x

∂
∂

= 0 (12.5)

yFÂ = may = 0

or,
P

y

∂
∂

= 0 (12.6)

zFÂ = maz = 0

or,
P

z

∂
∂

= – rg (12.7)

It implies that any two points at the same elevation in the same continuous mass of fluid at rest have

the same pressure. From Eq. (12.5) to (12.7), it can be concluded that the pressure P is a function of

z only. Therefore, Eq. (12.7) can be written as

dp

dz
= – rg   (12.8)

Equation (12.8) relates the change of pressure to change of elevation and is applicable to both

compressible and incompressible fluids.

12.4.1 Pressure Variation in an Incompressible Fluid

For most problems involving liquids, it is usual to assume that the density r is constant, and the same

assumption can also be made for a gas if pressure differences are very small. Equation (12.8) can be

written as

d

d

P

z
= – rg

For an incompressible fluid, the density r does not change with change in pressure P.

If the pressure at the reference level, z0, is designated as P0 then the pressure P at the location z is

found by integrating the Eq. (12.8 ),
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0

d

p

p

PÚ =

0

d

z

z

g z-Ú

P – P0 = – rg(z – z0) = rg(z0 – z)

For liquids, it is convenient to take the origin of the coordinate system at the reference level and to

measure distances as positive downward from the reference level.

z0 – z = h

P – P0 = rg(z0 – z) = rgh (12.9)

 Equation (12.9) indicates that the pressure difference between two points in a static fluid can be

determined by measuring the elevation difference between the two points.

Example 12.1 Calculate the pressure at an altitude of 5 km above sea level if the atmospheric pressure

and density at sea level are 101.3 kPa and 1.22 kg/m3 respectively. Assume air as an

incompressible fluid and neglect the variation of g with altitude.

Solution

Atmospheric pressure at the sea level 3 2
0 101.3 kPa 101.3 10  N/mP = = ¥ ,

Density of air at the sea level
3

0 1.22 kg/mr =

Altitude from the sea level 0 5 km 5000 mz z- = =
Pressure at any point can be found from Eq. (12.9) as

0 0( )P P g z zr= - -

Substituting the values in the above equation, we get

3101.3 10 1.22 9.81 5000P = ¥ - ¥ ¥
2 241459 N/m 41.459 kN/m= =

Note:  Example 12.1 illustrates that pressure decreases with an altitude from the sea level.

12.4.2 Pressure Variation in a Compressible Fluid

So far we have considered the variation of pressure for incompressible fluid for which density

variation with change in pressure is not significant and is neglected. Now, we will consider the case

of pressure variation in a compressible fluid for which density varies with pressure.

For isothermal fluid

For isothermal fluid, one can write

P
= 0

0

P
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where P0 and r0 are the pressure and density at some arbitrary reference level z0.

or, r = 0

0

P
P

r

From Eq. (12.8), we have

dP

dz
= – rg

 Substituting the value of r in the above equation, we get

dP

dz
= 0

0

Pg
P

r
-

or,
dP

P
= 0

0

gdz
p

r
-

Integrating, we obtain

0

P

P

dP

PÚ =

0

0

0

z

z

gdz
P

r
-Ú [ P = P0 at z = z0]

or,
0

ln
P

p
= 0

0
0

( )
rÈ ˘

- -Í ˙
Î ˚

g z z
P

or, P = P0 exp 0
0

0

( )g z z
P

È ˘r
- -Í ˙

Î ˚
(12.10)

Equation (12.10) shows that the pressure decreases exponentially with the elevation (altitude) for

an isothermal fluid.

Example 12.2 Calculate the pressure and density of air at an altitude of 10 km above sea level if the

atmospheric pressure and density at sea level are 101.3 kPa and 1.22 kg/m3

respectively. Assume isothermal process and neglect the variation of g with altitude.

Solution

Atmospheric pressure at the sea level 0 101.3 kPaP =

Density of air at the sea level 
3

0 1.22 kg/mr =

Altitude from the sea level 0 10 km 10000 mz z- = =
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Pressure at any point can be found from Eq. (12.10) as

0
0 0

0

exp ( )P P g z z
P

rÈ ˘
= - -Í ˙

Î ˚

3

3

1.22
=101.3 10 exp 9.81 10000

101.3 10

È ˘
¥ - ¥ ¥Í ˙¥Î ˚

331.08 10  Pa 31.08 kPa= ¥ =
For isothermal process, we have

0

0

PP

r r
=

Substituting the values of p0, r0 and p, one can get

31.08 101.3

1.22r
=

or 331.08 1.22
0.3743  kg/m

101.3
r

¥
= =

For non-isothermal fluid

From the characteristic equation of ideal gas, one can write

P = rRT

where R is the characteristic gas constant.

Substituting the value of r in Eq. (12.8), we obtain

dP

dz
=

P
g g

RT
-r = - (12.11)

It has observed that up to a certain altitude temperature varies (decreases) linearly with elevation.

The temperature variation can be expressed as

T = T0 + b(z – z0)

where b is the temperature lapse rate (negative), and T0 is the temperature at z = z0.

Substituting the value of T in Eq. (12.11), we have

dP

dz
=

0 0[ ( )]

P
g

R T z z
-

+ b -

or,
dP

P
=

0 0[ ( )]

g
dz

R T z z
-

+ b -
(12.12)

Integration of Eq. (12.12) yields

0

ln
P

P
= 0 0

0

( )
ln

T z zg

R T

+ b -
-

b
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or,
0

P

P
=

0 0

0

( )
g

RT z z

T

-
b+ b -Ê ˆ

Á ˜Ë ¯
(12.13)

or,
0

P

P
=

0

g

RT

T

-
bÊ ˆ

Á ˜Ë ¯
(12.14)

Equation (12.13)  or (12.14) shows that the pressure decreases with elevation and depends on g, R

and b.

Example 12.3 Calculate the atmospheric pressure at the end of troposphere, which extends up to a

height of 9 km from sea level. Consider a temperature variation in the troposphere as

T = 288–0.006z, where z is the elevation in metres and T is the temperature in Kelvin.

The atmospheric pressure and temperature at sea level are 101.3 kN/m2 and 288 K

respectively. For air, R = 287 J/kg-K.

Solution

Altitude from the sea level 9 km 9000 mz = =
Atmospheric pressure at the sea level 0 101.3 kPap =

Atmospheric temperature at the sea level 0 288 KT =
Characteristic gas constant of  air 287 J/kg-KR =
Temperature variation 288 0.006T z= -
Temperature lapse rate 0.006b = -
Temperature at an altitude of 9 km from sea level is

288 0.006 9000 234 KT = - ¥ =
Pressure at any point can be found from Eq. (12.14) as

0

0

g

RT
P P

T

b
-

Ê ˆ
= Á ˜Ë ¯

9.81

287 ( 0.006)234
101.3

288
P

-
¥ -Ê ˆ

= Á ˜Ë ¯

230.998 kN/m=
The atmospheric pressure at the end of troposphere is 30.998 kN/m2.

12.5 UNITS AND SCALE OF PRESSURE MEASUREMENT

Pressure may be expressed with reference to any arbitrary datum. The usual data are absolute zero

and local atmospheric pressure. When a pressure is expressed as a difference between its value and a

complete vacuum, it is called an absolute pressure. When it is expressed as a difference between its

value and the local atmospheric pressure, it is called a gauge pressure.
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Mathematically, one can write (refer Fig. 12.3)

Pabs = Patm + Pgauge (12.15)

Pvac = Patm – Pabs (12.16)

At sea level and 15°C, the international standard atmosphere has been chosen as 1.01325 bar

(= 10.34 m of water = 760 mm of mercury). In the SI system, the unit of pressure is N/m2, also

known as Pascal. To express large magnitudes, bar is also used as a unit of pressure.

1 bar = 105 Pascal

The unit mm of Hg is also called torr in honour of Torricelli. Therefore,

1 atm = 760 torr

Gauge pressure

Absolute
pressure

Vacuum
pressure

Local atmospheric
pressure

Absolute
pressure

Absolute zero

Figure 12.3 Illustration of absolute, gauge and vacuum pressure readings

Example 12.4 Calculate the pressure in N/m2 corresponding to

(i) 6 m of water column

(ii) 10 cm of mercury column

(iii) 4 cm of column of a fluid of specific gravity 0.7

Solution (i) h = 6 m of water column

P = rgh

= 1000 ¥ 9.81 ¥ 6 = 58860  N/m2

(ii) h = 10 cm of mercury column = 0.1 m of mercury column

P = rgh

= 13600 ¥ 9.81 ¥ 0.1 = 13341.6 N/m2

(iii) h = 4 cm of column of a fluid of specific gravity 0.7 = 0.4 m column of fluid

Density of fluid = 0.7 ¥ 1000 kg/m2

P = rgh

= 0.7 ¥ 1000 ¥ 9.81 ¥ 0.4 = 274.68 N/m2
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12.6 MEASUREMENT OF PRESSURE

The relationship between pressure and the head is

utilized for pressure measurement in the manometer.

Manometers are devices in which columns of a suitable

liquid are used to measure the difference in pressure

between two points or between a certain point and the

atmosphere. Manometers are extensively used in flow

measurements.

12.6.1 Piezometer

The most elementary manometer is called a piezometer.

A piezometer is essentially a glass or plastic tube

mounted vertically so that it is connected to the space

within the container (refer Fig. 12.4). Liquid rises in the

tube until equilibrium is reached. The pressure is given by the vertical distance from the meniscus

(liquid surface) to the point where the pressure is to be measured. It is expressed in units of the length

of liquid in the glass tube.

If the liquid is moving in the pipe or vessel, the bottom of the tube must be flush with the inside of

the vessel, otherwise the reading will be affected by the velocity of the fluid. This instrument can only

be used with liquids, and the height of the tube which can conveniently be employed limits the

maximum pressure that can be measured.

If the top of the tube is open to atmosphere, the pressure measured is gauge pressure.

Pressure at A = Pressure due to column of liquid of height h1

PA = rgh1

Similarly,

Pressure at B, PB = rgh2

There are certain drawbacks of a piezometer:

1. It measures only the positive gauge pressure (i.e., the pressure in the liquid is above atmospheric

pressure). The piezometer would not work for negative gauge pressures, because air would

flow into the container through the tube.

2. The use of a piezometer is also impractical for measuring large pressures, since for that the

vertical tube would need to be very long.

3. If the working fluid is a gas, the usage of a piezometer is not possible, because gases do not have

a free surface.

The above mentioned drawbacks of the piezometer can be overcome by modifying the tube and

this modified tube is known as a manometer.

12.6.2 U-tube Manometer

For the measurement of small, negative or larger gauge pressures, some modifications in the tube of

a piezometer are incorporated and this modified tube is known as a manometer. The U-tube manometer

is very commonly used. The lower part of the U-tube contains a liquid which is immiscible with the

working fluid. This fluid is called the manometric fluid.

h2

h1

A

B

Figure 12.4 Piezometer
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Desirable properties of manometric fluid

(a) The fluid should have a low vapour pressure.

(b) It should have a defined meniscus at the interface for good readability.

(c) It should have low surface tension to avoid capillary rise.

(d) The fluid should be immiscible with the working fluid.

The choice of a measuring fluid is guided by the range of pressure to be measured; higher the

range, heavier the fluid.

Mercury is widely used as a manometric fluid because it has properties like

(a) low vapour pressure (ª 0.17 N/m2 at 20 °C) and thus for all intents and purposes it can be

neglected in comparison with atmospheric pressure

(b) high density

Now, consider the two cases one by one.

Case 1 Measurement of large gauge pressure

One end of the U-tube is connected to the pipe or the container whose pressure is to be measured. The

other end of the tube is open to atmosphere. The level of the manometric fluid on the left limb will fall

and on the right limb, it will rise (refer Fig. 12.5).

P1

X
Y

h

Patm

Manometric fluid

x

rw

rm

Figure 12.5 U-tube manometer to measure gauge pressure

Applying the fundamental law of fluid statics, the pressures at two points, X and Y, at the same

elevation in the same continuous mass of fluid at rest must be equal.

For the left hand side,

PX = P1 + rw g(x + h)

For the right hand side,

PY = Patm + rm gh

Since pX = pY

P1 + rw g(x + h) = Patm + rm gh

P1 – Patm = (rm – rw)gh – rm gx (12.17)

where P1 is the absolute pressure of the fluid in the pipe or the container, and Patm is the local

atmospheric pressure, rm is the density of the manometric fluid and rw is the working fluid.
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Case 2 Measurement of negative gauge pressure

The level of the manometric fluid on the left limb will rise and on the right limb will fall (Fig. 12.6).

After attaining the equilibrium, if we apply the fundamental law of fluid statics, the pressures at two

points, X and Y, at the same elevation in the same continuous mass of fluid at rest must be equal.

Equating the pressure at the level XY (pressure at the same level in a continuous body of static fluid

is equal),

Figure 12.6 U-tube manometer to measure vacuum pressure

For the left hand side,

Px = P1 + rw gx + rm gh

For the right hand side,

PY = Patm

Since PX = PY

P1 + rw gx + rm gh = Patm

Patm – P1 = rw gx + rm gh (12.18)

12.6.3 U-tube Differential Manometer

To measure the pressure difference between two

points in the flow field, the manometer which is

frequently used, is called the differential U-tube

manometer.

A differential U-tube manometer is very handy

to measure the pressure difference directly and

is basically similar to the U-tube manometer

discussed above. What the open end was before

is now connected to a different pressure P2 in

the flow field as shown in Fig. 12.7.

PX = P1 + rw g(x + h)

PY = P2 + rw gx + rm gh

Figure 12.7 U-tube differential manometer
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Equating the pressure at the level XY (pressure at the same level in a continuous body of static fluid

is equal),

PX = PY

P1 + rw g(x + h) = P2 + rw gx + rm gh

P1 – P2 = (rm – rw)gh (12.19)

In forming the connection from a manometer to a pipe or vessel in which a fluid is flowing, care

must be taken to ensure that the connection is perpendicular to the wall and flush internally. Any burr

or protrusion on the inside of the wall will disturb the flow and cause a local change in pressure so that

the manometer reading will not be correct.

Example 12.5 Determine the pressure difference between points A and B, as shown in Fig. 12.8.

Figure 12.8

Solution Equating the pressures of both the limb along the horizontal plane XY

PA + (0.06 + 0.1 + 0.08) ¥ 0.9 ¥ 1000 ¥ 9.81 = PB + 0.06 ¥ 13600 ¥ 9.81 ¥ 0.1 ¥
0.75 ¥ 1000 ¥ 9.81

PA – PB = 4502.79 Pa = 4.503 kPa

Example 12.6 A differential U-tube mercury manometer is used to measure the pressure difference

between points 1 and 2 in a pipeline conveying water. The point 1 is 0.5 m lower than

the point 2. The difference in the level of manometric fluid on the two limbs is 0.8 m.

Calculate the pressure difference between points 1 and 2.

Solution The problem is shown in Fig. 12.9.

Here,

z2 – z1 = 0.5 m

h = 0.8 m

PX = P1 + rw g(z1 – z)

PY = P2 + rw g(z2 – z – h)x + rm gh
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Figure 12.9

Equating the pressure at the level XY (pressure at the same level in a continuous body

of static fluid is equal),

PX = PY

P1 + rw g(z1 – z) = P2 + rw g(z2 – z – h)x + rm gh

P1 – P2 = (rm – rw)gh + rw g(z2 – z1)

P1 – P2 = (13600 – 1000)9.81 ¥ 0.8 + 1000 ¥ 9.81 ¥ 0.5

= 103789.8 N/m2 = 103.79 kN/m2

12.6.4 U-Tube Manometer with One Leg Enlarged

The disadvantage of the simple U-tube manometer is that movement of the liquid in both limbs must

be read. By making the diameter of one leg very large as compared with the other, it is possible to

make the movement in the large leg very small, so that it is only necessary to read the movement of

the liquid in the narrow leg. Let M–N be the level of the liquid surface, when the pressure difference

is zero and the working fluid is a gas.

Then when pressure is applied (P1>P2), the level in the right-hand limb will rise a distance h

vertically as shown in Fig. 12.10.

Volume of liquid transferred from left-hand leg to right-hand leg V =
2

d
4

h.

\ Fall in level of the left-hand leg

 = 

2
2

2

d
Volume transferred( ) d4 .

Area of left hand leg( )  

4

h
V

h
A D

D

Ê ˆ= = Á ˜Ë ¯
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h
Diameter D

Diameter d

Manometric fluid

N

YX

M

P1

P2

Figure 12.10 U-tube with one leg enlarged

The pressure difference, P1 – P2, is represented by the height of the manometric liquid corresponding

to the new difference of level.

\ P1 – P2 =

2 2
d d

= 1m mg h h gh
D D

È ˘ È ˘Ê ˆ Ê ˆ+ +Í ˙ Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙ Í ˙Î ˚ Î ˚

If D>>d then neglecting (d/D)2, the above equation yields to

P1 – P2 = rm gh (12.20)

12.6.5 Inclined Tube Manometer

If the pressure difference to be measured is small, the leg of the U tube may be inclined. The

movement of the meniscus along the inclined leg, read off on the scale, is considerably greater than

the change in level h as shown in Fig. 12.11.

\ pressure difference,

P1 – P2 = rgh = pgs sin q (12.21)

The manometer can be made as sensitive as may be required by adjusting the angle of inclination of

the leg and selecting a liquid with an appropriate value of density r to give a scale reading s of the

desired size for a given pressure difference.

Diameter d

Diameter D

P1

P2

M

X

S
h Nq

Y

Figure 12.11 Inclined manometer
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12.6.6 Inverted U-tube Manometer

The inverted U-tube manometer is used for measuring pressure differences in liquids. The top of the U-

tube is filled with a fluid which has a density less than that of the working fluid as depicted in

Fig. 12.12. For an inverted U-tube manometer, the manometric fluid is usually air. Air can be admitted

or expelled through the tap on the top, in order to adjust the level of the liquid in the manometer.

If the density of manometric fluid in the top of the tube is very close to that of the working fluid

then the result will be very sensitive giving a large value of h for a small pressure difference.

PX = P1 – rw g(x + h)

PY = P2 – rw gx – rm gh

Equating the pressure at the level XY (pressure at the same level in a continuous body of static fluid

is equal),

PX = PY

P1 – rw g(x + h) = P2 – rw gx – rm gh

P1 – P2 = ( rw – rm )gh (12.22)

Figure 12.12 Inverted U-tube manometer

A major disadvantage of the manometer is its slow response, which makes it unsuitable for

measuring fluctuating pressures. Even under comparatively static conditions, slight fluctuations of

pressure can make the liquid in the manometer oscillate, so that it is difficult to get a precise reading of

the levels of the liquid in the gauge. These oscillations can be reduced by putting restrictions in the

manometer connections. It is also essential that the pipes connecting the manometer to the pipe or

vessel containing the liquid under pressure should be filled with this liquid and that there should be no

air bubbles in the liquid.

Example 12.7 Determine the pressure difference between points A and B for the inverted U-tube

manometer as shown in Fig. 12.13.
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Figure 12.13

Solution Equating the pressures of both the limbs along the horizontal plane XY

PA – 1000 ¥ 9.81(0.14 + 0.06) = PB – 1000 ¥ 9.81 ¥ (0.1 + 0.14) – 0.06 ¥ 0.8 ¥ 1000 ¥ 9.81

PA – PB = – 863.28 Pa = – 0.863 kPa

Pressure at B is higher than at A by 0.863 kPa.

Example 12.8 Determine the pressure difference between the pipes A and B for the inverted U-tube

manometer as shown in Fig. 12.14.

Figure 12.14

Solution Equating the pressures of both the limb along the horizontal plane XY

PA – 1000 ¥ 9.81 ¥ 0.16 = PB – 1000 ¥ 9.81 ¥ (0.16 – 0.03 – 0.045) – 0.85 ¥ 1000 ¥ 0.03 ¥ 9.81
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PA – PB =  485.595 Pa

Pressure at A is higher than at B by 485.595 Pa.

Example 12.9 Two pipes A and B are in the same elevation. Water is contained in A and rises to a

level of 2 m above it. Pipe B contains an oil of sp. gr. 1.7. The inverted U-tube is

filled with compressed air at 350 kN/m2 and 20 °C. Determine

(i) the pressure difference between A and B and

(ii) the absolute pressure in B

Figure 12.15

Solution Pressure at Y is the same as that at Z.

Equating the pressures of both the limbs along the horizontal plane XY,

PA – 1000 ¥ 9.81 ¥ 2 = PB – 1.7 ¥ 1000 ¥ 9.81 ¥ (2 – 0.3)

PA – PB = 873.09 N/m2

PA – PB = 0.87 kN/m2

Pressure at B,

PB = 350 kN/m2 + presure of (2 – 0.3) m of oil column

PB = 350 ¥ 103 + 1000 ¥ 1.7 ¥ 9.81 ¥ (2 – 0.3) N/m2

PB = 378350.9 N/m2

PB = 378.35 kN/m2

12.6.7 Micro Manometers

A micro manometer is used for measuring small differences of pressures in the order of 0.001 mm of

Hg. It utilizes two liquids which are immiscible with each other. Let rm and rg  be the density of the

two manometric fluids (let rm > rg ) the denser liquid will fill the bottom of the U-tube.
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Manometric fluid, rm

Manometric fluid, rg

Initial level of

Manometric fluid, rm

Dx
y

X

h

Y

x

Dx

Working fluid

Initial level of

Manometric fluid, rg

P1 p2

Figure 12.16 Micro manometer

Let A = area of each enlarged end

a = area of the tube

Equating the pressure at the level XY (pressure at the same level in a continuous body of static fluid

is equal),

PX = PY

P1 + rw g( y + Dx ) + rg g(x + h – D x) = P2 + rw g( y – D x) + rg g(x + D x) + rm gh (12.23)

The volume of the manometric liquid of density rg displaced in the enlarged section equals to the

displacement in the U-tube.

ADx =
2

h
a

Dx =
2

a h

A

Substituting the value of Dx in the Eq. (12.23), we have

1
2 2

w g

a h a h
P g y g x h

A A

Ê ˆ Ê ˆ+ + + + -Á ˜ Á ˜Ë ¯ Ë ¯  = 2
2 2

w g m

a h a h
P g y g x gh

A A

Ê ˆ Ê ˆ+ - + + +Á ˜ Á ˜Ë ¯ Ë ¯

P1 – P2 = w g m

a a
g h g h h gh

A A

Ê ˆ- - - +Á ˜Ë ¯ (12.24)

If D>>d then neglecting (a/A), above equation yields to

P1 – P2 = rm gh – rg gh = ( rm – rg )gh (12.25)

If the densities of the two manometric fluids are close to each other then for a small pressure

difference we can achieve a reasonable value of h.



12.20 Engineering Thermodynamics and Fluid Mechanics

12.6.8 Barometer

The barometer is a special manometer used for measuring

atmospheric air pressure. Mercury is used as the manometric fluid.

The tube is evacuated of all gas so that no atmospheric pressure

acts on the top of the mercury column. Because atmospheric

pressure acts on the bottom of the mercury, the height to which the

mercury column is lifted represents atmospheric pressure.

The pressure at A is the local atmospheric pressure and is expressed

by the following equation:

Patm – Pv = rgh (12.26)

where Pv is the vapour pressure of mercury. Since mercury has a low

vapour pressure (ª 0.17 N/m2 at 20 °C) it can be neglected in

comparison with atmospheric pressure for all intents and purposes.

SUMMARY

Pascal’s law states that pressure (or intensity of pressure) at a point in a static fluid is

equal in magnitude in all directions.

Two points at the same elevation in the same continuous mass of fluid at rest have the

same pressure.

d

d

p

z
= – rg

When a pressure is expressed as a difference between its value and a complete

vacuum, it is called an absolute pressure. When it is expressed as a difference

between its value and the local atmospheric pressure, it is called a gauge pressure.

Pabs = Patm + Pgauge

Pvac = Patm – Pabs

Manometers are devices in which columns of a suitable liquid are used to measure

the difference in pressure between two points or between a certain point and the

atmosphere.

A simple U-tube manometer is used to measure pressure at a point.

A differential manometer is used to measure difference of pressure between two

points.

Micro manometers are used for measuring small differences of pressures in the

order of 0.001 mm of Hg.

The barometer is a special manometer used for measuring atmospheric air

pressure.

Figure 12.17 Barometer
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REVIEW QUESTIONS

12.1 State and prove Pascal’s law of hydrostatics.

12.2 What is a manometer? How are manometers classified?

12.3 Differentiate between the following:

(i) Absolute pressure and gauge pressure

(ii) Piezometer and simple manometer

(iii) Simple manometer and differential manometer

(iv) U-tube differential manometer and inverted U-tube differential manometer

12.4 Explain how the static pressure is isotropic at any horizontal cross section in a fluid.

12.5 State the hydrostatic law and derive the expression for the same.

12.6 Prove that pressure varies exponentially with elevation for isothermal condition.

NUMERICAL PROBLEMS

12.1 Calculate the pressure and density of air at an altitude of 6 km from the sea level. The pressure,

temperature and density of the air at sea level are 101.3 kPa, 288 K and 1.22 kg/m3 respectively.

The temperature lapse rate is 0.00065 K/m.

12.2 Calculate the pressure at an altitude of 2 km above sea level if the atmospheric pressure and density

at sea level are 101.3 kPa and 1.22 kg/m3 respectively. Assume air as an incompressible fluid and

neglect the variation of g with altitude.

12.3 Determine the pressure difference between points A and B, as shown in Fig. 12.18.

A

B

Oil of Sp. Gr. 0.8
Oil of Sp. Gr. 0.9

12 cm

20 cm

10 cm

X Y

Mercury

Figure 12.18

12.4 A differential U-tube mercury manometer is used to measure the pressure difference between points

1 and 2 in a pipeline conveying water. The point 1 is 0.5 m lower than the point 2. The difference in

the level of manometric fluid on two limbs is 0.8 m. Calculate the pressure difference between

points 1 and 2.

12.5 Water is flowing through two different pipes A and B to which an inverted differential manometer

having an oil of sp.gr. 0.9 is connected. The pressure in the pipe A is 2.5 m of water. Find the

pressure in the pipe B for the manometer readings as shown in Fig. 12.19.
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Figure 12.19

12.6 While one end of a U-tube mercury manometer is connected to a horizontal pipe in which water is

flowing, its other end is open to the atmosphere. If the difference of mercury levels in the two limbs

of this U-tube manometer is found to be 25 cm and the vertical height of water above mercury

remains 10 cm below the pipe axis, find the pressure in the pipe.

12.7 A multi-tube manometer is used to determine the pressure difference between points A and B as shown

in Fig.12.20. For the given values of heights, determine the pressure difference between points A and

B. Specific gravities of benzene, kerosene and mercury are 0.88, 0.82 and 13.6 respectively.

25 cm

Water

Mercury

Benzene

20 cm

40 cm 15 cm

10 cm

Kerosene

BA

Figure 12.20

12.8 A differential U-tube mercury manometer is used to measure the pressure difference between two

sections of a vertical pipe through which water flows upwards and shows a deflection of 10 cm. The

distance between the two sections is 30 cm. Determine the difference of pressure between the two

sections. Assume density of mercury as 13600 kg/m3 and density of water as 1000 kg/m3.
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12.9 The pressure and density of air at an altitude of 2000 m above sea level are 79.98 kPa and 0.963 kg/m3

respectively. Find the atmospheric pressure and density of air at sea level. Assume an isothermal

process and neglect the variation of g with altitude.

MULTIPLE-CHOICE QUESTIONS

12.1 The intensity of pressure at a point in a fluid is the same in the directions, only when

(a) the fluid is frictionless and incompressible

(b) the fluid is frictionless

(c) there is no motion of one fluid layer relative to an adjacent layer

(d) the fluid has zero viscosity and is at rest

12.2 In a static fluid, with y as the vertical direction, the pressure variation is given by

(a)
d

ñ
d

p

y
= (b)

d
ñ

d

p

y
= -

(c)
d

ã
d

p

y
= (d)

d
ã

d

p

y
= -

12.3 In an isothermal atmosphere, the pressure

(a) remains constant

(b) decreases linearly with elevation

(c) decreases exponentially with elevation

(d) varies in the same way as the density

12.4 The piezometric head in a static liquid

(a) remains constant at all points in the liquid

(b) increases linearly with depth below a free surface

(c) decreases linearly with depth below a free surface

(d) remains constant only on a horizontal plane

12.5 Local atmospheric pressure is measured by

(a) thermometer (b) manometer

(c) barometer (d) hydrometer

12.6 In a barometer, mercury is preferred over water because

(a) it has higher vapour pressure and bulk modulus of elasticity

(b) it has higher thermal conductivity

(c) it has higher density and lower vapour pressure

(d) its surface is easier to read

12.7 A differential manometer is used to measure

(a) atmospheric pressure (b) very low pressure

(c) difference of pressure between two points (d) velocity in pipes

12.8 Gauge pressure is equal to

(a) absolute pressure– atmospheric pressure (b) atmospheric pressure – absolute pressure

(c) atmospheric pressure + absolute pressure (d) atmospheric pressure + vacuum

12.9 Mercury is used in barometers on account of its

(a) negligible capillary effect (b) high density

(c) very low vapour pressure (d) low compressibility





Kinematics of Fluid Flow

13.1 INTRODUCTION

In Chapter 12, fluid at rest was discussed. In this chapter, kinematics of fluid flow will be discussed.

Kinematics of fluid flow is the study of motion of fluids without considering the forces and moments

that cause the motion. We begin this chapter with the different methods of analysis of fluid flow.

Different types of flows and various ways to visualise flow fields are next illustrated with examples.

Finally, generalised form of continuity equation in differential form is derived.

13.2 METHODS OF DESCRIPTION/ANALYSIS

There are two different points of view in analysing problem in mechanics. The first method, which
follows an individual particle moving through the flow, is called the Lagrangian approach after the
Italian mathematician Joseph Louis Lagrange (1736–1813). In this description, the fluid motion is
described by tracing the kinematic behaviour of each and every individual particle constituting the
flow. The position of a particle at any instant of time becomes a function of its identity and time is
given by

( )0 ,S S S t=
r

 (13.1)

 The second approach, appropriate to fluid mechanics, is concerned with the field of flow and is

called the Eulerian approach named after Swiss mathematician Leonhard Euler (1707–1783). In the

Eulerian method of description, the properties of a flow field are described as functions of space

coordinates and time. For example, the pressure field is a scalar field variable. For three-dimensional

unsteady fluid flow in Cartesian coordinate system, one can write

P = P (x, y, z, t)  (13.2)

The velocity field is a vector field variable and is represented by

( ), , ,V V x y z t=
r r

 (13.3)
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The velocity components can be expressed as

( ), , ,u u x y z t= (13.3a)

( ), , ,v v x y z t= (13.3b)

( ), , ,w w x y z t= (13.3c)

where u, v and w are the velocity components along x, y and z directions respectively.

The Lagrangian approach is more appropriate to solid mechanics. In the study of fluids, the Eulerian

approach is preferred because it is difficult to follow a fluid particle.

13.3 CLASSIFICATIONS OF FLOWS

According to the type of variations of properties, different categories of fluid flows are as follows:

(a) Steady and unsteady flows

(b) Uniform and non-uniform flows

(c) Laminar and turbulent flows

(d) Incompressible and compressible flows

(e) One, two and three-dimensional flows

(f) Internal and external flows

(g) Inviscid and viscous flows

(h) Irrotational and rotational flows

13.3.1 Steady and Unsteady Flows

Fluid flow can be classified into steady and unsteady on the basis of variations of fluid properties and

flow characteristics with time.

A flow is said to be steady during which the fluid properties (such as density, pressure,

temperature) and flow quantities (such as velocity, acceleration, etc.) at any point does not change

with time. The term steady implies no change at a point with time. Mathematically, for steady flow,

one can write

0 0 0, ,

0

x y z

V

t

Ê ˆ∂
=Á ˜∂Ë ¯

r

where (x0, y0, z0) is a fixed point in the flow field.

A flow is said to be unsteady during which the fluid properties and flow characteristics at any point

changes with time. Mathematically, for unsteady flow, one can write

0 0 0, ,

0

x y z

V

t

Ê ˆ∂
πÁ ˜∂Ë ¯

r

Liquid flow through a pipe at a constant rate is steady flow, whereas liquid flow through a pipe at

a variable (increasing or decreasing) rate is unsteady flow.
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13.3.2 Uniform and Non-uniform Flows

Fluid flow can be classified into uniform and non-uniform on the basis of variations of fluid properties

and flow characteristics with space at a given instant of time.

A uniform flow is defined as that type of flow in which the fluid properties and flow characteristics

at any instant of time do not change with space. The term uniform implies no change with location

over a specified region. Mathematically, for uniform flow, we have

0

0

t t

V

s
=

Ê ˆ∂
=Á ˜∂Ë ¯

r

where t0 is any fixed instant of time during the flow.

A non-uniform flow is defined as that type of flow in which the fluid properties and flow

characteristics at any instant of time do not change with space. Mathematically, for non-uniform

flow, one can write

0

0

t t

V

s
=

Ê ˆ∂
πÁ ˜∂Ë ¯

r

The liquid flow through a uniform cross-sectional area is uniform flow. Uniform flow at a

section is shown in Fig. 13.1. The liquid flow through an expanding tube is non-uniform flow. Figure

13.2 shows flow through a circular pipe, which is non-uniform in nature.

