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Preface

Heat Transfer, along with Thermodynamics and Fluid Mechanics, constitutes the trinity of the Mechanical 

Engineering discipline.

It is an important and compulsory subject in the engineering curricula of almost all institutes and 

universities. The present book is aimed to provide precisely a sound grounding of fundamentals which is 

the essential prerequisite to master this core course. The target audience is essentially the undergraduate 

students of Mechanical Engineering, Chemical Engineering, and Aerospace Engineering. The book is also 

tailored to meet the requirements of candidates aspiring to take IES, GATE, AMIE, and other competitive 

examinations. Written in a racy and user-friendly style, the book is the quintessence of the author’s 

teaching and research experience of more than thirty-five years.

The USP of the book is clear, coherent, and cogent presentation of the relevant theory followed by a 

large number of solved examples with different degrees of difficulty. It has a refreshing approach with 

unique problem-solving methodology coupled with an emphasis on consistency and compatibility of units, 

so sadly neglected by the student fraternity.

The unsolved problems will be useful in gaining confidence acquired with constant practice. The 

numerous objective-type questions, glossary of key terms, and points to ponder along with review questions

at the end of each chapter will certainly enhance the usefulness of the book.

Salient Features
Covers the standard topics of heat transfer with an emphasis on physics and real-world everyday 

applications

Both theoretical and mathematical derivations covered for all topics

Balanced physical explanation and mathematical treatment

Excellent problem-solving approach

Over 650 illustrations for better conception—excellent-quality figures including 3D views wherever 

required to aid in better understanding of concepts

Tutorial approach for solving all examples for creative thinking and development of a deeper un-

derstanding

Excellent pedagogy including

● 324 Solved Examples 

● 232 Unsolved Problems 

● 276 Review Questions 

● 242 Multiple-Choice Questions

Chapter Organization
The presentation in this introductory text is logically organized in 15 chapters with a 360 degree approach 

to provide an overall understanding of the subject and to serve as a springboard for further learning 
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and research. Chapter 1 introduces the fundamental concepts involving the three cardinal modes of 

heat transfer, viz., conduction, convection, and radiation, and mass transfer. Chapter 2 begins with the 

discussion and derivation of the general three-dimensional conduction equation and subsequently analyzes 

at length the systems involving steady-state, one-dimensional conduction without heat generation. Practical 

problems pertaining to conduction with internal heat generation are dealt within Chapter 3. Extended 

surfaces and their applications constitute the subject matter of Chapter 4. Chapters 5 through 9 are 

devoted to the elegant discussion of convection followed by on-forced convection (both external and 

internal flow) and free convection, both in depth and detail basics using the latest empirical correlations. 

Chapter 10 illustrates and explains boiling and condensation. The vital topic of heat exchangers is 

described and analyzed fairly exhaustively in Chapter 11. Chapters 12 and 13 are devoted to the 

discussion of properties and processes relevant to radiation mode of heat transfer followed by analytical 

and graphical treatment of radiant heat exchange between bodies. Finally, rudimentary aspects of both 

diffusion and convective mass transfer are taken up for a short but sharp discussion in Chapter 14. 

Multidimensional conduction is briefly touched upon in Chapter 15 and is available on the book website.

Online Learning Center
The Online Learning Center can be accessed at http://www.mhhe.com/dixit/hmt1e and contains the 

following resources.

For Instructors: Lecture PPTs, Solution Manual

For Students: Chapter on Multi-dimensional Heat Conduction
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Basic Concepts of 
Heat Transfer

1.1 ❏ INTRODUCTION

It is our common observation and experience that when two bodies at different temperatures are brought 

together, the temperature of the warmer body decreases while the temperature of the colder body increases. 

When the energy transfer is the result of only the temperature difference without any work interaction, 

such an energy transfer is referred to as heat transfer. Heat transfer is, thus, energy in transit due to 

temperature difference. Heat transfer can occur within a system, or between two systems. The science of 

heat transfer identifies the factors which influence the heat interaction between solids and fluids or their 

combinations. This information is then used to predict the temperature distribution and the rate of heat 

transfer in engineering systems and devices.

Basically, heat transfer can take place in three different modes: conduction, convection, and radiation. In 

all cases, heat is transferred from the high-temperature medium to the low-temperature medium. It is very 

rarely that these modes of heat transfer take place in isolation in a given application. This chapter presents 

an overview of the study of heat transfer, including multimode heat transfer. The detailed discussion of 

each mode of heat transfer and the related applications will be dealt with in the following chapters.

1.2 ❏ THE SIGNIFICANCE OF HEAT TRANSFER

The fascinating field of heat transfer embraces almost every sphere of human activity. Heat-transfer 

phenomena play an important role in several industrial and environmental problems in aeronautical, 

chemical, civil, electrical, metallurgical and, of course, mechanical engineering. There is not a single area 

of application in energy-production-and-conversion systems that does not involve heat-transfer effects. 

In the generation of electrical power—be it through the combustion of fossil fuels like coal, oil, and 

gas, the nuclear fission or fusion, the use of geothermal energy sources, the Magneto-HydroDynamic

(MHD) processes, or the exploitation of solar or wind energy, etc.—numerous heat-transfer problems are 

encountered.

The optimal design of components like boilers, turbines, condensers, heat-recovery equipment, radiators, 

refrigerators, and other heat exchangers is essential not only to determine the technical feasibility but 

also the economic viability. If the size of heat-transfer equipment is to be kept less to cut down cost, or 

if the space is at a premium, one needs to maximize heat-transfer rates.

In nuclear power plants, accurate determination of heat-transfer rates is essential in view of the problem 

of efficient removal of heat generated in the reactor core. Adequate cooling of electronic components is a 

must to preclude the possibility of overheating, and to ensure satisfactory performance. With the current 

trend of miniaturization in the electronic industry, this problem of faster heat dissipation from the limited 
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surface area available has become rather critical. Heat-transfer analysis is also necessary in the design 

of electrical machines, transformers, bearings, etc., to avoid conditions likely to cause overheating and 

damage to the equipment.

To ensure successful operation and to maintain the integrity of materials in high-temperature environment 

of certain components like gas-turbine blades or the combustion chamber wall, the rapid rate of continuous 

removal of heat from vulnerable metal parts is necessary. Heat treatment of various metals and ceramics, 

design of catalytic converters, heat engines, cryogenic storage equipment, cooling towers, desert coolers, 

refrigeration and air-conditioning systems, jet- and rocket-propulsion systems, solar-energy collection 

and storage devices, thermal pollution associated with the discharge of a large quantity of waste heat 

into the environment (air and water), and dispersion of atmospheric pollutants—all require a thorough 

understanding of heat-transfer processes and analyses.

The so-called thermal barrier in aerodynamics involves exploring means of transferring away from the 

aircraft huge amounts of heat produced by the dissipative effect of the viscosity of the air. Indeed, since 

all observable processes in nature are irreversible, the attendant dissipative effects eventually manifest 

themselves as heat-transfer processes.

An engineer must, therefore, appreciate the crucial significance of the complex heat-transfer problems. 

The solution lies in complete understanding of and familiarity with the different modes and laws of 

heat transfer. One has to bank upon one’s ingenuity and experience while making sound assumptions, 

approximations and idealizations in the course of heat-transfer analysis and in the interpretation of the 

final results.

1.3 ❏ HEAT TRANSFER AND ITS RELATION TO THERMODYNAMICS

Thermodynamics deals with matter and energy interaction. And energy is central to the very human 

existence. Energy interaction is basically of two types: work interaction and heat interaction. Heat 

interaction involves heat flow or exchange of heat. The flow of heat is all pervasive. In the study of 

thermodynamics, heat is defined as the energy in transition resulting from temperature difference. Heat 

interaction, like work interaction, is a transient energy-transfer process across the boundary between the 

system and the surroundings.

It should be remembered that the existence of temperature difference is a characteristic feature of the 

energy form known as heat. If there is no temperature difference, there is no heat transfer. Moreover, 

since the term heat is used to describe a transfer process, the heat energy ceases to exist when the 

process ceases. Thus, heat is not a property. Heat transfer being strictly a phenomenon occurring only at 

boundaries of systems, heat transfer elsewhere in a system is more correctly a re-distribution of internal 

energy within the system.

Apart from the physical entities of heat and work, the energies in transit, a system can possess external 

kinetic and potential energies due to motion or position of the working fluid or the system as a whole, 

as well as internal energy due to kinetic and potential energies of the molecules comprising the system. 

The First Law of Thermodynamics for a closed system can be expressed as

Q = W + DE (1.1)

where DE ∫ DU + DPE + DKE

Usually, the changes in potential and kinetic energies (DPE and DKE) are negligible as compared to 

the change in internal energy (DU) in a closed system. One can thus simply write

Q = W + DU (1.2)
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For an open system in a steady-flow process, the first law can be expressed as

È ˘- = D + +
Í ˙
Í ˙Î ˚

2

enthalpy potentialkinetic
energyenergy

/2Q W m h V gz (1.3)

Neglecting changes in potential and kinetic energy,

Q W m h- = D (1.4)

From a thermodynamic standpoint, the amount of heat transferred (positive towards the system) during

a process simply equals the work transfer (positive away from the system) and the change in internal 

energy (positive when the system’s energy increases). It is obvious that thermodynamic analysis considers 

neither the mechanism of heat flow nor the time required to transfer heat. Thus, in analyzing a power 

cycle, we are concerned with gross transfer of heat and work to or from the system and the resulting 

thermal efficiency. The time or temperature difference required to bring about the transfer of heat energy, 

or whether there is a uniform temperature within the system is not considered of any consequence. But in 

heat transfer, our focus is on the time rate at which heat is transported or transferred across a specific 

temperature difference.

In thermodynamics, we deal with thermodynamic equilibrium including (besides mechanical and 

chemical equilibria) thermal equilibrium between the end states of a process, but in heat transfer, it is 

the thermal non-equilibrium (temperature differential or gradient) that is of interest to us. The knowledge 

of temperature distribution in a system is, in fact, essential in several heat-transfer studies. The point to 

point out here is that heat transfer is inherently a non-equilibrium process.

The Second Law of Thermodynamics enables us to determine the extent or magnitude of energy 

conversion from heat into work as also the direction of a heat-transfer process (from a hotter to a colder 

body). Even the limit to the amount of work that can be obtained from a given source of heat cannot be 

reached in practical engineering processes, thanks to their inherent irreversibilities. These irreversibilities 

may be accounted for in the analysis or calculations but, thermodynamics alone, for want of time scale, 

cannot permit determination of physical sizes of devices or equipment necessary to accomplish a specified 

objective.

1.4 ❏ BASIC MODES OF HEAT TRANSFER

It is customary to classify or categorize the various heat-transfer processes into three basic types or 

modes, namely, conduction, convection, and radiation. These basic heat-transfer mechanisms may occur 

separately, or simultaneously. It should be emphasized at this stage that there is hardly any problem of 

practical significance which does not involve at least two, and sometimes all the three modes occurring 

at the same time. The three modes, or mechanisms, are inherently different and though they often operate 

in combination, they may be studied separately. The type of system and temperature levels dictates and 

decides their relative contributions. Figure 1.1 illustrates the mechanisms of conduction, convection, and 

radiation.

Now we proceed to take a closer look at each of the three modes of heat transfer in some detail.
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Schematic diagrams showing the three basic modes of heat transfer

1.5 ❏ CONDUCTION

Conduction is the transfer of energy from the more energetic particles of a substance to the neighbouring 

less energetic ones as a result of interactions between the particles. Conduction can take place in any 

stationary medium—solid, liquid, or gas.

When a temperature gradient exists as a driving force in a stationary medium (a solid or a fluid), 

causing the heat to be transferred across the medium in the direction of the lower temperature in an 

attempt to establish thermal equilibrium, conduction heat transfer occurs. When the temperature gradient 

does not vary with time, the process is said to be in a steady state. Transient, or unsteady, heat transfer 

involves change in the temperature gradient with time.

Conduction involves the transfer of heat by direct physical contact on a molecular scale. It is the only 

mode by which heat can be transported within opaque solids. Conduction also occurs in liquids and gases 

but is usually associated with convection, and possibly with radiation too in the case of gases.

The thermal conductivity of a solid is obtained by adding the lattice and the electronic components. It 

is noteworthy that the thermal conductivity of 

pure metals is primarily due to the electronic

component, whereas the thermal conductivity 

of non-metals is essentially due to the lattice

component. The lattice component of thermal 

conductivity strongly depends upon the way 

the molecules are arranged. For instance, the 

thermal conductivity of diamond, which is a 

highly ordered crystalline solid, is very high 

compared to the thermal conductivities of 

even pure metals.

The basic empirical law governing heat 

conduction established by the French scientist 

Joseph Fourier in 1822, states that in steady

state, the rate of heat transfer in a given 

direction per unit area (normal to that flow 

direction), i.e., the heat flux is proportional 

to the temperature gradient in that direction. 

Figure 1.2 shows the heat transfer by conduction 

through a plane wall in the x-direction.

T1

T2

T

T x( ) dT

dxx

A

x
L0

&

condQ

Conduction heat transfer through a plane wall
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In the x-direction, for example, this Fourier law can be mathematically expressed as the rate equation:

x

dT
Q kA

dx
= -  (W) (1.5)

or x
x

Q dT
q k

A dx
= = - (1.6)

where xQ  = the rate of heat flow (W) in the positive x-direction

k = the proportionality constant, called the thermal conductivity of the material and is a 

positive quantity (W/m K or W/m °C)

A = the area of the section perpendicular to the direction of heat flow (m2)

dT

dx
 = the temperature gradient at the section, i.e., the rate of change of the temperature T

with respect to distance in the direction of heat flow (°C/m or K/m)

The negative sign results from the convention of defining a positive heat flow in the direction of a 

negative temperature gradient.

In a unidirectional, steady-state conduction heat transfer, the heat flux, q, across an infinite slab of 

thickness, L, with temperature difference between the hot and cold walls, DT, can be expressed as

Q T
q k

A L

D
= =  (W/m2) (1.7)

1.5.1 ● Electrical Analogy

Using the electrical analogy, the temperature difference causing heat flow is analogous to the potential 

difference causing current flow through an electrical circuit. When the potential difference across a 

resistance becomes zero, the flow of current ceases. Similarly, in thermal equilibrium, when in the 

equivalent thermal circuit the temperature difference is zero, there is no heat transfer. Furthermore, the 

higher the electrical resistance, the lower the current flow. By the same token, the greater the equivalent 

thermal resistance, the lesser would be the heat transfer rate. The reciprocal of thermal resistance is 

known as thermal conductance C, akin to electrical conductance. In conduction heat transfer, thermal 

resistance, R
th, cond

 = L/kA.

1.5.2 ● Thermal Conductivity

The thermal conductivity, k, is an extremely important transport property of a material or medium. Its 

value largely determines the suitability of the material for a given application. One should study and 

remember the order of magnitude of the thermal conductivities of different types of materials. This will 

help in making suitable assumptions during problem solving. There is a wide difference in the range 

of thermal conductivities of various engineering materials as illustrated in Table 1.1. It may be stressed 

here that thermal conductivity of a material depends on the following: (a) the chemical composition of 

the substance, (b) the phase (i.e., solid, liquid, or gas), (c) the temperature, (d) the pressure, and (e) the 

direction of heat flow.

In respect of thermal conductivity of materials, the following behavioural characteristics are significant.

Thermal conductivity of pure metals decreases with temperature.

Even small amounts of impurities reverse the above process.

Most liquids have thermal conductivity decreasing with temperature.
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Thermal conductivity of gases increases with temperature, but decreases with increasing molecular 

weight (see Table 1.2).

Except under very high pressures, thermal conductivity is not affected by pressure.

For most materials, the variation of thermal conductivity with temperature is almost linear,

k = k
0
(1 + bT) (1.8)

where k
0
 is the thermal conductivity at 0°C, and b is a constant whose value depends upon the material. 

This constant may be positive or negative depending on whether thermal conductivity increases or 

Table 1.1

Materials Name of Material Thermal Conductivity (W/m °C)

Solid metals Silver (pure)

Copper (pure)

Aluminium (pure)

Brass

Carbon steel (0.5% C)

Carbon steel (1% C)

Stainless steel (18% Cr, 8% Ni)

419

386

204

111

54

43

16.3

Non-metals Window glass

Asbestos cement board

Building brick

Asbestos

Glass wall

Plastics

Sawdust

Wood

Wallboard, paper

0.78

0.74

0.69

0.23

0.038

0.58

0.58

0.17

0.076

Liquids Water

Lubricating (Engine) oil

R-12 (Freon-12)

0.60

0.145

0.073

Gases Dry air (1 atm)

Saturated steam (1 atm)

R-12 (Freon-12)

0.026

0.025

0.009

Table 1.2

S. No. Gas Thermal Conductivity (W/m K) Molecular Weight (kg/kmol)

1. Hydrogen (H
2
) 0.1652 2

2. Helium (He) 0.1416 4

3. Methane (CH
4
) 0.03042 16

4. Nitrogen (N
2
) 0.02384 28

5. Air 0.02364 28.97

6. Argon (Ar) 0.0164 40

7. Carbon dioxide (CO
2
) 0.01456 44
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decreases with temperature. The coefficient b is usually positive for non-metals and insulating materials

(exception is magnesite bricks) and negative for metallic conductors (exceptions are aluminium and 

certain non-ferrous alloys).

The value of the thermal conductivity increases with temperature for gases while it tends to decrease 

with temperature for most of the liquids, water being a notable exception.

The thermal conductivity of a solid is more than that of a liquid which in turn is greater than that of 

a gas. A few materials like wood have directional dependence. Wood has one value of k along the grain 

while a different value across it. Such materials are called anisotropic. For most solids and liquids, pressure 

does not affect the value of their thermal conductivities. By and large, most materials are assumed to be 

homogeneous and isotropic.

1.6 ❏ CONVECTION

Convection is the mode of energy transfer between the solid surface and the liquid or gas in motion in 

contact with it. It involves the combined effects of conduction and advection (bulk fluid motion). The 

faster the fluid motion, the greater is the convection heat transfer. In the absence of any bulk fluid motion, 

heat transfer between a solid surface and the adjacent fluid is by pure conduction. The presence of bulk 

motion of the fluid increases the heat transfer between the solid surface and the fluid, but it also makes 

the determination of heat-transfer rate a tedious task.

Consider the cooling of a hot plate by blowing of cold air over its top surface. Energy is first transferred 

to the air layer in the vicinity of the surface of the block by conduction. This energy is then carried away 

from the surface by convection; that is, by the combined effects of conduction within the air, which is 

due to random motion of air molecules, and the bulk or macroscopic motion of the air, which removes 

the heated air near the surface and replaces it by the cooler air.

Convection is called forced convection if the fluid is forced to flow in a tube (internal flow) or over 

a surface by external means such as a fan, pump or the wind (external flow). In contrast, convection is 

called free (or natural) convection if the fluid motion is caused by buoyancy forces induced by density 

differences due to the variation of temperature in the fluid. For example, in the absence of a fan, heat 

transfer from the surface of the hot plate will be by natural convection since any motion in the air in 

this case will be due to the rise of warmer (and, thus, lighter) air near the surface and the fall of the 

colder (and, thus, heavier) air to fill its place. Heat transfer between the plate and the surrounding air 

will be by conduction if the temperature difference between the air and the plate is not large enough to 

overcome resistance of air to move and, thus, to initiate natural convection currents.

Heat-transfer processes that involve change of phase of a fluid are also considered to be convection 

because of the fluid motion induced during the process such as the rise of the vapour bubbles during 

boiling or the fall of the liquid droplets during condensation.

The rate of heat transfer by convection convQ  is determined from Newton’s law of cooling, expressed as

= -conv ( ) (W)sQ hA T T (1.9)

where, the fluid temperature equals the surface temperature of the solid

convQ  = the rate of convective heat transfer (W)

h = the average convective or film heat-transfer coefficient, or unit surface conductance 

(W/m2K or W/m2°C)

A = the heat transfer surface area (m2)

T
s
 = the surface temperature (°C or K)
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T  = the temperature of the undisturbed fluid (usually far away from the surface, i.e., free 

stream)

It may be noted that the convection heat-transfer coefficient h is not a property of the fluid. It is an 

experimentally determined parameter whose value depends on all the variables that influence convection 

such as the surface geometry, the nature of fluid motion, the properties of the fluid, and the bulk fluid 

velocity.

It must be kept in mind that the basic energy exchange at the solid-fluid boundary is by conduction 

and this energy is then convected away by the fluid flow. Thus, one can write

0

( )s

y

T
hA T T kA

y =

∂
- = -

∂
(1.10)

where k is the thermal conductivity of the fluid and 
0y

T

y =

∂
∂

 is the temperature gradient in the fluid at 

the solid-fluid interface as shown in Fig. 1.3.

(No fluid flow)

(With fluid flow)

Stationary surface
(fluid at rest)

T

Ts

T
y

Slope:
∂T
y∂ y = 0

Slope:
∂T
y∂ y = 0

Slope of temperature profile in fluid at the surface with and without fluid flow.

Incidentally, h is not a property (unlike thermal conductivity) but a function of many parameters 

encompassing fluid properties like viscosity, fluid velocity, temperature difference, geometric configuration,

etc. The main problem in the analysis of convective heat transfer is to accurately predict the value of h

for design purposes. The typical values of the convective heat transfer coefficient are given in Table 1.3 

in order to get a feel for figures.

