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PREFACE

OBJECTIVE OF THE BOOK

As in the previous editions, the primary objective of the fourth edition of
Essentials of Econometrics is to provide a user-friendly introduction to econometric
theory and techniques. The intended audience is undergraduate economics ma-
jors, undergraduate business administration majors, MBA students, and others
in social and behavioral sciences where econometrics techniques, especially the
techniques of linear regression analysis, are used. The book is designed to help
students understand econometric techniques through extensive examples, care-
ful explanations, and a wide variety of problem material. In each of the previous
editions, I have tried to incorporate major developments in the field in an intu-
itive and informative way without resorting to matrix algebra, calculus, or sta-
tistics beyond the introductory level. The fourth edition continues that tradition.

Although I am in the eighth decade of my life, I have not lost my love for
econometrics and I strive to keep up with the major developments in the field. To
assist me in this endeavor, I am now happy to have Dr. Dawn Porter, Assistant
Professor of Statistics at the Marshall School of Business at the University of
Southern California in Los Angeles, as my co-author.  Both of us have been deeply
involved in bringing the fourth edition of Essentials of Econometrics to fruition.

MAJOR FEATURES OF THE FOURTH EDITION

Before discussing the specific changes in the various chapters, the following
features of the new edition are worth noting:

1. In order to streamline topics and jump right into information about linear
regression techniques, we have moved the background statistics material
(formerly Chapters 2 through 5) to the appendix. This allows for easy refer-
ence to more introductory material for those who need it, without disturbing
the main content of the text.

2. Practically all the data used in the illustrative examples have been updated
from the previous edition.

3. Several new examples have been added.
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4. In several chapters, we have included extended concluding examples that
illustrate the various points made in the text.

5. Concrete computer printouts of several examples are included in the book.
Most of these results are based on EViews (version 6), STATA (version 10),
and MINITAB (version 15).

6. Several new diagrams and graphs are included in various chapters.
7. Several new data-based exercises are included throughout the book.
8. Small-sized data are included in the book, but large sample data are posted

on the book’s Web site, thereby minimizing the size of the text. The Web site
also contains all the data used in the book.

SPECIFIC CHANGES

Some of the chapter-specific changes in the fourth edition are as follows:
Chapter 1: A revised and expanded list of Web sites for economic data has been
included.
Chapters 2 and 3: An interesting new data example concerning the relationship
between family income and student performance on the S.A.T. is utilized to
introduce the two-variable regression model. 
Chapter 4: We have included a brief explanation of nonstochastic versus stochas-
tic predictors. An additional example regarding educational expenditures among
several countries that adds to the explanation of regression hypothesis testing.
Chapter 5: The math S.A.T. example is revisited to illustrate various functional
forms. Section 5.10 has been added to handle the topic of regression on stan-
dardized variables. Also, several new data exercises have been included.
Chapter 6: An example concerning acceptance rates among top business
schools has been added to help illustrate the usefulness of dummy variable
regression models. Several new data exercises also have been added.
Chapter 8: Again, we have added several new, updated data exercises dealing
with the issue of multicollinearity.
Chapter 9: To illustrate the concept of heteroscedasticity, a new example relat-
ing wages to education levels and years of experience has been included, as
well as more real data exercises.
Chapter 10: A new section concerning the Newey-West standard error correc-
tion method using a data example has been added. Also, a new appendix has
been included at the end of the chapter to cover the Breusch-Godfrey test of
autocorrelation.
Chapter 12: An expanded treatment of logistic regression has been included in
this chapter with new examples to illustrate the results.
Appendixes A–D: As noted above, the material in these appendixes was
formerly contained in Chapters 2–5 of the main text. By placing them in the back
of the book, they can more easily serve as reference sections to the main text.
Data examples have been updated, and new exercises have been added.

Besides these specific changes, errors and misprints in the previous editions
have been corrected. Also, our discussion of several topics in the various chap-
ters has been streamlined.
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MATHEMATICAL REQUIREMENTS

In presenting the various topics, we have used very little matrix algebra or cal-
culus. We firmly believe that econometrics can be taught to the beginner in an intuitive
manner, without a heavy dose of matrix algebra or calculus. Also, we have not given
any proofs unless they are easily understood. We do not feel that the nonspe-
cialist needs to be burdened with detailed proofs. Of course, the instructor can
supply the necessary proofs as the situation demands. Some of the proofs are
available in our Basic Econometrics (McGraw-Hill, 5th ed., 2009).

SUPPLEMENTS AID THE PROBLEM SOLVING APPROACH

The comprehensive Web site for the fourth edition contains the following sup-
plementary material to assist both instructors and students:

• Data from the text, as well as additional large set data referenced in the book.

• A Solutions Manual providing answers to all of the questions and problems
throughout the text is provided for the instructors to use as they wish.

• A digital image library containing all of the graphs and tables from the book.

For more information, please visit the Online Learning Center at www.mhhe
.com/gujaratiess4e.

COMPUTERS AND ECONOMETRICS

It cannot be overemphasized that what has made econometrics accessible to the
beginner is the availability of several user-friendly computer statistical pack-
ages. The illustrative problems in this book are solved using statistical software
packages, such as EViews, Excel, MINITAB, and STATA. Student versions of
some of these packages are readily available. The data posted on the Web site is
in Excel format and can also be read easily by many standard statistical pack-
ages such as LIMDEP, RATS, SAS, and SPSS.

In Appendix E we show the outputs of EViews, Excel, MINITAB, and STATA,
using a common data set. Each of these software packages has some unique
features although some of the statistical routines are quite similar.

IN CLOSING

To sum up, in writing Essentials of Econometrics, our primary objective has been
to introduce the wonderful world of econometrics to the beginner in a relaxed
but informative style. We hope the knowledge gained from this book will
prove to be of lasting value in the reader’s future academic or professional ca-
reer and that the reader’s knowledge learned in this book can be further
widened by reading some advanced and specialized books in econometrics.
Some of these books can be found in the selected bibliography given at the end
of the book.
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CHAPTER 1
THE NATURE
AND SCOPE

OF ECONOMETRICS

1

Research in economics, finance, management, marketing, and related disci-
plines is becoming increasingly quantitative. Beginning students in these fields
are encouraged, if not required, to take a course or two in econometrics—a field
of study that has become quite popular. This chapter gives the beginner an
overview of what econometrics is all about.

1.1 WHAT IS ECONOMETRICS?

Simply stated, econometrics means economic measurement. Although quan-
titative measurement of economic concepts such as the gross domestic prod-
uct (GDP), unemployment, inflation, imports, and exports is very important,
the scope of econometrics is much broader, as can be seen from the following
definitions:

Econometrics may be defined as the social science in which the tools of economic the-
ory, mathematics, and statistical inference are applied to the analysis of economic
phenomena.1

Econometrics, the result of a certain outlook on the role of economics, consists of the
application of mathematical statistics to economic data to lend empirical support to
the models constructed by mathematical economics and to obtain numerical results.2

1Arthur S. Goldberger, Econometric Theory, Wiley, New York, 1964, p. 1.
2P. A. Samuelson, T. C. Koopmans, and J. R. N. Stone, “Report of the Evaluative Committee for

Econometrica,” Econometrica, vol. 22, no. 2, April 1954, pp. 141–146.



1.2 WHY STUDY ECONOMETRICS?

As the preceding definitions suggest, econometrics makes use of economic the-
ory, mathematical economics, economic statistics (i.e., economic data), and
mathematical statistics. Yet, it is a subject that deserves to be studied in its own
right for the following reasons.

Economic theory makes statements or hypotheses that are mostly qualitative
in nature. For example, microeconomic theory states that, other things remain-
ing the same (the famous ceteris paribus clause of economics), an increase in the
price of a commodity is expected to decrease the quantity demanded of that
commodity. Thus, economic theory postulates a negative or inverse relation-
ship between the price and quantity demanded of a commodity—this is the
widely known law of downward-sloping demand or simply the law of demand.
But the theory itself does not provide any numerical measure of the strength of
the relationship between the two; that is, it does not tell by how much the quan-
tity demanded will go up or down as a result of a certain change in the price of
the commodity. It is the econometrician’s job to provide such numerical esti-
mates. Econometrics gives empirical (i.e., based on observation or experiment)
content to most economic theory. If we find in a study or experiment that when
the price of a unit increases by a dollar the quantity demanded goes down by,
say, 100 units, we have not only confirmed the law of demand, but in the
process we have also provided a numerical estimate of the relationship between
the two variables—price and quantity.

The main concern of mathematical economics is to express economic theory
in mathematical form or equations (or models) without regard to measurability
or empirical verification of the theory. Econometrics, as noted earlier, is primar-
ily interested in the empirical verification of economic theory. As we will show
shortly, the econometrician often uses mathematical models proposed by the
mathematical economist but puts these models in forms that lend themselves to
empirical testing.

Economic statistics is mainly concerned with collecting, processing, and pre-
senting economic data in the form of charts, diagrams, and tables. This is the
economic statistician’s job. He or she collects data on the GDP, employment, un-
employment, prices, etc. These data constitute the raw data for econometric
work. But the economic statistician does not go any further because he or she is
not primarily concerned with using the collected data to test economic theories.

Although mathematical statistics provides many of the tools employed in the
trade, the econometrician often needs special methods because of the unique
nature of most economic data, namely, that the data are not usually generated
as the result of a controlled experiment. The econometrician, like the meteorol-
ogist, generally depends on data that cannot be controlled directly. Thus, data
on consumption, income, investments, savings, prices, etc., which are collected
by public and private agencies, are nonexperimental in nature. The econometri-
cian takes these data as given. This creates special problems not normally dealt
with in mathematical statistics. Moreover, such data are likely to contain errors
of measurement, of either omission or commission, and the econometrician
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may be called upon to develop special methods of analysis to deal with such
errors of measurement.

For students majoring in economics and business there is a pragmatic reason
for studying econometrics. After graduation, in their employment, they may be
called upon to forecast sales, interest rates, and money supply or to estimate de-
mand and supply functions or price elasticities for products. Quite often, econo-
mists appear as expert witnesses before federal and state regulatory agencies on
behalf of their clients or the public at large. Thus, an economist appearing before
a state regulatory commission that controls prices of gas and electricity may be re-
quired to assess the impact of a proposed price increase on the quantity de-
manded of electricity before the commission will approve the price increase. In
situations like this the economist may need to develop a demand function for
electricity for this purpose. Such a demand function may enable the economist to
estimate the price elasticity of demand, that is, the percentage change in the quan-
tity demanded for a percentage change in the price. Knowledge of econometrics
is very helpful in estimating such demand functions.

It is fair to say that econometrics has become an integral part of training in
economics and business.

1.3 THE METHODOLOGY OF ECONOMETRICS

How does one actually do an econometric study? Broadly speaking, economet-
ric analysis proceeds along the following lines.

1. Creating a statement of theory or hypothesis.
2. Collecting data.
3. Specifying the mathematical model of theory.
4. Specifying the statistical, or econometric, model of theory.
5. Estimating the parameters of the chosen econometric model.
6. Checking for model adequacy: Model specification testing.
7. Testing the hypothesis derived from the model.
8. Using the model for prediction or forecasting.

To illustrate the methodology, consider this question: Do economic condi-
tions affect people’s decisions to enter the labor force, that is, their willingness
to work? As a measure of economic conditions, suppose we use the unemploy-
ment rate (UNR), and as a measure of labor force participation we use the labor
force participation rate (LFPR). Data on UNR and LFPR are regularly published
by the government. So to answer the question we proceed as follows.

Creating a Statement of Theory or Hypothesis

The starting point is to find out what economic theory has to say on the subject
you want to study. In labor economics, there are two rival hypotheses about the
effect of economic conditions on people’s willingness to work. The discouraged-
worker hypothesis (effect) states that when economic conditions worsen, as
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reflected in a higher unemployment rate, many unemployed workers give up
hope of finding a job and drop out of the labor force. On the other hand, the
added-worker hypothesis (effect) maintains that when economic conditions
worsen, many secondary workers who are not currently in the labor market
(e.g., mothers with children) may decide to join the labor force if the main
breadwinner in the family loses his or her job. Even if the jobs these secondary
workers get are low paying, the earnings will make up some of the loss in in-
come suffered by the primary breadwinner.

Whether, on balance, the labor force participation rate will increase or decrease
will depend on the relative strengths of the added-worker and discouraged-
worker effects. If the added-worker effect dominates, LFPR will increase even
when the unemployment rate is high. Contrarily, if the discouraged-worker effect
dominates, LFPR will decrease. How do we find this out? This now becomes our
empirical question.

Collecting Data

For empirical purposes, therefore, we need quantitative information on the two
variables. There are three types of data that are generally available for empirical
analysis.

1. Time series.
2. Cross-sectional.
3. Pooled (a combination of time series and cross-sectional).

Times series data are collected over a period of time, such as the data on
GDP, employment, unemployment, money supply, or government deficits.
Such data may be collected at regular intervals—daily (e.g., stock prices),
weekly (e.g., money supply), monthly (e.g., the unemployment rate), quarterly
(e.g., GDP), or annually (e.g., government budget). These data may be quanti-
tative in nature (e.g., prices, income, money supply) or qualitative (e.g., male or
female, employed or unemployed, married or unmarried, white or black). As
we will show, qualitative variables, also called dummy or categorical variables,
can be every bit as important as quantitative variables.

Cross-sectional data are data on one or more variables collected at one point
in time, such as the census of population conducted by the U.S. Census Bureau
every 10 years (the most recent was on April 1, 2000); the surveys of consumer
expenditures conducted by the University of Michigan; and the opinion polls
such as those conducted by Gallup, Harris, and other polling organizations.

In pooled data we have elements of both time series and cross-sectional data.
For example, if we collect data on the unemployment rate for 10 countries for a
period of 20 years, the data will constitute an example of pooled data—data on
the unemployment rate for each country for the 20-year period will form time se-
ries data, whereas data on the unemployment rate for the 10 countries for any
single year will be cross-sectional data. In pooled data we will have 200
observations—20 annual observations for each of the 10 countries.
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There is a special type of pooled data, panel data, also called longitudinal or
micropanel data, in which the same cross-sectional unit, say, a family or firm, is
surveyed over time. For example, the U.S. Department of Commerce conducts
a census of housing at periodic intervals. At each periodic survey the same
household (or the people living at the same address) is interviewed to find out
if there has been any change in the housing and financial conditions of that
household since the last survey. The panel data that result from repeatedly in-
terviewing the same household at periodic intervals provide very useful infor-
mation on the dynamics of household behavior.

Sources of Data A word is in order regarding data sources. The success
of any econometric study hinges on the quality, as well as the quantity, of
data. Fortunately, the Internet has opened up a veritable wealth of data. In
Appendix 1A we give addresses of several Web sites that have all kinds of mi-
croeconomic and macroeconomic data. Students should be familiar with such
sources of data, as well as how to access or download them. Of course, these
data are continually updated so the reader may find the latest available data.

For our analysis, we obtained the time series data shown in Table 1-1. This
table gives data on the civilian labor force participation rate (CLFPR) and the
civilian unemployment rate (CUNR), defined as the number of civilians unem-
ployed as a percentage of the civilian labor force, for the United States for the
period 1980–2007.3

Unlike physical sciences, most data collected in economics (e.g., GDP, money
supply, Dow Jones index, car sales) are nonexperimental in that the data-
collecting agency (e.g., government) may not have any direct control over the
data. Thus, the data on labor force participation and unemployment are based on
the information provided to the government by participants in the labor market.
In a sense, the government is a passive collector of these data and may not be
aware of the added- or discouraged-worker hypotheses, or any other hypothesis,
for that matter. Therefore, the collected data may be the result of several factors
affecting the labor force participation decision made by the individual person.
That is, the same data may be compatible with more than one theory.

Specifying the Mathematical Model of Labor Force Participation

To see how CLFPR behaves in relation to CUNR, the first thing we should do is
plot the data for these variables in a scatter diagram, or scattergram, as shown
in Figure 1-1. 

The scattergram shows that CLFPR and CUNR are inversely related, perhaps
suggesting that, on balance, the discouraged-worker effect is stronger than the
added-worker effect.4 As a first approximation, we can draw a straight line
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U.S. CIVILIAN LABOR FORCE PARTICIPATION RATE

(CLFPR), CIVILIAN UNEMPLOYMENT RATE (CUNR),

AND REAL AVERAGE HOURLY EARNINGS (AHE82)*

FOR THE YEARS 1980–2007

Year CLFPR (%) CUNR (%) AHE82 ($)

1980 63.8 7.1 8.00

1981 63.9 7.6 7.89

1982 64.0 9.7 7.87

1983 64.0 9.6 7.96

1984 64.4 7.5 7.96

1985 64.8 7.2 7.92

1986 65.3 7.0 7.97

1987 65.6 6.2 7.87

1988 65.9 5.5 7.82

1989 66.5 5.3 7.75

1990 66.5 5.6 7.66

1991 66.2 6.8 7.59

1992 66.4 7.5 7.55

1993 66.3 6.9 7.54

1994 66.6 6.1 7.54

1995 66.6 5.6 7.54

1996 66.8 5.4 7.57

1997 67.1 4.9 7.69

1998 67.1 4.5 7.89

1999 67.1 4.2 8.01

2000 67.1 4.0 8.04

2001 66.8 4.7 8.12

2002 66.6 5.8 8.25

2003 66.2 6.0 8.28

2004 66.0 5.5 8.24

2005 66.0 5.1 8.18

2006 66.2 4.6 8.24

2007 66.0 4.6 8.32

*AHE82 represents average hourly earnings in 1982 dollars.
Source: Economic Report of the President, 2008, CLFPR from

Table B-40, CUNR from Table B-43, and AHE82 from Table B-47.

TABLE 1-1

through the scatter points and write the relationship between CLFPR and
CUNR by the following simple mathematical model:

(1.1)

Equation (1.1) states that CLFPR is linearly related to CUNR. B1 and B2 are known
as the parameters of the linear function.5 B1 is also known as the intercept; it

CLFPR = B1 + B2 CUNR

5Broadly speaking, a parameter is an unknown quantity that may vary over a certain set of val-
ues. In statistics a probability distribution function (PDF) of a random variable is often character-
ized by its parameters, such as its mean and variance. This topic is discussed in greater detail in
Appendixes A and B.



gives the value of CLFPR when CUNR is zero.6 B2 is known as the slope. The
slope measures the rate of change in CLFPR for a unit change in CUNR, or more gen-
erally, the rate of change in the value of the variable on the left-hand side of the
equation for a unit change in the value of the variable on the right-hand side.
The slope coefficient B2 can be positive (if the added-worker effect dominates
the discouraged-worker effect) or negative (if the discouraged-worker effect
dominates the added-worker effect). Figure 1-1 suggests that in the present case
it is negative.

Specifying the Statistical, or Econometric,

Model of Labor Force Participation

The purely mathematical model of the relationship between CLFPR and CUNR
given in Eq. (1.1), although of prime interest to the mathematical economist, is
of limited appeal to the econometrician, for such a model assumes an exact, or
deterministic, relationship between the two variables; that is, for a given CUNR,
there is a unique value of CLFPR. In reality, one rarely finds such neat relation-
ships between economic variables. Most often, the relationships are inexact, or
statistical, in nature.

This is seen clearly from the scattergram given in Figure 1-1. Although the two
variables are inversely related, the relationship between them is not perfectly or
exactly linear, for if we draw a straight line through the 28 data points, not all the
data points will lie exactly on that straight line. Recall that to draw a straight line
we need only two points.7 Why don’t the 28 data points lie exactly on the straight
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FIGURE 1-1

6In Chapter 2 we give a more precise interpretation of the intercept in the context of regression
analysis.

7We even tried to fit a parabola to the scatter points given in Fig. 1-1, but the results were not
materially different from the linear specification. 



line specified by the mathematical model, Eq. (1.1)? Remember that our data on
labor force and unemployment are nonexperimentally collected. Therefore, as
noted earlier, besides the added- and discouraged-worker hypotheses, there
may be other forces affecting labor force participation decisions. As a result, the
observed relationship between CLFPR and CUNR is likely to be imprecise.

Let us allow for the influence of all other variables affecting CLFPR in a
catchall variable u and write Eq. (1.2) as follows:

(1.2)

where u represents the random error term, or simply the error term.8 We let u
represent all those forces (besides CUNR) that affect CLFPR but are not explic-
itly introduced in the model, as well as purely random forces. As we will see in
Part II, the error term distinguishes econometrics from purely mathematical
economics.

Equation (1.2) is an example of a statistical, or empirical or econometric, model.
More precisely, it is an example of what is known as a linear regression model,
which is a prime subject of this book. In such a model, the variable appearing on
the left-hand side of the equation is called the dependent variable, and the vari-
able on the right-hand side is called the independent, or explanatory, variable.
In linear regression analysis our primary objective is to explain the behavior of
one variable (the dependent variable) in relation to the behavior of one or more
other variables (the explanatory variables), allowing for the fact that the rela-
tionship between them is inexact.

Notice that the econometric model, Eq. (1.2), is derived from the mathemati-
cal model, Eq. (1.1), which shows that mathematical economics and economet-
rics are mutually complementary disciplines. This is clearly reflected in the
definition of econometrics given at the outset.

Before proceeding further, a warning regarding causation is in order. In the
regression model, Eq. (1.2), we have stated that CLFPR is the dependent vari-
able and CUNR is the independent, or explanatory, variable. Does that mean
that the two variables are causally related; that is, is CUNR the cause and CLFPR
the effect? In other words, does regression imply causation? Not necessarily. As
Kendall and Stuart note, “A statistical relationship, however strong and how-
ever suggestive, can never establish causal connection: our ideas of causation
must come from outside statistics, ultimately from some theory or other.”9 In
our example, it is up to economic theory (e.g., the discouraged-worker hypoth-
esis) to establish the cause-and-effect relationship, if any, between the depen-
dent and explanatory variables. If causality cannot be established, it is better to
call the relationship, Eq. (1.2), a predictive relationship: Given CUNR, can we pre-
dict CLFPR?

CLFPR = B1 + B2CUNR + u
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Estimating the Parameters of the Chosen Econometric Model

Given the data on CLFPR and CUNR, such as that in Table 1-1, how do we esti-
mate the parameters of the model, Eq. (1.2), namely, B1 and B2? That is, how do
we find the numerical values (i.e., estimates) of these parameters? This will be
the focus of our attention in Part II, where we develop the appropriate methods
of computation, especially the method of ordinary least squares (OLS). Using OLS
and the data given in Table 1-1, we obtained the following results:

(1.3)

Note that we have put the symbol on CLFPR (read as “CLFPR hat”) to remind
us that Eq. (1.3) is an estimate of Eq. (1.2). The estimated regression line is shown
in Figure 1-1, along with the actual data points.

As Eq. (1.3) shows, the estimated value of B1 is 69.5 and that of B2 is – 0.58,
where the symbol means approximately. Thus, if the unemployment rate
goes up by one unit (i.e., one percentage point), ceteris paribus, CLFPR is ex-
pected to decrease on the average by about 0.58 percentage points; that is, as eco-
nomic conditions worsen, on average, there is a net decrease in the labor force
participation rate of about 0.58 percentage points, perhaps suggesting that the
discouraged-worker effect dominates. We say “on the average” because the
presence of the error term u, as noted earlier, is likely to make the relationship
somewhat imprecise. This is vividly seen in Figure 1-1 where the points not on
the estimated regression line are the actual participation rates and the (vertical)
distance between them and the points on the regression line are the estimated
u’s. As we will see in Chapter 2, the estimated u’s are called residuals. In short,
the estimated regression line, Eq. (1.3), gives the relationship between average
CLFPR and CUNR; that is, on average how CLFPR responds to a unit change in
CUNR. The value of about 69.5 suggests that the average value of CLFPR will
be about 69.5 percent if the CUNR is zero; that is, about 69.5 percent of the civil-
ian working-age population will participate in the labor force if there is full
employment (i.e., zero unemployment).10

Checking for Model Adequacy: Model Specification Testing

How adequate is our model, Eq. (1.3)? It is true that a person will take into account
labor market conditions as measured by, say, the unemployment rate before
entering the labor market. For example, in 1982 (a recession year) the civilian un-
employment rate was about 9.7 percent. Compared to that, in 2001 it was only
4.7 percent.Aperson is more likely to be discouraged from entering the labor mar-
ket when the unemployment rate is more than 9 percent than when it is 5 percent.
But there are other factors that also enter into labor force participation decisions.
For example, hourly wages, or earnings, prevailing in the labor market also will

L
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CLFPR = 69.4620 - 0.5814CUNR
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be an important decision variable. In the short run at least, a higher wage may at-
tract more workers to the labor market, other things remaining the same (ceteris
paribus). To see its importance, in Table 1-1 we have also given data on real average
hourly earnings (AHE82), where real earnings are measured in 1982 dollars. To
take into account the influence of AHE82, we now consider the following model:

(1.4)

Equation (1.4) is an example of a multiple linear regression model, in contrast to
Eq. (1.2), which is an example of a simple (two-variable or bivariate) linear regression
model. In the two-variable model there is a single explanatory variable, whereas
in a multiple regression there are several, or multiple, explanatory variables.
Notice that in the multiple regression, Eq. (1.4), we also have included the error
term, u, for no matter how many explanatory variables one introduces in the
model, one cannot fully explain the behavior of the dependent variable. How
many variables one introduces in the multiple regression is a decision that the
researcher will have to make in a given situation. Of course, the underlying eco-
nomic theory will often tell what these variables might be. However, keep in
mind the warning given earlier that regression does not mean causation; the
relevant theory must determine whether one or more explanatory variables are
causally related to the dependent variable.

How do we estimate the parameters of the multiple regression, Eq. (1.4)? We
cover this topic in Chapter 4, after we discuss the two-variable model in
Chapters 2 and 3. We consider the two-variable case first because it is the build-
ing block of the multiple regression model. As we shall see in Chapter 4, the
multiple regression model is in many ways a straightforward extension of the
two-variable model.

For our illustrative example, the empirical counterpart of Eq. (1.4) is as fol-
lows (these results are based on OLS):

(1.5)

These results are interesting because both the slope coefficients are negative.
The negative coefficient of CUNR suggests that, ceteris paribus (i.e., holding the
influence of AHE82 constant), a one-percentage-point increase in the unem-
ployment rate leads, on average, to about a 0.64-percentage-point decrease in
CLFPR, perhaps once again supporting the discouraged-worker hypothesis. On
the other hand, holding the influence of CUNR constant, an increase in real
average hourly earnings of one dollar, on average, leads to about a 1.44 percentage-
point decline in CLFPR.11 Does the negative coefficient for AHE82 make eco-
nomic sense? Would one not expect a positive coefficient—the higher the hourly

CLFPR = 81.2267 - 0.6384CUNR - 1.4449AHE82

CLFPR = B1 + B2CUNR + B3AHE82 + u                    

10 CHAPTER ONE: THE NATURE AND SCOPE OF ECONOMETRICS

11As we will discuss in Chapter 4, the coefficients of CUNR and AHE82 given in Eq. (1.5) are
known as partial regression coefficients. In that chapter we will discuss the precise meaning of partial
regression coefficients.



earnings, the higher the attraction of the labor market? However, one could
justify the negative coefficient by recalling the twin concepts of microeconomics,
namely, the income effect and the substitution effect.12

Which model do we choose, Eq. (1.3) or Eq. (1.5)? Since Eq. (1.5) encompasses
Eq. (1.3) and since it adds an additional dimension (earnings) to the analysis, we
may choose Eq. (1.5). After all, Eq. (1.2) was based implicitly on the assumption
that variables other than the unemployment rate were held constant. But where
do we stop? For example, labor force participation may also depend on family
wealth, number of children under age 6 (this is especially critical for married
women thinking of joining the labor market), availability of day-care centers for
young children, religious beliefs, availability of welfare benefits, unemploy-
ment insurance, and so on. Even if data on these variables are available, we may
not want to introduce them all in the model because the purpose of developing
an econometric model is not to capture total reality, but just its salient features.
If we decide to include every conceivable variable in the regression model, the
model will be so unwieldy that it will be of little practical use. The model ulti-
mately chosen should be a reasonably good replica of the underlying reality. In
Chapter 7, we will discuss this question further and find out how one can go
about developing a model.

Testing the Hypothesis Derived from the Model

Having finally settled on a model, we may want to perform hypothesis testing.
That is, we may want to find out whether the estimated model makes economic
sense and whether the results obtained conform with the underlying economic
theory. For example, the discouraged-worker hypothesis postulates a negative
relationship between labor force participation and the unemployment rate. Is this
hypothesis borne out by our results? Our statistical results seem to be in confor-
mity with this hypothesis because the estimated coefficient of CUNR is negative.

However, hypothesis testing can be complicated. In our illustrative example,
suppose someone told us that in a prior study the coefficient of CUNR was
found to be about –1. Are our results in agreement? If we rely on the model,
Eq. (1.3), we might get one answer; but if we rely on Eq. (1.5), we might get another
answer. How do we resolve this question? Although we will develop the neces-
sary tools to answer such questions, we should keep in mind that the answer to a
particular hypothesis may depend on the model we finally choose.

The point worth remembering is that in regression analysis we may be inter-
ested not only in estimating the parameters of the regression model but also in
testing certain hypotheses suggested by economic theory and/or prior empiri-
cal experience.
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12Consult any standard textbook on microeconomics. One intuitive justification of this result is
as follows. Suppose both spouses are in the labor force and the earnings of one spouse rise substan-
tially. This may prompt the other spouse to withdraw from the labor force without substantially
affecting the family income.



Using the Model for Prediction or Forecasting

Having gone through this multistage procedure, you can legitimately ask the
question: What do we do with the estimated model, such as Eq. (1.5)? Quite nat-
urally, we would like to use it for prediction, or forecasting. For instance, sup-
pose we have 2008 data on the CUNR and AHE82. Assume these values are 6.0
and 10, respectively. If we put these values in Eq. (1.5), we obtain 62.9473 per-
cent as the predicted value of CLFPR for 2008. That is, if the unemployment
rate in 2008 were 6.0 percent and the real hourly earnings were $10, the civilian
labor force participation rate for 2008 would be about 63 percent. Of course,
when data on CLFPR for 2008 actually become available, we can compare the
predicted value with the actual value. The discrepancy between the two will
represent the prediction error. Naturally, we would like to keep the prediction
error as small as possible. Whether this is always possible is a question that we
will answer in Chapters 2 and 3.

Let us now summarize the steps involved in econometric analysis.

Step Example

1. Statement of theory The added-/discouraged-worker hypothesis
2. Collection of data Table 1-1
3. Mathematical model of theory: CLFPR = B1 + B2CUNR
4. Econometric model of theory: CLFPR = B1 + B2CUNR + u
5. Parameter estimation: CLFPR = 69.462 - 0.5814CUNR
6. Model adequacy check: CLFPR = 81.3 - 0.638CUNR - 1.445AHE82
7. Hypothesis test: B2 ⬍ 0 or B2 ⬎ 0
8. Prediction: What is CLFPR, given values of CUNR and AHE82?

Although we examined econometric methodology using an example from
labor economics, we should point out that a similar procedure can be employed
to analyze quantitative relationships between variables in any field of knowl-
edge. As a matter of fact, regression analysis has been used in politics, interna-
tional relations, psychology, sociology, meteorology, and many other disciplines.

1.4 THE ROAD AHEAD

Now that we have provided a glimpse of the nature and scope of econometrics,
let us see what lies ahead. The book is divided into four parts.

Appendixes A, B, C, and D review the basics of probability and statistics for the
benefit of those readers whose knowledge of statistics has become rusty. The
reader should have some previous background in introductory statistics.

Part I introduces the reader to the bread-and-butter tool of econometrics,
namely, the classical linear regression model (CLRM). A thorough understanding
of CLRM is a must in order to follow research in the general areas of economics
and business.

Part II considers the practical aspects of regression analysis and discusses a
variety of problems that the practitioner will have to tackle when one or more
assumptions of the CLRM do not hold.

12 CHAPTER ONE: THE NATURE AND SCOPE OF ECONOMETRICS



Part III discusses two comparatively advanced topics—simultaneous equa-
tion regression models and time series econometrics. 

This book keeps the needs of the beginner in mind. The discussion of most top-
ics is straightforward and unencumbered with mathematical proofs, derivations,
etc.13 We firmly believe that the apparently forbidding subject of econometrics
can be taught to beginners in such a way that they can see the value of the subject
without getting bogged down in mathematical and statistical minutiae. The
student should keep in mind that an introductory econometrics course is just like
the introductory statistics course he or she has already taken. As in statistics,
econometrics is primarily about estimation and hypothesis testing. What is dif-
ferent, and generally much more interesting and useful, is that the parameters
being estimated or tested are not just means and variances, but relationships be-
tween variables, which is what much of economics and other social sciences is all
about.

A final word: The availability of comparatively inexpensive computer soft-
ware packages has now made econometrics readily accessible to beginners. In
this book we will largely use four software packages: EViews, Excel, STATA,
and MINITAB. These packages are readily available and widely used. Once stu-
dents get used to using such packages, they will soon realize that learning
econometrics is really great fun, and they will have a better appreciation of the
much maligned “dismal” science of economics.

KEY TERMS AND CONCEPTS

The key terms and concepts introduced in this chapter are
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Econometrics
Mathematical economics
Discouraged-worker hypothesis

(effect)
Added-worker hypothesis (effect)
Time series data

a) quantitative
b) qualitative

Cross-sectional data
Pooled data
Panel (or longitudinal or micropanel

data)
Scatter diagram (scattergram)

a) parameters
b) intercept
c) slope

Random error term (error term)
Linear regression model:

dependent variable
independent (or explanatory)
variable

Causation
Parameter estimates
Hypothesis testing
Prediction (forecasting)

13Some of the proofs and derivations are presented in our Basic Econometrics, 5th ed., McGraw-
Hill, New York, 2009.



QUESTIONS

1.1. Suppose a local government decides to increase the tax rate on residential prop-
erties under its jurisdiction. What will be the effect of this on the prices of resi-
dential houses? Follow the eight-step procedure discussed in the text to answer
this question.

1.2. How do you perceive the role of econometrics in decision making in business
and economics?

1.3. Suppose you are an economic adviser to the Chairman of the Federal Reserve
Board (the Fed), and he asks you whether it is advisable to increase the money
supply to bolster the economy. What factors would you take into account in
your advice? How would you use econometrics in your advice?

1.4. To reduce the dependence on foreign oil supplies, the government is thinking
of increasing the federal taxes on gasoline. Suppose the Ford Motor Company
has hired you to assess the impact of the tax increase on the demand for its cars.
How would you go about advising the company?

1.5. Suppose the president of the United States is thinking of imposing tariffs on im-
ported steel to protect the interests of the domestic steel industry. As an economic
adviser to the president, what would be your recommendations? How would you
set up an econometric study to assess the consequences of imposing the tariff?

PROBLEMS

1.6. Table 1-2 gives data on the Consumer Price Index (CPI), S&P 500 stock index,
and three-month Treasury bill rate for the United States for the years 1980–2007.
a. Plot these data with time on the horizontal axis and the three variables

on the vertical axis. If you prefer, you may use a separate figure for each variable.
b. What relationships do you expect to find between the CPI and the S&P index

and between the CPI and the three-month Treasury bill rate? Why?
c. For each variable, “eyeball” a regression line from the scattergram.
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CONSUMER PRICE INDEX (CPI, 1982–1984 = 100), STANDARD AND POOR’S COMPOSITE

INDEX (S&P 500, 1941–1943 = 100), AND THREE-MONTH TREASURY BILL RATE (3-m T BILL, %)

Year CPI S&P 500 3-m T bill Year CPI S&P 500 3-m T bill

TABLE 1-2

1980 82.4 118.78 12.00

1981 90.9 128.05 14.00

1982 96.5 119.71 11.00

1983 99.6 160.41 8.63

1984 103.9 160.46 9.58

1985 107.6 186.84 7.48

1986 109.6 236.34 5.98

1987 113.6 286.83 5.82

1988 118.3 265.79 6.69

1989 124.0 322.84 8.12

1990 130.7 334.59 7.51

1991 136.2 376.18 5.42

1992 140.3 415.74 3.45

1993 144.5 451.41 3.02

1994 148.2 460.42 4.29

1995 152.4 541.72 5.51

1996 156.9 670.50 5.02

1997 160.5 873.43 5.07

1998 163.0 1,085.50 4.81

1999 166.6 1,327.33 4.66

2000 172.2 1,427.22 5.85

2001 177.1 1,194.18 3.45

2002 179.9 993.94 1.62

2003 184.0 965.23 1.02

2004 188.9 1,130.65 1.38

2005 195.3 1,207.23 3.16

2006 201.6 1,310.46 4.73

2007 207.3 1,477.19 4.41

Source: Economic Report of the President, 2008, Tables B-60, B-95, B-96, and B-74, respectively.
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1.7. Table 1-3 gives you data on the exchange rate between the U.K. pound and the
U.S. dollar (number of U.K. pounds per U.S. dollar) as well as the consumer
price indexes in the two countries for the period 1985–2007.
a. Plot the exchange rate (ER) and the two consumer price indexes against time,

measured in years.
b. Divide the U.S. CPI by the U.K. CPI and call it the relative price ratio (RPR).
c. Plot ER against RPR.
d. Visually sketch a regression line through the scatterpoints.

1.8. Table 1-4 on the textbook Web site contains data on 1247 cars from 2008.14 Is
there a strong relationship between a car’s MPG (miles per gallon) and the
number of cylinders it has?
a. Create a scatterplot of the combined MPG for the vehicles based on the num-

ber of cylinders.
b. Sketch a straight line that seems to fit the data.
c. What type of relationship is indicated by the plot? 

U.K. POUND / $ EXCHANGE RATE BETWEEN U.K. POUND

AND U.S. DOLLAR AND THE CPI IN THE UNITED STATES

AND THE U.K., 1985–2007

Period £ / $ CPI U.S. CPI U.K.

1985 1.2974 107.6 111.1

1986 1.4677 109.6 114.9

1987 1.6398 113.6 119.7

1988 1.7813 118.3 125.6

1989 1.6382 124.0 135.4

1990 1.7841 130.7 148.2

1991 1.7674 136.2 156.9

1992 1.7663 140.3 162.7

1993 1.5016 144.5 165.3

1994 1.5319 148.2 169.3

1995 1.5785 152.4 175.2

1996 1.5607 156.9 179.4

1997 1.6376 160.5 185.1

1998 1.6573 163.0 191.4

1999 1.6172 166.6 194.3

2000 1.5156 172.2 200.1

2001 1.4396 177.1 203.6

2002 1.5025 179.9 207.0

2003 1.6347 184.0 213.0

2004 1.8330 188.9 219.4

2005 1.8204 195.3 225.6

2006 1.8434 201.6 232.8

2007 2.0020 207.3 242.7

Source: Economic Report of the President, 2008. U.K. Pound/ $
from Table B-110; CPI (1982–1984 = 100) from Table B-108.

TABLE 1-3

14Data were collected from the United States Department of Energy Web site at http://www.
fueleconomy.gov/.
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APPENDIX 1A: Economic Data 
on the World Wide Web15

Economic Statistics Briefing Room: An excellent source of data on output, income,
employment, unemployment, earnings, production and business activity, prices
and money, credits and security markets, and international statistics.
http://www.whitehouse.gov/fsbr/esbr.htm

Federal Reserve System Beige Book: Gives a summary of current economic con-
ditions by the Federal Reserve District. There are 12 Federal Reserve Districts.
www.federalreserve.gov/FOMC/BeigeBook/2008

National Bureau of Economic Research (NBER) Home Page: This highly regarded
private economic research institute has extensive data on asset prices, labor,
productivity, money supply, business cycle indicators, etc. NBER has many
links to other Web sites.
http://www.nber.org

Panel Study: Provides data on longitudinal survey of representative sample of
U.S. individuals and families. These data have been collected annually since 1968.
http://www.umich.edu/~psid

The Federal Web Locator: Provides information on almost every sector of the
federal government; has international links.
www.lib.auburn.edu/madd/docs/fedloc.html

WebEC:WWW Resources in Economics: A most comprehensive library of eco-
nomic facts and figures.
www.helsinki.fi/WebEc

American Stock Exchange: Information on some 700 companies listed on the
second largest stock market.
http://www.amex.com/

Bureau of Economic Analysis (BEA) Home Page: This agency of the U.S.
Department of Commerce, which publishes the Survey of Current Business, is an
excellent source of data on all kinds of economic activities.
www.bea.gov

Business Cycle Indicators: You will find data on about 256 economic time series.
http://www.globalexposure.com/bci.html

CIA Publication: You will find the World Fact Book (annual). 
www.cia.gov/library/publications

Energy Information Administration (Department of Energy [DOE]): Economic
information and data on each fuel category.
http://www.eia.doe.gov/

FRED Database: Federal Reserve Bank of St. Louis publishes historical eco-
nomic and social data, which include interest rates, monetary and business
indicators, exchange rates, etc.
http://www.stls.frb.org/fred/

15It should be noted that this list is by no means exhaustive. The sources listed here are up-
dated continually. The best way to get information on the Internet is to search using a key word (e.g.,
unemployment rate). Don’t be surprised if you get a plethora of information on the topic you search.
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International Trade Administration: Offers many Web links to trade statistics,
cross-country programs, etc.
http://www.ita.doc.gov/

STAT-USA Databases: The National Trade Data Bank provides the most com-
prehensive source of international trade data and export promotion informa-
tion. It also contains extensive data on demographic, political, and socioeco-
nomic conditions for several countries.
http://www.stat-usa.gov/

Bureau of Labor Statistics: The home page contains data related to various as-
pects of employment, unemployment, and earnings and provides links to other
statistical Web sites.
http://stats.bls.gov

U.S. Census Bureau Home Page: Prime source of social, demographic, and
economic data on income, employment, income distribution, and poverty.
http://www.census.gov/

General Social Survey: Annual personal interview survey data on U.S. house-
holds that began in 1972. More than 35,000 have responded to some 2500 different
questions covering a variety of data.
www.norc.org/GCS+Website

Institute for Research on Poverty: Data collected by nonpartisan and nonprofit
university-based research center on a variety of questions relating to poverty
and social inequality.
http://www.ssc.wisc.edu/irp/

Social Security Administration: The official Web site of the Social Security
Administration with a variety of data.
http://www.ssa.gov

Federal Deposit Insurance Corporation, Bank Data and Statistics:
http://www.fdic.gov/bank/statistical/

Federal Reserve Board, Economic Research and Data:
http://www.federalreserve.gov/econresdata

U.S. Census Bureau, Home Page:
http://www.census.gov

U.S. Department of Energy, Energy Information Administration:
www.eia.doe.gov/overview_hd.html

U.S. Department of Health and Human Services, National Center for Health
Statistics:
http://www.cdc.gov/nchs

U.S. Department of Housing and Urban Development, Data Sets:
http://www.huduser.org/datasets/pdrdatas.html

U.S. Department of Labor, Bureau of Labor Statistics:
http://www.bls.gov

U.S. Department of Transportation, TranStats:
http://www.transtats.bts.gov

U.S. Department of the Treasury, Internal Revenue Service, Tax Statistics:
http://www.irs.gov/taxstats
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Rockefeller Institute of Government, State and Local Fiscal Data:
www.rockinst.org/research/sl_finance

American Economic Association, Resources for Economists:
http://www.rfe.org

American Statistical Association, Business and Economic Statistics:
www.amstat.org/publications/jbes

American Statistical Association, Statistics in Sports:
http://www.amstat.org/sections/sis/

European Central Bank, Statistics:
http://www.ecb.int/stats

World Bank, Data and Statistics:
http://www.worldbank.org/data

International Monetary Fund, Statistical Topics:
http://www.imf.org/external/np/sta/

Penn World Tables:
http://pwt.econ.upenn.edu

Current Population Survey:
http://www.bls.census.gov/cps/

Consumer Expenditure Survey:
http://www.bls.gov/cex/

Survey of Consumer Finances:
http://www.federalreserve.gov/pubs/oss/

City and County Data Book:
http://www.census.gov/statab/www/ccdb.html

Panel Study of Income Dynamics:
http://psidonline.isr.umich.edu

National Longitudinal Surveys:
http://www.bls.gov/nls/

National Association of Home Builders, Economic and Housing Data:
http://www.nahb.org/page.aspx/category/sectionID=113

National Science Foundation, Division of Science Resources Statistics:
http://www.nsf.gov/sbe/srs/

Economic Report of the President:
http://www.gpoaccess.gov/eop/

Various Economic Data Sets:
http://www.economy.com/freelunch/

The Economist Market Indicators:
http://www.economist.com/markets/indicators

Statistical Resources on the Military:
http://www.lib.umich.edu/govdocs/stmil.html

World Economic Indicators:
http://devdata.worldbank.org/

Economic Time Series Data:
http://www.economagic.com/
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The objective of Part I, which consists of five chapters, is to introduce you to the
“bread-and-butter” tool of econometrics, namely, the linear regression model.

Chapter 2 discusses the basic ideas of linear regression in terms of the
simplest possible linear regression model, in particular, the two-variable model.
We make an important distinction between the population regression model
and the sample regression model and estimate the former from the latter. This
estimation is done using the method of least squares, one of the popular
methods of estimation.

Chapter 3 considers hypothesis testing. As in any hypothesis testing in sta-
tistics, we try to find out whether the estimated values of the parameters of the
regression model are compatible with the hypothesized values of the parame-
ters. We do this hypothesis testing in the context of the classical linear regres-
sion model (CLRM). We discuss why the CLRM is used and point out that the
CLRM is a useful starting point. In Part II we will reexamine the assumptions of
the CLRM to see what happens to the CLRM if one or more of its assumptions
are not fulfilled.

Chapter 4 extends the idea of the two-variable linear regression model
developed in the previous two chapters to multiple regression models, that is,
models having more than one explanatory variable. Although in many ways
the multiple regression model is an extension of the two-variable model, there
are differences when it comes to interpreting the coefficients of the model and
in the hypothesis-testing procedure.

The linear regression model, whether two-variable or multivariable, only re-
quires that the parameters of the model be linear; the variables entering the
model need not themselves be linear. Chapter 5 considers a variety of models



that are linear in the parameters (or can be made so) but are not necessarily lin-
ear in the variables. With several illustrative examples, we point out how and
where such models can be used.

Often the explanatory variables entering into a regression model are qualita-
tive in nature, such as sex, race, and religion. Chapter 6 shows how such
variables can be measured and how they enrich the linear regression model
by taking into account the influence of variables that otherwise cannot be
quantified.

Part I makes an effort to “wed” practice to theory. The availability of user-
friendly regression packages allows you to estimate a regression model without
knowing much theory, but remember the adage that “a little knowledge is a
dangerous thing.” So even though theory may be boring, it is absolutely essen-
tial in understanding and interpreting regression results. Besides, by omitting
all mathematical derivations, we have made the theory “less boring.”

20 PART ONE: THE LINEAR REGRESSION MODEL



CHAPTER 2
BASIC IDEAS OF 
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THE TWO-VARIABLE

MODEL
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In Chapter 1 we noted that in developing a model of an economic phenomenon
(e.g., the law of demand) econometricians make heavy use of a statistical tech-
nique known as regression analysis. The purpose of this chapter and Chapter 3
is to introduce the basics of regression analysis in terms of the simplest possible
linear regression model, namely, the two-variable model. Subsequent chapters
will consider various modifications and extensions of the two-variable model.

2.1 THE MEANING OF REGRESSION

As noted in Chapter 1, regression analysis is concerned with the study of the re-
lationship between one variable called the explained, or dependent, variable and
one or more other variables called independent, or explanatory, variables.

Thus, we may be interested in studying the relationship between the quan-
tity demanded of a commodity in terms of the price of that commodity, income
of the consumer, and prices of other commodities competing with this com-
modity. Or, we may be interested in finding out how sales of a product (e.g., au-
tomobiles) are related to advertising expenditure incurred on that product. Or,
we may be interested in finding out how defense expenditures vary in relation
to the gross domestic product (GDP). In all these examples there may be some
underlying theory that specifies why we would expect one variable to be de-
pendent or related to one or more other variables. In the first example, the law of
demand provides the rationale for the dependence of the quantity demanded of
a product on its own price and several other variables previously mentioned.

For notational uniformity, from here on we will let Y represent the dependent
variable and X the independent, or explanatory, variable. If there is more than



one explanatory variable, we will show the various X’s by the appropriate sub-
scripts (X1, X2, X3, etc.).

It is very important to bear in mind the warning given in Chapter 1 that,
although regression analysis deals with the relationship between a dependent
variable and one or more independent variables, it does not necessarily imply
causation; that is, it does not necessarily mean that the independent variables are
the cause and the dependent variable is the effect. If causality between the two
exists, it must be justified on the basis of some (economic) theory. As noted ear-
lier, the law of demand suggests that if all other variables are held constant, the
quantity demanded of a commodity is (inversely) dependent on its own price.
Here microeconomic theory suggests that the price may be the causal force and
the quantity demanded the effect. Always keep in mind that regression does not nec-
essarily imply causation. Causality must be justified, or inferred, from the theory that
underlies the phenomenon that is tested empirically.

Regression analysis may have one of the following objectives:

1. To estimate the mean, or average, value of the dependent variable, given
the values of the independent variables.

2. To test hypotheses about the nature of the dependence—hypotheses sug-
gested by the underlying economic theory. For example, in the demand
function mentioned previously, we may want to test the hypothesis that
the price elasticity of demand is, say, –1.0; that is, the demand curve has
unitary price elasticity. If the price of the commodity goes up by 1 per-
cent, the quantity demanded on the average goes down by 1 percent,
assuming all other factors affecting demand are held constant.

3. To predict, or forecast, the mean value of the dependent variable, given
the value(s) of the independent variable(s) beyond the sample range.
Thus, in the S.A.T. example discussed in Appendix C, we may wish to
predict the average score on the critical reasoning part of the S.A.T. for a
group of students who know their scores on the math part of the test (see
Table 2-15).

4. One or more of the preceding objectives combined.

2.2 THE POPULATION REGRESSION FUNCTION (PRF):

A HYPOTHETICAL EXAMPLE

To illustrate what all this means, we will consider a concrete example. In the last
two years of high school, most American teenagers take the S.A.T. college en-
trance examination. The test consists of three sections: critical reasoning (formerly
called the verbal section), mathematics, and an essay portion, each scored on a
scale of 0 to 800. Since the essay portion is more difficult to score, we will focus pri-
marily on the mathematics section. Suppose we are interested in finding out
whether a student’s family income is related to how well students score on the
mathematics section of the test. Let Y represent the math S.A.T. score and X rep-
resent annual family income. The income variable has been broken into 10 classes:
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(6 $10,000), ($10,000–$20,000), ($20,000–$30,000), . . . , ($80,000–$100,000), and
(7 $100,000). For simplicity, we have used the midpoints of each of the classes,
estimating the last class midpoint at $150,000, for the analysis. Assume that a
hypothetical population of 100 high school students is reported in Table 2-1.

Table 2.1 can be interpreted as follows: For an annual family income of
$5,000, one student scored a 460 on the math section of the S.A.T. Nine other stu-
dents had similar family incomes, and their scores, together with the first stu-
dent, averaged to 452. For a family income of $15,000, one student scored a 480
on the section, and the average of 10 students in that income bracket was 475.
The remaining columns are similar.

A scattergram of these data is shown in Figure 2-1. For this graph, the hori-
zontal axis represents annual family income and the vertical axis represents the
students’ math S.A.T. scores. For each income level, there are several S.A.T.
scores; in fact, in this instance there are 10 recorded scores.1 The points con-
nected with the line are the mean values for each income level. It seems as
though there is a general, overall upward trend in the math scores; higher
income levels tend to be associated with higher math scores. This is especially
evident with the connected open circles, representing the average scores per
income level. These connected circles are formally called the conditional mean
or conditional expected values (see Appendix B for details). Since we have
assumed the data represent the population of score values, the line connecting
the conditional means is called the population regression line (PRL). The PRL
gives the average, or mean, value of the dependent variable (math S.A.T. scores in this
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TABLE 2-1 MATHEMATICS S.A.T. SCORES IN RELATION TO ANNUAL FAMILY INCOME

Math S.A.T. Scores
Family Income

Student $5,000 $15,000 $25,000 $35,000 $45,000 $55,000 $65,000 $75,000 $90,000 $150,000

1 460 480 460 520 500 450 560 530 560 570

2 470 510 450 510 470 540 480 540 500 560

3 460 450 530 440 450 460 530 540 470 540

4 420 420 430 540 530 480 520 500 570 550

5 440 430 520 490 550 530 510 480 580 560

6 500 450 490 460 510 480 550 580 480 510

7 420 510 440 460 530 510 480 560 530 520

8 410 500 480 520 440 540 500 490 520 520

9 450 480 510 490 510 510 520 560 540 590

10 490 520 470 450 470 550 470 500 550 600

Mean 452 475 478 488 496 505 512 528 530 552

1For simplicity, we are assuming there are 10 scores for each income level. In reality, there may
be a very large number of scores for each X (income) value, and each income level need not have the
same number of observations.



example) corresponding to each value of the independent variable (here, annual family
income) in the population as a whole. Thus, corresponding to an annual income of
$25,000, the average math S.A.T. score is 478, whereas corresponding to an an-
nual income of $45,000, the average math S.A.T. score is 496. In short, the PRL
tells us how the mean, or average, value of Y (or any dependent variable) is
related to each value of X (or any independent variable) in the whole population.

Since the PRL in Figure 2-1 is approximately linear, we can express it mathe-
matically in the following functional form:

(2.1)

which is the mathematical equation of a straight line. In Equation (2.1), 
means the mean, or expected value, of Y corresponding to, or conditional upon,
a given value of X. The subscript i refers to the ith subpopulation. Thus, in
Table 2-1, is 452, which is the mean, or expected, value of Y in
the first subpopulation (i.e., corresponding to X = $5000).

The last row of Table 2-1 gives the conditional mean values of Y. It is very
important to note that is a function of Xi (linear in the present example).
This means that the dependence of Y on X, technically called the regression of Y
on X, can be defined simply as the mean of the distribution of Y values (as in
Table 2-1), which has the given X. In other words, the population regression line
(PRL) is a line that passes through the conditional means of Y. The mathematical
form in which the PRL is expressed, such as Eq. (2.1), is called the population
regression function (PRF), as it represents the regression line in the population
as a whole. In the present instance the PRF is linear. (The more technical mean-
ing of linearity is discussed in Section 2.6.)

E(Y|Xi)

E(Y|Xi = 5000)

E (Y|Xi)

E(Y|Xi) = B1 + B2Xi
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In Eq. (2.1), B1 and B2 are called the parameters, also known as the regression
coefficients. B1 is also known as the intercept (coefficient) and B2 as the slope
(coefficient). The slope coefficient measures the rate of change in the (conditional) mean
value of Y per unit change in X. If, for example, the slope coefficient (B2) were
0.001, it would suggest that if annual family income were to increase by a dol-
lar, the (conditional) mean value of Y would increase by 0.001 points. Because of
the scale of the variables, it is easier to interpret the results for a one-thousand-
dollar increase in annual family income; for each one-thousand-dollar increase
in annual family income, we would expect to see a 1 point increase in the
(conditional) mean value of the math S.A.T. score. B1 is the (conditional) mean
value of Y if X is zero; it gives the average value of the math S.A.T. score if the
annual family income were zero. We will have more to say about this interpre-
tation of the intercept later in the chapter.

How do we go about finding the estimates, or numerical values, of the inter-
cept and slope coefficients? We explore this in Section 2.8.

Before moving on, a word about terminology is in order. Since in regression
analysis, as noted in Chapter 1, we are concerned with examining the behavior
of the dependent variable conditional upon the given values of the independent vari-
able(s), our approach to regression analysis can be termed conditional regression
analysis.2 As a result, there is no need to use the adjective “conditional” all the
time. Therefore, in the future expressions like will be simply written as E (Y ),
with the explicit understanding that the latter in fact stands for the former. Of course,
where there is cause for confusion, we will use the more extended notation.

2.3 STATISTICAL OR STOCHASTIC SPECIFICATION 

OF THE POPULATION REGRESSION FUNCTION

As we just discussed, the PRF gives the average value of the dependent variable
corresponding to each value of the independent variable. Let us take another
look at Table 2-1. We know, for example, that corresponding to X = $75,000, the
average Y is 528 points. But if we pick one student at random from the 10 students
corresponding to this income, we know that the math S.A.T. score for that stu-
dent will not necessarily be equal to the mean value of 528. To be concrete, take
the last student in this group. His or her math S.A.T. score is 500, which is below
the mean value. By the same token, if you take the first student in that group, his
or her score is 530, which is above the average value.

How do you explain the score of an individual student in relation to income?
The best we can do is to say that any individual’s math S.A.T. score is equal to

E (Y|Xi)
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2The fact that our analysis is conditional on X does not mean that X causes Y. It is just that we
want to see the behavior of Y in relation to an X variable that is of interest to the analyst. For exam-
ple, when the Federal Reserve Bank (the Fed) changes the Federal funds rate, it is interested in find-
ing out how the economy responds. During the economic crisis of 2008 in the United States, the Fed
reduced the Federal Funds rate several times to resuscitate the ailing economy. One of the key de-
terminants of the demand for housing is the mortgage interest rate. It is therefore of great interest to
prospective homeowners to track the mortgage interest rates. When the Fed reduces the Federal
Funds rate, all other interest rates follow suit.



the average for that group plus or minus some quantity. Let us express this
mathematically as

(2.2)

where u is known as the stochastic, or random, error term, or simply the error
term.3 We have already encountered this term in Chapter 1. The error term is a
random variable (r.v.), for its value cannot be controlled or known a priori. As we
know from Appendix A, an r.v. is usually characterized by its probability distrib-
ution (e.g., the normal or the t distribution).

How do we interpret Equation (2.2)? We can say that a student’s math S.A.T.
score, say, the ith individual, corresponding to a specific family income can be
expressed as the sum of two components. The first component is ,
which is simply the mean, or average, math score in the ith subpopulation;
that is, the point on the PRL corresponding to the family income. This compo-
nent may be called the systematic, or deterministic, component. The second
component is ui, which may be called the nonsystematic, or random, component
(i.e., determined by factors other than income). The error term ui is also known
as the noise component.

To see this clearly, consider Figure 2-2, which is based on the data of Table 2-1.
As this figure shows, at annual family income = $5000, one student scores 470

on the test, whereas the average math score at this income level is 452. Thus, this

(B1 + B2Xi)

Yi = B1 + B2Xi + ui
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mined by a chance experiment.
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student’s score exceeds the systematic component (i.e., the mean for the group)
by 18 points. So his or her u component is +18 units. On the other hand, at
income = $75,000, a randomly chosen second student scores 500 on the math test,
whereas the average score for this group is 528. This person’s math score is less
than the systematic component by 28 points; his or her u component is thus -28.

Eq. (2.2) is called the stochastic (or statistical) PRF, whereas Eq. (2.1) is called
the deterministic, or nonstochastic, PRF. The latter represents the means of the
various Y values corresponding to the specified income levels, whereas the for-
mer tells us how individual math S.A.T. scores vary around their mean values
due to the presence of the stochastic error term, u.

What is the nature of the u term?

2.4 THE NATURE OF THE STOCHASTIC ERROR TERM

1. The error term may represent the influence of those variables that are not
explicitly included in the model. For example in our math S.A.T. scenario
it may very well represent influences, such as a person’s wealth, the area
where he or she lives, high school GPA, or math courses taken in school.

2. Even if we included all the relevant variables determining the math test
score, some intrinsic randomness in the math score is bound to occur that
cannot be explained no matter how hard we try. Human behavior, after
all, is not totally predictable or rational. Thus, u may reflect this inherent
randomness in human behavior.

3. u may also represent errors of measurement. For example, the data on
annual family income may be rounded or the data on math scores may
be suspect because in some communities few students plan to attend col-
lege and therefore don’t take the test.

4. The principle of Ockham’s razor—that descriptions be kept as simple as
possible until proved inadequate—would suggest that we keep our re-
gression model as simple as possible. Therefore, even if we know what
other variables might affect Y, their combined influence on Y may be so
small and nonsystematic that you can incorporate it in the random
term, u. Remember that a model is a simplification of reality. If we truly
want to build reality into a model it may be too unwieldy to be of
any practical use. In model building, therefore, some abstraction from re-
ality is inevitable. By the way, William Ockham (1285–1349) was an English
philosopher who maintained that a complicated explanation should
not be accepted without good reason and wrote “Frustra fit per plura, quod
fieri potest per pauciora—It is vain to do with more what can be done with
less.”

It is for one or more of these reasons that an individual student’s math S.A.T.
score will deviate from his or her group average (i.e., the systematic compo-
nent). And as we will soon discover, this error term plays an extremely crucial
role in regression analysis.
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2.5 THE SAMPLE REGRESSION FUNCTION (SRF)

How do we estimate the PRF of Eq. (2.1), that is, obtain the values of B1 and B2?
If we have the data from Table 2-1, the whole population, this would be a rela-
tively straightforward task. All we have to do is to find the conditional means of
Y corresponding to each X and then join these means. Unfortunately, in prac-
tice, we rarely have the entire population at our disposal. Often we have only a
sample from this population. (Recall from Chapter 1 and Appendix A our dis-
cussion regarding the population and the sample.) Our task here is to estimate
the PRF on the basis of the sample information. How do we accomplish this?

Pretend that you have never seen Table 2-1 but only had the data given in
Table 2-2, which presumably represent a randomly selected sample of Y values
corresponding to the X values shown in Table 2-1.

Unlike Table 2-1, we now have only one Y value corresponding to each X.
The important question that we now face is: From the sample data of Table 2-2,
can we estimate the average S.A.T. math score in the population as a whole
corresponding to each X? In other words, can we estimate the PRF from the
sample data? As you can well surmise, we may not be able to estimate the PRF
accurately because of sampling fluctuations, or sampling error, a topic we discuss
in Appendix C. To see this clearly, suppose another random sample, which is
shown in Table 2-3, is drawn from the population of Table 2-1. If we plot the
data of Tables 2-2 and 2-3, we obtain the scattergram shown in Figure 2-3.

Through the scatter points we have drawn visually two straight lines that fit
the scatter points reasonably well. We will call these lines the sample regression
lines (SRLs). Which of the two SRLs represents the true PRL? If we avoid the
temptation of looking at Figure 2-1, which represents the PRL, there is no way we
can be sure that either of the SRLs shown in Figure 2-3 represents the true PRL.
For if we had yet another sample, we would obtain a third SRL. Supposedly, each
SRL represents the PRL, but because of sampling variation, each is at best an
approximation of the true PRL. In general, we would get K different SRLs for K
different samples, and all these SRLs are not likely to be the same.
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A RANDOM SAMPLE

FROM TABLE 2-1

Y X

410 5000

420 15000

440 25000

490 35000

530 45000

530 55000

550 65000

540 75000

570 90000

590 150000

TABLE 2-2 A RANDOM SAMPLE

FROM TABLE 2-1

Y X

420 5000

520 15000

470 25000

450 35000

470 45000

550 55000

470 65000

500 75000

550 90000

600 150000

TABLE 2-3



Now analogous to the PRF that underlies the PRL, we can develop the con-
cept of the sample regression function (SRF) to represent the SRL. The sample
counterpart of Eq. (2.1) may be written as

(2.3)

where ^ is read as “hat” or “cap,” and

where = estimator of E(Y|Xi), the estimator of the population conditional mean
b1 = estimator of B1

b2 = estimator of B2

As noted in Appendix D, an estimator, or a sample statistic, is a rule or a for-
mula that suggests how we can estimate the population parameter at hand. A
particular numerical value obtained by the estimator in an application, as we
know, is an estimate. (See Appendix D for the discussion on point and interval
estimators.)

If we look at the scattergram in Figure 2-3, we observe that not all the sample
data lie exactly on the respective sample regression lines. Therefore, just as
we developed the stochastic PRF of Eq. (2.2), we need to develop the stochastic
version of Eq. (2.3), which we write as

(2.4)

where ei = the estimator of ui.

Yi = b1 + b2Xi + ei

NYi

YNi = b1 + b2Xi
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We call ei the residual term, or simply the residual. Conceptually, it is analo-
gous to ui and can be regarded as the estimator of the latter. It is introduced in
the SRF for the same reasons as ui was introduced in the PRF. Simply stated, ei

represents the difference between the actual Y values and their estimated values from the
sample regression. That is,

(2.5)

To summarize, our primary objective in regression analysis is to estimate the
(stochastic) PRF

on the basis of the SRF

because more often than not our analysis is based on a single sample from some
population. But because of sampling variation, our estimate of the PRF based
on the SRF is only approximate. This approximation is shown in Figure 2-4.
Keep in mind that we actually do not observe B1, B2, and u. What we observe are their
proxies, b1, b2, and e, once we have a specific sample.

For a given Xi, shown in this figure, we have one (sample) observation, Yi. In
terms of the SRF, the observed Yi can be expressed as

(2.6)Yi = NYi + ei

Yi = b1 + b2Xi + ei

Yi = B1 + B2Xi + ui

ei = Yi - NYi
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and in terms of the PRF it can be expressed as

(2.7)

Obviously, in Figure 2-4, underestimates the true mean value E(Y|X1) for
the X1 shown therein. By the same token, for any Y to the right of point A in
Figure 2-4 (e.g., ), the SRF will overestimate the true PRF. But you can read-
ily see that such over- and underestimation is inevitable due to sampling
fluctuations.

The important question now is: Granted that the SRF is only an approxima-
tion of the PRF, can we find a method or a procedure that will make this ap-
proximation as close as possible? In other words, how should we construct the
SRF so that b1 is as close as possible to B1 and b2 is as close as possible to B2, be-
cause generally we do not have the entire population at our disposal? As we
will show in Section 2.8, we can indeed find a “best-fitting” SRF that will mirror
the PRF as faithfully as possible. It is fascinating to consider that this can be done
even though we never actually determine the PRF itself.

2.6 THE SPECIAL MEANING OF THE TERM 

“LINEAR” REGRESSION

Since in this text we are concerned primarily with “linear” models like Eq. (2.1),
it is essential to know what the term linear really means, for it can be interpreted
in two different ways.

Linearity in the Variables

The first and perhaps the more “natural” meaning of linearity is that the condi-
tional mean value of the dependent variable is a linear function of the indepen-
dent variable(s) as in Eq. (2.1) or Eq. (2.2) or in the sample counterparts, Eqs. (2.3)
and (2.4).4 In this interpretation, the following functions are not linear:

(2.8)

(2.9)

because in Equation (2.8) X appears with a power of 2, and in Eq. (2.9) it appears
in the inverse form. For regression models linear in the explanatory variable(s),
the rate of change in the dependent variable remains constant for a unit change in
the explanatory variable; that is, the slope remains constant. But for a regression

E(Y) = B1 + B2 

1

Xi

E(Y) = B1 + B2Xi
2

NYn

NY1

Yi = E(Y|Xi) + ui
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4A function Y = f(X) is said to be linear in X if (1) X appears with a power of 1 only; that is,
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model nonlinear in the explanatory variables the slope does not remain constant.
This can be seen more clearly in Figure 2-5.

As Figure 2-5 shows, for the regression (2.1), the slope—the rate of change in
E(Y)—the mean of Y, remains the same, namely, B2 no matter at what value of X
we measure the change. But for regression, say, Eq. (2.8), the rate of change in the
mean value of Y varies from point to point on the regression line; it is actually
a curve here.5

Linearity in the Parameters

The second interpretation of linearity is that the conditional mean of the depen-
dent variable is a linear function of the parameters, the B’s; it may or may not be
linear in the variables. Analogous to a linear-in-variable function, a function is
said to be linear in the parameter, say, B2, if B2 appears with a power of 1 only.
On this definition, models (2.8) and (2.9) are both linear models because B1 and
B2 enter the models linearly. It does not matter that the variable X enters non-
linearly in both models. However, a model of the type

(2.10)

is nonlinear in the parameter model since B2 enters with a power of 2.
In this book we are primarily concerned with models that are linear in the

parameters. Therefore, from now on the term linear regression will mean a regres-
sion that is linear in the parameters, the B’s (i.e., the parameters are raised to the
power of 1 only); it may or may not be linear in the explanatory variables.6

E(Y) = B1 + B2
2Xi
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5Those who know calculus will recognize that in the linear model the slope, that is, the deriva-
tive of Y with respect to X, is constant, equal to B2, but in the nonlinear model Eq. (2.8) it is equal to

, which obviously will depend on the value of X at which the slope is measured, and is
therefore not constant.

6This is not to suggest that nonlinear (in-the-parameters) models like Eq. (2.10) cannot be esti-
mated or that they are not used in practice. As a matter of fact, in advanced courses in econometrics
such models are studied in depth.

-B2(1/X2
i )



2.7 TWO-VARIABLE VERSUS MULTIPLE LINEAR REGRESSION

So far in this chapter we have considered only the two-variable, or simple,
regression models in which the dependent variable is a function of just one
explanatory variable. This was done just to introduce the fundamental ideas of
regression analysis. But the concept of regression can be extended easily to the
case where the dependent variable is a function of more than one explanatory
variable. For instance, if the math S.A.T. score is a function of income (X2), num-
ber of math classes taken (X3), and age of the student (X4), we can write the
extended math S.A.T. function as

(2.11)

[Note: ]
Equation (2.11) is an example of a multiple linear regression, a regression in

which more than one independent, or explanatory, variable is used to explain
the behavior of the dependent variable. Model (2.11) states that the (condi-
tional) mean value of the math S.A.T. score is a linear function of income, num-
ber of math classes taken, and age of the student. The score function of a student
(i.e., the stochastic PRF) can be expressed as

(2.12)

which shows that the individual math S.A.T. score will differ from the group
mean by the factor u, which is the stochastic error term. As noted earlier, even
in a multiple regression we introduce the error term because we cannot take
into account all the forces that might affect the dependent variable.

Notice that both Eqs. (2.11) and (2.12) are linear in the parameters and are
therefore linear regression models. The explanatory variables themselves do not
need to enter the model linearly, although in the present example they do.

2.8 ESTIMATION OF PARAMETERS:THE METHOD 

OF ORDINARY LEAST SQUARES

As noted in Section 2.5, we estimate the population regression function (PRF)
on the basis of the sample regression function (SRF), since in practice we only
have a sample (or two) from a given population. How then do we estimate the
PRF? And how do we find out whether the estimated PRF (i.e., the SRF) is a
“good” estimate of the true PRF? We will answer the first question in this chap-
ter and take up the second question—of the “goodness” of the estimated PRF—
in Chapter 3.

To introduce the fundamental ideas of estimation of the PRF, we consider the
simplest possible linear regression model, namely, the two-variable linear re-
gression in which we study the relationship of the dependent variable Y to a single

 = E(Y) + ui

 Yi = B1 + B2X2i + B3X3i + B4X4i + ui

E(Y) = E(Y|X2i, X3i, X4i).

E(Y) = B1 + B2X2i + B3X3i + B4X4i
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explanatory variable X. In Chapter 4 we extend the analysis to the multiple
regression, where we will study the relationship of the dependent variable Y to
more than one explanatory variable.

The Method of Ordinary Least Squares

Although there are several methods of obtaining the SRF as an estimator of the
true PRF, in regression analysis the method that is used most frequently is that
of least squares (LS), more popularly known as the method of ordinary least
squares (OLS).7 We will use the terms LS and OLS methods interchangeably. To
explain this method, we first explain the least squares principle.

The Least Squares Principle Recall our two-variable PRF, Eq. (2.2):

Since the PRF is not directly observable (Why?), we estimate it from the SRF

which we can write as

which shows that the residuals are simply the differences between the actual
and estimated Y values, the latter obtained from the SRF, Eq. (2.3). This can be
seen more vividly in Figure 2-4.

Now the best way to estimate the PRF is to choose b1 and b2, the estimators of
B1 and B2, in such a way that the residuals ei are as small as possible. The method
of ordinary least squares (OLS) states that b1 and b2 should be chosen in such a
way that the residual sum of squares (RSS), is as small as possible.8

Algebraically, the least squares principle states

(2.13) = a (Yi - b1 - b2Xi)
2

 Minimize a e2
i = a (Yi - NY)2

ge2
i ,

 = Yi - b1 - b2Xi [using Eq. (2.3)]

 = Yi - NYi

 ei = actual Yi - predicted Yi

Yi = b1 + b2X1 + ei

Yi = B1 + B2Xi + ui
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7Despite the name, there is nothing ordinary about this method. As we will show, this method has
several desirable statistical properties. It is called OLS because there is another method, called the
generalized least squares (GLS) method, of which OLS is a special case.

8Note that the smaller the ei is, the smaller their sum of squares will be. The reason for consider-
ing the squares of ei and not the ei themselves is that this procedure avoids the problem of the sign
of the residuals. Note that ei can be positive as well as negative.



As you can observe from Eq. (2.13), once the sample values of Y and X are
given, RSS is a function of the estimators b1 and b2. Choosing different values
of b1 and b2 will yield different e’s and hence different values of RSS. To see
this, just rotate the SRF shown in Figure 2-4 any way you like. For each rota-
tion, you will get a different intercept (i.e., b1) and a different slope (i.e., b2). We
want to choose the values of these estimators that will give the smallest possi-
ble RSS.

How do we actually determine these values? This is now simply a matter of
arithmetic and involves the technique of differential calculus. Without going
into detail, it can be shown that the values of b1 and b2 that actually minimize the
RSS given in Eq. (2.13) are obtained by solving the following two simultaneous
equations. (The details are given in Appendix 2A at the end of this chapter.)

(2.14)

(2.15)

where n is the sample size. These simultaneous equations are known as the
(least squares) normal equations.

In Equations (2.14) and (2.15) the unknowns are the b’s and the knowns are
the quantities involving sums, squared sums, and the sum of the cross-products
of the variables Y and X, which can be easily obtained from the sample at hand.
Now solving these two equations simultaneously (using any high school alge-
bra trick you know), we obtain the following solutions for b1 and b2.

(2.16)

which is the estimator of the population intercept, B1. The sample intercept is
thus the sample mean value of Y minus the estimated slope times the sample
mean value of X.

(2.17)

which is the estimator of the population slope coefficient B2. Note that

that is, the small letters denote deviations from the sample mean values, a convention
that we will adopt in this book. As you can see from the formula for b2, it is simpler

xi = (Xi - X)  and  yi = (Yi - Y)

 =
gXiYi - nX Y

gX2
i - nX2

 =
g (Xi - X)(Yi - Y)

g (Xi - X)2

 b2 =

gxiyi

gx2
i

b1 = Y - b2X

 aYiXi = b1aXi + b2aX2
i

 aYi = nb1 + b2aXi
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to write the estimator using the deviation form. Expressing the values of a variable
from its mean value does not change the ranking of the values, since we are subtracting
the same constant from each value. Note that b1 and b2 are solely expressed in terms
of quantities that can be readily computed from the sample at hand. Of course,
these days the computer will do all the calculations for you.

The estimators given in Equations (2.16) and (2.17) are known as OLS esti-
mators, since they are obtained by the method of OLS.

Before proceeding further, we should note a few interesting features of the
OLS estimators given in Eqs. (2.16) and (2.17):

1. The SRF obtained by the method of OLS passes through the sample
mean values of X and Y, which is evident from Eq. (2.16), for it can be
written as

(2.18)

2. The mean value of the residuals, is always zero, which
provides a check on the arithmetical accuracy of the calculations (see
Table 2-4).

3. The sum of the product of the residuals e and the values of the explana-
tory variable X is zero; that is, these two variables are uncorrelated (on
the definition of correlation, see Appendix B). Symbolically,

(2.19)

This provides yet another check on the least squares calculations.
4. The sum of the product of the residuals ei and the estimated 

is zero; that is, is zero (see Question 2.25).

2.9 PUTTING IT ALL TOGETHER

Let us use the sample data given in Table 2-2 to compute the values of b1 and b2.
The necessary computations involved in implementing formulas (2.16) and
(2.17) are laid out in Table 2-4. Keep in mind that the data given in Table 2-2 are
a random sample from the population given in Table 2-1.

From the computations shown in Table 2-4, we obtain the following sample
math S.A.T. score regression:

(2.20)

where Y represents math S.A.T. score and X represents annual family income.
Note that we have put a cap on Y to remind us that it is an estimator of the true popu-
lation mean corresponding to the given level of X (recall Eq. 2.3). The estimated
regression line is shown in Figure 2-6.

NYi = 432.4138 + 0.0013Xi

gei NYi

Yi(= NYi)

a eiXi = 0

e(=gei/n)

Y = b1 + b2X
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Interpretation of the Estimated Math S.A.T. Score Function

The interpretation of the estimated math S.A.T. score function is as follows:
The slope coefficient of 0.0013 means that, other things remaining the same, if
annual family income goes up by a dollar, the mean or average math S.A.T.
score goes up by about 0.0013 points. The intercept value of 432.4138 means
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TABLE 2-4 RAW DATA (FROM TABLE 2-2) FOR MATH S.A.T. SCORES

Yi Xi aYiXi xi yi ayixi ei aeixi

410 5000 2050000 25000000 -51000 -97 2601000000 9409 4947000 439.073 -29.0733 845.255 1482737.069

420 15000 6300000 225000000 -41000 -87 1681000000 7569 3567000 452.392 -32.3922 1049.257 1328081.897

440 25000 11000000 625000000 -31000 -67 961000000 4489 2077000 465.711 -25.7112 661.066 797047.4138

490 35000 17150000 1225000000 -21000 -17 441000000 289 357000 479.030 10.9698 120.337 -230366.3793

530 45000 23850000 2025000000 -11000 23 121000000 529 -253000 492.349 37.6509 1417.587 -414159.4828

530 55000 29150000 3025000000 -1000 23 1000000 529 -23000 505.668 24.3319 592.0412 -24331.89655

550 65000 35750000 4225000000 9000 43 81000000 1849 387000 518.987 31.0129 961.8019 279116.3793

540 75000 40500000 5625000000 19000 33 361000000 1089 627000 532.306 7.69397 59.1971 146185.3448

570 90000 51300000 8100000000 34000 63 1156000000 3969 2142000 552.284 17.7155 313.8396 602327.5862

590 150000 88500000 22500000000 94000 83 8836000000 6889 7802000 632.198 -42.1982 1780.694 -3966637.931

5070 560000 305550000 47600000000 0 0 16240000000 36610 21630000 5070 0 7801.0776 0

Note: xi = (Xi - X ); yi = (Yi - Y );  X = 56000; Y = 507.

e 2
i

NYiy 2
ix 2

iX 2
i

Y
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Fitted Line Plot
Ŷ ⫽ 432.4138 ⫹ 0.0013X

Regression line based on data from Table 2-4FIGURE 2-6



that if family income is zero, the mean math score will be about 432.4138.
Very often such an interpretation has no economic meaning. For example, we
have no data where an annual family income is zero. As we will see throughout
the book, often the intercept has no particular economic meaning. In general you
have to use common sense in interpreting the intercept term, for very often
the sample range of the X values (family income in our example) may not
include zero as one of the observed values. Perhaps it is best to interpret the
intercept term as the mean or average effect on Y of all the variables omitted from
the regression model.

2.10 SOME ILLUSTRATIVE EXAMPLES

Now that we have discussed the OLS method and learned how to estimate a
PRF, let us provide some concrete applications of regression analysis.

Example 2.1. Years of Schooling and Average Hourly Earnings

Based on a sample of 528 observations, Table 2-5 gives data on average
hourly wage Y($) and years of schooling (X).

Suppose we want to find out how Y behaves in relation to X. From human
capital theories of labor economics, we would expect average wage to
increase with years of schooling. That is, we expect a positive relationship
between the two variables; it would be bad news if such were not the case.

The regression results based on the data in Table 2-5 are as follows:

(2.21)NYi = -0.0144 + 0.7241Xi
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AVERAGE HOURLY WAGE BY EDUCATION

Years of schooling Average hourly wage ($) Number of people

6 4.4567 3

7 5.7700 5

8 5.9787 15

9 7.3317 12

10 7.3182 17

11 6.5844 27

12 7.8182 218

13 7.8351 37

14 11.0223 56

15 10.6738 13

16 10.8361 70

17 13.6150 24

18 13.5310 31

Source: Arthur S. Goldberger, Introductory Econometrics, Harvard University
Press, Cambridge, Mass., 1998, Table 1.1, p. 5 (adapted).

TABLE 2-5



As these results show, there is a positive association between education
and earnings, which accords with prior expectations. For every additional
year of schooling, the mean wage rate goes up by about 72 cents per hour.9

The negative intercept in the present instance has no particular economic
meaning.

Example 2.2. Okun’s Law

Based on the U.S. data for 1947 to 1960, the late Arthur Okun of the Brookings
Institution and a former chairman of the President’s Council of Economic
Advisers obtained the following regression, known as Okun’s law:

(2.22)

where Yt = change in the unemployment rate, percentage points
Xt = percent growth rate in real output, as measured by real GDP

2.5 = the long-term, or trend, rate of growth of output historically
observed in the United States

In this regression the intercept is zero and the slope coefficient is -0.4.
Okun’s law says that for every percentage point of growth in real GDP above
2.5 percent, the unemployment rate declines by 0.4 percentage points.

Okun’s law has been used to predict the required growth in real GDP to
reduce the unemployment rate by a given percentage point. Thus, a growth
rate of 5 percent in real GDP will reduce the unemployment rate by 1 per-
centage point, or a growth rate of 7.5 percent is required to reduce the
unemployment rate by 2 percentage points. In Problem 2.17, which gives
comparatively more recent data, you are asked to find out if Okun’s law still
holds.

This example shows how sometimes a simple (i.e., two-variable) regres-
sion model can be used for policy purposes.

Example 2.3. Stock Prices and Interest Rates

Stock prices and interest rates are key economic indicators. Investors in stock
markets, individual or institutional, watch very carefully the movements in
the interest rates. Since interest rates represent the cost of borrowing money,
they have a vast effect on investment and hence on the profitability of a com-
pany. Macroeconomic theory would suggest an inverse relationship between
stock prices and interest rates.

As a measure of stock prices, let us use the S&P 500 composite index
($1941–1943 = 10), and as a measure of interest rates, let us use the three-month

Yt = -0.4(Xt - 2.5)
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9Since the data in Table 2-5 refer to the mean wage for the various categories, the slope coefficient
here should strictly be interpreted as the average increase in the mean hourly earnings.



Treasury bill rate (%). Table 2-6, found on the textbook’s Web site, gives data
on these variables for the period 1980–2007.

Plotting these data, we obtain the scattergram as shown in Figure 2-7. The
scattergram clearly shows that there is an inverse relationship between the
two variables, as per theory. But the relationship between the two is not
linear (i.e., straight line); it more closely resembles Figure 2-5(b). Therefore,
let us maintain that the true relationship is:

(2.23)

Note that Eq. (2.23) is a linear regression model, as the parameters in the
model are linear. It is, however, nonlinear in the variable X. If you let Z = 1/X,
then the model is linear in the parameters as well as the variables Y and Z.

Using the EViews statistical package, we estimate Eq. (2.23) by OLS, giving
the following results:

(2.24)

How do we interpret these results? The value of the intercept has no practi-
cal economic meaning. The interpretation of the coefficient of (1/X) is rather
tricky. Literally interpreted, it suggests that if the reciprocal of the three-
month Treasury bill rate goes up by one unit, the average value of the
S&P 500 index will go up by about 997 units. This is, however, not a very en-
lightening interpretation. If you want to measure the rate of change of

NYt = 404.4067 + 996.866(1/Xt)

Yt = B1 + B2(1/Xi) + ui
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(mean) Y with respect to X (i.e., the derivative of Y with respect to X), then
as footnote 5 shows, this rate of change is given by which de-
pends on the value taken by X. Suppose Knowing that the estimated
B2 is 996.866, we find the rate of change at this X value as (approx).
That is, starting with a Treasury bill rate of about 2 percent, if that rate goes
up by one percentage point, on average, the S&P 500 index will decline by
about 249 units. Of course, an increase in the Treasury bill rate from 2 percent
to 3 percent is a substantial increase.

Interestingly, if you had disregarded Figure 2-5 and had simply fitted
the straight line regression to the data in Table 2-6, (found on the textbook’s
Web site), you would obtain the following regression:

(2.25)

Here the interpretation of the intercept term is that if the Treasury bill rate were
zero, the average value of the S&P index would be about 1229. Again, this
may not have any concrete economic meaning. The slope coefficient here
suggests that if the Treasury bill rate were to increase by one unit, say, one
percentage point, the average value of the S&P index would go down by about
99 units.

Regressions (2.24) and (2.25) bring out the practical problems in choosing an
appropriate model for empirical analysis. Which is a better model? How do we
know? What tests do we use to choose between the two models? We will pro-
vide answers to these questions as we progress through the book (see Chapter 5).
A question to ponder: In Eq. (2.24) the sign of the slope coefficient is positive,
whereas in Eq. (2.25) it is negative. Are these findings conflicting?

Example 2.4. Median Home Price and Mortgage Interest Rate in the
United States, 1980–2007

Over the past several years there has been a surge in home prices across the
United States. It is believed that this surge is due to sharply falling mortgage
interest rates. To see the impact of mortgage interest rates on home prices,
Table 2-7 (found on the textbook’s Web site) gives data on median home
prices (1000 $) and 30-year fixed rate mortgage (%) in the United States for
the period 1980–2007.

These data are plotted in Figure 2-8.
As a first approximation, if you fit a straight line regression model, you

will obtain the following results, where Y = median home price (1000 $) and
X = 30-year fixed rate mortgage (%):

(2.26)NYt = 329.0041 - 17.3694Xt

NYt = 1229.3414 - 99.4014Xt

-249.22
X = 2.

-B2(1/Xi
2),
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These results show that if the mortgage interest rate goes up by 1 percentage
point,10 on average, the median home price goes down by about 17.4 units or
about $17,400. (Note: Y is measured in thousands of dollars.) Literally inter-
preted, the intercept coefficient of about 329 would suggest that if the mort-
gage interest rate were zero, the median home price on average would be
about $329,000, an interpretation that may stretch our credulity.

It seems that falling interest rates do have a substantial impact on home
prices. A question: If we had taken median family income into account, would
this conclusion still stand?

Example 2.5. Antique Clocks and Their Prices

The Triberg Clock Company of Schonachbach, Germany, holds an annual an-
tique clock auction. Data on about 32 clocks (the age of the clock, the number
of bidders, and the price of the winning bid in marks) are given in Table 2-14
in Problem 2.19. Note that this auction took place about 25 years ago.

If we believe that the price of the winning bid depends on the age of the
clock—the older the clock, the higher the price, ceteris paribus—we would
expect a positive relationship between the two. Similarly, the higher the num-
ber of bidders, the higher the auction price because a large number of bidders
for a particular clock would suggest that that clock is more valuable, and
hence we would expect a positive relationship between the two variables.
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10Note that there is a difference between a 1 percentage point increase and a 1 percent increase.
For example, if the current interest rate is 6 percent but then goes to 7 percent, this represents a 

1 percentage point increase; the percentage increase is, however, .A7 - 6
6 B * 100 = 16.6%



Using the data given in Table 2-14, we obtained the following OLS
regressions:

Price = -191.6662 + 10.4856 Age (2.27)

Price = 807.9501 + 54.5724 Bidders (2.28)

As these results show, the auction price is positively related to the age of the
clock, as well as to the number of bidders present at the auction.

In Chapter 4 on multiple regression we will see what happens when we
regress price on age and number of bidders together, rather than individu-
ally, as in the preceding two regressions.

The regression results presented in the preceding examples can be obtained eas-
ily by applying the OLS formulas Eq. (2.16) and Eq. (2.17) to the data presented
in the various tables. Of course, this would be very tedious and very time-
consuming to do manually. Fortunately, there are several statistical software
packages that can estimate regressions in practically no time. In this book we
will use the EViews and MINITAB software packages to estimate several re-
gression models because these packages are comprehensive, easy to use, and
readily available. (Excel can also do simple and multiple regressions.)
Throughout this book, we will reproduce the computer output obtained from these pack-
ages. But keep in mind that there are other software packages that can estimate
all kinds of regression models. Some of these packages are LIMDEP, MICROFIT,
PC-GIVE, RATS, SAS, SHAZAM, SPSS, and STATA.

2.11 SUMMARY

In this chapter we introduced some fundamental ideas of regression analysis.
Starting with the key concept of the population regression function (PRF), we
developed the concept of linear PRF. This book is primarily concerned with lin-
ear PRFs, that is, regressions that are linear in the parameters regardless of
whether or not they are linear in the variables. We then introduced the idea of
the stochastic PRF and discussed in detail the nature and role of the stochastic
error term u. PRF is, of course, a theoretical or idealized construct because, in
practice, all we have is a sample(s) from some population. This necessitated the
discussion of the sample regression function (SRF).

We then considered the question of how we actually go about obtaining the
SRF. Here we discussed the popular method of ordinary least squares (OLS)
and presented the appropriate formulas to estimate the parameters of the PRF.
We illustrated the OLS method with a fully worked-out numerical example as
well as with several practical examples.

Our next task is to find out how good the SRF obtained by OLS is as an esti-
mator of the true PRF. We undertake this important task in Chapter 3.
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KEY TERMS AND CONCEPTS

The key terms and concepts introduced in this chapter are

Regression analysis
a) explained, or dependent,

variable
b) independent, or explanatory,

variable
Scattergram; scatter diagram
Population regression line (PRL)

a) conditional mean, or conditional
expected, values

Population regression 
function (PRF)

Regression coefficients; parameters
a) intercept
b) slope

Conditional regression analysis
Stochastic, or random, error term;

error term
a) noise component
b) stochastic, or statistical, PRF

c) deterministic, or nonstochastic,
PRF

Sample regression line (SRL)
Sample regression function (SRF)
Estimator; sample statistic
Estimate
Residual term e; residual
Linearity in variables
Linearity in parameters

a) linear regression
Two-variable, or simple, regression

vs. multiple linear regression
Estimation of parameters

a) the method of ordinary least
squares (OLS)

b) the least squares principle
c) residual sum of squares (RSS)
d) normal equations
e) OLS estimators

QUESTIONS

2.1. Explain carefully the meaning of each of the following terms:
a. Population regression function (PRF).
b. Sample regression function (SRF).
c. Stochastic PRF.
d. Linear regression model.
e. Stochastic error term (ui).
f. Residual term (ei).
g. Conditional expectation.
h. Unconditional expectation.
i. Regression coefficients or parameters.
j. Estimators of regression coefficients.

2.2. What is the difference between a stochastic population regression function
(PRF) and a stochastic sample regression function (SRF)?

2.3. Since we do not observe the PRF, why bother studying it? Comment on this
statement.

2.4. State whether the following statements are true, false, or uncertain. Give your
reasons. Be precise.
a. The stochastic error term ui and the residual term ei mean the same thing.
b. The PRF gives the value of the dependent variable corresponding to each

value of the independent variable.
c. A linear regression model means a model linear in the variables.



d. In the linear regression model the explanatory variable is the cause and the
dependent variable is the effect.

e. The conditional and unconditional mean of a random variable are the same
thing.

f. In Eq. (2.2) the regression coefficients, the B’s, are random variables, whereas
the b’s in Eq. (2.4) are the parameters.

g. In Eq. (2.1) the slope coefficient B2 measures the slope of Y per unit change in
X.

h. In practice, the two-variable regression model is useless because the behav-
ior of a dependent variable can never be explained by a single explanatory
variable.

i. The sum of the deviation of a random variable from its mean value is always
equal to zero.

2.5. What is the relationship between
a. B1 and b1; b. B2 and b2; and c. ui and ei? Which of these entities can be ob-

served and how?
2.6. Can you rewrite Eq. (2.22) to express X as a function of Y? How would you

interpret the converted equation?
2.7. The following table gives pairs of dependent and independent variables. In

each case state whether you would expect the relationship between the two
variables to be positive, negative, or uncertain. In other words, tell whether the
slope coefficient will be positive, negative, or neither. Give a brief justification
in each case.

Dependent variable Independent variable

(a) GDP Rate of interest
(b) Personal savings Rate of interest
(c) Yield of crop Rainfall
(d ) U.S. defense expenditure Soviet Union’s defense expenditure
(e) Number of home runs hit by Annual salary

a star baseball player
(f ) A president’s popularity Length of stay in office
(g) A student’s first-year grade- S.A.T. score

point average
(h) A student’s grade in econometrics Grade in statistics
(i) Imports of Japanese cars U.S. per capita income

PROBLEMS

2.8. State whether the following models are linear regression models:
a.

b.

c.

d.

e.

f.
Note: ln stands for the natural log, that is, log to the base e. (More on this in
Chapter 4.)

Yi = B1 + B3
2 Xi + ui

Yi = B1 + B2B3 Xi + ui

ln Yi = B1 + B2 ln Xi + ui

ln Yi = B1 + B2 Xi + ui

Yi = B1 + B2 ln Xi + ui

Yi = B1 + B2(1/Xi)
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2.9. Table 2-8 gives data on weekly family consumption expenditure (Y) (in dollars)
and weekly family income (X) (in dollars).
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HYPOTHETICAL DATA ON WEEKLY CONSUMPTION

EXPENDITURE AND WEEKLY INCOME

Weekly income Weekly consumption expenditure 
($)(X ) ($) (Y )

80 55, 60, 65, 70, 75
100 65, 70, 74, 80, 85, 88
120 79, 84, 90, 94, 98
140 80, 93, 95, 103, 108, 113, 115
160 102, 107, 110, 116, 118, 125
180 110, 115, 120, 130, 135, 140
200 120, 136, 140, 144, 145
220 135, 137, 140, 152, 157, 160, 162
240 137, 145, 155, 165, 175, 189
260 150, 152, 175, 178, 180, 185, 191

TABLE 2-8

a. For each income level, compute the mean consumption expenditure,
that is, the conditional expected value.

b. Plot these data in a scattergram with income on the horizontal axis and
consumption expenditure on the vertical axis.

c. Plot the conditional means derived in part (a) in the same scattergram cre-
ated in part (b).

d. What can you say about the relationship between Y and X and between
mean Y and X?

e. Write down the PRF and the SRF for this example.
f. Is the PRF linear or nonlinear?

2.10. From the data given in the preceding problem, a random sample of Y was
drawn against each X. The result was as follows:

Y 70 65 90 95 110 115 120 140 155 150

X 80 100 120 140 160 180 200 220 240 260

a. Draw the scattergram with Y on the vertical axis and X on the horizontal axis.
b. What can you say about the relationship between Y and X?
c. What is the SRF for this example? Show all your calculations in the manner

of Table 2-4.
d. On the same diagram, show the SRF and PRF.
e. Are the PRF and SRF identical? Why or why not?

2.11. Suppose someone has presented the following regression results for your con-
sideration:

where Y = coffee consumption in the United States (cups per person per day)
X = retail price of coffee ($ per pound)
t = time period

a. Is this a time series regression or a cross-sectional regression?
b. Sketch the regression line.

NYt = 2.6911 - 0.4795Xt

E(Y|Xi),



c. What is the interpretation of the intercept in this example? Does it make
economic sense?

d. How would you interpret the slope coefficient?
e. Is it possible to tell what the true PRF is in this example?
f. The price elasticity of demand is defined as the percentage change in the

quantity demanded for a percentage change in the price. Mathematically, it
is expressed as

That is, elasticity is equal to the product of the slope and the ratio of X to Y,
where X = the price and Y = the quantity. From the regression results pre-
sented earlier, can you tell what the price elasticity of demand for coffee is?
If not, what additional information would you need to compute the price
elasticity?

2.12. Table 2-9 gives data on the Consumer Price Index (CPI) for all items
(1982–1984 = 100) and the Standard & Poor’s (S&P) index of 500 common
stock prices (base of index: 1941–1943 = 10).

Elasticity =  SlopeaX

Y
b
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CONSUMER PRICE INDEX (CPI) AND

S&P 500 INDEX (S&P), UNITED

STATES, 1978–1989

Year CPI S&P

1978 65.2 96.02
1979 72.6 103.01
1980 82.4 118.78
1981 90.9 128.05
1982 96.5 119.71
1983 99.6 160.41
1984 103.9 160.46
1985 107.6 186.84
1986 109.6 236.34
1987 113.6 286.83
1988 118.3 265.79
1989 124.0 322.84

Source: Economic Report of the President,
1990, Table C-58, for CPI and Table C-93 for
the S&P index.

TABLE 2-9

a. Plot the data on a scattergram with the S&P index on the vertical axis and
CPI on the horizontal axis.

b. What can you say about the relationship between the two indexes? What
does economic theory have to say about this relationship?

c. Consider the following regression model:

Use the method of least squares to estimate this equation from the preced-
ing data and interpret your results.

d. Do the results obtained in part (c) make economic sense?
e. Do you know why the S&P index dropped in 1988?

(S&P)t = B1 + B2CPIt + ut



2.13. Table 2-10 gives data on the nominal interest rate (Y) and the inflation rate (X)
for the year 1988 for nine industrial countries.
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NOMINAL INTEREST RATE (Y ) AND

INFLATION (X) IN NINE INDUSTRIAL

COUNTRIES FOR THE YEAR 1988

Country Y (%) X (%)

Australia 11.9 7.7
Canada 9.4 4.0
France 7.5 3.1
Germany 4.0 1.6
Italy 11.3 4.8
Mexico 66.3 51.7
Switzerland 2.2 2.0
United Kingdom 10.3 6.8
United States 7.6 4.4

Source: Rudiger Dornbusch and Stanley
Fischer, Macroeconomics, 5th ed., McGraw-
Hill, New York, 1990, p. 652. The original data
are from various issues of International
Financial Statistics, published by the
International Monetary Fund (IMF).

TABLE 2-10

a. Plot these data with the interest rate on the vertical axis and the inflation
rate on the horizontal axis. What does the scattergram reveal?

b. Do an OLS regression of Y on X. Present all your calculations.
c. If the real interest rate is to remain constant, what must be the relationship

between the nominal interest rate and the inflation rate? That is, what must
be the value of the slope coefficient in the regression of Y on X and that of
the intercept? Do your results suggest that this is the case? For a theoretical
discussion of the relationship among the nominal interest rate, the inflation
rate, and the real interest rate, see any textbook on macroeconomics and
look up the topic of the Fisher equation, named after the famous American
economist, Irving Fisher.

2.14. The real exchange rate (RE) is defined as the nominal exchange rate (NE)
times the ratio of the domestic price to foreign price. Thus, RE for the United
States against UK is

a. From the data given in Table 1-3 of Problem 1.7, compute REUS.
b. Using a regression package you are familiar with, estimate the following

regression:

(1)

c. A priori, what do you expect the relationship between the nominal and real
exchange rates to be? You may want to read up on the purchasing power
parity (PPP) theory from any text on international trade or macroeconomics.

d. Are the a priori expectations supported by your regression results? If not,
what might be the reason?

NEUS = B1 + B2 REUS + u

REUS = NEUS(USCPI/UKCPI)



*e. Run regression (1) in the following alternative form:

(2)

where ln stands for the natural logarithm, that is, log to the base e. Interpret
the results of this regression. Are the results from regressions (1) and
(2) qualitatively the same?

2.15. Refer to problem 2.12. In Table 2-11 we have data on CPI and the S&P 500
index for the years 1990 to 2007.

ln NEUS = A1 + A2 ln REUS + u

CHAPTER TWO: BASIC IDEAS OF LINEAR REGRESSION: THE TWO-VARIABLE MODEL 49

CONSUMER PRICE INDEX (CPI) AND S&P 500

INDEX (S&P), UNITED STATES, 1990–2007

Year CPI S&P

1990 130.7 334.59
1991 136.2 376.18
1992 140.3 415.74
1993 144.5 451.41
1994 148.2 460.42
1995 152.4 541.72
1996 156.9 670.50
1997 160.5 873.43
1998 163.0 1085.50
1999 166.6 1327.33
2000 172.2 1427.22
2001 177.1 1194.18
2002 179.9 993.94
2003 184.0 965.23
2004 188.9 1130.65
2005 195.3 1207.23
2006 201.6 1310.46
2007 207.3 1477.19

Source: Economic Report of the President, 2008.

TABLE 2-11

a. Repeat questions (a) to (e) from problem 2.12.
b. Do you see any difference in the estimated regressions?
c. Now combine the two sets of data and estimate the regression of the S&P

index on the CPI.
d. Are there noticeable differences in the three regressions?

2.16. Table 2-12, found on the textbook’s Web site, gives data on average starting pay
(ASP), grade point average (GPA) scores (on a scale of 1 to 4), GMAT scores, an-
nual tuition, percent of graduates employed at graduation, recruiter assess-
ment score (5.0 highest), and percent of applicants accepted in the graduate
business school for 47 well-regarded business schools in the United States for
the year 2007–2008. Note: Northwestern University ranked 4th (in a tie with
MIT and University of Chicago) but was removed from the data set because
there was no information available about percent of applicants accepted.
a. Using a bivariate regression model, find out if GPA has any effect on ASP.
b. Using a suitable regression model, find out if GMAT scores have any rela-

tionship to ASP.

*Optional.



c. Does annual tuition have any relationship to ASP? How do you know?
If there is a positive relationship between the two, does that mean it
pays to go to the most expensive business school? Can you argue that a
high-tuition business school means a high-quality MBA program? Why
or why not?

d. Does the recruiter perception have any bearing on ASP?
2.17. Table 2-13 (found on the textbook’s Web site) gives data on real GDP (Y) and

civilian unemployment rate (X) for the United States for period 1960 to 2006.
a. Estimate Okun’s law in the form of Eq. (2.22). Are the regression results

similar to the ones shown in (2.22)? Does this suggest that Okun’s law is
universally valid?

b. Now regress percentage change in real GDP on change in the civilian un-
employment rate and interpret your regression results.

c. If the unemployment rate remains unchanged, what is the expected (per-
cent) rate of growth in real GDP? (Use the regression in [b]). How would
you interpret this growth rate?

2.18. Refer to Example 2.3, for which the data are as shown in Table 2-6 (on the text-
book’s Web site).
a. Using a statistical package of your choice, confirm the regression results

given in Eq. (2.24) and Eq. (2.25).
b. For both regressions, get the estimated values of Y (i.e., ) and compare

them with the actual Y values in the sample. Also obtain the residual values,
ei. From this can you tell which is a better model, Eq. (2.24) or Eq. (2.25)?

2.19. Refer to Example 2.5 on antique clock prices. Table 2-14 gives the underlying
data.
a. Plot clock prices against the age of the clock and against the number of

bidders. Does this plot suggest that the linear regression models shown in
Eq. (2.27) and Eq. (2.28) may be appropriate?

NYi
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AUCTION DATA ON PRICE, AGE OF 

CLOCK, AND NUMBER OF BIDDERS

Number of Number of 
Observations Price Age bidders Observations Price Age bidders

1 1235 127 13 17 854 143 6
2 1080 115 12 18 1483 159 9
3 845 127 7 19 1055 108 14
4 1552 150 9 20 1545 175 8
5 1047 156 6 21 729 108 6
6 1979 182 11 22 1792 179 9
7 1822 156 12 23 1175 111 15
8 1253 132 10 24 1593 187 8
9 1297 137 9 25 1147 137 8

10 946 113 9 26 1092 153 6
11 1713 137 15 27 1152 117 13
12 1024 117 11 28 1336 126 10
13 2131 170 14 29 785 111 7
14 1550 182 8 30 744 115 7
15 1884 162 11 31 1356 194 5
16 2041 184 10 32 1262 168 7

TABLE 2-14



b. Would it make any sense to plot the number of bidders against the age of
the clock? What would such a plot reveal?

2.20. Refer to the math S.A.T. score example discussed in the text. Table 2-4 gives
the necessary raw calculations to obtain the OLS estimators. Look at the
columns Y (actual Y) and (estimated Y) values. Plot the two in a scattergram.
What does the scattergram reveal? If you believe that the fitted model
[Eq. (2.20)] is a “good” model, what should be the shape of the scattergram? In
the next chapter we will see what we mean by a “good” model.

2.21. Table 2-15 (on the textbook’s Web site) gives data on verbal and math S.A.T.
scores for both males and females for the period 1972–2007.
a. You want to predict the male math score (Y) on the basis of the male ver-

bal score (X). Develop a suitable linear regression model and estimate its
parameters.

b. Interpret your regression results.
c. Reverse the roles of Y and X and regress the verbal score on the math score.

Interpret this regression
d. Let a2 be the slope coefficient in the regression of the math score on the ver-

bal score and let b2 be the slope coefficient of the verbal score on the math
score. Multiply these two values. Compare the resulting value with the r2

obtained from the regression of math score on verbal score or the r2 value
obtained from the regression of verbal score on math score. What conclusion
can you draw from this exercise?

2.22. Table 2-16 (on the textbook’s Web site) gives data on investment rate (ipergdp)
and savings rate (spergdp), both measured as percent of GDP, for a cross-
section of countries. These rates are averages for the period 1960–1974.*
a. Plot the investment rate on the vertical axis and the savings rate on the hor-

izontal axis.
b. Eyeball a suitable curve from the scatter diagram in (a).
c. Now estimate the following model

d. Interpret the estimated coefficients.
e. What general conclusion do you draw from your analysis?
Note: Save your results for further analysis in the next chapter.

OPTIONAL QUESTIONS

2.23. Prove that , and hence show that .

2.24. Prove that .

2.25. Prove that that is, that the sum of the product of residuals ei and the
estimated Yi is always zero.

2.26. Prove that that is, that the means of the actual Y values and the
estimated Y values are the same.

Y = YN ,

gei
N

 Yi = 0,

geixi = 0

e = 0gei = 0

ipergdpi = B1 + B2 spergdpi + ui
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Capital Flows,” Economic Journal, vol. 90, June 1980, pp. 314–329.



2.27. Prove that where and .
2.28. Prove that where xi and yi are as defined in Problem 2.27.
2.29. For the math S.A.T. score example data given in Table 2-4, verify that state-

ments made in Question 2.23 hold true (save the rounding errors).

APPENDIX 2A: Derivation 
of Least-Squares Estimates

We start with Eq. (2.13):

(2A.1)

Using the technique of partial differentiation from calculus, we obtain:

(2A.2)

(2A.3)

By the first order condition of optimization, we set these two derivations to zero
and simplify, which will give

(2A.4)

(2A.5)

which are Eqs. (2.14) and (2.15), respectively, given in the text.
Solving these two equations simultaneously, we get the formulas given in

Eqs. (2.16) and (2.17).

 aYiXi = b1aXi + b2aXi
2

 aYi = nb1 + b2aXi

 0ae2
i /0 b2 = 2a (Yi - b1 - b2Xi)(-Xi)

 0ae2
i/0b1 = 2a (Yi - b1 - b2Xi)(-1)

ae
2
i = a (Yi - b1 - b2X1)

2

gxi = gyi = 0,
yi = (Yi - Y)xi = (Xi - X)gxiyi = gxiyi = gxiyi,
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CHAPTER 3
THE TWO-VARIABLE

MODEL: HYPOTHESIS
TESTING

53

In Chapter 2 we showed how the method of least squares works. By applying
that method to our math S.A.T. sample data given in Table 2-2, we obtained the
following math S.A.T. score function:

(2.20)

where Y represents math S.A.T. score and X represents annual family income,
measured in dollars.

This example illustrated the estimation stage of statistical inference. We now
turn our attention to its other stage, namely, hypothesis testing. The important
question that we raise is: How “good” is the estimated regression line given in
Equation (2.20)? That is, how can we tell that it really is a good estimator of the
true population regression function (PRF)? How can we be sure just on the basis
of a single sample given in Table 2-2 that the estimated regression function
(i.e., the sample regression function [SRF]) is in fact a good approximation of the
true PRF?

We cannot answer this question definitely unless we are a little more specific
about our PRF, Eq. (2.2). As Eq. (2.2) shows, Yi depends on both Xi and ui. Now
we have assumed that the Xi values are known or given—recall from Chapter 2
that our analysis is a conditional regression analysis, conditional upon the given
X’s. In short, we treat the X values as nonstochastic. The (nonobservable) error
term u is of course random, or stochastic. (Why?) Since a stochastic term (u) is
added to a nonstochastic term (X) to generate Y, Y becomes stochastic, too. This
means that unless we are willing to assume how the stochastic u terms are gener-
ated, we will not be able to tell how good an SRF is as an estimate of the true PRF.

YNi = 432.4138 + 0.0013Xi



In deriving the ordinary least squares (OLS) estimators so far, we did not say how
the ui were generated, for the derivation of OLS estimators did not depend on
any (probabilistic) assumption about the error term. But in testing statistical hy-
potheses based on the SRF, we cannot make further progress, as we will show
shortly, unless we make some specific assumptions about how ui are generated.
This is precisely what the so-called classical linear regression model (CLRM)
does, which we will now discuss. Again, to explain the fundamental ideas, we
consider the two-variable regression model introduced in Chapter 2. In Chapter 4
we extend the ideas developed here to the multiple regression models.

3.1 THE CLASSICAL LINEAR REGRESSION MODEL

The CLRM makes the following assumptions:

A3.1.

The regression model is linear in the parameters; it may or may not be linear in
the variables. That is, the regression model is of the following type.

(2.2)

As will be discussed in Chapter 4, this model can be extended to include
more explanatory variables.

A3.2.

The explanatory variable(s) X is uncorrelated with the disturbance term u.
However, if the X variable(s) is nonstochastic (i.e., its value is a fixed number),
this assumption is automatically fulfilled. Even if the X value(s) is stochastic,
with a large enough sample size this assumption can be related without
severely affecting the analysis.1

This assumption is not a new assumption because in Chapter 2 we stated that
our regression analysis is a conditional regression analysis, conditional upon the
given X values. In essence, we are assuming that the X’s are nonstochastic.
Assumption (3.1) is made to deal with simultaneous equation regression models,
which we will discuss in Chapter 11.

A3.3.

Given the value of Xi, the expected, or mean, value of the disturbance term u
is zero. That is,

(3.1)

Recall our discussion in Chapter 2 about the nature of the random term ui.
It represents all those factors that are not specifically introduced in the model.

E(u|Xi) = 0

Yi = B1 + B2Xi + ui
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What Assumption (3.1) states is that these other factors or forces are not related
to Xi (the variable explicitly introduced in the model) and therefore, given the
value of Xi, their mean value is zero.2 This is shown in Figure 3-1.

A3.4.

The variance of each ui is constant, or homoscedastic (homo means equal and
scedastic means variance). That is

(3.2)

Geometrically, this assumption is as shown in Figure 3-2(a). This assumption
simply means that the conditional distribution of each Y population corre-
sponding to the given value of X has the same variance; that is, the individual
Y values are spread around their mean values with the same variance.3 If this is
not the case, then we have heteroscedasticity, or unequal variance, which is
depicted in Figure 3-2(b).4 As this figure shows, the variance of each Y popula-
tion is different, which is in contrast to Figure 3-2(a), where each Y population
has the same variance. The CLRM assumes that the variance of u is as shown in
Figure 3-2(a).

var(ui) =  2

CHAPTER THREE: THE TWO-VARIABLE MODEL: HYPOTHESIS TESTING 55

Y

X

 ui

 ui

0

PRF: E(Y 冷Xi)   B1   B2 Xi

Conditional distribution of disturbances uiFIGURE 3-1

2Note that Assumption (3.2) only states that X and u are uncorrelated. Assumption (3.3) adds
that not only are X and u uncorrelated, but also that given the value of X, the mean of u (which
represents umpteen factors) is zero.

3Since the X values are assumed to be given, or nonstochastic, the only source of variation in Y
is from u. Therefore, given Xi, the variance of Yi is the same as that of ui. In short, the conditional
variances of ui and Yi are the same, namely, . Note, however, that the unconditional variance of Yi,
as shown in Appendix B, is . As we will see, if the variable X has any impact on Y, the
conditional variance of Y will be smaller than the unconditional variance of Y. Incidentally, the
sample counterpart of the unconditional variance of Y is .

4There is a debate in the literature regarding whether it is homoscedasticity or homoskedasticity
and heteroscedasticity or heteroskedasticty. Both seem to be acceptable.

g (Yi - Y)2/(n - 1)

E[Yi - E(Y)]2
 2



A3.5.

There is no correlation between two error terms. This is the assumption of no
autocorrelation.

Algebraically, this assumption can be written as

(3.3)

Here cov stands for covariance (see Appendix B) and i and j are any two error
terms. (Note: If i = j, Equation (3.3) will give the variance of u, which by Eq. (3.2)
is a constant).

Geometrically, Eq. (3.3) can be shown in Figure 3-3.
Assumption (3.5) means that there is no systematic relationship between two

error terms. It does not mean that if one u is above the mean value, another error
term u will also be above the mean value (for positive correlation), or that if
one error term is below the mean value, another error term has to be above the
mean value, or vice versa (negative correlation). In short, the assumption of no
autocorrelation means the error terms ui are random.

cov (ui, uj) = 0  i Z j
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(a) Homoscedasticity (equal variance); (b) Heteroscedasticity (unequal variance)FIGURE 3-2

(a) (b) (c)

u
i

u
i

u
j

u
j u

j

u
i

Patterns of autocorrelation: (a) No autocorrelation; (b) positive autocorrelation; (c) negative
autocorrelation
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Since any two error terms are assumed to be uncorrelated, it means that any
two Y values will also be uncorrelated; that is, . This is because

and given that the B’s are fixed numbers and that X is
assumed to be fixed, Y will vary as u varies. So, if the u’s are uncorrelated, the
Y’s will be uncorrelated also.

A3.6.

The regression model is correctly specified. Alternatively, there is no specifi-
cation bias or specification error in the model used in empirical analysis.

What this assumption implies is that we have included all the variables that
affect a particular phenomenon. Thus, if we are studying the demand for auto-
mobiles, if we only include prices of automobiles and consumer income and do
not take into account variables such as advertising, financing costs, and gaso-
line prices, we will be committing model specification errors. Of course, it is not
easy to determine the “correct” model in any given case, but we will provide
some guidelines in Chapter 7.

You might wonder about all these assumptions. Why are they needed? How
realistic are they? What happens if they are not true? How do we know that a
particular regression model in fact satisfies all these assumptions? Although
these questions are certainly pertinent, at this stage of the development of our
subject matter, we cannot provide totally satisfactory answers to all of them.
However, as we progress through the book, we will see the utility of these
assumptions. As a matter of fact, all of Part II is devoted to finding out what
happens if one or more of the assumptions of CLRM are not fulfilled.

But keep in mind that in any scientific inquiry we make certain assumptions
because they facilitate the development of the subject matter in gradual steps,
not because they are necessarily realistic. An analogy might help here. Students
of economics are generally introduced to the model of perfect competition
before they are introduced to the models of imperfect competition. This is done
because the implications derived from this model enable us to better appreciate
the models of imperfect competition, not because the model of perfect competi-
tion is necessarily realistic, although there are markets that may be reasonably
perfectly competitive, such as the stock market or the foreign exchange market.

3.2 VARIANCES AND STANDARD ERRORS OF ORDINARY 

LEAST SQUARES ESTIMATORS

One immediate result of the assumptions just introduced is that they enable us
to estimate the variances and standard errors of the ordinary least squares
(OLS) estimators given in Eqs. (2.16) and (2.17). In Appendix D we discuss the
basics of estimation theory, including the notions of (point) estimators, their
sampling distributions, and the concepts of the variance and standard error of
the estimators. Based on our knowledge of those concepts, we know that the

Yi = B1 + B2Xi + ui

cov(Yi, Yj) = 0
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OLS estimators given in Eqs. (2.16) and (2.17) are random variables, for their val-
ues will change from sample to sample. Naturally, we would like to know
something about the sampling variability of these estimators, that is, how they
vary from sample to sample. These sampling variabilities, as we know now, are
measured by the variances of these estimators, or by their standard errors (se),
which are the square roots of the variances. The variances and standard errors
of the OLS estimators given in Eqs. (2.16) and (2.17) are as follows:5

(3.4)

(Note: This formula involves both small x and capital X.)

(3.5)

(3.6)

(3.7)

where var = the variance and se = the standard error, and where is the vari-
ance of the disturbance term ui, which by the assumption of homoscedasticity is
assumed to be the same for each u.

Once is known, then all the terms on the right-hand sides of the preceding
equations can be easily computed, which will give us the numerical values of
the variances and standard errors of the OLS estimators. The homoscedastic 
is estimated from the following formula:

(3.8)

where is an estimator of (recall we use ˆ to indicate an estimator) and
is the residual sum of squares (RSS), that is, , the sum of the
squared difference between the actual Y and the estimated Y. (See the next to
the last column of Table 2-4.)

The expression is known as the degrees of freedom (d.f.), which, as
noted in Appendix C, is simply the number of independent observations.6

Once ei is computed, as shown in Table 2-4, can be computed easily.
Incidentally, in passing, note that

(3.9) N = 2 N2

a e2i

(n - 2)

a (Yi - YN i)
2

a e2i 2 N2

 N2
=
a e2i

n - 2

 2

 2

 2

 se (b2) = 2var (b2)

 var (b2) =  2
b2
=

 2

ax2
i

 se (b1) = 2var (b1)

var (b1) =  2
b1
=
aX2

i

nax2
i

 #   2

58 PART ONE: THE LINEAR REGRESSION MODEL

5The proofs can be found in Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill, New
York, 2009, pp. 93–94.

6Notice that we can compute ei only when is computed. But to compute the latter, we must
first obtain b1 and b2. In estimating these two unknowns, we lose 2 d.f. Therefore, although we have
n observations, the d.f. are only .(n - 2)

YN i



which is known as the standard error of the regression (SER), which is simply
the standard deviation of the Y values about the estimated regression line.7 This
standard error of regression is often used as a summary measure of the goodness
of fit of the estimated regression line, a topic discussed in Section 3.6. As you
would suspect, the smaller the value of , the closer the actual Y value is to its
estimated value from the regression model.

Variances and Standard Errors of the Math S.A.T. Score Example

Using the preceding formulas, let us compute the variances and standard errors
of our math S.A.T. score example. These calculations are presented in Table 3-1.
(See Eqs. [3.10] to [3.15] therein.)

Summary of the Math S.A.T. Score Function

Let us express the estimated S.A.T. score function in the following form:

(3.16)

where the figures in parentheses are the estimated standard errors. Regression
results are sometimes presented in this format (but more on this in Section 3.8).
Such a presentation indicates immediately the estimated parameters and their

se = (16.9061)(0.000245)

 YNi = 432.4138 + 0.0013Xi

N 
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COMPUTATIONS FOR THE S.A.T. EXAMPLE

Estimator Formula Answer Equation number

975.1347 (3.10)

31.2271 (3.11)

var (b1) 285.8153 (3.12)

se (b1) 16.9061 (3.13)

var (b2) 6.0045 * 10-9 (3.14)

se (b2) 0.0000775 (3.15)

Note: The raw data underlying the calculations are given in Table 2-4. In computing the variances of the
estimators, has been replaced by its estimator, . N2 2

2var(b2) = 26.0045 * 10-9

 2

ax
2
i

=
975.1347

1.624 * 1011

2var(b1) = 2285.8153

a aX
2
i

nax
2
i

b 2
=

4.76 * 1010

10(1.624 * 1011)
 (975.1347)

2 N2
= 2975.1347 N

a a e
2
i

n - 2
b N2

TABLE 3-1

7Note the difference between the standard error of regression and the standard deviation of Y. 

The latter is measured, as usual, from its mean value, as , whereas the former is 

measured from the estimated value (i.e., from the sample regression). See also footnote 3.YN i

Sy = A g (Yi - Y)
2

n - 1

 N



standard errors. For example, it tells us that the estimated slope coefficient of
the math S.A.T. score function (i.e., the coefficient of the annual family income
variable) is 0.0013 and its standard deviation, or standard error, is 0.000245. This
is a measure of variability of b2 from sample to sample. 

What use can we make of this finding? Can we say, for example, that our
computed b2 lies within a certain number of standard deviation units from the
true B2? If we can do that, we can state with some confidence (i.e., probability)
how good the computed SRF, Equation (3.16), is as an estimate of the true PRF.
This is, of course, the topic of hypothesis testing.

But before discussing hypothesis testing, we need a bit more theory. In
particular, since b1 and b2 are random variables, we must find their sampling,
or probability, distributions. Recall from Appendixes C and D that a random
variable (r.v.) has a probability distribution associated with it. Once we deter-
mine the sampling distributions of our two estimators, as we will show in
Section 3.4, the task of hypothesis testing becomes straightforward. But even
before that we answer an important question: Why do we use the OLS
method?

3.3 WHY OLS? THE PROPERTIES OF OLS ESTIMATORS

The method of OLS is used popularly not only because it is easy to use but also
because it has some strong theoretical properties, which are summarized in the
well-known Gauss-Markov theorem.

Gauss-Markov Theorem

Given the assumptions of the classical linear regression model, the OLS esti-
mators have minimum variance in the class of linear estimators; that is, they
are BLUE (best linear unbiased estimators).

We provide an overview of the BLUE property in Appendix D. In short, the
OLS estimators have the following properties:8

1. b1 and b2 are linear estimators; that is, they are linear functions of the ran-
dom variable Y, which is evident from Equations (2.16) and (2.17).

2. They are unbiased; that is, E(b1) = B1 and E(b2) = B2. Therefore, in
repeated applications, on average, b1 and b2 will coincide with their true
values B1 and B2, respectively.

3. that is, the OLS estimator of the error variance is unbiased. In
repeated applications, on average, the estimated value of the error vari-
ance will converge to its true value.

4. b1 and b2 are efficient estimators; that is, var (b1) is less than the variance
of any other linear unbiased estimator of B1, and var (b2) is less than the

E( N2) =  2
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variance of any other linear unbiased estimator of B2. Therefore, we will
be able to estimate the true B1 and B2 more precisely if we use OLS rather
than any other method that also gives linear unbiased estimators of the
true parameters.

The upshot of the preceding discussion is that the OLS estimators possess
many desirable statistical properties that we discuss in Appendix D. It is for this
reason that the OLS method has been used popularly in regression analysis, as
well as for its intuitive appeal and ease of use.

Monte Carlo Experiment

In theory the OLS estimators are unbiased, but how do we know that in practice
this is the case? To find out, let us conduct the following Monte Carlo experiment.

Assume that we are given the following information:

where 
That is, we are told that the true values of the intercept and slope coefficients

are 1.5 and 2.0, respectively, and that the error term follows the normal distrib-
ution with a mean of zero and a variance of 4. Now suppose you are given 10
values of X: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Given this information, you can proceed as follows. Using any statistical
package, you generate 10 values of ui from a normal distribution with mean
zero and variance 4. Given B1, B2, the 10 values of X, and the 10 values of ui gen-
erated from the normal distribution, you will then obtain 10 values of Y from
the preceding equation. Call this experiment or sample number 1. Go to the nor-
mal distribution table, collect another 10 values of ui, generate another 10 values
of Y, and call it sample number 2. In this manner obtain 21 samples.

For each sample of 10 values, regress Yi generated above on the X values and
obtain b1, b2, and . Repeat this exercise for all 21 samples. Therefore, you will
have 21 values each of b1, b2, and . We conducted this experiment and
obtained the results shown in Table 3-2.

From the data given in this table, we have computed the mean, or average,
values of b1, b2, and , which are, respectively, 1.4526, 1.9665, and 4.4743,
whereas the true values of the corresponding coefficients, as we know, are 1.5,
2.0, and 4.0.

What conclusion can we draw from this experiment? It seems that if we
apply the method of least squares time and again, on average, the values of the
estimated parameters will be equal to their true (population parameter) values.
That is, OLS estimators are unbiased. In the present example, had we conducted
more than 21 sampling experiments, we would have come much closer to the
true values.

 N2

 N2
 N2

ui ' N(0, 4).

 = 1.5 + 2.0Xi + ui

 Yi = B1 + B2Xi + ui
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3.4 THE SAMPLING, OR PROBABILITY, DISTRIBUTIONS 

OF OLS ESTIMATORS

Now that we have seen how to compute the OLS estimators and their stan-
dard errors and have examined some of the properties of these estimators, we
need to find the sampling distributions of these estimators. Without that
knowledge we will not be able to engage in hypothesis testing. The general
notion of sampling distribution of an estimator is discussed in Appendix C
(see Section C.2).

To derive the sampling distributions of the OLS estimators b1 and b2, we need
to add one more assumption to the list of assumptions of the CLRM. This
assumption is

A3.7.

In the PRF the error term ui follows the normal distribu-
tion with mean zero and variance . That is,

(3.17)ui ' N(0,  2)

 2
Yi = B1 + B2Xi + ui
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MONTE CARLO EXPERIMENT: Yi = 1.5 + 2Xi + ui;

u ~ N(0, 4)

b1 b2

2.247 1.840 2.7159

0.360 2.090 7.1663

-2.483 2.558 3.3306

0.220 2.180 2.0794

3.070 1.620 4.3932

2.570 1.830 7.1770

2.551 1.928 5.7552

0.060 2.070 3.6176

-2.170 2.537 3.4708

1.470 2.020 4.4479

2.540 1.970 2.1756

2.340 1.960 2.8291

0.775 2.050 1.5252

3.020 1.740 1.5104

0.810 1.940 4.7830

1.890 1.890 7.3658

2.760 1.820 1.8036

-0.136 2.130 1.8796

0.950 2.030 4.9908

2.960 1.840 4.5514

3.430 1.740 5.2258

N 2
= 4.4743b2 = 1.9665b1 = 1.4526

N 2

TABLE 3-2



What is the rationale for this assumption? There is a celebrated theorem in
statistics, known as the central limit theorem (CLT), which we discuss in
Appendix C (see Section C.1), which states that:

Central Limit Theorem

If there is a large number of independent and identically distributed ran-
dom variables, then, with a few exceptions,9 the distribution of their sum
tends to be a normal distribution as the number of such variables
increases indefinitely.

Recall from Chapter 2 our discussion about the nature of the error term, ui. As
shown in Section 2.4, the error term represents the influence of all those forces
that affect Y but are not specifically included in the regression model because
there are so many of them and the individual effect of any one such force (i.e.,
variable) on Y may be too minor. If all these forces are random, and if we let u
represent the sum of all these forces, then by invoking the CLT we can assume
that the error term u follows the normal distribution. We have already assumed
that the mean value of ui is zero and that its variance, following the homoscedas-
ticity assumption, is the constant . Hence, we have Equation (3.17).

But how does the assumption that u follows the normal distribution help us
to find out the probability distributions of b1 and b2? Here we make use of
another property of the normal distribution discussed in Appendix C, namely,
any linear function of a normally distributed variable is itself normally distributed.
Does this mean that if we prove that b1 and b2 are linear functions of the nor-
mally distributed variable ui, they themselves are normally distributed? That’s
right! You can indeed prove that these two OLS estimators are in fact linear
functions of the normally distributed ui. (For proof, see Exercise 3.24).10

Now we know from Appendix C that a normally distributed r.v. has two
parameters, the mean and the variance. What are the parameters of the normally
distributed b1 and b2? They are as follows:

(3.18)

(3.19)

where the variances of b1 and b2 are as given in Eq. (3.4) and Eq. (3.6).
In short, b1 and b2 each follow the normal distribution with their means equal

to true B1 and B2 and their variances given by Eqs. (3.4) and (3.6) developed
previously. Geometrically, the distributions of these estimators are as shown in
Figure 3-4.

b2
' N AB2,  2

b2
B

b1
' N AB1,  2

b1
B

 2
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9One exception is the Cauchy probability distribution, which has no mean or variance.
10It may also be noted that since if , then 

because Yi is a linear combination of ui. (Note that B1, B2 are constants and Xi fixed).
Yi ' N(B1 + B2Xi,  

2)ui ' N(0,  2)Yi = B1 + B2Xi + ui



3.5 HYPOTHESIS TESTING

Recall that estimation and hypothesis testing are the two main branches of sta-
tistical inference. In Chapter 2 we showed how OLS helps us to estimate the
parameters of linear regression models. In this chapter the classical framework
enabled us to examine some of the properties of OLS estimators. With the
added assumption that the error term ui is normally distributed, we were able
to find the sampling (or probability) distributions of the OLS estimators,
namely, the normal distribution. With this knowledge we are now equipped to
deal with the topic of hypothesis testing in the context of regression analysis.

Let us return to our math S.A.T. example. The estimated math S.A.T. score
function is given in Eq. (2.20). Suppose someone suggests that annual family
income has no relationship to a student’s math S.A.T. score.

In applied regression analysis such a “zero” null hypothesis, the so-called
straw man hypothesis, is deliberately chosen to find out whether Y is related to
X at all. If there is no relationship between Y and X to begin with, then testing a
hypothesis that or any other value is meaningless. Of course, if the
zero null hypothesis is sustainable, there is no point at all in including X in the
model. Therefore, if X really belongs in the model, you would fully expect to
reject the zero null hypothesis H0 in favor of the alternative hypothesis H1, which
says, for example, that ; that is, the slope coefficient is different from zero.
It could be positive or it could be negative.

B2 Z 0

B2 = -2

H0 
: B2 = 0
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Our numerical results show that b2 = 0.0013. You would therefore expect that
the zero null hypothesis is not tenable in this case. But we cannot look at the nu-
merical results alone, for we know that because of sampling fluctuations, the
numerical value will change from sample to sample. Obviously, we need some
formal testing procedure to reject or not reject the null hypothesis. How do we
proceed?

This should not be a problem now, for in Equation (3.19) we have shown that
b2 follows the normal distribution with mean = B2 and Then,
following our discussion about hypothesis testing in Appendix D, Section D.5,
we can use either:

1. The confidence interval approach or
2. The test of significance approach 

to test any hypotheses about B2 as well as B1.
Since b2 follows the normal distribution, with the mean and the variance

stated in expression (3.19), we know that

(3.20)

follows the standard normal distribution. From Appendix C we know the proper-
ties of the standard normal distribution, particularly, the property that per-
cent of the area of the normal distribution lies within two standard deviation
units of the mean value, where means approximately. Therefore, if our null
hypothesis is B2 = 0 and the computed b2 = 0.0013, we can find out the proba-
bility of obtaining such a value from the Z, or standard normal, distribution
(Appendix E, Table E-1). If this probability is very small, we can reject the null
hypothesis, but if it is large, say, greater than 10 percent, we may not reject the
null hypothesis. All this is familiar material from Appendixes C and D.

But, there is a hitch! To use Equation (3.20) we must know the true . This is
not known, but we can estimate it by using given in Eq. (3.8). However, if
we replace in Eq. (3.20) by its estimator , then, as shown in Appendix C,
Eq. (C.8), the right-hand side of Eq. (3.20) follows the t distribution with 
d.f., not the standard normal distribution; that is,

(3.21)

Or, more generally,

(3.22)

Note that we lose 2 d.f. in computing for reasons stated earlier. N2

b2 - B2

se(b2)
' tn-2

b2 - B2

 NnAax
2
i

' tn-2

(n - 2)
 N 

 N2
 2

L

L95

 =
b2 - B2

 nAax
2
i

' N(0, 1)

 Z =
b2 - B2

se(b2)

var(b2) =  2>ax2
i .
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Therefore, to test the null hypothesis in the present case, we have to use the t
distribution in lieu of the (standard) normal distribution. But the procedure of
hypothesis testing remains the same, as explained in Appendix D.

Testing H0:B2 = 0 versus H1: B2  = 0:The Confidence 

Interval Approach

For our math S.A.T. example we have 10 observations, hence the d.f. are
. Let us assume that  , the level of significance or the probability of

committing a type I error, is fixed at 5 percent. Since the alternative hypothesis is
two-sided, from the t table given in Appendix E, Table E-2, we find that for 8 d.f.,

(3.23)

That is, the probability that a t value (for 8 d.f.) lies between the limits (-2.306,
2.306) is 0.95 or 95 percent; these, as we know, are the critical t values. Now by
substituting for t from expression (3.21) into the preceding equation, we obtain

(3.24)

Rearranging inequality (3.24), we obtain

(3.25)

Or, more generally,

(3.26)

which provides a 95% confidence interval for B2. In repeated applications 95 out
of 100 such intervals will include the true B2. As noted previously, in the
language of hypothesis testing such a confidence interval is known as the region
of acceptance (of H0) and the area outside the confidence interval is known as the
rejection region (of H0).

Geometrically, the 95% confidence interval is shown in Figure 3-5(a).
Now following our discussion in Appendix D, if this interval (i.e., the accep-

tance region) includes the null-hypothesized value of B2, we do not reject the
hypothesis. But if it lies outside the confidence interval (i.e., it lies in the rejec-
tion region), we reject the null hypothesis, bearing in mind that in making either
of these decisions we are taking a chance of being wrong a certain percent, say,
5 percent, of the time.

P[(b2 - 2.306 se(b2) … B2 … b2 + 2.306 se(b2)] = 0.95

PPb2 - 2.306 
 N

Aax
2
i

… B2 … b2 + 2.306 
 N

Aax
2
i Q = 0.95

PP -2.306 …
b2 - B2

 NnAax
2
i

… 2.306Q = 0.95

P(-2.306 … t … 2.306) = 0.95

(10 - 2) = 8
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All that remains to be done for our math S.A.T. score example is to obtain
the numerical value of this interval. But that is now easy, for we have already
obtained se(b2) = 0.000245, as shown in Eq. (3.16). Substituting this value in
Eq. (3.26), we now obtain the 95% confidence interval as shown in Figure 3-5(b).

That is,

(3.27)

Since this interval does not include the null-hypothesized value of 0, we can
reject the null hypothesis that annual family income is not related to math S.A.T.
scores. Put positively, income does have a relationship to math S.A.T. scores.

A cautionary note: As noted in Appendix D, although the statement given
in Eq. (3.26) is true, we cannot say that the probability is 95 percent that the
particular interval in Eq. (3.27) includes the true B2, for unlike Eq. (3.26),
expression (3.27) is not a random interval; it is fixed. Therefore, the probability
is either 1 or 0 that the interval in Eq. (3.27) includes B2. We can only say that if
we construct 100 intervals like the interval in Eq. (3.27), 95 out of 100 such in-
tervals will include the true B2; we cannot guarantee that this particular interval
will necessarily include B2.

Following a similar procedure exactly, the reader should verify that the 95%
confidence interval for the intercept term B1 is

(3.28)

If, for example, H0:B1 = 0 vs. H1:B1 0, obviously this null hypothesis will be
rejected too, for the preceding 95% confidence interval does not include 0.