Figure 13.1 Uniform flow at a section

r

x

Figure 13.2 Non-uniform flow at a section

Note that any combinations of the above-mentioned four types of flows are possible, viz., (a)

steady-uniform flow, (b) unsteady-uniform flow, (c) steady non-uniform flow, and (d) unsteady-

non-uniform flow. Some of the common examples of these combinations of flows are listed in

Table 13.1.
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Table 13.1

Type of  flow Example

Steady-uniform flow Flow of liquid through a long pipe of constant diameter at a constant rate

Unsteady-uniform flow Flow of liquid through a long pipe of constant diameter at either increasing or

decreasing rate

Steady non-uniform flow Flow of liquid through a tapering pipe at a constant rate

Unsteady non-uniform flow Flow of liquid through a tapering pipe at either increasing or decreasing rate

13.3.3 Laminar and Turbulent Flows

On the basis of flow structure, flow regimes are classified as laminar and turbulent.

A laminar flow is one in which the fluid particles move along smooth, regular paths which can be

predicted well in advance. The fluid particles thus move in layers, gliding smoothly over adjacent

layers. There is no transformation of fluid particles from one layer to another.

On the other hand, a flow is said to be turbulent, when the fluid particles move in very irregular

paths. The velocities in turbulent flow vary from point to point in magnitude and direction as well as

from instant to instant. All the fluid particles are disturbed and they mix with each other. Thus there is

a continuous transfer of momentum to adjacent layers.

A familiar example is the flow of water from water tap. Whenever water is allowed to flow at a low

velocity by opening the tap a little, the water flows out smoothly and the flow is laminar. However, as

the tap is gradually opened to let the water velocity increase, the flow becomes turbulent.

The behaviour of flow is governed by the magnitude of a non-dimensional Reynolds number,

which is defined as the ratio of inertia force to viscous force and is given by

Re
VLr

m
=  (13.4)

where r is the fluid density, V is the characteristic velocity of flow, L is the characteristic length,

and m is the fluid viscosity. For flow through circular pipe, Reynolds number is expressed as

Re
VDr

m
=  (13.5)

where V is the average flow velocity, and D is diameter of the pipe. The Reynolds number at which

the flow becomes turbulent is called the critical Reynolds number. The value of the critical Reynolds

number is different for different geometries and flow conditions. For internal flow in a circular pipe,

critical Reynolds number is 2000. The flow in a circular pipe is laminar for Re £ 2000, turbulent for

Re ≥ 4000, and transitional in between. That is

Re £ 2000 laminar flow

2000 £ Re £ 4000 transitional flow

Re ≥ 4000 turbulent flow

 Example 13.1 Water is flowing through a circular pipe of diameter 20 mm at a uniform velocity of

3 m/s. The kinematic viscosity of water is 1 ¥ 10–6 m2/s. Determine whether the flow

field is laminar or turbulent.
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Solution

Diameter of pipe 320 mm 20 10  m 0.02 mD -= = ¥ =
Velocity of flow 3 m/sV =

Kinematic viscosity of water 6 21 10  m /sn -= ¥
The Reynolds number is found to be (see Eq. (13.5))

Re
VDr

m
=

or Re
VD

n
=

m
n

r

È ˘
=Í ˙

Î ˚
Q

6

3 0.02
60000

1 10  
-

¥
= =

¥
Since the Reynolds number is more than 4000, the flow is turbulent.

13.3.4 Compressible and Incompressible Flows

Flows in which variations in density are negligible are termed as incompressible flows. When the

density changes significantly within a flow, then the flow is called compressible. Liquid flows are

considered as incompressible flows. Transmission of gases in pipelines at high pressure, flow in high-

speed aircraft and missiles, fans and compressors are compressible flows.

Note: There is a subtle difference between incompressible fluid and incompressible flow. A fluid is

called incompressible if its density does not change significantly with change in pressure. The

change in density may not be always due to change in pressure, it may be due to change in

temperature. That means there may be compressible flow of an incompressible fluid.

13.3.5 One-, Two- and Three-Dimensional Flows

All general flows such as flow around a moving car have velocity components in x, y and z directions.

They are called three-dimensional flows. Thus, a three-dimensional flow is the one in which the

velocity vector depends on three space variables and time. The velocity components can be expressed

as

( ), , ,u u x y z t= (13.6a)

( ), , ,v v x y z t= (13.6b)

( ), , ,w w x y z t= (13.6c)

A two-dimensional flow is one in which the velocity vector depends on two space variables and

time. Steady flow between two parallel plates close to the inlet (entrance region) as shown in Fig. 13.3

is two-dimensional. The velocity components can be expressed as
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( ), ,u u x y t= (13.7a)

( ), ,v v x y t= (13.7b)

A one-dimensional flow is one in which velocity vector depends on only one space variable and

time. The velocity can be expressed as

( ),u u x t= (13.8)

Entrance region Fully developed region

x

y

U•

Figure 13.3 Parallel flow between two infinite parallel plates

Few real flows are strictly one-dimensional. Steady flow between two parallel plates in the fully

developed region [u = u(y)] as shown in Fig.13.3 is one-dimensional.

 Example 13.2 The velocity components for a flow field are given as

u = axy, v = –byzt, w = 0.

Determine

(a) whether the flow field is one-, two-, or three-dimensional.

(b) whether the flow is steady or unsteady.

Solution

(a) Since the velocity field is a function of x, y and z only, the flow field is three-dimensional.

(b) Since time t appears explicitly in the velocity, the flow is unsteady.

13.3.6 Internal and External Flows

On the basis of flow in a confined channel or over a surface, a fluid flow can be classified as internal

or external flow.

The flow of fluid in a pipe or duct is internal flow if the fluid is completely bounded by the solid

surfaces. The flow of an unbounded fluid over a surface such as flat plate is external flow. Water

flow in a pipe is an internal flow, whereas flow over a flat plate is an external flow.

13.3.7 Inviscid and Viscous Flows

An inviscid flow is one in which the effect of viscosity is negligible. In inviscid flow, the fluid

viscosity is assumed to be zero. Inviscid flow does not exist in reality; however, in many situations the

flow can be simplified by neglecting the viscous forces. .

All fluids possess viscosity, and accordingly, viscous flows are important in the study of fluid

mechanics.
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13.3.8 Irrotational and Rotational Flows

A flow is said to be irrotational if the fluid particles while flowing do not rotate about their mass

centres. On the other hand, a flow is said to be rotational when the fluid particles while flowing also

rotate about their mass centres.

When fluid flows over a flat plate as shown in Fig. 13.4, the flow field can be separated into two

regions, namely the boundary layer region (where the viscous effects are significant) and the outer

region (where the viscous effects are not significant). In the boundary layer region the flow is

rotational, whereas in the outer region, the flow is irrotational.

U•
y

x = 0

u U= 0.99 •

d( )x Boundary layer

Outer layer

x L=

x

Figure 13.4 Flow over a flat plate

13.4 STREAMLINES, PATHINES AND STREAKLINES

The pictorial representation of fluid flow is very helpful to describe the flow characteristics, whether

this be done by experimental flow visualisation or by numerical solution. Streamlines, streaklines and

pathlines are widely used to describe the flow behaviour. Here, the important characteristics of the

above-mentioned three lines are discussed.

13.4.1 Streamline and Streamtube

Streamline at any instant can be defined as an imaginary line in the flow field so that the tangent to the

line at any point represents the direction of the instantaneous velocity of that point. For unsteady

flows the streamline pattern changes with time. From the definition of streamline, it can be written

0V dS¥ =
ur r

(13.9)

where dS
r

 is the length of an infinitesimal line segment along a streamline at a point where V
r

 is the

instantaneous velocity vector.

Consider an infinitesimal arc length ˆ ˆdS dxi dyj= +
r

 along a streamline in the xy-plane as shown in

Fig. 13.5. From the definition of streamline, dS
r

 must be parallel to the local velocity vector

ˆ ˆV ui vj= +
r

. Thus, one can write

0V dS¥ =
ur r
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or 0vdx udy- =

or
dx dy

u v
= (13.10)

Equation (13.10) represents the equation of a streamline in x-y plane.

The general differential equation for streamlines in three-dimensional flow field can be obtained as

dx dy dz

u v w
= = (13.11)

y

Streamline

P

V

u

V

v

V

x

Figure 13.5 Streamline in a two-dimensional flow field

A bundle of neighbouring streamlines (Fig. 13.6) may be imagined to form a passage through

which the fluid flows. This passage is known as a stream tube. Since the stream tube is bounded on

all sides by streamlines and by definition, velocity does not exist across a streamline, no fluid may

enter or leave a stream tube except through its ends.
Streamlines

Figure 13.6 Stream tube

 Example 13.3 For the following flow fields find the equation of streamline:

(i) ˆ ˆV xi yj= -
r

passing through the point (1, 1)
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(ii) ˆ ˆ3 2V yi xj= -
r

passing through the point (2, –1)

Solution The equation of a streamline in two-dimensional flow is (see Eq. (13.10))

dx dy

u v
=

(i) x-component of velocity, u = x

y-component of velocity, v = –y

Substituting the x and y component of velocities in the equation of streamline, we have

dx dy

x y
= -

Integrating the above equation, we get

ln ln lnx y C= - +

where C is integration constant

or ln lnxy C=

or xy C=

Streamline is passing through point (1,1)

Thus, 1 1 1C = ¥ =
The equation of streamline is xy = 1

(ii) x-component of velocity, u = 3y

y-component of velocity, v = –2x

Substituting the x and y component of velocities in the equation of streamline, we get

=
-3 2

dx dy

y x

2xdx = –3ydy

Integrating the above equation, we obtain

= - +
2 2

2 3
2 2 2

x y C

where C is integration constant

2x2 + 3y2 = C

Streamline is passing through point (2, –1)

Thus, C = 2 ¥ 22 + 3 ¥ (–1)2 = 11

The equation of streamline is 2x2 + 3y2 = 11

 Example 13.4 A two-dimensional flow field has velocities along the x and y directions given by

u = x2t and v = –2xyt respectively, where t is time. Find the equation of streamline.

Solution The equation of a streamline in two-dimensional flow is (see Eq. (13.10))
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dx dy

u v
=

Substituting u = x2t and v = –2xyt in the equation of streamline, we have

2 2

dx dy

xytx t
= -

or 2
dx dy

x y
= -

Integrating the above equation, we get

2 ln ln lnx y C= - +

where C is integration constant

2ln lnx y C=

or 2 constantx y =

The equation of streamline is x2y = constant

 Example 13.5 In a flow the velocity vector is given by ˆˆ ˆ2 3 5V xi yj zk= - + . Determine the equation

of the streamline passing through point (1, 4, 5).

Solution The equation of a streamline in three-dimensional flow is (see Eq. (13.11))

dx dy dz

u v w
= =

x-component of velocity, u = 2x

y-component of velocity, v = –3y

z-component of velocity, w = 5z

Streamline in the xy-plane is given by (see Eq. (13.10))

dx dy

u v
=

or
2 3

dx dy

x y
=

-

or
3 2

dy dx

y x
= -

or
1

1 1
ln ln ln  

3 2
y x C= - +

or

3

2
1y C x

-
=
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Streamline is passing through point (1, 4, 5)

Thus,
1 4C =

The equation of streamline passing through point (1, 4, 5) is

3

24y x
-

=

Streamline in the xz-plane is given by (see Eq. (13.11))

dx dz

u w
=

or
2 5

dx dz

x z
=

or = + 2

1 1
ln ln ln

5 2
z x C

or

5

2
2z C x=

Streamline is passing through point (1, 4, 5).

Thus, C2 = 5

The equation of streamline passing through point (1, 4, 5) is

5

25z x=

13.4.2 Pathline

In experimental fluid mechanics, the concept of pathline is important. A pathline is the actual

trajectory through space of a selected fluid article during a time of interval. Pathine and streamlines

are identical in a steady flow, but not in an unsteady flow. A pathline is a Lagrangian concept because

it is defined by the motion of fluid particles as shown in Fig.13.7.

Pathline
Fluid particle at time

t = 0

Fluid particle at time
t t= end

Figure 13.7 Pathline

 Example 13.6 A two-dimensional flow field is described in the Lagrangian system as

0
ct

x x e= , and 0
ct

y y e
-=
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Find the equation of path line of the particle.

Solution The equation of pathline can be found from the equations of motion describing the

flow by eliminating t.

From the given flow field, we have

0
ct

x x e=

or
0

ct x
e

x
= (13.12)

0
ct

y y e
-=

or 0ct y
e

y
= (13.13)

Eliminating t from Eqs. (13.12) and (13.13), we have

0

0

yx

x y
=

or 0 0xy x y=

This is the required equation of pathline.

13.4.3 Streakline

A streakline at any instant of time is the temporary locations of all particles that have passed through

a fixed point in the flow field. Note that smoke emitting from a lighted cigarette represents streakline.

Suppose x, y, z are the fluid particles which have passed through a reference point say A as shown in

Fig. 13.8. Further, at an instant of time t, the fluid particle x, y, z are at B, C, D. Then the line joining

A, B, C and D is the streakline, at time t as shown in Fig. 13.8.
D

C

B

A

x y
z

Figure 13.8 Streakline

Note that streamlines, pathlines and streaklines are identical in steady flow. Streamline is

instantaneous line while the streakline and pathline are generated by the passage of time.
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13.5 CONTINUITY EQUATION

13.5.1 Continuity Equation for Steady One-Dimensional Flow
in a Conduit

Consider fluid flows steadily through a portion of the stream tube having a cross-sectional area small

enough for the velocity to be considered as constant over any cross-section, for the setions 1 and 2 as

shown in the Fig. 13.9. Suppose that at section 1, the area of the stream tube is A1, the uniform

velocity of the fluid is V1 and the density is r1, while at section 2 the corresponding values are A2, V2

and r2 respectively.

According to the principle of conservation of mass for a control volume, we have

        =      

              

rate of mass flow entering into the control volume rate of mass leaving from

the control volume rate of increase of mass of fluid in the control volume+
(13.14)

For steady flow, the mass of fluid in the control volume remains constant and Eq. (13.14) simplifies

to

         =    

     

rate of mass flow entering the control volume rate of mass

leaving from the control volume

into
(13.15)

Since there cannot be any flow across the walls of a stream tube, for flow through a streamtube as

shown in Fig. 13.9, Eq. (13.15) becomes

      1 =        2rate of mass entering at section rate of mass flow leaving at section (13.16)

2
1

Area = A1

1
2

Velocity = V1
Density = r1

Area = A2
Velocity = V2
Density = r2

Figure 13.9 Steady flow through a streamtube

Rate of mass flow entering at section 1 = r1A1V1

Rate of mass flow leaving at section 2 = r2A2V2

For steady flow, Eq. (13.16) simplifies to

1 1 1 2 2 2A V A Vr r= (13.17)

Equation (13.17) is the continuity equation for the steady flow of a compressible fluid applied to

two sections along a stream tube.

For the flow of a real fluid, velocity is not uniform at any section varies from wall to wall. The

average velocity over a cross section is given by
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A

VdA

V
A

=
Ú

(13.18)

The average velocity is physically an equivalent uniform velocity that could have given rise to the

same volume flow rate as the actual one.

Using the average velocity, continuity equation for steady flow can be written as

1 1 1 2 2 2A V A Vr r= (13.19)

For constant density, steady flow continuity equation becomes

1 1 2 2A V A V= (13.20)

The volume of the fluid flowing through a cross section per unit time is called the volume flow rate

Q and is given by

Q AV= (13.21)

where A is the cross sectional area normal to the flow direction and V  is the average velocity across

the section.

A V Q1, 1, 1

A V Q2, 2, 2

A V Q3, 3, 3

V1

Figure 13.10 Flow through a branched pipe

The continuity equation can also be applied to determine the relation between the inflow and outflow

of a junction. For steady flow, continuity equation for the branched pipe shown in Fig. 13.10 can be

written as

1 1 2 2 3 3Q Q Qr r r= + (13.22)

For a constant density fluid, it becomes

1 2 3Q Q Q= +

or 1 1 2 2 3 3A V A V A V= + (13.23)

Note:  The expression 1 1 2 2A V A V= between any two sections holds valid only for constant density

flow.

 Example 13.7 For the pipe shown in Fig. 13.11, the diameters of the pipe at sections 1-1 and 2-2

are 10 and 20 cm respectively. If the volume flow rate through the pipe is 0.005 m3/s,

find the average velocity at the two sections.
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2

1

2

1

Figure 13.11

Solution

Diameter of pipe at section 1-1 D1 = 10 cm = 0.1 m

Diameter of pipe at section 2-2 D2 = 20 cm = 0.2 m

Cross-sectional area at section 1 is A1 = 2 2 2
1 (0.1) 0.00785 m

4 4
D

p p
= =

Cross-sectional area at section 2 is A2 = 2 2 2
2 (0.2) 0.0314 m

4 4
D

p p
= =

Volume flow rate Q = 0.005 m3/s

From continuity equation, we have

1 1 2 2Q A V A V= =

Thus, the average velocity at section 1-1 is
1V =

3

2
1

0.005 m /s
0.637 m/s

0.00785 m

Q

A
= =

Average velocity at section 2-2 is 2V =
3

2
2

0.005 m /s
0.16 m/s

0.0314 m

Q

A
= =

 Example 13.8 Air having a mass density of 1.23 kg/m3 flows in a pipe with a diameter of 20 cm at

a mass flow rate of 2 kg/s. What are the mean (or average) velocity of flow in this

pipe and the volume flow rate?

Solution

Density of air r = 1.23 kg/m3

Mass flow rate m& = 2 kg/s

Diameter of pipe D = 20 cm = 0.2 m

Cross-sectional area of pipe A = 2 2 2(0.2) 0.0314 m
4 4

D
p p

= =
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Volume flow rate is Q = 32
1.63 m /s

1.23

m

r
= =

&

Average velocity of air is found to be

1.63
51.88 m/s

0.0314

Q
V

A
= = =

 Example 13.9 A diffuser consists of two circular parallel plates 20 cm in diameter and 5 mm apart

and connected to a 30 mm diameter pipe as shown in Fig. 13.12. If the streamlines

are assumed to be radial in the diffuser, what mean velocity in the pipe will

correspond to an exit velocity of 0.5 m/s.

30 mm

100 mm

0.5 m/s 5 mm0.5 m/s

Figure 13.12

Solution

Diameter of the plates d = 20 cm = 0.2 m

Diameter of the pipe D = 30 mm = 0.03 m

Distance of separation of plates t = 5 mm = 0.005 m

Exit velocity from plates U = 0.5 m/s

From continuity equation, we have

2

4
dt U D V

p
p ¥ = ¥

Substituting the respective values, we get

( )2
0.2 0.005 0.5 0.03

4
V

p
p ¥ ¥ ¥ = ¥ ¥

or 2.222 m/sV =

 Example 13.10 A pipe 40 cm in diameter branches into two pipes of diameters 25 cm and 20 cm

respectively as shown in Fig. 13.13. The average velocity in 40 cm diameter pipe is

4 m/s. Find

(a) the discharge through 40 cm diameter pipe, and



Kinematics of Fluid Fluids 13.17

(b) the average velocity in 25 cm diameter pipe if the average velocity in 20 cm pipe is 2 m/s.

D1 = 40 cm

V1 = 3 m/s

D3 = 25 cm

D2 = 20 cm
V2 = 2 m/s

Figure 13.13

Solution

(a) Diameter of main pipe, D1 = 40 cm = 0.4 m

Average velocity of flow in main pipe, 1V = 3 m/s

Diameter of branched pipe 2, D2 = 20 cm = 0.2 m

Average velocity of flow in branched pipe 2, 2V = 2 m/s

Diameter of branched pipe 3, D3 = 25 cm = 0.25 m

The discharge through 40 cm diameter pipe is given by

Q = Area of main pipe ¥ average velocity of flow in main pipe

2 2 3
1 1 1 1 0.4 3 0.377 m /s

4 4
A V D V

p p
= = = ¥ ¥ =

(b) For incompressible steady flow continuity equation becomes

Area of main pipe ¥ average velocity in main pipe  = Area of pipe 2 ¥ average

velocity in pipe 3 + Area of pipe 2 ¥ average velocity in pipe 3

or 1 1 2 2 3 3A V A V A V= +

or 2 2 2
1 1 2 2 3 3

4 4 4
D V D V D V

p p p
= +

or 2 2 2
30.4 3 0.2 2 0.25

4 4 4
V

p p p
¥ ¥ = ¥ ¥ + ¥

or 3 6.4 m/sV =

 Example 13.11 A jet of water issuing from a 20 mm diameter nozzle is directed vertically upwards.

The diameter of the water jet at a point 3 m above nozzle is 40 mm. Find the

velocity of jet at point 3 m above nozzle. Assume that jet remains steady and there

is no loss of energy.

Solution Let the nozzle exit and the point 3 m above nozzle be designated by point 1, and 2

respectively, as shown in Fig. 13.14.
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Diameter at nozzle exit is D1 = 20 mm = 0.02 m

Diameter of the water jet at 2 is D2 = 40 mm = 0.04 m

Let the average velocity of jet at point 1 and 2 be V1 and V2, respectively.

Considering the motion of the jet from the exit of the nozzle to point 2, we have

2 2
2 1 2V V gh= -

where h is the distance between point 1 and 2 (here h = 3 m )

Putting the value h, we get

2 2
2 1 2 9.81 3V V= - ¥ ¥

or 2 2
2 1 58.86V V= - (13.24)

Jet of Water

20 mm dia

Nozzle

3 m

2

Figure 13.14

Applying the continuity equation between the exit of the nozzle 1 and the point 2, we have

1 1 2 2A V A V=

where A1 and A2 are the cross-sectional area at sections 1 and 2 respectively.

or 2 2
1 1 2 2

4 4
D V D V

p p
=

or

2 2

2
1 2 2 2

1

0.04
4

0.02

D
V V V V

D

Ê ˆ Ê ˆ
= = =Á ˜Á ˜ Ë ¯Ë ¯

(13.25)

From Eqs. (13.24) and (13.25), we have

( )22
2 24 58.86V V= -

or, 2 1.98 m/sV =

13.5.2 Continuity Equation-Differential Form

A rectangular parallelepiped with sides dx, dy and dz in the x, y and z directions, respectively, is

considered as the control volume in three-dimensional Cartesian coordinate system as shown in

Fig. 13.15.
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dyC

D

E

G

H

rudydz

z

x

y

FB

A

r ru u dx dydz+ — ( )
∂
∂x

dx

dz

Figure 13.15 Differential control volume in rectangular cartesian coordinate system

Let the fluid enter through the surface ABCD (normal to the x-axis) with a velocity u and a density r.

Rate of mass inflow through the surface ABCD (normal to x axis) = udydzr

Rate of mass outflow through the surface EFGH (normal to x-axis) = ( )u u dx dydz
x

r r
∂È ˘+Í ˙∂Î ˚

Net rate of mass outflow in x-direction ( )u u dx dydz udydz
x

r r r
∂È ˘= + -Í ˙∂Î ˚

( )u dxdydz
x

r
∂

=
∂

Similarly,

Net rate of mass outflow in y-direction ( )v dx dy dz
y
r

∂
=

∂

Net rate of mass outflow in z-direction ( ) x y z
z

w d d dr
∂

=
∂

Therefore, total net rate of mass outflow in x-, y- and z-direction

( ) ( ) ( )u v w dxdydz
x y z
r r r

È ˘∂ ∂ ∂
= + +Í ˙∂ ∂ ∂Î ˚

(13.26)

The effect of mass loss in Eq. (13.26) is to cause the time rate of decrease of mass encompasses

by the volume.

Since
t

r∂
∂

 is the rate of change of mass density, the rate of change of mass in control volume

dxdydz
t

r∂
= -

∂
.

Therefore, according to the principle of conservation of mass,

Total net rate of mass outflow in x-, y- and z-direction = Rate of change of mass in control volume

( ) ( ) ( )u v w dxdydz dxdydz
x y z t

r
r r r

È ˘∂ ∂ ∂ ∂
+ + = -Í ˙∂ ∂ ∂ ∂Î ˚
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or ( ) ( ) ( ) 0u v w dxdydz
t x y z

r
r r r

È ˘∂ ∂ ∂ ∂
+ + + =Í ˙∂ ∂ ∂ ∂Î ˚

(13.27)

Since the volume of a control volume cannot be zero, Eq. (13.27) becomes

( ) ( ) ( ) 0u v w
t x y z

r
r r r

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
(13.28)

Equation (13.28) is differential form of continuity equation in three-dimensional flow field.

Equation (13.28) can be written in a vector form as

( ) 0V
t

r
r

∂
+ —◊ =

∂

r
(13.29)

where V
r

 represents the velocity vector and ( )Vr—◊
r

 represents divergence of ( )Vr
r

.

For steady flow, 0
t

r∂
=

∂
. Then, Eq. (13.28) simplifies to

( ) ( ) ( ) 0u v w
x y z

r r r
∂ ∂ ∂

+ + =
∂ ∂ ∂

(13.30)

For two-dimensional flow, Eq. (13.30) simplifies to

( ) ( ) 0u v
x y

r r
∂ ∂

+ =
∂ ∂

(13.31)

Equation (13.30) can be written in a vector form as

( ) 0Vr—◊ =
r

(13.32)

From Eq. (13.28), we get

( ) ( ) ( ) 0u v w
t x y z

r
r r r

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂

0
u v w

u v w
t x y z x y z

r r r r
r

È ˘∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + =Í ˙∂ ∂ ∂ ∂ ∂ ∂ ∂Î ˚

0
D u v w

Dt x y z

r
r

È ˘∂ ∂ ∂
+ + + =Í ˙∂ ∂ ∂Î ˚

1
0

D u v w

Dt x y z

r

r

∂ ∂ ∂
+ + + =

∂ ∂ ∂

For incompressible flow, the rate of volumetric dilation per unit volume 
1 D

Dt

r

r

Ê ˆ
Á ˜Ë ¯

 of a fluid element

in motion is zero. Then the above equation becomes
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0
u v w

x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
(13.33)

For two-dimensional flow, Eq. (13.33) simplifies to

0
u v

x y

∂ ∂
+ =

∂ ∂
(13.34)

Equation (13.33) can be written in a vector form as

0V— ◊ =
r

(13.35)

Equation (13.33) or (13.35) holds for incompressible (both steady as well as unsteady) flow.

Note:  Any velocity field representing the motion of a fluid should satisfy the continuity equation.

Note:

The equation 0
u v w

x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (equivalently 0V—◊ =  ) is applicable for incompressible flow.

The equation ( ) ( ) ( ) 0u v w
x y z

r r r
∂ ∂ ∂

+ + =
∂ ∂ ∂

 is applicable for steady flow.

The equation ( ) ( ) 0u v
x y

r r
∂ ∂

+ =
∂ ∂

 holds for steady and two-dimensional flow.

The equation 0
u v

x y

∂ ∂
+ =

∂ ∂
holds for two-dimensional and incompressible (both steady as well as

unsteady) flow.

 Example 13.12 The velocity field in a two-dimensional flow field is given by

2 2 2ˆ ˆ( )V x y y i xy j= + -
r

.

Check whether the velocity field describes the motion of an incompressible flow or

not?

Solution For a two-dimensional, incompressible flow, the continuity equation can be written

in differential form as

0
u v

x y

∂ ∂
+ =

∂ ∂

Given that 2 2u x y y= + , and 2v xy= -

Hence, 2
u

xy
x

∂
=

∂
, and
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2
v

xy
y

∂
= -

∂

Substituting the values of 
u

x

∂
∂

 and 
v

y

∂
∂

 in continuity equation, we get

2 2 0
u v

xy xy
x y

∂ ∂
+ = - =

∂ ∂
This shows that the above velocity field satisfies the continuity equation.

 Example 13.13 Check whether the following sets of velocity components satisfy the continuity

equation of steady, incompressible flow:

(a) u = x2 – y2, v = x – 2xy

(b) u = –ln xy,
y

v
x

=

(c) = - + = - + = - +2 2 2 2 22 , 4 and 2u x xy z v x xy y w xy yz y

Solution For a two-dimensional, incompressible flow the continuity equation can be written in

differential form as

0
u v

x y

∂ ∂
+ =

∂ ∂

(a) Given that
2 2

u x y= - and 2v x xy= -

Hence, 2
u

x
x

∂
=

∂
 and 2

v
x

y

∂
= -

∂

Substituting the values of 
u

x

∂
∂

 and 
v

y

∂
∂

 in continuity equation, we find

2 2 0
u v

x x
x y

∂ ∂
+ = - =

∂ ∂
Hence the continuity equation is satisfied.

(b) Here, lnu xy= -  and 
y

v
x

=

Hence,
1 1u

y
x xy x

∂
= - = -

∂
 and 

1v

y x

∂
=

∂

Substituting the values of 
u

x

∂
∂

 and 
v

y

∂
∂

 in continuity equation, we find

1 1
0

u v

x y x x

∂ ∂
+ = - + =

∂ ∂
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Hence the continuity equation is satisfied.

(c) Here, 2 22u x xy z= - + , 2 24v x xy y= - +  and 22w xy yz y= - +

Hence, 4
u

x y
x

∂
= -

∂
, 4 2

v
x y

y

∂
= - +

∂
, and 

w
y

z

∂
= -

∂

For a three-dimensional, incompressible flow the continuity equation can be written in a differential

form as

0
u v w

x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂

Substituting the values of 
u

x

∂
∂

 and 
v

y

∂
∂

 in continuity equation, we find

4 4 2 0
u v

x y x y y
x y

∂ ∂
+ = - - + - =

∂ ∂

Hence the continuity equation is not satisfied.

 Example 13.14 The velocity components for a two-dimensional, incompressible flow are given as

2 2 2 2
,

x y
u v

x y x y
= - = -

+ +

Show that the velocity field satisfies the continuity equation.

Solution For a two-dimensional, incompressible flow the continuity equation can be written in

differential form as

0
u v

x y

∂ ∂
+ =

∂ ∂

Given that
2 2 2 2

, and
x y

u v
x y x y

= - = -
+ +

Hence,

( )
2

2 2 2
2 2

1 2u x

x x y x y

∂
= - +

∂ + +
, and 

( )
2

2 2 2
2 2

1 2v y

y x y x y

∂
= - +

∂ + +

Substituting , and
u v

x y

∂ ∂
∂ ∂

 in the continuity equation, we get

0
u v

x y

∂ ∂
+ =

∂ ∂

This shows that the above velocity field satisfies the continuity equation.
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 Example 13.15 For a two-dimensional incompressible flow, the x-component of velocity is u = 2xy.

What is the y component that will satisfy continuity equation?

Solution Given that u = 2xy

Hence,                 2
u

y
x

∂
=

∂
For a two-dimensional, incompressible flow the continuity equation can be written in a differential

form as

0
u v

x y

∂ ∂
+ =

∂ ∂

or 2 0
v

y
y

∂
+ =

∂

or        2
v

y
y

∂
= -

∂

or           
2 ( )v y f x= - +

where f (x) is a constant of integration.

 Example 13.16 In a three-dimensional incompressible fluid flow, the flow field is given by

expression ( ) ( ) ( ) ˆˆ ˆV x y z i xy yz zx j w k= + + - + + + . Find the w component of

velocity so that the case is possible for an incompressible fluid flow.

Solution For an incompressible flow the continuity equation can be written in differential form

as

0
u v w

x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂

Given that , andu x y z v xy yz zx= + + = - - -

Hence, 1
u

x

∂
=

∂
, and

v
x z

y

∂
= - -

∂

Substituting and
u v

x y

∂ ∂
∂ ∂

 in the continuity equation, we get

1 0
w

x z
z

∂
- - + =

∂
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or 1
w

x z
z

∂
= + -

∂
Integrating with respect to z, we have

( )
2

,
2

z
w xz z f x y= + - +

SUMMARY

In Lagrangian description, the fluid motion is described by tracing the kinematic

behaviour of each and every individual particle constituting the flow. The position of a

particle at any instant of time becomes a function of its identity and time and is given by

( )=
r

0,S S S t

The Lagrangian approach is more appropriate to solid mechanics.

In Eulerian description, the properties of a flow field are described as functions of

space coordinates and time. For example, the pressure field is a scalar field variable.

For three-dimensional unsteady fluid flow in Cartesian coordinates, the velocity field

is given by

( )=
r r

, , ,V V x y z t

In fluid mechanics, the Eulerian approach is preferred because it is difficult to follow a

fluid particle.

A steady flow is that type of flow in which the fluid properties (such as density,

pressure, temperature) and flow characteristics (such as velocity, acceleration, etc.)

at a point do not change with time. If they change with time, the flow is called unsteady

flow.

Ê ˆ∂
=Á ˜∂Ë ¯

r

0 0 0, ,

0,

x y z

V

t
 for steady flow

Ê ˆ∂
πÁ ˜∂Ë ¯

r

0 0 0, ,

0,

x y z

V

t
 for unsteady flow

A uniform flow is that type of flow in which the fluid properties (such as density,

pressure, temperature) and flow characteristics (such as velocity, acceleration, etc.)

at any instant of time do not change with space. If they change with space, the flow is

called non-uniform flow.