Table 1.3

Mechanism and Medium Connection Coefficient h (W/m2 °C)

Free (natural) convection: Air 

Water

5–25

50–300

Forced convection: Air 

Water

15–250

100–5000

Boiling (water) 2000–50 000 

Condensation (steam) 2000–50 000

Using the electrical analogy, the convective thermal resistance, R
th, conv

 = 1/hA
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1.7 ❏ RADIATION

The third fundamental mode of heat transfer, known as radiation, is qualitatively different from the first 

two. While conduction and convection occur within a solid or fluid material and often simultaneously, 

radiation does not require any material medium for energy transfer. Radiant exchange between surfaces 

is, in fact, maximum when no material occupies the intervening space.

The energy we receive from the sun cannot come to us through either conduction or convection except 

radiation because in the vast region between the sun and the earth, there is no medium. Even if the 

separating medium like air is present, it remains unaffected by the passage of radiant energy.

Radiant energy is thus transmitted most freely and fast (at the speed of light) in a vacuum. It occurs 

between all material phases. All bodies emit radiant energy continuously by virtue of their temperature in 

the form of electromagnetic waves. When this energy falls on a second body, it may be partially absorbed,

reflected, or transmitted. It is only the absorbed energy that heats the second body. Radiative heat transfer 

becomes increasingly important as the temperature of the emitting body increases.

All matter at temperatures above absolute zero emit electromagnetic waves of different wavelengths. 

Visible light together with infra-red and ultraviolet radiation constitutes only a small part of the total 

electromagnetic spectrum.

The quantity of energy leaving a surface as radiant heat is dependent upon the nature of the surface and 

its absolute temperature. There will be a continuous energy exchange between two radiating surfaces with 

a net radiant interchange from the hotter to the colder surface. Even in the case of thermal equilibrium, 

the energy exchange does not stop, though the net exchange will be zero.

The basic law of radiation heat transfer is expressed as the Stefan–Boltzmann equation:

s= 4
max s sQ A T (W) (1.11)

maxQ  = the maximum rate of radiation emitted by a surface (ideal) (W)

A
s
 = the surface area of a perfectly radiating body (m2)

T
s
 = the absolute surface temperature (K)

s = the constant of proportionality, called the Stefan–Boltzmann constant (its numerical value is 

5.67 ¥ 10–8 W/m2 K4.

It is significant that radiation heat transfer is proportional to the fourth power of the absolute 

temperature of the surface (K).

At any given temperature, a perfectly radiating body, or the most efficient radiator, called a black 

body, emits the maximum possible energy at all wavelengths and in all directions.

It should be borne in mind that Eq. (1.15) defines an energy emission rather than energy exchange.

The radiant heat energy emitted by a real surface is obviously less than that by a black body and is 

given by

4
sQ A Tse= (W) (1.12)

where e is a radiative property of the surface called emissivity. Obviously, an ideal emitter has e = 1. 

Determination of the net rate at which radiation heat exchange takes place between surfaces is fairly 

complicated.

In general, the net radiant energy interchange between two real non-black bodies at different 

temperatures depends on many factors: their surface properties, their geometry and their orientation

with each other.
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A fairly common practical situation is the net rate of radiation heat transfer between a relatively 

small surface of area A
s
, emissivity e and absolute temperature T

s
 placed in a much larger enclosure 

(surroundings) at temperature T
sur

 (the emissivity and surface area of the surrounding surfaces do not 

matter). The intervening medium is usually air. In such a case, we can write

s e= -4 4
net,rad sur( )s sQ A T T (W) (1.13)

Often when the temperature difference between a surface and its surroundings is small, a radiation

heat-transfer coefficient, h
r
 is defined as follows:

net sur( )r s sQ h A T T= - (W) (1.14)

This equation resembles Newton’s law of cooling in convection heat transfer.

From Eqs (1.13) and (1.14), we have

se= + +2 2
sur sur( )( )r s sh T T T T (1.15)

By electrical analogy, radiative thermal resistance, = =th,rad
rad

1 1

r s

R
h A C

1.8 ❏ ENERGY BALANCE FOR A CONTROL VOLUME

In order to solve many problems of heat transfer, the first law of thermodynamics (the law of energy 

conservation) provides a meaningful tool. One has to identify first the control volume, a region of space 

bounded by a control surface through which matter and energy can pass. A general form of the energy 

conservation requirement may then be expressed on a rate basis as follows:

The rate at which thermal and mechanical energy enters a control volume, minus the rate at which 

thermal and mechanical energy leaves the control volume plus the rate at which thermal energy is 

generated within the control volume, must equal the rate of increase of energy stored within the control 

volume.

Let us consider applying energy conservation to a control volume shown in Fig. 1.4. We identify the 

control surface (boundary) by a dashed line. Then we identify the energy terms, the rate at which thermal 

and mechanical energy enter and leave through the control surface, inE  and outE . Also, heat (thermal 

energy) generation within the control volume is included and the rate at which it occurs is denoted by 

genE . The rate of change of energy stored within the control volume, dE
st
/dt, is designated as stE .
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st
in out gen st (W)

dE
E E E E

dt
+ + = ∫ (1.16)

in out gen st (J)E E E E- + = D (1.17)

in out gen 0E E E- + =  (steady state) (W) (1.18)

in out 0E E- =  (steady state, no heat generation) (W) (1.19)

If the inflow and generation of energy exceed the outflow, there will be an increase in the amount of 

energy stored (accumulated) in the control volume; if the converse is true, there will be a decrease in 

energy storage. If the inflow and generation of energy equal the outflow, a steady-state condition must 

prevail in which there will be no change in the amount of energy stored in the control volume.

It is important to note that the inflow and outflow terms are surface phenomena, occurring at the 

control surface and are proportional to the surface area. A common situation involves energy inflow and 

outflow due to heat transfer by conduction, convection, and/or radiation. The inflow and outflow terms 

may also include work transfer occurring at the system boundaries. Essentially, in out in outE E Q Q- = -  by 

conduction and/or convection and/or radiation.

The internal heat generation means conversion from some other form of energy (chemical, electrical, 

electromagnetic, or nuclear) to thermal energy. It is a volumetric phenomenon. That is, it occurs within the 

control volume and is proportional to the magnitude of this volume. For example, in an exothermic chemical 

reaction, heat is evolved (generated). If the heat is generated uniformly at the rate of 3
gen(W/m ),q E q= ¥

Volume.

If heat is absorbed as in an endothermic reaction, genE  would be negative.

Energy storage is also a volumetric phenomenon as it also depends on the volume. If the density 

is r, volume –V , specific heat C
p
 increase in temperature (T

final
 – T

initial
) or DT (as in heating) and the 

duration (time) Dt, then st
–V p

T
E C

t
r

D
=

D
 or mC

p
dT/dt. If the final temperature is less (as in cooling) then 

stE  would be negative.

Moreover, latent energy effects involving a phase change are taken care of by the energy-storage term. 

When phase changes from solid to liquid (melting) or from liquid to vapour (vaporization, evaporation,

boiling), the latent energy increases. Conversely, if the phase change is from vapour to liquid (condensation)

or from liquid to solid (solidification, freezing), the 

latent energy decreases. Hence, neglecting kinetic- and 

potential-energy effects, which is almost always the case 

in heat-transfer analysis, changes in energy storage are 

contributed by changes in the internal thermal and/or 

latent energies

st sensible latent( )E U U UD ∫ D ∫ D + D (1.20)

● Surface Energy Balance

Applying energy balance at the system boundary (control 

surface), we have

in out in out0 orE E E E- = - (1.21)
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This equation is valid for both steady-state and unsteady-state conditions. Moreover, even if there is internal 

heat generation, it will not affect the control surface energy balance. Referring to Fig. 1.5, one can write

= +cond,in conv,out rad,outQ Q Q (1.22)

1.9 ❏  COMBINED MODES OF HEAT TRANSFER

So far we have considered the three mechanisms of heat transfer separately. In practice, however, heat 

is usually transferred simultaneously in double mode in gases and liquids. In the case of opaque solids, 

heat transfer can occur only by conduction.

In the case of evacuated space between two surfaces at different temperatures, heat can be transferred only 

by radiation. In other cases, with a gas like air and a liquid like water, both single and double modes of heat 

transfer are possible. Figure 1.6 shows different situations involving single and double modes of heat transfer. 

Figure 1.7 illustrates simultaneous convection and radiation from a small surface of area A
s
 and emissivity 
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e which is maintained at T
s
 and exchanges energy by convection with a fluid at T  having heat-transfer 

coefficient h
c
 and by radiation with the surroundings at T

sur
. The heat loss per unit surface area, by the 

combined mechanism of convection and radiation, is given by

4 4
conv rad sur( ) ( )c s s

Q
q q q h T T T T

A
es= = + = - + - (1.23)

The second term for radiation heat flux in the above equation can be linearized if the difference 

between T
s
 and T

sur
 is small.

Then
4 4 2 2

rad sur sur sur sur

2 2
2sur sur

sur sur

( ) ( )( )( )

4 ( ) 4 ( )
2 2

s s s s

s s
s m m s

q T T T T T T T T

T T T T
T T T T T T

es es

es es

= - = + + -

Ê ˆ+ +Ê ˆ= - = -Á ˜ Á ˜Ë ¯ Ë ¯

(1.24)

where 3sur
sur4 ( )

2

s
m m s

T T
T T T Tes

+
= -

\ 3
sur( ) where 4r r s r mq h T T h Tes= - ∫ (1.25)

The orders of magnitude of h
r
 and h

c
 are approximately the same in such a case. And if T  = T

sur
,

one can write

conv rad ( )( ) ( )c r s sq q q h h T T h T T= + = + - = - (1.26)

where h ∫ (h
c
 + h

r
), the combined heat-transfer coefficient.

1.10 ❏ MASS TRANSFER

Mass transfer is defined as the movement or diffusion of a chemical component (species) in a mixture of 

liquids or gases with different chemical compositions. Many heat-transfer problems in engineering practice 

are based on concentration difference. In a stationary medium, mass transfer takes place by diffusion from 

a region of high concentration to a region of low concentration.
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The rate equation for diffusion mass transfer is given by Fick’s law which states that for a binary 

mixture of species A and B, the diffusion mass flux of the species A is given by

diff, 2
diff, (kg/m s)

A A
A AB

m d
j D

A dx

r
= = - (1.27)

where diff, difff, /A Aj m A= , i.e., mass flux of the species A, kg s m2 in the flow direction x

A = area normal to the direction of flow

r
A
 = concentration of the species A, kg/m3

dr
A
/dx = concentration gradient, kg/m4

D
AB

 = diffusion coefficient or mass diffusivity, m2/s

Apart from diffusion mass transfer, there is convective mass transfer that involves bulk mass transport. 

Convective mass transfer occurs on a macroscopic scale, while diffusion mass transfer on a microscopic

level. There are several applications of mass transfer such as absorption, desorption, distillation, solvent

extraction, drying, humidification, sublimation, etc.

1.11 ❏

A systematic procedure characterized by a specific format clears the cobwebs of confusion and facilitates 

solution of numerical problems. The methodology employed in this book consists of the following logical 

steps:

Known Having read the problem carefully and completely, state briefly and concisely the key information 

given in the problem statement.

Find State in a nutshell the quantities to be determined.

Schematic Draw a neat schematic of the physical system involved. List all the pertinent information 

(including units) on the schematic. Also indicate the relevant heat-transfer processes indicating the 

directions.

Assumptions List all appropriate simplifying assumptions, approximations and idealizations.

Properties Obtain unknown property values required from property tables (if not given) for subsequent 

calculations. Ensure that properties are evaluated at the correct pressure and temperature. Use linear 

interpolation, if necessary.

Analysis Put on your thinking cap and examine the system and the processes involved (open or 

closed system, steady or unsteady process, etc.) Apply relevant basic concepts and governing principles 

(for example, mass conservation, momentum conservation, energy conservation, force balance, moment 

balance, etc.) and introduce rate equations. Simplify them by using the assumptions made. Carry out 

the analysis as completely as possible before substituting the numerical values for better accuracy in 

results. Perform the calculations required to get the desired results with due care about the consistency 

and compatibility of units. Round off the final answer to an appropriate number of significant digits. Do 

not truncate or round off the intermediate results as far as possible.

Comments Discuss and dissect your results. Verify and justify the validity of the assumptions made. 

Point out any unusual trend in the results.
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Table 1.4

Mode Mechanism(s) Rate Equation Transport Property or Coefficient

Conduction Diffusion of energy due to 

random molecular motion cond (W)c

dT
Q kA

dx
= -

k(W/m K or W/m °C)

Convection Diffusion of energy due 

to random molecular 

motion plus energy transfer 

due to bulk fluid motion 

(advection)

conv ( ) (W)s sQ hA T T= - h(W/m2 K or W/m2 °C)

Radiation Energy transfer by 

electromagnetic waves

4 4
rad sur( ) (W)s sQ A T Tes= -

or

rad sur( ) (W)r s sQ h A T T= -

e

h
r
(W/m2 K or W/m2 °C)

ILLUSTRATIVE EXAMPLES

(A) Conduction

 An experimental facility is constructed to measure the thermal conductivity of 

different building materials. The apparatus is designed such that there is one-dimensional, steady-state 

heat conduction between two isothermal parallel surfaces of the material being tested. A concrete slab 

measuring 15 cm ¥ 15 cm ¥ 5 cm is placed in the test rig. The two walls, 5 cm apart, are maintained at 

uniform temperatures of 36°C and 22°C. The heat-transfer rate between the surfaces is 27 kJ/h. Determine 

the thermal conductivity of the concrete being tested.

Solution

Known  A concrete slab of given dimensions being 

tested. End surface temperatures and heat 

rate are specified.

Find k
concrete

 (W/m °C).

Assumptions  (1) Steady state, one-dimensional 

conduction. (2) Constant thermal 

properties. (3) End effects are negligible.

Analysis The rate of heat transfer by conduction is

1 2( )/Q kA T T L= -

 Hence, the thermal conductivity of the 

concrete being tested is determined to be

k
QL

A T T

QL

WH T T
=

-
=

-

=

( ) ( )

( )( . )

( . . )(

1 2 1 2

27 0 05

0 15 0 15 36

kJ/h m

m m¥ -- ∞
=

22

10

1

1

3600

1

1

3

) C

J

kJ

h

s

W

J/s
1.9 W/m C (Ans.)

ILLUSTRATIVE EXAMPLES

Schematic
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 Two identical cylindrical samples, each 4 cm diameter and 10 cm long, are used in 

an experiment to measure the thermal conductivity of the sample material. An electric-resistance heater 

is sandwiched between the two samples for the supply of heat. The curved surface of the samples is 

effectively insulated. Two thermocouples are placed 3 cm apart in each sample. After initial transients die 

out, the temperature drop across the distance along each sample is observed to be 15°C. The current and 

voltage are measured to be 0.5 A and 210 V. Determine the thermal conductivity of the sample material.

Solution

Known  An experiment to measure the thermal conductivity of a sample involves measurement 

of temperature difference across a certain distance while ensuring one-dimensional heat 

transfer under steady operating conditions.

Find  Thermal conductivity, k (W/m K).

Schematic

L = 3 cm

DT = 15 °C

Sample Sample

10 cm 10 cm

DT
L

Electric heater ( = 210 V, = 0.5 A)V I

L Insulated

D = 4 cm

DT
8Q 8Q

Assumptions  (1) Steady-state conditions prevail so that temperatures remain constant even with the lapse 

of time. (2) Thermal symmetry exists. (3) One-dimensional (axial) heat conduction since 

the lateral surface of the cylindrical sample is well insulated.

Analysis  The power consumed by the electric heater is converted into heat and is equally divided 

to supply heat to each identical sample.

Hence, the heat-transfer rate for each sample is

1 1

2 2
Q VI= = (210 V) (0.5 A) = 52.5 W

For one-dimensional conduction along the axis of the cylindrical sample, one has

( / )Q kA T L= D

 where DT/L is the temperature gradient, and A is the area perpendicular to the direction of 

heat flow, that is, cross-sectional area, A
2

4

Dp
=

 With 2

15°C

3 10 m

T

L -
D

=
¥

 = 500°C/m and A = 2(0.04 m)
4

p
 = 1.2566 ¥ 10–3 m2, the thermal 

conductivity of the sample material is determined to be

3 2

52.5 W

( / ) (1.2566 10 m )(500 C/m)

Q
k

A T L -= =
D ¥ ∞

= 83.5 W/m °C (or W/m K) (Ans.)
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Comment  You might have noticed that the area of the sample is the area of cross section, 2

4
cA D

p
=

and not pDL, which is the surface area, A
s
. The length of each sample given (10 cm) was, 

therefore, not used.

  It is noteworthy that the additional sample is simply used for providing thermal symmetry 

so that experimental error can be reduced. Also, it enables us to compare the readings of 

temperature difference for verification.

 The inside and outside surface temperatures of a glass window are 20 and –20°C 

respectively. If the glass is 60 cm ¥ 30 cm with 18 mm thickness, determine the heat loss through the glass 

cover in 3 h. Take the thermal conductivity of 

the window glass as 0.78 W/m K.

Solution

Known Dimensions and end-surface 

temperatures of a glass window.

Find Heat loss in 3 h.

Assumptions  (1) Steady-state one-dimensional 

conduction. (2) Constant thermal 

conductivity.

Analysis Cross-sectional area,

A = 0.6 m ¥ 0.3 m = 0.18 m2

Heat-transfer rate,

1 2

2

( )

(0.78 W/mK)(0.18 m )[20 ( 20)]K

0.018 m

312 W

kA T T
Q

L

-
=

- -
=

=

In 3 h, the heat loss is

Q = Q t◊ D  = 312 W ¥ (3 ¥ 3600) s = 3.37 ¥ 106 W or 3.37 MW (Ans.)

 Determine the rate of heat flow and heat flux through a 0.6 m wide, 0.4 m 

high and 4 mm thick steel plate, having a thermal conductivity of 45 W/m °C, when the temperature 

of the surface at x = 0 is maintained at a constant temperature of 200°C and its temperature at 

x = 4 mm is 202°C.

Solution

Known Dimensions, thermal conductivity and end-surface temperatures of a steel plate.

Find Heat rate, (W)Q ; Heat flux, q(W/m2).

Assumptions  (1) Steady-state, one-dimensional conduction. (2) Constant thermal conductivity.

Analysis From Fourier’s rate equation:

Schematic
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Heat rate,

2 1–
T TdT

Q kA kA
dx L

-
= - =

= –(45 W/m °C) (0.6 m ¥ 0.4 m)

¥
(202 200) C

0.004 m

- ∞

= – 5400 W or –5.4 kW (Ans.)

Heat flux,

2

5.4 kW

(0.6 0.4)m

Q
q

A
= = -

¥
 = –22.5 kW/m2

(Ans.)

Comment Since in this case the temperature gradient 

is positive 0
dT

dx

Ê ˆ>Á ˜Ë ¯ , the heat rate (and the 

heat flux) is negative, which means that the 

heat is flowing inwards

 Determine the heat flux at x = 0, x = 0.3 m and x = 0.6 m if the temperature 

distribution across a 0.6 m thick brass plate (k = 110 W/m °C) is T(x) = 100 – 80x + 45x2 where x is 

in metres and T in °C. Sketch the temperature distribution.

Solution

Known Temperature distribution across a brass plate.

Find Heat flux at x = 0, 0.3 m and 0.6 m.

Schematic

Assumptions (1) Steady-state, one-dimensional conduction. (2) Constant thermal conductivity.

Analysis We have, T(x) = 100 – 80x + 45x2

Differentiating with respect to x, the temperature gradient is 80 90
dT

x
dx
= - +

Schematic
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Heat flux at the three specified locations is determined from

0

( 110 W/m°C)( 80 C/m)
x

dT
q k

dx =
= - = - - ∞ = 2

8800 W/m (Ans.)

0.3m

( 110 W/m°C)( 80 90 0.3) C/m /
x

dT
q k

dx =
= - = - - + ¥ ∞ = 2

5830 W m (Ans.)

0.6m

( 110 W/m°C)( 80 90 0.6) C/m /
x

dT
q k

dx =
= - = - - + ¥ ∞ = 2

2860 W m (Ans.)

The temperature distribution is shown in the schematic.

(B) Convection

 Calculate the rate of heat transfer by natural convection from an uninsulated steam 

pipe (10 cm OD and 15 m long) if the average surface temperature of the pipe is 160°C, the ambient 

air temperature is 40°C and the average heat-transfer coefficient is 8.4 W/m2 °C.

Solution

Known  Pipe dimensions and surface 

temperature. Air temperature 

and convection coefficient.

Find Heat loss rate, (W)Q .

Assumptions (1) Steady operating conditions. 

(2) Constant tube surface 

temperature. (3) Radiation heat 

loss is not taken into account.

Analysis Rate of heat transfer by free convection from the tube surface to the ambient air is given 

by

( ) ( )( )s s sQ hA T T h DL T Tp= - = -

= (8.4 W/m2 °C) (p ¥ 0.1 m ¥ 15 m)(160 – 40)°C = 4750 W (Ans.)

 The forced convection heat-transfer coefficient for a hot fluid flowing over a cold 

surface is 230 W/m2 K. The fluid temperature upstream of the cold surface is 120°C and the surface is 

held at 10°C. Determine the heat flux from the fluid to the surface.