Z

393.4283 … B1 … 471.3993

0.00074 … B2 … 0.00187

0.0013 - 2.306(0.000245) … B2 … 0.0013 + 2.306(0.000245)
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[b2 − 2.306 se(b2)] [b2 + 2.306 se(b2)]b2

(a)

0.0556 0.1072

(b)

(a) 95% confidence interval for B2 (8 d.f.); (b) 95% confidence
interval for the slope coefficient of the math S.A.T. score
example

FIGURE 3-5



On the other hand, if the null hypothesis were that the true intercept term is 400,
we would not reject this null hypothesis because the 95% confidence interval
includes this value.

The Test of Significance Approach to Hypothesis Testing

The key idea underlying this approach to hypothesis testing is that of a test
statistic (see Appendix D) and the sampling distribution of the test statistic under
the null hypothesis, H0. The decision to accept or reject H0 is made on the basis
of the value of the test statistic obtained from the sample data.

To illustrate this approach, recall that

(3.22)

follows the t distribution with d.f. Now if we let

where is a specific numerical value of B2 (e.g., ), then

(3.29)

can be readily computed from the sample data. Since all the quantities in
Equation (3.29) are now known, we can use the t value computed from
Eq. (3.29) as the test statistic, which follows the t distribution with 
d.f. Appropriately, the testing procedure is called the t test.11

Now to use the t test in any concrete application, we need to know three
things:

1. The d.f., which are always for the two-variable model
2. The level of significance,  , which is a matter of personal choice,

although 1, 5, or 10 percent levels are usually used in empirical analysis.
Instead of arbitrarily choosing the  value, you can find the p value (the
exact level of significance as described in Appendix D) and reject the null
hypothesis if the computed p value is sufficiently low.

3. Whether we use a one-tailed or two-tailed test (see Table D-2 and
Figure D-7).

(n - 2)

(n - 2)

 =
estimator - hypothesized value

standard error of the estimator

 t =
b2 - B*2
se(b2)

B*2 = 0B*2

H0:B2 = B*2

(n - 2)

t =
b2 - B2

se(b2)
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11The difference between the confidence interval and the test of significance approaches lies in
the fact that in the former we do not know what the true B2 is and therefore try to guess it by estab-
lishing a confidence interval. In the test of significance approach, on the other hand, we
hypothesize what the true B2 ( ) is and try to find out if the sample value b2 is sufficiently close
to (the hypothesized) .B*2

=B*2

(1 -  )



Math S.A.T. Example Continued

1. A Two-Tailed Test Assume that Using Eq. (3.29),
we find that

(3.30)

Now from the t table given in Appendix E, Table E-2, we find that
for 8 d.f. we have the following critical t values (two-tailed) (see
Figure 3-6):

Level of significance Critical t

0.01 3.355

0.05 2.306

0.10 1.860

In Appendix D, Table D-2 we stated that, in the case of the two-tailed
t test, if the computed |t|, the absolute value of t, exceeds the critical t
value at the chosen level of significance, we can reject the null hypothe-
sis. Therefore, in the present case we can reject the null hypothesis that
the true B2 (i.e., the income coefficient) is zero because the computed |t|
of 5.4354 far exceeds the critical t value even at the 1% level of signifi-
cance. We reached the same conclusion on the basis of the confidence
interval shown in Eq. (3.27), which should not be surprising because the
confidence interval and the test of significance approaches to hypothesis testing
are merely two sides of the same coin.

Incidentally, in the present example the p value (i.e., probability value)
of the t statistic of 5.4354 is about 0.0006. Thus, if we were to reject the
null hypothesis that the true slope coefficient is zero at this p value, we
would be wrong in six out of ten thousand occasions.

2. A One-Tailed Test Since the income coefficient in the math S.A.T. score
function is expected to be positive, a realistic set of hypotheses would
be here the alternative hypothesis is one-
sided.

H0:B2 … 0 and H1:B2 7 0;

t =
0.0013

0.000245
= 5.4354

H0:B2 = 0 and H1:B2 Z 0.
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0 3.3552.3061.860

2.5%

5%

0.5%

–3.355 –1.860–2.306

t = 5.4354

0.5%

2.5%

5%

t (8 d.f.)

The t distribution for 8 d.f.FIGURE 3-6



The t-testing procedure remains exactly the same as before, except, as
noted in Appendix D, Table D-2, the probability of committing a type I
error is not divided equally between the two tails of the t distribution but
is concentrated in only one tail, either left or right. In the present case it
will be the right tail. (Why?) For 8 d.f. we observe from the t table
(Appendix E, Table E-2) that the critical t value (right-tailed) is

Level of significance Critical t

0.01 2.896

0.05 1.860

0.10 1.397

For the math S.A.T. example, we first compute the t value as if the null
hypothesis were that B2 = 0. We have already seen that this t value is

(3.30)

Since this t value exceeds any of the critical values shown in the preced-
ing table, following the rules laid down in Appendix D, Table D-2, we
can reject the hypothesis that annual family income has no relationship
to math S.A.T. scores; actually it has a positive effect (i.e., ) (see
Figure 3-7).

B2 7 0

t = 5.4354
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0

0 2.8961.8601.397

(a)

10%

5%

1%

t (8 d.f.)

–2.896 –1.860 –1.397

1%

5%

10%

(b)

t (8 d.f.)

t = 5.4354

One-tailed t test: (a) Right-tailed; (b) left-tailedFIGURE 3-7



3.6 HOW GOOD IS THE FITTED REGRESSION LINE:

THE COEFFICIENT OF DETERMINATION, r2

Our finding in the preceding section that on the basis of the t test both the esti-
mated intercept and slope coefficients are individually statistically significant
(i.e., significantly different from zero) suggests that the SRF, Eq. (3.16), shown in
Figure 2-6 seems to “fit” the data “reasonably” well. Of course, not each actual
Y value lies on the estimated PRF. That is, not all are zero; as
Table 2-4 shows, some e are positive and some are negative. Can we develop an
overall measure of “goodness of fit” that will tell us how well the estimated
regression line, Eq. (3.16), fits the actual Y values? Indeed, such a measure has
been developed and is known as the coefficient of determination, denoted by
the symbol r2 (read as r squared). To see how r2 is computed, we proceed as
follows.

Recall that

(Eq. 2.6)

Let us express this equation in a slightly different but equivalent form (see
Figure 3-8) as

(3.31)
Variation in Yi Variation in Yi explained Unexplained or

from its mean value by around residual variation
its mean value
(Note: )

Now, letting small letters indicate deviations from mean values, we can write
the preceding equation as

(3.32)

(Note: , etc.) Also, note that , as a result of which ; that
is, the mean values of the actual Y and the estimated Y are the same. Or

(3.33)

since .
Now squaring Equation (3.33) on both sides and summing over the sample,

we obtain, after simple algebraic manipulation,

(3.34)

Or, equivalently,

(3.35)ay2
i = b

2
2ax2

i + a e2i

ay2
i = ayNi 

2
+ a e2i

yNi = b2xi

yi = b2xi + ei

Y = YNe = 0yi = (Yi - Y)

yi = yNi + ei

Y = YN

X(=YNi)

(Yi - Y)    =      (YNi - Y)      + (Yi - YNi)(i.e., ei)

Yi = YNi + ei

ei = (Yi - YNi)
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This is an important relationship, as we will see. For proof of Equation (3.35),
see Problem 3.25.

The various sums of squares appearing in Eq. (3.35) can be defined as follows:

the total variation12 of the actual Y values about their sample mean ,
which may be called the total sum of squares (TSS).

the total variation of the estimated Y values about their mean value

, which may be called appropriately the sum of squares due to regression
(i.e., due to the explanatory variable [s]), or simply the explained sum of
squares (ESS).

as before, the residual sum of squares (RSS) or residual or unex-
plained variation of the Y values about the regression line.

Put simply, then, Eq. (3.35) is

(3.36)

and shows that the total variation in the observed Y values about their mean
value can be partitioned into two parts, one attributable to the regression line
and the other to random forces, because not all actual Y observations lie on the
fitted line. All this can be seen clearly from Figure 3-8 (see also Fig. 2-6).

Now if the chosen SRF fits the data quite well, ESS should be much larger
than RSS. If all actual Y lie on the fitted SRF, ESS will be equal to TSS, and RSS
will be zero. On the other hand, if the SRF fits the data poorly, RSS will be much
larger than ESS. In the extreme, if X explains no variation at all in Y, ESS will be
zero and RSS will equal TSS. These are, however, polar cases. Typically, neither

TSS = ESS + RSS

a e2i =

( YN = Y)
ayN2

i =

Yay2
i =
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12The terms variation and variance are different. Variation means the sum of squares of deviations
of a variable from its mean value. Variance is this sum divided by the appropriate d.f. In short,
variance = variation/d.f.

X
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ˆ
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i
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i
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Breakdown of total variation in YiFIGURE 3-8



ESS nor RSS will be zero. If ESS is relatively larger than RSS, the SRF will
explain a substantial proportion of the variation in Y. If RSS is relatively larger
than ESS, the SRF will explain only some part of the variation of Y. All these
qualitative statements are intuitively easy to understand and can be readily
quantified. If we divide Equation (3.36) by TSS on both sides, we obtain

(3.37)

Now let us define

(3.38)

The quantity r2 thus defined is known as the (sample) coefficient of determina-
tion and is the most commonly used measure of the goodness of fit of a
regression line. Verbally, r2 measures the proportion or percentage of the total varia-
tion in Y explained by the regression model.

Two properties of r2 may be noted:

1. It is a non-negative quantity. (Why?)
2. Its limits are since a part (ESS) cannot be greater than the

whole (TSS).13 An r2 of 1 means a “perfect fit,” for the entire variation in
Y is explained by the regression. An r2 of zero means no relationship
between Y and X whatsoever.

Formulas to Compute r 2

Using Equation (3.38), Equation (3.37) can be written as

(3.39)

Therefore,

(3.40)

There are several equivalent formulas to compute r2, which are given in
Question 3.5.

r2 = 1 -
ae

2
i

ay
2
i

 = r2 +
ae

2
i

ay
2
i

 1 = r2 +
RSS

TSS

0 … r2 … 1

r2 =
ESS

TSS

1 =
ESS

TSS
+

RSS

TSS
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13This statement assumes that an intercept term is included in the regression model. More on
this in Chapter 5.



r2 for the Math S.A.T. Example

From the data given in Table 2-4, and using formula (3.40), we obtain the
following r2 value for our math S.A.T. score example:

(3.41)

Since r2 can at most be 1, the computed r2 is pretty high. In our math S.A.T. ex-
ample X, the income variable, explains about 79 percent of the variation in math
S.A.T. scores. In this case we can say that the sample regression (3.16) gives an
excellent fit.

It may be noted that , the proportion of variation in Y not explained
by X, is called, perhaps appropriately, the coefficient of alienation.

The Coefficient of Correlation, r

In Appendix B, we introduce the sample coefficient of correlation, r, as a
measure of the strength of the linear relationship between two variables Y and
X and show that r can be computed from formula (B.46), which can also be
written as 

(3.42)

(3.43)

But this coefficient of correlation can also be computed from the coefficient of
determination, r2, as follows:

(3.44)

Since most regression computer packages routinely compute r2, r can be com-
puted easily. The only question is about the sign of r. However, that can be
determined easily from the nature of the problem. In our math S.A.T. example,
since math S.A.T. scores and annual family income are expected to be positively
related, the r value in this case will be positive. In general, though, r has the
same sign as the slope coefficient, which should be clear from formulas (2.17)
and (3.43).

Thus, for the math S.A.T. example,

(3.45)

In our example, math S.A.T. scores and annual family income are highly posi-
tively correlated, a finding that is not surprising.

r = 20.7869 = 0.8871

r = ;2r2

 =
axiyi

4ax2
i  ay

2
i 

 r =
a (Xi - X)(Yi - Y)

2(Xi - X)2(Yi - Y)2

(1 - r2)

 = 0.7869

 r2 = 1 -
7801.0776

36610
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Incidentally, if you use formula (3.43) to compute r between the actual Y val-
ues in the sample and the estimated Yi values ( ) from the given model, and
square this r value, the squared r is precisely equal to the r2 value obtained from
Eq. (3.42). For proof, see Question 3.5. You can verify this from the data given in
Table 2-4. As you would expect, the closer the estimated Y values are to the
actual Y values in the sample, the higher the r2 value will be.

3.7 REPORTING THE RESULTS OF REGRESSION ANALYSIS

There are various ways of reporting the results of regression analysis. Until the
advent of statistical software, regression results were presented in the format
shown in Equation (3.46). Many journal articles still present regression results
in this format. For our math S.A.T. score example, we have:

(3.46)

In Equation (3.46) the figures in the first set of parentheses are the estimated
standard errors (se) of the estimated regression coefficients. Those in the second
set of parentheses are the estimated t values computed from Eq. (3.22) under the
null hypothesis that the true population value of each regression coefficient
individually is zero (i.e., the t values given are simply the ratios of the estimated
coefficients to their standard errors). And those in the third set of parentheses
are the p values of the computed t values.14 As a matter of convention, from now
on, if we do not specify a specific null hypothesis, then we will assume that it is
the zero null hypothesis (i.e., the population parameter assumes zero value). And
if we reject it (i.e., when the test statistic is significant), it means that the true
population value is different from zero.

One advantage of reporting the regression results in the preceding format is
that we can see at once whether each estimated coefficient is individually
statistically significant, that is, significantly different from zero. By quoting the p
values we can determine the exact level of significance of the estimated t value.
Thus the t value of the estimated slope coefficient is 5.4354, whose p value is
practically zero. As we note in Appendix D, the lower the p value, the greater the ev-
idence against the null hypothesis.

A warning is in order here. When deciding whether to reject or not reject a
null hypothesis, determine beforehand what level of the p value (call it the criti-
cal p value) you are willing to accept and then compare the computed p value
with the critical p value. If the computed p value is smaller than the critical
p value, the null hypothesis can be rejected. But if it is greater than the critical

 p value = (5.85 * 10-9)(0.0006)  d.f. = 8

 t = (25.5774)(0.0006)  r2 = 0.7849

 se = (16.9061)(0.000245)  

 YNt = 432.4138 + 0.0013Xi  

=  YNi
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p value the null hypothesis may not be rejected. If you feel comfortable with the
tradition of fixing the critical p value at the conventional 1, 5, or 10 percent level,
that is fine. In Eq. (3.46), the actual p value (i.e., the exact level of significance) of
the t coefficient of 5.4354 is 0.0006. If we had chosen the critical p value at 5 per-
cent, obviously we would reject the null hypothesis, for the computed p value
of 0.0006 is much smaller than 5 percent.

Of course, any null hypothesis (besides the zero null hypothesis) can be tested
easily by making use of the t test discussed earlier. Thus, if the null hypothesis is
that the true intercept term is 450 and if the t value will be

The p value of obtaining such a t value is about 0.3287, which is obtained from
electronic tables. If you had fixed the critical p value at the 10 percent level, you
would not reject the null hypothesis, for the computed p value is much greater
than the critical p value.

The zero null hypothesis, as mentioned before, is essentially a kind of straw
man. It is usually adopted for strategic reasons—to “dramatize” the statistical
significance (i.e., importance) of an estimated coefficient.

3.8 COMPUTER OUTPUT OF THE MATH S.A.T. SCORE EXAMPLE

Since these days we rarely run regressions manually, it may be useful to pro-
duce the actual output of regression analysis obtained from a statistical software
package. Below we give the selected output of our math S.A.T. example obtained
from EViews.

Dependent Variable: Y

Method: Least Squares

Sample: 1 10

Included observations: 10

Coefficient Std. Error t-Statistic Prob.

C 432.4138 16.90607 25.57742 0.0000

X 0.001332 0.000245 5.435396 0.0006

R-squared 0.786914

S.E. of regression 31.22715

Sum squared resid 7801.078

In this output, C denotes the constant term (i.e., intercept); Prob. is the p value;
sum of squared resid is the RSS ; and S.E. of regression is the standard
error of the regression. The t values presented in this table are computed
under the (null) hypothesis that the corresponding population regression
coefficients are zero.

(= ge2
i)

t =
432.4138 - 450

16.9061
= -1.0402

H1: B1 Z 450,
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3.9 NORMALITY TESTS

Before we leave our math S.A.T. example, we need to look at the regression re-
sults given in Eq. (3.46). Remember that our statistical testing procedure is
based on the assumption that the error term ui is normally distributed. How do
we find out if this is the case in our example, since we do not directly observe
the true errors ui? We have the residuals, ei, which are proxies for ui. Therefore,
we will have to use the ei to learn something about the normality of ui. There are
several tests of normality, but here we will consider only three comparatively
simple tests.15

Histograms of Residuals

A histogram of residuals is a simple graphical device that is used to learn some-
thing about the shape of the probability density function (PDF) of a random
variable. On the horizontal axis, we divide the values of the variable of interest
(e.g., OLS residuals) into suitable intervals, and in each class interval, we erect
rectangles equal in height to the number of observations (i.e., frequency) in that
class interval.

If you mentally superimpose the bell-shaped normal distribution curve on
this histogram, you might get some idea about the nature of the probability
distribution of the variable of interest.

It is always a good practice to plot the histogram of residuals from any
regression to get some rough idea about the likely shape of the underlying
probability distribution.
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We also show (in Figure 3-9) how EViews presents the actual and esti-
mated Y values as well as the residuals (i.e., ei) in graphic form:

Actual

Y
i

Residual

e
i

Residual Plot

(0) ( )( )

Fitted

Y
i

ˆ

410.000

420.000

440.000

490.000

530.000

530.000

550.000

540.000

570.000

590.000

439.073

452.392

465.711

479.030

492.349

505.668

518.987

532.306

552.284

632.198

 29.0733

 32.3922

 25.7112

10.9698

37.6509

24.3319

31.0129

07.69397

17.7155

 42.1983

Actual and fitted Y values and residuals for the math S.A.T. exampleFIGURE 3-9

15For a detailed discussion of various normality tests, see G. Barrie Wetherhill, Regression
Analysis with Applications, Chapman and Hall, London, 1986, Chap. 8.



Normal Probability Plot

Another comparatively simple graphical device to study the PDF of a random
variable is the normal probability plot (NPP) which makes use of normal prob-
ability paper, a specially ruled graph paper. On the horizontal axis, (X-axis) we
plot values of the variable of interest (say, OLS residuals ei), and on the vertical
axis (Y-axis), we show the expected values of this variable if its distribution
were normal. Therefore, if the variable is in fact from the normal population, the
NPP will approximate a straight line. MINITAB has the capability to plot the
NPP of any random variable. MINITAB also produces the Anderson-Darling
normality test known as the A2 statistic. The underlying null hypothesis is that
a variable is normally distributed. This hypothesis can be sustained if the com-
puted A2 is not statistically significant.

Jarque-Bera Test

A test of normality that has now become very popular and is included in several
statistical packages is the Jarque-Bera (JB) test.16 This is an asymptotic, or large
sample, test and is based on OLS residuals. This test first computes the coeffi-
cients of skewness, S (a measure of asymmetry of a PDF), and kurtosis, K (a mea-
sure of how tall or flat a PDF is in relation to the normal distribution), of a ran-
dom variable (e.g., OLS residuals) (see Appendix B). For a normally distributed
variable, skewness is zero and kurtosis is 3 (see Figure B-4 in Appendix B).

Jarque and Bera have developed the following test statistic:

(3.47)

where n is the sample size, S represents skewness, and K represents kurtosis.
They have shown that under the normality assumption the JB statistic given in
Equation (3.47) follows the chi-square distribution with 2 d.f. asymptotically (i.e., in
large samples). Symbolically,

(3.48)

where asy means asymptotically.
As you can see from Eq. (3.47), if a variable is normally distributed, S is zero

and is also zero, and therefore the value of the JB statistic is zero ipso
facto. But if a variable is not normally distributed, the JB statistic will assume in-
creasingly larger values. What constitutes a large or small value of the JB statis-
tic can be learned easily from the chi-square table (Appendix E, Table E-4). If the
computed chi-square value from Eq. (3.47) exceeds the critical chi-square value
for 2 d.f. at the chosen level of significance, we reject the null hypothesis of
normal distribution; but if it does not exceed the critical chi-square value, we do

(K - 3)

JBasy
'  2

(2)

JB =
n

6
cS2

+
(K - 3)2

4
d
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16See C. M. Jarque and A. K. Bera, “A Test for Normality of Observations and Regression
Residuals,” International Statistical Review, vol. 55, 1987, pp. 163–172.



not reject the null hypothesis. Of course, if we have the p value of the computed
chi-square value, we will know the exact probability of obtaining that value.

We will illustrate these normality tests with the following example.

3.10 A CONCLUDING EXAMPLE: RELATIONSHIP BETWEEN

WAGES AND PRODUCTIVITY IN THE U.S. BUSINESS 

SECTOR, 1959–2006

According to the marginal productivity theory of microeconomics, we would
expect a positive relationship between wages and worker productivity. To see if
this so, in Table 3-3 (on the textbook’s Web site) we provide data on labor pro-
ductivity, as measured by the index of output per hour of all persons, and
wages, as measured by the index of real compensation per hour, for the busi-
ness sector of the U.S. economy for the period 1959 to 2006. The base year of the
index is 1992 and hourly real compensation is hourly compensation divided by
the consumer price index (CPI).

Let Compensation (Y) = index of real compensation and Productivity (X) = index
of output per hour of all persons. Plotting these data, we obtain the scatter dia-
gram shown in Figure 3-10.

This figure shows a very close linear relationship between labor produc-
tivity and real wages. Therefore, we can use a (bivariate) linear regression to
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model the data given in Table 3-3. Using EViews, we obtain the following
results:

Dependent Variable: Compensation
Method: Least Squares
Sample: 1959 2006
Included observations: 48 

Coefficient Std. Error t-Statistic Prob.
C 33.63603 1.400085 24.02428 0.0000
Productivity 0.661444 0.015640 42.29178 0.0000

R-squared 0.974926
Adjusted R-squared 0.974381
S.E. of regression 2.571761
Sum squared resid 304.2420
Durbin-Watson stat 0.146315

Let us interpret the results. The slope coefficient of about 0.66 suggests that if
the index of productivity goes up by a unit, the index of real wages will go up,
on average, by 0.66 units. This coefficient is highly significant, for the t value of
about 42.3 (obtained under the assumption that the true population coefficient
is zero) is highly significant for the p value is almost zero. The intercept coeffi-
cient, C, is also highly significant, for the p value of obtaining a t value for this
coefficient of as much as about 24 is practically zero.

The R2 value of about 0.97 means that the index of productivity explains
about 97 percent of the variation in the index of real compensation. This is a
very high value, since an R2 can at most be 1. For now neglect some of the in-
formation given in the preceding table (e.g., the Durbin-Watson statistic), for we
will explain it at appropriate places.

Figure 3-11 gives the actual and estimated values of the index of real com-
pensation, the dependent variable in our model, as well the differences between
the two, which are nothing but the residuals ei. These residuals are also plotted
in this figure.

Figure 3-12 plots the histogram of the residuals shown in Figure 3-11 and
also shows the JB statistics. The histogram and the JB statistic show that
there is no reason to reject the hypothesis that the true error terms in the
wages-productivity regression are normally distributed.

Figure 3-13 shows the normal probability plot of the residuals obtained from the
compensation-productivity regression; this figure was obtained from MINITAB.
As is clear from this figure, the estimated residuals lie approximately on a straight
line, suggesting that the error terms (i.e., ui) in this regression may be normally
distributed. The computed AD statistic of 0.813 has a p value of about 0.03 or
3 percent. If we fix the critical p value, say, at the 5 percent level, the observed AD
statistic is statistically significant, suggesting that the error terms are not normally
distributed. This is in contrast to the conclusion reached on the basis of the JB
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statistic. The problem here is that our sample of 10 observations is too small for
using the JB and AD statistics, which are designed for large samples.

3.11 A WORD ABOUT FORECASTING

We noted in Chapter 2 that one of the purposes of regression analysis is to pre-
dict the mean value of the dependent variable, given the values of the explana-
tory variable(s). To be more specific, let us return to our math S.A.T. score
example. Regression (3.46) presented the results of the math section of
the S.A.T. based on the score data of Table 2-2. Suppose we want to find out the



average math S.A.T. score by a person with a given level of annual family income.
What is the expected math S.A.T. score at this level of annual family income?

To fix these ideas, assume that X (income) takes the value X0, where X0 is
some specified numerical value of X, say X0 = $78,000. Now suppose we want to
estimate , that is, the true mean math S.A.T. score correspond-
ing to a family income of $78,000. Let

(3.49)

How do we obtain this estimate? Under the assumptions of the classical linear
regression model (CLRM), it can be shown that Equation (3.49) can be obtained
by simply putting the given X0 value in Eq. (3.46), which gives:

(3.50)

That is, the forecasted mean math S.A.T. score for a person with an annual
family income of $78,000 is about 534 points.

Although econometric theory shows that under CLRM , or, more
generally, is an unbiased estimator of the true mean value (i.e., a point on the
population regression line), it is not likely to be equal to the latter in any given
sample. (Why?) The difference between them is called the forecasting, or
prediction, error. To assess this error, we need to find out the sampling distrib-
ution of .17 Given the assumptions of the CLRM, it can be shown that is
normally distributed with the following mean and variance:

(3.51)

where = the sample mean of X values in the historical regression (3.46)
= their sum of squared deviations from 
= the variance of ui

n = sample size

The positive square root of Equation (3.51) gives the standard error of .
Since in practice is not known, if we replace it by its unbiased estimator ,
follows the t distribution with d.f. (Why?) Therefore, we can use the t

distribution to establish a 100 % confidence interval for the true (i.e., pop-
ulation) mean value of Y corresponding to X0 in the usual manner as follows:

(3.52)P[b1 + b2X0 - ta/2 se( NY0) … B1 + B2X0 … b1 + b2X0 + ta/2 se( NY0)] = (1 - a)

(1 - a)
(n - 2)NY0

N 2 2
YN0, se( NY0)

 2

Xgx2
i

X

 var =  2J 1

n
+

(X0 - X)2

ax2
i

K
 Mean = E(Y|X0) = B1 + B2X0

YN 0YN 0

YN 0

NYNX=78000

 = 533.8138

N YX=78000 = 432.4138 + 0.0013(78000)

NY0 = the estimator of E(Y|X0)

E(Y|X0 = 78000)
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Let us continue with our math S.A.T. score example. First, we compute the
variance of from Equation (3.51).

(3.53)

Therefore,

(3.54)

Note: In this example, and 
(see Table 2-4).

The preceding result suggests that given the estimated annual family
income = $78,000, the mean predicted math S.A.T. score, as shown in
Equation (3.50), is 533.8138 points and the standard error of this predicted
value is 11.2506 (points).

Now if we want to establish, say, a 95% confidence interval for the population
mean math S.A.T. score corresponding to an annual family income of $78,000,
we obtain it from expression (3.52) as

That is,

(3.55)

Note: For 8 d.f., the 5 percent two-tailed t value is 2.306.
Given the annual family income of $78,000, Equation (3.55) states that al-

though the single best, or point, estimate of the mean math S.A.T. score is
533.8138, it is expected to lie in the interval 507.8699 to 559.7577 points, which is
between about 508 and 560, with 95% confidence. Therefore, with 95% confi-
dence, the forecast error will be between -25.9439 points (507.8699 - 533.8138)
and 25.9439 points (559.7577 – 533.8138).

If we obtain a 95% confidence interval like Eq. (3.55) for each value of X
shown in Table 2-2, we obtain what is known as a confidence interval or con-
fidence band for the true mean math S.A.T. score for each level of annual fam-
ily income, or for the entire population regression line (PRL). This can be seen
clearly from Figure 3-14, obtained from EViews.

Notice some interesting aspects of Figure 3-14. The width of the confi-
dence band is smallest when which should be apparent from the
variance formula given in Eq. (3.51). However, the width widens sharply (i.e.,

X0 = X,

507.8699 … E(Y|X = 78000) … 559.7577

533.8138 - 2.306(11.2506) … E(Y|X = 78000) … 533.8138 + 2.306 (11.2506)

 N
2
= 975.1347ax2

i = 16,240,000,000,X = 56000,

 = 11.2506

 sea NYX=78000b = 2126.5754

 = 126.5754

 vara NYX=78000b = 975.1347 c 1

10
+

(78,000 - 56,000)2

16,240,000,000
d

NYX=78000
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the prediction error increases) as X0 moves away from . This suggests that
the predictive ability of the historical regression, such as regression (3.46),
falls markedly as X0 (the X value for which the forecast is made) departs pro-
gressively from . The message here is clear: We should exercise great caution in
“extrapolating” the historical regression line to predict the mean value of Y associ-
ated with any X that is far removed from the sample mean of X. In more practical
terms, we should not use the math S.A.T. score regression (3.46) to predict the aver-
age math score for income well beyond the sample range on which the historical re-
gression line is based.

3.12 SUMMARY

In Chapter 2 we showed how to estimate the parameters of the two-variable
linear regression model. In this chapter we showed how the estimated model
can be used for the purpose of drawing inferences about the true population
regression model. Although the two-variable model is the simplest possible
linear regression model, the ideas introduced in these two chapters are the
foundation of the more involved multiple regression models that we will
discuss in ensuing chapters. As we will see, in many ways the multiple regres-
sion model is a straightforward extension of the two-variable model.

X

X
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KEY TERMS AND CONCEPTS

The key terms and concepts introduced in this chapter are
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Classical linear regression model
(CLRM)

Homoscedasticity or equal variance
Heteroscedasticity or unequal

variance
Autocorrelation and no

autocorrelation
Variances of OLS estimators
Standard errors of OLS estimators
Residual sum of squares (RSS)
Standard error of the regression (SER)
Sampling, or probability,

distributions of OLS estimators
Gauss-Markov theorem
BLUE property
Central limit theorem (CLT)

“Zero” null hypothesis; straw man
hypothesis

t test of significance
a) two-tailed t test
b) one-tailed t test

Coefficient of determination, r2

Total sum of squares (TSS)
Explained sum of squares (ESS)
Coefficient of alienation
Coefficient of correlation, r
Normal probability plot (NPP)
Anderson-Darling normality test (A2

statistic)
Jarque-Bera (JB) test of normality
Forecasting, or prediction, error
Confidence interval; confidence band

QUESTIONS

3.1. Explain the meaning of
a. Least squares.
b. OLS estimators.
c. The variance of an estimator.
d. Standard error of an estimator.
e. Homoscedasticity.
f. Heteroscedasticity.
g. Autocorrelation.
h. Total sum of squares (TSS).
i. Explained sum of squares (ESS).
j. Residual sum of squares (RSS).

k. r2.
l. Standard error of estimate.

m. BLUE.
n. Test of significance.
o. t test.
p. One-tailed test.
q. Two-tailed test.
r. Statistically significant.

3.2. State with brief reasons whether the following statements are true, false, 
or uncertain.
a. OLS is an estimating procedure that minimizes the sum of the errors

squared, .
b. The assumptions made by the classical linear regression model (CLRM) are

not necessary to compute OLS estimators.

gu2
i



c. The theoretical justification for OLS is provided by the Gauss-Markov
theorem.

d. In the two-variable PRF, b2 is likely to be a more accurate estimate of B2 if
the disturbances ui follow the normal distribution.

e. The OLS estimators b1 and b2 each follow the normal distribution only if ui

follows the normal distribution.
f. r2 is the ratio of TSS/ESS.
g. For a given alpha and d.f., if the computed exceeds the critical t value,

we should accept the null hypothesis.
h. The coefficient of correlation, r, has the same sign as the slope coefficient

b2.
i. The p value and the level of significance,  , mean the same thing.

3.3. Fill in the appropriate gaps in the following statements:
a. If 
b. If 
c. r2 lies between . . . and . . .
d. r lies between . . . and . . .
e. TSS = RSS + . . .
f. d.f. (of TSS) = d.f. (of . . .) + d.f. (of RSS)
g. is called . . .
h.

i.
3.4. Consider the following regression:

Fill in the missing numbers. Would you reject the hypothesis that true B2 is
zero at ? Tell whether you are using a one-tailed or two-tailed test and
why.

3.5. Show that all the following formulas to compute r2 are equivalent:

3.6. Show that gei = nY - nb1 - nb2X = 0

 =
Aayi Nyi B2

Aay2
i B Aa Ny

2
i B

 =
b2

2ax
2
i

ay
2
i

 =
a Ny

2
i

ay
2
i

 r2 = 1 -
ae

2
i

ay
2
i

 = 5%

NYi = - 66.1058 + 0.0650Xi r2 = 0.9460

se = (10.7509) (       ) n = 20

t = (       )   (18.73)

gy2
i = b2(. . .)

gy2
i = g (Yi - . . .)2

N 

B2 = 0, t = b2/ . . .
B2 = 0, b2/se(b2) = . . .

|t|
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PROBLEMS

3.7. Based on the data for the years 1962 to 1977 for the United States, Dale Bails
and Larry Peppers18 obtained the following demand function for automobiles:

where Y = retail sales of passenger cars (thousands) and X = the real disposable
income (billions of 1972 dollars).
Note: The se for b1 is not given.
a. Establish a 95% confidence interval for B2.
b. Test the hypothesis that this interval includes . If not, would you

accept this null hypothesis?
c. Compute the t value under . Is it statistically significant at the

5 percent level? Which t test do you use, one-tailed or two-tailed, and why?
3.8. The characteristic line of modern investment analysis involves running the

following regression:

where r = the rate of return on a stock or security
rm = the rate of return on the market portfolio represented by a broad

market index such as S&P 500, and
t = time

In investment analysis, B2 is known as the beta coefficient of the security and
is used as a measure of market risk, that is, how developments in the market
affect the fortunes of a given company.

Based on 240 monthly rates of return for the period 1956 to 1976, Fogler and
Ganapathy obtained the following results for IBM stock. The market index
used by the authors is the market portfolio index developed at the University
of Chicago:19

a. Interpret the estimated intercept and slope.
b. How would you interpret r2?
c. A security whose beta coefficient is greater than 1 is called a volatile or

aggressive security. Set up the appropriate null and alternative hypotheses
and test them using the t test. Note: Use .

3.9. You are given the following data based on 10 pairs of observations on Y and X.

 aX
2
i = 315,400    aY

2
i = 133,300

 ayi = 1110   aXi = 1680   aXiYi = 204,200

 = 5%

 se = (0.3001) (0.0728)    r2 = 0.4710

 rt = 0.7264 + 1.0598rmt

r1 = B1 + B2rmt + ut

H0:B2 = 0

B2 = 0

 se =        (1.634)

 YNt = 5807 + 3.24Xt    r2 = 0.22
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18See Dale G. Bails and Larry C. Peppers, Business Fluctuations: Forecasting Techniques and
Applications, Prentice-Hall, Englewood Cliffs, N.J., 1982, p. 147.

19H. Russell Fogler and Sundaram Ganapathy, Financial Econometrics, Prentice-Hall, Englewood-
Cliffs, N.J., 1982, p. 13.



Assuming all the assumptions of CLRM are fulfilled, obtain
a. b1 and b2.
b. standard errors of these estimators.
c. r2.
d. Establish 95% confidence intervals for B1 and B2.
e. On the basis of the confidence intervals established in (d), can you accept

the hypothesis that 
3.10. Based on data for the United States for the period 1965 to 2006 (found in Table

3-4 on the textbook’s Web site), the following regression results were obtained:

where GNP is the gross national product ($, in billions) and M1 is the money
supply ($, in billions).
Note: M1 includes currency, demand deposits, traveler’s checks, and other
checkable deposits.
a. Fill in the blank parentheses.
b. The monetarists maintain that money supply has a significant positive

impact on GNP. How would you test this hypothesis?
c. What is the meaning of the negative intercept?
d. Suppose M1 for 2007 is $750 billion. What is the mean forecast value of

GNP for that year?
3.11. Political business cycle: Do economic events affect presidential elections? To test

this so-called political business cycle theory, Gary Smith20 obtained the fol-
lowing regression results based on the U.S. presidential elections for the four
yearly periods from 1928 to 1980 (i.e., the data are for years 1928, 1932, etc.):

where Y is the percentage of the vote received by the incumbent and X is the
unemployment rate change—unemployment rate in an election year minus
the unemployment rate in the preceding year.
a. A priori, what is the expected sign of X?
b. Do the results support the political business cycle theory? Support your

contention with appropriate calculations.
c. Do the results of the 1984 and 1988 presidential elections support the

preceding theory?
d. How would you compute the standard errors of b1 and b2?

3.12. To study the relationship between capacity utilization in manufacturing and
inflation in the United States, we obtained the data shown in Table 3-5 (found
on the textbook’s Web site). In this table, Y = inflation rate as measured by the

 t = (34.10) (-2.67)         r2 = 0.37

 NYt = 53.10 - 1.70Xt

 t = (- 3.8258)      (          )

 se = (        )           (0.3214)

 GNPt = -  995.5183 +  8.7503M1t    r
2
= 0.9488

B2 = 0?

CHAPTER THREE: THE TWO-VARIABLE MODEL: HYPOTHESIS TESTING 89

20Gary Smith, Statistical Reasoning, Allyn & Bacon, Boston, Mass., 1985, p. 488. Change in
notation was made to conform with our format. The original data were obtained by Ray C. Fair,
“The Effect of Economic Events on Votes for President,” The Review of Economics and Statistics, May
1978, pp. 159–173.



percentage change in GDP implicit price deflator and X = capacity utilization
rate in manufacturing as measured by output as a percent of capacity for the
years 1960–2007.
a. A priori, what would you expect to be the relationship between inflation

rate and capacity utilization rate? What is the economic rationale behind
your expectation?

b. Regress Y on X and present your result in the format of Eq. (3.46 ).
c. Is the estimated slope coefficient statistically significant?
d. Is it statistically different from unity?
e. The natural rate of capacity utilization is defined as the rate at which Y is

zero. What is this rate for the period under study?
3.13. Reverse regression21: Continue with Problem 3.12, but suppose we now regress

X on Y.
a. Present the result of this regression and comment.
b. If you multiply the slope coefficients in the two regressions, what do you

obtain? Is this result surprising to you?
c. The regression in Problem 3.12 may be called the direct regression. When

would a reverse regression be appropriate?
d. Suppose the r2 value between X and Y is 1. Does it then make any differ-

ence if we regress Y on X or X on Y?
3.14. Table 3-6 gives data on X (net profits after tax in U.S. manufacturing industries

[$, in millions]) and Y (cash dividend paid quarterly in manufacturing indus-
tries [$, in millions]) for years 1974 to 1986.
a. What relationship, if any, do you expect between cash dividend and after-tax

profits?
b. Plot the scattergram between Y and X.
c. Does the scattergram support your expectations in part (a)?
d. If so, do an OLS regression of Y on X and obtain the usual statistics.
e. Establish a 99% confidence interval for the true slope and test the hypothe-

sis that the true slope coefficient is zero; that is, there is no relationship
between dividend and the after-tax profit.
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21On this see G. S. Maddala, Introduction to Econometrics, 3rd ed., Wiley, New York, 2001, pp. 71–75.

CASH DIVIDEND (Y ) AND AFTER-TAX PROFITS (X) IN

U.S. MANUFACTURING INDUSTRIES, 1974–1986

Year Y X Year Y X

($, in millions) ($, in millions)

1974 19,467 58,747 1981 40,317 101,302
1975 19,968 49,135 1982 41,259 71,028
1976 22,763 64,519 1983 41,624 85,834
1977 26,585 70,366 1984 45,102 107,648
1978 28,932 81,148 1985 45,517 87,648
1979 32,491 98,698 1986 46,044 83,121
1980 36,495 92,579

Source: Business Statistics, 1986, U.S. Department of
Commerce, Bureau of Economic Analysis, December 1987, p. 72.

TABLE 3-6



3.15. Refer to the S.A.T. data given in Table 2-15 on the textbook’s Web site. Suppose
you want to predict the male math scores on the basis of the female math
scores by running the following regression:

where Y and X denote the male and female math scores, respectively.
a. Estimate the preceding regression, obtaining the usual summary statistics.
b. Test the hypothesis that there is no relationship between Y and X whatsoever.
c. Suppose the female math score in 2008 is expected to be 490. What is the

predicted (average) male math score?
d. Establish a 95% confidence interval for the predicted value in part (c).

3.16. Repeat the exercise in Problem 3.15 but let Y and X denote the male and the
female critical reading scores, respectively. Assume a female critical reading
score for 2008 of 505.

3.17. Consider the following regression results:22

where Y = the real return on the stock price index from January of the current
year to January of the following year

X = the total dividends in the preceding year divided by the stock price
index for July of the preceding year

t = time

Note: On Durbin-Watson statistic, see Chapter 10.
The time period covered by the study was 1926 to 1982.
Note: stands for the adjusted coefficient of determination. The Durbin-
Watson value is a measure of autocorrelation. Both measures are explained in
subsequent chapters.
a. How would you interpret the preceding regression?
b. If the previous results are acceptable to you, does that mean the best in-

vestment strategy is to invest in the stock market when the dividend/price
ratio is high?

c. If you want to know the answer to part (b), read Shiller’s analysis.
3.18. Refer to Example 2.1 on years of schooling and average hourly earnings. The

data for this example are given in Table 2-5 and the regression results are pre-
sented in Eq. (2.21). For this regression
a. Obtain the standard errors of the intercept and slope coefficients and r2.
b. Test the hypothesis that schooling has no effect on average hourly earnings.

Which test did you use and why?
c. If you reject the null hypothesis in (b), would you also reject the hypothesis

that the slope coefficient in Eq. (2.21) is not different from 1? Show the
necessary calculations.

R2

 t = (- 1.73)(2.71)

 NYt = - 0.17 + 5.26Xt          R
2
= 0.10,  Durbin-Watson =  2.01

Yt = B1 + B2Xt + ut
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22See Robert J. Shiller, Market Volatility, MIT Press, Cambridge, Mass., 1989, pp. 32–36.



3.19. Example 2.2 discusses Okun’s law, as shown in Eq. (2.22). This equation can
also be written as where X = percent growth in real output, as
measured by GDP and Y = change in the unemployment rate, measured
in percentage points. Using the data given in Table 2-13 on the textbook’s
Web site,
a. Estimate the preceding regression, obtaining the usual results as per

Eq. (3.46).
b. Is the change in the unemployment rate a significant determinant of per-

cent growth in real GDP? How do you know?
c. How would you interpret the intercept coefficient in this regression? Does

it have any economic meaning?
3.20. For Example 2.3, relating stock prices to interest rates, are the regression results

given in Eq. (2.24) statistically significant? Show the necessary calculations.
3.21. Refer to Example 2.5 about antique clocks and their prices. Based on Table 2-14,

we obtained the regression results shown in Eqs. (2.27) and (2.28). For each
regression obtain the standard errors, the t ratios, and the r2 values. Test for the
statistical significance of the estimated coefficients in the two regressions.

3.22. Refer to Problem 3.22. Using OLS regressions, answer questions (a), (b), and (c).
3.23. Table 3-7 (found on the textbook’s Web site) gives data on U.S. expenditure on

imported goods (Y) and personal disposable income (X) for the period 1959
to 2006.

Based on the data given in this table, estimate an import expenditure func-
tion, obtaining the usual regression statistics, and test the hypothesis that
expenditure on imports is unrelated to personal disposable income.

3.24. Show that the OLS estimators, b1 and b2, are linear estimators. Also show that
these estimators are linear functions of the error term ui (Hint: Note that

where and note that the X’s are
nonstochastic).

3.25. Prove Eq. (3.35). (Hint: Square Eq. [3.33] and use some of the properties of OLS).

wi = xi/gx
2
ib2 = gxiyi/gx

2
i = gwiyi,

Xt = B1 + B2Yt,
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CHAPTER 4
MULTIPLE REGRESSION:

ESTIMATION AND
HYPOTHESIS TESTING

93

In the two-variable linear regression model that we have considered so far there
was a single independent, or explanatory, variable. In this chapter we extend
that model by considering the possibility that more than one explanatory vari-
able may influence the dependent variable. A regression model with more than
one explanatory variable is known as a multiple regression model, multiple
because multiple influences (i.e., variables) may affect the dependent variable.

For example, consider the 1980s savings and loan (S&L) crisis resulting from
the bankruptcies of some S&L institutions in several states. Similar events also
occurred in the fall of 2008 as several banks were forced into bankruptcy. What
factors should we focus on to understand these events? Is there a way to reduce
the possibility that they will happen again? Suppose we want to develop a regre-
ssion model to explain bankruptcy, the dependent variable. Now a phenomenon
such as bankruptcy is too complex to be explained by a single explanatory vari-
able; the explanation may entail several variables, such as the ratio of primary
capital to total assets, the ratio of loans that are more than 90 days past due to
total assets, the ratio of nonaccruing loans to total assets, the ratio of renegotiated
loans to total assets, the ratio of net income to total assets, etc.1 To include all
these variables in a regression model to allow for the multiplicity of influences
affecting bankruptcies, we have to consider a multiple regression model.

Needless to say, we could cite hundreds of examples of multiple regression
models. In fact, most regression models are multiple regression models because
very few economic phenomena can be explained by only a single explanatory
variable, as in the case of the two-variable model.

1As a matter of fact, these were some of the variables that were considered by the Board of
Governors of the Federal Reserve System in their internal studies of bankrupt banks.



In this chapter we discuss the multiple regression model seeking answers to
the following questions:

1. How do we estimate the multiple regression model? Is the estimating
procedure any different from that for the two-variable model?

2. Is the hypothesis-testing procedure any different from the two-variable
model?

3. Are there any unique features of multiple regressions that we did not
encounter in the two-variable case?

4. Since a multiple regression can have any number of explanatory varia-
bles, how do we decide how many variables to include in any given
situation?

To answer these and other related questions, we first consider the simplest of
the multiple regression models, namely, the three-variable model in which the
behavior of the dependent variable Y is examined in relation to two explanatory
variables, X2 and X3. Once the three-variable model is clearly understood, the
extension to the four-, five-, or more variable case is quite straightforward,
although the arithmetic gets a bit tedious. (But in this age of high-speed com-
puters, that should not be a problem.) It is interesting that the three-variable
model itself is in many ways a clear-cut extension of the two-variable model, as
the following discussion reveals.

4.1 THE THREE-VARIABLE LINEAR REGRESSION MODEL

Generalizing the two-variable population regression function (PRF), we can
write the three-variable PRF in its nonstochastic form as

(4.1)2

and in the stochastic form as

(4.2)

(4.3)

where Y = the dependent variable
X2 and X3 = the explanatory variables

u = the stochastic disturbance term
t = the tth observation

 = E(Yt) + ut

Yt = B1 + B2X2t + B3X3t + ut

E(Yt) = B1 + B2X2t + B3X3t
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2Equation (4.1) can be written as: with the understanding that
for each observation. The presentation in Eq. (4.1) is for notational convenience in that the

subscripts on the parameters or their estimators match the subscripts on the variables to which they
are attached.

X1t = 1
E(Yt) = B1X1t + B2X2t + B3X3t



In case the data are cross-sectional, the subscript i will denote the ith observa-
tion. Note that we introduce u in the three-variable, or, more generally, in the
multivariable model for the same reason that it was introduced in the two-
variable case.

B1 is the intercept term. It represents the average value of Y when X2 and X3

are set equal to zero. The coefficients B2 and B3 are called partial regression
coefficients; their meaning will be explained shortly.

Following the discussion in Chapter 2, Equation (4.1) gives the conditional
mean value of Y, conditional upon the given or fixed values of the variables X2

and X3. Therefore, as in the two-variable case, multiple regression analysis is
conditional regression analysis, conditional upon the given or fixed values of the
explanatory variables, and we obtain the average, or mean, value of Y for the fixed
values of the X variables. Recall that the PRF gives the (conditional) means of the
Y populations corresponding to the given levels of the explanatory variables, X2

and X3.3

The stochastic version, Equation (4.2), states that any individual Y value can
be expressed as the sum of two components:

1. A systematic, or deterministic, component (B1 + B2X2t + B3X3t), which is
simply its mean value E(Yt) (i.e., the point on the population regression
line, PRL),4 and

2. ut, which is the nonsystematic, or random, component, determined by
factors other than X2 and X3.

All this is familiar territory from the two-variable case; the only point to note
is that we now have two explanatory variables instead of one explanatory
variable.

Notice that Eq. (4.1), or its stochastic counterpart Eq. (4.2), is a linear regression
model—a model that is linear in the parameters, the B’s. As noted in Chapter 2, our
concern in this book is with regression models that are linear in the parameters;
such models may or may not be linear in the variables (but more on this in
Chapter 5).

The Meaning of Partial Regression Coefficient

As mentioned earlier, the regression coefficients B2 and B3 are known as partial
regression or partial slope coefficients. The meaning of the partial regression
coefficient is as follows: B2 measures the change in the mean value of Y, E(Y), per
unit change in X2, holding the value of X3 constant. Likewise, B3 measures the
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3Unlike the two-variable case, we cannot show this diagrammatically because to represent the
three variables Y, X2, and X3, we have to use a three-dimensional diagram, which is difficult to
visualize in two-dimensional form. But by stretching the imagination, we can visualize a diagram
similar to Figure 2-6.

4Geometrically, the PRL in this case represents what is known as a plane.



change in the mean value of Y per unit change in X3, holding the value of X2

constant. This is the unique feature of a multiple regression; in the two-variable
case, since there was only a single explanatory variable, we did not have to worry
about the presence of other explanatory variables in the model. In the multiple
regression model we want to find out what part of the change in the average
value of Y can be directly attributable to X2 and what part to X3. Since this point
is so crucial to understanding the logic of multiple regression, let us explain it
by a simple example. Suppose we have the following PRF:

(4.4)

Let X3 be held constant at the value 10. Putting this value in Equation (4.4), we
obtain

(4.5)

Here the slope coefficient B2 = −1.2 indicates that the mean value of Y decreases
by 1.2 per unit increase in X2 when X3 is held constant—in this example it is
held constant at 10 although any other value will do.5 This slope coefficient is
called the partial regression coefficient.6 Likewise, if we hold X2 constant, say, at
the value 5, we obtain

(4.6)

Here the slope coefficient B3 = 0.8 means that the mean value of Y increases by
0.8 per unit increase in X3 when X2 is held constant—here it is held constant at
5, but any other value will do just as well. This slope coefficient too is a partial
regression coefficient.

In short, then, a partial regression coefficient reflects the (partial) effect of one ex-
planatory variable on the mean value of the dependent variable when the values of other
explanatory variables included in the model are held constant. This unique feature of
multiple regression enables us not only to include more than one explanatory
variable in the model but also to “isolate” or “disentangle” the effect of each X
variable on Y from the other X variables included in the model.

We will consider a concrete example in Section 4.5.

 = 9 + 0.8X3t

E(Yt) = 15 - 1.2(5) + 0.8X3t

 = 23 - 1.2X2t

 = (15 + 8) - 1.2X2t

E(Yt) = 15 - 1.2X2t + 0.8(10)

E (Yt) = 15 - 1.2X2t + 0.8X3t

96 PART ONE: THE LINEAR REGRESSION MODEL

5As the algebra of Eq. (4.5) shows, it does not matter at what value X3 is held constant, for that
constant value multiplied by its coefficient will be a constant number, which will simply be added
to the intercept.

6The mathematically inclined reader will notice at once that B2 is the partial derivative of E(Y)
with respect to X2 and that B3 is the partial derivative of E(Y) with respect to X3.



4.2 ASSUMPTIONS OF THE MULTIPLE LINEAR REGRESSION MODEL

As in the two-variable case, our first order of business is to estimate the regres-
sion coefficients of the multiple regression model. Toward that end, we con-
tinue to operate within the framework of the classical linear regression model
(CLRM) first introduced in Chapter 3 and to use the method of ordinary least
squares (OLS) to estimate the coefficients.

Specifically, for model (4.2), we assume (cf. Section 3.1):

A4.1.

The regression model is linear in the parameters as in Eq. (4.1) and it is cor-
rectly specified.

A4.2.

X2 and X3 are uncorrelated with the disturbance term u. If X2 and X3 are
nonstochastic (i.e., fixed numbers in repeated sampling), this assumption is
automatically fulfilled.

However, if the X variables are random, or stochastic, they must be dis-
tributed independently of the error term u; otherwise, we will not be able to
obtain unbiased estimates of the regression coefficients. But more on this in
Chapter 11.

A4.3.

The error term u has a zero mean value; that is,

(4.7)

A4.4.

Homoscedasticity, that is, the variance of u, is constant:

(4.8)

A4.5.

No autocorrelation exists between the error terms ui and uj:

(4.9)

A4.6.

No exact collinearity exists between X2 and X3; that is, there is no exact linear
relationship between the two explanatory variables. This is a new assump-
tion and is explained later.

cov (ui, uj)  i Z j

var (ui) =  
2

E (ui) = 0
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A4.7.

For hypothesis testing, the error term u follows the normal distribution with
mean zero and (homoscedastic) variance . That is,

(4.10)

Except for Assumption (4.6), the rationale for the other assumptions is the
same as that discussed for the two-variable linear regression. As noted in
Chapter 3, we make these assumptions to facilitate the development of the sub-
ject. In Part II we will revisit these assumptions and see what happens if one or
more of them are not fulfilled in actual applications.

According to Assumption (4.6) there is no exact linear relationship between the
explanatory variables X2 and X3, technically known as the assumption of no
collinearity, or no multicollinearity, if more than one exact linear relationship is in-
volved. This concept is new and needs some explanation.

Informally, no perfect collinearity means that a variable, say, X2, cannot be
expressed as an exact linear function of another variable, say, X3. Thus, if we can
express

or

then the two variables are collinear, for there is an exact linear relationship
between X2 and X3. Assumption (4.6) states that this should not be the case. The
logic here is quite simple. If, for example, X2 = 4X3, then substituting this in
Eq. (4.1), we see that

(4.11)

where

(4.12)

Equation (4.11) is a two-variable model, not a three-variable model. Now even
if we can estimate Eq. (4.11) and obtain an estimate of A, there is no way that we
can get individual estimates of B2 or B3 from the estimated A. Note that since
Equation (4.12) is one equation with two unknowns we need two (independent)
equations to obtain unique estimates of B2 and B3.

The upshot of this discussion is that in cases of perfect collinearity we cannot
estimate the individual partial regression coefficients B2 and B3; in other words,

A = 4B2 + B3

 = B1 + AX3t

 = B1 + (4B2 + B3)X3t

E(Yt) = B1 + B2(4X3t) + B3X3t

X2t = 4X3t

X2t = 3 + 2X3t

ui ' N(0,  2)

 
2
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we cannot assess the individual effect of X2 and X3 on Y. But this is hardly
surprising, for we really do not have two independent variables in the model.

Although, in practice, the case of perfect collinearity is rare, the cases of high
or near perfect collinearity abound. In a later chapter (see Chapter 8) we will
examine this case more fully. For now we merely require that two or more
explanatory variables do not have exact linear relationships among them.

4.3 ESTIMATION OF THE PARAMETERS OF MULTIPLE REGRESSION

To estimate the parameters of Eq. (4.2), we use the ordinary least squares (OLS)
method whose main features have already been discussed in Chapters 2 and 3.

Ordinary Least Squares Estimators

To find the OLS estimators, let us first write the sample regression function
(SRF) corresponding to the PRF Eq. (4.2), as follows:

(4.13)

where, following the convention introduced in Chapter 2, e is the residual term,
or simply the residual—the sample counterpart of u—and where the b’s are the
estimators of the population coefficients, the B’s. More specifically,

The sample counterpart of Eq. (4.1) is

(4.14)

which is the estimated population regression line (PRL) (actually a plane).
As explained in Chapter 2, the OLS principle chooses the values of the un-

known parameters in such a way that the residual sum of squares (RSS) is
as small as possible. To do this, we first write Equation (4.13) as

(4.15)

Squaring this equation on both sides and summing over the sample observa-
tions, we obtain

(4.16)

And in OLS we minimize this RSS (which is simply the sum of the squared
difference between actual Yt and estimated Yt).

RSS:  a e2
t = a (Yt - b1 - b2X2t - b3X3t)

2

et = Yt - b1 - b2 X2t - b3X3t

a et
2

NYt = b1 + b2X2t + b3X3t

b1 = the estimator of B1

b2 = the estimator of B2

b3 = the estimator of B3

Yt = b1 + b2X2t + b3X3t + et
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The minimization of Equation (4.16) involves the calculus technique of dif-
ferentiation. Without going into detail, this process of differentiation gives us
the following equations, known as (least squares) normal equations, to help esti-
mate the unknowns7 (compare them with the corresponding equations given
for the two-variable case in Equations [2.14] and [2.15]):

(4.17)

(4.18)

(4.19)

where the summation is over the sample range 1 to n. Here we have three equa-
tions in three unknowns; the knowns are the variables Y and the X’s and the un-
knowns are the b’s. Ordinarily, we should be able to solve three equations with
three unknowns. By simple algebraic manipulations of the preceding equa-
tions, we obtain the three OLS estimators as follows:

(4.20)

(4.21)

(4.22)

where, as usual, lowercase letters denote deviations from sample mean values
(e.g., ).

You will notice the similarity between these equations and the correspond-
ing ones for the two-variable case given in Eqs. (2.16) and (2.17). Also, notice
the following features of the preceding equations: (1) Equations (4.21) and (4.22)
are symmetrical in that one can be obtained from the other by interchanging
the roles of x2 and x3, and (2) the denominators of these two equations are
identical.

Variance and Standard Errors of OLS Estimators

Having obtained the OLS estimators of the intercept and partial regression
coefficients, we can derive the variances and standard errors of these estimators
in the manner of the two-variable model. These variances or standard errors
give us some idea about the variability of the estimators from sample to
sample. As in the two-variable case, we need the standard errors for two main

yt = Yt - Y

 b3 =
(gytx3t) Agx2

2t B - (gytx2t) (gx2tx3t)

Agx2
2t B Agx2

3t B - (gx2tx3t)
2

 b2 =
(gytx2t) Agx 23t B - (gytx3t)(gx2tx3t)

Agx2
2t B  Agx2

3t B - (gx2tx3t)
2

 b1 = Y - b2 
X2 - b3 

X3

 aYtX3t = b1aX3t + b2aX2tX3t + b3aX2
3t

 aYX2t = b1aX2t + b2aX2
2t + b3aX2tX3t

 Y = b1 + b2X2 + b3X3
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purposes: (1) to establish confidence intervals for the true parameter values and
(2) to test statistical hypotheses. The relevant formulas, stated without proof, are
as follows:

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

In all these formulas is the (homoscedastic) variance of the population error
term ut. The OLS estimator of this unknown variance is

(4.29)

This formula is a straightforward extension of its two-variable companion
given in Equation (3.8) except that now the degrees of freedom (d.f.) are (n - 3).
This is because in estimating RSS, , we must first obtain b1, b2, and b3, which
consume 3 d.f. This argument is quite general. In the four-variable case the d.f.
will be (n - 4); in the five-variable case, (n - 5); etc.

Also, note that the (positive) square root of 

(4.30)

is the standard error of the estimate, or the standard error of the regression, which, as
noted in Chapter 3, is the standard deviation of Y values around the estimated
regression line.

A word about computing . Since , to compute this
expression, one has first to compute , which the computer does very easily.
But there is a shortcut to computing the RSS (see Appendix 4A.2), which is

(4.31)

which can be readily computed once the partial slopes are estimated.
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Properties of OLS Estimators of Multiple Regression

In the two-variable case we saw that under assumed conditions the OLS esti-
mators are best linear unbiased estimators (BLUE). This property continues to
hold for the multiple regression. Thus, each regression coefficient estimated by
OLS is linear and unbiased—on the average it coincides with the true value.
Among all such linear unbiased estimators, the OLS estimators have the least
possible variance so that the true parameter can be estimated more accurately
than by competing linear unbiased estimators. In short, the OLS estimators are
efficient.

As the preceding development shows, in many ways the three-variable model
is an extension of its two-variable counterpart, although the estimating formulas
are a bit involved. These formulas get much more involved and cumbersome
once we go beyond the three-variable model. In that case, we have to use matrix
algebra, which expresses various estimating formulas more compactly. Of
course, in this text matrix algebra is not used. Besides, today you rarely compute
the estimates by hand; instead, you let the computer do the work.

4.4 GOODNESS OF FIT OF ESTIMATED MULTIPLE REGRESSION:

MULTIPLE COEFFICIENT OF DETERMINATION, R2

In the two-variable case we saw that r2 as defined in Equation (3.38) measures
the goodness of fit of the fitted sample regression line (SRL); that is, it gives the
proportion or percentage of the total variation in the dependent variable Y explained by
the single explanatory variable X. This concept of r2 can be extended to regression
models containing any number of explanatory variables. Thus, in the three-
variable case we would like to know the proportion of the total variation in

explained by X2 and X3 jointly. The quantity that gives this informa-
tion is known as the multiple coefficient of determination and is denoted by
the symbol R2; conceptually, it is akin to r2.

As in the two-variable case, we have the identity (cf. Eq. 3.36):

TSS = ESS + RSS (4.32)

where TSS = the total sum of squares of the dependent variable 
ESS = the explained sum of squares (i.e., explained by all the X variables)
RSS = the residual sum of squares

Also, as in the two-variable case, R2 is defined as

(4.33)

That is, it is the ratio of the explained sum of squares to the total sum of squares;
the only change is that the ESS is now due to more than one explanatory
variable.

R2 =
ESS

TSS

Y (=gy2
t)

Y(=gy2
t )
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Now it can be shown that8

(4.34)

and, as shown before,

(4.35)

Therefore, R2 can be computed as

(4.36)9

In passing, note that the positive square root of R2, R, is known as the coeffi-
cient of multiple correlation, the two-variable analogue of r. Just as r measures
the degree of linear association between Y and X, R can be interpreted as the de-
gree of linear association between Y and all the X variables jointly. Although r
can be positive or negative, R is always taken to be positive. In practice, how-
ever, R is of little importance.

4.5 ANTIQUE CLOCK AUCTION PRICES REVISITED

Let us take time out to illustrate all the preceding theory with the antique clock
auction prices example we considered in Chapter 2 (See Table 2-14). Let Y = auc-
tion price, X2 = age of clock, and X3 = number of bidders. A priori, one would
expect a positive relationship between Y and the two explanatory variables. The
results of regressing Y on the two explanatory variables are as follows (the
EViews output of this regression is given in Appendix 4A.4).

se = (175.2725) (0.9123) (8.8019)

t = (-7.6226) (13.9653) (9.7437) (4.37)

p = (0.0000)* (0.0000)* (0.0000)*

R2 = 0.8906; F = 118.0585

Interpretation of the Regression Results

As expected, the auction price is positively related to both the age of the clock
and the number of bidders. The interpretation of the slope coefficient of about
12.74 means that holding other variables constant, if the age of the clock goes up

Yi
N

  = -1336.049 + 12.7413X2i + 85.7640X3i

R2 =
b2gytx2t + b3gytx3t

gy2
t

RSS = ay2
t - b2ayt 

x2t - b3ayt  
x3t

ESS = b2ayt 
x2t + b3aytx3t
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*Denotes an extremely small value.

1 - RSS
TSS = 1 -

g e2
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by a year, the average price of the clock will go up by about 12.74 marks.
Likewise, holding other variables constant, if the number of bidders increases
by one, the average price of the clock goes up by about 85.76 marks. The nega-
tive value of the intercept has no viable economic meaning. The R2 value of
about 0.89 means that the two explanatory variables account for about 89 per-
cent of the variation in the auction bid price, a fairly high value. The F value
given in Eq. (4.37) will be explained shortly.

4.6 HYPOTHESIS TESTING IN A MULTIPLE REGRESSION:

GENERAL COMMENTS

Although R2 gives us an overall measure of goodness of fit of the estimated re-
gression line, by itself R2 does not tell us whether the estimated partial regres-
sion coefficients are statistically significant, that is, statistically different from
zero. Some of them may be and some may not be. How do we find out?

To be specific, let us suppose we want to entertain the hypothesis that age of
the antique clock has no effect on its price. In other words, we want to test the
null hypothesis: . How do we go about it? From our discussion of
hypothesis testing for the two-variable model given in Chapter 3, in order to
answer this question we need to find out the sampling distribution of b2, the
estimator of B2. What is the sampling distribution of b2? And what is the sam-
pling distribution of b1 and b3?

In the two-variable case we saw that the OLS estimators, b1 and b2, are nor-
mally distributed if we are willing to assume that the error term u follows the
normal distribution. Now in Assumption (4.7) we have stated that even for
multiple regression we will continue to assume that u is normally distributed
with zero mean and constant variance  2. Given this and the other assumptions
listed in Section 4.2, we can prove that b1, b2, and b3 each follow the normal dis-
tribution with means equal to B1, B2, and B3, respectively, and the variances
given by Eqs. (4.23), (4.25), and (4.27), respectively.

However, as in the two-variable case, if we replace the true but unobservable
 

2 by its unbiased estimator given in Eq. (4.29), the OLS estimators follow the
t distribution with (n   3) d.f., not the normal distribution. That is,

(4.38)

(4.39)

(4.40)

Notice that the d.f. are now (n   3) because in computing the RSS, and
hence , we first need to estimate the intercept and the two partial slope coef-
ficients; so we lose 3 d.f.

 N
2

ge
2
t,

t =
b3 - B3

se(b2)
 ~ tn-3

t =
b2 - B2

se(b2)
 ~ tn-3

t =
b1 - B1

se(b1)
 ~ tn-3

 N
2

H0 
: B2 = 0
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We know that by replacing with the OLS estimators follow the t distri-
bution. Now we can use this information to establish confidence intervals as
well as to test statistical hypotheses about the true partial regression coeffi-
cients. The actual mechanics in many ways resemble the two-variable case,
which we now illustrate with an example.

4.7 TESTING HYPOTHESES ABOUT INDIVIDUAL 

PARTIAL REGRESSION COEFFICIENTS

Suppose in our illustrative example we hypothesize that

That is, under the null hypothesis, the age of the antique clock has no effect
whatsoever on its bid price, whereas under the alternative hypothesis, it is con-
tended that age has some effect, positive or negative, on price. The alternative
hypothesis is thus two-sided.

Given the preceding null hypothesis, we know that

(Note: B2 = 0) (4.41)

follows the t distribution with (n   3)  29 d.f., since n = 32 in our example.
From the regression results given in Eq. (4.37), we obtain

(4.42)

which has the t distribution with 29 d.f.
On the basis of the computed t value, do we reject the null hypothesis that

the age of the antique clock has no effect on its bid price? To answer this ques-
tion, we can either use the test of significance approach or the confidence interval
approach, as we did for the two-variable regression.

The Test of Significance Approach

Recall that in the test of significance approach to hypothesis testing we develop
a test statistic, find out its sampling distribution, choose a level of significance
 , and determine the critical value(s) of the test statistic at the chosen level of
significance. Then we compare the value of the test statistic obtained from the
sample at hand with the critical value(s) and reject the null hypothesis if the
computed value of the test statistic exceeds the critical value(s).10 Alternatively,

t =
12.7413

0.9123
L 13.9653

 =
b2

se(b2)

 t =
b2 - B2

se(b2)

H0 
: B2 = 0  and  H1 

: B2 Z  0
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2

 
2
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we can find the p value of the test statistic and reject the null hypothesis if the p
value is smaller than the chosen  value. The approach that we followed for the
two-variable case also carries over to the multiple regression.

Returning to our illustrative example, we know that the test statistic in ques-
tion is the t statistic, which follows the t distribution with (n   3) d.f. Therefore,
we use the t test of significance. The actual mechanics are now straightforward.
Suppose we choose   0.05 or 5%. Since the alternative hypothesis is two-
sided, we have to find the critical t value at (Why?) for (n   3) d.f.,
which in the present example is 29. Then from the t table we observe that for
29 d.f.,

(4.43)

That is, the probability that a t value lies between the limits −2.045 and +2.045
(i.e., the critical t values) is 95 percent.

From Eq. (4.42), we see that the computed t value under H0 :B2 = 0 is approxi-
mately 14, which obviously exceeds the critical t value of 2.045. We therefore re-
ject the null hypothesis and conclude that age of an antique clock definitely has
an influence on its bid price. This conclusion is also reinforced by the p value
given in Eq. (4.37), which is practically zero. That is, if the null hypothesis that 
B2 = 0 were true, our chances of obtaining a t value of about 14 or greater would
be practically nil. Therefore, we can reject the null hypothesis more resoundingly
on the basis of the p value than the conventionally chosen  value of 1% or 5%.

One-Tail or Two-Tail t Test? Since, a priori, we expect the coefficient of the
age variable to be positive, we should in fact use the one-tail t test here. The 5%
critical t value for the one-tail test for 29 d.f. now becomes 1.699. Since the com-
puted t value of about 14 is still so much greater than 1.699, we reject the null
hypothesis and now conclude that the age of the antique clock positively
impacts its bid price; the two-tail test, on the other hand, simply told us that age
of the antique clock could have a positive or negative impact on its bid price.
Therefore, be careful about how you formulate your null and alternative
hypotheses. Let theory be the guide in choosing these hypotheses.

The Confidence Interval Approach to Hypothesis Testing

The basics of the confidence interval approach to hypothesis testing have already
been discussed in Chapter 3. Here we merely illustrate it with our numerical
example. We showed previously that

We also know from Eq. (4.39) that

t =
b2 - B2

se(b2)

P(- 2.045 … t … 2.045) =  0.95

(-2.045 … t … 2.045) = 0.95

 /2 = 2.5%
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If we substitute this t value into Equation (4.43), we obtain

Which, after rearranging becomes

(4.44)

which is a 95% confidence interval for B2 (cf. Eq. [3.26]). Recall that under the
confidence interval approach, if the confidence interval, which we call the ac-
ceptance region, includes the null-hypothesized value, we do not reject the null
hypothesis. On the other hand, if the null-hypothesized value lies outside the
confidence interval, that is, in the region of rejection, we can reject the null hy-
pothesis. But always bear in mind that in making either decision we are taking
a chance of being wrong  % (say, 5%) of the time.

For our illustrative example, Eq. (4.44) becomes

that is,

(4.45)

which is a 95% confidence interval for true B2. Since this interval does not include
the null-hypothesized value, we can reject the null hypothesis: If we construct
confidence intervals like expression (4.45), then 95 out of 100 such intervals will
include the true B2, but, as noted in Chapter 3, we cannot say that the probability is
95% that the particular interval in Eq. (4.45) does or does not include the true B2.

Needless to say, we can use the two approaches to hypothesis testing to test
hypotheses about any other coefficient given in the regression results for our
illustrative example. As you can see from the regression results, the variable,
number of bidders, is also statistically significant (i.e., significantly different
from zero) because the estimated t value of about 8 has a p value of almost zero.
Remember that the lower the p value, the greater the evidence against the null
hypothesis.

4.8 TESTING THE JOINT HYPOTHESIS THAT B2 = B3 = 0 OR R2
= 0

For our illustrative example we saw that individually the partial slope coeffi-
cients b2 and b3 are statistically significant; that is, individually each partial slope
coefficient is significantly different from zero. But now consider the following
null hypothesis:

(4.46)H0 
: B2 = B3 = 0

10.8757 … B2 … 14.6069

12.7413 - 2.045(0.9123) … B2 … 12.7413 + 2.045(0.9123)

P[b2 - 2.045 se(b2) … B2 … b2 + 2.045 se(b2)] = 0.95

P a-2.045 …
b2 - B2

se(b2)
… 2.045b = 0.95
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This null hypothesis is a joint hypothesis that B2 and B3 are jointly or simultane-
ously (and not individually or singly) equal to zero. This hypothesis states that
the two explanatory variables together have no influence on Y. This is the same
as saying that

(4.47)

That is, the two explanatory variables explain zero percent of the variation in
the dependent variable (recall the definition of R2). Therefore, the two sets of
hypotheses (4.46) and (4.47) are equivalent; one implies the other. A test of
either hypothesis is called a test of the overall significance of the estimated
multiple regression; that is, whether Y is linearly related to both X2 and X3.

How do we test, say, the hypothesis given in Equation (4.46)? The temptation
here is to state that since individually b2 and b3 are statistically different from
zero in the present example, then jointly or collectively they also must be statis-
tically different from zero; that is, we reject H0 given in Eq. (4.46). In other
words, since age of the antique clock and the number of bidders at the auction
each has a significant effect on the auction price, together they also must have a
significant effect on the auction price. But we should be careful here for, as we
show more fully in Chapter 8 on multicollinearity, in practice, in a multiple re-
gression one or more variables individually have no effect on the dependent
variable but collectively they have a significant impact on it. This means that the
t-testing procedure discussed previously, although valid for testing the statistical
significance of an individual regression coefficient, is not valid for testing the joint
hypothesis.

How then do we test a hypothesis like Eq. (4.46)? This can be done by using
a technique known as analysis of variance (ANOVA). To see how this tech-
nique is employed, recall the following identity:

(4.32)

That is,

(4.48)11

Equation (4.48) decomposes the TSS into two components, one explained by
the (chosen) regression model (ESS) and the other not explained by the model
(RSS). A study of these components of TSS is known as the analysis of variance
(ANOVA) from the regression viewpoint.

As noted in Appendix C every sum of squares has associated with it its
degrees of freedom (d.f.); that is, the number of independent observations on

ay2
t = b2ayt 

x2t + b3ayt  
x3t + a e2

t

TSS = ESS + RSS

H0 
: R2 = 0
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the basis of which the sum of squares is computed. Now each of the preceding
sums of squares has these d.f.:

Sum of squares d.f.

TSS n − 1 (always, Why?)

RSS n − 3 (three-variable model)

ESS 2 (three-variable model)*

*An easy way to find the d.f. for ESS is to subtract the d.f.
for RSS from the d.f. for TSS.

Let us arrange all these sums of squares and their associated d.f. in a tabular
form, known as the ANOVA table, as shown in Table 4-1.

Now given the assumptions of the CLRM (and Assumption 4.7) and the null
hypothesis: , it can be shown that the variable

(4.49)

follows the F distribution with 2 and d.f. in the numerator and denomi-
nator, respectively. (See Appendix C for a general discussion of the F distribu-
tion and Appendix D for some applications). In general, if the regression model has
k explanatory variables including the intercept term, the F ratio has (k − 1) d.f. in the
numerator and (n − k) d.f. in the denominator.12

How can we use the F ratio of Equation (4.49) to test the joint hypothesis that
both X2 and X3 have no impact on Y? The answer is evident in Eq. (4.49). If the

 (n - 3)                    

=
(b2gytx2t + b3gytx3t)/2

ge2
t/(n - 3)

=
variance explained by X2 and X3

unexplained variance

 F =
ESS/d.f.

RSS/d.f.

H0 
: B2 = B3 = 0
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ANOVA TABLE FOR THE THREE-VARIABLE REGRESSION

Source of variation Sum of squares (SS) d.f.

Due to regression (ESS) b2 yt x2t + b3 ytx3t 2

Due to residual (RSS) n − 3

Total (TSS) n − 1

Note: MSS = mean, or average, sum of squares.

gy 2
t

ge2
t

n - 3
ge2

t

b2g yt x2t + b3gyt x3t

2
gg

MSS = SS
d.f.

TABLE 4-1

12A simple way to remember this is that the numerator d.f. of the F ratio is equal to the number
of partial slope coefficients in the model, and the denominator d.f. is equal to n minus the total num-
ber of parameters estimated (i.e., partial slopes plus the intercept).



numerator of Eq. (4.49) is larger than its denominator—if the variance of Y
explained by the regression (i.e., by X2 and X3) is larger than the variance not ex-
plained by the regression—the F value will be greater than 1. Therefore, as the
variance explained by the X variables becomes increasingly larger relative to
the unexplained variance, the F ratio will be increasingly larger, too. Thus, an
increasingly large F value will be evidence against the null hypothesis that the two (or
more) explanatory variables have no effect on Y.

Of course, this intuitive reasoning can be formalized in the usual framework
of hypothesis testing. As shown in Appendix C, Section C.4, we compute F as
given in Eq. (4.49) and compare it with the critical F value for 2 and (n - 3) d.f.
at the chosen level of  , the probability of committing a type I error. As usual, if
the computed F value exceeds the critical F value, we reject the null hypothesis that the
impact of all explanatory variables is simultaneously equal to zero. If it does not exceed
the critical F value, we do not reject the null hypothesis that the explanatory variables
have no impact whatsoever on the dependent variable.

To illustrate the actual mechanics, let us return to our illustrative example.
The numerical counterpart of Table 4-1 is given in Table 4-2.

The entries in this table are obtained from the EViews computer output given
in Appendix 4A.4.13 From this table and the computer output, we see that the
estimated F value is 118.0585, or about 119. Under the null hypothesis that B2 =
B3 = 0, and given the assumptions of the classical linear regression model
(CLRM), we know that the computed F value follows the F distribution with 2
and 29 d.f. in the numerator and denominator, respectively. If the null hypothe-
sis were true, what would be the probability of our obtaining an F value of as
much as 118 or greater for 2 and 13 d.f.? The p value of obtaining an F value of
118 or greater is 0.000000, which is practically zero. Hence, we can reject the null
hypothesis that age and number of bidders together has no effect on the bid price
of antique clocks.14

In our illustrative example it so happens that not only do we reject the null
hypothesis that B2 and B3 are individually statistically insignificant, but we also
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ANOVA TABLE FOR THE CLOCK AUCTION PRICE EXAMPLE

Source of variation Sum of squares (SS) d.f.

Due to regression (ESS) 4278295.3 2 4278295.3/2

Due to residual (RSS) 525462.2 29 525462.2/29

Total (TSS) 4803757.5 31

F = 2139147.6/18119.386 = 118.0585*

*Figures have been rounded.

MSS = SS
d.f.

TABLE 4-2

13Unlike other software packages, EViews does not produce the ANOVA table, although it gives
the F value. But it is very easy to construct this table, for EViews gives TSS and RSS from which ESS
can be easily obtained.

14If you had chosen , the critical F value for 2 and 30 (which is close to 29) d.f. would be
5.39. The F value of 118 is obviously much greater than this critical value.

 = 1%



reject the hypothesis that collectively they are insignificant. However, this need
not happen all the time. We will come across cases where not all explanatory
variables individually have much impact on the dependent variable (i.e., some
of the t values may be statistically insignificant) yet all of them collectively influ-
ence the dependent variable (i.e., the F test will reject the null hypothesis that all
partial slope coefficients are simultaneously equal to zero.) As we will see, this
happens if we have the problem of multicollinearity, which we will discuss
more in Chapter 8.

An Important Relationship between F and R 2

There is an important relationship between the coefficient of determination R2

and the F ratio used in ANOVA. This relationship is as follows:

(4.50)

where n = the number of observations and k = the number of explanatory vari-
ables including the intercept.

Equation (4.50) shows how F and R2 are related. These two statistics vary
directly. When R2 = 0 (i.e., no relationship between Y and the X variables), F is
zero ipso facto. The larger R2 is, the greater the F value will be. In the limit when
R2 = 1, the F value is infinite.

Thus the F test discussed earlier, which is a measure of the overall signifi-
cance of the estimated regression line, is also a test of significance of R2; that is,
whether R2 is different from zero. In other words, testing the null hypothesis
Eq. (4.46) is equivalent to testing the null hypothesis that (the population) R2 is
zero, as noted in Eq. (4.47).

One advantage of the F test expressed in terms of R2 is the ease of computa-
tion. All we need to know is the R2 value, which is routinely computed by most
regression programs. Therefore, the overall F test of significance given in
Eq. (4.49) can be recast in terms of R2 as shown in Eq. (4.50), and the ANOVA
Table 4-1 can be equivalently expressed as Table 4-3.

F =
R2/(k - 1)

(1 - R2)/(n - k)

CHAPTER FOUR: MULTIPLE REGRESSION: ESTIMATION AND HYPOTHESIS TESTING 111

ANOVA TABLE IN TERMS OF R2

Source of variation Sum of squares (SS) d.f.

Due to regression (ESS) 2

Due to residual (RSS) n − 3

Total (TSS) n − 1

Note: In computing the F value, we do not need to multiply R2 and (1 − R2) by since it
drops out, as can be seen from Eq. (4.49).

In the k-variable model the d.f. will be (k − 1) and (n − k), respectively.

gy 2
i

gy 2
i

(1 - R 2) Agy 2
i B

(n - 3)
(1 - R 2 ) Agy 2

i B

R2 A gy 2
i
B

2
R 2 Agy 2

i B
MSS = SS

d.f.

TABLE 4-3



For our illustrative example, R2 = 0.8906. Therefore, the F ratio of Equation (4.50)
becomes

(4.51)

which is about the same F as shown in Table 4-2, except for rounding errors.
It is left for you to set up the ANOVA table for our illustrative example in the

manner of Table 4-3.

4.9 TWO-VARIABLE REGRESSION IN THE CONTEXT OF MULTIPLE

REGRESSION: INTRODUCTION TO SPECIFICATION BIAS

Let us return to our example. In Example 2.5, we regressed auction price on the
age of the antique clock and the number of bidders separately, as shown in
Equations (2.27) and (2.28). These equations are reproduced here with the usual
regression output.

(4.52)

(4.53)

If we compare these regressions with the results of the multiple regression
given in Eq. (4.37), we see several differences:

1. The slope values in Equations (4.52) and (4.53) are different from those
given in the multiple regression (4.37), especially that of the number of
bidders variable.

2. The intercept values in the three regressions are also different.
3. The R2 value in the multiple regression is quite different from the r2

values given in the two bivariate regressions. In a bivariate regression,
however, R2 and r2 are basically indistinguishable.

As we will show, some of these differences are statistically significant and some
others may not be.

Why the differences in the results of the two regressions? Remember that in
Eq. (4.37), while deriving the impact of age of the antique clock on the auction
price, we held the number of bidders constant, whereas in Eq. (4.52) we simply
neglected the number of bidders. Put differently, in Eq. (4.37) the effect of a
clock’s age on auction price is net of the effect, or influence, of the number of
bidders, whereas in Eq. (4.52) the effect of the number of bidders has not been
netted out. Thus, the coefficient of the age variable in Eq. (4.52) reflects the gross

t = (3.4962) (2.3455)  r2 = 0.1549;  F = 5.5017

se = (231.9501) (23.5724)

NYi = 807.9501 + 54.5724 Bidders

t = ( - 0.7248) (5.8457)  r2 = 0.5325; F = 34.1723

se = (264.4393) + (1.7937)

NYi = - 191.6662 + 10.4856 Agei

F =
0.8906/2

(1 - 0.8906)/29
« 118.12
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effect—the direct effect of age as well as the indirect effect of the number of bidders.
This difference between the results of regressions (4.37) and (4.52) shows very
nicely the meaning of the “partial” regression coefficient.

We saw in our discussion of regression (4.37) that both the age of the clock
and the number of bidders variables were individually as well as collectively im-
portant influences on the auction price. Therefore, by omitting the number of
bidders variable from regression (4.52) we have committed what is known as a
(model) specification bias or specification error, more specifically, the specifi-
cation error of omitting a relevant variable from the model. Similarly, by omit-
ting the age of the clock from regression (4.53), we also have committed a spec-
ification error.

Although we will examine the topic of specification errors in Chapter 7, what
is important to note here is that you should be very careful in developing a
regression model for empirical purposes. Take whatever help you can from the
underlying theory and/or prior empirical work in developing the model. And
once you choose a model, do not drop variables from the model arbitrarily.

4.10 COMPARING TWO R2 VALUES:THE ADJUSTED R2

By examining the R2 values of our two-variable (Eq. [4.52] or Eq. [4.53]) and
three-variable (Eq. [4.37]) regressions for our illustrative example, you will no-
tice that the R2 value of the former (0.5325 for Eq. [4.52] or 0.1549 for Eq. [4.53])
is smaller than that of the latter (0.8906). Is this always the case? Yes! An impor-
tant property of R2 is that the larger the number of explanatory variables in a
model, the higher the R2 will be. It would then seem that if we want to explain
a substantial amount of the variation in a dependent variable, we merely have
to go on adding more explanatory variables!

However, do not take this “advice” too seriously because the definition of
R2 = ESS/TSS does not take into account the d.f. Note that in a k-variable model
including the intercept term the d.f. for ESS is (k - 1). Thus, if you have a model
with 5 explanatory variables including the intercept, the d.f. associated with
ESS will be 4, whereas if you had a model with 10 explanatory variables includ-
ing the intercept, the d.f. for the ESS would be 9. But the conventional R2 for-
mula does not take into account the differing d.f. in the various models. Note
that the d.f. for TSS is always (n - 1). (Why?) Therefore, comparing the R2 values of
two models with the same dependent variable but with differing numbers of explanatory
variables is essentially like comparing apples and oranges.

Thus, what we need is a measure of goodness of fit that is adjusted for (i.e.,
takes into account explicitly) the number of explanatory variables in the model.
Such a measure has been devised and is known as the adjusted R

2, denoted by
the symbol, . This can be derived from the conventional R2 (see Appendix
4A.3) as follows:

(4.54)R2 = 1 - (1 - R2) 
n - 1

n - k

R2
R

2
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Note that the R2 we have considered previously is also known as the unadjusted
R2 for obvious reasons.

The features of the adjusted R2 are:

1. If ; that is, as the number of explanatory variables
increases in a model, the adjusted R2 becomes increasingly smaller than
the unadjusted R2. There seems to be a “penalty” involved in adding
more explanatory variables to a regression model.

2. Although the unadjusted R2 is always positive, the adjusted R2 can on
occasion turn out to be negative. For example, in a regression model
involving k = 3 and n = 30, if an R2 is found to be 0.06, R2 can be negative
(−0.0096).

At present, most computer regression packages compute both the adjusted
and unadjusted R2 values. This is a good practice, for the adjusted R2 will en-
able us to compare two regressions that have the same dependent variable but a
different number of explanatory variables.15 Even when we are not comparing
two regression models, it is a good practice to find the adjusted R2 value
because it explicitly takes into account the number of variables included in a
model.

For our illustrative example, you should verify that the adjusted R2 value is
0.8830, which, as expected, is smaller than the unadjusted R2 value of 0.8906.
The adjusted R2 values for regressions (4.52) and (4.53) are 0.5169 and 0.1268,
respectively, which are slightly lower than the corresponding unadjusted R2

values.

4.11 WHEN TO ADD AN ADDITIONAL EXPLANATORY 

VARIABLE TO A MODEL

In practice, in order to explain a particular phenomenon, we are often faced
with the problem of deciding among several competing explanatory variables.
The common practice is to add variables as long as the adjusted R2 increases
(even though its numerical value may be smaller than the unadjusted R2). But
when does adjusted R2 increase? It can be shown that will increase if the 
(absolute t) value of the coefficient of the added variable is larger than 1, where the t
value is computed under the null hypothesis that the population value of the said coeffi-
cient is zero.16

To see this all clearly, let us first regress auction price on a constant only, then
on a constant and the age of the clock, and then on a constant, the age of the
clock, and the number of bidders. The results are given in Table 4-4.

|t|R2

k 7 1, R2 …  R2
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15As we will see in Chapter 5, if two regressions have different dependent variables, we cannot
compare their R2 values directly, adjusted or unadjusted.

16Whether or not a particular t value is significant, the adjusted R2 will increase so long as the 
of the coefficient of the added variable is greater than 1.
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Some interesting facts stand out in this exercise:

1. When we regress auction price on the intercept only, the R2, , and F val-
ues are all zero, as we would expect. But what does the intercept value
represent here? It is nothing but the (sample) mean value of auction
price. One way to check on this is to look at Eq. (2.16). If there is no X
variable in this equation, the intercept is equal to the mean value of the
dependent variable.

2. When we regress auction price on a constant and the age of the antique
clock, we see that the t value of the age variable is not only greater than
1, but it is also statistically significant. Unsurprisingly, both R2 and 
values increase (although the latter is somewhat smaller than the
former). But notice an interesting fact. If you square the t value of 5.8457,
we get (5.8457)2 = 34.1722, which is about the same as the F value of
34.1723 shown in Table 4-4. Is this surprising? No, because in Equation
(C.15) in Appendix C we state that

(4.55) (C.15)

That is, the square of the t statistic with k d.f. is equal to the F statistic
with 1 d.f. in the numerator and k d.f. in the denominator. In our
example, k = 30 (32 observations − 2, the two coefficients estimated in
model [2]). The numerator d.f. is 1, because we have only one explana-
tory variable in this model.

3. When we regress auction price on a constant and the number of bidders,
we see that the t value of the latter is 2.3455. If you square this value, you
will get (2.3455)2 = 5.5013, which is about the same as the F value shown
in Table 4-4, which again verifies Eq. (4.55). Since the t value is greater
than 1, both R2 and values have increased. The computed t value is
also statistically significant, suggesting that the number of bidders vari-
able should be added to model (1). A similar conclusion holds for
model (2).

R2

ⴝt2k = F1,k

R2

R2
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A COMPARISON OF FOUR MODELS OF ANTIQUE CLOCK AUCTION PRICES

Dependent variable Intercept Age # of Bidders R2 F

Auction price 1328.094 — — 0.00 0.00 0 (1)

(19.0850)

Auction price −191.6662 10.4856 — 0.5325 0.5169 34.1723 (2)

(−0.7248) (5.8457)

Auction price 807.9501 — 54.5724 0.1549 0.1268 5.5017 (3)

(3.4962) (2.3455)

Auction price −1336.049 12.7413 85.7640 0.8906 0.8830 118.0585 (4)

(−7.6226) (13.9653) (9.7437)

Note: Figures in the parentheses are the estimated t values under the null hypothesis that the corresponding
population values are zero.

R2

TABLE 4-4



4. How do we decide if it is worth adding both age and number of bid-
ders together to model (1)? We have already answered this question
with the help of the ANOVA technique and the attendant F test. In
Table 4.2 we showed that one could reject the hypothesis that B2 = B3 =
0; that is, the two explanatory variables together have no impact on the
auction bid price.17

4.12 RESTRICTED LEAST SQUARES

Let us take another look at the regressions given in Table 4-4. There we saw the
consequences of omitting relevant variables from a regression model. Thus, in
regression (1) shown in this table we regressed antique clock auction price on the
intercept only, which gave an R2 value of 0, which is not surprising. Then in
regression (4) we regressed auction price on the age of the antique clock as well
as on the number of bidders present at the auction, which gave an R2 value of
0.8906. On the basis of the F test we concluded that there was a specification error
and that both the explanatory variables should be added to the model.

Let us call regression (1) the restricted model because it implicitly assumes that
the coefficients of the age of the clock and the number of bidders are zero; that
is, these variables do not belong in the model (i.e., B2 = B3 = 0). Let us call
regression (4) the unrestricted model because it includes all the relevant variables.
Since (1) is a restricted model, when we estimate it by OLS, we call it restricted
least squares (RLS). Since (4) is an unrestricted model, when we estimate it by
OLS, we call it unrestricted least squares (URLS). All the models we have esti-
mated thus far have been essentially URLS, for we have assumed that the
model being estimated has been correctly specified and that we have included
all the relevant variables in the model. In Chapter 7 we will see the conse-
quences of violating this assumption.

The question now is: How do we decide between RLS and URLS? That is,
how do we find out if the restrictions imposed by a model, such as (1) in the pre-
sent instance, are valid? This question can be answered by the F test. For this
purpose, let denote the R2 value obtained from the restricted model and 
denote the R2 value obtained from the unrestricted model. Now assuming that
the error term ui is normally distributed, it can be shown that

(4.56)

follows the F distribution with m and (n - k ) d.f. in the numerator and denom-
inator, respectively, where obtained from the restricted regression,R2

r = R2

F =
AR2

ur - R2
r B/m

A1 - R2
ur B/(n - k)

' Fm,n-k

R2
urR2

r

116 PART ONE: THE LINEAR REGRESSION MODEL

17Suppose you have a model with four explanatory variables. Initially you only include two of
these variables but then you want to find out if it is worth adding two more explanatory variables.
This can be handled by an extension of the F test. For details, see Gujarati and Porter, Basic
Econometrics, 5th ed., McGraw-Hill, New York, 2009, pp. 243–246.



obtained from the unrestricted regression, m = number of restrictions
imposed by the restricted regression (two in our example), n = number of
observations in the sample, and k = number of parameters estimated in the un-
restricted regression (including the intercept). The null hypothesis tested here is
that the restrictions imposed by the restricted model are valid. If the F value
estimated from Equation (4.56) exceeds the critical F value at the chosen level of
significance, we reject the restricted regression. That is, in this situation, the
restrictions imposed by the (restricted) model are not valid.

Returning to our antique clock auction price example, putting the appropri-
ate values in Eq. (4.56) from Table 4-4, we obtain:

(4.57)

The probability of such an F value is extremely small. Therefore, we reject the
restricted regression. More positively, age of the antique clock as well as the num-
ber of bidders at auction both have a statistically significant impact on the
auction price.

The formula (4.56) is of general application. The only precaution to be taken
in its application is that in comparing the restricted and unrestricted regres-
sions, the dependent variables must be in the same form. If they are not, we
have to make them comparable using the method discussed in Chapter 5 (see
Problem 5.16) or use an alternative that is discussed in Exercise 4.20.

4.13 ILLUSTRATIVE EXAMPLES

To conclude this chapter, we consider several examples involving multiple
regressions. Our objective here is to show you how multiple regression models
are used in a variety of applications.

Example 4.1. Does Tax Policy Affect Corporate Capital Structure?

To find out the extent to which tax policy has been responsible for the recent
trend in U.S. manufacturing toward increasing use of debt capital in lieu of eq-
uity capital—that is, toward an increasing debt/equity ratio (called leverage in
the financial literature)—Pozdena estimated the following regression model:18

(4.58)

where Y = the leverage (= debt/equity) in percent
X2 = the corporate tax rate
X3 = the personal tax rate
X4 = the capital gains tax rate
X5 = nondebt-related tax shields
X6 = the inflation rate

Yt = B1 + B2 X2t + B3 X3t + B4 X4t + B5 B X5t + B6 X6t + ut

F =
(0.890 - 0)/2

(1 - 0.890)/(32 - 3)
=

0.445

0.00379
= 117.414

R2
ur = R2
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18Randall Johnston Pozdena, “Tax Policy and Corporate Capital Structure,” Economic Review,
Federal Reserve Bank of San Francisco, Fall 1987, pp. 37–51.



Economic theory suggests that coefficients B2, B4, and B6 will be positive and
coefficients B3 and B5 will be negative.19 Based on the data for U.S. manufactur-
ing corporations for the years 1935 to 1982, Pozdena obtained the OLS results
that are presented in tabular form (Table 4-5) rather than in the usual format (e.g.,
Eq. [4.37]). (Results are sometimes presented in this form for ease of reading.)

Discussion of Regression Results

The first fact to note about the preceding regression results is that all the coeffi-
cients have signs according to prior expectations. For instance, the corporate tax
rate has a positive effect on leverage. Holding other things the same, as the cor-
porate tax rate goes up by 1 percentage point, on the average, the leverage ratio
(i.e., the debt/equity ratio) goes up by 2.4 percentage points. Likewise, if the in-
flation rate goes up by 1 percentage point, on the average, leverage goes up by
1.4 percentage points, other things remaining the same. (Question: Why would
you expect a positive relation between leverage and inflation?) Other partial re-
gression coefficients should be interpreted similarly.

Since the t values are presented underneath each partial regression coefficient
under the null hypothesis that each population partial regression coefficient is
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LEVERAGE IN MANUFACTURING CORPORATIONS, 1935–1982

Coefficient
Explanatory variable (t value in parentheses)

Corporate tax rate 2.4

(10.5)

Personal tax rate −1.2

(−4.8)

Capital gains tax rate 0.3

(1.3)

Non-debt-related tax shield −2.4

(−4.8)

Inflation rate 1.4

(3.0)

n = 48 (number of observations)

R2 = 0.87

= 0.85

Notes: 1. The author does not present the estimated intercept.
2. The adjusted R2 is calculated using Eq. (4.54).
3. The standard errors of the various coefficients can be obtained

by dividing the coefficient value by its t value (e.g., 2.4/10.5 =
0.2286 is the se of the corporate tax rate coefficient).

Source: Randall Johnston Pozdena, “Tax Policy and Corporate Capital
Structure,” Economic Review, Federal Reserve Bank of San Francisco, Fall
1987, Table 1, p. 45 (adapted).

R2

TABLE 4-5

19See Pozdena’s article (footnote 18) for the theoretical discussion of expected signs of the various
coefficients. In the United States the interest paid on debt capital is tax deductible, whereas the in-
come paid as dividends is not. This is one reason that corporations may prefer debt to equity capital.



individually equal to zero, we can easily test whether such a null hypothesis
stands up against the (two-sided) alternative hypothesis that each true popula-
tion coefficient is different from zero. Hence, we use the two-tail t test. The d.f.
in this example are 42, which are obtained by subtracting from n (= 48) the
number of parameters estimated, which are 6 in the present instance. (Note: The
intercept value is not presented in Table 4-5, although it was estimated.) If
we choose or 5%, the two-tail critical t value is about 2.021 for 40 d.f.
(Note: This is good enough for present purposes since the t table does not give
the precise t value for 42 d.f.) If is fixed at 0.01 or a 1% level, the critical t value
for 40 d.f. is 2.704 (two-tail). Looking at the t values presented in Table 4-5,
we see that each partial regression coefficient, except that of the capital gains
tax variable, is statistically significantly different from zero at the 1% level of
significance. The coefficient of the capital gains tax variable is not significant at
either the 1% or 5% level. Therefore, except for this variable, we can reject
the individual null hypothesis that each partial regression coefficient is zero. In
other words, all but one of the explanatory variables individually has an impact
on the debt/equity ratio. In passing, note that if an estimated coefficient is statisti-
cally significant at the 1% level, it is also significant at the 5% level, but the converse
is not true.

What about the overall significance of the estimated regression line? That is,
do we reject the null hypothesis that all partial slopes are simultaneously equal to
zero or, equivalently, is R2 = 0? This hypothesis can be easily tested by using
Eq. (4.50), which in the present case gives

(4.59)

This F value has an F distribution with 5 and 42 d.f. If is set at 0.05, the F table
(Appendix E, Table E-3) shows that for 5 and 40 d.f. (the table has no exact value
of 42 d.f. in the denominator), the critical F value is 2.45. The corresponding
value at is 3.51. The computed F of L 56 far exceeds either of these
critical F values. Therefore, we reject the null hypothesis that all partial slopes
are simultaneously equal to zero or, alternatively, R2 = 0. Collectively, all five
explanatory variables influence the dependent variable. Individually, however,
as we have seen, only four variables have an impact on the dependent variable,
the debt/equity ratio. Example 4.1 again underscores the point made earlier
that the (individual) t test and the (joint) F test are quite different.20

 = 0.01

 

 = 56.22

 =
0.87/5

0.13/42

F =
R2/(k - 1)

(1 - R2)/(n - k)

 

 = 0.05
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20In the two-variable linear regression model, as noted before, ; that is, the square of a t
value with k d.f. is equal to an F value with 1 d.f. in the numerator and k d.f. in the denominator.
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Example 4.2. The Demand for Imports in Jamaica

To explain the demand for imports in Jamaica, J. Gafar21 obtained the fol-
lowing regression based on annual data for 19 years:

(4.60)

where Y = quantity of imports
X2 = personal consumption expenditure
X3 = import price/domestic price

Economic theory would suggest a positive relationship between Y and X2

and a negative relationship between Y and X3, which turns out to be the case.
Individually, the coefficient of X2 is statistically significant but that of X3 is not at,
say, the 5% level. But since the absolute t value of X3 is greater than 1, for this
example will drop if X3 is dropped from the model. (Why?) Together, X2 and X3

explain about 96 percent of the variation in the quantity of imports into Jamaica.

Example 4.3. The Demand for Alcoholic Beverages in the United Kingdom

To explain the demand for alcoholic beverages in the United Kingdom, T.
McGuinness22 estimated the following regression based on annual data for
20 years:

(4.61)

where Y = the annual change in pure alcohol consumption per adult
X2 = the annual change in the real price index of alcoholic drinks
X3 = the annual change in the real disposable income per person

X4 =

X5 = the annual change in real advertising expenditure on alcoholic
drinks per adult

Theory would suggest that all but the variable X2 will be positively
related to Y. This is borne out by the results, although not all coefficients are

the annual change in the number of licensed premises

the adult population

NYt = - 0.014 - 0.354X2t + 0.0018X3t + 0.657X4t + 0.0059X5t

se = (0.012)  (0.2688)  (0.0005)  (0.266)  (0.0034)

   t = ( - 1.16)  (1.32)   (3.39)   (2.47)   (1.73)

R2 = 0.689

R2

t =    (21.74) (- 1.1904) R2 = 0.955

se =    (0.0092) (0.084)    R2 = 0.96

NYt = - 58.9 + 0.20X2t - 0.10X3t
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21J. Gafar, “Devaluation and the Balance of Payments Adjustment in a Developing Economy: An
Analysis Relating to Jamaica,” Applied Economics, vol. 13, 1981, pp. 151–165. Notations were
adapted. Adjusted R2 computed.

22T. McGuinness, “An Econometric Analysis of Total Demand for Alcoholic Beverages in the
United Kingdom,” Journal of Industrial Economics, vol. 29, 1980, pp. 85–109. Notations were adapted.



individually statistically significant. For 15 d.f. (Why?), the 5% critical t value
is 1.753 (one-tail) and 2.131 (two-tail). Consider the coefficient of X5, the
change in advertising expenditure. Since the advertising expenditure and the
demand for alcoholic beverages are expected to be positive (otherwise, it is
bad news for the advertising industry), we can entertain the hypothesis that

and therefore use the one-tail t test. The computed
t value of 1.73 is very close to being significant at the 5% level.

It is left as an exercise for you to compute the F value for this example to test
the hypothesis that all partial slope coefficients are simultaneously equal to zero.

Example 4.4. Civilian Labor Force Participation Rate, Unemployment
Rate, and Average Hourly Earnings Revisited

In Chapter 1 we presented regression (1.5) without discussing the statistical
significance of the results. Now we have the necessary tools to do that. The
complete regression results are as follows:

se = (3.4040) (0.0715) (0.4148)

t = (23.88)       (−8.94) (−3.50) (4.62)

p value = (0.000)* (0.000)* (0.002)

As these results show, each of the estimated regression coefficients is indi-
vidually statistically highly significant, because the p values are so small.
That is, each coefficient is significantly different from zero. Collectively, both
CUNR and AHE82 are also highly statistically significant, because the p
value of the computed F value (for 2 and 25 d.f.) of 41.09 is extremely low.

As expected, the civilian unemployment rate has a negative relationship
to the civilian labor force participation rate, suggesting that perhaps the
discouraged-worker effect dominates the added-worker hypothesis. The the-
oretical reasoning behind this has already been explained in Chapter 1. The
negative value of AHE82 suggests that perhaps the income effect dominates
the substitution effect.

Example 4.5. Expenditure on Education in 38 Countries:23

Based on data taken from a sample of 38 countries (see Table 4-6, found on
the textbook’s Web site), we obtained the following regression:

Educi = 414.4583 + 0.0523GDPi - 50.0476 Pop

R2 = 0.767;  R2 = 0.748; F = 41.09

CLFPRt = 81.2267 - 0.6384CUNRt - 1.4449 AHE82t

H0 : B5 = 0 vs. H1 : B5 7 0
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23The data used in this exercise are from Gary Koop, Introduction to Econometrics, John Wiley &
Sons, England, 2008 and can be found on the following Web site: www.wileyeurope.com/
college/koop.

*Denotes extremely small value.



se = (266.4583)    (0.0018)          ( 9.9581)

t = (1.5538)       (28.2742)       (-5.0257)

p value = (0.1292)        (0.0000)         (0.0000)

where Educ = expenditure on education (millions of U.S. dollars), GDP =
gross domestic product (millions of U.S. dollars), and Pop = population (mil-
lions of people). As you can see from the data, the sample includes a variety
of countries in different stages of economic development.

It can be readily assessed that the GDP and Pop variables are individually
highly significant, although the sign of the population variable may be puz-
zling. Since the estimated F is so highly significant, collectively the two vari-
ables have a significant impact on expenditure on education. As noted, the
variables are also individually significant.

The R2 and adjusted square values are quite high, which is unusual in
a cross-section sample of diverse countries.

We will explore these data further in later chapters.

4.14 SUMMARY

In this chapter we considered the simplest of the multiple regression models,
namely, the three-variable linear regression model—one dependent variable and
two explanatory variables. Although in many ways a straightforward extension
of the two-variable linear regression model, the three-variable model introduced
several new concepts, such as partial regression coefficients, adjusted and unad-
justed multiple coefficient of determination, and multicollinearity.

Insofar as estimation of the parameters of the multiple regression coeffi-
cients is concerned, we still worked within the framework of the classical linear
regression model and used the method of ordinary least squares (OLS). The
OLS estimators of multiple regression, like the two-variable model, possess
several desirable statistical properties summed up in the Gauss-Markov prop-
erty of best linear unbiased estimators (BLUE).

With the assumption that the disturbance term follows the normal distri-
bution with zero mean and constant variance , we saw that, as in the two-
variable case, each estimated coefficient in the multiple regression follows the
normal distribution with a mean equal to the true population value and the
variances given by the formulas developed in the text. Unfortunately, in prac-
tice, is not known and has to be estimated. The OLS estimator of this
unknown variance is . But if we replace by , then, as in the two-variable
case, each estimated coefficient of the multiple regression follows the t distribu-
tion, not the normal distribution.

The knowledge that each multiple regression coefficient follows the t
distribution with d.f. equal to , where k is the number of parameters esti-
mated (including the intercept), means we can use the t distribution to test

(n - k)

 N
2

 
2

 N
2

 
2

 
2

R2

R2 = 0.9616; R2 = 0.9594; F = 439.22; p value of F = 0.000
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statistical hypotheses about each multiple regression coefficient individually.
This can be done on the basis of either the t test of significance or the confidence
interval based on the t distribution. In this respect, the multiple regression
model does not differ much from the two-variable model, except that proper
allowance must be made for the d.f., which now depend on the number of para-
meters estimated.

However, when testing the hypothesis that all partial slope coefficients are
simultaneously equal to zero, the individual t testing referred to earlier is of no
help. Here we should use the analysis of variance (ANOVA) technique and the
attendant F test. Incidentally, testing that all partial slope coefficients are simul-
taneously equal to zero is the same as testing that the multiple coefficient of
determination R2 is equal to zero. Therefore, the F test can also be used to test
this latter but equivalent hypothesis.

We also discussed the question of when to add a variable or a group of
variables to a model, using either the t test or the F test. In this context we also
discussed the method of restricted least squares.

All the concepts introduced in this chapter have been illustrated by
numerical examples and by concrete economic applications.

KEY TERMS AND CONCEPTS

The key terms and concepts introduced in this chapter are
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Multiple regression model
Partial regression coefficients; 

partial slope coefficients
Multicollinearity
Collinearity; exact linear 

relationship
a) high or near perfect collinearity

Multiple coefficient of 
determination, R2

Coefficient of multiple correlation, R
Individual hypothesis testing

Joint hypothesis testing or test of
overall significance of estimated
multiple regression
a) analysis of variance (ANOVA)
b) F test

Model specification bias (specification
error)

Adjusted R2 ( )
Restricted least squares (RLS)
Unrestricted least squares (URLS)
Relationship between t and F tests

R2

QUESTIONS

4.1. Explain carefully the meaning of
a. Partial regression coefficient
b. Coefficient of multiple determination, R2

c. Perfect collinearity
d. Perfect multicollinearity
e. Individual hypothesis testing
f. Joint hypothesis testing
g. Adjusted R2



4.2. Explain step by step the procedure involved in
a. Testing the statistical significance of a single multiple regression coeffi-

cient.
b. Testing the statistical significance of all partial slope coefficients.

4.3. State with brief reasons whether the following statements are true (T), false (F),
or uncertain (U).
a. The adjusted and unadjusted R2s are identical only when the unadjusted R2

is equal to 1.
b. The way to determine whether a group of explanatory variables exerts

significant influence on the dependent variable is to see if any of the
explanatory variables has a significant t statistic; if not, they are statistically
insignificant as a group.

c. When R2 = 1, F = 0, and when R2 = 0, F = infinite.
d. When the d.f. exceed 120, the 5% critical t value (two-tail) and the 5% criti-

cal Z (standard normal) value are identical, namely, 1.96.
*e. In the model , if X2 and X3 are negatively cor-

related in the sample and , omitting X3 from the model will bias b12
downward [i.e., ] where b12 is the slope coefficient in the regres-
sion of Y on X2 alone.

f. When we say that an estimated regression coefficient is statistically signifi-
cant, we mean that it is statistically different from 1.

g. To compute a critical t value, we need to know only the d.f.
h. By the overall significance of a multiple regression we mean the statistical

significance of any single variable included in the model.
i. Insofar as estimation and hypothesis testing are concerned, there is no dif-

ference between simple regression and multiple regression.
j. The d.f. of the total sum of squares (TSS) are always regardless of the

number of explanatory variables included in the model.
4.4. What is the value of in each of the following cases?

a. n = 25, k = 4 (including intercept)
b. n = 14, k = 3 (excluding intercept)

4.5. Find the critical t value(s) in the following situations:

Degrees of freedom Level of significance
(d.f.) (%) H0

12 5 Two-tail
20 1 Right-tail
30 5 Left-tail

200 5 Two-tail

4.6. Find the critical F values for the following combinations:

Numerator d.f. Denominator d.f. Level of significance (%)

5 5 5
4 19 1

20 200 5

ge2
i = 1220,

ge2
i = 880,

 N
2

(n - 1)

E(b12) 6 B2

B3 7 0
Yi = B1 + B2X2i + B3X3i + ui
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PROBLEMS

4.7. You are given the following data:

Y X2 X3

1 1 2
3 2 1
8 3 −3

Based on these data, estimate the following regressions (Note: Do not worry
about estimating the standard errors):
a. Yi = A1 + A2X2i + ui

b. Yi = C1 + C3X3i + ui

c. Yi = B1 + B2X2i + B3X3i + ui

d. Is A2 = B2? Why or why not?
e. Is C3 = B3? Why or why not?
What general conclusion can you draw from this exercise?

4.8. You are given the following data based on 15 observations:

where lowercase letters, as usual, denote deviations from sample mean values.
a. Estimate the three multiple regression coefficients.
b. Estimate their standard errors.
c. Obtain R2 and .
d. Estimate 95% confidence intervals for B2 and B3.
e. Test the statistical significance of each estimated regression coefficient using

(two-tail).
f. Test at that all partial slope coefficients are equal to zero. Show the

ANOVA table.
4.9. A three-variable regression gave the following results:

Sum of squares Mean sum of
Source of variation (SS) d.f. squares (MSS)

Due to regression (ESS) 65,965 — —
Due to residual (RSS) — — —
Total (TSS) 66,042 14

a. What is the sample size?
b. What is the value of the RSS?
c. What are the d.f. of the ESS and RSS?
d. What is R2? And ?
e. Test the hypothesis that X2 and X3 have zero influence on Y. Which test do

you use and why?
f. From the preceding information, can you determine the individual contri-

bution of X2 and X3 toward Y?
4.10. Recast the ANOVA table given in problem 4.9 in terms of R2.

R2

 = 5%
 = 5%

R2

ayix3i = 4,250.9;    ax2ix3i = 4,796.0

ax2
2i = 84,855.096;    ax2

3i = 280.0;    ayix2i = 74,778.346

Y = 367.693;    X2 = 402.760;    X3 = 8.0;    ay2
i = 66,042.269
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4.11. To explain what determines the price of air conditioners, B. T. Ratchford24 ob-
tained the following regression results based on a sample of 19 air conditioners:

se = (0.005) (8.992) (3.082)

where Y = the price, in dollars
X2 = the BTU rating of air conditioner
X3 = the energy efficiency ratio
X4 = the number of settings
se = standard errors

a. Interpret the regression results.
b. Do the results make economic sense?
c. At , test the hypothesis that the BTU rating has no effect on the

price of an air conditioner versus that it has a positive effect.
d. Would you accept the null hypothesis that the three explanatory variables

explain a substantial variation in the prices of air conditioners? Show
clearly all your calculations.

4.12. Based on the U.S. data for 1965-IQ to 1983-IVQ , James Doti and
Esmael Adibi25 obtained the following regression to explain personal con-
sumption expenditure (PCE) in the United States.

= −10.96 + 0.93X2t − 2.09X3t

t = (−3.33)(249.06) (−3.09) R2 = 0.9996

F = 83,753.7

where Y = the PCE ($, in billions)
X2 = the disposable (i.e., after-tax) income ($, in billions)
X3 = the prime rate (%) charged by banks

a. What is the marginal propensity to consume (MPC)—the amount of
additional consumption expenditure from an additional dollar’s personal
disposable income?

b. Is the MPC statistically different from 1? Show the appropriate testing
procedure.

c. What is the rationale for the inclusion of the prime rate variable in the
model? A priori, would you expect a negative sign for this variable?

d. Is b3 significantly different from zero?
e. Test the hypothesis that R2 = 0.
f. Compute the standard error of each coefficient.

NYt

(n = 76)

 = 5%

NYi = - 68.236 + 0.023X2i + 19.729X3i + 7.653X4iR
2 = 0.84
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24B. T. Ratchford, “The Value of Information for Selected Appliances,” Journal of Marketing
Research, vol. 17, 1980, pp. 14–25. Notations were adapted.

25James Doti and Esmael Adibi, Econometric Analysis: An Applications Approach, Prentice-Hall,
Englewood Cliffs, N.J., 1988, p. 188. Notations were adapted.



4.13. In the illustrative Example 4.2 given in the text, test the hypothesis that X2 and
X3 together have no influence on Y. Which test will you use? What are the
assumptions underlying that test?

4.14. Table 4-7 (found on the textbook’s Web site) gives data on child mortality (CM),
female literacy rate (FLR), per capita GNP (PGNP), and total fertility rate
(TFR) for a group of 64 countries.
a. A priori, what is the expected relationship between CM and each of the

other variables?
b. Regress CM on FLR and obtain the usual regression results.
c. Regress CM on FLR and PGNP and obtain the usual results.
d. Regress CM on FLR, PGNP, and TFR and obtain the usual results. Also

show the ANOVA table.
e. Given the various regression results, which model would you choose and

why?
f. If the regression model in (d) is the correct model, but you estimate (a) or (b)

or (c), what are the consequences?
g. Suppose you have regressed CM on FLR as in (b). How would you decide

if it is worth adding the variables PGNP and TFR to the model? Which test
would you use? Show the necessary calculations.

4.15. Use formula (4.54) to answer the following question:

Value of R2 n k

0.83 50 6 —
0.55 18 9 —
0.33 16 12 —
0.12 1,200 32 —

What conclusion do you draw about the relationship between R2 and ?
4.16. For Example 4.3, compute the F value. If that F value is significant, what does

that mean?
4.17. For Example 4.2, set up the ANOVA table and test that R2 = 0. Use .
4.18. Refer to the data given in Table 2-12 (found on the textbook’s Web site) to

answer the following questions:
a. Develop a multiple regression model to explain the average starting pay of

MBA graduates, obtaining the usual regression output.
b. If you include both GPA and GMAT scores in the model, a priori, what

problem(s) may you encounter and why?
c. If the coefficient of the tuition variable is positive and statistically signifi-

cant, does that mean it pays to go to the most expensive business school?
What might the tuition variable be a proxy for?

d. Suppose you regress GMAT score on GPA and find a statistically significant
positive relationship between the two. What can you say about the prob-
lem of multicollinearity?

e. Set up the ANOVA table for the multiple regression in part (a) and test the
hypothesis that all partial slope coefficients are zero.

f. Do the ANOVA exercise in part (e), using the R2 value.

 = 1%

R2

R 2
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4.19. Figure 4-1 gives you the normal probability plot for Example 4.4.
a. From this figure, can you tell if the error term in Eq. (4.62) follows the

normal distribution? Why or why not?
b. Is the observed Anderson-Darling A2 value of 0.468 statistically significant?

If it is, what does that mean? If it is not, what conclusion do you draw?
c. From the given data, can you identify the mean and variance of the error

term?
4.20. Restricted least squares (RLS). If the dependent variables in the restricted and

unrestricted regressions are not the same, you can use the following vari-
ant of the F test given in Eq. (4.56)

where RSSr = residual sum of squares from the restricted regression, RSSur =
residual sum of squares from the unrestricted regression, m = number of
restrictions, and d.f. in the unrestricted regression.

Just to familiarize yourself with this formula, rework the model given in
Table 4-4.

4.21. Refer to Example 4.5.
a. Use the method of restricted least squares to find out if it is worth adding

the Pop (population) variable to the model.
b. Divide both Educ and GDP by Pop to obtain per capita Educ and per capita

GDP. Now regress per capita Educ on per capita GDP and compare your

(n - k) =

F =
(RSSr - RSSur)/m

RSSur/(n - k)
' Fm,n-k
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results with those given in Example 4.5. What conclusion can you draw
from this exercise?

4.22. Table 4-8 (found on the textbook’s Web site) contains variables from the Los
Angeles 2008 Zagat Restaurant Guide. The variables are score values out of 30,
with 30 being the best. For each restaurant listed, the table provides data for
four categories: food, décor, service, and average price for a single meal at the
establishment.
a. Create a least squares regression model to predict Price based on the

other three variables (Food, Décor, and Service). Are all the independent
variables statistically significant?

b. Does the normal probability plot indicate any problems?
c. Create a scattergram of the residual values from the model versus the

fitted values of the Price estimates. Does the plot indicate the resid-
ual values have constant variance? Retain this plot for use in future
chapters.

APPENDIX 4A.1: Derivations of OLS
Estimators Given in Equations (4.20) to (4.22)

Start with Eq. (4.16). Differentiate this equation partially with respect to b1, b2,
and b3, and set the resulting equations to zero to obtain:

Simplifying these equations gives Eq. (4.17), (4.18), and (4.19). Using small
letters to denote deviations from the mean values (e.g., ), we can
solve the preceding equations to obtain the formulas given in Eqs. (4.20), (4.21),
and (4.22).

APPENDIX 4A.2: Derivation of Equation (4.31)

Note that the three-variable sample regression model

(4A.2.1)

can be expressed in the deviation form (i.e., each variable expressed as a devia-
tion from the mean value and noting that ) as

(4A.2.2)yi = b2x2i + b3x3i + ei

e = 0

Yi = b1 + b2X2i + b3X3i + ei

x2i = X2i - X2

 
0ge2

i

0 b3
= 2g (Yi - b1 - b2X2i - b3X3)(-X3i) = 0

 
0ge2

i

0 b2
= 2g (Yi - b1 - b2X2 - b3X3i)(-X2i) = 0

 
0ge2

i

0gb1
= 2g (Yi - b1 - b2X2i - b3X3i)(-1) = 0
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Therefore,

(4A.2.3)

Which we can write as

APPENDIX 4A.3: Derivation of Equation (4.50)

Recall that (see footnote 9)

(4A.3.1)

Now is defined as

(4A.3.2)

Note how the degrees of freedom are taken into account.
Now substituting Equation (4A.3.1) into Equation (4A.3.2), and after

algebraic manipulations, we obtain

Notice that if we do not take into account the d.f. associated with RSS (= n − k)
and TSS (= n − 1), then, obviously .R2 = R2

R2 = 1 - (1 - R2) 
n - 1

n - k

 = 1 -
RSS (n - 1)

TSS (n - k)

R2 = 1 -
RSS/(n - k)

TSS/(n - 1)

R2

R2 = 1 -
RSS

TSS

 = TSS - ESS

 = ay2
i - (b2ayix2i + b3ayix3i)

 = a y2
i - b2ayi x2i - b3ayix3i

 = a (yi - b2x2i - b3x3i)(yi)

 = a eiyi       since the last two terms are zero (why?)

 = a eiyi - b2a eix2i - b3a eix3i

 = a ei (yi - b2x2i - b3x3i)

 a e2
i = a (eiei)

ei = yi - b2x2i - b3x3i
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APPENDIX 4A.4: EViews Output of the Clock
Auction Price Example
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CHAPTER 5
FUNCTIONAL FORMS 
OF REGRESSION MODELS

Until now we have considered models that were linear in parameters as well as
in variables. But recall that in this textbook our concern is with models that are
linear in parameters; the Y and X variables do not necessarily have to be linear.
As a matter of fact, as we show in this chapter, there are many economic phe-
nomena for which the linear-in-parameters/linear-in-variables (LIP/LIV, for
short) regression models may not be adequate or appropriate.

For example, suppose for the LIP/LIV math S.A.T. score function given in
Equation (2.20) we want to estimate the score elasticity of the math S.A.T., that is,
the percentage change in the math S.A.T. score for a percentage change in an-
nual family income. We cannot estimate this elasticity from Eq. (2.20) directly
because the slope coefficient of that model simply gives the absolute change in
the (average) math S.A.T. score for a unit (say, a dollar) change in the annual fam-
ily income, but this is not elasticity. Such elasticity, however, can be readily com-
puted from the so-called log-linear models that will be discussed in Section 5.1.
As we will show, this model, although linear in the parameters, is not linear in
the variables.

For another example, suppose we want to find out the rate of growth1 over
time of an economic variable, such as gross domestic product (GDP) or money
supply, or unemployment rate. As we show in Section 5.4, this growth rate can

1If Yt and Yt-1 are values of a variable, say, GDP, at time t and (t− 1), say, 2009 and 2008, then the 

rate of growth of Y in the two time periods is measured as , which is simply the 

relative, or proportional, change in Y multiplied by 100. It is shown in Section 5.4 how the semilog
model can be used to measure the growth rate over a longer period of time.

Yt - Yt-1

Yt
 
# 100
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be measured by the so-called semilog model which, while linear in parameters,
is nonlinear in variables.

Note that even within the confines of the linear-in-parameter regression
models, a regression model can assume a variety of functional forms. In particu-
lar, in this chapter we will discuss the following types of regression models:

1. Log-linear or constant elasticity models (Section 5.1).
2. Semilog models (Sections 5.4 and 5.5).
3. Reciprocal models (Section 5.6).
4. Polynomial regression models (Section 5.7).
5. Regression-through-the-origin, or zero intercept, model (Section 5.8).

An important feature of all these models is that they are linear in parameters
(or can be made so by simple algebraic manipulations), but they are not neces-
sarily linear in variables. In Chapter 2 we discussed the technical meaning of lin-
earity in both variables and parameters. Briefly, for a regression model linear in
explanatory variable(s) the rate of change (i.e., the slope) of the dependent vari-
able remains constant for a unit change in the explanatory variable, whereas for
regression models nonlinear in explanatory variable(s) the slope does not remain
constant.

To introduce the basic concepts, and to illustrate them graphically, initially we
will consider two-variable models and then extend the discussion to multiple
regression models.

5.1 HOW TO MEASURE ELASTICITY:THE LOG-LINEAR MODEL

Let us revisit our math S.A.T. score function discussed in Chapters 2 and 3. But
now consider the following model for the math S.A.T. score function. (To ease
the algebra, we will introduce the error term later.)

(5.1)

where Y is math S.A.T. score and X is annual family income.
This model is nonlinear in the variable X.2 Let us, however, express Equation

(5.1) in an alternative, but equivalent, form, as follows:

(5.2)ln Yi = lnA + B2 
ln Xi

Yi = AXB2
i

ui

2Using calculus, it can be shown that

which shows that the rate of change of Y with respect to X is not independent of X; that is, it is not
constant. By definition, then, model (5.1) is not linear in variable X.

dY

dX
= AB2X

(B2 -1)



where ln = the natural log, that is, logarithm to the base e.3 Now if we let

(5.3)

we can write Equation (5.2) as

(5.4)

And for estimating purposes, we can write this model as

(5.5)

This is a linear regression model, for the parameters B1 and B2 enter the model
linearly.4 It is of interest that this model is also linear in the logarithms of the
variables Y and X. (Note: The original model [5.1] was nonlinear in X.) Because
of this linearity, models like Equation (5.5) are called double-log (because both
variables are in the log form) or log-linear (because of linearity in the logs of the
variables) models.

Notice how an apparently nonlinear model (5.1) can be converted into a linear
(in the parameter) model by suitable transformation, here the logarithmic transfor-
mation. Now letting and , we can write model (5.5) as

(5.6)

which resembles the models we have considered in previous chapters; it is
linear in both the parameters and the transformed variables Y* and X*.

If the assumptions of the classical linear regression model (CLRM) are satis-
fied for the transformed model, regression (5.6) can be estimated easily with the
usual ordinary least squares (OLS) routine and the estimators thus obtained
will have the usual best linear unbiased estimator (BLUE) property.5

One attractive feature of the double-log, or log-linear, model that has made it
popular in empirical work is that the slope coefficient B2 measures the elasticity of Y
with respect to X, that is, the percentage change in Y for a given (small) percentage
change in X.

Y*i = B1 + B2X*i + ui

X*i = lnXiY*i = ln Yi

ln Yi = B1 + B2 ln Xi + ui

ln Yi = B1 + B2 ln Xi

B1 = lnA
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3Appendix 5A discusses logarithms and their properties for the benefit of those who
need it.

4Note that since B1 = ln A, A can be expressed as A = antilog (B1) which is, mathematically speak-
ing, a nonlinear transformation. In practice, however, the intercept A often does not have much con-
crete meaning.

5Any regression package now routinely computes the logs of (positive) numbers. So there is no
additional computational burden involved.
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Symbolically, if we let stand for a small change in Y and for a small
change in X, we define the elasticity coefficient, E, as

(5.7)6

Thus, if Y represents the quantity of a commodity demanded and X its unit
price, B2 measures the price elasticity of demand.

All this can be shown graphically.
Figure 5-1(a) represents the function (5.1), and Figure 5-1(b) shows its loga-

rithmic transformation. The slope of the straight line shown in Figure 5-1(b)
gives the estimate of price elasticity, (−B2). An important feature of the log-
linear model should be apparent from Figure 5-1(b). Since the regression line is
a straight line (in the logs of Y and X), its slope (−B2) is constant throughout.
And since this slope coefficient is equal to the elasticity coefficient, for this

 = slope aX

Y
b

 =
¢Y

¢X
 #  

X

Y

 =
¢Y/Y # 100

¢X/X # 100

 E =
% change in Y

% change in X

¢X¢Y

6In calculus notation

where dY/dX means the derivative of Y with respect to X, that is, the rate of change of Y with
respect to X.  Y/ X is an approximation of dY/dX. Note: For the transformed model (5.6),

which is the elasticity of Y with respect to X as per Equation (5.7). As noted in Appendix 5A, a
change in the log of a number is a relative or proportional change. For example, ¢lnY =

¢Y
Y .

B2 =
¢Y*

¢X*
=

¢ln Y

¢ln X
=

¢Y/Y

¢X/X
=

¢Y

¢X
 #  

X

Y

E =
dY

dX
 #  

X

Y
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model, the elasticity is also constant throughout—it does not matter at what
value of X this elasticity is computed.7

Because of this special feature, the double-log or log-linear model is also
known as the constant elasticity model. Therefore, we will use all of these
terms interchangeably.

Example 5.1  Math S.A.T. Score Function Revisited

In Equation (3.46) we presented the linear (in variables) function for our
math S.A.T. score example. Recall, however, that the scattergram showed
that the relationship between math S.A.T. scores and annual family income
was approximately linear because not all points were really on a straight line.
Eq. (3.46) was, of course, developed for pedagogy. Let us see if the log-linear
model fits the data given in Table 2-2, which for convenience is reproduced
in Table 5-1.

The OLS regression based on the log-linear data gave the following
results:

(5.8)

As these results show, the (constant) score elasticity is 0.13, suggesting that
if the annual family income increases by 1 percent, the math S.A.T. score on
average increases 0.13 percent. By convention, an elasticity coefficient lessL

L

 p = (1.25 * 10-9)(2.79 * 10-5)       r2
= 0.9005

 t = (31.0740)     (8.5095)

 se = (0.1573)     (0.0148)

 lnYi = 4.8877 + 0.1258 ln Xi
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7Note carefully, however, that in general, elasticity and slope coefficients are different concepts.
As Eq. (5.7) makes clear, elasticity is equal to the slope times the ratio of X/Y. It is only for the
double-log, or log-linear, model that the two are identical.

MATH S.A.T. SCORE (Y)

IN RELATION TO ANNUAL

FAMILY INCOME (X) ($)

Y X

410 5000

420 15000

440 25000

490 35000

530 45000

530 55000

550 65000

540 75000

570 90000

590 150000

TABLE 5-1
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than 1 in absolute value is said to be inelastic, whereas if it is greater than 1,
it is called elastic. An elasticity coefficient of 1 (in absolute value) has unitary
elasticity. Therefore, in our example, the math S.A.T. score is inelastic; the
math score increases proportionately less than the increase in annual family
income.

The interpretation of the intercept of 4.89 means that the average value
of ln Y is 4.89 if the value of ln X is zero. Again, this mechanical interpretation
of the intercept may not have concrete economic meaning.8

The interpretation of r2
= 0.9005 is that 90 percent of the variation in the

log of Y is explained by the variation in the log of X.
The regression line in Equation (5.8) is sketched in Figure 5-2. Notice that

this figure is quite similar to Figure 2-1.

Hypothesis Testing in Log-Linear Models

There is absolutely no difference between the linear and log-linear models inso-
far as hypothesis testing is concerned. Under the assumption that the error term
follows the normal distribution with mean zero and constant variance , it fol-
lows that each estimated regression coefficient is normally distributed. Or, if we
replace by its unbiased estimator , each estimator follows the t distribution
with degrees of freedom (d.f.) equal to (n - k), where k is the number of parameters

␴N
2

␴
2

␴
2

L

L
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8Since ln Y = 4.8877 when ln X is zero, if we take the antilog of this number, we obtain 132.94.
Thus, the average math S.A.T. score is about 133 points if the log of annual family income is zero.
For the linear model given in Eq. (3.46), the intercept value was about 432.41 points when annual
family income (not the log of income) was zero.

L



estimated, including the intercept. In the two-variable case, k is 2, in the three-
variable case, k = 3, etc.

From the regression (5.8), you can readily check that the slope coefficient is
statistically significantly different from zero since the t value of 8.51 has a
p value of , which is very small. If the null hypothesis that annual
family income has no relationship to math S.A.T. score were true, our chances of
obtaining a t value of as much as 8.51 or greater would be about 3 in 100,000!
The intercept value of 4.8877 is also statistically significant because the p value
is about .

5.2 COMPARING LINEAR AND LOG-LINEAR REGRESSION MODELS

We take this opportunity to consider an important practical question. We have
fitted a linear (in variables) S.A.T. score function, Eq. (3.46), as well as a log-
linear function, Eq. (5.8), for our S.A.T. score example. Which model should
we choose? Although it may seem logical that students with higher family
income would tend to have higher S.A.T. scores, indicating a positive relation-
ship, we don’t really know which particular functional form defines the rela-
tionship between them.9 That is, we may not know if we should fit the linear,
log-linear, or some other model. The functional form of the regression model
then becomes essentially an empirical question. Are there any guidelines or rules
of thumb that we can follow in choosing among competing models?

One guiding principle is to plot the data. If the scattergram shows that the
relationship between two variables looks reasonably linear (i.e., a straight line),
the linear specification might be appropriate. But if the scattergram shows a
nonlinear relationship, plot the log of Y against the log of X. If this plot shows
an approximately linear relationship, a log-linear model may be appropriate.
Unfortunately, this guiding principle works only in the simple case of two-
variable regression models and is not very helpful once we consider multiple
regressions; it is not easy to draw scattergrams in multiple dimensions. We need
other guidelines.

Why not choose the model on the basis of ; that is, choose the model that
gives the highest ? Although intuitively appealing, this criterion has its own
problems. First, as noted in Chapter 4, to compare the values of two models, the
dependent variable must be in the same form.10 For model (3.46), the dependent
variable is Y, whereas for the model (5.8), it is ln Y, and these two dependent
variables are obviously not the same. Therefore, of the linear model
(3.46) and of the log-linear model are not directly comparable, even
though they are approximately the same in the present case.

r2
= 0.9005

r2
= 0.7869

r2
r2

r2

1.25 * 10-9

2.79 * 10-5
L

138 PART ONE: THE LINEAR REGRESSION MODEL

9A cautionary note here: Remember that regression models do not imply causation, so we are
not implying that having a higher annual family income causes higher math S.A.T. scores, only that
we would tend to see the two together. There may be several other reasons explaining this result.
Perhaps students with higher family incomes are able to afford S.A.T. preparation classes or attend
schools that focus more on material typically covered in the exam.

10It does not matter what form the independent or explanatory variables take; they may or may
not be linear.
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The reason that we cannot compare these two r2 values is not difficult to
grasp. By definition, r2 measures the proportion of the variation in the depen-
dent variable explained by the explanatory variable(s). In the linear model
(3.46) r2 thus measures the proportion of the variation in Y explained by X,
whereas in the log-linear model (5.8) it measures the proportion of the variation
in the log of Y explained by the log of X. Now the variation in Y and the variation
in the log of Y are conceptually different. The variation in the log of a number mea-
sures the relative or proportional change (or percentage change if multiplied by 100),
and the variation in a number measures the absolute change.11 Thus, for the lin-
ear model (3.46), percent of the variation in Y is explained by X, whereas
for the log-linear model, 90 percent of the variation in the log of Y is explained
by the log of X. If we want to compare the two r2s, we can use the method dis-
cussed in Problem 5.16.

Even if the dependent variable in the two models is the same so that two r2

values can be directly compared, you are well-advised against choosing a
model on the basis of a high r2 value criterion. This is because, as pointed out
in Chapter 4, an r2 (=R2) can always be increased by adding more explanatory
variables to the model. Rather than emphasizing the r2 value of a model, you
should consider factors such as the relevance of the explanatory variables in-
cluded in the model (i.e., the underlying theory), the expected signs of the coef-
ficients of the explanatory variables, their statistical significance, and certain
derived measures like the elasticity coefficient. These should be the guiding
principles in choosing between two competing models. If based on these crite-
ria one model is preferable to the other, and if the chosen model also happens to
have a higher r2 value, then well and good. But avoid the temptation of choosing a
model only on the basis of the r2 value alone.

Comparing the results of the log-linear score function (5.8) versus the linear
function (3.46), we observe that in both models the slope coefficient is positive,
as per prior expectations. Also, both slope coefficients are statistically signifi-
cant. However, we cannot compare the two slope coefficients directly, for in the
LIV model it measures the absolute rate of change in the dependent variable,
whereas in the log-linear model it measures elasticity of Y with respect to X.