=

Ê ˆ∂
=Á ˜∂Ë ¯

r

0

0,

t t

V

s
 for uniform flow
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=

Ê ˆ∂
πÁ ˜∂Ë ¯

r

0

0,

t t

V

s
for non-uniform flow

A laminar flow is one in which the fluid particles move along smooth, regular paths

which can be predicted well in advance. The fluid particles thus move in layers, gliding

smoothly over adjacent layers. In turbulent flow, the fluid particles move in very

irregular paths. In the turbulent regime, the flow structure is characterised by random

three-dimensional motions of fluid particles in addition to the mean motion.

The flow in a circular pipe is laminar for Re £ 2000, turbulent for Re ≥ 4000, and

transitional in between. That is

Re £ 2000 laminar flow

 2000 £ Re £ 4000 transitional flow

 Re ≥ 4000 turbulent flow

Flows in which variations in density are negligible are termed as incompressible

flows. When the density changes significantly within a flow, then the flow is called

compressible.

A one-dimensional flow is one in which velocity vector depends on only one space

variable and time. A two-dimensional flow is one in which the velocity vector depends

on two space variables and time, that is, ( )=
r r

, ,V V x y t . A three-dimensional flow is the

most general flow in which the velocity vector depends on three space variables and

time, that is, ( )=
r r

, , ,V V x y z t

The flow of fluid in a pipe or duct is internal flow if the fluid is completely bounded by the

solid surfaces. The flow of an unbounded fluid over a surface such as flat plate is

external flow.

An inviscid flow is one in which the effect of viscosity is negligible. In inviscid flow, the

fluid viscosity is assumed to be zero. All fluids possess viscosity, and accordingly, all

real flows are viscous.

A flow is said to be irrotational if the fluid particles while flowing do not rotate about

their mass centres. On the other hand, a flow is said to be rotational when the fluid

particles while flowing also rotate about their mass centres.

Streamline at any instant can be defined as an imaginary line in the flow field so that

the tangent to the line at any point represents the direction of the instantaneous velocity

of that point. For unsteady flows the streamline pattern changes with time. From the

definition of streamline, it can be written

¥ =
rr

0V dS

A bundle of neighbouring streamlines may be imagined to form a passage through

which the fluid flows. This passage is known as a stream tube.

A pathline is the actual trajectory through space of a selected fluid article during a time

of interval.

A streakline at any instant of time is the temporary locations of all particles that have

passed through a fixed point in the flow field.

In a steady flow, the streamlines, path lines and streak lines are identical.
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Three-dimensional continuity equation in differential form is given by

( ) ( ) ( ) r
r r r

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
0u v w

x y z t

For steady flow, the continuity equation is given by

( ) ( ) ( )r r r
∂ ∂ ∂

+ + =
∂ ∂ ∂

0u v w
x y z

For incompressible (both steady as well as unsteady) flow, the continuity equation is

given by

∂ ∂ ∂
+ + =

∂ ∂ ∂
0

u v w

x y z

For two-dimensional incompressible (both steady as well as unsteady) flow continuity

equation is

0
u v

x y

∂ ∂
+ =

∂ ∂

REVIEW  QUESTIONS

13.1 Explain Lagrangian and Eulerian methods of describing fluid flow.

13.2 Distinguish between:

(a) Steady flow and unsteady flow

(b) Uniform flow and non-uniform flow.

(c) Incompressible and compressible flow.

13.3 Give examples of laminar flow, turbulent flow, steady flow, unsteady flow, uniform flow and non-

uniform flow.

13.4 What do you mean by one-, two- and three-dimensional flows?

13.5 Define Reynolds number. State its significance regarding the determination of type of flow-laminar and

turbulent.

13.6 Explain the terms:

(a) Streamline

(b) Streakline

(c) Pathline

13.7 Define streamline. What do streamlines indicate?

13.8 Distinguish between a pathline and a streak line.

13.9 What does the smoke emitting from a lighted cigarette represent, streamline or pathline or streakline?

Why?

13.10 Derive an expression for continuity for three dimensional flow and reduce it for steady, incompressible

two dimensional flow.
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NUMERICAL PROBLEMS

13.1 A 30 cm diameter pipe 50 km long transport oil from a tanker to the shore at 0.02 m3/s. Find the Reynolds

number and comment on the type the flow. The dynamic viscosity and density of oil are 0.1 Ns/m2 and

850 kg/m3 respectively.

13.2 A fluid flow is represented by the velocity field ˆˆV a x t ay j= +
r

, where is a constant. Find the equation

of streamline passing through a point (1, 2).

13.3 For the following flows find the equation of streamline:

(i) = -
r

2ˆ ˆ2V yi x j  passing through the point (1, 2)

(ii) = +
r

ˆ ˆ4 3V xi yj passing through the point (1, 4).

13.4 Obtain the equation of the streamlines for the velocity field given as = -
r

3 2ˆ ˆ2 6V x i x yj

13.5 In a flow the velocity vector is given by = - -
r

ˆˆ ˆ4 3 5V xi yj zk . Determine the equation of the streamline

passing through a point (1, 1, 1).

13.6 A three-dimensional velocity field is given by u = –x, v = 2y, w = 5 – z. Find the equation of streamline

through (1, 2, 1).

13.7 A two-dimensional flow is described in the Lagrangian system as

- -= + - =2
0 0 0(1 ) andkt kt kt

x x e y e y y e

Find the equation of path line of the particle.

13.8 A 40 cm diameter pipe is in series with a 30 cm diameter pipe. The volume flow rate of water in the system

is 4 m
3
/s. What is the average velocity of flow in each pipe?

13.9 A pipe 30 cm diameter is carrying oil of density 900 kg/m
3
 with an average velocity of 2 m/s. Calculate

the discharge. If the pipe bifurcates into two pipes of 15 cm each, find the average velocity of oil in the

15 cm diameter pipe.

13.10 Fluid flows through a pipeline which contracts from 45 cm diameter at A to 30 cm diameter at B and then

branches into two pipes C and D (Fig. 13.16). The diameter of the pipe C is 15 cm and diameter of the

pipe D is 20 cm. If the velocity at A be 1.8 m/s and that at D be 3.6 m/s. Determine

(a) Velocity at B, and

(b) Discharge at C and D

A

B

C

D

Figure 13.16

13.11 In a two-dimensional incompressible low, the velocity component in the x-direction is given by

=
+2 2

2x
u

x y
. Evaluate the velocity field, if v = 0 at y = 0.
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13.12 If u = x2 + y2z2, v = –xy – yz – zx, determine the velocity component w, which will satisfy continuity for

incompressible flow.

13.13 Check whether the following sets of velocity components satisfy the continuity equation of

incompressible flow

(i) = + = -,u x y v x y

(ii) = = -3 33 ,u xy v x xy

(iii) = - + = - + = - +2 2 2 2 22 , 4 , 2u x xy z v x xy y w xy yz y

MULTIPLE-CHOICE QUESTIONS

Choose the most appropriate answer.

13.1  The necessary condition for the flow to be steady is that

(a) the velocity does not change from place to place at any instant

(b) the velocity is constant at a point with respect to time

(c) the velocity changes at a point with respect to time

(d) the velocity changes with location at any instant

13.2 Uniform flow occurs when

(a) the velocity does not change from place to place at any instant

(b) the velocity is constant at a point with respect to time

(c) the velocity changes at a point with respect to time

(d) the velocity changes with location at any instant

13.3 During the opening of a valve in a pipeline, the flow is

(a) steady (b) unsteady (c) uniform (d) laminar

13.4 One-dimensional flow is

(a) uniform flow

(b) steady flow

(c) restricted to flow in a straight line

(d) one which neglects changes in fluid properties in a transverse direction

13.5 For pipes, turbulent flow occurs when Reynolds number is

(a) less than 2000 (b) between 2000 and 4000

(c) more than 4000 (d) less than 4000

13.6  For an ideal fluid flow the Reynolds number is

(a) 2100 (b) 100 (c) zero (d) infinity

13.7 In laminar flow

(a) Newton's law of viscosity applies

(b) fluid particles move in irregular and haphazard paths

(c) the viscosity is unimportant

(d) All of the above

13.8 Laminar flow generally occurs for cases involving

(a) very slow motions (b) highly viscous fluids

(c) very narrow passages or capillary tubes (d) All of the above

13.9 Velocity vector of a flow field is given as = -
r r r

22V xyi x zj . The velocity vector at (1, 2, 1) is

(a) -
r r

4i j (b) -
rr

4i k (c) -
r r

4i j (d) -
rr

4i k
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13.10 A streamline is a line

(a) which is along the path of a particle

(b) across which there is no flow

(c) on which tangent drawn at any point gives the direction of velocity

(d) Both (b) and (c)

13.11 The velocity field is given by ( )= + -
r r r

2 23
3

2
V xyi x y j . What is the relevant equation of a streamline?

(a) =
-2 2

2dy xy

dx x y

(b)
-

=
2 2

2

dy x y

dx xy

(c)
-

=
2 2

3

dy x y

dx xy

(d) =
-2 2

dy xy

dx x y

13.12 The streamline shapes of the following 2-D velocity field: u = –y, v = x will be

(a) circle

(b) parabola

(c) ellipse

(d) rectangular hyperbola

13.13 A fluid flow is represented by the velocity field = +
r

ˆ ˆV axi ayj , where a is a constant. The equation of

streamline passing through a point (1, 2) is

(a) x – 2y = 0

(b) 2x – y = 0

(c) 2x + y = 0

(d) x + 2y = 0

13.14 A two-dimensional flow field has velocities along the x and y directions given by u = x2t and v = –2xyt

 respectively, where t is time. The equation of streamlines is

(a) xy = constant

(b) xy2 = constant

(c) x2y = constant

(d) Not possible to determine

13.15 The equation of a streamline passing through the origin in a flow field u = cos q; v = sin q for a constant

is

(a) y = x3

(b) y = x cos2 q
(c) y = x tan q
(d) y = sin q

13.16 A path line describes

(a) the velocity direction at all points on the line

(b) the path followed by particles in a flow

(c) the path over a period of times of a single particle that has passed out at a point

(d) the instantaneous position of all particles that have passed a point
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13.17 Streamline, pathline and streakline are identical when

(a) the flow is uniform

(b) the flow is steady

(c) the flow velocities do not change steadily with time

(d) the flow is neither steady nor uniform.

13.18 The continuity equation is the result of application of the following law to the flow field

(a) Conservation of momentum

(b) Conservation of energy

(c) Conservation of force

(d) Conservation of mass

13.19 The continuity equation (at two sections 1 and 2) for an incompressible fluid is given as

(a) r r=2 2
1 1 1 2 2 2A V A V

(b) r r=1 1 1 2 2 2A V A V

(c) =1 1 2 2A V A V

(d) r r=2 2
1 1 1 2 2 2A V A V

13.20 An ideal fluid flow must satisfy

(a) continuity equation

(b) Newton's law of viscosity

(c) Pascal's law

(d) None of the above

13.21 For two-dimensional incompressible flow, if the x component of velocity is u = Aex, then what is the

y-component of velocity?

(a)
-- x

Ae

(b)
-- x

Ae y

(c)
y

Ae

(d) - x
Ae y

13.22 For the continuity equation given by 
∂ ∂ ∂

+ + =
∂ ∂ ∂

0
u v w

x y z
( — =

r
. 0V , where 

r
V  is the velocity vector) to

be valid, which one of the following is a necessary condition?

(a) steady flow

(b) incompressible flow

(c) inviscid flow

(d) irrotational flow

13.23 The general form of expression for the continuity equation in a Cartesian coordinate system for

incompressible or compressible flow is given by

(a)
∂ ∂ ∂

+ + =
∂ ∂ ∂

0
u v w

x y z
(b)

∂ ∂ ∂
+ + =

∂ ∂ ∂
( ) ( ) ( )

0
pu pv pw

x y z

(c)
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂

( ) ( ) ( )
0

p pu pv pw

t x y az
(d)

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂
( ) ( ) ( )

1
p pu pv pw

t x y az
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14.1 INTRODUCTION

In Chapter 13, we dealt with the kinematics of fluid flow that includes the motion of the fluid without

considering the force that causes the flow. In this chapter, the force analysis along with the motion

attributes and their relationships are established. The forces that are present in fluid motion are the

body forces and the surface forces. Differential equation is developed neglecting the viscous effects.

It is a simplified form which is far reaching in reality. Nevertheless, it provides a lot of insight to

understand the topic in its basic form. Without consideration of the viscous forces, the surface forces

acting on the fluid element are the normal forces in the form of pressure.

14.2 EULER'S EQUATION OF MOTION ALONG A STREAMLINE

Consider the flow of an inviscid fluid along a streamline as shown in Fig. 14.1. The equations of

motion are to be written in terms of the coordinates, distance along a streamline and the coordinate

normal to the streamline. Applying Newton' second law in the streamwise direction (s-direction) to

the fluid element of area  , we have

s sF ma=Â (14.1)

where as is the acceleration of the fluid particle along the streamline.

CHAPTER

14
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P Ad r d dg A s

P s A+ d d

S

q

dz

ds

∂
∂
P

s
—

Figure 14.1

In the absence of viscous forces, forces acting in the s-direction are the pressure forces and the

component of gravity force in the s-direction. Let the pressure at the lower face of the fluid element

be P. The pressure acting on the other face is 
P

P s
s
d

∂
+
∂

. Therefore, the pressure force acting on the

lower and upper faces are PdA and 
P

P s A
s
d d

∂Ê ˆ+Á ˜Ë ¯∂
 respectively. Considering gravity as the only

body force, the body force acting on the element is rgdsdA. Thus the component of body force along

the streamline is sing s Ar qd d- (where q is the angle between the tangent to the streamline and the

direction of the gravity force). Hence, Eq. (14.1) becomes

sin  s

P
P A P s A g s A a s A

s
d d d r qd d r d d

∂Ê ˆ- + - =Á ˜Ë ¯∂
(14.2)

Simplifying Eq. (14.2), we have

sin s

P
g a

s
r q r

∂
- - =
∂

or
r

∂ ∂
- - =

∂ ∂
1

s

P z
g a

s s
(14.3)

Along any streamline since the velocity V is a function of space and time i.e., ( , ),V V s t=  one can

write

V V
dV dt ds

t s

∂ ∂
= +
∂ ∂

or
dV V V ds

dt t s dt

∂ ∂
= +
∂ ∂
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or s

V V
a V

t s

∂ ∂
= +
∂ ∂ s

dV
a

dt

È ˘=Í ˙Î ˚
∵

Substituting the value of as in Eq. (14.3), we get

1 P z V V
g V

s s t sr

∂ ∂ ∂ ∂
- - = +

∂ ∂ ∂ ∂
  (14.4)

Equation (14.4) is known as the Euler's equation of motion along a streamline.

For steady flow, 0
V

t

∂
=

∂
, then Eq. (14.4) becomes

1 P z V
g V

s s sr

∂ ∂ ∂
- - =

∂ ∂ ∂

or
1

0
P V z

V g
s s sr

∂ ∂ ∂
+ + =

∂ ∂ ∂

Since, s is the only independent variable; the total differential may replace the partial

0
dP

VdV gdz
r
+ + = (14.5)

Equation (14.5) is another form of Euler's equation of motion along a streamline, which is valid

for steady flow.

Note:  Eq. (14.5) is valid for inviscid, steady flow along a streamline.

14.3 BERNOULLI'S EQUATION

Euler's equation of motion along a streamline for steady flow can be written as (Eq. 14.5)

0
dP

VdV gdz
r
+ + =

Integrating the above equation, we have

2

2

dP V
gz C

r
+ + =Ú (14.6)

where C is an integration constant.

In case of an incompressible fluid (density does not change with change in pressure), Eq. (14.6)

can be written as
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2

2

P V
gz C

r
+ + = (14.7)

Equation (14.7) is known as Bernoulli's equation. The constant C is known as Bernoulli's constant

which is constant for a streamline and varies from one streamline to another. Each term of Eq. (14.7)

can be interpreted as a form of energy per unit mass. Here, 
P

r
 represents the flow energy (or flow

work) per unit mass, 
2

2

V
 represents the kinetic energy per unit mass and gz represents the potential

energy per unit mass.

Dividing by g, Eq. (14.7) becomes

2

2

P V
z C

g gr
+ + = (14.8)

Equation (14.8) is another form of Bernoulli's equation. Each term of Eq. (14.8) can be interpreted

as a form of energy per unit weight (also known as head in fluid mechanics). Here, 
P

gr
 is the pressure

head (flow energy per unit weight), which represents the height of a fluid column that produces the

static pressure P. The term 
2

2

V

g
 is the velocity head (kinetic energy per unit weight) and z and is the

potential head (potential energy per unit weight). Therefore, the Bernoulli's equation can be viewed as

an expression of mechanical energy balance and can be stated as follows:

During steady, inviscid flow of an incompressible fluid along a streamline, total mechanical energy

at any point is constant. The total mechanical energy consists of flow energy, kinetic energy and

potential energy.

Applying Bernoulli's equation between two points 1 and 2 along the same streamline, we have

2 2
1 1 2 2

1 2  
2 2

P V P V
z z

g g g gr r
+ + = + + (14.9)

Note:  The assumptions made in the derivation of Bernoulli's equation are

(i) The flow is inviscid.

(ii) The flow is along a streamline.

(iii) The flow is steady.

(iv) The fluid is incompressible (density does not change with change in pressure).

Note:  Bernoulli's equation deals with the law of conservation of mechanical energy.
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Note: The equation 

2 2
1 1 2 2

1 2  
2 2

P V P V
z z

g g g gr r
+ + = + + holds true between any two points in the flow

field provided that the flow is irrotational, inviscid, steady and fluid is incompressible.

14.4 STATIC, DYNAMIC, STAGNATION AND TOTAL PRESSURES

Bernoulli's equation can be written as

2

Constant
2

P V
z

g gr
+ + =

or
2

Constant
2

V
P gzr r+ + = (14.10)

The physical meaning of different terms appearing in the left hand side of Eq. (14.10) is as follows:

14.4.1 Static Pressure

The pressure P as appear in Eq. (14.10) is often referred to as the static pressure. It is the pressure

caused by molecular collisions and can be felt at any point by an observer moving with the flow. To

such an observer, the fluid appears to be static or stationary, so this pressure is often called the static

pressure.

14.4.2 Dynamic Pressure

 The term 
2

2

V
r   in Eq. (14.10) is called the dynamic pressure.  It represents the pressure increase that

would occur if all the kinetic energy of a fluid particle in a frictionless flow were converted into a

corresponding increase in pressure energy.

14.4.3 Hydrostatic Pressure

The term rgz in Eq. (14.10) is called the hydrostatic pressure. It represents the change in the static

pressure that would occur if the fluid moved along the streamline to an elevation of zero.

14.4.4 Stagnation Pressure

It is the pressure that could result at a point in the flow, if the flow were brought to rest in an

isentropic process. Applying Bernoulli's equation between two points, one just upstream of the

stagnation point and the other, the stagnation point itself, we have
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22

2 2

s sP VP V
z

g g g gr r
+ + = +

0

z+  (ps is the stagnation pressure)

where Vs is the velocity at stagnation point which is zero from its definition.

or 21

2
sP P Vr= + (14.11)

Therefore, the sum of the static pressure and dynamic pressure is called the stagnation pressure.

14.4.5 Total Pressure

The sum of the static, dynamic and hydrostatic pressures 
2

2

V
P gzr r
Ê ˆ

+ +Á ˜Ë ¯  is referred to as the total

pressure.  Therefore, Bernoulli’s equation states that the total pressure along a streamline is constant.

It is important to mention here that the sum of the pressure head 
P

gr

Ê ˆ
Á ˜Ë ¯

 and the potential head (z) is

called as piezometric pressure head.

Note:  Fluid flows from higher piezometric pressure to lower piezometric pressure (not necessarily

from higher static pressure to lower static pressure).

 Example 14.1 Water is flowing in a pipe of 200 mm diameter with an average velocity of 5 m/s. At

a particular section 1, the pressure is measured to be 250 kN/m2. If the section 1 is

7 m above the datum, determine total head of water.

Solution

Average velocity of flow V = 5 m/s

Pressure at section 1 P = 2 3 2250 kN/m 250 10  N/m= ¥

Pressure head at section 1 is
P

gr
=

3250 10
25.484 m of water

1000 9.81

¥
=

¥

Velocity head at section 1 is
2

2

V

g
= =

¥

2
5

1.274 m of water
2 9.81

Datum head at section 1 is z = 7 m

Total head of water at section 1 is
2

2

P V
z

g gr
+ + = 25.484 1.274 7 33.758 m + + =

 Example 14.2 Water is flowing through a pipe having diameters 30 cm and 20 cm at section 1 and

2 respectively. The average velocity of water at section 1 is 4 m/s. Find the velocity

head at the section 1 and 2 and also rate of discharge.
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Solution

Diameter of pipe at section 1 D1 = 30 cm = 0.3 m

Diameter of pipe at section 2 D2 = 20 cm = 0.2 m

Cross-sectional area at section 1 is A1 = 2 2 2
1 (0.3) 0.0707 m

4 4
D

p p
= =

Cross-sectional area at section 2 is A2 = 2 2 2
2 (0.2) 0.0314 m

4 4
D

p p
= =

Average velocity of water at section 1 V1 = 4 m/s

Velocity head at section 1 is
2

1

2

V

g
= =

¥

24
0.815 m of water

2 9.81

The rate of discharge is found to be

Q = 3
1 1 0.0707 4 0.2828 m /sA V = ¥ =

Let the average velocity at section 2 be V2

From continuity equation, we have

Q = 1 1 2 2A V A V=

or V2 = 1 1

2

0.0707 4
9 m/s

0.0314

A V

A

¥
= =

Velocity head at section 2 is
2

2

2

V

g
= =

¥

29
4.128 m of water

2 9.81

 Example 14.3 A vertical tapering pipe is 2 m long. The diameter of the pipe is 20 cm at the top end

and 10 cm at the bottom end. If 30 litres/sec of water flows through the pipe, find

the difference in pressure between the two ends of the pipe. Neglect losses.

Solution

The pipeline is schematically shown in Fig. 14.2.  Let 1 and 2 respectively designate the bottom and

top end of the pipeline.

Diameter of pipe at section 1 D1 = 10 cm = 0.1 m

Diameter of pipe at section 2 D2 = 20 cm = 0.2 m

Cross-sectional area at section 1 is A1 = 2 2 2
1 (0.1) 0.00785 m

4 4
D

p p
= =

Cross-sectional area at section 2 is A2 = 2 2 2
2 (0.2) 0.0314 m

4 4
D

p p
= =

Discharge Q = 3 3 330 litres/s 30 10 m /s 0.03 m /s-= ¥ =

Difference in datum head between sections 1 and 2 2 1 2 mz z- =
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2

1

D2 = 20 cm

D1 = 10 cm

2 m

Figure 14.2

Average velocity at section 1 is V1 =
3

2
1

0.03 m /s
3.82 m/s

0.00785 m

Q

A
= =

Average velocity at section 2 is V2 =
3

2
2

0.03 m /s
0.955 m/s

0.0314 m

Q

A
= =

Applying Bernoulli's equation between sections 1 and 2 along a streamline, one can write

2 2
1 1 2 2

1 2  
2 2

P V P V
z z

g g g gr r
+ + = + +

or
2 2

1 2 2 1
2 1

2

P P V V
z z

g gr

- -
= + -

or
2 2

1 2 0.955 3.82
2 0.697 2 1.303 m of water

2 9.81

P P

gr

- -
= + = - + =

¥

or
2

1 2 1.303 1.303 1000 9.81N/mP P gr- = = ¥ ¥

or 3 2 2
1 2 12.78 10  N/m 12.78 kN/mP P- = ¥ =

 Example 14.4 An oil of density 900 kg/m3 is flowing through a vertical pipe having diameters 30 cm

and 20 cm at section 1 and 2 respectively. The rate of flow through pipe is

 50 litres/s. The section 1 is 9 m above datum and section 2 is 5 m above datum. If the

pressure at section 1 is 300 kN/m2, find the intensity of pressure at section 2. Neglect

friction.

Solution

The pipeline is schematically shown in Fig. 14.3.
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Density of oil r = 900 kg/m3

Diameter of pipe at section 1 D1 = 30 cm = 0.3 m

Diameter of pipe at section 2 D2 = 20 cm = 0.2 m

Cross-sectional area at section 1 is A1 = 2 2 2
1 (0.3) 0.0707 m

4 4
D

p p
= =

Cross-sectional area at section 2 is A2 = 2 2 2
2 (0.2) 0.0314 m

4 4
D

p p
= =

Discharge Q = 3 3 350 litres/s 50 10 m /s 0.05 m /s-= ¥ =

2

1
D1 = 30 cm

D2 = 20 cm

4 m

Figure 14.3

Difference in datum head between sections 1 and 2 1 2 9 5 4 mz z- = - =

Pressure at 1 P1 = 2 3 2300 kN/m 300 10  N/m= ¥

Average velocity at section 1 is V1 =
1

0.05 
0.707 m/s

0.0707

Q

A
= =

Average velocity at section 2 is V2 =
2

0.05
1.592 m/s

0.0314

Q

A
= =

Applying Bernoulli's equation between sections 1 and 2 along a streamline, one can write

2 2
1 1 2 2

1 2  
2 2

P V P V
z z

g g g gr r
+ + = + +

or

2 2
1 1 2 2

1 2
2

P V V P
z z

g g gr r

-
+ + - =

or
3 2 2

2300 10 0.707 1.592
4

1000 9.81 2 9.81

P

gr

¥ -
+ + =

¥ ¥

or
r

- + = 233.979 0.1037 4
P

g
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or 2 37.8753
900 9.81

P
=

¥

or 2 2
2 900 9.81 37.8753 336232N/m 336.23 kN/mP = ¥ ¥ = =

 Example 14.5 Water flows through a tapering pipe as shown in Fig. 14.4. The diameter at sections

1 and 2 are 10 cm and 20 cm respectively, and the heights above a horizontal datum

are 3 and 5 m respectively. The pressure at 1 is 30 kN/m2. Water flow rate is

0.03 m3/s. Estimate the pressure at section 2.

1

2

Figure 14.4

Solution

Diameter of pipe at section 1 D1 = 10 cm = 0.1 m

Diameter of pipe at section 2 D2 = 20 cm = 0.2 m

Pressure at section 1 P1 = 10 kN/m2 = 30 ¥ 103 N/m2

Height of section 1 above datum z1 = 3 m

Height of section 2 above datum z2 = 5 m

Volume flow rate of water Q = 0.03 m3/s

Cross-sectional area at section 1 is A1 = 2 2 2
1 (0.1) 0.00785 m

4 4
D

p p
= =

Cross-sectional area at section 2 is A2 = 2 2 2
2 (0.2) 0.0314 m

4 4
D

p p
= =

From continuity equation, we have

1 1 2 2Q A V A V= =

Thus, the average velocity at section 1 is V1 =
3

2
1

0.03 m /s
3.82 m/s

0.00785 m

Q

A
= =

Average velocity at section 2 is V2 =
3

2
2

0.03 m /s
0.955 m/s

0.0314 m

Q

A
= =

Applying Bernoulli's equation between sections 1 and 2 along a streamline, one can write

2 2
1 1 2 2

1 2  
2 2

P V P V
z z

g g g gr r
+ + = + +

or
3 2 2

230 10 3.82 0.955
3 5

1000 9.81 2 9.81 1000 9.81 2 9.81

P¥
+ + = + +

¥ ¥ ¥ ¥
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or 23.058 0.744 3 0.046 5
1000 9.81

P
+ + = + +

¥

or 2 1.756
1000 9.81

P
=

¥
or 2 2

2 1.756 1000 9.81 17226.36 N/m  =17.226 kN/mP = ¥ ¥ =

 Example 14.6 A 500 m long pipe has a slope of 1 in 100 and tapers from 1 m diameter at higher end

to 0.5 m diameter at the lower end. It carries an oil of specific gravity 0.85 at a rate

of 100 litres/s. If the pressure at high end is 250 kN/m2, find the pressure at the

lower end. Neglect losses due to friction.

Solution The pipe is schematically shown in Fig. 14.5.  Let 1 and 2 respectively designate the

lower and higher end of the pipe.

1

2

Datum line

Slope 1 in 100

Figure 14.5

Specific gravity of oil S = 0.85

Density of oil r = 0.85 ¥ 1000 = 850 kg/m3

Diameter of pipe at lower end D1 = 0.5 m

Diameter of pipe at higher end D2 = 1 m

Pressure at higher end P2 = 2 3 2250 kN/m 250 10  N/m= ¥

Volume flow rate of oil Q = 3 3100
100 lit/s m /s 0.1 m /s

1000
= =

Cross-sectional area at lower end is A1 = 2 2 2
1 (0.5) 0.1963 m

4 4
D

p p
= =

Cross-sectional area at higher end is A2 = 2 2 2
2 (1) 0.7854 m

4 4
D

p p
= =

Length of pipe L = 500 m

Slope of pipe = 1 in 100

Let the datum line passes through the centre of the lower end. Then

Height of lower end above datum z1 = 0

Height of higher end above datum z2 =
1

500 5 m
100

¥ =

From continuity equation, we have

1 1 2 2Q A V A V= =
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Thus, the average velocity at lower end is V1 =
1

0.1 
0.509 m/s

0.1963 

Q

A
= =

Average velocity at higher end is V2 = 2

2

0.1 
0.127 m/s

0.7854 

Q
V

A
= = =

Applying Bernoulli's equation between sections 1 and 2 along a streamline, we have

2 2
1 1 2 2

1 2
2 2

P V P V
z z

g g g gr r
+ + = + +

or
2 3 2

1 0.509 250 10 0.127
0 5

2 9.81 1000 9.81 2 9.81

P

gr

¥
+ + = + +

¥ ¥ ¥

or 1 0.0132 0 29.98 0.00082 5
P

gr
+ + = + +

or 1 34.9676 m of oil
850 9.81

P
=

¥

or 2 2
1 34.9676 850 9.81 291577 N/m 291.577 kN/mP = ¥ ¥ = =

 Example 14.7 Water flows through a conical tube fixed vertically with its smaller end upwards.

The average velocities at the smaller and larger end are 4.5 m/s and 1.5 m/s

respectively. Length of the conical tube is 1.5 m. The pressure at the upper end is

equivalent to a head of 10 m of water. Neglecting losses, determine the pressure at

the lower end of the tube. Also find the piezometric head at both the ends.

Solution The conical tube is schematically shown in Fig. 14.6. Let 1 and 2 respectively

designate the smaller and larger end of the pipe.

2

1

1.5 m

Figure 14.6

Length of the pipe L = z1 – z2 = 1.5 m

Pressure head at smaller end 1P

gr
= 10 m of water
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Average velocity at smaller end V1 = 4.5 m/s

Average velocity at larger end V2 = 1.5 m/s

Applying Bernoulli's equation between sections 1 and 2 along a streamline, we have

2 2
1 1 2 2

1 2
2 2

P V P V
z z

g g g gr r
+ + = + +

or

2 2
1 1 2 2

1 2
2 2

P V P V
z z

g g g gr r
+ + - = +

or
r

+ + = +
¥ ¥

2 2
24.5 1.5

10 1.5
2 9.81 2 9.81

P

g

or 2 12.42 m of water
1000 9.81

P
=

¥

or
3 2 2

2 12.42 1000 9.81 121.84 10  N/m 121.84 kN/mP = ¥ ¥ = ¥ =

Let us consider that the larger end (section 2) represents the reference datum.

Datum head at 1 z1 = 1.5 m

Datum head at 2 z2 = 0 m

Piezometric head at 1 is then 1
1

P
z

gr
+ = 10 1.5 11.5 m of water+ =

Piezometric head at 2 is then 2
2

P
z

gr
+ = 12.42 0 12.42 m of water+ =

14.5 ENERGY EQUATION FOR REAL FLUID

For flow of real fluids, there is a viscous force that resists the flow. Because of the resistive force

there is a loss of energy during the flow of fluids. This energy loss is to be taken into consideration

during the derivation of energy equation. Applying energy equation between 1 and 2 with consideration

of loss due to fluid friction, one can write

r r
+ + = + + +

2 2
1 1 2 2

1 2
2 2

f

P V P V
z z h

g g g g
(14.12)

where hf is the loss of head between 1 and 2.  Detailed analysis on loss of energy due to fluid friction

is not included in this text. Equation (14.12) looks similar to Bernoulli's equation (Eq. (14.8)) with an

additional term hf on the right-hand side which represents the loss of head between points 1 and 2.

 Example 14.8 Water flows vertically upwards through a pipe of 1 m diameter and 10 m length. The

pressure at the upper end of the pipe is 5 m of water and the head loss due to friction

is 1 m of water column. When water flows at an average velocity of 5 m/s, find the

pressure at the lower end of the pipe.
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Solution The flow arrangement is schematically shown in Fig. 14.7.