Solution

Known A hot fluid is forced to flow over a cold surface.

Find Heat flux, q (W/m2).

Schematic

Schematic
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Assumptions (1) Steady-state conditions. (2) Radiation effects are negligible.

Analysis Heat-transfer rate from the surface is given by, ( )sQ hA T T= -

 Since the flow of heat is from the fluid to the surface, the heat flux from the fluid to the 

surface is determined to be, 2( ) 230 W/m K (120 10)Ks

Q
q h T T

A
= = - = -

= 25 300 W/m2 or 25.3 kW/m2 (Ans.)

 A thin metallic plate is insulated at the back surface and is exposed to the sun at 

the front surface. The front surface absorbs the solar radiation of 840 W/m2 and dissipates it essentially 

by convection to the ambient air at 30°C. If the heat-transfer coefficient between the plate and the air 

is 16 W/m2K, what is the plate temperature?

Solution

Known  A thin plate with one surface 

exposed to solar radiation loses 

heat by convection.

Find Plate temperature, T
s
 (°C).

Assumptions (1) Steady operation is established. 

(2) Uniform heat-transfer coeffi-

cient. (3) Radiation effects are not 

considered.

Analysis The dominant heat-transfer mode here is convection.

 Then, by Newton’s law of cooling, ( )sQ hA T T= -

It follows that the plate surface temperature is, 
1

s

Q q
T T T

A h h

Ê ˆ
= + = +Á ˜Ë ¯

From energy balance: 2
,abs conv 840 W/msq q q= = =

Hence, the temperature of the plate,

2

2

840 W/m
30°C .

16 W/m K
sT = + = 82 5 C∞ (Ans.)

(C) Radiation

 A long cylindrical electrically heated rod, 20 mm in diameter, is placed in a large 

evacuated chamber. The surface emissivity of the rod is 0.85 and the interior walls of the chamber are 

maintained at 300°C. The rod is held at 30°C in a steady operation. Determine (a) the net rate at which 

radiation is exchanged between the heating rod and the chamber walls per metre length, and (b) the 

radiation heat-transfer coefficient.

Solution

Known A long rod of specified diameter, emissivity and temperature is installed in a vacuum 

chamber held at a lower temperature.

Find (a) netQ /L (W/m), (b) h
r
(W/m2 K).

 

Schematic
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Assumptions (1) Steady operating conditions. 

(2) The chamber walls are 

idealized as a black body. (3) 

The rod surface is very small 

compared to the large enclosure 

(chamber).

Analysis Under steady-state conditions, 

the rate of heat loss through the 

chamber walls must equal the 

rate at which the heating rod 

dissipates electrical energy. This 

also equals the rate of electrical input to the system. As the rod, relatively a small body, 

is completely enclosed in the large chamber, the entire radiant energy emitted by the rod’s 

surface is intercepted by the chamber walls.

Net rate of radiation heat transfer is

4 4 4 4
net sur sur[ ] [ ]s s s s sQ A T T DL T Ts e sp e= - = -

Substituting the numerical values, we have

8 2 4 4 4 4net (5.67 10 W/m K )( 0.02 m)(0.85)[(300 273.15) (30 273.15) ]K
Q

L
p-= ¥ ¥ + - +

= 302.2 W/m  (Ans.) (a)

Radiation heat-transfer coefficient,

sur

302.2 W/m

( )( ) ( 0.02)(300 30) C or K
r

s

Q
h

DL T Tp p
= =

- ¥ - ∞

= 17.8 W/m2 K (Ans.) (b)

Comment  The only mode of heat transfer in an evacuated space is radiation because both conduction 

and convection heat transfer require a material medium. In radiation calculations, all 

temperatures must be absolute temperatures. However, the temperature difference, DT can 

be expressed either in °C or K.

(D) Energy Balance and Combined Heat-Transfer Mechanisms

 Tomato plants placed in a garden encounter a clear still night with an effective 

sky temperature of –13°C. The air temperature is 11°C and the convection heat-transfer coefficient is 

1.65 W/m2K. The emissivity of the leaves of the tomato plants is 0.65. Determine the temperature of the 

tomato plant leaves under equilibrium conditions.

Solution

Known  Tomato plants in a garden are subjected to convective and radiative heat transfer equilibrium 

conditions.

Find  Equilibrium temperature of tomato leaves.

Schematic
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Schematic

Assumptions  (1) Steady-state conditions. (2) Quiescent air.

Analysis Energy balance:
Heat transferred by Heat transferred to the 

convection to the leaves  night sky by radiation

Ê ˆ Ê ˆ
=Á ˜ Á ˜Ë ¯ Ë ¯

conv ( )sQ hA T T= -

where T
s
 is the surface temperature of the leaves

4 4
rad sky( )sQ A T Ts e= -

Equating the two expressions, we get

4 4
sky( ) ( )s sh T T T Tse- = -

Substituting the numerical values, we have

2 8 2 4 4 4 4(1.65 W/m K)(284.15 )K (5.67 10 W/m K ) (0.65)( 260.15) Ks sT T
-- = ¥ ¥ -

 A trial-and-error solution is necessary to estimate the tomato plant leaves’ surface 

temperature.

T
s
(°C) T

s
(K) LHS RHS

–3 270.15 23.1 27.49

–5 268.15 26.4 21.74

–4 269.15 24.75 24.60

 At T
s
 = – 4°C, both LHS and RHS are almost equal. Hence, the temperature of the tomato 

leaves is –4°C. (Ans.)

 A cold spherical drop of water (3 mm diameter) gains heat as it falls through 

the surrounding air which is at a temperature of 30°C. Simultaneously, the drop also loses mass by 

evaporation at the rate of 0.63 ¥ 10–5 kg/h. If the surface heat-transfer coefficient is 20 W/m2 K and it 

is assumed that at any given instant of time, the drop is at a uniform temperature, calculate the rate at 

which the drop is heating up (in °C/min) when it is at a temperature of 10°C.

 Properties of water: r = 997.7 kg/m3, C
p
 = 4.194 kJ/kg K, h

fg
 = 2478 kJ/kg
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Solution

Known A cold drop of water gains heat by convection and loses mass by evaporation.

Find Rate of temperature rise of drop, dT/dt.

Schematic

Assumptions (1) Steady-state conditions. (2) The drop is at a uniform temperature. (3) Constant properties.

Analysis Applying control volume energy balance,
0

in out gen st

(no heat generation)

E E E E- + =

or

net,in

in,convection out,evaporation

Q

–V p

dT
Q Q C

dt
r- =  = energy storage rate

Net rate of heat transfer to the drop,

net,in

5
2 2 2 3

( )

0.63 10
20 W/m K ( 0.003 )/m (30 – 10)K kg/s 2478 10 J/kg

3600

s s fgQ hA T T mh

p
-

= - -

Ê ˆ¥
= ¥ ¥ ¥ - ¥ ¥Á ˜Ë ¯

= (11.31 ¥ 10–3 W) – (4.34 ¥ 10–3 W) = 6.97 ¥ 10–3 W

It follows that net,in
–V p

dT
C Q

dt
r =

or       3 3 3 3 3997.7 kg/m 0.003 m 4.194 10 J/kgK ( C/s) 6.97 10 W
6

dT

dt

p -Ê ˆ Ê ˆ¥ ¥ ¥ ¥ ∞ = ¥Á ˜ Á ˜Ë ¯ Ë ¯

\
dT

dt
= 0.118°C/s or 7°C/min (Ans.)

 The top surface area of a heating element is 100 cm2. Its resistance is 15 

ohms and its emissivity is 0.85. The convective heat-transfer coefficient from the top of the element is 

21 W/m2 K. If the voltage drop across the element is 30 V, how hot will it become in the steady state? 

Assume that all the heat is dissipated by convection and radiation from the top of the element and that 

the room is at 21°C.
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Solution

Known The top surface of a heating element loses heat both by convection and radiation.

Find Steady-state surface temperature, T
s
(°C).

Schematic

Assumptions (1) The system is in steady state. (2) Uniform heat-transfer coefficient.

Analysis Under steady operating conditions: in outE E=

Now,
2 2

2
in

(30 V)
60 W

15

V
E I R

R
= = = =

W

The total heat dissipated, out conv rad tot ( )sE Q Q h A T T= + = -

where h
tot

 is the total heat-transfer coefficient, comprising convective and radiative 

components. The radiative heat-transfer coefficient is determined from

2 2
rad ( )( )s sh T T T Tes= + +

However, there is a catch since h
rad

 depends on T
s
 which is to be determined. To evaluate the 

radiative heat-transfer coefficient, the surface temperature must be assumed. A reasonable 

value to start with is 200°C. Later, we can correct it if necessary. Using our assumed value, 

h
rad

 becomes

2 2
rad

8 2 4 2 2 2

2

( )( )

0.85 5.67 10 W/m K (473.15 294.15)K{(473.15) (294.15) }K

11.48 W/m K

s sh T T T Tes

-

= + +

= ¥ ¥ + +

=

Absolute temperatures must always be used in radiative calculations. Hence, the temperatures 

have been converted to Kelvin. The total heat-transfer coefficient is

2
tot rad conv 11.49 21 32.48 W/m Kh h h= + = + =

Substituting the appropriate values, we have

2 4 260 W (32.48 W/m K)(100 10 m )( 21)KsT
-= ¥ -

Evaluating and solving for T
s
 yields

205.74°CsT =
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 Recall that we assumed T
s
 = 200°C in order to calculate h

rad
. What would h

rad
 be if we 

use T
s
 = 205.74°C? Repeating the calculations gives h

rad
 = 11.77 W/m2 K and the total 

heat-transfer coefficient, h
tot

 = 32.77 W/m2 K. The new value of T
s
 is found to be 204°C. 

We may continue the iterations if more precision is needed. A table of the assumed and 

computed values of T
s
 is given below.

Iteration, # h
rad,

W/m2 K Assumed T
s
, °C Calculated T

s
, °C

1 11.48 200.0 205.7

2 11.77 205.7 204.1

3 11.69 204.1 204.57

4 11.71 204.6 204.4

5 11.70 204.4 204.5

Hence, the surface temperature, T
s
 = 204.5°C (Ans.)

 A thermocouple (1.2 mm OD wire) is used to measure the temperature of a 

quiescent gas in a furnace. The thermocouple reading is 165°C. It is known, however, that the rate of 

radiant heat flow per metre length from the hotter furnace walls to the thermocouple wire is 1.4 W/m 

and the heat-transfer coefficient between the wire and the gas is 6.4 W/m2 °C. Estimate the true gas 

temperature.

Solution

Known  A thermocouple reads the gas temperature 

in a furnace. Convection coefficient and 

radiant heat transfer are specified.

Find True gas temperature.

Assumptions  (1) Uniform thermocouple wire 

temperature. (2) Thermal equilibrium 

exists between the thermocouple and the 

walls.

Analysis  Under steady operating conditions: Rate 

of heat gain by the thermocouple by 

radiation = Rate of heat loss by the 

thermocouple by convection.

i.e.,
rad conv or ( )( )r

c g

Q
Q Q L h DL T T

L
p= = -

\ True gas temperature is

2 3

( / ) 1.4 W/m
165 C –

(6.4 W/m C)( 1.2 10 m)
g c

Q L
T T

h Dp p -= - = ∞ =
∞ ¥ ¥

107 C∞ (Ans.)

 A person standing in a breezy room at 25°C is modelled as a vertical cylinder of 

30 cm diameter and 1.7 m height with both top and bottom surfaces insulated. The lateral (side) surface 

is at an average temperature of 35°C. The convection heat-transfer coefficient is 8 W/m2 °C. The surface 

emissivity may be assumed to be 0.95. Calculate the total heat-transfer rate.

Schematic

Furnace

Qrad = 1.4 W/m&

Thermocouple ( = 1.2 mm)D

Tc = 165 °C

h = 6.4 W/m °C2
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Solution

Known The side surface of a person idealized as a vertical cylinder is exposed to convection and 

radiation.

Find Total heat-transfer rate.

Schematic

Assumptions (1) Steady operating conditions. (2) Diffuse-gray isothermal surface. (3) Constant emissivity 

and heat-transfer coefficient. (4) Top and bottom surfaces are insulated.

Analysis Total heat-transfer rate from the person,

4 4
conv rad sur( ) ( )s s s sQ Q Q hA T T A T Te s= + = - + -

where 2(0.30 m)(1.7 m) 1.6 msA DLp p= = =

Substituting numerical values,

2 2

2 8 2 4 4 4 4

[(8 W/m C)(1.6 m )(35 25) C]

[0.95 1.6 m 5.67 10 W/m K {308.15 298.15 }K ]

Q

-

= ∞ - ∞

+ ¥ ¥ ¥ -

= 128 W + 96.2 W = 224.2 W (Ans.)

 The following data was obtained in an experiment for determining the emissivity 

of a surface.

 Plate size  20 ¥ 20 cm

 Heat coil input 50 W

 Steady state temperature of the surface 85°C

 Ambient temperature 30°C

 Heat-transfer coefficient 16 W/m2 K

 Stefan–Boltzmann constant  5.6688 ¥ 10–8 W/m2K4

 Estimate the emissivity of the surface.
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Solution

Known Details associated with experimental arrangement to measure surface emissivity.

Find Surface emissivity, e.

Schematic

Assumptions (1) Steady-state conditions. (2) Uniform heat-transfer coefficient. (3) Ambient temperature 

equals surroundings temperature.

Analysis Rate of heat transfer by convection and radiation is

250 W
1250 W/m

0.2 m 0.2 m

Q

A
= =

¥

Rate of heat loss due to convection

convQ
h T

A
= D  = 16 W/m2 K (85 – 30) K = 880 W/m2

Rate of heat loss due to radiation

radQ

A
 = 1250 – 880 = 370 W/m2  (by difference)

But 4 4rad ( )s

Q
T T

A
es= -

Hence, the emissivity is determined to be

2

8 2 4 4 4 4

370 W/m

5.6688 10 W/m K [(273.15 85) (273.15 30) ]K
e -=

¥ + - +
= 0.813  (Ans.)

(E) Mass Transfer

 Air fills a tube that is 1 m in length. There is a small water leak at one end where 

the water vapour concentration builds to a mass fraction of 0.01. A dissector maintains the concentration 

at zero on the other side. What is the steady flux of water from one side to the other if the mass diffusivity, 

D
AB

 = 0.000284 m2/s and r
air

 = 1.18 kg/m3.

Solution

Known Water-vapour concentration on the two sides of an air-filled tube. Density of air and 

diffusivity of water vapour in air.

Find Diffusive mass flux.
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Schematic

Assumptions (1) Constant mass density. (2) Linear concentration profile.

Analysis Mass transfer by diffusion per unit area per unit time, i.e., diffusive mass flux of the species 

A is

2diff,H Ovapour

diff,

( ) ( 0) ,0

3 2 2

( / )

0

0.01kg H O/kg mixture
(1.18 kg/m )(0.000 284 m /s)

1 m

AWA
A AB AB

A x L A x A

AB AB

m dd
j D D

A dx dx

w w w
D D

L L

r r
r r

r r
= =

-

= = - = -

-
= - = +

-

Ê ˆ
= Á ˜Ë ¯

= ¥ 6 2
3.35 10 kg/m s (Ans.)

Points to Ponder

● In the radiator, radiation is not the dominant mode of heat transfer.

● In pure metals, the electronic component of thermal conductivity is typically two orders of magnitude 

greater than the lattice component.

● In the increasing order of thermal conductivity, we have metal alloys, non-metallic crystals and pure 

metals.

● In conduction and convection problems, we deal with linear temperature differences and any consistent 

temperature scale (Celsius or Kelvin) may be used.

● Heat transfer takes place in accordance with the second law of thermodynamics.

● Surface energy balance is valid under both steady and unsteady operating conditions.

● The convection heat-transfer coefficient, unlike thermal conductivity, is not a property of the fluid.

● Heat transfer is a non-equilibrium phenomenon.

● The driving force for heat transfer is the temperature gradient.

● The property which is a measure of the ability of a material to conduct heat is called thermal 

conductivity.

● A material with uniform properties in all directions is known as isotropic.

● The larger the thermal diffusivity, the faster the propagation of heat into the medium.

● Diamond is a better heat conductor than silver.

● Heat transfer is transport of energy due to a temperature difference.

● The three basic modes of heat transfer are conduction, convection and radiation.

0
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● Conduction requires a stationary medium.

● Convection requires a moving fluid.

● Radiation takes place in the absence of any medium.

● The rate of heat conduction is proportional to the area measured normal to the direction of heat flow 

and to the temperature gradient in the direction of heat flow.

● SI units of thermal conductivity and thermal diffusivity are respectively W/m °C or W/m K and m2/s.

● Heat-transfer coefficients also depend on the magnitude of surface-to-fluid temperature difference in 

free convection, unlike forced convection.

● The most important mode of heat transfer at high temperatures is radiation.

● In conduction and convection heat transfer, one deals with linear temperature differences enabling 

one to express temperatures in °C or K but in radiation heat transfer, the temperature differences are 

non-linear with temperatures expressed only in kelvin.

● Flow of cigarette smoke in a still room is an example of free convection while the mechanism of heat 

flow in a car radiator is an example of forced convection.

● If T
m
 is the mean temperature of the surface and the surroundings in K, e is the emissivity of the surface, 

and s is the Stefan–Boltzmann constant, the radiation heat transfer coefficient h
r
 is approximately 

34 mTes .

● Distant non-black surroundings are effectively black.

● In many cases, convection and radiation heat transfers have roughly equal contributions. The convective 

and radiative thermal resistances are in parallel if ambient and surroundings temperatures are same.

● The thermal conductivities of most metals decreases with an increase in temperature whereas in the 

case of non-metals, they increase with an increase in temperature.

GLOSSARY of Key Terms

● Heat transfer Transport of energy due to temperature gradients or differences.

● Conduction Transfer of energy in a substance due to random molecular collision.

● Convection Transfer of energy from one region to another by bulk (macroscopic) 

fluid motion, added on to the energy transfer by conduction.

● Forced convection Fluid motion caused by an external agency such as a pump or a blower.

● Free (natural) convection Fluid motion occurring due to density variations caused by temperature 

differences.

● Radiation Transport of energy in the form of electromagnetic waves with or 

without the material medium.

● Mass transfer The transport of one component in a mixture from a region of higher 

concentration to one of lower concentration.

● Thermal conductivity A transport property of the material which indicates its ability to conduct 

heat. It is the conduction heat flux per unit temperature gradient.

● Heat-transfer coefficient Convection heat flux per unit difference between the surface and fluid 

temperatures.

● Emissivity A radiative property of the surface.
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Multiple-Choice Questions

1.1 Heat transfer takes place according to the following law of thermodynamics:

(a) Zeroth (b) First (c) Second (d) Third

1.2 Consider the following statements:

  The Fourier’s heat conduction equation, Q
dT

kA
dx

= -  presumes

  1. steady-state conditions

  2. constant value of thermal conductivity

  3. uniform temperatures at the wall surfaces

  

  Of these statements:

(a) 1, 2 and 3 are correct (b) 1, 2 and 4 are correct

(c) 2, 3 and 4 are correct (d) 1, 3 and 4 are correct.

1.3 For a plate of thickness L, cross-sectional area A
c,
 and thermal conductivity k, the thermal conductance 

is given by

(a) ckA

L
(b)

c

L

kA
(c)

c

kL

A
(d) cA

kL

1.4 Most metals are good conductors of heat because of

(a) energy transport due to molecular vibration

(b) migration of neutrons from hot end to cold end

(c) lattice defects such as dislocations

(d) presence of free electrons and frequent atomic collision

1.5 The ratio of the average thermal conductivities of water and air is of the order of

(a) 5 : 1 (b) 10 : 1 (c) 25 : 1 (d) 50:1

1.6

(a) parabolic (b) linear (c) hyperbolic (d) logarithmic

1.7

furnace is

(a) by conduction only (b) by convection only

(c) by conduction and convection (d) predominantly by radiation

1.8

(a) density (b) velocity

(c) coefficient of viscosity (d) gravitational force

1.9 Forced convection in a liquid bath is caused by

(a) density difference brought about by temperature gradients

(b) molecular energy interaction

(c) flow of electrons in a random fashion

(d) intense stirring by an external agency

1.10 Heat transfer in liquids and gases is essentially due to

(a) conduction (b) convection

(c) radiation (d) conduction and radiation
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1.11 Match the properties with their respective units:

  Property Units

  A. Thermal resistance (P) W/s

  B. Thermal conductivity (Q) K/W

  C. 3

  D.

    (T) W/m K

    (U) W/m2 K

  Codes: A B C D

  (a) P R S T

  (b) Q U R S

  (c) U T Q P

  (d) Q T U S

1.12 Which of the following correctly represents Newton’s law of cooling?

(a)
Q dT

k
A d
= -

x

(b)
Q

h T
L
= D (c)

Q dT
k

L d
=

x

(d)
Q

h T
A
= D

1.13 Which mode(s) of heat transfer does (do) not need a material medium?

(a) Conduction (b) Convection (c) Radiation (d) Convection and radiation

1.14 On a summer day, a scooter rider feels more comfortable while on the move than while at a stoplight 

because

(a) an object in motion captures less solar radiation

(b) air is transparent to radiation and, hence, it is cooler than the body

(c) more heat is lost by convection and radiation while in motion

(d) air has a low specific heat and, hence, it is cooler

1.15 Heat is mainly transferred by conduction, convection and radiation in

(a) insulated pipes carrying hot water (b) refrigerator freezer coil

(c) boiler furnaces (d) condensation of steam in a condenser

1.16 Identify the wrong statement:

(a) A temperature gradient is necessary for heat transfer.