If for the LIV model we can measure score elasticity, then it is possible to
compare the two slope coefficients. To do this, we can use Equation (5.7),
which shows that elasticity is equal to the slope times the ratio of X to Y.
Although for the linear model the slope coefficient remains the same (Why?),
which is 0.0013 in our S.A.T. score example, the elasticity changes from point
to point on the linear curve because the ratio X/Y changes from point to point.
From Table 5-1 we see that there are 10 different math S.A.T. score and annual
family income figures. Therefore, in principle we can compute 10 different
elasticity coefficients. In practice, however, the elasticity coefficient for the

L

L 79

11If a number goes from 45 to 50, the absolute change is 5, but the relative change is
or about 11.11 percent.(50 - 45)>45 L 0.1111,



linear model is often computed at the sample mean values of X and Y to obtain
a measure of average elasticity. That is,

(5.9)

where and are sample mean values. For the data given in Table 5-1,
and . Thus, the average elasticity for our sample is

It is interesting to note that for the log-linear function the score elasticity
coefficient was 0.1258, which remains the same no matter at what income the
elasticity is measured (see Figure 5-1[b]). This is why such a model is called a
constant elasticity model. For the LIV, on the other hand, the elasticity coeffi-
cient changes from point to point on the score = family income curve.12

The fact that for the linear model the elasticity coefficient changes from point
to point and that for the log-linear model it remains the same at all points on the
demand curve means that we have to exercise some judgment in choosing
between the two specifications, for, in practice, both these assumptions may be
extreme. It is possible that over a small segment of the expenditure curve the
elasticity remains constant but that over some other segment(s) it is variable.

5.3 MULTIPLE LOG-LINEAR REGRESSION MODELS

The two-variable log-linear model can be generalized easily to models contain-
ing more than one explanatory variable. For example, a three-variable log-
linear model can be expressed as

(5.10)

In this model the partial slope coefficients B2 and B3 are also called the partial
elasticity coefficients.13 Thus, B2 measures the elasticity of Y with respect to X2,
holding the influence of X3 constant; that is, it measures the percentage change
in Y for a percentage change in X2, holding the influence of X3 constant. Since
the influence of X3 is held constant, it is called a partial elasticity. Similarly, B3

lnYi = B1 + B2 ln X2i + B3 lnX3i + ui

Average score elasticity = (0.0013) 
56,000

507
= 0.1436

Y = 507X = 56,000
YX

Average elasticity =
¢Y

¢X
 #  

X

Y
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12Notice this interesting fact: For the LIV model, the slope coefficient is constant but the elastic-
ity coefficient is variable. However, for the log-linear model, the elasticity coefficient is constant but
the slope coefficient is variable, which can be seen at once from the formula given in footnote 2.

13The calculus-minded reader will recognize that the partial derivative of ln Y with respect to
ln X2 is

which by definition is elasticity of Y with respect to X2. Likewise, B3 is the elasticity of Y with respect
to X3.

B2 =
0  ln Y

0  ln X2
=

0Y/Y

0X2/X2
=

0Y

0X2

#
X2

Y
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measures the (partial) elasticity of Y with respect to X3, holding the influence of
X2 constant. In short, in a multiple log-linear model, each partial slope coefficient
measures the partial elasticity of the dependent variable with respect to the explanatory
variable in question, holding all other variables constant.

Example 5.2. The Cobb-Douglas Production Function

As an example of model (5.10), let Y = output, X2 = labor input, and X3 =

capital input. In that case model (5.10) becomes a production function—a
function that relates output to labor and capital inputs. As a matter of fact,
regression (5.10) in this case represents the celebrated Cobb-Douglas 
(C-D) production function. As an illustration, consider the data given in
Table 5-2, which relates to Mexico for the years 1955 to 1974. Y, the output,
is measured by gross domestic product (GDP) (millions of 1960 pesos), X2,
the labor input, is measured by total employment (thousands of people),
and X3, the capital input, is measured by stock of fixed capital (millions of
1960 pesos).

REAL GDP, EMPLOYMENT, AND REAL FIXED

CAPITAL, MEXICO, 1955–1974

Year GDPa Employmentb Fixed capitalc

1955 114043 8310 182113

1956 120410 8529 193745

1557 129187 8738 205192

1958 134705 8952 215130

1959 139960 9171 225021

1960 150511 9569 237026

1961 157897 9527 248897

1962 165286 9662 260661

1963 178491 10334 275466

1964 199457 10981 295378

1965 212323 11746 315715

1966 226977 11521 337642

1967 241194 11540 363599

1968 260881 12066 391847

1969 277498 12297 422382

1970 296530 12955 455049

1971 306712 13338 484677

1972 329030 13738 520553

1973 354057 15924 561531

1974 374977 14154 609825

Notes: aMillions of 1960 pesos.
bThousands of people.
cMillions of 1960 pesos.

Source: Victor J. Elias, Sources of Growth: A Study of
Seven Latin American Economies, International Center for
Economic Growth, ICS Press, San Francisco, 1992. Data
from Tables E5, E12, and E14.

TABLE 5-2



Based on the data given in Table 5-2, the following results were obtained
using the MINITAB statistical package:

ln = -1.6524 + 0.3397 ln X2t + 0.8460 ln X3t

se = (0.6062) (0.1857) (0.09343)

t = (−2.73) (1.83) (9.06)
(5.11)

p value = (0.014) (0.085) (0.000)*

R2
= 0.995

F = 1719.23 (0.000)**

The interpretation of regression (5.11) is as follows. The partial slope coefficient
of 0.3397 measures the elasticity of output with respect to the labor input.
Specifically, this number states that, holding the capital input constant, if the labor
input increases by 1 percent, on the average, output goes up by about 0.34 percent.
Similarly, holding the labor input constant, if the capital input increases by 1 per-
cent, on the average, output goes up by about 0.85 percent. If we add the elasticity
coefficients, we obtain an economically important parameter, called the returns to
scale parameter, which gives the response of output to a proportional change in
inputs. If the sum of the two elasticity coefficients is 1, we have constant returns
to scale (i.e., doubling the inputs simultaneously doubles the output); if it is
greater than 1, we have increasing returns to scale (i.e., doubling the inputs simul-
taneously more than doubles the output); if it is less than 1, we have decreasing
returns to scale (i.e., doubling the inputs less than doubles the output).

For Mexico, for the study period, the sum of the two elasticity coefficients is
1.1857, suggesting that perhaps the Mexican economy was characterized by
increasing returns to scale.

Returning to the estimated coefficients, we see that both labor and capital are
individually statistically significant on the basis of the one-tail test although the
impact of capital seems to be more important than that of labor. (Note: We use a
one-tail test because both labor and capital are expected to have a positive effect
on output.)

The estimated F value is so highly significant (because the p value is almost
zero) we can strongly reject the null hypothesis that labor and capital together
do not have any impact on output.

The R2 value of 0.995 means that about 99.5 percent of the variation in the
(log) of output is explained by the (logs) of labor and capital, a very high degree
of explanation, suggesting that the model (5.11) fits the data very well.

Example 5.3. The Demand for Energy

Table 5-3 gives data on the indexes of aggregate final energy demand (Y),
real GDP (X2), and real energy price (X3) for seven OECD countries (the

Yt
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*Denotes extremely small value.
** p value of F, also extremely small.
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United States, Canada, Germany, France, the United Kingdom, Italy, and
Japan) for the period 1960 to 1982. All indexes are with base 1973 = 100. Using
the data given in Table 5-3 and MINITAB we obtained the following log-
linear energy demand function:

se = (0.0903) (0.0191) (0.0243)

t = (17.17) (52.09) (13.61)

p value = (0.000)* (0.000)* (0.000)*
(5.12)

R2
= 0.994

= 0.994

F = 1688

As this regression shows, energy demand is positively related to income (as
measured by real GDP) and negatively related to real price; these findings

R
2

lnYt = 1.5495 + 0.9972 ln X2t - 0.3315 ln X3t

ENERGY DEMAND IN OECD COUNTRIES,

1960–1982

Year Final demand Real GDP Real energy price

1960 54.1 54.1 111.9

1961 55.4 56.4 112.4

1962 58.5 59.4 111.1

1963 61.7 62.1 110.2

1964 63.6 65.9 109.0

1965 66.8 69.5 108.3

1966 70.3 73.2 105.3

1967 73.5 75.7 105.4

1968 78.3 79.9 104.3

1969 83.8 83.8 101.7

1970 88.9 86.2 97.7

1971 91.8 89.8 100.3

1972 97.2 94.3 98.6

1973 100.0 100.0 100.0

1974 97.4 101.4 120.1

1975 93.5 100.5 131.0

1976 99.1 105.3 129.6

1977 100.9 109.9 137.7

1078 103.9 114.4 133.7

1979 106.9 118.3 144.5

1980 101.2 119.6 179.0

1981 98.1 121.1 189.4

1982 95.6 120.6 190.9

Source: Richard D. Prosser, “Demand Elasticities in OECD:
Dynamic Aspects,” Energy Economics, January 1985, p. 10.

TABLE 5-3

*Denotes extremely small value.



accord with economic theory. The estimated income elasticity is about 0.99,
meaning that if real income goes up by 1 percent, the average amount of en-
ergy demanded goes up by about 0.99 percent, or just about 1 percent, ceteris
paribus. Likewise, the estimated price elasticity is about −0.33, meaning that,
holding other factors constant, if energy price goes up by 1 percent, the aver-
age amount of energy demanded goes down by about 0.33 percent. Since this
coefficient is less than 1 in absolute value, we can say that the demand for
energy is price inelastic, which is not very surprising because energy is a very
essential item for consumption.

The R2 values, both adjusted and unadjusted, are very high. The F value of
about 1688 is also very high; the probability of obtaining such an F value, if
in fact is true, is almost zero. Therefore, we can say that income
and energy price together strongly affect energy demand.

5.4 HOW TO MEASURE THE GROWTH RATE:

THE SEMILOG MODEL

As noted in the introduction to this chapter, economists, businesspeople, and
the government are often interested in finding out the rate of growth of certain
economic variables. For example, the projection of the government budget
deficit (surplus) is based on the projected rate of growth of the GDP, the single
most important indicator of economic activity. Likewise, the Fed keeps a strong
eye on the rate of growth of consumer credit outstanding (auto loans, install-
ment loans, etc.) to monitor its monetary policy.

In this section we will show how regression analysis can be used to measure
such growth rates.

Example 5.4. The Growth of the U.S. Population, 1975–2007

Table 5-4 gives data on the U.S. population (in millions) for the period 1975
to 2007.

We want to measure the rate of growth of the U.S. population (Y) over this
period. Now consider the following well-known compound interest formula
from your introductory courses in money, banking, and finance:

(5.13)14

Y0 = the beginning, or initial, value of Y
Yt = Y’s value at time t

r = the compound (i.e., over time) rate of growth of Y

Yt = Y0(1 + r)t

B2 = B3 = 0

144 PART ONE: THE LINEAR REGRESSION MODEL

14Suppose you deposit in a passbook account in a bank, paying, say, 6 percent inter-
est per year. Here r = 0.06, or 6 percent. At the end of the first year this amount will grow to

at the end of the second year it will be 
because in the second year you get interest not only on the initial $100 but

also on the interest earned in the first year. In the third year this amount grows to
etc.100(1 + 0.06)3

= 119.1016,

(1 + 0.06)2
= 112.36

Y2 = 106(1 + 0.06) = 100Y1 = 100(1 + 0.6) = 106;

Y0 = $100
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Let us manipulate Equation (5.13) as follows. Take the (natural) log of
Eq. (5.13) on both sides to obtain

(5.14)

Now let

(5.15)

(5.16)

Therefore, we can express model (5.14) as

(5.17)

Now if we add the error term ut to model (5.17), we will obtain15

(5.18)

This model is like any other linear regression model in that parameters B1

and B2 are linear. The only difference is that the dependent variable is the
logarithm of Y and the independent, or explanatory, variable is “time,”
which will take values of 1, 2, 3, etc.

ln Yt = B1 + B2t + ut

ln Yt = B1 + B2t

B2 = ln (1 + r)

B1 = ln Y0

ln Yt = ln Y0 + t ln(1 + r)

POPULATION OF UNITED STATES (MILLIONS OF PEOPLE),

1975–2007

U.S. population Time U.S. population Time

TABLE 5-4

215.973 1

218.035 2

220.239 3

222.585 4

225.055 5

227.726 6

229.966 7

232.188 8

234.307 9

236.348 10

238.466 11

240.651 12

242.804 13

245.021 14

247.342 15

250.132 16

253.493 17

256.894 18

260.255 19

263.436 20

266.557 21

269.667 22

272.912 23

276.115 24

279.295 25

282.430 26

285.454 27

288.427 28

291.289 29

294.056 30

296.940 31

299.801 32

302.045 33

Note: 1975 = 1; 2007 = 33.
Source: Economic Report of the President, 2008, Table B34.

15The reason we add the error term is that the compound interest formula will not exactly fit the
data of Table 5-4.



Models like regression (5.18) are called semilog models because only one
variable (in this case the dependent variable) appears in the logarithmic
form. How do we interpret semilog models like regression (5.18)? Before we
discuss this, note that model (5.18) can be estimated by the usual OLS
method, assuming of course that the usual assumptions of OLS are satisfied.
For the data of Table 5-4, we obtain the following regression results:

(5.19)

Note that in Eq. (5.19) we have only reported the t values.
The estimated regression line is sketched in Figure 5-3.

The interpretation of regression (5.19) is as follows. The slope coefficient of
0.0107 means on the average the log of Y (U.S. population) has been increas-
ing at the rate of 0.0107 per year. In plain English, Y has been increasing at the
rate of 1.07 percent per year, for in a semilog model like regression (5.19) the slope
coefficient measures the proportional or relative change in Y for a given absolute
change in the explanatory variable, time in the present case.16 If this relative
change is multiplied by 100, we obtain the percentage change or the growth

 t = (3321.13)(129.779)      r2
= 0.9982

 ln (USpop) = 5.3593 + 0.0107t
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Semilog modelFIGURE 5-3
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rate (see footnote 1). In our example the relative change is 0.0107, and hence
the growth rate is 1.07 percent.

Because of this, semilog models like Eq. (5.19) are known as growth mod-
els and such models are routinely used to measure the growth rate of many
variables, whether economic or not.

The interpretation of the intercept term 5.3593 is as follows. From
Eq. (5.15) it is evident that

Therefore, if we take the antilog of 5.3593 we obtain

which is the value of Y when t = 0, that is, at the beginning of the period. Since
our sample begins in 1975, we can interpret the value of 213 (millions) as the
population figure at the end of 1974. But remember the warning given previ-
ously that often the intercept term has no particular physical meaning.

Instantaneous versus Compound Rate of Growth

Notice from Eq. (5.16) that

Therefore,

antilog (b2) = (1 + r)

which means that

r = antilog (b2) − 1 (5.20)

And since r is the compound rate of growth, once we have obtained b2 we can
easily estimate the compound rate of growth of Y from Equation (5.20). For
Example 5.4, we obtain

r = antilog (0.0107) − 1

= 1.0108 − 1 = 0.010757 (5.21)

That is, over the sample period, the compound rate of growth of the U.S. population
had been at the rate of 1.0757 percent per year.

Earlier we said that the growth rate in Y was 1.07 percent but now we say it
is 1.0757 percent. What is the difference? The growth rate of 1.07 percent (or,
more generally, the slope coefficient in regressions like Eq. [5.19], multiplied by
100) gives the instantaneous (at a point in time) growth rate, whereas the
growth rate of 1.0757 percent (or, more generally, that obtained from Equation
[5.20]) is the compound (over a period of time) growth rate. In the present
example the difference between the two growth rates may not sound important,
but do not forget the power of compounding.

b2 = the estimate of B2 = ln (1 + r)

L

antilog (5.3593) L 212.5761

b1 = the estimate of ln Y0 = 5.3593



In practice, one generally quotes the instantaneous growth rate, although the
compound growth rate can be easily computed, as just shown.

The Linear Trend Model

Sometimes, as a quick and ready method of computation, researchers estimate
the following model:

(5.22)

That is, regress Y on time itself, where time is measured chronologically. Such a
model is called, appropriately, the linear trend model, and the time variable t is
known as the trend variable.17 If the slope coefficient in the preceding model is
positive, there is an upward trend in Y, whereas if it is negative, there is a down-
ward trend in Y.

For the data in Table 5-4, the results of fitting Equation (5.22) are as follows:

(5.23)

As these results show, over the sample period the U.S. population had been
increasing at the absolute (note, not the relative) rate of 2.757 million per year.
Thus, over that period there was an upward trend in the U.S. population. The
intercept value here probably represents the base population in the year 1974,
which from this model it is about 210 million.

In practice, both the linear trend and growth models have been used exten-
sively. For comparative purposes, however, the growth model is more useful.
People are often interested in finding out the relative performance and not the
absolute performance of economic measures, such as GDP, money supply, etc.

Incidentally, note that we cannot compare r2 values of the two models
because the dependent variables in the two models are not the same (but see
Problem 5.16). Statistically speaking, both models give fairly good results,
judged by the usual t test of significance.

Recall that for the log-linear, or double-log, model the slope coefficient gives
the elasticity of Y with respect to the relevant explanatory variable. For the
growth model and the linear trend models, we can also measure such elastici-
ties. As a matter of fact, once the functional form of the regression model is
known, we can compute elasticities from the basic definition of elasticity given
in Eq. (5.7). Table 5-11 at the end of this chapter summarizes the elasticity coef-
ficients for the various models we have considered in the chapter.

A cautionary note: The traditional practice of introducing the trend variable t
in models such as (5.18) and (5.22) has recently been questioned by the new
generation of time series econometricians. They argue that such a practice may
be justifiable only if the error term ut in the preceding models is stationary.

 t = (287.4376)(73.6450)    r2
= 0.9943

 USpopt = 209.6731 + 2.7570t

Yt = B1 + B2t + ut
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17By trend we mean a sustained upward or downward movement in the behavior of a variable.
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Although the precise meaning of stationarity will be explained in Chapter 12, for
now we state that ut is stationary if its mean value and its variance do not vary
systematically over time. In our classical linear regression model we have as-
sumed that ut has zero mean and constant variance . Of course, in an applica-
tion we will have to check to see if these assumptions are valid. We will discuss
this topic later.

5.5 THE LIN-LOG MODEL: WHEN THE EXPLANATORY 

VARIABLE IS LOGARITHMIC

In the previous section we considered the growth model in which the depen-
dent variable was in the log form but the explanatory variable was in the linear
form. For descriptive purposes, we can call such a model a log-lin, or growth,
model. In this section we consider a model where the dependent variable is in
the linear form but the explanatory variable is in the log form. Appropriately,
we call this model the lin-log model.

We introduce this model with a concrete example.

Example 5.5. The Relationship between Expenditure on Services in
Relation to Total Personal Consumption Expenditure in 1992 Billions
of Dollars, 1975–2006

Consider the annual data given in Table 5-5 (found on the textbook’s Web
site) on consumer expenditure on various categories in relation to total per-
sonal consumption expenditure.

Suppose we want to find out how expenditure on services (Y) behaves if
total personal consumption expenditure (X) increases by a certain percentage.
Toward that end, suppose we consider the following model:

(5.24)

In contrast to the log-lin model in Eq. (5.18) where the dependent variable
is in log form, the independent variable here is in log form. Before interpret-
ing this model, we present the results based on this model; the results are
based on MINITAB.

(5.25)

Interpreted in the usual fashion, the slope coefficient of L 1844 means that if
the log of total personal consumption increases by a unit, the absolute
change in the expenditure on personal services is L $1844 billion. What does
it mean in everyday language? Recall that a change in the log of a number

 p = (0.00)         (0.00)     r2
= 0.881

 t = (-13.71)    (16.13)

 se = (916.351)     (114.32)

 NYt = -12564.8 + 1844.22 ln Xt

Yt = B1 + B2 ln X2t + ut

␴
2



is a relative change. Therefore, the slope coefficient in model (5.25)
measures18

(5.26)

where, as before, and represent (small) changes in Y and X. Equation
(5.26) can be written, equivalently, as

(5.27)

This equation states that the absolute change in is equal to B2 times
the relative change in X. If the latter is multiplied by 100, then Equation (5.27)
gives the absolute change in Y for a percentage change in X. Thus, if 
changes by 0.01 unit (or 1 percent), the absolute change in Y is 0.01 (B2). Thus,
if in an application we find that , the absolute change in Y is
(0.01)(674), or 6.74. Therefore, when regressions like Eq. (5.24) are estimated
by OLS, multiply the value of the estimated slope coefficient B2 by 0.01, or
what amounts to the same thing, divide it by 100.

Returning to our illustrative regression given in Equation (5.25), we then
see that if aggregate personal expenditure increases by 1 percent, on the av-
erage, expenditure on services increases by L $18.44 billion. (Note: Divide the
estimated slope coefficient by 100.)

Lin-log models like Eq. (5.24) are thus used in situations that study the ab-
solute change in the dependent variable for a percentage change in the inde-
pendent variable. Needless to say, models like regression (5.24) can have more
than one X variable in the log form. Each partial slope coefficient will then mea-
sure the absolute change in the dependent variable for a percentage change in
the given X variable, holding all other X variables constant.

5.6 RECIPROCAL MODELS

Models of the following type are known as reciprocal models:

(5.28)Yi = B1 + B2a 1

Xi
b + ui

B2 = 674

¢X/X

Y( = ¢Y)

¢Y = B2a ¢X

X
b

¢X¢Y

 =
¢Y

¢X/X

 B2 =
absolute change in Y

relative change in X
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18If using calculus it can be shown that Therefore,

Eq. (5.26).B2 = XdY
dX =

dY
dX/X =

dY
dX = B2 A 1

X B .Y = B1 + B2 ln X,
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This model is nonlinear in X because it enters the model inversely or reciprocally,
but it is a linear regression model because the parameters are linear.19

The salient feature of this model is that as X increases indefinitely, the term
approaches zero (Why?) and Y approaches the limiting or asymptotic

value of B1. Therefore, models like regression (5.28) have built into them an
asymptote or limit value that the dependent variable will take when the value of
the X variable increases indefinitely.

Some likely shapes of the curve corresponding to Eq. (5.28) are shown in
Figure 5-4.

In Figure 5-4(a) if we let Y stand for the average fixed cost (AFC) of production,
that is, the total fixed cost divided by the output, and X for the output, then as
economic theory shows, AFC declines continuously as the output increases
(because the fixed cost is spread over a larger number of units) and eventually
becomes asymptotic at level B1.

An important application of Figure 5-4(b) is the Engel expenditure curve
(named after the German statistician Ernst Engel, 1821–1896), which relates a
consumer’s expenditure on a commodity to his or her total expenditure or
income. If Y denotes expenditure on a commodity and X the total income, then
certain commodities have these features: (1) There is some critical or threshold
level of income below which the commodity is not purchased (e.g., an automo-
bile). In Figure 5-4(b) this threshold level of income is at the level −(B2/B1).
(2) There is a satiety level of consumption beyond which the consumer will not
go no matter how high the income (even millionaires do not generally own
more than two or three cars at a time). This level is nothing but the asymptote
B1 shown in Figure 5-4(b). For such commodities, the reciprocal model of this
figure is the most appropriate.

One important application of Figure 5-4(c) is the celebrated Phillips curve of
macroeconomics. Based on the British data on the percent rate of change of
money wages (Y) and the unemployment rate (X) in percent, Phillips obtained

(1/Xi)

19If we define , then Equation (5.28) is linear in the parameters as well as the
variables Y and X*.

X* = (1/X)
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a curve similar to Figure 5-4(c).20 As this figure shows, there is asymmetry in the
response of wage changes to the level of unemployment. Wages rise faster for a
unit change in unemployment if the unemployment rate is below UN, which is
called the natural rate of unemployment by economists, than they fall for an equiv-
alent change when the unemployment rate is above the natural level, B1 indicat-
ing the asymptotic floor for wage change. (See Figure 5-5 later.) This particular
feature of the Phillips curve may be due to institutional factors, such as union
bargaining power, minimum wages, or unemployment insurance.

Example 5.6. The Phillips Curve for the United States, 1958 to 1969

Because of its historical importance, and to illustrate the reciprocal model,
we have obtained data, shown in Table 5-6, on percent change in the index of
hourly earnings (Y) and the civilian unemployment rate (X) for the United
States for the years 1958 to 1969.21

Model (5.28) was fitted to the data in Table 5-6, and the results were as
follows:

(5.29)

This regression line is shown in Figure 5-5(a).

 t = (-0.2572)   (4.3996)        r2
= 0.6594

 YN t = -0.2594 + 20.5880 a 1

Xt
b
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20A. W. Phillips, “The Relationship between Unemployment and the Rate of Change of
Money Wages in the United Kingdom, 1861–1957,” Economica, November 1958, pp. 283–299.

21We chose this period because until 1969 the traditional Phillips curve seems to have worked.
Since then it has broken down, although many attempts have been made to resuscitate it with
varying degrees of success.

YEAR-TO-YEAR PERCENTAGE CHANGE

IN THE INDEX OF HOURLY EARNINGS (Y )

AND THE UNEMPLOYMENT RATE (%) (X),

UNITED STATES, 1958–1969

Year Y X

1958 4.2 6.8

1959 3.5 5.5

1960 3.4 5.5

1961 3.0 6.7

1962 3.4 5.5

1963 2.8 5.7

1964 2.8 5.2

1965 3.6 4.5

1966 4.3 3.8

1967 5.0 3.8

1968 6.1 3.6

1969 6.7 3.5

Source: Economic Report of the President,
1989. Data on X from Table B-39, p. 352, and data
on Y from Table B-44, p. 358.

TABLE 5-6
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As Figure 5-5 shows, the wage floor is −0.26 percent, which is not statisti-
cally different from zero. (Why?) Therefore, no matter how high the unem-
ployment rate is, the rate of growth of wages will be, at most, zero.

For comparison we present the results of the following linear regression
based on the same data (see Figure 5-5[b]):

(5.30)

Observe these features of the two models. In the linear model (5.30) the slope
coefficient is negative, for the higher the unemployment rate is, the lower the
rate of growth of earnings will be, ceteris paribus. In the reciprocal model,
however, the slope coefficient is positive, which should be the case because the
X variable enters inversely (two negatives make one positive). In other words,
a positive slope in the reciprocal model is analogous to the negative slope in

 t = (6.4625)   (-3.2605)    r2
= 0.5153

 YN t = 8.0147 - 0.7883Xt
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The Phillips curve for the United States, 1958–1969;
(a) reciprocal model; (b) linear model
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the linear model. The linear model suggests that as the unemployment rate
increases by 1 percentage point, on the average, the percentage point change
in the earnings is a constant amount of -0.79 no matter at what X we mea-
sure it. On the other hand, in the reciprocal model the percentage point rate of
change in the earnings is not constant, but rather depends on at what level of
X (i.e., the unemployment rate) the change is measured (see Table 5-11).22 The
latter assumption seems economically more plausible. Since the dependent
variable in the two models is the same, we can compare the two r2 values. The
r2 for the reciprocal model is higher than that for the linear model, suggesting
that the former model fits the data better than the latter model.

As this example shows, once we go beyond the LIV/LIP models to those
models that are still linear in the parameters but not necessarily so in the
variables, we have to exercise considerable care in choosing a suitable model
in a given situation. In this choice the theory underlying the phenomenon of
interest is often a big help in choosing the appropriate model. There is no
denying that model building involves a good dose of theory, some introspection, and
considerable hands-on experience. But the latter comes with practice.

Before we leave reciprocal models, we discuss another application of such a
model.

Example 5.7. Advisory Fees Charged for a Mutual Fund

The data in Table 5-7 relate to the management fees that a leading mutual fund
in the United States pays its investment advisers to manage its assets. The fees
depend on the net asset value of the fund. As you can see from Figure 5-6, the
higher the net asset value of the fund, the lower the advisory fees are.

L
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22As shown in Table 5-11, for the reciprocal model the slope is .-B2(1>X2)

MANAGEMENT FEE SCHEDULE OF A MUTUAL FUND

Fee (%) Net asset value ($, in billions)
Y X

0.5200 0.5

0.5080 5.0

0.4840 10.0

0.4600 15.0

0.4398 20.0

0.4238 25.0

0.4115 30.0

0.4020 35.0

0.3944 40.0

0.3880 45.0

0.3825 55.0

0.3738 60.0

TABLE 5-7
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The graph suggests that the relationship between the two variables is non-
linear. Therefore, a model of the following type might be appropriate:

(5.31)

Using the data in Table 5-7 and the EViews output in Figure 5-7, we obtained
the following regression results:

Fees = B1 + B2a 1

assets
b + ui
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Dependent Variable: Fees

Method: Least Squares

Variable Coefficient Std. Error t-Statistic Prob.

C

1/assets

0.420412

0.054930

0.012858

0.022099
32.69715

2.485610

R-squared

Adjusted R-squared

S.E. of regression

Sum squared resid

0.381886

0.320075

0.041335

0.017086

Mean dependent var

S.D. dependent var

F-statistic

Prob (F-statistic)

0.432317

0.050129

6.178255

0.032232

Sample: 1 12

Included observations: 12

0.0000

0.0322

EViews output of Equation (5.31)FIGURE 5-7

It is left as an exercise for you to interpret these regression results (see
Problem [5.20]).



5.7 POLYNOMIAL REGRESSION MODELS

In this section we consider regression models that have found extensive use in
applied econometrics relating to production and cost functions. In particular,
consider Figure 5-8, which depicts the total cost of production (TC) as a function
of output as well as the associated marginal cost (MC) and the average cost
(AC) curves.

Letting Y stand for TC and X for the output, mathematically, the total cost
function can be expressed as

(5.32)

which is called a cubic function, or, more generally, a third-degree polynomial
in the variable X—the highest power of X represents the degree of the polyno-
mial (three in the present instance).

Notice that in these types of polynomial functions there is only one explana-
tory variable on the right-hand side, but it appears with various powers, thus
making them multiple regression models.23 (Note: We add the error term ui to
make model (5.32) a regression model.)

Although model (5.32) is nonlinear in the variable X, it is linear in the parame-
ters, the B’s, and is therefore a linear regression model. Thus, models like
regression (5.32) can be estimated by the usual OLS routine. The only “worry”
about the model is the likely presence of the problem of collinearity because the
various powered terms of X are functionally related. But this concern is more
apparent than real, for the terms X2 and X3 are nonlinear functions of X and do
not violate the assumption of no perfect collinearity, that is, no perfect linear
relationship between variables. In short, polynomial regression models can be
estimated in the usual manner and do not present any special estimation
problems.

Example 5.8. Hypothetical Total Cost Function

To illustrate the polynomial model, consider the hypothetical cost-output
data given in Table 5-8.

The OLS regression results based on these data are as follows (see
Figure 5-8):

(5.33)

R2
= 0.9983

 se = (6.3753)       (4.7786)         (0.9857)          (0.0591)

 YNi = 141.7667 + 63.4776Xi - 12.9615Xi
2

+ 0.9396Xi
3

Yi = B1 + B2Xi + B3Xi
2

+ B4Xi
3
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23Of course, one can introduce other X variables and their powers, if needed.
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If cost curves are to have the U-shaped average and marginal cost curves
shown in price theory texts, then the theory suggests that the coefficients in
model (5.32) should have these a priori values:24

1. B1, B2, and B4, each is greater than zero.
2. .
3.

The regression results given in regression (5.33) clearly are in conformity
with these expectations.

As a concrete example of polynomial regression models, consider the following
example.

Example 5.9. Cigarette Smoking and Lung Cancer

Table 5-9, on the textbook’s Web site, gives data on cigarette smoking and
various types of cancer for 43 states and Washington, D.C., for 1960.

B2
3 6 3B2B4.

B3 < 0

HYPOTHETICAL COST-OUTPUT DATA

Y($) 193 226 240 244 257 260 274 297 350 420 Total cost

X 1 2 3 4 5 6 7 8 9 10 Output

TABLE 5-8
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[Eq. (5.33)]
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Cost-output relationshipFIGURE 5-8

24For the economics of this, see Alpha C. Chiang, Fundamental Methods of Mathematical Economics,
3rd ed., McGraw-Hill, New York, 1984, pp. 205–252. The rationale for these restrictions is that to
make economic sense the total cost curve must be upward-sloping (the larger the output is, the
higher the total cost will be) and the marginal cost of production must be positive.



For now consider the relationship between lung cancer and smoking. To
see if smoking has an increasing or decreasing effect on lung cancer, consider
the following model:

(5.34)

where Y = number of deaths from lung cancer and X = the number of
cigarettes smoked. The regression results using MINITAB are as shown in
Figure 5-9.

These results show that the slope coefficient is positive but the coefficient
of the cigarette-squared variable is negative. What this suggests is that ciga-
rette smoking has an adverse impact on lung cancer, but that the adverse
impact increases at a diminishing rate.25 All the slope coefficients are statisti-
cally significant on the basis of the one-tail t test. We use the one-tail t test be-
cause medical research has shown that smoking has an adverse impact on
lung and other types of cancer. The F value of 26.56 is also highly significant,
for the estimated p value is practically zero. This would suggest that both
variables belong in the model.

Yi = B1 + B2Xi + B3Xi
2

+ ui
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Predictor Coef SE Coef T P

Constant

CIG

CIGSQ

⫺6.910

1.5765

⫺0.019179

6.193

0.4560

0.008168

⫺1.12

3.46

⫺2.35

MS

201.94

7.60

F

26.56

Source

Regression

Residual Error

Total

DF

2

41

43

SS

403.89

311.69

715.58

P

0.000

0.271

0.001

0.024

S ⫽ 2.75720    R-Sq ⫽ 56.4%    R-Sq (adj) ⫽ 54.3%

Analysis of Variance

MINITAB output of regression (5.34)FIGURE 5-9

25Neglecting the error term, if you take the derivative of Y in Equation (5.34) with respect to X,
you will obtain , which in the present example gives 1.57 - 2(0.0192)X = 1.57 -

0.0384X, which shows that the rate of change of lung cancer with respect to cigarette smoking is
declining. If the coefficient of the cigsq variable were positive, then the effect of cigarette smoking
on lung cancer would be increasing at an increasing rate. Here Y = incidence of lung cancer and X
is the number of cigarettes smoked. 

0y
0X = B2 + 2B3X

5.8 REGRESSION THROUGH THE ORIGIN

There are occasions when the regression model assumes the following form,
which we illustrate with the two-variable model, although generalization to
multiple regression models is straightforward.

(5.35)Yi = B2Xi + ui



CHAPTER FIVE: FUNCTIONAL FORMS OF REGRESSION MODELS 159

In this model the intercept is absent or zero, hence the name regression through
the origin. We have already come across an example of this in Okun’s law in
Eq. (2.22). For Equation (5.35) it can be shown that26

(5.36)

(5.37)

(5.38)

If you compare these formulas with those given for the two-variable model
with intercept, given in Equations (2.17), (3.6), and (3.8), you will note several
differences. First, in the model without the intercept, we use raw sums of
squares and cross products, whereas in the intercept-present model, we use
mean-adjusted sums of squares and cross products. Second, the d.f. in comput-
ing is now rather than , since in Eq. (5.35) we have only one
unknown. Third, the conventionally computed r2 formula we have used thus far
explicitly assumes that the model has an intercept term. Therefore, you should
not use that formula. If you use it, sometimes you will get nonsensical results
because the computed r2 may turn out to be negative. Finally, for the model that
includes the intercept, the sum of the estimated residuals, is al-
ways zero, but this need not be the case for a model without the intercept term.

For all these reasons, one may use the zero-intercept model only if there is
strong theoretical reason for it, as in Okun’s law or some areas of economics and
finance. An example is given in Problem 5.22. For now we will illustrate the
zero-intercept model using the data given in Table 2-13, which relates to U.S.
real GDP and the unemployment rate for the period 1960 to 2006. Similar to
Equation (2.22), we add the variable representing the year and obtain the fol-
lowing results:

(5.39)

where Y = change in the unemployment rate in percentage points and Year,
percentage growth rate in real GDP from one year prior to the data in Y

and Year.
Xt-1 =

 t = (2.55)                 (-2.92)

 YN t = 0.00005Year - 3.070Xt-1

auN i = aei

(n - 2)(n - 1)␴N
2

 ␴N 2 =
aei

2

n - 1

 var (b2) =
␴

2

aX2
i

 b2 =
aXiYi

aX2
i

26The proofs can be found in Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill,
New York, 2009, pp. 182–183.



For comparison, we re-estimate Equation (5.39) with the intercept added.

(5.40)

As you will notice, the intercept term is significant in Equation (5.40), but now
the Year variable is not. Also notice that we have given the R2 value for Eq. (5.40)
but not for Eq. (5.39) for reasons stated before.27

5.9 A NOTE ON SCALING AND UNITS OF MEASUREMENT

Variables, economic or not, are expressed in various units of measurement. For
example, we can express temperature in Fahrenheit or Celsius. GDP can be
measured in millions or billions of dollars. Are regression results sensitive to the
unit of measurement? The answer is that some results are and some are not. To
show this, consider the data given in Table 5-10.

This table gives data on gross private domestic investment measured in
billions of dollars (GDIB), the same data expressed in millions of dollars
(GDIM), gross domestic product measured in billions of dollars (GDPB), and
the same data expressed in millions of dollars (GDPM). Suppose we want to

 t = (3.354)(-0.90)           (-3.05)         R2
= 0.182

 YN t = 3.128 - 0.0015Year - 3.294Xt-1
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27For Eq. (5.39) we can compute the so-called “raw” R2, which is discussed in Problem 5.23.

GROSS PRIVATE DOMESTIC INVESTMENT AND GROSS

DOMESTIC PRODUCT, UNITED STATES, 1997–2006

Year GDPB GDPM GDIB GDIM

1997 1389.8 1389800 8304.3 8304300

1998 1509.1 1509100 8747.0 8747000

1999 1625.7 1625700 9268.4 9268400

2000 1735.5 1735500 9817.0 9817000

2001 1614.3 1614300 10128.0 10128000

2002 1582.1 1582100 10469.6 10469600

2003 1664.1 1664100 10960.8 10960800

2004 1888.6 1888600 11685.9 11685900

2005 2077.2 2077200 12433.9 12433900

2006 2209.2 2209200 13194.7 13194700

Variables: GDPB = Gross private domestic product (billions of dollars).
GDPM = Gross private domestic product (millions of dollars).
GDIB = Gross private domestic investment (billions of dollars).
GDIM = Gross private domestic investment (millions of dollars).

TABLE 5-10
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find out how GDI behaves in relation to GDP. Toward that end, we estimate the
following regression models:

(5.41)

(5.42)

(5.43)

(5.44)

At first glance these results may look different. But they are not if we take into ac-
count the fact that 1 billion is equal to 1,000 million. All we have done in these
various regressions is to express variables in different units of measurement. But
keep in mind these facts. First, the r2 value in all these regressions is the same,
which should not be surprising because r2 is a pure number, devoid of units in
which the dependent variable (Y) and the independent variable (X) are mea-
sured. Second, the intercept term is always in the units in which the dependent
variable is measured; recall that the intercept represents the value of the depen-
dent variable when the independent variable takes the value of zero. Third, when
Y and X are measured in the same units of measurement the slope coefficients as
well as their standard errors remain the same (compare Equations [5.41] and
[5.42]), although the intercept values and their standard errors are different. But
the t ratios remain the same. Third, when the Y and X variables are measured in
different units of measurement, the slope coefficients are different, but the inter-
pretation does not change. Thus, in Equation (5.43) if GDP changes by a million,
GDI changes by 0.0058 billions of dollars, which is 5.8 millions of dollars.
Likewise, in Equation (5.44) if GDP increases by a billion dollars, GDI increases
by 5804.6 millions. All these results are perfectly commonsensical.

5.10 REGRESSION ON STANDARDIZED VARIABLES

We saw in the previous section that the units in which the dependent variable (Y)
and the explanatory variables (the X’s) are measured affect the interpretation of
the regression coefficients. This can be avoided if we express all the variables as

 t = (0.3466)            (7.6143)         r2
= 0.8787

 se = (1331451)       (762.335)

 GDIMt = 461511.076 + 5804.626GDPBt

 t = (0.3466)     (7.6143)         r2
= 0.8787

 se = (1331.451) (0.00076)

 GDIBt = 461.511 + 0.0058GDPMt

 t = (0.3466)           (7.6143)         r2
= 0.8787

 se = (1331451)       (0.762)

 GDIMt = 461511.076 + 5.8046GDPMt

 t = (0.3466)     (7.6143)         r2
= 0.8787

 se = (1331.451) (0.762)

 GDIBt = 461.511 + 5.8046GDPBt



standardized variables. A variable is said to be standardized if we subtract the
mean value of the variable from its individual values and divide the difference
by the standard deviation of that variable.

Thus, in the regression of Y on X, if we redefine these variables as

(5.45)

(5.46)

where = sample mean of Y
= sample standard deviation of Y
= sample mean of X
= sample standard deviation of X

the variables are called standardized variables.
An interesting property of a standardized variable is that its mean value is always

zero and its standard deviation is always 1.28

As a result, it does not matter in what unit the Y and X variable(s) are
measured. Therefore, instead of running the standard (bivariate) regression:

(5.47)

we could run the regression on the standardized variables as

(5.48)

since it is easy to show that in the regression involving standardized variables
the intercept value is always zero.29 The regression coefficients of the standard-
ized explanatory variables, denoted by starred B coefficients , are known in
the literature as the beta coefficients. Incidentally, note that Eq. (5.48) is a
regression through the origin.

How do we interpret the beta coefficients? The interpretation is that if the
(standardized) regressor increases by one standard deviation, the average value
of the (standardized) regressand increases by standard deviation units. Thus,
unlike the traditional model in Eq. (5.47), we measure the effect not in terms of
the original units in which Y and X are measured, but in standard deviation
units.

B*2

(B*)

 = B*2X*i + u*i

 Y*i = B*1 + B*2X*i + u*i

Yi = B1 + B2Xi + ui

Y*i and X*i

SX

X
SY

Y

X*i =
Xi - X

SX

Y*i =
Y - Y

SY

162 PART ONE: THE LINEAR REGRESSION MODEL

28For proof, see Gujarati and Porter, op.cit., pp. 183–184.
29Recall from Eq. (2.16) that Intercept = Mean value of Y - Slope * Mean value of X. But for the

standardized variables, the mean value is always zero. This can be easily generalized to more than
one X variable.
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It should be added that if there is more than one X variable, we can convert
each variable into the standardized form. To show this, let us return to the
Cobb-Douglas production function data given for real GDP, employment, and
real fixed capital for Mexico, 1955–1974, in Table 5-2. The results of fitting the
logarithmic function are given in Eq. (5.11). The results of regressing the stan-
dardized logs of GDP on standardized employment and standardized fixed
capital, using EViews, are as follows:

where SLGDP = standardized log of GDP
SLE = standardized log of employment
SLK = standardized log of capital

The interpretation of the regression coefficients is as follows: Holding capital
constant, a standard deviation increase in employment increases the GDP, on
average, by standard deviation units. Likewise, holding employment
constant, a one standard deviation increase in capital, on average, increases
GDP by standard deviation units. (Note that all variables are in the
logarithmic form.) Relatively speaking, capital has more impact on GDP than
employment. Here you will see the advantage of using standardized variables,
for standardization puts all variables on equal footing because all standardized
variables have zero means and unit variances.

Incidentally, we have not introduced the intercept term in the regression
results. (Why?) If you include intercept in the model, its value will be almost zero.

5.11 SUMMARY OF FUNCTIONAL FORMS

In this chapter we discussed several regression models that, although linear in
the parameters, were not necessarily linear in the variables. For each model,
we noted its special features and also the circumstances in which it might be

L0.83

L0.17

Dependent Variable: SLGDP

Method: Least Squares

Sample: 1955 1974

Included observations: 20

Variable Coefficient Std. Error t-Statistic Prob.

SLE 0.167964 0.089220 1.882590 0.0760

SLK 0.831995 0.089220 9.325223 0.0000

R-squared 0.995080 Mean dependent var 6.29E-06

Adjusted R-squared 0.994807 S.D. dependent var 0.999999

S.E. of regression 0.072063 Sum squared resid 0.093475



appropriate. In Table 5-11 we summarize the various functional forms that we
discussed in terms of a few salient features, such as the slope coefficients and the
elasticity coefficients. Although for double-log models the slope and elasticity
coefficients are the same, this is not the case for other models. But even for these
models, we can compute elasticities from the basic definition given in Eq. (5.7).

As Table 5-11 shows, for the linear-in-variable (LIV) models, the slope coeffi-
cient is constant but the elasticity coefficient is variable, whereas for the log-log,
or log-linear, model, the elasticity coefficient is constant but the slope coefficient
is variable. For other models shown in Table 5-11, both the slope and elasticity
coefficients are variable.

5.12 SUMMARY

In this chapter we considered models that are linear in parameters, or that can
be rendered as such with suitable transformation, but that are not necessarily
linear in variables. There are a variety of such models, each having special
applications. We considered five major types of nonlinear-in-variable but
linear-in-parameter models, namely:

1. The log-linear model, in which both the dependent variable and the
explanatory variable are in logarithmic form.

2. The log-lin or growth model, in which the dependent variable is
logarithmic but the independent variable is linear.

3. The lin-log model, in which the dependent variable is linear but the
independent variable is logarithmic.

4. The reciprocal model, in which the dependent variable is linear but the
independent variable is not.30
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SUMMARY OF FUNCTIONAL FORMS

Model Form Slope = Elasticity =

Linear Y = B1 + B2X B2 B2

Log-linear ln Y = B1 + B2 ln X B2 B2

Log-lin ln Y = B1 + B2X B2(Y ) B2 (X )*

Lin-log Y = B1 + B2 ln X B2 B2

Reciprocal Y = B1 + B2 −B2 −B2

Log-inverse ln(Y ) = B1 − B2 B2 B2

Note: * Indicates that the elasticity coefficient is variable, depending on the value
taken by X or Y or both. When no X and Y are specified, in practice, these elasticities
are often measured at the mean values and .YX

A 1
X

BA Y

X
2BA 1

X
B

A 1
XY

B*A 1

X
2 BA 1

X
B

A 1
Y

B*A 1
X

B

AY

X
B

AX

Y
B*

dY

dX
# X

Y

dY

dX

TABLE 5-11

30The dependent variable can also be reciprocal and the independent variable linear, as in
Problem 5.15. See also Problem 5.20.
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5. The polynominal model, in which the independent variable enters with
various powers.

Of course, there is nothing that prevents us from combining the features of
one or more of these models. Thus, we can have a multiple regression model in
which the dependent variable is in log form and some of the X variables are also
in log form, but some are in linear form.

We studied the properties of these various models in terms of their relevance
in applied research, their slope coefficients, and their elasticity coefficients. We
also showed with several examples the situations in which the various models
could be used. Needless to say, we will come across several more examples in
the remainder of the text.

In this chapter we also considered the regression-through-the-origin model
and discussed some of its features.

It cannot be overemphasized that in choosing among the competing models,
the overriding objective should be the economic relevance of the various mod-
els and not merely the summary statistics, such as R2. Model building requires a
proper balance of theory, availability of the appropriate data, a good understanding of
the statistical properties of the various models, and the elusive quality that is called
practical judgment. Since the theory underlying a topic of interest is never per-
fect, there is no such thing as a perfect model. What we hope for is a reasonably
good model that will balance all these criteria.

Whatever model is chosen in practice, we have to pay careful attention to the
units in which the dependent and independent variables are expressed, for the
interpretation of regression coefficients may hinge upon units of measurement.

KEY TERMS AND CONCEPTS

The key terms and concepts introduced in this chapter are

Double-log, log-linear, or constant
elasticity model

Linear vs. log-linear regression model
a) Functional form
b) High r2 value criterion

Cobb-Douglas (C-D) production
function
a) Returns to scale parameter
b) Constant returns to scale
c) Increasing and decreasing

returns to scale
Semilog models

a) Instantaneous growth rate
b) Compound growth rate

Linear trend model
a) trend variable

Log-lin, or growth, model
Lin-log model
Reciprocal models

a) Asymptotic value
b) Engel expenditure curve
c) the Phillips curve

Polynomial regression models
a) cubic function or third-degree

polynomial
Regression through the origin
Scaling and units of measurement
Regression on standardized variables

a) Standardized variables
b) beta coefficients



QUESTIONS

5.1. Explain briefly what is meant by
a. Log-log model
b. Log-lin model
c. Lin-log model
d. Elasticity coefficient
e. Elasticity at mean value

5.2. What is meant by a slope coefficient and an elasticity coefficient? What is the
relationship between the two?

5.3. Fill in the blanks in Table 5-12.
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FUNCTIONAL FORMS OF REGRESSION

MODELS

Model When appropriate

ln Yi = B1 + B2 ln Xi —

ln Yi = B1 + B2 Xi —

Yi = B1 + B2 ln Xi —

Yi = B1 + B2 —A 1
Xi

B

TABLE 5-12

5.4. Complete the following sentences:
a. In the double-log model the slope coefficient measures . . .
b. In the lin-log model the slope coefficient measures . . .
c. In the log-lin model the slope coefficient measures . . .
d. Elasticity of Y with respect to X is defined as . . .
e. Price elasticity is defined as . . .
f. Demand is said to be elastic if the absolute value of the price elasticity is . . . ,

but demand is said to be inelastic if it is . . .
5.5. State with reason whether the following statements are true (T) or false (F):

a. For the double-log model, the slope and elasticity coefficients are the same.
b. For the linear-in-variable (LIV) model, the slope coefficient is constant but

the elasticity coefficient is variable, whereas for the log-log model, the elas-
ticity coefficient is constant but the slope is variable.

c. The R2 of a log-log model can be compared with that of a log-lin model but
not with that of a lin-log model.

d. The R2 of a lin-log model can be compared with that of a linear (in variables)
model but not with that of a double-log or log-lin model.

e. Model A: ln Y = -0.6 + 0.4X; r2
= 0.85

Model B: = 1.3 + 2.2X; r2
= 0.73

Model A is a better model because its r2 is higher.
5.6. The Engel expenditure curve relates a consumer’s expenditure on a commodity

to his or her total income. Letting Y = the consumption expenditure on a com-
modity and X = the consumer income, consider the following models:
a. Yi = B1 + B2Xi + ui

b. Yi = B1 + B2(1/Xi) + ui

c. ln Yi = B1 + B2 ln Xi + ui

YN
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d. ln Yi = B1 + B2(1/Xi) + ui

e. Yi = B1 + B2 ln Xi + ui

f. This model is known as the log-inverse model.
Which of these models would you choose for the Engel curve and why? (Hint:
Interpret the various slope coefficients, find out the expressions for elasticity of
expenditure with respect to income, etc.)

5.7. The growth model Eq. (5.18) was fitted to several U.S. economic time series and
the following results were obtained:

Time series and period B1 B2 r 2

Real GNP (1954–1987) 7.2492 0.0302 0.9839
(1982 dollars) t = (529.29) (44.318)

Labor force participation rate 4.1056 0.053 0.9464
(1973–1987) t = (1290.8) (15.149)

S&P 500 index 3.6960 0.0456 0.8633
(1954–1987) t = (57.408) (14.219)

S&P 500 index 3.7115 0.0114 0.8524
(1954–1987 quarterly data) t = (114.615) (27.819)

a. In each case find out the instantaneous rate of growth.
b. What is the compound rate of growth in each case?
c. For the S&P data, why is there a difference in the two slope coefficients?

How would you reconcile the difference?

PROBLEMS

5.8. Refer to the cubic total cost (TC) function given in Eq. (5.32).
a. The marginal cost (MC) is the change in the TC for a unit change in output;

that is, it is the rate of change of the TC with respect to output. (Technically,
it is the derivative of the TC with respect to X, the output.) Derive this func-
tion from regression (5.32).

b. The average variable cost (AVC) is the total variable cost (TVC) divided by
the total output. Derive the AVC function from regression (5.32).

c. The average cost (AC) of production is the TC of production divided by total
output. For the function given in regression (5.32), derive the AC function.

d. Plot the various cost curves previously derived and confirm that they
resemble the stylized textbook cost curves.

5.9. Are the following models linear in the parameters? If not, is there any way to
make them linear-in-parameter (LIP) models?

a.

b.

5.10. Based on 11 annual observations, the following regressions were obtained:

Model A: = 2.6911 - 0.4795Xt

se = (0.1216) (0.1140) r2
= 0.6628

NYt

Yi =
Xi

B1 + B2X
2
i

Yi =
1

B1 + B2Xi

ln(Y) = B1 - B2 A 1
X B .



Model B: ln = 0.7774 - 0.2530 ln Xt

se = (0.0152) (0.0494) r2
= 0.7448

where Y = the cups of coffee consumed per person per day and X = the price
of coffee in dollars per pound.
a. Interpret the slope coefficients in the two models.
b. You are told that and . At these mean values, estimate

the price elasticity for Model A.
c. What is the price elasticity for Model B?
d. From the estimated elasticities, can you say that the demand for coffee is

price inelastic?
e. How would you interpret the intercept in Model B? (Hint: Take the antilog.)
f. Since the r2 of Model B is larger than that of Model A, Model B is preferable

to Model A. Comment on this statement.
5.11. Refer to the Cobb-Douglas production function given in regression (5.11).

a. Interpret the coefficient of the labor input X2. Is it statistically different
from 1?

b. Interpret the coefficient of the capital input X3. Is it statistically different
from zero? And from 1?

c. What is the interpretation of the intercept value of -1.6524?
d. Test the hypothesis that B2 = B3 = 0.

5.12. In their study of the demand for international reserves (i.e., foreign reserve cur-
rency such as the dollar or International Monetary Fund [IMF] drawing rights),
Mohsen Bahami-Oskooee and Margaret Malixi31 obtained the following regres-
sion results for a sample of 28 less developed countries (LDC):

ln(R/P) = 0.1223 + 0.4079 ln(Y/P) + 0.5040 ln - 0.0918 ln 
t = (2.5128) (17.6377) (15.2437) (−2.7449)

R2
= 0.8268

F = 1151
n = 1120

where R = the level of nominal reserves in U.S. dollars
P = U.S. implicit price deflator for GNP
Y = the nominal GNP in U.S. dollars

␴BP = the variability measure of balance of payments
␴EX = the variability measure of exchange rates

(Notes: The figures in parentheses are t ratios. This regression was based on
quarterly data from 1976 to 1985 (40 quarters) for each of the 28 countries,
giving a total sample size of 1120.)
a. A priori, what are the expected signs of the various coefficients? Are the

results in accord with these expectations?
b. What is the interpretation of the various partial slope coefficients?

␴EX␴BP

X = 1.11Y = 2.43

NYt
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31See Mohsen Bahami-Oskooee and Margaret Malixi, “Exchange Rate Flexibility and the LDCs
Demand for International Reserves,” Journal of Quantitative Economics, vol. 4, no. 2, July 1988,
pp. 317–328.
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c. Test the statistical significance of each estimated partial regression coeffi-
cient (i.e., the null hypothesis is that individually each true or population
regression coefficient is equal to zero).

d. How would you test the hypothesis that all partial slope coefficients are
simultaneously zero?

5.13. Based on the U.K. data on annual percentage change in wages (Y) and the per-
cent annual unemployment rate (X) for the years 1950 to 1966, the following
regression results were obtained:

= -1.4282 + 8.7243

se = (2.0675) (2.8478) r2
= 0.3849

F(1,15) = 9.39

a. What is the interpretation of 8.7243?
b. Test the hypothesis that the estimated slope coefficient is not different from

zero. Which test will you use?
c. How would you use the F test to test the preceding hypothesis?
d. Given that percent and percent, what is the rate of change

of Y at these mean values?
e. What is the elasticity of Y with respect to X at the mean values?
f. How would you test the hypothesis that the true r2

= 0?
5.14. Table 5-13 gives data on the Consumer Price Index, Y(1980 = 100), and the

money supply, X (billions of German marks), for Germany for the years 1971
to 1987.

X = 1.5Y = 4.8

a 1

Xt
bNYt

CONSUMER PRICE INDEX (Y ) (1980 = 100)

AND THE MONEY SUPPLY (X ) (MARKS, IN

BILLIONS), GERMANY, 1971–1987

Year Y X

1971 64.1 110.02

1972 67.7 125.02

1973 72.4 132.27

1974 77.5 137.17

1975 82.0 159.51

1976 85.6 176.16

1977 88.7 190.80

1978 91.1 216.20

1979 94.9 232.41

1980 100.0 237.97

1981 106.3 240.77

1982 111.9 249.25

1983 115.6 275.08

1984 118.4 283.89

1985 121.0 296.05

1986 120.7 325.73

1987 121.1 354.93

Source: International Economic Conditions,
annual ed., June 1988, The Federal Reserve Bank
of St. Louis, p. 24.

TABLE 5-13



a. Regress the following:
1. Y on X
2. ln Y on ln X
3. ln Y on X
4. Y on ln X
b. Interpret each estimated regression.
c. For each model, find the rate of change of Y with respect to X.
d. For each model, find the elasticity of Y with respect to X. For some of these

models, the elasticity is to be computed at the mean values of Y and X.
e. Based on all these regression results, which model would you choose and

why?
5.15. Based on the following data, estimate the model:

a 1

Yi
b = B1 + B2Xi + ui
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32For additional details and numerical computation, see Gujarati and Porter, Basic Econometrics,
5th ed., McGraw-Hill, New York, 2009, pp. 203–205.

Y 86 79 76 69 65 62 52 51 51 48
X 3 7 12 17 25 35 45 55 70 120

a. What is the interpretation of B2?
b. What is the rate of change of Y with respect to X?
c. What is the elasticity of Y with respect to X?
d. For the same data, run the regression

e. Can you compare the r2s of the two models? Why or why not?
f. How do you decide which is a better model?

5.16. Comparing two r2s when dependent variables are different.32 Suppose you want to
compare the r2 values of the growth model (5.19) with the linear trend model
(5.23) of the consumer credit outstanding regressions given in the text.
Proceed as follows:
a. Obtain ln Yt, that is, the estimated log value of each observation from

model (5.19).
b. Obtain the antilog values of the values obtained in (a).
c. Compute r2 between the values obtained in (b) and the actual Y values

using the definition of r2 given in Question 3.5.
d. This r2 value is comparable with the r2 value obtained from linear

model (5.23).
Use the preceding steps to compare the r2 values of models (5.19) and (5.23).

5.17. Based on the GNP/money supply data given in Table 5-14 (found on the
textbook’s Web site), the following regression results were obtained (Y = GNP,
X = M2):

Yi = B1 + B2a 1

Xi
b + ui
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Model Intercept Slope r 2

Log-linear 0.7826 0.8539 0.997
t = 11.40 t = 108.93

Log-lin 7.2392 0.0001 0.832
(growth model) t = 80.85 t = 14.07
Lin-log -24299 3382.4 0.899

t = -15.45 t = 18.84
Linear 703.28 0.4718 0.991
(LIV model) t = 8.04 t = 65.58

a. For each model, interpret the slope coefficient.
b. For each model, estimate the elasticity of the GNP with respect to money

supply and interpret it.
c. Are all r2 values directly comparable? If not, which ones are?
d. Which model will you choose? What criteria did you consider in your

choice?
e. According to the monetarists, there is a one-to-one relationship between

the rate of changes in the money supply and the GDP. Do the preceding
regressions support this view? How would you test this formally?

5.18. Refer to the energy demand data given in Table 5-3. Instead of fitting the log-
linear model to the data, fit the following linear model:

a. Estimate the regression coefficients, their standard errors, and obtain R2

and adjusted R2.
b. Interpret the various regression coefficients
c. Are the estimated partial regression coefficients individually statistically

significant? Use the p values to answer the question.
d. Set up the ANOVA table and test the hypothesis that B2 = B3 = 0.
e. Compute the income and price elasticities at the mean values of Y, X2, and

X3. How do these elasticities compare with those given in regression (5.12)?
f. Using the procedure described in Problem 5.16, compare the R2 values of

the linear and log-linear regressions. What conclusion do you draw from
these computations?

g. Obtain the normal probability plot for the residuals obtained from the
linear-in-variable regression above. What conclusions do you draw?

h. Obtain the normal probability plot for the residuals obtained from the log-
linear regression (5.12) and decide whether the residuals are approximately
normally distributed.

i. If the conclusions in (g) and (h) are different, which regression would you
choose and why?

5.19. To explain the behavior of business loan activity at large commercial banks,
Bruce J. Summers used the following model:33

(A)Yt =
1

A + Bt

Yt = B1 + B2X2t + B3X3t + ut

33See his article, “A Time Series Analysis of Business Loans at Large Commercial Banks,”
Economic Review, Federal Reserve Bank of St. Louis, May/June, 1975, pp. 8–14.



where Y is commercial and industrial (C&I) loans in millions of dollars, and
t is time, measured in months. The data used in the analysis was collected
monthly for the years 1966 to 1967, a total of 24 observations.

For estimation purposes, however, the author used the following model:

(B)

The regression results based on this model for banks including New York City
banks and excluding New York City banks are given in Equations (1) and (2),
respectively:

(1)

(2)

DW = 0.03*

*Durbin-Watson (DW) statistic (see Chapter 10).
a. Why did the author use Model (B) rather than Model (A)?
b. What are the properties of the two models?
c. Interpret the slope coefficients in Models (1) and (2). Are the two slope

coefficients statistically significant?
d. How would you find out the standard errors of the intercept and slope

coefficients in the two regressions?
e. Is there a difference in the behavior of New York City and the non–New

York City banks in their C&I activity? How would you go about testing the
difference, if any, formally?

5.20. Refer to regression (5.31).
a. Interpret the slope coefficient.
b. Using Table 5-11, compute the elasticity for this model. Is this elasticity con-

stant or variable?
5.21. Refer to the data given in Table 5-5 (found on the textbook’s Web site). Fit an

appropriate Engle curve to the various expenditure categories in relation to
total personal consumption expenditure and comment on the statistical
results.

5.22. Table 5-15 gives data on the annual rate of return Y (%) on Afuture mutual
fund and a return on a market portfolio as represented by the Fisher Index,
X (%). Now consider the following model, which is known in the finance
literature as the characteristic line.

(1)Yt = B1 + B2Xi + ui

R 
2

= 0.97 t = (196.70) (-66.52)

DW = 0.04* 
N1

Yt
= 26.79 - 0.14t

R 
2

= 0.84 t = (96.13) (-24.52)

 
1

Yt
= 52.00 - 0.2t

1

Yt
= A + Bt
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In the literature there is no consensus about the prior value of B1. Some stud-
ies have shown it to be positive and statistically significant and some have
shown it to be statistically insignificant. In the latter case, Model (1) becomes
a regression-through-the-origin model, which can be written as

(2)

Using the data given in Table 5-15, to estimate both these models and decide
which model fits the data better.

5.23. Raw R2 for the regression-through-the-origin model. As noted earlier, for the regres-
sion-through-the-origin regression model the conventionally computed R2 may
not be meaningful. One suggested alternative for such models is the so-called
“raw” R2, which is defined (for the two-variable case) as follows:

If you compare the raw R2 with the traditional r2 computed from Eq. (3.43),
you will see that the sums of squares and cross-products in the raw r2 are not
mean-corrected.

For model (2) in Problem 5.22 compute the raw r2. Compare this with the r2

value that you obtained for Model (1) in Problem (5.22). What general conclu-
sion do you draw?

5.24. For regression (5.39) compute the raw r2 value and compare it with that given
in Eq. (5.40).

5.25. Consider data on the weekly stock prices of Qualcomm, Inc., a digital wire-
less telecommunications designer and manufacturer, over the time period of
1995 to 2000. The complete data can be found in Table 5-16 on the textbook’s
Web site.

Raw r2
=

AaXiYi B2

aX2
iaY

2
i

Yt = B2Xt + ut

ANNUAL RATES OF RETURN (%) ON

AFUTURE FUND (Y ) AND ON THE

FISHER INDEX (X ), 1971–1980

Year Y X

1971 67.5 19.5

1972 19.2 8.5

1973 −35.2 −29.3

1974 −42.0 −26.5

1975 63.7 61.9

1976 19.3 45.5

1977 3.6 9.5

1978 20.0 14.0

1979 40.3 35.3

1980 37.5 31.0

Source: Haim Levy and Marshall Sarnat,
Portfolio and Investment Selection: Theory
and Practice, Prentice-Hall International,
Englewood Cliffs, N.J., 1984, pp. 730, 738.

TABLE 5-15



a. Create a scattergram of the closing stock price over time. What kind of pat-
tern is evident in the plot? 

b. Estimate a linear model to predict the closing stock price based on time.
Does this model seem to fit the data well?

c. Now estimate a squared model by using both time and time-squared. Is
this a better fit than in part (b)?

d. Now attempt to fit a cubic or third-degree polynomial to the data as
follows:

where Y = stock price and X = time. Which model seems to be the best
estimator for the stock prices?

5.26. Table 5-17 on the textbook’s Web site contains data about several magazines.
The variables are: magazine name, cost of a full-page ad, circulation
(projected, in thousands), percent male among the predicted readership, and
median household income of readership. The goal is to predict the advertise-
ment cost.
a. Create scattergrams of the cost variable versus each of the three other vari-

ables. What types of relationships do you see?
b. Estimate a linear regression equation with all the variables and create a

residuals versus fitted values plot. Does the plot exhibit constant variance
from left to right?

c. Now estimate the following mixed model:

and create another residual plot. Does this model fit better than the one in
part (b)?

5.27. Refer to Example 4.5 (Table 4-6) about education, GDP, and population for
38 countries.
a. Estimate a linear (LIV) model for the data. What are the resulting equation

and relevant output values (i.e., F statistic, t values, and R2)?
b. Now attempt to estimate a log-linear model (where both of the indepen-

dent variables are also in the natural log format).
c. With the log-linear model, what does the coefficient of the GDP variable

indicate about education? What about the population variable?
d. Which model is more appropriate?

5.28. Table 5-18 on the textbook’s Web site contains data on average life expectancy
for 40 countries. It comes from the World Almanac and Book of Facts, 1993, by
Pharos Books. The independent variables are the ratio of the number of people
per television set and the ratio of number of people per physician.
a. Try fitting a linear (LIV) model to the data. Does this model seem to fit

well?
b. Create two scattergrams, one of the natural log of life expectancy versus the

natural log of people per television, and one of the natural log of life
expectancy versus the natural log of people per physician. Do the graphs
appear linear?

c. Estimate the equation for a log-linear model. Does this model fit well?

ln Yi = B0 + B1 ln Circ + B2 PercMale + B3 MedIncome + ui

Yi = B0 + B1Xi + B2X
2
i + B3X

3
i + ui
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d. What do the coefficients of the log-linear model indicate about the relation-
ships of the variables to life expectancy? Does this seem reasonable?

5.29 Refer to Example 5.6 in the chapter. It was shown that the percentage change
in the index of hourly earnings and the unemployment rate from 1958–1969
followed the traditional Phillips curve model. An updated version of the data,
from 1965–2007, can be found in Table 5-19 on the textbook’s Web site.
a. Create a scattergram using the percentage change in hourly earnings as the

Y variable and the unemployment rate as the X variable. Does the graph
appear linear?

b. Now create a scattergram as above, but use 1/X as the independent vari-
able. Does this seem better than the graph in part (a)?

c. Fit Eq. (5.29) to the new data. Does this model seem to fit well? Also create
a regular linear (LIV) model as in Eq. (5.30). Which model is better? Why?

APPENDIX 5A: Logarithms

Consider the numbers 5 and 25. We know that

(5A.1)

We say that the exponent 2 is the logarithm of 25 to the base 5. More formally, the
logarithm of a number (e.g., 25) to a given base (e.g., 5) is the power (2) to which
the base (5) must be raised to obtain the given number (25).

More generally, if

(5A.2)

then

(5A.3)

In mathematics the function (5A.2) is called an exponential function and (5A.3) is
called the logarithmic function. As is clear from Eqs. (5A.2) and (5A.3), one
function is the inverse of the other function.

Although any (positive) base can be used, in practice, the two commonly
used bases are 10 and the mathematical number 

Logarithms to base 10 are called common logarithms. Thus,

That is, in the first case 100 = 102 and in the latter case 
Logarithms to the base e are called natural logarithms. Thus,

All these calculations can be done routinely on a hand calculator.
By convention, the logarithm to base 10 is denoted by the letters log and to

the base e by ln. Thus, in the preceding example, we can write log 100 or log 30
or ln 100 or ln 30.

loge 
100 L 4.6051  and  loge 30 L 3.4012

30 L 101.48.

log10 
100 = 2  log10 30 L 1.48

e = 2.71828 . . . .

logb Y = X

Y = bx  (b 7 0)

25 = 52



There is a fixed relationship between the common log and natural log,
which is

(5A.4)

That is, the natural log of the number X is equal to 2.3026 times the log of X to
the base 10. Thus,

as before. Therefore, it does not matter whether one uses common or natural
logs. But in mathematics the base that is usually preferred is e, that is, the nat-
ural logarithm. Hence, in this book all logs are natural logs, unless stated ex-
plicitly. Of course, we can convert the log of a number from one basis to the
other using Eq. (5A.4).

Keep in mind that logarithms of negative numbers are not defined. Thus,
the log of (−5) or the ln (−5) is not defined.

Some properties of logarithms are as follows: If A and B are any positive
numbers, then it can be shown that:

1. (5A.5)

That is, the log of the product of two (positive) numbers A and B is equal to the
sum of their logs.

2. (5A.6)

That is, the log of the ratio of A to B is the difference in the logs of A and B.

3. (5A.7)

That is, the log of the sum or difference of A and B is not equal to the sum or
difference of their logs.

4. (5A.8)

That is, the log of A raised to power k is k times the log of A.

5. (5A.9)

That is, the log of e to itself as a base is 1 (as is the log of 10 to the base 10).

6. (5A.10)

That is, the natural log of the number 1 is zero (so is the common log of number 1).
7. If 

(5A.11)
dY

dX
=

1

X

Y = ln X,

ln 1 = 0

ln e = 1

ln (Ak) = k ln A

ln (A ⫾ B) Z  ln A ⫾ ln B

ln (A/B) = ln A - ln B

ln (A * B) = ln A + ln B

ln 30 = 2.3026 log 30 = 2.3026(1.48) = 3.4012 (approx.)

ln X = 2.3026 log X
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That is, the rate of change (i.e., the derivative) of Y with respect to X is 1 over X.

The exponential and (natural) logarithmic functions are depicted in Figure 5A.1.
Although the number whose log is taken is always positive, the logarithm

of that number can be positive as well as negative. It can be easily verified that if

Also note that although the logarithmic curve shown in Figure 5A-1(b) is
positively sloping, implying that the larger the number is, the larger its loga-
rithmic value will be, the curve is increasing at a decreasing rate (mathemati-
cally, the second derivative of the function is negative). Thus, ln(10) = 2.3026
(approx.) and ln (20) = 2.9957 (approx.). That is, if a number is doubled, its log-
arithm does not double.

This is why the logarithm transformation is called a nonlinear trans-
formation. This can also be seen from Equation (5A.11), which notes that if
Y = ln X, dY/dX = 1/X. This means that the slope of the logarithmic function de-
pends on the value of X; that is, it is not constant (recall the definition of linear-
ity in the variable).

Logarithms and percentages: Since or for very small
changes the change in lnX is equal to the relative or proportional change in X.
In practice, if the change in X is reasonably small, the preceding relationship can
be written as the change in ln to the relative change in X, where means
approximately.

Thus, for small changes,

relative change in X(ln Xt - lnXt-1) L
(Xt - Xt-1)

Xt-1
=

LX L

d(ln X) =
dX
X ,d(ln X)

d X =
1
X,

 Y 7 1 then ln Y 7 0

 Y = 1 then ln Y = 0

 0 6 Y 6 1 then ln Y 6 0

Y

(a)

X Y

(b)

0 0

Y = eX

45°

X = ln Y

45°

1

1

X = ln Y

Exponential and logarithmic functions: (a) exponential function;
(b) logarithmic function

FIGURE 5A-1
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CHAPTER 6
DUMMY VARIABLE
REGRESSION MODELS

In all the linear regression models considered so far the dependent variable Y
and the explanatory variables, the X’s, have been numerical or quantitative. But
this may not always be the case; there are occasions when the explanatory vari-
able(s) can be qualitative in nature. These qualitative variables, often known as
dummy variables, have some alternative names used in the literature, such as
indicator variables, binary variables, categorical variables, and dichotomous variables.
In this chapter we will present several illustrations to show how the dummy
variables enrich the linear regression model. For the bulk of this chapter we will
continue to assume that the dependent variable is numerical.

6.1 THE NATURE OF DUMMY VARIABLES

Frequently in regression analysis the dependent variable is influenced not only
by variables that can be quantified on some well-defined scale (e.g., income,
output, costs, prices, weight, temperature) but also by variables that are basi-
cally qualitative in nature (e.g., gender, race, color, religion, nationality, strikes,
political party affiliation, marital status). For example, some researchers have
reported that, ceteris paribus, female college teachers are found to earn less than
their male counterparts, and, similarly, that the average score of female students
on the math part of the S.A.T. examination is less than their male counterparts
(see Table 2-15, found on the textbook’s Web site). Whatever the reason for this
difference, qualitative variables such as gender should be included among the
explanatory variables when problems of this type are encountered. Of course,
there are other examples that also could be cited.
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Such qualitative variables usually indicate the presence or absence of a
“quality” or an attribute, such as male or female, black or white, Catholic or
non-Catholic, citizens or non-citizens. One method of “quantifying” these
attributes is by constructing artificial variables that take on values of 0 or 1, 0 in-
dicating the absence of an attribute and 1 indicating the presence (or posses-
sion) of that attribute. For example, 1 may indicate that a person is a female and
0 may designate a male, or 1 may indicate that a person is a college graduate
and 0 that he or she is not, or 1 may indicate membership in the Democratic
party and 0 membership in the Republican party. Variables that assume values
such as 0 and 1 are called dummy variables. We denote the dummy explana-
tory variables by the symbol D rather than by the usual symbol X to emphasize
that we are dealing with a qualitative variable.

Dummy variables can be used in regression analysis just as readily as quan-
titative variables. As a matter of fact, a regression model may contain only
dummy explanatory variables. Regression models that contain only dummy
explanatory variables are called analysis-of-variance (ANOVA) models.
Consider the following example of the ANOVA model:

(6.1)

where Y = annual expenditure on food ($)
Di = 1 if female

= 0 if male

Note that model (6.1) is like the two-variable regression models encountered
previously except that instead of a quantitative explanatory variable X, we have
a qualitative or dummy variable D. As noted earlier, from now on we will use D
to denote a dummy variable.

Assuming that the disturbances ui in model (6.1) satisfy the usual assump-
tions of the classical linear regression model (CLRM), we obtain from model (6.1)
the following:1

Mean food expenditure, males:

(6.2) = B1

 E(Yi|Di = 0) = B1 + B2(0)

Yi = B1 + B2Di + ui

1Since dummy variables generally take on values of 1 or 0, they are nonstochastic; that is, their
values are fixed. And since we have assumed all along that our X variables are fixed in repeated
sampling, the fact that one or more of these X variables are dummies does not create any special
problems insofar as estimation of model (6.1) is concerned. In short, dummy explanatory variables
do not pose any new estimation problems and we can use the customary OLS method to estimate
the parameters of models that contain dummy explanatory variables.



Mean food expenditure, females:

(6.3)

From these regressions we see that the intercept term B1 gives the average or
mean food expenditure of males (that is, the category for which the dummy
variable gets the value of zero) and that the “slope” coefficient B2 tells us by
how much the mean food expenditure of females differs from the mean food
expenditure of males; (B1 + B2) gives the mean food expenditure for females.
Since the dummy variable takes values of 0 and 1, it is not legitimate to call B2

the slope coefficient, since there is no (continuous) regression line involved
here. It is better to call it the differential intercept coefficient because it tells by
how much the value of the intercept term differs between the two categories. In
the present context, the differential intercept term tells by how much the mean
food expenditure of females differs from that of males.

A test of the null hypothesis that there is no difference in the mean food ex-
penditure of the two sexes (i.e., B2 = 0) can be made easily by running regres-
sion (6.1) in the usual ordinary least squares (OLS) manner and finding out
whether or not on the basis of the t test the computed b2 is statistically
significant.

Example 6.1. Annual Food Expenditure of Single Male and Single Female
Consumers

Table 6-1 gives data on annual food expenditure ($) and annual after-tax
income ($) for males and females for the year 2000 to 2001.

From the data given in Table 6-1, we can construct Table 6-2.
For the moment, just concentrate on the first three columns of this table,
which relate to expenditure on food, the dummy variable taking the value of
1 for females and 0 for males, and after-tax income.

 = B1 + B2

 E(Yi|Di = 1) = B1 + B2(1)

180 PART ONE: THE LINEAR REGRESSION MODEL

FOOD EXPENDITURE IN RELATION TO AFTER-TAX INCOME, SEX, AND AGE

Food expenditure, After-tax income, Food expenditure, After-tax income,
Age female ($) female ($) male ($) male ($)

25 1983 11557 2230 11589

25–34 2987 29387 3757 33328

35–44 2993 31463 3821 36151

45–54 3156 29554 3291 35448

55–64 2706 25137 3429 32988

65 2217 14952 2533 20437

Note: The food expenditure and after-tax income data are averages based on the actual number of people in
various age groups. The actual numbers run into the thousands.

Source: Consumer Expenditure Survey, Bureau of Labor Statistics, http://Stats.bls.gov/Cex/CSXcross.htm.

7

6

TABLE 6-1
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Regressing food expenditure on the gender dummy variable, we obtain
the following results.

se = (233.0446)(329.5749) (6.4)

t = (13.6318) (-1.5267)

where Y = food expenditure ($) and D = 1 if female, 0 if male.

As these results show, the mean food expenditure of males is and
that of females is (3176.833 - 503.1667) = 2673.6663 or about $2,674. But what
is interesting to note is that the estimated Di is not statistically significant, for
its t value is only about -1.52 and its p value is about 15 percent. This means
that although the numerical values of the male and female food expenditures
are different, statistically there is no significant difference between the two
numbers. Does this finding make practical (as opposed to statistical) sense?
We will soon find out.

We can look at this problem in a different perspective. If you simply take the
averages of the male and female food expenditure figures separately, you will
see that these averages are $3176.833 and $2673.6663. These numbers are the
same as those that we obtained on the basis of regression (6.4). What this means
is that the dummy variable regression (6.4) is simply a device to find out if two mean
values are different. In other words, a regression on an intercept and a dummy
variable is a simple way of finding out if the mean values of two groups differ.
If the dummy coefficient B2 is statistically significant (at the chosen level of

L$3,177

r2
= 0.1890

YNi = 3176.833 - 503.1667Di

FOOD EXPENDITURE IN RELATION TO AFTER-TAX INCOME AND SEX

Observation Food expenditure After-tax income Sex

1 1983.000 11557.00 1

2 2987.000 29387.00 1

3 2993.000 31463.00 1

4 3156.000 29554.00 1

5 2706.000 25137.00 1

6 2217.000 14952.00 1

7 2230.000 11589.00 0

8 3757.000 33328.00 0

9 3821.000 36151.00 0

10 3291.000 35448.00 0

11 3429.000 32988.00 0

12 2533.000 20437.00 0

Notes: Food expenditure = Expenditure on food in dollars.
After-tax income = After-tax income in dollars.
Sex = 1 if female, 0 if male.
Source: Extracted from Table 10-1.

TABLE 6-2



significance level), we say that the two means are statistically different. If it is
not statistically significant, we say that the two means are not statistically sig-
nificant. In our example, it seems they are not.

Notice that in the present example the dummy variable “sex” has two cate-
gories. We have assigned the value of 1 to female consumers and the value of 0
to male consumers. The intercept value in such an assignment represents the
mean value of the category that gets the value of 0, or male, in the present case.
We can therefore call the category that gets the value of 0 the base, or reference,
or benchmark, or comparison, category. To compute the mean value of food ex-
penditure for females, we have to add the value of the coefficient of the dummy
variable to the intercept value, which represents food expenditure of females, as
shown before.

A natural question that arises is: Why did we choose male as the reference
category and not female? If we have only two categories, as in the present
instance, it does not matter which category gets the value of 1 and which gets
the value of 0. If you want to treat female as the reference category (i.e., it gets
the value of 0), Eq. (6.4) now becomes:

se = (233.0446) (329.5749) (6.5)

t = (11.4227) (1.5267)

where Di = 1 for male and 0 for female.
In either assignment of the dummy variable, the mean food consumption

expenditure of the two sexes remains the same, as it should. Comparing
Equations (6.4) and (6.5), we see the r2 values remain the same, and the absolute
value of the dummy coefficients and their standard errors remain the same. The
only change is in the numerical value of the intercept term and its t value.

Another question: Since we have two categories, why not assign two dum-
mies to them? To see why this is inadvisable, consider the following model:

(6.6)

where Y is expenditure on food, D2 = 1 for female and 0 for male, and D3 = 1 for
male and 0 for female. This model cannot be estimated because of perfect
collinearity (i.e., perfect linear relationship) between D2 and D3. To see this
clearly, suppose we have a sample of two females and three males. The data
matrix will look something like the following.

Intercept D2 D3

Male Y1 1 0 1

Male Y2 1 0 1

Female Y3 1 1 0

Male Y4 1 0 1

Female Y5 1 1 0

Yi = B1 + B2D2i + B3Di + ui

r2
= 0.1890

YNi = 2673.667 + 503.1667Di

182 PART ONE: THE LINEAR REGRESSION MODEL
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The first column in this data matrix represents the common intercept term, B1. It is
easy to verify that D2 = (1 - D3) or D3 = (1 - D2); that is, the two dummy variables
are perfectly collinear. Also, if you add up columns D2 and D3, you will get the first
column of the data matrix. In any case, we have the situation of perfect collinear-
ity. As we noted in Chapter 3, in cases of perfect collinearity among explanatory
variables, it is not possible to obtain unique estimates of the parameters.

There are various ways to mitigate the problem of perfect collinearity. If a
model contains the (common) intercept, the simplest way is to assign the dum-
mies the way we did in model (6.4), namely, to use only one dummy if a qualita-
tive variable has two categories, such as sex. In this case, drop the column D2 or D3

in the preceding data matrix. The general rule is: If a model has the common intercept,
B1, and if a qualitative variable has m categories, introduce only (m - 1) dummy variables.
In our example, sex has two categories, hence we introduced only a single dummy
variable. If this rule is not followed, we will fall into what is known as the dummy
variable trap, that is, the situation of perfect collinearity or multicollinearity, if
there is more than one perfect relationship among the variables.2

Example 6.2. Union Membership and Right-to-Work Laws

Several states in the United States have passed right-to-work laws that prohibit
union membership as a prerequisite for employment and collective bargain-
ing. Therefore, we would expect union membership to be lower in those
states that have such laws compared to those states that do not. To see if this
is the case, we have collected the data shown in Table 6-3. For now concen-
trate only on the variable PVT (% of private sector employees in trade unions
in 2006) and RWL, a dummy that takes a value of 1 if a state has a right-to-
work law and 0 if a state does not have such a law. Note that we are assign-
ing one dummy to distinguish the right- and non-right-to-work-law states to
avoid the dummy variable trap.

The regression results based on the data for 50 states and the District of
Columbia are as follows:

se = (0.758) (1.181)

t = (20.421)* (-6.062)* (6.7)

*p values are extremely small

Note: RWL = 1 for right-to-work-law states

In the states that do not have right-to-work laws, the average union
membership is about 15.5 percent. But in those states that have such laws, the

r2
= 0.429

PVTi = 15.480 - 7.161RWLi

2Another way to resolve the perfect collinearity problem is to keep as many dummies as the
number of categories but to drop the common intercept term, B1, from the model; that is, run the re-
gression through the origin. But we have already warned about the problems involved in this pro-
cedure in Chapter 5.



average union membership is (15.48 - 7.161) 8.319 percent. Since the dummy
coefficient is statistically significant, it seems that there is indeed a difference
in union membership between states that have the right-to-work laws and
the states that do not have such laws.

It is instructive to see the scattergram of PVT and RWL, which is shown in
Figure 6-1.

As you can see, the observations are concentrated at two extremes, 0 (no
RWL states) and 1 (RWL states). For comparison, we have also shown the
average level of unionization (%) in the two groups. The individual observa-
tions are scattered about their respective mean values.

ANOVA models like regressions (6.4) and (6.7), although common in fields
such as sociology, psychology, education, and market research, are not that
common in economics. In most economic research a regression model contains
some explanatory variables that are quantitative and some that are qualitative.
Regression models containing a combination of quantitative and qualitative
variables are called analysis-of-covariance (ANCOVA) models, and in the re-
mainder of this chapter we will deal largely with such models. ANCOVA mod-
els are an extension of the ANOVA models in that they provide a method of
statistically controlling the effects of quantitative explanatory variables, called
covariates or control variables, in a model that includes both quantitative and
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UNION MEMBERSHIP IN THE PRIVATE SECTOR AND 

RIGHT-TO-WORK LAWS

PVT RWL PVT RWL PVT RWL

TABLE 6-3

10.6 1

24.7 0

9.7 0

6.5 1

17.8 0

9.2 0

16.6 0

12.8 0

13.6 0

7.3 1

5.4 1

24.2 0

6.4 1

15.2 0

12.9 1

13.1 1

8.7 1

11.1 0

6.5 1

13.8 0

14.5 0

14.0 0

20.6 0

17.0 0

8.9 1

11.9 0

15.6 0

9.7 1

17.7 1

11.2 0

20.6 0

11.4 0

26.3 0

3.9 1

7.6 1

15.4 0

8.5 1

15.4 0

16.6 0

15.8 0

5.9 1

7.7 1

6.4 1

5.7 0

6.8 1

12.2 0

4.8 1

21.4 0

14.7 0

15.4 0

9.4 1

Notes: PVT = Percent unionized in the private sector.
RWL = 1 for right-to-work-law states, 0 otherwise.

Sources: http://www.dol.gov/esa/whd/state/righttowork.htm.
http://www.bls.gov/news.release/union2.t05.htm.
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qualitative, or dummy, explanatory variables. As we will show, if we exclude
covariates from a model, the regression results are subject to model specifica-
tion error.

6.2 ANCOVA MODELS: REGRESSION ON ONE QUANTITATIVE

VARIABLE AND ONE QUALITATIVE VARIABLE WITH TWO

CATEGORIES: EXAMPLE 6.1 REVISITED

As an example of the ANCOVA model, we reconsider Example 6.1 by bringing in
disposable income (i.e., income after taxes), a covariate, as an explanatory variable.

(6.8)

Y = expenditure on food ($), X = after-tax income ($), and D = 1 for female and
0 for male.

Using the data given in Table 6-2, we obtained the following regression
results:

= 1506.244 - 228.9868Di + 0.0589Xi

se = (188.0096)(107.0582) (0.0061)

t = (8.0115) (-2.1388) (9.6417) (6.9)

p = (0.000)* (0.0611) (0.000)*

R2
= 0.9284

*Denotes extremely small values. 

YNi

Yi = B1 + B2Di + B3Xi + ui

Mean ⫽ 15.5%

Mean ⫽ 8.3%
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Unionization in private sector (PVT) versus right-to-work-law (RWL) statesFIGURE 6-1



These results are noteworthy for several reasons. First, in Eq. (6.2), the dummy
coefficient was statistically insignificant, but now it is significant. (Why?) It
seems in estimating Eq. (6.2) we committed a specification error because we ex-
cluded a covariate, the after-tax income variable, which a priori is expected to
have an important influence on consumption expenditure. Of course, we did this
for pedagogic reasons. This shows how specification errors can have a dramatic
effect(s) on the regression results. Second, since Equation (6.9) is a multiple re-
gression, we now can say that holding after-tax income constant, the mean food
expenditure for males is about $1,506, and for females it is (1506.244 - 228.9866)
or about $1,277, and these means are statistically significantly different. Third,
holding gender differences constant, the income coefficient of 0.0589 means the
mean food expenditure goes up by about 6 cents for every additional dollar of
after-tax income. In other words, the marginal propensity of food consumption—
additional expenditure on food for an additional dollar of disposable income—
is about 6 cents.

As a result of the preceding discussion, we can now derive the following
regressions from Eq. (6.9) for the two groups as follows:

Mean food expenditure regression for females:

= 1277.2574 + 0.0589Xi (6.10)

Mean food expenditure regression for males:

= 1506.2440 + 0.0589Xi (6.11)

These two regression lines are depicted in Figure 6-2.

YNi

YNi
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 ⫽ 1277.2547 ⫹ 0.0589 Xi

ˆ

Yi
 ⫽ 1506.2440 ⫹ 0.0589 Xi

ˆ

(male)

(female)

Food expenditure in relation to after-tax incomeFIGURE 6-2
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As you can see from this figure, the two regression lines differ in their inter-
cepts but their slopes are the same. In other words, these two regression lines
are parallel.

A question: By holding sex constant, we have said that the marginal propen-
sity of food consumption is about 6 cents. Could there also be a difference in
the marginal propensity of food consumption between the two sexes? In other
words, could the slope coefficient B3 in Equation (6.8) be statistically different
for the two sexes, just as there was a statistical difference in their intercept val-
ues? If that turned out to be the case, then Eq. (6.8) and the results based on
this model given in Eq. (6.9) would be suspect; that is, we would be commit-
ting another specification error. We explore this question in Section 6.5.

6.3 REGRESSION ON ONE QUANTITATIVE VARIABLE 

AND ONE QUALITATIVE VARIABLE WITH MORE THAN TWO

CLASSES OR CATEGORIES

In the examples we have considered so far we had a qualitative variable with
only two categories or classes—male or female, right-to-work laws or no right-
to-work laws, etc. But the dummy variable technique is quite capable of han-
dling models in which a qualitative variable has more than two categories.

To illustrate this, consider the data given in Table 6-4 on the textbook’s Web
site. This table gives data on the acceptance rates (in percents) of the top 65 grad-
uate schools (as ranked by U.S. News), among other things. For the time being, we
will concentrate only on the schools’ acceptance rates. Suppose we are interested
in finding out if there are statistically significant differences in the acceptance
rates among the 65 schools included in the analysis. For this purpose, the schools
have been divided into three regions: (1) South (22 states in all), (2) Northeast and
North Central (32 states in all), and (3) West (10 states in all). The qualitative vari-
able here is “region,” which has the three categories just listed.

Now consider the following model:

(6.12)

where D2 = 1 if the school is in the Northeastern or North Central region
= 0 otherwise (i.e., in one of the other 2 regions)

D3 = 1 if the school is in the Western region
= 0 otherwise (i.e., in one of the other 2 regions)

Since the qualitative variable region has three classes, we have assigned only
two dummies. Here we are treating the South as the base or reference category.
Table 6-4 includes these dummy variables.

From Equation (6.12) we can easily obtain the mean acceptance rate in the
three regions as follows:

Mean acceptance rate for schools in the Northeastern and North Central region:

(6.13)E(Si|D2i = 1, D3i = 0) = B1 + B2

Accepti = B1 + B2D2i + B3D3i + ui



Mean acceptance rate for schools in the Western region:

(6.14)

Mean acceptance rate for schools in the Southern region:

(6.15)

As this exercise shows, the common intercept, B1, represents the mean accep-
tance rate for schools that are assigned the dummy values of (0, 0). Notice that B2

and B3, being the differential intercepts, tell us by how much the mean accep-
tance rates differ among schools in the different regions. Thus, B2 tells us by how
much the mean acceptance rates of the schools in the Northeastern and North
Central region differ from those in the Southern region. Analogously, B3 tells us
by how much the mean acceptance rates of the schools in the Western region dif-
fer from those in the Southern region. To get the actual mean acceptance rate in
the Northeastern and North Central region, we have to add B2 to B1, and the ac-
tual mean acceptance rate in the Western region is found by adding B3 to B1.

Before we present the statistical results, note carefully that we are treating the
South as the reference region. Hence all acceptance rate comparisons are in re-
lation to the South. If we had chosen the West as our reference instead, then we
would have to estimate Eq. (6.12) with the appropriate dummy assignment.
Therefore, once we go beyond the simple dichotomous classification (female or male,
union or nonunion, etc.), we must be very careful in specifying the base category, for all
comparisons are in relation to it. Changing the base category will change the compar-
isons, but it will not change the substance of the regression results. Of course, we can
estimate Eq. (6.12) with any category as the base category.

The regression results of model (6.12) are as follows:

Accepti = 44.541 - 10.680D2i - 12.501D3i

t = (14.38) (-2.67) (-2.26)

p = (0.000) (0.010) (0.028)

(6.16)

R2
= 0.122

These results show that the mean acceptance rate in the South (reference cate-
gory) was about 45 percent. The differential intercept coefficients of D2i and D3i

are statistically significant (Why?). This suggests that there is a significant statis-
tical difference in the mean acceptance rates between the Northeastern/North
Central and the Southern schools, as well as between the Western and Southern
schools.

In passing, note that the dummy variables will simply point out the differ-
ences, if they exist, but they will not suggest the reasons for the differences.
Acceptance rates in the South may be higher for a variety of reasons.

As you can see, Eq. (6.12) and its empirical counterpart in Eq. (6.16) are
ANOVA models. What happens if we consider an ANCOVA model by bringing

E(Si|D2i = 0, D3i = 0) = B1 + B2

E(Si|D2i = 0, D3i = 1) = B1 + B2
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in a quantitative explanatory variable, a covariate, such as the annual tuition
per school? The data on this variable are already contained in Table 6-4.
Incorporating this variable, we get the following regression (see Figure 6-3):

Accepti = 79.033 - 5.670D2i - 11.14D3i - 0.0011Tuition

t = (15.53) (-1.91) (-2.79) (-7.55)
(6.17)

p = (0.000)* (0.061)** (0.007)* (0.000)*

R2
= 0.546

A comparison of Equations (6.17) and (6.16) brings out a few surprises.
Holding tuition costs constant, we now see that, at the 5 percent level of signif-
icance, there does not appear to be a significant difference in mean acceptance
rates between schools in the Northeastern/North Central and the Southern re-
gions (Why?). As we saw before, however, there still is a statistically significant
difference in mean acceptance rates between the Western and Southern schools,
even while holding the tuition costs constant. In fact, it appears that the Western
schools’ average acceptance rate is about 11 percent lower that that of the
Southern schools while accounting for tuition costs. Since we see a difference in
results between Eqs. (6.17) and (6.16), there is a chance we have committed a
specification error in the earlier model by not including the tuition costs. This is
similar to the finding regarding the food expenditure function with and without
after-tax income. As noted before, omitting a covariate may lead to model
specification errors.
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*Statistically significant at the 5% level.
**Not statistically significant at the 5% level; however, at a 10% level, this variable would be

significant.



The slope of -0.0011 suggests that if the tuition costs increase by $1, we
should expect to see a decrease of about 0.11 percent in a school’s acceptance
rate, on average.

We also ask the same question that we raised earlier about our food expendi-
ture example. Could the slope coefficient of tuition vary from region to region?
We will answer this question in Section 6.5.

6.4 REGRESSION ON ONE QUANTIATIVE EXPLANATORY

VARIABLE AND MORE THAN ONE QUALITATIVE VARIABLE

The technique of dummy variables can be easily extended to handle more than
one qualitative variable. To that end, consider the following model:

(6.18)

where Y = hourly wage in dollars
X = education (years of schooling)

D2 = 1 if female, 0 if male
D3 = 1 if nonwhite and non-Hispanic, 0 if otherwise

In this model sex and race are qualitative explanatory variables and education
is a quantitative explanatory variable.3

To estimate the preceding model, we obtained data on 528 individuals,
which gave the following results.4

= -0.2610 - 2.3606D2i - 1.7327D3i + 0.8028Xi

t = (-0.2357)** (-5.4873)* (-2.1803)* (9.9094)* (6.19)

R2
= 0.2032; n = 528

*indicates p value less than 5%; **indicates p value greater than 5%

Let us interpret these results. First, what is the base category here, since we now
have two qualitative variables? It is white and/or Hispanic male. Second, holding
the level of education and race constant, on average, women earn less than men
by about $2.36 per hour. Similarly, holding the level of education and sex con-
stant, on average, nonwhite/non-Hispanics earn less than the base category by
about $1.73 per hour. Third, holding sex and race constant, mean hourly wages
go up by about 80 cents per hour for every additional year of education.

YN i

Yi = B1 + B2D2i + B3D3i + B4Xi + ui
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3If we were to define education as less than high school, high school, and more than high school,
education would also be a dummy variable with three categories, which means we would have to
use two dummies to represent the three categories.

4These data were originally obtained by Ernst Bernd and are reproduced from Arthur S.
Goldberger, Introductory Econometrics, Harvard University Press, Cambridge, Mass., 1998, Table 1.1.
These data were derived from the Current Population Survey conducted in May 1985.
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Interaction Effects

Although the results given in Equation (6.19) make sense, implicit in
Equation (6.18) is the assumption that the differential effect of the sex dummy
D2 is constant across the two categories of race and the differential effect of the
race dummy D3 is also constant across the two sexes. That is to say, if the mean
hourly wage is higher for males than for females, this is so whether they are
nonwhite/non-Hispanic or not. Likewise, if, say, nonwhite/non-Hispanics
have lower mean wages, this is so regardless of sex.

In many cases such an assumption may be untenable. As a matter of fact, U.S.
courts are full of cases charging all kinds of discrimination from a variety of
groups. A female nonwhite/non-Hispanic may earn lower wages than a male
nonwhite/non-Hispanic. In other words, there may be interaction between the
qualitative variables, D2 and D3. Therefore, their effect on mean Y may not
be simply additive, as in Eq. (6.18), but may be multiplicative as well, as in the
following model:

(6.20)

The dummy D2iD3, the product of two dummies, is called the interaction
dummy, for it gives the joint, or simultaneous, effect of two qualitative variables.

From Equation (6.20) we can obtain:

(6.21)

which is the mean hourly wage function for female nonwhite/non-Hispanic
workers. Observe that:

B2 = differential effect of being female
B3 = differential effect of being a nonwhite/non-Hispanic
B4 = differential effect of being a female nonwhite/non-Hispanic

which shows that the mean hourly wage of female nonwhite/non-Hispanics
is different (by B4) from the mean hourly wage of females or nonwhite/
non-Hispanics. Depending on the statistical significance of the various dummy
coefficients, we can arrive at specific cases.

Using the data underlying Eq. (6.19), we obtained the following regression
results:

= -0.2610 -2.3606D2i - 1.7327D3i + 2.1289D2iD3i + 0.8028Xi

t = (-0.2357)** (-5.4873)* (-2.1803)*(1.7420)! (9.9095)* (6.22)

R2
= 0.2032, n = 528

*p value below 5%, ! = p value about 8%, **p value greater than 5%

YN i

E (Yi|D2i = 1, D3i = 1, Xi) = (B1 + B2 + B3 + B4) + B5Xi

Yi = B1 + B2D2i + B3D3i + B3(D2iD3i) + B4Xi + u



Holding the level of education constant, if we add all the dummy coefficients,
we obtain (-2.3606 - 1.7327 + 2.1289) = -1.964. This would suggest that the
mean hourly wage of nonwhite/non-Hispanic female workers is lower by
about $1.96, which is between the value of 2.3606 (sex difference alone) and
1.7327 (race difference alone). So, you can see how the interaction dummy mod-
ifies the effect of the two coefficients taken individually.

Incidentally, if you select 5% as the level of significance, the interaction
dummy is not statistically significant at this level, so there is no interaction ef-
fect of the two dummies and we are back to Eq. (6.18).

A Generalization

As you can imagine, we can extend our model to include more than one quan-
titative variable and more than two qualitative variables. However, we must be
careful that the number of dummies for each qualitative variable is one less than the
number of categories of that variable. An example follows.

Example 6.3. Campaign Contributions by Political Parties

In a study of party contributions to congressional elections in 1982, Wilhite
and Theilmann obtained the following regression results, which are given in
tabular form (Table 6-5) using the authors’ symbols. The dependent variable in
this regression is PARTY$ (campaign contributions made by political parties
to local congressional candidates). In this regression $GAP, VGAP, and PU
are three quantitative variables and OPEN, DEMOCRAT, and COMM are
three qualitative variables, each with two categories.

What do these results suggest? The larger the $GAP is (i.e., the opponent
has substantial funding), the less the support by the national party to the
local candidate is. The larger the VGAP is (i.e., the larger the margin by
which the opponent won the previous election), the less money the national
party is going to spend on this candidate. (This expectation is not borne out
by the results for 1982.) An open race is likely to attract more funding from
the national party to secure that seat for the party; this expectation is sup-
ported by the regression results. The greater the party loyalty (PU) is, the
greater the party support will be, which is also supported by the results.
Since the Democratic party has a smaller campaign money chest than the
Republican party, the Democratic dummy is expected to have a negative
sign, which it does (the intercept term for the Democratic party’s campaign
contribution regression will be smaller than that of its rival). The COMM
dummy is expected to have a positive sign, for if you are up for election and
happen to be a member of the national committees that distribute the cam-
paign funds, you are more likely to steer proportionately larger amounts of
money toward your own election.
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6.5 COMPARING TWO REGESSIONS5

Earlier in Sec. 6.2 we raised the possibility that not only the intercepts but also
the slope coefficients could vary between categories. Thus, for our food expen-
diture example, are the slope coefficients of the after-tax income the same for

AGGREGATE CONTRIBUTIONS BY U.S.

POLITICAL PARTIES, 1982

Explanatory variable Coefficient

$GAP -8.189*

(1.863)

VGAP 0.0321

(0.0223)

OPEN 3.582*

(0.7293)

PU 18.189*

(0.849)

DEMOCRAT -9.986*

(0.557)

COMM 1.734*

(0.746)

R2 0.70

F 188.4

Notes: Standard errors are in parentheses.
*Means significant at the 0.01 level.

$GAP = A measure of the candidate’s
finances

VGAP = The size of the vote differential in
the previous election

OPEN = 1 for open seat races, 0 if otherwise
PU = Party unity index as calculated by

Congressional Quarterly
DEMOCRAT = 1 for members of the Democratic

party, 0 if otherwise
COMM = 1 for representatives who are

members of the Democratic
Congressional Campaign
Committee or the National
Republican Congressional
Committee

= 0 otherwise (i.e., those who are not
members of such committees)

Source: Al Wilhite and John Theilmann, “Campaign
Contributions by Political Parties: Ideology versus
Winning,” Atlantic Economic Journal, vol. XVII, June
1989, pp. 11–20. Table 2, p. 15 (adapted).

TABLE 6-5

5An alternative approach to comparing two or more regressions that gives similar results to the
dummy variable approach discussed below is popularly known as the Chow test, which was popu-
larized by the econometrician Gregory Chow. The Chow test is really an application of the restricted
least-squares method that we discussed in Chapter 4. For a detailed discussion of the Chow test, see
Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill, New York, 2009, pp. 256–259.



both male and female? To explore this possibility, consider the following
model:

(6.23)

This is a modification of model (6.8) in that we have added an extra variable
DiXi.

From this regression we can derive the following regression:

Mean food expenditure function, males (Di = 0).
Taking the conditional expectation of Equation (6.23), given the values of D

and X, we obtain

(6.24)

Mean food expenditure function, females (Di = 1).
Again, taking the conditional expectation of Eq. (6.23), we obtain

(6.25)

Just as we called B2 the differential intercept coefficient, we can now call B4 the
differential slope coefficient (also called the slope drifter), for it tells by how
much the slope coefficient of the income variable differs between the two sexes
or two categories. Just as (B1 + B2) gives the mean value of Y for the category
that receives the dummy value of 1 when X is zero, (B3 + B4) gives the slope co-
efficient of the income variable for the category that receives the dummy value
of 1. Notice how the introduction of the dummy variable in the additive form en-
ables us to distinguish between the intercept coefficients of the two groups and
how the introduction of the dummy variable in the interactive, or multiplica-
tive, form (D multiplied by X) enables us to differentiate between slope coeffi-
cients of the two groups.6

Now depending on the statistical significance of the differential intercept
coefficient, B2, and the differential slope coefficient, B4, we can tell whether the
female and male food expenditure functions differ in their intercept values or
their slope values, or both. We can think of four possibilities, as shown in
Figure 6-4.

Figure 6-4(a) shows that there is no difference in the intercept or the slope
coefficients of the two food expenditure regressions. That is, the two regressions
are identical. This is the case of coincident regressions.

Figure 6-4(b) shows that the two slope coefficients are the same, but the
intercepts are different. This is the case of parallel regressions.

 = (B1 + B2) + (B3 + B4)Xi, since Di = 1

 E (Yi|Di = 1, Xi) = (B1 + B2Di) + (B3 + B4Di)Xi

E (Yi|D = 0, Xi) = B1 + B3Xi

Yi = B1 + B2Di + B3Xi + B4(DiXi) + ui
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6In Eq. (6.20) we allowed for interactive dummies. But a dummy could also interact with a quan-
titative variable.
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Figure 6-4(c) shows that the two regressions have the same intercepts, but
different slopes. This is the case of concurrent regressions.

Figure 6-4(d) shows that both the intercept and slope coefficients are differ-
ent; that is, the two regressions are different. This is the case of dissimilar
regressions.

Returning to our example, let us first estimate Eq. (6.23) and see which of the
situations depicted in Figure 6-4 prevails. The data to run this regression are
already given in Table 6-2. The regression results, using EViews, are as shown in
Table 6-6.

It is clear from this regression that neither the differential intercept nor the dif-
ferential slope coefficient is statistically significant, suggesting that perhaps we
have the situation of coincident regressions shown in Figure 6-4(a). Are these
results in conflict with those given in Eq. (6.8), where we saw that the two inter-
cepts were statistically different? If we accept the results given in Eq. (6.8), then
we have the situation shown in Figure 6-4(b), the case of parallel regressions (see
also Fig. 6-3). What is an econometrician to do in situations like this?

It seems in going from Equations (6.8) to (6.23), we also have committed a
specification error in that we seem to have included an unnecessary variable,
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DiXi. As we will see in Chapter 7, the consequences of including or excluding
variables from a regression model can be serious, depending on the particular
situation. As a practical matter, we should consider the most comprehensive
model (e.g., model [6.23]) and then reduce it to a smaller model (e.g., Eq. [6.8])
after suitable diagnostic testing. We will consider this topic in greater detail in
Chapter 7.

Where do we stand now? Considering the results of models (6.1), (6.8), and
(6.23), it seems that model (6.8) is probably the most appropriate model for the
food expenditure example. We probably have the case of parallel regression:
The female and male food expenditure regressions only differ in their intercept
values. Holding sex constant, it seems there is no difference in the response of
food consumption expenditure in relation to after-tax income for men and
women. But keep in mind that our sample is quite small. A larger sample might
give a different outcome.

Example 6.4. The Savings-Income Relationship in the United States

As a further illustration of how we can use the dummy variables to assess the
influence of qualitative variables, consider the data given in Table 6-7. These
data relate to personal disposable (i.e., after-tax) income and personal sav-
ings, both measured in billions of dollars, in the United States for the period
1970 to 1995. Our objective here is to estimate a savings function that relates
savings (Y) to personal disposable income (PDI) (X) for the United States for
the said period.

To estimate this savings function, we could regress Y and X for the entire
period. If we do that, we will be maintaining that the relationship between
savings and PDI remains the same throughout the sample period. But that
might be a tall assumption. For example, it is well known that in 1982 the
United States suffered its worst peacetime recession. The unemployment rate
that year reached 9.7 percent, the highest since 1948. An event such as this
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RESULTS OF REGRESSION (6.23)

Variable Coefficient Std. Error t-Statistic Prob.

C 1432.577 248.4782 5.765404 0.0004

D -67.89322 350.7645 -0.193558 0.8513

X 0.061583 0.008349 7.376091 0.0001

D.X -0.006294 0.012988 -0.484595 0.6410

R-squared 0.930459 Mean dependent var 2925.250

Adjusted R-squared 0.904381 S.D. dependent var 604.3869

S.E. of regression 186.8903 F-statistic 35.68003

Sum squared resid 279423.9 Prob(F-statistic) 0.000056

Notes: Dependent Variable: FOODEXP
Sample: 1–12
Included observations: 12

TABLE 6-6
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might disturb the relationship between savings and PDI. To see if this in fact
happened, we can divide our sample data into two periods, 1970 to 1981 and
1982 to 1995, the pre- and post-1982 recession periods.

In principle, we could estimate two regressions for the two periods in
question. Instead, we could estimate just one regression by adding a dummy
variable that takes a value of 0 for the period 1970 to 1981 and a value of 1 for
the period 1982 to 1995 and estimate a model similar to Eq. (6.23). To allow
for a different slope between the two periods, we have included the interac-
tion term, as well. That exercise gives the results shown in Table 6-8.

As these results show, both the differential intercept and slope coefficients
are individually statistically significant, suggesting that the savings-income
relationship between the two time periods has changed. The outcome resem-
bles Figure 6-4(d). From the data in Table 6-8, we can derive the following
savings regressions for the two periods:

PERSONAL SAVINGS AND PERSONAL DISPOSABLE

INCOME, UNITED STATES, 1970–1995

Personal Product of the 
Personal disposable Dummy dummy variable 

Year savings income (PDI) variable and PDI

1970 61.0 727.1 0 0.0

1971 68.6 790.2 0 0.0

1972 63.6 855.3 0 0.0

1973 89.6 965.0 0 0.0

1974 97.6 1054.2 0 0.0

1975 104.4 1159.2 0 0.0

1976 96.4 1273.0 0 0.0

1977 92.5 1401.4 0 0.0

1978 112.6 1580.1 0 0.0

1979 130.1 1769.5 0 0.0

1980 161.8 1973.3 0 0.0

1981 199.1 2200.2 0 0.0

1982 205.5 2347.3 1* 2347.3

1983 167.0 2522.4 1 2522.4

1984 235.7 2810.0 1 2810.0

1985 206.2 3002.0 1 3002.0

1986 196.5 3187.6 1 3187.6

1987 168.4 3363.1 1 3363.1

1988 189.1 3640.8 1 3640.8

1989 187.8 3894.5 1 3894.5

1990 208.7 4166.8 1 4166.8

1991 246.4 4343.7 1 4343.7

1992 272.6 4613.7 1 4613.7

1993 214.4 4790.2 1 4790.2

1994 189.4 5021.7 1 5021.7

1995 249.3 5320.8 1 5320.8

Note: *Dummy variable = 1 for observations beginning in 1982.
Source: Economic Report of the President, 1997, data are in billions

of dollars and are from Table B-28, p. 332.

TABLE 6-7



Savings-Income regression: 1970–1981:

Savingst = 1.0161 + 0.0803 Incomet (6.26)

Savings-Income regression: 1982–1995:

Savingst = (1.0161 + 152.4786) + (0.0803 - 0.0655) Incomet

= 153.4947 + 0.0148 Incomet (6.27)

If we had disregarded the impact of the 1982 recession on the savings-income
relationship and estimated this relationship for the entire period of 1970 to
1995, we would have obtained the following regression:

Savingst = 62.4226 + 0.0376 Incomet

t = (4.8917) (8.8937) r2
= 0.7672

(6.28)

You can see significant differences in the marginal propensity to save
(MPS)—additional savings from an additional dollar of income—in these
regressions. The MPS was about 8 cents from 1970 to 1981 and only about
1 cent from 1982 to 1995. You often hear the complaint that Americans are
poor savers. Perhaps these results may substantiate this complaint.

6.6 THE USE OF DUMMY VARIABLES IN SEASONAL ANALYSIS

Many economic time series based on monthly or quarterly data exhibit seasonal
patterns (regular oscillatory movements). Examples are sales of department
stores at Christmas, demand for money (cash balances) by households at holi-
day times, demand for ice cream and soft drinks during the summer, and
demand for travel during holiday seasons. Often it is desirable to remove the
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REGRESSION RESULTS OF SAVINGS-INCOME RELATIONSHIP

Variable Coefficient Std. Error t-Statistic Prob.

C 1.016117 20.16483 0.050391 0.9603

DUM 152.4786 33.08237 4.609058 0.0001

INCOME 0.080332 0.014497 5.541347 0.0000

DUM*INCOME -0.065469 0.015982 -4.096340 0.0005

R-squared 0.881944 Mean dependent var 162.0885

Adjusted R-squared 0.865846 S.D. dependent var 63.20446

S.E. of regression 23.14996

Notes: Dependent Variable: Savings
Sample: 1970–1995
Observations included: 26

TABLE 6-8
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seasonal factor, or component, from a time series so that we may concentrate on
the other components of times series, such as the trend,7 which is a fairly steady
increase or decrease over an extended time period. The process of removing the
seasonal component from a time series is known as deseasonalization, or seasonal
adjustment, and the time series thus obtained is called a deseasonalized, or season-
ally adjusted, time series. The U.S. government publishes important economic
time series on a seasonally adjusted basis.

There are several methods of deseasonalizing a time series, but we will con-
sider only one of these methods, namely, the method of dummy variables,8 which
we will now illustrate.

Example 6.5. Refrigerator Sales and Seasonality

To show how dummy variables can be used for seasonal analysis, consider
the data given in Table 6-9, found on the textbook’s Web site.

This table gives data on the number of refrigerators sold (in thousands)
for the United States from the first quarter of 1978 to the fourth quarter of
1985, a total of 32 quarters. The data on refrigerator sales are plotted in 
Fig. 6-5.

Figure 6-5 probably suggests that there is a seasonal pattern to refrigerator
sales. To see if this is the case, consider the following model:

(6.29)

where Y = sales of refrigerators (in thousands), D2, D3, and D4 are dummies
for the second, third, and fourth quarter of each year, taking a value of 1 for

Yt = B1 + B2D2t + B3D3t + B4D4t + ut

7A time series may contain four components: a seasonal, a cyclical, a trend (or long-term compo-
nent), and one that is strictly random.

8For other methods of seasonal adjustment, see Paul Newbold, Statistics for Business and
Economics, latest edition, Prentice-Hall, Englewood Cliffs, N.J.
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the relevant quarter and a value of 0 for the first quarter. We are treating the
first quarter as the reference quarter, although any quarter can serve as the
reference quarter. Note that since we have four quarters (or four seasons),
we have assigned only three dummies to avoid the dummy variable trap.
The layout of the dummies is given in Table 6-9. Note that the refrigerator is
classified as a durable goods item because it has a sufficiently long life.

The regression results of this model are as follows:

= 1222.1250 + 245.3750D2t + 347.6250D3t - 62.1250D4t

t = (20.3720)* (2.8922)* (4.0974)* (-0.7322)** (6.30)

R2
= 0.5318

*denotes a p value of less than 5%

**denotes a p value of more than 5%

Since we are treating the first quarter as the benchmark, the differential in-
tercept coefficients (i.e., coefficients of the seasonal dummies) give the sea-
sonal increase or decrease in the mean value of Y relative to the benchmark
season. Thus, the value of about 245 means the average value of Y in the sec-
ond quarter is greater by 245 than that in the first quarter, which is about
1222. The average value of sales of refrigerators in the second quarter is then
about (1222 + 245) or about 1,467 thousands of units. Other seasonal dummy
coefficients are to be interpreted similarly.

As you can see from Equation (6.30), the seasonal dummies for the second
and third quarters are statistically significant but that for the fourth quarter
is not. Thus, the average sale of refrigerators is the same in the first and the
fourth quarters but different in the second and the third quarters. Hence, it
seems that there is some seasonal effect associated with the second and third
quarters but not the fourth quarter. Perhaps in the spring and summer peo-
ple buy more refrigerators than in the winter and fall. Of course, keep in
mind that all comparisons are in relation to the benchmark, which is the first
quarter.

How do we obtain the deseasonalized time series for refrigerator sales?
This can be done easily. Subtract the estimated value of Y from Eq. (6.30)
from the actual values of Y, which are nothing but the residuals from regres-
sion (6.30). Then add to the residuals the mean value of Y. The resulting
series is the deseasonalized time series. This series may represent the other
components of the time series (cyclical, trend, and random).9 This is all
shown in Table 6-9.

YNt
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9Of course, this assumes that the dummy variable technique is an appropriate method of desea-
sonalizing a time series (TS). A time series can be represented as TS = s + c + t + u, where s represents
the seasonal, c the cyclical, t the trend, and u the random component. For other methods of desea-
sonalization, see Francis X. Diebold, Elements of Forecasting, 4th ed., South-Western Publishing,
Cincinnati, Ohio, 2007.
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In Example 6.5 we had quarterly data. But many economic time series are
available on a monthly basis, and it is quite possible that there may be some sea-
sonal component in the monthly data. To identify it, we could create 11 dum-
mies to represent 12 months. This principle is general. If we have daily data, we
could use 364 dummies, one less than the number of days in a year. Of course,
you have to use some judgment in using several dummies, for if you use dum-
mies indiscriminately, you will quickly consume degrees of freedom; you lose
one d.f. for every dummy coefficient estimated.

6.7 WHAT HAPPENS IF THE DEPENDENT VARIABLE IS ALSO 

A DUMMY VARIABLE? THE LINEAR PROBABILITY MODEL (LPM)

So far we have considered models in which the dependent variable Y was quan-
titative and the explanatory variables were either qualitative (i.e., dummy),
quantitative, or a mixture thereof. In this section we consider models in which
the dependent variable is also dummy, or dichotomous, or binary.

Suppose we want to study the labor force participation of adult males as a
function of the unemployment rate, average wage rate, family income, level of
education, etc. Now a person is either in or not in the labor force. So whether a
person is in the labor force or not can take only two values: 1 if the person is in
the labor force and 0 if he is not. Other examples include: a country is either a
member of the European Union or it is not; a student is either admitted to West
Point or he or she is not; a baseball player is either selected to play in the majors
or he is not.

A unique feature of these examples is that the dependent variable elicits a yes
or no response, that is, it is dichotomous in nature.10 How do we estimate such
models? Can we apply OLS straightforwardly to such a model? The answer is
that yes we can apply OLS but there are several problems in its application.
Before we consider these problems, let us first consider an example.

Table 6-10, found on the textbook’s Web site, gives hypothetical data on
40 people who applied for mortgage loans to buy houses and their annual
incomes. Later we will consider a concrete application.

In this table Y = 1 if the mortgage loan application was accepted and 0 if it
was not accepted, and X represents annual family income. Now consider the
following model:

(6.31)

where Y and X are as defined before.

Yi = B1 + B2Xi + ui

10What happens if the dependent variable has more than two categories? For example, a person
may belong to the Democratic party, the Republican party, or the Independent party. Here, party affil-
iation is a trichotomous variable. There are methods of handling models in which the dependent
variable can take several categorical values. But this topic is beyond the scope of this book.



Model (6.31) looks like a typical linear regression model but it is not because
we cannot interpret the slope coefficient B2 as giving the rate of change of Y for
a unit change in X, for Y takes only two values, 0 and 1. A model like Eq. (6.31)
is called a linear probability model (LPM) because the conditional expectation
of Yi given Xi, , can be interpreted as the conditional probability that the
event will occur given Xi, that is, . Further, this conditional probabil-
ity changes linearly with X. Thus, in our example, gives the probability
that a mortgage applicant with income of Xi, say $60,000 per year, will have his or
her mortgage application approved.

As a result, we now interpret the slope coefficient B2 as a change in the pro-
bability that Y = 1, when X changes by a unit. The estimated Yi value from
Eq. (6.31), namely, , is the predicted probability that Y equals 1 and b2 is an
estimate of B2.

With this change in the interpretation of Eq. (6.31) when Y is binary can we
then assume that it is appropriate to estimate Eq. (6.31) by OLS? The answer is
yes, provided we take into account some problems associated with OLS estima-
tion of Eq. (6.31). First, although Y takes a value of 0 or 1, there is no guarantee
that the estimated Y values will necessarily lie between 0 and 1. In an applica-
tion, some can turn out to be negative and some can exceed 1. Second, since Y
is binary, the error term is also binary.11 This means that we cannot assume that
ui follows a normal distribution. Rather, it follows the binomial probability
distribution. Third, it can be shown that the error term is heteroscedastic; so
far we are working under the assumption that the error term is homoscedas-
tic. Fourth, since Y takes only two values, 0 and 1, the conventionally com-
puted R2 value is not particularly meaningful (for an alternative measure, see
Problem 6.24).

Of course, not all these problems are insurmountable. For example, we know
that if the sample size is reasonably large, the binomial distribution converges
to the normal distribution. As we will see in Chapter 9, we can find ways to get
around the heteroscedasticity problem. So the problem that remains is that
some of the estimated Y values can be negative and some can exceed 1. In prac-
tice, if an estimated Y value is negative it is taken as zero, and if it exceeds 1, it
is taken as 1. This may be convenient in practice if we do not have too many
negative values or too many values that exceed 1.

But the major problem with LPM is that it assumes the probability changes
linearly with the X value; that is, the incremental effect of X remains constant
throughout. Thus if the Y variable is home ownership and the X variable is
income, the LPM assumes that as X increases, the probability of Y increases lin-
early, whether X = 1000 or X = 10,000. In reality, we would expect the probabil-
ity that Y = 1 to increase nonlinearly with X. At a low level of income, a family
will not own a house, but at a sufficiently high level of income, a family most

YNi

YNi

E (Yi|Xi)
P(Yi = 1|Xi)

E (Yi|Xi)
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11It is obvious from Eq. (6.31) that when Yi = 1, we have ui = 1 - B1 - B2Xi and when Yi = 0, 
ui = -B1 - B2Xi.
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likely will own a house. Beyond that income level, further increases in family
income will have no effect on the probability of owning a house. Thus, at both
ends of the income distribution, the probability of owning a house will be
virtually unaffected by a small increase in income.

There are alternatives in the literature to the LPM model, such as the logit or
probit models. A discussion of these models will, however, take us far afield and is
better left for the references.12 However, this topic is discussed in Chapter 12 for
the benefit of those who want to pursue this subject further.

Despite the difficulties with the LPM, some of which can be corrected, espe-
cially if the sample size is large, the LPM is used in practical applications be-
cause of its simplicity. Very often it provides a benchmark against which we can
compare the more complicated models, such as the logit and probit.

Let us now illustrate LPM with the data given in Table 6-10. The regression
results are as follows:

= -0.9456 + 0.0255Xi

t = (-7.6984)(12.5153) r2
= 0.8047

(6.32)

The interpretation of this model is this: As income increases by a dollar, the
probability of mortgage approval goes up by about 0.03. The intercept value
here has no viable practical meaning. Given the warning about the r2 values
in LPM, we may not want to put much value in the observed high r2 value in
the present case. Sometimes we obtain a high r2 value in such models if all the
observations are closely bunched together either around zero or 1.

Table 6-10 gives the actual and estimated values of Y from LPM model (6.31).
As you can observe, of the 40 values, 6 are negative and 6 are in excess of 1,
which shows one of the problems with the LPM alluded to earlier. Also, the
finding that the probability of mortgage approval increases linearly with in-
come at a constant rate of about 0.03, may seem quite unrealistic.

To conclude our discussion of LPM, here is a concrete application.

Example 6.6. Discrimination in Loan Markets

To see if there is discrimination in getting mortgage loans, Maddala and Trost
examined a sample of 750 mortgage applications in the Columbia, South
Carolina, metropolitan area.13 Of these, 500 applications were approved and
250 rejected. To see what factors determine mortgage approval, the authors
developed an LPM and obtained the following results, which are given in
tabular form. In this model the dependent variable is Y, which is binary, tak-
ing a value of 1 if the mortgage loan application was accepted and a value of
0 if it was rejected. Part of the objective of the study was to find out if there

YN i

12For an accessible discussion of these models, see Gujarati and Porter, 5th ed., McGraw-Hill,
New York, 2009, Chapter 15.

13See G. S. Maddala and R. P. Trost, “On Measuring Discrimination in Loan Markets,” Housing
Finance Review, 1982, pp. 245–268.



was discrimination in the loan market on account of sex, race, and other
qualitative factors.

Explanatory variable Coefficient t ratios

Intercept 0.501 not given

AI 1.489 4.69*

XMD -1.509 -5.74*

DF 0.140 0.78**

DR -0.266 -1.84*

DS -0.238 -1.75*

DA -1.426 -3.52*

NNWP -1.762 0.74**

NMFI 0.150 0.23**

NA -0.393 -0.134

Notes: AI = Applicant’s and co-applicants’ incomes ($ in thousands)
XMD = Debt minus mortgage payment ($ in thousands)

DF = 1 if female and 0 if male
DR = 1 if nonwhite and 0 if white
DS = 1 if single, 0 if otherwise
DA = Age of house (102 years)

NNWP = Percent nonwhite in the neighborhood (*103)
NMFI = Neighborhood mean family income (105 dollars)

NA = Neighborhood average age of home (102 years)
*p value 5% or lower, one-tail test.
**p value greater than 5%.

An interesting feature of the Maddala-Trost model is that some of the explana-
tory variables are also dummy variables. The interpretation of the dummy coeffi-
cient of DR is this: Holding all other variables constant, the probability that a non-
white will have his or her mortgage loan application accepted is lower by 0.266 or
about 26.6 percent compared to the benchmark category, which in the present in-
stance is married white male. Similarly, the probability that a single person’s
mortgage loan application will be accepted is lower by 0.238 or 23.8 percent com-
pared with the benchmark category, holding all other factors constant.

We should be cautious of jumping to the conclusion that there is race dis-
crimination or discrimination against single people in the home mortgage mar-
ket, for there are many factors involved in getting a home mortgage loan.

6.8 SUMMARY

In this chapter we showed how qualitative, or dummy, variables taking values of
1 and 0 can be introduced into regression models alongside quantitative vari-
ables. As the various examples in the chapter showed, the dummy variables are
essentially a data-classifying device in that they divide a sample into various
subgroups based on qualities or attributes (sex, marital status, race, religion, etc.)
and implicitly run individual regressions for each subgroup. Now if there are dif-
ferences in the responses of the dependent variable to the variation in the quanti-
tative variables in the various subgroups, they will be reflected in the differences
in the intercepts or slope coefficients of the various subgroups, or both.

204 PART ONE: THE LINEAR REGRESSION MODEL
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Although it is a versatile tool, the dummy variable technique has to be han-
dled carefully. First, if the regression model contains a constant term (as most
models usually do), the number of dummy variables must be one less than the
number of classifications of each qualitative variable. Second, the coefficient attached
to the dummy variables must always be interpreted in relation to the control, or
benchmark, group—the group that gets the value of zero. Finally, if a model has sev-
eral qualitative variables with several classes, introduction of dummy variables
can consume a large number of degrees of freedom (d.f.). Therefore, we should
weigh the number of dummy variables to be introduced into the model against the total
number of observations in the sample.

In this chapter we also discussed the possibility of committing a specification
error, that is, of fitting the wrong model to the data. If intercepts as well as slopes
are expected to differ among groups, we should build a model that incorporates
both the differential intercept and slope dummies. In this case a model that in-
troduces only the differential intercepts is likely to lead to a specification error.
Of course, it is not always easy a priori to find out which is the true model.
Thus, some amount of experimentation is required in a concrete study, espe-
cially in situations where theory does not provide much guidance. The topic of
specification error is discussed further in Chapter 7.

In this chapter we also briefly discussed the linear probability model (LPM)
in which the dependent variable is itself binary. Although LPM can be
estimated by ordinary least square (OLS), there are several problems with a rou-
tine application of OLS. Some of the problems can be resolved easily and some
cannot. Therefore, alternative estimating procedures are needed. We mentioned
two such alternatives, the logit and probit models, but we did not discuss them
in view of the somewhat advanced nature of these models (but see Chapter 12).

KEY TERMS AND CONCEPTS

The key terms and concepts introduced in this chapter are

Qualitative versus quantitative
variables

Dummy variables
Analysis-of-variance (ANOVA)

models
Differential intercept coefficients
Base, reference, benchmark, or 

comparison category
Data matrix
Dummy variable trap; perfect 

collinearity, multicollinearity
Analysis-of-covariance (ANCOVA) 

models
Covariates; control variables

Comparing two regressions
Interactive, or multiplicative
Additive
Interaction dummy
Differential slope coefficient, or 

slope drifter
Coincident regressions
Parallel regressions
Concurrent regressions
Dissimilar regressions
Marginal propensity to save (MPS)
Seasonal patterns
Linear probability model (LPM)
Binomial probability distribution



QUESTIONS

6.1. Explain briefly the meaning of:
a. Categorical variables.
b. Qualitative variables.
c. Analysis-of-variance (ANOVA) models.
d. Analysis-of-covariance (ANCOVA) models.
e. The dummy variable trap.
f. Differential intercept dummies.
g. Differential slope dummies.

6.2. Are the following variables quantitative or qualitative?
a. U.S. balance of payments.
b. Political party affiliation.
c. U.S. exports to the Republic of China.
d. Membership in the United Nations.
e. Consumer Price Index (CPI).
f. Education.
g. People living in the European Community (EC).
h. Membership in General Agreement on Tariffs and Trade (GATT).
i. Members of the U.S. Congress.
j. Social security recipients.

6.3. If you have monthly data over a number of years, how many dummy variables
will you introduce to test the following hypotheses?
a. All 12 months of the year exhibit seasonal patterns.
b. Only February, April, June, August, October, and December exhibit seasonal

patterns.
6.4. What problems do you foresee in estimating the following models:

a.

where Dit = 1 for observation in quarter i, i = 1, 2, 3, 4
= 0 otherwise

b.

where GNPt = gross national product (GNP) at time t
Mt = the money supply at time t

Mt-1 = the money supply at time (t - 1)

6.5. State with reasons whether the following statements are true or false.
a. In the model Yi = B1 + B2Di + ui, letting Di take the values of (0, 2) instead of

(0, 1) will halve the value of B2 and will also halve the t value.
b. When dummy variables are used, ordinary least squares (OLS) estimators

are unbiased only in large samples.
6.6. Consider the following model:

Yi = B0 + B1Xi + B2D2i + B3D3i + ui

GNPt = B1 + B2Mt + B3Mt-1 + B4(Mt - Mt-1) + ut

Yt = B0 + B1D1t + B2D2t + B3D3t + B4D4t + ut
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where Y = annual earnings of MBA graduates
X = years of service

D2 = 1 if Harvard MBA
= 0 if otherwise

D3 = 1 if Wharton MBA
= 0 if otherwise

a. What are the expected signs of the various coefficients?
b. How would you interpret B2 and B3?
c. If , what conclusion would you draw?

6.7. Continue with Question 6.6 but now consider the following model:

a. What is the difference between this model and the one given in Question 6.6?
b. What is the interpretation of B4 and B5?
c. If B4 and B5 are individually statistically significant, would you choose this

model over the previous one? If not, what kind of bias or error are you com-
mitting?

d. How would you test the hypothesis that B4 = B5 = 0?

PROBLEMS

6.8. Based on quarterly observations for the United States for the period 1961-I
through 1977-II, H. C. Huang, J. J. Siegfried, and F. Zardoshty14 estimated the
following demand function for coffee. (The figures in parentheses are t values.)

ln Qt = 1.2789 - 0.1647 ln Pt + 0.5115 ln It + 0.1483 ln 

t = (-2.14) (1.23) (0.55)

-0.0089T - 0.0961 D1t - 0.1570D2t - 0.0097D3t R2
= 0.80

t = (-3.36) (-3.74) (-6.03) (-0.37)

where Q = pounds of coffee consumed per capita
P = the relative price of coffee per pound at 1967 prices
I = per capita PDI, in thousands of 1967 dollars

P’ = the relative price of tea per quarter pound at 1967 prices
t = the time trend with t = 1 for 1961-I, to t = 66 for 1977-II

D1 = 1 for the first quarter
D2 = 1 for the second quarter
D3 = 1 for the third quarter
ln = the natural log

P¿t

Yi = B0 + B1Xi + B2D2i + B3D3i + B4(D2iXi) + B5(D3iXi) + ui

B2 7 B3

14See H. C. Huang, J. J. Siegfried, and F. Zardoshty, “The Demand for Coffee in the United States,
1963–1977,” Quarterly Review of Economics and Business, Summer 1980, pp. 36–50.



a. How would you interpret the coefficients of P, I, and P’?
b. Is the demand for coffee price elastic?
c. Are coffee and tea substitute or complementary products?
d. How would you interpret the coefficient of t?
e. What is the trend rate of growth or decline in coffee consumption in the

United States? If there is a decline in coffee consumption, what accounts
for it?

f. What is the income elasticity of demand for coffee?
g. How would you test the hypothesis that the income elasticity of demand for

coffee is not significantly different from 1?
h. What do the dummy variables represent in this case?
i. How do you interpret the dummies in this model?
j. Which of the dummies are statistically significant?

k. Is there a pronounced seasonal pattern in coffee consumption in the United
States? If so, what accounts for it?

l. Which is the benchmark quarter in this example? Would the results change
if we chose another quarter as the base quarter?

m. The preceding model only introduces the differential intercept dummies.
What implicit assumption is made here?

n. Suppose someone contends that this model is misspecified because it assumes
that the slopes of the various variables remain constant between quarters.
How would you rewrite the model to take into account differential slope
dummies?

o. If you had the data, how would you go about reformulating the demand
function for coffee?

6.9. In a study of the determinants of direct airfares to Cleveland, Paul W. Bauer
and Thomas J. Zlatoper obtained the following regression results (in tabular
form) to explain one-way airfare for first class, coach, and discount airfares.
(The dependent variable is one-way airfare in dollars).
The explanatory variables are defined as follows:

Carriers = the number of carriers
Pass = the total number of passengers flown on route (all carriers)

Miles = the mileage from the origin city to Cleveland
Pop = the population of the origin city
Inc = per capita income of the origin city

Corp = the proxy for potential business traffic from the origin city
Slot = the dummy variable equaling 1 if the origin city has a slot-restricted

airport
= 0 if otherwise

Stop = the number of on-flight stops
Meal = the dummy variable equaling 1 if a meal is served

= 0 if otherwise
Hub = the dummy variable equaling 1 if the origin city has a hub airline

= 0 if otherwise
EA = the dummy variable equaling 1 if the carrier is Eastern Airlines

= 0 if otherwise
CO = the dummy variable equaling 1 if the carrier is Continental Airlines

= 0 if otherwise
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The results are given in Table 6-11.
a. What is the rationale for introducing both carriers and squared carriers as

explanatory variables in the model? What does the negative sign for carriers
and the positive sign for carriers squared suggest?

b. As in part (a), what is the rationale for the introduction of miles and squared
miles as explanatory variables? Do the observed signs of these variables
make economic sense?