1

2

10 m

Figure 14.7

Applying energy equation between sections 1 and 2, one can write

2 2
1 1 2 2

1 2
2 2

f

P V P V
z z h

g g g gr r
+ + = + + +

or
2 2

1 0 5 10 1
2 2

P V V

g g gr
+ + = + + + 1 2V V V= =È ˘Î ˚∵

or 1 16 m of water column
P

gr
=

or 3 2 2
1 1000 9.81 16 156.96 10  N/m 156.96 kN/mP = ¥ ¥ = ¥ =

 Example 14.9 Water is flowing through a pipeline at a rate of 0.04 m3/s as shown in Fig. 14.8. The

pipeline is 10 cm in diameter and it is at an elevation of 80 m at section A (Fig. 14.8).

At section B it is at an elevation of 82 m and has diameter of 20 cm. The pressure of

water at A is 40 kN/m2 and the energy loss in pipe between section A and B is 0.3 m

of water. Calculate pressure at B if flow is from A to B.

20 cmdia.

B

A

10 cm dia.

Figure 14.8
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Solution

Diameter of pipe at section A DA = 10 cm = 0.1 m

Diameter of pipe at section B DB = 20 cm = 0.2 m

Pressure at section A PA = 40 kN/m2 = 40 ¥ 1000 N/m2

Height of section A above reference datum zA = 80 m

Height of section B above reference datum zB = 82 m

Volume flow rate of water Q = 0.04 m3/s

Loss of energy between A and B hA–B = 0.3 m of water

Cross-sectional area at section A is AA = 2 2 2(0.1) 0.00785 m
4 4

AD
p p

= =

Cross-sectional area at section B is AB = 2 2 2(0.2) 0.0314 m
4 4

BD
p p

= =

Average velocity at section A is VA =
0.04

5.096 m/s
0.00785A

Q

A
= =

Average velocity at section B is VB =
0.04

1.274 m/s
0.0314

B

B

Q
V

A
= = =

Applying energy equation between sections A and B, we have

2 2

2 2

A A B B
A B A B

P V P V
z z h

g g g gr r
-+ + = + + +

or
2 2

40 1000 5.096 1.274
80 82 0.3

1000 9.81 2 9.81 2 9.81

BP

gr

¥
+ + = + + +

¥ ¥ ¥

or 3.018
1000 9.81

BP
=

¥

or 2 3 2 21000 9.81 3.018 N/m 29.61 10  N/m 29.61 kN/mBP = ¥ ¥ = ¥ =

 Example 14.10 Water is flowing steadily in a 30 cm diameter pipe at an average velocity of 4 m/s.

At points A and B measurements of pressure and elevation are 200 kN/m2 and

150 kN/m2 and 12 m and 17 m respectively. Find the loss between the two points.

Solution

Diameter of pipe D = 30 cm = 0.3 m

Average velocity V = 4 m/s

Pressure at point A PA = 200 kN/m2 = 200 ¥ 1000 N/m2

Pressure at point B PB = 150 kN/m2 = 150 ¥ 1000 N/m2

Elevation of point A above reference datum zA = 12 m

Elevation of point B above reference datum zB = 17 m
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Total mechanical energy at point A is

2

2

A A
A

P V
z

g gr
= + +

3 2
200 10 4

12 20.387 0.815 12 33.202 m
1000 9.81 2 9.81

¥
= + + = + + =

¥ ¥
Total mechanical energy at point B is

2

B
2

B BP V
z

g gr
= + +

3 2150 10 4
17 15.29 0.815 17 33.105 m

1000 9.81 2 9.81

¥
= + + = + + =

¥ ¥

Loss of head between points A and B is then

33.202 33.105 0.097 m of water column= - =

 Example 14.11 At a certain location A of a pipeline carrying an oil of density 850 kg/m3, the

diameter is 80 cm, the pressure is 180 kN/m2 and the average velocity is 5 m/s. At

another section B which is 3 m higher than A, the diameter is 50 cm and the

pressure is 100 kN/m2. What is the direction of flow?

Solution

Density of oil r = 850 kg/m3

Diameter of pipe at location A DA = 80 cm = 0.8 m

Diameter of pipe at location B DB = 50 cm = 0.5 m

Average velocity at location A VA = 5 m/s

Pressure at location A PA = 180 kN/m
2
 = 180 ¥ 1000 N/m

2

Pressure at location B PB = 100 kN/m2 = 100 ¥ 1000 N/m2

Let the datum line passes through the location A.

Height of location A above reference datum zA = 0

Height of location B above reference datum zB = 3 m

Cross-sectional area at location A is AA = 2 2 2(0.8) 0.5026 m
4 4

AD
p p

= =

Cross-sectional area at location B is AB = 2 2 2(0.5) 0.1963 m
4 4

BD
p p

= =

From continuity equation, we have

A A B BQ A V A V= =
Thus, the average velocity at location B is

VB =
0.5026 5

12.8 m/s
0.1963

A A

B

A V

A

¥
= =
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Total mechanical energy at location A is

2

2

A A
A

P V
z

g gr
= + +

3 2
180 10 5

0 18.349 1.274 0 19.623 m
1000 9.81 2 9.81

¥
= + + = + + =

¥ ¥
Total mechanical energy at location B is

2

B
2

B BP V
z

g gr
= + +

3 2100 10 12.8
3 10.194 8.35 3 21.544 m

1000 9.81 2 9.81

¥
= + + = + + =

¥ ¥
Since the total mechanical energy at location B is higher than that at location A, the flow takes place

from location B to location A.

Note:  Example 6.11 illustrates that fluid flows from higher mechanical energy to lower

mechanical energy (not necessarily from higher pressure to lower pressure).

 Example 14.12 A pipeline carrying water changes in diameter from 20 cm at section 1 to 40 cm

diameter at section 2 which is 6 m at higher level. If the pressure at section 1 and 2

are 120 kN/m2 and 80 kN/m2 respectively and the discharge is 200 litres/s,

determine the loss of head and the direction of flow.

Solution

Diameter of pipe at section 1 D1 = 20 cm = 0.2 m

Diameter of pipe at section 2 D2 = 40 cm = 0.4 m

Pressure at section 1 P1 = 120 kN/m2 = 130 ¥ 1000 N/m2

Pressure at section 2 P2 = 80 kN/m2 = 80 ¥ 1000 N/m2

Let us consider the reference datum for elevation is at section 1.

Height of section 1 above reference datum z1 = 0 m

Height of section 2 above reference datum z2 = 6 m

Volume flow rate of water Q = 200 litres/s = 0.2 m3/s

Average velocity at section1 is V1 =

( )21

0.2
6.366 m/s

0.2
4

Q

A p
= =

Average velocity at section 2 is V2 =

( )22

0.2
1.59 m/s

0.4
4

Q

A p
= =



14.18 Engineering Thermodynamics and Fluid Mechanics

Total mechanical energy at section 1 is

2
1 1

1
2

P V
z

g gr
= + +

3 2
120 10 6.366

0 14.298 m
1000 9.81 2 9.81

¥
= + + =

¥ ¥
Total mechanical energy at section 2 is

2
2 2

2
2

P V
z

g gr
= + +

3 280 10 1.59
6 14.284 m

1000 9.81 2 9.81

¥
= + + =

¥ ¥

Loss of head between sections 1 and 2 is then

14.298 14.284 0.014 m of water column= - =
Since the total mechanical energy at section 1 is higher than that at section 2, the flow takes place

from section 1 to section 2.

 Example 14.13 Water is flowing vertically upwards through a pipeline having diameter 1 m and

0.5 m at the base and top respectively. The pressure at the lower end is 450 mm of

mercury, while the pressure at the upper end is 20 kN/m2. If the loss of head is

20% of difference in velocity head, calculate the discharge. The difference in the

elevation is 4 m. The density of mercury is 13600 kg/m3.

Solution

Let 1 and 2 respectively designate the lower end and upper end of the pipe.

Diameter of pipe at lower end D1 = 1 m

Diameter of pipe at upper end D2 = 0.5 m

Cross-sectional area at lower end is A1 = 2 2 2
1 (1) 0.7854 m

4 4
D

p p
= =

Cross-sectional area at upper end   is A2 = 2 2 2
2 (0.5) 0.1963 m

4 4
D

p p
= =

Pressure at the lower end
2

1 450 mm of Hg 0.45 13600 9.81 60037.2N/mP = = ¥ ¥ =

Pressure at the upper end 2 2
2 20kN/m 20 1000N/mP = = ¥

Difference in datum head between the upper end and lower end 2 1 4 mz z- =

Loss of energy head 

2 2
2 1

1 2 0.2
2

V V
h

g
-

-
=
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Applying continuity equation between the lower end and upper end, we have

1 1 2 2A V A V=

or 1
2 1 1 1

2

0.7854
4

0.1963

A
V V V V

A
= = =

Applying energy equation between the lower end and upper end, one can write

2 2
1 1 2 2

1 2 1 2
2 2

P V P V
z z h

g g g gr r
-+ + = + + +

or ( )
2 2 2 2

1 2 2 1 2 1
2 1 0.2

2 2

P P V V V V
z z

g g g gr r

- -
= + + - +

or ( )
2 2

2 1 1 2
2 11.2

2

V V P P
z z

g gr

- -
= - -

or
( ) ( )

2 2
1 1 1 2

2 1

4
1.2

2

V V P P
z z

g gr

- -
= - - 2 14V V=È ˘Î ˚∵

or
2

115 60037.2 20000
1.2 4 4.08 4 0.08

2 9.81 1000 9.81

V -
= - = - =

¥ ¥

or 2
1

0.08 2 9.81
0.0872

1.2 15
V

¥ ¥
= =

¥

or 1 0.0872 0.295 m/sV = =

The discharge is then found to be

3
1 1 0.7854 0.295 0.2317 m /sQ A V= = ¥ =

  14.6 APPLICATION OF BERNOULLI'S EQUATION FOR MEASUREMENT
OF FLOW RATE THROUGH PIPES

Flow rate through a pipe is usually measured by providing a coaxial area contraction within the pipe

and by recording the pressure drop across the contraction. Determination of the flow rate from the

measurement of the concerned pressure drop depends on the straight forward application of

Bernoulli's equation. Three different flow meters primarily operate on this principle. These are:

(i) Venturimeter, (ii) Orificemeter and (iii) Flow nozzle. Here, we discuss the working principle of

Venturimeter and Orificemeter. Further, the working principle of Pitot tube, commonly used to

measure the velocity at a point in the flow field is discussed.

14.6.1 Venturimeter

The venturimeter, invented by the American Engineer Clemans Herschel (1842–1932) and named by

him after Italian Giovanni Venturi (1746–1822). The venturimeter is one of the popular devices for
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measuring rate of flow in a pipe. It consists of a short converging conical tube leading to a cylindrical

portion, called the throat, of smaller diameter than that of the pipeline, which is followed by a diverging

section in which the diameter increases again to that of the main pipeline (Fig.14.9). The inlet and

outlet diameters are the same as the diameter of the pipe in which it is to be installed. The velocity of

flow increases in course of flow from pipe to throat (converging cone) and the pressure

correspondingly decreases. The velocity reaches the maximum value at the throat and the pressure a

minimum. The throat is followed by a diffuser which restores the pressure as nearly as possible to the

original value. The expansion angle of the diffuser is very small (usually 5° to 7°) to reduce the

possibility of flow separation. The size of a venturimeter is specified by the pipe and throat diameter,

e.g., a 300 by 150 mm venturimeter fits a 300 mm diameter pipe and has a 150 mm diameter throat.

For accurate results the venturimeter should be preceded by at least 10 diameters of straight pipe. The

pressure difference from which the volume flow rate can be determined is measured between the

entry section 1 and the throat section 2, by means of a differential U-tube manometer (Fig. 14.9).

About 20°

About 6°

1

2

z1

z2

rw

X X

rm
Datum line

z

Dh

Figure 14.9 Venturimeter

Assuming that there is no loss of energy and applying Bernoulli's equation across sections 1 and 2,

along a streamline, we get

2 2
1 1 2 2

1 2
2 2

P V P V
z z

g g g gr r
+ + = + +

( ) ( )1 22 2
2 1 1 22

P P
V V g z z

gr

È ˘-
- = + -Í ˙

Í ˙Î ˚
(14.13)

Applying continuity equation between sections 1 and 2, one can write

1 1 2 2A V A V=

or 1
2 1

2

A
V V

A
=

Substituting the expression of V2 in Eq. (14.13), we have

( ) ( )
2

1 22 1
1 1 2

2

1 2
P PA

V g z z
A gr

È ˘ È ˘-Ê ˆ
Í ˙- = + -Í ˙Á ˜Í ˙Ë ¯ Í ˙Î ˚Î ˚
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( ) ( )1 22
1 1 2

2 2
1 2

2
P PA

V g z z
gA A r

È ˘-
= + -Í ˙

Í ˙- Î ˚

Volume flow rate then can be found to be

( ) ( )1 21 2
1 1 1 2

2 2
1 2

2th

P PA A
Q A V g z z

gA A r

È ˘-
= = + -Í ˙

Í ˙- Î ˚
(14.14)

or 1 2

2 2
1 2

2th

A A
Q gH

A A
=

-
(14.15)

where
( ) ( )1 2

1 2

P P
H z z

gr

È ˘-
= + -Í ˙
Í ˙Î ˚

(14.16)

The value of H in Eq. (14.16) can be found from the reading of the U-tube differential manometer

(Fig. 14.9). Assuming that the connections to the gauge are filled with the fluid flowing in the pipeline,

which has a density rw and that the density of manometric fluid is rm. Then, since pressures at level

XX must be same in both limbs

1 1 2 2( ) ( )X w w mp P g z z P g z z h hgr r r= + - = + - - D + D

or
( ) ( )1 2

1 2 1m

w

P P
H z z h

g

r

r r

È ˘- Ê ˆ
= + - = - DÍ ˙ Á ˜Ë ¯Í ˙Î ˚

(14.17)

From Eqs. (14.16) and (14.17), one can write

1 2

2 2
1 2

2 1m
th

w

A A
Q g h

A A

r

r

Ê ˆ
= - DÁ ˜Ë ¯-

(14.18)

In practice, some loss of energy will occur between section 1 and 2. The value of Qth given by

Eq. (14.18) is a theoretical value which will be slightly greater than the actual value. A coefficient of

discharge Cd is, therefore, introduced, which is defined as the ratio of actual discharge (Q) to that of

theoretical discharge (Qth) and is given by

d

th

Q
C

Q
=

The usual value of Cd for venturimeter varies from 0.95 to 0.99.

Actual discharge is then given by

d thQ C Q= ¥

or 1 2

2 2
1 2

2 1d m

w

C A A
Q g h

A A

r

r

Ê ˆ
= - DÁ ˜Ë ¯-

(14.19)
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Note: Manometer connected across two sections of a venturimeter actually measures the

piezometric pressure differences, not the static pressure difference.

Note: The angle of the converging cone is steeper than the diffuser angle to minimize the loss due

to flow separation.

 Example 14.14 A venturimeter having throat diameter of 150 mm is set in a vertical pipe of 300 mm

diameter to measure the discharge of an oil of specific gravity 0.85 which is flowing

through the pipe in upward direction. The difference in elevations of the throat

section and entrance section of the venturimeter is 4 cm. The differential U-tube

mercury manometer shows a gauge deflection of 25 cm. If the coefficient of

discharge of the venturimeter is 0.95, calculate the discharge of oil flowing through

the pipe.

Solution

Diameter at inlet D1 = 300 mm = 0.3 m

Diameter at throat D2 = 150 mm = 0.15 m

Differential manometer reading Dh = 25 cm = 0.25 m

Coefficient of discharge Cd = 0.95

Cross-sectional area of pipe is A1 = ( )22 2
1 0.3 0.07068 m

4 4
D

p p
= ¥ =

Cross-sectional area of venturimeter at throat is A2 = ( )22 2
2 0.15 0.01767 m

4 4
D

p p
= ¥ =

The discharge is given by Eq. (14.19) as

1 2

2 2
1 2

2 1m
d

w

C A A g h

Q
A A

r

r

Ê ˆ
- DÁ ˜Ë ¯

=
-

( ) ( )2 2

13.6
0.95 0.07068 0.01767 2 9.81 1 0.25

0.85

0.07068 0.01767

Ê ˆ¥ ¥ ¥ ¥ ¥ - ¥Á ˜Ë ¯
=

-

30.1487 m /s=

 Example 14.15 A vertical venturimeter has an area ratio of 5. It has a throat diameter of 1 cm.

When oil of specific gravity 0.85 flows through it the mercury in the differential

gauge indicates a difference in height of 20 cm. Find the discharge through the

venturimeter. Take coefficient of discharge of the venturimeter as 0.98.
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Solution

Diameter at throat D2 = 1 cm = 0.01 m

Differential manometer reading D = 20 cm = 0.2 m

Coefficient of discharge Cd = 0.98

Cross-sectional area of venturimeter at throat is A2 = 2 5 2(0.01) 7.854 10  m
4

p -¥ = ¥

The discharge through the venturimeter is given by Eq. (14.19) as

1 2

2 2
1 2

2 1m
d

w

C A A g h

Q
A A

r

r

Ê ˆ
- DÁ ˜Ë ¯

=
-

2

2

2

1

2 1

1

m
d

w

C A g h

A

A

r

r

Ê ˆ
- DÁ ˜Ë ¯

=
Ê ˆ

- Á ˜Ë ¯

5

2

13.6
0.98 7.854 10 2 9.81 1 0.2

0.85

1
1

5

- Ê ˆ¥ ¥ ¥ ¥ ¥ - ¥Á ˜Ë ¯
=

Ê ˆ- Á ˜Ë ¯

30.00059 m /s=

 Example 14.16 Water flows through a 300 mm ¥ 150 mm venturimeter at the rate of 0.065 m3/s

and the differential gauge is deflected 1.2 m. Specific gravity of the manometric

liquid is 1.6. Determine the coefficient of discharge of the venturimeter.

Solution

Diameter at inlet D1 = 300 mm = 0.3 m

Diameter at throat D2 = 150 mm = 0.15 m

Differential manometer reading Dh = 1.2 m

Specific gravity of manometric liquid Sm = 1.6

Volume flow rate Q = 0.065 m3/s

Cross-sectional area of pipe is A1 = ( )22 2
1 0.3 0.07068 m

4 4
D

p p
= ¥ =
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Cross-sectional area of venturimeter at throat is A2 = ( )22 2
2 0.15 0.01767 m

4 4
D

p p
= ¥ =

The discharge through the venturimeter is given by Eq. (14.19) as

1 2

2 2
1 2

2 1m
d

w

C A A g h

Q
A A

r

r

Ê ˆ
- DÁ ˜Ë ¯

=
-

or

( ) ( )2 2

1.6
0.07068 0.01767 2 9.81 1 1.2

1
0.065

0.07068 0.01767

dC
Ê ˆ¥ ¥ ¥ ¥ ¥ - ¥Á ˜Ë ¯

=
-

or 0.95dC =

 Example 14.17 An oil of relative density 0.8 flows through a vertical pipe of diameter 24 cm. The

flow is measured by a 24 cm ¥ 12 venturimeter. The throat is 30 cm above the

inlet section. A differential mercury U-tube manometer is connected to the inlet and

throat. The manometer shows a deflection of 12 cm. Calculate the flow rate

through the pipe. Take coefficient of discharge of the venturimeter as 0.98.

Solution

Diameter at inlet D1 = 24 cm = 0.24 m

Diameter at throat D2 = 12 cm = 0.12 m

Differential manometer reading Dh = 12 cm = 0.12 m

Coefficient of discharge Cd = 0.98

Cross-sectional area of pipe is A1 = ( )22 2
1 0.24 0.0452 m

4 4
D

p p
= ¥ =

Cross-sectional area of venturimeter at throat is A1 = ( )22 2
2 0.12 0.0113 m

4 4
D

p p
= ¥ =

The discharge through the venturimeter is given by Eq. (14.19)

1 2

2 2
1 2

2 1m
d

w

C A A g h

Q
A A

r

r

Ê ˆ
- DÁ ˜Ë ¯

=
-

( ) ( )

Ê ˆ¥ ¥ ¥ ¥ ¥ - ¥Á ˜Ë ¯
=

-
2 2

13.6
0.98 0.0452 0.0113 2 9.81 1 0.12

0.8

0.0452 0.0113

30.07 m /s=
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 Example 14.18 A venturimeter with inlet and throat diameters are 150 mm and 75 mm respectively,

is mounted in a vertical pipe carrying water, the flow being upwards. The throat

section is 250 mm above the inlet of the venturimeter. The discharge of the

venturimeter is 40 litres/s and the coefficient of discharge is 0.96. Calculate (a) the

static pressure difference between inlet and throat, and (b) the difference in levels

of mercury in a vertical U-tube manometer connected between these points.

Solution

The schematic of the venturimeter is shown in Fig. 14.10.

Diameter at inlet D1 = 150 mm = 0.15 m

Diameter at throat D2 = 75 mm = 0.075 m

Volume flow rate Q = 40 litres/s = 40 ¥ 10–3 m3/s

Coefficient of discharge Cd = 0.96

Cross-sectional area of pipe is A1 = ( )22 2
1 0.15 0.01767 m

4 4
D

p p
= ¥ =

Cross-sectional area of venturimeter at throat is A2 = ( )22 2
2 0.075 0.0044 m

4 4
D

p p
= ¥ =

250 mm

Mercury

Dh

1

2

Figure 14.10

The discharge through the venturimeter is given by Eq. (14.19)

( ) ( )1 21 2
1 2

2 2
1 2

2d

P PA A
Q C g z z

gA A r

È ˘-
= + -Í ˙

Í ˙- Î ˚

Substituting the values, we have

( ) ( )

( ) ( )

1 2

1 2

3

2 2

0.96 0.01767 0.0044 2 9.81

40 10

0.01767 0.0044

P P
z z

gr
-

È ˘-
¥ ¥ ¥ ¥ + -Í ˙

Í ˙Î ˚¥ =
-
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or
( ) ( )1 2

1 2 4.28 
P P

z z
gr

È ˘-
+ - =Í ˙

Í ˙Î ˚

or
( )1 2

0.25 4.28 
P P

gr

È ˘-
- =Í ˙

Í ˙Î ˚

or
( )1 2

4.28 +0.25 4.53 m
1000 9.81

P P-
= =

¥

or
2 2

1 2 4.53 1000 9.81 44439N/m 44.439 kN/mP P- = ¥ ¥ = =

Static pressure difference between inlet and throat section is 44.439 kN/m2.

(b) From Eq. (14.17), we have

( ) ( )1 2

1 2 1m

w

P P
z z h

g

r

r r

È ˘- Ê ˆ
+ - = D -Í ˙ Á ˜Ë ¯Í ˙Î ˚

or
13600

4.28 1
1000

h
Ê ˆ

= D -Á ˜Ë ¯

or 0.3397 m 33.97 cmhD = =
The difference in levels of mercury in a vertical U-tube manometer connected between these points

is 33.97 cm.

14.6.2 Orifice Meter

The venturimeter is relatively complex to construct and hence expensive. Especially, for small

pipelines, its cost seems prohibitive, so simpler devices have been invented, such as orificemeter. The

orifice meter is a simple device for the measurement of flow. The orificemeter consists of a thin

circular plate with sharp edge circular hole drilled in it. The orifice plate produces a constriction of the

flow as shown in Fig. 14.11.

The streamlines continue to converge short distance downstream of the plane of the orifice, where

the vena contract is formed, and then expand. Hence the minimum flow area is actually smaller than

the area of the orifice. Applying energy equation between section 1 and 2(vena contracta), we have

2 2
1 1 2 2

1 2
2 2

P V P V
z z

g g g gr r
+ + = + +

or
( ) ( )1 22 2

2 1 1 22
P P

V V g z z
gr

È ˘-
- = + -Í ˙

Í ˙Î ˚
(14.20)
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1
2

Dh

Figure 14.11 Orificemeter

From continuity equation, we have

1 1 2 2A V A V=

or    2
1 2

1

A
V V

A
=

Substituting the value of  in Eq. (14.20), we have

( ) ( )
2

1 22 2
2 1 2

1

1 2
P PA

V g z z
A gr

È ˘ È ˘-Ê ˆ
Í ˙- = + -Í ˙Á ˜Í ˙Ë ¯ Í ˙Î ˚Î ˚

or
( ) ( )1 21

2 1 2
2 2

1 2

2
P PA

V g z z
gA A r

È ˘-
= + -Í ˙

Í ˙- Î ˚

Area of vena contracta (A2) is less than that of orifice (Ao) and coefficient of contraction (Cc) is

defined as

2
c

o

A
C

A
=

or
( ) ( )1 21

2 1 2
2 2 2

1

2

C o

P PA
V g z z

gA C A r

È ˘-
= + -Í ˙

Í ˙- Î ˚

Volume flow rate can be expressed as

2 2 2c oQ A V C A V= =

or
( ) ( )1 21

1 2
2 2 2

1

2C o

C o

P PC A A
Q g z z

gA C A r

È ˘-
= + -Í ˙

Í ˙- Î ˚
(14.21)
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Equation (14.21) is also expressed in a simplified form as

( ) ( )1 21
1 2

2 2
1

2d o

o

P PC A A
Q g z z

gA A r

È ˘-
= + -Í ˙

Í ˙- Î ˚
(14.22)

where

2 2
1

2 2 2
1

C o

d

C o

C A A
C

A C A

-
=

-

The usual value of Cd for orificemeter varies from 0.60 to 0.70.

( ) ( )1 2

1 2 1m

w

P P
z z h

g

r

r r

- Ê ˆ
+ - = - DÁ ˜Ë ¯

From Eq. (14.17), the piezometric pressure difference can also be expressed in terms of the

manometer reading as

( ) ( )1 2

1 2 1m

w

P P
z z h

g

r

r r

- Ê ˆ
+ - = - DÁ ˜Ë ¯

Then, Eq. (14.22) can be written as

1

2 2
1

2 1d o m

wo

C A A
Q g h

A A

r

r

Ê ˆ
= - DÁ ˜Ë ¯-

(14.23)

 Example 14.19 An orificemeter with orifice diameter 12 cm is inserted in a pipe of 24 cm diameter

through which an oil of density 850 kg/m3 is flowing. A differential mercury

U-tube manometer is connected to the two sides of the orificemeter to measure the

pressure difference. The manometer shows a deflection of 20 cm. If the coefficient

of discharge for the orificemeter is 0.6, find the discharge through the pipe.

Solution

Diameter of orifice Do = 12 cm = 0.12 m

Diameter of pipe D1 = 24 cm = 0.24 m

Coefficient of discharge Cd = 0.6

Density of oil rw = 850 kg/m3

Differential manometer reading Dh = 20 cm = 0.20 m

Cross-sectional area of orifice is Ao = ( )22 20.12 0.0113 m
4 4

oD
p p

= ¥ =

Cross-sectional area of pipe is A1 = ( )22 2
1 0.24 0.0452 m

4 4
D

p p
= ¥ =

The discharge through the orificemeter is given by Eq. (14.23) as

1

2 2
1

2 1d o m

wo

C A A
Q g h

A A

r

r

Ê ˆ
= - DÁ ˜Ë ¯-
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2 2

0.6 0.0113 0.0452 13600
2 9.81 1 0.2

8500.0452 0.0113

¥ ¥ Ê ˆ
= ¥ ¥ - ¥Á ˜Ë ¯-

30.0003
7.672 0.0525 m /s

0.0438
= ¥ =

 Example 14.20 A horizontal orificemeter with orifice diameter 20 cm is inserted in a pipe of 30 cm

diameter through which water is flowing. Coefficient of discharge for the

orificemeter is 0.62. If the pressure gauges fitted upstream and downstream of the

orificemeter show pressure  and  respectively, find the discharge through the pipe.

Solution

Diameter of orifice Do = 20 cm = 0.2 m

Diameter of pipe D1 = 30 cm = 0.3 m

Coefficient of discharge Cd = 0.62

Density of water rw = 1000 kg/m3

Pressure at upstream of the orificemeter P1 = 290 kN/m2 = 290 ¥ 103 N/m2

Pressure at downstream of the orificemeter P2 = 195 kN/m2 = 195 ¥ 103 N/m2

Cross-sectional area of orifice is Ao = ( )22 20.20 0.0314 m
4 4

oD
p p

= ¥ =

Cross-sectional area of pipe is A1 = ( )22 2
1 0.3 0.0707 m

4 4
D

p p
= ¥ =

The discharge through the orificemeter is given by Eq. (14.22) as

( ) ( )1 21
1 2

2 2
1

2d o

o

P PC A A
Q g z z

gA A r

È ˘-
= + -Í ˙

Í ˙- Î ˚

3 3

2 2

0.62 0.0314 0.0707 290 10 195 10
2 9.81 0

1000 9.810.0707 0.0314

È ˘¥ ¥ ¥ - ¥
= ¥ +Í ˙

¥- Î ˚

30.001376
13.784 0.2996 m /s

0.0633
= ¥ =

14.6.3 Pitot Tube

Pitot tube is commonly used to measure the velocity at a point in the flow field. The working principle

of Pitot tube is based on the Bernoulli's equation. The simplest Pitot tube consists of a right angled

transparent tube with one vertical leg projecting out of the flow and another leg pointing directly

upstream in the flow as shown in Fig 14.12. At location 1, the flow is practically undisturbed by the
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presence of the tube. At location 2, the flow has been completely stopped by the tube which has been

inserted i.e., velocity at 2 is zero.

P1

rg

V1
2

2g

Stagnation point

2
1

Figure 14.12 Pitot tube

Applying Bernoulli's equation between points 1 and 2 along a streamline, we have

2
1 1

2

stagPP V

g g gr r
+ =

or
2

1 1

2

stagPV P

g g gr r
= -

or

2
1

2
stag stat

V
h h

g
= -

or ( )1 2 stag statV g h h= - (14.24)

With consideration of loss, the velocity is given by

( )1 2 stag statV C g h h= - (14.25)

where C is the coefficient of the tube.

 Example 14.21 A Pitot tube is used to measure the velocity of water in a pipe. The stagnation

pressure head is 8 m and static pressure head is 6 m. Calculate the velocity of flow,

assuming the coefficient of the tube equal to 0.98.

Solution

Stagnation pressure head hstag = 8 m

Static pressure head hstat = 6 m

Coefficient of tube C = 0.98
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Velocity of flow is given by Eq. (14.25) as

2 ( )stag statV C g h h= -

    = 6.14 m/s

Pitot Static Tube The main limitation associated with the Pitot tube as described above is the

necessity of two piezometers. Connecting the pizometers to a manometer would simplify things. Pitot

static tube consists of a slender double-tube aligned with the flow and connected to a differential

manometer as shown in Fig.14.13. The inner tube is fully open to flow at the nose, and thus it

measures the stagnation pressure at that location. The outer tube is sealed at the nose, but it has holes

on the side of the outer wall and thus it measures the static pressure.

Using the theory of manometer, we have

2X wP P gxr= +

1 ( )Y w mP P g x h g hr r= + - D + D

Equating the pressures of both the limb along the horizontal plane XY, we obtain

X YP P=

2 1 ( )w w mP gx P g x h g hr r r+ = + - D + D

From Eq. (14.11), we know that

2
2 1 1

1

2
wP P Vr= +

Substituting the value of P2 to the above equation, we have

2
1 1 1

1
( )

2
w w w mP V gx P g x h g hr r r r+ + = + - D + D

or ( )2
1

1

2
w m wV g hr r r= - D

or 2
1 2 1m

w

V g h
r

r

Ê ˆ
= - DÁ ˜Ë ¯

or 1 2 1m

w

V g h
r

r

Ê ˆ
= - DÁ ˜Ë ¯

(14.26)
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2
1

1

X

Dh
x

Y

rm

Figure 14.13 Pitot static tube

The Pitot static tube is a simple, inexpensive and highly reliable device since it has no moving parts.

It also causes very small pressure drop and usually does not disturb the flow appreciably. However,

it is important that it be properly aligned with the flow to avoid significant errors that may be caused

by misalignment.

 Example 14.22 An oil of specific gravity 0.85 flows through a horizontal pipe of diameter 20 cm. A

Pitot static tube is inserted at the center of a pipe and its leads are filled with the

same oil and attached to a U-tube containing water. The reading on the manometer

is 15 cm. Determine the quantity of oil flowing through the pipe. The coe?cient of

Pitot static tube is unity.

Solution

Diameter of pipe D = 20 cm = 0.2 m

Specific gravity of oil Sw = 0.85

Density of oil rw = 0.85 ¥ 1000 = 850 kg/m3

Density of manometric fluid (water) rm = 1000 kg/m3

Manometer reading Dh = 15 cm = 0.15 m

Coefficient of tube C = 1

Cross-sectional area of pipe is A = ( )22 20.2 0.0314 m
4 4

D
p p

= ¥ =

Since the coefficient of the tube is unity, the velocity of flow is given by Eq. (14.26) as

2 1m

w

V g h
r

r

Ê ˆ
= - DÁ ˜Ë ¯

1000
2 9.81 1 0.15

850

Ê ˆ
= ¥ - ¥Á ˜Ë ¯

0.72 m/s=
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The quantity of oil flowing through the pipe is

30.0314 0.72 0.0226 m /sQ AV= = ¥ =

SUMMARY

Euler's equation of motion along a streamline is given by

r
+ + = 0

dP
VdV gdz

which is valid for steady and inviscid flow.