(b) A physical medium is essential for heat flow.

(c)  Heat transmission requires flow of heat from higher temperature to lower temperature according 

to the second law of thermodynamics.

(d) Heat transfer is thermodynamically an irreversible process.

1.17 Which of the following would lead to a reduction in thermal resistance?

  1.  In conduction, reduction in the thickness of the material and an increase in the thermal conductivity

  

  3.  In radiation, increasing the temperature and reducing the emissivity.

  Select the correct answer using the codes given below:

  Codes:

(a) 1, 2, and 3 (b) 1 and 2 (c) 1 and 3 (d) 2 and 3

1.18 A spherical body at a temperature T
1
 is surrounded by walls at a temperature T

2
. At what rate must the 

energy be supplied in order to keep the temperature of the body constant if T
1
 > T

2
?

(a) 2 4 4
1 24 ( )r T Tp es - (b) 2 4

14 r Tp es

(c) 2
2 14 ( )k r T Tp - (d) 2 4 4

2 14 ( )r T Tp es -



32 Heat and Mass Transfer

1.19 A cylindrical rod of radius 1[10 / 2 ]p-  cm, 100 cm length and 200 J/s m °C thermal conductivity has

Assume

(a) 7.2 ¥ 103 J (b) 864 J (c) 250 J (d) 1.7 ¥ 1010 J

1.20

the plate at the rate of 500 W/m2. The temperature of the plate will remain constant at 30°C, if the 

h, in W/m2 K is

(a) 25 (b) 50 (c) 100 (d) 200

1.21 A black surface of 2 m2 area at 85°C is losing heat by both convection and radiation. The surroundings 

14.5 W/m2 K. The total heat loss rate from the surface is

(a) 1004 W (b) 3574 W (c) 2524 W (d) 2824 W

1.22 A closed container of 0.1 m2 surface area holds one kg of water (C
p
 = 4.2 kJ/kg °C) at 100°C. The 

2 °C) is

(a) 26.25 (b) 105 (c) 5.0 (d) 28

1.23 A 20 cm diameter, 1.2 m long cylinder loses heat from its peripheral surface by convection. Surface 

2 K.

(a) 120 p (W) (b) 240 p (W) (c) 320 p (W) (d) 480 p (W)

1.24

major part of the heat transfer from the radiator is due to

(a) better conduction (b) convection to the air

(c) radiation to the surroundings (d) combined conduction and radiation

1.25 Air at 20°C blows over a hot plate of 50 ¥ 60 cm made of carbon steel maintained at 220°C. The 
2 K. What will be the heat loss from the plate?

(a) 1500 W (b) 2500 W (c) 3000 W (d) 4000 W

1.1 (c) 1.2 (d) 1.3 (a) 1.4 (d) 1.5 (c) 1.6 (b)

1.7 (d) 1.8 (b) 1.9 (d) 1.10 (b) 1.11 (d) 1.12 (d)

1.13 (c) 1.14 (c) 1.15 (a) 1.16 (b) 1.17 (b) 1.18 (a)

1.19 (b) 1.20 (b) 1.21 (d) 1.22 (d) 1.23 (d) 1.24 (b)

1.25 (c)

1.1 Bring out the essential difference between heat transfer and thermodynamics.

1.2 Enumerate some of the important industrial applications of heat transfer.

1.3 Discuss the physical mechanism of heat conduction in solids, liquids and gases.

1.4

1.5

1.6

conductivity.

1.7 Differentiate between thermal conductivity and thermal conductance. State their respective units in 

SI units.
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1.8 What is the order of magnitude of thermal conductivity for (a) metals, (b) insulating materials, 

(c) liquids, and (d) gases?

1.9 Discuss the mechanism of convective heat transmission.

1.10 How does heat convection differ from conduction?

1.11 How does forced convection differ from natural convection?

1.12 Give a few examples of natural convection and forced convection.

1.13

(b) forced convection in water, (c) condensation of steam, and (d) boiling of water.

1.14 Comment on the mechanism of heat transfer in a vacuum.

1.15

1.16 What is a black body? How do real bodies differ from black bodies?

1.17 Elucidate the concept of driving potential and electrical analogy in heat transfer.

1.18 Write down the expressions for the physical laws that govern each mode of heat transfer, and identify 

the variables involved in each relation.

1.19 Identify and indicate the important modes of heat transfer in the following cases:

(a) Heat transfer from an automobile radiator

(b) Heat transfer from a room heater

(c) Cooling of an internal combustion engine

(d) Condensation of steam in a condenser

(e)

(f) Heating of water in an immersion water heater

(g) Quenching of a hot steel ingot in water

1.20 Can all three modes of heat transfer occur simultaneously in a medium?

1.21 Can a medium involve (a) conduction and convection, (b) conduction and radiation, or (c) convection 

and radiation simultaneously?

PRACTICE PROBLEMS

(A) Conduction

1.1 Calculate the heat transfer rate across a plane wall, 15-cm-thick, with a cross-sectional area of 5 m2,

and of thermal conductivity 9.5 W/m K. The steady state end surface temperatures are 120°C and 

[600 K/m]

1.2 k = 1.4 W/m 
2 in the direction 

x-and

y-directions. [– 1237 k/m]

1.3 The inside and outside surface temperatures of a glass window are 20 and 

–20°C respectively. If the glass is 60 cm ¥ 30 cm with 18-mm-thickness, 

determine the heat loss through the glass cover in 3 h. Take the thermal 

conductivity of the window glass as 0.78 W/m K. [3.37 MW]

1.4 Heat is generated due to friction at a rate of 250 W/m2 when a stationary 

brake shoe made of rigid foamed rubber (k = 0.032 W/m oC) is pressed against a rotating carbon-

silicon steel drum (k = 51.9 W/m oC) Ninety percent of this heat enters the drum while the remaining 

ten percent enters the brake shoe. Calculate the temperature gradients at the contact surface in the 

steel drum and the brake shoe. [+4.335 oC/m, –781.25 oC/m]
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1.5 A very long solid cylinder of 40-mm-diameter experiences uniform internal thermal energy generation. 

T(r) = 256 – 86 ¥ 104 r2 (°C) where r is expressed in metres. Evaluate (a) the centreline temperature, 

[(a) 256°C (b) 221.6°C (c) 53.32 kW/m2 (d) 6.7 kW]

(B) Convection 

1.6 ¥ 50 mm and negligible thickness, maintained at 46°C, loses 1.2 W 

[3740 W/m2]

1.7 The surface of a small ceramic kiln is at 65°C when the kiln is in operation. The kiln is of cubical 

15 W/m2 °C (assumed to be an average for all surfaces). If 900 watts are required to keep the kiln in 

steady-state operation, determine the size of the cubical kiln. What type of heat transfer phenomenon 

is involved? [0.5 m or 50 cm]

1.8 T(y) = 50 + 640 y + 0.1 

y2 where T

0.65 W/m °C. [41.6 W/m2 °C]

(C) Radiation

1.9 The outside surface of a spacecraft in space has an emissivity of 0.8 and an absorptivity of 0.25 for 

solar radiation. If solar radiation is incident on the spacecraft at a rate of 1200 W/m2, calculate the 

surface temperature of the spacecraft when the radiation emitted equals the solar energy absorbed.

[285.18 K, 12°C]

(D) Energy Balance and Combined Heat Transfer Mechanisms

1.10 Water at a temperature of 70.6°C is to be evaporated slowly in a vessel. The water is in a low-pressure 

container which is surrounded by steam. The steam is condensing at 103°C. The overall heat transfer 
2 °C. Determine the surface area of the 

container which would be required to evaporate water at a rate of 0.01 kg/s. [0.60 m2]

1.11 A metal plate is placed on a driveway and receives 950 W/m2 of incident radiant energy from the sun. 

The plate absorbs 80% of the incident solar energy and has an emissivity of 0.05. Consider the lower 

surface of the plate to be thermally insulated from the driveway. If the air temperature is 20oC and the 

W/m2 K, estimate the temperature of the plate. [93°C]

1.12 Electronic power devices are mounted on a heat sink having an exposed surface area of 450 cm2 and 

an emissivity of 0.85. When the devices dissipate a total power of 20 W and the air and surroundings 

are at 27°C, the average sink temperature is 4°C. What average temperature will the heat sink reach 

when the devices dissipate 30 W for the same environment condition? [53.7°C]



Steady-State Heat 
Conduction—One 
Dimension

2.1 ❏ INTRODUCTION

In the previous chapter, the nature of heat conduction as a mode of heat transfer was discussed. The 

Fourier’s rate equation for one-dimensional heat flow introduced earlier can be expressed in a more 

general form:

n

T
Q kA

n

∂
= -

∂
(2.1)

where nQ  is the rate of conduction heat transfer in the n-direction, and 
T

n

∂
∂

 is the temperature gradient 

in that direction. The partial derivative is used here because temperature gradients in other directions 

may also exist. One-dimensional conduction seldom occurs in practice since a body would have to be 

either very large so that conduction would then be one-dimensional at its centre, or it would have to be 

perfectly insulated at its edges.

The instantaneous heat-transfer rate expressed in Eq. (2.1) may also be written as

n
n

Q T
q k

A n

∂
= = -

∂
(2.2)

where q
n
 is the heat flux in kJ (or J) per unit time and per unit area of cross section in the n-direction.

It is a vector quantity as it has both magnitude and direction. The maximum heat flux at any isothermal

surface always occurs perpendicular to that surface.

Heat conduction within a solid can be looked upon as a heat flux which varies with direction as well 

as position throughout the material. The temperature within the solid will thus be a function of spatial

(position) coordinates of the system, e.g. x, y, z in rectangular coordinates. Besides, the temperature 

may also be changing with time, t. Thus, in general, one can write: T = f(x, y, z, t). To determine the 

temperature distribution is one of the main aims of any heat-conduction analysis. This represents how 

temperature varies with position in the medium. Once this distribution is known, the heat flux at any 

point in the body or on its surface may be calculated from Fourier’s rate equation.

It may be noted that the knowledge of temperature field or temperature distribution can also be used 

to ensure structural integrity by determining thermal stresses, expansions, and deflections. We can also 

optimize the insulating material thickness or find out the compatibility of special coatings or adhesives 

used with any material, once the temperature distribution is determined.
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Consider a solid body having the top view of its geometric shape as shown in Fig. 2.1 which shows 

a picture of temperature distribution illustrated by joining points of equal temperature to form isothermal

surfaces shown only in two dimensions. The lines of heat flow in the direction of maximum temperature 

gradient, that is at right angles to the isothermal surfaces, are also depicted.

x

Heat flux
vectors

Isotherms

y

T2

T2

T1 T2

Lines of constant heat flux and constant temperatures in a solid body

One side of this rectangle is held at one temperature, T
1
, and the remaining three sides are held at the 

other temperature, T
2
 which is less than T

1
. The figure indicates lines of constant temperature (isotherms).

The arrows drawn perpendicular to the isotherms represent the heat fluxes at these locations. The heat 

flux is greater where the isotherms are more closely spaced. Hence, heat flux is a vector quantity and 

has both magnitude and direction. For a three-dimensional temperature field, we can write the heat flux 

vector (q) in terms of its x-y, and z-components, (q
x
, q

y
, q

z
), respectively:

ˆˆ ˆ
x y zq q i q j q k= + + (2.3)

where ˆˆ ˆ, , andi j k  are unit direction vectors. The heat fluxes in the three directions will be given by

∂ ∂ ∂
= - = - = -

∂ ∂ ∂
, ,x y z

T T T
q k q k q k

x y z
(2.4)

For prior determination of the temperature distribution in the field, the differential equation governing 

the heat conduction will have to be first derived and subsequently solved for prescribed initial and 

boundary conditions. Furthermore, one must also have a basic understanding of the thermal properties 

of different engineering materials, the most important of which is thermal conductivity. The order of 

magnitude of the thermal conductivities of different types of materials also needs to be studied. In the 

following sections, we will first discuss in some detail some of the vital thermal properties of substances, 

particularly, thermal conductivity and derive generalized differential equations of the temperature field in 

different coordinate systems—Cartesian (rectangular), cylindrical, and spherical.
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The objective of the conduction heat-transfer analysis may be to determine the steady-state heat 

transfer rate or temperature distribution through the solid, or we may want the transient (time-dependent)

temperature distribution or heat-transfer rate in the solid.

2.2 ❏  GENERAL HEAT CONDUCTION EQUATION IN CARTESIAN 
COORDINATES

Heat transfer has direction as well as magnitude. The rate of heat conduction in a specified direction 

is proportional to the temperature gradient, which is the rate of change in temperature with distance in 

that direction. Heat conduction in a medium, in general, is three-dimensional and time dependent. The 

temperature in a medium varies with position as well as time, that is, T = T(x, y, z, t). Heat conduction in 

a medium is said to be steady when the temperature does not vary with time, and unsteady or transient

when it does. Heat conduction in a medium is said to be one-dimensional when conduction is significant 

in one dimension and negligible in the other two primary dimensions, two-dimensional when conduction in 

the third dimension is negligible, and three-dimensional when conduction in all dimensions is significant.

Consider a medium in which temperature gradients are present and the temperature distribution T(x,

y, z) is expressed in Cartesian coordinates. We first define an infinitesimally small (differential) control

volume element dx dy dz, parallel to the coordinates x, y and z with its edges as shown in Fig. 2.2. The 

material considered is assumed to be homogeneous and isotropic—homogeneous because its physical 

properties, viz., density (r), specific heat (C
p
), and thermal conductivity (k) are the same everywhere in the 

temperature field, and isotropic because the thermal conductivity at any point is constant in all directions, 

i.e., x, y, and z in Cartesian coordinates. The volume of the differential element, –Vd  = dx dy dz.

Three-dimensional differential control volume in a solid for derivation of the heat-conduction equation

The principle of conservation of energy (the first law of thermodynamics) for the control volume gives 

the energy balance as follows:

Volumetric rate of 
Rate of heat Rate of heat Rate of thermal

thermal energy generation
conducted in conducted out energy storage

 inside the element

Ê ˆ
Ê ˆ Ê ˆ Ê ˆÁ ˜- + =Á ˜ Á ˜ Á ˜Á ˜Ë ¯ Ë ¯ Ë ¯

Ë ¯
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or in out gen( ) stE E E E- + = (2.5)

Fourier’s law can be used to express the heat flow in all the three directions.

In the x-direction Rate of heat flow entering the element,

( )x

T
Q k dydz

x

∂
= -

∂
Rate of heat flow leaving the element,

( )x dx x xQ Q Q dx
x

+
∂

= +
∂

NB f(x + dx) = f(x) + 
x

∂
∂

f(x) dx + …[Taylor series expansion, neglecting higher order terms]

Hence, the net rate of heat conduction inside the element

2

2
( ) ( ) ( )x x dx x

T T
Q Q Q dx k dydz dx k dx dydz

x x x x
+

∂ ∂ ∂ ∂È ˘- = - = - - =Í ˙∂ ∂ ∂Î ˚ ∂
(2.6)

In the y-direction Rate of heat inflow, ( )y

T
Q k dx dz

y

∂
= -

∂

Rate of heat outflow, ( )y dy y yQ Q Q dy
y

+
∂

= +
∂

Hence, net rate of heat conducted is,

2

2
( ) ( ) ( )y y dy y

T T
Q Q Q dy k dx dy dy k dx dydz

y y y y
+

È ˘∂ ∂ ∂ ∂
- = - = - - =Í ˙∂ ∂ ∂ ∂Î ˚

In the z-direction Rate of heat inflow, ( )z

T
Q k dx dy

z

∂
= -

∂

Rate of heat outflow, ( )z dz z zQ Q Q dz
z

+
∂

= +
∂

Hence, net rate of heat conducted is,

2

2
( ) ( ) ( )z z dz z

T T
Q Q Q dz k dx dy dz k dx dydz

z z z z
+

∂ ∂ ∂ ∂È ˘- = - = - - =Í ˙∂ ∂ ∂ ∂Î ˚
(2.7)

It follows that

in out

2 2 2

2 2 2

( ) ( ) ( )x x dx y y dy z z dzE E Q Q Q Q Q Q

T T T
k dx dy dz

x y z

+ + +- = - + - + -

È ˘∂ ∂ ∂
= + +Í ˙

∂ ∂ ∂Í ˙Î ˚
(2.8)

If the rate of heat generated within the element per unit volume is expressed as q  then the rate of thermal

energy generation in the volume is given by

gen
–V ( )E q d q dx dydz= = (2.9)

The rate of change of internal energy of the material in the element is equal to the product of the 

mass of the material, its specific heat, and the rate of increase of the element’s temperature.
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st ( ) p

T
E dxdydz C

t
r

∂
=

∂
(2.10)

where t is the time. Incidentally, the subscript for the specific heat in the case of a solid is immaterial 

(C
p
 = C

v
 = C). In the case of steady-state conduction, this term would vanish and the temperature will 

be a function of only spatial coordinates (x, y, z).

Substituting the energy quantities expressed in Eqs. (2.9) through (2.11) in Eq. (2.5), we have

or

2 2 2

2 2 2

2 2 2

2 2 2

( ) ( ) ( ) p

p

T T T T
k dx dydz q dx dydz dx dydz C

tx y z

T T T T
k q C

tx y z

r

r

È ˘∂ ∂ ∂ ∂
+ + + =Í ˙ ∂∂ ∂ ∂Î ˚

È ˘∂ ∂ ∂ ∂
+ + + =Í ˙ ∂∂ ∂ ∂Î ˚

or
2 2 2

2 2 2

1T T T q T

k tx y z a

È ˘∂ ∂ ∂ ∂
+ + + =Í ˙ ∂∂ ∂ ∂Í ˙Î ˚

(2.11)

where the quantity 
p

k

C
a

r
= , is the thermal diffusivity of the material.

● Special Cases of Practical Interest

It may be noted that Eq. (2.9) was derived on the assumption of constant thermal conductivity. A more 

general equation for variable thermal conductivity would be

p

T T T T
k y k q C

x x y y y z t
r

Ê ˆ∂ ∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ+ + + =Á ˜ Á ˜Á ˜Ë ¯ Ë ¯∂ ∂ ∂ Ë ∂ ¯ ∂ ∂ ∂
(2.12)

However, for most engineering problems, the assumption of constant thermal conductivity is fairly 

satisfactory. The generalized three-dimensional differential heat conduction equation with unsteady-state 

and internal thermal-energy generation in Cartesian coordinates is then given by

2 2 2

2 2 2

1T T T q T

k tx y z a

È ˘∂ ∂ ∂ ∂
+ + + =Í ˙ ∂∂ ∂ ∂Í ˙Î ˚

(2.13)

Using the Laplacian operator —2, we can rewrite the above equation as

2 1q T
T

k ta

∂
— + =

∂
(2.14)

Note that —2 is independent of the system of coordinates—rectangular, cylindrical, or spherical.

This equation may be simplified to suit any particular application.

For steady-state problems, the temperature does not change at any specified point in the body with 

time. Hence in such cases, Eq. (2.12) is reduced to

2 2 2

2 2 2
0

T T T q

kx y z

È ˘∂ ∂ ∂
+ + + =Í ˙

∂ ∂ ∂Î ˚
(2.15)
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This is called the Poisson equation.

For steady-state heat flow in the absence of heat sources, i.e., without heat generation, Eq. (2.16) takes 

the form

2 2 2

2 2 2
0

T T T

x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
(2.16)

This is called the Laplace equation.

For steady-state conditions with no thermal energy generation, Eq. (2.12) becomes

2 2 2

2 2 2

1T T T T

tx y z a

∂ ∂ ∂ ∂
+ + =

∂∂ ∂ ∂
(2.17)

This is called the Fourier equation.

For steady-state, one-dimensional heat flow with no heat generation, Eq. (2.17) is reduced to

2

2
0

d T

dx
= (2.18)

which is an exact differential.

2.3 ❏

COORDINATES

Many a time, conduction problems involve solids of cylindrical form, e.g., solid or hollow round bars, 

tubes, cones, etc. While the general heat-conduction equation derived earlier in Cartesian coordinates is 

appropriate for heat flows in solids with rectangular boundaries like walls, cubes, etc., it would be more 

suitable and convenient to use the cylindrical coordinate system for analyzing conduction heat transfer 

in solids with cylindrical boundaries. We will now derive a general heat-conduction equation in polar or 

cylindrical coordinates.