DETERMINANTS OF DIRECT AIR FARES TO CLEVELAND

Explanatory variable First class Coach Discount

Carriers -19. 50 -23.00 -17.50

*t = (-0.878) (-1.99) (-3.67)

Carriers2 2.79 4.00 2.19

(0.632) (1.83) (2.42)

Miles 0.233 0.277 0.0791

(5.13) (12.00) (8.24)

Miles2
-0.0000097 -0.000052 -0.000014

(-0.495) (-4.98) (-3.23)

Pop -0.00598 -0.00114 -0.000868

(-1.67) (-4.98) (-1.05)

Inc -0.00195 -0.00178 -0.00411

(-0.686) (-1.06) (-6.05)

Corp 3.62 1.22 -1.06

(3.45) (2.51) (-5.22)

Pass -0.000818 -0.000275 0.853

(-0.771) (-0.527) (3.93)

Stop 12.50 7.64 -3.85

(1.36) (2.13) (-2.60)

Slot 7.13 -0.746 17.70

(0.299) (-0.067) (3.82)

Hub 11.30 4.18 -3.50

(0.90) (0.81) (-1.62)

Meal 11.20 0.945 1.80

(1.07) (0.177) (0.813)

EA -18.30 5.80 -10.60

(-1.60) (0.775) (-3.49)

CO -66.40 -56.50 -4.17

(-5.72) (-7.61) (-1.35)

Constant term 212.00 126.00 113.00

(5.21) (5.75) (12.40)

R 2 0.863 0.871 0.799

Number of observations 163 323 323

Note: *Figures in parentheses represent t values.
Source: Paul W. Bauer and Thomas J. Zlatoper, Economic Review, Federal

Reserve Bank of Cleveland, vol. 25, no. 1, 1989, Tables 2, 3, and 4, pp. 6–7.

TABLE 6-11



c. The population variable is observed to have a negative sign. What is the
implication here?

d. Why is the coefficient of the per capita income variable negative in all the
regressions?

e. Why does the stop variable have a positive sign for first-class and coach
fares but a negative sign for discount fares? Which makes economic sense?

f. The dummy for Continental Airlines consistently has a negative sign. What
does this suggest?

g. Assess the statistical significance of each estimated coefficient. Note: Since
the number of observations is sufficiently large, use the normal approxima-
tion to the t distribution at the 5% level of significance. Justify your use of
one-tailed or two-tailed tests.

h. Why is the slot dummy significant only for discount fares?
i. Since the number of observations for coach and discount fare regressions is

the same, 323 each, would you pull all 646 observations and run a regres-
sion similar to the ones shown in the preceding table? If you do that, how
would you distinguish between coach and discount fare observations?
(Hint: dummy variables.)

j. Comment on the overall quality of the regression results given in the
preceding table.

6.10. In a regression of weight on height involving 51 students, 36 males and 
15 females, the following regression results were obtained:15

1. Weighti = -232.06551 + 5.5662heighti

t = (-5.2066) (8.6246)

2. Weighti = -122.9621 + 23.8238dumsexi + 3.7402heighti

t = (-2.5884) (4.0149) (5.1613)

3. Weighti = -107.9508 + 3.5105heighti + 2.0073dumsexi + 0.3263dumht.
t = (-1.2266) (2.6087) (0.0187) (0.2035)

where weight is in pounds, height is in inches, and where

Dumsex = 1 if male
= 0 if otherwise

Dumht. = the interactive or differential slope dummy

a. Which regression would you choose, 1 or 2? Why?
b. If 2 is in fact preferable but you choose 1, what kind of error are you com-

mitting?
c. What does the dumsex coefficient in 2 suggest?
d. In Model 2 the differential intercept dummy is statistically significant

whereas in Model 3 it is statistically insignificant. What accounts for this
change?

e. Between Models 2 and 3, which would you choose? Why?
f. In Models 2 and 3 the coefficient of the height variable is about the same,

but the coefficient of the dummy variable for sex changes dramatically. Do
you have any idea what is going on?
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To answer questions (d), (e), and (f) you are given the following correlation
matrix.

Height Dumsex Dumht.

Height 1 0.6276 0.6752

Dumsex 0.6276 1 0.9971

Dumht. 0.6752 0.9971 1

The interpretation of this table is that the coefficient of correlation between
height and dumsex is 0.6276 and that between dumsex and dumht. is 0.9971.

6.11. Table 6-12 on the textbook’s Web site gives nonseasonally adjusted quarterly
data on the retail sales of hobby, toy, and game stores (in millions) for the
period 1992: I to 2008: II.
Consider the following model:

Salest = B1 + B2D2t + B3D3t + B4D4t + ut

where D2 = 1 in the second quarter, = 0 if otherwise
D3 = 1 in the third quarter, = 0 if otherwise
D4 = 1 in the fourth quarter, = 0 if otherwise

a. Estimate the preceding regression.
b. What is the interpretation of the various coefficients?
c. Give a logical reason for why the results are this way.

*d. How would you use the estimated regression to deseasonalize the data?
6.12. Use the data of Problem 6.11 but estimate the following model:

Salest = B1D1t + B2D2t + B3D3t + B4D4t + ut

In this model there is a dummy assigned to each quarter.
a. How does this model differ from the one given in Problem 6.11?
b. To estimate this model, will you have to use a regression program that sup-

presses the intercept term? In other words, will you have to run a regression
through the origin?

c. Compare the results of this model with the previous one and determine
which model you prefer and why.

6.13. Refer to Eq. (6.17) in the text. How would you modify this equation to allow
for the possibility that the coefficient of Tuition also differs from region to
region? Present your results.

6.14. How would you check that in Eq. (6.19) the slope coefficient of X varies by sex
as well as race?

6.15. Reestimate Eq. (6.30) by assigning a dummy for each quarter and compare
your results with those given in Eq. (6.30). In estimating such an equation,
what precaution must you take?

*Optional.



6.16. Consider the following model:

Yi = B1 + B2D2i + B3D3i + B4 (D2i D3i) + B5Xi + ui

where Y = the annual salary of a college teacher
X = years of teaching experience

D2 = 1 if male
= 0 if otherwise

D3 = 1 if white
= 0 if otherwise

a. The term (D2iD3i) represents the interaction effect. What does this expression
mean?

b. What is the meaning of B4?
c. Find E(Yi|D2 = 1, D3 = 1, Xi) and interpret it.

6.17. Suppose in the regression (6.1) we let

Di = 1 for female
= -1 for male

Using the data given in Table 6-2, estimate regression (6.1) with this dummy
setup and compare your results with those given in regression (6.4). What
general conclusion can you draw?

6.18. Continue with the preceding problem but now assume that

Di = 2 for female
= 1 for male

With this dummy scheme re-estimate regression (6.1) using the data of
Table 6-2 and compare your results. What general conclusions can you draw
from the various dummy schemes?

6.19. Table 6-13, found on the textbook’s Web site, gives data on after-tax corporate
profits and net corporate dividend payments ($, in billions) for the United
States for the quarterly period of 1997:1 to 2008:2.
a. Regress dividend payments (Y) on after-tax corporate profits (X) to find out

if there is a relationship between the two.
b. To see if the dividend payments exhibit any seasonal pattern, develop a

suitable dummy variable regression model and estimate it. In developing
the model, how would you take into account that the intercept as well as the
slope coefficient may vary from quarter to quarter?

c. When would you regress Y on X, disregarding seasonal variation?
d. Based on your results, what can you say about the seasonal pattern, if any,

in the dividend payment policies of U.S. private corporations? Is this what
you expected a priori?

6.20. Refer to Example 6.6. What is the regression equation for an applicant who is
an unmarried white male? Is it statistically different for an unmarried white
single female?

6.21. Continue with Problem 6.20. What would the regression equation be if you
were to include interaction dummies for the three qualitative variables in the
model?

6.22. The impact of product differentiation on rate of return on equity. To find out
whether firms selling differentiated products (i.e., brand names) experience
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higher rates of return on their equity capital, J. A. Dalton and S. L. Levin16

obtained the following regression results based on a sample of 48 firms:

se = (1.380) (0.056) (4.244) (0.017) R2
= 0.26

t = (1.079) (4.285) (-2.240) (-0.941)

p value = (0.1433) (0.000) (0.0151) (0.1759)

where Y = the rate of return on equity
D = 1 for firms with high or moderate product differentiation

X2 = the market share
X3 = the measure of firm size
X4 = the industry growth rate

a. Do firms that product-differentiate earn a higher rate of return? How do
you know?

b. Is there a statistical difference in the rate of return on equity capital be-
tween firms that do and do not product-differentiate? Show the necessary
calculations.

c. Would the answer to (b) change if the authors had used differential slope
dummies?

d. Write the equation that allows for both the differential intercept and differ-
ential slope dummies.

6.23. What has happened to the United States Phillips curve? Refer to Example 5.6.
Extending the sample to 1977, the following model was estimated:

where Y = the year-to-year percentage change in the index of hourly earnings
X = the percent unemployment rate

Dt = 1 for observations through 1969
= 0 if otherwise (i.e., for observations from 1970 through 1977)

The regression results were as follows:

se = (1.4024) (1.6859) (8.3373) (9.3999)

t = (7.1860) (-6.1314) (-2.1049) (4.0572) R2
= 0.8787

p value = (0.000) (0.000) (0.026) (0.000)

Compare these results with those given in Example 5.6.
a. Are the differential intercept and differential dummy coefficients statisti-

cally significant? If so, what does that suggest? Show the Phillips curve for
the two periods separately.

b. Based on these results, would you say that the Phillips curve is dead?

YN t = 10.078 - 10.337Dt - 17.549a 1

Xt
b + 38.137Dta 1

Xt
b

Yt = B1 + B2Dt + B3a 1

Xt
b + B4Dta 1

Xt
b + ut

YNi = 1.399 + 1.490Di + 0.246X2i - 9.507X3i - 0.016X4i

16See J. A. Dalton and S. L. Levin, “Market Power: Concentration and Market Share,” Industrial
Organization Review, vol. 5, 1977, pp. 27–36. Notations were altered to conform with our notation.



6.24. Count R2. Since the conventional R2 value may not be appropriate for linear
probability models, one suggested alternative is the count R2, which is
defined as:

Since in LPM the dependent variable takes a value of 1 or 0, if the predicted
probability is greater than 0.5, we classify that as 1, but if the predicted proba-
bility is less than 0.5, we classify that as 0. We then count the number of correct
predictions and compute the count R2 from the formula given above.

Find the count R2 for the model (6.32). How does it compare with the con-
ventional R2 given in that equation?

6.25. Table 6-14, found on the textbook’s Web site, gives quarterly data on real per-
sonal expenditure (PCE), real expenditure on durable goods (EXPDUR), real
expenditure on nondurable goods (EXPNONDUR), and real expenditure on
services (EXPSER), for the United States for the period 2000-1 to 2008-3. All
data are in billions of (2000) dollars, and the quarterly data are at seasonally
adjusted annual rates.
a. Plot the data on EXPDUR, EXPNONDUR, and EXPSER against PCE.
b. Suppose you regress each category of expenditure on PCE and the three

dummies shown in Table 6-14. Would you expect the dummy variable
coefficients to be statistically significant? Why or why not? Present your
calculations.

c. If you do not expect the dummy variables to be statistically significant but
you still include them in your model, what are the consequences of your
action?

6.26. The Phillips curve revisited again. Refer to Example 5.6 and Problem 5.29 from
Chapter 5. It was shown that the percentage change in the index of hourly
earnings and the unemployment rate from 1958–1969 followed the traditional
Phillips curve model. The updated version of the data, from 1965–2007, can be
found in Table 5-19 on the textbook’s Web site.
a. Create a dummy variable to indicate a possible break in the data in 1982. In

other words, create a dummy variable that equals 0 from 1965 to 1982, then
set it equal to 1 for 1983 to 2007.

b. Using the inverted “percent unemployment rate”(1/X) variable created in
Chapter 5, create an interaction variable between (1/X) and the dummy
variable from part (a).

c. Include both the dummy variable and the interaction term, along with
(1/X) on its own, in a regression to predict Y, the change in the hourly earn-
ings index. What is your new model?

d. Which, if any, variables appear to be statistically significant?
e. Give a potential economic reason for this result.

6.27. Table 6-15 on the textbook’s Web site contains data on 46 mid-level employees
and their salaries. The available independent variables are:
Experience = years of experience at the current job
Management = 0 for nonmanagers and 1 for managers
Education = 1 for those whose highest education level is high school

2 for those whose highest education level is college
3 for those whose highest education level is graduate school

Count R2
=

number of correct predictions

total number of observations
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a. Does it make sense to utilize Education as it is listed in the data? What are
the issues with leaving it this way?

b. After addressing the issues in part (a), run a linear regression using
Experience, Management, and the changed Education variables. What is
the new model? Are all the variables significant?

c. Now create a model to allow for the possibility that the increase in Salary
may be different between managers and nonmanagers, with respect to their
years of experience. What are the results?

*d. Finally, create a model that incorporates the idea that Salary might increase,
with respect to years of experience, at a different rate between employees
with different education levels.

6.28. Based on the Current Population Survey (CPS) of March 1995, Paul Rudd
extracted a sample of 1289 workers, aged 18 to 65, and obtained the following
information on each worker:

Wage = hourly wage in $
Age = age in years

Female = 1 if female worker
Nonwhite = 1 if a nonwhite worker

Union = 1 if a union member
Education = years of schooling

Experience = potential labor market experience in years.17

The full data set can be found as Table 6-16 on the textbook’s Web site.
a. Based on these data, estimate the following model, obtaining the usual

regression statistics.

ln Wagei = B1 + B2 Age + B3 Female + B4 Nonwhite + B5 Union + B6 Education 
+ B7 Experience + ui

where ln Wage = (natural logarithm of Wage)
b. How do you interpret each regression coefficient?
c. Which of these coefficients are statistically significant at the 5% level? Also

obtain the p value of each estimated t value.
d. Do union workers, on average, earn a higher hourly wage?
e. Do female workers, on average, earn less than their male counterparts?
f. Is the average hourly wage of female nonwhite workers lower than the

average hourly wage of female white workers? How do you know? (Hint:
interaction dummy.)

g. Is the average hourly wage of female union workers higher than the aver-
age hourly wage of female non-union workers? How do you know?

h. Using the data, develop alternative specifications of the wage function,
taking into account possible interactions between dummy variables and
between dummy variables and quantitative variables.

*Optional.
17Paul R. Rudd, An Introduction to Classical Econometric Theory, Oxford University Press, New

York, 2000, pp. 17–18. These data are derived from the Data Extraction System (DES) of the Census
Bureau: http://www.census.gov/DES/www/welcome.html.
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In this part of the book, consisting of Chapters 7 through 10, we consider sev-
eral practical aspects of the linear regression model. The classical linear regres-
sion model (CLRM) developed in Part I, although a versatile model, is based on
several simplifying assumptions that may not hold in practice. In this part we
find out what happens if one or more of these assumptions are relaxed or are
not fulfilled in any given situation.

Chapter 7 on model selection discusses the assumption of the CLRM that the
model chosen for investigation is the correct model. In this chapter we discuss
the consequences of various types of misspecification of the regression model
and suggest appropriate remedies.

Chapter 8 on multicollinearity tries to determine what happens if two or
more explanatory variables are correlated. Recall that one of the assumptions
of the CLRM is that explanatory variables do not have a perfect linear rela-
tionship(s) among themselves. This chapter shows that as long as explanatory
variables are not perfectly linearly related, the ordinary least squares (OLS)
estimators are still best linear unbiased estimators (BLUE).

Chapter 9 on heteroscedasticity discusses the consequences of violating the
CLRM assumption that the error variance is constant. This chapter shows that
if this assumption is violated, OLS estimators, although unbiased, are no longer
efficient. In short, they are not BLUE. But this chapter shows how, with some
simple transformations, we can eliminate the problem of heteroscedasticity.

Chapter 10 on autocorrelation considers yet another departure from the
CLRM by examining the consequences of correlation in error terms. As in the



case of heteroscedasticity, in the presence of autocorrelation the OLS estimators,
although unbiased, are not efficient; that is, they are not BLUE. But we show in
this chapter how, with suitable transformation of the data, we can minimize the
problem of autocorrelation.
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In the preceding chapters we considered several single-equation linear regres-
sion models, including the score function for math S.A.T. scores, the Phillips
curve, and the Cobb-Douglas production function. In presenting these models
we assumed implicitly, if not explicitly, that the chosen model represents “the
truth, the whole truth, and nothing but the truth”; that is, that it correctly mod-
els the phenomenon under study. More technically, we assumed that there is no
specification bias or specification error in the chosen model. A specification error
occurs when instead of estimating the correct model we estimate another model,
albeit unintentionally. In practice, however, searching for the true model can be
like searching for the Holy Grail. We may never know what the true model is, but
we hope to find a model that is a reasonably accurate representation of reality.

Because of its practical importance, we take a closer look at how to go about
formulating an econometric model. Specifically, we consider the following
questions:

1. What are the attributes of a “good” or “correct” model?
2. Suppose an omniscient econometrician has developed the “correct”

model to analyze a particular problem. However, because of data avail-
ability, cost considerations, oversight, or sheer ignorance (which is not
always bliss), the researcher uses another model, and thus, in relation to
the “correct” model, commits a specification error. What type of specifi-
cation errors are we likely to make in practice?

3. What are the consequences of the various specification errors?
4. How do we detect a specification error?
5. What remedies can we adopt to get back to the correct model if a specifi-

cation error has been made?



7.1 THE ATTRIBUTES OF A GOOD MODEL

Whether a model chosen in empirical analysis is good, or appropriate, or the
“right” model cannot be determined without some reference criteria, or
guidelines. A. C. Harvey,1 a noted econometrician, lists the following criteria by
which we can judge a model.

Parsimony A model can never completely capture the reality; some
amount of abstraction or simplification is inevitable in any model building. The
Occam’s razor, or the principle of parsimony, suggests that a model be kept as
simple as possible.

Identifiability This means that, for a given set of data, the estimated para-
meters must have unique values or, what amounts to the same thing, there is
only one estimate per parameter.

Goodness of Fit Since the basic thrust of regression analysis is to explain as
much of the variation in the dependent variable as possible by explanatory vari-
ables included in the model, a model is judged to be good if this explanation, as
measured, say, by the adjusted is as high as possible.2

Theoretical Consistency No matter how high the goodness of fit measures,
a model may not be judged to be good if one or more coefficients have the
wrong signs. Thus, in the demand function for a commodity, if the price coeffi-
cient has a positive sign (positively sloping demand curve!), or if the income co-
efficient has a negative sign (unless the good happens to be an inferior good),
we must look at such results with great suspicion even if the R2 of the model is
high, say, 0.92. In short, in constructing a model we should have some theoreti-
cal underpinning to it; “measurement without theory” often leads to very dis-
appointing results.

Predictive Power As Milton Friedman, the Nobel laureate, notes: “The
only relevant test of the validity of a hypothesis [model] is comparison of its
prediction with experience.”3 Thus, in choosing between the monetarist and
Keynesian models of the economy, by this criterion, we would choose the
model whose theoretical predictions are borne out by actual experience.

Although there is no unique path to a good model, keep these criteria in
mind in developing an econometric model.

R
2 (=R 2),
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1A. C. Harvey, The Economic Analysis of Time Series, Wiley, New York, 1981, pp. 5–7. The following
discussion leans heavily on this material. See also D. F. Hendry and J. F. Richard, “On the
Formulation of Empirical Models in Dynamic Econometrics,” Journal of Econometrics, vol. 20, October
1982, pp. 3–33.

2Besides there are other criteria that have been used from time to time to judge the goodness
of fit of a model. For an accessible discussion of these other criteria, see G. S. Maddala, Introduction
to Econometrics, Macmillan, New York, 1988, pp. 425–429.

3Milton Friedman, “The Methodology of Positive Economics,” Essays in Positive Economics,
University of Chicago Press, 1953, p. 7.
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7.2 TYPES OF SPECIFICATION ERRORS

As noted previously, a model should be parsimonious in that it should include
key variables (called core variables) suggested by theory and should relegate
minor influences (called peripheral variables) to the error term u. In this section
we consider several ways in which a model can be deficient, which we label
specification errors.

The topic of specification errors is vast. In this chapter we will discuss as suc-
cinctly as possible some of the major specification errors that a researcher may
encounter in practice. In particular, we will discuss the following specification
errors:

1. Omission of a relevant variable(s).
2. Inclusion of an unnecessary variable(s).
3. Adopting the wrong functional form.
4. Errors of measurement.

To keep the discussion simple, and to avoid matrix algebra, we will consider
two- or three-variable models to drive home the essential nature of model spec-
ification errors. We will discuss each of the preceding topics separately.

Before we do that, note that the classical linear regression model (CLRM)
that we have considered so far makes several simplifying assumptions. A vio-
lation of one or more of its assumptions may itself constitute a specification
error. For example, the assumption that the error term ui is uncorrelated (the
assumption of no autocorrelation) or the assumption that the error variance
is constant (the assumption of homoscedasticity) may not hold in practice.
Because of their practical importance, we discuss these two topics in Chapters 9
and 10.

7.3 OMISSON OF RELEVANT VARIABLE BIAS:

“UNDERFITTING” A MODEL

As noted in the introduction to this chapter, for a variety of reasons, a researcher
may omit one or more explanatory variables that should have been included in
the model. What are the consequences of such an omission for our ordinary
least squares (OLS) estimating procedure?

To be specific, consider the data given in Problem 4.14 and consider the fol-
lowing model:

(7.1)

where Y = child mortality rate, X2 = per capita GNP, and X3 = female literacy
rate. All these variables are defined in Problem 4.14.

But instead of estimating the regression in Equation (7.1), we estimate the
following function:

(7.2)Yt = A1 + A2X2t + vt

Yi = B1 + B2X2i + B3X3i + ui
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which is the same as Equation (7.1), except that it excludes the “relevant” vari-
able X3. Note that v like u is a stochastic error term. Also, notice that we are
using the B’s to represent the parameters in the “true” regression and the A’s to
represent the parameters in the “incorrectly specified” regression: Equation (7.2)
in relation to Eq. (7.1) is misspecified. What are the consequences of this mis-
specification, which can be called the omitted variable bias?

We first state the consequences of dropping the variable X3 from the model in
general terms and then illustrate them with the child mortality data.

The consequences of omitting X3 are as follows:

1. If the omitted, or left-out, variable X3 is correlated with the included
variable X2, a1 and a2 are biased; that is, their average, or expected, values
do not coincide with the true values.4 Symbolically,

where E is the expectations operator. As a matter of fact, it can be shown
that5

(7.3)

(7.4)

where b32 is the slope coefficient in the regression of the omitted variable
X3 on the included variable X2. Obviously, unless the last term in
Equation (7.3) is zero, a2 will be a biased estimator, the extent of the bias
given by the last term. If both B3 and b32 are positive, a2 will have an
upward bias—on the average it will overestimate the true B2. But this result
should not be surprising, for X2 represents not only its direct effect on Y
but also its indirect effect (via X3) on Y. In short, X2 gets credit for the
influence that is rightly attributed to X3, as shown in Figure 7-1.

On the other hand, if B3 is positive and b32 is negative, or vice versa, a2

will be biased downward—on the average it will underestimate the true B2.
Similarly, a1 will be upward biased if the last term in model (7.4) is posi-
tive and downward biased if it is negative.

2. In addition a1 and a2 are also inconsistent; that is, no matter how large the
sample size is, the bias does not disappear.

3. If X2 and X3 are uncorrelated, b32 will be zero. Then, as Eq. (7.3) shows, a2 is
unbiased. It is consistent as well. (As noted in Appendix D, if an estimator
is unbiased [which is a small sample property], it is also consistent [which
is a large sample property]. But the converse is not true; estimators can
be consistent but may not be necessarily unbiased.) But a1 still remains

 E(a1) = B1 + B3(X3 - b32X2)

 E(a2) = B2 + B3b32

E(a1) Z B1 and E(a2) Z B2
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4A technical point: Shouldn’t X2 and X3 be uncorrelated by the “no multicollinearity” assump-
tion? Recall from Chapter 4 that the assumption that there is no perfect collinearity among the X
variables refers to the population regression (PRF) only; there is no guarantee that in a given sam-
ple the X’s may not be correlated.

5The proof can be found in Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill, New
York, 2009, pp. 519–520.



biased, unless is zero in Eq. (7.4). Even in this case the consequences
mentioned in points (4) to (6) below hold true.

4. The error variance estimated from Eq. (7.2) is a biased estimator of the
true error variance In other words, the error variance estimated from
the true model (7.1) and that estimated from the misspecified model (7.2)
will not be the same; the former is an unbiased estimator of the true ,
but the latter is not.

5. In addition, the conventionally estimated variance of is a
biased estimator of the variance of the true estimator b2. Even in the case
where b32 is zero, that is, X2 and X3 are uncorrelated, this variance
remains biased, for it can be shown that6

(7.5)

That is, the expected value of the variance of a2 is not equal to the variance
of b2. Since the second term in Equation (7.5) will always be positive

E[var (a2)] = var (b2) +
B

2
3gx

2
3i

(n - 2)gx2
2i

a2 (=  ␴N2>gx2
2)

␴
2

␴
2.

X3
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FIGURE 7-1

6For proof, see Jan Kmenta, Elements of Econometrics, 2nd ed., Macmillan, New York, 1986,
pp. 444–445. Note: This is true only when b32 = 0, which is not the case in our example, as can be
seen from Equation (7.8), which follows.



(Why?), var (a2) will, on the average, overestimate the true variance of b2.
This means it will have a positive bias.

6. As a result, the usual confidence interval and hypothesis-testing proce-
dures are unreliable. In the case of Eq. (7.5), the confidence interval will
be wider, and therefore we may tend to accept the hypothesis that the
true value of the coefficient is zero (or any other null hypothesis) more
frequently than the true situation demands.

Although we have not presented the proofs of the preceding propositions,
we will illustrate some of these consequences with the child mortality rate
example.

Example 7.1. Determinants of Child Mortality Rate

Using the data given in Table 4-7 (found on the textbook’s Web site), the em-
pirical counterpart of Eq. (7.1) is as follows:

(7.6)

The results of the misspecified equation (7.2) are as follows:

(7.7)

Note the following differences between the two regressions:

1. The misspecified Equation (7.7) shows that as per capita GNP (PGNP) in-
creases by a dollar, on the average, the child mortality rate goes down by
about 0.01. On the other hand, in the true model, if PGNP goes up by a
dollar, the average child mortality rate (CM) goes down by only about
0.006. In the present instance, in absolute terms (i.e., disregarding the
sign), the misspecified equation overestimates the true impact of PGNP
on CM, that is, it is upward biased. The nature of this bias can be seen
easily if we regress the female literacy rate (FLR) (the omitted variable)
on PGNP, the included variable in the model. The results are as follows:

(7.8)

Thus the slope coefficient b32 = 0.00256. Now from Equation (7.6) we can
see that the estimated B2 = -0.0056 and the estimated B3 = -2.2316.
Therefore, from Eq. (7.3) we obtain

which is just about what we obtain from the misspecified Eq. (7.7). Note
that it is the product of B3 (the true value of the omitted variable) and b32

(the slope coefficient in the regression of the omitted variable on the

BN2 + BN3b32 = -0.0056 + (-2.2316)(0.00256) L -0.0114

 se = (3.5553) (0.0011)  r
2
= 0.0721

 FLRi = 47.5971 + 0.00256PGNP

 se = (9.8455)    (0.0032)   r
2
= 0.1662

 CMi = 157.4244 - 0.0114PGNPi

 se = (11.5932)   (0.0019)  (0.2099) R
2
= 0.7077

 CMi = 263.6416 - 0.0056PGNPi - 2.2316FLRi
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included variable) that determines the nature of the bias, upward or
downward. Thus, by incorrectly dropping the FLR variable from the
model, as in Eq. (7.2), or its empirical counterpart Eq. (7.7), we are not
only neglecting the impact of FLR on CM (B3) but also the impact of FLR
on PGNP (b32). The “lonely” variable PGNP included in the misspecified
Eq. (7.7) model thus has to carry the “burden” of this omission, which, so
to speak, prevents it from showing its true impact on CM (-0.0056 versus
-0.0114). All this can be seen vividly in Figure 7-1.

2. The intercept term is also biased, but here it underestimates the true
intercept term (157.42 versus 263.64).

3. The standard errors as well as the r2’s are also substantially different
between the two regressions. 

All these results are in accord with the theoretical results of misspecification
discussed earlier. You can see at once that if we were to engage in hypothesis
testing based upon the misspecified Eq. (7.7), our conclusions would be of du-
bious values, to say the least. Therefore, in developing a model, exercise utmost
care. There is little doubt that dropping relevant variables from a model can
have very serious consequences. This is why it is very important that in devel-
oping a model for empirical analysis, we should pay close attention to the ap-
propriate theory underlying the phenomenon under study so that all theoreti-
cally relevant variables are included in the model. If such relevant variables are
excluded from the model, then we are “underfitting” or “underspecifying” the
model; in other words, we are omitting some important variables.

7.4 INCLUSION OF IRRELEVANT VARIABLES:

“OVERFITTING” A MODEL

Sometimes researchers adopt the “kitchen sink” approach by including all sorts
of variables in the model, whether or not they are theoretically dictated. The
idea behind overfitting or overspecifying the model (i.e., including unneces-
sary variables) is the philosophy that so long as you include the theoretically
relevant variables, inclusion of one or more unnecessary or “nuisance” vari-
ables will not hurt—unnecessary in the sense that there is no solid theory that
says they should be included. Such irrelevant variables are often included inad-
vertently because the researcher is not sure about their role in the model. And
this will happen if the theory underlying a particular phenomenon is not well
developed. In that case inclusion of such variables will certainly increase R2

(and adjusted R2 if the absolute t value of the coefficient of the additional vari-
able is greater than 1), which might increase the predictive power of the model.

What are the consequences of including unnecessary variables in the model,
which may be called the (inclusion of) irrelevant variable bias? Again, to
emphasize the point, we consider the case of simple two- and three-variable
models. Now suppose that

(7.9)Yi = B1 + B2X2i + ui
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is the correctly specified model, but a researcher adds the superfluous variable X3

and estimates the following model:

(7.10)

Here the specification error consists in overfitting the model, that is, including
the unnecessary variable X3, unnecessary in the sense that a priori it has no
effect on Y. The consequences of estimating the regression (7.10) instead of the
true model (7.9) are as follows:

1. The OLS estimators of the “incorrect” model (7.10) are unbiased (as well
as consistent). That is, E(a1) = B1, E(a2) = B2, and E(a3) = 0. This is not dif-
ficult to see. If X3 does not belong in the model, B3 is expected to be zero.
Hence, in Eqs. (7.3) and (7.4) the B3 term will drop out.

2. The estimator of obtained from regression (7.10) is correctly
estimated.

3. The standard confidence interval and hypothesis-testing procedure on
the basis of the t and F tests remains valid.

4. However, the a’s estimated from the regression (7.10) are inefficient—
their variances will be generally larger than those of the b’s estimated
from the true model (7.9). As a result, the confidence intervals based on
the standard errors of a’s will be larger than those based on the standard
errors of b’s of the true model, even though the former are acceptable for
the usual hypothesis-testing procedure. What will happen is that the true
coefficients will not be estimated as precisely as if we had used the cor-
rect model (7.9). In short, the OLS estimators are LUE (linear unbiased
estimators) but not BLUE.

Notice the difference between the two types of specification errors we have
considered thus far. If we exclude a relevant variable (the case of underfitting),
the coefficients of variables retained in the model are generally biased as well as
inconsistent, the error variance is incorrectly estimated, the standard errors of
estimators are biased, and therefore the usual hypothesis-testing procedure be-
comes invalid. On the other hand, including an irrelevant variable in the model
(the case of overfitting), still gives us unbiased and consistent estimates of the
coefficients of the true model, the error variance is correctly estimated, and the
standard hypothesis-testing procedure is still valid. The major penalty we pay
for the inclusion of the superfluous variable(s) is that the estimated variances of
the coefficients are larger, and as a result, our probability inferences about the
true parameters are less precise because the confidence intervals tend to be
wider. In some cases we will accept the hypothesis that a true coefficient
value is zero because of the wider confidence interval; that is, we will fail to
recognize significant relationships between the dependent variable and the
explanatory variable(s).

An unwarranted conclusion from the preceding discussion is that it is better
to include irrelevant variables than to exclude the relevant ones. But this
philosophy should not be encouraged because, as just noted, the addition of

␴
2

Yi = A1 + A2X2i + A3X3i + vi
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unnecessary variables will lead to a loss in the efficiency of the estimators (i.e.,
larger standard errors) and may also lead to the problem of multicollinearity
(Why?), not to mention the loss of degrees of freedom.

In general, the best approach is to include only explanatory variables that
on theoretical grounds directly influence the dependent variable and are not
accounted for by other included variables.

Example 7.2.

In Chapter 6 we considered an example relating expenditure on food (Y) to
income after tax (X) and the gender dummy D (1 if female and 0 if male). The
regression results are given in Equation (6.9). Later we redid this model in-
cluding differential intercept and differential slope dummies. The results are
given in Table 6-6. As we saw, in the latter regression neither the differential
intercept nor the differential slope coefficient was significant, whereas in
Eq. (6.9) the differential intercept coefficient was significant. It is quite possi-
ble that the differential slope dummy variable was superfluous. That is to say,
although the average level of food expenditure of the two sexes is different,
it is quite possible that the rate of change of food expenditure in relation to
after-tax income is the same for both sexes. 

7.5 INCORRECT FUNCTIONAL FORM

We now consider a different type of specification error, that involving incorrect
(wrong) functional form bias. Assume that variables Y, X2, and X3 included in
the model are theoretically the correct variables. Now consider the following
two specifications of the model:

(7.11)

(7.12)

The variables that enter the model in Equation (7.11) also enter the regression
(7.12), except the functional relationship between the variables is different; in
the regression (7.12) the (natural) logarithm of Y is a linear function of the (nat-
ural) logarithms of X2 and X3; that is, it is a log-linear model. Note that in
Eq. (7.12) A2 measures the partial elasticity Y with respect to the X2, whereas in
Eq. (7.11) B2 simply measures the rate of change (i.e., slope) of Y with respect to
X2. Similarly, in Eq. (7.12) A3 measures the partial elasticity of Y with respect to
X3, whereas in Eq. (7.11) B3 measures the rate of change of Y with respect to X3.

This is all familiar territory from Chapter 5. Note that not all the explanatory
variables in Eq. (7.12) need to be in logarithmic form; some may be in logarith-
mic form and some may be in linear form, as in Equation (7.13) below.

Now the dilemma in choosing between the models (7.11) and (7.12) is that
economic theory is usually not strong enough to tell us the functional form in
which the dependent and explanatory variables are related. Therefore, if the
regression (7.12) is in fact the true model and we fit Eq. (7.11) to the data, we are

 ln Yt = A1 + A2 ln X2t + A3 ln X3t + vt

 Yt = B1 + B2X2t + B3X3t + ut
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likely to commit as much of a specification error as if the situation were con-
verse, although in both cases the economically relevant variables are included.
Without going into theoretical fine points, if we choose the wrong functional
form, the estimated coefficients may be biased estimates of the true coefficients.

Example 7.3. U.S. Expenditure on Imported Goods

To provide some insight into this problem, consider the data given in Table 3-7,
found on the textbook Web site. These data relate to U.S. expenditure on im-
ported goods (Y) and personal disposable income (X), both measured in bil-
lions of dollars, for the period 1959 to 2006.

Using these data, we obtained the following results:

(7.13)

where * signifies a p value less than 1%.
In this model year represents the trend variable.

(7.14)

where * signifies a p value less than 1%.
Before deciding between the two models, let us look at the results briefly. In

Equation (7.13) all the regression coefficients are individually as well as col-
lectively significant (see the F value). The slope coefficient of 0.2975 means
holding other variables constant, average expenditure on imported goods
goes up by about 30 cents for every dollar increase in personal disposable
income (PDI). Similarly, holding other variables constant (PDI here), the slope
coefficient of -18.53 suggests that, on average over the sample period, expen-
diture on imported goods was decreasing by about 18.5 billions of dollars per
year. In other words, there was a downward trend. The R2 value is very high.

Turning to Equation (7.14), we see that the elasticity of import expenditure
with respect to PDI was about 1.49, ceteris paribus. The coefficient of -0.0085
suggests that, holding other variables constant, on average, expenditure on
imports was declining at the rate of about 0.85 percent (recall from Chapter 5
our discussion regarding logarithmic and semi-logarithmic models). The R2

value of this model is also quite high.
How do we choose between Eqs. (7.13) and (7.14)? Although the R2 values

of the two models cannot be directly compared (Why?), they are both high.
Also, both models are collectively significant (on the basis of the F test). For
the linear model we can compute the elasticity of expenditure on imports
with respect to PDI by using the mean values of these two variables.

R
2
= 0.9959; R2

= 0.9957; F = 5421.7932

 t = (0.7014)   (13.6501)*   (-1.0215)

 ln Yt = 10.9327 + 1.4857 ln Xt - 0.0085Year

R
2
= 0.9839; R2

= 0.9832; F = 1376.7802

 t = (6.3790)*  (20.5203)*   (-6.4030)*

 YNt = 36295.3168 + 0.2975Xt - 18.5253Year
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Calculations will show that this value is 1.7807.7 From the log model, we get
this elasticity as 1.4857. Of course, the former elasticity is a kind of average,
whereas the latter elasticity remains the same regardless of the value of X at
which it is measured. So we cannot compare the two directly.

So where do we stand? Can we devise a test to choose between the two
models? We will consider one such test in Section 7.7, and we will revisit this
question then.

7.6 ERRORS OF MEASUREMENT

All along we have assumed implicitly that the dependent variable Y and the
explanatory variables, the X’s, are measured without any errors. Thus, in the
regression of consumption expenditure on income and wealth of households,
we assume that the data on these variables are accurate; they are not guess esti-
mates, extrapolated, interpolated, or rounded off in any systematic manner,
such as to the nearest hundredth dollar. Unfortunately, this ideal is not met in
practice for a variety of reasons, such as nonresponse errors, reporting errors,
and computing errors.

The consequences of errors of measurement depend upon whether such errors
are in the dependent variable or the explanatory variables.

Errors of Measurement in the Dependent Variable

If there are errors of measurement in the dependent variable only, the following
consequences ensue, which we state without proof:8

1. The OLS estimators are unbiased.
2. The variances of OLS estimators are also unbiased.
3. But the estimated variances of the estimators are larger than in the case

where there are no errors of measurement. The reason that the estimated
variances of the estimators are larger than necessary is because the error
in the dependent variable gets added to the common error term, ui.

So it seems that the consequences of measurement errors in the dependent
variable may not matter much in practice.

Errors of Measurement in the Explanatory Variable(s)

In this case the consequence are as follows:

1. The OLS estimators are biased.
2. They are also inconsistent; that is, they remain biased even if the sample

size increases indefinitely.

CHAPTER SEVEN: MODEL SELECTION: CRITERIA AND TESTS 229

7 .

8For details, see Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill, New York, 2009,
pp. 482–486.

Elasticity =
0Y

0X
# X
Y
= 0.2975 3306.688

552.447 = 1.7807



Obviously, an error of measurement in the explanatory variable(s) is a serious
problem. Of course, if there are measurement errors in both the dependent and
explanatory variables, the consequences can be quite serious.

It is one thing to document the consequences of errors of measurement, but
it is quite another thing to find the appropriate remedy because it may not be
easy to detect such errors. For example, data on variables such as wealth are no-
toriously difficult to obtain. Similarly, data on income derived from activities
such as the sale of illegal drugs or gambling are extremely difficult to obtain. In
situations such as these not much can be done.

If there are errors of measurement in the explanatory variables, one sug-
gested remedy is the use of instrumental or proxy variables. These variables,
while highly correlated with original X variables, are uncorrelated with mea-
surement errors and the usual regression term, ui. In some situations such proxy
variables can be found, but it is generally not that easy to find them.

The best practical advice is to make sure that the data on the X variables that
you include in your model are measured as accurately as possible; avoid errors
of recording, rounding, or omission. If there are changes in the definition of the
variables over time, make sure that you use comparable data.

7.7 DETECTING SPECIFICATION ERRORS:

TESTS OF SPECIFICATION ERRORS

To know the consequences of specification errors is one thing, but to find out
that we have committed such errors is quite another thing, for we (hopefully) do
not deliberately set out to commit such errors. Often specification errors arise in-
advertently, perhaps because we have not formulated the model as precisely as
possible because the underlying theory is weak, or we do not have the right kind
of data to test the theoretically correct model, or the theory is silent about the
functional form in which the dependent variable is related to explanatory vari-
ables. The practical issue is not that such errors are made, for they sometimes
are, but how to detect them. Once it is found that specification errors have been
made, the remedies often suggest themselves. If, for example, it can be shown
that a variable is inappropriately omitted from a model, the obvious remedy is
to include that variable in the analysis, assuming of course that data on that vari-
able are available. We now consider several tests of specification errors.

Detecting the Presence of Unnecessary Variables

Suppose we have the following four-variable model:

(7.15)

Now if theory says that all three X variables determine Y, we should keep them
in the model even though after empirical testing we find that the coefficient of
one or more of the X variables is not statistically significant. Therefore, the ques-
tion of irrelevant variables does not arise in this case. However, sometimes we

Yi = B1 + B2X2i + B3X3i + B4X4i + ui
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have control variables in the model that are only there to prevent omitted vari-
able bias. It may then be the case that if the control variables are not statistically
significant and dropping them does not substantially alter our point estimates
or hypothesis test results, then dropping them may clarify the model. We can
then drop them but mention that they were tried and made no difference.9

Suppose in the model (7.15) X4 is the control variable in the sense that we are
not absolutely sure whether it really belongs in the model. One simple way to
find this out is to estimate the regression (7.15) and test the significance of b4, the
estimator of B4. Under the null hypothesis that B4 = 0, we know that t = b4/se(b4)
follows the t distribution with (n - 4) d.f. (Why?) Therefore, if the computed t
value does not exceed the critical t value at the chosen level of significance, we
do not reject the null hypothesis, in which case the variable X4 is probably a su-
perfluous variable.10 Of course, if we reject the null hypothesis, the variable
probably belongs in the model.

But suppose we are not sure that both X3 and X4 are relevant variables. In this
case we would like to test the null hypothesis that B3 = B4 = 0. This can be done
easily by the F test discussed in Chapter 4. (For details, see Section 4.12 on re-
stricted least squares.)

Example 7.4. Life Expectancy in 85 Countries

To assess the impact of income and access to health care on life expectancy,
we collected data on a sample of 85 countries and obtained the results shown
in Table 7-1. The dependent variable in each case is life expectancy measured
in years. (The raw data are given in Chapter 9, Table 9-6.)
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9In this case the researcher should inform the reader that the results, including the dropped
variables, could be made available on request.

10We say “probably” because if there is collinearity among X variables, then, as we show in 
Chapter 8, standard errors of the estimated parameters tend to be inflated relative to the values of
the coefficients, thereby reducing the estimated t values.

MODELS OF LIFE EXPECTANCY

Explanatory variable Model 1 Model 2 Model 3

Intercept 39.4380 (20.2392) 40.5082 (20.8204) 43.1662 (10.0172)

Income 0.0054 (4.4417) 0.0016 (3.4848) 0.0014 (2.6836)

Access 0.2833 (9.9599) 0.2499 (8.0803) 0.1491 (1.0010)

Income squared — -6.28E-08 (-2.4060) -5.54E-08 (-1.9612)

Access squared — — 0.0008 (0.6918)

R 2 0.7741 0.7892 0.7904

F value 140.5332 101.0906 75.4496

Notes: Income = per capita income in U.S. dollars.
Access = an index of access to health care.

The figures in parentheses are the estimated t values.
-6.28E-08 is a short form for -0.0000000628.
The difference among these models is that Model 3 includes all the variables, whereas the other two drop

one or more variables.

TABLE 7-1



A priori we would expect a positive relationship between income and life
expectancy and between access and life expectancy. This expectation is borne
out by Model 1. The addition of the income-squared variable in Model 2 is to
find out if life expectancy increases at an increasing rate (in which case the
squared income coefficient will be positive) or increases at a decreasing rate
(in which case the squared income coefficient will be negative) with respect
to income.11 The results show that it is the latter case. Model 3 adds the vari-
able access-squared to find out if life expectancy is increasing at an increasing
rate or at a decreasing rate with respect to access. The results indicate that it
is increasing at an increasing rate. However, this coefficient is not statistically
significant. Not only that, when we add this variable, the access coefficient it-
self becomes statistically insignificant. Does this mean that access and access-
squared variables are superfluous?

To see if this is the case, we can use the F test given in Equation (4.56),
which gives the following result:

Note that in the present case m = 2, and k = 5. For
2 d.f. in the numerator and 80 d.f. in the denominator, the probability of ob-
taining an F value of about 3.11 or greater is about 5 percent. It seems that
access and access-squared are not superfluous variables. Is access-squared
possibly a superfluous variable? Dropping this variable, we obtain Model 2,
which shows that access has a statistically significant impact on life ex-
pectancy, which is not an unexpected result.

As this example shows, detecting the presence of an irrelevant variable(s) is
not a difficult task. But it is very important to remember that in carrying out these
tests of specifications, we have a specific model in mind, which we accept as the “true”
model. Given that model, then, we can find out whether one or more X variables
are really relevant by the usual t and F tests. However, bear in mind that we
should not use t and F tests to build a model iteratively; that is, we cannot say
that initially Y is related to X2 because b2 is statistically significant and then ex-
pand the model to include X3 and decide to keep that variable in the model if b3

turns out to be statistically significant. Such a procedure is known as stepwise
regression.

R
2
ur = 0.7904, R2

r = 0.7741,

 =
(0.7904 - 0.7741)>2

(1 - 0.7904)>(85 - 5)
= 3.1106

 F =

(R2
ur - R

2
r)>m

(1 - R
2
ur)>(n - k)

' F2,80
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11If you have a general quadratic equation like then whether Y increases at
an increasing or decreasing rate when X changes will generally depend on the signs of a, b, c and the
value of X. On this, see Alpha C. Chang, Fundamental Methods of Mathematical Economics, 3rd ed.,
McGraw-Hill, New York, 1984, Chapter 9.

Y = a + bX + cX
2,



This strategy, called data mining, is generally not recommended, for if a pri-
ori X3 belonged in the model to begin with, it should have been introduced.
Excluding X3 in the initial regression would then lead to the omission-of-
relevant-variable bias with the potentially serious consequences that we have
already discussed. This point cannot be overemphasized: Theory must be the
guide to model building; measurement without theory can lead up a blind alley.

In our life expectancy example income and access to health care are obvi-
ously important variables in determining life expectancy, although we are not
entirely sure of the form in which these variables enter the model. So to some
extent some kind of experimentation (data mining, if you will) will be necessary
to determine the appropriate functional form of the relationship between the
dependent and explanatory variables. This is especially so if there are several
explanatory variables in a model and we cannot graph them together to get a vi-
sual impression about the likely form of the relationship between them and the
dependent variable.

Tests for Omitted Variables and Incorrect Functional Forms

The prescription that theory should be the underpinning of any model begs the
question: What is theoretically the correct model? Thus, in our Phillips curve ex-
ample discussed in an earlier chapter, although the rate of change of wages (Y)
and the unemployment rate (X) are expected to be negatively related, they
could be related in any of the following forms:

(7.16)

(7.17)

(7.18)

Or are they related in some other functional relationship?
As noted in the introduction to this chapter, this is one of those questions that

cannot be answered definitely. Pragmatically, we proceed as follows. Based
upon theory or introspection and prior empirical work, we develop a model
that we believe captures the essence of the subject under study. We then subject
the model to empirical testing. After we obtain the results, we begin the post-
mortem, keeping in mind the criteria of a good model discussed earlier. It is at
this stage that we learn if the chosen model is adequate. In determining model
adequacy, we look at some broad features of the results, such as:

1. R2 and adjusted R2 ( ).
2. The estimated t ratios.
3. Signs of the estimated coefficients in relation to their prior expectations.

If these diagnostics are reasonably good, we accept the chosen model as a fair
representation of reality.

R
2

Yt = B1 + B2 
1

Xt

+ ut B2 7 0

ln Yt = B1 + B2 ln Xt + ut B2 6 0

Yt = B1 + B2Xt + ut B2 6 0
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By the same token, if the results do not look encouraging because the R2 is
too low, or because very few coefficients are statistically significant or have the
correct signs, then we begin to worry about model adequacy and to look for
remedies. Perhaps we have omitted an important variable or have used the
wrong functional form. To help determine whether model adequacy is due to
one or more of these problems, we can use some of the methods we are cur-
rently discussing.

Examination of Residuals It is always a good practice to plot the residuals
ei (or et, in time series) of the fitted model, for such a plot may reveal specifica-
tion errors, such as omission of an important variable or incorrect functional
form. As we will see in Chapters 9 and 10, a residual plot is an invaluable tool
to diagnose heteroscedasticity and autocorrelation.

To see this, return to model (7.13) where we regressed expenditure on im-
ports on PDI and year. Suppose we erroneously drop the year or trend variable
and estimate the following regression:

(7.19)

The results are as follows:

(7.20)

Now if Eq. (7.13) is in fact the true model in that the trend variable X3 belongs
in the model, but we use model (7.19), then we are implicitly saying that the
error term in the model (7.19) is

(7.21)

because it will reflect not only the truly random term u, but also the variable X3.
No wonder in this case residuals estimated from Eq. (7.19) will show some sys-
tematic pattern, which may be due to the excluded variable X3. This can be seen
very vividly from Figure 7-2, which plots the residuals (S1) from the inappro-
priately estimated regression (7.19). Also shown in this figure are the residuals
(S2) from the “correct” model (7.13).

The difference between the two residual series plotted in this figure is ob-
vious. The residuals series S2 may suggest that even if we include the trend
variable in our import expenditure function the residuals may not be en-
tirely randomly distributed. If that is the case, model (7.13) itself may not be
correctly specified. Perhaps an index of import prices in relation to domestic
prices has been left out or perhaps a quadratic term in the trend variable is
missing.

In any case, an examination of residuals from the estimated model is often an
extremely useful adjunct to model building.

vt = B3X3t + ut

 t = (-5.7782) (38.0911); r
2
= 0.9693

 YNt = -136.1649 + 0.2082Xt

YNt = B1 + B2Xt + vt
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Besides examining the residuals, we can use several formal tests of model
specification, such as: (1) the MacKinnon-White-Davidson (MWD) test, (2)
Ramsey’s RESET (regression error specification) test, (3) the Wald test, (4) the
Lagrange Multiplier test, (5) the Hausman test, and (6) Box-Cox transformations
(to determine the functional form of the regression model). A full discussion of
these tests is beyond the scope of this book.12 But we will discuss two of these
tests, the MWD and RESET tests, in the sections that follow.

Choosing between Linear and Log-linear Regression 

Models:The MWD Test

Let us revisit the linear and log-linear specifications of the import expenditure
function given in Equations (7.13) and (7.14), respectively. As we saw earlier, on
the surface both models look reasonable, although the year variable is not
statistically significant in Eq. (7.14). To see if one specification is better than the
other, we can use the MWD test.13

We illustrate this test with our import expenditure example as follows:

H0: Linear Model: Y is a linear function of the X’s
H1: Log-linear Model: ln Y is a linear function of the X’s or a log of the X’s

where, as usual, H0 and H1 denote the null and alternative hypotheses.
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FIGURE 7-2

12For a somewhat elementary discussion of these tests, see Gujarati and Porter, Basic
Econometrics, 5th ed., McGraw-Hill, New York, 2009, Chapter 13.

13J. MacKinnon, H. White, and R. Davidson,“Tests for Model Specification in the Presence of
Alternative Hypotheses; Some Further Results,” Journal of Econometrics, vol. 21, 1983.



The MWD test involves the following steps:

1. Estimate the linear model and obtain the estimated Y values, that is, 
2. Estimate the log-linear model and obtain the estimated ln Yi values, that

is, 

3. Obtain 
4. Regress Y on the X’s and Z1i

Reject H0 if the coefficient of Z1i is statistically significant by the usual t test.

5. Obtain 
6. Regress ln Y on the X’s or logs of X’s and Z2i

Reject H1 if the coefficient of Z2 in the preceding equation is statistically significant.
The idea behind the MWD test is simple. If the linear model is in fact the correct

model, the constructed variable Z1i should not be significant, because in that case
the estimated Y values from the linear model and those estimated from the log-
linear model (after taking their antilog values for comparative purposes) should
not be different. The same comment applies to the alternative hypothesis H1.

Reverting to our import expenditure example, assume that the true import
expenditure function is linear. Under this hypothesis, following the steps just
outlined, we obtain the results shown in Table 7-2.

Z2i = antilog (ln Yi) - YNi

Z1i = ln YNi - ln Yi

ln Yi

YNi
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ILLUSTRATION OF THE MWD TEST: LINEAR SPECIFICATION

Standard

Variable Coefficient error t statistic p value

Intercept 49707.4561 5867.9548 8.4710 0.0000

X 0.3314 0.0149 22.2137 0.0000

Year -25.3498 2.9844 -8.4940 0.0000

Z1 -81.7933 19.8201 -4.1268 0.0002

R-squared 0.9884 F-statistic 1250.4978

Notes: Dependent variable is Y.

TABLE 7-2

ILLUSTRATION OF THE MWD TEST: LOG-LINEAR SPECIFICATION

Standard

Variable Coefficient error t statistic p value

Intercept 3.9653 14.0229 0.2828 0.7787

ln X 1.4434 0.0977 14.7748 0.0000

Year -0.0048 0.0074 -0.6417 0.5244

Z2 0.0013 0.0004 3.5630 0.0009

R-squared 0.9968 F-statistic 4558.1058

Notes: Dependent variable is ln(Y).

TABLE 7-3

These results would lead to the rejection of the null hypothesis H0.
Let us see if H1 is acceptable. Following the procedure just outlined, we

obtain the regression results shown in Table 7-3.



Since the coefficient of Z2 is statistically significant, we reject H1.
Looking at these results, it seems that either model is reasonable, although

the trend variable, year, is not statistically significant in the log-linear model.

Regression Error Specification Test: RESET

To detect the omission of variables and/or the choice of inappropriate func-
tional form, Ramsey has developed a general test of model misspecification.14

To fix ideas, let us return to the import expenditure function, but now we
regress expenditure on imports (Y) on personal disposable income only (X).
This gives the following results:

(7.20) (7.22)

If you plot the residuals from this model against we obtain Figure 7-3.
Although and are necessarily zero because of the properties of

OLS estimators discussed in Chapter 2, the residuals in this figure show a pat-
tern (probably curvilinear) that might suggest that they vary in some fashion
with the estimated Y values. This perhaps suggests that if we were to introduce

in some form as an additional explanatory variable(s) in regression (7.22), it
would increase R2. And if the increase in R2 were statistically significant (on the
YNi

gei YNigei

YNt,

ⴝ

 t = (-5.7782) (38.0911); r
2
= 0.9693

 YNt = -136.1649 + 0.2082Xt
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14J. B. Ramsey, ”Tests of Specification Errors in Classical Linear Least Squares Regression
Analysis,” Journal of the Royal Statistical Society, Series B, vol. 31, 1969, pp. 350–371.
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basis of the F test discussed in Chapter 4), it would suggest that the initial model
was misspecified. This is essentially the idea behind RESET. The steps involved
in the application of RESET are as follows:

1. From the chosen model (e.g., Eq. [7.22]), obtain the estimated Yi, namely,
2. Rerun the chosen model by adding powers of , such as etc., to

capture the systematic relationship, if any, between the residuals and the
estimated Yi. Since Figure 7-3 shows a curvilinear relationship between
the residuals and the estimated Y values, let us consider the following
model:

(7.23)

where v is the error term of this model.
3. Let R2 obtained from Equation (7.23) be and that obtained from

Eq. (7.22) be . Then we can use the F test of Equation (4.56), namely,

(7.24)

to find out if the increase in R2 from using Eq. (7.23) is statistically signif-
icant. 

4. If the computed F value is statistically significant at the chosen level of
significance, we can conclude that the initial model (such as Eq. [7.22]) is
misspecified.

For our example, the empirical counterpart of Eq. (7.23) is as shown in Table 7-4:

F =

AR2
new - R

2
old B/number of new regressors

A1 - R
2
new B/(n - number of parameters in the new model)

R
2
old

R
2
new

Yt = B1 + B2Xt + B3Y
N

2
t + B4Y

N
3
t + vt

YN
2
i , YN

3
i ,YNi

YNi.
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ILLUSTRATION OF RAMSEY’S RESET

Standard

Variable Coefficient error t statistic p value

Intercept -39.7720 15.1193 -2.6306 0.0117

X 0.1471 0.0133 11.0550 0.0000

0.0000 0.0001 -0.1458 0.8848

0.0000 0.0000 3.3763 0.0015

R-squared 0.9959

Notes: Dependent variable is Y.

YN
3

YN
2

TABLE 7-4

Now applying the F test given in Equation (7.24), we obtain:

(7.25)

For 2 d.f. in the numerator and 44 d.f. in the denominator, the 1% critical F value
is 5.12263. Since the computed F value is much larger than this, the probability
of obtaining an F value of as much as 142.7317 or greater must be very small.

F =
(0.9959 - 0.9693)/2

(1 - 0.9959)/(48 - 4)
= 142.7317



Using statistical software packages or electronic tables we find that the actual
probability of this is basically 0.0000.

The conclusion that we draw from this exercise is that the model (7.22) is mis-
specified. This is not surprising because we saw earlier that the trend variable
belongs in this model. It is quite possible that not only the trend variable but
perhaps a squared trend variable should also be included in the model. To find
this out, see Problem 7.18.

One advantage of the RESET test is that it is easy to apply, for it does not re-
quire that we specify what the alternative model is. But that is also its disad-
vantage because knowing that a model is misspecified does not help us neces-
sarily in choosing an alternative model. Therefore, we can regard the RESET test
primarily as a diagnostic tool.15

7.8 SUMMARY

The major points discussed in this chapter can be summarized as follows:

1. The classical linear regression model assumes that the model used in em-
pirical analysis is “correctly specified.”

2. The term correct specification of a model can mean several things, including:
a. No theoretically relevant variable has been excluded from the model.
b. No unnecessary or irrelevant variables are included in the model.
c. The functional form of the model is correct.
d. There are no errors of measurement.

3. If a theoretically relevant variable(s) has been excluded from the model,
the coefficients of the variables retained in the model are generally bi-
ased as well as inconsistent, and the error variance and the standard er-
rors of the OLS estimators are biased. As a result, the conventional t and
F tests remain of questionable value.

4. Similar consequences ensue if we use the wrong functional form.
5. The consequences of including irrelevant variables(s) in the model are less

serious in that estimated coefficients still remain unbiased and consistent,
the error variance and standard errors of the estimators are correctly esti-
mated, and the conventional hypothesis-testing procedure is still valid.
The major penalty we pay is that estimated standard errors tend to be rel-
atively large, which means parameters of the model are estimated rather
imprecisely. As a result, confidence intervals tend to be somewhat wider.

6. In view of the potential seriousness of specification errors, in this chapter
we considered several diagnostic tools to help us find out if we have the
specification error problem in any concrete situation. These tools include
a graphical examination of the residuals and more formal tests, such as
MWD and RESET.
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15Note this technical point. Since is a random variable, its appearance as an explanatory vari-
able in Eq. (7.23) means the use of t and F tests is justified only if the sample is reasonably large.
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Since the search for a theoretically correct model can be exasperating, in this
chapter we considered several practical criteria that we should keep in mind in
this search, such as (1) parsimony, (2) identifiability, (3) goodness of fit, (4) the-
oretical consistency, and (5) predictive power.

As Granger notes, “In the ultimate analysis, model building is probably
both an art and a science. A sound knowledge of theoretical econometrics
and the availability of an efficient computer program are not enough to ensure
success.”16

KEY TERMS AND CONCEPTS

The key terms and concepts introduced in this chapter are:

240 PART TWO: REGRESSION ANALYSIS IN PRACTICE

16See C. W. J. Granger (ed.), Modelling Economic Time Series: Readings in Econometric Methodology,
Clanrendon, Oxford, U.K., 1990, p. 2.

Attributes of a good model
a) Parsimony (principle of

parsimony)
b) Identifiability
c) Goodness of fit
d) Theoretical consistency
e) Predictive power

Specification errors and model
misspecification errors
a) Core variables
b) Peripheral variables
c) Underfitting a model (omitted

variable bias)
d) Overfitting a model (inclusion

of irrelevant variable bias)

e) Incorrect (wrong) functional
form bias

f) Instrumental or proxy variables
Specification error tests

a) Unnecessary variables (stepwise
regression; data mining)

b) Tests for omitted variables and
incorrect functional forms

c) MacKinnon-White-Davidson
(MWD) test

d) Ramsey’s regression error
specification (RESET) test

QUESTIONS

7.1. What is meant by specification errors?
7.2. What are the reasons for the occurrence of specification errors?
7.3. What are the attributes of a “good” econometric model?
7.4. What are different types of specification errors? Can one or more of these

errors occur simultaneously?
7.5. What are the consequences of omitting a relevant variable(s) from a model?
7.6. When we say that a variable is “relevant” or “irrelevant,” what do we mean?
7.7. What are the consequences of including irrelevant variables in a model?
7.8. Omitting a relevant variable(s) from a model is more dangerous than includ-

ing an irrelevant variable(s). Do you agree? Why or why not?



7.9. In looking for the simple Keynesian multiplier, you regress the GNP on in-
vestment and find that there is some relationship. Now, thinking that it can-
not hurt much, you include the “irrelevant” variable “state and local taxes.”
To your surprise, the investment variable loses its significance. How can an
irrelevant variable do this?

7.10. What would you do if you had to choose between a model that satisfies all
statistical criteria but does not satisfy economic theory and a model that fits
established economic theory but does not fit many statistical criteria?

PROBLEMS

7.11. Table 7-5, found on the textbook’s Web site, gives data on the real gross prod-
uct, labor input, and real capital input in the Taiwanese manufacturing sector
for the years 1958 to 1972. Suppose the theoretically correct production func-
tion is of the Cobb-Douglas type, as follows:

where ln = the natural log.
a. Given the data shown in Table 7-5, estimate the Cobb-Douglas production

function for Taiwan for the sample period and interpret the results.
b. Suppose capital data were not initially available and therefore someone

estimated the following production function:

where an error term. What kind of specification error is incurred in
this case? What are the consequences? Illustrate with the data in Table 7-5.

c. Now pretend that the data on labor input were not available initially and
suppose you estimated the following model:

where w = an error term. What are the consequences of this type of speci-
fication error? Illustrate with the data given in Table 7-5.

7.12. Consider the following models:
Model I: Consumptioni = B1 + B2incomei + ui

Model II: Consumptioni = A1 + A2wealthi + vi

a. How would you decide which of the models is the “true” model?
b. Suppose you regress consumption on both income and wealth. How

would this help you decide between the two models? Show the necessary
details.

7.13. Refer to Equation 5.40 in Chapter 5, which discusses the regression-through-
the-origin (i.e., zero-intercept) model. If there is in fact an intercept present in
the model but you run it through the origin, what kind of specification error
is committed? Document the consequences of this type of error with the data
given in Table 2-13 (found on the textbook’s Web site) in Chapter 2.

ln Yt = C1 + C2 ln X3t + wt

v =

ln Yt = C1 + C2 ln X2t + vt

ln Yt = B1 + B2 ln X2t + B3 ln X3t + ut
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7.14. Table 7-6 (found on the textbook’s Web site) gives data on the real rate of re-
turn (Y) on common stocks, the output growth (X2), and inflation (X3), all in
percent for the United States for 1954 to 1981.
a. Regress Y on X3.
b. Regress Y on X2 and X3.
c. Comment on the two regression results in view of Professor Eugene

Fama’s observation that “the negative simple correlation between real
stock returns and inflation is spurious (or false) because it is the result of
two structural relationships: a positive relation between current real stock
returns and expected output growth and a negative relationship between
expected output growth and current inflation.”

d. Do the regression in part (b) for the period 1956 to 1976, omitting the data
for 1954 and 1955 due to unusual stock return behavior in those years, and
compare this regression with the one obtained in part (b). Comment on the
difference, if any, between the two.

e. Suppose you want to run the regression for the period 1956 to 1981 but want
to distinguish between the periods 1956 to 1976 and 1977 to 1981. How
would you run this regression? (Hint: Think of the dummy variables.)

7.15. Table 7-7 (found on the textbook’s Web site) gives data on indexes of aggre-
gate final energy demand (Y), the real gross domestic product, the GDP (X2),
and the real energy price (X3) for the OECD countries—the United States,
Canada, Germany, France, the United Kingdom, Italy, and Japan—for the pe-
riod 1960 to 1982. (All indexes with base 1973 = 100.)
a. Estimate the following models:

Model A: ln Yt = B1 + B2 ln X2t + B3 ln X3t + u1t

Model B: ln Yt = A1 + A2 ln X2t + A3 ln X2(t - 1) + A4 ln X3t + u2t

Model C: ln Yt = C1 + C2 ln X2t + C3 ln X3t + C4 ln X3(t - 1) + u3t

Model D: ln Yt = D1 + D2 ln X2t + D3 ln X3t + D4 ln Y(t - 1) + u4t

where the u’s are the error terms. Note: Models B and C are called dynamic
models—models that explicitly take into account the changes of a variable
over time. Models B and C are called distributed lag models because the im-
pact of an explanatory variable on the dependent variable is spread over
time, here over two time periods. Model D is called an autoregressive model
because one of the explanatory variables is a lagged value of the dependent
variable.

b. If you estimate Model A only, whereas the true model is either B, C, or D,
what kind of specification bias is involved?

c. Since all the preceding models are log-linear, the slope coefficients repre-
sent elasticity coefficients. What are the income (i.e., with respect to GDP)
and price elasticities for Model A? How would you go about estimating
these elasticities for the other three models?

d. What problems do you foresee with the OLS estimation of Model D since
the lagged Y variable appears as one of the explanatory variables? (Hint:
Recall the assumptions of the CLRM.)

7.16. Refer to Problem 7.11. Suppose you extend the Cobb-Douglas production
function model by including the trend variable X4, a surrogate for technol-
ogy. Suppose further that X4 turns out to be statistically significant. In that
case, what type of specification error is committed? What if X4 turns out to be
statistically insignificant? Present the necessary calculations.
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7.17. Table 7-8 on the textbook’s Web site gives data on variables that might affect
the demand for chickens in the United States. The dependent variable here is
the per capita consumption of chickens, and the explanatory variables are per
capita real disposable income and the prices of chicken and chicken substi-
tutes (pork and beef).
a. Estimate a log-linear model using these data.
b. Estimate a linear model using these data.
c. How would you choose between the two models? What test will you use?

Show the necessary computations.
7.18. Suppose that we modify model (7.13) as follows:

a. Estimate this model.
b. If the Year2 in this model turns out to be statistically significant, what can

you say about regression (7.13)?
c. Is there a specification error involved here? If so, of what type? What are

the consequences of this specification error?. 
7.19. Does more money help schools? To answer this question, Rubén Hernández-

Murillo and Deborah Roisman present the data given in Table 7-9 on the
textbook’s Web site.17

These data relate to several input and outcome variables for school districts
in the St. Louis area and are for the academic year 1999 to 2000.
a. Treating the Missouri Assessment Program (MAP) test score as the depen-

dent variable, develop a suitable model to explain the behavior of MAP.
b. Which variable(s) is crucial in determining MAP—economic or social?
c. What is the rationale for the dummy variable?
d. Would it be prudent to conclude from your analysis that spending per

pupil and or smaller student/teacher ratio are unimportant determinants
of test scores?

7.20. In Bazemore v. Friday, 478 U.S. 385 (1986), a case involving pay discrimination
in the North Carolina Extension Service, the plaintiff, a group of black agents,
submitted a multiple regression model showing that, on average, the black
agents’ salary was lower than that of their white counterparts. When the case
reached the court of appeals, it rejected the plaintiff’s case on the grounds that
their regression had not included all the variables thought to have an effect on
salary. The Supreme Court, however, reversed the appeals court. It stated:18

The Court of Appeals erred in stating that petitioners’ regression analyses were
“unacceptable as evidence of discrimination,” because they did not include
all measurable variables thought to have an effect on salary level. The court’s
view of the evidentiary value of the regression analysis was plainly incorrect.
While the omission of variables from a regression analysis may render the
analysis less probative than it otherwise might be, it can hardly be said, absent
some other infirmity, that an analysis which accounts for the major factors

Yt = B1 + B2Xt + B3Time + B4Time
2
+ ut
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17See their article, “Tough Lesson: More Money Doesn’t Help Schools; Accountability Does,”
The Regional Economist, Federal Reserve Bank of St. Louis, April 2004, pp. 12–13.

18The following is reproduced from Michael O. Finkelstein and Bruce Levin, Statistics for
Lawyers, Springer-Verlag, New York, 1989, p. 374.



“must be considered unacceptable as evidence of discrimination.” Ibid.
Normally, a failure to include variables will affect the analysis’ probativeness,
not its admissibility.

Do you think the Supreme Court was correct in this decision? Articulate your
views fully, bearing in mind the theoretical consequences of specification
errors and practical realities.

7.21. Table 7-10 on the textbook’s Web site contains data about the manufacturing
sector of all 50 states and the District of Columbia. The dependent variable is
output, measured as “value added” in thousands of U.S. dollars, and the in-
dependent variables are worker hours and capital expenditures.
a. Predict output using a standard linear model. What is the function?
b. Create a log-linear model using the data as well. What is this function?
c. Use the MWD test to decide which model is more appropriate.
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CHAPTER 8
MULTICOLLINEARITY:

WHAT HAPPENS IF
EXPLANATORY VARIABLES

ARE CORRELATED?

In Chapter 4 we noted that one of the assumptions of the classical linear re-
gression model (CLRM) is that there is no perfect multicollinearity—no exact
linear relationships among explanatory variables, X’s, included in a multiple
regression. In that chapter we explained intuitively the meaning of perfect
multicollinearity and reasons for assuming why it should not exist in the
population regression function (PRF). In this chapter we take a closer look
at the topic of multicollinearity. In practice, we rarely encounter perfect
multicollinearity, but cases of near or very high multicollinearity where ex-
planatory variables are approximately linearly related frequently arise in many
applications. It is important to know what problems these correlated variables
pose for the ordinary least squares (OLS) estimation of multiple regression
models. Toward that end, in this chapter we will seek answers to the following
questions:

1. What is the nature of multicollinearity?
2. Is multicollinearity really a problem?
3. What are the theoretical consequences of multicollinearity?
4. What are the practical consequences of multicollinearity?
5. In practice, how does one detect multicollinearity?
6. If it is desirable to eliminate the problem of multicollinearity, what

remedial measures are available?
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8.1 THE NATURE OF MULTICOLLINEARITY:THE CASE 

OF PERFECT MULTICOLLINEARITY

To answer these various questions, we consider first a simple numerical exam-
ple, which is specially constructed to emphasize some crucial points about mul-
ticollinearity. Consider the data given in Table 8-1.

This table gives data on demand for widgets (Y) in relation to price (X2) and
two measures of weekly consumer income, X3, as estimated, say, by a re-
searcher, and X4, as estimated by another researcher. To distinguish between the
two, we call X3 income and X4 earnings.

Since, besides the price, the income of the consumer is also an important
determinant in the demand for most goods, we write the expanded demand
function as

(8.1)

(8.2)

These demand functions differ in the measure of income used. A priori, or ac-
cording to theory, A2 and B2 are expected to be negative (Why?), but A3 and B3

are expected to be positive (Why?).1

When an attempt was made to fit the regression (8.1) to the data in Table 8-1,
the computer “refused” to estimate the regression.2 What went wrong? Nothing.
By plotting the variables price (X2) and income (X3), we get the diagram shown
in Figure 8-1.

And by trying to regress X3 on X2, we obtain the following results:

(8.3)X3i = 300 - 2X2i    R2(=r2) = 1.00

 Yi = B1 + B2X2i + B3X4i + ui

 Yi = A1 + A2X2i + A3X3i + ui

THE DEMAND FOR WIDGETS

Y X2 X3 X4
(quantity) (price, $) (income per week, $) (earnings per week, $)

49 1 298 297.5

45 2 296 294.9

44 3 294 293.5

39 4 292 292.8

38 5 290 290.2

37 6 288 289.7

34 7 286 285.8

33 8 284 284.6

30 9 282 281.1

29 10 280 278.8

TABLE 8-1

1According to economic theory, the income coefficient is expected to be positive for most normal
economic goods. It is expected to be negative for what are called “inferior” goods.

2Usually, you will get a message saying that the X, or data, matrix is not positive definite; that is,
it cannot be inverted. In matrix algebra such a matrix is called a singular matrix. Simply put, the
computer cannot do the calculations.
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In other words, the income variable X3 and the price variable X2 are perfectly
linearly related; that is, we have perfect collinearity (or multicollinearity).3

Because of the relationship in Equation (8.3), we cannot estimate the regres-
sion (8.1), for if we substitute Eq. (8.3) into Eq. (8.1), we obtain

(8.4)

where C1 = A1 + 300A3 (8.5)

C2 = A2 - 2A3 (8.6)

No wonder we could not estimate Eq. (8.1), for as Eq. (8.4) shows, we do not
have a multiple regression but a simple two-variable regression between Y and
X2. Now, although we can estimate Eq. (8.4) and obtain estimates of C1 and C2,
from these two values we cannot obtain estimates of the original parameters A1,
A2, and A3, for in Equations (8.5) and (8.6) we have only two equations but there
are three unknowns to be estimated. (From school algebra we know that to es-
timate three unknowns we generally require three equations.)

The results of estimating the regression (8.4) are as follows:

(8.7)

 t = (66.538)(-17.935)    r2
= 0.9757

 se = (0.746)(0.1203)

 YNi = 49.667 - 2.1576X2i

 = C1 + C2X2i + ui

 = (A1 + 300A3) + (A2 - 2A3)X2i + ui

 Yi = A1 + A2X2i + A3(300 - 2X2i) + ui
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Scattergram between income (X3) and price (X2)FIGURE 8-1

3Although the term collinearity refers to a single perfect linear relationship between variables
and the term multicollinearity refers to more than one such relationship, from now on we will use the
term multicollinearity in a generic sense to include both cases. The context will make it clear whether
we have just one or more than one exact linear relationship.



As we can see, C1 = 49.667 and C2 = -2.1576. Try as we might, from these two val-
ues there is no way to retrieve the values of the three unknowns, A1, A2, and A3.4

The upshot of the preceding discussion is that in cases of perfect linear relation-
ship or perfect multicollinearity among explanatory variables, we cannot obtain unique
estimates of all parameters. And since we cannot obtain their unique estimates, we can-
not draw any statistical inferences (i.e., hypothesis testing) about them from a given
sample.

To put it bluntly, in cases of perfect multicollinearity, estimation and hypoth-
esis testing about individual regression coefficients in a multiple regression are
not possible. It is a dead end issue. Of course, as Eqs. (8.5) and (8.6) show, we
can obtain estimates of a linear combination (i.e., the sum or difference) of the
original coefficients, but not of each of them individually.

8.2 THE CASE OF NEAR, OR IMPERFECT, MULTICOLLINEARITY

The case of perfect multicollinearity is a pathological extreme. In most applica-
tions involving economic data two or more explanatory variables are not exactly
linearly related but can be approximately so. That is, collinearity can be high but
not perfect. This is the case of near, or imperfect, or high multicollinearity. We
will explain what we mean by “high” collinearity shortly. From now on when talk-
ing about multicollinearity, we are refering to imperfect multicollinearity. As we saw
in Section 8.1, the case of perfect multicollinearity is a blind alley.

To see what we mean by near, or imperfect, multicollinearity, let us return to
our data in Table 8-1, but this time, we estimate regression (8.2) with earnings as
the income variable. The regression results are as follows:

(8.8)

These results are interesting for several reasons:

1. Although the regression (8.1) cannot be estimated, we can estimate the
regression (8.2), even though the difference between the two income
variables is very small, which can be seen visually from the last two
columns of Table 8-1.5

 t = (1.2107)  (-3.4444)   (-0.7971)    R2
= 0.9778

 se = (120.06)  (0.8122)      (0.4003)

 YNi = 145.37 - 2.7975X2i - 0.3191X4i
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4Of course, if the value of one of A1, A2, and A3 is fixed arbitrarily, then the values of the other
two A’s can be obtained from the estimated C’s. But these values will not be unique, for they depend
on the value arbitrarily chosen for one of the A’s. To reiterate, there is no way of obtaining unique
values of three unknowns (the three A’s) from two knowns (the two C’s).

5It is time to let the “cat out of the bag.” The earnings figures reported in column 4 of Table 8-1
were constructed from the following relation: X4i = X3i + ui, where the u’s are random terms
obtained from a random number table. The 10 values of u are as follows: -0.5, -1.1, -0.5, 0.8, 0.2, 1.7,
-0.2, 0.6, -0.9, and -1.2.
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2. As expected, price coefficients are negative in both Equations (8.7) and
(8.8), and the numerical difference between the two is not vast. Each price
coefficient is statistically significantly different from zero (Why?), but
notice that, relatively speaking, the|t|value of the coefficient in Eq. (8.7)
is much greater than the corresponding |t| value in Eq. (8.8). Or what
amounts to the same thing, comparatively, the standard error (se) of the
price coefficient in Eq. (8.7) is much smaller than that in Eq. (8.8).

3. The R2 value in Eq. (8.7) with one explanatory variable is 0.9757, whereas
in Eq. (8.8) with two explanatory variables it is 0.9778, an increase of only
0.0021, which does not appear to be a great increase. It can be shown that
this increase in the R2 value is not statistically significant.6

4. The coefficient of the income (earnings) variable is statistically insignifi-
cant, but, more importantly, it has the wrong sign. For most commodi-
ties, income has a positive effect on the quantity demanded, unless the
commodity in question happens to be an inferior good.

5. Despite the insignificance of the income variable, if we were to test the
hypothesis that B2 = B3 = 0 (i.e., the hypothesis that R2

= 0), the hypothe-
sis could be rejected easily by applying the F test given in expression
(4.49) or (4.50). In other words, collectively or together, price and earn-
ings have a significant impact on the quantity demanded.

What explains these “strange” results? As a clue, let us plot X2 against X4,
price against earnings. (See Figure 8-2.) Unlike Figure 8-1, we see that although
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Earnings (X4) and price (X2) relationshipFIGURE 8-2

6This can be shown with the F test discussed in Chapter 4.



price and earnings are not perfectly linearly related, there is a high degree of
dependency between the two.

This can be seen more clearly from the following regression:

(8.9)

As this regression shows, price and earnings are highly correlated; the coefficient
of correlation is-0.9884 (which is the negative square root of r2). This is the case of
near perfect linear relationship, or near perfect multicollinearity. If the coefficient
of correlation were -1, as in Eq. (8.3), this would be the case of perfect multi-
collinearity. Notice carefully, in Eq. (8.3) we have not added ei because the linear
relationship between X2i and X3i is perfect, whereas in Equation (8.9) we have
added it to show that the linear relationship between X4i and X2i is not perfect.

In passing, note that if there are just two explanatory variables, the coefficient
of correlation r can be used as a measure of the degree or strength of collinearity.
But if more than two explanatory variables are involved, as we will show later,
the coefficient of correlation may not be an adequate measure of collinearity.

8.3 THEORETICAL CONSEQUENCES OF MULTICOLLINEARITY

Now that we have discussed the nature of perfect and imperfect multicollinear-
ity somewhat heuristically, let us state the consequences of multicollinearity a
bit more formally. But keep in mind that from now on we consider only the case
of imperfect multicollinearity, for perfect multicollinearity leads us nowhere.

As we know, given the assumptions of the CLRM, OLS estimators are best
linear unbiased estimators (BLUE). In the class of all linear unbiased estimators,
OLS estimators have the least possible variance. It is interesting that so long as
collinearity is not perfect, OLS estimators still remain BLUE even though one or more
of the partial regression coefficients in a multiple regression can be individually statis-
tically insignificant. Thus, in Eq. (8.8), the income coefficient is statistically
insignificant although the price coefficient is statistically significant. But OLS
estimates presented in Eq. (8.8) still retain their BLUE property.7 Then why all
the fuss about multicollinearity? There are several reasons:

1. It is true that even in the presence of near collinearity, the OLS estimators
are unbiased. But remember that unbiasedness is a repeated sampling prop-
erty. What this says is that, keeping the values of the X variables fixed, if
we obtain several samples and compute the OLS estimates for each of
these samples, the average value of the estimates will tend to converge
to the true population value of the estimates. But this says nothing about
the properties of estimates given in any given sample. In reality, we
rarely have the luxury of replicating samples.

 t = (444.44)  (-18.44)    r2
= 0.9770

 se = (0.6748)  (0.1088)

 X4i = 299.92 - 2.0055X2i + ei
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Chapter 4, OLS estimators retain the BLUE property.
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2. It is also true that near collinearity does not destroy the minimum vari-
ance property of OLS estimators. In the class of all linear unbiased esti-
mators, OLS estimators have minimum variance. This does not mean,
however, that the variance of an OLS estimator will be small (in relation
to the value of the estimator) in any given sample, as the regression (8.8)
shows very clearly. It is true that the estimator of the income coefficient
is BLUE, but in the sample at hand its variance is so large compared to
the estimate that the computed t value (under the null hypothesis that
the true income coefficient is zero) is only -0.7971. This would lead us to
not reject the hypothesis that income has no effect on the quantity of wid-
gets demanded. In short, minimum variance does not mean the numerical
value of the variance will be small.

3. Multicollinearity is essentially a sample (regression) phenomenon in the sense
that even if the X variables are not linearly related in the population (i.e.,
PRF), they can be so related in a particular sample, such as that of
Table 8-1. When we postulate the PRF, we believe that all X variables
included in the model have a separate or independent effect on the de-
pendent variable Y. But it can happen that in any given sample that is used
to estimate the PRF some or all X variables are so highly collinear that we
cannot isolate their individual influence on Y. Our sample lets us down so
to speak, although the theory says that all X’s are important. And this
happens because most economic data are not obtained in controlled
laboratory experiments. Data on variables such as the gross domestic
product (GDP), prices, unemployment, profits, and dividends are usually
observed as they occur and are not obtained experimentally. If these
data could be obtained experimentally to begin with, we would not allow
collinearity to exist. Since data are usually obtained nonexperimentally,
and if there is near collinearity in two or more explanatory variables,
often we are in “the statistical position of not being able to make bricks
without straw.”8

For all these reasons, the fact that OLS estimators are BLUE despite (imper-
fect) multicollinearity is of little consolation in practice. Therefore, we must try
to find out what happens or is likely to happen in any given sample. As noted,
collinearity is usually a sample-specific phenomenon.

8.4 PRACTICAL CONSEQUENCES OF MULTICOLLINEARITY

In cases of near or high multicollinearity, as in our demand for widget regression
(8.8), we are likely to encounter one or more of the following consequences:

1. Large variances and standard errors of OLS estimators. This is clearly seen
from the widget regressions (8.7) and (8.8). As discussed earlier, because

8J. Johnston, Econometric Methods, 2nd ed., McGraw-Hill, New York, 1972, p. 164.



of high collinearity between price (X2) and earnings (X4), when both
variables are included in the regression (8.8), the standard error of the
coefficient of the price variable increases dramatically compared with
the regression (8.7). As we know, if the standard error of an estimator
increases, it becomes more difficult to estimate the true value of the
estimator. That is, there is a fall in the precision of OLS estimators.

2. Wider confidence intervals. Because of large standard errors, confidence
intervals for relevant population parameters tend to be large.

3. Insignificant t ratios. Recall that to test the hypothesis that in our regres-
sion (8.8) the true B3 = 0 we use the t ratio b3/se(b3) and compare the
estimated t value with the critical t value from the t table. But as previ-
ously seen, in cases of high collinearity the estimated standard errors
increase dramatically, thereby making t values smaller. Therefore, in
such cases we will increasingly accept the null hypothesis that the rele-
vant true population coefficient is zero. Thus, in the regression (8.8),
since the t value is only -0.7971, we might jump to the conclusion that in
the widget example income has no effect on the quantity demanded.

4. A high R2 value but few significant t ratios. The regression (8.8) shows this
clearly. The R2 in this regression is quite high, about 0.98, but only the t
ratio of the price variable is significant. And yet on the basis of the F ratio,
as we have seen, we can reject the hypothesis that the price and earnings
variables simultaneously have no effect on the quantity of widgets
demanded.

5. OLS estimators and their standard errors become very sensitive to small
changes in the data; that is, they tend to be unstable. To see this, return to
Table 8-1. Suppose we change the data on the earnings variable X4

slightly. The first, fifth, and tenth observations are now 295, 287, and 274,
respectively. All other values remain intact. The result of this change
gives the following regression:

(8.10)

Comparing Eq. (8.8) with regression (8.10), we observe that as a result
of a very small change in the data, the regression results change quite
substantially. Relatively speaking, standard errors have gone down in
Eq. (8.10), and, as a result, t ratios have increased in absolute values and
the income variable now has become less negative than before.

Why such a change? In the regression (8.8) the coefficient of correla-
tion between X2 and X4 was -0.9884, whereas in the regression (8.10) it
was -0.9431. In other words, the degree of collinearity between X2 and
X4 has decreased in going from Eq. (8.8) to Eq. (8.10). Although the
decrease in the correlation coefficient does not seem astounding, the

 t = (2.0936)  (-7.0083)   (-1.0597)    R2
= 0.9791

 se = (48.030)  (0.35906)     (0.1604)

 YNi = 100.56 - 2.5164X2i - 0.16995X4i
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change in regression results is noticeable. And this is precisely what hap-
pens in cases of near perfect collinearity.

6. Wrong signs for regression coefficients. As regressions (8.8) and (8.10) show,
the earnings variable has the “wrong” sign, for economic theory would
have us believe that for most commodities the income effect is positive.
Of course, with an inferior good this is not a wrong sign. Therefore, we
have to be careful in attributing the wrong sign to multicollinearity
alone, but it should not be ruled out either.

7. Difficulty in assessing the individual contributions of explanatory variables to
the explained sum of squares (ESS) or R2. We can illustrate this point again
with our widget example. In Eq. (8.7) we regressed quantity (Y) on price
(X2) alone, giving an R2 value of 0.9757. In regression (8.8) we regressed
Y on both price and earnings, obtaining an R2 of 0.9778. Now if we
regress Y on X4 alone, we obtain the following results:

(8.11)

Lo and behold, earnings (X4) alone explains 94 percent of the variation in
the quantity demanded. In addition, the earnings coefficient is not only
statistically significant, but it is also positive, in accord with theoretical
expectations!

As shown previously, in the multiple regression (8.8) the R2 value is 0.9778.
What part of it is due to X2 and what part is due to X4? We cannot tell precisely
because the two variables are so highly collinear that when one moves the other
moves with it almost automatically, as the regression (8.9) so clearly demon-
strates. Therefore, in cases of high collinearity it is futile to assess the contribu-
tion of each explanatory variable to the overall R2.

A question: Can the consequences of multicollinearity that we have illus-
trated earlier be established rigorously? Yes indeed! But we will skip the proofs
here since they can be found elsewhere.9

8.5 DETECTION OF MULTICOLLINEARITY

As demonstrated in the previous section, practical consequences of multi-
collinearity can be far-ranging, the BLUE property notwithstanding. So, what
can we do about resolving the multicollinearity problem? Before resolving
it, we must first find out if we have a collinearity problem to begin with. In
short, how do we detect the presence of and severity of multicollinearity?

 t = (-9.794)   (11.200)    R2
= 0.9400

 se = (26.929)   (0.0932)

 YNi = -263.74 + 1.0438X4i

9The proofs are shown in Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill,
New York, 2009, Chapter 10.



Now we have a problem, for as noted earlier, multicollinearity is sample-
specific; it is a sample phenomenon. Here it is useful to keep in mind the
following warning:10

1. Multicollinearity is a question of degree and not of kind. The meaningful
distinction is not between the presence and the absence of multicollinear-
ity, but between its various degrees.

2. Since multicollinearity refers to the condition of the explanatory vari-
ables that are assumed to be nonstochastic, it is a feature of the sample and
not of the population.

Therefore, we do not “test for multicollinearity” but can, if we wish, measure
its degree in any particular sample.

Having stated that, we must add that we do not have a single measure of
multicollinearity, for in nonexperimentally collected data we can never be sure
about the nature and degree of collinearity. What we have are some rules of
thumb, or indicators, that will provide us with some clue about the existence of
multicollinearity in concrete applications. Some of these indicators follow.

1. High R2 but few significant t ratios. As noted earlier, this is the “classic”
symptom of multicollinearity. If R2 is high, say, in excess of 0.8, the F test
in most cases will reject the null hypothesis that the partial slope coeffi-
cients are jointly or simultaneously equal to zero. But individual t tests will
show that none or very few partial slope coefficients are statistically dif-
ferent from zero. Our widget regression (8.8) bears this out fully.

2. High pairwise correlations among explanatory variables. If in a multiple re-
gression involving, say, six explanatory variables, we compute the coeffi-
cient of correlation between any pair of these variables using the formula
(B.46) in Appendix B, and if some of these correlations are high, say, in
excess of 0.8, there is the possibility that some serious collinearity exists.
Unfortunately, this criterion is not often reliable, for pairwise correlations
can be low (suggesting no serious collinearity) yet collinearity is sus-
pected because very few t ratios are statistically significant.11

3. Examination of partial correlations. Suppose we have three explanatory
variables, X2, X3, and X4. Let r23, r24, and r34 represent the pairwise cor-
relations between X2 and X3, between X2 and X4, and between X3 and X4,
respectively. Suppose r23 = 0.90, indicating high collinearity between X2

and X3. Now consider the correlation coefficient, called the partial corre-
lation coefficient, r23.4, which is the coefficient of correlation between X2

and X3, holding the influence of the variable X4 constant (the concept is sim-
ilar to that of the partial regression coefficient discussed in Chapter 4).
Suppose r23.4 = 0.43; that is, holding the influence of the variable X4 con-
stant, the correlation coefficient between X2 and X3 is only 0.43, whereas
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10Jan Kmenta, Elements of Econometrics, 2nd ed., Macmillan, New York, 1986, p. 431.
11For technical details, see Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill,

New York, 2009, Chapter 10.



CHAPTER EIGHT: MULTICOLLINEARITY: WHAT HAPPENS IF EXPLANATORY VARIABLES ARE CORRELATED? 255

not taking into account the influence of X4, it is 0.90. Then, judged by the
partial correlation, we cannot say that the collinearity between X2 and X3

is necessarily high.
As we can see, in the context of several explanatory variables, reliance

on simple pairwise correlations as indicators of multicollinearity can be
misleading. Unfortunately, the substitution of simple pairwise correla-
tions by partial correlation coefficients does not provide a definitive
indicator of the presence of multicollinearity or otherwise. The latter
provides only another device to check the nature of multicollinearity.12

4. Subsidiary, or auxiliary, regressions. Since multicollinearity arises because
one or more of the explanatory variables are exact or near exact linear
combinations of other explanatory variables, one way of finding out
which X variable is highly collinear with other X variables in the model
is to regress each X variable on the remaining X variables and to compute
the corresponding R2. Each of these regressions is called a subsidiary or
an auxiliary regression, auxiliary to the main regression of Y on all X’s.

For example, consider the regression of Y on X2, X3, X4, X5, X6, and
X7—six explanatory variables. If this regression shows that we have a
problem of multicollinearity because, say, the R2 is high but very few X
coefficients are individually statistically significant, we then look for the
“culprit,” the variable(s) that may be a perfect or near perfect linear com-
bination of the other X’s. We proceed as follows:

(a) Regress X2 on the remaining X’s and obtain the coefficient of deter-
mination, say, .

(b) Regress X3 on the remaining X’s and obtain its coefficient of determi-
nation, .

Continue this procedure for the remaining X variables in the model. In
the present example we will have six such auxiliary regressions, one for
each explanatory variable.

How do we decide which of the X variables are collinear? The esti-
mated will range between 0 and 1. (Why?) If an X variable is not a
linear combination of the other X’s, then the of that regression should
not be statistically significantly different from zero. And from Chapter 4,
Eq. (4.50), we know how to test the assumption that a particular coeffi-
cient of determination is statistically equal to zero.

Continuing with our hypothetical example involving six explanatory
variables, suppose we want to test the hypothesis that ; that is, X2 is
not collinear with the remaining five X’s. Now we use Eq. (4.50), which is

(4.50)F =

R2>(k - 1)

(1 - R2)>(n - k)

R2
2 = 0

R2
i

R2
i

R2
3

R2
2

12For technical details, see Gujarati and Porter, op. cit.



where n is the number of observations and k is the number of explana-
tory variables including the intercept. Let us illustrate.

In our hypothetical example involving six explanatory variables, sup-
pose that we regress each of the X variables on the remaining X’s in a
sample involving 50 observations. The R2 values obtained from the vari-
ous auxiliary regressions are as follows:

= 0.90 (in the regression of X2 on other X’s)

= 0.18 (in the regression of X3 on other X’s)

= 0.36 (in the regression of X4 on other X’s)

= 0.86 (in the regression of X5 on other X’s)

= 0.09 (in the regression of X6 on other X’s)

= 0.24 (in the regression of X7 on other X’s)

The results of applying the F test given in Eq. (4.50) are given in Table 8-2.
As this table shows, the variables X2, X4, X5, and X7 seem to be

collinear with the other X’s, although the degree of collinearity, as mea-
sured by R2, varies considerably. This example points out the important
fact that a seemingly low R2, such as 0.36, can still be statistically signifi-
cantly different from zero. A concrete economic example of auxiliary
regressions is given in Section 8.7.

One drawback of the auxiliary regression technique is the computa-
tional burden. If a regression contains several explanatory variables,
we have to compute several subsidiary regressions, and therefore this
method of detecting collinearity can be of limited practical value. But note
that many computer packages now can compute the auxiliary regressions
without much computational burden.

5. The variance inflation factor (VIF). Even if a model does not contain several
explanatory variables, the R2 values obtained from the various auxiliary

R2
7

R2
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R2
5

R2
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R2
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2
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TESTING THE SIGNIFICANCE OF R2

(EQUATION [4.50])

Value of R2 Value of F Is F significant?

0.90 79.20 Yes*

0.18 1.93 No

0.36 4.95 Yes*

0.86 54.06 Yes*

0.09 0.87 No

0.24 2.78 Yes†

Notes: *Significant at the 1% level.
†Significant at the 5% level.
In this example n = 50 and k = 6.

TABLE 8-2
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regressions may not be a totally reliable indication of collinearity. This
can be seen more clearly if we revert to the three-variable regression dis-
cussed more completely in Chapter 4. In Equations (4.25) and (4.27) we
have been given the formulas to compute the variances of the two partial
slopes b2 and b3. With simple algebraic manipulations, these variance
formulas can be alternatively written as

(8.12)

(8.13)

(For proofs of these formulas, see Problem 8.21.) In these formulas is the
coefficient of determination in the (auxiliary) regression of X2 on X3. (Note: The
R2 between X2 and X3 is the same as that between X3 and X2.)

In the preceding formulas

(8.14)

The expression on the right-hand side of Equation (8.14) is called, very appro-
priately, the variance inflation factor (VIF) because as R2 increases, the vari-
ance, and hence the standard error, of both b2 and b3 increases or inflates. (Do
you see this?) In the extreme, when this coefficient of determination is 1 (i.e.,
perfect multicollinearity), these variances and standard errors are undefined.
(Why?) Of course, if R2 is zero, that is, there is no collinearity, the VIF will be 1
(Why?), and we do not have to worry about the large variances and standard
errors that plague the collinearity situations.

Now an important question: Suppose an in an auxiliary regression is very
high (but less than 1), suggesting a high degree of collinearity per the criterion
discussed in the previous point 4. But as Eq. (8.12), (8.13), and (8.14) so clearly
show, the variance of, say, b2, not only depends upon the VIF but also upon the
variance of ui, , as well as on the variation in X2, . Thus, it is quite possi-
ble that an is very high, say, 0.91, but that either is low or is high,
or both, so that the variance of b2 can still be lower and the t ratio higher. In
other words, a high R2 can be counterbalanced by a low or a high , or
both. Of course, the terms high and low are used in a relative sense.

All this suggests that a high R2 obtained from an auxiliary regression can be
only a surface indicator of multicollinearity. It may not necessarily inflate the
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standard errors of the estimators, as the preceding discussion reveals. To put it
more formally, “high is neither necessary nor sufficient to get high standard er-
rors and thus multicollinearity by itself need not cause high standard errors.”13

What general conclusions can we draw from the various multicollinearity
diagnostics just discussed? That there are various indicators of multicollinearity
and no single diagnostic will give us a complete answer to the collinearity
problem. Remember that multicollinearity is a matter of degree and that it is a
sample-specific phenomenon. In some situations it might be easy to diagnose,
but in others one or more of the preceding methods will have to be used to find
out the severity of the problem. There is no easy solution to the problem.

Research on multicollinearity diagnostics continues. There are some new
techniques, such as the condition index, that have been developed. But they are
beyond the scope of this book and are better left for the references.14

8.6 IS MULTICOLLINEARITY NECESSARILY BAD?

Before proceeding to consider remedial measures for the multicollinearity prob-
lem, we need to ask an important question: Is multicollinearity necessarily an
“evil”? The answer depends on the purpose of the study. If the goal of the study
is to use the model to predict or forecast the future mean value of the dependent
variable, collinearity per se may not be bad.

Returning to our widget demand function Eq. (8.8), although the earnings
variable is not individually statistically significant, the overall R2 of 0.9778 is
slightly higher than that of Eq. (8.7), which omits the earnings variable.
Therefore, for prediction purposes Eq. (8.8) is marginally better than Eq. (8.7).
Often forecasters choose a model on the basis of its explanatory power as mea-
sured by the R2. Is this a good strategy? It may be if we assume that the
collinearity observed between the price and earnings data given in Table 8-1
will also continue in the future. In Eq. (8.9) we have already shown how X4 and
X2, earnings and price, are related. If the same relationship is expected to continue
into the future, then Eq. (8.8) can be used to forecast. But that is a big if. If, in an-
other sample, the degree of collinearity between the two variables is not that
strong, obviously, a forecast based on Eq. (8.8) may be of little value.

On the other hand, if the objective of the study is not only prediction but also
reliable estimation of the individual parameters of the chosen model, then seri-
ous collinearity may be bad, because we have seen that it leads to large standard
errors of the estimators. However, as noted earlier, if the objective of the study
is to estimate a group of coefficients (e.g., the sum or difference of two coeffi-
cients) fairly accurately, this can be done even in the presence of multicollinear-
ity. In this case multicollinearity may not be a problem. Thus, in Eq. (8.7) the

R2
i
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13G. S. Maddala, Introduction to Econometrics, Macmillan, New York, 1988, p. 226. However,
Maddala also says that “if is low, we would be better off.”

14For a simple discussion of the condition index, see Gujarati and Porter, Basic Econometrics,
5th ed., McGraw-Hill, New York, 2009, pp. 339–340.
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slope coefficient of -2.1576 is an estimate of (A2 - 2A3) (see Eq. [8.6]), which can
be measured accurately by the usual OLS procedure, although neither A2 nor A3

can be estimated individually.
There may be some “happy” situations where despite high collinearity the

estimated R2 and most individual regression coefficients are statistically signif-
icant on the basis of the usual t test at the conventional level of significance,
such as 5%. As Johnston notes:

This can arise if individual coefficients happen to be numerically well in excess of the
true value, so that the effect still shows up in spite of the inflated standard error
and/or because the true value itself is so large that even an estimate on the downside
still shows up as significant.15

Before moving on, let us take time out to consider a concrete economic ex-
ample illustrating several points discussed so far in this chapter.

8.7 AN EXTENDED EXAMPLE:THE DEMAND FOR CHICKENS 

IN THE UNITED STATES, 1960 TO 1982

Table 7-8 (found on the textbook’s Web site) of Problem 7.17 gave data on the
per capita consumption of chickens (Y), per capita real (i.e., adjusted for infla-
tion) disposable income (X2), the real retail price of chicken (X3), the real retail
price of pork (X4), and the real retail price of beef (X5) for the United States for
the period 1960 to 1982.

Since in theory the demand for a commodity is generally a function of the
real income of the consumer, the real price of the product, and real prices of
competing or complementary products, the following demand function was
estimated: The dependent variable (Y) is the natural log of per capita consump-
tion of chickens in pounds.

Explanatory Standard error
variable Coefficient (se) t ratio p value

Constant 2.1898 0.1557 14.063 0.0000

ln X2 0.3426 0.0833 4.1140 0.0003

ln X3 -0.5046 0.1109 -4.550 0.0001 (8.15)
ln X4 0.1486 0.0997 1.4903 0.0767

ln X5 0.0911 0.1007 0.9046 0.1878

R2
= 0.9823; = 0.9784

Since we have fitted a log-linear demand function, all slope coefficients are
partial elasticities of Y with respect to the appropriate X variable. Thus, the
income elasticity of demand is about 0.34 percent, the own-price elasticity of
demand is about -0.50, the cross-(pork) price elasticity of demand is about 0.15,
and the cross-(beef) price elasticity of demand is about 0.09.

R
2

15J. Johnston, Econometric Methods, 3rd ed., McGraw-Hill, New York, 1984, p. 249.



As the previous results show, individually the income and own-price elastic-
ity of demand are statistically significant, but the two cross-price elasticities are
not. Incidentally, note that chicken is not a luxury consumption item since the
income elasticity is less than 1. The demand for chicken with respect to its own
price is price inelastic because, in absolute terms, the elasticity coefficient is less
than 1.

Although the two cross-price elasticities are positive, suggesting that the
other two meats are competing with chicken, they are not statistically signifi-
cant. Thus, it would seem that the demand for chicken is not affected by the
variation in the prices of pork and beef. But this might be a hasty conclusion, for
we have to guard against the possibility of multicollinearity. Let us therefore
consider some of the multicollinearity diagnostics discussed in Section 8.5.

Collinearity Diagnostics for the Demand Function 

for Chickens (Equation [8.15])

The Correlation Matrix Table 8-3 gives the pairwise correlations among
the (logs of the) four explanatory variables. As this table shows, the pairwise
correlations between the explanatory variables are uniformly high; about 0.98
between the log of real income and the log of the price of beef, about 0.95 be-
tween the logs of pork and beef prices, about 0.91 between the log of real in-
come and the log price of chicken, etc. Although such high pairwise correlations
are no guarantee that our demand function suffers from the collinearity prob-
lem, the possibility exists.

The Auxiliary Regressions This seems to be confirmed when we regress
each explanatory variable on the remaining explanatory variables, which can be
seen from the results presented in Table 8-4. As this table shows, all regressions
in this table have R2 values in excess of 0.94; the F test shown in Eq. (4.50) shows
that all these R2’s are statistically significant (see Problem 8.24), suggesting that
each explanatory variable in the regression (8.15) is highly collinear with the
other explanatory variables.
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PAIRWISE CORRELATIONS BETWEEN

EXPLANATORY VARIABLES OF EQUATION (8.15)

ln X2 ln X3 ln X4 ln X5

ln X2 1 0.9072 0.9725 0.9790

ln X3 0.9072 1 0.9468 0.9331

ln X4 0.9725 0.9468 1 0.9543

ln X5 0.9790 0.9331 0.9543 1

Note: The correlation matrix is symmetrical. Thus, the
correlation between ln X4 and ln X3 is the same as that
between ln X3 and ln X4.

TABLE 8-3
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Therefore, it is quite possible that in the regression (8.15) we did not find the
coefficients of the pork and beef price variables individually statistically signif-
icant. But this is all in accord with the theoretical consequences of high multi-
collinearity discussed earlier. It is interesting that despite high collinearity, the
coefficients of the real income and own-price variables turned out to be statisti-
cally significant. This may very well be due to the fact mentioned by Johnston
in footnote 15.

As this example shows, we must be careful about judging the individual
significance of an explanatory variable in the presence of a high degree of
collinearity. We will return to this example in the following section when we
consider remedial measures for multicollinearity.

8.8 WHAT TO DO WITH MULTICOLLINEARITY:

REMEDIAL MEASURES

Suppose on the basis of one or more of the diagnostic tests discussed in
Section 8.5 that we find a particular problem is plagued by multicollinearity.
What solution(s), if any, can be used to reduce the severity of the collinearity
problem, if not eliminate it completely? Unfortunately, as in the case of
collinearity diagnostics, there is no surefire remedy; there are only a few rules
of thumb. This is so because multicollinearity is a feature of a particular sam-
ple and not necessarily a feature of the population. Besides, despite near
collinearity, OLS estimators still retain their BLUE property. It is true that one
or more regression coefficients can be individually statistically insignificant or
that some of them can have the wrong signs. If the researcher is bent on re-
ducing the severity of the collinearity problem, then he or she may try one or
more of the following methods, keeping in mind that if the particular sample
is “ill-conditioned,” there is not much that can be done. With this caveat, let us
consider the various remedies that have been discussed in the econometric
literature.

AUXILIARY REGRESSIONS

ln X2 = 0.9460 - 0.8324 ln X3 + 0.9483 ln X4 + 1.0176 ln X5

t = (2.5564) (-3.4903) (5.6590) (6.7847)

R2
= 0.9846

ln X3 = 1.2332 - 0.4692 ln X2 + 0.6694 ln X4 + 0.5955 ln X5

t = (8.0053) (-3.4903) (4.8652) (3.7848)

R2
= 0.9428

ln X4 = -1.0127 + 0.6618 ln X2 + 0.8286 ln X3 - 0.4695 ln X5

t = (-3.7107) (5.6590) (4.8652) (-2.2879)

R2
= 0.9759

ln X5 = -0.7057 + 0.6956 ln X2 + 0.7219 ln X3 - 0.4598 ln X4

t = (-2.2362) (6.7847) (3.7848) (-2.2870)

R2
= 0.9764

TABLE 8-4



Dropping a Variable(s) from the Model

Faced with severe multicollinearity, the simplest solution might seem to be to
drop one or more of the collinear variables. Thus, in our demand function for
chickens, the regression (8.15), since the three price variables are highly correlated,
why not simply drop, say, the pork and beef price variables from the model?

But this remedy can be worse than the disease (multicollinearity). When for-
mulating an economic model, such as the regression (8.15), we base the model
on some theoretical considerations. In our example, following economic theory,
we expect all three prices to have some effect on the demand for chicken since
the three meat products are to some extent competing products. Therefore, eco-
nomically speaking, the regression (8.15) is an appropriate demand function.
Unfortunately, in our regression results based on the particular sample data
given in Table 7-8 we were unable to detect the separate influence of the prices
of pork and beef on the quantity of chicken demanded. But dropping those
variables from the model will lead to what is known as model specification
error, a topic that we discussed in Chapter 7. As we saw, if we drop a variable
from a model simply to eliminate the collinearity problem and to estimate a
model without that variable, the estimated parameters of the reduced model
may turn out to be biased. To give some idea about this bias, let us present the
results of the demand function for chickens without the pork and beef price
variables:

ln Y = 2.0328 + 0.4515 ln X2 - 0.3722 ln X3

t = (17.497) (18.284) (-5.8647) (8.16)

R2
= 0.9801; = 0.9781

As these results show, compared to the regression (8.15), the income elasticity
has gone up but the own-price elasticity, in absolute value, has declined. In
other words, estimated coefficients of the reduced model seem to be biased.

As this discussion indicates, there may be a trade-off involved. In reducing
the severity of the collinearity problem, we may be obtaining biased estimates
of the coefficients retained in the model. The best practical advice is not to drop a
variable from an economically viable model just because the collinearity problem is seri-
ous. Whether a chosen model is economically correct is, of course, an important
issue, and we have listed in Chapter 7 the attributes of a good model. In pass-
ing, note that in regression (8.15) the t value of the pork price coefficient was in
excess of 1. Therefore, following our discussion in Chapter 4, if we drop this
variable from the model, the adjusted R2 will decrease, which is the case in the
present instance.

Acquiring Additional Data or a New Sample

Since multicollinearity is a sample feature, it is possible that in another sample
involving the same variables, collinearity may not be as serious as in the first

R2
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sample. The important practical question is whether we can obtain another
sample, for collection of data can be costly.

Sometimes just acquiring additional data—increasing the sample size—can
reduce the severity of the collinearity problem. This can be seen easily from
formulas (8.12) and (8.13). For example, in the formula

(8.13)

for a given and R2, if the sample size of X3 increases, will generally in-
crease (Why?), as a result of which the variance of b3 will tend to decrease, and
with it the standard error of b3.

As an illustration, consider the following regression of consumption expen-
diture (Y) on income (X2) and wealth (X3) based on 10 observations:16

(8.17)

This regression shows that the wealth coefficient is not statistically significant,
say, at the 5% level.

But when the sample size is increased to 40 observations, the following
results are obtained:

(8.18)

Now the wealth coefficient is statistically significant at the 5% level.
Of course, as in the case of obtaining a new sample, getting additional data

on variables already in the sample may not be feasible because of cost and other
considerations. But if these constraints are not very prohibitive, by all means
this remedy is certainly feasible.

Rethinking the Model

Sometimes a model chosen for empirical analysis is not carefully thought out—
maybe some important variables are omitted, or maybe the functional form of
the model is incorrectly chosen. Thus, in our demand function for chicken,
instead of the log-linear specification, the demand function is probably linear in
variables (LIV). It is possible that in the LIV specification the extent of collinear-
ity may not be as high as in the log-linear specification.

 t = (0.8713)  (6.0014)     (2.0641)    R2
= 0.9672

 YNi = 2.0907 + 0.7299X2i + 0.0605X3i

 t = (3.875)   (2.7726)      (-1.1595)    R2
= 0.9682

 se = (6.2801)  (0.31438)     (0.0301)

 YNi = 24.337 + 0.87164X2i - 0.0349X3i

gx2
3i␴2

 var (b3) =
␴2

ax2
3i A1 - R2

2 B

16I am indebted to Albert Zucker for providing the results given in regressions (8.17) and (8.18).



Returning to the demand function for chicken, we fitted the LIV model to the
data given in Table 7-8, with the following results:

t = (10.015)(1.0241) (-3.7530) (3.1137) (1.3631) (8.19)

R2
= 0.9426; = 0.9298

Compared to the regression (8.15), we now observe that in the LIV specification,
the income coefficient is statistically insignificant but the pork price coefficient
is statistically significant. What accounts for this change? Perhaps there is a high
degree of collinearity between the income and the price variables. As a matter
of fact, we found out from Table 8-4 that this was the case. As noted earlier, in
the presence of a high degree of collinearity it is not possible to estimate a sin-
gle regression coefficient too precisely (i.e., with a smaller standard error).

Prior Information about Some Parameters

Sometimes a particular phenomenon, such as a demand function, is investi-
gated time and again. From prior studies it is possible that we can have some
knowledge of the values of one or more parameters. This knowledge can be
profitably used in the current sample. To be specific, let us suppose a demand
function for widgets was estimated in the past and it was found that the income
coefficient had a value of 0.9, which was statistically significant. But in the data
of Table 8-1, as previously seen, we could not assess the individual impact of
earnings (a measure of income) on the quantity demanded. If there is reason to
believe that the past value of the income coefficient of 0.9 has not changed
much, we could reestimate Eq. (8.8) as follows:

Quantity = B1 + B2 price + B3 earnings + ui

= B1 + B2 price + 0.9 earnings + ui (8.20)

Quantity - 0.9 earnings = B1 + B2 price + ui

where use is made of the prior information that B3 = 0.9.
Assuming that the prior information is correct, we have resolved the

collinearity problem, for on the right-hand side of Equation (8.20) we now have
only one explanatory variable and no question of collinearity arises. To run
Eq. (8.20), we only have to subtract from the quantity observation 0.9 times the
corresponding earnings observation and treat the resulting difference as the
dependent variable and regress it on price.17

R2

YN = 37.232 - 0.00501X2 - 0.6112X3 + 0.1984X4 + 0.0695X5
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ables tend to move with the business cycle. Here information from cross-sectional studies might be
used to estimate one or more parameters in the models based on time series data.
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Although an intuitively appealing method, the crux of the method lies in ob-
taining extraneous, or prior, information, which is not always possible. But,
more critically, even if we can obtain such information, to assume that the prior
information continues to hold in the sample under study may be a “tall” as-
sumption. Of course, if the income effect is not expected to vary considerably
from sample to sample, and if we do have prior information on the income
coefficient, this remedial measure can sometimes be employed.

Transformation of Variables

Occasionally, transformation of variables included in the model can minimize,
if not solve, the problem of collinearity. For example, in a study of the aggregate
consumption expenditure in the United States as a function of aggregate in-
come and aggregate wealth we might express aggregate consumption expendi-
ture on a per capita basis, that is, per capita consumption expenditure as a func-
tion of per capita income and per capita wealth. It is possible that if there is
serious collinearity in the aggregate consumption function, it may not be so se-
vere in the per capita consumption function. Of course, there is no guarantee
that such a transformation will always help, leaving aside for the moment the
question of whether the aggregate or per capita consumption function to begin
with is the appropriate model.

As an example of how a simple transformation of variables can reduce the
severity of collinearity, consider the following regression based on the U.S. data
for 1965 to 1980:18

t = N.A. (1.232) (1.844) R2
= 0.9894

(8.21)

where N.A. = not available
Y = imports ($, in billions)

X2 = the GNP ($, in billions)
X3 = the Consumer Price Index (CPI)

In theory, imports are positively related to the GNP (a measure of income) and
domestic prices.

The regression results show that neither the income nor the price coefficient
is individually statistically significant at the 5% level (two-tailed).19 But on the
basis of the F test, we can easily reject the null hypothesis that the two (partial)

YNt = -108.20 + 0.045X2t + 0.931X3t

18See Dominick Salvatore, Managerial Economics, McGraw-Hill, New York, 1989, pp. 156–157.
Notation is adapted.

19But note that the price coefficient is significant at the 5% level on the basis of the one-tailed
t test.



slope coefficients are jointly equal to zero (check this out), strongly suggesting
that the regression (8.21) is plagued by the collinearity problem. To resolve
collinearity, Salvatore obtained the following regression:

(8.22)

where N.A. = not available. This regression shows that real imports are statisti-
cally significantly positively related to real income, the estimated t value being
highly significant. Thus, the “trick” of converting the nominal variables into
“real” variables (i.e., transforming the original variables) has apparently elimi-
nated the collinearity problem.20

Other Remedies

The preceding remedies are only suggestive. There are several other remedies
suggested in the literature, such as combining time series and cross-sectional
data, factor or principal component analysis and ridge regression. But a full
discussion of these topics would not only take us far afield, it would also
require statistical knowledge that is way beyond that assumed in this text.

8.9 SUMMARY

An important assumption of the classical linear regression model is that there is
no exact linear relationship(s), or multicollinearity, among explanatory vari-
ables. Although cases of exact multicollinearity are rare in practice, situations of
near exact or high multicollinearity occur frequently. In practice, therefore, the
term multicollinearity refers to situations where two or more variables can be
highly linearly related.

The consequences of multicollinearity are as follows. In cases of perfect mul-
ticollinearity we cannot estimate the individual regression coefficients or their
standard errors. In cases of high multicollinearity individual regression coeffi-
cients can be estimated and the OLS estimators retain their BLUE property. But
the standard errors of one or more coefficients tend to be large in relation to
their coefficient values, thereby reducing t values. As a result, based on esti-
mated t values, we can say that the coefficient with the low t value is not statis-
tically different from zero. In other words, we cannot assess the marginal or

 t = N.A.    (12.22)        R2
= 0.9142

 
YNt
X3t

= -1.39 + 0.202 

X2t

X3t
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20Some authors warn against transforming variables routinely in this fashion. For details, see
E. Kuh and J. R. Meyer, “Correlation and Regression Estimates When the Data Are Ratios,”
Econometrica, pp. 400–416, October 1955. Also, see G. S. Maddala, Introduction to Econometrics,
Macmillan, New York, 1988, pp. 172–174.
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individual contribution of the variable whose t value is low. Recall that in a mul-
tiple regression the slope coefficient of an X variable is the partial regression coef-
ficient, which measures the (marginal or individual) effect of that variable on the
dependent variable, holding all other X variables constant. However, if the ob-
jective of study is to estimate a group of coefficients fairly accurately, this can be
done so long as collinearity is not perfect.

In this chapter we considered several methods of detecting multicollinearity,
pointing out their pros and cons. We also discussed the various remedies that
have been proposed to solve the problem of multicollinearity and noted their
strengths and weaknesses.

Since multicollinearity is a feature of a given sample, we cannot foretell
which method of detecting multicollinearity or which remedial measure will
work in any given concrete situation.

KEY TERMS AND CONCEPTS

The key terms and concepts introduced in this chapter are

Perfect and imperfect 
collinearity
a) near or very high

multicollinearity
b) perfectly linearly related
c) perfect collinearity or

multicollinearity 
d) near perfect linear 

relationship
Partial correlation coefficient
Subsidiary regression or auxiliary

regression
Variance inflation factor (VIF)

Remedial measures for
multicollinearity
a) dropping variables; model

specification error
b) acquiring a new sample (or

additional data)
c) rethinking the model
d) extraneous, or prior,

information
e) transformation of variables
f) other—factor or principal

component analysis; ridge
regression

QUESTIONS

8.1. What is meant by collinearity? And by multicollinearity?
8.2. What is the difference between perfect and imperfect multicollinearity?
8.3. You include the subject’s height, measured in inches, and the same subject’s

height measured in feet in a regression of weight on height. Explain intuitively
why ordinary least squares (OLS) cannot estimate the regression coefficients in
such a regression.

8.4. Consider the model

where Y = the total cost of production and X = the output. Since X2 and X3 are
functions of X, there is perfect collinearity. Do you agree? Why or why not?

Yi = B1 + B2Xi + B3Xi
2
+ B4Xi

3
+ ui



8.5. Refer to Equations (4.21), (4.22), (4.25), and (4.27). Let x3i = 2x2i. Show why it is
impossible to estimate these equations.

8.6. What are the theoretical consequences of imperfect multicollinearity?
8.7. What are the practical consequences of imperfect multicollinearity?
8.8. What is meant by the variance inflation factor (VIF)? From the formula (8.14),

can you tell the least possible and the highest possible value of the VIF?
8.9. Fill in the gaps in the following sentences:

a. In cases of near multicollinearity, the standard errors of regression coeffi-
cients tend to be _______ and the t ratios tend to be _______.

b. In cases of perfect multicollinearity, OLS estimators are _______ and their
variances are _______.

c. Ceteris paribus, the higher the VIF is, the higher the _______ of OLS esti-
mators will be.

8.10. State with reasons whether the following statements are true or false:
a. Despite perfect multicollinearity, OLS estimators are best linear unbiased

estimators (BLUE).
b. In cases of high multicollinearity, it is not possible to assess the individual

significance of one or more partial regression coefficients.
c. If an auxiliary regression shows that a particular is high, there is definite

evidence of high collinearity.
d. High pairwise correlations do not necessarily suggest that there is high

multicollinearity.
e. Multicollinearity is harmless if the objective of the analysis is prediction only.

8.11. In data involving economic time series such as unemployment, money supply,
interest rate, or consumption expenditure, multicollinearity is usually sus-
pected. Why?

8.12. Consider the following model:

where Y = the consumption
X = the income
t = the time

This model states that consumption expenditure at time t is a linear function
of income not only at time t but also of income in three previous time periods.
Such models are called distributed lag models and represent what are called
dynamic models (i.e., models involving change over time).
a. Would you expect multicollinearity in such models and why?
b. If multicollinearity is suspected, how would you get rid of it?

PROBLEMS

8.13. Consider the following set of hypothetical data:

Y: -10 -8 -6 -4 -2 0 2 4 6 8 10
X2: 1 2 3 4 5 6 7 8 9 10 11
X3: 1 3 5 7 9 11 13 15 17 19 21

Yt = B1 + B2Xt + B3Xt-1 + B4Xt-2 + B3Xt-3 + ut

R2
i
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Suppose you want to do a multiple regression of Y on X2 and X3.
a. Can you estimate the parameters of this model? Why or why not?
b. If not, which parameter or combination of parameters can you estimate?

8.14. You are given the annual data in Table 8-5 for the United States for the pe-
riod 1971 to 1986. Consider the following aggregate demand function for
passenger cars:

where ln = the natural log
a. What is the rationale for the introduction of both price indexes X2 and X3?
b. What might be the rationale for the introduction of the “employed civilian

labor force” (X6) in the demand function?
c. How would you interpret the various partial slope coefficients?
d. Obtain OLS estimates of the preceding model.

8.15. Continue with Problem 8.14. Is there multicollinearity in the previous prob-
lem? How do you know?

8.16. If there is collinearity in Problem 8.14, estimate the various auxiliary regres-
sions and find out which of the X variables are highly collinear.

ln Yi = B1 + B2 ln X2t + B3 ln X3t + B4 ln X4t + B5 ln X5t + B6 ln X6t + ut

DEMAND FOR NEW PASSENGER CARS IN THE UNITED STATES,

1971 TO 1986

Year Y X2 X3 X4 X5 X6

1971 10227 112.0 121.3 776.8 4.89 79367

1972 10872 111.0 125.3 839.6 4.55 82153

1973 11350 111.1 133.1 949.8 7.38 85064

1974 8775 117.5 147.7 1038.4 8.61 86794

1975 8539 127.6 161.2 1142.8 6.16 85846

1976 9994 135.7 170.5 1252.6 5.22 88752

1977 11046 142.9 181.5 1379.3 5.50 92017

1978 11164 153.8 195.4 1551.2 7.78 96048

1979 10559 166.0 217.4 1729.3 10.25 98824

1980 8979 179.3 246.8 1918.0 11.28 99303

1981 8535 190.2 272.4 2127.6 13.73 100397

1982 7980 197.6 289.1 2261.4 11.20 99526

1983 9179 202.6 298.4 2428.1 8.69 100834

1984 10394 208.5 311.1 2670.6 9.65 105005

1985 11039 215.2 322.2 2841.1 7.75 107150

1986 11450 224.4 328.4 3022.1 6.31 109597

Notes:Y = New passenger cars sold (thousands), seasonally unadjusted.
X2 = New cars Consumer Price Index (1967 = 100), seasonally unadjusted.
X3 = Consumer Price Index, all items, all urban consumers (1967 = 100),

seasonally unadjusted.
X4 = Personal disposable income (PDI) ($, in billions), unadjusted for

seasonal variation.
X5 = Interest rate (percent), finance company paper placed directly.
X6 = Employed civilian labor force (thousands), unadjusted for seasonal

variation.
Source: Business Statistics, 1986, a Supplement to the Current Survey of

Business, U.S. Department of Commerce.

TABLE 8-5



8.17. Continuing with the preceding problem, if there is severe collinearity, which
variable would you drop and why? If you drop one or more X variables, what
type of error are you likely to commit?

8.18. After eliminating one or more X variables, what is your final demand function
for passenger cars? In what ways is this “final” model better than the initial
model that includes all X variables?

8.19. What other variables do you think might better explain the demand for auto-
mobiles in the United States?

8.20. In a study of the production function of the United Kingdom bricks, pottery,
glass, and cement industry for the period 1961 to 1981, R. Leighton Thomas
obtained the following results:21

1. log Q = -5.04 + 0.887 log K + 0.893 log H

se = (1.40) (0.087) (0.137) R2
= 0.878

2. log Q = -8.57 + 0.0272t + 0.460 log K + 1.285 log H

se = (2.99) (0.0204) (0.333) (0.324) R2
= 0.889

where Q = the index of production at constant factor cost
K = the gross capital stock at 1975 replacement cost
H = hours worked
t = the time trend, a proxy for technology

The figures in parentheses are the estimated standard errors.
a. Interpret both regressions.
b. In regression (1) verify that each partial slope coefficient is statistically

significant at the 5% level.
c. In regression (2) verify that the coefficients of t and log K are individually

insignificant at the 5% level.
d. What might account for the insignificance of log K variable in Model 2?
e. If you were told that the correlation coefficient between t and log K is 0.980,

what conclusion would you draw?
f. Even if t and log K are individually insignificant in Model 2, would you

accept or reject the hypothesis that in Model 2 all partial slopes are simul-
taneously equal to zero? Which test would you use?

g. In Model 1, what are the returns to scale?
8.21. Establish Eqs. (8.12) and (8.13). (Hint: Find out the coefficient of correlation be-

tween X2 and X3, say, .)
8.22. You are given the hypothetical data in Table 8-6 on weekly consumption

expenditure (Y), weekly income (X2), and wealth (X3), all in dollars.
a. Do an OLS regression of Y on X2 and X3.
b. Is there collinearity in this regression? How do you know?
c. Do separate regressions of Y on X2 and Y on X3. What do these regressions

reveal?
d. Regress X3 on X2. What does this regression reveal?
e. If there is severe collinearity, would you drop one of the X variables? Why

or why not?

r2
23

270 PART TWO: REGRESSION ANALYSIS IN PRACTICE

21See R. Leighton Thomas, Introductory Econometrics: Theory and Applications, Longman, London,
1985, pp. 244–246.
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8.23. Utilizing the data given in Table 8-1, estimate Eq. (8.20) and compare your
results.

8.24. Check that all R2 values in Table 8-4 are statistically significant.
8.25. Refer to Problem 7.19 and the data given in Table 7-9. How would your

answer to this problem change knowing what you now know about multi-
collinearity? Present the necessary regression results.

8.26. Refer to Problem 2.16. Suppose you regress ASP on GPA, GMAT, acceptance
rate (%), tuition, and recruiter rating. A priori, would you face the multi-
collinearity problem? If so, how would you resolve it? Show all the necessary
regression results.

8.27. Based on the quarterly data for the U.K. for the period 1990-1Q to 1998-2Q,
the following results were obtained by Asteriou and Hall.22 The dependent
variable in these regressions is Log(IM) = logarithm of imports (t ratios in
parentheses).

Explanatory variable Model 1 Model 2 Model 3

Intercept 0.6318 0.2139 0.6857
(1.8348) (0.5967) (1.8500)

Log(GDP) 1.9269 1.9697 2.0938
(11.4117) (12.5619) (12.1322)

Log(CPI) 0.2742 1.0254 —
(1.9961) (3.1706) 0.1195

Log(PPI) — -0.7706 0.1195
(-2.5248) (0.8787)

Adjusted-R2 0.9638 0.9692 0.9602

Notes: GDP = gross domestic product
CPI = Consumer Price Index
PPI = producer price index

HYPOTHETICAL DATA ON CONSUMPTION

EXPENDITURE (Y ), WEEKLY INCOME (X2),

AND WEALTH (X3)

Y X2 X3

70 80 810

65 100 1009

90 120 1273

95 140 1425

110 160 1633

115 180 1876

120 200 2252

140 220 2201

155 240 2435

150 260 2686

TABLE 8-6

22See Dimitrios Asteriou and Stephen Hall, Applied Econometrics: A Modern Approach,
Palgrave/Macmillan, New York, 2007, Chapter 6. Note that these results are summarized from var-
ious tables given in that chapter.



a. Interpret each equation.
b. In Model 1, which drops Log(PPI), the coefficient of Log(CPI) is positive

and significant at about the 5% level. Does this make economic sense?
c. In Model 3, which drops Log(CPI), the coefficient of Log(PPI) is positive

but statistically insignificant. Does this make economic sense?
d. Model 2 includes the logs of both price variables and their coefficients are

individually statistically significant. However, the coefficient of Log(CPI) is
positive and that of Log(PPI) is negative. How would you rationalize this
result?

e. Do you think multicollinearity is the reason why some of these results are
conflicting? Justify your answer.

f. If you were told that the correlation between PPI and CPI is 0.9819, would
that suggest that there is a multicollinearity problem?

g. Of the three models given above, which would you choose and why?
8.28. Table 8-7 on the textbook’s Web site gives data on imports, GDP, and the

Consumer Price Index (CPI) for the United States over the period 1975–2005.
You are asked to consider the following model:

a. Estimate the parameters of this model using the data given in the table.
b. Do you suspect that there is multicollinearity in the data?
c. Regress: (1) 

(2) 

(3) 

On the basis of these regressions, what can you say about the nature of
multicollinearity in the data?

d. Suppose there is multicollinearity in the data but and are individually
significant at the 5% level and the overall F test is also significant. In this
case, should we worry about the collinearity problem?

8.29. Table 8-8 on the textbook’s Web site gives data on new passenger cars sold in
the United States as a function of several variables.
a. Develop a suitable linear or log-linear model to estimate a demand func-

tion for automobiles in the United States.
b. If you decide to include all the regressors given in the table as explanatory

variables, do you expect to face the multicollinearity problem? Why?
c. If you do expect to face the multicollinearity problem, how will you go

about resolving the problem? State your assumptions clearly and show all
calculations.

8.30. As cheese ages, several chemical processes take place that determine the taste
of the final product. Table 8-9 on the textbook’s Web site contains data on the
concentrations of various chemicals in 30 samples of mature cheddar cheese
and a subjective measure of taste for each sample. The variables Acetic and
H2S are the natural logarithm of the concentration of acetic acid and hydrogen
sulfide, respectively. The variable lactic has not been log-transformed.
a. Draw a scatterplot of the four variables.
b. Do a bivariate regression of taste on acetic and H2S and interpret your

results.

␤N 3␤N 2

ln GDPt = C1 + C2 ln CPIt

ln Importst = B1 + B2 ln CPIt

ln Importst = A1 + A2 ln GDPt

ln Importst = ␤1 + ␤2 ln GDPt + ␤3 ln CPIt + ut
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c. Do a bivariate regression of taste on lactic and H2S. How do interpret the
results?

d. Do a multiple regression of taste on acetic, H2S, and lactic. Interpret your
results.

e. Knowing what you know about multicollinearity, how would you decide
among these regressions?

f. What overall conclusions can you draw from your analysis?
8.31. Table 8-10 on the textbook’s Web site gives data on the average salary of top

managers (in thousands of Dutch guilders), profit (in millions of Dutch
guilders), and turnover (in millions of Dutch guilders) for 84 of the largest firms
in the Netherlands.23 Let Y = salary, X2 = profit, and X3 = turnover.
a. Estimate the following regression:

where ln = natural logarithm.
b. Are all the slope coefficients individually statistically significant at the 5%

level?
c. Are the slope coefficients together statistically significant at the 5% level?

Which test would you use and why?
d. If the answer to (b) is yes, and the answer to (a) is no, what may be the

reason(s)?
e. If you suspect multicollinearity, how would you find that out? Which

test(s) would you use?
Note: Show all your calculations.

ln Yi = B1 + B2 ln X2 + B3 ln X3 + ui

23These data are from Christiaan Heij, Paul de Boer, Philip Hans Franses, Teun Kloek, and
Herman K. van Dijk, Econometric Methods with Applications in Business and Economics, Oxford
University Press, 2004. See their Web site at www.oup.com/uk/economics/cws. The original data
are for 100 large firms, but we have included the data for 84 firms because for 16 firms, data on one
or more variables were not available.
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CHAPTER 9
HETEROSCEDASTICITY:
WHAT HAPPENS IF THE
ERROR VARIANCE IS
NONCONSTANT?

An important assumption of the classical linear regression model (CLRM) is
that the disturbances ui entering the population regression function (PRF) are
homoscedastic; that is, they all have the same variance, . If this is not the case—
if the variance of ui is , indicating that it is varying from observation to
observation (notice the subscript on )—we have the situation of heteroscedas-
ticity, or unequal, or nonconstant, variance.

However, the assumption of homoscedasticity is imposed by the CLRM. There
is no guarantee in practice that this assumption will always be fulfilled. Therefore,
the major goal of this chapter is to find out what happens if this assumption is not
fulfilled. Specifically, we seek answers to the following questions:

1. What is the nature of heteroscedasticity?
2. What are its consequences?
3. How do we detect that it is present in a given situation?
4. What are the remedial measures if heteroscedasticity is a problem?

9.1 THE NATURE OF HETEROSCEDASTICITY

To explain best the difference between homoscedasticity and heteroscedasticity,
let us consider a two-variable linear regression model in which the dependent
variable Y is personal savings and the explanatory variable X is personal
disposable, or after-tax, income (PDI). Now consider the diagrams in Figure 9-1
(cf. Figure 3-2[a] and 3-2[b]).

Figure 9-1(a) shows that as PDI increases, the mean, or average, level of savings
also increases, but the variance of savings around its mean value remains the same
at all levels of PDI. Recall that the PRF gives the mean, or average, value of the

␴2
␴2
i
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dependent variable for given levels of the explanatory variable(s). This is the case
of homoscedasticity, or equal variance. On the other hand, as Figure 9-1(b) shows,
although the average level of savings increases as the PDI increases, the variance
of savings does not remain the same at all levels of PDI. Here it increases with
PDI. This is the case of heteroscedasticity, or unequal variance. Put differently,
Figure 9-1(b) shows that high-income people, on average, save more than low-
income people, but there is also more variability in their savings. This is not only
plausible; it isalsoborneoutbyacasualglanceatU.S. savingsandincomestatistics.
After all, there is very little discretionary income left to save for people on the lower
rung of the income distribution ladder. Therefore, in a regression of savings on in-
come, error variances (i.e., variance of ui) associated with high-income families are
expected to be greater than those associated with low-income families.

Symbolically, we express heteroscedasticity as

(9.1)

Notice again the subscript on , which is a reminder that the variance of ui, is
no longer constant but varies from observation to observation.

Researchers have observed that heteroscedasticity is usually found in cross-
sectional data and not in time series data.1 In cross-sectional data we generally
deal with members of a population at a given point in time, such as individual
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(a) Homoscedasticity; (b) heteroscedasticityFIGURE 9-1

1This is, strictly speaking, not always true. In the autoregressive conditional heteroscedasticity
(ARCH) models, heteroscedasticity can be observed in time series data also. But this is an involved
topic and we will not discuss it in this text. For a discussion of the ARCH model, see Gujarati and
Porter, Basic Econometrics, McGraw-Hill, 5th ed., New York, 2009, pp. 791–796.



consumers or their families; firms; industries; or geographical subdivisions, such
as a state, county, or city. Moreover, these members may be of different sizes, such
as small, medium, or large firms, or low, medium, or high income. In other words,
there may be some scale effect. In time series data, on the other hand, the variables
tend to be of similar orders of magnitude because researchers generally collect
data for the same entity over a period of time. Examples are the gross domestic
product (GDP), savings, or unemployment rate, say, over the period 1960 to 2008.

As a concrete illustration of heteroscedasticity, we present two examples.