Bernoulli's equation along a streamline is given by

r
+ + =

2

2

P V
z C

g g

Here,
r

P

g
is the pressure head (flow energy per unit weight),

2

2

V

g
is the velocity

head (kinetic energy per unit weight) and z is the potential head (potential energy per

unit weight).

Bernoulli equation can be stated as follows:

During steady, inviscid flow of an incompressible fluid along a streamline, total mechanical

energy at any point is constant. The total mechanical energy consists of flow energy, kinetic

energy and potential energy.

Bernoulli's equation deals with the law of conservation of mechanical energy. The

equation holds true between any two points in the flow field provided that the flow field

is irrotational and the flow is inviscid, steady and incompressible.

The assumptions made in the derivation of Bernoulli's equation are

i) The flow is inviscid

ii) The flow is along a streamline

iii) The flow is steady

iv) The fluid is incompressible (density does not change with change in pressure)

The discharge through a venturimeter is given by

r

r

Ê ˆ
= - DÁ ˜Ë ¯-

1 2

2 2
1 2

2 1d m

w

C A A
Q g h

A A

where A1 and A2 are the cross-sectional areas of the venturimeter at its inlet and throat

respectively, rm and rw are the density of the manometric fluid and the working fluid

respectively, Dh is the difference in height of the manometric fluid, and Cd  is the co-efficient of

discharge of the venturimeter.

The discharge through an orificemeter is given by

r

r

Ê ˆ
= - DÁ ˜Ë ¯-

1

2 2
1

2 1d o m

w
o

C A A
Q g h

A A

where Ao and A1 are the cross-sectional areas of the orifice and pipe respectively, and are the

density of the manometric fluid and the working fluid respectively, is the difference in

height of the manometric fluid, and is the coefficient of discharge of the orificemeter.
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The velocity at a point in the flow filed measured by a Pitot tube given by

( )= -2 stag statV C g h h

where hsteg is the stagnation pressure head and hstat is the static pressure head and

is the coefficient of the tube.

REVIEW QUESTIONS

14.1 Name the different forces present in a fluid flow. For the Euler's equation of motion, which forces are

taken into consideration?

14.2 Derive Euler's equation of motion along a streamline.

14.3 Bernoulli's theorem is based on which principle? Give its statement. Name three devices where

Bernoulli's equation is applied.

14.4 State the Bernoulli equation. List out the assumptions and limitations of Bernoulli's equation. How is

it modified while applying in practice?

14.5 Define potential head, velocity head and datum head.

14.6 Draw a neat sketch of venturimeter. State why the length of divergent cone is made longer?

14.7 Starting with the Continuity and Bernoulli's equations, derive the following expression that can be used

to measure flow rate with a venturimeter:

( ) ( )1 21 2

1 2
2 2

1 2

2
r

È ˘-
= + -Í ˙

- Î ˚

P PA A
Q g z z

gA A

Also show that when the pressure difference is measured using a manometer the following expression

can be used:

1 2

2 2

1 2

2 1
r

r

Ê ˆ
= - DÁ ˜Ë ¯-

d m

w

C A A
Q g h

A A

14.8 Derive an expression for the rate of flow through an inclined venturimeter and show that, if a U-tube

gauge is used to measure the pressure difference, the gauge reading will be same for a given discharge

irrespective of the inclination of the meter.

14.9 Why is the angle of the converging cone in a venturimeter steeper than the diffuser angle?

14.10 Is it possible that the flow in a converging section of a vertical venturimeter takes place in a direction

from lower pressure to higher pressure, if (i) the flow is in the direction of gravity, and (ii) the flow is

opposite to the direction of gravity? Give reasons. Neglect viscous effects.

14.11 Coefficient of discharge of venturimeter is always greater than orificemeter. Why?

14.12 Derive an expression for the volumetric flow rate of a fluid flowing through an orificemeter. Write down

the advantages and disadvantages of using orificemeter over a venturimeter.

14.13 How does a venturimeter differ from an orificemeter?

14.14 Explain in brief the working principle of a Pitot-tube with the help of a neat sketch.

14.15 Differentiate between Pitot tube and Pitot static tube
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NUMERICAL PROBLEMS

14.1 An oil of relative density 0.9 is flowing in a pipe of 10 cm diameter with an average velocity of 3 m/s.

At a particular section 1 the pressure is measured to be 300 kN/m2. If the section 1 is 6 m above the

datum, determine total head of oil.

14.2 A vertical pipeline 10 cm diameter at the top tapers uniformly to 20 cm at bottom. The length of the

pipeline is 2 m. If the discharge through the pipeline is 30 litres/s, find the difference in pressure.

Neglect friction.

14.3 An oil of specific gravity 0.85 is flowing through a vertical pipe having diameter 30 cm and 15 cm at the

bottom and upper end respectively. The intensity of pressure at the bottom end is 200 kN/m2 and at

the upper end is 98 kN/m2. If the rate of flow through pipe is 50 lit/s, find the difference in datum head.

Neglect friction.

14.4 A 300 m long pipe has a slope of 1 in 100 and tapers from 1.2 m diameter at higher end to 0.6 m diameter

at the lower end. It carries water at a rate of 100 litres/s. Find the average velocities at the higher and

lower end. If the pressure at high end is 150 kN/m2, find the pressure at the low end. Neglect the losses

due to friction.

14.5 At a certain location X of a pipe line carrying water, the diameter is 70 cm, the pressure is 200 kN/m2 and

the average velocity is 6 m/s. At another section Y which is 3 m higher than X, the diameter is 40 cm and

the pressure is 120 kN/m2. What is the direction of the flow?

14.6 An oil with density 900 kg/m2 and viscosity 0.18 Ns/m2 flows through a pipeline. The diameter of the

pipe changes from 20 cm at a position A to 50 cm at a position B which is 4 m above A. If the pressure at

A and B are 300 kPa and 200 kPa respectively and the discharge is 0.3 m3/s, determine the direction of

flow and the loss of head.

14.7 In a smooth inclined pipe of uniform diameter 250 mm, a pressure of 50 kPa was observed at section 1

which was at elevation 10 m. At another section 2 at elevation 12 m, the pressure was 20 kPa and the

velocity was 1.25 m/s. Determine the direction of flow and the head loss between these two sections.

The fluid in the pipe is water. The density of water is 998 kg/m3.

14.8 A venturimeter of throat diameter 6 cm is fitted into a 12 cm diameter pipeline carrying water. Calculate

the discharge in the pipeline when the reading on a U-tube mercury manometer connected to the

upstream and throat sections shows a reading of 25 cm. Take coefficient of discharge of the venturimeter

as 0.96.

14.9. A venturimeter is used for the measurement of discharge of water in a horizontal pipeline. The pipe

diameter is 250 mm and the throat diameter is 125 mm. The difference in pressure between the inlet and

the throat is 3 m of head of water. Calculate the discharge in the pipe. Take coefficient of discharge of

the venturimeter as 0.98.

14.10 An oil of relative density 0.8 flows through a vertical pipe of diameter 24 cm. The flow is measured by

a 240 mm ¥ 120 mm venturimeter. The throat is 200 mm above the inlet section. A differential mercury

U-tube manometer is connected to the inlet and throat. The manometer shows a deflection of 130 mm.

Calculate the flow rate through the pipe. Take coefficient of discharge of the venturimeter as 0.98.

14.11 A vertical venturimeter measures the flow of oil of specific gravity 0.82 and has an entrance diameter of

125 mm and a throat diameter of 50 mm. There are pressure gauges at the entrance and at the throat,

which is 50 mm above the entrance. If the coefficient of the meter is 0.97, find the flow in m3/sec when

the pressure difference is 3 kPa.

14.12 A horizontal venturimeter of 24 cm ¥ 12 cm is used to measure the discharge of an oil of density

850 kg/m3.  A differential mercury manometer is connected to the inlet and throat for the purpose. If the

discharge is 100 litres/s, find the difference of mercury level in between two limbs of manometer. The

coefficient of discharge of the venturimeter is 0.98.



14.36 Engineering Thermodynamics and Fluid Mechanics

14.13 A venturimeter of throat diameter 50 mm is fitted into a 125 mm diameter water pipeline. The coefficient

of discharge is 0.96. Calculate the flow and velocity in the pipeline when the reading on a mercury-water

differential U-tube manometer connected to the upstream and throat sections shows a reading of

200 mm. The piezometer head difference H is related to the gauge reading  Dh by

1
r

r

Ê ˆ
= D -Á ˜Ë ¯

m

w

H h

where rm and  rw are the densities of mercury and water respectively.

14.14 An orificemeter with orifice diameter 15 cm is inserted in a pipe of 30 cm diameter. The pressure gauges

fitted upstream and downstream of the orificemeter gives readings of N/cm2 and 19.62 N/cm2

respectively. Coefficient of discharge for the meter is given as 0.64. Find the discharge of the water

through the pipe.

14.15 A pitot-static tube is used to measure air velocity. If a manometer connected to the instrument indicates

a difference in pressure head between the tappings of 4 mm of water. Calculate the air velocity assuming

the coefficient of the pitot tube to be unity. Density of air = 1.2 kg/m3.

14.16 In a pitot - static tube stagnation pressure and static pressure are 6 kPa ad 1 kPa respectively. Calculate

the velocity of flow of air assuming the coefficient of the tube equal to 0.98 and the water density as

1000 kg/m3.

14.17 A pitot-static tube at the centre of a 10 cm diameter pipe is aligned in the direction of flow. When air

flows through the pipe, the differential manometer across the pitot tube reads 6 mm of water gauge. It

is known that for the air flow under consideration, the centre line velocity is 18 % higher than the

average. Calculate the flow rate of air considering the coefficient of the pitot tube as unity and air

density 1.2 kg/m3.

MULTIPLE-CHOICE QUESTIONS

14.1 Bernoulli's theorem deals with the law of conservation of

(a) mass (b) momentum (c) energy (d) concentration

14.2 All the terms of energy in Bernoulli's equation 

2

constant
2

P V
z

g gr

Ê ˆ
+ + =Á ˜Ë ¯

 have dimension of

(a) mass (b) energy (c) length (d) work

14.3 Bernoulli's equation relates

(a) various forms of mechanical energy

(b) various forces involved in fluid flow

(c) torque to change in angular momentum

(d) various forces with change in momentum

14.4 Each term of Bernoulli's equation stated in the form 

2

constant
2

P V
z

g gr
+ + = , has units of

(a) N (b) Nm/s (c) Nm/kg (d) Nm/N

14.5 In the most general form of Bernoulli's equation 

2

constant
2

P V
z

g gr
+ + = , each term represents

(a) energy per unit mass (b) energy per unit weight

(c) energy per unit volume (d) none of these
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14.6 Euler’s equation is written as

(a)
2 0

dP
V dV gdz

r
+ + = (b) 0

dP
VdV gdz

r
+ + =

(c)
2 0

dP
V dV gdz

r
+ + = (d)

2

2
0

dP
V dV gdz

r
+ + =

14.7 A stagnation point is a point in fluid flow where

(a) total energy is zero (b) pressure is zero

(c) velocity of flow is zero (d) total energy is maximum.

14.8 Bernoulli equation can be derived from

(a) momentum balance only (b) energy balance only

(c) either momentum balance or energy balance (d) conservation of mass only

14.9 Pitot tube is used for the measurement of

(a) flow (b) velocity at a point

(c) discharge (d) pressure

14.10 The range for co-efficient of discharge for a venturimeter is

(a) 0.6 to 0.7 (b) 0.7 o 0.8 (c) 0.8 to 0.9 (d) 0.95 to 0.99

14.11 The range for co-efficient of discharge for a venturimeter is

(a) 0.6 to 0.7 (b) 0.7 o 0.8 (c) 0.8 to 0.9 (d) 0.95 to 0.99

14.12 A venturimeter is a device used to measure

(a) pressure in a fluid (b) velocity at a point

(c) flow rate (d) temperature of the fluid

14.13 A pitot tube measures in a pipe

(a) the average velocity of the fluid (b) the local velocity of flow

(c) the maximum velocity of flow only (d) the flow rate in the pipe

14.14 Which of the following instrument is used to measure flow by application of Bernoulli's theorem

(a) Venturimeter (b) Orificemeter (c) Pitot tube (d) all of the above

14.15 When is Bernoulli's equation applicable between any two points in a flow field?

(a) Steady, inviscid and irrotational flow of a compressible fluid

(b) Unsteady, inviscid and irrotational flow of a compressible fluid

(c) Steady, inviscid and rotational flow of an incompressible fluid

(d) Steady, inviscid and irrotational flow of an incompressible fluid

14.16 It is recommended that the diffuser angle should be kept less than 6° because

(a) pressure decreases in flow direction and flow separation may occur

(b) pressure decreases in flow direction and flow may become turbulent

(c) pressure increases in flow direction and flow separation may occur

(d) pressure increases in flow direction and flow may become turbulent

14.17 The difference of pressure head, H measured by a mercury-oil differential manometer is expressed as

(a) 1m

w

H h
r

r

Ê ˆ
= - DÁ ˜Ë ¯

(b) 1 m

w

H h
r

r

Ê ˆ
= - DÁ ˜Ë ¯

(c) ( )m w
H hr r= - D (d) ( )w m

H hr r= - D
where Dh = manometer reading;  rmand rw are the densities of mercury and oil respectively.

14.18 A pitot-static tube (C = 1) is used to measure air flow. With water in the differential manometer and a

gauge difference of 75 mm, what is the value of air speed if the density of air is 1.16 kg/m3?

(a) 1.21 m/s (b) 16.2 m/s (c) 5.6 m/s (d) 71.2 m/s





APPENDIX I

Thermodynamic Properties of
Water (Steam Tables)

TABLE A.1 PROPERTIES OF SATURATED WATER-TEMPERATURE BASE

Volume, m3/kg Energy, kJ/kg Enthalpy, kJ/kg Entropy, kJ/kg-K

T,°C P, MPa vf vg uf ug hf hfg hg sf sfg sg

0.010 0.00061 0.001000 206.1 0.0 2375.3 0.0 2501.3 2501.3 0.0000 9.1571 9.1571

2 0.00071 0.001000 179.9 8.4 2378.1 8.4 2496.6 2505.0 0.0305 9.0738 9.1043

5 0.00087 0.001000 147.1 21.0 2382.2 21.0 2489.5 2510.5 0.0761 8.9505 9.0266

10 0.00123 0.001000 106.4 42.0 2389.2 42.0 2477.7 2519.7 0.1510 8.7506 8.9016

15 0.00171 0.001001 77.93 63.0 2396 63.0 2465.9 2528.9 0.2244 8.5578 8.7822

20 0.00234 0.001002 57.79 83.9 2402.9 83.9 2454.2 2538.1 0.2965 8.3715 8.668

25 0.00317 0.001003 43.36 104.9 2409.8 104.9 2442.3 2547.2 0.3672 8.1916 8.5588

30 0.00425 0.001004 32.9 125.8 2416.6 125.8 2430.4 2556.2 0.4367 8.0174 8.4541

35 0.00563 0.001006 25.22 146.7 2423.4 146.7 2418.6 2565.3 0.5051 7.8488 8.3539

40 0.00738 0.001008 19.52 167.5 2430.1 167.5 2406.8 2574.3 0.5723 7.6855 8.2578

45 0.00959 0.001010 15.26 188.4 2436.8 188.4 2394.8 2583.2 0.6385 7.5271 8.1656

50 0.01235 0.001012 12.03 209.3 2443.5 209.3 2382.8 2592.1 0.7036 7.3735 8.0771

55 0.01576 0.001015 9.569 230.2 2450.1 230.2 2370.7 2600.9 0.7678 7.2243 7.9921

60 0.01994 0.001017 7.671 251.1 2456.6 251.1 2358.5 2609.6 0.8310 7.0794 7.9104

65 0.02503 0.001020 6.197 272.0 2463.1 272.0 2346.2 2618.2 0.8934 6.9384 7.8318

70 0.03119 0.001023 5.042 292.9 2469.5 292.9 2333.8 2626.8 0.9549 6.8012 7.7561

75 0.03858 0.001026 4.131 313.9 2475.9  313.9 2321.4 2635.3 1.0155 6.6678 7.6833
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TABLE A.1 (Continued)

Volume, m3/kg Energy, kJ/kg Enthalpy, kJ/kg Entropy, kJ/kg-K

T,°C P, MPa vf vg uf ug hf hfg hg sf sfg sg

80 0.04739 0.001029 3.407 334.8 2482.2 334.9 2308.8 2643.7 1.0754 6.5376 7.6130

85 0.05783 0.001032 2.828 355.8 2488.4 355.9 2296.0 2651.9 1.1344 6.4109 7.5453

90 0.07013 0.001036 2.361 376.8 2494.5 376.9 2283.2 2660.1 1.1927 6.2872 7.4799

95 0.08455 0.00104 1.982 397.9 2500.6 397.9 2270.2 2668.1 1.2503 6.1664 7.4167

100 0.1013 0.001044 1.673 418.9 2506.5 419.0 2257.0 2676.0 1.3071 6.0486 7.3557

110 0.1433 0.001052 1.210 461.1 2518.1 461.3 2230.2 2691.5 1.4188 5.8207 7.2395

120 0.1985 0.00106 0.8919 503.5 2529.2 503.7 2202.6 2706.3 1.5280 5.6024 7.1304

130 0.2701 0.00107 0.6685 546 2539.9 546.3 2174.2 2720.5 1.6348 5.3929 7.0277

140 0.3613 0.00108 0.5089 588.7 2550.0 589.1 2144.8 2733.9 1.7395 5.1912 6.9307

150 0.4758 0.00109 0.3928 631.7 2559.5 632.2 2114.2 2746.4 1.8422 4.9965 6.8387

160 0.6178 0.001102 0.3071 674.9 2568.4 675.5 2082.6 2758.1 1.9431 4.8079 6.7510

170 0.7916 0.001114 0.2428 718.3 2576.5 719.2 2049.5 2768.7 2.0423 4.6249 6.6672

180 1.002 0.001127 0.1941 762.1 2583.7 763.2 2015.0 2778.5 2.1400 4.4466 6.5866

190 1.254 0.001141 0.1565 806.2 2590.0 807.5 1978.8 2786.4 2.2363 4.2724 6.5087

200 1.554 0.001156 0.1274 850.6 2595.3 852.4 1940.8 2793.2 2.3313 4.1018 6.4331

210 1.906 0.001173 0.1044 895.5 2599.4 897.7 1900.8 2798.5 2.4253 3.9340 6.3593

220 2.318 0.00119 0.0862 940.9 2602.4 943.6 1858.5 2802.1 2.5183 3.7686 6.2869

230 2.795 0.001209 0.0716 986.7 2603.9 990.1 1813.9 2804.0 2.6105 3.6050 6.2155

240 3.344 0.001229 0.0598 1033.2 2604.0 1037.3 1766.5 2803.8 2.7021 3.4425 6.1446

250 3.973 0.001251 0.0501 1080.4 2602.4 1085.3 1716.2 2801.5 2.7933 3.2805 6.0738

260 4.688 0.001276 0.0422 1128.4 2599.0 1134.4 1662.5 2796.9 2.8844 3.1184 6.0028

270 5.498 0.001302 0.0357 1177.3 2593.7 1184.5 1605.2 2789.7 2.9757 2.9553 5.9310

280 6.411 0.001332 0.0302 1227.4 2586.1 1236.0 1543.6 2779.6 3.0674 2.7905 5.8579

290 7.436 0.001366 0.0256 1278.9 2576.0 1289.0 1477.2 2766.2 3.1600 2.6230 5.7830

300 8.58 0.001404 0.0217 1332 2563.0 1344.0 1405.0 2749.0 3.2540 2.4513 5.7053

310 9.856 0.001447 0.0184 1387 2546.4 1401.3 1326.0 2727.3 3.3500 2.2739 5.6239

320 11.27 0.001499 0.0155 1444.6 2525.5 1461.4 1238.7 2700.1 3.4487 2.0883 5.5370

330 12.84 0.001561 0.013 1505.2 2499.0 1525.3 1140.6 2665.9 3.5514 1.8911 5.4425

340 14.59 0.001638 0.0108 1570.3 2464.6 1594.2 1027.9 2622.1 3.6601 1.6765 5.3366

350 16.51 0.00174 0.0088 1641.8 2418.5 1670.6 893.4 2564.0 3.7784 1.4338 5.2122

360 18.65 0.001892 0.0069 1725.2 2351.6 1760.5 720.7 2481.2 3.9154 1.1382 5.0536

370 21.03 0.002213 0.0049 1844 2229.0 1890.5 442.2 2332.7 4.1114 0.6876 4.7990

374 22.088 0.003155 0.0032  2029.6 2029.6  2099.3 0.0 2099.3  4.4305 0.0000 4.4305

SOURCES: Keenan, Keyes, Hill, and Moore, Steam Tables, Wiley, New York, 1969; G.J. Van Wylen and R. E. Sonntag,

Fundamentals of Classical Thermodynamics, Wiley, New York, 1973.
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TABLE A.2 PROPERTIES OF SATURATED WATER-PRESSURE BASE

Volume, m
3
/kg Energy, kJ/kg Enthalpy, kJ/kg Entropy, kJ/kg-K

P, MPa T,°C vf vg uf ug hf hfg hg sf sfg sg

0.000611 0.01 0.001000 206.1 0.0 2375.3 0.0 2501.3 2501.3 0.0000 9.1571 9.1571

0.0008 3.8 0.001000 159.7 15.8 2380.5 15.8 2492.5 2508.3 0.0575 9.0007 9.0582

0.001 7.0 0.001000 129.2 29.3 2385.0 29.3 2484.9 2514.2 0.1059 8.8706 8.9765

0.0012 9.7 0.001000 108.7 40.6 2388.7 40.6 2478.5 2519.1 0.1460 8.7639 8.9099

0.0014 12.0 0.001001 93.92 50.3 2391.9 50.3 2473.1 2523.4 0.1802 8.6736 8.8538

0.0016 14.0 0.001001 82.76 58.9 2394.7 58.9 2468.2 2527.1 0.2101 8.5952 8.8053

0.0018 15.8 0.001001 74.03 66.5 2397.2 66.5 2464.0 2530.5 0.2367 8.5259 8.7626

0.002 17.5 0.001001 67.00 73.5 2399.5 73.5 2460.0 2533.5 0.2606 8.4639 8.7245

0.003 24.1 0.001003 45.67 101.0 2408.5 101.0 2444.5 2545.5 0.3544 8.2240 8.5784

0.004 29.0 0.001004 34.8 121.4 2415.2 121.4 2433.0 2554.4 0.4225 8.0529 8.4754

0.006 36.2 0.001006 23.74 151.5 2424.9 151.5 2415.9 2567.4 0.5208 7.8104 8.3312

0.008 41.5 0.001008 18.1 173.9 2432.1 173.9 2403.1 2577.0 0.5924 7.6371 8.2295

0.01 45.8 0.001010 14.67 191.8 2437.9 191.8 2392.8 2584.6 0.6491 7.5019 8.1510

0.012 49.4 0.001012 12.36 206.9 2442.7 206.9 2384.1 2591.0 0.6961 7.3910 8.0871

0.014 52.6 0.001013 10.69 220.0 2446.9 220.0 2376.6 2596.6 0.7365 7.2968 8.0333

0.016 55.3 0.001015 9.433 231.5 2450.5 231.5 2369.9 2601.4 0.7719 7.2149 7.9868

0.018 57.8 0.001016 8.445 241.9 2453.8 241.9 2363.9 2605.8 0.8034 7.1425 7.9459

0.02 60.1 0.001017 7.649 251.4 2456.7 251.4 2358.3 2609.7 0.8319 7.0774 7.9093

0.03 69.1 0.001022 5.229 289.2 2468.4 289.2 2336.1 2625.3 0.9439 6.8256 7.7695

0.04 75.9 0.001026 3.993 317.5 2477.0 317.6 2319.1 2636.7 1.0260 6.6449 7.6709

0.06 85.9 0.001033 2.732 359.8 2489.6 359.8 2293.7 2653.5 1.1455 6.3873 7.5328

0.08 93.5 0.001039 2.087 391.6 2498.8 391.6 2274.1 2665.7 1.2331 6.2023 7.4354

0.1 99.6 0.001043 1.694 417.3 2506.1 417.4 2258.1 2675.5 1.3029 6.0573 7.3602

0.12 104.8 0.001047 1.428 439.2 2512.1 439.3 2244.2 2683.5 1.3911 5.9378 7.2980

0.14 109.3 0.001051 1.237 458.2 2517.3 458.4 2232.0 2690.4 1.4112 5.8360 7.2472

0.16 113.3 0.001054 1.091 475.2 2521.8 475.3 2221.2 2696.5 1.4553 5.7472 7.2025

0.18 116.9 0.001058 0.9775 490.5 2525.9 490.7 2211.1 2701.8 1.4948 5.6683 7.1631

0.2 120.2 0.001061 0.8857 504.5 2529.5 504.7 2201.9 2706.6 1.5305 5.5975 7.1280

0.3 133.5 0.001073 0.6058 561.1 2543.6 561.5 2163.8 2725.3 1.6722 5.3205 6.9927

0.4 143.6 0.001084 0.4625 604.3 2553.6 604.7 2133.8 2738.5 1.7770 5.1197 6.8967

0.6 158.9 0.001101 0.3157 669.9 2567.4 670.6 2086.2 2756.8 1.9316 4.8293 6.7609

0.8 170.4 0.001115 0.2404 720.2 2576.8 721.1 2048.0 2769.1 2.0466 4.6170 6.6636

1 179.9 0.001127 0.1944 761.7 2583.6 762.8 2015.3 2778.1 2.1391 4.4482 6.5873

1.2 188.0 0.001139 0.1633 797.3 2588.8 798.6 1986.2 2784.8 2.2170 4.3072 6.5242

1.4 195.1 0.001149 0.1408 828.7 2592.8  830.3 1959.7 2790.0 2.4847 4.1854 6.4701
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TABLE A.2 (Continued)

Volume, m
3
/kg Energy, kJ/kg Enthalpy, kJ/kg Entropy, kJ/kg-K

P, MPa T,°C vf vg uf ug hf hfg hg sf sfg sg

1.6 201.4 0.001159 0.1238 856.9 2596.0 858.8 1935.2 2794.0 2.3446 4.0780 6.4226

1.8 207.2 0.001168 0.1104 882.7 2598.4 884.8 1912.3 2797.1 2.3986 3.9816 6.3802

2 212.4 0.001177 0.0996 906.4 2600.3 908.8 1890.7 2799.5 2.4478 3.8939 6.3417

3 233.9 0.001216 0.0667 1004.8 2604.1 1008.4 1795.7 2804.1 2.6462 3.5416 6.1878

4 250.4 0.001252 0.0498 1082.3 2602.3 1087.3 1714.1 2801.4 2.7970 3.2739 6.0709

6 275.6 0.001319 0.0324 1205.4 2589.7 1213.3 1571.0 2784.3 3.0273 2.8627 5.8900

8 295.1 0.001384 0.0235 1305.6 2569.8 1316.6 1441.4 2758.0 3.2075 2.5365 5.7440

10 311.1 0.001452 0.018 1393.0 2544.4 1407.6 1317.1 2724.7 3.3603 2.2546 5.6149

12 324.8 0.001527 0.0143 1472.9 2513.7 1491.3 1193.6 2684.9 3.4970 1.9963 5.4933

14 336.8 0.001611 0.0115 1548.6 2476.8 1571.1 1066.5 2637.6 3.6240 1.7486 5.3726

16 347.4 0.001711 0.0093 1622.7 2431.8 1650.0 930.7 2580.7 3.7468 1.4996 5.2464

18 357.1 0.00184 0.0075 1698.9 2374.4 1732.0 777.2 2509.2 3.8722 1.2332 5.1054

20 365.8 0.002036 0.0058 1785.6 2293.2 1826.3 583.7 2410.0 4.0146 0.9135 4.9281

22.088 374.136 0.003155 0.0032  2029.6 2029.6  2099.3 0.0 2099.3 4.4305 0.0000 4.4305

SOURCES: Keenan, Keyes, Hill, And Moore, Steam Tables, Wiley, New York, 1969; G.J. Van Wylen and R. E. Sonntag,

Fundamentals of Classical Thermodynamics, Wiley, New York, 1973.