Consider the differential element (Fig. 2.3) having volume r dr df dz. The material considered is 

homogeneous and isotropic.
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Cylindrical coordinate system, r, f, z, and a differential control volume

Energy balance by applying the first law (conservation of energy) to this element is

or

Rate of Rate of heat Rate of volumetric Rate of thermal
– + =

heat inflow outflow thermal energy generation energy storage

Net rate of heat gain Rate of internal R
+ =

due to conduction heat generation

Ê ˆ Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

ate of increase

of internal energy

Ê ˆ
Á ˜Ë ¯

i.e., in out gen st( )E E E E- + = (2.19)

Radial Direction Heat conducted in the radial direction, ( )r

T
Q rd dz

r
f

∂
= -

∂

Heat conducted out in the radial direction, ( )r dr r rQ Q Q dr
r

+
∂

= +
∂

Net heat gain in the radial direction,

2

2
( ) ( ) ( )r r dr

T T T T
Q Q k rd dz dr k d dr dz r k d dr dz r

r r r r rr
f f f+

È ˘∂ ∂ ∂ ∂ ∂ ∂È ˘ Ê ˆ- = - - = ◊ ◊ = ◊ ◊ +Í ˙Á ˜Í ˙ Ë ¯∂ ∂ ∂ ∂ ∂∂Î ˚Î ˚
(2.20)

Circumferential Direction Heat conducted in the circumferential direction

( )
T

Q k dr dz
r

f f

∂
= -

∂

Heat conducted out in the same direction

( )dQ Q Q r d
r

f f f f f
f+

∂
= +

∂

Net heat gain in the circumferential direction

2

2 2
[ ] ( ) ( )d

T T
Q Q Q rd k drdz rd k rd dr dz

r r r r
f f f f f j f

f f f f
+

È ˘∂ ∂ ∂ ∂
- = - = - - =Í ˙∂ ∂ ∂ ∂Î ˚

(2.21)

Axial Direction Heat conducted in the axial direction,

( )z

T
Q k rd dr

z
f

∂
= - ◊

∂

Heat conducted out in the same direction,

( )z dz z zQ Q Q dz
z

+
∂

= +
∂

Net heat gain in the axial direction,

2

2
( ) ( )z z dz

T T
Q Q k dr rd dz k r d dr dz

z z z
f f+

∂ ∂ ∂È ˘- = - - =Í ˙∂ ∂ ∂Î ˚
(2.22)

Hence, in out ( ) ( ) ( )r r dr z z dzE E Q Q Q Q Q Q Qf f f+ +- = - + - + + -

2 2 2

2 2 2 2

1 1
( )

T T T T
k rd dr dz

r rr r z
f

f

È ˘Ê ˆ Ê ˆ∂ ∂ ∂ ∂
= ◊ ◊ + + +Í ˙Á ˜ Á ˜Ë ¯∂∂ ∂ ∂Ë ¯Í ˙Î ˚

(2.23)
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Rate of heat generated within the element = ( )q r d dr dzf (2.24)

Rate at which heat is being stored within the element is

gen ( )p

T
E C r d dr dz

t
r f

∂
=

∂
(2.25)

Substitution of equations (2.24) through (2.26) into Eq. (2.20) leads to the general differential equation 

for conduction heat transfer in three dimensions in cylindrical coordinates.

Thus,

or

2 2 2

2 2 2 2

2 2 2

2 2 2 2

1 1

1 1 1

p

T T T T T
k q C

r r tr r z

T T T T q T

r r k tr r z

r
f

af

È ˘∂ ∂ ∂ ∂ ∂
+ + + + =Í ˙

∂ ∂∂ ∂ ∂Í ˙Î ˚

È ˘∂ ∂ ∂ ∂ ∂
+ + + + =Í ˙

∂ ∂∂ ∂ ∂Í ˙Î ˚
(2.26)

Below is a more general equation with variable thermal conductivity

or

2

2 2

2 2 2

1 1

1 1 1

p

T T T T
kr k k q C

r r r z z tr

T T T q T
r

r r r k tr z

r
f f

af

Ê ˆ∂ ∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ+ + + =Á ˜ Á ˜Á ˜Ë ¯ Ë ¯∂ ∂ ∂ Ë ∂ ¯ ∂ ∂ ∂

È ˘∂ ∂ ∂ ∂ ∂Ê ˆ + + + =Í ˙Á ˜Ë ¯∂ ∂ ∂∂ ∂Í ˙Î ˚
(2.27)

This equation can also be simplified to suit any specific problem.

When temperature variation only in the radial direction is dominant and important, we have 

1 1T q T
r

r r r k ta

È ˘∂ ∂ ∂Ê ˆ + =Á ˜Í ˙Ë ¯∂ ∂ ∂Î ˚
(2.28)

If steady-state condition prevails and there are heat sources within the material then the governing 

differential equation will be

1
0

d dT q
r

r dr dr k

È ˘Ê ˆ + =Á ˜Í ˙Ë ¯Î ˚
(2.29)

For one-dimensional, steady-state heat conduction without heat generation, Eq. (2.29) becomes

2

2

1
0

d T dT

r drdr
+ = (2.30)

or
2

2

1 1
0 or 0

d T dT d dT
r r

r dr r dr drdr

È ˘ È ˘Ê ˆ+ = =Í ˙ Á ˜Í ˙Ë ¯Î ˚ Î ˚

As
1

r
 cannot be zero, 0

d dT
r

dr dr

Ê ˆ =Á ˜Ë ¯
(2.31)

Note that the above term is an exact differential and contains no partial derivatives.
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As mentioned earlier, —2, the Laplacian operator is not exclusive to rectangular coordinates.

The Laplacian can also be expressed in cylindrical coordinates:

2 2
2

2 2 2

1 1T T T
T r

r r r r zq

∂ ∂ ∂ ∂Ê ˆ— ∫ + +Á ˜Ë ¯∂ ∂ ∂ ∂
(2.32)

The general differential equation in cylindrical coordinates can also be obtained from that in the 

Cartesian coordinates by the coordinate transformation method as explained below.

●  General Heat-Conduction Equation in Cylindrical Coordinates: 
Coordinate Transformation Procedure

The general heat-conduction equation can be transformed 

from Cartesian coordinates into cylindrical coordinates by 

using the following fundamental relations between the two 

coordinate systems (Fig. 2.4).

x = r cos f¸
˝
˛

(2.33)
y = r sin f

z = z

Differentiating equations (2.27) and (2.28) alternately with 

respect to r and f, we get

cos
x

r
f

∂
=

∂
(2.34)

sin
x

r f
f

∂
= -

∂
(2.35)

sin
y

r
f

∂
=

∂
(2.36)

cos
y

r f
f

∂
=

∂
(2.37)

Both r and f are functions of x and y 2 2 2 1and tan
y

r x y
x

f -È ˘= + =Í ˙Î ˚
Thus, we can write

T T x T y

r x r y r

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂
(2.38)

T T x T y

x yf f f

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂
(2.39)

Substituting the values from Eqs. (2.29), (2.30), (2.31), and (2.32) into Eq. (2.33) and (2.34), one obtains

cos sin
T T T

r x y
f f

∂ ∂ ∂
= +

∂ ∂ ∂
(2.40)

sin cos
T T T

r r
x y

f f
f

∂ ∂ ∂
= - +

∂ ∂ ∂
(2.41)

Relationship between Cartesian and 

cylindrical coordinates
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Multiplying both sides of Eq. (2.40) by cos f, one gets

2cos cos cos sin
T T T

r x y
f f f f

∂ ∂ ∂
= +

∂ ∂ ∂
(2.42)

Multiplying both sides of Eq. (2.41) by 
1

sin
r

f- , one has

or 2

1 1 1
sin sin ( sin ) ( cos ) sin

1
sin sin cos sin

T T T
r r

r r x r y

T T T

r x y

f f f f f
f

f f f f
j

∂ ∂ ∂Ê ˆ Ê ˆ- = - - + -Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂
∂ ∂ ∂

- = -
∂ ∂ ∂

(2.43)

Summing up equations (2.42) and (2.43), one gets

2 2sin
cos (cos sin )

T T T

r r x

f
f f f

f

∂ ∂ ∂
- = +

∂ ∂ ∂

But cos2 f + sin2 f = 1

Hence,
sin

cos
T T T

x r r

f
f

f

∂ ∂ ∂
= -

∂ ∂ ∂
(2.44)

Similarly, multiplying both sides of equations (2.40) and (2.41) by sin f and 
cos

r

f
 respectively, one finds

2sin sin cos sin
T T T

r x y
f f f f

∂ ∂ ∂
= +

∂ ∂ ∂
(2.45)

2cos
sin cos cos

T T T

r x y

f
f f f

f

∂ ∂ ∂
= - +

∂ ∂ ∂
(2.46)

Adding equations (2.45) and (2.46), one gets

cos
sin

T T T

y r r

f
f

f

∂ ∂ ∂
= +

∂ ∂ ∂
    (  sin2 f + cos2 f = 1) (2.47)

Now, putting 
T

x

∂
∂

 in place of T in Eq. (2.44), one obtains

2

2

sin
cos

T T T T

x x x r rx

f
f

f

È ˘∂ ∂ ∂ ∂ ∂ ∂Ê ˆ= = -Á ˜ Í ˙Ë ¯∂ ∂ ∂ ∂ ∂∂ Î ˚

The operator 
x

∂
∂

 can be written as

sin
cos

r r

f
f

f

∂ ∂
-

∂ ∂

Hence,
2

2

2 2
2

2 2

2 2 2

2 2

sin sin
cos cos

1 cos sin
cos cos sin

sin sin sin sin cos
( sin )

cos

T T T

r r r rx

T T T

r rr r

T T T T

r r r r r rr

f f
f f

f f

f f
f f f

j f

f f f f f
f

f f ff

Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂
= - -Á ˜ Á ˜Ë ∂ ∂ ¯ Ë ∂ ∂ ¯∂

∂ ∂ ∂Ê ˆ= - - -Á ˜Ë ¯ ∂ ∂ ∂∂

∂ ∂ ∂ ∂ Ê ˆ- - - + + Á ˜Ë ¯∂ ∂ ∂ ∂∂
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or
2 2 2 2 2 2

2

2 2 2 2 2

sin 2 cos sin sin
cos 2 sin cos

T T T T T T

r r rx r r r

f f f f
f f f

f f f

∂ ∂ ∂ ∂ ∂ ∂
= + + - +

∂ ∂ ∂ ∂∂ ∂ ∂
(2.48)

Similarly, putting 
T

y

∂
∂

 in place of T in Eq. (2.47), one gets

2

2

cos
sin

T T T T

y y y r ry

f
f

f

Ê ˆ È ˘∂ ∂ ∂ ∂ ∂ ∂
= = +Í ˙Á ˜∂ Ë ∂ ¯ ∂ ∂ ∂∂ Î ˚

The operator 
y

∂
∂

 can be written as 

cos
sin

r r

f
f

f

∂ ∂
+

∂ ∂

Hence,
2

2

2 2
2

2 2

cos cos
sin sin

sin cos 1
sin sin cos

T T T

r r r ry

T T T

r rr r

f f
f f

f f

f f
f f f

f f

Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂
= + +Á ˜ Á ˜Ë ∂ ∂ ¯ Ë ∂ ∂ ¯∂

∂ ∂ ∂ Ê ˆ= + + -Á ˜Ë ¯∂ ∂ ∂∂
2 2 2

2 2

cos sin cos cos cos ( sin )
(cos )

T T T T

r r r r r rr

f f f f f f
f

f ff

∂ ∂ ∂ ∂ -
+ + + +

∂ ∂ ∂ ∂∂
(2.49)

2 2 2 2 2
2

2 2 2 2

cos 2sin cos 2sin cos cos
sin

T T T T T

r r r rr r r

f f f f f f
f

f f f

∂ ∂ ∂ ∂ ∂
= + - + +

∂ ∂ ∂ ∂∂ ∂
(2.50)

By identity, 
2 2

2 2

T T

z z

∂ ∂
=

∂ ∂
(2.51)

The summation of equations (2.48), (2.49), and (2.50) yields
2 2 2 2

2 2

2 2 2 2

2 2
2 2 2 2

2 2 2

(cos sin )

1 1
(sin cos ) (sin cos )

T T T T

x y z r

T T T

r r r z

f f

f f f f
f

∂ ∂ ∂ ∂
+ + = +

∂ ∂ ∂ ∂

∂ ∂ ∂
+ + + + +

∂ ∂ ∂
As sin2 f + cos2 f = 1, one finally gets

2 2 2 2 2 2

2 2 2 2 2 2 2

1 1T T T T T T T

r rx y z r r zf

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = + + +

∂∂ ∂ ∂ ∂ ∂ ∂
(2.52)

Substituting Eq. (2.51) into Eq. (2.12) gives

2 2 2

2 2 2 2

1 1 1T T T T q T

r r k tr r z aj

È ˘∂ ∂ ∂ ∂ ∂
+ + + + =Í ˙∂ ∂∂ ∂ ∂Í ˙Î ˚

(2.53)

One can write
2 2

2 2

1 1 1T T T T T
r r

r r r r r r rr r

È ˘∂ ∂ ∂ ∂ ∂ ∂Ê ˆ+ = + =Í ˙ Á ˜Ë ¯∂ ∂ ∂ ∂∂ ∂Î ˚
Therefore, one can also express Eq. (2.52) as

2 2

2 2 2

1 1 1T T T q T
r

r r r k tr z aj

È ˘∂ ∂ ∂ ∂ ∂Ê ˆ + + + =Í ˙Á ˜Ë ¯∂ ∂ ∂∂ ∂Í ˙Î ˚
(2.54)
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2.4 ❏

COORDINATES

It is often more convenient to use the spherical coordinates for certain shapes of heat conductors.

Let us consider the heat flow through an infinitesimal spherical volume element –Vd  of a homogeneous

and isotropic material shown in Fig. 2.5. The three sides of this differential control volume are dr, r df,

and r sin qdf.

Then –Vd  = (dr) (r dq) (r sin q df) or –Vd  = r2 sin q dr df dq
where the angle f is measured from the x-axis towards the y-axis, and the angle f is measured from the 

z-axis towards the x-y plane.

The physical properties, viz., density r, specific heat, C
p
, and thermal conductivity, k are considered 

constant.

(2.55)

Spherical coordinate system r, q, f, and a differential control volume

In the Radial r-direction The rate of heat flow entering the control volume, ( )( sin )r

T
Q k r d r d

r
q q f

∂
= -

∂

The rate of heat flow leaving the control volume, [ ]r dr r rQ Q Q dr
r

+
∂

= +
∂

The net rate of heat flow into the volume,

2 2

[ ]

sin sin

r r dr rQ Q Q dr
r

T T
kr dr d d k dr d d r

r r r r
q f q q f q

+
∂

- = -
∂

∂ ∂ ∂ ∂È ˘ È ˘= =Í ˙ Í ˙∂ ∂ ∂ ∂Î ˚Î ˚
(2.56)

In the Azimuthal f-direction The rate of heat flow entering the volume,

( )
( sin )

T
Q k r d dr

r
f q

f q

∂
= -

∂

The rate of heat flow leaving the volume,

[ ]
( sin )

( sin )
d

Q
Q Q d r

r

f
f f f f q

f q+

∂
= +

∂
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The net rate of heat flow into the volume,

( ) sin
( sin ) ( sin )

d

T
Q Q k r d dr r d

r r
f f f q q f

f q f q+
È ˘Ï ¸∂ ∂

- = Ì ˝Í ˙∂ ∂Ó ˛Î ˚
(2.57)

In the Zenith (Polar) q direction The rate of heat flow entering the volume,

( sin )
( )

T
Q k r d dr

r
q q f

q

∂
= -

∂

The rate of heat flow leaving the volume,

[ ] ( )
( )

dQ Q Q d r
r

q q q q q
q+
∂

= +
∂

The net rate of heat flow into the volume,

( sin )
( ) ( )

d

T
Q Q k r d dr rd

r r
q q q q f q

q q+
∂ ∂È ˘

- = Í ˙∂ ∂Î ˚
(2.58)

The net rate of heat added to the volume element is obtained by summing up equations (2.57), (2.58) 

and (2.59).

The differential operators in equations (2.58) and (2.59) can be evaluated as follows:

1 1

( sin ) ( sin ) sin
( sin )

r r r
r

f

f q f f q f q f
f q

f

Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂
= = =Á ˜ Á ˜ ∂∂ Ë ∂ ¯ ∂ Ë ∂ ¯ ∂

∂

(2.59)

1 1

( ) ( )
( )

r r r
r

q

q q q q q
q

q

∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ= = =Á ˜ Á ˜ ∂Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂
∂

(2.60)

By using equations (2.60) and (2.61) and by adding up equations (2.57), (2.58), and (2.59), we obtain

in out( ) ( ) ( ) ( )r r dr d dE E Q Q Q Q Q Qf f f q q q+ + +- = - + - + - (2.61)

Hence, the total rate of heat flow added to the differential control volume is

2
in out

2
2

2

2
2

2 2 2 2

1
sin sin

sin sin

1 1
( sin ) sin 2

( sin )
( ) sin

sin

T k r dr d T
E E k dr d d r r d

r r r r

T T T
k r d dr r d k dr d d r r

r r rr

k r dr d r d T k T
d dr r d

r r

q
q f q q f

q j q f

q f q q f q
q q

q q f
f q q

q qq f

∂ ∂ ∂ ∂È ˘ È ˘- = +Í ˙ Í ˙∂ ∂ ∂ ∂Î ˚ Î ˚
È ˘∂ ∂ ∂ ∂È ˘+ = +Í ˙Í ˙∂ ∂ ∂∂Î ˚Î ˚

∂ ∂ ∂Ê ˆ+ + ÁË ¯∂ ∂∂
2 2

2 2

2 2 2 2

2

2

2 1
( sin ) ( sin )

sin

1
(sin )( ) sin

sin

T T T
r dr d d r dr d d

r rr r

T
k d dr r d

r

q f q q f q
q f

q f q q
q qq

˜

Ï ¸∂ ∂ ∂
= + +Ì ˝

∂∂ ∂Ó ˛

∂ ∂Ê ˆ+ Á ˜Ë ¯∂ ∂

2 2
2

2 2 2 2

2 1 1
[ ( sin )] sin

sin sin

T T T T
k r dr d d

r rr r r
q f q q

q qq f q

È ˘Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂Ê ˆ= + + +Í ˙Á ˜Á ˜ Á ˜ Ë ¯∂ ∂ ∂∂ ∂Ë ¯ Ë ¯Í ˙Î ˚
(2.62)
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The rate of internal heat generation is

2
gen ( sin ) ( sin )E q d V dr r d r d q r dr d dq q f q f q= ◊ ◊ = (2.63)

where q  is the rate of heat generation per unit volume.

The rate of change of internal energy in the elemental volume

2
st ( sin )p p p

T T T
E mC V C r dr d d C

t t t
r q q f r

∂ ∂ ∂¢
= = =

∂ ∂ ∂
(2.64)

Energy balance on the control volume gives:

Eq. (2.62) Eq. (2.63) Eq. (2.64)

Net rate of heat Rate of internal Rate of change of

conducted in heat generated internal energy

Ê ˆ Ê ˆ Ê ˆ
+ =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

Hence,
2 2

2 2 2 2 2

2 1 1
sin

sin sin
p

T T T T T
k q C

r r tr r r
q r

q qq f q

È ˘Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂Ê ˆ+ + + + =Í ˙Á ˜Á ˜ Á ˜ Ë ¯∂ ∂ ∂ ∂∂ ∂Ë ¯ Ë ¯Í ˙Î ˚

or
2 2

2

2 2 2 2 2 2

1 1 1
2 sin

sin sin

pCT T T T q T
r r

r k k tr r r r

r
q

q qq f q

È ˘ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂Ê ˆ+ + + + =Í ˙ Á ˜Á ˜ Ë ¯∂ ∂ ∂ ∂∂ ∂Î ˚ Ë ¯

or
2

2

2 2 2 2 2

1 1 1 1
sin

sin sin

T T T q T
r

r r k tr r r
q

q q aq f q

∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ+ + + =Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂∂
(2.65)

The spherical coordinate system is related to the Cartesian 

or rectangular coordinate system by the following relations 

(Fig. 2.6):

x = r sin q cos f¸
˝
˛y = r sin q sin f

z = r cos q

We can transform the equation in Cartesian coordinates into 

spherical coordinates by making the above substitutions 

and proceed in a manner similar to that for cylindrical 

coordinates. The general equation of heat conduction in 

spherical coordinates will then be given by

2 2

2 2 2 2 2

2 1 1 1
sin

sin sin

T T T T q T

r r k tr r r
q

q q aq q f

È ˘∂ ∂ ∂ ∂ ∂ ∂Ê ˆ+ + + + =Í ˙Á ˜Ë ¯∂ ∂ ∂ ∂∂ ∂Í ˙Î ˚
(2.66)

For steady-state, one-dimensional heat conduction with no heat generation, the equation in exact differential 

form is

2

2

1
0

d dT
r

dr dtr

Ê ˆ =Á ˜Ë ¯
(2.67)

Relationship between Cartesian and 

spherical coordinates
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It is important to remember that the terms heat-generation rate gen( )E  and heat-storage rate st( )E

are distinctly different physical processes. While energy generation is due to energy conversion involving 

chemical, electrical, or nuclear energy manifested as thermal energy. This term is positive (source) if the 

thermal energy is evolved in the material and negative (sink) if the thermal energy is consumed or absorbed 

(rather than generated) within the material. The strength of such sources or sinks is always specified per 

unit volume. The other term stE  is the rate of energy storage in the material as internal energy because 

of the change of temperature with time. Under steady-state conditions without heat generation, the heat 

fluxes as also the temperature gradients will be constant throughout.

The temperature distribution within the solid and the rate of heat transfer across the solid boundaries 

can be determined by integrating the appropriate heat-conduction equation. The constants of integration

can be evaluated by using appropriate boundary and initial conditions which will be discussed in the 

next section.