Example 9.1. Brokerage Commission on the NYSE After Deregulation

Between April and May of 1975 the Securities and Exchange Commission
(SEC) abolished the practice of fixed commission rates on stock transactions
on the New York Stock Exchange (NYSE) and allowed stockbrokers to charge
commission on a competitive basis. Table 9-1 presents data on the average
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COMMISSION RATE TRENDS, NEW YORK STOCK EXCHANGE, 

APRIL 1975–DECEMBER 1978

X1 X2 X3 X4

April 1975 59.60 45.70 27.60 15.00

June 54.50 36.80 21.30 12.10

September 51.70 34.50 20.40 11.50

December 48.90 31.90 18.90 10.40

March 1976 50.30 33.80 19.00 10.80

June 50.00 33.40 19.50 10.90

September 46.70 31.10 18.40 10.20

December 47.00 31.20 17.60 10.00

March 1977 44.30 28.80 16.00 9.80

June 43.70 28.10 15.50 9.70

September 40.40 26.10 14.50 9.10

December 40.40 25.40 14.00 8.90

March 1978 40.20 25.00 13.90 8.10

June 43.10 27.00 14.40 8.50

September 42.50 26.90 14.40 8.70

December 40.70 24.50 13.70 7.80

Standard 
Name n Mean deviation Variance Minimum Maximum

X1 16 46.500 5.6767 32.225 40.200 59.600

X2 16 30.637 5.5016 30.268 24.500 45.700

X3 16 17.444 3.7234 13.864 13.700 27.600

X4 16 10.094 1.7834 3.1806 7.8000 15.000

Notes: X1 = Commission rate, cents per share (for 0 to 199 shares)
X2 = Commission rate, cents per share (for 200 to 299 shares)
X3 = Commission rate, cents per share (for 1000 to 9999 shares)
X4 = Commission rate, cents per share (for 10,000+ shares)

Source: S. Tinic and R. West, “The Securities Industry Under Negotiated
Brokerage Commissions: Changes in the Structure and Performance of NYSE
Member Firms,” The Bell Journal of Economics, vol. 11, no. 1, Spring 1980.

TABLE 9-1



per share commission (in cents) charged by the brokerage industry to
institutional investors for selected quarterly periods between April 1975 and
December 1978.

Notice two interesting features of this table. There is a downward trend in
the commission rate charged since the deregulation. But, more interestingly,
there is a substantial difference in the average commission charged and the
variance of commission among the four categories of institutional investors
shown in the table. The smallest institutional investors, those with share
transactions in the range of 0 to 199 shares, on average, paid a commission of
46.5 cents per share with a variance of 32.22, whereas the largest institutional
investors paid, on average, a rate of only 10.1 cents per share with a variance
of only 3.18. All this can be seen more vividly in Figure 9-2.

What explains this difference? Obviously, some scale effect seems to be
evident here—the larger the volume of the transaction is, the lower the total
cost of transacting is, and therefore the lower the average cost will be.
Economists would say that there are economies of scale in the brokerage indus-
try data given in Table 9-1. (But this may not necessarily be so. See Example 9.8
in Section 9.6.) Even if there are scale economies in the brokerage industry,
why should the variance of the commission rate in the four categories be
different? In other words, why is there heteroscedasticity? To attract the
business of big institutional investors such as pension funds and mutual funds,
brokerage firms compete so intensely among themselves that there is not much
variability in the commission rates they charge. Small institutional investors
may not have the same bargaining clout as large institutions, and hence
have more variability in the commission rates that they pay. These and other
reasons may explain the heteroscedasticity observed in the data of Table 9-1.
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Now if we were to develop a regression model to explain the commission
rate as a function of the number of share transactions (and other variables),
the error variance associated with high-transaction clients would be lower
than that associated with low-transaction clients.

Example 9.2. Wage and Related Data for 523 Workers

As an example of purely cross-sectional data with potential for
heteroscedasticity, consider the data given in Table 9-2, which is posted on
the book’s Web site.2

Data for 523 workers were collected on several variables, but to keep the
illustration simple, in this example we will consider only the relationship be-
tween Wage (per hour, $), Education (years of schooling), and Experience
(years of work experience). Let us suppose we want to find out how wages
behave in relation to education, holding all other variables constant. 

(9.2)

A priori, we would expect a positive relationship between wages and the two
regressors. The results of this regression for our data are as follows:

Dependent Variable: WAGE
Method: Least Squares (9.3)

Sample: 1 523
Included observations: 523

Coefficient Std. Error t-Statistic Prob.

C -4.524472 1.239348 -3.650687 0.0003
EDUC 0.913018 0.082190 11.10868 0.0000
EXPER 0.096810 0.017719 5.463513 0.0000

R-squared 0.194953 Mean dependent var 9.118623
Adjusted R-squared 0.191856 S.D. dependent var 5.143200
S.E. of regression 4.623573 F-statistic 62.96235
Sum squared resid 11116.26 Prob (F-statistic) 0.000000
Durbin-Watson stat 1.867684

Note: The Durbin-Watson statistic is discussed fully in Chapter 10. It is routinely produced as a part of
standard regression output.

These results confirm our prior expectations: Wages are strongly positively
related to education as well as work experience. The estimated coefficients of
the two regressors are highly significant, assuming the classical assumptions
hold.

Wagei = B1 + B2Edui + B3Exper + ui
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2These data are obtained from http://lib.stat.edu/datasets/CPS_85_wages and supplemented
from http://www.economicswebinstitute.org. The original data included 534 observations, but 11
observations had no work experience and so were dropped.



Since we have data on 523 workers with diverse backgrounds, it is likely
that the assumption of homoscedasticity may not hold. If that is the case, the
estimated standard errors and t values may not be reliable. To see if this
possibility exists, we plot the squared residuals obtained from regression
(9.3), first by themselves (Figure 9-3) and then against each regressor
(Figures 9-4[a] and [b]).

As Figures 9-4(a) and 9-4(b) show, there is considerable variability in the data,
raising the possibility that our regression sufffers from heteroscedasticity.

A cautionary note: It is true that the residuals ei are not the same thing as
the disturbances ui, although they are proxies. Therefore, from the observed
variability of squared ei we cannot categorically conclude that the variance of ui

is also variable.3 But as we will show later, in practice we do not observe ui,
and thus we will have to make do with ei. Therefore, by examining the pattern
of , we will have to infer something about the pattern of . Also keep in mind

that we estimate the variance of as , where n is the sample size and 

k is the number of parameters estimated, and this is an unbiased estimate of .
Suppose in our wage regression we believe, say, on the basis of Figures 9-3

and 9-4, that we can have a heteroscedasticity situation. What then? Are the
regression results given in the model (9.3), which are based explicitly on the
assumption of homoscedasticity, useless?4 To answer this question, we must
find out what happens to the OLS method if there is heteroscedasticity, which is
done in the following section.
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3For the relationship between and , see E. Malinvaud, Statistical Methods of Econometrics,
North-Holland, Amsterdam, 1970, pp. 88–89.

4As a practical matter, when running a regression, we generally assume that all assumptions of
the CLRM are fulfilled. It is only when we examine the regression results that we begin to look for
some clues which might tell us that one or more assumptions of the CLRM may not be tenable. This
is not altogether a bad strategy. Why “look a gift horse in the mouth”?
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9.2 CONSEQUENCES OF HETEROSCEDASTICITY

Recall that under the assumptions of the CLRM, ordinary least squares (OLS)
estimators are best linear unbiased estimators (BLUE); that is, in the class of linear
unbiased estimators least squares estimators have minimum variance—they
are efficient. Now assume that all assumptions of CLRM hold except that we
drop the assumption of homoscedasticity, allowing for the disturbance variance
to be different from observation to observation. The following consequences are
stated without proofs:5

1. OLS estimators are still linear.
2. They are still unbiased.
3. But they no longer have minimum variance; that is, they are no longer

efficient. This is so even in large samples. In short, OLS estimators are no
longer BLUE in small as well as in large samples (i.e., asymptotically).

4. The usual formulas to estimate the variances of OLS estimators are
generally biased. A priori we cannot tell whether the bias will be positive
(upward bias) or negative (downward bias). A positive bias occurs if
OLS overestimates the true variances of estimators, and a negative bias
occurs if OLS underestimates the true variances of estimators.
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5Some of the proofs and references to other proofs can be found in Gujarati and Porter, Basic
Econometrics, McGraw-Hill, 5th ed., New York, 2009, Chapter 11.
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5. The bias arises from the fact that , the conventional estimator of true
, namely, , is no longer an unbiased estimator of . (Note: The

d.f. are [n - 2] in the two-variable case, [n - 3] in the three-variable case,
etc.) Recall that enters into the calculations of the variances of OLS
estimators.

6. As a result, the usual confidence intervals and hypothesis tests based on
t and F distributions are unreliable. Therefore, every possibility exists of
drawing wrong conclusions if conventional hypothesis-testing proce-
dures are employed.

In short, in the presence of heteroscedasticity, the usual hypothesis-testing
routine is not reliable, raising the possibility of drawing misleading conclusions.

Returning to our wage regression (9.3), if we have reason to believe that
there is heteroscedasticity (the formal tests for the presence of heteroscedastic-
ity are discussed in Section 9.3), we should be very careful about interpreting
the results. In Eq. (9.3) the coefficient of education has a t value of about 11
and the coefficient of experience has a t value of about 5, both of which are
“highly” significant. But these values were obtained under classical assump-
tions. What happens if the error variance is in fact heteroscedastic? As we noted
previously, in that case the usual hypothesis-testing routine is not reliable, rais-
ing the possibility of drawing misleading conclusions.

As the preceding discussion indicates, heteroscedasticity is potentially a
serious problem, for it might destroy the whole edifice of the standard,
and so routinely used, OLS estimation and hypothesis-testing procedure.
Therefore, it is important in any concrete study, especially one involving
cross-sectional data, that we determine whether we have a heteroscedasticity
problem.

Before turning to the task of detecting heteroscedasticity, however, we
should know, at least intuitively, why OLS estimators are not efficient under
heteroscedasticity.

Consider our simple two-variable regression model. Recall from Chapter 2
that in OLS we minimize the residual sum of squares (RSS):

(2.13)

Now consider Figure 9-5.
This figure shows a hypothetical Y population against selected values of the

X variable. As this diagram shows, the variance of each Y (sub) population
corresponding to the given X is not the same throughout, suggesting het-
eroscedasticity. Suppose we choose at random a Y value against each X value.
The Y’s thus selected are encircled. As Equation (2.13) shows, in OLS each
receives the same weight whether it comes from a population with a large variance
or a small variance (compare points Yn and Y1). This does not seem sensible; ide-
ally, we would like to give more weight to observations coming from populations

e2i

a e2i = a (Yi - b1 - b2Xi)
2
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with smaller variances than those coming from populations with larger vari-
ances. This will enable us to estimate the PRF more accurately. And this is pre-
cisely what the method of weighted least squares (WLS) does, a method we will
discuss later.

9.3 DETECTION OF HETEROSCEDASTICITY: HOW DO WE KNOW

WHEN THERE IS A HETEROSCEDASTICITY PROBLEM?

Although theoretically it is easy to document the consequences of heteroscedas-
ticity, it is often not so easy to detect it in a concrete situation. This is under-
standable because can be known only if we have the entire Y population
corresponding to the chosen X’s, as in the hypothetical population of our math
S.A.T. score example given in Table 2-1. Unfortunately, however, we rarely have
the entire population available for study. Most generally, we have a sample of
some members of this population corresponding to the given values of the X
variables. Typically, what we have is a single value of Y for given values of the
X’s. And there is no way to determine the variance of the conditional distribu-
tion of Y for the given X from a single Y value.6

Now we are “between the devil and the deep blue sea.” If there is het-
eroscedasticity and we assume it away, we might be drawing misleading con-
clusions on the basis of the usual OLS procedure because OLS estimators are
not BLUE. But since our data are mostly based on a sample, we have no way of

␴2
i
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6Note that given the X’s, the variance of u and the variance of Y are the same. In other words, the
conditional variance of u (conditional on the given X’s) is the same as the conditional variance of Y,
as noted in footnote 3 of Chapter 3.



finding out the true error variance associated with each observation. If we could
find out the true , it would be possible to solve the problem of heteroscedas-
ticity, as is shown later in Section 9.4. What should we do?

As in the case of multicollinearity, we have no sure method of detecting het-
eroscedasticity; we only have several diagnostic tools that may aid us in detect-
ing it. Some of the diagnostics follow.

Nature of the Problem

Often the nature of the problem under consideration suggests whether het-
eroscedasticity is likely to be present. For example, following the pioneering work
of Prais and Houthakker7 on family budget studies, in which they found that
the residual variance around the regression of consumption on income in-
creased with income, it is now generally assumed that in similar studies we
can expect heteroscedasticity in the error term. As a matter of fact, in cross-
sectional data involving heterogeneous units, heteroscedasticity may be the rule
rather than the exception. Thus, in cross-sectional studies involving investment
expenditure in relation to sales, the rate of interest, etc., heteroscedasticity is
generally expected if small-, medium-, and large-sized firms are sampled
together. Similarly, in a cross-sectional study of the average cost of production
in relation to the output, heteroscedasticity is likely to be found if small-,
medium-, and large-sized firms are included in the sample. (See Example 9.8 in
Section 9.6.)

Graphical Examination of Residuals

In applied regression analysis it is always a good practice to examine the resid-
uals obtained from the fitted regression line (or plane), for they may provide
useful clues about the adequacy of the fitted model. Sometimes it is helpful to
create a residual plot of the squared residuals, especially in the context of
heteroscedasticity. The squared residuals can be plotted on their own (as in
Figure 9-3) or they can be plotted against one or more explanatory variables (as
in Figures 9-4[a] and 9-4[b]).

In Figure 9-6, we consider several likely patterns of squared residuals that
one may encounter in applied work. Figure 9-6(a) has no discernible system-
atic pattern between and X, suggesting that perhaps there is no het-
eroscedasticity in the data. On the other hand, Figures 9-6(b) to (e) exhibit sys-
tematic relationships between the squared residuals and the explanatory
variable X. For example, Figure 9-6(c) suggests a linear relationship between
the two, whereas Figures 9-6(d) and (e) suggest a quadratic relationship.
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7S. J. Prais and H. S. Houthakker, The Analysis of Family Budgets, Cambridge University Press,
New York, 1955.



Therefore, if in an application the squared residuals exhibit one of the patterns
shown in Figure 9-6(b) to (e), there is a possibility that heteroscedasticity is
present in the data.

Keep in mind that the preceding graphical plots are simply diagnostic tools.
Once the suspicion of heteroscedasticity is raised, we should proceed more
cautiously to make sure that this suspicion is not just a “red herring.” Shortly
we will present some formal procedures to do exactly that.

Meanwhile we can pose a couple of practical questions. Suppose we have a
multiple regression involving, say, four X variables. How do we proceed then?
The most straightforward way to proceed is to plot against each X variable. It
is possible that the patterns exhibited in Figure 9-6 can hold true of only one of
the X variables. Sometimes we can resort to a shortcut. Instead of plotting 
against each X variable, plot them against , the estimated mean value of Y.
Since is a linear combination of the X’s (Why?), a plot of squared residuals
against might exhibit one of the patterns shown in Figures 9-6(b) to (e),
suggesting that perhaps heteroscedasticity is present in the data. This avoids
the need for plotting the squared residuals against individual X variables,
especially if the number of explanatory variables in the model is very large.

Suppose we plot against one or more X variables or against , and further
suppose the plot suggests heteroscedasticity. What then? In Section 9.4 we
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will show how the knowledge that is related to an X variable or to enables
us to transform the original data so that in the transformed data there is no
heteroscedasticity.

Now let us return to our wage regression (9.3). In Figure 9-7 we plot the
squared residuals estimated from regression (9.3) against the estimated wage
values (Wagef) from this regression.8

This figure probably most closely resembles Figure 9-6(b), clearly suggesting
that the squared residuals are systematically related to estimated wage values
(which are linear combinations of education and experience), again supporting
our earlier doubt that regression (9.3) suffers from the heteroscedasticity problem.

Also note that there is one observation (an outlier?) that is quite visible. In a
sample of 523 observations, one outlier may not exert undue influence, but in
small samples it can. So keep in mind that outliers also may be a cause of
heteroscedasticity, especially in small samples.

Park Test9

The intuitively and visually appealing graphical test just presented can be
formalized. If there is heteroscedasticity, the heteroscedastic variance may␴2

i

YNie2i
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be systematically related to one or more explanatory variables. To see if this is
the case, we can regress on one or more of the X variables. For example, in the
two-variable model we can run the following regression:

(9.4)

where vi is a residual term. This is precisely what Park suggests. The particular
functional form (9.4) that he chose was for convenience.

Unfortunately, regression (9.4) is not operational since we do not know
the heteroscedastic variance . If we knew it, we could have solved the
heteroscedasticity problem easily, as we will show in Section 9.4. Park suggests
using ei as proxies for ui and running the following regression:

(9.5)

Instead of regressing the log of the squared residuals on the log of the X variable(s),
you can also regress the squared residuals on the X variable, especially if some
of the X values are negative. Where do we obtain ? They are obtained from the
original regression, such as the model (9.3).

The Park test therefore involves the following steps:

1. Run the original regression despite the heteroscedasticity problem, if
any.

2. From this regression, obtain the residuals ei, square them, and take their
logs (most computer programs can do this routinely).

3. Run the regression (9.5) using an explanatory variable in the original
model; if there is more than one explanatory variable, run the regression
(9.5) against each X variable. Alternatively, run the regression (9.5)
against , the estimated Y.10

4. Test the null hypothesis that B2 = 0; that is, there is no heteroscedasticity.
If a statistically significant relationship exists between ln and ln Xi, the
null hypothesis of no heteroscedasticity can be rejected, in which case we
will have to take some remedial measure(s), which is discussed in
Section 9.4.

5. If the null hypothesis is not rejected, then B1 in the regression (9.5) can be
interpreted as giving the value of the common, or homoscedastic,
variance, .␴2

ei
2

YNi

ei
2

ln e2i = B1 + B2 ln Xi + vi

␴2
i

ln ␴2
i = B1 + B2 ln Xi + vi

␴2
i
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10The choice of the appropriate functional form to run the regression (9.5) should also be con-
sidered. In some cases regressing on Xi might be the appropriate functional form; in some other
cases ln may be the appropriate dependent variable.e2i
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Example 9.3. Wage Regression and the Park Test

Let us illustrate the Park test with our wage example. Since there are two
regressors, education and work experience, we have three options: We can
regress wages on education only, or on experience only, or on both variables,
as in Eq. (9.3), and obtain the squared residuals from these regressions. We
can then regress the respective squared residuals on education only or on
experience only or on both. We will use the third option, leaving the other
two options for exercises at the end of the chapter.

Regressing squared residuals from Eq. (9.3) on the estimated wage values
(Wagef) from this regression, we obtain the following empirical counterpart
of the Park test:11

Dependent Variable: SS1
Method: Least Squares (9.6)
Included observations: 523

Coefficient Std. Error t-Statistic Prob.

C -10.35965 11.79490 -0.878316 0.3802
WAGEF 3.467020 1.255228 2.762063 0.0059

R-squared 0.014432 Mean dependent var 21.25480
Adjusted R-squared 0.012540 S.D. dependent var 65.53846
S.E. of regression 65.12624 F-statistic 7.628992
Sum squared resid 2209783. Prob (F-statistic) 0.005947
Durbin-Watson stat 2.026039

Note: SS1 are squared residuals from regression (9.3) and Wagef are the forecast values of wage
from regression (9.3).

Since the Wagef coefficient is statistically significant, it seems that the Park
test shows evidence of heteroscedasticity.

Before we accept the results of the Park test, we should note some of the
problems associated with the test: The error term in regression (9.6), vi, may
itself be heteroscedastic.12 In that case, we are back to square one. More test-
ing may be needed before we can conclude that the wage regression (9.3) is
free from heteroscedasticity.

Glejser Test13

The Glejser test is similar in spirit to the Park test. After obtaining residuals ei

from the original model, Glejser suggests regressing the absolute values of ei,
on the X variable that is thought to be closely associated with theⱍeiⱍ,
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11Since one forecast value of wage from Eq. (9.3) was negative, we cannot use the log transform.
We will therefore use squared residuals as the regressand.

12We tested the residuals from Eq. (9.6) for heteroscedasticity. On the basis of the Breusch-Pagan
test (see Exercise 9.23 and the White test (discussed below) we saw no evidence of heteroscedastic-
ity, but the Glejser test (discussed below) showed that there was heteroscedasticity.

13H. Glejser, “A New Test for Heteroscedasticity,” Journal of the American Statistical Association
(JASA), vol. 64, pp. 316–323.



heteroscedastic variance . Some functional forms that he has suggested for
this regression are

(9.7)

(9.8)

(9.9)

The null hypothesis in each case is that there is no heteroscedasticity; that is, B2 = 0.
If this hypothesis is rejected, there is probably evidence of heteroscedasticity.

Example 9.4. Wage Regression and the Glejser Test

The results of estimating these models from the residuals obtained from
regression (9.3) are as follows:

(9.10)

(9.11)

(9.12)

Note that we are using Educ as the regressor. In Exercise (9.22) you are asked
to use Exper and Wagef as regressors and compare your results with
Equations (9.10) to (9.12). It seems the Glejser test in various forms suggests
that the wage regression (9.3) probably suffers from heteroscedasticity.

A cautionary note regarding the Glejser test: As in the case of the Park test,
the error term vi in the regressions suggested by Glejser can itself be
heteroscedastic as well as serially correlated (see Chapter 10 on serial correla-
tion). Glejser, however, has maintained that in large samples the preceding
models are fairly good in detecting heteroscedasticity. Therefore, Glejser’s test
can be used as a diagnostic tool in large samples. Since the squared residuals,
rather than the absolute residuals, capture the spirit of the variance, tests
based on squared residuals (such as Parle, White, and Breusch-Pagan) may be
preferable to the Glejser test, as various examples discussed in this chapter
will show.

 t = (10.6923)(-2.6561)          r2 = 0.133

 ⱍeiⱍ = 4.3879 - 12.6224
1

Educi

 t = (-2.5068)(5.1764)          r2 = 0.0489

 ⱍeiⱍ = -3.1905 + 1.82631Educi

 t = (-0.4739)(5.5483)          r2 = 0.0557

 ⱍeiⱍ = -0.3208 + 0.2829Educi

 ⱍeiⱍ = B1 + B2a 1

Xi
b + vi

 ⱍeiⱍ = B1 + B21Xi + vi

 ⱍeiⱍ = B1 + B2Xi + vi

␴2
i
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White’s General Heteroscedasticity Test14

White’s general test of heteroscedasticity is quite easy to apply. To see how the
test is applied, suppose we have the following model:

(9.13)

White’s test proceeds as follows:

1. We first estimate regression (9.13) by OLS, obtaining the residuals, ei.
2. We then run the following auxiliary regression:

(9.14)

That is, the residuals obtained from the original regression (9.13) are
squared and regressed on all the original variables, their squared values,
and their cross-products. Additional powers of the original X variables can
also be added. The term vi is the residual term in the auxiliary regression.

3. Obtain the R2 value from the auxiliary regression (9.14). Under the null
hypothesis that there is no heteroscedasticity (i.e., all the slope coeffi-
cients in Eq. [9.14] are zero), White has shown that the R2 value obtained
from regression (9.14) times the sample size (=n), follows the distribu-
tion with d.f. equal to the number of explanatory variables in regression
(9.14) (excluding the intercept term):

(9.15)

where (k - 1) denotes d.f. In model (9.14) the d.f. are 5.
4. If the chi-square value obtained from Eq. (9.15) exceeds the critical chi-

square value at the chosen level of significance, or if the p value of
the computed chi-square value is reasonably low (say 1% or 5%), we can
reject the null hypothesis of no heteroscedasticity. On the other hand, if
the p value of the computed chi-square value is reasonably large (say
above 5% or 10%), we do not reject the null hypothesis.

Example 9.5. Wage Regression and White’s General Test
of Heteroscedasticity

To illustrate White’s test, we continue with the wage regression (9.3). The
empirical counterpart of Eq. (9.14) is as follows:

Heteroscedasticity Test: White

F-statistic 2.269163 Prob. F(5,517) 0.0465
Obs*R-squared 11.23102 Prob. Chi-Square(5) 0.0470
Scaled explained SS 52.67924 Prob. Chi-Square(5) 0.0000

n.R2 ' ␹2
k-1

␹2

e2i = A1 + A2X2i + A3X3i + A4X
2
2i + A5X

2
3i + A6X2iX3i + vi

Yi = B1 + B2X2i + B3X3i + ui
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14H. White, “A Heteroscedasticity Consistent Covariance Matrix Estimator and a Direct Test of
Heteroscedasticity,” Econometrica, vol. 48, no. 4, 1980, pp. 817–818.



Test Equation:
Dependent Variable: RESID^2 (9.16)
Method: Least Squares
Included observations: 523

Coefficient Std. Error t-Statistic Prob.

C 14.38296 71.34726 0.201591 0.8403
EDUC -1.183296 9.137968 -0.129492 0.8970
EDUC^2 0.168639 0.300676 0.560865 0.5751
EDUC*EXPER 0.022239 0.104117 0.213591 0.8309
EXPER -1.401130 1.912126 -0.732760 0.4640
EXPER^2 0.027113 0.020969 1.293039 0.1966

R-squared 0.021474 Mean dependent var 21.25480
Adjusted R-squared 0.012011 S.D. dependent var 65.53846
S.E. of regression 65.14369 F-statistic 2.269163
Sum squared resid 2193993. Prob (F-statistic) 0.046542
Durbin-Watson stat 2.016101

For present purposes the important statistic is found through Eq. (9.15),
which is 11.2310 in the present example. And this value is significant at the
5% level, again suggesting that the wage regression probably suffers from
heteroscedasticity.

If we do not include the cross-product terms in the White test, we obtain
with 2 d.f. This chi-square value has a probability of about

0.0078, which strongly suggests that the wage regression does suffer from
heteroscedasticity.

As the various heteroscedasticity tests suggest, the overall conclusion seems
to be that we do have the heteroscedasticity problem. This should not be a
surprising finding, for in large cross-section data with heterogeneous units in
the sample it is hard to maintain homogeneity. 

Note : Although we have shown the various tests in detail, this labor can be
reduced if we use statistical packages such as STATA and EViews. In EViews,
for example, once you estimate a regression, you can click on the View button
and choose the residuals test option. Once you invoke this option, EViews gives
you a choice of several heteroscedasticity tests. Choosing one or more of these
tests will provide the answer almost instantly. 

Other Tests of Heteroscedasticity

The heteroscedasticity tests that we have discussed in this section by no means
exhaust the list. We will now mention several other tests but will not discuss
them here because a full discussion would take us far afield.

1. Spearman’s rank correlation test (see Problem 9.13).
2. Goldfeld-Quandt test.
3. Bartlett’s homogeneity-of-variance test.
4. Peak test.

n.R2
L 9.69,
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5. Breusch-Pagan test.
6. CUSUMSQ test.

You may consult the references for details of these tests.15

9.4 WHAT TO DO IF HETEROSCEDASTICITY IS OBSERVED:

REMEDIAL MEASURES

As we have seen, heteroscedasticity does not destroy the unbiasedness prop-
erty of OLS estimators, but the estimators are no longer efficient, not even in
large samples. This lack of efficiency makes the conventional OLS hypothesis-
testing procedure of dubious value. Therefore, if heteroscedasticity is suspected
or diagnosed, it is important to seek remedial measures.

For example, in our wage-education example, based on Figure 9-7, there
was some indication that the wage regression given in Eq. (9.3) probably suf-
fers from heteroscedasticity. This was confirmed by the Park, Glejser, and
White tests. How can we solve this problem, if at all? Is there some way we can
“transform” the model (9.3) so that there is homoscedasticity? But what kind of
transformation? The answer depends on whether the true error variance, , is
known or unknown.

When ␴2
i Is Known:The Method of Weighted Least Squares (WLS)

To fix the ideas consider the two-variable PRF

(9.17)

where Y is, say, hourly wage earnings and X is education, as measured by
years of schooling. Assume for the moment that the true error variance is
known; that is, the error variance for each observation is known. Now
consider the following “transformation” of the model (9.17):

(9.18)

All we have done here is to divide or “deflate” both the left- and right-hand
sides of the regression (9.17) by the “known” , which is simply the square root
of the variance .

Now let

(9.19)

We can call vi the “transformed” error term. Is vi homoscedastic? If it is, then
the transformed regression (9.18) does not suffer from the problem of

ui =
ui
␴i

␴2
i

␴i

Yi
␴i

= B1a 1

␴i
b + B2 a Xi

␴i
b +

ui
␴i

␴2
i

Yi = B1 + B2Xi + ui

␴2
i
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discussed in Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill, New York, 2009, Chapter 11.
This text also gives references to the other tests mentioned earlier. See also Problem 9.13.



heteroscedasticity. Assuming all other assumptions of the CLRM are fulfilled,
OLS estimators of the parameters in Equation (9.18) will be BLUE and we can
then proceed to statistical inference in the usual manner.

Now it is not too difficult to show that the error term vi is homoscedastic.
From Equation (9.19) we obtain

(9.20)

Therefore,

(9.21)

which is obviously a constant. In short, the transformed error term vi is
homoscedastic. As a result, the transformed model (9.18) does not suffer from
the heteroscedasticity problem, and therefore it can be estimated by the usual
OLS method.

To estimate the regression (9.18) actually, you will have to instruct the
computer to divide each Y and X observation by the known and run OLS
regression on the data thus transformed. (Most computer packages now can
do this routinely.) The OLS estimators of B1 and B2 thus obtained are called
weighted least squares (WLS) estimators; each Y and X observation is weighted
(i.e., divided) by its own (heteroscedastic) standard deviation, . Because of
this weighting procedure, the OLS method in this context is known as the
method of weighted least squares (WLS).16 (See Problem 9.14.)

When True ␴2
i Is Unknown

Despite its intuitive simplicity, the WLS method of the model (9.18) begs an im-
portant question: How do we know or find out the true error variance, ? As
noted earlier, knowledge of the true error variance is a rarity. Therefore, if we
want to use the method of WLS, we will have to resort to some ad hoc, although
reasonably plausible, assumption(s) about and transform the original
regression model so that the transformed model satisfies the homoscedasticity

␴i
2

␴i
2

␴i

␴i

 = 1

 = a 1

␴2
i

b A␴2
i B  because of Eq. (9.1)

 =
1

␴2
i

E Au2
i B , since ␴2

i  is known

 E Av2
i B = Ea u2

i

␴2
i

b

 v2
i =

v2
i

␴2
i
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16Note this technical point about the regression (9.18). To estimate it, you will have to instruct the
computer to run the regression through the origin because there is no “explicit” intercept in
Eq. (9.18)—the first term in this regression is . But the “slope” coefficient of is, in fact,
the intercept coefficient B1. (Do you see this?) On the regression through the origin, see Chapter 5.
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assumption. OLS can then be applied to the transformed model, for, as shown
earlier, WLS is simply OLS applied to the transformed data.17

In the absence of knowledge about the true the practical question then is,
what assumption(s) can we make about the unknown error variance and how
can we use the method of WLS? Here we consider several possibilities, which
we discuss with the two-variable model (9.3); the extension to multiple regres-
sion models can be made straightforwardly.

Case 1: The Error Variance Is Proportional to Xi: The Square Root
Transformation If after estimating the usual OLS regression we plot the resid-
uals from this regression against the explanatory variable X and observe a pat-
tern similar to that shown in Figure 9-8, the indication is that the error variance
is linearly related, or proportional, to X.

That is,

(9.22)E Au2
i B = ␴2Xi

␴i
2
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17Note that in OLS we minimize

but in WLS we minimize

provided is known. See how in WLS we “deflate” the importance of an observation with larger
variance, for the larger the error variance, the larger the divisor will be.
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X
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i 

2
σ 

Error variance proportional to XFIGURE 9-8



which states that the heteroscedastic variance is proportional, or linearly re-
lated, to Xi; the constant (no subscript on ) is the factor of proportionality.

Given the assumption in Equation (9.22), suppose we transform the model
(9.17) as follows:

(9.23)

where . That is, we divide both sides of the model (9.17) by the
square root of Xi. Equation (9.23) is an example of what is known as the square
root transformation.

Following the development of Equation (9.21), it can be proved easily that
the error variance vi in the transformed regression is homoscedastic, and there-
fore we can estimate Eq. (9.23) by the usual OLS method. Actually we are using
the WLS method here. (Why?)18 It is important to note that to estimate Eq. (9.23) we
must use the regression-through-the-origin estimating procedure. Most standard re-
gression software packages do this routinely.

Example 9.6. Transformed Wage Regression

Let us illustrate with our wage regression (9.3). The empirical counterpart of
Eq. (9.23) is as follows:

Dependent Variable: WAGE/(@SQRT(EDUC))
Method: Least Squares (9.24)
Included observations: 523

Coefficient Std. Error t-Statistic Prob.

1/@SQRT(EDUC) -2.645605 1.076890 -2.456708 0.0143
@SQRT(EDUC) 0.781380 0.071763 10.88840 0.0000
EXPER/(@SQRT(EDUC)) 0.087698 0.016368 5.357896 0.0000

R-squared 0.084405 Mean dependent var 2.517214

Adjusted R-squared 0.080884 S.D. dependent var 1.316767
S.E. of regression 1.262392 Durbin-Watson stat 1.819673
Sum squared resid 828.6893

Note: Suppress the intercept when you run this regression.

vi = ui/1Xi

 = B1
1

2Xi

+ B22Xi + vi

Yi

2Xi

= B1
1

2Xi

+ B2

Xi

2Xi

+

ui

2Xi

␴2␴2
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that is, homoscedasticity. Note that the X variable is nonstochastic.
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To get back to the original (untransformed) wage equation, just multiply
both sides of Eq. (9.24) by , which gives

(9.25)

If you compare this regression with the original regression (9.3), you will see
that the estimated regression coefficients are not the same.  The reason for the
difference could be that we are using as the deflator.

Incidentally, we tested the squared residuals from Eq. (9.24) for het-
eroscedasticity and found that, on the basis of the Breusch-Pagan and White
tests, there was no evidence of heteroscedasticity. The Glejser test, however,
showed that there was heteroscedasticity.

A question: What happens if there is more than one explanatory variable in
the model? In this case we can transform the model as shown in Eq. (9.23) using
any one of the X variables that, say, on the basis of graphical plot, seems the ap-
propriate candidate (see Problem 9.7). But what if more than one X variable is a
candidate? In this case instead of using any of the X’s, we can use the , the es-
timated mean value of Yi, as the transforming variable, for as we know, is a
linear combination of the X’s.

Case 2: Error Variance Proportional to If the estimated residuals show a
pattern similar to Figure 9-9, it suggests that the error variance is not linearly
related to X but increases proportional to the square of X. Symbolically,

(9.26)E Au2
i B = ␴2X2

i

X
2
i

YNi

YNi

1Educ

Wagei = -2.6456 + 0.7813 Educi + 0.0876 Experi

1Educi
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In this case the appropriate transformation of the two-variable model consid-
ered previously is to divide both sides of the model by Xi, rather than by the
square root of Xi, as follows:

(9.27)

where .
Following the earlier development, we can verify easily that the error term

v in Equation (9.27) is homoscedastic. Hence, the OLS estimation of Eq. (9.27),
which is actually a WLS estimation, will produce BLUE estimators. (Keep in
mind that we are still keeping intact all the other assumptions of the CLRM.)

An interesting feature of Eq. (9.27) is that what was originally the slope coef-
ficient now becomes the intercept, and what was originally the intercept now
becomes the slope coefficient. But this change is only for estimation; once we
estimate Eq. (9.27), multiplying by Xi on both sides, we get back to the original
model.

The results of applying Eq. (9.27) to our wage-education model are as
follows:

Dependent Variable: WAGE/EDUC
Method: Least Squares (9.27a)
Included observations: 523

Coefficient Std. Error t-Statistic Prob.

C 0.585431 0.051284 11.41551 0.0000
1/EDUC 0.090268 0.762246 0.118424 0.9058
EXPER/EDUC 0.070930 0.013836 5.126660 0.0000

R-squared 0.095542 Mean dependent var 0.705677
Adjusted R-squared 0.092063 S.D. dependent var 0.371773
S.E. of regression 0.354247 F-statistic 27.46492
Sum squared resid 65.25527 Prob (F-statistic) 0.000000
Durbin-Watson stat 1.755325

Multiplying the preceding equation by Educ on both sides, we obtain:

When this regression was tested for heteroscedasticity, we found that there
was no evidence of it on the basis of the Breusch-Pagan and White tests, but
the Glejser test did show heteroscedasticity.

Comparing this equation with Eq. (9.3), we can see that the coefficients of
the two equations are not the same.  This might very well be due to the
particular deflator we have used on the transformation. As this example

Wagei = 0.0902 + 0.5854 Educi + 0.0709 Experi

vi = ui/Xi

 = B1 a 1

Xi
b + B2 + vi

Yi
Xi

= B1a 1

Xi
b + B2 + a ui

Xi
b
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shows, it may not always be easy to find the right deflator. Some amount of
trial and error is inevitable.

In Problem 9.24  you are asked to use Wagef instead of Educ as the deflator
to see if the preceding conclusion changes. Since Wagef takes into account
both Educ and Exper variables, the results based on this deflator may be more
preferable.

Respecification of the Model

Instead of speculating about , sometimes a respecification of the PRF—choosing
a different functional form (see Chapter 5)—can reduce heteroscedasticity. For
example, instead of running the linear-in-variable (LIV) regression, if we esti-
mate the model in the log form, it often reduces heteroscedasticity. That is, if we
estimate

(9.28)

the heteroscedasticity problem may be less serious in this transformation be-
cause the log transformation compresses the scales in which the variables are
measured, thereby reducing a tenfold difference between two values to a
twofold difference. Thus, the number 90 is 10 times the number 9, but ln 90
(= 4.4998) is only about 2 times as large as ln 9(= 2.1972).

An incidental advantage of the log-linear, or double-log, model, as we have
seen in Chapter 5, is that the slope coefficient B2 measures the elasticity of Y with
respect to X, that is, the percentage change in Y for a percentage change in X.

Whether we should fit the LIV model or a log-linear model in a given instance
has to be determined by theoretical and other considerations that we discussed
in Chapter 7. But if there is no strong preference for either one, and if the het-
eroscedasticity problem is severe in the LIV model, we can try the double-log
model.

Example 9.7. Log-linear Model for the Wage Data

For the wage-education data, the empirical counterpart of Eq. (9.28) is as
follows:

Dependent Variable: LOG(WAGE)
Method: Least Squares (9.29)
Included observations: 523

Coefficient Std. Error t-Statistic Prob.

C -0.794552 0.259204 -3.065354 0.0023
LOG(EDUC) 0.957322 0.091702 10.43948 0.0000
LOG(EXPER) 0.166189 0.024690 6.731001 0.0000

R-squared 0.193841 Mean dependent var 2.072301
Adjusted R-squared 0.190740 S.D. dependent var 0.522545
S.E. of regression 0.470076 F-statistic 62.51699
Sum squared resid 114.9050 Prob (F-statistic) 0.000000
Durbin-Watson stat 1.772461

ln Yi = B1 + B2 ln Xi + ui

␴2
i

CHAPTER NINE: HETEROSCEDASTICITY: WHAT HAPPENS IF THE ERROR VARIANCE IS NONCONSTANT? 297



Since this is a double-log model, the coefficients of log(Educ)  and log(Exper)
represent elasticities, elasticity of wage with respect to education and elastic-
ity of wage with respect to experience, respectively.  Both of these elasticities
are highly significant, judged by their p values.

Before we accept these results, we need to check if regression (9.29) suffers
from heteroscedasticity.  Applying the Breusch-Pagan, Glejser, and White (no
interaction terms) tests, we find no evidence of heteroscedasticity.

While the linear model (9.3) showed heteroscedasticity, the log-linear
model shows the opposite.  This shows that choosing the right model may be
critical in resolving heteroscedasticity. 

In Problem 9.9 you are asked to examine the preceding regression to find out
if heteroscedasticity exists. If the regression (9.29) is not plagued by the het-
eroscedasticity problem, then this model is preferable to the LIV model, which
had this problem present, necessitating the transformation of variables, as in the
regression (9.24).

In passing, note that all the transformations we have discussed earlier to
remove heteroscedasticity are known in the literature as variance stabilizing
transformations, which is another name for obtaining homoscedastic variances.

To conclude our discussion on remedial measures, we should reiterate that all
transformations discussed previously are to some extent ad hoc; in the absence
of precise knowledge about true , we are essentially speculating about what it
might be. Which of the transformations we have considered will work depends
upon the nature of the problem and the severity of the heteroscedasticity. Also
note that sometimes the error variance may not be related to any of the explana-
tory variables included in the model. Rather, it may be related to a variable that
was originally a candidate for inclusion in the model but was not initially in-
cluded. In this case the model can be transformed using that variable. Of course,
if a variable logically belonged in the model, it should have been included in the
first place, as we noted in Chapter 7.

9.5 WHITE’S HETEROSCEDASTICITY-CORRECTED 

STANDARD ERRORS AND t STATISTICS

As we have noted, in the presence of heteroscedasticity, the OLS estimators, al-
though unbiased, are inefficient. As a result, the conventionally computed stan-
dard errors and t statistics of the estimators are suspect. White has developed an
estimating procedure that produces standard errors of estimated regression
coefficients that take into account heteroscedasticity. As a result, we can continue
to use the t and F tests, except that they are now valid asymptotically, that is, in
large samples. It should be pointed out that White’s procedure does not change
the values of the regression coefficients but only their standard errors.19

␴2
i
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To see how the conventionally computed standard errors and t statistics can
be misleading in the presence of heteroscedasticity, let us return to the wage re-
gression (9.3). Using Eviews, we obtained the following results:

Dependent Variable: WAGE
Method: Least Squares (9.30)

Sample: 1 533
Included observations: 533
White’s Heteroscedasticity-Consistent Standard Errors and Covariance

Coefficient Std. Error t-Statistic Prob.

C -4.857541 1.259182 -3.857695 0.0001
EDUC 0.923849 0.088110 10.48517 0.0000
EXPER 0.104346 0.018083 5.770424 0.0000

R-squared 0.200778 Mean dependent var 9.034709
Adjusted R-squared 0.197762 S.D. dependent var 5.138028
S.E. of regression 4.602016 F-statistic 66.57232
Sum squared resid 11224.63 Prob (F-statistic) 0.000000
Durbin-Watson stat 1.839859

As noted, the regression coefficients of Eq. (9.3) and Eq. (9.30) are the same; the
only difference is in their estimated standard errors and, therefore, the esti-
mated t ratios.  Since the standard errors of the slope coefficients under White’s
procedure are higher (and the t ratios lower), it seems Eq. (9.3) underestimated
the true standard errors. Even then, the estimated t ratios under White’s proce-
dure are highly statistically significant, for their p values are practically zero.

This example shows that heteroscedasticity need not destroy the statistical signifi-
cance of the estimated regression coefficients, provided we correct the standard errors
once we find that we have the problem of heteroscedasticity.

9.6 SOME CONCRETE EXAMPLES OF HETEROSCEDASTICITY

We end this chapter by presenting three examples to show the importance of
heteroscedasticity in applied work.

Example 9.8. Economies of Scale or Heteroscedasticity

The New York Stock Exchange (NYSE) was initially very much opposed to
the deregulation of brokerage commission rates. As a matter of fact, in an
econometric study presented to the Securities and Exchange Commission
(SEC) before deregulation was introduced on May 1, 1975, the NYSE argued
that there were economies of scale in the brokerage industry and therefore the
(monopolistically determined) fixed rate commissions were justifiable.20
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The econometric study that the NYSE submitted basically revolved around
the following regression:21

(9.31)

where Y = the total cost and X = the number of share transactions. From the
model (9.31) we see that the total cost is positively related to the volume of
transactions. But since the quadratic term in the transaction variable is nega-
tive and “statistically significant,” it implies that the total cost is increasing at
a decreasing rate. Therefore, argued the NYSE, there were economies of scale
in the brokerage industry, justifying the monopoly status of the NYSE.

But the antitrust division of the U.S. Department of Justice argued that the
so-called economies of scale claimed in model (9.31) are a mirage, for the re-
gression (9.31) was plagued by the problem of heteroscedasticity. This was
because in estimating the cost function in Eq. (9.31) the NYSE did not take
into account that small and large firms were included in the sample. That is,
it did not take into account the scale factor. Assuming that the error term was
proportional to the volume of transaction (see Eq. [9.22]), the antitrust divi-
sion reestimated Eq. (9.31), obtaining the following result:22

(9.32)

Lo and behold, not only is the quadratic term statistically insignificant, but
also it has the wrong sign.23 Thus, there are no economies of scale in the
brokerage industry, demolishing the NYSE’s argument for retaining its
monopoly commission structure.

The preceding example shows dramatically how the assumption of homo-
scedasticity underlying Eq. (9.31) could have been potentially damaging.
Imagine what would have happened if the SEC had accepted Eq. (9.31) on its
face value and allowed the NYSE to fix the commission rates monopolistically,
as before May 1, 1975!

YNi = 342,000 + 25.57 Xi + (4.34 * 10-6)X2
i

 t = (32.3)   (7.07)   (0.503)

t = (2.98)  (40.39)  (-6.54)     R2
= 0.934

YNi = 476,000 + 31.348Xi - (1.083 * 10-6) X2
i
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New York Stock Exchange: A Cartel at the End of Its Reign” in Almarin Phillips (ed.), Promoting
Competition in Regulated Industries, Brookings Institution, Washington D.C., 1975, p. 324.

22The actual mechanics consisted of estimating Eq. (9.23) shown in the text. Once this equation
was estimated, it was multiplied by to get back to the original equation, which is presented in
Eq. (9.32).

23The NYSE in response said that the particular heteroscedasticity assumption used by the
antitrust division was not valid. Substitution of other assumptions still supports the antitrust
division’s finding that there were no economies of scale in the brokerage industry. For details,
see the Mann article cited in footnote 21.
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Example 9.9. Highway Capacity and Economic Growth

In support of his argument that economies with superior surface transporta-
tion infrastructure will benefit through higher productivity and per capita
income growth, David A. Aschauer24 obtained the results presented in
Table 9-3. Since the study was conducted over a cross section of 48 states in
the United States, “there is presumption that the error structure may not be
homoskedastic” (p. 18).25

However, in the present instance the presumption of heteroscedasticity was
just that since correcting for heteroscedasticity in various ways did not change
OLS results much. But this example shows that if there is a presumption of
heteroscedasticity, we should look into it rather than assume away the problem.
As noted earlier, and as the NYSE economies of scale example so well demon-
strates, heteroscedasticity is potentially a very serious problem and must not be
taken lightly. It is better to err on the side of safety!
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PER CAPITA INCOME GROWTH AND HIGHWAY CAPACITY

Explanatory variable OLS WLS1 WLS2 WLS3

Constant -7.69 -7.94 -8.19 -7.62

se = (1.08) (1.08) (1.09) (1.08)

lnX2 (in 1960) -1.59 -1.64 -1.69 -1.58

se = (0.18) (0.19) (0.19) (0.18)

ln X3 0.30 0.30 0.31 0.30

se = (0.06) (0.06) (0.06) (0.06)

X4 -0.009 -0.100 -0.011 -0.008

se = (0.003) (0.003) (0.003) (0.003)

D –31.00 -32.00 -33.00 -31.00

se = (0.08) (0.08) (0.08) (0.08)

R2
= 0.67 0.49 0.46 0.73

Notes: Dependent variable Y: Average annual growth of per capita income (1972 $) from
1960 to 1980.

X2 = The level of per capita income (1972 $) in the base year 1960
X3 = The total existing road mileage, average over 1960 to 1985
X4 = The percentage of highway mileage of deficient quality in 1982
D = Dummy = 1 if midwest region, 0 if otherwise

WLS1
= Weighted least squares using the square root of X2 (see Eq. [9.23])

WLS2
= Weighted least squares using the level of X2 (see Eq. [9.27])

WLS3
= Weighted least squares using the level of ln X2

Source: David A. Aschauer, “Highway Capacity and Economic Growth,” Economic
Perspectives, Federal Reserve Bank of Chicago, September/October 1990, Table 1, p. 18.
Notation is adapted.

TABLE 9-3

24This example and the statistical results presented in Table 9-3 are obtained from David A.
Aschauer, “Highway Capacity and Economic Growth,” Economic Perspectives, Federal Reserve Bank
of Chicago, pp. 14–23, September/October 1990.

25A historical note: Is it heteroscedasticity or heteroskedasticity? It is the latter, but the former is
so well established in the literature that we only occasionally find the word spelled with a k.



Example 9.10. An Extended Wage Model

For pedagogic reasons, we have presented a simple model of wage determi-
nation in this chapter. But using the data in Table 9-2, we now present a more
refined model:

Dependent Variable: LOG(WAGE)
Method: Least Squares
Included observations: 523

Coefficient Std. Error t-Statistic Prob.

C 0.773947 0.123314 6.276238 0.0000
EDUC 0.091251 0.007923 11.51748 0.0000
EXPER 0.009712 0.001757 5.528884 0.0000
SEX -0.244064 0.039288 -6.212101 0.0000 (9.33)
MARSTAT 0.069315 0.042214 1.641993 0.1012
REGION -0.115626 0.042945 -2.692413 0.0073
UNION 0.183644 0.050956 3.603982 0.0003

R-squared 0.301086 Mean dependent var 2.072301
Adjusted R-squared 0.292959 S.D. dependent var 0.522545
S.E. of regression 0.439386 F-statistic 37.04803
Sum squared resid 99.61894 Prob (F-statistic) 0.000000
Durbin-Watson stat 1.861383

Note: Sex = 1 for female; Marstat = 1 if married; Region = 1 if in the South; and Union = 1, if a
union member.

In Equation (9.33) we have presented a semi-log model, with the wage variable
in the logarithmic form and the regressors in the linear form. In the literature on
wage modeling, the wage variable is often expressed in the log form. The
coefficients of the Educ and Exper variables represent semi-elasticities. For ex-
ample, the coefficient of Educ of about 0.091 means that, holding the other vari-
ables constant, if years of schooling increase by one year, on average, wages go
up by about 9.1 percent. For the interpretation of the dummy variables, see
Problem 9.25.

The estimated equation was tested for heteroscedasticity.  On the basis of the
Breusch-Pagan and White tests (with cross-product terms), there is no evidence
of heteroscedasticity. This was confirmed when Eq. (9.33) was estimated with
White’s heteroscedasticity-corrected standard errors test. In fact, there was no
difference between the OLS results and the White procedure standard errors.

9.7 SUMMARY

A critical assumption of the classical linear regression model is that the
disturbances ui all have the same (i.e., homoscedastic) variance. If this assump-
tion is not satisfied, we have heteroscedasticity. Heteroscedasticity does not
destroy the unbiasedness property of OLS estimators, but these estimators are
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no longer efficient. In other words, OLS estimators are no longer BLUE. If
heteroscedastic variances are known, then the method of weighted least
squares (WLS) provides BLUE estimators.

Despite heteroscedasticity, if we continue to use the usual OLS method not
only to estimate the parameters (which remain unbiased) but also to establish
confidence intervals and test hypotheses, we are likely to draw misleading
conclusions, as in the NYSE Example 9.8. This is because estimated standard
errors are likely to be biased and therefore the resulting t ratios are likely to be
biased, too. Thus, it is important to find out whether we are faced with the
heteroscedasticity problem in a specific application. There are several diagnostic
tests of heteroscedasticity, such as plotting the estimated residuals against one
or more of the explanatory variables, the Park test, the Glejser test, or the rank
correlation test (See Problem 9.13).

If one or more diagnostic tests reveal that we have the heteroscedasticity
problem, remedial measures are called for. If the true error variance is known,
we can use the method of WLS to obtain BLUE estimators. Unfortunately,
knowledge about the true error variance is rarely available in practice. As a result,
we are forced to make some plausible assumptions about the nature of
heteroscedasticity and to transform our data so that in the transformed model the
error term is homoscedastic. We then apply OLS to the transformed data, which
amounts to using WLS. Of course, some skill and experience are required to
obtain the appropriate transformations. But without such a transformation, the
problem of heteroscedasticity is insoluble in practice. However, if the sample size
is reasonably large, we can use White’s procedure to obtain heteroscedasticity-
corrected standard errors.

KEY TERMS AND CONCEPTS

The key terms and concepts introduced in this chapter are

␴2
i
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i
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Homoscedasticity (or equal variance)
Heteroscedasticity (or unequal

variance)
a) cross-sectional data
b) scale effect

Detection of heteroscedasticity
a) residual plots
b) Park test
c) Glejser test
d) White’s general

heteroscedasticity test
Other tests of heteroscedasticity

a) Spearman’s rank correlation test

b) Goldfeld-Quandt test
c) Bartlett’s homogeneity-of-

variance test
d) Peak test
e) Breusch-Pagan test
f) CUSUMSQ test

Weighted least squares (WLS)
estimators

Square root transformation
Variance stabilizing transformations
White’s heteroscedasticity-

corrected standard errors and
t statistics



QUESTIONS

9.1. What is meant by heteroscedasticity? What are its effects on the following?
a. Ordinary least squares (OLS) estimators and their variances.
b. Confidence intervals.
c. The use of t and F tests of significance.

9.2. State with brief reasons whether the following statements are true or false:
a. In the presence of heteroscedasticity OLS estimators are biased as well as

inefficient.
b. If heteroscedasticity is present, the conventional t and F tests are invalid.
c. In the presence of heteroscedasticity the usual OLS method always

overestimates the standard errors of estimators.
d. If residuals estimated from an OLS regression exhibit a systematic pattern,

it means heteroscedasticity is present in the data.
e. There is no general test of heteroscedasticity that is free of any assumption

about which variable the error term is correlated with.
9.3. Would you expect heteroscedasticity to be present in the following regressions?

Y X Sample

(a) Corporate profits Net worth Fortune 500
(b) Log of corporate Log of net worth Fortune 500

profits
(c) Dow Jones industrial Time 1960–1990 (annual averages)

average
(d) Infant mortality rate Per capita income 100 developed and 

developing countries
(e) Inflation rate Money growth rate United States, Canada, and 

15 Latin American countries

9.4. Explain intuitively why the method of weighted least squares (WLS) is
superior to OLS if heteroscedasticity is present.

9.5. Explain briefly the logic behind the following methods of detecting hetero-
scedasticity:
a. The graphical method
b. The Park test
c. The Glejser test

PROBLEMS

9.6. In the two-variable population regression function (PRF), suppose the error
variance has the following structure:

How would you transform the model to achieve homoscedastic error
variance? How would you estimate the transformed model? List the various
steps.

E(u2
i ) = ␴2Xi

4

304 PART TWO: REGRESSION ANALYSIS IN PRACTICE



9.7. Consider the following two regressions based on the U.S. data for 1946 to
1975.26 (Standard errors are in parentheses.)

(0.0736)

(0.0597)

where C = aggregate private consumption expenditure
GNP = gross national product 

D = national defense expenditure
t = time

The objective of Hanushek and Jackson’s study was to find out the effect of
defense expenditure on other expenditures in the economy.
a. What might be the reason(s) for transforming the first equation into the

second equation?
b. If the objective of the transformation was to remove or reduce heteroscedas-

ticity, what assumption has been made about the error variance?
c. If there was heteroscedasticity, have the authors succeeded in removing it?

How can you tell?
d. Does the transformed regression have to be run through the origin? Why

or why not?
e. Can you compare the R2 values of the two regressions? Why or why not?

9.8. In a study of population density as a function of distance from the central
business district, Maddala obtained the following regression results based on
a sample of 39 census tracts in the Baltimore area in 1970:27

where Y = the population density in the census tract and X = the distance in
miles from the central business district.
a. What assumption, if any, is the author making about heteroscedasticity in

his data?

 t = (47.87)    (-15.10)

 
ln Yi

2Xi

= 9.932 
1

2Xi

- 0.22581Xi

 t = (54.7)(-12.28)     R2
= 0.803

 ln Yi = 10.093 - 0.239Xi

R2
= 0.875se = (2.22)(0.0068)

a C

GNP
 b
t

= 25.92 
1

GNPt
+ 0.6246 - 0.4315 

D

GNPt

R2
= 0.999se = (2.73) (0.0060)

Ct = 26.19 + 0.6248GNPt - 0.4398Dt
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b. How can you tell from the transformed WLS regression that heteroscedas-
ticity, if present, has been removed or reduced?

c. How would you interpret the regression results? Do they make economic
sense?

9.9. Refer to the wage data given in Table 9-2 (found on the textbook’s Web site).
Regression (9.30) gives the results of the regression of the log of wage on the
log of education.
a. Based on the data of Table 9-2, verify this regression.
b. For this regression, obtain the absolute values of the residuals as well as

their squared values and plot each against education. Is there any evi-
dence of heteroscedasticity?

c. Do the Park and Glejser tests on the residuals of this regression. What con-
clusions can you draw?

d. If heteroscedasticity is found in the double-log model, what kind of WLS
transformation would you recommend to eliminate it?

e. For the linear regression (9.3) there was some evidence of heteroscedastic-
ity. If for the log-log model there is no evidence of heteroscedasticity,
which model would you choose and why?

f. Can you compare the R2s of the two regressions? Why not?
9.10. Continue with the wage data given in Table 9-2 (found on the textbook’s Web

site) and now consider the following regressions:

wagei = A1 + A2 experiencei + ui

ln wagei = B1 + B2 ln experiencei + ui

a. Estimate both regressions.
b. Obtain the absolute and squared values of the residuals for each regres-

sion and plot them against the explanatory variable. Do you detect any
evidence of heteroscedasticity?

c. Verify your qualitative conclusion in part (b) with the Glejser and Park
tests.

d. If there is evidence of heteroscedasticity, how would you transform the
data to reduce its severity? Show the necessary calculations.

9.11. Consider Figure 9-10, which plots the gross domestic product (GDP) growth,
in percent, against the ratio of investment/GDP, in percent, for several coun-
tries for 1974 to 1985.28 The various countries are divided into three groups—
those that experienced positive real (i.e., inflation-adjusted) interest rates,
those that experienced moderately negative real interest rates, and those that
experienced strongly negative interest rates.
a. Develop a suitable model to explain the percent GDP growth rate in

relation to percent investment/GDP rate.
b. From Figure 9-10, do you see any evidence of heteroscedasticity in the

data? How would you test its presence formally?
c. If heteroscedasticity is suspected, how would you transform your regres-

sion to eliminate it?
d. Suppose you were to extend your model to take into account the qualita-

tive differences in the three groups of countries by representing them with
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dummy variables. Write the equation for this model. If you had the data
and could estimate this expanded model, would you expect heteroscedas-
ticity in the extended model? Why or why not?

9.12. In a survey of 9,966 economists in 1964 the following data were obtained:

Age Median salary Age Median salary
(years) ($) (years) ($)

20–24 7,800 50–54 15,000
25–29 8,400 55–59 15,000
30–34 9,700 60–64 15,000
35–39 11,500 65–69 14,500
40–44 13,000 70+ 12,000
45–49 14,800

Source: “The Structure of Economists’ Employment and Salaries,”
Committee on the National Science Foundation Report on the
Economics Profession, American Economics Review,
vol. 55, no. 4, December 1965, p. 36.

CHAPTER NINE: HETEROSCEDASTICITY: WHAT HAPPENS IF THE ERROR VARIANCE IS NONCONSTANT? 307

⫺1

0

G
D

P
 G

ro
w

th
 R

a
te

 (
p

e
rc

e
n

t)

 9

 8

 7

 6

 5

 4

 3

 2

 1

⫺2

5 10 15 20 25 30 35 40

a Line represents sample average.

Investment/GDP (percent)

Average productivity
of investmenta

Ghana

Jamaica
Nigeria Zaire

ZambiaArgentina

Peru

Uruguay

Côte d'Ivoire

Malawi

Venezuela

Morocco

Philippines

Portugal

Yugoslavia

Sierra Leone
Chile

Senegal

Tanzania

Turkey
Brazil

India

Sri Lanka

Pakistan

Indonesia Thailand

Ecuador
Mexico

Malaysia

Tunisia

Republic of Korea

Algeria
Singapore

Positive real interest rates
Moderately negative real interest rates (0 to ⫺5 percent)

Strongly negative real interest rates

45

Real interest rates, investment, productivity, and growth in 33 developing countries 
from 1974 to 1985

Source: World Development Report, 1989. Copyright © by the International Bank for Reconstruction

& Development/The World Bank. Reprinted by permission of the Oxford University Press, Inc., p. 33.

FIGURE 9-10



a. Develop a suitable regression model to explain median salary in relation
to age. For the purpose of regression, assume that median salaries refer to
the midpoint of the age interval.

b. Assuming error variance proportional to age, transform the data and
obtain the WLS regression.

c. Now assume that it is proportional to the square of age. Obtain the WLS
regression on this assumption.

d. Which assumption seems more plausible?
9.13. Spearman’s rank correlation test for heteroscedasticity. The following steps are

involved in this test, which can be explained with the wage regression (9.3):
a. From the regression (9.3), obtain the residuals ei.
b. Obtain the absolute value of the residuals, .
c. Rank both education (Xi) and in either descending (highest to lowest)

or ascending (lowest to highest) order.
d. Take the difference between the two ranks for each observation, call it di.
e. Compute the Spearman’s rank correlation coefficient rs, defined as

where n = the number of observations in the sample.
If there is a systematic relationship between ei and Xi, the rank correla-

tion coefficient between the two should be statistically significant, in
which case heteroscedasticity can be suspected.

Given the null hypothesis that the true population rank correlation
coefficient is zero and that n ⬎ 8, it can be shown that

follows Student’s t distribution with (n - 2) d.f.
Therefore, if in an application the rank correlation coefficient is significant

on the basis of the t test, we do not reject the hypothesis that there is het-
eroscedasticity in the problem. Apply this method to the wage data given in
the text to find out if there is evidence of heteroscedasticity in the data.

9.14. Weighted least squares. Consider the data in Table 9-4.
a. Estimate the OLS regression

b. Estimate the WLS

(Make sure that you run the WLS through the origin.) Compare the results of
the two regressions. Which regression do you prefer? Why?

9.15. Show that the error term vi in Eq. (9.27) is homoscedastic.

Yi

␴i
= B1

1

␴i
+ B2

Xi

␴i
+
ui

␴i

 Yi = B1 + B2Xi + ui

rs1(n - 2)

11 - r2s

' tn-2

rs = 1 - 6 c gd2
i

n(n2
- 1)

d

ⱍeiⱍ
ⱍeiⱍ
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9.16. In a regression of average wages (W) on the number of employees (N) for a
random sample of 30 firms, the following regression results were obtained:29

(1)

(2)

a. How would you interpret the two regressions?
b. What is the author assuming in going from Eq. (1) to (2)? Was he worried

about heteroscedasticity?
c. Can you relate the slopes and the intercepts of the two models?
d. Can you compare the R2 values of the two models? Why or why not?

9.17. From the total cost function given in the NYSE regression (9.31), how would
you derive the average cost function? And the marginal cost function? But if
Eq. (9.32) is the true (i.e., heteroscedasticity-adjusted) total cost function,
how would you derive the associated average and marginal cost func-
tions? Explain the difference between the two models.

9.18. Table 9-5, on the textbook’s Web site, gives data on five socioeconomic
indicators for a sample of 20 countries, divided into four per-capita income
categories: low-income (up to $500 per year), lower-middle income (annual
income between $500 and $2200), upper-middle income (annual income be-
tween $2300 and $5500), and higher-income (over $5500 a year). The first five

 t = (14.43) (76.58)        R2
= 0.99
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N
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AVERAGE COMPENSATION IN RELATION TO PRODUCTIVITY 

BY EMPLOYMENT SIZE, U.S. MANUFACTURING INDUSTRIES

Average Average Standard deviation
Employment size compensation productivity of compensation
(average number Y X

of employees) ($) ($) ($)
(1) (2) (3) (4)

1–4 3,396 9,355 744
5–9 3,787 8,584 851

10–19 4,013 7,962 728
20–49 4,104 8,275 805
50–99 4,146 8,389 930

100–249 4,241 9,418 1,081
250–499 4,387 9,795 1,243
500–999 4,538 10,281 1,308

1,000–2,499 4,843 11,754 1,112

Source: Data from The Census of Manufacturing, U.S. Department of Commerce,
1958. (Figures in table computed by the author.)

␴i

TABLE 9-4

29See Dominick Salvatore, Managerial Economics, McGraw-Hill, New York, 1989, p. 157.



countries in the table belong to the first income category, the second five
countries to the second income category, and so on.
a. Create a regression using all five independent variables. A priori, what do

you expect the impact of the population growth rate (X4) and daily calorie
intake (X5) will be on infant mortality rate (Y)?

b. Estimate the preceding regression and see if your expectations were
correct.

c. If you encounter multicollinearity in the preceding regression, what can
you do about it? You may undertake any corrective measures that you
deem necessary.

9.19. The model from Ex. 9.18, without inclusion of X4 and X5, when tested for het-
eroscedasticity following the White test outlined in regression (9.14), yielded
the following regression results. (Note: To save space, we have given only the
t statistics and their p values. The results were obtained from the EViews
statistical package.)

t = (-0.01) (0.60) (-0.13) (0.87) (0.56) (-0.85) 

p value = (0.989)(0.556) (0.895) (0.394) (0.581) (0.400) 

R2
= 0.23

a. How do you interpret the preceding regression?
b. Do these results suggest that the model above suffers from the problem of

heteroscedasticity? How do you know?
c. If the above regression suffers from heteroscedasticity, how would you get

rid of it?
9.20. a. Use the data given in Table 9-5 (on the textbook’s Web site) to develop a

multiple regression model to explain daily calorie intake for the 20 coun-
tries shown in the table.

b. Does this model suffer from heteroscedasticity? Show the necessary test(s).
c. If there is heteroscedasticity, obtain White’s heteroscedasticity-corrected

standard errors and t statistics (see if your software does this) and com-
pare and comment on the results obtained in part (a) above.

9.21. Refer to the life expectancy example (Example 7.4) discussed in Chapter 7.
For the models considered in Table 7-1, find out if these models suffer from
the problem of heteroscedasticity. The raw data are given in Table 9-6,
found on the textbook’s Web site. State the tests you use. How would you
remedy the problem? Show the necessary calculations. Also, present the
results based on White’s heteroscedasticity-corrected standard errors.
What general conclusion do you draw from this exercise?

9.22. Estimate the counterparts of Equations (9.10) to (9.12) using Exper and Wagef
as the deflators.

9.23. Describe the Breusch-Pagan (BP) test. Verify that, on the basis of this test,
Eq. (9.33) shows no evidence of heteroscedasticity.

9.24. Reestimate Eq. (9.27a) using Wagef as the deflator.
9.25. Interpret the dummy coefficients in Eq. (9.33).
9.26. Refer to Table 9-7 on the textbook’s Web site. This data set considers R&D

expenditure data in relation to sales.

e2i = -15.76 + 0.3810X2i - 4.5641X3i + 0.000005X2
2i + 0.1328X2

3i - 0.0050X2iX3i
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a. Create a standard LIV (linear-in-variables) regression model and note the
results.

b. Using the software package of your choice, obtain White’s
heteroscedasticity-corrected regression results. What are they?

c. Is there a substantial difference between the results obtained in parts (a)
and (b)?

9.27. Table 9-8 (found on the textbook’s Web site) gives data on salary and related
data on 447 executives of Fortune 500 companies. Salary = 1999 salary and
bonuses; totcomp = 1999 CEO total compensation; tenure = number of years
as CEO (0 if less than 6 months); age = age of CEO; sales = total 1998 sales
revenue of the firm; profits = 1998 profits for the firm; and assets = total assets
of the firm in 1998.
a. Estimate the following regression from these data and obtain the Breusch-

Pagan statistic to check for heteroscedasticity:

Does there seem to be a problem with heteroscedasticity?
b. Now create a second model using ln(Salary) as the dependent variable. Is

there any improvement in the heteroscedasticity?
c. Create scattergrams of Salary versus each of the independent variables.

Can you discern which variable(s) is (are) contributing to the issue? What
suggestions would you make now to address this? What is your final
model?

d. Now obtain (White’s) robust standard errors. Are there any noticeable dif-
ferences?

9.28. Table 9-9 (on the textbook’s Web site) gives data on 81 cars regarding MPG
(average miles per gallon), HP (engine horsepower), VOL (cubic feet of cab
space), SP (top speed, miles per hour), and WT (vehicle weight in 100 lbs.).
a. Consider the following model:

Estimate the parameters of this model and interpret the results. Do they
make economic sense?

b. Would you expect the error variance in the preceding model to be
heteroscedastic? Why?

c. Use the White test to find out if the error variance is heteroscedastic.
d. Obtain White’s heteroscedasticity-consistent standard errors and t values

and compare your results with those obtained from OLS.
e. If heteroscedasticity is established, how would you transform the data so

that in the transformed data the error variance is homoscedastic? Show
the necessary calculations.

MPGi = B1 + B2SPi + B3HPi + B4WTi + ui

Salaryi = B1 + B2tenurei + B3agei + B4salesi + B5profitsi + B6assetsi + ui
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CHAPTER 10
AUTOCORRELATION:
WHAT HAPPENS 
IF ERROR TERMS 
ARE CORRELATED?

In Chapter 9 we examined the consequences of relaxing one of the assump-
tions of the classical linear regression model (CLRM)—the assumption of
homoscedasticity. In this chapter we consider yet another departure from
the CLRM assumption, namely, that there is no serial correlation or autocor-
relation among the disturbances ui entering the population regression func-
tion (PRF). Although we discussed this assumption briefly in Chapter 3, we
will take a long look at it in this chapter to seek answers to the following
questions:

1. What is the nature of autocorrelation?
2. What are the theoretical and practical consequences of autocorrelation?
3. Since the assumption of no autocorrelation relates to ui, which are not

directly observable, how do we know that there is no autocorrelation in
any concrete study? In short, how do we detect autocorrelation in
practice?

4. How do we remedy the problem of autocorrelation if the consequences
of not correcting for it are serious?

This chapter is in many ways similar to the preceding one on heteroscedas-
ticity in that under both heteroscedasticity and autocorrelation, ordinary least squares
(OLS) estimators, although linear and unbiased, are not efficient; that is, they are not
best linear unbiased estimators (BLUE).

Since our emphasis in this chapter is on autocorrelation, we assume that all
other assumptions of the CLRM remain intact.

312
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10.1 THE NATURE OF AUTOCORRELATION

The term autocorrelation can be defined as “correlation between members 
of observations ordered in time (as in time series data) or space (as in cross-
sectional data).”1

Just as heteroscedasticity is generally associated with cross-sectional data,
autocorrelation is usually associated with time series data (i.e., data ordered in
temporal sequence), although, as the preceding definition suggests, autocorre-
lation can occur in cross-sectional data also, in which case it is called spatial
correlation (i.e., correlation in space rather than in time).

In the regression context the CLRM assumes that such correlation does not
exist in disturbances ui. Symbolically, no autocorrelation means

(10.1)

That is, the expected value of the product of two different error terms ui and uj is
zero.2 In plain English, this assumption means that the disturbance term relat-
ing to any observation is not related to or influenced by the disturbance term
relating to any other observation. For example, in dealing with quarterly time
series data involving the regression of output on labor and capital inputs (i.e., a
production function), if, say, there is a labor strike affecting output in one quar-
ter, there is no reason to believe that this disruption will be carried over to the
next quarter. In other words, if output is lower this quarter, it will not necessar-
ily be lower next quarter. Likewise, in dealing with cross-sectional data involv-
ing the regression of family consumption expenditure on family income, the
effect of an increase of one family’s income on its consumption expenditure is
not expected to affect the consumption expenditure of another family.

But if there is such dependence, we have autocorrelation. Symbolically,

(10.2)

In this situation the disruption caused by a strike this quarter can affect output
next quarter (it might in fact increase to catch up with the backlog) or the in-
crease in the consumption expenditure of one family can pressure another fam-
ily to increase its consumption expenditure if it wants to keep up with the
Joneses (this is the case of spatial correlation).

It is interesting to visualize some likely patterns of autocorrelation and
nonautocorrelation, which are given in Figure 10-1. In the figure the vertical
axis shows both ui (the population disturbances) and their sample counterparts,
ei (the residuals), for as in the case of heteroscedasticity, we do not observe the
former and try to infer their behavior from the latter.

E(uiuj) Z  0    i Z  j

E(uiuj) = 0    i Z  j

1Maurice G. Kendall and William R. Buckland, A Dictionary of Statistical Terms, Hafner, New
York, 1971, p. 8.

2If i = j, Equation (10.1) becomes , the variance of ui, which by the homoscedasticity
assumption is equal to . 2

E(ui
2)
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Figures 10-1(a) to (d) show a distinct pattern among the u’s while Fig-
ure 10-1(e) shows no systematic pattern, which is the geometric counterpart of
the assumption of no autocorrelation given in Equation (10.1).

Why does autocorrelation occur? There are several reasons for autocorrela-
tion, some of which follow.

Inertia

A distinguishing feature of most economic time series is inertia or sluggishness.
As is well known, time series such as the gross domestic product (GDP), pro-
duction, employment, money supply, and price indexes exhibit business cycles
(recurring and self-sustaining fluctuations in economic activity). Starting at the
bottom of the recession, when economic recovery starts, most of these time se-
ries start moving upward. In this upswing the value of a series at one point in
time is greater than its previous value. Thus, there is a momentum built into
these time series and the upswing continues until something happens (e.g., an
increase in taxes or interest rates, or both) to slow them down. Therefore, in
regressions involving time series data successive observations are likely to be
interdependent or correlated.

314 PART TWO: REGRESSION ANALYSIS IN PRACTICE



CHAPTER TEN: AUTOCORRELATION: WHAT HAPPENS IF ERROR TERMS ARE CORRELATED? 315

Model Specification Error(s)

Sometimes autocorrelation patterns such as those shown in Figures 10-1(a) to
(d) occur not because successive observations are correlated but because the re-
gression model is not “correctly” specified. As we saw in Chapter 7, by incorrect
specification of a model we mean that either some important variables that
should be included in the model are not included (this is the case of underspeci-
fication) or that the model has the wrong functional form—a linear-in-variable
(LIV) model is fitted whereas a log-linear model should have been fitted. If such
model specification errors occur, then the residuals from the incorrect model
will exhibit a systematic pattern. A simple test of this is to include the excluded
variable and to determine if the residuals still show a distinct pattern. If they do
not, then the so-called serial correlation observed in the incorrect model was
due to specification error.

The Cobweb Phenomenon

The supply of many agricultural commodities reflects the so-called cobweb
phenomenon, where supply reacts to price with a lag of one time period
because supply decisions take time to implement—the gestation period. Thus,
at the beginning of this year’s planting of crops farmers are influenced by the
price prevailing last year so that their supply function is

(10.3)

Suppose at the end of period t, price Pt turns out to be lower than .
Therefore, in period (t + 1) farmers decide to produce less than they did in pe-
riod t. Obviously, in this situation the disturbances ut are not expected to be ran-
dom, for if the farmers overproduce in year t, they are likely to underproduce in
year (t + 1), etc., leading to a cobweb pattern.

Data Manipulation

In empirical analysis the raw data are often “massaged” in a process referred to
as data manipulation. For example, in time series regressions involving quarterly
data, such data are often derived from the monthly data by simply adding three
monthly observations and dividing the sum by 3. This averaging introduces
“smoothness” into the data by dampening the fluctuations in the monthly data.
Therefore, the graph plotting the quarterly data looks much smoother than the
monthly data, and this smoothness can itself lend to a systematic pattern in the
disturbances, thereby inducing autocorrelation.3

Before moving on, note that autocorrelation can be positive as well as nega-
tive, although economic time series generally exhibit positive autocorrelation

Pt-1

Supplyt = B1 + B2Pt-1 + ut

3It should be pointed out that sometimes the averaging or other data-editing procedures are
used because the weekly or monthly data can be subject to substantial measurement errors. The
averaging process, therefore, can produce more accurate estimates. But the unfortunate byproduct
of this process is that it can induce autocorrelation.
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(a) Positive autocorrelation; (b) negative autocorrelationFIGURE 10-2

because most of them either move upward or downward over extended time
periods (possibly due to business cycles) and do not exhibit a constant up-and-
down movement, such as that shown in Figure 10-2(b).

10.2 CONSEQUENCES OF AUTOCORRELATION

Suppose the error terms exhibit one of the patterns shown in Figures 10-1(a) to
(d) or Figure 10-2. What then? In other words, what are the consequences of
relaxing assumption (10.1) for the OLS methodology? These consequences are
as follows.4

1. The least squares estimators are still linear and unbiased.
2. But they are not efficient; that is, they do not have minimum variance

compared to the procedures that take into account autocorrelation. In
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4The proofs can be found in Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill, New
York, 2009, Chapter 12.
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short, the usual ordinary least squares (OLS) estimators are not best
linear unbiased estimators (BLUE).

3. The estimated variances of OLS estimators are biased. Sometimes the
usual formulas to compute the variances and standard errors of OLS es-
timators seriously underestimate true variances and standard errors,
thereby inflating t values. This gives the appearance that a particular co-
efficient is statistically significantly different from zero, whereas in fact
that might not be the case.

4. Therefore, the usual t and F tests are not generally reliable.
5. The usual formula to compute the error variance, namely, = RSS/d.f.

(residual sum of squares/degrees of freedom), is a biased estimator of
the true and in some cases it is likely to underestimate the latter.

6. As a consequence, the conventionally computed R2 may be an unreliable
measure of true R2.

7. The conventionally computed variances and standard errors of forecast
may also be inefficient.

As you can see, these consequences are similar to those of heteroscedasticity,
and just as serious in practice. Therefore, as with heteroscedasticity, we must
find out if we have the autocorrelation problem in any given application.

10.3 DETECTING AUTOCORRELATION

When it comes to detecting autocorrelation, we face the same dilemma as in the
case of heteroscedasticity. There, we did not know the true error variance 
because the true ui are unobservable. Here, too, not only do we not know what
the true ut are, but if they are correlated, we do not know what the true mecha-
nism is that has generated them in a concrete situation. We only have their prox-
ies, the et’s. Therefore, as with heteroscedasticity, we have to rely on the et’s
obtained from the standard OLS procedure to learn something about the pres-
ence, or lack thereof, of autocorrelation. With this caveat, we will now consider
several diagnostic tests of autocorrelation, which we will illustrate with an
example.

Example 10.1. Relationship between Real Wages and Productivity, U.S.
Business Sector, 1959–2006

From basic macroeconomics, one would expect a positive relationship be-
tween real wages and (labor) productivity—ceteris paribus, the higher the
level of labor productivity, the higher the real wages. To shed some light on
this, we explore the data in Table 10-1 (on the textbook’s Web site), which con-
tains data on real wages (real compensation per hour) and labor productivity
(output per hour of all persons) for the business sector of the U.S. economy
for the time period 1959 to 2006. (Recall that these data were also presented
in Table 3-3, in our concluding example in Chapter 3.)

 2
i

 2

 N 2



R
e
s
id

u
a
ls

Time

Residuals from the regression (10.4)FIGURE 10-3

318 PART TWO: REGRESSION ANALYSIS IN PRACTICE

Regressing real wages on productivity, we obtain the following results; for
discussion purposes we will call this the wages-productivity regression.

Realwagesi = 33.6360 + 0.6614 Productivityi

se = (1.4001)     (0.0156) (10.4)

t = (24.0243)   (42.2928)

r2 = 0.9749; d = 0.1463

Note: d refers to the Durbin-Watson statistic that is discussed below.

Judged by the usual criteria, these results look good. As expected, there is a
positive relationship between real wages and productivity. The estimated t ratios
seem quite high and the R2 value is quite high. Before we accept these results at
their face value, we must guard against the possibility of autocorrelation, for in
its presence, as we know, the results may not be reliable.

To test for autocorrelation, we consider three methods: (1) the graphical
method, which is comparatively simple, (2) the celebrated Durbin-Watson d sta-
tistic, and (3) the runs test, which is discussed in Appendix 10A.

The Graphical Method

As in the case of heteroscedasticity, a simple visual examination of OLS residu-
als, e’s, can give valuable insight about the likely presence of autocorrelation
among the error terms, the u’s. Now there are various ways of examining the
residuals. We can plot them against time, as shown in Figure 10-3, which
depicts the residuals obtained from regression (10.4) and shown in Table 10-2.
Incidentally, such a plot is called a time-sequence plot.

An examination of Figure 10-3 shows that the residuals, et’s, do not seem to
be randomly distributed, as in Figure 10-1(e). As a matter of fact, they exhibit a
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TABLE 10-2 RESIDUALS AND RELATED DATA FROM THE WAGES-PRODUCTIVITY REGRESSION

et et−1 D = et − et−1 D2 Sign of e

-5.5315 — — — 30.5980 -

-4.6395 -5.5315 0.8920 0.7958 21.5250 -

-4.0293 -4.6395 0.6102 0.3724 16.2351 -

-3.4225 -4.0293 0.6068 0.3682 11.7136 -

-3.3494 -3.4225 0.0731 0.0053 11.2184 -

-2.9543 -3.3494 0.3950 0.1561 8.7282 -

-2.8642 -2.9543 0.0902 0.0081 8.2036 -

-1.8191 -2.8642 1.0451 1.0923 3.3090 -

-0.8831 -1.8191 0.9360 0.8761 0.7798 -

0.4787 -0.8831 1.3618 1.8545 0.2292 +

1.3827 0.4787 0.9040 0.8172 1.9119 +

1.9721 1.3827 0.5894 0.3474 3.8894 +

1.6004 1.9721 -0.3717 0.1382 2.5613 +

2.5687 1.6004 0.9683 0.9376 6.5982 +

2.8694 2.5687 0.3007 0.0904 8.2332 +

2.5580 2.8694 -0.3114 0.0969 6.5434 +

1.7362 2.5580 -0.8218 0.6753 3.0145 +

2.4849 1.7362 0.7486 0.5604 6.1745 +

2.8054 2.4849 0.3205 0.1027 7.8701 +

3.6342 2.8054 0.8289 0.6870 13.2076 +

3.7711 3.6342 0.1369 0.0187 14.2215 +

3.6020 3.7711 -0.1691 0.0286 12.9744 +

2.5788 3.6020 -1.0232 1.0469 6.6504 +

3.9875 2.5788 1.4087 1.9845 15.9005 +

2.0544 3.9875 -1.9331 3.7369 4.2207 +

0.7117 2.0544 -1.3428 1.8030 0.5065 +

0.6417 0.7117 -0.0700 0.0049 0.4118 +

1.9193 0.6417 1.2776 1.6323 3.6837 +

1.9530 1.9193 0.0337 0.0011 3.8143 +

2.3649 1.9530 0.4118 0.1696 5.5926 +

0.2462 2.3649 -2.1186 4.4886 0.0606 +

0.1526 0.2462 -0.0937 0.0088 0.0233 +

0.3945 0.1526 0.2419 0.0585 0.1556 +

0.2196 0.3945 -0.1749 0.0306 0.0482 +

-0.3238 0.2196 -0.5433 0.2952 0.1048 -

-1.6487 -0.3238 -1.3250 1.7555 2.7183 -

-2.0793 -1.6487 -0.4306 0.1854 4.3235 -

-3.2736 -2.0793 -1.1943 1.4265 10.7168 -

-3.5533 -3.2736 -0.2796 0.0782 12.6258 -

-0.8740 -3.5533 2.6793 7.1787 0.7638 -

-0.2214 -0.8740 0.6525 0.4258 0.0490 -

1.5511 -0.2214 1.7725 3.1418 2.4058 +

1.1339 1.5511 -0.4172 0.1740 1.2857 +

0.0733 1.1339 -1.0606 1.1248 0.0054 +

-1.0582 0.0733 -1.1315 1.2803 1.1198 -

-2.2556 -1.0582 -1.1974 1.4338 5.0878 -

-3.2529 -2.2556 -0.9973 0.9945 10.5812 -

-3.4127 -3.2529 -0.1598 0.0255 11.6462 -

e
2
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distinct behavior. Initially they are negative, then they become positive, then
negative, then positive, and then negative. This can be seen more vividly if
we plot et given in column 1 of Table 10-2 against given in column 2, as in
Figure 10-4.

The general tenor of this figure is that successive residuals are positively cor-
related, suggesting positive autocorrelation; most residuals are bunched in the
first (northeast) and the third (southwest) quadrants.

The Durbin-Watson d Test5

The most celebrated test for detecting autocorrelation is that developed by
Durbin and Watson, popularly known as the Durbin-Watson d statistic, which
is defined as

(10.5)

which is simply the ratio of the sum of squared differences in successive resid-
uals to the RSS. Note that in the numerator of the d statistic the sample size is
(n − 1) because one observation is lost in taking successive differences.

d =
a
n

t=2
(et - et-1)2

a
n

t=1
et

2

et-1
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5J. Durbin and G. S. Watson, “Testing for Serial Correlation in Least-Squares Regression,”
Biometrika, vol. 38, 1951, pp. 159–177.

Residuals et against et−1 from the regression (10.4)FIGURE 10-4
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A great advantage of the d statistic is its simplicity; it is based on the OLS
residuals which are routinely computed by most regression packages. It is now
common practice to report the Durbin-Watson d along with summary statistics,
such as R2, adjusted R2, , t, F ratios, etc. (see Equation [10.4]).

For our illustrative regression, we can easily compute the d statistic from the
data given in Table 10-2. First, subtract the lagged e’s given in column 2 of
that table from the e’s given in column 1, square the difference, sum it, and
divide the sum by the sum of squared e’s given in column 5. The necessary raw
data to compute d are presented in Table 10-2. Of course, this is now routinely
done by the computer. For our example, the computed d value is 0.1463 (verify
this).

Before proceeding to show how the computed d value can be used to deter-
mine the presence, or otherwise, of autocorrelation, it is very important to note the
assumptions underlying the d statistic:

1. The regression model includes an intercept term. Therefore, it cannot be
used to determine autocorrelation in models of regression through the
origin.6

2. The X variables are nonstochastic; that is, their values are fixed in
repeated sampling.

3. The disturbances ut are generated by the following mechanism:

(10.6)

which states that the value of the disturbance, or error, term at time t
depends on its value in time period (t - 1) and a purely random term (vt),
the extent of the dependence on the past value, is measured by
(rho). This is called the coefficient of autocorrelation, which lies be-
tween -1 and 1. (Note: A correlation coefficient always lies between -1
and 1.) The mechanism, Equation (10.6), is known as the Markov first-
order autoregressive scheme or simply the first-order autoregressive
scheme, usually denoted as the AR(1) scheme. The name autoregression
is appropriate because Eq. (10.6) can be interpreted as the regression of
ut on itself lagged in one period. And this is first order because ut and its
immediate past value are involved; that is, the maximum lag is one time
period.7

 

ut =  ut-1 + vt      -1 …  … 1

(R2)

6However, R. W. Farebrother has calculated d values when the intercept is absent from the
model. See his article “The Durbin-Watson Test for Serial Correlation When There Is No Intercept in
the Regression,” Econometrica, vol. 48, 1980, pp. 1553–1563.

7If the model were

it would be an AR(2) or second-order autoregressive scheme, etc. We note here that unless we
are willing to assume some scheme by which the u’s are generated, it is difficult to solve the prob-
lem of autocorrelation. This situation is similar to heteroscedasticity in which we also made some
assumption about how the unobservable error variance is generated. For autocorrelation, in
practice, the AR(1) assumption has proven to be quite useful.

 i
2

ut =  1ut-1 +  2ut-2 + vt



4. The regression does not contain the lagged value(s) of the dependent
variable as one of the explanatory variables. In other words, the test is
not applicable to models such as

(10.7)

where is the one-period lagged value of the dependent variable Y.
Models like regression (10.7) are known as autoregressive models, a
regression of a variable on itself with a lag as one of the explanatory
variables.

Assuming all these conditions are fulfilled, what can we say about autocor-
relation in our wages-productivity regression with a d value of 0.1463? Before
answering this question, we can show that for a large sample size Eq. (10.5) can
be approximately expressed as (see Problem 10.19)

(10.8)

where L means approximately and where

(10.9)

which is an estimator of the coefficient of autocorrelation  of the AR(1) scheme
given in Equation (10.6). But since , Equation (10.8) implies the
following:

Value of Value of d (approx.)

1. = -1

(perfect negative correlation) d = 4

2. = 0

(no autocorrelation) d = 2

3. = 1

(perfect positive correlation) d = 0

In short,

(10.10)

that is, the computed d value must lie between 0 and 4.
From the preceding discussion we can state that if a computed d value is

closer to zero, there is evidence of positive autocorrelation, but if it is closer to 4,
there is evidence of negative autocorrelation. And the closer the d value is to 2,
the more the evidence is in favor of no autocorrelation. Of course, these are
broad limits and some definite guidelines are needed as to when we can call a

0 … d … 4

 N

 N

 N

 N

-1 …  N … 1

 N =
a
n

t=2
etet-1

a
n

t=1
et

2

d L 2(1 -  N )

Yt-1

Yt = B1 + B2Xt + B3Yt-1 + ut
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computed d value indicative of positive, negative, or no autocorrelation. In
other words, is there a “critical” d value, as in the case of the t and F distribu-
tions, that will give us some definitive indication of autocorrelation?

Unfortunately, unlike t and F distributions, there is not one but two critical d
values.8 Durbin and Watson have provided a lower limit dL and an upper limit dU,
such that if the d value computed from Equation (10.5) lies outside these bounds,
a decision can be made regarding the presence of positive or negative serial cor-
relation. These upper and lower limits, or upper and lower critical values,
depend upon the number of observations, n, and the number of explanatory
variables, k. These limits for n, from 6 to 200 observations, and for k, up to 20 ex-
planatory variables, have been tabulated by Durbin and Watson for 1% and 5%
significance levels and are reproduced in Appendix E, Table E-5. The actual me-
chanics of the Durbin-Watson test are best explained with Figure 10-5.

The steps involved in this test are as follows:

1. Run the OLS regression and obtain the residuals et.
2. Compute d from Eq. (10.5). (Most computer programs now do this

routinely.)
3. Find out the critical dL and dU from the Durbin-Watson tables for the

given sample size and the given number of explanatory variables.
4. Now follow the decision rules given in Table 10-3, which for ease of

reference are also depicted in Figure 10-5.

Returning to Example 10.1, we have d = 0.1463. From the Durbin-Watson
tables we see that for n = 50 (which is closest to our sample size of 48) and one
explanatory variable, dL = 1.503 and dU = 1.585 at the 5% level of significance.

8Without going into technicalities, it should be mentioned that the exact critical value of d
depends upon the value(s) taken by the explanatory variable(s), which will obviously vary from
sample to sample.



Since the computed d of 0.1463 is well below the lower bound value of 1.503, fol-
lowing the decision rules given in Table 10-3, we conclude that there is positive
autocorrelation in our wages-productivity regression residuals. We reached the
same conclusion on the basis of visual inspection of the residuals given in
Figures 10-3 and 10-4.

Although popularly used, one drawback of the d test is that if it falls in the
indecisive zone, or region of ignorance (see Figure 10-5), we cannot conclude
whether or not autocorrelation exists. To solve this problem, several authors9

have proposed modifications of the d test but they are involved and beyond the
scope of this book. The computer program SHAZAM performs an exact d test
(i.e., true critical value), and if you have access to the program you may want
to use that test if the d statistic lies in the indecisive zone. Since the conse-
quences of autocorrelation can be quite serious, as we have seen, if a d statistic
lies in the indecisive zone, it might be prudent to assume that autocorrelation
exists and proceed to correct the condition. Of course, the nonparametric runs
test (discussed in Appendix 10A) and the visual graphics should also be in-
voked in this case.

To conclude our discussion of the d test, it should be reemphasized that this
test should not be applied if the assumptions underlying this test discussed ear-
lier do not hold. In particular, it should not be used to test for serial correlation
in autoregressive models like the regression (10.7). If applied mistakenly in such
cases, the computed d value is often found to be around 2, which is the value of
d expected in the absence of AR(1). Hence, there is a built-in bias against dis-
covering serial correlation in such models. But if such a model is used in empir-
ical analysis, to test for autocorrelation in such models, Durbin has developed
the so-called h statistic, which is discussed in Problem 10.16.

Before we move on, note that there are several other methods of detecting
autocorrelation. We will discuss two such methods, the runs test and the Breusch-
Godfrey test, in Appendixes 10A and 10B, respectively.10
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TABLE 10-3 DURBIN-WATSON d TEST: DECISION RULES

Null hypothesis Decision If

No positive autocorrelation Reject 0  d  dL

No positive autocorrelation No decision dL  d  dU

No negative autocorrelation Reject 4 − dL  d  4

No negative autocorrelation No decision 4 − dU  d  4  dL

No positive or negative autocorrelation Do not reject dU  d  4  dU

9Some authors maintain that dU, the upper limit of Durbin-Watson d, is approximately the true
significance limit. Therefore, if the calculated d lies below dU, we can assume that there is (positive)
autocorrelation. See, for example, E. J. Hannan and R. D. Terrell, “Testing for Serial Correlation after
Least Squares Regression,” Econometrica, vol. 36, no. 2, 1968, pp. 133–150.

10For further details, see Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill, New
York, 2009, Chapter 11.
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10.4 REMEDIAL MEASURES

Since the consequences of serial correlation can be very serious and the cost of
further testing can be high, and if on the basis of one or more diagnostic tests dis-
cussed earlier it is found that we have autocorrelation, we need to seek remedial
measures. The remedy, however, depends upon what knowledge we have or can
assume about the nature of interdependence in the error terms ut. To keep the
discussion as simple as possible, let us revert to our two-variable model:

Yt = B1 + B2Xt + ut (10.11)

and assume that the error terms follow the AR(1) scheme:

(10.6)

where the v’s satisfy the usual OLS assumptions and  is known.
Now if somehow we can transform the model (10.11) so that in the trans-

formed model the error term is serially independent, then applying OLS to the
transformed model will give us the usual BLUE estimators, assuming of course
that the other assumptions of CLRM are fulfilled. Recall that we used the same
philosophy in the case of heteroscedasticity, where our objective was to trans-
form the model so that in the transformed model the error term was
homoscedastic.

To see how we can transform the regression (10.11) so that in the transformed
model the error term does not have autocorrelation, write the regression (10.11)
with a one-period lag as

Yt-1 = B1 + B2Xt-1 + ut-1 (10.12)

Multiply regression (10.12) by  on both sides to obtain

 Yt-1 =   B1 +   B2Xt-1 +  ut-1 (10.13)

Now subtract Equation (10.13) from Equation (10.11), to yield

(Yt -  Yt-1) = B1(1 -  ) + B2(Xt -  Xt-1) + vt (10.14)

where use is made of Eq. (10.6).
Since the error term vt in Equation (10.14) satisfies the standard OLS

assumption, Eq. (10.14) provides the kind of transformation we are looking for
which gives us a model free from serial correlation. If we write Eq. (10.14) as

(10.15)

where 

B*1 = B1(1 -  )

X*t = (Xt -  Xt-1)

Y*t = (Yt -  Yt-1)

Y*t = B*1 + B2X*t + vt

ut =  ut-1 + vt -1 …  … 1
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11A technical point may be noted here, since , and so may not
get unbiased estimation of the original intercept term. But as noted on several occasions, in most
applications the intercept term may not have any concrete economic meaning.

B *1 = B1(1 -  ),  B1 = B *1/(1 -  )

and apply OLS to the transformed variables Y* and X*, the estimators thus
obtained will have the desirable BLUE property.11 Incidentally, note that when
we apply OLS to transformed models, the estimators thus obtained are called
generalized least squares (GLS) estimators. In the previous chapter on
heteroscedasticity we also used GLS, except that there we called it WLS
(weighted least squares).

We call Equations (10.14) and (10.15) generalized difference equations;
specific cases of the generalized difference equation in which takes a particular
value will be discussed shortly. It involves regressing Y on X, not in the original
form, but in the difference form, which is obtained by subtracting a portion ( )
of the value of a variable in the previous period from its value in the current time
period. Thus, if , we subtract 0.5 times the value of the variable in the
previous time period from its value in the current time period. In this
differencing procedure we lose one observation because the first sample
observation has no antecedent. To avoid this loss of one observation, the first
observation of Y and X is transformed as follows:

(10.16)

This transformation is known as the Prais-Winsten transformation. In prac-
tice, though, if the sample size is very large, this transformation is not gen-
erally made and we use Eq. (10.14) with (n − 1) observations. However,
in small samples sometimes the results are sensitive if we exclude the first
observation.

A couple of points about the generalized difference transformation Eq. (10.14)
should be made here. First, although we have considered only a two-variable
model, the transformation can be generalized to more than one explanatory
variable (see Problem 10.18). Second, so far we have assumed only an AR(1)
scheme, as in Eq. (10.6). But the transformation can be generalized easily to
higher-order schemes, such as an AR(2), AR(3), etc.; no new principle is involved
in the transformation except some tedious algebra.

It seems that we have a “solution” to the autocorrelation problem in the
generalized difference equation (10.14). Alas, we have a problem. For the
successful application of the scheme, we must know the true autocorrelation
parameter, . Of course, we do not know it, and to use Eq. (10.14), we must find
ways to estimate the unknown . The situation here is similar to that in the case
of heteroscedasticity. There, we did not know the true and therefore had to
make some plausible assumptions as to what it might be. Of course, had we
known it, we could have used weighted least squares (WLS) straightforwardly.

 i
2

 

 

X*1 = 21 -  2(X1)

Y*1 = 21 -  2(Y1)

 = 0.5

=   
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10.5 HOW TO ESTIMATE ␳

There is no unique method of estimating ; rather, there are several approaches,
some of which we present now.

␳ = 1: The First Difference Method

Since lies between 0 and ±1, we can assume any value for in the range −1 to 1
and use the generalized difference equation (10.14). As a matter of fact, Hildreth
and Lu12 proposed such a scheme. But which particular value of ? For even
within the confines of the −1 to +1 range literally hundreds of values of can be
chosen. In applied econometrics one assumption that has been used extensively
is that ; that is, the error terms are perfectly positively autocorrelated, which
may be true of some economic time series. If this assumption is acceptable, the
generalized difference equation (10.14) reduces to the first difference equation as

or
(10.17)

where , called delta, is the first difference operator and is a symbol or operator
(like the operator E for expected value) for successive differences of two values.
In estimating Equation (10.17) all we have to do is to form the first differences of
both the dependent and explanatory variable(s) and run the regression on the
variable(s) thus transformed.

Note an important feature of the first difference model (10.17): The model has no
intercept. Hence, to estimate Eq. (10.17), we have to use the regression-through-
the-origin routine in the computer package. Naturally, we will not be able to
estimate the intercept term in this case directly. (But note that .)

␳ Estimated from Durbin-Watson d Statistic

Recall earlier that we established the following approximate relationship
between the d statistic and :

(10.8)

from which we can obtain

(10.18)

Since the d statistic is now routinely computed by most regression packages, we
can easily obtain an approximate estimate of from Equation (10.18). 

N L 1 -
d

2

d L 2(1 - N )

 

b1 = Y - b2X

¢

¢Yt = B2¢Xt + vt

Yt - Yt-1 = B2(Xt - Xt-1) + vt

 = 1

 

 

  

 

12G. Hildreth and J. Y. Lu, “Demand Relations with Autocorrelated Disturbances,” Michigan
State University, Agricultural Experiment Station, Technical Bulletin 276, November 1960.



Once is estimated from d as shown in Eq. (10.18), we can then use it to run
the generalized difference equation (10.14) for the wages-productivity example,
in which . Therefore,

(10.19)

This value is obviously different from assumed for the first difference
transformation. We can use this value to transform the data as in Eq. (10.14).

This method of transformation is easy to use and generally gives good
estimates of if the sample size is reasonably large. For small samples, another
estimate of based on d is suggested by Theil and Nagar, which is discussed in
Problem 10.20.

␳ Estimated from OLS Residuals, et

Recall the first-order autoregressive scheme

(10.6)

Since the u’s are not directly observable, we can use their sample counterparts,
the e’s, and run the following regression:

(10.20)

where is an estimator of . Statistical theory shows that although in small sam-
ples is a biased estimator of true , as the sample size increases the bias tends
to disappear.13 Hence, if the sample size is reasonably large, we can use 
obtained from Equation (10.20) and use it to transform the data as shown in
Eq. (10.14). An advantage of Eq. (10.20) is its simplicity, for we use the usual
OLS method to obtain the residuals. The necessary data to run the regression
are given in Table 10-2, and the results of the regression (10.20) are as follows:

(10.21)

Thus, the estimated is about 0.89. (See Table 10-4.)

Other Methods of Estimating ␳

Besides the methods discussed previously, there are other ways of estimating ,
which are as follows:

1. The Cochrane-Orcutt iterative procedure.
2. The Cochrane-Orcutt two-step method.
3. The Durbin two-step method.

 

 

r2 = 0.8499se = (0.0552)

Net = 0.8915et-1

N 

 N 

 N 

et = N et-1 + vt

ut =  ut-1 + vt

 

 

 

 = 1 

N L 1 -
0.1463

2
= 0.9268

d = 0.1463
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13Technically, we say that is a consistent estimator of . N 



TABLE 10-4 WAGES-PRODUCTIVITY REGRESSION: ORIGINAL AND TRANSFORMED DATA ( = 0.8915)

RWAGES RWAGES(−1) RLAGY YDIF PRODUCT PRODUCT(−1) RLAGX XDIF

59.8710 — — — 48.0260 — — —

61.3180 59.8710 53.3750 7.9430 48.8650 48.0260 42.8152 6.0498

63.0540 61.3180 54.6650 8.3890 50.5670 48.8650 43.5631 7.0039

65.1920 63.0540 56.2126 8.9794 52.8820 50.5670 45.0805 7.8015

66.6330 65.1920 58.1187 8.5143 54.9500 52.8820 47.1443 7.8057

68.2570 66.6330 59.4033 8.8537 56.8080 54.9500 48.9879 7.8201

69.6760 68.2570 60.8511 8.8249 58.8170 56.8080 50.6443 8.1727

72.3000 69.6760 62.1162 10.1838 61.2040 58.8170 52.4354 8.7686

74.1210 72.3000 64.4555 9.6656 62.5420 61.2040 54.5634 7.9786

76.8950 74.1210 66.0789 10.8161 64.6770 62.5420 55.7562 8.9208

78.0080 76.8950 68.5519 9.4561 64.9930 64.6770 57.6595 7.3335

79.4520 78.0080 69.5441 9.9079 66.2850 64.9930 57.9413 8.3437

80.8860 79.4520 70.8315 10.0545 69.0150 66.2850 59.0931 9.9219

83.3280 80.8860 72.1099 11.2181 71.2430 69.0150 61.5269 9.7161

85.0620 83.3280 74.2869 10.7751 73.4100 71.2430 63.5131 9.8969

83.9880 85.0620 75.8328 8.1552 72.2570 73.4100 65.4450 6.8120

84.8430 83.9880 74.8753 9.9677 74.7920 72.2570 64.4171 10.3749

87.1480 84.8430 75.6375 11.5105 77.1450 74.7920 66.6771 10.4679

88.3350 87.1480 77.6924 10.6426 78.4550 77.1450 68.7748 9.6802

89.7360 88.3350 78.7507 10.9853 79.3200 78.4550 69.9426 9.3774

89.8630 89.7360 79.9996 9.8634 79.3050 79.3200 70.7138 8.5912

89.5920 89.8630 80.1129 9.4791 79.1510 79.3050 70.7004 8.4506

89.6450 89.5920 79.8713 9.7737 80.7780 79.1510 70.5631 10.2149

90.6370 89.6450 79.9185 10.7185 80.1480 80.7780 72.0136 8.1344

90.5910 90.6370 80.8029 9.7881 83.0010 80.1480 71.4519 11.5491

90.7120 90.5910 80.7619 9.9501 85.2140 83.0010 73.9954 11.2186

91.9100 90.7120 80.8697 11.0403 87.1310 85.2140 75.9683 11.1627

94.8690 91.9100 81.9378 12.9312 89.6730 87.1310 77.6773 11.9957

95.2070 94.8690 84.5757 10.6313 90.1330 89.6730 79.9435 10.1895

96.5270 95.2070 84.8770 11.6500 91.5060 90.1330 80.3536 11.1524

95.0050 96.5270 86.0538 8.9512 92.4080 91.5060 81.5776 10.8304

96.2190 95.0050 84.6970 11.5220 94.3850 92.4080 82.3817 12.0033

97.4650 96.2190 85.7792 11.6858 95.9030 94.3850 84.1442 11.7588

100.0000 97.4650 86.8900 13.1100 100.0000 95.9030 85.4975 14.5025

99.7120 100.0000 89.1500 10.5620 100.3860 100.0000 89.1500 11.2360

99.0240 99.7120 88.8932 10.1308 101.3490 100.3860 89.4941 11.8549

98.6900 99.0240 88.2799 10.4101 101.4950 101.3490 90.3526 11.1424

99.4780 98.6900 87.9821 11.4959 104.4920 101.4950 90.4828 14.0092

100.5120 99.4780 88.6846 11.8274 106.4780 104.4920 93.1546 13.3234

105.1730 100.5120 89.6064 15.5666 109.4740 106.4780 94.9251 14.5489

108.0440 105.1730 93.7617 14.2823 112.8280 109.4740 97.5961 15.2319

111.9920 108.0440 96.3212 15.6708 116.1170 112.8280 100.5862 15.5308

113.5360 111.9920 99.8409 13.6951 119.0820 116.1170 103.5183 15.5637

115.6940 113.5360 101.2173 14.4767 123.9480 119.0820 106.1616 17.7864

117.7090 115.6940 103.1412 14.5678 128.7050 123.9480 110.4996 18.2054

118.9490 117.7090 104.9376 14.0114 132.3900 128.7050 114.7405 17.6495

119.6920 118.9490 106.0430 13.6490 135.0210 132.3900 118.0257 16.9953

120.4470 119.6920 106.7054 13.7416 136.4040 135.0210 120.3712 16.0328

Notes: RWAGES = Real wages
RWAGES(−1) = Real wages lagged one period

RLAGY = 0.8915 times rwages (−1)
YDIF = rwages − rlagy

PRODUCT = productivity
PRODUCT(−1) = productivity lagged one period

RLAGX = 0.8915 times product (−1)
XDIF = product − rlagX
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TABLE 10-5 REGRESSION RESULTS OF WAGES AND PRODUCTIVITY BASED ON VARIOUS

TRANSFORMATIONS

Method of estimated
transformation from Intercept Slope r 2 Autocorrelation?

Original 33.6360 0.6614 0.9749 Yes

regression (assumed) (1.4001) (0.0156)

First difference * 0.6469 0.6950** No!

(0.0632)

Eq. (10.21)!! 0.5617 0.8040 No!

(0.4783) (0.0413)

Eq. (10.21)!!! 0.7421 0.7326 No!

(0.7849) (0.0661)

Notes: Figures in the parentheses are the estimated standard errors.
*There is no intercept term in this regression. (Why?)
! Based on the runs test on the estimated residuals.
!! Excludes the first observation.
!!! Includes the first observation (i.e., Prais-Winsten transformation).
**The various r 2 values are not directly comparable.
†The intercept term in the transformed regression is . The original
intercept can be obtained as .B1 = B*1>(1 -  )

B*1 = B1(1 -  )

2.9755 = 0.8915

4.8131† = 0.8915

 = 1

 = 0

 

4. The Hildreth-Lu search procedure.
5. The maximum likelihood method.

A discussion of all these methods will take us far afield and thus is left for the
references.14 (But see some of the problems at the end of the chapter.)
Whichever method is employed, we use the obtained from that method to
transform our data as shown in Eq. (10.14) and run the usual OLS regression.15

Although most computer software packages do the transformations with mini-
mum instructions, we show in Table 10-4 how the transformed data will look.

Before concluding, let us consider the results of applying (1) the first difference
transformation and (2) the transformation based on Eq. (10.21) to the wages-
productivity regression. The results are summarized in Table 10-5 (see also
Figures 10-6 and 10-7). Several observations can be made about these results.

1. The original regression was plagued by autocorrelation, but the various
transformed regressions seem to be free from autocorrelation on the basis
of the runs tests.16

 

14For a discussion of these methods, see Gujarati and Porter, Basic Econometrics, 5th ed.,
McGraw-Hill, New York, 2009, Chapter 12.

15In large samples the differences in the estimates of produced by the various methods are
generally small.

16We can obtain the Durbin-Watson d statistic for the transformed regressions too. But
econometric theory suggests that the computed d statistic from the transformed regressions may not
be appropriate to test for autocorrelation in such regressions because if we were to use it for that
purpose, it would suggest that the original error term may not follow the AR(1) scheme. It could, for
example, follow an AR(2) scheme. The runs test discussed in Appendix 10A does not suffer from
this problem since it is a nonparametric test.
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2. Even though the estimated from the first difference transformation and
that estimated from Eq. (10.21) are not the same, the estimated slope
coefficients do not differ substantially from one another if we do not
include the first observation in the analysis. But the estimates of
intercept and slope values are substantially different from the original
OLS regression.
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17Strictly speaking, this statement is correct if the sample size is reasonably large. This is because
we do not know the true and estimate it, and when we estimate to transform the data, econo-
metric theory shows that the usual statistical testing procedure is valid generally in large samples. 

18W. K. Newey and K. West, “A Simple Positive Semi-Definite Heteroscedasticity and
Autocorrelation Consistent Covariance Matrix,” Econometrica, Vol. 55, 1987, pp. 703–708.

19For details, See Gujarati and Porter, Basic Econometrics, 5th ed., pp. 447–448.

  

3. The situation changes significantly, however, if we include the first
observation via the Prais-Winsten transformation. Now the slope
coefficient in the transformed regression is very close to the original OLS
slope and the intercept in the transformed model is much closer to the
original intercept. As noted, in small samples it is important to include
the first observation in the analysis. Otherwise the estimated coefficients
in the transformed model will be less efficient (i.e., have higher standard
errors) than in the model that includes the first observation.

4. The r2 values reported in the various regressions are not directly compa-
rable because the dependent variables in all models are not the same.
Besides, as noted elsewhere, for the first difference model in which there
is no intercept term, the conventionally computed r2 is not meaningful.

If we accept the results based upon the Prais-Winsten transformation for our
wages-productivity example and compare them with the original regression
beset by the autocorrelation problem, we see that the original t ratio of the slope
coefficient, in absolute value, has decreased in the transformed regression. This
is another way of saying that the original model underestimated the standard
error. But this result is not surprising in view of our knowledge about theoretical
consequences of autocorrelation. Fortunately, in this example even after cor-
recting for autocorrelation, the estimated t ratio is statistically significant.17 But
that may not always be the case.

10.6 A LARGE SAMPLE METHOD OF CORRECTING OLS

STANDARD ERRORS:THE NEWEY-WEST (NW) METHOD

Instead of transforming variables to correct for autocorrelation, Newey and
West have developed a procedure to compute OLS standard errors that are cor-
rected for autocorrelation.18

Although we will not go into the mathematics of this test,19 it should be
noted that, strictly speaking, this test is valid in large samples only. However,
what constitutes a large sample is problem-specific. It should also be noted that
most modern statistical software packages now include the NW test, which is
popularly known as HAC (heteroscedasticity and autocorrelation-consistent)
standard errors or simply Newey-West standard errors. It is interesting to note
that HAC does not change the values of the OLS estimator; it only corrects their stan-
dard errors.



To illustrate this test, we give in Table 10-6 (posted on the book’s Web site)
several macro-economic data for the U.S. from 1947-1Q to 2007-4Q, for a total of
244 quarterly observations. For our present purposes we will use data on cor-
porate dividends paid and corporate profits (CP). 

(10.22)

where l denotes natural logarithm.
The time or trend variable is included in the model to allow for the upward

trend in the two time series. In Eq. (10.22) gives the elasticity of dividends
with respect to profits and gives the relative, or if multiplied by 100, the per-
cent growth in dividends over time.

Using EViews 6, we obtained the following results:

Dependent Variable: LDIVIDEND

Method: Least Squares

Sample: 1947Q1 2007Q4

Included observations: 244

Newey-West HAC Standard Errors & Covariance (lag truncation = 4)

Coefficient Std. error t-Statistic Prob.

C 0.435764 0.192185 2.267414 0.0243

LCP 0.424535 0.077733 5.461456 0.0000

Time 0.012691 0.001421 8.930795 0.0000

R-squared 0.991424 Mean dependent var 3.999717

Adjusted R-squared 0.991353 S.D. dependent var 1.430724

S.E. of regression 0.133041 Akaike info criterion −1.184093

Sum squared resid 4.265706 Schwarz criterion −1.141095

Log likelihood 147.4594 Hannan-Quinn criter. −1.166776

F-statistic 13930.73 Durbin-Watson stat 0.090181

Prob (F-statistic) 0.000000

Judged by the usual criteria, these results look “good.” All the coefficients are
individually highly significant (the p values are practically zero), and the R2 is
very high. The elasticity of dividends with respect to corporate profits is about
0.42 and the dividends have been increasing at the quarterly rate of about
1.26 percent.  The only fly in the ointment is the low value of the Durbin-Watson
statistic, which suggests a high degree of positive autocorrelation in the residu-
als. Therefore, we cannot trust these results without taking care of the autocor-
relation problem.

Our sample of 244 observations covering a span of 61 years may be large
enough to use the HAC procedure.

B3

B2

lDividend = B1 + B2lCP + B3Time + ut
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Using EViews 6, we obtained the following results:

Dependent Variable: LDIVIDEND

Method: Least Squares

Sample: 1947Q1 2007Q4

Included observations: 244

Newey-West HAC Standard Errors & Covariance (lag truncation = 4)

Coefficient Std. error t-Statistic Prob.

C 0.435764 0.192185 2.267414 0.0243

LCP 0.424535 0.077733 5.461456 0.0000

T 0.012691 0.001421 8.930795 0.0000

R-squared 0.991424 Mean dependent var 3.999717

Adjusted R-squared 0.991353 S.D. dependent var 1.430724

S.E. of regression 0.133041 Akaike info criterion −1.184093

Sum squared resid 4.265706 Schwarz criterion −1.141095

Log likelihood 147.4594 Hannan-Quinn criter. −1.166776

F-statistic 13930.73 Durbin-Watson stat 0.090181

Prob (F-statistic) 0.000000

The first thing to notice about these results is that the estimates of the regression
coefficients remain the same under OLS as well as under HAC. However, the
standard errors have changed substantially. It seems the OLS standard errors
underestimated the true standard errors, thus inflating the t values. But even
then the estimated regression coefficients are highly significant. This example
shows that autocorrelation need not necessarily negate the OLS results, but we should
always check for the presence of autocorrelation in time series data.

Incidentally, the HAC output still shows the same Durbin-Watson value as
under OLS estimation.  But do not worry about this, for HAC has already taken
this into account in recalculating the standard errors. 

10.7 SUMMARY

The major points of this chapter are as follows:

1. In the presence of autocorrelation OLS estimators, although unbiased,
are not efficient. In short, they are not BLUE.

2. Assuming the Markov first-order autoregressive, the AR(1), scheme, we
pointed out that the conventionally computed variances and standard
errors of OLS estimators can be seriously biased.

3. As a result, standard t and F tests of significance can be seriously
misleading.
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4. Therefore, it is important to know whether there is autocorrelation in any
given case. We considered three methods of detecting autocorrelation:
a. graphical plotting of the residuals
b. the runs test
c. the Durbin-Watson d test

5. If autocorrelation is found, we suggest that it be corrected by appropriately
transforming the model so that in the transformed model there is no auto-
correlation. We illustrated the actual mechanics with several examples.

KEY TERMS AND CONCEPTS

The key terms and concepts introduced in this chapter are

Serial correlation or autocorrelation
a) spatial correlation

Reasons for autocorrelation
a) inertia or sluggishness
b) model specification error
c) cobweb phenomenon
d) data manipulation

Detecting autocorrelation
a) time-sequence plot
b) the Durbin-Watson d test;

coefficient of autocorrelation;
the Markov first-order
autoregressive or AR(1) scheme;
autoregressive models; h
statistic

Remedial measures for serial or
autocorrelation
a) generalized least squares (GLS)

(generalized difference
equation)

b) Prais-Winsten transformation
Estimation of 

a) first difference equation
b) the Durbin-Watson d statistic
c) OLS residuals

Large sample method of correcting
OLS standard errors
a) the Newey-West (NW)

method; HAC; Newey-West
standard errors

 

QUESTIONS

10.1. Explain briefly the meaning of
a. Autocorrelation
b. First-order autocorrelation
c. Spatial correlation

10.2. What is the importance of assuming the Markov first-order, or AR(1), auto-
correlation scheme?

10.3. Assuming the AR(1) scheme, what are the consequences of the CLRM
assumption that the error terms in the PRF are uncorrelated?

10.4. In the presence of AR(1) autocorrelation, what is the method of estimation
that will produce BLUE estimators? Outline the steps involved in imple-
menting this method.

10.5. What are the various methods of estimating the autocorrelation parameter 
in the AR(1) scheme?

 



10.6. What are the various methods of detecting autocorrelation? State clearly the
assumptions underlying each method.

10.7. Although popularly used, what are some limitations of the Durbin-Watson d
statistic?

10.8. State whether the following statements are true or false. Briefly justify your
answers.
a. When autocorrelation is present, OLS estimators are biased as well as

inefficient.
b. The Durbin-Watson d is useless in autoregressive models like the regres-

sion (10.7) where one of the explanatory variables is a lagged value(s) of
the dependent variable.

c. The Durbin-Watson d test assumes that the variance of the error term ut is
homoscedastic.

d. The first difference transformation to eliminate autocorrelation assumes
that the coefficient of autocorrelation must be −1.

e. The R2 values of two models, one involving regression in the first differ-
ence form and another in the level form, are not directly comparable.

10.9. What is the importance of the Prais-Winsten transformation?

PROBLEMS

10.10. Complete the following table:

Number of 
explanatory Durbin-Watson Evidence of 

Sample size variables d autocorrelation

25 2 0.83 Yes
30 5 1.24 —
50 8 1.98 —
60 6 3.72 —

200 20 1.61 —

10.11. Use the runs test to test for autocorrelation in the following cases. (Use the
Swed-Eisenhart tables. See Appendix 10A.)

Sample Number of Number of Number of
size + − runs Autocorrelation (?)

18 11 7 2 —
30 15 15 24 —
38 20 18 6 —
15 8 7 4 —
10 5 5 1 —

10.12. For the Phillips curve regression Equation (5.29) given in Chapter 5, the
estimated d statistic would be 0.6394.
a. Is there evidence of first-order autocorrelation in the residuals? If so, is it

positive or negative?
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b. If there is autocorrelation, estimate the coefficient of autocorrelation from
the d statistic.

c. Using this estimate, transform the data given in Table 5-6 and estimate the
generalized difference equation (10.15) (i.e., apply OLS to the transformed
data).

d. Is there autocorrelation in the regression estimated in part (c)? Which test
do you use?

10.13. In studying the movement in the production workers’ share in value added (i.e.,
labor’s share) in manufacturing industries, the following regression results
were obtained based on the U.S. data for the years 1949 to 196420 (t ratios in
parentheses):

where Y = labor’s share and t = the time.
a. Is there serial correlation in Model A? In Model B?
b. If there is serial correlation in Model A but not in Model B, what accounts

for the serial correlation in the former?
c. What does this example tell us about the usefulness of the d statistic in

detecting autocorrelation?
10.14. Durbin’s two-step method of estimating .21 Write the generalized difference

equation (10.14) in a slightly different but equivalent form as follows:

In step 1 Durbin suggests estimating this regression with Y as the dependent
variable and Xt, , and as explanatory variables. The coefficient of

will provide an estimate of . The thus estimated is a consistent estima-
tor; that is, in large samples it provides a good estimate of true .

In step 2 use the estimated from step 1 to transform the data to estimate
the generalized difference equation (10.14).

Apply Durbin’s two-step method to the U.S. import expenditure data
discussed in Chapter 7 and compare your results with those shown for the
original regression.

10.15. Consider the following regression model:22

 t = (-2.2392)  (70.2936)  (2.6933)

 YN t = -49.4664 + 0.88544X2t + 0.09253X3t; R2 = 0.9979; d = 0.8755

 

 

  Yt-1

Yt-1Xt-1

Yt = B1(1 -  ) + B2Xt -  B2Xt-1 +  Yt-1 + vt

 

 t =  (-3.2724)  (2.7777)

Model B: YN t = 0.4786 - 0.00127t + 0.0005t2; R2 = 0.6629; d = 1.82

 t =  (-3.9608)

Model A: YN t = 0.4529 - 0.0041t; r2 = 0.5284; d = 0.8252

20See Damodar N. Gujarati, ”Labor’s Share in Manufacturing Industries,” Industrial and Labor
Relations Review, vol. 23, no. 1, October 1969, pp. 65–75.

21Royal Statistical Society, series B, vol. 22, 1960, pp. 139–153.
22See Dominick Salvatore, Managerial Economics, McGraw-Hill, New York, 1989, pp. 138, 148.
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where Y = the personal consumption expenditure (1982 billions of dollars)

X2 = the personal disposable income (1982 billions of dollars) (PDI)

X3 = the Dow Jones Industrial Average Stock Index

The regression is based on U.S. data from 1961 to 1985.
a. Is there first-order autocorrelation in the residuals of this regression? How

do you know?
b. Using the Durbin two-step procedure, the preceding regression was trans-

formed per Eq. (10.15), yielding the following results:

Has the problem of autocorrelation been resolved? How do you know?
c. Comparing the original and transformed regressions, the t value of the

PDI has dropped dramatically. What does this suggest?
d. Is the d value from the transformed regression of any value in determin-

ing the presence, or lack thereof, of autocorrelation in the transformed
data?

10.16. Durbin h statistic. In autoregressive models like Eq. (10.7):

the usual d statistic is not applicable to detect autocorrelation. For such
models, Durbin has suggested replacing the d statistic by the h statistic
defined as

where n = the sample size
= the estimator of the autocorrelation coefficient 

var (b3) = the variance of the estimator of B3, the coefficient of lagged Y
variable

Durbin has shown that for large samples, and given the null hypothesis
that true , the h statistic is distributed as

It follows the standard normal distribution, that is, normal distribution with
zero mean and unit variance. Therefore, we would reject the null hypothesis
that if the computed h statistic exceeds the critical h value. If, e.g., the = 0

h ' N(0, 1)

 = 0

  N

h L  NA
n

1 - n # var(b3)

Yt = B1 + B2Xt + B3Yt-1 + vt

 t =   (30.72)  (2.66)

 Y*t = -17.97 +  0.89X*2t +  0.09X*3t; R2 = 0.9816; d = 2.28



CHAPTER TEN: AUTOCORRELATION: WHAT HAPPENS IF ERROR TERMS ARE CORRELATED? 339

level of significance is 5%, the critical h value is −1.96 or 1.96. Therefore, if a
computed h exceeds , we can reject the null hypothesis; if it does not ex-
ceed this critical value, we do not reject the null hypothesis of no (first-order)
autocorrelation. Incidentally, entering the h formula can be obtained from
any one of the methods discussed in the text.

Now consider the following demand for money function for India for the
periods 1948 to 1949 and 1964 to 1965:

d = 1.8624

where M = real cash balances

R = the long-term interest rate

Y = the aggregate real national income

a. For this regression, find the h statistic and test the hypothesis that the pre-
ceding regression does not suffer from first-order autocorrelation.

b. As the regression results show, the Durbin-Watson d statistic is 1.8624. Tell
why in this case it is inappropriate to use the d statistic. But note that you
can use this d value to estimate 

10.17. Consider the data given in Table 10-7 (on the textbook’s Web site) relating to
stock prices and GDP for the period 1980–2006.
a. Estimate the OLS regression

b. Find out if there is first-order autocorrelation in the data on the basis of the
d statistic.

c. If there is, use the d value to estimate the autocorrelation parameter .
d. Using this estimate of , transform the data per the generalized difference

equation (10.14), and estimate this equation by OLS (1) by dropping the
first observation and (2) by including the first observation.

e. Repeat part (d), but estimate from the residuals as shown in Eq. (10.20).
Using this estimate of , estimate the generalized difference equation (10.14).

f. Use the first difference method to transform the model into Eq. (10.17) and
estimate the transformed model.

g. Compare the results of regressions obtained in parts (d), (e), and ( f ). What
conclusions can you draw? Is there autocorrelation in the transformed
regressions? How do you know?

10.18. Consider the following model:

Suppose the error term follows the AR(1) scheme in Eq. (10.6). How would
you transform this model so that there is no autocorrelation in the trans-
formed model? (Hint: Extend Eq. [10.15].)

Yt = B1 + B2X2t + B3X3t + B4X4t + ut

 

 

 

 

Yt = B1 + B2Xt + ut

 ( N L 1 - d/2).

 se = (1.2404)  (0.3678)  (0.3427)  (0.2007) R2 = 0.9227

 ln Mt = 1.6027 -  0.1024 ln Rt +  0.6869 ln Yt +  0.5284 ln Mt-1

 N

ƒ 1.96 ƒ



10.19. Establish Eq. (10.8). (Hint: Expand Eq. [10.5] and use Eq. [10.9]. Also, note that
for a large sample size and are approximately the same.)

10.20. The Theil-Nagar based on d statistic. Theil and Nagar have suggested that
in small samples instead of estimating as (1 − d/2), it should be esti-
mated as

where n = the sample size

d = the Durbin-Watson d

k = the number of coefficients (including the intercept) to be estimated

Show that for large n, this estimate of is equal to the one obtained by the
simpler formula (1 − d/2).

10.21. Refer to Example 7.3 relating expenditure on imports (Y) to personal dispos-
able income (X). Now consider the following models:

Model 1 Model 2 Model 3

Intercept −136.16 22.69 12.18

X 0.2082 0.2975 0.0382

Time — −18.525 −3.045

Y (−1) — — 0.9659

R2 0.969 0.984 0.994

d 0.216 0.341 1.611

a. What do these results suggest about the nature of autocorrelation in this
example?

b. How would you interpret the time and lagged Y terms in Model 3?
Note: The estimated coefficients in all the models, except for the X and
Time coefficients in Model 3, were statistically significant at the 5% or
lower level of significance. 

10.22. Monte Carlo experiment. Consider the following model:

(1)

where X takes values of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Assume that

(2)

where . Assume that .
a. Generate 10 values of vt and then 10 values of ut per Equation (2).

u0 = 0vt ' N(0, 1)

 = 0.9ut-1 + vt

 ut =  ut-1 + vt

Yt = 1.0 + 0.9Xt + ut

 

 N =
n2(1 - d>2) + k2

n2 - k2

 

 

ge2tge2t-1
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b. Using the 10 X values and the 10 u values generated in the preceding step,
generate 10 values of Y.

c. Regress the Y values generated in part (b) on the 10 X values, obtaining b1

and b2.
d. How do the computed b1 and b2 compare with the true values of 1 and 0.9,

respectively?
e. What can you conclude from this experiment?

10.23. Continue with Problem 10.22. Now assume that and repeat the exer-
cise. What do you observe? What general conclusion can you draw from
Problems 10.22 and 10.23?

APPENDIX 10A:The Runs Test

THE RUNS TEST23

To explain this test, simply note the sign (+ or −) of the residuals obtained from
the estimated regression. Suppose in a sample of 20 observations, we obtained
the following sequence of residuals

(++)(− − − − − − − − − − − − −)(+++++) (10A.1)

We now define a run as an uninterrupted sequence of one symbol or
attribute, such as + or −. We further define the length of the run as the num-
ber of elements in the run. In the sequence shown in Equation (10A.1), there
are 3 runs—a run of 2 pluses (i.e., of length 2), a run of 13 minuses (i.e., of
length 13), and a run of 5 pluses (i.e., of length 5); for better visual effect we
have put the various runs in parentheses.

By examining how runs behave in a strictly random sequence of observa-
tions, we can derive a test of randomness of runs. The question we ask is: Are the
3 runs observed in our example consisting of 20 observations too many or too few com-
pared with the number of runs expected in a strictly random sequence of 20 observa-
tions? If there are too many runs, it means that the e’s change sign frequently,
thus suggesting negative serial correlation (cf. Figure 10-2[b]). Similarly, if there
are too few runs, it suggests positive autocorrelation, as in Figure 10-2(a).

Now let N = total number of observations (= N1 + N2)
N1 = number of + symbols (i.e., + residuals)
N2 = number of − symbols (i.e., − residuals)

k = number of runs

Then under the null hypothesis that the successive outcomes (here, residuals)
are independent, Swed and Eisenhart have developed special tables that give

 = 0.1

23It is a nonparametric test because it makes no assumptions about the (probability) distribution
from which the observations are taken.



critical values of the runs expected in a random sequence of N observations.
These tables are given in Appendix E, Table E-6.

Swed-Eisenhart Critical Runs Test

To illustrate the use of these tables, let us revert to the sequence shown in Eq. (10A.1).
We have N = 20, N1 = 7 (7 pluses), N2 = 13 (13 minuses), and k = 3 runs. For N1 = 7
and N2 = 13, the 5% critical values of runs are 5 and 15. Now, as noted in Appendix
E, Table E-6, if the actual number of runs is equal to or less than 5 or equal to or
greater than 15, we can reject the hypothesis that the observed sequence of the e’s
given in Eq. (10A.1) is random. In our example the actual number of runs is 3. Hence,
we can conclude that the observed sequence in Eq. (10A.1) is not random.

Note that the Swed-Eisenhart table is for 40 observations at most—20 pluses
and 20 minuses. If the actual sample size is greater, we cannot use these tables.
But in that case it can be shown that if N1  10 and N2  10 and the null hy-
pothesis is that the successive observations (residuals in our case) are inde-
pendent, the number of runs k is asymptotically (i.e., in large samples) normally
distributed with

(10A.2)

(10A.3)

If the null hypothesis of randomness is sustainable, following the properties
of the normal distribution, we should expect that

(10A.4)

That is, the probability is 95% that the preceding interval will include the
observed k.

Decision Rule

Do not reject the null hypothesis of randomness with 95% confidence if k, the
number of runs, lies in the interval of Eq. (10A.4); reject the null hypothesis
if the estimated k lies outside these limits. (Note: You can choose any level of
confidence you want.)

Prob[E(k) - 1.96 k … k … E(k) + 1.96 k] = 0.95

Variance:  2
k =

2N1N2(2N1N2 - N)

N2(N - 1)

Mean: E(k) =
2N1N2

N
+ 1
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24T. S. Breusch, “Testing for Autocorrelation in Dynamic Linear Models,” Australian Economic
Papers, vol. 17, 1978, pp. 334–355, and L. G. Godfrey, “Testing  Against General Autoregressive and
Moving Average Error Models When the Regressand Includes Lagged Dependent Variables,”
Econometrica, vol. 46, 1978, pp. 1293–1302.

APPENDIX 10B: A General Test of Autocorrelation:
The Breusch-Godfrey (BG) Test

A test of autocorrelation that is more general than some of the tests discussed so
far is one developed by statisticians Breusch and Godfrey.24 This test is general
in that it allows for (1) stochastic regressors, such as the lagged values of the de-
pendent variables, (2) higher-order autoregressive schemes, such as AR(1),
AR(2), etc., and (3) simple or higher-order moving averages of the purely ran-
dom error terms, such as , , etc. 

To illustrate this test, we revert to the dividend–corporate profits example
discussed in Section 10.6. In that example we regressed the logarithm of divi-
dend on the logarithm of corporate profits and a trend variable. On the basis of
the Durbin-Watson test, we found in that example that we did have the auto-
correlation problem. This is also confirmed by the BG test, which proceeds as
follows:

1. Run the dividend regression as shown in Eq. (10.22) and obtain residuals
from this regression, .

2. Now run the following regression:

That is, regress the residual at time t on the original regressors, including the
intercept and the lagged values of the residuals up to time , the value
of k being determined by trial and error or on the basis of Akaike or Schwarz
information criteria. Obtain the value of this regression. This is called the
auxiliary regression.

3. Calculate , that is, obtain the product of the sample size n and the 
value obtained in (2). Under the null hypothesis that all the coefficients of the
lagged residual terms are simultaneously equal to zero, it can be shown that
in large samples

That is, in large samples, the product of the sample size and follows the
chi-square distribution with k degrees of freedom (i.e., the number of lagged
residual terms). In econometrics literature, the BG test is known as the
Lagrange multiplier test.

R2

nR2 '  2
k

R2nR2

R2

(t - k)

et = A1 + A2lCPt + A2 Time + C1et-1 + C2et-2 + Á + Cket-k + vt

et

vt-2vt-1



For our example, we obtained the following results (for illustrative purposes we
have used three lagged values of the residuals, although only the first lagged
value is statistically significant):

Breusch-Godfrey Serial Correlation LM Test:

F-statistic 823.0875 Prob. F(3,238) 0.0000

Obs*R-squared 222.5495 Prob. Chi-Square(3) 0.0000

Test Equation:

Dependent Variable: RESID

Method: Least Squares

Sample: 1947Q1 2007Q4

Included observations: 244

Presample missing value lagged residuals set to zero.

Coefficient Std. error t-Statistic Prob.

C −0.020423 0.031482 −0.648726 0.5171

LCP 0.007548 0.012027 0.627611 0.5309

Time −0.000121 0.000214 −0.565962 0.5720

RESID(−1) 0.907903 0.064654 14.04247 0.0000

RESID(−2) −0.021374 0.087434 −0.244459 0.8071

RESID(−3) 0.074971 0.064785 1.157217 0.2483

R-squared 0.912088 Mean dependent var −1.10E-15

Adjusted R-squared 0.910241 S.D. dependent var 0.132493

S.E. of regression 0.039694 Akaike info criterion −3.590926

Sum squared resid 0.375005 Schwarz criterion −3.504930

Log likelihood 444.0929 Hannan-Quinn criter. −3.556291

F-statistic 493.8525 Durbin-Watson stat 2.021935

Prob (F-statistic) 0.000000

As you can see, . The probability of obtaining a chi-square
value of as much as 222.54 or greater for 3 d.f. is practically zero. Therefore, we
can reject the hypothesis that . That is, there is evidence of au-
tocorrelation in the error term. The BG test, therefore, confirms the finding on
the basis of the Durbin-Watson test. But keep in mind that the BG test is of gen-
eral applicability, whereas the Durbin-Watson test assumes only first-order ser-
ial correlation. 

C1 = C2 = C3 = 0

nR2 ' 222.54 =  2
3
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PART III
ADVANCED TOPICS IN

ECONOMETRICS

345

In this part, consisting of two chapters, we discuss two topics that may be ad-
vanced for the beginner. But with an instructor’s help, students can master them
with some effort.