TABLE A.3 SUPERHEATED STEAM TABLE (T in °C, v in m3/kg, u in kJ/kg,

 in kJ/kg, s in kJ/kg-K

T v u h s v u h s v u h s

P = 0.010 MPa (45.81°C) P = 0.050 MPa (81.33°C) P = 0.1 MPa (99.63°C)

Sat. 14.674 2437.9 2584.7 8.1502 3.240 2483.9 2646 7.5939 1.6940 2506 2675.5 7.359

50 14.869 2443.9 2592.6 8.1749

100 17.196 2515.5 2688 8.4479 3.418 2511.6 2683 7.6947 1.6958 2507 2676.2 7.361

150 19.512 2587.9 2783.0 8.6882 3.889 2585.6 2780.1 7.9401 1.9364 2583 2776.4 7.613

200 21.825 2661.3 2879.5 8.9038 4.356 2659.9 2877.7 8.1580 2.172 2658 2875.3 7.834

250 24.136 2736.0 2977.3 9.1002 4.820 2735.0 2976.0 8.3556 2.406 2734 2974.3 8.033

300 26.445 2812.1 3076.5 9.2813 5.284 2811.3 3075.5 8.5373 2.639 2810 3074.3 8.216

400 31.063 2968.9 3279.6 9.6077 6.209 2968.5 3278.9 8.8642 3.103 2968 3278.2 8.544

500 35.679 3132.3 3489.1 9.8978 7.134 3132.0 3488.7 9.1546 3.565 3132 3488.1 8.834

600 40.295 3302.5 3705.4 10.161 8.057 3302.2 3705.1 9.4178 4.028 3305 3704.7 9.098

700 44.911 3479.6 3928.7 10.403 8.981 3479.4 3928.5 9.6599 4.490 3479 3928.2 9.34

800 49.526 3663.8 4159.0 10.628 9.904 3663.6 4158.9 9.8852 4.952 3664 4158.6 9.565

900 54.141 3855.0 4396.4 10.84 10.828 3854.9 4396.3 10.0967 5.414 3855 4396.1 9.777

1000 58.757 4053.0 4640.6 11.039 11.751 4052.9 4640.5 10.2964 5.875 4053 4640.3 9.976

1100 63.372 4257.5 4891.2 11.229  12.674 4257.4 4891.1 10.4859 6.337 4257 4891.0 10.17
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TABLE A.3 (Continued)

T v u h s v u h s v u h s

1200 67.987 4468 5147.8 11.4091 13.597 4467.8 5148 10.666 6.799 4468 5147.6 10.3463

1300 72.602 4684 5409.7 11.5811 14.521 4683.6 5410 10.838 7.260 4684 5409.5 10.5183

P = 0.20 MPa (120.23°C) P = 0.30 MPa (133.55°C) P = 0.40 MPa (143.63°C)

Sat. 0.8857 2529.5 2706.7 7.1272 0.6058 2543.6 2725.3 6.9919 0.4625 2553.6 2738.6 6.8959

150 0.9596 2576.9 2768.8 7.2795 0.6339 2570.8 2761.0 7.0778 0.4708 2564.5 2752.8 6.9299

200 1.0803 2654.4 2870.5 7.5066 0.7163 2650.7 2865.6 7.3115 0.5342 2646.2 2860.5 7.1706

250 1.1988 2731.2 2971.0 7.7086 0.7964 2728.7 2967.6 7.5166 0.5951 2726.1 2964.2 7.3789

300 1.3162 2808.6 3071.8 7.8926 0.8753 2806.7 3069.3 7.7022 0.6548 2804.8 3066.8 7.5662

400 1.5493 2966.7 3276.6 8.2218 1.0315 2965.6 3275.6 8.0330 0.7726 2964.4 3273.4 7.8985

500 1.7814 3130.8 3487.1 8.5133 1.1867 3130.0 3486.0 8.3251 0.8893 3129.2 3484.9 8.1913

600 2.013 3301.4 3704.0 8.7770 1.3414 3300.8 3703.2 8.5892 1.0055 3300.2 3702.4 8.4558

700 2.244 3478.8 3927.6 9.0194 1.4957 3478.4 3927.1 8.8319 1.1215 3477.9 3926.5 8.6987

800 2.475 3663.1 4158.2 9.2449 1.6499 3662.9 4157.8 9.0576 1.2372 3662.4 4157.3 8.9244

900 2.706 3854.5 4395.8 9.4566 1.8041 3854.2 4395.4 9.2692 1.3529 3853.9 4395.1 9.1362

1000 2.937 4052.5 4640.0 9.6563 1.9581 4052.3 4639.7 9.4690 1.4685 4052.0 4639.4 9.3360

1100 3.168 4257.0 4890.7 9.8458 2.1121 4256.5 4890.4 9.6585 1.5840 4256.5 4890.2 9.5256

1200 3.399 4467.5 5147.3 10.0262 2.2661 4467.2 5147.1 9.8389 1.6996 4467.0 5146.8 9.7060

1300 3.630 4683.2 5409.3 10.1982 2.4201 4683.0 5409.0 10.0110 1.8151 4682.8 5408.8 9.8780

P = 0.50 MPa (151.86°C) P = 0.60 MPa (158.85°C) P = 0.80 MPa (170.43°C)

Sat. 0.3749 2561.2 2748.7 6.8213 0.3157 2567.4 2756.8 6.7600 0.2404 2576.8 2769.1 6.6628

200 0.4249 2642.9 2855.4 7.0592 0.3520 2638.9 2850.1 6.9665 0.2608 2630.6 2839.3 6.8158

250 0.4744 2723.5 2960.7 7.2709 0.3938 2720.9 2957.2 7.1816 0.2931 2715.5 2950.0 7.0384

300 0.5226 2802.9 3064.2 7.4599 0.4344 2801.0 3061.6 7.3724 0.3241 2797.2 3056.5 7.2328

350 0.5701 2882.6 3167.7 7.6329 0.4742 2881.2 3165.7 7.5464 0.3544 2878.2 3161.7 7.4089

400 0.6173 2963.2 3271.9 7.7938 0.5137 2962.1 3270.3 7.7079 0.3843 2959.7 3267.1 7.5716

500 0.7109 3128.4 3483.9 8.0873 0.5920 3127.6 3482.8 8.0021 0.4433 3126.0 3480.6 7.8673

600 0.8041 3299.6 3701.7 8.3522 0.6697 3299.1 3700.9 8.2674 0.5018 3297.9 3699.4 8.1333

700 0.8969 3477.5 3925.9 8.5952 0.7472 3477.0 3925.3 8.5107 0.5601 3476.2 3924.2 8.3770

800 0.9896 3662.1 4156.9 8.8211 0.8245 3661.8 4156.5 8.7367 0.6181 3661.1 4155.6 8.6033

900 1.0822 3853.6 4394.7 9.0329 0.9017 3853.4 4394.4 8.9486 0.6761 3852.8 4393.7 8.8153

1000 1.1747 4051.8 4639.1 9.2328 0.9788 4051.5 4638.8 9.1485 0.7340 4051.0 4638.2 9.0153

1100 1.2672 4256.3 4889.9 9.4224 1.0559 4256.1 4889.6 9.3381 0.7919 4255.6 4889.1 9.2050

1200 1.3596 4466.8 5146.6 9.6029 1.1330 4466.5 5146.3 9.5185 0.8497 4466.1 5145.9 9.3855

1300 1.4521 4682.5 5408.6 9.7749 1.2101 4682.3 5408.3 9.6906 0.9076 4681.8 5407.9 9.5575
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TABLE A.3 (Continued)

T v u h s v u h s v u h s

P = 1.00 MPa (179.91°C) P = 1.20 MPa (187.99°C) P = 1.40 MPa (195.07°C)

Sat. 0.19444 2583.6 2778.1 6.5865 0.16333 2588.8 2784.8 6.523 0.14084 2592.8 2790.0 6.4693

200 0.206 2621.9 2827.9 6.6940 0.16930 2612.8 2815.9 6.59 0.14302 2603.1 2803.3 6.4975

250 0.2327 2709.9 2942.6 6.9247 0.19234 2704.2 2935.0 6.829 0.16350 2698.3 2927.2 6.7467

300 0.2579 2793.2 3051.2 7.1299 0.2138 2789.2 3045.8 7.032 0.18228 2785.2 3040.4 6.9534

350 0.2825 2875.2 3157.2 7.3011 0.2345 2872.2 3153.6 7.212 0.2003 2869.2 3149.5 7.1360

400 0.3066 2957.3 3263.9 7.4651 0.2548 2954.9 3260.7 7.377 0.2178 2952.5 3257.5 7.3026

500 0.3541 3124.4 3478.5 7.7622 0.2946 3122.8 3476.3 7.676 0.2521 3321.1 3474.1 7.6027

600 0.4011 3296.8 3697.9 8.0290 0.3339 3295.6 3696.3 7.944 0.2860 3294.4 3694.8 7.8710

700 0.4478 3475.3 3923.1 8.2731 0.3729 3474.4 3922.0 8.188 0.3195 3473.6 3920.8 8.1160

800 0.4943 3660.4 4154.7 8.4996 0.4118 3659.7 4153.8 8.415 0.3528 3659.0 4153.0 8.8431

900 0.5407 3852.2 4392.9 8.7118 0.4505 3851.6 4392.2 8.627 0.3861 3851.1 4391.5 8.5556

1000 0.5871 4050.5 4637.6 8.9119 0.4892 4050.0 4637.0 8.827 0.4192 4049.5 4636.4 8.7559

1100 0.6335 4255.1 4888.6 9.1017 0.5278 4254.6 4888.0 9.017 0.4524 4254.1 4887.5 8.9457

1200 0.6798 4465.6 5145.4 9.2822 0.5665 4465.1 5144.9 9.198 0.4855 4464.7 5144.4 9.1262

1300 0.7261 4681.3 5407.4 9.4543 0.6051 4680.9 5407.0 9.37 0.5186 4680 5406.5 9.2984

P = 1.60 MPa (201.41°C) P = 1.80 MPa (207.15°C) P = 2.00 MPa (212.42°C)

Sat. 0.1238 2596.0 2794.0 6.4218 0.11042 2598.4 2797.1 6.3794 0.09963 2600.3 2799.5 6.3409

225 0.13287 2644.7 2857.3 6.5518 0.13673 2636.6 2846.7 6.4808 0.10377 2868.3 2835.8 6.4147

250 0.14184 2692.3 2919.2 6.6732 0.12497 2686.0 2911.0 6.6066 0.11144 2679.6 2902.5 6.5453

300 0.15862 2781.1 3034.8 6.8844 0.14021 2776.9 3029.2 6.8226 0.12547 2772.6 3023.5 6.7664

350 0.17456 2866.1 3145.4 7.0694 0.15457 2863.0 3141.2 7.0100 0.13857 2859.8 3137.0 6.9563

400 0.19005 2950.1 3254.4 7.2374 0.16847 2947.7 3250.9 7.1794 0.15120 2945.2 3247.6 7.1271

500 0.2203 3119.5 3472.0 7.5390 0.1955 3117.9 3469.8 7.4825 0.17568 3116.2 3467.6 7.4317

600 0.2500 3293.3 3693.2 7.8080 0.2220 3292.1 3691.7 7.7523 0.19960 3290.9 3690.1 7.7024

700 0.2794 3472.7 3919.7 8.0535 0.2482 3471.8 3918.5 7.9983 0.2232 3470.9 3917.4 7.9487

800 0.3086 3658.3 4152.1 8.2808 0.2742 3657.6 4151.2 8.2258 0.2467 3657.0 4150.3 8.1765

900 0.3377 3850.5 4390.8 8.4935 0.3001 3849.9 4390.1 8.4386 0.2700 3849.3 4389.4 8.3895

1000 0.3668 4049.0 4635.8 8.6938 0.3260 4048.5 4635.2 8.6391 0.2933 4048.0 4634.6 8.5901

1100 0.3958 4253.7 4887.0 8.8837 0.3518 4253.2 4886.4 8.8290 0.3166 4252.7 4885.9 8.7800

1200 0.4248 4464.2 5143.9 9.0643 0.3777 4463.7 5143.4 9.0096 0.3398 4463.3 5142.9 8.9607

1300 0.4538 4679.9 5406.0 9.2364 0.4034 4679.5 5405.6 9.1818 0.3631 4679.0 5405.1 9.1329

P = 2.50 MPa (233.99°C) P = 3.00 MPa (233.90°C) P = 3.50 MPa (242.60°C)

Sat. 0.07998 2603.1 2803.1 6.2575 0.06668 2604.1 2804.2 6.187 0.05707 2604 2803.4 6.125

225 0.08027 2605.6 2806.3 6.2639

250 0.08700 2662.6 2880.1 6.4085 0.07058 2644.0 2855.8 6.287 0.05872 2624 2829.2 6.175
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TABLE A.3 (Continued)

T v u h s v u h s v u h s

300 0.09890 2761.6 3008.8 6.6438 0.08114 2750.1 2993.5 6.5390 0.06842 2738.0 2977.5 6.4461

350 0.10976 2851.9 3126.3 6.8403 0.09053 2843.7 3115.3 6.7428 0.07678 2835.3 3104.0 6.6579

400 0.12010 2939.1 3239.3 7.0148 0.09936 2932.8 3230.9 6.9212 0.08453 2926.4 3222.3 6.8405

450 0.13014 3025.5 3350.8 7.1746 0.10787 3020.4 3344.0 7.0834 0.09196 3015.3 3337.2 7.0052

500 0.13998 3112.1 3462.1 7.3234 0.11619 3108.0 3456.5 7.2338 0.09918 3103.0 3450.9 7.1572

600 0.15930 3288.0 3686.3 7.5960 0.13243 3285.0 3682.3 7.5085 0.11324 3282.1 3678.4 7.4339

700 0.17832 3468.7 3914.5 7.8435 0.14838 3466.5 3911.7 7.7571 0.12699 3464.3 3908.8 7.6837

800 0.19716 3655.3 4148.2 8.0720 0.16414 3653.5 4145.9 7.9862 0.14056 3651.8 4143.7 7.9134

900 0.21590 3847.9 4387.6 8.2853 0.17980 3846.5 4385.9 8.1999 0.15402 3845.0 4384.1 8.1276

1000 0.2346 4046.7 4633.1 8.4861 0.19541 4045.4 4631.6 8.4009 0.16743 4044.1 4630.1 8.3288

1100 0.2532 4251.5 4884.6 8.6762 0.21098 4250.3 4883.3 8.5912 0.18080 4249.2 4881.9 8.5192

1200 0.2718 4462.1 5141.7 8.8569 0.22652 4460.9 5140.5 8.7720 0.19415 4459.8 5139.3 8.7000

1300 0.2905 4677.8 5404.0 9.0291 0.24206 4676.6 5402.8 8.9442 0.20749 4675.5 5401.7 8.8723

P = 4.0 MPa (250.40°C) P = 4.50 MPa (257.49°C) P = 5.0 MPa (263.99°C)

Sat. 0.04978 2602.3 2801.4 6.0701 0.04406 2600.1 2798.3 6.0198 0.03944 2597.1 2794.3 5.5934

275 0.05457 2667.9 2886.2 6.2285 0.04730 2650.3 2863.2 6.1401 0.04141 2631.3 2838.3 6.0544

300 0.05884 2725.3 2960.7 6.3615 0.05135 2712.0 2943.1 6.2828 0.04532 2698.0 2924.5 6.2084

350 0.06645 2826.7 3092.5 6.5821 0.05840 2817.8 3080.6 6.5131 0.05194 2808.7 3068.4 6.4493

400 0.07341 2919.9 3213.6 6.7690 0.06475 2913.3 3204.7 6.7047 0.05781 2906.6 3195.7 6.6459

450 0.08002 3010.2 3330.3 6.9363 0.07074 3005.0 3323.3 6.8746 0.06330 2999.7 3316.2 6.8186

500 0.08643 3099.5 3445.3 7.0901 0.07651 3095.3 3439.6 7.0301 0.06857 3091.0 3433.8 6.9759

600 0.09885 3279.1 3674.4 7.3688 0.08765 3276.0 3670.5 7.3110 0.07869 3273.0 3666.5 7.2589

700 0.11095 3462.1 3905.9 7.8502 0.09847 3459.9 3903.0 7.5631 0.08849 3457.6 3900.1 7.5122

800 0.12287 3650.0 4141.5 8.0647 0.10911 3648.3 4139.3 7.7942 0.09811 3646.6 4137.1 7.4440

900 0.13469 3843.6 4382.3 8.0647 0.11965 3842.2 4380.6 8.0091 0.10762 3840.7 4378.8 7.9593

1000 0.14645 4042.9 4628.7 8.2662 0.13013 4041.6 4627.2 8.2108 0.11707 4040.7 4625.7 8.1612

1100 0.15817 4248.0 4880.6 8.4567 0.14056 4246.8 4879.3 8.4015 0.12648 4245.6 4878.0 8.3520

1200 0.16987 4458.6 5138.1 8.6376 0.15098 4457.5 5136.9 8.5825 0.13587 4456.3 5135.7 8.5331

1300 0.18156 4674.3 5400.5 8.8100 0.16139 4673.1 5399.4 8.7549 0.14526 4672.0 5398.2 8.7055

P = 6.0 MPa (275.64°C) P = 7.0 MPa (285.88°C) P = 8.0 MPa (295.06°C)

  Sat. 0.03244 2589.7 2784.3 5.8899 0.02737 2580.5 2772.1 5.8133 0.02352 2569.8 2758.0 5.7432

300 0.03616 2667.2 2884.2 6.0674 0.02947 2632.2 2838.4 3.9305 0.02426 2590.9 2785.0 5.7906

350 0.04223 2789.6 3043.0 6.3335 0.03524 2769.4 3016.0 6.2283 0.02995 2747.7 2987.3 6.1301

400 0.04739 2892.9 3177.2 6.5408 0.03993 2878.6 3158.1 6.4478 0.03432 2863.8 3138.3 6.3634

450 0.05214 2988.9 3301.8 6.7193  0.04416 2978.0 3287.1 6.6327 0.03817 2966.7 3272.0 6.5551
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TABLE A.3 (Continued)

T v u h s v u h s v u h s

500 0.05665 3082.2 3422.2 6.8803 0.04814 3073.4 3410.3 6.7975 0.04175 3064.3 3398.3 6.7240

550 0.06101 3174.6 3540.6 7.0288 0.05195 3167.2 3530.9 6.9486 0.04516 3159.8 3521.0 6.8778

600 0.06525 3266.9 3658.4 7.1677 0.05565 3260.7 3650.3 7.0894 0.04845 3254.4 3521.0 7.0206

700 0.07352 3453.1 3894.2 7.4234 0.06283 3448.5 3888.3 7.3476 0.05481 3443.9 3642.0 7.2812

800 0.08160 3643.1 4132.7 7.6566 0.06981 3639.5 4128.2 7.5822 0.06097 3636.0 3882.4 7.5173

900 0.08958 3837.8 4375.3 7.8727 0.07669 3835.0 4371.8 7.7991 0.06702 3832.1 4368.3 7.7351

1000 0.09749 4037.8 4622.7 8.0751 0.08350 4035.3 4619.8 8.0020 0.07301 4032.8 4616.9 7.9384

1100 0.10536 4243.3 4875.4 8.2661 0.09027 4240.9 4872.8 8.1933 0.07896 4238.6 4870.3 8.1300

1200 0.11321 4454.0 5133.3 8.4474 0.09703 4451.7 5130.9 8.3747 0.08489 4449.5 5128.5 8.3115

1300 0.12106 4669.6 5396.0 8.6199 0.10377 4667.3 5393.7 8.5473 0.09080 4665.0 5391.5 8.4842

P = 9.0 MPa (303.40°C) P = 10.0 MPa (311.06°C) P = 12.5 MPa (327.89°C)

Sat. 0.02048 2557.8 2742.1 5.6772 0.01803 2544.4 2724.7 5.6141 0.013495 2505 2673.8 5.4624

325 0.02327 2646.6 2856.0 5.8712 0.01986 2610.4 2809.1 5.7568

350 0.02580 2724.4 2956.6 6.0361 0.02242 2699.4 2923.4 5.9443 0.016128 2624.6 2826.2 5.7118

400 0.02993 2848.4 3117.8 6.2854 0.02641 2832.4 3096.5 6.6120 0.02000 2789.3 3039.3 6.0417

450 0.03350 2955.2 3256.6 6.4844 0.02975 2943.4 3240.9 6.4190 0.02299 2912.5 3199.8 6.2719

500 0.03677 3055.2 3336.1 6.6576 0.03279 3045.8 3373.7 6.5966 0.02560 3021.7 3341.8 6.4618

550 0.03987 3152.2 3511.0 6.8142 0.03564 3144.6 3500.9 6.7561 0.02801 3125.0 3475.2 6.6290

600 0.04285 3248.1 3633.7 6.9589 0.03837 3241.7 3625.3 6.9029 0.03029 3225.4 3604.0 6.7810

650 0.04574 3343.6 3755.3 7.0943 0.04101 3338.2 3748.2 7.0398 0.03248 3324.4 3730.4 6.9218

700 0.04857 3439.3 3876.5 7.2221 0.04358 3434.7 3870.5 7.1687 0.03460 3422.9 3855.3 7.0536

800 0.05409 3632.5 4119.3 7.4596 0.04859 3628.9 4114.8 7.4077 0.03859 3620.0 4103.6 7.2965

900 0.05950 3829.2 4364.3 7.6783 0.05349 3826.3 4361.2 7.6272 0.04267 3819.1 4352.5 7.5182

1000 0.06485 4030.3 4614.0 7.8821 0.05832 4027.8 4611.0 7.8315 0.04658 4021.6 4603.8 7.7237

1100 0.07016 4236.3 4867.7 8.0740 0.06312 4234.0 4865.1 8.0237 0.05045 4228.2 4858.8 7.9165

1200 0.07544 4447.2 5126.2 8.2556 0.06789 4444.9 5123.8 8.2055 0.05430 4439.3 5118.0 8.0987

1300 0.08072 4662.7 5389.2 8.4284 0.07265 4460.5 5387.0 8.3783 0.05813 4654.8 5381.4 8.2717

P = 15.0 MPa (342.24°C) P =1 7.5 MPa (354.75°C) P = 20.0 MPa (365.81°C)

Sat. 0.010337 2455.5 2610.5 5.3098 0.007920 2390.2 2528.8 5.1419 0.005834 2293.0 2409.7 4.9269

350 0.011470 2520.4 2692.4 5.4421

400 0.015649 2740.7 2975.5 5.8811 0.01245 2685.0 2902.9 5.7213 0.009942 2619.3 2818.1 5.5540

450 0.018445 2879.5 3156.2 6.1404 0.01517 2844.2 3109.7 6.0184 0.012695 2806.2 3060.1 5.9017

500 0.02080 2996.6 3308.6 6.3443 0.01736 2970.3 3274.1 6.2383 0.014768 2942.9 3238.2 6.1401

550 0.02293 3104.7 3448.6 6.5199 0.01929 3083.9 3421.4 6.4230 0.016555 3062.4 3393.5 6.3348

600 0.02491 3208.6 3582.3 6.6776 0.02106 3191.5 3560.2 6.5866 0.018178 3174.0 3537.6 6.5048
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TABLE A.3 (Continued)

T v u h s v u h s v u h s

650 0.02680 3310.3 3712.3 6.822 0.02274 3296.0 3693.9 6.7357 0.019693 3281.4 3675.3 6.6582

700 0.02861 3410.9 3840.1 6.957 0.02434 3398.7 3824.6 6.8736 0.02113 3386.4 3809.0 6.7993

800 0.03210 3610.9 4092.4 7.204 0.02738 3601.8 4081.1 7.1244 0.02385 3592.7 4069.7 7.0544

900 0.03546 3811.9 4343.8 7.428 0.03031 3804.7 4335.1 7.3507 0.02645 3797.5 4326.4 7.2830

1000 0.03875 4015.4 4596.6 7.635 0.03316 4009.3 4589.5 7.5589 0.02897 4003.1 4582.5 7.4925

1100 0.04200 4222.6 4852.6 7.828 0.03579 4216.9 4846.4 7.7531 0.03145 4211.3 4840.2 7.6874

1200 0.04523 4433.8 5112.3 8.011 0.03876 4428.3 5106.6 7.9360 0.03391 4422.8 5101.0 7.8707

1300 0.04845 4649.1 5376.0 8.184 0.04154 4643.5 5370.5 8.1093 0.03636 4638.0 5365.1 8.0442

P = 25.0 MPa P = 30.0 MPa P = 40.0 MPa

375 0.001973 1798.7 1848.0 4.0320 0.0017892 1737.8 1791.5 3.9305 0.001641 1677.1 1742.8 3.8290

400 0.006004 2430.1 2580.2 5.1418 0.002790 2067.4 2151.1 4.4728 0.001908 1854.6 1930.9 4.1135

425 0.007881 2609.3 2806.3 5.4723 0.005303 2455.1 2614.2 5.1504 0.002532 2096.9 2198.1 4.5029

450 0.009162 2720.7 2949.7 5.6744 0.006735 2619.3 2821.4 5.4424 0.003693 2365.1 2512.8 4.9459

500 0.011123 2884.3 3162.4 5.9592 0.008678 2820.7 3081.1 5.7905 0.005622 2678.4 2903.3 5.4700

550 0.012724 3017.5 3335.6 6.1765 0.010168 2970.3 3275.4 6.0342 0.006984 2869.7 3149.1 5.7785

600 0.014137 3137.9 3491.4 6.3602 0.011446 3100.5 3443.9 6.2331 0.008094 3022.6 3346.4 6.0114

650 0.015433 3251.6 3637.4 6.5229 0.012596 3221.0 3598.9 6.4058 0.009063 3158.0 3520.6 6.2054

700 0.016646 3361.3 3777.5 6.6707 0.013661 3335.8 3745.6 6.5606 0.009941 3283.6 3681.2 6.3750

800 0.018912 3574.3 4047.1 6.9345 0.015623 3555.5 4024.2 6.8332 0.011523 3517.8 3978.7 6.6662

900 0.021045 3783.0 4309.1 7.1680 0.017448 3768.5 4291.9 7.0718 0.012962 3739.4 4257.9 6.9150

1000 0.02310 3990.9 4568.5 7.3802 0.019196 3978.8 4554.7 7.2867 0.014324 3954.6 4527.6 7.1356

1100 0.02512 4200.2 4828.2 7.5765 0.020903 4189.2 4816.3 7.4845 0.015642 4167.4 4793.1 7.3364

1200 0.02711 4412.0 5089.9 7.7605 0.022589 4401.3 5079.0 7.6692 0.01694 4380.1 5057.7 7.5224

1300 0.02910 4626.9 5354.4 7.9342 0.024266 4616.0 5344.0 7.8432 0.018229 4594.3 5323.5 7.6969

SOURCES: Keenan, Keyes, Hill, and Moore, Steam Tables, Wiley, New York, 1969; G.J. Van Wylen and R. E. Sonntag,

Fundamentals of Classical Thermodynamics, Wiley, New York, 1973.
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TABLE A.4 COMPRESSED LIQUID

P = 5 MPa (263.99°C) P = 10 MPa (311.06°C) P = 15 MPa (342.42°C)

T v u h s v u h s v u h s

0 0.0009977 0.04 5.04 0.0001 0.0009952 0.09 10.04 0.0002 0.0009928 0.15 15.05 0.0004

20 0.0009995 83.65 88.65 0.2956 0.0009972 83.36 93.33 0.2945 0.0009950 83.06 97.99 0.2934

40 0.0010056 167 172 0.5705 0.0010034 166.35 176.38 0.5686 0.0010013 165.8 180.78 0.5666

60 0.0010149 250.2 255.3 0.8285 0.0010270 249.36 259.49 0.8258 0.0010105 248.5 263.67 0.8232

80 0.0010268 333.7 338.9 1.0720 0.0010245 332.59 342.83 1.0688 0.0010222 331.5 346.81 1.0656

100 0.0010410 417.5 422.7 1.3030 0.0010385 416.12 426.50 1.2992 0.0010361 414.7 430.28 1.2955

120 0.0010576 501.8 507.1 1.5233 0.0010549 500.08 510.64 1.5189 0.0010522 498.4 514.19 1.5145

140 0.0010768 586.8 592.2 1.7343 0.0010737 584.68 595.42 1.7292 0.0010707 582.7 598.72 1.7242

160 0.0010988 672.6 672.1 1.9375 0.0010953 670.13 681.08 1.9317 0.0010918 667.7 684.09 1.9260

180 0.0011240 759.6 765.3 2.1341 0.0011199 756.65 767.84 2.1275 0.0011159 753.8 770.50 2.1210

200 0.0011530 848.1 853.9 2.3255 0.0011480 844.5 856.0 2.3178 0.0011433 841.0 858.2 2.3104

220 0.0011866 938.4 944.4 2.5128 0.0011805 934.1 945.9 2.5039 0.0011748 929.9 947.5 2.4953

240 0.0012264 1031 1038 2.6979 0.0012187 1026.0 1038.1 2.6872 0.0012114 1020.8 1039.0 2.6771

260 0.0012749 1128 1134 2.8830 0.0012645 1133.7 1133.7 2.8699 0.0012550 1114.6 1133.4 2.8576

P = 20 MPa (365.81°C) P = 30 MPa P = 50 MPa

T v u h s v u h s v u h s

0 0.0009904 0.19 20.01 0.0004 0.0009856 0.25 29.82 0.0001 0.0009766 0.20 49.03 0.0014

20 0.0009928 82.77 102.62 0.2923 0.0009886 82.17 111.8 0.2899 0.0009804 81.00 130.02 0.2848

40 0.0009992 165.17 185.16 0.5646 0.0009951 164.04 193.9 0.5607 0.0009872 161.86 211.21 0.5527

60 0.0010084 247.68 267.85 0.8206 0.0010042 246.06 276.2 0.8154 0.0009962 242.98 292.79 0.8052

80 0.0010199 330.40 350.80 1.0624 0.0010156 328.3 358.8 1.0561 0.0010073 324.34 374.70 1.0440

100 0.0010337 413.39 434.06 1.2917 0.0010290 410.78 441.7 1.2844 0.0010201 405.88 456.89 1.2703

120 0.0010496 496.76 517.76 1.5102 0.0010445 493.59 524.9 1.5018 0.0010348 487.65 539.39 1.4857

140 0.0010678 580.69 602.04 1.7193 0.0010621 576.88 608.8 1.7098 0.0010515 569.77 622.35 1.6915

160 0.0010885 665.35 687.12 1.9204 0.0010821 660.82 693.3 1.9096 0.0010703 652.41 705.92 1.8891

180 0.0011120 750.95 773.20 2.1147 0.0011047 745.59 778.7 2.1024 0.0010912 735.69 790.25 2.0794

200 0.0011388 837.7 860.5 2.3031 0.0011302 831.4 865.3 2.2893 0.0011146 819.7 875.5 2.2634

240 0.0012046 1016.0 1040.0 2.6674 0.0011920 1006.9 1042.6 2.6490 0.0011702 990.7 1049.2 2.6158

280 0.0012965 1204.7 1230.6 3.0248 0.0012755 1190.7 1228.0 2.9986 0.0012415 1167.2 1229.3 2.9537

320 0.0014437 1415.7 1444.6 3.3979 0.0013997 1390.7 1432.7 3.3539 0.0013388 1353.3 1420.2 3.2868

360 0.0018226 1702.8 1739.3 3.8772 0.0016265 1626.6 1675.4 3.7494 0.0014838 1556.0 1630.2 3.6291

SOURCES: Keenan, Keyes, Hill, and Moore, Steam Tables, Wiley, New york, 1969; G.J. Van Wylen and R. E. Sonntag,

Fundamentals of Classical Thermodynamics, Wiley, New York, 1973.
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14.9 (b) 14.10 (d) 14.11  (a) 14.12 (c)

14.13 (b) 14.14 (d) 14.15 (d) 14.16 (c)

14.17 (a) 14.18 (c)



Chapter-2

2.1 331.5°C, –13.27 kJ

2.2  (a) (i) 27.88 kJ   (ii) –4 kJ  (iii) –2.863 kJ  (b) 21.017 kJ

2.3 25.2 kJ 2.4 (a) 9.1 kJ (b) 4.7 kJ (c) 4.7 kJ

2.5 44.5 kJ 2.6 125.85 kJ/kg

2.7 127.26 kJ 2.8  2.7 kJ

Chapter-3

3.1 24.05 kJ

3.3 0.878 bar, 30.57 K, 17.57 kJ, 0, 17.57 kJ

3.4 126.03 kJ/kg, 16.42 kJ/kg, 209.74°C, 107.13 kJ/kg

3.5 – 2118 kJ, – 176.5 kJ, –1941.5 kJ

3.6 CP = 1.008 kJ/kgK, Cv = 0.72 kJ/kgK, 8.0263

3.7 377.5 kJ, 1.3, greater

3.9 (i) – 515.86kJ (ii) – 34353.9 kJ

3.10 100 kWA = − , 0B = , 400 kWC = , 500 kWD = , 600 kWE =

3.11 478 kJ

Chapter-4

4.1 600 kJ/kg 4.2 778.44 m/s 4.3 471.6 kW 4.4 66.36 kW

4.5 – 18.82 kW 4.6 2133.4 kW 4.7 – 40 kW 4.8 179.58 kW

4.10 10 kW

Chapter-5

5.1 400 K 5.2 708 K, 475 K 5.6 0.6 kJ 5.7 2.85 kW

5.84.37°C 5.9 38.75°C 5.10 31%, No 5.11 – 0.62 kW

5.12 29 kW 5.13 450 kW, 43.75%, 1.31, 0.7657 5.14 326.6 K, 86 kW

5.15 Rs 138.89

Chapter-6

6.1 (Ds)surr = – 1.648 kJ/K, (DS)sys = 1.77 kJ/K, (DS)univ = 0.1226 kJ/K

6.2 (DS)Al = – 4.04 kJ/K, (DS)water = 5.914 kJ/K, (DS)univ = 1.874 kJ/K

6.3 0.14 kJ/K

6.4 0.514 kJ/K

APPENDIX III

ANSWERS TO NUMERICAL PROBLEMS
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6.5 0.697 kJ/K, 0.199 kJ/K, – 0.498 kJ/K, 0

6.6 40%, 500 K

6.8 10.2 kJ, 0.0078 kJ/K

6.9 1321.5 kJ, 2.31 kJ/K

6.10 75.94 kJ/K− , 75.94 kJ/K , 0

Chapter-7

7.1 0.0012165 m3/kg, 0.06668 m3/kg, 1008.4 kJ/kg, 2804.2 kJ/kg, 2.6457 kJ/kgK, 6.1869 kJ/kg-K

7.2 0.0014036 m3/kg, 0.02167 m3/kg, 1344 kJ/kg, 2749 kJ/kg, 3.2534 kJ/kg-K,5.7045 kJ/kg-K

7.3 0.05359 m3/kg, 2445.04 kJ/kg, 5.4787 kJ/kg-K

7.4 x = 0.727

7.5 151.9°C, 0.3749 m3/kg, 2748.7 kJ/kg,  6.8212 kJ/kg-K , 2108.5 kJ/kg

7.6 0.03 m3/kg, 151.9°C, 0.077, 802.58 kJ/kg,  2.2427 kJ/kg-K

7.7 233.9°C, 6.3404 kg, 0.00475 m3/kg, 1105.37 kJ/kg, 2.837 kJ/kg-K, 1091.16 kJ/kg

7.8 2.04

7.9 3.973 Mpa, 8.3988 kg, 0.00355 m3/kg, 1166.06 kJ/kg, 2.947 kJ/kg-K, 1151.93 kJ/kg

Chapter-8

8.1 –40.04 kJ

8.2 – 0.0127 kJ/K, – 3.66 kJ, – 3.66 kJ

8.3 64.25 kJ/kg, – 0.1989 kJ/kg-K, 0, 25.5 kJ/K, 0

8.4 0.95 kJ/K, 637.76 kJ, 0, 0, 0, 273.33 kJ, – 0.95 kJ/K, – 509.83 kJ, – 145.6 kJ

Chapter-9

9.1 57.21%

9.2 59%

9.3 55.73%

9.4 2 MPa, 706 K, 7.92 MPa, 2795 K, 0.395 MPa, 1187 K, 57.5%, 862.5 kJ/kg

9.5 2683 kJ, 55.34%

9.6 (a)  2520 kPa, (b) 607 kJ/kg, (c) 10

9.7 1906 K, 605.5 kJ, 63.2%

9.8 671.65 kJ/kg, 60%

9.9 57.65%

9.10 (a) 4.43 MPa, 2080.28 K, (b) 2.35, (c) 58.67% , (d) 704.04 kJ/k

Chapter-10

10.1 33.5 % 10.2 36.33% 10.3 25% 10.4 32.33%

10.5 31.6%

Chapter-11

11.1 800 kg/m3, 1.6 ¥ 10–3 N-s/m2 11.2 0.03125 N, 0.0078 W

11.3 109.75 W 11.4 60 N
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11.5 0.497 m/s 11.6
4

4ððùì

3
T

h
=

11.7 1

1 2 2

1

,

1

h
h

m

m m m

m

+
+

11.8 148.93 N/m2, 1.862 N-s/m2

11.9 8.5 mm 11.10 47.1 N

11.11 27.467 N-s/m ,
3 2

9.33 10  m s
−

× 11.12
1 2

1 21

h μ μ

+ μ μ

11.13 4.24 mm 11.14 14.6 kPa

Chapter-12

12.1 49.46 kPa, 0.607 kg/m3 12.2 77.36 kPa

12.3 PA – PB = 549.36 kPa 12.4 P1 – P2 = 103.79 kPa

12.5 PA – PB = 1.24 kPa 12.6 34.33 kPa(vac)

12.7 49.457 kPa 12.8 15.3 kN/m2

12.9 101.3 kPa , 1.22 kg/m3

Chapter-13

13.1 721, Laminar 13.2 2x – y = 0)

13.3

3
1/3 1/3 1/47

(a) , (b) 4
3 3

x
y y x+ = = 13.4 x3y = constant)

13.5 =
1 4 1 3 1x y , =1 4 1 5 1x z 13.6 x2y = 2, 4x + z = 5

13.7  (x – y0)y
2 – x0y0y + y0

3 = 0 13.8 3.18 m/s, 5.66 m/s

13.9 0.1414 m3/s, 3.994 m/s 13.10 (a) 4.05 m/s  (b) 0.173 m3/s, 0.113 m3/s

13.11
2 2

2y

x y+
13.12 ( )

2

,
2

z
xz f x y C- + +

13.13  (a) Yes, (b) No, (iii) Yes

Chapter-14

14.1 40.438 m 14.2 26.458 kN/m2

14.311.85 m 14.4 179.366 kN/m2

14.5 From Y to X 14.6 From A to B, 11.86 m of oil

14.7 From Section 1 to 2, 1.065 m 14.8 0.0218 m3/s

14.9 0.0955 m3
/s 14.10 0.0782 m3/s

14.11 1.039 m3/s 14.12 26 cm

14.13 0.0134 m3/s, 1.09 m/s 14.14 0.164 m3/s

14.15 8.08 m/s 14.16 3.1 m/s

14.17 0.066 m3/s





Group-A
(Multiple-Choice Questions)

1. Choose the correct alternatives for any ten of the following: 10 ¥ 1 = 10

(i) During throttling process

(a) internal energy remains constant

(b) entropy remains constant

(c) enthalpy remains constant

(d) pressure remains constant.