● A Compact Equation

The one-dimensional, time-dependent heat-conduction equation with thermal energy generation in the 

three principal coordinate systems can be written in the form of a single equation

1 n
pn

T T
r k q C

r r tr
r

∂ ∂ ∂È ˘ + =Í ˙∂ ∂ ∂Î ˚
(2.68)

where n = 0 for Cartesian coordinates

n = 1 for cylindrical coordinates

n = 2 for spherical coordinates

In Cartesian coordinates, it is variable with the x-variable.

For constant thermal conductivity, Eq. (2.68) simplifies to

1 1n

n

T q T
r

r r k tr a

∂ ∂ ∂È ˘ + =Í ˙∂ ∂ ∂Î ˚
(2.69)

For steady-state heat conduction with internal heat generation, and constants k, Eq. (2.69) becomes

1
0n

n

d dT q
r

dr dr kr

È ˘ + =Í ˙Î ˚
(2.70)

For steady-state heat conduction without any energy generation within the medium and constant k, Eq. 

(2.68) reduces to

0nd dT
r

dr dr

È ˘
=Í ˙

Î ˚
(2.71)

2.5 ❏ THERMAL PROPERTIES OF MATERIALS

2.5.1 ● Thermal Conductivity

Heat conduction is basically the transmission of energy by molecular motion. Metals, particularly pure 

metals, are generally the best conductors of heat. The transfer of heat by conduction in solids is brought 

about partly by free electrons and partly by lattice vibrations. For most metals, the flow of free electrons 
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contributes significantly to the process of heat transmission as mentioned in Chapter 1. When these metals 

are heated, the increased vibration of the atoms interferes with the motion of the free electrons. Hence, as 

the temperature increases, the thermal conductivity of these metals decreases. Aluminium is an exception. 

Its thermal conductivity remains fairly constant over a wide temperature range. The other exception is 

uranium whose thermal conductivity increases with temperature. For nickel and platinum, the thermal 

conductivity first decreases with temperature and then increases.

The thermal conductivity of liquid metals is usually lower than that of solids and increases with

increasing temperature. The thermal conductivity of most metallic alloys is less than that of any of the 

constituents and increases with an increase in temperature with an exception of aluminium alloys.

Non-metallic solids are not effective thermal conductors. They are often called semiconductors or 

insulators. As mentioned earlier, all good electrical conductors are good thermal conductors too.

All electrical insulators ought to dissipate the heat generated by the current in the electrical wires 

(ohmic heating) faster to ensure better current-carrying capacity of the wire. What is more, the higher 

the voltage, the heavier the insulation and the greater the requirement of an electrical insulator to be 

an effective thermal conductor. This often poses problems in proper selection of insulating materials for 

electrical applications.

Amorphous materials like fire clay and ordinary glass are, sometimes, called glassy materials. Their

thermal conductivity is usually small but increases with increasing temperature. Crystalline materials like 

quartz have higher thermal conductivity which decreases with increasing temperature.

Non-metallic solids can be porous or non-porous. Glass, plastics, and quartz are non-porous. Materials 

while brick, cork, wood, leather, and felt are porous. Moisture always causes an increase of density and 

thermal conductivity. The thermal conductivity of wood, an anisotropic material, is larger in the direction 

parallel to the grain than it is in the direction across the grain.

The thermal conductivity of refractory materials varies also with apparent density and temperature. It 

usually increases with density. The value of thermal conductlies for fire clay for example, increases with

increasing temperature while that for magnesite brick, decreases with increasing temperature.

The thermal conductivity of snow is also proportional to its density. The density of ice increases with 

decreasing temperature. Thermal conductivity too varies in the same manner. This information is useful 

in estimating the rate of ice formation on a lake or elsewhere.

Mercury has the lowest thermal conductivity among metals, liquid or solid, while water is the best 

conducting non-metallic liquid. The thermal conductivity of water increases with increasing temperature

up to 120°C and then decreases as the temperature continues to rise.

Gases with higher Relative Molecular Mass (RMM) or molecular weight in general have smaller values 

of k. The thermal conductivity of gases increases with increasing pressure.

The thermal conductivity of metals and alloys is usually in the range of 20 to 425 W/m K, that of 

non-metallic solids in the range of 0.02 to 20 W/m K. With the exception of liquid metals the thermal 

conductivity of liquids varies approximately within a narrow range of 0.2 to 2 W/m K. For gases and 

vapours, this range is about 0.004 to 0.04 W/m K except hydrogen and helium whose values of k are in 

the neighbourhood of 0.2 W/m K.

Silver has a conductivity 50 000 times as great as that of Freon-12 (refrigerant). Generally speaking, a 

liquid is a better conductor than a gas and that a solid is a better conductor than a liquid. Take mercury 

for instance. As a solid, the thermal conductivity of mercury (at 193°C) is of the order of 48 W/m K, as 

a liquid (at 0°C) the conductivity decreases to 8 W/m K and as a gas (at 200°C) its thermal conductivity 

is estimated to be 0.0341 W/m K.

Figure 2.7 shows the variation of thermal conductivity of some metals with temperature, while 

Fig. 2.8 presents the variation of thermal conductivity of some liquids and gases with temperature.
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Variation of thermal conductivity of metallic solids with temperature

2.5.2 ● Thermal Diffusivity

Thermal diffusivity is a significant physical property of the material. Its physical significance is associated 

with the propagation of heat into the medium in unsteady-state heat conduction situations. The larger the 

value of the faster the heat will propagate or diffuse through the material. This can be appreciated 

by examining the properties that make up the thermal diffusivity, i.e., k (thermal conductivity) and rC
p

(thermal capacity per unit volume).

Thermal capacity indicates the heat-retention capacity or thermal inertia of a material. Thermal 

diffusivity can be high because of large value of k, which would imply a rapid heat-transfer rate. A high 

value of a could also result from a low value of thermal capacity rC
p
, which would indicate that less of 

the energy moving through the material would be absorbed and used to increase the temperature of the 

material and consequently, more energy would be available for onward transfer.

Table 2.1 lists the time required for the temperature of a solid initially at 100°C to be reduced to 

50°C at a distance of 0.3 m from the boundary surface for materials having different values of a.
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The temperature dependence of the thermal conductivity of liquids and of gases that are either saturated or 

at 1 atm pressure.

Clearly, the larger the thermal diffusivity, the less time is required for heat to penetrate into the solid. In 

other words, the thermal diffusivity is a measure of how quickly a material can carry heat away from a 

heat source. Since a material does not just transmit heat but must be warmed by it as well, a involves 

both the conductivity, k, and the volumetric heat capacity, rC
p
.
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Table 2.1

Material Thermal diffusivity ¥ 106 (m2/s) Time

Silver

Copper

Steel

Glass

170

103

12.9

0.59

9.5 min

16.5 min

2.2 h

2 days

Metals possess higher thermal conductivity, lower thermal capacity, and thus higher thermal diffusivity. 

Liquids have lower thermal conductivity, higher thermal capacity and hence smaller thermal diffusivity. A 

large value of a means greater effectiveness of the material in energy transfer by conduction rather than 

of energy storage. It is instructive to note that the heat diffuses through the gases at almost the same rate 

as it does through the metals, while metals have higher values of k than metals.

Thermal diffusivity is as important in transient heat conduction as thermal conductivity is in steady-

state heat conduction. In fact, in a steady state, the term thermal diffusivity has virtually no significance.

2.6 ❏

We are now in a position to calculate the temperature distribution as well as heat-transfer rate with the 

help of general heat conduction equation. One can first get T
(space, time)

 and then by differentiating T obtain 

the heat-transfer rate from the Fourier law. The heat-diffusion equation is a partial differential equation 

not easily amenable to quick solution. After some simplifications, assumptions and approximations, we can 

obtain one-dimensional, steady-state situations. The heat conduction equation then becomes an ordinary 

linear differential equation the solution of which is not quite difficult.

It is noteworthy that as the heat-diffusion equation is the second-order differential equation in spatial 

coordinates (x, y, z or r, f, z or r, f, q), two boundary conditions must be expressed for each coordinate 

required to describe the system. Only one initial condition is, however, necessary to be specified because 

the equation is first order in time.

The initial condition specifies the temperature distribution at the origin of the time coordinate (t = 0). 

In a steady-state problem, the initial condition is not necessary.

The most important boundary conditions commonly encountered in practice are

1. Prescribed temperature boundary condition—boundary condition of the first kind.

2. Prescribed heat flux boundary condition—boundary condition of the second kind.

3. Convection boundary condition—the boundary condition of the third kind.

4. Radiation boundary condition—the boundary condition of the fourth kind

5. Interface boundary condition

2.6.1 ● Boundary Condition of the First Kind (or a Dirichlet Condition)

This condition occurs when the temperature is prescribed on a boundary surface. One of the more common 

conditions is a surface with a constant temperature. For example, if the boundary is at x = L,

( , ) constant surface temperaturewT L t T= (2.72)

The temperature T
w
 must be a known quantity, and it must be fixed at T

w
 for all times, t. Physically, this 

mathematical boundary condition is approximated when a constant-pressure melting ice, boiling liquid or 
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condensing steam with a very large heat-transfer coefficient touches the solid surface of a body. Consider 

the equation q = hDT, where DT is the difference between the surface and the fluid. For a finite heat-transfer 

rate, the temperature difference will approach zero if the heat-transfer coefficient is extremely large, so that 

the surface can be considered at a constant and uniform temperature. In general, the prescribed surface 

temperature could be constant, a known function of location, or a known function of time.

2.6.2 ● Boundary Condition of the Second Kind (or a Neumann Condition)

This condition occurs when heat flux is prescribed on the boundary. In general, the prescribed surface 

heat flux could be constant, a known function of location or a known function of time. For example, if 

a constant heat flux, q
w
, is applied at a boundary at x = 0, then

0

constant surface heat fluxw

x

T
k q
x =

∂
- =

∂
(2.73)

Fourier’s law is used to denote the heat conducted into the solid at the boundary which is balanced by 

the external heat supplied to the boundary, q
w
. This boundary condition is approximated when there is 

an electrically heated surface with the heat flow rate entering the solid. 

There are two special cases of this boundary condition:

Adiabatic (Insulated) Boundary For a perfectly insulated (or adiabatic) when the heat flux is set 

equal to zero, we can write

0

adiabatic (included) surfacew

x

T
k q
x =

∂
- =

∂
(2.74)

Thermal and Geometric Symmetry Often the known heat flux is zero, such as a plane of symmetry. 

At the symmetry axis, the temperature gradient in a direction normal to the axis disappears. Thus,

0
T

x

∂
=

∂
(2.75)

This considerably simplifies the mathematical formulation of the heat-conduction problem.

In fact, it is more convenient to solve such a problem over half of the region subject to the relevant 

boundary conditions.

2.6.3 ● Boundary Condition of the Third Kind (or a Convection Boundary Condition)

This condition occurs when is in contact with an adjacent fluid at T  (which could be constant, a known 

function of location, or a known function of time) surface at a certain temperature, T
w
. By performing an 

energy balance at the boundary, at x = L,

[ ] convection at the surfacew

x L

T
k h T T
x =

∂
- = -

∂
(2.76)
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2.6.4 ● Radiation Boundary Condition

When radiation is the only mechanism of heat transfer between the surface and the surroundings, the 

radiation boundary condition on a surface can be expressed by writing the following energy balance

4 4
sur[ ] radiation at the surfacex L

x L

T
k T T

x
s =

=

∂
- = -

∂
(2.77)

It is to be emphasized that the rate of heat transfer by radiation introduces a non-linearity into the 

boundary conditions since the radiation heat transfer is proportional to the fourth power of the absolute

temperature. Hence, usually radiation heat exchange at a surface is neglected to avoid the complexities 

involved due to non-linearity especially when heat transfer at the surface is essentially by convection, 

and radiation plays a marginal role.

2.6.5 ● Interface Boundary Condition

This boundary condition is based on the requirement that 

Two bodies in contact must have the same temperature at the area of contact, and

An interface (which is a surface) cannot store any energy.

Types of boundary conditions. (a) First kind, or Dirichlet. (b) Second kind, or Neumann. 

(c) Third kind, or mixed. (d) Fourth kind, or radiation. (e) Interface.



56 Heat and Mass Transfer

Thus, the heat flux on the two sides of an interface must be the same. The boundary condition at the 

interface of two bodies A and B in perfect contact can be expressed as (at the interface)

T
A
 = T

B
  (at the interface)

and

left right

A B
A B

T T
k k

x x

∂ ∂
- = -

∂ ∂
(2.78)

Figure 2.9 illustrates schematically the above five boundary conditions.

2.7 ❏

Let us analyze the steady-state temperature distribution and corresponding heat-transfer rate for the 

cases where the heat-transfer rate, or the temperature, is a function of only one distance variable such 

as large plane walls, long cylinders, short cylinders with the ends insulated, or hollow spheres. Results 

will be obtained both for constant thermal conductivity and for the thermal conductivity as a function 

of temperature.

The general methodology for solving such problems is given below:

1. Draw the neat schematic based on the problem statement.

2. Write the right governing differential equation.

3. State clearly the assumptions made.

4. Explicitly mention the boundary conditions.

5. Carry out the integration between prescribed limits and get the general solution.

6. Evaluate constants of integration.

7. Obtain the temperature distribution by putting back the calculated constants in the general solution.

8. Determine the rate of heat transfer.

9. Play with the solution (look it over) and see what it implies.

10. Plot the graph, if necessary, preferably in the dimensionless form.

2.7.1 ● Conduction Through a Plane Wall

Consider heat transfer through a plane wall shown schematically in Fig. 2.10. This could represent a wall 

in a house, a window, or some other large flat plane with specified uniform and constant temperatures on 

each face. The material properties are also prescribed. We have to determine the temperature distribution 

in the wall and the heat transfer rate through the wall.

The two extreme surfaces are maintained at constant and uniform temperatures. T = T
1
 at x = 0, and 

T = T
2
 at x = L.

Assumptions
One-dimensional conduction, the plane wall is large with small thickness compared to the dimen-

sions in the y- and z-directions).

Steady-state conditions (the temperature at any point within the wall does not change with time).

The temperatures at different points within the wall will of course be different.

The area normal to heat flow, A is independent of x.

No internal heat generation.
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x

y

z

T1 > T2

L W H,

L

H

A
W
H

=

T2

T1

dx
0

x

Qx

.

Qx dx+

.

T

T1

T
x( )

T2

0 L
x

W

Q = Constant
.

One-dimensional steady-state heat conduction in a plane wall

The material of the wall is homogeneous (of constant density) and isotropic (same thermal con-

ductivity in all directions).

The appropriate governing differential equation is, 
2

2
0

d T

dx
=

Integrating once: 1

dT
C

dx
=

Integrating again: 1 2( )T x C x C= +

This is the general solution for the temperature distribution. The two integration constants C
1
 and C

2
 can 

be evaluated from the following two boundary conditions,

BCI: T = T
1

at x = 0

BCII: T = T
2

at x = L

It follows that

1 2(0)T T C= =

T(L) = T
2

= C
1

L + C
2
 = C

1
L + T

1

Therefore, 1 2 1( )/C T T L= -

Substituting values of C
1
 and C

2
, we get,

2 1
1( )

T T
T x x T

L

-
= + (2.79)

The temperature distribution is linear and independent of thermal conductivity.

In non-dimensional form, the temperature profile is given by

1

2 1

( )T x T x

T T L

-
=

-
(2.80)
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Differentiating (T(x) with respect to x,

2 1 (1) 0
T TdT

dx L

-
= +

Applying Fourier’s law, the heat flux is given by

22 1 1 2 (W/m )
T T T TdT

q k k k
dx L L

- -
= - = - =

We note that q is independent of x, i.e., heat flux is the same at every point inside the wall.

The heat-transfer rate, Q qA= . Hence,

1 2( )
(W)

kA T T
Q

L

-
= (2.81)

Alternative Approach From Fourier’s law, 
dT

Q kA
dx

= -

Separating the variables and integrating from x = 0 to x = L (with T = T
1
 to T = T

2
), we get,

2

10

2 1 1 2

, are constants)

(

(since ,

) ( )

TL

T

A

QL kA T

Q dx kA dT Q k

T kA T T= -

= -

- = -

Ú Ú

It follows that

1 2( )
(W)

kA T T
Q

L

-
= (2.82)

Integrating between x = 0 and x = x, T = T
1
, T = T(x),

10

1( ( ))
(W)

x T

T

Q dx kA dT

kA T T x
Q

x

= -

-
=

Ú Ú

Q  being the same through each layer of the wall, we have

fi

1 2 1

1 2 1

( ) ( ( ))

( ) ( )

kA T T kA T T x
Q

L x

x
T x T T T

L

- -
= =

= - - (2.83)

The temperature distribution is then given by

1

2 1

( )T x T x

T T L

-
=

-
(2.84)

2.7.2 ● Concept of Thermal Resistance

In Chapter 1, the concept of electrical analogy was introduced. According to it, for an electrical system, 

Ohm’s law provides an electrical resistance of the form
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1 2
e

E E L
R

I As

-
= = where s is the electrical conductivity.

Similarly, for an equivalent thermal circuit,

1 2
t,cond

T T L
R

Q kA

-
= = (2.85)

where k is the thermal conductivity of the material. The analogy between the electrical and thermal 

resistances is thus obvious.

A thermal resistance may also the associated with heat transfer by convection at a surface. From 

Newton’s law of cooling,

( )sQ hA T T= -

where T
s
 and T  are surface and fluid temperature respectively.

The thermal resistance for convection is then

-
∫ =t,conv

1sT T
R

hAQ
where h is the convection coefficient (2.86)

2.7.3 ● Conduction Through a Plane Wall with Convective Surfaces

Often, a plane wall is exposed to the surrounding fluid on both sides and hence the effect of convective 

resistance should also be considered in the analysis. Let the plane wall of thickness L and thermal 

conductivity k with its surface temperatures T
1
 and T

2
 and cross-sectional area A be subjected to convection 

on the two sides with the fluid temperatures T
1
 and T

2
 and the associated heat transfer coefficients h

1

and h
2
 as indicated in Fig. 2.11.

A plane wall exposed to convection on both sides
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Figure 2.11 shows the thermal circuit for the plane wall with convective surface conditions. The-heat 

transfer rate may be determined from separate consideration of each element in the network. Since Q  is 

constant throughout the network, it follows that

,1 1 2 ,21 2

1 21/ / 1/

T T T TT T
Q

h A L kA h A

- --
= = = (2.87)

In terms of the overall temperature difference, T
, 1

 – T
, 2

, and the total thermal resistance, R
tot

, the 

heat-transfer rate may also be expressed as

,1 ,2

tot

T T

R

-
(2.88)

Since the conduction and convection resistances are in series and may be added to find the total resistance 

which is given by

tot

1 2

1 1L
R

h A kA h A
= + + (2.89)

2.7.4 ● Combined Heat-Transfer Coefficient

There is one more resistance which may be included if a surface is separated from its large surroundings 

at a temperature T
sur

. The net radiation heat exchange between the surface and the surroundings may be 

determined from

4 4
rad sur sur( ) ( )s r sQ A T T h A T Ts e= - = - (2.90)

It follows that a thermal resistance for radiation may be defined as

sur
,rad

rad

1s
t

r

T T
R

Q h A

-
= = (2.91)

where h
r
 is found from surface radiation and convection 

resistances act in parallel, and if T  = T
sur

, they may be 

combined to obtain a single, effective (equivalent) surface 

resistance which can be expressed as

1 1

eff

1 1 1
( )c r

c r

h h A hA
R h h

- -
Ê ˆ Ê ˆ= + = + =Á ˜Á ˜ Ë ¯Ë ¯

or eff

1
R

hA
=  where h

c
 is convection coefficient and h is the 

combined convection and radiation heat-transfer coefficient. 

A typical thermal circuit involving conduction, convection, 

and radiation thermal resistances is shown in Fig. 2.12. It is 

noteworthy that circuit representations provide a useful tool for 

both conceptualizing and quantifying heat-transfer problems.

Q
.

L
kA

T1

1

hrA

Qconv

.

Qrad

.

T2 T

1

hc A

Thermal circuit for a plane wall 

exposed to combined convection 

and radiation
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2.8 ❏  BIOT NUMBER AND ITS SIGNIFICANCE

Consider a plane wall of thickness L, thermal conductivity k, area A, with one face held at temperature 

T
1
 and the other face exposed to the convective environment with convection coefficient h and ambient 

fluid temperature T .

The equivalent thermal circuit is shown in Fig. 2.13. There are two thermal resistances L/kA due to 

conduction and 1/hA due to convection. The driving potential is the temperature differential T
1
 – T . The 

temperature drop across the wall and the fluid film will be in the ratio of (L/kA)/(1/hA), i.e., 
hL

k
 which 

is known as Biot number, Bi and is dimensionless number. Bi can, therefore, be looked upon as the 

ratio of conduction resistance to convective resistance. Figure 2.13 illustrates graphically the temperature 

profile for three cases. When Bi << 1, the temperature drop across the wall is much smaller compared to 

that across the film. Heat transfer is then controlled essentially by convective resistance. The temperature 

drop across the fluid film is however, negligible when Bi >> 1 and the exposed surface temperature T
2

closely approaches the fluid temperature. The larger the Biot number, the larger the temperature gradient 

within the material.

2.9 ❏ CONDUCTION WITH VARIABLE AREA OF CROSS SECTION

Consider the area of cross section in this case is not constant but variable, i.e., A is a function of x as 

shown in Fig. 2.14 (a truncated cone with its laternal (curved) surface insulated)

The left face of the truncated solid is at x = 0 and the right face is at x = L as shown. Let the left 

face be at temperature T
1
 and the right face at T

2
. Let T

1
 > T

2
.