Chapter 11 discusses simultaneous equation models. Chapters in the previ-
ous two parts of the text were devoted to single equation regression models be-
cause such models are used extensively in empirical work in business and eco-
nomics. In such models, as we have seen, one variable (the dependent variable,
Y) is expressed as a linear function of one or more other variables (the
explanatory variables, the X’s). In such models an implicit assumption is that
the cause-and-effect relationship, if any, between Y and the X’s is unidirectional;
the explanatory variables are the cause, and the dependent variable is the effect.

However, there are situations where there is a two-way flow, or influence,
among economic variables; that is, one economic variable affects another eco-
nomic variable(s) and is, in turn, affected by it (them). Thus in the regression of
money (M) on the rate of interest (r), the single-equation methodology assumes
implicitly that the rate of interest is fixed (say, by the Federal Reserve Bank) and
tries to find out the change in the amount of money demanded in response to
changes in the level of the interest rate. But what happens if the rate of interest
depends on the demand for money? In this case, the conditional regression
analysis made thus far in this book may not be appropriate because now M
depends on r and r depends on M. This leads us to consider simultaneous equa-
tion models—models in which there is more than one regression equation, that
is, one for each interdependent variable.



In this chapter we present a very elementary, and often heuristic, introduc-
tion to the vast and complex subject of simultaneous equation models, the details
being left for the references.

Chapter 12 discusses a variety of topics in the field of time series economet-
rics, a field that is growing in importance. In regression analysis involving time
series data we have to be careful in routinely using the standard classical linear
regression assumptions. The critical concept in time series analysis is the
concept of stationary time series. In this chapter we discuss this topic at an
intuitive level and point out the importance of testing for stationarity.

In this chapter we also discuss the logit model. In Chapter 6 we considered
several models in which one or more X variables were dummy variables, taking a
value of 0 or 1. In logit models we try to model situations in which the dependent
variable, Y, is a dummy variable. For example, admission to a graduate school is
a dummy variable, for you are either accepted or rejected. Although such models
can be estimated with the standard ordinary least squares (OLS) procedure, it is
generally not recommended because of several estimation problems.

In these two chapters, as throughout the book, we illustrate the various
concepts introduced with several concrete examples.
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CHAPTER 11
SIMULTANEOUS

EQUATION MODELS

347

All the regression models we have considered so far have been single equation
regression models in that a single dependent variable (Y) was expressed as a
function of one or more explanatory variables (the X’s). The underlying eco-
nomic theory determined why Y was treated as the dependent variable and the
X’s as the determining or causal variables. In other words, in such single equa-
tion regression models the causality, if any, ran from the X’s to Y. Thus, in our
child mortality illustrative example considered earlier, it was socioeconomic
theory that suggested that personal income (X2) and female literacy rate (X3)
were the primary factors affecting child mortality (Y).

However, there are situations in which such a unidirectional relationship be-
tween Y and the X’s cannot be maintained. It is quite possible that the X’s not only
affect Y, but that Y can also affect one or more X’s. If that is the case, we have a bi-
lateral, or feedback, relationship between Y and the X’s. Obviously, if this is the case,
the single equation modeling strategy that we have discussed in the previous
chapters will not suffice, and in some cases it may be quite inappropriate because
it may lead to biased (in the statistical sense) results. To take into account the bi-
lateral relationship between Y and the X’s, we will therefore need more than one
regression equation. Regression models in which there is more than one equation
and in which there are feedback relationships among variables are known as si-
multaneous equation regression models. In the rest of this chapter we will dis-
cuss the nature of such simultaneous equation models. Our treatment of the topic
is heuristic. For a detailed treatment of this topic, consult the references.1

1An extended treatment of this subject can be found in Gujarati and Porter, Basic Econometrics,
5th ed., McGraw-Hill, New York, 2009, Chapters 18–20.



11.1 THE NATURE OF SIMULTANEOUS EQUATION MODELS

The best way to proceed is to consider some examples from economics.

Example 11.1. The Keynesian Model of Income Determination

A beginning student of economics is exposed to the simple Keynesian model
of income determination. Using the standard macroeconomics textbook con-
vention, let C stand for consumption (expenditure), Y for income, I for in-
vestment (expenditure), and S for savings. The simple Keynesian model of
income determination consists of the following two equations:

Consumption function: Ct = B1 + B2Yt + ut (11.1)

Income identity: Yt = Ct + It (11.2)

where t is the time subscript, u is the stochastic error term, and It = St.
This simple Keynesian model assumes a closed economy (i.e., there is no

foreign trade) and no government expenditure (recall that the income iden-
tity is generally written as Yt = Ct + It + Gt + NXt, where G is government
expenditure and NX is net export [export − import]). The model also assu-
mes that I, investment expenditure, is determined exogenously, say, by the
private sector.

The consumption function states that consumption expenditure is linearly
related to income; the stochastic error term is added to the function to reflect the
fact that in empirical analysis the relation between the two is only approximate.
The (national income) identity says that total income is equal to the sum of con-
sumption expenditure and investment expenditure; the latter is equal to total
savings. As we know, the slope coefficient B2 in the consumption function is the
marginal propensity to consume (MPC), the amount of extra consumption expen-
diture resulting from an extra dollar of income. Keynes assumed that MPC is
positive but less than 1, which is reasonable because people may save part of
their additional income.

Now we can see the feedback, or simultaneous, relationship between con-
sumption expenditure and income. From Equation (11.1) we see that income
affects consumption expenditure, but from Equation (11.2) we also see that
consumption is a component of income. Thus, consumption expenditure and
income are interdependent. The objective of analysis is to find out how consump-
tion expenditure and income are determined simultaneously. Thus consumption
and income are jointly dependent variables. In the language of simultaneous
equation modeling, such jointly dependent variables are known as endogenous
variables. In the simple Keynesian model, investment I is not an endogenous
variable, for its value is determined independently; so it is called an exogenous,
or predetermined, variable. In more refined Keynesian models, investment can
also be made endogenous.
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In general, an endogenous variable is a “variable that is an inherent part of
the system being studied and that is determined within the system. In other
words, a variable that is caused by other variables in a causal system,” and an
exogenous variable “is a variable entering from and determined from outside
the system being studied. A causal system says nothing about its exogenous
variables.”2

Equations (11.1) and (11.2) represent a two-equation model involving two
endogenous variables, C and Y. If there are more endogenous variables, there
will be more equations, one for each of the endogenous variables. Some equa-
tions in the system are structural, or behavioral, equations and some are identities.
Thus, in our simple Keynesian model, Eq. (11.1) is a structural, or behavioral,
equation, for it depicts the structure or behavior of a particular sector of the
economy, the consumption sector here. The coefficients (or parameters) of the
structural equations, such as B1 and B2, are known as structural coefficients.
Equation (11.2) is an identity, a relationship that is true by definition: Total in-
come is equal to total consumption expenditure plus total investment.

Example 11.2. Demand and Supply Model

As every student of economics knows, the price P of a commodity and the
quantity Q sold are determined by the intersection of the demand and sup-
ply curves for that commodity. Thus, assuming for simplicity that the
demand and supply curves are linearly related to price and adding the
stochastic, or random error, terms u1 and u2, we may write the empirical
demand and supply functions as:

(11.3)

(11.4)

(11.5)

where = quantity demanded, = quantity supplied, and t = time.
According to economic theory, A2 is expected to be negative (downward-

sloping demand curve) and B2 is expected to be positive (upward-sloping
supply curve). Equations (11.3) and (11.4) are both structural equations, the
former representing the consumers and the latter the suppliers. The A’s and
B’s are structural coefficients.

Now it is not too difficult to see why there is a simultaneous, or two-way,
relationship between P and Q. If, for example, u1t (in Eq. [11.3]) changes
because of changes in other variables affecting demand (such as income,
wealth, and tastes), the demand curve will shift upward if u1t is positive and

Qs
tQd

t

 Equilibrium condition: Qd
t = Qs

t

 Supply function: Qs
t = B1 + B2Pt + u2t

 Demand function: Qd
t = A1 + A2Pt + u1t
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2W. Paul Vogt, Dictionary of Statistics and Methodology: A Nontechnical Guide for the Social Sciences,
Sage Publications, California, 1993, pp. 81, 85.



downward if u1t is negative. As Figure 11-1 shows, a shift in the demand
curve changes both P and Q. Similarly, a change in u2t (because of strikes,
weather, hurricanes) will shift the supply curve, again affecting both P and
Q. Therefore, there is a bilateral, or simultaneous, relationship between the
two variables; the P and Q variables are thus jointly dependent, or endogenous,
variables. This is known as the simultaneity problem.

11.2 THE SIMULTANEOUS EQUATION BIAS:

INCONSISTENCY OF OLS ESTIMATORS

Why is simultaneity a problem? To understand the nature of this problem,
return to Example 11.1, which discusses the simple Keynesian model of income
determination. Assume for the moment that we neglect the simultaneity
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between consumption expenditure and income and just estimate the consump-
tion function (11.1) by the usual ordinary least squares (OLS) procedure. Using
the usual OLS formula, we obtain

(11.6)

Now recall from Chapter 3 that if we work within the framework of the classi-
cal linear regression model (CLRM), which is the framework we have used thus
far, the OLS estimators are best linear unbiased estimators (BLUE). Is b2 given in
Equation (11.6) a BLUE estimator of the true marginal propensity to consume
B2? It can be shown that in the presence of the simultaneity problem the OLS
estimators are generally not BLUE. In our case b2 is not a BLUE estimator of B2.
In particular, b2 is a biased estimator of B2; on average, it underestimates or over-
estimates the true B2. A formal proof of this statement is given in Appendix 11A.
But intuitively it is easy to see why b2 may not be BLUE.

As discussed in Section 3.1, one of the assumptions of the CLRM is that the sto-
chastic error term u and the explanatory variable(s) are not correlated. Thus, in the
Keynesian consumption function Y (income) and the error term ut must not be
correlated, if we want to use OLS to estimate the parameters of the consumption
function (11.1). But that is not the case here. To see this, we proceed as follows:

Therefore, transferring the B1Yt term to the left-hand side and simplifying, we
obtain

(11.7)

Notice an interesting feature of this equation. National income Y not only
depends on investment I but also on the stochastic error term u! Recall that the
error term u represents all kinds of influences not explicitly included in the
model. Let us suppose that one of these influences is consumer confidence as
measured by, say, the consumer confidence index developed by the University
of Michigan. Suppose consumers feel upbeat about the economy because of a
boom in the stock market (as happened in the United States in 1996 and 1997).
Therefore, consumers increase their consumption expenditure, which affects in-
come Y in view of the income identity (11.2). This increase in income will lead
to another round of increase in consumption because of the presence of Y in the
consumption function (11.1), which will lead to further increases in income, and
so on. What will the end result of this process be? Students familiar with ele-
mentary macroeconomics will recognize that the end result will depend on the
value of the multiplier . If, for example, the MPC (B2) is 0.8 (i.e., 80 cents( 1

1 - B2
)

Yt =
B0

1 - B1
+

1

1 - B1
It +

1

1 - B1
ut

 = B0 + B1Yt + ut + It

 = (B0 + B1Yt + ut) + It    substituting for Ct from Eq. (11.1)

 Yt = Ct + It

b2 =
©(Ct - C)(Yt - Y)

©(Yt - Y)2
=
©ctyt

©y2
t

CHAPTER ELEVEN: SIMULTANEOUS EQUATION MODELS 351



of every additional dollar’s worth of income is spent on consumption), the mul-
tiplier will be 5.

The point to note is that Y and u in Eq. (11.1) are correlated, and hence we cannot
use OLS to estimate the parameters of the consumption function (11.1). If we per-
sist in using it, the estimators will be biased. Not only that, but as Appendix 11A
shows, the estimators are not even consistent. As discussed in Appendix D.4,
roughly speaking, an estimator is said to be an inconsistent estimator if it does
not approach the true parameter value even if the sample size increases indefi-
nitely. In sum, then, because of the correlation between Y and u, the estimator b2 is biased
(in small samples) as well as inconsistent (in large samples). This just about destroys
the usefulness of OLS as an estimating method in the context of simultaneous
equation models. Obviously, we need to explore other estimating methods. We
discuss an alternative method in the following section. In passing, note that if an
explanatory variable in a regression equation is correlated with the error term in
that equation, that variable essentially becomes a random, or stochastic, variable.
In most of the regression models considered previously, we either assumed that
the explanatory variables assume fixed values, or if they were random, that they
were uncorrelated with the error term. This is not the case in the present instance.

Before proceeding further, notice an interesting feature of Equation (11.7): It
expresses Y (income) as a function of I (investment), which is given exoge-
nously, and error term u. Such an equation, which expresses an endogenous vari-
able solely as a function of an exogenous variable(s) and the error term, is
known as a reduced form equation (regression). We will see the utility of such
reduced form equations shortly.

If we now substitute Y from Eq. (11.7) into the consumption function (11.1),
we obtain the reduced form equation for C as

(11.8)

As in  Eq. (11.7), this equation expresses the endogenous variable C (consump-
tion) solely as a function of the exogenous variable I and the error term.

11.3 THE METHOD OF INDIRECT LEAST SQUARES (ILS)

For reasons just stated, we should not use OLS to estimate the parameters B1

and B2 of the consumption function (11.1) because of correlation between Y and
u. What is the alternative? The alternative can be found in Equation (11.8). Why
not simply regress C on I, using the method of OLS? We could do that, because
I, being exogenous by assumption, is uncorrelated with u; this was not the case
with the original consumption function (11.1).

But how does the regression (11.8) enable us to estimate the parameters of the
original consumption function (11.1), the object of our primary interest? This is
easy enough. Let us write Eq. (11.8) as

(11.9)Ct = A1 + A2It + vt

Ct =
B1

1 - B2
+

B2

1 - B2
It +

1

1 - B2
ut
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where A1 = B1/(1 - B2), A2 = B2/(1 - B2), and vt = ut/(1 - B2). Like u, v is also a
stochastic error term; it is simply a rescaled u. The coefficients A1 and A2 are
known as the reduced form coefficients because they are the coefficients attached
to the reduced form (regression) equation. Observe that the reduced form coef-
ficients are (nonlinear) combinations of the original structural coefficients of
consumption function (11.1).

Now from the relationship between the A and B coefficients just given, it is
easy to verify that

(11.10)

(11.11)

Therefore, once we estimate A1 and A2, we can easily “retrieve” B1 and B2

from them.
This method of obtaining the estimates of the parameters of the consumption

function (11.1) is known as the method of indirect least squares (ILS), for we
obtain the estimates of the original parameters indirectly by first applying OLS
to the reduced form regression (11.9). What are the statistical properties of ILS
estimators? We state (without proof) that the ILS estimators are consistent
estimators; that is, as the sample size increases indefinitely, these estimators
converge to their true population values. However, in small, or finite, samples,
the ILS estimators may be biased. In contrast, the OLS estimators are biased as
well as inconsistent.3

11.4 INDIRECT LEAST SQUARES: AN ILLUSTRATIVE EXAMPLE

As an application of the ILS, consider the data given in Table 11-1 on the text-
book’s Web site. The data on consumption, income, and investment are for the
United States for the years 1959 to 2006 and are given in billions of dollars. It
should be noted that the data on income is simply the sum of consumption and
investment expenditure, in keeping with our simple Keynesian model of in-
come determination.

Following our discussion of ILS, we first estimate the reduced form regres-
sion (11.8). Using the data given in Table 11-1, we obtain the following results;
the results are given in the standard format as per Eq. (3.46).

(11.12)

 t = (-1.4040)  (58.6475) r2 = 0.9868

 se = (69.4198)  (0.0729)

 CN t = -97.4641 +  4.2767It

 B2 =
A2

1 + A2

 B1 =
A1

1 + A2
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McGraw-Hill, New York, 2009, Chapter 18.



Thus and , which are respectively the estimates of 
and , the parameters of the reduced form regression (11.8). Now we use
Equations (11.10) and (11.11) to obtain the estimates of and , the parameters
of the consumption function (11.1):

(11.13)

(11.14)

These are the ILS estimates of the parameters of the consumption function. And
the estimated consumption function now is

(11.15)

Thus, the estimated marginal propensity to consume (MPC) is about 0.81.
For comparison, we give the results based on OLS, that is, the results obtained

by directly regressing C on Y without the intermediary of the reduced form:

(11.16)

Note the difference between the ILS and OLS estimates of the parameters of
the consumption function. Although the estimated marginal propensities to
consume do not differ substantially, there is a difference in the estimated
intercept values. Which results should we trust? We should trust the results
obtained from the method of ILS, for we know that in the presence of the
simultaneity problem, the OLS results are not only biased but are inconsis-
tent as well.4

It would seem that we can always use the method of indirect least squares
to estimate the parameters of simultaneous equation models. The question
is whether we can retrieve the original structural parameters from these
reduced form estimates. Sometimes we can, and sometimes we cannot. The
answer depends on the so-called identification problem. In the following sec-
tion we discuss this problem and then in the ensuing sections we discuss
other methods of estimating the parameters of the simultaneous equation
models.

 t = (-1.9177)  (312.8214)  r2 = 0.9995

 se = (12.8715)  (0.0026)

 CN t = -24.6841 +  0.8121Yt

CNt = -18.4707 + 0.8105Yt

 b2 =
a2

1 + a2
=

4.2767

1 + 4.2767
= 0.8105

 b1 =
a1

1 + a2
=

-97.4641

1 + 4.2767
= -18.4707

B2B1

A2

A1a2 = 4.2767a1 = -97.4641
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for the ILS regression (11.15). This is because the coefficients of the latter, obtained from Eqs. (11.13)
and (11.14), are nonlinear functions of a1 and a2, and there is no simple method of obtaining stan-
dard errors of nonlinear functions.



11.5 THE IDENTIFICATION PROBLEM: A ROSE BY ANY

OTHER NAME MAY NOT BE A ROSE

Let us return to the supply and demand model of Example 11.2. Suppose we
have data on P and Q only, and we want to estimate the demand function.
Suppose we regress Q on P. How do we know that this regression in fact
estimates a demand function? You might say that if the slope of the estimated
regression is negative, it is a demand function because of the inverse relation-
ship between price and quantity demanded. But suppose the slope coefficient
turns out to be positive. What then? Do you then say that it must be a supply
function because there is a positive relationship between price and quantity
supplied?

You can see the potential problem involved in simply regressing quantity on
price: A given Pt and Qt combination represents simply the point of intersection
of the appropriate supply and demand curves because of the equilibrium condi-
tion that demand is equal to supply. To see this more clearly, consider Figure 11-2.

Figure 11-2(a) gives a few scatterpoints relating P to Q. Each scatterpoint rep-
resents the intersection of a demand and supply curve, as shown in Figure 11-2(b).
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Now consider a single point, such as that shown in Figure 11-2(c). There is no
way we can be sure which demand and supply curve of the whole family of
curves shown in that panel generated that particular point. Clearly, some ad-
ditional information about the nature of the demand and supply curves is
needed. For example, if the demand curve shifts over time because of a change
in income or tastes, for example, but the supply curve remains relatively sta-
ble, as in Figure 11-2(d), the scatterpoints trace out a supply curve. In this situ-
ation, we say that the supply curve is identified; that is, we can uniquely estimate
the parameters of the supply curve. By the same token, if the supply curve
shifts over time because of weather factors (in the case of agricultural com-
modities) or other extraneous factors but the demand curve remains relatively
stable, as in Figure 11-2(e), the scatterpoints trace out a demand curve. In this
case, we say that the demand curve is identified; that is, we can uniquely esti-
mate its parameters.

The identification problem therefore addresses whether we can estimate the
parameters of the particular equation (be it a demand or a supply function)
uniquely. If that is the case, we say that the particular equation is exactly iden-
tified. If we cannot estimate the parameters, we say that the equation is uniden-
tified or underidentified. Sometimes it can happen that there is more than one
numerical value for one or more parameters of the equation. In that case, we say
that the equation is overidentified. We will now consider each of these cases
briefly.

Underidentification

Consider once again Example 11.2. By the equilibrium condition that supply
equals demand, we obtain

(11.17)

Solving Equation (11.17), we obtain the equilibrium price

(11.18)

where (11.19)

(11.20)

where v1 is a stochastic error term, which is a linear combination of the u’s. The
symbol is read as pi and is used here to represent a reduced form regression
coefficient.

␲

v1t =
u2t - u1t

A2 - B2

␲1 =
B1 - A1

A2 - B2

Pt = ␲1 + v1t

A1 + A2Pt + u1t = B1 + B2Pt + u2t
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Substituting Pt from Equation (11.18) into either the supply or demand func-
tion of Example 11.2, we obtain the following equilibrium quantity:

(11.21)

where (11.22)

(11.23)

where v2 is also a stochastic, or random, error term.
Equations (11.19) and (11.21) are reduced form regressions. Now our demand

and supply model has four structural coefficients, A1, A2, B1, and B2, but there is
no unique way of estimating them from the two reduced form coefficients, 
and . As elementary algebra teaches us, to estimate four unknowns we must
have four (independent) equations. Incidentally, if we run the reduced form re-
gressions (11.19) and (11.21) we see that there are no explanatory variables, only
the constants, the ’s, and these constants will simply give the mean values of
P and Q. (Why?) There is no way of estimating the four structural coefficients
from the two mean values. In short, both the demand and supply functions are
unidentified.

Just or Exact Identification

We have already considered this case in the previous section where we dis-
cussed the estimation of the Keynesian consumption function using the method
of indirect least squares. As shown there, from the reduced form regression
(11.12), we were able to obtain unique values of the parameters of the con-
sumption function, as can be seen from Eqs. (11.13) and (11.14).

To further illustrate exact identification, let us continue with our demand and
supply example, but now we modify the model as follows:

(11.24)

(11.25)

where in addition to the variables already defined, X= income of the consumer.
Thus, the demand function states that the quantity demanded is a function of its
price as well as the income of the consumer; economic theory of demand gener-
ally has price and income as its two main determinants. The inclusion of the
income variable in the model will give us some additional information about
consumer behavior. It is assumed that the income of the consumer is determined
exogenously.

Using the market-clearing mechanism, quantity demanded = quantity sup-
plied, we obtain

(11.26)A1 + A2Pt + A3Xt + u1t = B1 + B2Pt + u2t

 Supply function: Qt
s = B1 + B2Pt + u2t

 Demand function: Qt
d = A1 + A2Pt + A3Xt + u1t

␲

␲2

␲1

v2t =
A2u2t - B2u1t

A2 - B2

␲2 =
A2B1 - A1B2

A2 - B2

Qt = ␲2 + u2t
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Solving Equation (11.26) provides the following equilibrium value of Pt:

(11.27)

where the reduced form coefficients are

(11.28)

(11.29)

(11.30)

Substituting the equilibrium value of Pt into the preceding demand or supply
function, we obtain the following equilibrium, or market-clearing, quantity:

(11.31)

where (11.32)

(11.33)

(11.34)

Since Equations (11.27) and (11.31) are both reduced form regressions, as noted
before, OLS can always be applied to estimate their parameters. The question
that remains is whether we can uniquely estimate the parameters of the struc-
tural equations from the reduced form coefficients.

Observe that the demand and supply models (11.24) and (11.25) contain five
structural coefficients, A1, A2, A3, B1, and B2. But we have only four equations to
estimate them—the four reduced form coefficients, the four ’s. So, we cannot
obtain unique values of all five of the structural coefficients. But which of these
coefficients can be uniquely estimated? The reader can verify that the parame-
ters of the supply function can be uniquely estimated, for

(11.35)

(11.36)

Therefore, the supply function is exactly identified. But the demand function is
unidentified because there is no unique way of estimating its parameters, the A
coefficients.

 B2 =
␲4

␲2

 B1 = ␲3 - B2␲1

␲

 v2t =
A2u2t - B2u1t

A2 - B2

 ␲4 = -
A3B2

A2 - B2

 ␲3 =
A2B1 - A1B2

A2 - B2

Qt = ␲3 + ␲4Xt + v2t

 v1t =
u2t - u1t

A2 - B2

 ␲2 = -
A3

A2 - B2

 ␲1 =
B1 - A1

A2 - B2

Pt = ␲1 + ␲2Xt + v1t
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Observe an interesting fact: It is the presence of an additional variable in the
demand function that enables us to identify the supply function. Why? The inclusion
of the income variable in the demand equation provides us with some additional
information about the variability of the function, as indicated in Figure 11-2(d).
The figure shows how the intersection of the stable supply curve with the shift-
ing demand curve (due to changes in income) enables us to trace (identify) the
supply curve.

How can the demand function be identified? Suppose we include , the
one-period lagged value of price as an additional variable in the supply func-
tion (11.25). This amounts to saying that the supply depends not only on the
current price but also on the price prevailing in the previous period, not an un-
reasonable assumption for many agricultural commodities. Since at time t the
value of is already known, we can treat it as an exogenous, or predeter-
mined, variable. Thus the new model is

(11.37)

(11.38)

Using Equations (11.37) and (11.38) and the market-clearing condition, obtain
the reduced form regressions and verify that now both the demand and sup-
ply functions are identified; each reduced form regression will have Xt and

as explanatory variables, and since the values of these variables are de-
termined outside the model, they are uncorrelated with the error terms. Once
again notice how the inclusion or exclusion of a variable(s) from an equation
helps us to identify that equation, that is, to obtain unique values of the param-
eters of that equation. Thus it is the exclusion of the variable from the de-
mand function that helps us to identify it, just as the exclusion of the income
variable (Xt) from the supply function helps us to identify it. One implication
is that an equation in a simultaneous equation system cannot be identified if it
includes all the variables (endogenous as well as exogenous) in the system.
Later we provide a simple rule of identification that generalizes this idea (see
Section 11.6).

Overidentification

Although the exclusion of certain variables from an equation may enable us to
identify it as we just showed, sometimes we can overdo it. This leads to the
problem of overidentification, a situation in which there is more than one value
for one or more parameters of an equation in the model. Let us see how this can
happen.

Once again return to the demand-supply model and write it as

(11.39)

(11.40) Supply function: Qs
t = B1 + B2Pt + B3Pt-1 + u2t

 Demand function: Qd
t = A1 + A2Pt + A3Xt + A4Wt + u1t

Pt-1

Pt-1

Supply function: Qs
t = B1 + B2Pt + B3Pt-1 + u2t

 Demand function: Qd
t = A1 + A2Pt + A3Xt + u1t

Pt-1

Pt-1
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where in addition to the variables introduced previously, Wt stands for the
wealth of the consumer. For many commodities, income as well as wealth are
important determinants of demand. Compare the demand and supply models
(11.37) and (11.38) with the models (11.39) and (11.40). Whereas originally the
supply function excluded only the income variable, in the new model it excludes
both the income and wealth variables. Before, the exclusion of the income vari-
able from the supply function enabled us to identify it; now the exclusion of
both the income and wealth variables from the supply function overidentifies it
in the sense that we have two estimates of the supply parameter B2, as we show
below.

Equating models (11.39) and (11.40), we now obtain the following reduced
form regressions:

(11.41)

(11.42)

where 

(11.43)

Remember that the supply and demand models we are considering have
seven structural coefficients in all—the four A’s and three B’s. But there are
eight reduced form coefficients in Equation (11.43). We have more equations
than unknowns. Clearly, there is more than one solution to a parameter. You can
readily verify that we have, in fact, two values for B2:

(11.44)

And there is no reason to believe that these two estimates will be the same.
Since B2 appears in the denominators of all the reduced form coefficients

given in Eq. (11.43), the ambiguity in the estimation of B2 will be transmitted to
other structural coefficients also. Why do we obtain such a result? It seems that
we have too much information—exclusion of either the income or wealth variable

B2 =
␲7

␲3
 or B2 =

␲6

␲2

v2t =
A2u2t - B2u1t

A2 - B2
 v1t =

u2t - u1t

A2 - B2

 ␲8 =
A2B3

A2 - B2
 ␲7 =

A4B2

A2 - B2

 ␲
6
= -

A3B2

A2 - B2
 ␲5 =

A2B1 - A1B2

A2 - B2

 ␲4 =
B3

A2 - B2
 ␲3 = -

A4

A2 - B2

 ␲2 = -
A3

A2 - B2
␲1 =

B1 - A1

A2 - B2

 Qt = ␲5 + ␲6Xt + ␲7Wt + ␲8Pt-1 + v2t

 Pt = ␲1 + ␲2XT + ␲3Wt + ␲4Pt-1 + v1t
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would have sufficed to identify the supply function. This is the opposite of the
case of underidentification, where there was too little information. The point
here is that more information may not always be better! Note, though, that the
problem of overidentification occurs not because we are deliberately adding
more variables. It is simply that sometimes theory tells us what variables to
include or exclude from an equation, and the equation then ends up either
unidentified or identified (either exactly or over).

In summary, an equation in a simultaneous equation model may be uniden-
tified, exactly identified, or overidentified. There is nothing we can do about
underidentification, assuming the model is correct. Underidentification is not a
statistical problem that can be solved with a larger sample size. You can look at
those four dots in Figure 11-2(a) all year long, but they will never tell you the
slope of the supply and demand curves that generated them. If an equation is
exactly identified, we can use the method of indirect least squares (ILS) to esti-
mate its parameters. If an equation is overidentified, ILS will not provide
unique estimates of the parameters. Fortunately, we can use the method of two-
stage least squares (2SLS) to estimate the parameters of an overidentified
equation. But before we turn to 2SLS, we would like to find out if there is a sys-
tematic way to determine whether an equation is underidentified, exactly iden-
tified, or overidentified; the method of reduced form regression to determine
identification is rather cumbersome, especially if the model contains several
equations.

11.6 RULES FOR IDENTIFICATION:THE ORDER CONDITION

OF IDENTIFICATION

To understand the so-called order condition of identification, we introduce the
following notations:

m = number of endogenous (or jointly dependent) variables in the model
k = total number of variables (endogenous and exogenous) excluded from the

equation under consideration

Then,

1. If k = m - 1, the equation is exactly identified.
2. If k > m - 1, the equation is overidentified.
3. If k < m - 1, the equation is underidentified.

To apply the order condition, all we have to do is to count the number of
endogenous variables (= number of equations in the model) and the total num-
ber of variables (endogenous as well as exogenous) excluded from the particu-
lar equation under consideration. Although the order condition of identification
is only necessary and not sufficient, in most practical applications is has been
found to be very helpful.

Thus, applying the order condition to the supply and demand models (11.39)
and (11.40), we see that m = 2 and that the supply function excludes the
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variables Xt and Wt; that is, k = 2. Since k > m - 1, the supply equation is overi-
dentified. As for the demand function, it excludes . Since k = m - 1, the de-
mand function is identified. But we now have a slight complication. If we try to
estimate the parameters of the demand function from the reduced form coeffi-
cients given in Equation (11.43), the estimates will not be unique because B2,
which enters into the computations, takes two values, as shown in Equation
(11.44). This complication can, however, be avoided if we use the method of
2SLS, which we will now discuss.

11.7 ESTIMATION OF AN OVERIDENTIFIED EQUATION:

THE METHOD OF TWO-STAGE LEAST SQUARES

To illustrate the method of two-stage least squares (2SLS), consider the following
model:

(11.45)

(11.46)

where Y = income
M = stock of money

I = investment expenditure
G = government expenditure on goods and services

u1, u2 = stochastic error terms

In this model, the variables I and G are assumed to be exogenous.
The income function, a hybrid of the quantity-theory and the Keynesian

approaches to income determination, states that income is determined by the
money supply, investment expenditure, and government expenditure. The
money supply function states that the stock of the money supply is determined by
the Federal Reserve System (FED) on the basis of the level of income. Obviously,
we have a simultaneity problem here because of the feedback between income
and money supply.

Applying the order condition of identification, we can check that the income
equation is unidentified because it excludes no variable in the model, whereas
the money supply function is overidentified because it excludes two variables
in the system. (Note that m = 2 in this model.)

Since the income equation is underidentified, there is nothing we can do to
estimate its parameters. What about the money supply function? Since it is
overidentified, if we use ILS to estimate its parameters, we will not obtain
unique estimates for the parameters; actually, B2 will have two values. What
about OLS? Because of the likely correlation between income Y and the sto-
chastic error term u2, OLS estimates will be inconsistent in view of our earlier
discussion. What, then, is the alternative?

Suppose in the money supply function (11.46) we find a surrogate or proxy or
an instrumental variable for Y such that, although resembling Y, it is uncorrelated

 Money supply function: Mt = B1 + B2Yt + u2t

Income function: Yt = A1 + A2Mt + A3It + A4Gt + u1t

Pt-1
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with u2. If we can find such a proxy, OLS can be used straightforwardly to esti-
mate the parameters of the money supply function. (Why?) But how do we
obtain such a proxy or instrumental variable? One answer is provided by the
method of two-stage least squares (2SLS). As the name indicates, the method
involves two successive applications of OLS. The process follows.

Stage 1 To get rid of the likely correlation between income Y and the
error term u2, first regress Y on all predetermined variables in the whole
model, not just on that equation. In the present case, this means regressing Y
on the predetermined variables I (gross private domestic investment) and G
(government expenditure) as follows:

(11.47)

where w is a stochastic error term. From Equation (11.47), we obtain

(11.48)

where is the estimated mean value of Y, given the values of I and G. Note the
over the coefficients indicates that these are the estimated values of the true
’s.

Therefore we can write Eq. (11.47) as

(11.49)

which shows that the (stochastic) Y consists of two parts: , which from
Equation (11.48) is a linear combination of the predetermined variables I and G
and a random component wt. Following OLS theory, and w are therefore
uncorrelated. (Why? See Problem 2.25.)

Stage 2 The overidentified money supply function can now be written as

(11.50)

where 
Comparing Equations (11.50) and (11.46), we see that they are very similar in

appearance, the only difference being that Y is replaced by , the latter being
obtained from Eq. (11.48). What is the advantage of this? It can be shown that
although Y in the original money supply function (11.46) is likely to be corre-
lated with the stochastic error term u2 (hence rendering OLS inappropriate), 
in Eq. (11.50) is uncorrelated with vt asymptotically, that is, in a large sample
(or, more accurately, as the sample size increases indefinitely). As a result, OLS
can now be applied to Eq. (11.50), which will give consistent estimates of the
parameters of the money supply function (11.46). This is an improvement over

YN

YN

vt = u2t + B2w1

Mt = B1 + B2(YN t + wt) + u2t

= B1 + B2YN t + (u2t + B2wt)

= B1 + B2YN t + vt

YN

YN t

Yt = YN t + wt

␲

␲
N

YN t

Yt
N = ␲N 1 + ␲N 2It + ␲N 3Gt

Yt = ␲1 + ␲2It + ␲3Gt + wt
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the direct application of OLS to Eq. (11.46), for in that situation the estimates are
likely to be biased as well as inconsistent.5

11.8 2SLS: A NUMERICAL EXAMPLE

Let us continue with the money supply and income models of Equations  (11.45)
and (11.46). Table 11-2 in Problem 11.18 (found on the textbook’s Web site), gives
data on Y (income, as measured by GDP), M (money supply, as measured by the
M2 measure of money supply), I (investment as measured by gross private do-
mestic investment, GPDI), and G (federal government expenditure). The data
are in billions of dollars, except the interest rate (as measured by the 6-month
Treasury bill rate), which is a percentage. The data on interest rates are given for
some problems at the end of the chapter. These data are annual and are for the
period 1965–2006.

Stage 1 Regression To estimate the parameters of the money supply func-
tion (11.46), we first regress the stochastic variable Y (income) on the proxy vari-
ables I and G, which are treated as exogenous or predetermined. The results of
this regression are

(11.51)

Interpret these results in the usual manner. Notice that all the coefficients are
statistically significant at the 5% level of significance.

Stage 2 Regression We estimate the money supply function (11.46) by re-
gressing M not on the original income Y but on the Y as estimated in Eq. (11.51).
The results are

(11.52)6

Note: Observe that there is a ˆ on Y on the right-hand side.

 t = (4.2013)  (89.9646) r2 = 0.9951

 se = (35.9740)  (0.0057)

 MN t = 151.1360 +  0.5163YN t

 t = (-2.9972)  (7.9377)  (11.2397) R2 = 0.9975

 se = (54.0655)  (0.3278)  (0.2869)

 YN t = -162.0426 +  2.6019It +  3.2250Gt
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Econometrics, 5th ed., McGraw-Hill, New York, 2009, Chapter 20.

6These standard errors are corrected to reflect the nature of the error term vt. This is a techni-
cal point. Consult Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill, New York, 2009,
p. 736.



OLS Regression For a comparison, we give the results of the regression
(11.46) based on the inappropriately applied OLS:

(11.53)

Comparing the 2SLS and the OLS results, you might say that the results are not
vastly different. This may be so in the present case, but there is no guarantee
that this always will be the case. Besides, we know that in theory 2SLS is better
than OLS, especially in large samples.

We conclude our somewhat nontechnical discussion of the simultaneous
equation models by noting that besides ILS and 2SLS there are other methods of
estimating such models. But a discussion of these methods (e.g., the method of
full information maximum likelihood) is beyond the scope of this introductory
book.7 Our primary purpose in this chapter was to introduce readers to the bare
bones of the topic of simultaneous equation models to make them aware that on
occasion we may have to go beyond the single equation regression modeling
considered in the previous chapters.

11.9 SUMMARY

In contrast to the single equation models discussed in the preceding chapters, in
simultaneous equation regression models what is a dependent (endogenous)
variable in one equation appears as an explanatory variable in another equa-
tion. Thus, there is a feedback relationship between the variables. This feedback
creates the simultaneity problem, rendering OLS inappropriate to estimate the pa-
rameters of each equation individually. This is because the endogenous variable
that appears as an explanatory variable in another equation may be correlated
with the stochastic error term of that equation. This violates one of the critical
assumptions of OLS that the explanatory variable be either fixed, or nonran-
dom, or if random, that it be uncorrelated with the error term. Because of this, if
we use OLS, the estimates we obtain will be biased as well as inconsistent.

Besides the simultaneity problem, a simultaneous equation model may have
an identification problem. An identification problem means we cannot uniquely
estimate the values of the parameters of an equation. Therefore, before we esti-
mate a simultaneous equation model, we must find out if an equation in such a
model is identified.

One cumbersome method of finding out whether an equation is identified is
to obtain the reduced form equations of the model. A reduced form equation ex-
presses a dependent (or endogenous) variable solely as a function of exogenous,

 t = (3.3370)  (67.5898) r2 = 0.9913

 se = (47.7531)  (0.0076)

 MN t = 159.3544 +  0.5147Yt
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or predetermined, variables, that is, variables whose values are determined out-
side the model. If there is a one-to-one correspondence between the reduced
form coefficients and the coefficients of the original equation, then the original
equation is identified.

A shortcut to determining identification is via the order condition of identifica-
tion. The order condition counts the number of equations in the model and the
number of variables in the model (both endogenous and exogenous). Then,
based on whether some variables are excluded from an equation but included
in other equations of the model, the order condition decides whether an equa-
tion in the model is underidentified, exactly identified, or overidentified. An equa-
tion in a model is underidentified if we cannot estimate the values of the para-
meters of that equation. If we can obtain unique values of parameters of an
equation, that equation is said to be exactly identified. If, on the other hand, the
estimates of one or more parameters of an equation are not unique in the sense
that there is more than one value of some parameters, that equation is said to be
overidentified.

If an equation is underidentified, it is a dead-end case. There is not much we
can do, short of changing the specification of the model (i.e., developing an-
other model). If an equation is exactly identified, we can estimate it by the
method of indirect least squares (ILS). ILS is a two-step procedure. In step 1, we
apply OLS to the reduced form equations of the model, and then we retrieve the
original structural coefficients from the reduced form coefficients. ILS estima-
tors are consistent; that is, as the sample size increases indefinitely, the estima-
tors converge to their true values.

The parameters of the overidentified equation can be estimated by the
method of two-stage least squares (2SLS). The basic idea behind 2SLS is to replace
the explanatory variable that is correlated with the error term of the equation in
which that variable appears by a variable that is not so correlated. Such a vari-
able is called a proxy, or instrumental, variable. 2SLS estimators, like the ILS
estimators, are consistent estimators.

KEY TERMS AND CONCEPTS

The key terms and concepts introduced in this chapter are
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Simultaneous equation regression
model

Endogenous variable
Exogenous, or predetermined,

variable
Structural or behavioral equation
Identity
Simultaneity problem
Reduced form equation

Indirect least squares (ILS)
Identification problem

a) Exact identification
b) Unidentification or

underidentification
c) Overidentification

Two-stage least squares (2SLS)
Identification rules

a) Order condition of identification



QUESTIONS

11.1. What is meant by the simultaneity problem?
11.2. What is the meaning of endogenous and exogenous variables?
11.3. Why is OLS generally inappropriate to estimate an equation embedded in a

simultaneous equation model?
11.4. What happens if OLS is applied to estimate an equation in a simultaneous

equation model?
11.5. What is meant by a reduced form (regression) equation? What is its use?
11.6. What is the meaning of a structural, or behavioral, equation?
11.7. What is meant by indirect least squares? When is it used?
11.8. What is the nature of the identification problem? Why is it important?
11.9. What is the order condition of identification?
11.10. What may be meant by the statement that the order condition of identifica-

tion is a necessary but not sufficient condition for identification?
11.11. Explain carefully the meaning of (1) underidentification, (2) exact identifica-

tion, and (3) overidentification.
11.12. How do we estimate an underidentified equation?
11.13. What method(s) is used to estimate an exactly identified equation?
11.14. What is 2SLS used for?
11.15. Can 2SLS also be used to estimate an exactly identified equation?

PROBLEMS

11.16. Consider the following two-equation model:

where the Y’s are the endogenous variables, the X’s the exogenous variables,
and the u’s the stochastic error terms.
a. Obtain the reduced form regressions.
b. Determine which of the equations is identified.
c. For the identified equation, which method of estimation would you use

and why?
d. Suppose, a priori, it is known that A3= 0. How would your answers to the

preceding questions change? Why?
11.17. Consider the following model:

where the Y’s are the endogenous variables, the X’s the exogenous, and the
u’s the stochastic error terms. Based on this model, the following reduced
form regressions are obtained

 Y2t = 4 + 12X1t

 Y1t = 6 + 8X1t

 Y2t = B1 + B2Y1t + u2t

 Y1t = A1 + A2Y2t + A3X1t + u1t

 Y2t = B1 + B2Y1t + B3X2t + u2t

 Y1t = A1 + A2Y2t + A3X1t + u1t
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a. Which structural coefficients, if any, can be estimated from these reduced
form equations?

b. How will our answer change if it is known a priori that (1) A2 = 0 and
(2) A1 = 0?

11.18. Consider the following model:

where Y = income (measured by gross domestic product, GDP), R = interest
rate (measured by 6-month Treasury bill rate, %), and M = money supply
(measured by M2). Assume that M is determined exogenously.
a. What economic rationale lies behind this model? (Hint: See any macroeco-

nomics textbook.)
b. Are the preceding equations identified?
c. Using the data given in Table 11-2 (on the textbook’s Web site), estimate

the parameters of the identified equation(s). Justify the method(s) you use.
11.19. Consider the following reformulation of the model given in Problem 11.18.

where in addition to the variables defined in the preceding problem, I stands
for investment (measured by gross private domestic investment, GPDI).
Assume that M and I are exogenous.
a. Which of the preceding equations is identified?
b. Using the data in Table 11-2 (on the textbook’s Web site), estimate the

parameters of the identified equation(s).
c. Comment on the difference in the results of this and the preceding

problem.
11.20. Consider the wages data set used in Chapter 9 (see Table 9-2, on the text-

book’s Web site). As a reminder: Wage = $, per hour; Occup = Occupation;
Sector = 1 for manufacturing, 2 for construction, 0 for other; Union = 1 if
union member, 0 otherwise; Education = years of schooling; Experience =
work experience in years; Age = in years; Sex = 1 for female; Marital status = 1
if married; Race = 1 for other, 2 for Hispanic, 3 for white; Region = 1 if lives
in the South.

Consider the following simple wage determination model:

(1)

Suppose education, like wages, is endogenous. How would you find out that
in Equation (1) education is in fact endogenous? Use the data given in the
table in your analysis.

11.21. Consider the following demand and supply model for loans of commercial
banks to businesses:

 Supply: Qt = b1 + b2Rt + b3RSt + b4TBDt + u2t

 Demand: Qt = Qt = ␣1 + ␣2Rt + ␣2RDt + ␣4IPIt + u1t

In W = B1 + B2Educ + B3Exper + B4Exper
2 + ui

 Yt = B1 + B2Rt + B3It + u2t

 Rt = A1 + A2Mt + A3Yt + u1t

 Yt = B1 + B2Rt + u2t

 Rt = A1 + A2Mt + A3Yt + u1t
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Where Q = total commercial bank loans ($ billion); R = average prime rate;
RS= 3-month Treasury bill rate; RD=AAA corporate bond rate; IPI= Index
of Industrial Production; and TBD = total bank deposits.
a. Collect data on these variables for the period 1980–2008 from various

sources, such as www.economagic.com, the Web site of the Federal
Reserve Bank of St. Louis, or any other source.

b. Are the demand and supply functions identified?  List which variables are
endogenous and which are exogenous. 

c. How would you go about estimating the demand and supply functions
listed above?  Show the necessary calculations. 

d. Why are both R and RS included in the model? What is the role of IPI in
the model? 

APPENDIX 11A: Inconsistency of OLS
Estimators

To show that the OLS estimator of b2 is an inconsistent estimator of B2 because
of correlation between Yt and ut, we start with the OLS estimator Eq. (11.6):

(11A.1)

where .
Now substituting for Ct from Eq. (11.1), we obtain

(11A.2)

where in the last step use is made of the fact that and .
(Why?)

Taking the expectation of Equation (11A.2), we get

(11A.3)

Unfortunately, we cannot readily evaluate the expectation of the second term in
Equation (11A.3), since the expectations operator E is a linear operator. (Note:

.) But intuitively it should be clear that unless the second
term in Eq. (11A.3) is zero, b2 is a biased estimator of B2.
E[A>B] Z E[A]>E[B]

 E(b2) = B2 + E c gytut

gy2
t

d

(gYtyt>gy2
t ) = 1gyt = 0

 = B2 +
gytut

gy2
t

 b2 =
g (B1 + B2Yt + ut)yt

gy2
t

yt = (Yt - Y)

 =
gCtyt

gy2
t

 b2 =
g (Ct - C)(Yt - Y)

g (Yt - Y)2
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Not only is b2 biased, but it is inconsistent as well. An estimator is said to be
consistent if its probability limit (plim) is equal to its true (population) value.8

Using the properties of the plim, we can express9

(11A.4)

where use is made of the properties of the plim operator that the plim of a con-
stant (such as B2) is that constant itself and that the plim of the ratio of two
entities is the ratio of the plim of those entities.

Now as n increases indefinitely, it can be shown that

(11A.5)

where is the variance of u and is the variance of Y.
Since B2 (MPC) lies between 0 and 1, and since the two variance terms in

Equation (11A.5) are positive, it is obvious from Eq. (11A.5) that plim (b2) will
always be greater than B2; that is, b2 will overestimate B2 and the bias will not
disappear no matter how large the sample size.

␴
2
y␴

2

plim(b2) = B2 +
1

1 - B2
 a␴2

␴
2
y

b

 = B2 +
p lim (gytut>n)

p lim (gy2
t >n)

 

 = B2 + plim c gytut>n
gy2

t >n d

 plim(b2) = plim(B2) + plim c gytut

gy2
t

d
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8If lim Probability , where and n is the sample size, we say that
b2 is a consistent estimator of B2, which, for short, we write as . For further
details, see Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill, New York, 2009,
pp. 829–831.

9Although , we can write plim (A/B) = plim(A)/plim(B).E(A>B) Z E(A)>E(B)

n: q  plim (b2) = B2

d 7 0n: q { ƒ b2 - B2 ƒ 6 d} = 1



CHAPTER 12
SELECTED TOPICS

IN SINGLE EQUATION
REGRESSION MODELS

371

In this chapter we will consider several topics that are useful in applied research.
These topics are:

1. Dynamic economic models.
2. Spurious regression: Nonstationary time series.
3. Tests of stationarity.
4. Cointegrated time series.
5. The random walk model.
6. The logit model.

We will discuss the nature of these topics and illustrate them with several
examples.

12.1 DYNAMIC ECONOMIC MODELS: AUTOREGRESSIVE

AND DISTRIBUTED LAG MODELS

In all the regression models that we have considered up to this point we have
assumed that the relationship between the dependent variable Y and the ex-
planatory variables, the X’s, is contemporaneous, that is, at the same point in time.
This assumption may be tenable in cross-sectional data but not in time series
data. Thus, in a regression of consumption expenditure on personal disposable
income (PDI) involving time series data it is possible that consumption expen-
diture depends upon the PDI in the previous time period as well as upon the
PDI in the current time period. That is, there may be a noncontemporaneous, or
lagged, relationship between Y and the X’s.



To illustrate, let Yt = the consumption expenditure at time t, Xt = the PDI at
time t, Xt−1 = the PDI at time (t − 1), and Xt−2 = the PDI at time (t − 2). Now
consider the model

(12.1)

As this model shows, because of the lagged terms Xt−1 and Xt−2, the relationship
between consumption expenditure and PDI is not contemporaneous. Models
like Equation (12.1) are called dynamic models (i.e., involving change over time)
because the effect of a unit change in the value of the explanatory variable is felt
over a number of time periods, three in the model of Eq. (12.1).

More technically, dynamic models like Eq. (12.1) are called distributed lag
models, for the effect of a unit change in the value of the explanatory variable
is spread over, or distributed over, a number of time periods. To illustrate this
point further, consider the following hypothetical consumption function:

(12.2)

Suppose a person received a permanent salary increase of $1000 (permanent in
the sense that the increase in the salary will be maintained). If his or her con-
sumption function is as shown in Equation (12.2), then in the first year of the
salary increase he or she increases his or her consumption expenditure by $400
(0.4 × 1000), by another $300 (0.3 × 1000) the next year, and by another $200
(0.2 × 1000) in the third year. Thus, by the end of the third year the level of his
or her consumption expenditure will have increased by (200 + 300 + 400), or
by $900; the remaining $100 goes into savings.

Contrast the consumption function Eq. (12.2) with the following consumption
function:

(12.3)

Although the ultimate effect of a $1000 increase in income on consumption is
the same in both cases, it takes place with a lag of one year in Equation (12.3),
whereas in Eq. (12.2) it is distributed over a period of three years; hence the
name distributed lag model for models like Eq. (12.2). This can be seen clearly
from Figure 12-1.

Reasons for Lag

Before moving on, a natural question arises: Why do lags occur? That is, why
does the dependent variable respond to a unit change in the explanatory vari-
able(s) with a time lag? There are several reasons, which we discuss now.

Psychological Reasons Due to the force of habit (inertia), people do not
change their consumption habits immediately following a price decrease or an
income increase, perhaps because the process of change involves some imme-
diate disutility. Thus, those who become instant millionaires by winning lotter-
ies may not change their lifestyles because they do not know how to react to

Yt = constant + 0.9Xt- 1

Yt = constant + 0.4Xt + 0.3Xt- 1 + 0.2Xt- 2

Yt = A + B0Xt + B1Xt- 1 + B2Xt- 2 + ut
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such an immediate windfall, not to mention the hounding by financial plan-
ners, newly discovered relatives, tax lawyers, etc.

Technological Reasons Every time a new-generation personal computer
(PC) comes on the market, the prices of existing PCs drop dramatically. Some
people who can still use existing PCs would therefore wait for the announcement
of a new PC in the hope of purchasing an existing PC at a cheaper price. The same
is true of automobiles. The moment, say, the 2010 models are on the market, the
prices of 2009 models drop considerably. Consumers thinking of replacing their
old cars may wait for the announcement of the new model in anticipation of
buying a previous model at a lower price.

Institutional Reasons Since most major collective bargaining agreements
are multiyear contracts, union workers have to wait for the expiration of the
existing contract to negotiate a new wage rate even though the inflation rate has
increased substantially since the signing of the last contract. Likewise, a profes-
sional ball player has to wait until the expiration of his contract to negotiate a
new one, even though his “productivity” has gone up since the contract was
signed several years ago. Of course, some players try to renegotiate the existing
contract and some do succeed.

For these and other reasons, lags occupy a central role in economics. This is
clearly reflected in the short-run/long-run methodology of economics. In the
short run the price or income elasticities are generally smaller in absolute value
than their long-run counterparts because it takes time to make the necessary
adjustment following a change in the values of explanatory variables.

Generalizing Eq. (12.1), we can write a k-period distributed lag model as

(12.4)Yt = A + B0Xt + B1Xt- 1 + B2Xt- 2 + Á + BkXt-k + ut

An example of a distributed lag modelFIGURE 12-1
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in which the effect of a unit change in the value of the explanatory variable is
felt over k periods.1 In the regression (12.4), Y responds to a unit change in the
value of the X variable not only in the current time period but also in several
previous time periods.

In the regression (12.4), the coefficient B0 is known as the short-run, or impact,
multiplier because it gives the change in the mean value of Y following a unit
change in X in the same time period. If the change in X is maintained at the same
level thereafter, then (B0+ B1) gives the change in the mean value of Y in the next
period, (B0 + B1 + B2) in the following period, etc. These partial sums are called
interim, or intermediate, multipliers. Finally, after k periods, we obtain

(12.5)

which is known as the long-run, or total, multiplier. Thus, in the consumption
function given in the model (12.2), the short-run multiplier is 0.4, the interim
multiplier is (0.4+ 0.3)= 0.7, and the long-run multiplier is (0.4+ 0.3+ 0.2)= 0.9.
In the long run, here three periods, a unit change in PDI will lead, on average,
to a 0.9 unit change in the consumption expenditure. In short, the long-run
marginal propensity to consume (MPC) is 0.9, whereas the short-run MPC is
only 0.4, 0.7 being the intermediate term MPC. Since the impact of the change in
the value of the explanatory variable(s) in the distant past is probably less im-
portant than the impact in the immediate near future, we would expect that gen-
erally B0 would be greater in value than B1, which would be greater than B2, etc.
In other words, the values of the various B’s are expected to decline from the first
B onward, a fact that will be useful later when we estimate the distributed lag
models.

Estimation of Distributed Lag Models

How do we estimate distributed models like regression (12.4)? Can we still use
the usual ordinary least squares (OLS) method? In principle, yes, for if we as-
sume that Xt is nonstochastic, or fixed in repeated sampling, so are Xt−1 and all
other lagged values of the X’s. Therefore, model (12.4) per se does not violate
any of the standard assumptions of the classical linear regression model
(CLRM). However, there are some practical problems that need to be addressed.

1. The obvious problem is to determine how many lagged values of the
explanatory variables to introduce, for economic theory is rarely robust
enough to suggest the maximum length of the lag.

2. If we introduce too many lagged values, the degrees of freedom can
become a serious problem. If we have 20 observations and introduce

a
k

i= 0

Bi = B0 + B1 + B2 + Á + Bk
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1The term period is used generically; it can be a day, a week, a month, a quarter, a year, or any
suitable time period.



10 lagged values, we will have only 8 degrees of freedom left—10 d.f.
will be lost on account of the lagged values—one on account of the cur-
rent value, and one for the intercept. Obviously, as the number of de-
grees of freedom dwindles, statistical inference becomes increasingly
less reliable. The problem becomes all the more complex if we have more
than one explanatory variable in the model, each with its own distrib-
uted lag structure. In this case we can consume degrees of freedom very
fast. Note that for every coefficient estimated, we lose 1 d.f.

3. Even with a large sample where there is not much concern about the
degrees of freedom problem, we may run into the problem of multi-
collinearity, for successive values of most economic variables tend to be
correlated, sometimes very highly. As noted in Chapter 8, multicollinear-
ity leads to imprecise estimation; that is, standard errors tend to be large
in relation to estimated coefficients. As a result, based on the routinely
computed t ratios, we tend to declare that a lagged coefficient(s) is statis-
tically insignificant. Another problem that arises is that coefficients of suc-
cessive lagged terms sometimes alternate in sign, which makes it difficult
to interpret some coefficients, as the following example will show.

Example 12.1. An Illustrative Example: The St. Louis Model

To determine whether changes in the nominal gross national product (GNP)
can be explained by changes in either the money supply (monetarism) or
government expenditure (Keynesianism), the Federal Reserve Bank of
St. Louis has developed a model, popularly known as the St. Louis model.
One version of this model is

(12.6)

where the rate of growth of nominal GNP at time t

the rate of growth in the money supply (M1 version) at time t

the rate of growth in full or high employment government
expenditure at time t

By convention, a dot over a variable denotes growth rate (e.g., ;
recall the log-lin model from Chapter 5).

The results based on the quarterly data from 1953-I to 1976-IV using four
lagged values of and each follow.2 For ease of reading, the results are
presented in tabular form (Table 12-1).
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 dY
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2These results, with a change in notation, are from Keith M. Carlson, “Does the St. Louis
Equation Now Believe in Fiscal Policy,” Review, Federal Reserve Bank of St. Louis, vol. 60, 
no. 2, February 1978, Table IV, p. 17. Note:
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Notice several features of the results presented in Table 12-1.

1. Not all lagged coefficients are individually significant on the basis of the
conventional t test. But we cannot tell whether this lack of significance is
genuine or merely due to multicollinearity.

2. The fourth lagged value of has a negative sign, which is difficult to
interpret economically because all other lagged money coefficients have
a positive impact on . This negative value, however, is statistically in-
significant, although we do not know if this is due to multicollinearity.
The third and fourth lagged values of are not only negative but are also
statistically significant. Again, economically, it is difficult to interpret
these negative values, for why should the rate of growth in government
expenditure have a negative impact three and four periods in the past
while the first two lagged values have a positive impact?

3. The immediate, or short-run, impact of a unit change in is 0.40,
whereas the long-term impact is 1.06 (which is the sum of the various A
coefficients), and this is statistically significant. The interpretation is that
a sustained 1 percent increase in the rate of growth of the money supply
will be accompanied by 1 percent increase in the rate of growth of the
nominal GNP in about five quarters. Similarly, the short-run impact of a
1 percent increase in the rate of growth of government expenditure is

0.08, which is statistically significant, but the long-term impact is only
0.01 (the sum of the B coefficients), which is statistically insignificant.

The implication then is that changes in the growth rates in the money
supply have a lasting impact on changes in the growth rate of the GNP
(almost one for one) but changes in the growth rates of government ex-
penditure do not. In short, the St. Louis model tends to support mone-
tarism. That is why the St. Louis model is often called the monetarist model.

From a statistical viewpoint the obvious question is why did the
St. Louis model include only four lags of each explanatory variable?
Can some insignificant coefficients be due to multicollinearity? These
questions cannot be answered without examining the original data and

L

L

M
#

E
#

Y
#

M
#

THE ST. LOUIS MODEL

Coefficient Estimate Coefficient Estimate

A0 0.40 (2.96)* B0 0.08 (2.26)*

A1 0.41 (5.26)* B1 0.06 (2.52)*

A2 0.25 (2.14)* B2 0.00 (0.02)

A3 0.06 (0.71) B3 −0.06 (−2.20)

A4 −0.05 (−0.37) B4 −0.07 (−1.83)*

1.06 (5.59)* 0.01 (0.40)

R2
= 0.40; d= 1.78

Note: The figures in parentheses are t ratios.
*Significant at 5% level (one-tailed). The value of the intercept is not

presented in the original article.

TABLE 12-1



determining what happens to the model if more lagged terms are intro-
duced. But as you can well imagine, this will not be a particularly fruitful
line of attack, for there is no way to avoid the problem of multicollinear-
ity if more lagged terms are introduced. Clearly, we need an alternative
that not only will rid us of the problem of multicollinearity but also will
tell us how many lagged terms can be included legitimately in a model.

The Koyck, Adaptive Expectations, and Stock Adjustment Models

Approach to Estimating Distributed Lag Models3

An ingenious approach to reducing both the number of lagged terms in the dis-
tributed lag models and the problem of multicollinearity is to adopt the ap-
proach used by the so-called Koyck, the adaptive expectations, and the partial,
or stock, adjustment models. Without going into the technical details of these
models, a remarkable feature of all of them is that distributed models like
Eq. (12.4) can be reduced to the following “simple” model:4

(12.7)

where v is the error term. This model is called an autoregressive model (recall
Chapter 10) because the lagged value of the dependent variable appears as an
explanatory variable on the right-hand side of the equation. In the regression
(12.4) we had to estimate the intercept, current, and k-lagged terms. So, if k= 15,
we will have to estimate all 17 parameters, a considerable loss of degrees of
freedom, especially if the sample size is not too large. But in the regression
(12.7) we have to estimate only three unknowns, the intercept and the two
slope coefficients, a tremendous savings in the degrees of freedom. So all
lagged terms in the regression (12.4) are replaced by a single lagged value of Y.

Of course, there is no such thing as a “free lunch.” In reducing the number
of parameters to be estimated in the model (12.4) to only three, we have cre-
ated some problems in the model (12.7). First, since Yt is stochastic, or random,
Yt−1 is random too. Therefore, to estimate the model (12.7) by OLS, we must
make sure that the error term vt and the lagged variable Yt−1 are not correlated;
otherwise, as can be shown, the OLS estimators are not only biased but are incon-
sistent as well. If, however, vt and Yt−1 are uncorrelated, it can be proved that
the OLS estimators are biased (in small samples), but the bias tends to disap-
pear as the sample size becomes increasingly large. That is, in a large sample
(technically, asymptotically) the OLS estimators will be consistent. Second, if,

Yt = C1 + C2Xt + C3Yt- 1 + vt
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3See L. M. Koyck, Distributed Lags and Investment Analysis, North-Holland, Amsterdam, 1954; P.
Cagan, “The Monetary Dynamics of Hyper Inflations,” in M. Friedman (ed.), Studies in the Quantity
Theory of Money, University of Chicago Press, Chicago, 1956 (for the adaptive expectations model);
Marc Nerlove, Distributed Lags and Demand for Agricultural and Other Commodities, Handbook No.
141, U.S. Department of Agriculture, June 1958 (for the partial, or stock, adjustment model).

4For technical details, see Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill, New
York, 2009, Chapter 17.



however, vt is serially correlated (e.g., it follows the first-order Markov scheme:
, where and the error term wt satisfies the usual

OLS assumptions), OLS estimators are biased as well as inconsistent and the
traditional t and F testing procedure becomes invalid. Therefore, in autoregres-
sive models like Eq. (12.7) it is very important that we find out whether the error
term vt follows, say, the first-order Markov, or the AR(1) scheme, discussed in
Chapter 10. Third, as we discussed in Chapter 10, in autoregressive models the
conventional Durbin-Watson d test is not applicable. In such cases we can use
the Durbin h statistic discussed in Problem 10.16 to detect first-order autocorre-
lation, or we can use the runs test.

Before we proceed to illustrate the model (12.7), it is interesting to note that the
coefficient C2 attached to Xt gives the short-run impact of a unit change in Xt on
mean Yt and C2/(1− C3) gives the long-run impact of a (sustained) unit change in
Xt on mean Yt; this is equivalent to summing the values of all B coefficients in the
model (12.4), as shown in Eq. (12.5).5 In other words, the lagged Y term in the re-
gression (12.7) acts as the workhorse for all lagged X terms in the model (12.4).

Example 12.2. The Impact of Adjusted Monetary Base Growth Rate on
Growth Rate of Nominal GNP, United States, 1960–1988

To see the relationship between the growth rate in the nominal GNP ( ) and
the growth rate in the adjusted monetary base ( ),6 Joseph H. Haslag and
Scott E. Hein7 obtained the following regression results. (Note: The authors
did not present R2. A dot over a variable represents its growth rate.)

se (0.004) (0.067) (0.054) (12.8)

t (1.000) (3.552) (14.056)

Durbin h 3.35

Before interpreting these results, notice that Haslag and Hein use a one-
period (a year here) lagged value of the as an explanatory variable and not
the current period value, but this should cause no problem becauseAMB is largely
determined by the Federal Reserve system. Besides, AMBt−1 is nonstochastic if

AMB
#

=

=

=

Y
#
t = 0.004 + 0.238AMB

#
t- 1 + 0.759Y

#
t- 1

AMB
# Y

#

- 1 … ␳ … 1vt = ␳vt- 1 + wt

378 PART THREE: ADVANCED TOPICS IN ECONOMETRICS

5The details can be found in Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill, New
York, 2009, Chapter 17.

6The monetary base (MB), sometimes called high-powered money, in the United States consists of
currency and total commercial bank reserves. The AMB takes into account the changes in the re-
serve ratio requirements of the Federal Reserve bank; in the United States all commercial banks are
required to keep certain cash or cash equivalents against the deposits that customers keep with the
banks. The reserve ratio is the ratio of cash and cash equivalents to the total deposits (which are li-
abilities of the banks). The Federal Reserve system changes this ratio from time to time to achieve
some policy goals, such as containment of inflation or the rate of interest, etc.

7See Joseph H. Haslag and Scott E. Hein, “Reserve Requirements, the Monetary Base and
Economic Activity,” Economic Review, Federal Reserve Bank of Dallas, March 1989, p. 13. The re-
gression results are presented to suit the format of model (3.46) in Chapter 3.



AMBt is, which is what we usually assume about any explanatory variable in
the standard CLRM. Now to the interpretation of model (12.8).

From Eq. (12.8) we observe that the short-run impact of is 0.238; that is,
a one percentage point change in on the average leads to 0.238 percent-
age point change in the nominal . This impact seems statistically significant
because the computed t value is significant. However, the long-run impact is

which is almost unity. Therefore, in the long run a (sustained) one percentage
point change in the leads to about a one percentage point change in the
nominal ; so to speak, there is a one-to-one relationship between the
growth rates of AMB and the nominal GNP.

The only problem with model (12.8) is that the estimated h value is statisti-
cally significant. As pointed out in Problem 10.16, in a large sample the h statistic
follows the standard normal distribution. Therefore, the 5% two-tailed critical Z
(standard normal) value is 1.96 and the 1% two-tailed critical Z value is 2.58.
Since the observed h of 3.35 exceeds these critical values, it seems that the resid-
uals in the regression (12.8) are autocorrelated, and therefore the results pre-
sented in model (12.8) should be taken with a grain of salt. But note that the h
statistic is a large sample statistic and the sample size in the model (12.8) is 29,
which may not be very large. In any case, Eq. (12.8) serves the pedagogical pur-
pose of illustrating the mechanics of estimating distributed lag models via the
Koyck, adaptive expectation, or stock adjustment models.

Example 12.3. Margin Requirements and Stock Market Volatility

To assess the short-run and long-run impact of a margin requirement (which
restricts the amount of credit that brokers and dealers can extend to their cus-
tomers), Gikas A. Hardouvelis8 estimated the following regression (among
several others) for the monthly data from December 1931 to December 1987, a
total of 673 months, for the stocks included in the Standard & Poor’s (S&P)
index. (Note: The standard error, indicated by *, was not presented by the
author.)

(12.9)

where = the standard deviation of the monthly excess nominal rate of re-
turn of stocks (the nominal rate of return minus the one-month T-bill rate at the
end of the previous month) calculated from (t− 11) to t (in decimals), which is
taken as a measure of volatility; mt = the average official margin require-
ment from (t− 11) to t (in decimals); and the figures in parentheses are the esti-
mated standard errors corrected for heteroscedasticity and autocorrelation.

 ␴ t

 se = (0.015) (0.024) ( )* R
2 = 0.44

 ␴N t = 0.112 - 0.112mt + 0.186␴t- 1

L

GNP
# AMB

#

0.238

(1 - 0.759)
= 0.988

GNP
# LAMB

# AMB
#
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8See Gikas A. Hardouvelis, “Margin Requirements and Stock Market Volatility,” Quarterly Review,
Federal Reserve Bank of New York, vol. 13, no. 2, Summer 1988, Table 4, p. 86, and footnote 21, p. 88.



Unfortunately, Hardouvelis does not present the standard error of the lagged
volatility coefficient nor the h statistic. Note, though, that the author has cor-
rected his results for autocorrelation.

As expected, the coefficient of the margin variable has a negative sign, sug-
gesting that when margin requirements are increased, there is less speculative
activity in the stock market, thereby reducing volatility. The value of −0.112
means that if the margin requirement is increased by, say, one percentage point,
the volatility of S&P stocks decreases by 0.11 percentage points. This is, of
course, the short-run impact. The long-run impact is

which obviously is higher (in absolute value) than the short-run impact, but not
a lot higher.

Although the topic of dynamic modeling is vast and all kinds of newer
econometric techniques to handle such models are currently available, the pre-
ceding discussion will give you the flavor of what dynamic modeling is all
about. For additional details, consult the references.9

12.2 THE PHENOMENON OF SPURIOUS REGRESSION:

NONSTATIONARY TIME SERIES

Regression models involving time series data sometimes give results that are
spurious, or of dubious value, in the sense that superficially the results look
good but on further investigation they look suspect. To explain this phenome-
non of spurious regression, let us consider a concrete example. Table 12-2
(found on the textbook Web site) gives quarterly data for the United States on
gross domestic product (GDP), personal disposable income (PDI), personal
consumption expenditure (PCE), profits, and dividends for the period of 1970-I
to 2008-IV (a total of 156 observations); all the data are in billions of 2000 dollars.

For now we will concentrate on PCE and PDI; the other data given in the
table will be used in problems at the end of this chapter.

Using the data given in Table 12-2 and regressing PCE on PDI we obtain the
following regression results:

(12.10)

These regression results look “fabulous”: the R2 is extremely high, the t value of
PDI is extremely high, the marginal propensity to consume (MPC) out of PDI is
positive and high. The only fly in the ointment is that the Durbin-Watson d is
low. As Granger and Newbold have suggested, an R2 ⬎ d is a good rule of thumb
to suspect that the estimated regression suffers from spurious (or nonsense) regression;

 t = ( - 22.03)  (264.76)

 PCEt = - 470.52 +  1.0006 PDIt R
2 = 0.998; d = 0.3975

-
0.112

(1 - 0.186)
L - 0.138

L
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9A good reference is A. C. Harvey, The Econometric Analysis of Time Series, 2nd ed., MIT,
Cambridge, Mass., 1990. Some parts of this book may be difficult for beginners.
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that is, in actuality there may not be any meaningful relationship between PCE
and PDI.10

Why may the regression results in Equation (12.10) be spurious? To under-
stand this, we have to introduce the concept of a stationary time series. To
explain this concept, let us first plot the data on PCE and PDI given in Table 12-2,
as shown in Figure 12-2.

Looking at Figure 12-2, we can see that both the PCE and PDI time series are
generally trending upward over the sample period. Such a picture generally in-
dicates that such time series may be nonstationary. What does that mean?

Broadly speaking, a stochastic process is said to be stationary if its mean and
variance are constant over time and the value of the covariance between two
time periods depends only on the distance or lag between the two time periods
and not on the actual time at which the covariance is computed.11

Symbolically, letting Yt represent a stochastic time series, we say that it is
stationary if the following conditions are satisfied:12

Mean: E(Yt) = (12.11)

Variance: E(Yt − )2
= (12.12)

Covariance: (12.13)␥k = E[(Yt - ␮)(Yt+k - ␮)]

␴2␮

␮

Quarterly PDI and PCE, United States, 1970–2008FIGURE 12-2
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10C. W. J. Granger and P. Newbold, “Spurious Regression in Econometrics,” Journal of
Econometrics, vol. 2, no. 2, July 1974, pp. 111–120.

11Any time series data can be thought of as being generated by a stochastic, or random, process and
a concrete set of data, such as that shown in Table 12-2, can be regarded as a (particular) realization
(i.e., a sample) of the underlying stochastic process.

12In the time series literature such a stochastic process is called a weakly stationary stochastic
process. In most applied work the assumption of weak stationarity has proved useful. In strong
stationarity we consider higher moments of the PDF, that is, moments beyond the second.



where , the covariance (or autocovariance) at lag k, is the covariance between
the values of Yt and , that is, between two values of Y, k periods apart. If k=
0, we obtain , which is simply the variance of Y (= ); if k = 1, is the co-
variance between two adjacent values of Y, the type of covariance we encoun-
tered in Chapter 10 when we discussed the topic of autocorrelation.

Suppose we shift the origin of Y from Yt to (say from 1970-I to 1974-I in
our illustrative example). Now if Yt is to be stationary, the mean, variance, and
autocovariances of must be the same as those of Yt. In short, if a time series
is stationary, its mean, variance, and autocovariance (at various lags) remain the
same no matter what time we measure them.

If a time series is not stationary in the sense just defined, it is called a nonsta-
tionary time series. (Keep in mind, we are only talking about weak stationarity.)

Looking at the PCE and PDI time series given in Figure 12-2, we get the feel-
ing that these two time series are not stationary. If this is the case, then in re-
gression (12.10) we are regressing one nonstationary time series on another
nonstationary time series, leading to the phenomenon of spurious regression.

The question now is how do we verify our feeling that the PCE and PDI time
series are in fact nonstationary? We will attempt to answer this question in the
next section.

12.3 TESTS OF STATIONARITY

In the literature there are several tests of stationarity. Here we will consider the
so-called unit root test. Without delving into the technicalities, this test can be
described as follows.13 Letting Yt represent the stochastic time series of interest
(such as PCE), we proceed like this.

1. Estimate the following regression:

(12.14)

where represents the first difference operator that we encountered in
Chapter 10, where t is the trend variable, taking values of 1, 2, and so on
(156 for our illustrative example), and where is the one-period
lagged value of the variable Y.14

2. The null hypothesis is that A3, the coefficient of , is zero, which is an-
other way of saying that the underlying time series is nonstationary. This
is called the unit root hypothesis.15

Yt- 1

Yt- 1

¢

¢Yt = A1 + A2t + A3Yt- 1 + ut

Yt+m

Yt+m

␥1␴2␥0

Yt+k

␥k
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13For details, see Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill, New York, 2009,
Chapter 21.

14This regression can also be estimated without the intercept and the trend term, although they are
generally included.

15To see intuitively why the term unit root is used, let us proceed as follows: Yt = A1 + A2t +
CYt−1 + ut. Now subtract Yt−1 from both sides of this equation to give (Yt − Yt−1) = A1 + A2t +
CYt−1−Yt−1, which then gives Yt=A1+A2t+ (C− 1)Yt−1=A1+A2 t+A3Yt−1, where A3= (C− 1).
Thus, if C is in fact equal to 1, A3 in regression (12.14) will in fact be zero, thus the name unit root.

¢



3. To test that a3, the estimated value of A3, is zero, ordinarily we would use
the now familiar t test. Unfortunately, we cannot do that because the t
test is, strictly speaking, valid only if the underlying time series is sta-
tionary. However, we can use an alternative test called the (tau) test,
whose critical values were tabulated by its creators on the basis of Monte
Carlo simulations. In the literature, the tau test is known as the Dickey-
Fuller (DF) test, in honor if its discoverers.16 If in an application, the
computed t (= tau) value of estimated A3 is greater (in absolute value)
than the critical Dickey-Fuller tau values, we reject the unit root hypoth-
esis; that is, we conclude that the said time series is stationary. On the
other hand, if the computed tau value is smaller (in absolute value) than
the critical tau values, we do not reject the unit root hypothesis. In that
case, the time series in question is nonstationary.

Let us apply the unit root test to the PCE and PDI time series given in
Table 12-2. Corresponding to Equation (12.14), we obtain:

PCEt = 42.04 + 0.6596t − 0.0117 PCEt−1

t( ) = (2.83) (2.18) (−1.52) R2
= 0.099

PDIt = 74.19 + 1.0482t − 0.02209 PDIt−1

(12.15)

t( ) = (1.88) (1.58) (−1.31) R2
= 0.035

For the present purpose we are interested in the t value of the lagged PCE and
PDI. The 1% and 5% critical DF, or tau, values from the table in Appendix E are
about −4.04 and −3.45, respectively.17 Since in absolute terms (i.e., disregarding
sign), the tau values of the lagged PCE and PDI variables are much smaller than
any of the preceding tau values, the conclusion is that the PCE and PDI time se-
ries are nonstationary (i.e., there is a unit root). In consequence, the OLS regres-
sion given in Eq. (12.10) may be spurious (i.e., not meaningful). Incidentally,
note that if we had applied the usual t test to, say, the second regression in 
Eq. (12.15), we would have said that the t value of the lagged PDI variable is
statistically significant. But on the basis of the correct tau test (in the presence of
nonstationarity) this conclusion would be wrong.

12.4 COINTEGRATED TIME SERIES

The conclusion that the regression (12.10) may be spurious suggests to us that
all time series regressions, such as regression (12.10), are spurious. If this were
in fact the case, we would need to be very wary of doing regressions based on

=  ␶

¢

=  ␶

¢

␶
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16D. A. Dickey and W. A. Fuller, “Distribution of Estimators for Autoregressive Time Series with
a Unit Root,” Journal of the American Statistical Association, vol. 74, June 1979, pp. 427–431.

17J. G. MacKinnon, “Critical Values of Cointegration Tests,” in R. F. Engle and C. W. J. Granger,
eds., Long-run Economic Relationships: Readings in Cointegration, Oxford University Press, New York,
1991, Chapter 13. Computer packages, such as EViews, now compute the critical tau values
routinely.



time series data. But there is no cause for despair. Even if the time series of PCE
and PDI are nonstationary, it is quite possible that there is still a (long-run) sta-
ble or equilibrium relationship between the two. If that is indeed the case, we
say that such time series are cointegrated.18 But how do we find that out? This
can be accomplished as follows.

Let us return to the PCE–PDI regression (12.10). From this regression, obtain
the residuals, et; that is, obtain:

et = PCEt + 470.52 − 1.0006PDIt (12.16)

Treating et as a time series, we now apply the unit root test (see Eq. [12.14]),
which gives the following results. (Note: there is no need to introduce intercept
and the trend variable in this regression. Why?)

(12.17)

Now the critical tau values, as computed by Engle and Granger in Appendix E,
are about −4.04 (1%), −3.37 (5%), and −3.03 (10%).19 Since, in absolute terms,
the computed tau of 4.35 exceeds any of these critical tau values, the conclusion
is that the series et is stationary. Therefore, we can say that although PCE
and PDI are individually nonstationary, their linear combination as shown in
Eq. (12.16) is stationary. That is, the two time series are cointegrated, or, in other
words, there seems to be a long-run or equilibrium relationship between the
two variables. This is a very comforting finding because it means that the
regression (12.10) is real and not spurious.

To sum up: If we are dealing with time series data, we must make sure that the in-
dividual time series are either stationary or that they are cointegrated. If this is not the
case, we may be open to the charge of engaging in spurious (or nonsense) regression
analysis.

We will conclude the discussion of nonstationary time series by considering
another example of a nonstationary time series, the so-called random walk model,
which has found quite useful applications in finance, investment, and interna-
tional trade.

12.5 THE RANDOM WALK MODEL

Financial time series such as the S&P 500 stock index, the Dow-Jones index, and
foreign exchange rates are often said to follow a “random walk” in the sense
that knowing the values of these variables today will not enable us to predict

 t( =  ␶) = ( - 4.35) r
2 = 0.1094

 ¢et = - 0.2096 et- 1
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18The literature on cointegration is vast and quite technical. Our discussion here is heuristic. A
commonly cited example of cointegration is the drunkard and his dog. Leaving the bar, the drunk-
ard meanders in a haphazard way. His dog also meanders in his merry ways. But the dog never
loses sight of his owner. So to speak, their meanderings are cointegrated.

19R. F. Engle and C. W. J. Granger, Long-run Economic Relationships: Readings in Cointegration,
Oxford University Press, New York, 1991, Chapter 13.



what these values will be tomorrow. Thus, knowing the price of a stock (say, of
Dell or IBM) today, it is hard to tell what it will be tomorrow. That is, the price
behavior of stocks is essentially random—today’s price is equal to yesterday’s
price plus a random shock.20

To see the anatomy of a random walk model, consider the following simple
model:

(12.18)

where ut is the random error term with zero mean and constant variance, . Let
us suppose we start at time 0 with a value of Y0. Now we can write:

(12.19)

Using the recursive relation (12.18) repeatedly as in Equation (12.19), we can
write:

(12.20)

where the summation is from t = 1 to t = T, T being the total number of obser-
vations. Now it is easy to verify that

(12.21)

since the expected value of each ut is zero. It is also easy to verify that

(12.22)

where use is made of the fact that the u’s are random, each with the same vari-
ance .

As Equation (12.22) shows, the variance of Yt is not only not constant but also
continuously increases with T. Therefore, by the definition of stationarity given
earlier, the (random walk) variable Yt given in Eq. (12.18) is nonstationary (here
nonstationary in the variance). But notice an interesting feature of the random
walk model given in Eq. (12.18). If you write it as:

(12.23)

where, as usual, is the first difference operator, we see that the first differ-
ences of Y are stationary, for E( Yt) = E(ut) = 0 and var( Yt) = var(ut) = .
Therefore, if Y in Eq. (12.18) represents, say, share prices, then these prices may
be nonstationary, but their first differences are purely random.

␴2¢¢
¢

¢Yt = (Yt - Yt- 1) = ut

␴2

var (Yt) = var (u1 + u2 + Á + uT) = T␴2

E(Yt) = Y0

Yt = Y0 + aut

Yt- 1 = Yt- 2 + ut- 1

␴2

Yt = Yt- 1 + ut
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20The random walk is often compared with a drunkard’s walk. Leaving the bar, the drunkard
moves a random distance ut at time t, and if he or she continues to walk indefinitely, he or she will
eventually drift farther and farther away from the bar.



We can modify the random walk model (12.18) as follows:

(12.24)

where d is a constant. This is the random walk model with drift, d being the
drift parameter.

We leave it as an exercise for you to show that for the model (12.24) we get

(12.25)

(12.26)

That is, for the random walk model with drift, both the mean and the variance
continuously increase over time. Again, we have a random variable that is non-
stationary both in the mean and the variance. If d is positive, we can see from
model (12.24) that the mean value of Y will increase continuously over time; if d
is negative, the mean value of Y will decrease continuously. In either case, the
variance of Y increases continuously over time. A random variable whose mean
value and variance are time-dependent is said to follow a stochastic trend. This is
in contrast to the linear trend model that we discussed in Chapter 5 (see Equation
[5.23]), where it was assumed that the variable Y followed a deterministic trend.

If we were to use the random walk models for forecasting purposes, we
would obtain a picture such as is shown in Figure 12-3.

Figure 12-3(a) shows the random walk model without drift, and Figure 12-3(b)
shows it with the drift. As you can see, in Figure 12-3(a) the mean forecast value
remains the same at level YT all throughout the future, but, because of the in-
creasing variance, the confidence interval around the mean value increases con-
tinuously. In Figure 12-3(b), assuming that the drift parameter d is positive, the
mean value of forecast increases over time, and so does the forecast error.

In summary, the purpose of this section has been to warn you that regression
models based on time series data need to be modeled carefully. If the dependent
variable Y and the explanatory variable X(s) are nonstationary, high R2 values and
high t values may lull you into thinking that you have found a meaningful
relationship between the two. In fact, a high R2 may simply reflect the fact that
the two variables share common trends, and, therefore, there may not be any
true relationship between them. This is the phenomenon of spurious regression.
Following Granger and Newbold, a tell-tale sign of spurious regression is that
the R2 value of a regression involving time series data is greater than the
Durbin-Watson d value. Therefore, be on the lookout.

12.6 THE LOGIT MODEL

In Chapter 6 on dummy variables we briefly discussed the linear probability
model (LPM) to estimate a model in which the dependent variable, Y, is binary,
taking a value of 1 or 0, with 1 denoting the presence or possession of an at-
tribute (e.g., married, female, in the labor force, etc.) and 0 denoting the absence

var (Yt) = T␴2

E(Yt) = Y0 + Td

Yt = d + Yt- 1 + ut
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of that attribute (e.g., unmarried, male, not in the labor force, etc.). The ex-
planatory variables in the LPM can themselves be binary or dummy or quanti-
tative or a mixture thereof.

Although such a model can be estimated by the usual OLS procedure, we
warned against its blind application because of four major problems: (1)Although
Y can take a value of 1 or 0, there is no guarantee that the estimated Y values
will necessarily lie between 0 and 1; some estimated Y values may be negative
and some may be in excess of 1, as we saw with the hypothetical home owner-
ship example discussed in Chapter 6. (2) Since Y is binary, the error term in
such a model is also binary. Actually, it follows the binomial distribution.
Therefore, strictly speaking we cannot assume that the error term in such models

Forecasting with random walk models

Source: Adapted from Robert S. Pindyck and Daniel L. Rubinfeld,

Econometric Models and Economic Forecasts, 4th ed., McGraw-Hill, New

York, 1998, pp. 491–492.

FIGURE 12-3
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follows the normal distribution, as we have assumed all along. (3) The error
term in such a model is heteroscedastic. (4) The major weakness of the LPM is
that it assumes that the probability of Y happening increases linearly with the
explanatory variables.

If the sample size is reasonably large, problem (2) can be handled, for we
know that as the sample size increases, the binomial distribution approaches
the normal distribution. Problem (3) can also be resolved by using one of the
methods discussed in Chapter 9. Problems (1) and (4) cannot be resolved easily.
Therefore, LPM is not the best model to use in case the dependent variable is bi-
nary. What are the alternatives?

In the literature there are two alternatives that are prominently discussed, the
logit model and the probit model. Since the two models generally give similar
results, we will discuss here only the logit model because of its comparative
mathematical simplicity.

We will continue with our home ownership example to explain the basic
ideas underlying the logit model.

Recall that in explaining home ownership (Y) in relation to income (X), the
LPM was as shown in Equation (6.31). But now consider the following repre-
sentation of home ownership:

(12.27)

where Pi represents probability.
For ease of exposition, we write this equation as:

(12.28)

where Zi = B1 + B2Xi.
Equation (12.28) represents what is known in statistics as the (cumulative)

logistic distribution function, which has been used extensively in analyzing
growth phenomena, such as population, GDP, and money supply.

It is easy to verify that as Zi ranges from to , Pi ranges between 0 and
1, and that Pi is nonlinearly related to Zi (i.e., Xi), thus remedying the problems
facing the LPM.

But in remedying the defects of LPM, we have created an estimating problem
because Pi is nonlinear not only in X but also in the parameters, the B’s, which
is clearly seen in Equation (12.27). This means we cannot use the familiar OLS
procedure to estimate the parameters of Eq. (12.27). But this problem is more
apparent than real because Eq. (12.27) can be linearized, as shown below.

If Pi, the probability of owning a house, is given by Eq. (12.28), then (1 − Pi),
the probability of not owning a house, is

(12.29)1 - Pi =
1

1 + eZi

+ q- q

Pi =
1

1 + e-Zi
=

e
z

1 + ez

Pi = E(Y = 1 ƒXi) =
1

1 + e-(B1 +B2Xi)
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Therefore, we can write

(12.30)

Now is simply the odds ratio in favor of owning a house—the
ratio of the probability that a family will own a house to the probability that it
will not own a house. Thus, if Pi = 0.8, it means the odds are 4 to 1 in favor of
the family owning a house.

Now if we take the natural log (12.30), we obtain a very interesting result,
namely,

(12.31)

that is, L, the log of the odds ratio, is not only linear in X but also (from the esti-
mation viewpoint) linear in the parameters. L is called the logit, and hence the
name logit model for models like (12.31).

Notice several interesting features of the logit model.

1. As P goes from 0 to 1, (i.e., as Z varies from to ), the logit L goes
from to . That is, although the probabilities (of necessity) lie be-
tween 0 and 1, the logits are not so bounded.

2. Although L is linear in X, the probabilities themselves are not. This prop-
erty is in contrast with the LPM where the probabilities increase linearly
with X.

3. Although we have included a single X variable in Equation (12.31), we
can add as many explanatory variables as may be dictated by the under-
lying theory. Some of these X’s can be dummies.

4. If the logit L is positive, it means that when the value of the explanatory
variable(s) increases, the odds that Y equals 1 (meaning some event of
interest occurs) increase. If L is negative, the odds that Y equals 1 de-
crease as X increases. To state it differently, the logit becomes negative
and increasingly large in magnitude as the odds ratio decreases from 1 to
0 and becomes large and increasingly positive as the odds ratio increases
from 1 to infinity.

5. More formally, the interpretation of the logit model given in Eq. (12.31) is
as follows: B2, the slope, measures the change in L for a unit change in X; that
is, it tells how the log-odds in favor of owning a house change as income
changes by a unit, say, $1000. The intercept B1 is the value of log-odds in
favor of owning a house if income is zero. Like most interpretations of
intercepts, this interpretation may not have any physical meaning.

6. Whereas the LPM assumes that Pi is linearly related to Xi, the logit model
assumes that the log of the odds is linearly related to Xi.

7. Given a certain level of income, say, X*, if we actually want to estimate
not the odds but the probability of owning a house itself, this can be done
directly from Eq. (12.28) once we estimate B1 and B2. But how do we es-
timate these parameters? The answer follows.

+ q- q
+ q- q

Li = ln a Pi

1 - Pi
b = Zi = B1 + B2Xi

Pi>(1 - Pi)

Pi

1 - Pi
=

1 + eZi

1 + e-Zi
= eZi
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Estimation of the Logit Model

For estimation purposes, we write Eq. (12.31) as follows:

(12.32)

We will discuss the properties of the error term ui shortly.
To estimate Equation (12.32), we need, apart from Xi, the values of the logit,

Li. This depends on the type of data we have for analysis. We distinguish two
types of data: (1) data at the individual, or micro, level, and (2) grouped or replicated
data.

Data at the Individual Level If we have data on individual families, as in
Table 6-10 (on the textbook’s Web site), OLS estimation of Eq. (12.32) is infeasible.
This is easy to see. In terms of the data given in Table 6-10, Pi= 1 if a family owns
a house and Pi = 0 if it does not own a house. But if we put these values directly
in the logit Li, we get

Obviously, these expressions are meaningless. Thus, if we have data at the indi-
vidual level, we cannot estimate Eq. (12.32) by the standard OLS routine. In this
situation we may have to resort to the method of maximum likelihood (ML). This
method is somewhat involved and best left for the references.21 Software pack-
ages, such as EViews, MINITAB, LIMDEP, SHAZAM, STATA, and MICROFIT,
have routines to estimate the logit model at the individual level.

Grouped or Replicated Data Consider the hypothetical data given in
Table 12-3. This table gives data on several families grouped or replicated (repeat
observations at a given X value) according to income level and the number of
families owning a house at each level of income. Corresponding to each income
level Xi, there are Ni families, ni among whom are home owners .
Therefore, if we compute

(12.33)

that is, the relative frequency, we can use it as an estimate of the true Pi corre-
sponding to each Xi. If Ni is fairly large, will be a reasonably good estimate ofPNi

PNi =
ni

Ni

(ni … Ni)

 Li = ln a 0

1
b  if a family does not own a house

 Li = ln a 1

0
b  if a family owns a house

Li = ln a Pi

1 - Pi
b = B1 + B2Xi + ui
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21For details and applications, see Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill,
New York, 2009, Chapter 15.
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Pi, as we can see in Appendix A on probability. The estimated Pi are shown in
Table 12-3. Using the estimated Pi, we can compute the estimated logit as:

(12.34)

and then run the regression

(12.35)

Using the data given in Table 12-3, we estimated Equation (12.35) and obtained
the following results:

se = (0.1708) (0.0041) (12.36)

t = (−18.992) (19.317) R2
= 0.9791

As these results suggest, if income increases by a unit (here, $1000), the log of
the odds in favor of owning a house goes up by 0.08 units. Of course, we can
compute the probability of owning a house at any given level of income. For in-
stance, letting X = 26, we obtain

(12.37)ln a Pi

1 - Pi
b = - 1.1846

L

ln 
P
N

i

1 - PN i
= - 3.2438 + 0.0792 Xi

L
N

i = B1 + B2Xi + ui

L
N

i = ln a P
N

i

1 - PN i
b

HYPOTHETICAL DATA ON Xi (INCOME), Ni

(NUMBER OF FAMILIES AT INCOME Xi), AND 

ni (NUMBER OF FAMILIES OWNING A HOUSE)

X
($, in thousands) Ni ni

(1) (2) (3) (4)

26 40 8 0.20

28 50 12 0.24

30 60 18 0.30

33 80 28 0.35

35 100 45 0.45

40 70 36 0.51

45 65 39 0.60

50 50 33 0.66

55 40 30 0.75

60 25 20 0.80

580 269

Pi =
ni

Ni

TABLE 12-3



Therefore, following Eq. (12.28), we get

Pi (given X = 26) = 0.2342 (12.38)

whereas the actual probability was 0.20 (see Table 12-3). Other probabilities can
be computed similarly (see Problem 12.12).

Before we conclude our discussion of the (grouped) logit model, a technical
point needs to be noted, which refers to the nature of the error term ui given in
Eq. (12.35). It can be shown that this error term is heteroscedastic with variance 

of . As a result, we will have to correct for heteroscedasticity, using 
the method of weighted least squares discussed in Chapter 9.22 The
heteroscedasticity-corrected regression results in the present case do not differ
vastly from those given in Eq. (12.36).

With the knowledge of the logit model, we can now easily handle models in
which the dependent variable is dummy or binary. As a matter of fact, we can
even run a regression in which the dependent variable as well as all explana-
tory variables are dummies. Not only that, but we can even consider regres-
sion models in which the dependent variable is not only dichotomous but also
trichotomous (e.g., membership in the Republican party or the Democratic
party or a third party), or even has more than three categories. Such models
are called multinominal regression models, but they are beyond the scope of this
book.23

We will now present a concrete application of the logit model.

Example 12.4. Predicting Bank Failure

Based on call report (i.e., bank examinations) data of 6869 calls between
December 1982 and December 1984, Robert Avery and Terrence Belton esti-
mated a risk index (i.e., a logit function) to predict bank failure. A bank was
deemed to have failed if it failed within a year following the call—the bank
examination. Their results are presented in Table 12-4.

As these results show, ceteris paribus, if KTA, the ratio of primary capital
(i.e., shareholder equity) to total assets goes up by one percentage point, the
log of the odds of bankruptcy goes down by 0.501, which is a sensible result.
Similarly, if LNNACCA, the percent ratio of nonaccruing loans to total as-
sets, goes up by a percentage point, the log of odds in favor of bankruptcy
goes up by 4.310. The other coefficients are to be interpreted similarly.
Statistically, RENEGA and NCOFSA are insignificant and NCOFSA has the
wrong sign. (Why?)

A 1
NiPi(1 -Pi)

B
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22For details, see Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill, New York, 2009,
pp. 557–558.

23For a general description of the logistic models, see David W. Hosmer and Stanley Lemesshow,
Applied Logistic Regression, Wiley, New York, 1988.
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24These data are from Michael P. Murray, Econometrics: A Modern Approach, Pearson/Addison
Wesley, Boston, 2006, and can be downloaded from www.aw-bc.com/murray. These data are also
posted on the textbook’s Web site as Table 12-5.  

Avery and Belton conclude that:

Although the overall fit of the model suggests that predicting bank failure is
difficult, the failed banks in the sample had an average predicted probability of
failure of 0.24, a number 69 times larger than the average predicted failure
probability of nonfailed banks in the sample. Hence, the model clearly does
have some ability to discriminate between high- and low-risk banks.

Note that logit models like the bank failure model just discussed have been
used extensively in practice. Banks have used it to predict mortgage delinquen-
cies, credit card companies have used it to predict credit card loan defaults, and
several educational institutions have used it to predict admissions to higher
education. It is rumored that the Internal Revenue Service (IRS) uses such a
model to predict which tax payer is likely to be audited.

Example 12.5. To Smoke or Not to Smoke

We conclude our discussion of the logit model by considering the decision to
smoke or not to smoke in a sample of 1196 individuals.24 (See Table 12-5 on
the textbook’s Web site.) The dependent variable is binary, taking a value of
1 if a person smokes and zero if the person does not smoke. The explanatory
variables are age, education (years of schooling), family income, and price of
cigarettes in 1979.

LOGIT MODEL: PREDICTING BANK FAILURE

Explanatory variable Coefficient t value

Constant −2.420 3.07

KTA −0.501 −4.89

PD090MA 0.428 5.16

LNNACCA 4.310 4.31

RENEGA 0.269 1.07

NCOFSA 0.223 1.60

NETINCA 0.331 2.68

Notes: KTA = Percent ratio of primary capital to total assets
PD090MA = Percent ratio of loans more than 90 days past

due to total assets
LNNACCA = Percent ratio of nonaccruing loans to total assets
RENEGA = Percent ratio of renegotiated loans to total assets
NCOFSA = Percent ratio of net loan charge-offs (annualized)

to total assets
NETINCA = Percent ratio of net income (annualized) to total

assets
Source: Robert B. Avery and Terrence M. Belton, “Comparison

of Risk-Based Capital and Risk-Based Deposit Insurance,”
Economic Review, Federal Reserve Bank of Cleveland, 1987,
fourth quarter, pp. 20–30.
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Since the data are at the individual level, we have to use the maximum
likelihood (ML) method to estimate the parameters of the model. Using
EViews 6, we obtained the following results: 

Dependent Variable: SMOKER

Method: ML—Binary Logit (Quadratic hill climbing)

Sample: 1 1196

Included observations: 1196

Convergence achieved after 3 iterations

Covariance matrix computed using second derivatives

Coefficient Std. Error z-Statistic Prob.

C 2.745077 0.829196 3.310529 0.0009

AGE −0.020853 0.003739 −5.577290 0.0000

EDUC −0.090973 0.020666 −4.402100 0.0000

INCOME 4.72E-06 7.17E-06 0.658284 0.5104

PCIGS79 −0.022319 0.012472 −1.789469 0.0735

McFadden R-squared 0.029748 Mean dependent var 0.380435

S.D. dependent var 0.485697 S.E. of regression 0.477407

Akaike info criterion 1.297393 Sum squared resid 271.4495

Schwarz criterion 1.318658 Log likelihood −770.8409

Hannan-Quinn criter. 1.305405 Restr. log likelihood −794.4748

LR statistic 47.26785 Avg. log likelihood −0.644516

Prob (LR statistic) 0.000000

Obs with Dep = 0 741 Total obs 1196

Obs with Dep = 1 455

A priori, age, education, and the price of cigarettes have a negative impact on
the logit and income has a positive impact. The results concur with these
expectations, although the income coefficient is not statistically significant.
The price of cigarettes coefficient is significant at about the 7 percent level of
significance. Note that our sample of 1196 observations is quite large.
Therefore, we use the Z (standard normal) rather than the t test. If we wanted
to test the hypothesis that all the slope coefficients are simultaneously equal
to zero, we would use the likelihood ratio (LR) test, which has a chi-square
distribution with 4 d.f. If this hypothesis were true, the probability of obtain-
ing an LR of about 47 would be practically zero. Hence we reject the null
hypothesis; at least one regressor is statistically significant.

When the dependent variable takes only two values, 1 or 0, it is difficult to
compute the equivalent of R2 in the traditional regression analysis. The
McFadden R2 shown in the above table is a kind of R2, but its practical im-
portance should not be exaggerated. 

Turning to the interpretation of the various slope coefficients presented in
the preceding table, we cannot interpret them, as in the LPM, as the rate of
change of probability for a unit change in the value of the regressor. The in-
terpretation here is the change in the logit, or log of the odds ratio, for a unit
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change in the value of the regressor. Thus, the education coefficient of about
−0.09 means if schooling goes up by one year, the logit goes down by about
−0.09, holding other variables constant.

The logit language may be strange for most people. But we can talk in
terms of the odds ratio in favor of smoking versus not smoking. We proceed
as follows: Holding education, income, and the price of cigarettes constant, if
we increase age by a unit (a year), the relative odds of 

is multiplied by . Thus, there is a decrease in the probabil-
ity of smoking of (1 − 0.9793) = 0.0207, or 2.07 percent. In similar fashion, we
can compute the relative odds with respect to the other regressors, in each
case holding the other variables constant.

It is left for the reader to verify that the relative odds with respect to edu-
cation, income, and the price of cigarettes change by −8.7 percent, 0 percent,
and −2.21 percent, respectively.

If you want to compute the probability of smoking rather than the odds,
this can be obtained from Eq. (12.28) by entering the appropriate values of
the regression coefficients and values of the regressors. This is of course
tedious if you want to do it manually for 1196 observations. However, STATA
and EViews can do this job routinely.

To conclude this example, we show the output of LPM for this example. It
is left for the reader to compare the results of LPM with those obtained from
the logit model.

Dependent Variable: SMOKER

Method: Least Squares

Sample: 1 1196

Included observations: 1196

Coefficient Std. Error t-Statistic Prob.

C 1.123089 0.188356 5.962575 0.0000

AGE −0.004726 0.000829 −5.700952 0.0000

EDUC −0.020613 0.004616 −4.465272 0.0000

INCOME 1.03E-06 1.63E-06 0.628522 0.5298

PCIGS79 −0.005132 0.002852 −1.799076 0.0723

R-squared 0.038770 F-statistic 12.00927

Adjusted R-squared 0.035541 Prob(F-statistic) 0.000000

S.E. of regression 0.476988

Sum squared resid 270.9729

The R2 presented in the above table should be taken with a grain of salt,
for the dependent variable takes only two values, 1 and zero. The F statistic
given in the table tests the hypothesis that all the slope coefficients are

e
-0.020852 = 0.9793

Probability of smoking

Probability of not smoking
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simultaneously zero. This hypothesis can be soundly rejected, for the p value
of the estimated F value is practically zero. Although some of the coefficients
are individually insignificant, collectively they are all important in determin-
ing who smokes versus who does not.

12.7 SUMMARY

In this chapter we discussed several topics of considerable practical importance.
The first topic we discussed was dynamic modeling, in which time or lag ex-

plicitly enters into the analysis. In such models the current value of the dependent
variable depends upon one or more lagged values of the explanatory variable(s).
This dependence can be due to psychological, technological, or institutional rea-
sons. These models are generally known as distributed lag models. Although the
inclusion of one or more lagged terms of an explanatory variable does not violate
any of the standard CLRM assumptions, the estimation of such models by the
usual OLS method is generally not recommended because of the problem of mul-
ticollinearity and the fact that every additional coefficient estimated means a loss
of degrees of freedom.

Therefore, such models are usually estimated by imposing some restrictions
on the parameters of the models (e.g., the values of the various lagged coeffi-
cients decline from the first coefficient onward). This is the approach adopted
by the Koyck, the adaptive expectations, and the partial, or stock, adjustment
models. A unique feature of all these models is that they replace all lagged val-
ues of the explanatory variable by a single lagged value of the dependent vari-
able. Because of the presence of the lagged value of the dependent variable
among explanatory variables, the resulting model is called an autoregressive
model. Although autoregressive models achieve economy in the estimation of
distributed lag coefficients, they are not free from statistical problems. In partic-
ular, we have to guard against the possibility of autocorrelation in the error term
because in the presence of autocorrelation and the lagged dependent variable as
an explanatory variable, the OLS estimators are biased as well as inconsistent.

In discussing the dynamic models, we pointed out how they help us to assess
the short- and long-run impact of an explanatory variable on the dependent
variable.

The next topic we discussed related to the phenomenon of spurious, or non-
sense, regression. Spurious regression arises when we regress a nonstationary
random variable on one or more nonstationary random variables. A time series is
said to be (weakly) stationary, if its mean, variance, and covariances at various lags
are not time dependent. To find out whether a time series is stationary, we can use the
unit root test. If the unit root test (or other tests) shows that the time series of inter-
est is stationary, then the regression based on such time series may not be spurious.

We also introduced the concept of cointegration. Two or more time series are
said to be cointegrated if there is a stable, long-term relationship between the
two even though individually each may be nonstationary. If this is the case, re-
gression involving such time series may not be spurious.
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Next we introduced the random walk model, with or without drift. Several
financial time series are found to follow a random walk; that is, they are non-
stationary either in their mean value or their variance or both. Variables with
these characteristics are said to follow stochastic trends. Stock prices are a
prime example of a random walk. It is hard to tell what the price of a stock will
be tomorrow just by knowing its price today. The best guess about tomorrow’s
price is today’s price plus or minus a random error term (or shock, as it is
called). If we could predict tomorrow’s price fairly accurately, we would all be
millionaires!

The next topic we discussed in this chapter was the dummy dependent vari-
able, where the dependent variable can take values of either 1 or 0. Although
such models can be estimated by OLS, in which case they are called linear prob-
ability models (LPM), this is not the recommended procedure since probabili-
ties estimated from such models can sometimes be negative or greater than
1. Therefore, such models are usually estimated by the logit or probit procedures.
In this chapter we illustrated the logit model with concrete examples. Thanks to
excellent computer packages, estimation of logit and probit models is no longer
a mysterious or forbidding task.

KEY TERMS AND CONCEPTS

The key terms and concepts introduced in this chapter are
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Dynamic economic models
a) distributed lag models
b) short-run, or impact, multiplier
c) interim, or intermediate,

multiplier
d) long-run, or total, multiplier

Estimating distributed lag models
a) lagged values
b) the Koyck model
c) the adaptive expectations model
d) the partial, or stock, adjustment

model
e) autoregressive model

Spurious regression

Stationary time series
Unit root test
Dickey-Fuller (DF) test (or tau test)
Cointegration
Random walk model
Random walk model with drift
Stochastic trend
Deterministic trend
Logit model and probit model

a) Logistic distribution function
b) odds ratio
c) method of maximum 

likelihood (ML)

QUESTIONS

12.1. Explain the meaning of the following terms:
a. Dynamic models
b. Distributed lag models
c. Autoregressive models

12.2. What are the reasons for the lag in the response of the dependent variable to
one or more explanatory variables? Give some examples of distributed lag
models.



12.3. What is wrong with the strategy of determining the number of lagged terms
in a distributed lag model sequentially, that is, adding each successive lagged
term if the t value of an added lagged term is statistically significant? In other
words, you go on adding a lagged term as long as the t value of the added
lagged term is statistically significant on the basis of the t test.

12.4. Since the successive lagged terms in a distributed lag model are likely to be
collinear, in such models we should not worry about the statistical signifi-
cance of any individual lagged coefficient but should consider the statistical
significance of the sum of the lagged coefficients as a whole. Comment on
this statement.

12.5. Although the logit and probit models may be superior to the LPM model, in
practice, we should choose the LPM model because of its simplicity per
Occam’s razor principle. Do you agree with this statement? Why or why not?

12.6. True or false: The greater the value of the logit, the greater the probability that
the particular event will occur.

12.7. What is the connection between cointegration and spurious regression?

PROBLEMS

12.8. Table 12-6 (on the textbook’s Web site) gives data on personal consumption
expenditure (PCE) and personal disposable income (PDI) for the United
States for 1970 to 2007; all figures are in billions of dollars.
Estimate the following models:

PCEt = A1 + A2PDIt + ut

PCEt = B1 + B2PDIt + B3PCEt−1 + vt

a. Interpret the results of the two regressions.
b. What is the short- and long-run marginal propensity to consume (MPC)?

12.9. Use the data in Problem 12.8, but now consider the following models:

ln PCEt = A1 + A2 ln PDIt + ut

ln PCEt = B1 + B2 ln PDIt + B3 ln PCEt−1 + vt

where ln = the natural log.
a. Interpret these regressions.
b. What is the short- and long-run elasticity of PCE with respect to PDI?

12.10. To assess the impact of capacity utilization on inflation, Thomas A. Gittings25

obtained the following regression for the United States for the period 1971
to 1988:

= −30.12 + 0.1408Xt + 0.2360Xt−1

t = (−6.27) (2.60) (4.26) R2
= 0.727

where Y = GNP implicit deflator, % (a measure of the inflation rate)
Xt = Capacity utilization rate in manufacturing, %

Xt−1 = Capacity utilization rate lagged over one year

Y
N

t
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a. Interpret the preceding regression. A priori, why is there a positive rela-
tionship between inflation and capacity utilization?

b. What is the short-run impact of capacity utilization on inflation? And the
long-run impact?

c. Is each slope coefficient individually statistically significant?
d. Will you reject the hypothesis that both slope coefficients are simultane-

ously equal to zero? Which test should you use?
e. Obtain more recent data and find out if the Gittings analysis still holds. 

12.11. Table 12-7 gives data on the results of spraying rotenone of different concen-
trations on the chrysanthemum aphis in 50 batches. Develop a suitable
model to express the probability of death as a function of the log of X, the log
of dosage, and comment on the results.

12.12. From the regression (12.36), compute the probability of owning a house for
each income level shown in Table 12-3.

12.13. Based on a sample of 20 couples, Barbara Bund Jackson26 obtained the
following regression. (Note: The author did not present standard errors.)

where P = the probability of restaurant usage, = 1 if went to a restaurant,
0 otherwise

Income = the income in thousands of dollars
Babysitter = 1 if needed a babysitter

0 if otherwise
Of the 20 couples, 11 regularly went to a restaurant, 6 regularly used a
babysitter, and the income ranged from a low of $17,000 to a high of $44,000.
a. Interpret the preceding logit regression.
b. Find out the logit value of a couple with an income of $44,000 who needed

a babysitter.
c. For the same couple, find out the probability of going to a restaurant.

ln 
Pi

1 - Pi
= - 9.456 + 0.3638 incomei - 1.107 babysitteri

L

DATA FOR PROBLEM 12.11.

Concentration
(mg per liter) Total Deaths

X log(X) Ni ni

2.6 0.4150 50 6 0.120
3.8 0.5797 48 16 0.333
5.1 0.7076 46 24 0.522
7.7 0.8865 49 42 0.857

10.2 1.0086 50 44 0.880

Note: The log is a common log, that is, log to base 10.
Source: D. J. Finney, Probit Analysis, Cambridge University Press,

London, 1964.

Pi =
ni

Ni

TABLE 12-7

26See Barbara Bund Jackson, Multivariate Data Analysis: An Introduction, Irwin, 1983, p. 92.



12.14. Refer to the data given in Table 12-2 (found on the textbook’s Web site).
a. Plot the data on profits and dividends and visually examine if the two

time series are stationary.
b. Apply the unit root test to the two series individually and determine if the

two series are stationary.
c. If the profits and dividends series are not stationary and if you regress div-

idends on profits, would the resulting regression be spurious? Why or
why not? How do you decide? Show the necessary calculations.

d. Take the first differences of the two time series and determine if the first
difference time series are stationary.

12.15. Monte Carlo experiment. Consider the following random walk model:

Yt = Yt−1 + ut

Assume that Y0 = 0 and ut are normally and independently distributed with
zero mean and variance of 9. Generate 100 values of ut, and, using these val-
ues, generate 100 values of Yt. Plot the Y values thus obtained. What can you
say about the resulting graph?

12.16. Monte Carlo experiment. Now assume the following model:

Yt = 4 + Yt−1 + ut

where Y0= 0 and ut are as stated in Problem 12.15. Repeat the procedure out-
lined in Problem 12.15. How does this experiment differ from the preceding
one?

12.17. Refer to the data in Table 6.10 (found on the textbook’s Web site). Since the
data given in this table are at the individual level, if you want to fit a logit
model to these data, you will have to use the maximum likelihood method to
estimate the parameters. Using a package, such as EViews or MINITAB, esti-
mate the logit model and comment on your results.

12.18. Table 12.8 (on the textbook’s Web site) gives data on the dependent variable,
the final grade on the intermediate macroeconomics examination (Y), such
that Y = 1 if the final grade is an A and Y= 0 if the final grade is a B or C, and
explanatory variables GPA= the entering grade-point average, TUCE = the
score on an examination given at the beginning of the term to test macroeco-
nomics knowledge of entering students, and PSI = 1 if the new method of
personalized system of instructions is used and 0 if otherwise. These data
pertain to 32 students. The primary objective of this study was to assess the
effectiveness of PSI on the final grade.
a. Estimate a linear probability model for the data given in Table 12-8.
b. Using any computer software package (e.g., MINITAB, EViews, SHAZAM,

etc.), estimate a logit model for the same data.
c. Compare and comment on the results obtained in parts (a) and (b).

12.19. Obtain monthly data on the exchange rate between the U.S. dollar and the
British pound for 1980 to 2007 and find out if this exchange rate follows a ran-
dom walk. If it does, what are the implications for forecasting the U.S./U.K.
exchange rate?

12.20. On the textbook’s Web site, Table 12-9 contains data on the daily U.S./EU ex-
change rate from 2004 to 2008.
a. Create a scatterplot of the rates over time. What pattern do you see?

400 PART THREE: ADVANCED TOPICS IN ECONOMETRICS



b. Now take the first differences of the data and create a new plot. Based on
this graph, do you think the original series is stationary?

c. Regress the differenced exchange rate on a (one-period) lagged version of
the exchange rate as follows:

Based on this model, do you think the original series is a random walk?
d. Now introduce a constant to the model:

Do the results here indicate that Yt is a random walk with drift?
e. Lastly, estimate the model using a drift parameter and a trend variable:

f. What do all these results indicate about the stationarity of Yt?
12.21. Table 12-10 on the textbook’s Web site gives data for 2000 women regarding

work (1 = a woman works, 0 = otherwise), age, marital status (1 = married,
0 = otherwise), number of children, and education (number of years of
schooling). Out of a total of 2000 women, 657 were recorded as not being
wage earners.
a. Using these data, estimate a logit model.
b. What are the marginal effects of each variable? Are all of the variables sta-

tistically significant?
12.22. Download the data set Benign, which is Table 12-11 on the textbook’s Web

site. The variable cancer is a dummy variable, where 1 = had breast cancer
and 0 = did not have breast cancer.27 Using the variables age (age of sub-
ject), HIGH (highest grade completed in school), CHK (= 0 if the subject did
not undergo regular medical checkups and = 1 if the subject did undergo
regular checkups), AGPI (age at first pregnancy), miscarriages (number of
miscarriages), and weight (weight of subject), perform a logistic regression to
conclude if these variables are statistically useful for predicting whether a
woman will contract breast cancer or not.

¢Yt = A1 + A2t + A3Yt- 1 + ut

¢Yt = A1 + A2Yt- 1 + ut

¢Yt = AYt- 1 + ut
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Appendixes A, B, C, and D review the essentials of statistical theory that are
needed to understand econometric theory and practice discussed in the main
text of the book.

Appendix A discusses the fundamental concepts of probability, probability
distributions, and random variables.

Appendix B discusses the characteristics of probability distributions such as
the expected value, variance, covariance, correlation, conditional expectation,
conditional variance, skewness, and kurtosis. This appendix shows how these
characteristics are measured in practice.

Appendix C discusses four important probability distributions that are used
extensively in practice: (1) the normal distribution, (2) the t distribution, (3) the
chi-square distribution, and (4) the F distribution. In this appendix the main
features of these distributions are outlined. With several examples, this appen-
dix shows how these four probability distributions form the foundation of most
statistical theory and practice.

Appendix D is devoted to a discussion of the two branches of classical
statistics—estimation and hypothesis testing. A firm understanding of these
two topics will make our study of econometrics in the main part of the text
considerably easier.

These four appendixes are written in a very informal yet informative style so
readers can brush up on their knowledge of elementary statistics. Since stu-
dents coming to econometrics may have different statistics backgrounds, these
four appendixes provide a fairly self-contained introduction to the subject.

All the concepts introduced in these appendixes are well illustrated with sev-
eral practical examples.

INTRODUCTION TO APPENDIXES A, B, C, AND D

BASICS OF PROBABILITY
AND STATISTICS
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APPENDIX A
REVIEW OF STATISTICS:

PROBABILITY AND
PROBABILITY

DISTRIBUTIONS

The purpose of this and the following three appendixes is to review some
fundamental statistical concepts that are needed to understand Essentials of
Econometrics. These four appendixes will serve as a refresher course for those
students who have had a basic course in statistics and will provide a unified
framework for following discussions of the material in the main parts of this
book for those whose knowledge of statistics has become somewhat rusty.
Students who have had very little statistics should supplement these four
appendixes with a good statistics book. (Some references are given at the end of
this appendix.) Note that the discussion in Appendixes A through D is nonrig-
orous and is by no means a substitute for a basic course in statistics. It is simply
an overview that is intended as a bridge to econometrics.

A.1 SOME NOTATION

In this appendix we come across several mathematical expressions that often
can be expressed more conveniently in shorthand forms.

The Summation Notation

The Greek capital letter (sigma) is used to indicate summation or addition.
Thus,

where i is the index of summation and the expression on the left-hand side is the
shorthand for “take the sum of the variable X from the first value (i = 1) to the

a
i=n

i=1
Xi = X1 + X2 + Á + Xn

©



nth value (i = n)”; Xi stands for the ith value of the X variable. 

is often abbreviated as

where the upper and lower limits of the sum are known or can be easily deter-
mined or also expressed as

which simply means take the sum of all the relevant values of X. We will use all
these notations interchangeably.

Properties of the Summation Operator

Some important properties of are as follows:

1. Where k is a constant

That is, a constant summed n times is n times that constant. Thus,

In this example n = 4 and k = 3.
2. Where k is a constant

That is, a constant can be pulled out of the summation sign and put in
front of it.

3.

That is, the summation of the sum of two variables is the sum of their in-
dividual summations.

4.

where a and b are constants and where use is made of properties 1, 2, and 3.

We will make extensive use of the summation notation in the remainder of
this appendix and in the main parts of the book.

We now discuss several important concepts from probability theory.

a (a + bXi) = na + ba  Xi

a (Xi + Yi) = a  
Xi + a  

Yi

a  k Xi = ka  Xi

a
4

i=1
 3 = 4 * 3 = 12

a
n

i=1

 k = nk

©

a
X

 X

a  Xi

a
i=n

i=1
 Xi (or a

n

i=1

 Xi)
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A.2 EXPERIMENT, SAMPLE SPACE, SAMPLE POINT, AND EVENTS

Experiment

The first important concept is that of a statistical or random experiment. In sta-
tistics this term generally refers to any process of observation or measurement
that has more than one possible outcome and for which there is uncertainty
about which outcome will actually materialize. 

Example A.1.

Tossing a coin, throwing a pair of dice, and drawing a card from a deck of
cards are all experiments. Although it may seem completely different, the
sales of Coca-Cola in a future quarter can also be considered an experiment
since we don’t know the outcome. Also, there are several possible values
that could occur. It is implicitly assumed that in performing these experi-
ments certain conditions are fulfilled, for example, that the coin or the dice
are fair (not loaded). The outcomes of such experiments could be a head or
a tail if a coin is tossed or any one of the numbers 1, 2, 3, 4, 5, or 6 if a die is
thrown. The Coca-Cola sales figure could be any one of a seemingly infinite
number of possibilities, depending on many factors. Note that the out-
comes are unknown before the experiment is performed. The objectives of
such experiments may be to establish a law (e.g., How many heads are you
likely to obtain in a toss of, say, 1000 coins?) or to test the proposition that
the coin is loaded (e.g., Would you regard a coin as being loaded if you
obtained 70 heads in 100 tosses of a coin?).

Sample Space or Population

The set of all possible outcomes of an experiment is called the population or
sample space. The concept of sample space was first introduced by von Mises,
an Austrian mathematician and engineer, in 1931. 

Example A.2.

Consider the experiment of tossing two fair coins. Let H denote a head and
T a tail. Then we have these outcomes: HH, HT, TH, TT, where HH means a
head on the first toss and a head on the second toss, HT means a head on the
first toss and a tail on the second toss, etc.

In this example the totality of the outcomes, or sample space or popula-
tion, is 4—no other outcomes are logically possible. (Don’t worry about the
coin landing on its edge.)

Example A.3.

The New York Mets are scheduled to play a doubleheader. Let O1 indicate the
outcome that they win both games, O2 that they win the first game but lose the
second, O3 that they lose the first game but win the second, and O4 that they lose
both games. Here the sample space consists of four outcomes: O1, O2, O3, and O4.
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Sample Point

Each member, or outcome, of the sample space or population is called a sample
point. In Example A.2 each outcome, HH, HT, TH, and TT, is a sample point. In
Example A.3 each outcome, O1, O2, O3, and O4, is a sample point.

Events

An event is a particular collection of outcomes and is thus a subset of the sam-
ple space.

Example A.4. 

Let event A be the occurrence of one head and one tail in the coin-tossing
experiment. From Example A.2 we see that only outcomes HT and TH belong
to event A. (Note: HT and TH are a subset of the sample space HH, HT, TH,
and TT). Let B be the event that two heads occur in a toss of two coins. Then,
obviously, only the outcome HH belongs to event B. (Again, note that HH is
a subset of the sample space HH, HT, TH, and TT.)

Events are said to be mutually exclusive if the occurrence of one event pre-
vents the occurrence of another event at the same time. In Example A.3, if O1

occurs, that is, the Mets win both the games, it rules out the occurrence of any of
the other three outcomes. Two events are said to be equally likely if we are confi-
dent that one event is as likely to occur as the other event. In a single toss of a coin
a head is as likely to appear as a tail. Events are said to be collectively exhaustive
if they exhaust all possible outcomes of an experiment. In our coin-tossing exam-
ple, since HH, HT, TH, and TT are the only possible outcomes, they are (collec-
tively) exhaustive events. Likewise, in the Mets example, O1, O2, O3, and O4 are
the only possible outcomes, barring, of course, rain or natural calamities such as
the earthquake that occurred during the 1989 World Series in San Francisco.

Venn Diagrams

A simple graphic device, called the Venn diagram, originally introduced by
Venn in his book, Symbolic Logic, published in 1881, can be used to depict sam-
ple point, sample space, events, and related concepts, as shown in Figure A-1.
In this figure each rectangle represents the sample space S and the two circles rep-
resent two events A and B. If there are more events, we can draw more circles to
represent all those events. The various subfigures in this diagram depict various
situations. 

Figure A-1(a) shows outcomes that belong to A and the outcomes that do not
belong to A, which are denoted by the symbol , which is called the complement
of A.

Figure A-1(b) shows the union (i.e., sum) of A and B, that is the event whose
outcomes belong to set A or set B. Using set theory notation, it is often denoted
as (read as A union B), which is the equivalent of A + B. A ´ B

A¿
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The shaded area in Figure A-1(c) denotes events whose outcomes belong to
both set A and set B, which is represented as (read as A intersects B), and
is the equivalent of the product AB. 

Finally, Figure A-1(d) shows that the two events are mutually exclusive be-
cause they have no outcomes in common. In set notation, this means 
(or that AB = 0). 

A.3 RANDOM VARIABLES

Although the outcome(s) of an experiment can be described verbally, such as a
head or a tail, or the ace of spades, it would be much simpler if the results of all
experiments could be described numerically, that is, in terms of numbers. As we
will see later, for statistical purposes such representation is very useful.

Example A.5.

Reconsider Example A.2. Instead of describing the outcomes of the experi-
ment by HH, HT, TH, and TT, consider the “variable” number of heads in a
toss of two coins. We have the following situation:

First coin Second coin Number of heads

T T 0

T H 1

H T 1

H H 2

A ¨ B = 0

A ¨ B
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We call the variable “number of heads” a stochastic or random variable (r.v.,
for short). More generally, a variable whose (numerical) value is determined by the
outcome of an experiment is called a random variable. In the preceding example the
r.v., number of heads, takes three different values, 0, 1, or 2, depending on
whether no heads, one head, or two heads were obtained in a toss of two coins.
In the Mets example the r.v., the number of wins, likewise takes three different
values, 0, 1, or 2.

By convention, random variables are denoted by capital letters, X, Y, Z, etc.,
and the values taken by these variables are often denoted by small letters. Thus,
if X is an r.v., x denotes a particular value taken by X.

An r.v. may be either discrete or continuous. A discrete random variable
takes on only a finite number of values or countably infinite number of values
(i.e., as many values as there are whole numbers). Thus, the number of heads in
a toss of two coins can take on only three values, 0, 1, or 2. Hence, it is a discrete
r.v. Similarly, the number of wins in a doubleheader is also a discrete r.v. since it
can take only three values, 0, 1, or 2 wins. A continuous random variable, on
the other hand, is an r.v. that can take on any value in some interval of values.
Thus, the height of an individual is a continuous variable—in the range of, say,
60 to 72 inches it can take any value, depending on the precision of measure-
ment. Similar factors such as weight, rainfall, or temperature also can be re-
garded as continuous random variables.

A.4 PROBABILITY

Having defined experiment, sample space, sample points, events, and random
variables, we now consider the important concept of probability. First, we define
the concept of probability of an event and then extend it to random variables.

Probability of an Event:The Classical or A Priori Definition

If an experiment can result in n mutually exclusive and equally likely outcomes,
and if m of these outcomes are favorable to event A, then P(A), the probability
that A occurs, is the ratio m/n. That is,

(A.1)

Note the two features of this definition: The outcomes must be mutually exclusive
(that is, they cannot occur at the same time), and each outcome must have an
equal chance of occurring (for example, in a throw of a die, any one of the six numbers
has an equal chance of appearing).

Example A.6.

In a throw of a die numbered 1 through 6, there are six possible outcomes: 1,
2, 3, 4, 5, or 6. These outcomes are mutually exclusive since, in a single throw

P(A) =
number of outcomes favorable to A

total number of outocmes
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of the die, two or more numbers cannot turn up simultaneously. These six
outcomes are also equally likely. Hence, by the classical definition, the prob-
ability that any of these six numbers will show up is 1/6—there are six total
outcomes and each outcome has an equal chance of occurring. Here n = 6 and
m = 1.

Similarly, the probability of obtaining a head in a single toss of a coin is 1/2
since there are two possible outcomes, H and T, and each has an equal chance of
coming up. Likewise, in a deck of 52 cards, the probability of drawing any sin-
gle card is 1/52. (Why?) The probability of drawing a spade, however, is 13/52.
(Why?)

The preceding examples show why the classical definition is called an a pri-
ori definition since the probabilities are derived from purely deductive reason-
ing, or simply by the structure of the event. One doesn’t have to throw a coin to
state that the probability of obtaining a head or a tail is 1/2, since logically, these
are the only possible outcomes.

But the classical definition has some deficiencies. What happens if the out-
comes of an experiment are not finite or are not equally likely? What, for exam-
ple, is the probability that the gross domestic product (GDP) next year will be a
certain amount or what is the probability that there will be a recession next
year? The classical definition is not equipped to answer these questions. A more
widely used definition that can handle such cases is the relative frequency def-
inition of probability, which we will now discuss.

Relative Frequency or Empirical Definition of Probability

To introduce this concept of probability, consider the following example.

Example A.7.

Table A-1 gives the distribution of marks received by 200 students on a mi-
croeconomics examination. Table A-1 is an example of a frequency distribu-
tion showing how the r.v. marks in the present example are distributed. The
numbers in column 3 of the table are called absolute frequencies, that is, the
number of occurrences of a given event. The numbers in column 4 are called
relative frequencies, that is, the absolute frequencies divided by the total
number of occurrences (200 in the present case). Thus, the absolute frequency
of marks between 70 and 79 is 45 but the relative frequency is 0.225, which is
45 divided by 200.

Can we treat the relative frequencies as probabilities? Intuitively, it seems
reasonable to consider the relative frequencies as probabilities provided the
number of observations on which the relative frequencies are based is reason-
ably large. This is the essence of the empirical, or relative frequency, definition of
probability.

APPENDIX A: REVIEW OF STATISTICS: PROBABILITY AND PROBABILITY DISTRIBUTIONS 411



More formally, if in n trials (or observations), m of them are favorable to
event A, then P(A), the probability of event A, is simply the ratio m/n (i.e., the
relative frequency) provided n, the number of trials, is sufficiently large (technically,
infinite).1 Notice that, unlike the classical definition, we do not have to insist
that the outcome be mutually exclusive and equally likely.

In short, if the number of trials is sufficiently large, we can treat the relative
frequencies as fairly good measures of true probabilities. In Table A-1 we can,
therefore, treat the relative frequencies given in column 4 as probabilities.2

Properties of Probabilities The probability of an event as defined earlier
has the following important properties:

1. The probability of an event always lies between 0 and 1. Thus, the prob-
ability of event A, P(A), satisfies this relationship:

(A.2)

P(A) = 0 means event A will not occur, whereas P(A) = 1 means event A will
occur with certainty. Typically, the probability will lie somewhere between
these numbers, as in the case of the probabilities shown in Table A-1.

0 … P(A) … 1
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THE DISTRIBUTION OF MARKS RECEIVED BY 200

STUDENTS ON A MICROECONOMICS EXAMINATION

Midpoint of Absolute Relative
Marks interval frequency frequency
(1) (2) (3) (4) = (3)/200

0–9 5 0 0

10–19 15 0 0

20–29 25 0 0

30–39 35 10 0.050

40–49 45 20 0.100

50–59 55 35 0.175

60–69 65 50 0.250

70–79 75 45 0.225

80–89 85 30 0.150

90–99 95 10 0.050

Total 200 1.000

TABLE A-1

1What constitutes a large or small number depends on the context of the problem. Sometimes a
number as small as 30 can be regarded as reasonably large. In presidential elections in the United
States, election polls based on a sample of about 800 people are fairly accurate in predicting the final
outcome, although the actual number of voters runs into the millions.

2There is yet another definition of probability, called subjective probability, which is the founda-
tion of Bayesian statistics, that is a rival to classical statistics. Under the subjective or “degrees of
belief” definition of probability we can ask questions such as: What is the probability that Iraq will
have a democratic government? What is the probability that the Chicago Cubs will win the World
Series next year? Or what is the probability that there will be a stock market crash in the year 2010?



2. If A, B, C, . . . are mutually exclusive events, the probability that any one of
them will occur is equal to the sum of the probabilities of their individ-
ual occurrences. Symbolically,

(A.3)

where the expression on the left-hand side of the equality means the
probability of A or B or C, etc.3

3. If A, B, C, . . . are mutually exclusive and collectively exhaustive sets of
events, the sum of the probabilities of their individual occurrences is 1.
Symbolically,

(A.4)

Example A.8. 

In Example A.6 we saw that the probability of obtaining any of the six num-
bers on a die is 1/6 since there are six equally likely outcomes, and each one
of them has an equal chance of turning up. Since the numbers 1, 2, 3, 4, 5,
and 6 form an exhaustive set of events, P(1 + 2 + 3 + 4 + 5 + 6) = 1, where 1, 2,
3, . . . means the probability of number 1 or number 2 or number 3, etc. And
since 1, 2, . . . 6 are mutually exclusive events in that two numbers cannot
occur simultaneously in a throw of a single die, P(1 + 2 + 3 + 4 + 5 + 6) = P(1) +

P(2) + · · · + P(6) = 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 1.

In passing, note the following rules of probability that will come in handy
later on.

1. If A, B, C, . . . are any events, they are said to be statistically independent if
the probability of their occurring together is equal to the product of their
individual probabilities. Symbolically,

(A.5)

where P(ABC ) means the probability of events ABC occurring si-
multaneously or jointly.4 Hence, it is called a joint probability. In relation
to the joint probability P(ABC ), P(A), P(B), etc. are called unconditional,
marginal, or individual probabilities, for reasons that will become clear in
Section A.6.

Example A.9.

Suppose we throw two coins simultaneously. What is the probability of ob-
taining a head on the first coin and a head on the second coin? Let A denote
the event of obtaining a head on the first coin and B on the second coin. We

Á

ÁÁ

P(ABC Á ) = P(A) P(B) P(C) Á

P(A + B + C + Á ) = P(A) + P(B) + P(C) + Á = 1

P(A + B + C + Á ) = P(A) + P(B) + P(C) + Á
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3In set theory notation, this would be written as .
4In set theory notation, this would be written as .P(A x  B x   C. . . .)

P(A h  B h  C. . . .)



therefore want to find the probability P(AB). Common sense would suggest
that the probability of obtaining a head on the first coin is independent of the
probability of obtaining a head on the second coin. Hence, P(AB) = P(A)P(B) =

(1/2) (1/2) = 1/4 since the probability of obtaining a head (or a tail) is 1/2.

2. If events A, B, C, . . . are not mutually exclusive, Eq. (A.3) needs to be mod-
ified. Thus, if events A and B are not mutually exclusive, we have

(A.6)

where P(AB) is the joint probability that the two events occur together
(see Fig. A-1[c]).5 Of course, if A and B are mutually exclusive, P(AB) = 0
(Why?), and we are back to Eq. (A.3). Equation (A.6) can be easily gener-
alized to more than two events.

3. For every event A there is an event , called the complement of A, with
these properties:
a. , and
b.

These properties can be easily verified from Fig. A-1(a).

Example A.10. 

A card is drawn from a deck of cards. What is the probability that it will be
either a heart or a queen? Clearly a heart and a queen are not mutually ex-
clusive events, for one of the four queens is a heart. Hence,

P (a heart or a queen) = P(heart) + P(queen) - P(heart and queen)

= 13/52 + 4/52 - 1/52

= 4/13

Let A and B be two events. Let us suppose we want to find out the probabil-
ity that the event A occurs knowing that the event B has already occurred. This
probability, called the conditional probability of A, conditional on event B occur-
ring, and denoted by the symbol , is computed from the formula

(A.7)

That is, the conditional probability of A, given B, is equal to the ratio of their
joint probability to the marginal probability of B. In like manner,

(A.8)P(B|A) =
P(AB)

P(A)
;  P(A) 7 0

P(A|B) =
P(AB)

P(B)
;  P(B) 7 0

P(A|B)

P(AA¿) = 0
P(A + A¿) = 1

A¿

P(A + B) = P(A) + P(B) - P(AB)
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5To avoid the shaded area in Fig. A-1(c) being counted twice, we have to subtract P(AB) on the
right-hand side of this equation.



To visualize Eq. (A.7), we can resort to a Venn diagram, as shown in Fig-
ure A-1(c). As you can see from this figure, regions 2 and 3 represent event B
and regions 1 and 2 represent event A. Because region 2 is common to both
events, and since B has occurred, if we divide the area of region 2 by the sum of
the areas of regions 2 and 3, we will get the (conditional) probability that event
A has occurred, knowing that B has occurred. Simply put, the conditional prob-
ability is the fraction of the time that event A occurs when event B has occurred. 

Example A.11.

In an introductory accounting class there are 500 students, of which 300 are
males and 200 are females. Of these, 100 males and 60 females plan to major
in accounting. A student is selected at random from this class, and it is found
that this student plans to be an accounting major. What is the probability that
the student is a male?

Let A denote the event that the student is a male and B that the student is
an accounting major. Therefore, we want to find out . From the for-
mula of conditional probability just given, this probability can be obtained as

From the data given previously, it can be readily seen that P(A) = 300/500 =
0.6; that is, the unconditional probability of selecting a male student is 0.6,
which is different from the preceding probability 0.625.

This example brings out an important point, namely, conditional and uncondi-
tional probabilities in general are different. However, if the two events are indepen-
dent, then we can see from Eq. (A.7) that

(A.9)

Note that when the two events are independent, as
noted earlier. In this case, the conditional probability of A given B is the same
as the unconditional probability of A. In this case it does not matter if B occurs
or not.