Answer: (c) enthalpy remains constant

(ii) Which of the following is an intensive thermodynamic property?

(a) volume (b) energy

(c) mass (d) temperature

Answer: (d) Temperature

(iii) Newton's law of viscosity relates to

(a) pressure, velocity and viscosity

(b) shear stress and rate of angular deformation in a fluid

(c) shear stress, temperature, viscosity and velocity

(d) pressure, viscosity and rate of angular deformation

Answer: (b) shear stress and rate of angular deformation in a fluid

(iv) Stoke is the unit of

(a) surface tension (b) viscosity

(c) kinematic viscosity (d) None of these

Answer: (c) kinematic viscosity

(v) The first law of thermodynamics furnishes the relationship between

(a) heat, work and properties of the system

(b) heat and internal energy

(c) various thermodynamic properties of the system

(d) heat and properties of the system

Answer: (a) heat, work and properties of the system

(vi) Entropy change depends on

(a) change of temperature (b) mass transfer

(c) thermodynamic state (d) heat transfer

Answer: (d) heat transfer
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(vii) The increase in temperature

(a) increases the viscosity of the liquid

(b) decreases the viscosity of the liquid

(c) increases the viscosity of the gas

(d) Both (b) and (c)

Answer: (d) Both (b) and (c)

(viii) A streamline is a line

(a) which is along the path of a particle

(b) which is always parallel to the main direction of flow

(c) across which there is no flow

(d) on which tangent drawn on any point gives the direction of velocity

Answer: (c) across which there is no flow

  (d) on which tangent drawn on any point gives the direction of velocity

(ix) For the same compression ratio and heat rejection, the efficiency of Otto cycle is

(a) greater than diesel cycle

(b) less than diesel cycle

(c) equal to diesel cycle

(d) None of these

Answer: (a) greater than diesel cycle

(x) A refrigerator and a heat pump operate between the same temperature limits. If the COP of the

refrigerator is 4, the COP of the heat pump would be

(a) 3 (b) 4

(c) 5 (d) None of these

Answer: (c) 5

(xi) Work done in a free expansion process is

(a) positive (b) negative

(c) zero (d) maximum

Answer: (c) zero

(xii) A stagnation point is a point in a fluid flow where

(a) pressure  is zero

(b) velocity of flow is zero

(c) total energy is zero

(d) total energy is maximum

Answer: (b) velocity of flow is zero

(xiii) An inventor claims that his heat engine has the following specifications. Power developed 50 kW,

Fuel burned per hour 3 kg, heating value of fuel 75000 kJ perkg. Temperature limits. His engine is

(a) reality (b) impossible

(c) costly (d) None of these

Answer: (b) impossible

(xiv) A flow of viscous fluid with m = 1.0 Ns/m2  has a velocity distribution given by u = 0.90y – y2. The

shear stress at y = 0.45 m is
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(a) 0.90 Ns/m2 (b) zero

(c)  infinity (d) None of these

Answer: (b)  zero

(xv) For irrotational flow

(a) V = constant (b) — ¥ V = f(t)

(c) — ¥ V = 0 (d) — ¥ V = V(x, y, t)

Answer: (c) — ¥ V = 0

(xvi) Reynolds number is expressed as

(a) rVD/m (b) V2 D/r

(c) V r2S/n (d) V2D2/n

Answer: (a)  rVD/m

Group-B
(Short-Answer Questions)
(Answer any three questions) 5 ¥ 3 = 15

2. (a) Draw the rheological diagram for Newtonian and non-Newtonian fluids. 2

Answer:

Refer to Section 11.8.3.

(b) Show the pressure decreases exponentially with elevation for an isothermal compressible fluid at

rest. 3

Answer:

Refer to Section 12.4.2.

3. (a) What is the basic difference between a process and a cycle? 2

Answer:

Refer to Section 1.9.

(b) Show that the work done in isothermal process from the state 1 to state 2 is given by

W1–2 = p1v1(loge p1 – loge p2) 3

Answer:

Refer to Section 2.9.3.

4. Show that the two-dimensional flow described by the equation y = x + 2x
2
 – 2y

2
 is irrotational. 5

Answer:

Stream function y  = x + 2x2 – 2y2

From the definition of stream function y, we get

u =
y

y∂
∂

v =
x

y∂
∂

Thus, the velocity components become

u = 2 2( 2 2 ) 4x x y y
y y

y∂ ∂
= + - = -

∂ ∂
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v =
2 2( 2 2 ) 1 4x x y x

x x

y∂ ∂
= - + - = - -

∂ ∂

Hence, 4
v

x

∂
= -

∂

Hence, 4
u

y

∂
= -

∂

The rotation is given by

1 1
[ 4 ( 4)] 0

2 2
z

v u

x y
w

Ê ˆ∂ ∂
= - = - - - =Á ˜∂ ∂Ë ¯

Since the rotation is zero, the flow is irrotational.

5. (a) State Newton's law of viscosity. 2

Answer:

Refer to Section 11.8.

(b) What are the causes of viscosity? 2

Answer:

There are two causes of viscosity are of two: the intermolecular forces of attraction (cohesive forces)

and the molecular momentum transfer.

Any layer of moving fluid always tries to drag the molecules of the adjacent layer because of the

strong intermolecular forces of attraction between the molecules of the adjacent layers. It produces the

effect of viscosity as already discussed.

Consider molecules in two adjacent moving layers (layer 1-1 and 2-2) of fluid in unidirectional flow

between two parallel plates as shown in Fig. 1 below. Assume that layer 1-1 is moving faster than that

of layer 2-2. Some molecules from layer 1-1, in course of their continuous thermal agitation, migrate into

layer 2-2 and collide with the molecules already prevailing in the layer 2-2. By collision the momentum

of the migrated molecules is shared with the molecules of layer 2-2 and as a result, layer 2-2 is speeded

up. Similarly, molecules from layer 2-2 migrate into 1-1 and tend to retard the layer 1-1. Every such

migration causes forces of acceleration or deceleration so as to eliminate the difference in velocity

between the layers and produces the effect of viscosity.

2 2

1 1

Fig. 1 Movement of fluid molecules between two adjacent moving layers

(c) What is no-slip condition? 1

Answer:

Refer to Section 11.10.

6.  A 150 mm diameter shaft rotates at 1500 rpm in a 200 mm long journal bearing with an internal diameter

150.5 mm. The uniform annular space between the shaft and the bearing is filled with oil of dynamic

viscosity 0.8 poise. Calculate the power required to rotate the shaft. 5

Answer:

The problem is worked out in Example 11.6.
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GROUP-C

(Long-answer Questions)

(Answer any three questions) 3 ¥  15 = 45

7. (a) What is PMM2? Why is it impossible? What is its difference from PMM1?         5

Answer:

Refer to Sections 5.5.1 and 3.3.

(b) Show that the COP of a heat pump is greater than the COP of a refrigerator by unity. 4

Answer:

Refer to Section 5.4.1.

(c) A Carnot heat engine draws heat from a reservoir at temperature TA and rejects heat to another

reservoir at temperature TB. The Carnot forward cycle again drives a Carnot reversed cycle engine

or Carnot refrigerator, which absorbs heat from reservoir at temperature TC and rejects heat to

reservoir at temperature TA. Derive an expression for the ratio of heat absorbed from reservoir at

temperature TB, such that heat supplied to engine QA is equal to heat absorbed by refrigerator QC.

Determine efficiency and COP (Coefficient Of Performance) of Carnot refrigerator. 6

Answer:

The arrangement is shown in Fig. 2.

QA Q¢A

QB QC

Reservoir TB
Reservoir TC

Carnot heat
engine

Carnot
refrigerator

Reservoir TA

W Q QC A B= –

Fig. 2

Efficiency of Carnot heat engine is given by

c A B A B

A A A

W Q Q T T

Q Q T
h

- -
= = =

or
A B

c A
A

T T
W Q

T

-
=

Coefficient of performance of Carnot refrigerator is given by

C C C
Carnot

c A C A C

Q Q T
COP

W Q Q T T
= = =

- -¢

 or            
A C

c C
C

T T
W Q

T

-
=
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Comparing the above two equations, we have

A CA B
A C

A C

T TT T
Q Q

T T

--
=

or
A C A A

C A B C

T T T Q

T T T Q

-
¥ =

-

 or 1A C A

C A B

T T T

T T T

-
¥ =

-
Given that 1A

C

Q

Q

Ê ˆ
=Á ˜Ë ¯

Note that the problem statement is not clear since there is no heat absorbed from reservoir at temperature T B.

8. (a) A simple U-tube manometer containing mercury is connected to a pipe in which a fluid of specific

gravity 0.9 and having vacuum pressure is flowing. The other end of the manometer is open to

atmosphere. Find the vacuum pressure in pipe, if the difference in mercury level in the two limbs is

50 cm and the height of fluid in the left limb from the centre of pipe is 10 cm below. Assume any

other data required. 5

Answer:

The U-tube mercury manometer is shown in Fig. 3.

Patm

Y

10 cm

50 cm
X

P1

Fig. 3

Given data:

Vertical height between the pipe and the level of meniscus in the left limb 10 cm 0.1 mx = =

Difference in height of meniscus between two limbs 50 cm 0.5 mhD = =
Let p1 be the pressure in the pipe.

Now, for the left limb, pressure along the plane XY is

pressure in the pipe pressure corresponding to 10 cm of fluid of specific gravity 0.9

        pressure corresponding to 50 cm of mercury

Xp = +

+

1 w mp gx g hr r= + + D

1 1000 0.9 9.81 0.1 13600 9.81 0.5p= + ¥ ¥ ¥ + ¥ ¥
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For the right limb, pressure along the plane XY is

Y atmp p=

Equating the pressures of both the limbs along the horizontal plane XY, we obtain

1 1000 0.9 9.81 0.1 13600 9.81 0.5 atmp p+ ¥ ¥ ¥ + ¥ ¥ =

or ( ) ( )1 67590.9 Pa gauge 67.5909 kPa vacuump = - =

(b) The velocity vector in a fluid flow is given by

3 2
2 5 2V x i x yj tk= - +

Find the velocity and acceleration of a fluid particle at (2, 1, 3) at time t = 1. 10

Answer:

Velocity vector is given as

3 22 5 2V x i x yj tk= - +

Therefore, velocity at (2,1,3) at time t =1   is

3 2

(2,1, 3)
2 2 5 2 1 2 1 16 20 2V i j k i j kÈ ˘ È ˘= ¥ - ¥ ¥ + ¥ = - +È ˘Î ˚Î ˚ Î ˚

�

The magnitude of velocity is

( )22 2 2 2 2
16 20 2 25.69 unitsV u v w= + + = + - + =

The acceleration components ax, ay and az are given by

x

u u u u
a u v w

t x y z

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂

y

v v v v
a u v w

t x y z

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂

z

w w w w
a u v w

t x y z

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂

Given that 3
2u x=

Hence,  
20, 6 , 0, 0

u u u u
x

t x y z

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂

2
5v x y= -

2
0, 10 , 5 , 0

v v v v
xy x

t x y z

∂ ∂ ∂ ∂
= = - = - =

∂ ∂ ∂ ∂

2w t=

2, 0, 0, 0
w w w w

t x y z

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂
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Substituting these values in acceleration components, we have

3 2 2 5
0 2 6 5 0 2 0 12xa x x x y t x= + ¥ - ¥ + ¥ =

( ) ( )3 2 2 4
0 2 10 5 5 2 0 5ya x xy x y x t x y= + ¥ - - ¥ - + ¥ =

3 22 2 0 5 0 2 0 2za x x y t= + ¥ - ¥ + ¥ =

Acceleration is then given by

5 412 5 2x y za a i a j a k x i x yj k= + + = + +
�

Acceleration components at (2 , 1, 3) at time t = 1  is

5 512 12 2 384 unitsxa x= = ¥ =

4 4
5 5 2 1 80 unitsya x y= = ¥ ¥ =

2 unitsza =

Thus, the acceleration is

384 80 2a i j k= + +
�

The magnitude of acceleration is

2 2 2 2 2 2
384 80 2 392.25 unitsx y za a a a= + + = + + =

9.   (a) Derive the expression for continuity equation for a three-dimensional steady incompressible flow.

5

Answer:

Refer to Section 13.5.2.

(b) Describe the steady flow and unsteady flow. 2

Answer:

Refer to Section 13.3.1.

(c) A jet of water from a 25 mm dia nozzle is directed vertically upwards, assuming that jet remains

steady and neglecting any loss of energy. What will be the dia at a point 4.5 m above the nozzle, if

the velocity with which jet leaves the nozzle is 12 m/s. 8

Jet of water

25 mm dia

4.5 m

1

2

Fig. 4

Answer:

This problem is identical to worked out Example 13.11.
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10. (a) An engine working on Otto cycle has an air standard cycle efficiency of  56% and rejects 544 kJ/kg

of air. The pressure and temperature of air at the beginning of compression are 0.1 MPa and 60°

respectively. Calculate

(i) the compression ratio of the cycle

(ii) work done/kg of air

(iii) the pressure and temperature at the end of compression

(iv) maximum pressure of the cycle 8

Answer:

The problem is worked out in Example 9.4.

(b) Find the pressure at an elevation of 3000 m above the sea level by assuming

(i) An isothermal condition of air

(ii) An isentropic condition of air

Pressure and temperature at sea level are 101.32 kN/m2 and 293.15 K. Consider air to be an ideal gas

with R = 287 J/kgK and g  = 1.4. 7

Solution

Given data:

Atmospheric pressure at the sea level 2 3 2
0 101.32 kN/m 101.32 10  kN/m  p = = ¥

Temperature of air at the sea level 0 293.15 KT =

Density of air at the sea level

3
30

0
0

101.32 10
1.204 kg/m

287 293.15

p

RT
r

¥
= = =

¥

Altitude from the sea level 0 3000 my y- =

(i) Pressure at an elevation of 3000 m above the sea level is  found to be

0
0 0

0

exp ( )p p g y y
p

rÈ ˘
= - -Í ˙

Î ˚

3

3

1.204
= 101.32 10 exp 9.81 3000

101.32 10

È ˘
¥ - ¥ ¥Í ˙

¥Î ˚

3 2 2
71.4189 10  N/m  71.4189 kN/m  = ¥ =

(ii) Pressure at an elevation of 3000 m above the sea level is found to be

1
0

0 0
0

1
1 ( )

k

kk
p p g y y

k p

r -È ˘-
= - -Í ˙

Î ˚

1.4

1.4 13

3

1.4 1 1.204
101.32 10 1 9.81 3000

1.4 101.32 10

--È ˘
= ¥ - ¥ ¥ ¥Í ˙

¥Î ˚
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3 2 2
70.094 10  N/m 70.094 kN/m= ¥ =

11. (a) Determine the quantity of heat required to produce 1 kg of steam at a pressure of 6 bar at a

temperature of 25°C under the following conditions:

(i) When the steam is wet having a dryness fractions 0.9.

(ii) When the steam is dry saturated.

(iii) When it is superheated at a constant pressure at 25°.

Assume the mean specific heat of superheated steam to be 2.3 kJ/kg. 7

Solution

From the saturated steam table based on pressure (see Appendix 1.2), it is found that saturation

temperature of water corresponds to 6 bar is 158.9 Csatt =

Specific enthalpy of saturated liquid is 670.6 kJ/kgfh =

Specific enthalpy of saturated vapour 2756.8 kJ/kggh =

Specific heat of water 4.18 kJ/kgpwC =

(i) The process of steam generation can be divided into the following distinct steps:

(A) Conversion of water at 25ºC to saturated water at 158.9ºC

The heat required for this change is 1 ( )pw sat iH m C T TD = ¥ ¥ -

1 4.18 (158.9 25) 559.7 kJ= ¥ ¥ - =

(B) Conversion of saturated water to wet steam having a dryness fraction 0.9 without change in

temperature.

The heat required for this process is 2 ( )g fH m x h hD = ¥ ¥ -

2 1 0.9 (2756.8 670.6) 1877.58 kJHD = ¥ ¥ - =

Therefore, total heat required to produce 1 kg of steam is

1 2

559.7 1877.58 2437.28 kJ

H H HD = D + D

= + =

(ii) The process of steam generation can be divided into the following distinct steps:

(A) Conversion of water at 25ºC to saturated water at 158.9ºC

The heat required for this change is 1 ( )pw sat iH m C T TD = ¥ ¥ -

1 4.18 (158.9 25) 559.7 kJ= ¥ ¥ - =

(B) Conversion of saturated water to saturated steam without change in temperature.

The heat required for this process is DH2 = m ¥ (hg – hf)

2 1 (2756.8 670.6) 2086.2 kJHD = ¥ - =

Therefore, total heat required to produce 1 kg of steam is

1 2

559.7 2086.2 2645.9 kJ

H H HD = D + D

= + =
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(iii) The process of steam generation can be divided into the following distinct steps:

(A) Conversion of water at 25ºC to saturated water at 158.9ºC

The heat required for this change is 1 ( )pw sat iH m C T TD = ¥ ¥ -

1 4.18 (158.9 25) 559.7 kJ= ¥ ¥ - =

(B) Conversion of saturated water to saturated steam without change in temperature.

The heat required for this process is 2 ( )g fH m h hD = ¥ -

2 1 (2756.8 670.6) 2086.2 kJHD = ¥ - =

(C) Conversion of saturated steam into superheated steam of 250ºC

The heat required for this change is 3 ( )pv sat iH m C T TD = ¥ ¥ -

1 2.3 (250 158.9) 209.53 kJ= ¥ ¥ - =

Therefore, total heat required to produce 1 kg of steam is

1 2 3

559.7 2086.2 209.53 2855.43 kJ

H H H HD = D + D + D

= + + =

(b) Two bodies, each of equal mass m  and heat capacity CP are of temperature T1 and T2 respectively

(T1 > T2). The first body is used as source of heat for reversible engine and the second body as the

sink. Show that the maximum work obtainable from such an arrangement is ( )21 2 .PmC T T- 8

Answer:

The problem is worked out in Example 6.7.





Group-A
(Multiple-Choice Questions)

1. Choose the correct alternatives for any ten of the following: 10 ¥ 1 = 10

(i) If heat engine attains 100% thermal efficiency, it violets

(a) zeroth law of thermodynamics

(b) first law of thermodynamics

(c) second law of thermodynamics

(d) None of these

Answer: (c) second law of thermodynamics

(ii) The more effective way of increasing efficiency of a Carnot engine is

(a) increase higher temperature (b) decrease higher temperature

(c) increase lower temperature (d) decrease lower temperature

Answer: (d) decrease lower temperature

(iii) Air standard efficiency of Otto Cycle depends on

(a) the ratio of specific heats (b) the cut-off ratio

(c) the compression ratio (d) Both (a) and (c)

Answer:  (d) Both (a) and (c)

(iv) The flow field represented by the velocity vector 2 2
V axi by j czt k , where a, b and c are

constants is

(a) three-dimensional and unsteady (b) two-dimensional and steady

(c) three-dimensional and steady (d) two-dimensional and unsteady

Answer: (c) three-dimensional and unsteady

(v) Pitot tube is used to measure

(a) dynamic viscosity (b) kinematic viscosity

(c) mass density (d) velocity of flow

Answer: (d) velocity of flow

(vi) PMM-1 is impossible according to

(a) second law of thermodynamics (b) third law of thermodynamics

(c) first law of thermodynamics (d) zeroth law of thermodynamics

Answer: (c) first law of thermodynamics

SOLVED QUESTION PAPER—2013
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(vii) During throttling, which of the following properties does not change?

(a) Internal energy (b) Entropy

(c) Pressure (d) Enthalpy

Answer: (d) Enthalpy

(viii) Which fluid does not experience shear stress during flow?

(a) Pseudo-plastic (b) Dilatant

(c) Inviscid (d) Newtonian

Answer: (c) Inviscid

(ix) The differential equation of pressure variation in a static fluid may be written as (y measured

vertically upward and g is specific weight)

(a) dP dy (b) g = -dP dy

(c) g r= -dy dP (d) g r= -dP dy

Answer: (a) dP dy

(x) The standard atmospheric pressure is 101.32 kPa. The local atmospheric pressure at a location was

91.52 kPa. If a pressure is recorded as 22.48 kPa (gauge), it is equivalent to

(a) 123.80 kPa (abs) (b) 88.84 kPa (abs)

(c) 114.00 kPa (abs) (d) 69.04 kPa (abs)

Answer: (c) 114.00 kPa (abs)

(xi) For an ideal gas, for which of the following processes can the temperature of a system decrease even if

heat is added to it?

(a) Isobaric (b) Isothermal

(c) Isentropic (d) Polytropic

Answer: Temperature of a system can never decrease when heat is added to it.

(xii) The area under a curve, representing a non-cyclic process on a temperature entropy (T-S) plane

represents

(a) heat transfer for a reversible process

(b) work transfer for a reversible process

(c) heat transfer for any process

(d) work transfer for any process

Answer: (a) heat transfer for a reversible process

(xiii) Oil spreads on the surface of water because

(a) oil is less dense than water (b) oil is immiscible in water

(c) oil has less surface tension than water (d) oil has low vapour pressure

Answer: (c) oil has less surface tension than water

(xiv) Spot the odd one out in the following options:

(a) Thermal conductivity (b) Kinetic energy

(c) Work (d) Pressure

Answer: (c) Work
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(xv) An engine is supplied with 1120 kJ/s of heat and the source and sink are maintained at constant fixed

temperatures of 560 K and 280 K respectively. If heat rejection is 840 kJ/s, indicate the given cycle is

(a) reversible (b) irreversible

(c) impossible (d) unpredictable, insufficient data

Answer: (b) irreversible

Group-B
(Short-Answer Questions)

(Answer any three questions) 5 ¥ 3 = 15

2. A 0.025 m
3
 vessel contains 0.3 kg of steam at 2 MPa. Determine the quality, enthalpy and entropy of

steam. Given ts = 212.2 °C, vf = 0.001177 m
3
/kg, vg = 0.0995 m

3
/kg, hf = 908.5 kJ/kg, hfg = 1888.7 kJ/kg,

sf = 2.447 kJ/kg-K, sfg = 3.590 kJ/kg-K

Answer:

Specific volume of steam is 
30.025

0.083 m /kg
0.3

V
v

m
= = =

Specific volume can be expressed in terms of quality of steam, x, as

( )f g f
v v x v v= + -

or ( )0.083 0.001177 0.0995 0.001177x= + -

or 0.8322x =
The enthalpy of steam is found to be

( )( ) 0.3 908.5 0.8322 1888.7 744.08 kJf fg
H m h xh= + = ¥ + ¥ =

The entropy of steam is found to be

( )( ) 0.3 2.447 0.8322 3.590 1.6304 kJ/K
f fg

S m s xs= + = ¥ + ¥ =

3. 0.2 m3 of an ideal gas at a pressure of 2 MPa and 600 K is expanded isothermally to 5 times the initial

volume. It is then cooled to 300 K at constant volume and then compressed back polytropically to its

initial state. Determine the net work done and heat transfer during the cycle

Answer: The cycle on the P-V diagram is shown in Fig. 1.

P, MPa

1
2

2

3

0.2 1.0
V, m3

PV = constant

PV
n = constant

Fig. 1
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Pressure after isothermal expansion is 1
2 1

2

0.2
2 0.4 MPa

1.0

V
P P

V
= = ¥ =

Work done for the isothermal expansion 1-2 is

32

1 2 1 1

1

1
ln 2 10 0.2 ln 643.78 kJ

0.2

V
W PV

V
- = = ¥ ¥ ¥ =

For the constant-volume process 2-3, the work done is zero that is W2–3 = 0

Pressure at point 3 is found to be 
3

3 2

2

300
0.4 0.2 MPa

600

T
P P

T
= = ¥ =

For the polytropic compression process 3-1, we have 1 1 2 2

n nPV PV=

The polytropic index of compression is found to be

1

3

3

1

2ln ln
0.2 1.43
1

lnln
0.2

P

P
n

V

V

= = =

The work done for the polytropic compression 3-1 is found to be

3 3

3 3 1 1

3 1

0.2 10 1 2 10 0.2
465.12 kJ

1 1.43 1

PV PV
W

n
-

- ¥ ¥ - ¥ ¥
= = = -

- -

Net work done for the cycle is

1 2 2 3 3 1
643.78 0 465.12 178.66 kJ

net
W W W W- - -= + + = + - =

From the first law of thermodynamics for a cycle, net heat transfer to the gas during the cycle Qnet = 178.66 kJ

4. At the inlet to a certain nozzle the specific enthalpy of fluid passing is 2800 kJ/kg. The nozzle is

horizontal and there is negligible heat loss from it. (i) Find the velocity at exit of the nozzle, (ii) If the inlet

area is 900 cm2 and specific volume at inlet is 0.187 m3/kg, find the mass flow rate, (iii) If the specific

volume at the nozzle exit is 0.498 m3/kg, find the exit area of the nozzle.

Answer:

The problem is worked out in Example 4.2.

5. (a) Derive an expression for displacement work in a process where  
nPV C= .         2

Answer:

Refer to Section 2.9.4.

(b) A paddle wheel used for mixing and stirring of fluids turns 600 r.p.m. when 2.5 Nm torque is applied

to it. What is power transmitted to the liquid by the wheel?
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Answer:

The power transmitted to the liquid by the wheel is given by

2

60

N
P T T

p
w= = ¥

                       
2 600

2.5 157.08 W
60

p ¥
= ¥ =

6. (a) Establish the equivalence of Kelvin-Planck and Clausius statements.

Answer:

Refer to Section 5.7.

(b) A heat engine produces work equivalent to 80 kW with an efficiency of 40%. Determine the heat

drawn from the source and rejected to the sink.

Answer:

Thermal efficiency of the heat engine is given by

th

1

0.4net
W

Q
h = =

�

�

where
net

W�  is the rate of work done and 
1

Q�  is the rate of heat drawn from the source.

or 1

80
200 kW

0.4 0.4

net
W

Q = = =
�

�

The rate of heat rejected to the sink is

2 1
200 80 120 kW

net
Q Q W= - = - =� � �

Group-C
(Short-Answer Questions)

(Answer any three questions) 3 ¥ 15 = 45

7. (a) Write Bernoulli's equation, stating the assumptions.      5

Answer:

Refer to Section 14.3.

(b) A two-dimensional flow is described in the Lagrangian coordinate system as

( )0 0
1kt ktx x e y e- -= + -

0

kty y e=
Find the equation of path line of the particle and the velocity components in Eulerian system.

4
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Answer:

This is given in Numerical Problem 13.7.

(c) A venturimeter has inlet and throat diameters of 300 mm and 150 mm. Water flows through it at the

rate of 0.065 m3/s and the differential gauge is deflected 1.2 m. The specific gravity of the

manonmetric liquid is 1.6. Determine the coefficient of discharge of the venturimeter. 6

Answer:

The problem is worked out in Example 14.16.

8. (a) State and prove Pascal's law of pressure at a point of a fluid body. 5

Answer:

Refer to Section 12.3.

(b) The velocity vector for a two-dimensional, incompressible flow field is given by

2 2 2 2

x y
V i j

x y x y

Ê ˆ Ê ˆ
= - +Á ˜ Á ˜Ë + ¯ Ë + ¯

. State whether the flow fleld is continuous or discontinuous.

5

Answer:

The problem is worked out in Example 13.14.

(c) A diffuser consists of two circular parallel plates 20 cm in diameter and 0.5 cm apart and connected

to a 3 cm diameter pipe. If the streamlines are assumed to be radial in the diffuser, what mean

velocity in the pipe will correspond to an exit velocity of 0.5 m/s? 5

3 cm

0.5 cm 0.5 m/s

20 cm

Fig. 2

Answer:

The problem is worked out in Example 13.9.

9. (a) What is pure substance? 5

Answer:

Refer to Section 7.1.

(b) What is the critical point? State the values of critical pressure and critical temperature of water?

4

Answer:

Refer to Section 7.2.1.

(c) Why is the Carnot cycle not practicable for a steam power plant?

Answer:
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Refer to Section 10.2.

(d) At the inlet to a certain nozzle the specific enthalpy of fluid passing is 3000 kJ/kg and the velocity

is 60 m/s. At the discharge end, the enthalpy is 2762 kJ/kg.  The nozzle is horizontal and there is

negligible heat loss from it.

 (i) Find the velocity at exit of the nozzle,

 (ii) If the inlet area is 0.1 m2 and specific volume at inlet is 0.187 m3/kg, find the mass flow rate,

(iii) If the specific volume at the nozzle exit is 0.498 m3/kg, find the exit area of the nozzle.

Answer:

The problem is worked out in Example 4.2.

10. (a) In a steam turbine, steam at 20 bar, 360 °C is expanded to 0.08 bar. It then enters a condenser, where

it is condensed to saturated liquid water. The pump feeds the water back into the boiler. Assume

ideal processes, find, per kg of steam, the net work and the cycle efficiency.

Answer:

The problem is similar to worked out Example 10.5.

(b) An air standard Otto cycle has a compression ratio of 8, temperature and pressure at the beginning

of compression are 20°C and 1 bar respectively. The constant volume heat addition is 1800 kJ/kg.

Calculate the maximum pressure and temperature of the cycle, temperature at the end of

compression process. What are the efficiency and mean effective pressure (m.e.p.) of the cycle.

0.718 kJ/kgK and 1.4v
C g= = .

Answer:

The problem is worked out in Example 9.4.

11. (a) Two reversible heat engines are arranged in a series in such a way that the heat rejected by the first

engine is absorbed by the second engine. The first engine receives 400 kJ of heat from a reservoir

maintained at temperature 600°C, while the second engine rejects heat to a reservoir having

temperature 0°C. If the work output of the first engine is twice than that of the second, determine

(i) the efficiency of both the engines.

(ii) the heat rejected by the second engine.

(iii) the intermediate temperature. 7

Answer:

The problem is worked out in Example 5.16.

(b) Air at temperature of 15°C passes through a heat exchanger with a velocity of 30 m/s where its

temperature is raised to 800°C. It then enters a turbine with same velocity of 30 m/s and expands

until the temperature falls to 650°C. On leaving the turbine, air is taken at a velocity of 60 m/s to a

nozzle where it expands untilthe temperature has fallen to 500°C. If the air flow rate is 2 kg/s, find

out

(i) the rate of heat transfer to the air in the heat exchanger.

(ii) the power output from turbine, assuming no heat loss.

(iii) the velocity at exit from nozzle, assuming no heat loss.

Take,   1.005 kJ/kgK and ( enthalpy, temperature)
p p

C h C t h t= = = =  8

Answer:

(i) The rate of heat transfer to the air in the heat exchanger is found to be
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( )2 1.005 800 15 1577.85 kWp
Q mC T= D = ¥ ¥ - =�

�

(ii) The steady flow energy equation for the turbine is given by

2 2

1 2
1 2

2 2

V V
m h m h W
Ê ˆ Ê ˆ

+ = + +Á ˜ Á ˜Ë ¯ Ë ¯
�

� �

or

2 2

1 2

1 2
2 2

p p

V V
m C T m C T W
Ê ˆ Ê ˆ

+ = + +Á ˜ Á ˜Ë ¯ Ë ¯
�

� �

or

2 230 60
2 1005 800 2 1005 650

2 2
W

Ê ˆ Ê ˆ
¥ ¥ + = ¥ ¥ + +Á ˜ Á ˜Ë ¯ Ë ¯

�

or 298800 298.8 kW= =�W W

(iii) The steady flow energy equation for the nozzle is given by

2 2

1 2

1 2
2 2

V V
h h+ = +

or

2 2

1 2
1 2

2 2
p p

V V
C T C T+ = +

or

22

2
60

1005 650 1005 500
2 2

V
¥ + = ¥ +

or
2

552.36 m/sV =



Group-A 
(Multiple-Choice Questions)

 1. Choose the correct alternatives for any ten of the following: 10 ¥ 1 = 10

 (i) For an irreversible process, the entropy change is 

 (a) greater than 
Q

T

d
    (b) equal to  

Q

T

d

 (c) less than  
Q

T

d
   (d) equal to zero

Answer: (a) greater than 
Q

T

d

 (ii) Which of the following is an intensive thermodynamic property?