Consider a differential control volume of thickness dx at any distance x from the left face.

The heat-transfer rate Q  is the same through all sections and is constant. The area A, however, is a 

function of x and can be expressed mathematically as A = A(x). It follows that

( ) ( )
dT

Q k T A x
dx

= -
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A truncated cone with insulated curved surface

for the general case when thermal conductivity, k, is not constant but is a function of temperature, T.

Separating the variables,

( ) ( )Q dx k T A x dT= -

Now, integrating between x = 0 and x = L, with corresponding temperatures at the two end faces, T

= T
1
 and T = T

2
, we have

2

10

( )
( )

TL

T

dx
Q k T dT

A x
= -Ú Ú (2.92)

If k is a constant and does not vary with temperature, we can write,

2

10
( )

TL

T

dx
Q k dT

A x
= -Ú Ú (2.93)

Now, if T
1
 and T

2
 are known, then Q  can be calculated. For the temperature distribution in the solid, 

we integrate between 0 and any x (i.e., temperature varying from T
1
 to T(x)) and equate this to the already 

obtained value of Q .

2.10 ❏  CONDUCTION 
THROUGH A LONG

Conduction through a long hollow cylinder

such as a pipe with uniform inside and outside 

surface temperatures can be looked upon as 

essentially one-dimensional depending only on a 

single coordinate, the radial distance. The simple 

geometric configuration is of great engineering 

significance. Consider a very long cylinder with 

inner and outer surfaces at radii r
1
 and r

2
, and 

maintained at uniform temperatures T
1
 and T

2
,

respectively, (Fig. 2.15). The end effects can be 
Long hollow cylinder (cylindrical shell)
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neglected as the pipe is pretty long so that the temperature dependence on axial and circumferential

coordinates, z and f, can be easily ignored. Steady-state conditions, constant thermal conductivity, and 

no internal heat generation are assumed. The general heat-conduction equation in cylindrical coordinates 

can then be reduced to the following expression:

2

2

1
0

d T dT

r drdr
+ = (2.94)

or
1

0 0
d dT d dT

r r
r dr dr dr dr

Ê ˆ Ê ˆ= fi =Á ˜ Á ˜Ë ¯ Ë ¯
(2.95)

The boundary conditions are

T = T
1

at r = r
1

T = T
2

at r = r
2

Integrating Eq. (2.92), we have

1
1 or

CdT dT
r C
dr dr r

= =

Integrating again, we get

1 2lnT C r C= + (2.96)

Substitution of B Cs. in Eq. (2.93), one obtains

T
1
 = C

1
 ln r

1
 + C

2

T
2
 = C

1
 ln r

2
 + C

2

\ 1 2
1 2 1 1 2 1 1

2 1

(ln ln ) ln ln
r r

T T C r r C C
r r

- = - = = -

or 1 2
1

2

1

( )

ln

T T
C

r

r

-
= -

Also, C
2
 = T

1
 – C

1
 ln r

1
or 1 2

2 1 1
2

1

( )
ln

ln

T T
C T r

r

r

-
= +

Putting the values of constants C
1
 and C

2
 in Eq. (2.96), one gets

\

1 2 1 2
1 1

2 2

1 1

1 2
1 1

1 1

ln ln

ln ln

( )
(ln ln )

ln( / )

T T T T
T r T r

r r

r r

T T
T T r r

r r

- -Ê ˆ Ê ˆ= - + +Á ˜ Á ˜
Á ˜ Á ˜
Ë ¯ Ë ¯

-
= - - (2.97)

or 1 1

2 1 2 1

ln /

ln /

T T r r

T T r r

-
=

-
(2.98)

This is the logarithmic temperature distribution.
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The net heat flow across any cylindrical surface of radius r will be constant under steady state conditions

and will be given by the Fourier’s rate equation: ( )
dT

Q kA r
dr

= -

where A(r) = 2 p r L, L being the length of the cylinder

Differentiating Eq. (2.94), we get

1 2 1 2

2 2

1 1

1 1
0

ln ln

T T T TdT

r rdr r r

r r

- -Ê ˆ Ê ˆÊ ˆ= - = -Á ˜Á ˜ Á ˜Ë ¯
Á ˜ Á ˜
Ë ¯ Ë ¯

Steady-state heat flux, 
dT

q k
dr

= -

or
1 2

1 2

2 2

1 1

1
( )

( )

ln ln

k T T
T Tkr

q
r rr

r r

Ê ˆ- -Á ˜Ë ¯ -
= - =

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

Thus, the heat flux decreases inversely with radius. This is understandable since the same heat flow 

passes through each radial surface.

The heat flow, ( ) (2 )Q q A r r L qp= =

1 2

2

1

2 ( )

ln

k L T T
Q

r

r

p -
=

Ê ˆ
Á ˜Ë ¯

(2.99)

Note that Q π f(r).

Due to symmetry, any cylindrical surface concentric with the axis of the tube or pipe is an isothermal 

surface and the direction of heat flow is normal to that surface. The radial heat flow per unit length of the 

tube will be constant through successive layers and the temperature gradient must decrease with radius.

As we have assumed infinitely long cylinder, it is better to express the heat-transfer rate per unit 

length as

p -
=

Ê ˆ
Á ˜Ë ¯

1 2

2

1

2 ( )

ln

k T TQ

rL

r

(2.100)

Using electrical analogy, we have the thermal 

resistance for a cylinder

2

1
,cyl

ln

2
t

r

r
R

k Lp

Ê ˆ
Á ˜Ë ¯

= (2.101)

This can be compared with the resistance of a plane wall: ,wallt

L
R

kA
=

Both resistances are inversely proportional to k, but each reflects a different geometry.

1 1

2 1 2 1

( ) ln( / )

ln( / )

T r T r r

T T r r

-
=

-
(2.102)
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It is instructive to note that for a very thin-walled cylinder or when 1

2

r

r
 is approximately equal to 1, we 

have from Eq. (2.102),

1 2 2 1

1 1 1 1 1

ln 1 and ln
r r r r rr r

r r r r r

- -
ª - = ª

Eq. (2.102) then becomes

1 1

2 1 2 1

T T r r

T T r r

- -
=

- -
(2.103)

This is a simple linear profile, similar to the one we obtained in a plane wall.

Alternative Approach For steady-state, one-dimensional conduction, without internal heat generation, 

the heat-flow rate is the same and constant at every cross section. We can then directly integrate the 

Fourier’s rate equation between the two specified temperatures (at the two known radii).

\
2 2

1 1

where 2

2 or
2

r T

r T

dT
Q kA A r L

dr

dT Q dr
Q k r L dT

dr k L r

p

p
p

= - =

= - = -Ú Ú

or 2
1 2

1

ln
2

rQ
T T

k L rp
= -

\ heat-transfer rate,

1 2

2 1

2 ( )

ln( / )

k L T T
Q

r r

p -
= (2.104)

Then, at any radius r, the temperature T(r) is calculated by integrating between r = r
1
 and r = r (with 

T = T
1
 and T = T(r)).

Replacing r
2
 with r and T

2
 with T(r), we have

1

1

2 ( ( ))

ln( / )

kL T T r
Q

r r

p -
=

Equating the two expressions for Q , we get

1 2 1

1 1 1

2 ( ) 2 ( ( ))

ln( / ) ln( / )

kL T T kL T T r

r r r r

p p- -
=

The temperature profile is then given by

1 1

2 1 2 1

( ) ln( / )

ln( / )

T r T r r

T T r r

-
=

-
(2.105)

● Log Mean Area

It is sometimes convenient to express the heat-flow rates through a cylinder and through a plane wall 

in the same form.
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Thus, one can write

1 2

2 1 2 1

2 ( ) 2
( )( )

ln( / ) ln( / )

kL T T L
Q T k

r r r r

p p- È ˘= = DÍ ˙
Î ˚

(2.106)

If the mean value of the area of the hollow cylinder is designated as A
m
,

( ) ( )( )mAQ x k T
L

= D (2.107)

where L is the thickness of the wall equal to (r
2
 – r

1
).

Comparing Eqs. (2.106) and (2.107), we have

2 1 2 1

2

ln( / )

mAL

r r r r

p
=

-

We can express A
m
 as

2 1 2 1

2 2

1 1

2 2

2
ln ln

2

m

r L r L A A
A

r L A

r L A

p p

p

p

- -
= =

Ê ˆ
Á ˜Ë ¯

(2.108)

where area of the cylinder: A
1
 (Inside): 2p r

1
L

A
2

(Outside): 2p r
2

L

A
m
 is called log mean area.

If 2 2

1 1

or
A r

A r
 is less than 2 then the log mean area can be replaced by the arithmetic mean area,

2 1

2

A A
A

+
=  without any significant sacrifice in accuracy. The log mean radius can also be expressed 

as r
m
 = (r

2
 – r

1
)/ln(r

2
/r

1
).

2.11 ❏  CONDUCTION THROUGH
A HOLLOW SPHERE

A spherical shell or a hollow sphere is one of the most 

commonly used geometries in industrial applications 

like storage tanks, nuclear reactors, petrochemical 

plants, refineries, and cryogenic systems. Hollow 

spheres are commonly used in industry for low-

temperature applications to minimize heat losses 

because the geometrical configuration of sphere is 

such that its surface–volume ratio is minimum and the 

material requirement to manufacture a sphere is also 

minimum compared to other geometries.

Consider a hollow sphere with radii r
1
 and r

2
, and 

corresponding uniform surface temperatures T
1
 and T

2
,

respectively as illustrated in Fig. 2.16. The constant 

thermal conductivity of the material of this spherical Heat conduction through a spherical shell
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shell is k. The temperature distribution is one-dimensional, i.e., radial and steady state exists. There is 

no internal heat source/sink either.

The appropriate heat conduction equation in spherical coordinates is

2
2

2

2
0 or 0

d T dT d dT
r

r dr dr drdr

È ˘+ = =Í ˙Î ˚
(2.109)

Integrating Eq. (2.109), we get

2 1
1 2

or
CdT dT

r C
dr dr r

= =

Integration again yields,

1 2

1
T C C

r

Ê ˆ= - +Á ˜Ë ¯

The boundary conditions of the first kind are

At r = r
1

T = T
1

At r = r
2

T = T
2

Using these BCs in Eq. (2.109), we obtain

1 1
1 2 2 2

1 2

and
C C

T C T C
r r

= - + = - +

Subtracting one from the other, we have

1 2 1
1 2

1 1
T T C

r r

È ˘- = - -Í ˙
Î ˚

\ 1 2 1
1 2 1

1

1 2

( )
and

1 1

T T C
C C T

r

r r

- -
= = +

È ˘
-Í ˙

Î ˚

or 1 2
2 1

1

1 2

1

1 1

T T
C T

r

r r

-
= -

È ˘
-Í ˙

Î ˚

Substituting the values of the integration constants C
1
 and C

2
 in Eq. (2.109), we get

\

1 2 1 2
1

1

1 2 1 2

1 2 1 1
1

1 2 1

2 11 2

1 1

1 1 1 1

1 1

1 1
or

1 11 1

T T T T
T T

r r

r r r r

T T T T r r
T T

r r T T

r rr r

- -È ˘ È ˘= + -Í ˙ Í ˙
- -Í ˙ Í ˙

Í ˙ Í ˙Î ˚ Î ˚

-
Ê ˆ- -

= + - =Á ˜ -È ˘ Ë ¯ --Í ˙
Î ˚

(2.110)
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To find the steady-state heat-flow rate in the radial direction,

2
( ) ( ) where ( ) 4

dT
Q r kA r A r r

dr
p= - =

From Eq. (2.110),

1 1 2

2 2

1 2

1
or

1 1

C T TdT dT

dr drr r

r r

-È ˘= = - Í ˙
-Í ˙

Í ˙Î ˚

The heat flux, 1 2

2

1 2

( )

1 1

T TdT k
q k

dr r

r r

-
= - =

È ˘
-Í ˙

Î ˚

Thus, the heat flux is inversely proportional to r2, which keeps on decreasing as r increases. But the 

heat-flow rate at any surface is constant and is equal to

\

2
1 2

2

1 2

1 2

1 2

(4 )
( )

1 1

4 ( )

1 1

T Tr
Q r k

r

r r

k T T
Q

r r

p

p

-È ˘= Í ˙
-Í ˙

Í ˙Î ˚

-
=

-
(2.111) (a)

or 1 2 1 2

2 1

4 ( )k T T r r
Q

r r

p -
=

-
(2.111) (b)

The thermal resistance in this case is

2 1
th

1 2 1 2

1 1 1

4 4 ( )

r rT
R

Q k r r k r rp p

-D Ê ˆ= = - =Á ˜Ë ¯
(2.112)

Alternative Approach For steady-state, one-dimensional heat conduction, with no internal heat 

generation, the heat flow rate, Q  is constant at every cross section. One can directly integrate Fourier’s 

equation between the two prescribed temperatures (and the corresponding, known radii). Then, at any r,

the temperature T(r) is calculated by integrating between r = r
1
 and r = r (with T = T

1
 and T = T(r)).

At any radius r, consider an elemental spherical shell of thickness dr; let the temperature differential 

across this thin layer be dT. Then, in the steady state, the rate of heat transfer through this layer Q , can 

be written from Fourier’s law, to be equal to:

or 2( ) , where ( ) 4
dT

Q kA r A r r
dr

p= - =

i.e.
2

4
dr

Q kdT
r

p= -



Steady-State Heat Conduction—One Dimension 69

Integrating from r
1
 to r

2
 (with temperature from T

1
 to T

2
),

or

2 2 2

11 1

1 22

1 2
1 2

1
4 or 4 ( )

1 1
4 ( )

r T r

rr T

dr
Q k dT Q k T T

rr

Q k T T
r r

p p

p

-È ˘= - = -Í ˙Î ˚

È ˘- = -Í ˙
Î ˚

Ú Ú

Heat-transfer rate,

1 2 1 2 1 2

2 1

1 2

4 ( ) 4 ( )( )
or (W)

1 1

k T T k r r T T
Q Q

r r

r r

p p- -
= =

--
(2.113)

At any radius r, let the temperature be T(r).

Replacing r
1
 by r and T

2
 by T(r), we get

1 1

1

4 ( ( ))kr r T T r
Q

r r

p -
=

-

Equating the two expressions for Q ,

1 2 1 2 1 1

2 1 1

4 ( )( ) 4 ( ( ))k r r T T kr r T T r

r r r r

p p- -
=

- -

The temperature profile is then given by

1 2 1

2 1 2 1

( )T r T r r r

T T r r r

- -Ê ˆ= ¥ Á ˜- -Ë ¯
(2.114)

Geometric Mean Area If one writes the expression for heat-flow rate in the manner of a plane wall 

then

2 1( )

m
m

kA T T
Q kA

L r r

D D
= =

-

where, the wall thickness, L = r
2
 – r

1

Also, 1 2

2 1

4 r r
Q k T

r r

p
= D

-

The inner and outer surface areas being A
i
 and A

o
, we can write

\

2 2
1 2

2 2
1 2 1 2

4 and 4

(4 ) ( ) or 4

i o

i o i o m

A r A r

A A r r A A r r A

p p

p p

= =

= = = (2.115)

\ A
m
 is the geometric mean of A

i
 and A

o
.
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2.12 ❏

For a plane wall of thickness L which equals (r
2
 – r

1
) for a hollow cylinder and a hollow sphere and 

the same surface temperatures T
1
 and T

2
, the temperature distribution for the three geometries can be 

expressed as follows:

Plane Wall

1 1 2( ) ( )
x

T x T T T
L

= - -

Cylindrical Annulus

1
1 1 2

2 1

ln( / )
( ) ( )

ln( / )

r r
T r T T T

r r
= - -

Spherical Shell

1
1 1 2

1 2

(1/ ) (1/ )
( ) ( )

(1/ ) (1/ )

r r
T r T T T

r r

-
= - -

-

Typically, for r
1
 = 5 cm, r

2
 = 10 cm, L = x

2
 – x

1
 = 5 cm, T

1
 = 300°C and T

2
 = 100°C, the three temperature 

profiles are plotted in Fig. 2.17. Note that for a plane wall, the profile is linear while for the two radial 

systems, it is non-linear (logarithmic for cylindrical annulus and hyperbolic for the spherical shell).

Comparison of temperature profiles in a slab, a cylindrical annulus, and a spherical shell
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2.13 ❏ THERMAL CONTACT RESISTANCE

We have so far assumed that there is perfect

thermal contact at the interface, which means 

that there is no temperature drop at the interface. 

However, in several cases, particularly when 

the mating surfaces are rough, this may not 

be true and there will be a temperature drop 

at the interface.

When two solid surfaces are pressed 

together in a composite system, they will not 

form perfect thermal contact, due to air gaps

resulting from inevitable surface roughness 

effects. There may be appreciable temperature 

drop across the interface between materials 

(Figure 2.18). This temperature change is due 

to the existence of a finite thermal contact 

resistance. Heat transfer follows two paths in such an interface. The heat-transfer is due to conduction 

across the air-filled gaps. The heat conduction path through points of solid-to-solid contact is quite effective 

but the path through the gap containing air or some other low conductivity gas can be very ineffective. 

For a unit area of the interface, the contact resistance is defined as

2

,
A B

t c

T T m K
R

q W

Ê ˆ-
= Á ˜Ë ¯

The contact conductance, h
c
 is the reciprocal of contact resistance, i.e., 2

,

1
(W/m °C)c

t c

h
R

= .

2.14 ❏ INSULATION AND 

In evaluating the relative performance of insulation, it is common practice in the building industry to use 

a term, referred to as the R-value, which is defined as

2[ / ]
/

T L
R m K W

Q A k

D
= = (2.116)

It may be noted that this is different from the thermal resistance concept because here in the denominator 

heat flow per unit area, i.e., heat flux has been used as against the heat flow rate while defining the 

thermal resistance. The R-values of different insulating materials, and their permissible temperature ranges 

provides a useful index for selecting a suitable insulating material for a specific application.

2.15 ❏

Let us now analyze those problems where plane walls of different materials are placed in intimate contact 

so that the heat flows through them in either series or parallel paths under the two assumptions: first, that 

the contact resistance between the different materials is negligible and second, that the heat always flows 

in one direction. The first one can be a serious limitation if air (or other gas) gaps of any appreciable 

size exist between the different materials. The other limitation is not serious if the thermal conductivities 

of the various materials are not different, otherwise two-dimensional effects must be considered.

Temperature drop at the interface due to thermal 

contact resistance
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Figure 2.19 shows a composite plane wall comprising three different materials, and having a convective 

coefficient h
1
 on the left side and h

2
 on the right side. Figure 2.19 also shows the equivalent thermal 

circuit from which one can see that the heat-transfer rate is equal to the overall temperature (potential)

difference divided by the equivalent thermal resistance

T ,2T ,1 T1 T2 T3 T4

1

h2A
L
kA
A

A
——

L
kB
B

A
—

L
kC
C

A
—

1

h2A
—

T ,1

Hot fluid

,h T1 ,1

Q

Area, AT1

kA kB
kC

T2

T3

A B C

x

T4

T ,2

Cold fluid

,h T2 ,2

.

LA LB LC

Composite wall and the equivalent thermal circuit

overall

total

T
Q

R

D
=

In this case the equivalent thermal resistance is simply the sum total of the individual thermal resistances 

in series.

total
1 2

1 1CA B

A B C

LL L
R

h A k A k A k A h A

È ˘
= + + + +Í ˙

Î ˚
(2.117)

In the steady state, the same heat-flow rate which enters the left side passes through the different 

materials and leaves the right side at any given time. 

Referring to Fig. 2.19 it may be seen that heat flows from the fluid at temperature T
1
 to the left 

surface of the slab 1 by convection, then by conduction through slabs A, B, and C then, by convection 

from the right surface of slab C to the fluid at temperature T
2
.

Let the area of the slab normal to the heat flow direction be A(m2). Now, considering each case by 

turn, we have the following:

Convection at the left surface of Slab A:

1 1 1( )Q h A T T= - (Newton’s law of cooling)

i.e., 1 1
1

Q
T T

h A
- =
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Conduction through Slab A:

1 2( )A

A

k A T T
Q

L

-
= (Fourier’s law)

i.e., 1 2
A

A

QL
T T

k A
- =

Conduction through Slab A:

2 3

2 3

( )B

B

B

B

k A T T
Q

L

QL
T T

k A

-
=

- =

(Fourier’s law)

Conduction through Slab C:

3 4( )C

C

k A T T
Q

L

-
= (Fourier’s law)

i.e. 3 4
C

C

QL
T T

k A
- =

Convection at the right surface of Wall 3

2 4 2( )Q h A T T= - (Newton’s law of cooling)

or 4 2
2

Q
T T

h A
- =

Adding up all the temperature drops, the overall temperature drop is given by

1 2
1 2

1 1CA B

A B C

LL L
T T Q

h A k A k A k A h A

È ˘
- = + + + +Í ˙

Î ˚
(2.118)

i.e., T
1
 – T

2
 = Q [R

1
 + R

2
 + R

3
 + R

4
 + R

5
]

where R
1
 = convective resistance at the left surface of Wall 1,

R
2
 = conductive resistance of Wall 1,

R
3
 = conductive resistance of Wall 2,

R
4
 = conductive resistance of Wall 3, and

R
5
 = convective resistance at the right surface of Wall 3.