An interesting application of conditional probability is contained in the
famous Bayes’ Theorem, which was originally propounded by Thomas Bayes,
a nonconformist minister in Turnbridge Wells, England (1701–1761). This theo-
rem, published after Bayes’ death, led to the so-called Bayesian School of
Statistics, a rival to the school of classical statistics, which still predominates

P(AB) = P(A)P(B)

P(A|B) =
P(AB)

P(B)
=

P(A)P(B)

P(B)
= P(A)

 = 0.625

 =
100/500

160/500

P(A|B) =
P(AB)

P(B)

P(A|B)
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statistics teaching in most universities in the world. The knowledge that an event
B has occurred can be used to revise or update the probability that an event A
has occurred. This is the essence of Bayes’ Theorem.

To explain this theorem, let A and B be two events, each with a positive prob-
ability. Bayes’ Theorem then states that:6

(A.10)

where , called the complement of A, means the event A does not occur. 
In words, Bayes’ Theorem shows how conditional probabilities of the form

may be combined with initial probability of A (i.e., P[A]) to obtain the
final probability . Notice how the roles of conditioning event (B) and
outcome event (A) have been interchanged. The following example will show
how Bayes’ Theorem works. 

Example A.12. Bayes’ Theorem

Suppose a woman has two coins in her handbag. One is a fair coin and one is
two-headed. She takes a coin at random from her handbag and tosses it.
Suppose a head shows up. What is the probability that the coin she tossed
was two-headed?

Let A be the event that the coin is two-headed and the event that the
coin is fair. The probability of selecting either of these coins is P(A) = P( ) =
1/2. Let B be the event that a head turns up. If the coin has two heads, B is
certain to occur. Hence, . But if the coin is fair, .
Therefore by Bayes’ Theorem we obtain

Notice the particular feature of this theorem. Before the coin was tossed, the
probability of selecting a regular or two-headed coin was the same, namely, 0.5.
But knowing that a head was actually observed, the probability that the coin
selected was two-headed is revised upwards to about 0.66.

In Bayesian language, P(A) is called the prior probability (i.e., before the fact
or evidence) and is called the revised or posterior probability (after the
fact or evidence). The knowledge that B has occurred leads us to reassess or
revise the (prior) probability assigned to A.

P(A|B)

P(A|B) =
P(B|A)P(A)

P(B)
=

(1)(0.5)

0.75
=

2

3
L 0.66

P(B|A¿) = 0.5(B|A) = 1

A¿

A¿

P(A|B)
P(B|A)

A¿

P(A|B) =
P(B|A)P(A)

P(B|A)P(A) + P(B|A¿)P(A¿)
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6If the sample space is partitioned into A (event A occurs) and (event A does not occur), then
for any event B, it is true that ; that is, the probability that B occurs is the
sum of the common outcomes between B and each partition of A. This result can be generalized if
A is partitioned into several segments. This can be seen easily from a Venn diagram.

P(B) = P(BA) + P(BA¿)
A¿



You might see this finding as somewhat puzzling. Intuitively you will think
that this probability should be 1/2. But look at the problem this way. There are
three ways in which heads can come up, and in two of these cases, the hidden
face will also be heads. 

Notice another interesting feature of the theorem. In classical statistics we
assume that the coin is fair when we toss it. In Bayesian statistics we question
that premise or hypothesis. 

Probability of Random Variables

Just as we assigned probabilities to sample outcomes or events of a sample space,
we can assign probabilities to random variables, for as we saw, random variables
are simply numerical representations of the outcomes of the sample space, as
shown in Example A.5. In this textbook we are largely concerned with random
variables such as GDP, money supply, prices, and wages, and we should know
how to assign probabilities to random variables. Technically, we need to study
the probability distributions of random variables, a topic we will now discuss.

A.5 RANDOM VARIABLES AND THEIR 

PROBABILITY DISTRIBUTIONS 

By probability distribution of a random variable we mean the possible values
taken by that variable and the probabilities of occurrence of those values. To un-
derstand this clearly, we first consider the probability distribution of a discrete
r.v., and then we consider the probability distribution of a continuous r.v., for
there are differences between the two. 

Probability Distribution of a Discrete Random Variable

As noted before, a discrete r.v. takes only a finite (or countably infinite) number
of values. 

Let X be an r.v. with distinct values of x1, x2, . . . . The function f defined by 

(A.11)

is called the probability mass function (PMF) or simply the probability func-
tion (PF), where P(X = xi) means that the probability that the discrete r.v. X takes
the numerical value of xi.

7 Note these properties of the PMF given in Eq. (A.11):

(A.12)

(A.13)a
x

f(xi) = 1

0 … f(xi) … 1

 = 0 if x Z xi

f(X = xi) = P(X = xi) i = 1, 2, . . . ,
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sociated with the mass point xi.

f(X = xi)



where the summation extends over all the values of X. Notice the similarities of
these properties with the properties of probabilities discussed earlier. 

To see what this means, consider the following example.

Example A.13. 

Let the r.v. X represent the number of heads obtained in two tosses of a coin.
Now consider the following table:

Number of heads PF

X f (X )

0 1/4 

1 1/2

2 1/4

Sum 1.00

In this example the r.v. X (the number of heads) takes three different values—
X = 0, 1, or 2. The probability that X takes a value of zero (i.e., no heads are
obtained in a toss of two coins) is 1/4, for of the four possible outcomes of
throwing two coins (i.e., the sample space), only 1 is favorable to the outcome
TT. Likewise, of the four possible outcomes, only one is favorable to the out-
come of two heads; hence, its probability is also 1/4. On the other hand, two
outcomes, HT and TH, are favorable to the outcome of one head; hence, its
probability is 2/4 = 1/2. Notice that in assigning these probabilities we have
used the classical definition of probability.

Geometrically, the PMF of this example is as shown in Figure A-2.
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heads in two tosses of a coin (Example A.13)

FIGURE A-2



Probability Distribution of a Continuous Random Variable

The probability distribution of a continuous random variable is conceptually
similar to the probability distribution of a discrete r.v. except that we now mea-
sure the probability of such an r.v. over a certain range or interval. Instead of
calling it a PMF, we call it a probability density function (PDF). An example
will make the distinction between the two clear.

Let X represent the continuous r.v. height, measured in inches, and suppose
we want to find out the probability that the height of an individual lies in the in-
terval, say, 60 to 68 inches. Further, suppose that the r.v. height has the PDF as
shown in Figure A-3.

The probability that the height of an individual lies in the interval 60 to
68 inches is given by the shaded area lying between 60 and 68 marked on the
curve in Figure A-3. (How this probability is actually measured is shown in
Appendix C.) In passing, note that since a continuous r.v. can take an uncount-
ably infinite number of values, the probability that such an r.v. takes a particu-
lar numerical value (e.g., 63.00 inches) is always zero; the probability for a contin-
uous r.v. is always measured over an interval, say, between 62.5 and 63.5 inches.

More formally, for a continuous r.v. X the probability density function (PDF),
f (X), is such that 

(A.14)

for all , where is the integral symbol of calculus, which is the equiva-
lent of the summation symbol ( ) used for taking the sum of the values of a dis-
crete random variable, and where dx stands for a small interval of x values.

A PDF has the following properties:

1. The total area under the curve f (x) given in Eq. (A.14) is 1, 
2. is the area under the curve between x1 and x2, where

,x2 7 x1

P(x1 6 X 6 x2)

g1x1 6 x2

P(x1 6  X 6 x2) = 3
x2

x1

f(x) dx
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3. since the probability that a continuous r.v. takes a particular value is zero
because probabilities for such a variable are measured over an area or in-
terval, the left-hand side of Eq. (A.14) can be expressed in any of these
forms:

An important example of a continuous PDF is the normal probability den-
sity function, which is discussed in Appendix C. We will use this function
extensively in the later chapters.

Example A.14.

The PDF of a (continuous) r.v. X is given by

What is the probability that ?
To get the answer, we have to evaluate the integral of the preceding PDF

over the stated range. That is,

That is, the probability that x lies between 0 and 1 is 1/27. (Note: The integral
of x2 is (x3/3), which can be checked easily by taking the derivative of the
latter, which is .)

Incidentally, if you evaluate the given PDF over the entire range of 0 to 3,

you will see that , as it should be. (Why?) Of course,

for all x values in the range 0 to 3. 

Cumulative Distribution Function (CDF)

Associated with the PMF or PDF of an r.v. X is its cumulative distribution func-
tion (CDF), F(X), which is defined as follows:

(A.15)

where means the probability that the r.v. X takes a value less than or
equal to x, where x is given. (Of course, for a continuous r.v., the probability that
such an r.v. takes the exact value of x is zero.) Thus, means the proba-
bility that the r.v. X takes a value less than or equal to 2. The following proper-
ties of CDF should be noted:

1. F and , where and are the limits of F(x)
as x tends to and , respectively. 

2. F(x) is a nondecreasing function such that if then .F(x2) Ú  F(x1)x2 7 x1

q- q

F(q )F(- q )F(q ) = 1(- q ) = 0

P(X … 2)

P(X … x)

F(X) = P(X … x)

f(x) Ú  013
0

 x
2

9  dx = 1

d
dx Ax3

3 B = x2

3
1

0

x2

9
 dx =

1

9
 3

1

0

 x2 dx =
1

9
 cx3

3
d1

0
=

1

27

0 6 x 6 1

f(x) =
x2

9
  0 … x … 3

P(x1 … X … x2) = P(x1 6 X … x2) = P(x1 … X 6 x2) = P(x1 6 X 6 x2)
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3. ; that is, the probability that X assumes a value equal
to or greater than k is 1 minus the probability that X takes a value below k.

4. ; that is, the probability that X lies be-
tween values x1 and x2 is the probability that X lies below x2 minus the
probability that X lies below x1, a property that will help us in comput-
ing probabilities in practice.

Example A.15.

What are the PDF and CDF of the r.v. number of heads obtained in four tosses
of a fair coin? These functions are as follows:

PDF CDF

Number of heads Value of PDF Value CDF
(X ) X f(X) of X f (X)

0 0 X 1 1/16 X 0 1/16

1 1 X 2 4/16 X 1 5/16

2 2 X 3 6/16 X 2 11/16

3 3 X 4 4/16 X 3 15/16

4 4 X 1/16 X 4 1

As this example and the definition of CDF suggest, a CDF is merely an
“accumulation” or simply the sum of the PDF for the values of X less than or
equal to a given x. That is,

(A.16)

where means the sum of the PDF for values of X less than or equal to the
specified x, as shown in the preceding table. Thus, in this example the probabil-
ity that X takes the value of less than 2 (heads) is 5/16, but the probability that
it takes a value of less than 3 is 11/16. Of course, the probability that it takes a
value of 4 or less than four heads is 1. (Why?)

Geometrically, the CDF of Example A.15 looks like Figure A-4. Since we are
dealing with a discrete r.v. in Example A.15, its CDF is a discontinuous function,
known as a step function. If we were dealing with the CDF of a continuous r.v.,
its CDF would be a continuous curve, as shown in Figure A-5.8

Example A.16. 

Referring to Example A.15, what is the probability that X lies between 2 and
3? Here we want to find F(X = 3) - F(X = 2). From the table given in ExampleA.15

a
x

f(X)

F(X) = a
x

 f(x)

……

…6…

…6…

…6…

…6…

P(x1 … X … x2) = F(x2) - F(x1)

P(X Ú  k) = 1 - F(k)
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8If x is continuous with a PDF of f(x), then and , where is the
derivative of .F(x) =

d
dx F(X)

F¿(x)f(x) = F¿(x)F(x) = 1
x

-q

 f(x) dx



we find that and that . Therefore, the
probability that X lies between 2 and 3 is 4/16 = 1/4.

A.6 MULTIVARIATE PROBABILITY DENSITY FUNCTIONS

So far we have been concerned with single variable, or univariate, probability dis-
tribution functions. Thus, the PMFs of Examples A.5 and A.13 are univariate
PDFs, for we considered single random variables, such as the number of heads
in a toss of two coins or the number of heads in a toss of four coins. However,
we do not need to be so restrictive, for the outcomes of an experiment could be

F(X … 2) = 11/16F(X … 3) = 15/16
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described by more than one r.v., in which case we would like to find their prob-
ability distributions. Such probability distributions are called multivariate prob-
ability distributions. The simplest of these is the bivariate, or a two-variable
PMF or PDF. Let us illustrate with an example.9

Example A.17.

A retail computer store sells personal computers (PCs) as well as printers.
The number of computers and printers sold varies from day to day, but the
store manager obtained the sales history over the past 200 days in the form of
Table A-2.

In this example we have two random variables, X (number of PCs sold) and
Y (number of printers sold). The table shows that of the 200 days, there were
30 days when the store sold 4 PCs and 4 printers, but on 2 days, although it sold
4 PCs, it sold no printers. Other entries in the table are to be interpreted simi-
larly. Table A-2 provides an example of what is known as a joint frequency dis-
tribution; it gives the number of times a combination of values is taken by the
two variables. Thus, in our example the number of times 4 PCs and 4 printers
were sold together is 30. Such a number is called an absolute frequency. All the
numbers shown in Table A-2 are thus absolute frequencies. 

Dividing the absolute frequencies given in the preceding table by 200, we
obtain the relative frequencies, which are shown in Table A-3. 

Since our sample is reasonably large, we can treat these (joint) relative fre-
quencies as measures of joint probabilities, as per the frequency interpretation
of probabilities. Thus, the probability that the store sells three PCs and three
printers is 0.10, or about 10 percent. Other entries in the table are to be inter-
preted similarly. 
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THE FREQUENCY DISTRIBUTION OF TWO RANDOM VARIABLES:

NUMBER OF PCS SOLD (X ) AND NUMBER OF PRINTERS SOLD (Y)

Number of PCs Sold (X)

0 1 2 3 4 Total

Number of Printers Sold (Y ) 

0 6 6 4 4 2 22

1 4 10 12 4 2 32

2 2 4 20 10 10 46

3 2 2 10 20 20 54

4 2 2 2 10 30 46

Total 16 24 48 48 64 200

TABLE A-2

9This example is adapted from Ron C. Mittelhammer, Mathematical Statistics for Economics and
Business, Springer, New York, 1995, p. 107.



Because the two variables are discrete, Table A-3 provides an example of
what is known as bivariate or joint probability mass function (PMF).

More formally, let X and Y be two discrete random variables. Then the function

(A.17)

is known as the joint PMF. This gives the joint probability that X takes the value
of x and Y takes the value of y simultaneously, where x and y are some specific
values of the two variables. Notice the following properties of the joint PMF:

1. for all pairs of X and Y. This is so because all probabilities are
nonnegative.

2. . This follows from the fact that the sum of the probabilities 

associated with all joint outcomes must equal 1. 

Note that we have used the double summation sign because we are now deal-
ing with two variables. If we were to deal with a three-variable joint PMF, we
would be using the triple summation sign, and so on.

The joint probability of two continuous random variables (i.e., joint PDF) can
be defined analogously, although the mathematical expressions are somewhat
involved and are given by way of exercises for the benefit of the more mathe-
matically inclined reader.

The discussion of joint PMF or joint PDF leads to a discussion of some related
concepts, which we will now discuss.

Marginal Probability Functions

We have studied the univariate PFs, such as f (X) or f(Y), and the bivariate, or
joint, PF f (X, Y). Is there any relationship between the two? Yes, there is.

In relation to f (X, Y), f (X) and f(Y) are called univariate, unconditional, in-
dividual, or marginal PMFs or PDFs. More technically, the probability that X

g
x
g
y
f(X, Y) = 1

f(X, Y) Ú  0

 = 0 when X Z x and Y Z y

 f(X, Y) = P(X = x and Y = y)
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THE BIVARIATE PROBABILITY DISTRIBUTION OF NUMBER OF PCS SOLD (X) AND NUMBER

OF PRINTERS SOLD (Y )

Number of PCs Sold (x)

0 1 2 3 4 Total f (Y )

Number of Printers Sold (y)

0 0.03 0.03 0.02 0.02 0.01 0.11

1 0.02 0.05 0.06 0.02 0.01 0.16

2 0.01 0.02 0.10 0.05 0.05 0.23

3 0.01 0.01 0.05 0.10 0.10 0.27

4 0.01 0.01 0.01 0.05 0.15 0.23

Total f (X ) 0.08 0.12 0.24 0.24 0.32 1.00

TABLE A-3



assumes a given value (e.g., 2) regardless of the values taken by Y is called the mar-
ginal probability of X, and the distribution of these probabilities is called the
marginal PMF of X. How do we compute these marginal PMFs or PDFs? That is
easy. In Table A-3 we see from the column totals that the probability that X takes
the value of 1 regardless of the values taken by Y is 0.12; the probability that it
takes the value of 2 regardless of Y’s value is 0.24, and so on. Therefore, the mar-
ginal PMF of X is as shown in Table A-4. Table A-4 also shows the marginal PMF
of Y, which can be derived similarly. Note that the sum of each of the PFs, f(X)
and f(Y), is 1. (Why?)

You will easily note that to obtain the marginal probabilities of X, we sum the
joint probabilities corresponding to the given value of X regardless of the values
taken by Y. That is, we sum down the columns. Likewise, to obtain the marginal
probabilities of Y, we sum the joint probabilities corresponding to the given
value of Y regardless of the values taken by X. That is, we sum across the rows. Once
such marginal probabilities are computed, finding the marginal PMFs is straight-
forward, as we just showed. More formally, if f (X, Y) is the joint PMF of random
variables X and Y, then the marginal PFs of X and Y are obtained as follows:

(A.18)

and

(A.19)

If the two variables are continuous, we will replace the summation symbol
with the integral symbol. For example, if represents a joint PDF, to find
the marginal PDF of X, we will integrate the joint PDF with respect to Y values,
and to find to marginal PDF of Y, we will integrate it with respect to the X val-
ues (see Problem A.20).

Conditional Probability Functions

Continuing with Example A.17, let us now suppose we want to find the proba-
bility that 4 printers were sold, knowing that 4 PCs were sold. In other words,
what is the probability that Y = 4, conditional upon the fact that X = 4? This is
known as conditional probability (recall our earlier discussion of conditional

f(X, Y)

f(Y) = a
x

 f(X, Y) for all Y

f(X) = a
y

 f(X, Y) for all X
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MARGINAL PROBABILITY DISTRIBUTIONS OF X
(NUMBER OF PCS SOLD) AND Y (NUMBER OF

PRINTERS SOLD)

Value of X f(X) Value of Y f(Y)

0 0.08 0 0.11

1 0.12 1 0.16

2 0.24 2 0.23

3 0.24 3 0.27

4 0.32 4 0.23

Sum 1.00 1.00

TABLE A-4



probability of an event). This probability can be obtained from the conditional
probability mass function defined as

(A.20)

where f (Y|X) stands for the conditional PMF of Y; it gives the probability that Y
takes on the value of y (number of printers sold) conditional on the knowledge
that X has assumed the value of x (number of PCs sold). Similarly,

(A.21)

gives the conditional PMF of X.
Note that the preceding two conditional PFs are for two discrete random

variables, Y and X. Hence, they may be called discrete conditional PMFs.
Conditional PDFs for continuous random variables can be defined analogously,
although the mathematical formulas are slightly involved (see Problem A.20).

One simple method of computing the conditional PF is as follows:

(A.22)

(A.23)

In words, the conditional PMF of one variable, given the value of the other variable, is
simply the ratio of the joint probability of the two variables divided by the marginal or
unconditional PF of the other (i.e., the conditioning) variable. (Compare this with the
conditional probability of an event A, given that event B has happened, i.e.,

.)
Returning to our example, we want to find out f (Y = 4|X = 4), which is

(A.24)

From Table A-3 we observe that the marginal, or unconditional, probability
that Y takes a value of 4 is 0.23, but knowing that 4 PCs were sold, the probabil-
ity that 4 printers will be sold increases to . Notice how the knowledgeL 0.47

 =
0.15

0.32
 (from Table A-3)

 = L 0.47

f(Y = 4|X = 4) =
f(Y = 4 and X = 4)

f(X = 4)

P[A|B]

 =
joint probability of X and Y

marginal probability of Y

f(X|Y) =
f(X, Y)

f(Y)

 =
joint probability of X and Y

marginal probability of X

f(Y|X) =
f(X, Y)

f(X)

f(X|Y) = P(X = x|Y = y)

f(Y|X) = P(Y = y|X = x)
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about the other event, the conditioning event, changes our assessment of the
probabilities. This is in the spirit of Bayesian statistics. 

In regression analysis, as we show in Chapter 2, we are interested in studying
the behavior of one variable, say, stock prices, conditional upon the knowledge
of another variable, say, interest rates. Or, we may be interested in studying
the female fertility rate, knowing a woman’s level of education. Therefore, the
knowledge of conditional PMFs or PDFs is very important for the development
of regression analysis.

Statistical Independence

Another concept that is vital for the study of regression analysis is the concept
of independent random variables, which is related to the concept of indepen-
dence of events discussed earlier. We explain this with an example.

Example A.18. 

A bag contains three balls numbered 1, 2, and 3, respectively. Two balls are
drawn at random, with replacement, from the bag (i.e., every time a ball is
drawn it is put back before another is drawn). Let the variable X denote the
number on the first ball drawn and Y the number on the second ball. Table A-5
gives the joint as well as the marginal PMFs of the two variables.

Now consider the probabilities f(X = 1, Y = 1), f(X = 1), and f(Y = 1). As Table A-5
shows, these probabilities are 1/9, 1/3, and 1/3, respectively. Now the first of
these is a joint probability, whereas the last two are marginal probabilities.
However, the joint probability in this case is equal to the product of the two
marginal probabilities. When this happens, we say that the two variables are
statistically independent, that is, the value taken by one variable has no effect
on the value taken by the other variable. More formally, two variables X and Y are
statistically independent if and only if their joint PMF or PDF can be expressed as the
product of their individual, or marginal, PMFs or PDFs for all combinations of X and
Y values. Symbolically,

(A.25)f(X, Y) = f(X) f(Y)
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STATISTICAL INDEPENDENCE OF TWO RANDOM

VARIABLES

X

1 2 3 f(Y)

1 1/9 1/9 1/9 3/9

Y 2 1/9 1/9 1/9 3/9

3 1/9 1/9 1/9 3/9

f(X ) 3/9 3/9 3/9 1

TABLE A-5



You can easily verify that for any other combination of X and Y values given in
Table A-5 the joint PF is the product of the respective marginal PFs; that is, the
two variables are statistically independent. Bear in mind that Equation (A.25)
must be true for all combinations of X and Y values.

Example A.19.

Are the number of PCs sold and the number of printers sold in Example A.17
independent random variables? To determine this, let us apply the definition
of independence given in Eq. (A.25). Let X = 3 (3 computers sold) and Y = 2
(2 printers sold). From Table A-3 we see that f (X = 3, Y = 2) = 0.05; f (X = 3) =
0.24 and f(Y = 2) = 0.23. Obviously, in this case 0.05 (0.24)(0.23). Hence, in
the present case, the number of PCs sold and the number of printers sold are
not independent variables. This may not be surprising, especially for those
who buy a computer for the first time. Sometimes a store may offer a special
discount if a customer buys both.

A.7 SUMMARY AND CONCLUSIONS

In econometrics, mathematical statistics plays a key role. And the foundation of
mathematical statistics is based on probability theory. Therefore, without some
background in probability, we will not be able to appreciate the theory behind
several econometric techniques that we discuss in the main chapters of the book. 

That is why in this appendix we introduced some fundamental concepts of
probability, such as sample space, sample points, events, random variables, and
probability distributions of random variables. Since in econometrics we deal
with relationships between (economic) variables, we have to consider the joint
probability distributions of such variables. This led to a discussion of concepts,
such as joint events and joint variables and their probability distributions, con-
ditional probability distributions, unconditional probability distributions, and
statistical independence. An interesting application of the conditional probabil-
ity distribution is Bayes’ Theorem, which shows how experimental knowledge
can be used to revise probabilities.

All the concepts discussed in this appendix are illustrated with several
examples. You may want to refer to this appendix when these concepts are ad-
dressed in the econometric techniques explained in the main text of the book.

KEY TERMS AND CONCEPTS

The key terms and concepts introduced in this appendix are

Z
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Statistical or random experiment
Population or sample space

a) sample point
b) events—mutually exclusive;

equally likely; collectively 
exhaustive

Venn diagram
Stochastic or random variable

a) discrete random variable
b) continuous random variable

Probability and features of
probability



A priori definition (classical
definition) of probability

Frequency distribution; absolute
frequency; relative frequency

Complement 
Conditional probability of A
Bayes’ Theorem 

Prior probability 
Posterior probability

Probability mass function (PMF) or
probability function (PF), and
probability density function (PDF)

Normal probability density function
PMFs of discrete and PDFs of

continuous random variable

Cumulative distribution function
(CDF)

Step function
Multivariate PDF

a) bivariate or joint PMF and PDF;
joint frequency distribution

b) marginal (or univariate,
unconditional, or individual)
PMF and PDF

c) conditional probability;
conditional PMF

Statistical independence;
independent random variables
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QUESTIONS

A.1. What is the meaning of
a. sample space f. joint PDF
b. sample point g. marginal PDF
c. events h. conditional PDF
d. mutually exclusive events i. statistical independence
e. PMF and PDF



A.2. A and B are two events. Can they be mutually exclusive and independent
simultaneously?

A.3. For every event A, there is the complement of A, denoted by , which means
that A does not occur. Are the following statements true or false?
a. or 
b. or 

A.4. Four economists have predicted the following rates of growth of GDP (%) for
the next quarter:
E1 = below 2%, E2 = 2 or greater than 2% but below 4%, E3 = 4 or greater 
than 4% but less than 6%, and E4 = 6% or more.

Let Ai be the actual rate of % GDP growth rate according to the same four 
classifications as Ei (e.g., A1 = GDP growth rate of less than 2%).
a. Are the events E1 through E4 mutually exclusive? Are they collectively

exhaustive?
b. What is the meaning of the events (1) E1A2 (or ), (2) E3 + A3

(or ), (3) Ei + Ai (or ) where I = 1 through 4, and (4) EiAj

(or ) where ?
A.5. What is the difference between a PDF and a PMF?
A.6. What is the difference between the CDFs of continuous and discrete random

variables?
A.7. By the conditional probability formula, we have

1. and

2.

where means “implies.” If you substitute for P(AB) from the right-hand side
of (2) into the numerator of (1), what do you get? How do you interpret this
result?

PROBLEMS

A.8. What do the following stand for?

a. e.

b. , a is a constant f.

c. g.

d. h.

A.9. Express the following in the notation:
a.
b.

c. Ax2
1 + y2

1 B + Ax2
2 + y2

2 B  +
Á +  Ax2

k + y2
k Bx1 + 2x2 + 3x3 + 4x4 + 5x5

x1 + x2 + x3 + x4 + x5

g
a
3

i=1
(4x2

- 3)a
3

i=1
 a

2

j=1
xiyj

a
10

i=1
2a

2

i=1
(2xi + 3yi)

a
3

i=1
3ia

6

i=2
ayi

a
4

i=1
(i + 4)a

4

i=1
xi-1

:

P(B|A) =
P(AB)

P(A)
 :  P(AB) = P(B|A)P(A)

P(A|B) =
P(AB)

P(B)

i 7 jEi x  Aj

Ei h  AiE3 h  A3

E1 x  A2

P(A x  A¿) = 0P(AA¿)
P(A h  A¿) = 1P(A + A¿)

A¿
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A.10. It can be shown that the sum of the first n positive numbers is:

Use the preceding formula to evaluate

a. b. c.

A.11. It can be proved that the sum of squares of the first n positive numbers is:

Using this formula, obtain

a. b. c. d.

A.12. An r.v. X has the following PDF:

a
10

k=1
4k2a

19

k=11
k2a

20

k=10
k2a

10

k=1
k2

a
n

k=1
k2

=
n(n + 1)(2n + 1)

6

a
100

k=10
3ka

100

k=10
ka

500

k=1
k

a
n

k=1
k =

n(n + 1)

2

APPENDIX A: REVIEW OF STATISTICS: PROBABILITY AND PROBABILITY DISTRIBUTIONS 431

X f(X)

0 b
1 2b
2 3b
3 4b
4 5b

TABLE A-6

X

Y 1 2 3

1 0.03 0.06 0.06

2 0.02 0.04 0.04

3 0.09 0.18 0.18

4 0.06 0.12 0.12

TABLE A-7

a. What is the value of b? Why?
b. Find the ; prob( ); prob( ).

A.13. The following table gives the joint probability distribution, f (X, Y), of two
random variables X and Y.

2 … X … 3X … 3P(X … 2)

a. Find the marginal (i.e., unconditional) distributions of X and Y, namely,
f (X) and f(Y).

b. Find the conditional PDF, f (X|Y) and f(Y|X).
A.14. Of 100 people, 50 are Democrats, 40 are Republicans, and 10 are Indepen-

dents. The percentages of the people in these three categories who read The
Wall Street Journal are known to be 30, 60, and 40 percent, respectively. If one
of these people is observed reading the Journal, what is the probability that he
or she is a Republican?



A.15. Let A denote the event that a person lives in New York City. Let 
Let B denote the event that the person does not live in New York City but
works in the city. Let What is the probability that the person either
lives in the city or does not live in the city but works there?

A.16. Based on a random sample of 500 married women, the following table gives
the joint PMF of their work status in relation to the presence or absence of
children in the household.10

P(B) = 0.4.

P(A) = 0.5.
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10Adapted from Barry R. Chiswick and Stephen J. Chiswick, Statistics and Econometrics: A
Problem Solving Approach, University Park Press, Baltimore, 1975.

CHILDREN AND WORK STATUS OF WOMEN IN THE UNITED STATES

Works outside Does not work 
home outside home Total

Has children 0.2 0.3 0.5
Does not have 

children 0.4 0.1 0.5
Total 0.6 0.4 1.0

TABLE A-8

POVERTY IN THE UNITED STATES, 2007

X

Y Below poverty line Above poverty line

White 0.0546 0.6153
Black 0.0315 0.0969
Hispanic 0.0337 0.1228
Asian 0.0046 0.0406

Source: These data are derived from the U.S. Census Bureau,
Current Population Reports, Poverty in the United States: 2007,
September 2008, Table 1. Although the poverty line varies by several
socioeconomic characteristics, for a family of four in 2007, the
dividing line was about $21,302. Families below this income level can
be classified as poor.

TABLE A-9

a. Are children and working outside of the home mutually exclusive?
b. Are working outside of the home and presence of children independent

events?
A.17. The following table gives the joint probability of X and Y, where X represents

a person’s poverty status (below or above the poverty line as defined by the
U.S. government), and Y represents the person’s race (white, blacks only, and
all Hispanic).

a. Compute , and
where X represents below the poverty line. What general

conclusions can you draw from these computations?
b. Are race and poverty status independent variables? How do you know?

f(X|Y = Asian),
f(X|Y = Hispanic)f(X|Y = white); f(X|Y = black),



A.18. The following table gives joint probabilities relating cell phone usage to stop-
ping properly at intersections. 
a. Compute the probability of failing to stop at an intersection, given the dri-

ver was on the cell phone.
b. Compute the probability of failing to stop at an intersection, given the dri-

ver was not using a cell phone.
c. Compute the probability of stopping properly at an intersection, given the

driver was on the cell phone.
d. Are cell phone usage and failing to stop at intersections independent of

each other? Why or why not?
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Failed to stop Stopped at
at intersection intersection

On cell phone 0.047 0.016
Not using cell phone 0.201 0.736

Source: David L. Strayer and Frank A. Drews, “Multitasking in the
Automobile,” Chapter 9.

TABLE A-10

*A.19. The PDF of a continuous random variable X is as follows:

a. For this to be a proper density function, what must be the value of c?
b. Find 
c. Find 

*A.20. Consider the following joint PDF:

a. Find and 
b. What is the conditional density of X given that where 

*Optional.

0 6 y 6 1?Y = y,
P(y 6 0.5)P(x 7 0.5)

 = 0 otherwise

 f(x, y) =
12

5
 x(2 - x - y); 0 6 x 6 1; 0 6 y 6 1

P(x 7 2)
P(1 6 x 6 2)

 = 0 otherwise

 f(X) = c(4x - 2x2)  0 … x … 2
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APPENDIX B
CHARACTERISTICS 
OF PROBABILITY
DISTRIBUTIONS

Although a PMF (PDF) indicates the values taken by a random variable (r.v.)
and their associated probabilities, often we are not interested in the entire PMF.
Thus, in the PMF of Example A.13 we may not want the individual probabilities
of obtaining no heads, one head, or two heads. Rather, we may wish to find out
the average number of heads obtained when tossing a coin several times. In other
words, we may be interested in some summary characteristics, or more techni-
cally, the moments of a probability distribution. Two of the most commonly
used summary measures or moments are the expected value (called the first
moment of the probability distribution) and the variance (called the second moment
of the probability distribution). On occasion, we will need higher moments of
probability distributions, which we will discuss as we progress.

B.1 EXPECTED VALUE: A MEASURE OF CENTRAL TENDENCY

The expected value of a discrete r.v. X, denoted by the symbol E(X) (read as E
of X), is defined as follows:

(B.1)

where f(X) is the PMF of X and where means the sum over all values of X.1

Verbally, the expected value of a random variable is the weighted average of its
possible values, with the probabilities of these values [i.e., f(X)] serving as the
weights. Equivalently, it is the sum of products of the values taken by the r.v. and their
corresponding probabilities. The expected value of an r.v. is also known as its average

gX

E(X) = a
X

xf(X)

1The expected value of a continuous r.v. is defined similarly, with the summation symbol being re-
placed by the integral symbol. That is: where the integral is over all the values of X.E(X) = 1xf(x) dx,
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or mean value, although, more correctly, it is called the population mean value
for reasons to be discussed shortly.

Example B.1.

Suppose we roll a die numbered 1 through 6 several times. What is the
expected value of the number shown? As given previously (see Example A.6),
we have the situation shown in Table B-1.

Applying the definition of the expected value given in Eq. (B.1), we see
that the expected value is 3.5.

Is it strange that we obtained this value, since the r.v. here is discrete and can
take only one of the six values 1 through 6? The expected, or average, value of
3.5 in this example means that if we were to roll the die several times, then on
the average, we would obtain the number 3.5, which is between 3 and 4. If, in a
contest, someone were to give you as many dollars as the number shown on the
die, then in several rolls of the die you would anticipate receiving on the aver-
age $3.50 per roll of the die.

Geometrically, the expected value of the preceding example is shown in
Figure B-1.

Example B.2.

In the PC/printer sales example (Example A.17), what is the expected value
of the number of PCs sold? This can be obtained easily from Table A-4 by
multiplying the values of X (PCs sold) by their associated probabilities (i.e.,
f [X]) and summing the product. Thus,

That is, the average number of PCs sold per day is 2.60. Keep in mind that
this is an average. On any given day the number of PCs sold will be any one
of the numbers between 0 and 4.

E(X) = 0(0.08) + 1(0.12) + 2(0.24) + 3(0.24) + 4(0.32) = 2.60

THE EXPECTED VALUE OF A RANDOM VARIABLE X, THE

NUMBER SHOWN ON A DIE

Number shown Probability Number * Probability
(1) (2) (3)
X f(X) Xf(X)

1 1>6 1>6
2 1>6 2>6
3 1>6 3>6
4 1>6 4>6
5 1>6 5>6
6 1>6 6>6

E(X) = 21>6 = 3.5

TABLE B-1



You can easily verify that that is, the average number of
printers sold is 2.35.

Properties of Expected Value

The following properties of the expected value will prove very useful in the
main chapters of the text:

1. The expected value of a constant is that constant itself. Thus, if b is a
constant,

(B.2)

For example, if 
2. The expectation of the sum of two random variables is equal to the sum

of the expectations of those random variables. Thus, for the random vari-
ables X and Y:2

(B.3)

3. However,

(B.4)E(X>Y) Z
E(X)

E(Y)

E(X + Y) = E(X) + E(Y)

b = 2, E(2) = 2.

E(b) = b

E(Y) = 2.35;
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2This property can be generalized to more than two random variables. Thus,
E(X) + E(Y) + E(W) + E(Z).

E(X + Y + W + Z) =
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That is, the expected value of the ratio of two random variables is not
equal to the ratio of the expected values of those random variables.

4. Also, in general,

(B.5)

That is, in general, the expected value of the product of two random vari-
ables is not equal to the product of the expectations of those random
variables. However, there is an exception to the rule. If X and Y are inde-
pendent random variables, then it is true that

(B.6)

Recall that X and Y are said to be independent if and only if
for all values of X and Y, that is, when the joint PMF

(PDF) is equal to the product of the individual PMFs (PDFs) of the two
random variables for all values of the variables.

5. (B.7)

That is, the expected value of the square of X (or any random variable) is
not equal to the square of the expected value of X.

6. If a is a constant, then

(B.8)

That is, the expectation of a constant times an r.v. is equal to the constant
times the expectation of the r.v.

7. If a and b are constants, then

(B.9)

In deriving result (7), we use properties (1), (2), and (6). Thus,

From Eq. (B.9) we see that E is a linear operator, which is also evident from
Eq. (B.4).

Expected Value of Multivariate Probability Distributions

The concept of the expected value of a random variable can be extended easily
to multivariate PMF or PDF. In the bivariate PMF, it can be shown that

(B.10)

That is, we take each pair of X and Y values, multiply them by their joint prob-
ability, and sum over all the values of X and Y.

E(XY) = a
x
a
y
xyf(X, Y)

E (4X + 7) = 4E(X) + E(7) = 4E(X) + 7

 = a E(X) + b

 E(a X + b) = a E(X) + E(b)

E(a X) = a E(X)

E(X2) Z [E(X)]2

f(X, Y) = f(X)f(Y),

E(XY) = E(X)E(Y)

E(XY) Z E(X)E(Y)



Example B.3.

Continuing with our PC/printer sales example, and applying Eq. (B.10), we get

which is the expected value of the product of the two random variables.

Recall that if two variables are independent, the expected value of their product
is equal to the product of their individual expected values; that is, 

. Is this the case in our illustrative example? As we saw in Example B.2,
and . Therefore, 
, showing that the two variables are not independent.

In passing, note that the formula for the expected value of the product of two
random variables given in Eq. (B.10) is for two discrete random variables. In the
case of two continuous random variables, in Eq. (B.10) we would replace the
double summation sign by the double integral sign.

B.2 VARIANCE: A MEASURE OF DISPERSION

The expected value of an r.v. simply gives its center of gravity, but it does not
indicate how the individual values are spread, dispersed, or distributed around
this mean value. The most popular numerical measure of this spread is called
the variance, which is defined as follows.

Let X be an r.v. and E(X) be its expected value, which for notational simplic-
ity may be denoted by (where is the Greek letter mu). Then the variance of
X is defined as

(B.11)

where and where the Greek letter (sigma squared) is the com-
monly used symbol for the variance. As Equation (B.11) shows, the variance of
X (or any r.v.) is simply the expected value of the squared difference between an
individual X value and its expected or mean value. The variance thus defined
shows how the individual X values are spread or distributed around its
expected, or mean, value. If all X values are precisely equal to E(X), the variance
will be zero, whereas if they are widely spread around the expected value, it
will be relatively large, as shown in Figure B-2. Notice that the variance cannot
be a negative number. (Why?)

The positive square root of , , is known as the standard deviation (s.d.).
Equation (B.11) is the definition of variance. To compute the variance, we use
the following formula:

(B.12)var (X) = a
X

(X -  x)
2f(X)

 x 
2
x

 
2
x x = E(X)

var (X) =  
2
x = E(X -  x)

2

  x

E(XY) = 7.06
E (X)E(Y) = (2.60)(2.35) = 6.11 ZE(Y) = 2.35E(X) = 2.60

E(X)E(Y)
E(XY) =

 = 7.06

 + (4)(1)(0.01) + 4(2)(0.01) + 4(3)(0.01) + (4)(3)(0.05) + (4)(4)(0.15)

 E (XY) = (1)(1)(0.05) + (1)(2)(0.06) + (1)(3)(0.02) + (1)(4)(0.01) Á
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if X is a discrete r.v. In case of a continuous random variable, we replace the
summation symbol by the integral symbol.

As Equation (B.12) shows, to compute the variance of a discrete r.v., we sub-
tract the expected value of the variable from a given value of the variable,
square the difference, and multiply the squared difference by the probability
associated with that X value. We do this for each value assumed by the X variable
and sum the products thus obtained. An example follows.

Example B.4.

We continue with Example B.1. There we showed that the expected value of
the number in the repeated roll of a die is 3.5. To compute the variance for
that problem, we set up Table B-2.

Thus, the variance of this example is 2.9167. Taking the positive square
root of this value, we obtain a standard deviation (s.d.) of 1.7078.

Properties of Variance

The variance as defined earlier has the following properties, which we will find
useful in our discussion of econometrics in the main chapters of the text.

1. The variance of a constant is zero. By definition, a constant has no
variability.

Smallest variance

Largest variance
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f(X)

Continuous Random Variable

X

Hypothetical PDFs of continuous random variables all
with the same expected value

FIGURE B-2



2. If X and Y are two independent random variables, then 

and (B.13)

That is, the variance of the sum or difference of two independent random
variables is equal to the sum of their individual variances.

3. If b is a constant, then

(B.14)

That is, adding a constant number to (the values of) a variable does not
change the variance of that variable. Thus, .

4. If a is constant, then

(B.15)

That is, the variance of a constant times a variable is equal to the square
of that constant times the variance of that variable. Thus, var (5X) =
25 var (X).

5. If a and b are constant, then

(B.16)

which follows from properties (3) and (4). Thus,

6. If X and Y are independent random variables and a and b are constants, then

(B.17)var (aX + bY) = a2var (X) + b2var (Y)

var (5X + 9) = 25 var (X)

var (aX + b) = a2var (X)

var (aX) = a2var (X)

var (X + 7) = var (X)

var (X + b) = var (X)

 var (X - Y) = var (X) + var (Y)

 var (X + Y) = var (X) + var (Y)
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THE VARIANCE OF A RANDOM VARIABLE X, THE

NUMBER SHOWN ON A DIE

Number Shown Probability

X f(X ) (X - X )2 f (X )

1 1>6 (1 - 3.5)2 (1>6)

2 1>6 (2 - 3.5)2 (1>6)

3 1>6 (3 - 3.5)2 (1>6)

4 1>6 (4 - 3.5)2 (1>6)

5 1>6 (5 - 3.5)2 (1>6)

6 1>6 (6 - 3.5)2 (1>6)

Sum = 2.9167

 

TABLE B-2
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This property follows from the previous properties. Thus,

7. For computational convenience, the variance formula Eq. (B.11) can also
be written as

(B.18)

which says that the variance of X is equal to the expected value of X
squared minus the square of the expected value of X.3 Note that

(B.19)

for a discrete r.v. For a continuous r.v., replace the summation sign with
the integral sign.

The proofs of the various expressions above can be obtained from the basic
definition of variance (see the optional exercises given at the end of this
appendix).

Chebyshev’s Inequality

How adequate are the expected value and variance of a random variable to
describe a PMF or PDF of such a random variable? That is, knowing just these
two summary numbers of a random variable, say X, can we compute the prob-
ability that X lies in a certain range? In a remarkable theorem, known as
Chebyshev’s inequality, the Russian mathematician Pafnuty Lvovich Chebyshev
(1821–1894) showed that that is indeed possible.

Specifically, if X is a random variable with mean and a variance of , then
for any positive constant c the probability that X lies inside the interval [ ,

] is at least , that is

(B.20)

where the symbol means the absolute value of.4||

P[|X -  x| … c x] … 1 -
1

c2

1 -
1
c2 x + c x

 x - c x

 
2
x x

E(X2) = a
x
x2f(X)

var (X) = E(X2) - [E(X)]2

var (3X + 5Y) = 9 var (X) + 25 var (Y)

3The proof is as follows:

Keep in mind that is a constant.
4The inequality works quite well if c 7 1.

 x

 = E(X2) - 2 
2
x +  

2
x = E(X2) -  

2
x

 = E(X2) - 2 xE(X) + E A 2
x B

 E(X -  x)
2
= E AX2

- 2X x +  
2
x B



In words this inequality states that at least the fraction ( ) of the total
probability of X lies within c standard deviations of its mean or expected value.
Put differently, the probability that a random variable deviates from its mean
value by more than c standard deviations is less than or at the most equal to 1/c2.

What is remarkable about this inequality is that we do not need to know the
actual PDF or PMF of a random variable. Of course, if we know the actual PDF
or PMF, probabilities such as Eq. (B.20) can be computed easily, as we will show
when we consider some specific probability distributions in Appendix C.

Example B.5. Illustration of Chebyshev’s Inequality

The average number of donuts sold in a donut shop between 8 a.m. and
9 a.m. is 100 with a variance of 25. What is the probability that on a given day
the number of donuts sold between 8 a.m. and 9 a.m. is between 90 and 110?

By Chebyshev’s inequality, we have:

(B.21)

Since , we see that . Therefore, . It

therefore follows that That is, the probability that
between 90 and 110 donuts are sold between 8 a.m. and 9 a.m. is at least
75 percent. By the same token, the probability that the number of donuts sold
between 8 a.m. and 9 a.m. exceeds 110 or is less than 90 is 25 percent.

Coefficient of Variation

Before moving on, note that since the standard deviation (or variance) depends
on the units of measurement, it may be difficult to compare two or more stan-
dard deviations if they are expressed in different units of measurement. To get
around this difficulty, use the coefficient of variation (V), a measure of relative
variation, which is defined as follows:

(B.22)

Verbally, the V is the ratio of the standard deviation of a random variable X to
its mean value multiplied by 100. Since the standard deviation and the mean
value of a random variable are measured in the same units of measurement, V
is unitless; that is, it is a pure number. We can therefore compare the V values of
two or more random variables directly.

Example B.6.

An instructor teaches two sections of an introductory econometrics class
with 15 students in each class. On the midterm examination, class A scored

V =
 X

 X

# 100

(1 -
1
22) =

3
4 = 0.75.

c = 25c = 10(110 - 100) = (100 - 90) = 10

 P[|X - 100| … 5c ] = 1 -
1

c2

 P[|X -  x| … c x ] = 1 -
1

c2

1 -
1
c2
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an average of 83 points with a standard deviation of 10, and class B scored an
average 88 points with a standard deviation of 16. Which class performed
relatively better? If we use V as defined in Eq. (B.22), we get:

Since the relative variability of class A is lower, we can say that class A did
relatively better than class B.

B.3 COVARIANCE

The expected value and variance are the two most frequently used summary
measures of a univariate PMF (or PDF). The former gives us the center of grav-
ity, and the latter tells us how the individual values are distributed around the
center of gravity. But once we go beyond the univariate probability distribu-
tions (e.g., the PMF of Example B.2), we need to consider, in addition to the
mean and variance of each variable, some additional characteristics of multi-
variate PFs, such as the covariance and correlation, which we will now discuss.

Let X and Y be two random variables with means and .
Then the covariance (cov) between the two variables is defined as

(B.23)

As Equation (B.23) shows, a covariance is a special kind of expected value
and is a measure of how two variables vary or move together (i.e., co-vary), as
shown in Example B.7, which follows. In words, Eq. (B.23) states that to find the
covariance between two variables, we must express the value of each variable
as a deviation from its mean value and take the expected value of the product.
How this is done in practice follows.

The covariance between two random variables can be positive, negative, or zero.
If two random variables move in the same direction (i.e., if they both increase) as
in Example B.7 below, then the covariance will be positive, whereas if they move
in the opposite direction (i.e., if one increases and the other decreases), the co-
variance will be negative. If, however, the covariance between the two variables
is zero, it means that there is no (linear) relationship between the two variables.

To compute the covariance as defined in Eq. (B.23), we use the following for-
mula, assuming X and Y are discrete random variables:

(B.24)

where E(XY) is computed from Eq. (B.10).

 = E(XY) -  X y

 = a
x
a
y
XYf(X, Y) -  X y

 cov (X, Y) = a
x
a
y

(X -  X)(Y -  y)f(X, Y)

 = E(XY) -  x y

 cov (X, Y) = E[(X -  x)(Y -  y)]

E(Y) =  yE(X) =  x

VA =
10

83
 #  100 = 12.048  and  VB =

16

88
 #  100 = 18.181



Note the double summation sign in this expression because the covariance
requires the summation of both variables over the range of their values. Using
the integral notation of calculus, a similar formula can be devised to compute
the covariance of two continuous random variables.

Example B.7.

Once again, return to our PC/printer sales example. To find out the covari-
ance between computer sales (X) and printer sales (Y), we use formula (B.24).
We have already computed the first term on the right-hand side of this equa-
tion in Example (B.3), which is 7.06. We have already found that 
and Therefore, the covariance in this example is

which shows that PC sales and printer sales are positively related.

Properties of Covariance

The covariance as defined earlier has the following properties, which we will
find quite useful in regression analysis in the main chapters of the text.

1. If X and Y are independent random variables, their covariance is zero. This
is easy to verify. Recall that if two random variables are independent,

Substituting this expression into Eq. (B.23), we see at once that the
covariance of two independent random variables is zero.

2. (B.25)

where a, b, c, and d are constants.

3. (B.26)

That is, the covariance of a variable with itself is simply its variance,
which can be verified from the definitions of variance and covariance
given previously. Obviously, then, .

4. If X and Y are two random variables but are not necessarily independent,
then the variance formulas given in Eq. (B.13) need to be modified as
follows:

(B.27)

(B.28)

Of course, if the two variables are independent, formulas (B.27) and (B.28) will
coincide with Eq. (B.13).

var (X - Y) = var (X) + var (Y) - 2 cov (X, Y)

var (X + Y) = var (X) + var (Y) + 2 cov (X, Y)

cov (Y, Y) = var (Y)

cov (X, X) = var (X)

cov (a + bX, c + dY) = bd cov (X, Y)

E(XY) = E(X)E(Y) =  x y

cov (X, Y) = 7.06 - (2.60)(2.35) = 0.95

 y = 2.35.
 x = 2.60
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B.4 CORRELATION COEFFICIENT

In the PC/printer sales example just considered we found that the covariance
between PC sales and computer sales was 0.95, which suggests that the two
variables are positively related. But the computed number of 0.95 does not give
any idea of how strongly the two variables are positively related because the
covariance is unbounded (i.e., ). We can find out how
strongly any two variables are related in terms of what is known as the
(population) coefficient of correlation, which is defined as follows:

(B.29)

where (rho) denotes the coefficient of correlation.
As is clear from Equation (B.29), the correlation between two random vari-

ables X and Y is simply the ratio of the covariance between the two variables
divided by their respective standard deviations. The correlation coefficient thus
defined is a measure of linear association between two variables, that is, how
strongly the two variables are linearly related.

Properties of Correlation Coefficient

The correlation coefficient just defined has the following properties:

1. Like the covariance, the correlation coefficient can be positive or nega-
tive. It is positive if the covariance is positive and negative if the covari-
ance is negative. In short, it has the same sign as the covariance.

2. The correlation coefficient is a measure of linear relationship between two
variables.

3. The correlation coefficient always lies between -1 and +1. Symbolically,

(B.30)

If the correlation coefficient is +1, it means that the two variables are
perfectly positively linearly related (as in ), whereas if the
correlation coefficient is -1, it means they are perfectly negatively lin-
early related. Typically, lies between these limits.

4. The correlation coefficient is a pure number; that is, it is devoid of units of
measurement. On the other hand, other characteristics of probability dis-
tributions, such as the expected value, variance, and covariance, depend
on the units in which the original variables are measured.

5. If two variables are (statistically) independent, their covariance is zero.
Therefore, the correlation coefficient will be zero. The converse, however, is
not true. That is, if the correlation coefficient between two variables is zero,
it does not mean that the two variables are independent. This is because the
correlation coefficient is a measure of linear association or linear relationship
between two variables, as noted previously. For example, if , the
correlation between the two variables may be zero, but by no means are the
two variables independent. Here Y is a nonlinear function of X.

Y = X2

 

Y = B1 + B2X

-1 …  … 1

 

 =
cov (X, Y)

 x y

-q 6 cov[X, Y] 6 q



6. Correlation does not necessarily imply causality. If one finds a positive
correlation between lung cancer and smoking, it does not necessarily
mean that smoking causes lung cancer.

Figure B-3 gives some typical patterns of correlation coefficients.

Example B.8.

Let us continue with the PC/printer sales example. We have already seen
that the covariance between the two variables is 0.95. From the data given in
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Table A-4, we can easily verify that and . Then, using
formula (B.29), we obtain

Thus, the two variables are positively correlated, although the value of the
correlation coefficient is rather moderate. This probably is not surprising, for
not everyone purchasing a PC buys a printer.

The use of the correlation coefficient in the regression context is discussed in
Chapter 3.

Incidentally, Eq. (B.29) can also be written as:

(B.31)

That is, the covariance between two variables is equal to the coefficient of
correlation between the two times the product of the standard deviations of
the two.

Variances of Correlated Variables

In Eq. (B.27) and Eq. (B.28) we gave formulas for the variance of variables that
are not necessarily independent. Knowing the relationship between covariance
and correlation, we can express these formulas alternatively as follows:

(B.32)

(B.33)

Of course, if the correlation between two random variables is zero, then 
var(X + Y) and var(X - Y) are both equal to var(X) + var(Y), as we saw before.

As an exercise, you can find the variance of (X +Y) of our PC/printer example.

B.5 CONDITIONAL EXPECTATION

Another statistical concept that is especially important in regression analysis is
the concept of conditional expectation, which is different from the expectation
of an r.v. considered previously, which may be called the unconditional expec-
tation. The difference between the two concepts of expectations can be explained
as follows.

Return to our PC/printer sales example. In this example X is the number of
PCs sold per day (ranging from 0 to 4) and Y is the number of printers sold per
day (ranging from 0 to 4). We have seen that and . These
are unconditional expected values, for in computing these values we have not
put any restrictions on them.

E(Y) = 2.35E(X) = 2.6

var (X - Y) = var (X) + var (Y) - 2  x y

var (X + Y) = var (X) + var (Y) + 2  x y

Cov (X, Y) =   x y

 =
0.95

(1.2649)(1.4124)
= 0.5317

 y = 1.4124 x = 1.2649



But now consider this question: What is the average number of printers sold
(Y) if it is known that on a particular day 3 PCs were sold? Put differently, what
is the conditional expectation of Y given that ? Technically, what is

? This is known as the conditional expectation of Y. Similarly, we
could ask: What is ?

From the preceding discussion it should be clear that in computing the un-
conditional expectation of an r.v., we do not take into account information about
any other r.v., whereas in computing the conditional expectation we do.

To compute such conditional expectations, we use the following definition of
conditional expectation

(B.34)

which gives the conditional expectation of X, where X is a discrete r.v.,
is the conditional PDF of X given in Eq. (A.20), and means the

sum over all values of X. In relation to Equation (B.34), E(X), considered earlier,
is called the unconditional expectation. Computationally, is similar to
E(X) except that instead of using the unconditional PDF of X, we use its condi-
tional PDF, as seen clearly in comparing Eq. (B.34) with Eq. (B.1).

Similarly,

(B.35)

gives the conditional expectation of Y. Let us illustrate with an example.

Example B.9.

Let us compute for our PC/printer sales example. That is, we
want to find out the conditional expected value of printers sold, knowing
that 2 PCs have been sold per day. Using formula (B.34), we have

Note: , and so on (see Table A-3).

As these calculations show, the conditional expectation of Y given that
is about 1.88, whereas, as shown previously, the unconditional ex-

pectation of Y was 2.35. Just as we saw previously that the conditional PDFs
and marginal PDFs are generally different, the conditional and uncondi-
tional expectations in general are different too. Of course, if the two variables

X = 2,

f(Y = 1|X = 2) = f(Y = 1, X = 2)
f(X = 2)

 = 1.875

 +3f(Y = 3|X = 2) + 4f(Y = 4|X = 2)

 = f(Y = 1|X = 2) + 2f(Y = 2|X = 2)

 E(Y|X = 2) = a
4

0
Yf(Y|x = 2)

E(Y|X = 2)

E(Y|X = x) = a
Y

Yf(Y|X = x)

E(X|Y = y)

gXf(X|Y = y)

E(X|Y = y) = a
X

Xf(X|Y = y)

E(Y|X = 1)
E(Y|X = 3)

X = 3
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are independent, the conditional and unconditional expectations will be the
same. (Why?)

Conditional Variance

Just as we can compute the conditional expectation of a random variable, we
can also compute its conditional variance, . For Example B.9, for
instance, we may be interested in finding the variance of Y, given that ,

. We can use formula (B.11) for the variance of X, except that we
now have to use the conditional expectation of Y and the conditional PDF. To
see how this is actually done, see Optional Exercise B.23. Incidentally, the vari-
ance formula given in Eq. (B.11) may be called the unconditional variance of X.

Just as conditional and unconditional expectations of an r.v., in general, are
different, the conditional and unconditional variances, in general, are different
also. They will be the same, however, if the two variables are independent.

As we will see in Chapter 2 and in subsequent chapters, the concepts of con-
ditional expectation and conditional variance will play an important role in
econometrics. Referring to the civilian labor force participation rate (CLFPR)
and the civilian unemployment rate (CUNR) example discussed in Chapter 1,
will the unconditional expectation of CLFPR be the same as the conditional
expectation of CLFPR, conditioned on the knowledge of CUNR? If they are the
same, then, the knowledge of CUNR is not particularly helpful in predicting
CLFPR. In such a situation, regression analysis is not very useful. On the other
hand, if the knowledge of CUNR enables us to forecast CLFPR better than with-
out that knowledge, regression analysis becomes a very valuable research tool,
as we show in the main chapters of the text.

B.6 SKEWNESS AND KURTOSIS

To conclude our discussion of the characteristics of probability distributions, we
discuss the concepts of skewness and kurtosis of a probability distribution, which
tell us something about the shape of the probability distribution. Skewness (S)
is a measure of asymmetry, and kurtosis (K) is a measure of tallness or flatness
of a PDF, as can be seen in Figure B-4.

To obtain measures of skewness and kurtosis, we need to know the third
moment and the fourth moment of a PMF (PDF). We have already seen that the
first moment of the PMF (PDF) of a random variable X is measured by

, the mean of X, and the second moment around the mean (i.e., the
variance) is measured by . In like fashion, the third and fourth mo-
ments around the mean value can be expressed as:

(B.36)

(B.37)Fourth moment: E(X -  x)
4

Third moment: E(X -  x)
3

E(X -  x)
2

E(X) =  X

var (Y|X = 2)
X = 2

var (Y|X)



And, in general, the rth moment around the mean value can be expressed as

(B.38)

Given these definitions, the commonly used measures of skewness and kurtosis
are as follows:

(B.39)

Since for a symmetrical PDF the third (and all odd order) moments are zero, for
such a PDF the S value is zero. The prime example is the normal distribution,
which we will discuss more fully in Appendix C. If the S value is positive, the

 =
third moment about mean

cube of standard deviation

 S =
E(X -  x)

3

 
3
x

rth moment: E(X -  x)
r
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PDF is right-, or positively, skewed, and if it is negative, it is left-, or negatively,
skewed. (See Fig. B-4[a]).

(B.40)

PDFs with values of K less than 3 are called platykurtic (fat or short-tailed), and
those with values of K greater than 3 are called leptokurtic (slim or long-tailed),
as shown in Fig. B-4(b). For a normal distribution the K value is 3, and such a
PDF is called mesokurtic.

Since we will be making extensive use of the normal distribution in the main
text, the knowledge that for such a distribution the values of S and K are zero
and 3, respectively, will help us to compare other PDFs with the normal
distribution.

The computational formulas to obtain the third and fourth moments of a
PDF are straightforward extensions of the formula given in Eq. (B.11), namely,

(B.41)

(B.42)

where X is a discrete r.v. For a continuous r.v. we will replace the summation
sign by the integral sign ( ).

Example B.10.

Consider the PDF given in Table B-1. For this PDF we have already seen that
and . The calculations of the third and fourth

moments about the mean value are as follows:

X f(X ) (X - X )3 f (X ) (X - X )4 f (X )

1 1>6 (1 - 3.5)3 (1>6) (1 - 3.5)4 (1>6)

2 1>6 (2 - 3.5)3 (1>6) (2 - 3.5)4 (1>6)

3 1>6 (3 - 3.5)3 (1>6) (3 - 3.5)4 (1>6)

4 1>6 (4 - 3.5)3 (1>6) (4 - 3.5)4 (1>6)

5 1>6 (5 - 3.5)3 (1>6) (5 - 3.5)4 (1>6)

6 1>6 (6 - 3.5)3 (1>6) (6 - 3.5)4 (1>6)

Sum = 0 14.732

From the definitions of skewness and kurtosis given before, verify that for
the present example the skewness coefficient is zero (Is that surprising?) and
that the kurtosis value is 1.7317. Therefore, although the PDF given above is
symmetrical around its mean value, it is platykurtic, or much flatter than the
normal distribution, which should be apparent from its shape in Fig. B-4(b).

  

Var (X) = 2.9167E(X) = 3.5

1

Fourth moment: a (X -  x)
4f(X)

Third moment: a (X -  x)
3f(X)

 =
fourth moment

square of second moment

 K =
E(X -  X)4

[E(X -  X)2]2



B.7 FROM THE POPULATION TO THE SAMPLE

To compute the characteristics of probability distributions, such as the expected
value, variance, covariance, correlation coefficient, and conditional expected
value, we obviously need the PMF (PDF), that is, the whole sample space or
population. Thus, to find out the average income of all the people living in New
York City at a given time, obviously we need information on the population of
the whole city. Although conceptually there is some finite population of New
York City at any given time, it is simply not practical to collect information
about each member of the population (i.e., outcome, in the language of proba-
bility). What is done in practice is to draw a “representative” or a “random”
sample from this population and to compute the average income of the people
sampled.5

But will the average income obtained from the sample be equal to the true
average income (i.e., expected value of income) in the population as a whole?
Most likely it will not. Similarly, if we were to compute the variance of the in-
come in the sampled population, would that equal the true variance that we
would have obtained had we studied the whole population? Again, most likely
it would not.

How then could we learn about population characteristics like the expected
value, variance, etc., if we only have one or two samples from a given popula-
tion? And, as we will see throughout the main chapters of the book, in practice,
invariably we have to depend on one or more samples from a given population.

The answer to this very important question will be the focus of our attention
in Appendix D. But meanwhile, we must find the sample counterparts, the sam-
ple moments, of the various population characteristics that we discussed in the
preceding sections.

Sample Mean

Let X denote the number of cars sold per day by a car dealer. Assume that the
r.v. X follows some PDF. Further, suppose we want to find out the average num-
ber [i.e., E(X)] of cars sold by the dealer in the first 10 days of each month.
Assume that the car dealer has been in business for 10 years but has no time to
look up the sales figures for the first 10 days of each month for the past 10 years.
Suppose that he decides to pick at random the past data for one month and
notes the sales figures for the first 10 days of that month, which are as follows:
9, 11, 11, 14, 13, 9, 8, 9, 14, and 12. This is a sample of 10 values. Notice that he
has data for 120 months, and if he had decided to choose another month, he
probably would have obtained 10 other values.

If the dealer adds up the 10 sales values and divides the sum by 10 (i.e., the
sample size), the number he would obtain is known as the sample mean.

452 APPENDIXES
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The sample mean of an r.v. X is generally denoted by the symbol (read as
X bar) and is defined as

(B.43)

where , as usual, means the sum of the X values from 1 to n, where n is the
sample size.

The sample mean thus defined is known as an estimator of E(X), which we
can now call the population mean. An estimator is simply a rule or formula that tells
us how to go about estimating a population quantity, such as the population mean.
In Appendix D we will show how is related to E(X).

For the sample just given, the sample mean is

which we call an estimate of the population mean. An estimate is simply the nu-
merical value taken by an estimator, 11 in the preceding example. In our example,
the average number of cars sold in the first 10 days of the month is 11. But keep
in mind that this number will not necessarily equal E(X); to compute the latter,
we will have to take into account the sales data for the first 10 days of each of
the other 119 months. In short, we will have to consider the entire PDF of car
sales. But as we show in Appendix D, often the estimate, such as 11, obtained
from a given sample is a fairly good “proxy” for the true E(X).

Sample Variance

The ten sample values given previously are not all equal to the sample mean of
11. The variability of the ten values from this sample mean can be measured by
the sample variance, denoted by , which is an estimator of , which we can now
call the population variance. The sample variance is defined as

(B.44)

which is simply the sum of the squared difference of an individual X value from
its (sample) mean value divided by the total number of observations less one.6

The expression is known as the degrees of freedom, whose precise
meaning will be explained in Appendix C. Sx, the positive square root of , is
called the sample standard deviation (sample s.d.).

S2
x

(n - 1)

S2
x = a

n

i=1

(Xi - X)2

n - 1

 
2
xS2

x

X =
9 + 11 + 11 + Á + 12

10
=

110

10
= 11

X

gn
i=1 Xi

X = a
n

i=1

Xi

n

X

6If the sample size is reasonably large, we can divide by n instead of .(n - 1)



For the sample of 10X values given earlier, the sample variance is

and the sample s.d. is . Note that 4.89 is an estimate of the
population variance and 2.21 is an estimate of the population s.d. Again, an esti-
mate is a numerical value taken by an estimator in a given sample.

Sample Covariance

Example B.11.

Suppose we have a bivariate population of two variables Y (stock prices) and
X (consumer prices). Suppose further that from this bivariate population we
obtain the random sample shown in the first two columns of Table B-3. In this
example, stock prices are measured by the Dow Jones average and consumer
prices by the Consumer Price Index (CPI). The other entries in this table are
discussed later.

Sx = 14.89 L 2.21

 =
44

9
= 4.89

 S2
x =

(9 - 11)2
+ (11 - 11)2

+ Á + (12 - 11)2

9
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SAMPLE COVARIANCE AND SAMPLE CORRELATION COEFFICIENT

BETWEEN DOW JONES AVERAGE (Y ) AND CONSUMER PRICE 

INDEX (X ) OVER THE PERIOD 1998–2007

Dow CPI
Y X

Year (1) (2) (3)

1998 8,625.52 163.00 (8625.5 - 10367.8)(163 - 183.6)

1999 10,464.88 166.60 (10464.9 - 10367.8)(166.6 - 183.6)

2000 10,734.90 172.20 — —

2001 10,189.13 177.10 — —

2002 9,226.43 179.90 — —

2003 8,993.59 184.00 — —

2004 10,317.39 188.90 — —

2005 10,547.67 195.30 — —

2006 11,408.67 201.60 (11408.7 - 10367.8)(201.6 - 183.6)

2007 13,169.98 207.34 (13170 - 10367.8)(207.3 - 183.6)

Sum 103,678.16 1,835.94 121,992.73

Sample var(Y) = 1,708,150

Sample var(X) = 216.898

Source: Data on X and Y are from the Economic Report of the President, 2008,
Tables B-95, B-96, and B-60, respectively.

X =
1,835.94

10
= 183.594

Y =
103,678.16

10
= 10367.8

L

(Y - Y )(X - X )

TABLE B-3
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Analogous to the population covariance defined in Eq. (B.23), the sample
covariance between two random variables X and Y is defined as

(B.45)

which is simply the sum of the cross products of the two random variables
expressed as deviations from their (sample) mean values and divided by
the degrees of freedom, . (If the sample size is large, we may use n as
the divisor.) The sample covariance defined in Equation (B.45) is thus the
estimator of the population covariance. Its numerical value in a given in-
stance will provide an estimate of the population covariance, as in the fol-
lowing example.

In Table B-3 we have given the necessary quantities to compute the sam-
ple covariance, which in the present case is

Thus, in the present case the covariance between stock prices and consumer
prices is positive. Some analysts believe that investment in stocks is a hedge
against inflation; that is, as inflation increases, stock prices increase, too.
Apparently, for the period 1998 to 2007 that seems to be the case, although
empirical evidence on this subject is not unequivocal.

Sample Correlation Coefficient

In Eq. (B.29) we defined the population correlation coefficient between two ran-
dom variables. Its sample analogue, or estimator, which we denote by the sym-
bol r, is as follows:

(B.46)

The sample correlation coefficient thus defined has the same properties as
the population correlation coefficient ; they both lie between and .

For the data given in Table B-3 you can easily compute the sample standard
deviations of Y and X, and therefore can compute the sample correlation coeffi-
cient r, an estimate of , which turns out to be

Thus, in our example stock prices and consumer prices are pretty positively cor-
related because the computed value is close to 1.

 = 0.7042

 r =
13,554.75

(14.727)(1306.962)

 

+1-1 

 =
sample cov (X, Y)

s.d.(X)s.d.(Y)

 r =
gn

i=1(Xi - X)(Yi - Y)/(n - 1)

SxSy

Sample cov (X, Y) =
121,992.73

9
= 13,554.75

(n - 1)

Sample cov (X, Y) =
g (Xi - X)(Yi - Y)

n - 1



Sample Skewness and Kurtosis

To compute sample skewness and sample kurtosis values, we use the sample
third and fourth moments (compare with Eqs. [B.36] and [B.37]). The sample
third moment (compare with the formula for sample variance) is

(B.47)

and the sample fourth moment is

(B.48)

Using the data given in Table B-3, calculate the sample third and fourth mo-
ments and divide them by the standard deviation value to the third and fourth
powers, respectively. Verify that the sample skewness and kurtosis measures
for the Dow Jones average are 0.6873 and 2.9447, respectively, suggesting that
the distribution of the Dow Jones average is positively skewed and that it is flat-
ter than a normal distribution.

B.8 SUMMARY

After introducing several fundamental concepts of probability, random vari-
ables, probability distributions, etc., in Appendix A, in this appendix we dis-
cussed some major characteristics or moments of probability distributions of
random variables, such as the expected value, variance, covariance, correlation,
skewness, kurtosis, conditional expectation, and conditional variance. We also
discussed the famous Chebyshev’s inequality. The discussion of these concepts
has been somewhat intuitive, for our objective here is not to teach statistics per
se but simply to review some of its major concepts that are needed to follow the
various topics discussed in the main chapters of this book.

In this appendix we also presented several important formulas. These for-
mulas tell us how to compute the probabilities of random variables and how to
estimate the characteristics of probability distributions (i.e., the moments), such
as the expected or mean value, variance, covariance, correlation, and condi-
tional expectation. In presenting these formulas, we made a careful distinction
between the population moments and sample moments and gave the appropriate
computing formulas. Thus, E(X), the expected value of the r.v. X, is a population
moment, that is, the mean value of X if the entire population of the X values
were known. On the other hand, is a sample moment, that is, the average
value of X if it is based on sample values of X and not on the entire population.
In statistics the dichotomy between the population and the sample is very im-
portant, for in most applications we have only one or two samples from some
population of interest and often we want to draw inferences about the popula-
tion moments on the basis of the sample moments. We will explain how this is
done in Appendixes C and D.

X

g (X - X)4

(n - 1)

g (X - X)3

(n - 1)
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KEY TERMS AND CONCEPTS

The key terms and concepts introduced in this appendix are

Characteristics (moments) of
univariate PMFs
a) expected value (population

mean value)
b) variance
c) standard deviation (s.d.)
d) coefficient of variation (V)

Characteristics of multivariate PDFs
a) covariance
b) (population) coefficient of

correlation
c) correlation
d) conditional expectation
e) unconditional expectation
f) conditional variance

g) unconditional variance
h) skewness (S)
i) kurtosis (K)

Population vs. sample
a) sample moments
b) sample mean
c) estimator; estimate
d) sample variance
e) degrees of freedom
f) sample standard deviation

(sample s.d.)
g) sample covariance
h) sample correlation
i) sample skewness
j) sample kurtosis

QUESTIONS

B.1. What is meant by the moments of a PDF? What are the most frequently used
moments?

B.2. Explain the meaning of
a. expected value
b. variance
c. standard deviation
d. covariance
e. correlation
f. conditional expectation

B.3. Explain the meaning of
a. sample mean
b. sample variance
c. sample standard deviation
d. sample covariance
e. sample correlation

B.4. Why is it important to make the distinction between population moments and
sample moments?

B.5. Fill in the gaps in the manner of (a) below.
a. The expected value or mean is a measure of central tendency.
b. The variance is a measure of . . .
c. The covariance is a measure of . . .
d. The correlation is a measure of . . .

B.6. A random variable (r.v.) X has a mean value of $50 and its standard deviation
(s.d.) is $5. Is it correct to say that its variance is $25 squared? Why or why not?

B.7. Explain whether the following statements are true or false. Give reasons.
a. Although the expected value of an r.v. can be positive or negative, its vari-

ance is always positive.



ANTICIPATED 1-YEAR RATE OF RETURN

FROM A CERTAIN INVESTMENT

Rate of return (X) % f (X)

-20 0.10

-10 0.15

10 0.45

25 0.25

30 0.05

Total 1.00

b. The coefficient of correlation will have the same sign as that of the covari-
ance between the two variables.

c. The conditional and unconditional expectations of an r.v. mean the same thing.
d. If two variables are independent, their correlation coefficient will always be

zero.
e. If the correlation coefficient between two variables is zero, it means that the

two variables are independent.

f.

g.

PROBLEMS

B.8. Refer to Problem A.12.
a. Find the expected value of X.
b. What is the variance and standard deviation of X?
c. What is the coefficient of variation of X?
d. Find the skewness and kurtosis values of X.

B.9. The following table gives the anticipated 1-year rates of return from a certain
investment and their probabilities.

E[X -  X]2
= [E(X -  X)]2

E A 1
X B = 1

E(X)
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TABLE B-4

a. What is the expected rate of return from this investment?
b. Find the variance and standard deviation of the rate of return.
c. Find the skewness and kurtosis coefficients.
d. Find the cumulative distribution function (CDF) and obtain the probability

that the rate of return is 10 percent or less.
B.10. The following table gives the joint PDF of random variables X and Y, where

the first-year rate of return (%) expected from investment A, and 
the first-year rate of return (%) expected from investment B.Y =

X =

RATES OF RETURN ON TWO INVESTMENTS

X (%)

Y(%) -10 0 20 30

20 0.27 0.08 0.16 0.00

50 0.00 0.04 0.10 0.35

TABLE B-5
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a. Find the marginal distributions of Y and X.
b. Calculate the expected rate of return from investment B.
c. Find the conditional distribution of Y, given .
d. Are X and Y independent random variables? How do you know? Hint:

B.11. You are told that . What are the expected values and
variances of the following expressions?
a.
b.
c.
d. , where a and b are constants
e.
How would you express these formulas verbally?

B.12. Consider formulas (B.32) and (B.33). Let X stand for the rate of return on a se-
curity, say, IBM, and Y the rate of return on another security, say, General
Foods. Let , and . What is the variance of in
this case? Is it greater than or smaller than var ? In this instance,
is it better to invest equally in the two securities (i.e., diversify) than in either
security exclusively? This problem is the essence of the portfolio theory of fi-
nance. (See, for example, Richard Brealey and Stewart Myers, Principles of
Corporate Finance, McGraw-Hill, New York, latest edition.)

B.13. Table B-6 gives data on the number of new business incorporations (Y) and the
number of business failures (X) for the United States from 1984 to 1995.
a. What is the average value of new business incorporations?And the variance?
b. What is the average value of business failures? And the variance?
c. What is the covariance between Y and X? And the correlation coefficient?

(X) + var (Y)
(X + Y)r = -0.8s2

X = 16, s2
Y = 9

Y = 3X2
+ 2

Y = aX + b
Y = X>4
Y = 0.6X - 4
Y = 3X + 2

E(X) = 8 and var (X) = 4

E(XY) = a
4

X=1
a
2

Y=1
XiYi f(Xi, Yi)

X = 20

NUMBER OF NEW BUSINESS

INCORPORATIONS (Y ) AND NUMBER OF

BUSINESS FAILURES (X ), UNITED STATES,

1984–1995

YEAR Y X

1984 634,991 52,078

1985 664,235 57,253

1986 702,738 61,616

1987 685,572 61,111

1988 685,095 57,097

1989 676,565 50,361

1990 647,366 60,747

1991 628,604 88,140

1992 666,800 97,069

1993 706,537 86,133

1994 741,778 71,558

1995 766,988 71,128

Source: Economic Report of the President, 2004,
Table B-96, p. 395.

TABLE B-6



d. Are the two variables independent?
e. If there is correlation between the two variables, does this mean that one

variable causes the other variable? That is, do new incorporations cause
business failures, or vice versa?

B.14. For Problem A.13, find out the . How would you interpret this
variance?

B.15. Refer to Table 1-2 given in Problem 1.6.
a. Compute the covariances between the S&P 500 index and the CPI and be-

tween the three-month Treasury bill rate and the CPI. Are these population
or sample covariances?

b. Compute the correlation coefficients between the S&P 500 index and the CPI
and between the three-month Treasury bill rate and the CPI. A priori, would
you expect these correlation coefficients to be positive or negative? Why?

c. If there is a positive relationship between the CPI and the three-month
Treasury bill rate, does that mean inflation, as measured by the CPI, is the
cause of higher T bill rates?

B.16. Refer to Table 1-3 in Problem 1.7. Let ER stand for U.K. pound/$ exchange rate
(i.e., the number of U.K. pounds per U.S. dollar) and RPR stand for the ratio of
the U.S. CPI/U.K. CPI. Is the correlation between ER and RPR expected to be
positive or negative? Why? Show your computations. Would your answer
change if you found correlation between ER and (1/RPR)? Why?

OPTIONAL EXERCISES

B.17. Find the expected value of the following PDF:

B.18. Show that
a. Hint: Recall the definition of variance.

b.

where and .
How would you express these formulas verbally?

B.19. Establish Eq. (B.15). Hint: and simplify.

B.20. Establish Eq. (B.17). Hint: and
simplify.

B.21. According to Chebyshev’s inequality, what percentage of any set of data must
lie within c standard deviations on either side of the mean value if (a) 
and (b) ?

B.22. Show that . For what value of k will
be minimum? And what is that value of k?

B.23. For the PC/printer sales example discussed in this appendix compute the con-
ditional variance of Y (printers sold) given that X (PCs sold) is 2. Hint: Use the
conditional expectation given in Example B.9 and use the formula:

B.24. Compute the expected value and variance for the PDF given in Problem A.19.

var (Y|X = 2) = a [Yi - E(Y|X = 2)]2f(Y|X = 2)

E(X - k)2
E(X - k)2

= var (X) + [E(X) - k]2
c = 8

c = 2.5

Var (aX + bY) = E[(aX + bY) - E(aX + bY)]2

Var (aX) = E[aX - E(aX)]2

 Y = E(Y) X = E(X)

= E(XY) -  X Y

cov (X, Y) = E[(X -  X)(Y -  Y)]

E(X2) Ú [E(X)]2

f(X) =
X2

9
 0 … x … 3

var (X + Y)
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APPENDIX C
SOME IMPORTANT

PROBABILITY
DISTRIBUTIONS

In Appendix B we noted that a random variable (r.v.) can be described by a few
characteristics, or moments, of its probability function (PDF or PMF), such as
the expected value and variance. This, however, presumes that we know the
PDF of that r.v., which is a tall order since there are all kinds of random
variables. In practice, however, some random variables occur so frequently that
statisticians have determined their PDFs and documented their properties. For
our purpose, we will consider only those PDFs that are of direct interest to us.
But keep in mind that there are several other PDFs that statisticians have
studied which can be found in any standard statistics textbook. In this appendix
we will discuss the following four probability distributions:

1. The normal distribution
2. The t distribution
3. The chi-square ( ) distribution
4. The F distribution

These probability distributions are important in their own right, but for our
purposes they are especially important because they help us to find out the
probability distributions of estimators (or statistics), such as the sample mean
and sample variance. Recall that estimators are random variables. Equipped
with that knowledge, we will be able to draw inferences about their true
population values. For example, if we know the probability distribution of
the sample mean, , we  will be able to draw inferences about the true, or
population, mean . Similarly, if we know the probability distribution of the
sample variance , we will be able to say something about the true population
variance, . This is the essence of statistical inference, or drawing conclusions
about some characteristics (i.e., moments) of the population on the basis of the
sample at hand. We will discuss in depth how this is accomplished in Appen-
dix D. For now we discuss the salient features of the four probability distributions.

 2
X

S2
x

 X

X

 2



C.1 THE NORMAL DISTRIBUTION

Perhaps the single most important probability distribution involving a
continuous r.v. is the normal distribution. Its bell-shaped picture, as shown in
Figure A-3, should be familiar to anyone with a modicum of statistical
knowledge. Experience has shown that the normal distribution is a reasonably
good model for a continuous r.v. whose value depends on a number of factors,
each factor exerting a comparatively small positive or negative influence. Thus,
consider the r.v. body weight. It is likely to be normally distributed because
factors such as heredity, bone structure, diet, exercise, and metabolism are each
expected to have some influence on weight, yet no single factor dominates the
others. Likewise, variables such as height and grade-point average are also
found to be normally distributed.

For notational convenience, we express a normally distributed r.v. X as

(C.1)1

where means distributed as, N stands for the normal distribution, and the
quantities inside the parentheses are the parameters of the distribution, namely,
its (population) mean or expected value and its variance . Note that X is a
continuous r.v. and may take any value in the range −∞ to ∞.

Properties of the Normal Distribution

1. The normal distribution curve, as Figure A-3 shows, is symmetrical
around its mean value .

2. The PDF of a normally distributed r.v. is highest at its mean value but
tails off at its extremities (i.e., in the tails of the distribution). That is, the
probability of obtaining a value of a normally distributed r.v. far away
from its mean value becomes progressively smaller. For example, the
probability of someone exceeding the height of 7.5 feet is very small.

3. As a matter of fact, approximately 68 percent of the area under the normal
curve lies between the values of , approximately 95 percent of the
area lies between , and approximately 99.7 percent of the arealies
between , as shown in Figure C-1.As noted inAppendixA, and( X ; 3 X)

( X ;  2 X)
( X ;  X)

 X

 2
X X

'

X ' N A X,  2
X B
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1For the mathematically inclined student, here is the mathematical equation for the PDF of a
normally distributed r.v. X:

where exp{ } means e raised to the power the expression inside { }, e 2.71828 (the base of natural
logarithm), and and , known as the parameters of the distribution, are,
respectively, the mean, or expected value, and the variance of the distribution.

 X
2 L 3.14159.  X

L

f(X) =
1

 X22 
  exp e -

1
2  aX -  

X

 X
b2 f



discussed further subsequently, these areas can be used as measures of
probabilities. The total area under the curve is 1, or 100 percent.

4. A normal distribution is fully described by its two parameters, and .
That is, once the values of these two parameters are known, we can
find out the probability of X lying within a certain interval from the
mathematical formula given in footnote 1. Fortunately, we do not have to
compute the probabilities from this formula because these probabilities
can be obtained easily from the specially prepared table in Appendix E
(Table E-1). We will explain how to use this table shortly.

5. A linear combination (function) of two (or more) normally distributed random
variables is itself normally distributed—an especially important property of
the normal distribution in econometrics. To illustrate, let

and assume that X and Y are independent.2

Now consider the linear combination of these two variables: W= aX+
bY, where a and b are constant (e.g., W = 2X + 4Y); then

(C.2)

where

(C.3)  2
W = Aa2 2

X + b2 2
Y B

  W = (a X + b Y)

W ' N[ W,  2
W]

Y ' N A Y,  Y
2 B

X ' N A X,  2
X B

 X
2 X
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99.7% (approx.)

95% (approx.)

68% (approx.)

– 3σ – 2σ – σ μ σ 2σ 3σ

Areas under the normal curveFIGURE C-1

2Recall that two variables are independently distributed if their joint PDF (PMF) is the product
of their marginal PDFs, that is, , for all values of X and Y.f(X, Y) = f(X)f(Y)



Note that in Eq. (C.3) we have used some of the properties of the
expectation operator E and the variances of independent random
variables discussed in Appendix B. (See Section B.2.)3 Incidentally,
expression (C.2) can be extended straightforwardly to a linear
combination of more than two normal random variables.

6. For a normal distribution, skewness (S) is zero and kurtosis (K) is 3.

Example C.1.

Let X denote the number of roses sold daily by a florist in uptown Manhattan
and Y the number of roses sold daily by a florist in downtown Manhattan.
Assume that both X and Y are independently normally distributed as

and  . What is the average value of the roses
sold in two days by the two florists and the corresponding variance of sale?
Here Therefore, following expression (C.3), we have

and var(W) = 4 var(X) + 4 var(Y) = 580.
Therefore, W is distributed normally with a mean value of 500 and a variance
of 580: .

The Standard Normal Distribution

Although a normal distribution is fully specified by its two parameters,
(population) mean or expected value and variance, one normal distribution can
differ from another in either its mean or variance, or both, as shown in Figure C-2.

How do we compare the various normal distributions shown in Figure C-2?
Since these normal distributions differ in either their mean values or variances,
or both, let us define a new variable, Z, as follows:

(C.4)

If the variable X has a mean and a variance , it can be shown that the
Z variable defined previously has a mean value of zero and a variance of 1 (or
unity). (For proof, see Problem C.26). In statistics such a variable is known as a
unit or standardized variable.

If then Z as defined in Eq. (C.4) is known as a unit or stan-
dard normal variable, that is, a normal variable with zero mean and unit (or 1)
variance. We write such a normal variable as:

(C.5)4Z ' N(0, 1)

X ' N( X,  2
X),

 X
2 X

Z =
X -  X

 X

[W ' N(500, 580)]

E(W) = E(2X + 2Y) = 500
W = 2X + 2Y.

Y ' N(150, 81)X ' N(100, 64)
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3Note that if X and Y are normally distributed but are not independent, W is still normally
distributed with the mean given in Eq. (C.3) but with the following variance (cf. Eq. B.27):

4This can be proved easily by noting the property of the normal distribution that a linear
function of a normally distributed variable is itself normally distributed. Note that given and ,
Z is a linear function of X.

 2
X X

 w
2

= a2  
2

X + b2 
2

y + 2ab cov (X, Y).



Thus, any normally distributed r.v. with a given mean and variance can be converted to
a standard normal variable, which greatly simplifies our task of computing prob-
abilities, as we will show shortly.

The PDF and CDF (cumulative distribution function) of the standard normal
distribution are shown in Figures C-3(a) and C-3(b), respectively. (See Section
A.5 on the definitions of PDF and CDF. See also Tables E-1(a) and E-1(b) in
Appendix E.) The CDF, like any other CDF, gives the probability that the
standard normal variable takes a value equal to or less than z, that is, ,
where z is a specific numerical value of Z.

To illustrate how we use the standard normal distribution to compute
various probabilities, we consider several concrete examples.

Example C.2.

It is given that X, the daily sale of bread in a bakery, follows the normal
distribution with a mean of 70 loaves and a variance of 9; that is, .
What is the probability that on any given day the sale of bread is greater than 75
loaves?

Since X follows the normal distribution with the stated mean and
variance, it follows that

follows the standard normal distribution. Therefore, we want to find5

P(Z > 1.67)

Z =
75 - 70

3
= L 1.67

X ' N(70, 9)

P(Z … z)
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2

(b)(a)

 2

(c)

1μ μ

μ μ

μ μ

(a) Different means, same variance; (b) same mean, different variances; (c) different means,
different variances

FIGURE C-2

5Note: Whether we write or is immaterial because, as noted in Appendix
A, the probability that a continuous r.v. takes a particular value (e.g., 1.67) is always zero.

P(Z Ú 1.67)P(Z > 1.67)



Now Table E-1(b) in Appendix E gives the CDF of the standard normal
distribution between the values of to . For example, this
table shows that the probability that Z lies between to Z = 1.67 = 0.9525.
Therefore,

That is, the probability of the daily sale of bread exceeding 75 loaves of bread
is 0.0475 or about 4.75 percent. (See Figure C-3[a].)

Example C.3.

Continue with Example C.2, but suppose we now want to find out the
probability of a daily sale of bread of 75 or fewer loaves. The answer is
obvious from the previous example, namely, that this probability is 0.9525
which is shown in Figure C-3(b).

P(Z > 1.67) = 1 - 0.9525 = 0.0475

- 3.0
Z = 3.0Z = - 3.0
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 1.67 0 1.67
Z

0.9050

0.04750.0475

(a)

f (Z)

(b)

F (Z)

 3  2  1 0 1 1.67 2 3
Z

P ( Z ≤ 1.67 ) = 0.9525

P (– 1.67 ≤ Z ≤ 1.67) = 0.905

1
.95

(a) PDF and (b) CDF of the standard normal variableFIGURE C-3



Example C.4.

Continue with Example C.2, but now suppose we want to find out the
probability that the daily sale of bread is between 65 and 75 loaves. To
compute this probability, we first compute

Now from Table E-1 we see that

and

Therefore,

That is, the probability is 90.5 percent that the sales volume will lie between
65 and 75 loaves of bread per day, as shown in Figure C-3(a).

Example C.5.

Continue with the preceding example but now assume that we want to find
the probability that the sale of bread either exceeds 75 loaves or is less than
65 loaves per day. If you have mastered the previous examples, you can see
easily that this probability is 0.0950, as shown in Figure C-3(a).

As the preceding examples show, once we know that a particular r.v. follows
the normal distribution with a given mean and variance, all we have to do is
convert that variable into the standard normal variable and compute the
relevant probabilities from the standard normal table (Table E-1). It is indeed
remarkable that just one standard normal distribution table suffices to deal with
any normally distributed variable regardless of its specific mean and variance
values.

As we have remarked earlier, the normal distribution is probably the
single most important theoretical probability distribution because several
(continuous) random variables are found to be normally distributed or at least
approximately so. We will show this in Section C.2. But before that, we consider
some practical problems in dealing with the normal distribution.

P( - 1.67 … Z … 1.67) = 0.9525 - 0.0475 = 0.9050

P ( - 3.0 … Z … 1.67) = 0.9525

P(- 3.0 … Z … - 1.67) = 0.0475

 Z2 =
75 - 70

3
= L 1.67

 Z1 =
65 - 70

3
 = L - 1.67
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Random Sampling from a Normal Population

Since the normal distribution is used so extensively in theoretical and practical
statistics, it is important to know how we can obtain a random sample from such
a population. Suppose we wish to draw a random sample of 25 observations
from a normal probability distribution with a mean of zero and variance of 1 [i.e.,
the standard normal distribution, N(0, 1)]. How do we obtain such a sample?

Most statistical packages have routines, called random number generators,
to obtain random samples from the most frequently used probability
distributions. For example, using the MINITAB statistical package, we obtained
25 random numbers from an N(0, 1) normal population. These are shown in the
first column of Table C-1. Also shown in column 2 of the table is another
random sample of 25 observations obtained from a normal population with
mean 2 and variance 4 (i.e., N(2, 4)).6 Of course, you can generate as many
samples as wanted by the procedure just described.

The Sampling or Probability Distribution of the Sample Mean X

In Appendix B we introduced the sample mean (see Eq. [B.43]) as an estimator
of the population mean. But since the sample mean is based on a given sample,
its value will vary from sample to sample; that is, the sample mean can be
treated as an r.v., which will have its own PDF. Can we find out the PDF of the
sample mean? The answer is yes, provided the sample is drawn randomly.

468 APPENDIXES

TABLE C-1 25 RANDOM NUMBERS FROM N(0, 1) AND N(2, 4)

N(0, 1) N(2, 4) N(0, 1) N(2, 4)

–0.48524 4.25181 0.22968 0.21487

0.46262 0.01395 –0.00719 –0.47726

2.23092 0.09037 –0.71217 1.32007

–0.23644 1.96909 –0.53126 –1.25406

1.10679 1.62206 –1.02664 3.09222

–0.82070 1.17653 –1.29535 1.05375

0.86553 2.78722 –0.61502 0.58124

–0.40199 2.41138 –1.80753 1.55853

1.13667 2.58235 0.20687 1.71083

–2.05585 0.40786 –0.19653 0.90193

2.98962 0.24596 2.49463 –0.14726

0.61674 –3.45379 0.94602 –3.69238

–0.32833 3.29003

6MINITAB will generate a random sample from a normal population with a given mean vari-
ance. Actually, once we obtain a random sample from the standard normal distribution [i.e., N(0, 1)],
we can easily convert this sample to a normal population with a different mean and variance. Let

, where Z is N(0, 1), and where a and b are constants. Since Y is a linear combination of
a normally distributed variable, Y is itself normally distributed with , since

and var since . Hence, . Therefore, if
you multiply the values of Z by b and add a to it, you will have a sample from a normal population
with mean a and variance b2. Thus, if a = 2 and b = 2, we have .Y ' N(2, 4)

Y ' N(a, b2)var (Z) = 1(a + bZ) = b2 var (Z) = b2,E(Z) = 0
E(Y) = E(a + bZ) = a

Y = a + bZ



In Appendix B we described the notion of random sampling in an intuitive
way by letting each member of the population have an equal chance of being
included in the sample. In statistics, however, the term random sampling is used
in a rather special sense. We say that X1, X2, . . . , Xn constitutes a random sample of size
n if all these X’s are drawn independently from the same probability distribution (i.e., each
Xi has the same PDF). The X’s thus drawn are known as i.i.d. (independently and
identically distributed) random variables. In the remainder of this appendix and
the main chapters of the text, therefore, the term random sample will denote a
sample of i.i.d. random variables. For brevity, sometimes we will use the term an
i.i.d. sample to mean a random sample in the sense just described.

Thus, if each and if each Xi value is drawn independently,
then we say that X1, X2, . . . , Xn are i.i.d. random variables, the normal PDF
being their common probability distribution. Note two things about this
definition: First, each X included in the sample must have the same PDF and,
second, each X included in the sample is drawn independently of the others.

Given the very important concept of random sampling, we now develop
another very important concept in statistics, namely, the concept of the
sampling, or probability, distribution of an estimator, such as, say, the sample
mean, . A firm comprehension of this concept is absolutely essential to
understand the topic of statistical inference in Appendix D and for our
discussion of econometrics in the main chapters of the text. Since many students
find the concept of sampling distribution somewhat bewildering, we will
explain it with an example.

Example C.6.

Consideranormaldistributionwithameanvalueof10andavarianceof4,that is,
N(10, 4). From this population we obtain 20 random samples of 20 observations
each.Foreachsamplethusdrawn,weobtainthesamplemeanvalue, .Thuswe
have a total of 20 sample means. These are collected in Table C-2.

Let us group these 20 means in a frequency distribution, as shown in
Table C-3.

The frequency distribution of the sample means given in Table C-3 may be
called the empirical sampling, or probability, distribution of the sample means.7

Plotting this empirical distribution, we obtain the bar diagram shown in
Figure C-4.

If we connect the heights of the various bars shown in the figure, we obtain
the frequency polygon, which resembles the shape of the normal distribution. If
we had drawn many more such samples, would the frequency polygon take
the familiar bell-shaped curve of the normal distribution? That is, would the
sampling distribution of the sample mean in fact follow the normal distribu-
tion? Indeed, this is the case.

X

X

Xi
' N( X,  X

2 )
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7The sampling distribution of an estimator is like the probability distribution of any random
variable, except that the random variable in this case happens to be an estimator or a statistic. Put
differently, a sampling distribution is a probability distribution where the random variable is an estimator,
such as the sample mean or sample variance.



Here we rely on statistical theory: If X1, X2, . . . , Xn is a random sample from a
normal population with mean and variance , then the sample mean, ,
also follows the normal distribution with the same mean but with variance 

, that is,

(C.6)

In other words, the sampling (or probability) distribution of the sample mean, 
the estimator of , also follows the normal distribution with the same mean
as that of each Xi but with variance equal to the variance of divided by
the sample size n (for proof, see Problem C.25). As you can see for , then 7 1

Xi(=  2
X)

 X

X

X ' Na X, 
 X

2

n
b

 2
X

n

 X

X 2
XmX
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TABLE C-3 FREQUENCY DISTRIBUTION OF 20

SAMPLE MEANS

Range of Absolute Relative
sample mean frequency frequency

8.5–8.9 1 0.05

9.0–9.4 1 0.05

9.5–9.9 5 0.25

10.0–10.4 8 0.40

10.5–10.9 4 0.20

11.0–11.4 1 0.05

Total 20 1.00

TABLE C-2 20 SAMPLE MEANS FROM 

N(10, 4)

Sample means (X
_

i) 

9.641 10.134

10.040 10.249

9.174 10.321

10.840 10.399

10.480 9.404

11.386 8.621

9.740 9.739

9.937 10.184

10.250 9.765

10.334 10.410

Sum of 20 sample means = 201.05

= 0.339 Note : X =
gXi

n

Var (Xi) =

g (Xi - X )2

19

X =
201.05

20
= 10.052

Mean Value
8.75 9.25 9.75 10.25 10.75

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05
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Distribution of 20 sample means from N(10, 4) population FIGURE C-4



variance of the sample mean will be much smaller than the variance of any Xi. To
see this graphically, go to www.ruf.rice.edu/~lane/stat_sim and ruin the sam-
pling distribution applet. This will demonstrate how the distribution of sample
means changes for different population distributions and different sample sizes.

If we take the (positive) square root of the variance of , we obtain ,
which is called the standard error (se) of , which is akin to the concept of
standard deviation. Historically, the square root of the variance of a random
variable is called the standard deviation and the square root of the variance of
an estimator is called the standard error. Since an estimator is also a random
variable, there is no need to distinguish the two terms. But we will keep the
distinction because it is so well entrenched in statistics.

Returning to our example, then, the expected value of ,  should be
10, and its variance should be 4/20 = 0.20. If we take the mean value of the 20
sample means given in Table C-2, call it the grand mean , it should be about
equal to , and if we compute the sample variance of these 20 sample
means, it should be about equal to 0.20. As Table C-2 shows, , about
equal to the expected value of 10 and , which is not quite close
to 0.20. Why the difference?

Notice that the data given in Table C-2 is based only on 20 samples. As noted,
if we had many more samples (each based on 20 observations), we would come
close to the theoretical result of mean 10 and variance of 0.20. It is comforting to
know that we have such a useful theoretical result. As a consequence, we do not
have to conduct the type of sampling experiment shown in Table C-2, which
can be time-consuming. Just based on one random sample from the normal
distribution, we can say that the expected value of the sample mean is equal to
the true mean value of . As we will show in Appendix D, knowledge that a
particular estimator follows a particular probability distribution will
immensely help us in relating a sample quantity to its population counterpart.
In passing, note that as a result of Eq. (C.6), it follows at once that

(C.7)

that is, a standard normal variable. Therefore, you can easily compute from the
standard normal distribution table the probabilities that a given sample mean is
greater than or less than a given population mean. An example follows.

Example C.7.

Let X denote the number of miles per gallon achieved by cars of a particular
model. You are told that . What is the probability that, for a
random sample of 25 cars, the average gallons per mile will be

a. greater than 21 miles
b. less than 18 miles
c. between 19 and 21 miles?

X ' N(20, 4)

Z =
(X -  X)

 X
1n

' N(0, 1)

 X

var(Xi) = 0.339
X = 10.052

E(Xi)
X

Xi, E(Xi)

X

 X
1n

X
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Since X follows the normal distribution with mean = 20 and variance = 4,
we know that also follows the normal distribution with mean = 20 and
variance = 4/25. As a result, we know that

That is, Z follows the standard normal distribution. Therefore, we want to find

Before moving on, note that the sampling experiment we conducted in
Table C-2 is an illustration of the so-called Monte Carlo experiments or Monte
Carlo simulations. They are a very inexpensive method of studying properties
of various statistical models, especially when conducting real experiments
would be time-consuming and expensive (see Problems C.21, C.22, and C.23).

The Central Limit Theorem (CLT)

We have just shown that the sample mean of a sample drawn from a normal
population also follows the normal distribution. But what about samples
drawn from other populations? There is a remarkable theorem in statistics—the
central limit theorem (CLT)—originally proposed by the French mathematician
Laplace, which states that if X1, X2, . . . , Xn is a random sample from any
population (i.e., probability distribution) with mean and , the sample

mean tends to be normally distributed with mean and variance as the 
sample size increases indefinitely (technically, infinitely).8 Of course, if the
Xi happen to be from the normal population, the sample mean follows the nor-
mal distribution regardless of the sample size. This is shown in Figure C-5.

 2
X

n XX

 X
2 X

= 0.9876

P(19 … X … 21) = P( - 2.5 … Z … 2.5)

= P(Z 6 - 5) L 0

P(X 6 18) = PaZ 6
18 - 20

0.4
b

= 0.062 (From Table E = 1[b])

= P(Z 7 2.5)

P(X 7 21) = PaZ 7
21 - 20

0.4
b

Z =
X - 20

24/25
=

X - 20

0.4
' N(0, 1)

X
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8In practice, no matter what the underlying probability distribution is, the sample mean of a
sample size of at least 30 observations will be approximately normal.



C.2 THE t DISTRIBUTION

The probability distribution that we use most intensively in this book is the
t distribution, also known as Student’s t distribution.9 It is closely related to
the normal distribution.

To introduce this distribution, recall that if , the variable

that is, the standard normal distribution. This is so provided that both and
are known. But suppose we only know and estimate by its (sample) 

estimator , given in Eq. (B.44). Replacing by Sx, that is,

replacing the population standard deviation (s.d.) by the sample s.d., in
Equation (C.7), we obtain a new variable

(C.8)t =
X -  X

Sx/1n

 XS2
x =

g (Xi - X)2

n - 1

 2
X X 2

X

mX

Z =
(X -  X)

 X/2n
' N(0, 1)

X ' N( X,  2
X/n)
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Sampling distribution of X
(normal for all n)

Normal population

μ

(a)

μ

(b)

Sampling distribution of X
(approx. normal if n is large)

Non-normal population

–

–

The central limit theorem: (a) Samples drawn from a normal population;
(b) samples drawn from a non-normal population

FIGURE C-5

9Student was the pseudonym of W. S. Gosset, who used to work as a statistician for the Guinness
Brewery in Dublin. He discovered this probability distribution in 1908.



Statistical theory shows that the t variable thus defined follows Student’s t distri-
bution with (n – 1) d.f. Just as the mean and variance are the parameters of the nor-
mal distribution, the t distribution has a single parameter, namely, the d.f., which
in the present case are (n – 1). Note: Before we compute (and hence Sx), we must
first compute . But since we use the same sample to compute , we have (n – 1),
not n, independent observations to compute S2; so to speak, we lose 1 d.f.

In sum, if we draw random samples from a normal population with mean 
and variance but replace by its estimator , the sample mean follows
the t distribution. A t-distributed r.v. is often designated as tk, where k denotes
the d.f. (To avoid confusion with the sample size n, we use the subscript k to de-
note the d.f. in general.) Table E-2 in Appendix E tabulates the t distribution for
various d.f. We will demonstrate the use of this table shortly.

Properties of the t Distribution

1. The t distribution, like the normal distribution, is symmetric, as shown in
Figure C-6.

2. The mean of the t distribution, like the standard normal distribution, is
zero, but its variance is k/(k – 2). Therefore, the variance of the t distrib-
ution is defined for d.f. greater than 2.

We have already seen that for the standard normal distribution the variance
is always 1, which means that the variance of the t distribution is larger than the
variance of the standard normal distribution, as shown in Figure C-6. In other
words, the t distribution is flatter than the normal distribution. But as k in-
creases, the variance of the t distribution approaches the variance of the stan-
dard normal distribution, namely, 1. Thus, if the d.f. are k = 10, the variance of
the t distribution is 10/8 = 1.25; if k = 30, the variance becomes 30/28 = 1.07;
and when k = 100, the variance becomes 100/98 = 1.02, which is not much
greater than 1. As a result, the t distribution approaches the standard normal distrib-
ution as the d.f. increase. But notice that even for k as small as 30, there is not a

XS2
x 2

X 2
X

 X

XX
S2
x
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k = 120 (normal)

k = 20 

k = 5

0
t

The t distribution for selected degrees of freedom (d.f.)FIGURE C-6



great difference in the variances of the t and the standard normal variable.
Therefore, the sample size does not have to be enormously large for the t distri-
bution to approximate the normal distribution.

To illustrate the t table (Table E-2) given in Appendix E, we now consider a
few examples.

Example C.8.

Let us revisit Example C.2. In a period of 15 days the sale of bread averaged
74 loaves with a (sample) s.d. of 4 loaves. What is the probability of obtaining
such a sale given that the true average sale is 70 loaves a day?

If we had known the true , we could have used the standard normal Z
variable to answer this question. But since we know its estimator, S, we can
use Eq. (C.8) to compute the t value and use Table E-2 in Appendix E to
answer this question as follows:

Notice that in this example the d.f. are 14  (15 – 1). (Why?)
As Table E-2 shows, for 14 d.f. the probability of obtaining a t value of 2.145

or greater is 0.025 (2.5 percent), of 2.624 or greater is 0.01 (1 percent), and of
3.787 or greater is 0.001 (0.1 percent). Therefore, the probability of obtaining a
t value of as much as 3.873 or greater must be much smaller than 0.001.

Example C.9.

Let us keep the setup of Example C.8 intact except to assume that the sale of
bread averages 72 loaves in the said 15-day period. Now what is the proba-
bility of obtaining such a sales figure?

Following exactly the same line of reasoning, the reader can verify that the
computed t value is 1.936. Now from Table E-2 we observe that for 14 d.f.
the probability of obtaining a t value of 1.761 or greater is 0.05 (or 5 percent)
and that of 2.145 or greater is 0.025 (or 2.5 percent). Therefore, the probability
of obtaining a t value of 1.936 or greater lies somewhere between 2.5 and
5 percent.

Example C.10.

Now assume that in a 15-day period the average sale of bread was 68 loaves
with an s.d. of 4 loaves a day. If the true mean sales are 70 loaves a day, what
is the probability of obtaining such a sales figure?

Plugging in the relevant numbers in Equation (C.8), we find that the
t value in this case is –1.936. But since the t distribution is symmetric, the

'

'

 = 3.873

 t =
74 - 70

4>115
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probability of obtaining a t value of –1.936 or smaller is the same as that of
obtaining a t value of +1.936 or greater, which, as we saw earlier, is some-
where between 2.5 and 5 percent.

Example C.11.

Again, continue with the previous example. What is the probability that the
average sale of bread in the said 15-day period was either greater than
72 loaves or less than 68 loaves?

From Examples C.9 and C.10 we know that the probability of the average
sale exceeding 72 or being less than 68 is the same as the probability that a
t value either exceeds 1.936 or is smaller than –1.936.10 These probabilities, as
we saw previously, are each between 0.025 and 0.05. Therefore, the total prob-
ability will be between 0.05 or 0.10 (or between 5 and 10 percent). In cases
like this we would, therefore, compute the probability that |t|  1.936, where
|t| means the absolute value of t, that is, the t value disregarding the sign. (For
example, the absolute value of 2 is 2 and the absolute value of −2 is also 2.)

From the preceding examples we see that once we compute the t value from
Eq. (C.8), and once we know the d.f., computing the probabilities of obtaining
a given t value involves simply consulting the t table. We will consider further
uses of the t table in the regression context at appropriate places in the text.

Example C.12.

For the years 1972 to 2007 the Scholastic Aptitude Test (S.A.T.) scores were as
follows:

Male Female

Critical reading (average) 510.03 503.00

(36.54) (51.09)

Math (average) 524.83 486.36

(48.31) (102.07)

Note: The figures in parentheses are the variances.

A random sample of 10 male S.A.T. scores on the critical reading test gave
the (sample) mean value of 510.12 and the (sample) variance of 41.08. What
is the probability of obtaining such a score knowing that for the entire
1972–2007 period the (true) average score was 510.03?

With the knowledge of the t distribution, we can now answer this question
easily. Substituting the relevant values in Eq. (C.8), we obtain

t =
510.12 - 510.03

241.08
10

= 0.0444
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10Becarefulhere.Thenumber−2.0 issmaller than−1.936,andthenumber−2.3 issmaller than−2.0.



This t value has the t distribution with 9 d.f. (Why?) From Table E-2 we
observe that the probability of obtaining such a t value is greater than 0.25 or
25 percent.

A note on the use of the t table (Table E-2): With the advent of user-friendly statisti-
cal software packages and electronic statistical tables, Table E-2 is now of lim-
ited value because it gives probabilities for a few selected d.f. This is also true of
the other statistical tables given in Appendix E. Therefore, if you have access to
one or more statistical software packages, you can compute probabilities for
any given degrees of freedom much more accurately than using those given in
the tables in Appendix E.

C.3 THE CHI-SQUARE ( 2) PROBABILITY DISTRIBUTION

Now that we have derived the sampling distribution of the sample mean ,
(normal if the true standard deviation is known or the t distribution if we use
the sample standard deviation) can we derive the sampling distribution of the

sample variance, , since we use the sample mean and sample
variance very frequently in practice? The answer is yes, and the probability dis-
tribution that we need for this purpose is the chi-square ( 2) probability dis-
tribution, which is very closely related to the normal distribution. Note that just
as the sample mean will vary from sample to sample, so will the sample vari-
ance. That is, like the sample mean, the sample variance is also a random variable.
Of course, when we have a specific sample, we have a specific sample mean and
a specific sample variance value.

We already know that if a random variable (r.v.) X follows the normal distri-
bution with mean and variance , that is, , then the r.v.

is a standard normal variable, that is, Z N(0, 1). Statistical
theory shows that the square of a standard normal variable is distributed as a
chi-square ( ) probability distribution with one degree of freedom (d.f.). Symbolically,

(C.9)

where the subscript (1) of shows the degrees of freedom (d.f.)—1 in the pre-
sent case. As in the case of the t distribution, the d.f. is the parameter of the chi-
square distribution. In Equation (C.9) there is only 1 d.f. since we are
considering only the square of one standard normal variable.

A note on degrees of freedom: In general, the number of d.f. means the number
of independent observations available to compute a statistic, such as the sample
mean or sample variance. For example, the sample variance of an r.v. X is de-
fined as . In this case we say that the number of d.f. is
(n − 1) because if we use the same sample to compute the sample mean ,
around which we measure the sample variance, so to speak, we lose one d.f.;
that is, we have only (n − 1) independent observations. An example will clarify
this further. Consider three X values: 1, 2, and 3. The sample mean is 2. Now
since always, of the three deviations (1 – 2), (2 – 2), and (3 – 2),g (Xi - X) = 0

X
S2

= g (Xi - X)2>(n - 1)

 2

Z2
=  2

(1)

 2

'Z = (X -  X)> X

X ' N( X,  2
X) 2

X X

X

S2
=

©(Xi - X)2

n - 1

X

␹
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only two can be chosen arbitrarily; the third must be fixed in such a way that the
condition is satisfied.11 Therefore, in this case, although there
are three observations, the d.f. are only 2.

Now let Z1, Z2, . . . , Zk be k independent unit normal variables (i.e., each Z is a
normal r.v. with zero mean and unit variance). If we square each of these Z’s, we
can show that the sum of the squared Z’s also follows a chi-square distribution
with k d.f. That is,

(C.10)

Note that the d.f. are now k since there are k independent observations in the
sum of squares shown in Equation (C.10).

Geometrically, the distribution appears as in Figure C-7.

Properties of the Chi-square Distribution

1. As Figure C-7 shows, unlike the normal distribution, the chi-square dis-
tribution takes only positive values (after all, it is the distribution of a
squared quantity) and ranges from 0 to infinity.

2. As Figure C-7 also shows, unlike the normal distribution, the chi-square
distribution is a skewed distribution, the degree of the skewness depending
on the d.f. For comparatively few d.f. the distribution is highly skewed to

 2

aZ2
i = Z2

1 + Z2
2 + Á Z2

k
'  2

(k)

g (Xi - X) = 0
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11Note that , because and ,
because is a constant, given a particular sample.X

gX = nXX = gXi>ng (Xi - X) = gXi - gX = nX - nX = 0



the right, but as the d.f. increase, the distribution becomes increasingly
symmetrical and approaches the normal distribution.

3. The expected, or mean, value of a chi-square r.v. is k and its variance is 2k,
where k is the d.f. This is a noteworthy property of the chi-square distribution
in that its variance is twice its mean value.

4. If Z1 and Z2 are two independent chi-square variables with k1 and k2 d.f.,
then their sum (Z1+ Z2) is also a chi-square variable with d.f. = (k1+ k2).

Table E-4 in Appendix E tabulates the probabilities that a particular value
exceeds a given number, assuming the d.f. underlying the chi-square value are
known or given. Although specific applications of the chi-square distribution in
regression analysis will be considered in later chapters, for now we will look at
how to use the table.

Example C.13.

For 30 d.f., what is the probability that an observed chi-square value is
greater than 13.78? Or greater than 18.49? Or greater than 50.89?

From Table E-4 in Appendix E we observe that these probabilities are
0.995, 0.95, and 0.01, respectively. Thus, for 30 d.f. the probability of obtain-
ing a chi-square value of approximately 51 is very small, only about 1 per-
cent, but for the same d.f. the probability of obtaining a chi-square value of
approximately 14 is very high, about 99.5 percent.

Example C.14.

If S2 is the sample variance obtained from a random sample of n observations
from a normal population with the variance of , statistical theory shows
that the quantity

(C.11)

That is, the ratio of the sample variance to population variance multiplied by
the d.f. (n – 1) follows the chi-square distribution with (n – 1) d.f. Suppose a
random sample of 20 observations from a normal population with 
gave a sample variance of . What is the probability of obtaining such
a sample variance?

Putting the appropriate numbers in the preceding expression, we find that
19(16/8) = 38 is a chi-square variable with 19 d.f. And from Table E-4 in
Appendix E we find that for 19 d.f. if the true were 8, the probability of
finding a chi-square value of 38 is 0.005, a very small probability. There is
doubt whether the particular random sample came from a population with a
variance value of 8. But we will discuss this more in Appendix D.

In Appendix D we will show how Eq. (C.11) enables us to test hypotheses
about if we have knowledge only about the sample variance S2. 2

LL

 2

S2
= 16

 2
= 8

(n - 1)a S2

 2
b '  2

(n- 1)

 2

 2
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C.4 THE F DISTRIBUTION

Another probability distribution that we find extremely useful in econometrics
is the F distribution. The motivation behind this distribution is as follows. Let
X1, X2, . . . , Xm be a random sample of size m from a normal population with
mean and variance , and let Y1, Y2, . . . , Yn be a random sample of size n
from a normal population with mean and variance . Assume that these
two samples are independent and are drawn from populations that are nor-
mally distributed. Suppose we want to find out if the variances of the two nor-
mal populations are the same, that is, whether . Since we cannot
directly observe the two population variances, let us suppose we obtain their
estimators as follows:

(C.12)

(C.13)

Now consider the following ratio:

(C.14)12

If the two population variances are in fact equal, the F ratio given in
Equation (C.14) should be about 1, whereas if they are different, the F ratio
should be different from 1; the greater the difference between the two variances,
the greater the F value will be.

Statistical theory shows that if (i.e., the two population variances are
equal), the F ratio given in Eq. (C.14) follows the F distribution with (m – 1)
(numerator) d.f. and (n – 1) (denominator) d.f.13 And since the F distribution is
often used to compare the variances of two (approximately normal) populations,
it is also known as the variance ratio distribution. The F ratio is often designated

 2
X =  2

y

 =
g (Xi - X)2>(m - 1)

g (Yi - Y)2>(n - 1)

 F =
S2
X

S2
Y

S2
Y = a

(Yi - Y)2

n - 1

S2
X = a

(Xi - X)2

m - 1

 2
X =  2

y

 2
y y

 2
X X
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12By convention, in computing the F value the variance with the larger numerical value is put in
the numerator. That is why the F value is always 1 or greater than 1. Also, note that if a variable, say,
W, follows the F distribution with m and n d.f. in the numerator and denominator, respectively, then
the variable (1/W) also follows the F distribution but with n and m d.f. in the numerator and
denominator, respectively. More specifically,

where denotes the level of significance, which we will discuss in Appendix D.

13To be precise, follows the F distribution. But if , we have the F ratio given in 

Eq. (C.14). Note that in computing the two sample variances we lose 1 d.f. for each, because in each
case, we use the same sample to compute the sample mean, which consumes 1 d.f.

 2
X =  2

y

S2
x
> 2

X

S
2
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F(1 -  ),m,n =
1

F ,n,m



as , where the double subscript indicates the parameters of the distribution,
namely, the numerator and the denominator d.f. (in the preceding example,
k1= [m – 1] and k2= [n – 1]).14

Properties of the F Distribution

1. Like the chi-square distribution, the F distribution is also skewed to the
right and also ranges between 0 and infinity (see Figure C-8).

2. Also, like the t and chi-square distributions, the F distribution ap-
proaches the normal distribution as k1 and k2, the d.f., become large
(technically, infinite).

3. The square of a t-distributed r.v. with k d.f. has an F distribution with 1
and k d.f. in the numerator and denominator, respectively. That is,

(C.15)

We will see the usefulness of this property in Chapter 4.
4. Just as there is a relationship between the F and t distributions, there is a

relationship between the F and chi-square distributions, which is

(C.16)

That is, a chi-square variable divided by its d.f., m, approaches the F
variable with m d.f. in the numerator and very large (technically, infinite)
d.f. in the denominator. Therefore, in very large samples, we can use the

F(m,n) =
 2

m
 as n: q

t2
k = F1,k

Fk1,k2
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14The F distribution has two sets of d.f. because statistical theory shows that the F distribution
is the distribution of the ratio of two independent chi-square random variables divided by their
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distribution instead of the F distribution, and vice versa. We can write
Eq. (C.16) alternatively as

(C.17)

That is, numerator d.f. times equals a chi-square value with numer-
ator d.f., provided the denominator degrees of freedom are sufficiently
large (technically, infinite).

The F distribution is tabulated in Table E-3 in Appendix E. We will consider
its specific uses in the context of regression analysis in the text, but in the mean-
time let us see how this table is used.

Example C.15.

Let us return to the S.A.T. example (Example C.12). Assume that the critical
reading scores for males and females are each normally distributed. Further
assume that average scores and their variances given in the preceding table
represent sample values from a much larger population. Based on the two
sample variances, can we assume that the two population variances are the
same?

Since the critical reading scores of the male and female populations are as-
sumed to be normally distributed random variables, we can compute the F
ratio given in Eq. (C.14) as

which has the F distribution with 35 d.f. in the numerator and 35 d.f. in the
denominator. (Note: In computing the F value, we are putting the larger of
the two variances in the numerator.) Although Table E-3 in Appendix E does
not give the F value corresponding to d.f. of 35, if we use 30 d.f. for both the
numerator and the denominator, the probability of obtaining an F value of
about 1.40 lies somewhere between 10 and 25 percent. Since this probability
is not very low (more about this in Appendix D), we could say there does not
seem to be enough evidence to claim the two population variances are un-
equal. Therefore, we decide there is not a difference in the population vari-
ances of male and female scores on the critical reading part of the S.A.T. test.
Remember that if the two population variances are the same, the F value will
be 1, but if they are different, the F value will be increasingly greater than 1.

Example C.16.

An instructor gives the same econometrics examination to two classes, one
consisting of 100 students and the other consisting of 150 students. He draws
a random sample of 25 students from the first class and a random sample of
31 students from the other class and observes that the sample variances of

F =
51.09

36.54
= 1.3982

F(m,n)

m # F(m,n) =  2
m as n: q

 2
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the grade-point average in the two classes are 100 and 132, respectively. It is
assumed that the r.v., grade-point average, in the two classes is normally dis-
tributed. Can we assume that the variances of grade-point average in the two
classes are the same?

Since we are dealing with two independent random samples drawn from
two normal populations, applying the F ratio given in Eq. (C.14), we find that

follows the F distribution with 30 and 24 d.f., respectively. From the F values
given in Table E-3 we observe that for 30 numerator d.f. and 24 denominator
d.f. the probability of obtaining an F value of as much as 1.31 or greater is
25 percent. If we regard this probability as reasonably high, we can conclude
that the (population) variances in the two econometrics classes are (statisti-
cally) the same.

C.5 SUMMARY

In Appendix A we discussed probability distributions in general terms. In this
appendix, we considered four specific probability distributions—the normal,
the t, the chi-square, and the F—and the special features of each distribution, in
particular, the situations in which these distributions can be useful. As we will
see in the main chapters of this book, these four PDFs play a very pivotal role in
econometric theory and practice. Therefore, a solid grasp of the fundamentals
of these distributions is essential to follow the text material. You may want to re-
turn to this appendix from time to time to consult specific points of these distri-
butions when they are referred to in the main chapters.

KEY TERMS AND CONCEPTS

The key terms and concepts introduced in this appendix are

F =
132

100
= 1.32

The normal distribution
a) unit or standardized 

variable
b) unit or standard normal

variable
Random number generators
Random sampling; i.i.d. random

variables
Sampling, or probability, distribution

of an estimator (e.g., the sample
mean)

Standard error (se)

Monte Carlo experiments or
simulations

Central limit theorem (CLT)
t distribution (Student’s t

distribution)
Chi-square ( ) probability

distribution
Degrees of freedom (d.f.)
F distribution

a) variance ratio distribution
b) numerator and denominator

degrees of freedom (d.f.)

 2



QUESTIONS

C.1. Explain the meaning of
a. Degrees of freedom.
b. Sampling distribution of an estimator.
c. Standard error.

C.2. Consider a random variable (r.v.) X N(8, 16). State whether the following
statements are true or false:
a. The probability of obtaining an X value of greater than 12 is about 0.16.
b. The probability of obtaining an X value between 12 and 14 is about 0.09.
c. The probability that an X value is more than 2.5 standard deviations from

the mean value is 0.0062.
C.3. Continue with Question C.2.

a. What is the probability distribution of the sample mean obtained from a
random sample from this population?

b. Does your answer to (a) depend on the sample size? Why or why not?
c. Assuming a sample size of 25, what is the probability of obtaining an of 6?

C.4. What is the difference between the t distribution and the normal distribution?
When should you use the t distribution?

C.5. Consider an r.v. that follows the t distribution.
a. For 20 degrees of freedom (d.f.), what is the probability that the t value will

be greater than 1.325?
b. What is the probability that the t value in C.5(a) will be less than −1.325?
c. What is the probability that a t value will be greater than or less than 1.325?
d. Is there a difference between the statement in C.5(c) and the statement,

“What is the probability that the absolute value of t, |t|, will be greater than
1.325?”

C.6. True or false. For a sufficiently large d.f., the t, the chi-square, and the F distribu-
tions all approach the unit normal distribution.

C.7. For a sufficiently large d.f., the chi-square distribution can be approximated by
the standard normal distribution as: Let
k = 50.
a. Use the chi-square table to find out the probability that a chi-square value

will exceed 80.
b. Determine this probability by using the preceding normal approximation.
c. Assume that the d.f. are now 100. Compute the probability from the chi-

square table as well as from the given normal approximation. What conclu-
sions can you draw from using the normal approximation to the chi-square
distribution?

C.8. What is the importance of the central limit theorem in statistics?
C.9. Give examples where the chi-square and F probability distributions can be

used.

PROBLEMS

C.10. Profits (X) in an industry consisting of 100 firms are normally distributed with a
mean value of $1.5 million and a standard deviation (s.d.) of $120,000. Calculate
a. P(X  $1 million)
b. P($800,000  X   $1,300,000)

Z = 22 2
- 12k - 1 ' N(0, 1).

X

X

'
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C.11. In Problem C.10, if 10 percent of the firms are to exceed a certain profit, what
is that profit?

C.12. The grade-point average in an econometrics examination was normally dis-
tributed with a mean of 75. In a sample of 10 percent of students it was found
that the grade-point average was greater than 80. Can you tell what the s.d. of
the grade-point average was?

C.13. The amount of toothpaste in a tube is normally distributed with a mean of
6.5 ounces and an s.d. of 0.8 ounces. The cost of producing each tube is 50 cents.
If in a quality control examination a tube is found to weigh less than 6 ounces,
it is to be refilled to the mean value at a cost of 20 cents per tube. On the other
hand, if the tube weighs more than 7 ounces, the company loses a profit of
5 cents per tube.

If 1000 tubes are examined,
a. How many tubes will be found to contain less than 6 ounces?
b. In that case, what will be the total cost of the refill?
c. How many tubes will be found to contain more than 7 ounces? In that case,

what will be the amount of profits lost?
C.14. If X N(10, 3) and Y N(15, 8), and if X and Y are independent, what is the

probability distribution of
a. X + Y b. X – Y c. 3X d. 4X + 5Y

C.15. Continue with Problem C.14, but now assume that X and Y are positively cor-
related with a correlation coefficient of 0.6.

C.16. Let X and Y represent the rates of return (in percent) on two stocks. You are
told that X N(15, 25) and Y N(8, 4), and that the correlation coefficient be-
tween the two rates of return is −0.4. Suppose you want to hold the two stocks
in your portfolio in equal proportion. What is the probability distribution of
the return on the portfolio? Is it better to hold this portfolio or to invest in only
one of the two stocks? Why?

C.17. Return to Example C.12. A random sample of 10 female S.A.T. scores on the
math test gave a sample variance of 142. Knowing that the true variance is
102.07, what is the probability of obtaining such a sample value? Which prob-
ability distribution will you use to answer this question? What are the as-
sumptions underlying that distribution?

C.18. The 10 economic forecasters of a random sample were asked to forecast the
rate of growth of the real gross national product (GNP) for the coming year.
Suppose the probability distribution of the r.v.—forecast—is normal.
a. The probability is 0.10 that the sample variance of the forecast is more than

X percent of the population variance. What is the value of X?
b. If the probability is 0.95 so that the sample variance is between X and Y per-

cent of the population variance, what will be the values of X and Y?
C.19. When a sample of 10 cereal boxes of a well-known brand was reweighed, it

gave the following weights (in ounces):

16.13 16.02 15.90 15.83 16.00
15.79 16.01 16.04 15.96 16.20

a. What is the sample mean? And the sample variance?
b. If the true mean weight per box was 16 ounces, what is the probability of

obtaining such a (sample) mean? Which probability distribution did you
use and why?

''

''
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C.20. The same microeconomics examination was given to students at two different
universities. The results were as follows:

where the ’s denote the grade averages in the two samples, the ’s, the two
sample variances; and the n’s, the sample sizes. How would you test the hy-
pothesis that the population variances of the test scores in the two universities
are the same? Which probability distribution would you use? What are the
assumptions underlying that distribution?

C.21. Monte Carlo Simulation. Draw 25 random samples of 25 observations from the
t distribution with k = 10 d.f. For each sample compute the sample mean.
What is the sampling distribution of these sample means? Why? You may use
graphs to illustrate your answer.

C.22. Repeat Problem C.21, but this time use the distribution with 8 d.f.
C.23. Repeat Problem C.21, but use the F distribution with 10 and 15 d.f. in the

numerator and denominator, respectively.
C.24. Using Eq. (C.16), compare the values of with F10,10, F10,20, and F10,60. What

general conclusions do you draw?
C.25. Given , prove that . Hint:

. Expand this, recalling some of the properties of the 

variance discussed in Appendix B and the fact that the Xi are i.i.d.

C.26. Prove that , has zero mean and unit variance. Note that this is true

whether Z is normal or not. Hint: .E(Z) = E AX -  
X

 X
B =

1
 X

 E (X -  X)

Z = AX -  
X

 X
B

var AX1
+ X

2
+ .  .  . + X

n

n B
var (X) =X ' N( X,  2

X>n)X ' N( X,  2
X)

 2
(10)

 2

S2X

X2 = 70, S2
2 = 7.2, n2 = 40

X1 = 75, S2
1 = 9.0, n1 = 50
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APPENDIX D
STATISTICAL INFERENCE:

ESTIMATION AND
HYPOTHESIS TESTING

Equipped with the knowledge of probability; random variables; probability
distributions; and characteristics of probability distributions, such as expected
value, variance, covariance, correlation, and conditional expectation, in this
appendix we are now ready to undertake the important task of statistical
inference. Broadly speaking, statistical inference is concerned with drawing
conclusions about the nature of some population (e.g., the normal) on the basis
of a random sample that has supposedly been drawn from that population.
Thus, if we believe that a particular sample has come from a normal population
and we compute the sample mean and sample variance from that sample, we
may want to know what the true (population) mean is and what the variance of
that population may be.

D.1 THE MEANING OF STATISTICAL INFERENCE1

As noted previously, the concepts of population and sample are extremely impor-
tant in statistics. Population, as defined in Appendix A, is the totality of all possible
outcomes of a phenomenon of interest (e.g., the population of New York City). A
sample is a subset of a population (e.g., the people living in Manhattan, which is
one of the five boroughs of the city). Statistical inference, loosely speaking, is the
study of the relationship between a population and a sample drawn from that
population. To understand what this means, let us consider a concrete example.

1Broadly speaking, there are two approaches to statistical inference, Bayesian and classical. The
classical approach, as propounded by statisticians Neyman and Pearson, is generally the ap-
proach that a beginning student in statistics first encounters. Although there are basic philosophi-
cal differences in the two approaches, there may not be gross differences in the inferences that 
result.



Table D-1 gives data on the price to earnings ratio—the famous P/E ratio—for
28 companies listed on the New York Stock Exchange (NYSE) for February 2,
2004 (at about 3 p.m.).2 Assume that this is a random sample from the universe
(population) of stocks listed on the NYSE, some 3000 or so. The P/E ratio of
27.96 for Alcoa (AA) listed in this table, for example, means that on that day the
stock was selling at about 28 times its annual earnings. The P/E ratio is one of
the key indicators for investors in the stock market.

Suppose our primary interest is not in any single P/E ratio, but in the aver-
age P/E ratio in the entire population of the NYSE listed stocks. Since we can
obtain data on the P/E ratios of all the stocks listed on the NYSE, in principle,
we can easily compute the average P/E ratio. In practice, that would be time-
consuming and expensive. Could we use the data given in Table D-1 to com-
pute the average P/E ratio of the 28 companies listed in this table and use this
(sample) average as an estimate of the average P/E ratio in the entire popula-
tion of the stocks listed on the NYSE? Specifically, if we let X = P/E ratio of a
stock and = the average P/E ratio of the 28 stocks given in Table D-1, can
we tell what the expected P/E ratio, E(X), is in the NYSE population as a whole?
This process of generalizing from the sample value (e.g., ) to the population value
(e.g., E[X]) is the essence of statistical inference. We will now discuss this topic in
some detail.

X

X
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PRICE TO EARNINGS (P/E) RATIOS OF 28 COMPANIES 

ON THE NEW YORK STOCK EXCHANGE (NYSE)

Company P/E Company P/E

AA 27.96 INTC 36.02

AXP 22.90 IBM 22.94

T 8.30 JPM 12.10

BA 49.78 JNJ 22.43

CAT 24.68 MCD 22.13

C 14.55 MRK 16.48

KO 28.22 MSFT 33.75

DD 28.21 MMM 26.05

EK 34.71 MO 12.21

XOM 12.99 PG 24.49

GE 21.89 SBC 14.87

GM 9.86 UTX 14.87

HD 20.26 WMT 27.84

HON 23.36 DIS 37.10

Mean = 23.25, variance = 90.13, standard deviation = 9.49

Source: www.stockselector.com.

TABLE D-1

2Since the price of the stock varies from day to day, the P/E ratio will vary from day to day, even
though the earnings do not change. The stocks given in this table are members of the so-called
Dow 30. In reality stock prices change very frequently when the stock market is open, but most
newspapers quote the P/E ratios as of the end of the business day.



D.2 ESTIMATION AND HYPOTHESIS TESTING:TWIN BRANCHES

OF STATISTICAL INFERENCE

From the preceding discussion it can be seen that statistical inference proceeds
along the following lines. There is some population of interest, say, the stocks
listed on the NYSE, and we are interested in studying some aspect of this
population, say, the P/E ratio. Of course, we may not want to study each and
every P/E ratio, but only the average P/E ratio. Since collecting information on
all the NYSE P/E ratios needed to compute the average P/E ratio is expensive
and time-consuming, we may obtain a random sample of only a few stocks to
get the P/E ratio of each of these sampled stocks and compute the sample
average P/E ratio, say, . is an estimator, also known as a (sample) statis-
tic, of the population average P/E ratio, E(X), which is called the (population)
parameter. (Refer to the discussion in Appendix B). For example, the mean
and variance are the parameters of the normal distribution. A particular nu-
merical value of the estimator is called an estimate (e.g., an value of 23).
Thus, estimation is the first step in statistical inference. Having obtained an
estimate of a parameter, we next need to find out how good that estimate is,
for an estimate is not likely to equal the true parameter value. If we obtain two
or more random samples of 28 stocks each and compute for each of these
samples, the two estimates will probably not be the same. This variation in
estimates from sample to sample is known as sampling variation or sampling
error.3 Are there any criteria by which we can judge the “goodness” of an esti-
mator? In Section D.4 we discuss some of the commonly used criteria to judge
the goodness of an estimator.

Whereas estimation is one side of statistical inference, hypothesis testing is
the other. In hypothesis testing we may have prior judgment or expectation
about what value a particular parameter may assume. For example, prior
knowledge or an expert opinion tells us that the true average P/E ratio in the
population of NYSE stocks is, say, 20. Suppose a particular random sample of
28 stocks gives this estimate as 23. Is this value of 23 close to the hypothesized
value of 20? Obviously, the number 23 is different from the number 20. But the
important question here is this: Is 23 statistically different from 20? We know that
because of sampling variation there is likely to be a difference between a
(sample) estimate and its population value. It is possible that statistically the
number 23 may not be very different from the number 20, in which case we
may not reject the hypothesis that the true average P/E ratio is 20. But how do
we decide that? This is the essence of the topic of hypothesis testing, which we
will discuss in Section D.5.

With these preliminaries, let us examine the twin topics of estimation and
hypothesis testing in some detail.

X

X

XX
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3Notice that this sampling error is not deliberate, but it occurs because we have a random 
sample and the elements included in the sample will vary from sample to sample. This is inevitable
in any analysis based on a sample.



D.3 ESTIMATION OF PARAMETERS

In Appendix C we considered several theoretical probability distributions.
Often we know or are willing to assume that a random variable X follows a
particular distribution, but we do not know the value(s) of the parameter(s) of
the distribution. For example, if X follows the normal distribution, we may
want to know the values of its two parameters, namely, the mean E(X)
and the variance . To estimate these unknowns, the usual procedure is to as-
sume that we have a random sample of size n from the known probability distri-
bution and to use the sample to estimate the unknown parameters. Thus, we
can use the sample mean as an estimate of the population mean (or expected
value) and the sample variance as an estimate of the population variance. This
procedure is known as the problem of estimation. The problem of estimation can
be broken down into two categories: point estimation and interval estimation.