 (a) Volume   (b) Mass

 (c) Temperature   (d) Energy

Answer: (c) Temperature

 (iii) Work done in a free expansion is

 (a) positive   (b) negative

 (c) maximum   (d) zero

Answer: (d) zero

 (iv) The latent heat of vaporization at the critical point is

 (a) equal to zero   (b) greater than zero

 (c) less than zero   (d) none of these.

Answer: (a) equal to zero

 (v) Newton’s law of viscosity relates to

 (a) pressure, velocity and viscosity

 (b) shear stress and rate of angular deformation in a fl uid

 (c) shear stress, temperature, velocity and viscosity

 (d) pressure, viscosity and rate of angular deformation in a fl uid

Answer: (b) shear stress and rate of angular deformation in a fl uid

 (vi) Euler’s equation is written as

 (a) 
2

0
dp

V dV gdz
r

+ + =  (b) 0
dp

VdV gdz
r

+ + =

SOLVED QUESTION PAPER—2014
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 (c) 2
0

dp
V dV gdz

r
+ + =  (d) 

2

2
0

dp
V dV gdz

r
+ + =

Answer: (b) 0
dp

VdV gdz
r

+ + =

 (vii) Kinematic viscosity is defi ned as 

 (a) dynamic viscosity ¥ density (b) dynamic viscosity/density

 (c) dynamic viscosity ¥ pressure (d) pressure ¥ density

Answer: (b) dynamic viscosity/density

 (viii) Dynamic viscosity has the dimension

 (a) 2
MLT

-    (b) 1 1
ML T

- -

 (c) 1 2
ML T

- -    (d) 1 1 1
M L T

- - -

Answer: (b) 1 1
ML T

- -

 (ix) The change of entropy when heat is absorbed by a gas is

 (a) positive   (b) negative

 (c) positive or negative  (d) none of these

Answer: (a) positive

 (x) A stagnation point is a point in fl uid fl ow where

 (a) pressure is zero   (b) velocity of fl ow is zero

 (c) total energy is zero   (d) total energy is maximum

Answer: (b) velocity of fl ow is zero

Group-B
 (Short-Answer Questions)

 (Answer any three questions) 5 ¥ 3 = 15

 2.  A solid cube weighing 5 N and having a 45 cm edge is allowed to slide down an inclined plane surface 

making an angle of 30° with the horizontal. There is a uniform oil fi ll of 0.008 cm thickness. If the 

cube is having a velocity of 13 cm/s, determine the viscosity of the oil. Also fi nd out the kinematic 

viscosity in stokes if the oil has a density of 850 kg/m3.

Fig. 1
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Answer:

Thickness of the fi lm 5
0.0085 cm 8 10 mh

-= = ¥ ,

Weight of the cube W = 5 N

Area of the cube = ¥ = 2
45 cm 45 cm 0.2025 mA ,

Velocity of the cube V = 0.13 m/s

Component of weight along the slope is W cos 60°.

Considering linear velocity profi le within the oil, the velocity gradient is found to be

 

0du V V

dy h h

-
= =

Viscous resistance F is given by

 shear stress areaF At= ¥ =

or  
du V

F A A
dy h

m m= =

The viscous resistance to the motion should be equal to the component of the weight of the solid cube 

along the slope. Thus,

 
m = ∞cos60
V
A W

h

or 
5

0.13
0.2025 5 cos60

8 10
m

-
¥ = ∞

¥

or, 
3 2

7.6 10  Ns/mm -= ¥
Kinematic viscosity is found to be

 

m
n

r

-
-¥

= = ¥
3

6 27.6 10
= 8.94 10  m /s = 0.0894° Stokes

850

 3. (a) What is Euler’s equation of motion? How will you obtain Bernoulli’s equation from that?

Answer: Refer Sections 14.2 and 14.3.

 (b) An incompressible fl uid is fl owing through a pipe of 10 cm diameter under a gauge pressure of 

40 N/cm2 and with a mean velocity of 5 m/s. Find the total head of water at a cross section which 

is 8 m above the line.

Answer:

Average velocity of fl ow V = 5 m/s,

Gauge pressure 
2 4 2

40 N/cm 40 10  N/mp = = ¥
Height above datum z = 8 m 

Pressure head above atmospheric pressure is  
3

40 10
40.775 m of water

1000 9.81

p

gr

¥
= =

¥

Velocity head is 
2 3

5
1.274 m of water

2 2 9.81

V

g
= =

¥

Datum head is z = 8 m
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Total head of water is 
2

40.775 1.274 8 50.049 m of water
2r

+ + = + + =
p V

z
g g

 above atmospheric 

pressure.

 4. (a) What do you mean by vacuum pressure?

Answer:

When the pressure is below the atmospheric pressure and is expressed with reference to local atmospheric 

pressure, it is called vacuum pressure. Mathematically, one can write pvac = patm – pabs, where pabs is the 

absolute pressure.

 (b) In a condenser, the vacuum pressure is found to be 145 mm of Hg and the barometer reads

735 mm of Hg. Find the absolute pressure in kPa.

Answer:

Height of mercury column 15 cm 0.15 m= =h

Pressure corresponding to 145 cm of Hg column can be found as

 vac r=p gh

         
213600 9.81 0.145 19345.32 N/m= ¥ ¥ =

Atmospheric pressure is found to be

 
2

atm 13600 9.81 0.735 98060.76 N/m= ¥ ¥ =p

Thus, the absolute pressure is found to be

 abs atm vac= -p p p

      
298060.76 19345.32 78715.44 N/m 78.715 kPa= - = =

 5. The fl uid pressure is given by 2 2 2 ˆˆ ˆ (2 )= + - +V x yi y zj xyz yz k . Show that this is a case of possible 

steady incompressible fl ow. Calculate the velocity and acceleration at (2, 1, 3).

Answer:

Since the time t does not appear in the velocity, the fl ow is steady.

For incompressible fl ow, the following continuity equation must be satisfi ed 

 

0
∂ ∂ ∂

+ + =
∂ ∂ ∂
u v w

x y z

Now, velocity is given by 2 2 2 ˆˆ ˆ (2 )= + - +
�

V x yi y zj xyz yz k

Hence, 2 , 2 , (2 2 )
∂ ∂ ∂

= = = - +
∂ ∂ ∂
u v w

xy yz xy yz
x y z

Thus, 2 2 2 2 0
∂ ∂ ∂

+ + = + - - =
∂ ∂ ∂
u v w

xy yz xy yz
x y z

The given velocity fi eld satisfi es the continuity equation. Therefore, this is a case of possible incompress-

ible fl ow.

Velocity at (2, 1, 3)

 

2 2 2

(2,1,3)

ˆ ˆˆ ˆ ˆ ˆ(2 )(1) (1 )(3) (2)(2)(1)(3) (1)(3) 4 3 21È ˘ È ˘ È ˘˘ = + - + = + -˚ Î ˚ Î ˚ Î ˚
�

V i j k i j k
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Acceleration is given by 

 

∂ ∂ ∂
= + +

∂ ∂ ∂

� � �

� V V V
a u v w

x y z

Acceleration at (2, 1, 3)

2 2 2 2 2 2
(2,1,3)

(2,1,3)

ˆ ˆ ˆˆ ˆ ˆ ˆ] {2 - 2 } { 2 (2 ) } (2 ){ (2 2 ) }È ˘= + + - + - + - +Î ˚
�

a x y xyi yzk y z x i yzj xz z k xyz yz y j xy yz k

2 2 2 2 2 2ˆ ˆ ˆˆ ˆ ˆ ˆ2 .1{2.2.1 2.1.3 } 1. 3{2 2.1.3 (2.2.3 3 ) } (2.2.1.3 1.3 ){1 (2.2.1 2.1.3)}È ˘= - + + - + - + - +Î ˚i k i j k j k

  
ˆ ˆ ˆˆ ˆ ˆ ˆ16 - 24 12 18 - 63 - 21 210È ˘= + + +Î ˚i k i j k j k

 
ˆˆ ˆ28 3 123= - +i j k

 6. Draw a block diagram of vapour compression refrigeration cycle and also show the corresponding 

p–v and T–s plots.

Answer:

Presently not in the syllabus

Group-C
 (Short-Answer Questions)

 (Answer any three questions) 3 ¥ 15 = 45

 7. (a) Derive Euler’s equation. How you can obtain Bernoulli’s equation from it?

Answer:

Refer Sections 14.2 and 14.3.

 (b)  Water is fl owing through a taper pipe of 100 m length having a diameter of 600 mm at the upper 

end and 300 mm at the lower end at the rate of 50 L/s. The pipe has a slope of 1 in 30. Find the 

pressure at the lower end if the pressure at the higher end is 19.62 N/m2.

Answer:

The pipe is schematically shown in Fig. 2. Let 1 and 2 respectively designate the lower and higher ends 

of the pipe.

Fig. 2

Diameter of pipe at lower end  1 300 mm 0.3 m= =D

Diameter of pipe at higher end 2 600 mm 0.6 m= =D

Pressure at higher end 
2

2 19.62 N/m=p
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Volume fl ow rate of water 3 350
50 lit/s m /s 0.05 m /s

1000
= = =Q

Cross-sectional area at lower end is 2 2 2
1 1 (0.3) 0.0707 m

4 4

p p
= = =A D

Cross-sectional area at higher end is 2 2 2
2 2 (0.6) 0.2827 m

4 4

p p
= = =A D

Length of pipe L = 100 m

Slope of pipe   = 1 in 30 

Let the datum line pass through the centre of the lower end. Then

Height of lower end above datum  z1 = 0

Height of higher end above datum  2

1
100 3.33 m

30
= ¥ =z

From the continuity equation, we have

  1 1 2 2= =Q AV A V

Thus, the average velocity at the lower end is  1
1

0.05 
0.707 m/s

0.0707 
= = =
Q

V
A

Average velocity at the higher end is  2
2

0.05 
0.177 m/s

0.2827 
= = =
Q

V
A

Applying Bernoulli’s equation between Sections 1 and 2 along a streamline, we have

  

2 2
1 1 2 2

1 2
2 2r r

+ + = + +
p V p V

z z
g g g g

or  
2 2

1 0.707 19.62 0.177
0 3.33

2 9.81 1000 9.81 2 9.81r
+ + = + +

¥ ¥ ¥
p

g

or  1 3.308
r

=
p

g

or  2
1 3.308 1000 9.81 32451.48 N/m= ¥ ¥ =p

 (c) The right limb of a simple U-tube manometer containing mercury is open to the atmosphere while 

the left limb is connected to a pipe in which a fl uid having a sp. gr. of 0.9 is fl owing. The centre 

of the pipe is 12 cm below the level of mercury in the right limb. Sketch the arrangement and fi nd 

the pressure of fl uid in the pipe. The difference of mercury level in the two limbs is 20 cm.

Answer:

The arrangement is shown in Fig. 3.
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Fig. 3

Density of manometric fl uid 
313600 kg/mr =m

Vertical height between the pipe and the level of meniscus in the left limb (20 12) cm 0.08 m= - =x

Difference in height of meniscus between two limbs 20 cm 0.20 mD = =h

Let p1 be the pressure of fl uid in the pipe.

For the left limb, pressure along the plane XY is 

 

1

1

pressure of fluid in the pipe pressure corresponding to 8 cm of fluid

900 9.81 0.08

X

w

p

p gx

p

r

= +

= +

= + ¥ ¥

For the right limb, pressure along the plane XY is

   atm

atm

atmospheric pressure pressure corresponding to 20 cm of manometric fluid

13600 9.81 0.20

Y

m

p

p

p g hr

= +

= + ¥ ¥

= + D

Equating the pressures of both the limbs along the horizontal plane XY, we have

  1 atm900 9.81 0.08 13600 9.81 0.20p p+ ¥ ¥ = + ¥ ¥

or,  2
1 atm 25976.88 N/mp p= +

    
225976.88 N/m (gauge)=

 8. (a) Explain intensive and extensive properties.

Answer:

Refer to Section 1.6.

 (b) Prove that for a polytropic process, 2 2 1 1( ) 1W PV PV n= - -
Answer:

Refer Section 2.9.4.

 (c) Air at 14 bar having 0.085 m3 and 627°C is supplied with heat at constant pressure till its volume 

becomes double. The air is then expanded isentropically till its pressure drops to 1 bar. Calculate 

the heat supplied and work done and change in internal energy during constant pressure heating. 

Also fi nd the total work done per kg of air.

Answer:

The processes are shown in Fig. 4.



SQP 2014.8 Engineering Thermodynamics and Fluid Mechanics

Fig. 4

From the given data, 5 5 3 3
1 2 3 1 214bar 14 10 Pa, 1 bar 1 10  Pa, 0.085 m , 0.17 mP P P V V= = = ¥ = = ¥ = =

Mass of air is 
5

1 1

1

14 10 0.085
0.46 kg

287 900

PV
m

RT

¥ ¥
= = =

¥

For the process 1-2, one can write

  

1 2

1 2

V V

T T
=

or  2
2 1 1

1

2 1800 K
V

T T T
V

= = =

For the process 2-3, one can write

  
1.4 1.4

2 2 3 3PV PV=

or,   

1 1

1.4 1.4 3 32
3 2

3

14
(0.17 m ) 1.12 m

1

P
V V

P

Ê ˆ Ê ˆ= = =Á ˜Á ˜ Ë ¯Ë ¯

For the constant pressure process 1-2, the work done is

  
5

1 2 1 2 1( ) 14 10 (0.17 0.085) 119000 J 119 kJW P V V- = - = ¥ - = =

For the constant pressure process 1-2, change in internal energy is

  2 1 2 1( ) 0.46 1005(1800 900) 416070 J 416.07 kJpU U mc T T- = - = ¥ - = =

For the constant pressure process 1-2, heat transfer is found to be

  1 2 1 2 2 1 119 416.07 535.07 kJQ W U U- -= + - = + =

For the isentropic process 2-3 (PV1.4 = C), the work done is

 

5 5
2 2 3 3

2 3

14 10 0.17 1 10 1.12
31500 J 315 kJ

1 1.4 1

PV PV
W

g
-

- ¥ ¥ - ¥ ¥
= = = =

- -

Therefore, the total work done is 1 2 2 3 119 315 434 kJW W- -+ = + =  

The total work done per kg of air 
434

943.48 kJ/kg
0.46

= =
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 9. (a) Defi ne Kelvin-Planck and Clausius’ statements.

Answer:

Refer Sections 5.5 and 5.6.

 (b) Establish the equivalence Kelvin-Planck and Clausius’ statements.

Answer:

Refer Section 5.7.

 (c) Two Carnot engines work in series between the source and sink temperatures of 500 K and

300 K. If both engines develop equal power, determine the intermediate temperature.

Answer:

The problem is similar to Example 5.10.

 10. (a) Water is fl owing through two different pipes to which an inverted differential manometer having 

an oil of sp. gr. 0.9 is connected. The pressure head in the pipe A is 2.5 m of water. Find the 

pressure in the pipe B for the manometer readings as shown in Fig. 5.

Fig. 5

Answer:

Equating the pressures of both the limb along the horizontal plane XY

 
(1000)(9.81)(0.3) (1000)(9.81)(1.0) (0.9)(1000)(9.81)(0.12)A BP P− = − −

 
(1000)(9.81)(2.5) (1000)(9.81)(0.3) (1000)(9.81)(1.0) (0.9)(1000)(9.81)(0.12)BP− = − −

 
32451.48 Pa 32.451 kPaBP = ≅

Pressure at B is 32.451 kPa.

 (b) The velocity vector for a 2D incompressible fl ow is given by 
2 2 2 2

ˆ ˆx y
V i j

x y x y
= +

+ +

�

. State 

whether the fl ow is steady or unsteady.

Answer:

Since time t does not appear in the velocity, the fl ow is steady.
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 (c) A vertical venturimeter shown in Fig. 6 has an area of 5 cm2. It has a throat diameter of 1 cm. 

When oil of sp. gr. 0.8 fl ows through it, the mercury in the differential gauge indicates a difference 

in height of 12 cm. Find the discharge through the venturimeter.

Fig. 6

Answer:

The problem is similar to Example 14.14.

 11. (a) Derive the expression for effi ciency of an Otto cycle and show the process on T-s planes.

Answer:

Refer Section 9.4.

 (b) For the same compression ratio, explain why the effi ciency of an Otto cycle is greater than that 

of a diesel cycle.

Answer:

Refer Section 9.6.

 (c) An engine working on the Otto cycle is supplied with at 0.1 MPa, 35°C. The compression ratio 

is 8. Heat supplied is 2100 kJ/kg. Calculate the maximum pressure and temperature of the cycle, 

the cycle effi ciency and the mean effective pressure.

Answer:

The problem is similar to Example 9.4.



Group-A 

(Multiple-Choice Questions)

 1. Choose the correct alternatives for any ten of the following: 10 ¥ 1 = 10
                                                             

                                           !   

      "         !                    !   

Answer:     "         !   

      #                       $    

 (a) Carnot cycle   (b) Joule cycle

        $                %         

Answer:        $          

       #                           

     &             '          *     +   

     ,             '          *     +   

 (c) Increases the viscosity of a gas

                     

Answer:                     

 (iv) Internal energy for gas in general can be written as:

 (a) du
du

dt
dt

du

dv
dv

v t

=
Ê
ËÁ

ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃

 (b) du
du

dt
dt

du

dv
dv

P t

=
Ê
ËÁ

ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃

 (c) du
du

dt
dt

du

dv
dv

v P

=
Ê
ËÁ

ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃

     du
du

dt
dt

du

dv
dv

P V

=
Ê
ËÁ

ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃

Answer: (a) du
du

dt
dt

du

dv
dv

v t

=
Ê
ËÁ

ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃

SOLVED QUESTION PAPER–2015

ENGINEERING THERMODYNAMICS AND FLUID MECHANICS
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 (v) Velocity potential exists for: 

     2   34,            2                     

      2   5                      6                       

Answer:     2                    

  '   6  $               *  

     ,       '               7         '        

                            5     *      

Answer:     7         '        

  '    #               *  /                   

 (a) Absorption refrigeration cycle

     8         *  /       

       '      8           

     %        '                    *  /            

Answer:     %        '                    *  /             

  '     #    +        *                    /      /         /            9    u = cos q is:

 (a) y = x3   (b) y = x cos2q 

 (c) y = x tan q       y = sin q

Answer: (c) y = x tan q

   >  2     9                               

     8              /                    

     8                     /                        

     8                     /                                 

     #   '                     /                               

Answer:     8                     /                        

  >  ?                    >                           /    @

     B                  ,            & '          5        

Answer:     & '      

Group-B

 (Short-Answer Questions)

 (Answer any three questions) 3 ¥ 5 = 15

  E 8          /                        4                               E #   /                         -

      * G    $B                 '       *  E   3E #   /        $          9                         

    +       H   $B          *       /       **               E

     #   '       *     /     '                                   

 (ii) The process follows the path, pvn = constant, where n L HE!E

  8                $             /               E

Answer: The problem is worked out in Example 2.5.
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 3E     B  '                               *                                           +         /          

             E

Answer: Refer to Section 12.3.

     #            '                      '                  u = 0.5y – y2 in which u    '            O  

              y    '           E ,                             y L  EH    *     '          *          

is 5 Poise.

Answer: The problem is identical to the one worked out in Example 11.2.

 !E     6     5     Q        * '        E

Answer: Refer to Section 11.7.

     ?            **     *                '          *   +              * /  @ ->                 E

Answer: Refer to Section 11.7.2.

 GE #              *                        H           HG                      '   E                 /  

     /            *     '         *            /      /                      H    R  O E ,              

the velocity at section 2. 

Answer: The problem is identical to the one worked out in Example 13.7.

 SE ,   '                              *                   *     *  /                 *            E ?    

         '    /   *     /              '         *                               *         /        @

Answer: Refer to Sections 5.4.1 and 5.4.2.

Group-C

 (Long-Answer Questions)

 (Answer any three questions) 3 ¥ HG L !G

 UE     ?          $          *           @

Answer: Refer to Section 11.10.

     #                        /                           G             9              +     *          

'          EU 54 O 2E ?                                   G         G                    '        

 * HG    O                 * S    *                                  '          /             

         E 2      /        '           * '                                                       

*      >               +                E

Answer:

W '        

  Area of the plate: A L  G    ¥  G    L S G   2 L  E S G  2

  X          *   +     m L  EU 5Y O 2 

  Velocity of plate: V L  EHG  O 

Let F1     F2              *                      *                 *     *                        '   E 

                                        *                *                    S                  /E HE
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Fig. 1

     5     Q       * '                                       *     *           t1 is given by:

 

t m1 =
du

dy

where, dy L                                          L S    L S ¥ 10–3  

 or  t1 3
0 7

0 15

6 10
17 5= N/m2.

.
.¥

¥
=-  

 6     *                     *     *              

   F1 = shear stress ¥ area = t1A
    = 17.5 ¥  E S G L HE _! 5

     5     Q       * '                                       *     *           t2 is given by:

  t m2 =
du

dy

where, dy L                                             L  G Y S L H_    L H_ ¥ 10–3    

or t 2 3
0 7

0 15

19 10
5 526= = N/m2.

.
.¥

¥ -

6     *                      *     *              

   F2 = shear stress ¥ area = t2A
    = 5.526 ¥  E S G L  E3!G 5

       >               +                             *     *                      *          E #    *     

      *      >               +       

F = F1 + F2 L HE _! j  E3!G L HE!3_ 5

     ?                     @

Answer: Refer to Section 7.1.
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 RE     ,   '      >         *               +       *                                                E

Answer: Refer to Section 13.5.2.

     #               / '      
� � � �
v x yi y zj xyz yz k= + - +2 2 2

2( ) E 6                           *          

                             E 8             '                                H  3 E 

Answer: #                            '        '                      *     E 

#               +            **         *    *                            

 
∂
∂

+
∂
∂

+
∂
∂

u

x

v

y

w

z
= 0

 u = x2y, v = y2z, w = – (2xyz + yz2) 

Therefore, 
∂
∂
u

x
xy= 2 , 

∂
∂

v

y
yz= 2 , 

∂
∂

- +( )w

z
xy yz= 2 2  

   
∂
∂

+
∂
∂

+
∂
∂

u

x

v

y

w

z
= 0

#    *                              E

Velocity vector is given as:
�
V x yi y zj xyz yz k=

2 2 2
2ˆ ˆ ( ) ˆ+ - +

Therefore, velocity at (2, 1, 3) is:

�
� � � � �V i j k i j

( , , )2 1 3

2 2 2
2 1 1 3 2 2 1 3 1 3 4 3= =¥ÈÎ ˘̊ + ¥ÈÎ ˘̊ - ¥ ¥ ¥ + ¥ÈÎ ˘̊ + -- 21k�

#                           ax, ay     az are given by:

 a
u

t
u

u

x
v

u

y
w

u

z
x =

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

 a
v

t
u

v

x
v

v

y
w

v

z
y =

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

 a
w

t
u

w

x
v

w

y
w

w

z
z =

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

Given that: u = x2y

Hence,  
∂
∂
u

t
= 0, 

∂
∂
u

x
xy= 2 , 

∂
∂
u

y
x= 2
, 

∂
∂
u

z
= 0

 v = y2z

 
∂
∂
v

t
= 0, 

∂
∂
v

x
= 0, 

∂
∂

v

y
yz= 2 , 

∂
∂
v

z
y= 2

 w = – (2xyz + yz2)
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∂
∂
w

t
= 0, 

∂
∂

-
w

x
yz= 2 , 

∂
∂

- +( )w

y
xz z= 2 2

,
∂
∂

- +( )w

z
xy yz= 2 2

6          /       '                                       '  

 a x y xy y z x xyz yzx = 0 2 2 02 2 2 2+ ¥ + ¥ - + ( )( )

 = 2 3 2 2 2x y x y z+

 a x y y z yz xyz yz yy = 0 0 2 22 2 2 2+ ¥ + ¥ - + ¥( )

 = =2 2 23 2 3 3 2 3 2 3y z xy z y z y z xy z- - -

 a x y yz y z xz z xyz yz xy yzz = 0 2 2 2 2 22 2 2 2+ -( ) + - -( ) - + - -( )( )

 = - - - + + + +2 2 4 4 2 22 2 2 2 2 3 2 2 2 2 2 2 2 3x y z xy z y z x y z xy z xy z y z

 = 2 42 2 2 2 2 3x y z xy z y z+ +
Acceleration is then given by:

   
�
a a i a j a kx y z= ˆ ˆ ˆ+ +

   = 2 2 2 4
3 2 2 2 3 2 3 2 2 2 2 2 3
x y x y z i y z xy z j x y z xy z y z k+( ) + -( ) + + +( )ˆ ˆ ˆ

Acceleration at (2, 1, 3) is: 

   

� � �a i j
( , , )2 1 3

3 2 2 2 3 2 3
2 2 1 2 1 3 1 3 2 2 1 3=

      

¥ ¥ + ¥ ¥ÈÎ ˘̊ + ¥ - ¥ ¥ ¥ÈÎ ˘̊

                     + ¥ ¥ ¥ + ¥ ¥ ¥ + ¥ÈÎ ˘̊2 2 1 3 4 2 1 3 1 3
2 2 2 2 2 3

k�

 = 28 3 123ˆ ˆ ˆi j k- +

     #   '        '      *      ,                    9       / '      
� � �
v

x

x y
i

y

x y
j=

2 2 2 2+
+

+
.

  6                                                   E

Answer: The problem is worked out in Example 13.14.

 _E     ,   '      >         *              /       /        9       E

Answer: Refer to Section 14.6.2.

     2     {         9                9                                         * 3              

     /                      /E 8  *9       *        /  *          9            ES E &*         -

     /  /   9                              *        9                       _  $5O 2     

H_G $5O 2         '     9              /       /          E

Answer: The problem is worked out in Example 14.20.

 10. (a) Draw the nature of p – v     T – s        *      $         E 

Answer: Refer to Section 10.3.

     ?          8                            *                      @

Answer: Refer to Section 10.2.

     2                                                      $         E 6                             

     "B   !  }8        '                  +                        H  $B    E H "B  E #        

          *          H $/O E                      '                               *9        *     

     E 2           *9          *                              ERG      ER         '   E 
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Properties of Saturated Water-Pressure Base

X        3O$/ -         $~O$/ -        $~O$/47 

P 

(MPa)

6   

     

 }8 

vf vg hf hfg hg sf sfg sg

2  H E! 0.001177 0.0996 _ RER HR_ EU 2799.5  E!!UR 3ER_3_ SE3!HU

0.01 !GER 0.001010 H!ESU H_HER  3_ ER  GR!ES  ES!_H 7.5019 REHGH 

Properties of Superheated Steam Table Corresponding to 2 Mpa and 400°C

X        3O$/ -          $~O$/ -        $~O$/47 

0.15120 3 !UES 7.1271

Answer: The problem is worked out in Example 10.6.

 HHE     6         9         *                *                        /   /                      E

Answer: Refer to Sections 3.2.1 and 3.2.2.

     6         8           +      E

Answer: Refer to Section 6.2.

     ?                        /   +       *      /                 /        /             '  /   

        '           >          '            E

Answer: Refer to Section 4.3.

     2 /                   /          +    4                      +     E #   /                G     

     E H  3     >                           E &          *        >               /                 

PV 2 = C               E  G  3E #   /                                              /               

PV = CE ,                $     E 

Answer: Different processes are shown in Fig. 2.

Fig. 2
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For the process 2-3, we have:

 
P V PV2 2

2
3 3

2=

or V
P

P
V2

3

2

1 2

3

1 2
2

5
0 025 0 0158= = =  m3Ê

ËÁ
ˆ

¯̃
Ê
ËÁ

ˆ
¯̃

/ /

. .

                 4                 H4          $    

W PdV P V V1 2 2 1 500 0 0158 0 01 2 9- = = - = -( ) =Ú ( ) . . .  kJ

                  43     $         

W
P V PV

n
2 3

2 2 3 3

1

500 0 0158 200 0 025

2 1
2 9- =

-
-

=
¥ - ¥

-
=

. .
.  kJ

 #      $        *               34H    

W PV
V

V
3 1 1 1

1

3

500 0 01
0 01

0 025
4 58- = = ¥ Ê

ËÁ
ˆ
¯̃

= -ln . ln
.

.
.  kJ

                     $         

W W W Wnet  kJ= + + = + - =- - -1 2 2 3 3 1 2 9 2 9 4 58 1 22. . . .



1. Michael J. Moran, and Howard N. Shapiro, Fundamentals of Engineering Thermodynamics, 4th

Edition, John Wiley& Sons, Inc, 2000

2. Kenneth Wark, Thermodynamics,  McGraw-Hill, Fourth Edition, 1995

3. Gordon Rogers and Yon Mayhew, Engineering Thermodynamics Work and Heat Transfer, Fourth

Edition, Addison-Wesley, An imprint of Pearson Education, New Delhi, 2001

4. Richard E. Sonntag, Claus Borgnakke, Gordan and J. Van Wylen, Fundamentals of Thermodynamics,

Fifth Editon, Jon Wiley & Sons, Inc, 2000

5. P K Nag, Engineering Thermodynamics, Tata McGraw-Hill  Publishing Company Limited,1995

6. M C Potter, C W Somerton and Sukumar Pati, Schaum's ouTlines Thermodynamics, Tata-McGraw-

Hill Publishing Company Limited, New Delhi, Second Edition, 2010

7. Richard H Dittman, and  Mark W Zemansky, Heat and Thermodynamics, Tata-McGraw-Hill

Publishing Company Limited, New Delhi, Seventh Edition, 2007

8. J.B. Jones, P.E., and G.A. Hawkins, P.E., Engineering Thermodynamics, An Introductory Textbook,

John Wiley& Sons, Inc, 1986

9. T.D. Eastop and A. McConkey, Applied Thermodynamics for Engineering Technologists, Longman

Group limited, 1978

10. Cengel Y.A and Boles M.A., Thermodynamics An Engineering Approach, Tata McGraw-Hill

Publishing Company Limited,2006

11. Y.V.C.Rao, An Introduction to Thermodynamics, Universities Press, Revised Edition,2004

12. E. Rathakrishnan, Fundamentals of Engineering Thermodynamics, Prantice-Hall of India Private

Limited, New Delhi,2000.

13. C P Arora, Thermodynamics, Tata McGraw-Hill  Publishing Company Limited, New Delhi,2000

14. Robert W. Fox and Alan T. McDonald, Introduction to Fluid Mechanics, Fourth Edition, SI Version,

John Wiley & Sons Singapore,1994

15. Frank M White, Fluid Mechanics (Special Indian Edition), Tata McGraw-Hill  Publishing Company

Limited, New Delhi,2007

16. Som, S.K. and Biswas G., Introduction to Fluid Mechanics and Fluid Machines, Tata McGraw-Hill

Publishing Company Limited,2004

17. Pijush K. Kundu, Ira M. Cohen, Fluid Mechanics, Third Edition, Academic Press, An Imprint of

Elsevier, New Delhi, 2004.

18. Victor L. Streeter and E. Benjamin Wylie, Fluid Mechanics, First SI Metric Edition, McGraw-Hill

Book Company, Singapore, 1983

19. Shames I. H., Mechanics of Fluids, McGraw-Hill, Inc.,1992

REFERENCES



REF 1.2 Engineering Thermodynamics and Fluid Mechanics

20. Douglas, J.F., Gasiorek, J., M., and Swaffield J.A., Fluid Mechanics, Addison-Wesley,1999

21. Robert L. Daugherty, Joseph B. Franzini and E. John Finnemore, Fluid Mechanics with Engineering

Applications, McGraw-Hill Book Company, Singapore, SI Metric Edition, 1989

22. Subramanya K., 1000 Solved Problems in Fluid Mechanics, , Tata McGraw-Hill  Publishing Company

Limited, New Delhi,2005

23. A. K. Mohanty, Fluid Mechanics, Prantice-Hall of India Private Limited,2004

24. J. A. Fay. Introduction to Fluid Mechanics, MIT Press, Cambridge, MA, 1994

25. J.A. Roberson& C.T.Crowe, Engineering Fluid Mechanics, Fourth Edition, Jaico Publishing House,

Mumbai,1999


	Title
	1 Thermodynamic Concept sand the Zeroth Law
	2 Heat and Work
	3 First Law of Thermodynamics
	First 4 Law Applied to Flow Processes
	5 Second Law of Thermodynamics
	6 Entropy
	7 Properties of Pure Substances
	8 Properties of Gas
	9 Air-Standard Cycles
	10 Power Cycles
	11 Properties of Fluids
	12 Fluid Statics
	13 Kinematics of Fluid Flow
	14 Dynamics of Ideal Fluids
	Appendix I
	Appendix II
	Appendix III
	Question Papers
	REFERENCES