To fix the ideas, assume that the random variable (r.v.), X (P/E ratio), is
normally distributed with a certain mean and a certain variance, but for now
we do not know the values of these parameters. Suppose, however, we have a
random sample of 28 P/E ratios (28 X’s) from this normal population, as shown
in Table D-1.

How can we use these sample data to compute the population mean value
= E(X) and the population variance More specifically, suppose our

immediate interest is in finding out .4 How do we go about it? An obvious
choice is the sample mean of the 28 P/E ratios shown in Table D-1, which is
23.25. We call this single numerical value the point estimate of , and the for-
mula that we used to compute this point estimate is called the
point estimator, or statistic. Notice that a point estimator, or a statistic, is an r.v., as
its value will vary from sample to sample. (Recall our sampling experiment in
Example C-6.) Therefore, how reliable is a specific estimate such as 23.25 of the
true ? In other words, how can we rely on just one estimate of the true popu-
lation mean? Would it not be better to state that although is the single best
guess of the true population mean, the interval, say, from 19 to 24, most likely
includes the true ? This is essentially the idea behind interval estimation. We
will now consider the actual mechanics of obtaining interval estimates.

The key idea underlying interval estimation is the notion of sampling, or
probability, distribution of an estimator such as the sample mean , which we
have already discussed in Appendix C. In Appendix C we saw that if an r.v.

then
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4This discussion can be easily extended to estimate .␴2
X



That is, the sampling distribution of the sample mean also follows the normal
distribution with the stated parameters.5

As pointed out in Appendix C, is not generally known, but if we use its
estimator , then we know that

(D.3)

follows the t distribution with (n - 1) degrees of freedom (d.f.).
To see how Equation (D.3) helps us to obtain an interval estimation of the 

of our P/E example, note that we have a total of 28 observations and, therefore,
27 d.f. Now if we consult the t table (Table E-2) given in Appendix E, we notice
that for 27 d.f.,

(D.4)

as shown in Figure D-1. That is, for 27 d.f., the probability is 0.95 (or 95 percent)
that the interval (-2.052, 2.052) will include the t value computed from Eq. (D.3).6

These t values, as we will see shortly, are known as critical t values; they show
what percentage of the area under the t distribution curve (see Figure D-1) lies
between those values (note that the total area under the curve is 1); t = -2.052
is called the lower critical t value and t = 2.052 is called the upper critical t value.

Now substituting the t value from Eq. (D.3) into Eq. (D.4), we obtain

(D.5)

Simple algebraic manipulation will show that Equation (D.5) can be expressed
equivalently as

(D.6)PaX - 2.052
Sx

1n
… ␮X … X + 2.052

Sx

1n
b = 0.95

Pa -2.052 …
(X - ␮X)

Sx>1n … 2.052b

P(-2.052 … t … 2.052) = 0.95

␮X

t =
(X - ␮X)

Sx>1n

S2
x = g (Xi - X)2>(n - 1)

␴2
X

X

APPENDIX D: STATISTICAL INFERENCE: ESTIMATION AND HYPOTHESIS TESTING 491

2.5%

−2.052

2.5%

2.0520

The t distribution for 27 d.f.FIGURE D-1

5Note that if X does not follow the normal distribution, will follow the normal distribution à
la the central limit theorem if n, the sample size, is sufficiently large.

6Needless to say, these values will depend on the d.f. as well as on the level of probability used.
For example, for the same d.f. P(-2.771 … t … 2.771) = 0.99.

X



Equation (D.6) provides an interval estimator of the true .
In statistics we call Eq. (D.6) a 95% confidence interval (CI) for the true but

unknown population mean and 0.95 is called the confidence coefficient.
In words, Eq. (D.6) says that the probability is 0.95 that the random interval

contains the true . is called the lower
limit of the interval and is the upper limit of the interval.
See Figure D-2.

Before proceeding further, note this important point: The interval given in
Eq. (D.6) is a random interval because it is based on and , which will
vary from sample to sample. The true or population mean , although un-
known, is some fixed number and therefore is not random. Thus, one should not
say that the probability is 0.95 that lies in this interval. The correct statement, as
noted earlier, is that the probability is 0.95 that the random interval, Eq. (D.6), contains
the true . In short, the interval is random and not the parameter .

Returning to our P/E example of Table D-1, we have , and 
Sx = 9.49. Plugging these values into Eq. (D.6), we obtain

which yields

(D.7)

as the 95% confidence interval for .␮X

19.57 … ␮X … 26.93 (approx)

23.25 -
(2.052)(9.49)

228
… ␮X … 23.25 +

(2.052)(9.49)

228

n = 28, X = 23.25
␮X␮X

␮X

␮X

Sx>1nX

(X + 2.0096Sx>1n)
(X - 2.052Sx>1n)␮X(X ;  2.052Sx>1n)

␮X

␮X
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(a)

95%

X

(b)

99%

X − 2.052 
Sx

兹n
X + 2.052 

Sx

兹n

X − 2.771 
Sx

兹n
X + 2.771 

Sx

兹n

(a) 95% and (b) 99% confidence intervals for for 27 d.f.␮XFIGURE D-2



Equation (D.7) says, in effect, that if we construct intervals like Eq. (D.7),
say, 100 times, then 95 out of 100 such intervals will include the true .7

Incidentally, note that for our P/E example the lower limit of the interval is 19.57
and the upper limit is 26.93.

Thus, interval estimation, in contrast to point estimation (such as 23.25), provides
a range of values that will include the true value with a certain degree of confidence
or probability (such as 0.95). If we have to give one best estimate of the true
mean, it is the point estimate 23.25, but if we want to be less precise we can
give the interval (19.57 to 26.93) as the range that most probably includes the
true mean value with a certain degree of confidence (95 percent in the present
instance).

More generally, suppose X is an r.v. with some probability distribution func-
tion (PDF). Suppose further that we want to estimate a parameter of this distri-
bution, say, its mean value . Toward that end, we obtain a random sample of
n values, , and compute two statistics (or estimators) L and U
from this sample such that

(D.8)

That is, the probability is that the random interval from L to U contains
the true . L is called the lower limit of the interval and U is called the upper
limit. This interval is known as a confidence interval of size for (or
any parameter for that matter), and is known as the confidence coefficient.
If , meaning that if we construct a confidence interval
with a confidence coefficient of 0.95, then in repeated such constructions, 95
out of 100 intervals can be expected to include the true . In practice,
is often multiplied by 100 to express it in percent form (e.g., 95 percent). In
statistics alpha ( ) is known as the level of significance, or, alternatively, the
probability of committing a type I error, which is defined and discussed in
Section D.5.

Now that we have seen how to establish confidence intervals, what do we do
with them? As we will see in Section D.5, confidence intervals make our task of
testing hypotheses—the twin of statistical inference—much easier.

D.4 PROPERTIES OF POINT ESTIMATORS

In the P/E example we used the sample mean as a point estimator of , as
well as to obtain an interval estimator of . But why did we use ? It is wellX␮X

␮XX

␣
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7Be careful again. We cannot say that the probability is 0.95 that the particular interval in Eq. (D.7)
includes the true ; it may or may not. Therefore, statements like are
not permissible under the classical approach to hypothesis testing. Intervals like those in Eq. (D.7) are to be
interpreted in the repeated sampling sense that if we construct such intervals a large number of
times, then 95 percent of such intervals will include the true mean value; the particular interval in
Eq. (D.7) is just one realization of the interval estimator in Eq. (D.6).

P(19.5 … ␮X … 26.93) = 0.95␮X



known that besides the sample mean, the (sample) median or the (sample)
mode also can be used as point estimators of .8

In practice, the sample mean is the most frequently used measure of the pop-
ulation mean because it satisfies several properties that statisticians deem
desirable. Some of these properties are:

1. Linearity
2. Unbiasedness
3. Minimum variance
4. Efficiency
5. Best linear unbiased estimator (BLUE)
6. Consistency

We will now discuss these properties somewhat heuristically.

Linearity

An estimator is said to be a linear estimator if it is a linear function of the sample
observations. The sample mean is obviously a linear estimator because

is a linear function of the observations, the X’s. (Note: The X’s appear with an
index or power of 1 only.)

In statistics a linear estimator is generally much easier to deal with than a
nonlinear estimator.

Unbiasedness

If there are several estimators of a population parameter (i.e., several methods
of estimating that parameter), and if one or more of these estimators on the
average coincide with the true value of the parameter, we say that such estima-
tors are unbiased estimators of that parameter. Put differently, if in repeated
applications of a method the mean value of the estimators coincides with the
true parameter value, that estimator is called an unbiased estimator. More for-
mally, an estimator, say, , is an unbiased estimator of if

(D.9)E(X) = ␮X

␮XX

X = a
n

i=1
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n
=

1

n
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8The median is that value of a random variable that divides the total PDF into two halves such 
that half the values in the population exceed it and half are below it. To compute the median from a
sample, arrange the observations in increasing order; the median is the middle value in this order. 
For example, if we have observations 7, 3, 6, 11, 5 and rearrange them in increasing order, we
obtain 3, 5, 6, 7, 11. The median, or the middlemost value, here is 6. The mode is the most popular or 
frequent value of the random variable. For example, if we have observations 3, 5, 7, 5, 8, 5, 9, the modal
value is 5 since it occurs most frequently.



as shown in Figure D-3. If this is not the case, however, then we call that esti-
mator a biased estimator, such as the estimator X* shown in Figure D-3.

Example D.1. 

Let then, as we saw in Appendix C. , based on a random
sample of size n from this population, is distributed with mean 
and var . Thus, the sample mean is an unbiased estimator of
true . If we draw repeated samples of size n from this normal population
and compute for each sample, then on the average, will coincide with .
But notice carefully that we cannot say that in a single sample, such as the
one in Table D-1, the computed mean of 23.25 will necessarily coincide with
the true mean value.

Example D.2.

Again, let and suppose we draw a random sample of size n
from this population. Let Xmed represent the median value of this sample. It
can be shown that E(Xmed) ⫽ . In words, the median from this population
is also an unbiased estimator of the true mean. Notice also that unbiasedness
is a repeated sampling property; that is, if we draw several samples of size n
from this population and compute the median value for each sample, then
the average of the median values obtained will tend to approach .

Minimum Variance

Figure D-4 shows the sampling distributions of three estimators of , obtained
from three different estimators, and .

Now an estimator of, say, , is said to be a minimum-variance estimator
if its variance is smaller than any other estimator of . As you can see from
Fig. D-4, the variance of is the smallest of the three estimators shown there.
Hence, it is a minimum-variance estimator. But note that is a biased esti-
mator. (Why?)
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Biased
Estimator

Unbiased
Estimator

E (X  ) ≠ μX
* E (X) = μX

Biased (X*) and unbiased estimators of population mean value, ␮X(X)FIGURE D-3



Efficiency

The property of unbiasedness, although desirable, is not adequate by itself.
What happens if we have two or more estimators of a parameter and they are
all unbiased? How do we choose among them?

Suppose we have a random sample of n values of an r.v. X such that each
. Let and Xmed be the mean and median values obtained from

this sample. We already know that

(D.10)

It can also be shown that if the sample size is large,

Xmed (D.11)

where (approx.). That is, in large samples, the median computed from
a random sample of a normal population also follows a normal distribution
with the same mean but with a variance that is larger than the variance of 
by the factor , which can be visualized from Figure D-5. As a matter of fact,
by forming the ratio

(D.12)

we show that the variance of the sample median is 57 percent larger than the
variance of the sample mean.

Now given Figure D-5 and the preceding discussion, which estimator would
you choose? Common sense suggests that we choose over Xmed, for although
both estimators are unbiased, has a smaller variance than Xmed. Therefore if
we use in repeated sampling, we will estimate more accurately than if we
were to use the sample median. In short, provides a more precise estimate of
the population mean than the median Xmed. In statistical language we say that

is an efficient estimator. Stated more formally, if we consider only unbiased esti-
mators of a parameter, the one with the smallest variance is called the best, or efficient,
estimator.
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Distribution of three estimators of ␮XFIGURE D-4



Best Linear Unbiased Estimator (BLUE)

In econometrics the property that is frequently encountered is the property best
linear unbiased estimator, or BLUE for short. If an estimator is linear, is unbiased,
and has minimum variance in the class of all linear unbiased estimators of a parameter,
it is called a best linear unbiased estimator. Obviously, this property combines the
properties of linearity, unbiasedness, and minimum variance. In Chapters 3 and
4 we will see the importance of this property.

Consistency

To explain the property of consistency, suppose and we draw a
random sample of size n from this population. Now consider two estimators of .

(D.13)

(D.14)

The first estimator is the usual sample mean. Now, as we already know

and it can be shown that

(D.15)

Since E(X*) is not equal to , X* is obviously a biased estimator. (For proof, see
Problem D. 21.)

But suppose we increase the sample size. What would you expect? The
estimators and X* differ only in that the former has n in the denominator
whereas the latter has . But as the sample increases, we should not find(n + 1)
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An example of an efficient estimator (sample mean)FIGURE D-5



much difference between the two estimators. That is, as the sample size
increases, X* also will approach the true . In statistics such an estimator is
known as a consistent estimator. Stated more formally, an estimator (e.g., X*) is
said to be a consistent estimator if it approaches the true value of the parameter as the
sample size gets larger and larger. As we will see in the main chapters of the text,
sometimes we may not be able to obtain an unbiased estimator, but we can obtain
a consistent estimator.9 The property of consistency is depicted in Figure D-6.

D.5 STATISTICAL INFERENCE: HYPOTHESIS TESTING

Having studied in some detail the estimation branch of statistical inference, we
will now consider its twin, hypothesis testing. Although the general nature of
hypothesis testing was discussed earlier, we study it here in some detail.

Let us return to the P/E example given in Table D-1. In Section D.3, based on
a random sample of 28 P/E ratios, we established a 95% confidence interval
for , the true but unknown average P/E ratio in the population of the stocks
listed on the NYSE. Now let us reverse our strategy. Instead of establishing a

␮X

␮X
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The property of consistency. The behavior of the estimator X * of
population mean X as the sample size increases␮

FIGURE D-6

9Note the critical difference between an unbiased and a consistent estimator. If we fix the sample
size and draw several random samples of an r.v. from some probability distribution to estimate a
parameter of this distribution, then unbiasedness requires that on the average we should be able to
obtain the true parameter value. In establishing consistency, on the other hand, we see the behav-
ior of an estimator as the sample size increases. If a sample size is reasonably large and the estima-
tor based on that sample size approaches the true parameter value, then that estimator is a
consistent estimator.



confidence interval, suppose we hypothesize that the true takes a particular
numerical value (e.g., . Our task now is to test this hypothesis.10 How
do we test this hypothesis—that is, support or refute it?

In the language of hypothesis testing a hypothesis such as is called a
null hypothesis and is generally denoted by the symbol H0. Thus, .
The null hypothesis is usually tested against an alternative hypothesis, denoted
by the symbol H1. The alternative hypothesis can take one of these forms:

H1: 18.5, which is called a one-sided or one-tailed alternative hypothe-
sis, or

H1: , also a one-sided or one-tailed alternative hypothesis, or
, whichiscalledacomposite,two-sided,ortwo-tailed alternative

hypothesis. That is, the true mean value is either greater than or less than 18.5.11

To test the null hypothesis (against the alternative hypothesis), we use the
sample data (e.g., the sample average P/E ratio of 23.25 obtained from the sample
in Table D-1) and statistical theory to develop decision rules that will tell us
whether the sample evidence supports the null hypothesis. If the sample
evidence supports the null hypothesis, we do not reject H0, but if it does not, we
reject H0. In the latter case we may accept the alternative hypothesis, H1.

How do we develop these decision rules? There are two complementary
approaches: (1) confidence interval and (2) test of significance. We illustrate
each with the aid of our P/E example. Assume that

(a two-sided hypothesis)

The Confidence Interval Approach to Hypothesis Testing

To test the null hypothesis, suppose we have the sample data given in Table D-1.
From these data we computed the sample mean of 23.25. We know from our
discussion in Section D.3 that the sample mean is distributed normally with
mean and variance . But since the true variance is unknown, we replace
it with the sample variance, in which case we know that the sample mean
follows the t distribution, as shown in Eq. (D.3). Based on the t distribution, we
obtain the following 95% confidence interval for:

(D.16) (D.7)

We know that confidence intervals provide a range of values that may include
the true with a certain degree of confidence, such as 95 percent. Therefore, if␮X

ⴝ19.57 … ␮X … 26.93
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2 /n␮X

H1:␮X Z 18.5

H0:␮X = 18.5

H1:␮X Z 18.5
␮X 6 18.5

␮X 7

H0: ␮X = 18.5
␮X = 18.5

␮X = 18.5)
␮X
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10A hypothesis is “something considered to be true for the purpose of investigation or argument”
(Webster’s), or a “supposition made as a basis for reasoning, or as a starting point for further
investigation from known facts” (Oxford English Dictionary).

11There are various ways of stating the null and alternative hypotheses. For example, we could
have and .H1: ␮X 6 13H0:␮X Ú 13



this interval does not include a particular null hypothesized value such as
18.5, could we not reject this null hypothesis? Yes, we can, with 95% confidence.

From the preceding discussion it should be clear that the topics of confidence
interval and hypothesis testing are intimately related. In the language of
hypothesis testing, the 95% confidence interval shown in inequality (D.7) (see
Fig. D-2) is called the acceptance region and the area outside the acceptance
region is called the critical region, or the region of rejection, of the null hypoth-
esis. The lower and upper limits of the acceptance region are called critical
values. In this language, if the acceptance region includes the value of the
parameter under H0, we do not reject the null hypothesis. But if it falls outside
the acceptance region (i.e., it lies within the rejection region), we reject the null
hypothesis. In our example we reject the null hypothesis that since
the acceptance region given in Eq. (D.7) does not include the null-hypothesized
value. It should be clear now why the boundaries of the acceptance region are
called critical values, for they are the dividing line between accepting and
rejecting a null hypothesis.

Type I and Type II Errors: A Digression

In our P/E example we rejected because our sample evidence of
does not seem to be compatible with this hypothesis. Does this mean

that the sample shown in Table D-1 did not come from a normal population
whose mean value was 18.5? We cannot be absolutely sure, for the confidence
interval given in inequality (D.7) is 95 and not 100 percent. If that is the case,
we would be making an error in rejecting . In this case we are
said to commit a type I error, that is, the error of rejecting a hypothesis when it is
true. By the same token, suppose , in which case, as inequality (D.7)
shows, we would not reject this null hypothesis. But quite possibly the sample
in Table D-1 did not come from a normal distribution with a mean value of 21.
Thus, we are said to commit a type II error, that is, the error of accepting a false
hypothesis. Schematically,

Reject H0 Do not reject H0

H0 is true Type I error Correct decision

H0 is false Correct decision Type II error

Ideally, we would like to minimize both these errors. But, unfortunately, for
any given sample size,12 it is not possible to minimize both errors simultaneously.
The classical approach to this problem, embodied in the work of statisticians
Neyman and Pearson, is to assume that a type I error is likely to be more serious
in practice than a type II error. Therefore, we should try to keep the probability

H0:␮X = 21

H0:␮X = 18.5

X = 23.25
H0:␮X = 18.5

␮X = 18.5

␮X =
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12The only way to decrease a type II error without increasing a type I error is to increase the sam
ple size, which may not always be easy.



of committing a type I error at a fairly low level, such as 0.01 or 0.05, and then
try to minimize a type II error as much as possible.13

In the literature the probability of committing a type I error is designated as
and is called the level of significance,14 and the probability of committing a

type II error is designated as . Symbolically,

Type I error prob. (rejecting is true)

Type II error prob. (accepting is false)

The probability of not committing a type II error, that is, rejecting H0 when it is
false, is , which is called the power of the test.

The standard, or classical, approach to hypothesis testing is to fix at levels
such as 0.01 or 0.05 and then try to maximize the power of the test; that is, to
minimize . How this is actually accomplished is involved, and so we leave the
subject for the references.15 Suffice it to note that, in practice, the classical
approach simply specifies the value of without worrying too much about .
But keep in mind that, in practice, in making a decision there is a trade-off
between the significance level and the power of the test. That is, for a given
sample size, if we try to reduce the probability of a type I error, we ipso facto
increase the probability of a type II error and therefore reduce the power of the
test. Thus, instead of using percent, if we were to use percent, we
may be very confident when we reject , but we may not be so confident when
we do not reject it.

Since the precedent point is important, let us illustrate. For our P/E ratio
example, in Eq. (D.7) we established a 95% confidence. Let us still assume that

but now fix percent and obtain the 99% confidence
interval, which is (noting that for 99% CI, the critical t values are (-2.771, 2.771)
for 27 d.f.):

(D.17)

This 99% confidence interval is also shown in Fig. D-2. Obviously, this interval
is wider than the 95% confidence interval. Since this interval includes the
hypothesized value of 18.5, we do not reject the null hypothesis, whereas in
Eq. (D.7) we rejected the null hypothesis on the basis of a 95% confidence
interval. What now? By reducing a type I error from 5 percent to 1 percent, we
have increased the probability of a type II error. That is, in not rejecting the null
hypothesis on the basis of Eq. (D.17), we may be falsely accepting the hypothesis

18.28 … ␮X … 28.22

␣ = 1H0:␮X = 18.5

H0

␣ = 1␣ = 5

␤␣

␤

␣

(1 - ␤)

H0 ƒ H0= ␤ =

H0  ƒ  H0= ␣ =

␤

␣
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13To Bayesian statisticians this procedure sounds rather arbitrary because it does not consider
carefully the relative seriousness of the two types of errors. For further discussion of this and related
points, see Robert L. Winkler, Introduction to Bayesian Inference and Decision, Holt, Rinehart and
Winston, New York, 1972, Chap. 7.

14 is also known as the size of the (statistical) test.
15For a somewhat intuitive discussion of this topic, see Gujarati and Porter, Basic Econometrics,

5th ed., McGraw-Hill, New York, 2009, pp. 833–835. Statistical packages, such as MINITAB, can
calculate the power of a test of size .␣

␣



that the true is 18.5. So, always keep in mind the trade-off involved between
type I and type II errors.

You will recognize that the confidence coefficient discussed earlier is
simply 1 minus the probability of committing a type I error. Thus, a 95%
confidence coefficient means that we are prepared to accept at most a 5 percent
probability of committing a type I error—we do not want to reject the true
hypothesis by more than 5 out of 100 times. In short, a 5% level of significance or a
95% level or degree of confidence means the same thing.

Let us consider another example to illustrate further the confidence interval
approach to hypothesis testing.

Example D.3.

The number of peanuts contained in a jar follows the normal distribution,
but we do not know its mean and standard deviation, both of which are
measured in ounces. Twenty jars were selected randomly and it was found
that the sample mean was 6.5 ounces and the sample standard deviation was
2 ounces. Test the hypothesis that the true mean value is 7.5 ounces against
the hypothesis that it is different from 7.5. Use .

Answer: Letting X denote the number of peanuts in a jar, we are given that
, both parameters being unknown. Since the true variance is

unknown, if we use its estimator , it follows that

That is, the t distribution with 19 d.f.
From the t distribution table given in Table E-2 in Appendix E, we observe

that for 19 d.f.,

Then from expression (D.6) we obtain

Substituting into this inequality, we obtain

(approx.) (D.18)

as the 99% confidence interval for . Since this interval includes the
hypothesized value of 7.5, we do not reject the null hypothesis that the true

.

The null hypothesis in our P/E example was and the alternative
hypothesis was that , which is a two-sided, or composite, hypothesis.␮X Z 18.5

␮X = 18.5

␮X = 7.5

␮X

5.22 … ␮X … 7.78

X = 6.5, Sx = 2, and n = 20

PaX - 2.861
Sx

220
… ␮X … X + 2.861

Sx

220
b = 0.99

P(-2.861 … t … 2.861) = 0.99

t =
X - ␮X

Sx/2n
' t19

Sx
2

X ' N(mX, ␴X
2 )

␣ = 1%

(1 - ␣)

␮X
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How do we handle one-sided alternative hypotheses such as or
? Although the confidence interval approach can be easily adapted to

construct one-sided confidence intervals, in practice it is much easier to use the
test of significance approach to hypothesis testing, which we will now discuss.

The Test of Significance Approach to Hypothesis Testing

The test of significance is an alternative, but complementary and perhaps
shorter, approach to hypothesis testing. To see the essential points involved,
return to the P/E example and Eq. (D.3). We know that

(D.19) (D.3)

follows the t distribution with d.f. In any concrete application we will
know the values of , and n. The only unknown value is . But if we
specify a value for , as we do under H0, then the right-hand side of Eq. (D.3)
is known, and therefore we will have a unique t value. And since we know that
the t of Eq. (D.3) follows the t distribution with , we simply look up the
t table to find out the probability of obtaining such a t value.

Observe that if the difference between and is small (in absolute terms),
then, as Eq. (D.3) shows, the value will also be small, where means the
absolute t value. In the event that , t will be zero, in which case we do
not reject the null hypothesis. Therefore, as the value increasingly deviates from
zero, we will tend to reject the null hypothesis. As the t table shows, for any given
d.f., the probability of obtaining an increasingly higher value becomes
progressively smaller. Thus, as gets larger, we will be more and more inclined to
reject the null hypothesis. But how large must be before we can reject the null
hypothesis? The answer, as you would suspect, depends on , the probability of
committing a type I error, as well as on the d.f., as we will demonstrate shortly.

This is the general idea behind the test of significance approach to hypothe-
sis testing. The key idea here is the test statistic—the t statistic—and its proba-
bility distribution under the hypothesized value of . Appropriately, in the
present instance the test is known as the t test since we use the t distribution.
(For details of the t distribution, see Section C.2).

In our P/E example and . Let and
, as before. Therefore,

(D.20)

Is the computed t value such that we can reject the null hypothesis? We cannot
answer this question without first specifying what chance we are willing to take
if we reject the null hypothesis when it is true. In other words, to answer this
question, we must specify , the probability of committing a type I error.
Suppose we fix at 5 percent. Since the alternative hypothesis is two-sided,
we want to divide the risk of a type I error equally between the two tails of the

␣

␣

t =
23.25 - 18.5

9.49/228
= 2.6486

H1:␮X Z 18.5
H0:␮X = 18.5n = 28X = 23.25, Sx = 9.49

␮X

␣

ƒ t ƒ
ƒ t ƒ

ƒ t ƒ

ƒ t ƒ
X = ␮X

ƒ t ƒƒ t ƒ
␮XX

(n - 1)

␮X

␮XX, Sx

(n - 1)

ⴝt =
X - ␮X

Sx/1n

␮X 7 18.5
␮X 6 18.5
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t distribution—the two critical regions—so that if the computed t value lies in
either of the rejection regions, we can reject the null hypothesis.

Now for 27 d.f., as we saw earlier, the 5% critical t values are -2.052 and
+2.052, as shown in Fig. D-1. The probability of obtaining a t value equal to or
smaller than -2.0096 is 2.5 percent and that of obtaining a t value equal to or
greater than +2.0096 is also 2.5 percent, giving the total probability of commit-
ting a type I error of 5 percent.

As Fig. D-1 also shows, the computed t value for our example is about 2.6,
which obviously lies in the right tail critical region of the t distribution. We
therefore reject the null hypothesis that the true average P/E ratio is 18.5. If that
hypothesis were true, we would not have obtained a t value as large as 2.6 (in
absolute terms); the probability of our obtaining such a t value is much smaller
than 5 percent—our prechosen probability of committing a type I error.
Actually, the probability is much smaller than 2.5 percent. (Why?)

In the language of the test of significance we frequently come across the
following two terms:

1. A test (statistic) is statistically significant.
2. A test (statistic) is statistically insignificant.

When we say that a test is statistically significant, we generally mean that we
can reject the null hypothesis. That is, the probability that the observed differ-
ence between the sample value and the hypothesized value is due to mere
chance is small, less than (the probability of a type I error). By the same token,
when we say that a test is statistically insignificant, we do not reject the null
hypothesis. In this case, the observed difference between the sample value and
the hypothesized value could very well be due to sampling variation or due to
mere chance (i.e., the probability of the difference is much greater than ).

When we reject the null hypothesis, we say that our finding is statistically
significant. On the other hand, when we do not reject the null hypothesis, we say
that our finding is not statistically significant.

One or Two-Tailed Test? In all the examples considered so far the alterna-
tive hypothesis was two-sided, or two-tailed. Thus, if the average P/E ratio
were equal to 18.5 under H0, it was either greater than or less than 18.5 under
H1. In this case if the test statistic fell in either tail of the distribution (i.e., the re-
jection region), we rejected the null hypothesis, as is clear from Figure D-7(a).

However, there are occasions when the null and alternative hypotheses
are one-sided, or one-tailed. For example, if for the P/E example we had

and , the alternative hypothesis is one-sided. How
do we test this hypothesis?

The testing procedure is exactly the same as that used in previous cases except
instead of finding out two critical values, we determine only a single critical value
of the test statistic, as shown in Fig. D-7. As this figure illustrates, the probability of
committing a type I error is now concentrated only in one tail of the probability
distribution, t in the present case. For 27 d.f. and percent, the t table will␣ = 5

H1:␮X 7 18.5H0:␮X … 18.5

␣

␣
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show that the one-tailed critical t value is 1.703 (right tail) or -1.703 (left tail), as
shown in Fig. D-7. For our P/E example, as noted before, the computed t value is
about 2.43. Since the t value lies in the critical region of Fig. D-7(b), this t value is
statistically significant. That is, we reject the null hypothesis that the true average
P/E ratio is equal to (or less than) 18.5; the chances of that happening are much
smaller than our prechosen probability of committing a type I error of 5 percent.

Table D-2 summarizes the t test of significance approach to testing the two-
tailed and one-tailed null hypothesis.

In practice, whether we use the confidence interval approach or the test of
significance approach to hypothesis testing is a matter of personal choice and
convenience.

In the confidence interval approach we specify a plausible range of values
(i.e., confidence interval) for the true parameter and find out if the confidence
interval includes the hypothesized value of that parameter. If it does, we do not
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−2.052 0 2.052
t (27 d.f.)

α = 2.5%

(a)

α = 2.5%

0 1.703
t (27 d.f.)

(b)

α = 5%

0
t (27 d.f.)

(c)

−1.703

95%

95%

t = −3.5

α = 5%
t = −3.5

95%

The t test of significance: (a) Two-tailed; (b) right-tailed; (c) left-tailedFIGURE D-7



reject that null hypothesis, but if it lies outside the confidence interval, we can
reject the hypothesis.

In the test of significance approach, instead of specifying a range of plausible
values for the unknown parameter, we pick a specific value of the parameter
suggested by the null hypothesis; compute a test statistic, such as the t statistic;
and find its sampling distribution and the probability of obtaining a specific
value of such a test statistic. If this probability is very low, say, less than 
or 1 percent, we reject the particular null hypothesis. If this probability is greater
than the preselected , we do not reject the null hypothesis.

A Word about Accepting or Rejecting a Null Hypothesis In this book we
have used the terminology “reject” or “do not reject” a null hypothesis rather
than “reject” or “accept” a hypothesis. This is in the same spirit as a jury verdict
in a court trial that says whether a defendant is guilty or not guilty rather than
guilty or innocent. The fact that a person is not found guilty does not necessarily
mean that he or she is innocent. Similarly, the fact that we do not reject a null
hypothesis does not necessarily mean that the hypothesis is true, because
another null hypothesis may be equally compatible with the data. For our P/E
example, for instance, from Eq. (D.7) it is obvious any value of between 19.57
and 26.93 would be an “acceptable” hypothesis.

A Word on Choosing the Level of Significance, ␣, and the p Value

The Achilles heel of the classical approach to hypothesis testing is its arbitrari-
ness in selecting . Although 1, 5, and 10 percent are the commonly used values
of , there is nothing sacrosanct about these values. As noted earlier, unless
we examine the consequences of committing both type I and type II errors, we
cannot make the appropriate choice of . In practice, it is preferable to find the
p value (i.e., the probability value), also known as the exact significance level, of
the test statistic. This may be defined as the lowest significance level at which a null
hypothesis can be rejected.

␣

␣

␣

␮X

␣

␣ = 5

506 APPENDIXES

A SUMMARY OF THE t TEST

Null hypothesis Alternative hypothesis Critical region
H0 H1 Reject H0 if

Note: denotes the particular value of assumed under the null hypothesis.
The first subscript on the t statistic shown in the last column is the level of

significance, and the second subscript is the d.f. These are the critical t values.

␮X␮0

ƒ t ƒ =
X - ␮0

Sx/1n
 7 t␣/2,d.f.␮X Z  ␮0␮X = ␮0

t =
X - ␮0

Sx/1n
 6  -  t␣,d.f.␮X 6 ␮0␮X = ␮0

t =
X - ␮0

Sx/1n
 7 t␣,d.f.␮X 7 ␮0␮X = ␮0

TABLE D-2



To illustrate, in an application involving 20 d.f. a t value of 3.552 was
obtained. The t table given in Appendix E (Table E-2) shows that the p value for
this t is 0.001 (one-tailed) or 0.002 (two-tailed). That is, this t value is statistically
significant at the 0.001 (one-tailed) or 0.002 (two-tailed) level.

For our P/E example under the null hypothesis that the true P/E ratio is 18.5,
we found that . If the alternative hypothesis is that the true P/E ratio is
greater than 18.5, we find from Table E-1 in Appendix E that is about
.01 This is the p value of the t statistic. We say that this t value is statistically
significant at the 0.01 or 1 percent level. Put differently, if we were to fix

, at that level we can reject the null hypothesis that the true .
Of course, this is a much smaller probability, smaller than the conventional 
value, such as 5 percent. Therefore, we can reject the null hypothesis much more
emphatically than if we were to choose, say, ␣ = 0.05. As a rule, the smaller the
p value, the stronger the evidence against the null hypothesis.

One virtue of quoting the p value is that it avoids the arbitrariness involved in
fixing atartificial levels, suchas1,5,or10percent. If, forexample, inanapplication
the p value of a test statistic (such as t) is, say, 0.135, and if you are willing to accept an

percent, this p value is statistically significant (i.e., you reject the null
hypothesis at this level of significance). Nothing is wrong if you want to take a
chance of being wrong 13.5 percent of the time if you reject the true null hypothesis.

Nowadays several statistical packages routinely compute the p values of
various test statistics, and it is recommended that you report these p values.

The 2 and F Tests of Significance

Besides the t test of significance discussed previously, in the main chapters of
the text we will need tests of significance based on the and the F probability
distributions considered in Appendix C. Since the philosophy of testing is the
same, we will simply present here the actual mechanism with a couple of
illustrative examples; we will present further examples in the main text.

The test of significance In Appendix C (see Example C.14) we showed
that if S2 is the sample variance obtained from a random sample of n observa-
tions from a normal population with variance , then the quantity

(D.21)

That is, the ratio of the sample variance to population variance multiplied by
the d.f. follows the distribution with d.f. If the d.f. and S2 are
known but is not known, we can establish a confidence interval for
the true but unknown using the distribution. The mechanism is similar to
that for establishing confidence intervals on the basis of the t test.

But if we are given a specific value of under H0, we can directly compute
the value from expression (D.21) and test its significance against the critical

values given in Table E-4 in Appendix E. An example follows.␹2
␹2

␴2

␹2␴2
(1 - ␣)%␴2
(n - 1)␹2(n - 1)

(n - 1)a S2

␴2
b ' ␹2

(n-1)

␴2

X
2

␹2

X

␣ = 13.5

␣

␣

␮X = 18.5␣ = 0.01

P(t 7 2.43)
t = 2.43
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Example D.4.

Suppose a random sample of 31 observations from a normal population
gives a (sample) variance of . Test the hypothesis that the true vari-
ance is 9 against the hypothesis that it is different from 9. Use . Here

Answer: Putting the appropriate numbers in expression (D.21), we obtain:
which has 30 d.f. From Table E-4 in Appendix E, we ob-

serve that the probability of obtaining a value of about 40 or higher (for 30 d.f.)
is 0.10 or 10 percent. Since this probability is greater than our level of significance
of 5 percent, we do not reject the null hypothesis that the true variance is 9.

Table D-3 summarizes the test for the various types of null and alternative
hypotheses.

The F Test of Significance In Appendix C we showed that if we have two
randomly selected samples from two normal populations, X and Y, with m and
n observations, respectively, then the variable

(D.22)

follows the F distribution with and d.f., provided the variances of
the two normal populations are equal. In other words, the H0 is . To test this
hypothesis, we use the F test given in Eq. (D.22). An example follows.

Example D.5.

Refer to the S.A.T. math scores for male and female students given in
Examples C.12 and C.15. The variances of these scores were (48.31) for the

␴2
X = ␴2

Y

(n - 1)(m - 1)

 =
g (Xi - X)2>(m - 1)

g (Yi - Y)2>(n - 1)

 F =
S2
X

S2
Y

␹2

␹2
␹2 = 30(12>9) = 40,

H0:␴2 = 9 and H1:␴2 Z 9

␣ = 5%
S2 = 12
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A SUMMARY OF THE TEST

Null hypothesis Alternative hypothesis Critical region
H0 H1 Reject H0 if

or 

Note: is the value of under the null hypothesis. The first subscript on 
in the last column is the level of significance and the second subscript is the d.f.
These are critical values.␹2

␹2␴2
X␴2

0

6 ␹2
(1-␣>2),(n-1)

 
(n - 1)S2

␴2
0

7 ␹2
␣>2,(n-1)␴2

X Z ␴2
0␴2

X = ␴2
0

 
(n - 1)S2

␴2
0

6 ␹2
  (1-␣),(n-1)␴2

X 6 ␴2
0␴2

X = ␴2
0

 
(n - 1)S2

␴2
0

7 ␹2
␣,(n-1)␴2

X 7 ␴2
0␴2

X = ␴2
0

␹2TABLE D-3



male students and (102.07) for the female students. The number of observa-
tions were 36 or 35 d.f. each. Assuming that these variances represent a sam-
ple from a much larger population of S.A.T. scores, test the hypothesis that
the male and female population variances on the math part of the S.A.T.
scores are the same. Use .

Answer: Here the F value is 102.07/48.31 = 2.1128 (approx.). This F value has
the F distribution with 35 d.f. each. Now from Table  E-3 in Appendix E we
see that for 30 d.f. (35 d.f. is not given in the table), the critical F value at the
1% level of significance is 2.39. Since the observed F value of 2.1128 is less
than 2.39, it is not statistically significant. That is, at , we do not reject
the null hypothesis that the two population variances are the same.

Example D.6.

In the preceding example, what is the p value of obtaining an F value of 2.1128?
Using MINITAB, we can find that for 35 d.f. in the numerator and denomina-
tor, the probability of obtaining an F value of 2.1128 or greater is about 0.01492
or about 10.5 percent. This is the p value of obtaining an F value of as much as
2.1128 or greater. In other words, this is the lowest level of probability at which
we can reject the null hypothesis that the two variances are the same.
Therefore, in this case if we reject the null hypothesis that the two variances are
the same, we are taking the chance of being wrong 1.5 out of 100 times.

Examples D.5 and D.6 suggest a practical strategy. We may fix at some level
(e.g., 1, 5, or 10 percent) and also find out the p value of the test statistic. If the
estimated p value is smaller than the chosen level of significance, we can reject
the null hypothesis under consideration. On the other hand, if the estimated p
value is greater than the preselected level of significance, we may not reject the
null hypothesis.

Table D-4 summarizes the F test.

␣

␣ = 1%

␣ = 1%
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A SUMMARY OF THE F STATISTIC

Null hypothesis Alternative hypothesis Critical region
H0 H1 Reject H0 if

or 

Notes:
1. and are the two population variances.

2. and are the two sample variances.

3. ndf and ddf denote, respectively, the numerator and denominator d.f.
4. In computing the F ratio, put the larger S 2 value in the numerator.
5. The critical F values are given in the last column. The first subscript of

F is the level of significance and the second subscript is the numerator and
denominator d.f.

6. Note that .F(1-␣>2),ndf,d df = 1

F␣/2,ddf,ndf
 

S2
2S2

1

␴2
2␴2

1

6 F(1-␣>2),ndf,ddf

 
S2

1

S2
2

7 F␣>2,ndf,ddf␴2
1 Z ␴2

2␴2
1 = ␴2

2

 
S2

1

S2
2

7 F␣,ndf, ddf␴2
1 7 ␴2

2␴2
1 = ␴2
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To conclude this appendix, we summarize the steps involved in testing a
statistical hypothesis:

Step 1: State the null hypothesis H0 and the alternative hypothesis H1 (e.g.,
and for our P/E example).

Step 2: Select the test statistic (e.g., ).
Step 3: Determine the probability distribution of the test statistic (e.g.,

.
Step 4: Choose the level of significance , that is, the probability of commit-

ting a type I error. (But keep in mind our discussion about the p value.)
Step 5: Choose the confidence interval or the test of significance approach.

The Confidence Interval Approach Using the probability distribution of
the test statistic, establish a % confidence interval. If this interval (i.e.,
the acceptance region) includes the null-hypothesized value, do not reject the null
hypothesis. But if this interval does not include it, reject the null hypothesis.

The Test of Significance Approach Alternatively, you can follow this
approach by obtaining the relevant test statistic (e.g., the t statistic) under the
null hypothesis and find out the p value of obtaining a specified value of the test
statistic from the appropriate probability distribution (e.g., the t, F, or the dis-
tribution). If this probability is less than the prechosen value of , you can reject
the null hypothesis. But if it is greater than , do not reject it. If you do not want
to preselect , just present the p value of the statistic.

Whether you choose the confidence interval or the test of significance ap-
proach, always keep in mind that in rejecting or not rejecting a null hypothesis you are
taking a chance of being wrong (or p value) percent of the time.

Further uses of the various tests of significance discussed in this appendix
will be illustrated throughout the rest of this book.

D.6 SUMMARY

Estimating population parameters on the basis of sample information and test-
ing hypotheses about them in light of the sample information are the two main
branches of (classical) statistical inference. In this appendix we examined the
essential features of these branches.

KEY TERMS AND CONCEPTS

The key terms and concepts introduced in this appendix are

␣

␣

␣

␣

␹2

100(1 - ␣)

␣

X ' N(␮X, ␴2
X>n)

X
H1:␮X Z 18.5H0:␮X = 18.5
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Statistical inference
Parameter estimation

a) point estimation
b) interval estimation

Sampling (probability) distribution

Critical t values
Confidence interval (CI)

a) confidence coefficient
b) random interval (lower limit,

upper limit)



QUESTIONS

D.1. What is the distinction between each of the following pairs of terms?
a. Point estimator and interval estimator.
b. Null and alternative hypotheses.
c. Type I and type II errors.
d. Confidence coefficient and level of significance.
e. Type II error and power.

D.2. What is the meaning of
a. Statistical inference. e. Critical value of a test.
b. Sampling distribution. f. Level of significance.
c. Acceptance region. g. The p value.
d. Test statistic.

D.3. Explain carefully the meaning of
a. An unbiased estimator. d. A linear estimator.
b. A minimum variance estimator. e. Abest linear unbiased estimator (BLUE).
c. A best, or efficient, estimator.

D.4. State whether the following statements are true, false, or uncertain. Justify your
answers.
a. An estimator of a parameter is a random variable, but the parameter is non-

random, or fixed.
b. An unbiased estimator of a parameter, say, , means that it will always be

equal to .
c. An estimator can be a minimum variance estimator without being unbiased.
d. An efficient estimator means an estimator with minimum variance.
e. An estimator can be BLUE only if its sampling distribution is normal.
f. An acceptance region and a confidence interval for any given problem

means the same thing.

␮X

␮X
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Level of significance
Probability of committing a type I error
Properties of estimators

a) linearity (linear estimator)
b) unbiasedness (unbiased

estimator)
c) minimum variance (minimum-

variance estimator)
d) efficiency (efficient estimator)
e) best linear unbiased estimator

(BLUE)
f) consistency (consistent

estimator)
Hypothesis testing

a) null hypothesis
b) alternative hypothesis
c) one-sided; one-tailed 

hypothesis

d) two-sided; two-tailed;
composite hypothesis

Confidence interval (approach to
hypothesis testing)
a) acceptance region
b) critical region; region of

rejection
c) critical values

Type I error ( ); level of significance;
confidence coefficient 

Type II error ( )
power of the test 

Tests of significance (approach to
hypothesis testing)
a) Test statistic; t statistic; t test
b) test
c) F test

The p value

␹2

(1 - ␤)
␤

(1 - ␣)
␣



g. Atype I error occurs when we reject the null hypothesis even though it is false.
h. A type II error occurs when we reject the null hypothesis even though it may

be true.
i. As the degrees of freedom (d.f.) increase indefinitely, the t distribution

approaches the normal distribution.
j. The central limit theorem states that the sample mean is always distributed

normally.
k. The terms level of significance and p value mean the same thing.

D.5. Explain carefully the difference between the confidence interval and test of
significance approaches to hypothesis testing.

D.6. Suppose in an example with 40 d.f. that you obtained a t value of 1.35. Since its
p value is somewhere between a 5 and 10 percent level of significance (one-
tailed), it is not statistically very significant. Do you agree with this statement?
Why or why not?

PROBLEMS

D.7. Find the critical Z values in the following cases:
a. (two-tailed test) c. (two-tailed test)
b. (one-tailed test) d. (one-tailed test)

D.8. Find the critical t values in the following cases:
a. n = 4,  (two-tailed test) d. n = 14, (one-tailed test)
b. n = 4,  (one-tailed test) e. n = 60, (two-tailed test)
c. n = 14, (two-tailed test) f. n = 200, (two-tailed test)

D.9. Assume that the per capita income of residents in a country is normally dis-
tributed with mean and variance ($ squared).
a. What is the probability that the per capita income lies between $800 and

$1200?
b. What is the probability that it exceeds $1200?
c. What is the probability that it is less than $800?
d. Is it true that the probability of per capita income exceeding $5000 is

practically zero?
D.10. Continuing with problem D.9, based on a random sample of 1000 members,

suppose that you find the sample mean income, , to be $900.
a. Given that , what is the probability of obtaining such a sample

mean value?
b. Based on the sample mean, establish a 95% confidence interval for and

find out if this confidence interval includes . If it does not, what
conclusions would you draw?

c. Using the test of significance approach, decide whether you want to accept
or reject the hypothesis that . Which test did you use and why?

D.11. The number of peanuts contained in a jar follows the normal distribution with
mean and variance . Quality control inspections over several periods
show that 5 percent of the jars contain less than 6.5 ounces of peanuts and
10 percent contain more than 6.8 ounces.
a. Find and .
b. What percentage of bottles contain more than 7 ounces?

D.12. The following random sample was obtained from a normal population with
mean and variance = 2.

8, 9, 6, 13, 11, 8, 12, 5, 4, 14

␮

␴2␮

␴2␮

␮ = $1000

␮ = $1000
␮

␮ = $1000
X

␴2 = 10,000␮ = $1000

␣ = 0.05␣ = 0.01
␣ = 0.05␣ = 0.05
␣ = 0.01␣ = 0.05

␣ = 0.02␣ = 0.05
␣ = 0.01␣ = 0.05
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a. Test: against 
b. Test: against 

Note: use .
c. What is the p value in part (a) of this problem?

D.13. Based on a random sample of 10 values from a normal population with mean
and standard deviation , you calculated that and the sample stan-

dard deviation = 4. Estimate a 95% confidence interval for the population
mean. Which probability distribution did you use? Why?

D.14. You are told that . Based on a sample of 25
observations, you found that .
a. What is the sampling distribution of ?
b. What is the probability of obtaining an or less?
c. From your answer in part (b) of this problem, could such a sample value

have come from the preceding population?
D.15. Compute the p values in the following cases:

a.
b.
c. and 20, respectively
d.
Note: If you cannot get an exact answer from the various probability distribu-
tion tables, try to obtain them from a program such as MINITAB or Excel.

D.16. In an application involving 30 d.f. you obtained a t statistic of 0.68. Since this t
value is not statistically significant even at the 10% level of significance, you
can safely accept the relevant hypothesis. Do you agree with this statement?
What is the p value of obtaining such a statistic?

D.17. Let . A random sample of three observations was obtained
from this population. Consider the following estimators of :

a. Is an unbiased estimator of ? What about ?
b. If both estimators are unbiased, which one would you choose? (Hint:

Compare the variances of the two estimators.)
D.18. Refer to Problem C.10 in Appendix C. Suppose a random sample of 10 firms

gave a mean profit of $900,000 and a (sample) standard deviation of $100,000.
a. Establish a 95% confidence interval for the true mean profit in the industry.
b. Which probability distribution did you use? Why?

D.19. Refer to Example C.14 in Appendix C.
a. Establish a 95% confidence interval for the true .
b. Test the hypothesis that the true variance is 8.2.

D.20. Sixteen cars are first driven with a standard fuel and then with Petrocoal, a
gasoline with a methanol additive. The results of the nitrous oxide emissions
(NOx) test are as follows:

Type of fuel Average NOx Standard deviation of NOx

Standard 1.075 0.5796
Petrocoal 1.159 0.6134

Source: Michael O. Finkelstein and Bruce Levin, Statistics for Lawyers,
Springer-Verlag, New York, 1990, p. 230.

␴2

N␮2␮XN␮1

N␮1 =
X1 + X2 + X3

3
   and   N␮2 =

X1

6
+
X2

3
+
X3

2

␮X

X ' N(␮X, ␴
2
X)

␹2 Ú 19, d.f. = 30
F Ú 2.59, d.f. = 3
Z Ú 2.9
t Ú 1.72, d.f. = 24

X = 7.5
X

X = 7.5
X ' N(␮X = 8, ␴2

X = 36)

X = 8␴␮

␣ = 5%
␮ 7 5␮ = 5
␮ Z 5␮ = 5
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a. How would you test the hypothesis that the two population standard
deviations are the same?

b. Which test did you use? What are the assumptions underlying that test?
D.21. Show that the estimator given in Eq. (D.14) is biased. (Hint: Expand Eq. (D.14),

and take the expectation of each term, keeping in mind that the expected
value of each Xi is ).

D.22. One-sided confidence interval. Return to the P/E example in this appendix and
look at the two-sided 95% confidence interval given in Eq. (D.7). Suppose you
want to establish a one-sided confidence interval only, either an upper bound
or a lower bound. How would you go about establishing such an interval?
(Hint: Find the one-tail critical t value.)

␮X
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APPENDIX E
STATISTICAL TABLES

Table E-1a Areas under the standardized normal distribution
Table E-1b Cumulative probabilities of the standard normal distribution
Table E-2 Percentage points of the t distribution
Table E-3 Upper percentage points of the F distribution
Table E-4 Upper percentage points of the distribution
Table E-5a Durbin-Watson d statistic: Significance points of dL and dU at 0.05

level of significance
Table E-5b Durbin-Watson d statistic: Significance points of dL and dU at 0.01

level of significance
Table E-6 Critical values of runs in the runs test

 2





TABLE E-1a AREAS UNDER THE STANDARDIZED NORMAL DISTRIBUTION

Z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359

0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753

0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141

0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517

0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879

0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549

0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852

0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133

0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830

1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015

1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177

1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319

1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545

1.7 .4454 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633

1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706

1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767

2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857

2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890

2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916

2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936

2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964

2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974

2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981

2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986

3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990

Note: This table gives the area in the right-hand tail of the distribution (i.e., ). But since the normal distribution is symmetrical about
Z = 0, the area in the left-hand tail is the same as the area in the corresponding right-hand tail. For example, 
Therefore, .P(-1.96 … Z … 1.96) = 2(0.4750) = 0.95

P(-1.96 … Z … 0) = 0.4750.
Z Ú 0

0.4750

Z
0 1.96

Example

Pr(0   Z   1.96)   0.4750

Pr(Z   1.96)   0.5   0.4750   0.025
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TABLE E-1b CUMULATIVE PROBABILITIES OF THE STANDARD NORMAL DISTRIBUTION

Entry is area A under the standard normal curve from   to Z(A)

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995

3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

Selected Percentiles

Cumulative probability A: .90 .95 .975 .98 .99 .995 .999

Z(A): 1.282 1.645 1.960 2.054 2.326 2.576 3.090

z(A)

A
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PERCENTAGE POINTS OF THE t DISTRIBUTION

Pr 0.25 0.10 0.05 0.025 0.01 0.005 0.001
d.f. 0.50 0.20 0.10 0.05 0.02 0.010 0.002

1 1.000 3.078 6.314 12.706 31.821 63.657 318.31

2 0.816 1.886 2.920 4.303 6.965 9.925 22.327

3 0.765 1.638 2.353 3.182 4.541 5.841 10.214

4 0.741 1.533 2.132 2.776 3.747 4.604 7.173

5 0.727 1.476 2.015 2.571 3.365 4.032 5.893

6 0.718 1.440 1.943 2.447 3.143 3.707 5.208

7 0.711 1.415 1.895 2.365 2.998 3.499 4.785

8 0.706 1.397 1.860 2.306 2.896 3.355 4.501

9 0.703 1.383 1.833 2.262 2.821 3.250 4.297

10 0.700 1.372 1.812 2.228 2.764 3.169 4.144

11 0.697 1.363 1.796 2.201 2.718 3.106 4.025

12 0.695 1.356 1.782 2.179 2.681 3.055 3.930

13 0.694 1.350 1.771 2.160 2.650 3.012 3.852

14 0.692 1.345 1.761 2.145 2.624 2.977 3.787

15 0.691 1.341 1.753 2.131 2.602 2.947 3.733

16 0.690 1.337 1.746 2.120 2.583 2.921 3.686

17 0.689 1.333 1.740 2.110 2.567 2.898 3.646

18 0.688 1.330 1.734 2.101 2.552 2.878 3.610

19 0.688 1.328 1.729 2.093 2.539 2.861 3.579

20 0.687 1.325 1.725 2.086 2.528 2.845 3.552

21 0.686 1.323 1.721 2.080 2.518 2.831 3.527

22 0.686 1.321 1.717 2.074 2.508 2.819 3.505

23 0.685 1.319 1.714 2.069 2.500 2.807 3.485

24 0.685 1.318 1.711 2.064 2.492 2.797 3.467

25 0.684 1.316 1.708 2.060 2.485 2.787 3.450

26 0.684 1.315 1.706 2.056 2.479 2.779 3.435

27 0.684 1.314 1.703 2.052 2.473 2.771 3.421

28 0.683 1.313 1.701 2.048 2.467 2.763 3.408

29 0.683 1.311 1.699 2.045 2.462 2.756 3.396

30 0.683 1.310 1.697 2.042 2.457 2.750 3.385

40 0.681 1.303 1.684 2.021 2.423 2.704 3.307

60 0.679 1.296 1.671 2.000 2.390 2.660 3.232

120 0.677 1.289 1.658 1.980 2.358 2.617 3.160

0.674 1.282 1.645 1.960 2.326 2.576 3.090

Note: The smaller probability shown at the head of each column is the area in one tail; the larger probability
is the area in both tails.

Source: From E. S. Pearson and H. O. Hartley, eds., Biometrika Tables for Statisticians, vol. 1, 3rd ed., 
Table 12, Cambridge University Press, New York, 1966. Reproduced by permission of the editors and trustees 
of Biometrika.

q

0.05

t
0 1.725

Example

Pr(t   2.086)   0.025

Pr( t     1.725)   0.10

Pr(t   1.725)   0.05       for d.f.   20
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TABLE E-3 UPPER PERCENTAGE POINTS OF THE F DISTRIBUTION

d.f. for

denom- d.f. for numerator N1

inator 

N2 Pr 1 2 3 4 5 6 7 8 9 10 11 12

.25 5.83 7.50 8.20 8.58 8.82 8.98 9.10 9.19 9.26 9.32 9.36 9.41

1 .10 39.90 49.50 53.60 55.80 57.20 58.20 58.90 59.40 59.90 60.20 60.50 60.70

.05 161.00 200.00 216.00 225.00 230.00 234.00 237.00 239.00 241.00 242.00 243.00 244.00

.25 2.57 3.00 3.15 3.23 3.28 3.31 3.34 3.35 3.37 3.38 3.39 3.39

2 .10 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.40 9.41

.05 18.50 19.00 19.20 19.20 19.30 19.30 19.40 19.40 19.40 19.40 19.40 19.40

.01 98.50 99.00 99.20 99.20 99.30 99.30 99.40 99.40 99.40 99.40 99.40 99.40

.25 2.02 2.28 2.36 2.39 2.41 2.42 2.43 2.44 2.44 2.44 2.45 2.45

3 .10 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.22

.05 10.10 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.76 8.74

.01 34.10 30.80 29.50 28.70 28.20 27.90 27.70 27.50 27.30 27.20 27.10 27.10

.25 1.81 2.00 2.05 2.06 2.07 2.08 2.08 2.08 2.08 2.08 2.08 2.08

4 .10 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.91 3.90

.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.94 5.91

.01 21.20 18.00 16.70 16.00 15.50 15.20 15.00 14.80 14.70 14.50 14.40 14.40

.25 1.69 1.85 1.88 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89

5 .10 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.28 3.27

.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.71 4.68

.01 16.30 13.30 12.10 11.40 11.00 10.70 10.50 10.30 10.20 10.10 9.96 9.89

.25 1.62 1.76 1.78 1.79 1.79 I.78 1.78 1.78 1.77 1.77 1.77 1.77

6 .10 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.92 2.90

.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00

.01 13.70 10.90 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72

.25 1.57 1.70 1.72 1.72 1.71 1.71 1.70 1.70 1.69 1.69 1.69 1.68

7 .10 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.68 2.67

.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.60 3.57

.01 12.20 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.54 6.47

.25 1.54 1.66 1.67 1.66 1.66 1.65 1.64 1.64 1.63 1.63 1.63 1.62

8 .10 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.52 2.50

.05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.31 3.28

.01 11.30 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.73 5.67

.25 1.51 1.62 1.63 1.63 1.62 1.61 1.60 1.60 1.59 1.59 1.58 1.58

9 .10 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.40 2.38

.05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.10 3.07

.01 10.60 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.18 5.11

Source: From E. S. Pearson and H. O. Hartley, eds., Biometrika Tables for Statisticians, vol. 1, 3rd ed., Table 18, Cambridge University
Press, New York, 1966. Reproduced by permission of the editors and trustees of Biometrika.

5% area

F
0 3.14 5.26

1% area

Example

Pr(F   1.59)   0.25

Pr(F   2.42)   0.10         for d.f. N1   10

Pr(F   3.14)   0.05              and N2   9

Pr(F   5.26)   0.01
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d.f. for 
d.f. for numerator N1 denom-

inator 

15 20 24 30 40 50 60 100 120 200 500 Pr N2

9.49 9.58 9.63 9.67 9.71 9.74 9.76 9.78 9.80 9.82 9.84 9.85 .25

61.20 61.70 62.00 62.30 62.50 62.70 62.80 63.00 63.10 63.20 63.30 63.30 .10 1

246.00 248.00 249.00 250.00 251.00 252.00 252.00 253.00 253.00 254.00 254.00 254.00 .05

3.41 3.43 3.43 3.44 3.45 3.45 3.46 3.47 3.47 3.48 3.48 3.48 .25

9.42 9.44 9.45 9.46 9.47 9.47 9.47 9.48 9.48 9.49 9.49 9.49 .10 2

19.40 19.40 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 .05

99.40 99.40 99.50 99.50 99.50 99.50 99.50 99.50 99.50 99.50 99.50 99.50 .01

2.46 2.46 2.46 2.47 2.47 2.47 2.47 2.47 2.47 2.47 2.47 2.47 .25

5.20 5.18 5.18 5.17 5.16 5.15 5.15 5.14 5.14 5.14 5.14 5.13 .10 3

8.70 8.66 8.64 8.62 8.59 8.58 8.57 8.55 8.55 8.54 8.53 8.53 .05

26.90 26.70 26.60 26.50 26.40 26.40 26.30 26.20 26.20 26.20 26.10 26.10 .01

2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 .25

3.87 3.84 3.83 3.82 3.80 3.80 3.79 3.78 3.78 3.77 3.76 3.76 .10 4

5.86 5.80 5.77 5.75 5.72 5.70 5.69 5.66 5.66 5.65 5.64 5.63 .05

14.20 14.00 13.90 13.80 13.70 13.70 13.70 13.60 13.60 13.50 13.50 13.50 .01

1.89 1.88 1.88 1.88 1.88 1.88 1.87 1.87 1.87 1.87 1.87 1.87 .25

3.24 3.21 3.19 3.17 3.16 3.15 3.14 3.13 3.12 3.12 3.11 3.10 .10 5

4.62 4.56 4.53 4.50 4.46 4.44 4.43 4.41 4.40 4.39 4.37 4.36 .05

9.72 9.55 9.47 9.38 9.29 9.24 9.20 9.13 9.11 9.08 9.04 9.02 .01

1.76 1.76 1.75 1.75 1.75 1.75 1.74 1.74 1.74 1.74 1.74 1.74 .25

2.87 2.84 2.82 2.80 2.78 2.77 2.76 2.75 2.74 2.73 2.73 2.72 .10 6

3.94 3.87 3.84 3.81 3.77 3.75 3.74 3.71 3.70 3.69 3.68 3.67 .05

7.56 7.40 7.31 7.23 7.14 7.09 7.06 6.99 6.97 6.93 6.90 6.88 .01

1.68 1.67 1.67 1.66 1.66 1.66 1.65 1.65 1.65 1.65 1.65 1.65 .25

2.63 2.59 2.58 2.56 2.54 2.52 2.51 2.50 2.49 2.48 2.48 2.47 .10 7

3.51 3.44 3.41 3.38 3.34 3.32 3.30 3.27 3.27 3.25 3.24 3.23 .05

6.31 6.16 6.07 5.99 5.91 5.86 5.82 5.75 5.74 5.70 5.67 5.65 .01

1.62 1.61 1.60 1.60 1.59 1.59 1.59 1.58 1.58 1.58 1.58 1.58 .25

2.46 2.42 2.40 2.38 2.36 2.35 2.34 2.32 2.32 2.31 2.30 2.29 .10 8

3.22 3.15 3.12 3.08 3.04 2.02 3.01 2.97 2.97 2.95 2.94 2.93 .05

5.52 5.36 5.28 5.20 5.12 5.07 5.03 4.96 4.95 4.91 4.88 4.86 .01

1.57 1.56 1.56 1.55 1.55 1.54 1.54 1.53 1.53 1.53 1.53 1.53 .25

2.34 2.30 2.28 2.25 2.23 2.22 2.21 2.19 2.18 2.17 2.17 2.16 .10 9

3.01 2.94 2.90 2.86 2.83 2.80 2.79 2.76 2.75 2.73 2.72 2.71 .05

4.96 4.81 4.73 4.65 4.57 4.52 4.48 4.42 4.40 4.36 4.33 4.31 .01

q
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TABLE E-3 UPPER PERCENTAGE POINTS OF THE F DISTRIBUTION (CONTINUED)

d.f. for

denom- d.f. for numerator N1

inator 

N2 Pr 1 2 3 4 5 6 7 8 9 10 11 12

.25 1.49 1.60 1.60 1.59 1.59 1.58 1.57 1.56 1.56 1.55 1.55 1.54

10 .10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.30 2.28

.05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.94 2.91

.01 10.00 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.77 4.71

.25 1.47 1.58 1.58 1.57 1.56 1.55 1.54 1.53 1.53 1.52 1.52 1.51

11 .10 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.23 2.21

.05 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82 2.79

.01 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.46 4.40

.25 1.46 1.56 1.56 1.55 1.54 1.53 1.52 1.51 1.51 1.50 1.50 1.49

12 .10 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.17 2.15

.05 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.72 2.69

.01 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.22 4.16

.25 1.45 1.55 1.55 1.53 1.52 1.51 1.50 1.49 1.49 1.48 1.47 1.47

13 .10 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.12 2.10

.05 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.63 2.60

.01 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96

.25 1.44 1.53 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46 1.46 1.45

14 .10 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.08 2.05

.05 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.57 2.53

.01 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.86 3.80

.25 1.43 1.52 1.52 1.51 1.49 1.48 1.47 1.46 1.46 1.45 1.44 1.44

15 .10 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.04 2.02

.05 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.51 2.48

.01 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67

.25 1.42 1.51 1.51 1.50 1.48 1.47 1.46 1.45 1.44 1.44 1.44 1.43

16 .10 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 2.01 1.99

.05 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.46 2.42

.01 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.62 3.55

.25 1.42 1.51 1.50 1.49 1.47 1.46 1.45 1.44 1.43 1.43 1.42 1.41

17 .10 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.98 1.96

.05 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.41 2.38

.01 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.46

.25 1.41 1.50 1.49 1.48 1.46 1.45 1.44 1.43 1.42 1.42 1.41 1.40

18 .10 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.96 1.93

.05 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34

.01 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.43 3.37

.25 1.41 1.49 1.49 1.47 1.46 1.44 1.43 1.42 1.41 1.41 1.40 1.40

19 .10 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.94 1.91

.05 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.34 2.31

.01 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30

.25 1.40 1.49 1.48 1.46 1.45 1.44 1.43 1.42 1.41 1.40 1.39 1.39

20 .10 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.92 1.89

.05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31 2.28

.01 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.29 3.23
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d.f. for 
d.f. for numerator N1 denom-

inator 

15 20 24 30 40 50 60 100 120 200 500 Pr N2

1.53 1.52 1.52 1.51 1.51 1.50 1.50 1.49 1.49 1.49 1.48 1.48 .25

2.24 2.20 2.18 2.16 2.13 2.12 2.11 2.09 2.08 2.07 2.06 2.06 .10 10

2.85 2.77 2.74 2.70 2.66 2.64 2.62 2.59 2.58 2.56 2.55 2.54 .05

4.56 4.41 4.33 4.25 4.17 4.12 4.08 4.01 4.00 3.96 3.93 3.91 .01

1.50 1.49 1.49 1.48 1.47 1.47 1.47 1.46 1.46 1.46 1.45 1.45 .25

2.17 2.12 2.10 2.08 2.05 2.04 2.03 2.00 2.00 1.99 1.98 1.97 .10 11

2.72 2.65 2.61 2.57 2.53 2.51 2.49 2.46 2.45 2.43 2.42 2.40 .05

4.25 4.10 4.02 3.94 3.86 3.81 3.78 3.71 3.69 3.66 3.62 3.60 .01

1.48 1.47 1.46 1.45 1.45 1.44 1.44 1.43 1.43 1.43 1.42 1.42 .25

2.10 2.06 2.04 2.01 1.99 1.97 1.96 1.94 1.93 1.92 1.91 1.90 .10 12

2.62 2.54 2.51 2.47 2.43 2.40 2.38 2.35 2.34 2.32 2.31 2.30 .05

4.01 3.86 3.78 3.70 3.62 3.57 3.54 3.47 3.45 3.41 3.38 3.36 .01

1.46 1.45 1.44 1.43 1.42 1.42 1.42 1.41 1.41 1.40 1.40 1.40 .25

2.05 2.01 1.98 1.96 1.93 1.92 1.90 1.88 1.88 1.86 1.85 1.85 .10 13

2.53 2.46 2.42 2.38 2.34 2.31 2.30 2.26 2.25 2.23 2.22 2.21 .05

3.82 3.66 3.59 3.51 3.43 3.38 3.34 3.27 3.25 3.22 3.19 3.17 .01

1.44 1.43 1.42 1.41 1.41 1.40 1.40 1.39 1.39 1.39 1.38 1.38 .25

2.01 1.96 1.94 1.91 1.89 1.87 1.86 1.83 1.83 1.82 1.80 1.80 .10 14

2.46 2.39 2.35 2.31 2.27 2.24 2.22 2.19 2.18 2.16 2.14 2.13 .05

3.66 3.51 3.43 3.35 3.27 3.22 3.18 3.11 3.09 3.06 3.03 3.00 .01

1.43 1.41 1.41 1.40 1.39 1.39 1.38 1.38 1.37 1.37 1.36 1.36 .25

1.97 1.92 1.90 1.87 1.85 1.83 1.82 1.79 1.79 1.77 1.76 1.76 .10 15

2.40 2.33 2.29 2.25 2.20 2.18 2.16 2.12 2.11 2.10 2.08 2.07 .05

3.52 3.37 3.29 3.21 3.13 3.08 3.05 2.98 2.96 2.92 2.89 2.87 .01

1.41 1.40 1.39 1.38 1.37 1.37 1.36 1.36 1.35 1.35 1.34 1.34 .25

1.94 1.89 1.87 1.84 1.81 1.79 1.78 1.76 1.75 1.74 1.73 1.72 .10 16

2.35 2.28 2.24 2.19 2.15 2.12 2.11 2.07 2.06 2.04 2.02 2.01 .05

3.41 3.26 3.18 3.10 3.02 2.97 2.93 2.86 2.84 2.81 2.78 2.75 .01

1.40 1.39 1.38 1.37 1.36 1.35 1.35 1.34 1.34 1.34 1.33 1.33 .25

1.91 1.86 1.84 1.81 1.78 1.76 1.75 1.73 1.72 1.71 1.69 1.69 .10 17

2.31 2.23 2.19 2.15 2.10 2.08 2.06 2.02 2.01 1.99 1.97 1.96 .05

3.31 3.16 3.08 3.00 2.92 2.87 2.83 2.76 2.75 2.71 2.68 2.65 .01

1.39 1.38 1.37 1.36 1.35 1.34 1.34 1.33 1.33 1.32 1.32 1.32 .25

1.89 1.84 1.81 1.78 1.75 1.74 1.72 1.70 1.69 1.68 1.67 1.66 .10 18

2.27 2.19 2.15 2.11 2.06 2.04 2.02 1.98 1.97 1.95 1.93 1.92 .05

3.23 3.08 3.00 2.92 2.84 2.78 2.75 2.68 2.66 2.62 2.59 2.57 .01

1.38 1.37 1.36 1.35 1.34 1.33 1.33 1.32 1.32 1.31 1.31 1.30 .25

1.86 1.81 1.79 1.76 1.73 1.71 1.70 1.67 1.67 1.65 1.64 1.63 .10 19

2.23 2.16 2.11 2.07 2.03 2.00 1.98 1.94 1.93 1.91 1.89 1.88 .05

3.15 3.00 2.92 2.84 2.76 2.71 2.67 2.60 2.58 2.55 2.51 2.49 .01

1.37 1.36 1.35 1.34 1.33 1.33 1.32 1.31 1.31 1.30 1.30 1.29 .25

1.84 1.79 1.77 1.74 1.71 1.69 1.68 1.65 1.64 1.63 1.62 1.61 .10 20

2.20 2.12 2.08 2.04 1.99 1.97 1.95 1.91 1.90 1.88 1.86 1.84 .05

3.09 2.94 2.86 2.78 2.69 2.64 2.61 2.54 2.52 2.48 2.44 2.42 .01

q
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TABLE E-3 UPPER PERCENTAGE POINTS OF THE F DISTRIBUTION (CONTINUED)

d.f. for

denom- d.f. for numerator N1

inator 

N2 Pr 1 2 3 4 5 6 7 8 9 10 11 12

.25 1.40 1.48 1.47 1.45 1.44 1.42 1.41 1.40 1.39 1.39 1.38 1.37

22 .10 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.88 1.86

.05 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.26 2.23

.01 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12

.25 1.39 1.47 1.46 1.44 1.43 1.41 1.40 1.39 1.38 1.38 1.37 1.36

24 .10 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.85 1.83

.05 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.21 2.18

.01 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.09 3.03

.25 1.38 1.46 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.37 1.36 1.35

26 .10 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.84 1.81

.05 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15

.01 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 3.02 2.96

.25 1.38 1.46 1.45 1.43 1.41 1.40 1.39 1.38 1.37 1.36 1.35 1.34

28 .10 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.81 1.79

.05 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.15 2.12

.01 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.96 2.90

.25 1.38 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.36 1.35 1.35 1.34

30 .10 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.79 1.77

.05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.13 2.09

.01 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.91 2.84

.25 1.36 1.44 1.42 1.40 1.39 1.37 1.36 1.35 1.34 1.33 1.32 1.31

40 .10 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.73 1.71

.05 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.04 2.00

.01 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.73 2.66

.25 1.35 1.42 1.41 1.38 1.37 1.35 1.33 1.32 1.31 1.30 1.29 1.29

60 .10 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.68 1.66

.05 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92

.01 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50

.25 1.34 1.40 1.39 1.37 1.35 1.33 1.31 1.30 1.29 1.28 1.27 1.26

120 .10 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.62 1.60

.05 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 1.87 1.83

.01 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.40 2.34

.25 1.33 1.39 1.38 1.36 1.34 1.32 1.31 1.29 1.28 1.27 1.26 1.25

200 .10 2.73 2.33 2.11 1.97 1.88 1.80 1.75 1.70 1.66 1.63 1.60 1.57

.05 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.84 1.80

.01 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 2.34 2.27

.25 1.32 1.39 1.37 1.35 1.33 1.31 1.29 1.28 1.27 1.25 1.24 1.24

.10 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.57 1.55

.05 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.79 1.75

.01 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.25 2.18

q
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d.f. for 
d.f. for numerator N1 denom-

inator 

15 20 24 30 40 50 60 100 120 200 500 Pr N2

1.36 1.34 1.33 1.32 1.31 1.31 1.30 1.30 1.30 1.29 1.29 1.28 .25

1.81 1.76 1.73 1.70 1.67 1.65 1.64 1.61 1.60 1.59 1.58 1.57 .10 22

2.15 2.07 2.03 1.98 1.94 1.91 1.89 1.85 1.84 1.82 1.80 1.78 .05

2.98 2.83 2.75 2.67 2.58 2.53 2.50 2.42 2.40 2.36 2.33 2.31 .01

1.35 1.33 1.32 1.31 1.30 1.29 1.29 1.28 1.28 1.27 1.27 1.26 .25

1.78 1.73 1.70 1.67 1.64 1.62 1.61 1.58 1.57 1.56 1.54 1.53 .10 24

2.11 2.03 1.98 1.94 1.89 1.86 1.84 1.80 1.79 1.77 1.75 1.73 .05

2.89 2.74 2.66 2.58 2.49 2.44 2.40 2.33 2.31 2.27 2.24 2.21 .01

1.34 1.32 1.31 1.30 1.29 1.28 1.28 1.26 1.26 1.26 1.25 1.25 .25

1.76 1.71 1.68 1.65 1.61 1.59 1.58 1.55 1.54 1.53 1.51 1.50 .10 26

2.07 1.99 1.95 1.90 1.85 1.82 1.80 1.76 1.75 1.73 1.71 1.69 .05

2.81 2.66 2.58 2.50 2.42 2.36 2.33 2.25 2.23 2.19 2.16 2.13 .01

1.33 1.31 1.30 1.29 1.28 1.27 1.27 1.26 1.25 1.25 1.24 1.24 .25

1.74 1.69 1.66 1.63 1.59 1.57 1.56 1.53 1.52 1.50 1.49 1.48 .10 28

2.04 1.96 1.91 1.87 1.82 1.79 1.77 1.73 1.71 1.69 1.67 1.65 .05

2.75 2.60 2.52 2.44 2.35 2.30 2.26 2.19 2.17 2.13 2.09 2.06 .01

1.32 1.30 1.29 1.28 1.27 1.26 1.26 1.25 1.24 1.24 1.23 1.23 .25

1.72 1.67 1.64 1.61 1.57 1.55 1.54 1.51 1.50 1.48 1.47 1.46 .10 30

2.01 1.93 1.89 1.84 1.79 1.76 1.74 1.70 1.68 1.66 1.64 1.62 .05

2.70 2.55 2.47 2.39 2.30 2.25 2.21 2.13 2.11 2.07 2.03 2.01 .01

1.30 1.28 1.26 1.25 1.24 1.23 1.22 1.21 1.21 1.20 1.19 1.19 .25

1.66 1.61 1.57 1.54 1.51 1.48 1.47 1.43 1.42 1.41 1.39 1.38 .10 40

1.92 1.84 1.79 1.74 1.69 1.66 1.64 1.59 1.58 1.55 1.53 1.51 .05

2.52 2.37 2.29 2.20 2.11 2.06 2.02 1.94 1.92 1.87 1.83 1.80 .01

1.27 1.25 1.24 1.22 1.21 1.20 1.19 1.17 1.17 1.16 1.15 1.15 .25

1.60 1.54 1.51 1.48 1.44 1.41 1.40 1.36 1.35 1.33 1.31 1.29 .10 60

1.84 1.75 1.70 1.65 1.59 1.56 1.53 1.48 1.47 1.44 1.41 1.39 .05

2.35 2.20 2.12 2.03 1.94 1.88 1.84 1.75 1.73 1.68 1.63 1.60 .01

1.24 1.22 1.21 1.19 1.18 1.17 1.16 1.14 1.13 1.12 1.11 1.10 .25

1.55 1.48 1.45 1.41 1.37 1.34 1.32 1.27 1.26 1.24 1.21 1.19 .10 120

1.75 1.66 1.61 1.55 1.50 1.46 1.43 1.37 1.35 1.32 1.28 1.25 .05

2.19 2.03 1.95 1.86 1.76 1.70 1.66 1.56 1.53 1.48 1.42 1.38 .01

1.23 1.21 1.20 1.18 1.16 1.14 1.12 1.11 1.10 1.09 1.08 1.06 .25

1.52 1.46 1.42 1.38 1.34 1.31 1.28 1.24 1.22 1.20 1.17 1.14 .10 200

1.72 1.62 1.57 1.52 1.46 1.41 1.39 1.32 1.29 1.26 1.22 1.19 .05

2.13 1.97 1.89 1.79 1.69 1.63 1.58 1.48 1.44 1.39 1.33 1.28 .01

1.22 1.19 1.18 1.16 1.14 1.13 1.12 1.09 1.08 1.07 1.04 1.00 .25

1.49 1.42 1.38 1.34 1.30 1.26 1.24 1.18 1.17 1.13 1.08 1.00 .10

1.67 1.57 1.52 1.46 1.39 1.35 1.32 1.24 1.22 1.17 1.11 1.00 .05

2.04 1.88 1.79 1.70 1.59 1.52 1.47 1.36 1.32 1.25 1.15 1.00 .01

q

q
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TABLE E-4 UPPER PERCENTAGE POINTS OF THE DISTRIBUTION

Degrees Pr
of Freedom .995 .990 .975 .950 .900

1 392704  10−10 157088  10−9 982069  10−9 393214  10−8 .0158

2 .0100 .0201 .0506 .1026 .2107

3 .0717 .1148 .2158 .3518 .5844

4 .2070 .2971 .4844 .7107 1.0636

5 .4117 .5543 .8312 1.1455 1.6103

6 .6757 .8721 1.2373 1.6354 2.2041

7 .9893 1.2390 1.6899 2.1674 2.8331

8 1.3444 1.6465 2.1797 2.7326 3.4895

9 1.7349 2.0879 2.7004 3.3251 4.1682

10 2.1559 2.5582 3.2470 3.9403 4.8652

11 2.6032 3.0535 3.8158 4.5748 5.5778

12 3.0738 3.5706 4.4038 5.2260 6.3038

13 3.5650 4.1069 5.0087 5.8919 7.0415

14 4.0747 4.6604 5.6287 6.5706 7.7895

15 4.6009 5.2294 6.2621 7.2609 8.5468

16 5.1422 5.8122 6.9077 7.9616 9.3122

17 5.6972 6.4078 7.5642 8.6718 10.0852

18 6.2648 7.0149 8.2308 9.3905 10.8649

19 6.8440 7.6327 8.9066 10.1170 11.6509

20 7.4339 8.2604 9.5908 10.8508 12.4426

21 8.0337 8.8972 10.2829 11.5913 13.2396

22 8.6427 9.5425 10.9823 12.3380 14.0415

23 9.2604 10.1957 11.6885 13.0905 14.8479

24 9.8862 10.8564 12.4011 13.8484 15.6587

25 10.5197 11.5240 13.1197 14.6114 16.4734

26 11.1603 12.1981 13.8439 15.3791 17.2919

27 11.8076 12.8786 14.5733 16.1513 18.1138

28 12.4613 13.5648 15.3079 16.9279 18.9392

29 13.1211 14.2565 16.0471 17.7083 19.7677

30 13.7867 14.9535 16.7908 18.4926 20.5992

40 20.7065 22.1643 24.4331 26.5093 29.0505

50 27.9907 29.7067 32.3574 34.7642 37.6886

60 35.5346 37.4848 40.4817 43.1879 46.4589

70 43.2752 45.4418 48.7576 51.7393 55.3290

80 51.1720 53.5400 57.1532 60.3915 64.2778

90 59.1963 61.7541 65.6466 69.1260 73.2912

100* 67.3276 70.0648 74.2219 77.9295 82.3581

*For d.f. greater than 100 the expression follows the standardized normal distribution, where k represents the
degrees of freedom.

22x2
- 2(2k - 1) = Z

 2

5% area

 2
0 31.4123.8310.85

25% area
95% area

Example

Pr( 2   10.85)   0.95

Pr( 2   23.83)   0.25       for d.f.   20

Pr( 2   31.41)   0.05
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.750 .500 .250 .100 .050 .025 .010 .005

.1015 .4549 1.3233 2.7055 3.8415 5.0239 6.6349 7.8794

.5754 1.3863 2.7726 4.6052 5.9915 7.3778 9.2103 10.5966

1.2125 2.3660 4.1084 6.2514 7.8147 9.3484 11.3449 12.8381

1.9226 3.3567 5.3853 7.7794 9.4877 11.1433 13.2767 14.8602

2.6746 4.3515 6.6257 9.2364 11.0705 12.8325 15.0863 16.7496

3.4546 5.3481 7.8408 10.6446 12.5916 14.4494 16.8119 18.5476

4.2549 6.3458 9.0372 12.0170 14.0671 16.0128 18.4753 20.2777

5.0706 7.3441 10.2188 13.3616 15.5073 17.5346 20.0902 21.9550

5.8988 8.3428 11.3887 14.6837 16.9190 19.0228 21.6660 23.5893

6.7372 9.3418 12.5489 15.9871 18.3070 20.4831 23.2093 25.1882

7.5841 10.3410 13.7007 17.2750 19.6751 21.9200 24.7250 26.7569

8.4384 11.3403 14.8454 18.5494 21.0261 23.3367 26.2170 28.2995

9.2991 12.3398 15.9839 19.8119 22.3621 24.7356 27.6883 29.8194

10.1653 13.3393 17.1170 21.0642 23.6848 26.1190 29.1413 31.3193

11.0365 14.3389 18.2451 22.3072 24.9958 27.4884 30.5779 32.8013

11.9122 15.3385 19.3688 23.5418 26.2962 28.8454 31.9999 34.2672

12.7919 16.3381 20.4887 24.7690 27.5871 30.1910 33.4087 35.7185

13.6753 17.3379 21.6049 25.9894 28.8693 31.5264 34.8053 37.1564

14.5620 18.3376 22.7178 27.2036 30.1435 32.8523 36.1908 38.5822

15.4518 19.3374 23.8277 28.4120 31.4104 34.1696 37.5662 39.9968

16.3444 20.3372 24.9348 29.6151 32.6705 35.4789 38.9321 41.4010

17.2396 21.3370 26.0393 30.8133 33.9244 36.7807 40.2894 42.7956

18.1373 22.3369 27.1413 32.0069 35.1725 38.0757 41.6384 44.1813

19.0372 23.3367 28.2412 33.1963 36.4151 39.3641 42.9798 45.5585

19.9393 24.3366 29.3389 34.3816 37.6525 40.6465 44.3141 46.9278

20.8434 25.3364 30.4345 35.5631 38.8852 41.9232 45.6417 48.2899

21.7494 26.3363 31.5284 36.7412 40.1133 43.1944 46.9630 49.6449

22.6572 27.3363 32.6205 37.9159 41.3372 44.4607 48.2782 50.9933

23.5666 28.3362 33.7109 39.0875 42.5569 45.7222 49.5879 52.3356

24.4776 29.3360 34.7998 40.2560 43.7729 46.9792 50.8922 53.6720

33.6603 39.3354 45.6160 51.8050 55.7585 59.3417 63.6907 66.7659

42.9421 49.3349 56.3336 63.1671 67.5048 71.4202 76.1539 79.4900

52.2938 59.3347 66.9814 74.3970 79.0819 83.2976 88.3794 91.9517

61.6983 69.3344 77.5766 85.5271 90.5312 95.0231 100.425 104.215

71.1445 79.3343 88.1303 96.5782 101.879 106.629 112.329 116.321

80.6247 89.3342 98.6499 107.565 113.145 118.136 124.116 128.299

90.1332 99.3341 109.141 118.498 124.342 129.561 135.807 140.169

Source: Abridged from E. S. Pearson and H. O. Hartley, eds., Biometrika Tables for Statisticians, vol. 1, 3rd ed., Table 8, Cambridge
University Press, New York, 1966. Reproduced by permission of the editors and trustees of Biometrika.
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TABLE E-5a DURBIN-WATSON d STATISTIC: SIGNIFICANCE POINTS OF dL AND dU AT 0.05 LEVEL OF

SIGNIFICANCE

k   1 k   2 k   3 k   4 k   5 k   6 k   7 k   8 k   9 k   10

n dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU

6 0.610 1.400 — — — — — — — — — — — — — — — — — —

7 0.700 1.356 0.467 1.896 — — — — — — — — — — — — — — — —

8 0.763 1.332 0.559 1.777 0.368 2.287 — — — — — — — — — — — — — —

9 0.824 1.320 0.629 1.699 0.455 2.128 0.296 2.588 — — — — — — — — — — — —

10 0.879 1.320 0.697 1.641 0.525 2.016 0.376 2.414 0.243 2.822 — — — — — — — — — —

11 0.927 1.324 0.658 1.604 0.595 1.928 0.444 2.283 0.316 2.645 0.203 3.005 — — — — — — — —

12 0.971 1.331 0.812 1.579 0.658 1.864 0.512 2.177 0.379 2.506 0.268 2.832 0.171 3.149 — — — — — —

13 1.010 1.340 0.861 1.562 0.715 1.816 0.574 2.094 0.445 2.390 0.328 2.692 0.230 2.985 0.147 3.266 — — — —

14 1.045 1.350 0.905 1.551 0.767 1.779 0.632 2.030 0.505 2.296 0.389 2.572 0.286 2.848 0.200 3.111 0.127 3.360 — —

15 1.077 1.361 0.946 1.543 0.814 1.750 0.685 1.977 0.562 2.220 0.447 2.472 0.343 2.727 0.251 2.979 0.175 3.216 0.111 3.438

16 1.106 1.371 0.982 1.539 0.857 1.728 0.734 1.935 0.615 2.157 0.502 2.388 0.398 2.624 0.304 2.860 0.222 3.090 0.155 3.304

17 1.133 1.381 1.015 1.536 0.897 1.710 0.779 1.900 0.664 2.104 0.554 2.318 0.451 2.537 0.356 2.757 0.272 2.975 0.198 3.184

18 1.158 1.391 1.046 1.535 0.933 1.696 0.820 1.872 0.710 2.060 0.603 2.257 0.502 2.461 0.407 2.667 0.321 2.873 0.244 3.073

19 1.180 1.401 1.074 1.536 0.967 1.685 0.859 1.848 0.752 2.023 0.649 2.206 0.549 2.396 0.456 2.589 0.369 2.783 0.290 2.974

20 1.201 1.411 1.100 1.537 0.998 1.676 0.894 1.828 0.792 1.991 0.692 2.162 0.595 2.339 0.502 2.521 0.416 2.704 0.336 2.885

21 1.221 1.420 1.125 1.538 1.026 1.669 0.927 1.812 0.829 1.964 0.732 2.124 0.637 2.290 0.547 2.460 0.461 2.633 0.380 2.806

22 1.239 1.429 1.147 1.541 1.053 1.664 0.958 1.797 0.863 1.940 0.769 2.090 0.677 2.246 0.588 2.407 0.504 2.571 0.424 2.734

23 1.257 1.437 1.168 1.543 1.078 1.660 0.986 1.785 0.895 1.920 0.804 2.061 0.715 2.208 0.628 2.360 0.545 2.514 0.465 2.670

24 1.273 1.446 1.188 1.546 1.101 1.656 1.013 1.775 0.925 1.902 0.837 2.035 0.751 2.174 0.666 2.318 0.584 2.464 0.506 2.613

25 1.288 1.454 1.206 1.550 1.123 1.654 1.038 1.767 0.953 1.886 0.868 2.012 0.784 2.144 0.702 2.280 0.621 2.419 0.544 2.560

26 1.302 1.461 1.224 1.553 1.143 1.652 1.062 1.759 0.979 1.873 0.897 1.992 0.816 2.117 0.735 2.246 0.657 2.379 0.581 2.513

27 1.316 1.469 1.240 1.556 1.162 1.651 1.084 1.753 1.004 1.861 0.925 1.974 0.845 2.093 0.767 2.216 0.691 2.342 0.616 2.470

28 1.328 1.476 1.255 1.560 1.181 1.650 1.104 1.747 1.028 1.850 0.951 1.958 0.874 2.071 0.798 2.188 0.723 2.309 0.650 2.431

29 1.341 1.483 1.270 1.563 1.198 1.650 1.124 1.743 1.050 1.841 0.975 1.944 0.900 2.052 0.826 2.164 0.753 2.278 0.682 2.396

30 1.352 1.489 1.284 1.567 1.214 1.650 1.143 1.739 1.071 1.833 0.998 1.931 0.926 2.034 0.854 2.141 0.782 2.251 0.712 2.363

31 1.363 1.496 1.297 1.570 1.229 1.650 1.160 1.735 1.090 1.825 1.020 1.920 0.950 2.018 0.879 2.120 0.810 2.226 0.741 2.333

32 1.373 1.502 1.309 1.574 1.244 1.650 1.177 1.732 1.109 1.819 1.041 1.909 0.972 2.004 0.904 2.102 0.836 2.203 0.769 2.306

33 1.383 1.508 1.321 1.577 1.258 1.651 1.193 1.730 1.127 1.813 1.061 1.900 0.994 1.991 0.927 2.085 0.861 2.181 0.795 2.281

34 1.393 1.514 1.333 1.580 1.271 1.652 1.208 1.728 1.144 1.808 1.080 1.891 1.015 1.979 0.950 2.069 0.885 2.162 0.821 2.257

35 1.402 1.519 1.343 1.584 1.283 1.653 1.222 1.726 1.160 1.803 1.097 1.884 1.034 1.967 0.971 2.054 0.908 2.144 0.845 2.236

36 1.411 1.525 1.354 1.587 1.295 1.654 1.236 1.724 1.175 1.799 1.114 1.877 1.053 1.957 0.991 2.041 0.930 2.127 0.868 2.216

37 1.419 1.530 1.364 1.590 1.307 1.655 1.249 1.723 1.190 1.795 1.131 1.870 1.071 1.948 1.011 2.029 0.951 2.112 0.891 2.198

38 1.427 1.535 1.373 1.594 1.318 1.656 1.261 1.722 1.204 1.792 1.146 1.864 1.088 1.939 1.029 2.017 0.970 2.098 0.912 2.180

39 1.435 1.540 1.382 1.597 1.328 1.658 1.273 1.722 1.218 1.789 1.161 1.859 1.104 1.932 1.047 2.007 0.990 2.085 0.932 2.164

40 1.442 1.544 1.391 1.600 1.338 1.659 1.285 1.721 1.230 1.786 1.175 1.854 1.120 1.924 1.064 1.997 1.008 2.072 0.952 2.149

45 1.475 1.566 1.430 1.615 1.383 1.666 1.336 1.720 1.287 1.776 1.238 1.835 1.189 1.895 1.139 1.958 1.089 2.022 1.038 2.088

50 1.503 1.585 1.462 1.628 1.421 1.674 1.378 1.721 1.335 1.771 1.291 1.822 1.246 1.875 1.201 1.930 1.156 1.986 1.110 2.044

55 1.528 1.601 1.490 1.641 1.452 1.681 1.414 1.724 1.374 1.768 1.334 1.814 1.294 1.861 1.253 1.909 1.212 1.959 1.170 2.010

60 1.549 1.616 1.514 1.652 1.480 1.689 1.444 1.727 1.408 1.767 1.372 1.808 1.335 1.850 1.298 1.894 1.260 1.939 1.222 1.984

65 1.567 1.629 1.536 1.662 1.503 1.696 1.471 1.731 1.438 1.767 1.404 1.805 1.370 1.843 1.336 1.882 1.301 1.923 1.266 1.964

70 1.583 1.641 1.554 1.672 1.525 1.703 1.494 1.735 1.464 1.768 1.433 1.802 1.401 1.837 1.369 1.873 1.337 1.910 1.305 1.948

75 1.598 1.652 1.571 1.680 1.543 1.709 1.515 1.739 1.487 1.770 1.458 1.801 1.428 1.834 1.399 1.867 1.369 1.901 1.339 1.935

80 1.611 1.662 1.586 1.688 1.560 1.715 1.534 1.743 1.507 1.772 1.480 1.801 1.453 1.831 1.425 1.861 1.397 1.893 1.369 1.925

85 1.624 1.671 1.600 1.696 1.575 1.721 1.550 1.747 1.525 1.774 1.500 1.801 1.474 1.829 1.448 1.857 1.422 1.886 1.396 1.916

90 1.635 1.679 1.612 1.703 1.589 1.726 1.566 1.751 1.542 1.776 1.518 1.801 1.494 1.827 1.469 1.854 1.445 1.881 1.420 1.909

95 1.645 1.687 1.623 1.709 1.602 1.732 1.579 1.755 1.557 1.778 1.535 1.802 1.512 1.827 1.489 1.852 1.465 1.877 1.442 1.903

100 1.654 1.694 1.634 1.715 1.613 1.736 1.592 1.758 1.571 1.780 1.550 1.803 1.528 1.826 1.506 1.850 1.484 1.874 1.462 1.898

150 1.720 1.746 1.706 1.760 1.693 1.774 1.679 1.788 1.665 1.802 1.651 1.817 1.637 1.832 1.622 1.847 1.608 1.862 1.594 1.877

200 1.758 1.778 1.748 1.789 1.738 1.799 1.728 1.810 1.718 1.820 1.707 1.831 1.697 1.841 1.686 1.852 1.675 1.863 1.665 1.874
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k   11 k   12 k   13 k   14 k   15 k   16 k   17 k   18 k   19 k   20

n dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU

16 0.098 3.503 — — — — — — — — — — — — — — — — — —

17 0.138 3.378 0.087 3.557 — — — — — — — — — — — — — — — —

18 0.177 3.265 0.123 3.441 0.078 3.603 — — — — — — — — — — — — — —

19 0.220 3.159 0.160 3.335 0.111 3.496 0.070 3.642 — — — — — — — — — — — —

20 0.263 3.063 0.200 3.234 0.145 3.395 0.100 3.542 0.063 3.676 — — — — — — — — — —

21 0.307 2.976 0.240 3.141 0.182 3.300 0.132 3.448 0.091 3.583 0.058 3.705 — — — — — — — —

22 0.349 2.897 0.281 3.057 0.220 3.211 0.166 3.358 0.120 3.495 0.083 3.619 0.052 3.731 — — — — — —

23 0.391 2.826 0.322 2.979 0.259 3.128 0.202 3.272 0.153 3.409 0.110 3.535 0.076 3.650 0.048 3.753 — — — —

24 0.431 2.761 0.362 2.908 0.297 3.053 0.239 3.193 0.186 3.327 0.141 3.454 0.101 3.572 0.070 3.678 0.044 3.773 — —

25 0.470 2.702 0.400 2.844 0.335 2.983 0.275 3.119 0.221 3.251 0.172 3.376 0.130 3.494 0.094 3.604 0.065 3.702 0.041 3.790

26 0.508 2.649 0.438 2.784 0.373 2.919 0.312 3.051 0.256 3.179 0.205 3.303 0.160 3.420 0.120 3.531 0.087 3.632 0.060 3.724

27 0.544 2.600 0.475 2.730 0.409 2.859 0.348 2.987 0.291 3.112 0.238 3.233 0.191 3.349 0.149 3.460 0.112 3.563 0.081 3.658

28 0.578 2.555 0.510 2.680 0.445 2.805 0.383 2.928 0.325 3.050 0.271 3.168 0.222 3.283 0.178 3.392 0.138 3.495 0.104 3.592

29 0.612 2.515 0.544 2.634 0.479 2.755 0.418 2.874 0.359 2.992 0.305 3.107 0.254 3.219 0.208 3.327 0.166 3.431 0.129 3.528

30 0.643 2.477 0.577 2.592 0.512 2.708 0.451 2.823 0.392 2.937 0.337 3.050 0.286 3.160 0.238 3.266 0.195 3.368 0.156 3.465

31 0.674 2.443 0.608 2.553 0.545 2.665 0.484 2.776 0.425 2.887 0.370 2.996 0.317 3.103 0.269 3.208 0.224 3.309 0.183 3.406

32 0.703 2.411 0.638 2.517 0.576 2.625 0.515 2.733 0.457 2.840 0.401 2.946 0.349 3.050 0.299 3.153 0.253 3.252 0.211 3.348

33 0.731 2.382 0.668 2.484 0.606 2.588 0.546 2.692 0.488 2.796 0.432 2.899 0.379 3.000 0.329 3.100 0.283 3.198 0.239 3.293

34 0.758 2.355 0.695 2.454 0.634 2.554 0.575 2.654 0.518 2.754 0.462 2.854 0.409 2.954 0.359 3.051 0.312 3.147 0.267 3.240

35 0.783 2.330 0.722 2.425 0.662 2.521 0.604 2.619 0.547 2.716 0.492 2.813 0.439 2.910 0.388 3.005 0.340 3.099 0.295 3.190

36 0.808 2.306 0.748 2.398 0.689 2.492 0.631 2.586 0.575 2.680 0.520 2.774 0.467 2.868 0.417 2.961 0.369 3.053 0.323 3.142

37 0.831 2.285 0.772 2.374 0.714 2.464 0.657 2.555 0.602 2.646 0.548 2.738 0.495 2.829 0.445 2.920 0.397 3.009 0.351 3.097

38 0.854 2.265 0.796 2.351 0.739 2.438 0.683 2.526 0.628 2.614 0.575 2.703 0.522 2.792 0.472 2.880 0.424 2.968 0.378 3.054

39 0.875 2.246 0.819 2.329 0.763 2.413 0.707 2.499 0.653 2.585 0.600 2.671 0.549 2.757 0.499 2.843 0.451 2.929 0.404 3.013

40 0.896 2.228 0.840 2.309 0.785 2.391 0.731 2.473 0.678 2.557 0.626 2.641 0.575 2.724 0.525 2.808 0.477 2.892 0.430 2.974

45 0.988 2.156 0.938 2.225 0.887 2.296 0.838 2.367 0.788 2.439 0.740 2.512 0.692 2.586 0.644 2.659 0.598 2.733 0.553 2.807

50 1.064 2.103 1.019 2.163 0.973 2.225 0.927 2.287 0.882 2.350 0.836 2.414 0.792 2.479 0.747 2.544 0.703 2.610 0.660 2.675

55 1.129 2.062 1.087 2.116 1.045 2.170 1.003 2.225 0.961 2.281 0.919 2.338 0.877 2.396 0.836 2.454 0.795 2.512 0.754 2.571

60 1.184 2.031 1.145 2.079 1.106 2.127 1.068 2.177 1.029 2.227 0.990 2.278 0.951 2.330 0.913 2.382 0.874 2.434 0.836 2.487

65 1.231 2.006 1.195 2.049 1.160 2.093 1.124 2.138 1.088 2.183 1.052 2.229 1.016 2.276 0.980 2.323 0.944 2.371 0.908 2.419

70 1.272 1.986 1.239 2.026 1.206 2.066 1.172 2.106 1.139 2.148 1.105 2.189 1.072 2.232 1.038 2.275 1.005 2.318 0.971 2.362

75 1.308 1.970 1.277 2.006 1.247 2.043 1.215 2.080 1.184 2.118 1.153 2.156 1.121 2.195 1.090 2.235 1.058 2.275 1.027 2.315

80 1.340 1.957 1.311 1.991 1.283 2.024 1.253 2.059 1.224 2.093 1.195 2.129 1.165 2.165 1.136 2.201 1.106 2.238 1.076 2.275

85 1.369 1.946 1.342 1.977 1.315 2.009 1.287 2.040 1.260 2.073 1.232 2.105 1.205 2.139 1.177 2.172 1.149 2.206 1.121 2.241

90 1.395 1.937 1.369 1.966 1.344 1.995 1.318 2.025 1.292 2.055 1.266 2.085 1.240 2.116 1.213 2.148 1.187 2.179 1.160 2.211

95 1.418 1.929 1.394 1.956 1.370 1.984 1.345 2.012 1.321 2.040 1.296 2.068 1.271 2.097 1.247 2.126 1.222 2.156 1.197 2.186

100 1.439 1.923 1.416 1.948 1.393 1.974 1.371 2.000 1.347 2.026 1.324 2.053 1.301 2.080 1.277 2.108 1.253 2.135 1.229 2.164

150 1.579 1.892 1.564 1.908 1.550 1.924 1.535 1.940 1.519 1.956 1.504 1.972 1.489 1.989 1.474 2.006 1.458 2.023 1.443 2.040

200 1.654 1.885 1.643 1.896 1.632 1.908 1.621 1.919 1.610 1.931 1.599 1.943 1.588 1.955 1.576 1.967 1.565 1.979 1.554 1.991

Note: n  number of observations, k  number of explanatory variables excluding the constant term.

Source: This table is an extension of the original Durbin-Watson table and is reproduced from N. E. Savin and K. J. White, “The Durbin-Watson Test for Serial

Correlation with Extreme Small Samples or Many Regressors,” Econometrica, vol. 45, November 1977, pp. 1989–96 and as corrected by R. W. Farebrother,

Econometrica, vol. 48, September 1980, p. 1554. Reprinted by permission of the Econometric Society.

Example E.1.

Ifn 40 and k  4, dL 1.285 and dU 1.721. If a computed dvalue is less than
1.285, there is evidence of positive first-order serial correlation; if it is greater
than 1.721, there is no evidence of positive first-order serial correlation; but if
d lies between the lower and the upper limit, there is inconclusive evidence
regarding the presence or absence of positive first-order serial correlation.
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TABLE E-5b DURBIN-WATSON d STATISTIC: SIGNIFICANCE POINTS OF dL AND dU AT 0.01 LEVEL OF

SIGNIFICANCE

k   1 k   2 k   3 k   4 k   5 k   6 k   7 k   8 k   9 k   10

n dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU

6 0.390 1.142 — — — — — — — — — — — — — — — — — —

7 0.435 1.036 0.294 1.676 — — — — — — — — — — — — — — — —

8 0.497 1.003 0.345 1.489 0.229 2.102 — — — — — — — — — — — — — —

9 0.554 0.998 0.408 1.389 0.279 1.875 0.183 2.433 — — — — — — — — — — — —

10 0.604 1.001 0.466 1.333 0.340 1.733 0.230 2.193 0.150 2.690 — — — — — — — — — —

11 0.653 1.010 0.519 1.297 0.396 1.640 0.286 2.030 0.193 2.453 0.124 2.892 — — — — — — — —

12 0.697 1.023 0.569 1.274 0.449 1.575 0.339 1.913 0.244 2.280 0.164 2.665 0.105 3.053 — — — — — —

13 0.738 1.038 0.616 1.261 0.499 1.526 0.391 1.826 0.294 2.150 0.211 2.490 0.140 2.838 0.090 3.182 — — — —

14 0.776 1.054 0.660 1.254 0.547 1.490 0.441 1.757 0.343 2.049 0.257 2.354 0.183 2.667 0.122 2.981 0.078 3.287 — —

15 0.811 1.070 0.700 1.252 0.591 1.464 0.488 1.704 0.391 1.967 0.303 2.244 0.226 2.530 0.161 2.817 0.107 3.101 0.068 3.374

16 0.844 1.086 0.737 1.252 0.633 1.446 0.532 1.663 0.437 1.900 0.349 2.153 0.269 2.416 0.200 2.681 0.142 2.944 0.094 3.201

17 0.874 1.102 0.772 1.255 0.672 1.432 0.574 1.630 0.480 1.847 0.393 2.078 0.313 2.319 0.241 2.566 0.179 2.811 0.127 3.053

18 0.902 1.118 0.805 1.259 0.708 1.422 0.613 1.604 0.522 1.803 0.435 2.015 0.355 2.238 0.282 2.467 0.216 2.697 0.160 2.925

19 0.928 1.132 0.835 1.265 0.742 1.415 0.650 1.584 0.561 1.767 0.476 1.963 0.396 2.169 0.322 2.381 0.255 2.597 0.196 2.813

20 0.952 1.147 0.863 1.271 0.773 1.411 0.685 1.567 0.598 1.737 0.515 1.918 0.436 2.110 0.362 2.308 0.294 2.510 0.232 2.714

21 0.975 1.161 0.890 1.277 0.803 1.408 0.718 1.554 0.633 1.712 0.552 1.881 0.474 2.059 0.400 2.244 0.331 2.434 0.268 2.625

22 0.997 1.174 0.914 1.284 0.831 1.407 0.748 1.543 0.667 1.691 0.587 1.849 0.510 2.015 0.437 2.188 0.368 2.367 0.304 2.548

23 1.018 1.187 0.938 1.291 0.858 1.407 0.777 1.534 0.698 1.673 0.620 1.821 0.545 1.977 0.473 2.140 0.404 2.308 0.340 2.479

24 1.037 1.199 0.960 1.298 0.882 1.407 0.805 1.528 0.728 1.658 0.652 1.797 0.578 1.944 0.507 2.097 0.439 2.255 0.375 2.417

25 1.055 1.211 0.981 1.305 0.906 1.409 0.831 1.523 0.756 1.645 0.682 1.776 0.610 1.915 0.540 2.059 0.473 2.209 0.409 2.362

26 1.072 1.222 1.001 1.312 0.928 1.411 0.855 1.518 0.783 1.635 0.711 1.759 0.640 1.889 0.572 2.026 0.505 2.168 0.441 2.313

27 1.089 1.233 1.019 1.319 0.949 1.413 0.878 1.515 0.808 1.626 0.738 1.743 0.669 1.867 0.602 1.997 0.536 2.131 0.473 2.269

28 1.104 1.244 1.037 1.325 0.969 1.415 0.900 1.513 0.832 1.618 0.764 1.729 0.696 1.847 0.630 1.970 0.566 2.098 0.504 2.229

29 1.119 1.254 1.054 1.332 0.988 1.418 0.921 1.512 0.855 1.611 0.788 1.718 0.723 1.830 0.658 1.947 0.595 2.068 0.533 2.193

30 1.133 1.263 1.070 1.339 1.006 1.421 0.941 1.511 0.877 1.606 0.812 1.707 0.748 1.814 0.684 1.925 0.622 2.041 0.562 2.160

31 1.147 1.273 1.085 1.345 1.023 1.425 0.960 1.510 0.897 1.601 0.834 1.698 0.772 1.800 0.710 1.906 0.649 2.017 0.589 2.131

32 1.160 1.282 1.100 1.352 1.040 1.428 0.979 1.510 0.917 1.597 0.856 1.690 0.794 1.788 0.734 1.889 0.674 1.995 0.615 2.104

33 1.172 1.291 1.114 1.358 1.055 1.432 0.996 1.510 0.936 1.594 0.876 1.683 0.816 1.776 0.757 1.874 0.698 1.975 0.641 2.080

34 1.184 1.299 1.128 1.364 1.070 1.435 1.012 1.511 0.954 1.591 0.896 1.677 0.837 1.766 0.779 1.860 0.722 1.957 0.665 2.057

35 1.195 1.307 1.140 1.370 1.085 1.439 1.028 1.512 0.971 1.589 0.914 1.671 0.857 1.757 0.800 1.847 0.744 1.940 0.689 2.037

36 1.206 1.315 1.153 1.376 1.098 1.442 1.043 1.513 0.988 1.588 0.932 1.666 0.877 1.749 0.821 1.836 0.766 1.925 0.711 2.018

37 1.217 1.323 1.165 1.382 1.112 1.446 1.058 1.514 1.004 1.586 0.950 1.662 0.895 1.742 0.841 1.825 0.787 1.911 0.733 2.001

38 1.227 1.330 1.176 1.388 1.124 1.449 1.072 1.515 1.019 1.585 0.966 1.658 0.913 1.735 0.860 1.816 0.807 1.899 0.754 1.985

39 1.237 1.337 1.187 1.393 1.137 1.453 1.085 1.517 1.034 1.584 0.982 1.655 0.930 1.729 0.878 1.807 0.826 1.887 0.774 1.970

40 1.246 1.344 1.198 1.398 1.148 1.457 1.098 1.518 1.048 1.584 0.997 1.652 0.946 1.724 0.895 1.799 0.844 1.876 0.749 1.956

45 1.288 1.376 1.245 1.423 1.201 1.474 1.156 1.528 1.111 1.584 1.065 1.643 1.019 1.704 0.974 1.768 0.927 1.834 0.881 1.902

50 1.324 1.403 1.285 1.446 1.245 1.491 1.205 1.538 1.164 1.587 1.123 1.639 1.081 1.692 1.039 1.748 0.997 1.805 0.955 1.864

55 1.356 1.427 1.320 1.466 1.284 1.506 1.247 1.548 1.209 1.592 1.172 1.638 1.134 1.685 1.095 1.734 1.057 1.785 1.018 1.837

60 1.383 1.449 1.350 1.484 1.317 1.520 1.283 1.558 1.249 1.598 1.214 1.639 1.179 1.682 1.144 1.726 1.108 1.771 1.072 1.817

65 1.407 1.468 1.377 1.500 1.346 1.534 1.315 1.568 1.283 1.604 1.251 1.642 1.218 1.680 1.186 1.720 1.153 1.761 1.120 1.802

70 1.429 1.485 1.400 1.515 1.372 1.546 1.343 1.578 1.313 1.611 1.283 1.645 1.253 1.680 1.223 1.716 1.192 1.754 1.162 1.792

75 1.448 1.501 1.422 1.529 1.395 1.557 1.368 1.587 1.340 1.617 1.313 1.649 1.284 1.682 1.256 1.714 1.227 1.748 1.199 1.783

80 1.466 1.515 1.441 1.541 1.416 1.568 1.390 1.595 1.364 1.624 1.338 1.653 1.312 1.683 1.285 1.714 1.259 1.745 1.232 1.777

85 1.482 1.528 1.458 1.553 1.435 1.578 1.411 1.603 1.386 1.630 1.362 1.657 1.337 1.685 1.312 1.714 1.287 1.743 1.262 1.773

90 1.496 1.540 1.474 1.563 1.452 1.587 1.429 1.611 1.406 1.636 1.383 1.661 1.360 1.687 1.336 1.714 1.312 1.741 1.288 1.769

95 1.510 1.552 1.489 1.573 1.468 1.596 1.446 1.618 1.425 1.642 1.403 1.666 1.381 1.690 1.358 1.715 1.336 1.741 1.313 1.767

100 1.522 1.562 1.503 1.583 1.482 1.604 1.462 1.625 1.441 1.647 1.421 1.670 1.400 1.693 1.378 1.717 1.357 1.741 1.335 1.765

150 1.611 1.637 1.598 1.651 1.584 1.665 1.571 1.679 1.557 1.693 1.543 1.708 1.530 1.722 1.515 1.737 1.501 1.752 1.486 1.767

200 1.664 1.684 1.653 1.693 1.643 1.704 1.633 1.715 1.623 1.725 1.613 1.735 1.603 1.746 1.592 1.757 1.582 1.768 1.571 1.779
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k   11 k   12 k   13 k   14 k   15 k   16 k   17 k   18 k   19 k   20

n dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU

16 0.060 3.446 — — — — — — — — — — — — — — — — — —

17 0.084 3.286 0.053 3.506 — — — — — — — — — — — — — — — —

18 0.113 3.146 0.075 3.358 0.047 3.357 — — — — — — — — — — — — — —

19 0.145 3.023 0.102 3.227 0.067 3.420 0.043 3.601 — — — — — — — — — — — —

20 0.178 2.914 0.131 3.109 0.092 3.297 0.061 3.474 0.038 3.639 — — — — — — — — — —

21 0.212 2.817 0.162 3.004 0.119 3.185 0.084 3.358 0.055 3.521 0.035 3.671 — — — — — — — —

22 0.246 2.729 0.194 2.909 0.148 3.084 0.109 3.252 0.077 3.412 0.050 3.562 0.032 3.700 — — — — — —

23 0.281 2.651 0.227 2.822 0.178 2.991 0.136 3.155 0.100 3.311 0.070 3.459 0.046 3.597 0.029 3.725 — — — —

24 0.315 2.580 0.260 2.744 0.209 2.906 0.165 3.065 0.125 3.218 0.092 3.363 0.065 3.501 0.043 3.629 0.027 3.747 — —

25 0.348 2.517 0.292 2.674 0.240 2.829 0.194 2.982 0.152 3.131 0.116 3.274 0.085 3.410 0.060 3.538 0.039 3.657 0.025 3.766

26 0.381 2.460 0.324 2.610 0.272 2.758 0.224 2.906 0.180 3.050 0.141 3.191 0.107 3.325 0.079 3.452 0.055 3.572 0.036 3.682

27 0.413 2.409 0.356 2.552 0.303 2.694 0.253 2.836 0.208 2.976 0.167 3.113 0.131 3.245 0.100 3.371 0.073 3.490 0.051 3.602

28 0.444 2.363 0.387 2.499 0.333 2.635 0.283 2.772 0.237 2.907 0.194 3.040 0.156 3.169 0.122 3.294 0.093 3.412 0.068 3.524

29 0.474 2.321 0.417 2.451 0.363 2.582 0.313 2.713 0.266 2.843 0.222 2.972 0.182 3.098 0.146 3.220 0.114 3.338 0.087 3.450

30 0.503 2.283 0.447 2.407 0.393 2.533 0.342 2.659 0.294 2.785 0.249 2.909 0.208 3.032 0.171 3.152 0.137 3.267 0.107 3.379

31 0.531 2.248 0.475 2.367 0.422 2.487 0.371 2.609 0.322 2.730 0.277 2.851 0.234 2.970 0.196 3.087 0.160 3.201 0.128 3.311

32 0.558 2.216 0.503 2.330 0.450 2.446 0.399 2.563 0.350 2.680 0.304 2.797 0.261 2.912 0.221 3.026 0.184 3.137 0.151 3.246

33 0.585 2.187 0.530 2.296 0.477 2.408 0.426 2.520 0.377 2.633 0.331 2.746 0.287 2.858 0.246 2.969 0.209 3.078 0.174 3.184

34 0.610 2.160 0.556 2.266 0.503 2.373 0.452 2.481 0.404 2.590 0.357 2.699 0.313 2.808 0.272 2.915 0.233 3.022 0.197 3.126

35 0.634 2.136 0.581 2.237 0.529 2.340 0.478 2.444 0.430 2.550 0.383 2.655 0.339 2.761 0.297 2.865 0.257 2.969 0.221 3.071

36 0.658 2.113 0.605 2.210 0.554 2.310 0.504 2.410 0.455 2.512 0.409 2.614 0.364 2.717 0.322 2.818 0.282 2.919 0.244 3.019

37 0.680 2.092 0.628 2.186 0.578 2.282 0.528 2.379 0.480 2.477 0.434 2.576 0.389 2.675 0.347 2.774 0.306 2.872 0.268 2.969

38 0.702 2.073 0.651 2.164 0.601 2.256 0.552 2.350 0.504 2.445 0.458 2.540 0.414 2.637 0.371 2.733 0.330 2.828 0.291 2.923

39 0.723 2.055 0.673 2.143 0.623 2.232 0.575 2.323 0.528 2.414 0.482 2.507 0.438 2.600 0.395 2.694 0.354 2.787 0.315 2.879

40 0.744 2.039 0.694 2.123 0.645 2.210 0.597 2.297 0.551 2.386 0.505 2.476 0.461 2.566 0.418 2.657 0.377 2.748 0.338 2.838

45 0.835 1.972 0.790 2.044 0.744 2.118 0.700 2.193 0.655 2.269 0.612 2.346 0.570 2.424 0.528 2.503 0.488 2.582 0.448 2.661

50 0.913 1.925 0.871 1.987 0.829 2.051 0.787 2.116 0.746 2.182 0.705 2.250 0.665 2.318 0.625 2.387 0.586 2.456 0.548 2.526

55 0.979 1.891 0.940 1.945 0.902 2.002 0.863 2.059 0.825 2.117 0.786 2.176 0.748 2.237 0.711 2.298 0.674 2.359 0.637 2.421

60 1.037 1.865 1.001 1.914 0.965 1.964 0.929 2.015 0.893 2.067 0.857 2.120 0.822 2.173 0.786 2.227 0.751 2.283 0.716 2.338

65 1.087 1.845 1.053 1.889 1.020 1.934 0.986 1.980 0.953 2.027 0.919 2.075 0.886 2.123 0.852 2.172 0.819 2.221 0.786 2.272

70 1.131 1.831 1.099 1.870 1.068 1.911 1.037 1.953 1.005 1.995 0.974 2.038 0.943 2.082 0.911 2.127 0.880 2.172 0.849 2.217

75 1.170 1.819 1.141 1.856 1.111 1.893 1.082 1.931 1.052 1.970 1.023 2.009 0.993 2.049 0.964 2.090 0.934 2.131 0.905 2.172

80 1.205 1.810 1.177 1.844 1.150 1.878 1.122 1.913 1.094 1.949 1.066 1.984 1.039 2.022 1.011 2.059 0.983 2.097 0.955 2.135

85 1.236 1.803 1.210 1.834 1.184 1.866 1.158 1.898 1.132 1.931 1.106 1.965 1.080 1.999 1.053 2.033 1.027 2.068 1.000 2.104

90 1.264 1.798 1.240 1.827 1.215 1.856 1.191 1.886 1.166 1.917 1.141 1.948 1.116 1.979 1.091 2.012 1.066 2.044 1.041 2.077

95 1.290 1.793 1.267 1.821 1.244 1.848 1.221 1.876 1.197 1.905 1.174 1.934 1.150 1.963 1.126 1.993 1.102 2.023 1.079 2.054

100 1.314 1.790 1.292 1.816 1.270 1.841 1.248 1.868 1.225 1.895 1.203 1.922 1.181 1.949 1.158 1.977 1.136 2.006 1.113 2.034

150 1.473 1.783 1.458 1.799 1.444 1.814 1.429 1.830 1.414 1.847 1.400 1.863 1.385 1.880 1.370 1.897 1.355 1.913 1.340 1.931

200 1.561 1.791 1.550 1.801 1.539 1.813 1.528 1.824 1.518 1.836 1.507 1.847 1.495 1.860 1.484 1.871 1.474 1.883 1.462 1.896

Note: n  number of observations, k  number of explanatory variables excluding the constant term.

Source: Savin and White, op. cit., by permission of Econometric Society.
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TABLE E-6a CRITICAL VALUES OF RUNS IN THE RUNS TEST

N2

N1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 2 2 2 2 2 2 2 2 2

3 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3

4 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4

5 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5

6 2 2 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6

7 2 2 3 3 3 4 4 5 5 5 5 5 6 6 6 6 6 6

8 2 3 3 3 4 4 5 5 5 6 6 6 6 6 7 7 7 7

9 2 3 3 4 4 5 5 5 6 6 6 7 7 7 7 8 8 8

10 2 3 3 4 5 5 5 6 6 7 7 7 7 8 8 8 8 9

11 2 3 4 4 5 5 6 6 7 7 7 8 8 8 9 9 9 9

12 2 2 3 4 4 5 6 6 7 7 7 8 8 8 9 9 9 10 10

13 2 2 3 4 5 5 6 6 7 7 8 8 9 9 9 10 10 10 10

14 2 2 3 4 5 5 6 7 7 8 8 9 9 9 10 10 10 11 11

15 2 3 3 4 5 6 6 7 7 8 8 9 9 10 10 11 11 11 12

16 2 3 4 4 5 6 6 7 8 8 9 9 10 10 11 11 11 12 12

17 2 3 4 4 5 6 7 7 8 9 9 10 10 11 11 11 12 12 13

18 2 3 4 5 5 6 7 8 8 9 9 10 10 11 11 12 12 13 13

19 2 3 4 5 6 6 7 8 8 9 10 10 11 11 12 12 13 13 13

20 2 3 4 5 6 6 7 8 9 9 10 10 11 12 12 13 13 13 14

Note: Tables E-6a and E-6b give the critical values of runs n for various values of N1 ( symbol) and N2 ( symbol). For the one-sample
runs test, any value of n that is equal to or smaller than that shown in Table E-6a or equal to or larger than that shown in Table E-6b is
significant at the 0.05 level.

Source: Sidney Siegel, Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill, New York, 1956, Table F, pp. 252–253.
The tables have been adapted by Siegel from the original source: Frieda S. Swed and C. Eisenhart, “Tables for Testing Randomness of
Grouping in a Sequence of Alternatives,” Annals of Mathematical Statistics, vol. 14, 1943. Used by permission of McGraw-Hill Book
Company and Annals of Mathematical Statistics.
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TABLE E-6b CRITICAL VALUES OF RUNS IN THE RUNS TEST

N2

N1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

3

4 9 9

5 9 10 10 11 11

6 9 10 11 12 12 13 13 13 13

7 11 12 13 13 14 14 14 14 15 15 15

8 11 12 13 14 14 15 15 16 16 16 16 17 17 17 17 17

9 13 14 14 15 16 16 16 17 17 18 18 18 18 18 18

10 13 14 15 16 16 17 17 18 18 18 19 19 19 20 20

11 13 14 15 16 17 17 18 19 19 19 20 20 20 21 21

12 13 14 16 16 17 18 19 19 20 20 21 21 21 22 22

13 15 16 17 18 19 19 20 20 21 21 22 22 23 23

14 15 16 17 18 19 20 20 21 22 22 23 23 23 24

15 15 16 18 18 19 20 21 22 22 23 23 24 24 25

16 17 18 19 20 21 21 22 23 23 24 25 25 25

17 17 18 19 20 21 22 23 23 24 25 25 26 26

18 17 18 19 20 21 22 23 24 25 25 26 26 27

19 17 18 20 21 22 23 23 24 25 26 26 27 27

20 17 18 20 21 22 23 24 25 25 26 27 27 28

Example E.2.

In a sequence of 30 observations consisting of 20  signs ( N1) and 10
 signs ( N2), the critical values of runs at the 0.05 level of significance are 9
and 20, as shown by Tables E-6a and E-6b, respectively. Therefore, if in an
application it is found that the number of runs is equal to or less than 9 or
equal to or greater than 20, we can reject (at the 0.05 level of significance) the
hypothesis that the observed sequence is random.
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In this appendix we show the computer output of EViews, MINITAB, Excel,
and STATA, which are some of the popularly used statistical packages for
regression and related statistical routines. We use the data given in Table 1-1 to
illustrate the output of these packages. Recall that Table 1-1 gives data on the
civilian labor force participation rate (CLFPR), the civilian unemployment rate
(CUNR), and real average hourly earnings in 1982 dollars (AHE82) for the U.S.
economy for the period 1980 to 2007.

Although in many respects the basic regression output is similar in all these
packages, there are differences in how they present their results. Some packages
give results to several digits, whereas some others approximate them to four or
five digits. Some packages give analysis of variance (ANOVA) tables directly,
whereas for some other packages they need to be derived. There are also differ-
ences in some of the summary statistics presented by the various packages. It is
beyond the scope of this appendix to enumerate all the differences in these sta-
tistical packages. You can consult the Web sites of these packages for further
information.

EVIEWS

Using Version 6 of EViews, we regressed CLFPR on CUNR and AHE82 and
obtained the results shown in Figure F-1.

This is the standard format in which EViews results are presented. The first
part of this figure gives the regression coefficients, their estimated standard
errors, the t values under the null hypothesis that the corresponding popula-
tion values of these coefficients are zero, and the p values of these t values.
This is followed by R2 and adjusted R2. The other summary output in the first
part relates to the standard error of the regression, the residual sum of squares
(RSS), and the F value to test the hypothesis that the (true) values of all the



ResidualActual Residual Plot

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

 63.8000

 63.9000

 64.0000

 64.0000

 64.4000

 64.8000

 65.3000

 65.6000

 65.9000

 66.5000

 66.5000

 66.2000

 66.4000

 66.3000

 66.6000

 66.6000

 66.8000

 67.1000

 67.1000

 67.1000

 67.1000

 66.8000

 66.6000

 66.2000

 66.0000

 66.0000

 66.2000

 66.0000

 65.1353

 64.9799

 63.6646

 63.5936

 64.9341

 65.1883

 65.2425

 65.8928

 66.4168

 66.6492

 66.5829

 65.9240

 65.5302

 65.9312

 66.4347

 66.7599

 66.8454

 66.9864

 66.9540

 66.9781

 67.0576

 66.4892

 65.6040

 65.4293

 65.8063

 66.1471

 66.3844

 66.2582

⫺1.33530

⫺1.07987

 0.33540

 0.40642

⫺0.53414

⫺0.38826

 0.05752

⫺0.29285

⫺0.51676

⫺0.14919

⫺0.08290

 0.27597

 0.86985

 0.36877

 0.16530

⫺0.15990

⫺0.04543

 0.11359

 0.14602

 0.12188

 0.04237

 0.31083

 0.99605

 0.77068

 0.19370

⫺0.14713

⫺0.18443

⫺0.25820

Variable Coefficient t-Statistic Prob.

C

CUNR

AHE82

81.22673

⫺0.638362

⫺1.444883

Std. Error

3.395574

0.071509

0.413692

23.92136

⫺8.927018

⫺3.492654

R-squared

Adjusted R-squared

S.E. of regression

Sum squared resid

Log likelihood

F-statistic

Prob(F-statistic)

0.766322

0.747628

0.527836

6.965260

⫺20.25250

40.99252

0.000000

Mean dependent var

S.D. dependent var

Akaike info criterion

Schwarz criterion

Hannan-Quinn criter.

Durbin-Watson stat

65.92143

1.050699

1.660893

1.803629

1.704529

0.784562

Dependent Variable: CLFPR    
Method: Least Squares    
Date: 04/08/09   Time: 18:08    

Sample: 1980–2007    
Included observations: 28

0.0000

0.0000

0.0018

Obs Fitted

⫺1.0 ⫺0.5 0.0 0.5 1.0⫺1.5

7

6

5

4

3

2

1

0

Series: Residuals
Sample 1980–2007
Observations 28

Mean
Median
Maximum
Minimum
Std. Dev.
Skewness
Kurtosis

2.78e-15
0.049943
0.996049

⫺1.335301
0.507910

⫺0.495205
3.875654

Jarque-Bera
Probability

2.038962
0.360782

EViews output of civilian labor force participation regressionFIGURE F-1



slope coefficients are simultaneously equal to zero. Akaike info(rmation) and
Schwartz criteria are often used to choose between competing models. The lower
the value of these criteria, the better the model is. The method of maximum like-
lihood (ML) is an alternative to the method of least squares. Just as in OLS we
find those estimators that minimize the error sum of squares, in ML we try to
find those estimators that maximize the possibility of observing the sample at
hand. Under the normality assumption of the error term, OLS and ML give iden-
tical estimates of the regression coefficients. The Durbin-Watson stat(istic) is used
to find out if there is first-order serial correlation in the error terms.

The second part of the EViews output gives the actual and fitted values of the
dependent variable and the difference between the two, which represent the
residuals. These residuals are plotted alongside this output with a vertical line
denoting zero. Points to the right of the vertical line are positive residuals and
those to the left represent negative residuals.

The third part of the output gives the histogram of the residuals along with
their summary statistics. It gives the Jarque-Bera (JB) statistic to test for the
normality of the error terms and also gives the probability of obtaining the
stated statistics. The higher the probability of obtaining the observed JB statistic,
the greater is the evidence in favor of the null hypothesis that the error terms are
normally distributed.

Note that EViews does not give directly the analysis-of-variance (ANOVA)
table, but it can be constructed easily from the data on the residual sum of
squares, the total sum of squares (which will have to be derived from the stan-
dard deviation of the dependent variable), and their associated degrees of
freedom. The F value given from this exercise should be equal to the F value
reported in the first part of the table.

MINITAB

Using Version 14 of MINITAB, and using the same data, we obtained the
regression results shown in Figure F-2.

MINITAB first reports the estimated multiple regression. This is followed by
a list of predictor (i.e., explanatory) variables, the estimated regression coeffi-
cients, their standard errors, the T (= t) values, and the p values. In this output
S represents the standard error of the estimate, and R2 and adjusted R2 values
are given in percent form.

This is followed by the usual ANOVA table. One characteristic feature of the
ANOVA table is that it breaks down the regression, or explained, sum of
squares among predictors. Thus of the total regression, sum of squares of
22.855, the share of CUNR is 19.446 and that of AHE82 is 3.408, suggesting
that relatively, CUNR has more impact on CLFPR than AHE82.

A unique feature of the MINITAB regression output is that it reports
“unusual” observations; that is, observations that are somehow different from
the rest of the observations in the sample. We have a hint of this in the residual
graph given in the EViews output, for it shows that the observations 1, 2, and 23
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Regression Analysis: CLFPR versus CUNR, AHE82

The regression equation is
CLFPR ⫽ 81.3 ⫺ 0.639 CUNR ⫺ 1.45 AHE82

Source
Regression
Residual Error
Total

Source
CUNR
AHE82

S ⫽ 0.527351         R-Sq ⫽ 76.7%         R-Sq(adj) ⫽ 74.8%

Analysis of Variance

T
23.88
⫺8.94
⫺3.50

MS

SE Fit
0.1346
0.1461
0.1727

Obs
1
2

23

CUNR
7.10
7.60
5.80

Coef
81.286

⫺0.63877
⫺1.4521

DF
2

25
27

DF

CLFPR
63.8000
63.9000
66.6000

SE Coef
3.404

0.07146
0.4148

SS

Seq SS
19.446
3.408

Fit
65.1342
64.9745
65.6016

R denotes an observation with a large standardized residual.

Durbin-Watson statistic ⫽ 0.786311

Unusual Observations

P
0.000

P
0.000
0.000
0.002

St Resid
⫺2.62R
⫺2.12R

2.00R

F
41.09

Residual
⫺1.3342
⫺1.0745

0.9984

11.427
0.278

1
1

22.855
6.952

29.807

MINITAB output of civilian labor force participation rateFIGURE F-2
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are substantially away from the zero line shown there. MINITAB also produces
a residual graph similar to the EViews residual graph. The St Resid in this out-
put is the standardized residuals; that is, residuals divided by S, the standard
error of the estimate.

Like EViews, MINITAB also reports the Durbin-Watson statistic and gives
the histogram of residuals. The histogram is a visual picture. If its shape resem-
bles the normal distribution, the residuals are perhaps normally distributed.
The normal probability plot accomplishes the same purpose. If the estimated
residuals lie approximately on a straight line, we can say that they are normally
distributed. The Anderson-Darling (AD) statistic, an adjunct of the normal
probability plot, tests the hypothesis that the variable under consideration (here
residuals) is normally distributed. If the p value of the calculated AD statistic is
reasonably high, say in excess of 0.10, we can conclude that the variable is nor-
mally distributed. In our example the AD statistic has a value of 0.468 with a
p value of about 0.231 or 23 percent. So we can conclude that the residuals
obtained from the regression model are normally distributed.

EXCEL

Using Microsoft Excel 2007 we obtained the regression output shown in
Table F-1.
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EXCEL OUTPUT OF CIVILIAN LABOR FORCE PARTICIPATION RATE

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.875398
R Square 0.766322
Adjusted R Square 0.747628
Standard Error 0.527836
Observations 28

ANOVA

df SS MS F Significance F

Regression 2 22.84188 11.42094 40.99251 1.281E-08
Residual 25 6.965270 0.278610
Total 27 29.80714

Coefficients Standard Err t Stat P-value Lower 95% Upper 95%

Intercept 81.22673 3.395574 23.92136 9.543E-19 74.23342 88.22005
CUNR ⫺0.638362 0.071509 ⫺8.927018 3.008E-09 ⫺0.785637 ⫺0.49109
AHE82 ⫺1.444883 0.413692 ⫺3.492654 0.001798 ⫺2.2969 ⫺0.592868

TABLE F-1
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Excel first presents summary statistics, such as R2, multiple R, which is the
(positive) square root of R, adjusted R2, and the standard error of the estimate.
Then it presents the ANOVA table. After that it presents the estimated coeffi-
cients, their standard errors, the t values of the estimated coefficients and their
p values. It also gives the actual and estimated values of the dependent variable
and the residual graph as well as the normal probability plot.

A unique feature of Excel is that it gives the 95% (or any specified percent)
confidence interval for the true values of the estimated coefficients. Thus, the
estimated value of the coefficient of CUNR is −0.638362 and the confidence
interval for the true value of the CUNR coefficient is (−0.785637 to −0.49109).
This information is very valuable for hypothesis testing.

STATA

Using STATA 8 version, we obtained the regression results shown in Table F-2.
STATA first presents the analysis of variance table along with the summary

statistics such as R2, adjusted R2, and the root mean-squared-error (MSE), which
is just the standard error of the regression.

STATA OUTPUT OF CIVILIAN LABOR FORCE PARTICIPATION RATE

Statistics/Data Analysis

Project: Data of Table 1.1
regress CLFPR CUNR AHE82

Source SS df MS

Model 22.8546532 2 11.4273266
Residual 6.95246119 25 .278098448

Total 29.8071144 27 1.1039672

TABLE F-2

CLFPR Coef. Std. Err. t P ⬎ |t| [95% Conf. Interval]

CUNR ⫺.6387723 .0714642 ⫺8.94 0.000 ⫺.7859556 ⫺.491589
AHE82 ⫺1.452054 .4147668 ⫺3.50 0.002 ⫺2.306282 ⫺.5978256
_cons 81.28589 3.404245 23.88 0.000 74.27472 88.29706

Number of obs ⫽ 28
F(2, 25) ⫽ 41.09
Prob ⬎ F ⫽ 0.0000
R-squared ⫽ 0.7668
Adj R-squared ⫽ 0.7481
Root MSE ⫽ .52735



STATA then gives the values of the estimated coefficients, their standard er-
rors, their t values, the p values of the t statistics, and the 95% confidence inter-
val for each of the regression coefficients, which is similar to the Excel output.

CONCLUDING COMMENTS

We have given just the basic output of these packages for our example. But it
may be noted that packages such as EViews and STATA are very comprehensive
and contain many of the econometric techniques discussed in this text. Once
you know how to access these packages, running various subroutines is a
matter of practice. If you wish to pursue econometrics further, you may want to
buy one or more of these packages.
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defined, 4
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ULS (unrestricted least squares), 116
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