1 2

1 2 3 4 5

T T
Q

R R R R R

-È ˘= Í ˙+ + + +Î ˚
(2.119)

From electrical analogy, (T
1
 – T

2
) is the total temperature difference, Q  is the heat-flow rate and 

the total thermal resistance is the sum of the individual five resistances which are connected in series.

A more elaborate arrangement is shown in Fig. 2.20 in which the heat-flow paths are not in a simple 

series circuit. The expression for heat transfer for this composite wall is the overall temperature potential 

divided by the total thermal resistance.
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Thus, overall

total

T
Q

R

D
=

In this case, the thermal resistances are in a series-parallel combination. It follows that

R
total

 = R
1
 + R

2
 + R

eq
 + R

5
 + R

6

where R
eq

 is the equivalent resistance of the two resistances R
3
 and R

4
 in parallel.

L2

2
1 4

L1

A

L4

3

L3

T 1 1, h T ,2 2, h

T T1 T2

R1 =
1
h1A
— R2 =

L
A
1

k1

— R5 =
L
A
4

k4

—

A A= +2 3A

R3 =
L
A
2

2k2

—

R4 =
L
A
3

3k3

—

T3 T4 T 2

R6 =
1
Ah2

—

Composite plane wall with convective surfaces and resistances connected in series and parallel

And the equivalent thermal resistance becomes 3 4
eq

3 4 3 4

1 1 1

eq

R R
R

R R R R R
= + fi =

+
(2.120)

Then, 3 4
total 1 2 5 6

3 4

R R
R R R R R

R R
= + + + +

+
(2.121)

Care must be exercised in evaluating the areas involved: From Fig. 2.20, it is obvious that the total 

area A = A
1
 = A

4
 and A = A

2
 + A

3
.

2.16 ❏

COMPOSITE WALL

In composite systems, it is often convenient to use the concept of overall heat-transfer coefficient, U

defined by an expression analogous to Newton’s law of cooling. Accordingly,

overall (W)Q UA T= D (2.122)
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where DT
overall

 is the overall temperature difference. The overall heat transfer coefficient is related to the 

total thermal resistance such that,

total

1
(W/K)UA

R
= (2.123)

For a multilayered wall, one can, therefore, write

1 2 overall( )Q UA T T UA T= - = D

where, Q  is the heat transfer rate (W), A is the heat-transfer area perpendicular to the direction of heat 

transfer.

Also, 1 2

1 2 3 4 5

T T
Q

R R R R R

-È ˘= Í ˙+ + + +Î ˚
Comparing the two equations,

1 2
1 2

1 2 3 4 5 th

th th

( )

1 1

a bT T T T
Q UA T T

R R R R R R

UA U
R A R

- -È ˘= - = =Í ˙+ + + +Î ˚

= fi =

Â

Â Â
The overall heat-transfer coefficient is

1

31 2

1 1 2 3 2

1 1LL L
U

h k k k h

-
Ï ¸= + + + +Ì ˝
Ó ˛

(2.124)

If thermal contact resistance is included then we have for the composite wall

1

231 2
,2

1 1 2 3 2,overall

1 1 1
(W/m K)

[ / ] [ ]
t c

t

LL L
U R

h k k k hR A K W m

-
È ˘

= = + + + + +Í ˙
Î ˚

(2.125)

2.17 ❏

Consider a multiple-layer cylindrical system comprising various layers of different thermal conductivities. 

Using the thermal-resistance concept and neglecting interfacial contact resistances, we can write the 

expression for the heat-transfer rate in the case of a long three-layered cylindrical wall in the radial 

direction shown in Fig. 2.21.

1 2

3 2 4 32 1

1 1 1 2 3 2 4

ln( / ) ln( / )ln( / )1 1

(2 ) 2 2 2 (2 )

T T
Q

r r r rr r

h r L k L k L k L h r Lp p p p p

-
=

+ + + +

This result can be expressed in terms of the overall heat-transfer coefficient.

1 2
1 2

th th

1
( ) or

T T
Q UA T T UA

R R

-
= = - =

Â Â
(2.126)

Unlike a composite plane wall, in composite radial systems the area normal to the flow direction 

(radial) is not constant and is a function of the radial distance from the centre. It is therefore customary 
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to define the overall heat transfer coefficient either in terms of the inside surface area A
i
, i.e., 2p r

1
L or 

in terms of the outside surface area A
o
, i.e., 2p r

4
L. In fact, one can also arbitrarily express U in terms 

of any of the intermediate areas because one might note that

U
1
A

1
 = U

2
A

2
 = U

3
A

3
 = U

4
A

4
 = [SR

t
]–1 (2.127)

Care should of course be taken to substitute the appropriate U and A values for computation of heat 

transfer rate. Thus, one may write

rQ  = U
i
A

i
DT

overall
or U

o
A

o
DT

overall
    [but not U

i
A

o
DT

overall
]

where U
i
 = overall heat-transfer coefficient based on inside area

U
o
 = overall heat-transfer coefficient based on outside area

A
i
 = heat-transfer area on inside

A
o
 = heat-transfer area on outside

Based on inner area or radius, the overall heat-transfer coefficient,

1

3 2 4 32 1
1

1 1 1 2 3 4 2

1 1
( ) or

ln( / ) ln( / )ln( / )1 1
2

(2 ) 2 2 2 (2 )

i t i t
i i

U R A R
A U

r r r rr r
r L

r L h k L k L k L r L h
p

p p p p p

-= Â = Â

È ˘= + + + +Í ˙
Î ˚

Temperature distribution in composite cylinder with convective surfaces
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Hence,

1

31 2 1 1 4 1

1 1 1 2 2 3 3 2 4

1 1
ln ln lni

rr r r r r r
U

h k r k r k r h r

-
È ˘Ê ˆÊ ˆ Ê ˆ Ê ˆ= + + + +Í ˙Á ˜ Á ˜ Á ˜Á ˜Ë ¯ Ë ¯ Ë ¯Ë ¯Î ˚

(2.128)

Similarly, based on the outer area of radius,

or

3 22 1
3

1 1 1 2 3 2

1

34 4 2 4 4 4

1 1 1 1 2 2 3 3 2

1 1

ln( / )ln( / )1 1
2

2 2 2 2

1 1
ln ln ln

o
o

o

U
A R r rr r

r L
r Lh k L k L r Lh

rr r r r r r
U

h r k r k r k r h

p
p p p p

-

= =
S È ˘

¥ + + +Í ˙
Î ˚

È ˘Ê ˆÊ ˆ Ê ˆ Ê ˆ Ê ˆ= + + + +Í ˙Á ˜ Á ˜ Á ˜ Á ˜Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Ë ¯Î ˚
(2.129)

Note that the various resistances, namely, the two convective resistances and the two conductive 

resistances are all in series. By electrical analogy, the total thermal resistance is the sum of the individual 

resistances. Then Q  = DT
overall

/R
total.

 Temperatures at the interfaces can be calculated by using the fact 

that Q  is the same through each layer and by applying the analogy of Ohm’s law for each layer in turn.

2.18 ❏

As in the case of cylindrical systems, we can also define an overall heat-transfer coefficient for the 

spherical systems also. Again, in this case too, the area normal to the direction of heat transfer varies with 

the radius and it is necessary to specify as to on which area the overall heat-transfer coefficient is based.

Accordingly, we write 1 2 1 2( ) ( )i i o oQ U A T T U A T T= - = -

Therefore, 1 2
1 2 1 2( ) ( )i i o o

t

T T
Q U A T T U A T T

R

-
= = - = -

Â
or

1
i i o o

t

U A U A
R

= =
Â

Therefore,
1 1

andi o
i t o t

U U
A R A R

= =
Â Â

One can also write

or

2 3 22 1
1 2 2

1 1 2 2 3 21 1 2 3

1
2 2

21 3 21 1 2 1

1 2 3 1 2 2 3 2

1 1

1 1
4

4 44 4

( )( )1 1
(W/m K)

i

i t

i

U
r rr rA R

r
k r r k r rh r h r

r r rr r r r
U

h h r k r k r r

p
p pp p

-

= =
--È ˘

¥ + + +Í ˙
Î ˚

È ˘--Ê ˆÍ ˙= + ¥ + +Á ˜Ë ¯Í ˙Î ˚

Â

(2.130)
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and
2 3 22 1

3 2 2
1 1 2 2 3 21 1 2 3

1 1

1 1
4

4 44 4

o
o

U
r rr rA R

r
k r r k r rh r h r

p
p pp p

= =
--È ˘¥ + + +Í ˙

Î ˚
Â

or

1
2 2

23 3 2 1 3 3 2

1 1 2 1 1 2 2 2

( ) ( )1 1
(W/m K)o

r r r r r r r
U

h r h k r r k r

-
È ˘- -Ê ˆÍ ˙= ¥ + + +Á ˜Ë ¯Í ˙Î ˚

(2.131)

2.19 ❏

Consider a cylinder (electric cable) of radius r
1
, the 

outer surface of which is maintained at a uniform 

temperature T
1
, and is surrounded by a fluid of 

temperature T  as shown in Fig. 2.22. If T
2
 is greater 

than T  (for instance, when steam flows through a 

pipe) then heat will be lost to the ambient fluid. The 

thermal resistance to heat flow will be only through 

convection (with negligible conduction resistance 

due to the cylindrical pipe being thin-walled and 

made up of material assumed to have high thermal 

conductivity), given by 
1

1
.

2 r Lhp

In order to reduce the heat losses, one must 

increase the thermal resistance significantly. This can 

be accomplished by adding a conduction resistance 

in series, say, by providing insulation to a radius r
2
.

The thickness of this insulation will be (r
2
 – r

1
), and 

the resistance offered by this wrapping material of low thermal conductivity, k will be 2 1ln( / )

2

r r

kLp
, where 

L is the length of the insulated cylinder. The lower the thermal conductivity and the larger the thickness 

(i.e., the more the radius, r
2
), the greater will be the thermal resistance. This will necessarily reduce the 

heat loss or heat dissipation from the cylinder.

But there lies the rub. The convective film resistance is inversely proportional to the area (or the 

radius). The thermal resistance due to convection after putting the insulation will now be 
2

1

2 r Lhp
 in 

place of 
1

1

2 r Lhp
. The greater the radius (or the surface area) depending upon the extent of insulation 

thickness, the less would be the convective thermal resistance offered by the surrounding fluid film. This 

will defeat the very purpose of providing the additional resistance and may result in increasing the heat 

loss instead of reducing it.

This apparently paradoxical situation results from two conflicting and mutually contradictory resistances. 

An increase in the thickness of insulation does reduce the heat transfer because of an increase in the 

conductive resistance. The convective resistance, on the other hand, tends to decrease with increasing radius 

of insulation, resulting in improved heat transfer or greater heat loss from the cylinder. Clearly, there is 

Q
. T1 T2 T

———
ln( / )r r

kL
2 1

2p

T2

r1

r2

T1

Insulation

Fluid

h T,

———
1

( )h 2pr L2

An insulated cylinder exposed to convection
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a radius of insulation at which the sum total of both conductive and convective resistances is a minimum

corresponding to the maximum rate of heat transfer. That radius is called the critical radius of insulation.

The heat transfer rate is

p

p p

D --
= = =

Ê ˆ+ + Á ˜Ë ¯
,cond,conv

overall 1

2 1 2total

2 2 1

2 ( )

ln( / )1 1 1
ln

2 2

tt

i

RR

T L T TT T
Q

r r rR

r Lh kL hr k r

As T
1
, T  and L are constants, the condition for maximum heat transfer can be obtained by differentiating 

the denominator representing the total thermal resistance (terms containing the variable r
2
) with respect 

to r
2
 and equating the derivative to zero.

Hence,

or

12
2 2 1

2 2 1 2

2
2 1

2

1 1 1 1
ln 0 or ( ) (ln ln ) 0

1 1 1
( 1)( ) 0 0 [ is a constant]

rd d
r r r

dr hr k r dr h k

r r
h k r

-

-

È ˘Ê ˆ È ˘+ = + - =Í ˙ Í ˙Á ˜Ë ¯ Î ˚Î ˚
Ê ˆ

- + - =Á ˜Ë ¯

or 2
2 22

22

1 1
or hr kr

krhr
= =

\ Critical radius of insulation,

2 cr

k
r r

h
= = (2.132)

As r
2
 increases, the conductive resistance R

t,cond
 goes on increasing due to greater outer surface area. 

Initially, the rate of decrease of R
t,conv

 is faster than the rate of increase of R
t,cond

. Thus, the net result 

is an increasing heat transfer. But soon, with the increasing radius of insulation, R
t,cond

catches up with 

R
t,conv

and finally becomes predominant resulting in continual decrease in heat transfer rate. Below the 

optimum radius of insulation, i.e., r
cr
 the insulation is not only not effective in reducing the heat loss but 

is counterproductive as it adds to heat losses. Typically, with k
insulation

 of the order of 0.1 W/m K and h 

of around 10 W/m K, the value of r
critical

 is about 10 mm.

The critical radius of insulation corresponds to maximum heat dissipation and minimum total resistance. 

To make sure that the total resistance is minimum, we take the second derivative of the denominator which 

should be positive. Differentiating Eq. (2.132) again with respect to r
2
 and substituting r

2
 = k/h, we have

2 2

3
22 2 3 2

2 22 2 2 22 /

3 2 2 2 2

3 2 3 3 3

1 1 1 1 1 2 1
( 2)

2 1 2
( ve)

cr crr r r r k h

d
r

dr kr h khr r hr kr

h h h h h

h k kk k k k

-

= = =

È ˘È ˘Ï ¸ È ˘Ô Ô Ê ˆÍ ˙- + = - - + - + -Í ˙ Í ˙Ì ˝ Á ˜Í ˙Ë ¯Í ˙ Í ˙Ô Ô Î ˚Ó ˛Î ˚ Î ˚

= ¥ - = - = + +

Hence, for thin pipes, wrapping insulation is hardly the way to cut down heat losses from the pipe 

unless one puts a very thick layer of insulation which may be uneconomical. For thick pipes, there is no 

point of minimum resistance or threshold value, and any addition of insulation is desirable and effective. 

This shows that R
tot

 is minimum and Q  is maximum. Since this result is bound to be always positive, the 

total resistance can never be maximum. Hence there is no optimum thickness of insulation.
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Figure 2.23 illustrates graphically the effect of varying thickness of insulation on wrapping (conduction)

resistance and film (convection) resistance as well as the heat-flow rate.

The effect of variation of thickness of insulation on a cylindrical surface on the thermal resistances and the 

heat transfer rate

It is worth noting that insulation is not always needed to bring down the heat losses. In the design 

of electrical conductors, their current-carrying capacity is limited by the rate of dissipation of ohmic 

heat, i.e., I2R. Providing insulation to a current-carrying electrical wire, can not only protect people from 

dangerous exposure to live wires but also improve the current-carrying capacity of the wire. The insulation 

thickness being almost always well below the critical value (the wire is thin any way), the rate of ohmic 

heat dissipation to the atmosphere increases due to decreasing combined thermal resistance. The electrical 

conductor becomes colder and can carry larger current.

2.20 ❏ CRITICAL THICKNESS 
OF INSULATION FOR A SPHERE

The case of a sphere is similar to that of a cylinder 

since here too, as the radius of insulation increases, 

the surface area increases. So, as the insulation radius 

is increased, the conduction resistance of insulation 

increases and the convection resistance decreases.

Let r
1
 be the radius of the sphere on which 

insulation is applied, and let r
2
 be the outer radius of 

insulation (see Fig. 2.24). We would like to investigate 

the change of R
tot

 as insulation radius r
2
 is varied.

We have, for the spherical system:

tot cond conv 2
1 2 2

1 1 1 1

4 (4 )
R R R

k r r h rp p

È ˘
= + = - +Í ˙

Î ˚

Differentiating R
tot

 with respect to r
2
 and equating to 

zero, we have

Q
. T1 T2 T

k

h T,

r T1 1,

r T2 2,

Sphere

Insulation

Rcond =
1

4 kp
—

1
r1

1
r2

– – – Rcond =
2

2

1

(4 )h rp

An insulated sphere exposed to convection
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or
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(2.133)

Hence, it follows that no optimum R
tot

 exists.

2.21 ❏ EFFECT OF 

The assumption of constant thermal conductivity materials may not be valid in some cases when the range 

of temperature is large. In several cases, particularly for solid substances, the dependence of conductivity 

on temperature is fairly linear, in the limited temperature range.

Let the thermal conductivity, k vary as a function of temperature in a linear fashion.

i.e., 0 (1 )k k Tb= + (2.134)

where k
0
 is the thermal conductivity at T = 0°C, T is the temperature in °C at which k is to be calculated 

and b is a constant which is usually very small.

Typical temperature profiles for a plane wall

with variable thermal conductivity are illustrated in 

Fig. 2.25, b is generally positive for insulating materials and 

negative for metallic conductors.

When b = 0, the thermal conductivity, k equals k
0
, a 

constant. Under steady operating conditions, the heat-transfer 

rate is constant. Hence, from Fourier’s rate equation, the slope 

or gradient 
dT

dx
 of the temperature distribution curve is also a 

constant, resulting in the temperature profile being a straight

line.

When b is positive, the Fourier’s rate equation becomes

or

0

0

(1 )A

/

(1 )

dT
Q k T

dx

dT Q A

dx k T

b

b

= - +

=
+

(2.135)
Variation of thermal conductivity 

with temperature in a plane wall
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As the temperature decreases from T
1
 to T

2
, the term k

o
 (1 + bT) in Eq. (2.22) also decreases, and 

the absolute value of the gradient 
dT

dx
increases. This indicates that the temperature curve becomes 

inncreasingly steeper resulting in the convex profile for b > 0. Clearly, the curve will have a decreasing 

slope for negative values of b resulting in a concave profile.

● Heat Transfer Rate With Variable Thermal Conductivity

Plane Wall Consider a plane wall of thickness L. The temperatures at the two boundaries are constant 

and uniform, i.e., T = T
1
 at x = 0 and T = T

2
 at x = L.

Assumptions
One-dimensional, steady-state conduction.

No internal heat generation.

Thermal conductivity varies linearly with temperature, i.e., k(T) = k
0
 (1 + bT).

Heat rate, ( )
dT

Q k T A
dx

= -

where k(T) is the non-uniform thermal conductivity given by k
0
 (1 + bT), A is the area normal to the 

direction of heat flow, and dT/dx is the temperature gradient.

Substituting for k (T), separating the variables and integrating from x = 0, T = T
1
 to x = L, T = T

2
, we have:

or

2

1

0

0

2 2
0 1 2 0 1 2

(1 )

( ) ( )
2

TL

T

Q
dx k T dT

A

QL
k T T k T T

A

b

b

= - +

È ˘= + - + -Í ˙Î ˚
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(2.136)

or 0 1 2 1 2 1 2( ) ( ) ( )
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bÈ ˘= + - + + ¥ -Í ˙Î ˚
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T TQL
T T k

A
b

+È ˘= - +Í ˙Î ˚

or 1 2 0 1 2( ) (1 ) ( )m m

QL
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A
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where k
m
 = k

0
 (1 + bT

m
) is the mean thermal conductivity at the mean temperature, 1 2

2
m

T T
T

+
∫

Therefore, 1 2( )
(W)mk A T T

Q
L

-
= (2.137)

Hollow Cylinder Consider a long, hollow cylinder of length L, the inside radius r
1
 and the outside 

radius r
2
. The inner and outer surfaces are held at uniform temperatures of T

1
 and T

2
, respectively.

From the Fourier’s rate equation: ( ) ( )
dT

Q k T A r
dr

= -

where k(T) = k
0
 (1 + bT),

A(r) is the area at any radius r, normal to the direction of heat flow = 2 p r L,
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and dT/dr is the temperature gradient

Substituting for k(T), separating the variables and integrating from r = r
1
, T = T

1
 to r = r

2
, T = T

2
,

we obtain:

2

1 1

2

0

(1 )(2 )

(1 )
2

o

r T

r T

dT
Q k T rL
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Q dr
k T dT

L r
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b
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= - +Ú Ú
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2 1 0 1 2 1 2ln(r / ) 2 ( ) ( )

2
Q r k L T T T T
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È ˘= - + -Í ˙Î ˚

or 1 2
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( )
ln( / ) 2 L( ) 1 2 ( )

2
m

T T
Q r r T T k L T T kp b p
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or 1 2

2 1

2 ( )
(W)

ln( / )

mk L T T
Q

r r

p -
= (2.138)

where k
m
 = k

0
 (1 + bT

m
) is the mean (average) thermal conductivity, and

T
m
 = (T

1
 + T

2
)/2 is the mean temperature.

Hollow Sphere Consider a hollow sphere with the inside radius r
1
 and outside radius r

2
. The inner 

and outer surfaces are at uniform temperatures of T
1
 and T

2
, respectively (T

1
 > T

2
).

From Fourier’s rate equation: ( ) ( )
dT

Q k T A r
dr

= -

where k(T) = k
0
 (1 + bT),

A(r) = area at a radius r, normal to the direction of heat flow = 4 pr2, and

dT/dr is the temperature gradient

Substituting for k (T), separating the variables and integrating from r = r
1
, T = T

1
 to r = r

2
, T = T

2

or

2 2

1 1

2

1

02

2 2
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r T

r T
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where k
m
 = k

0
(1 + bT

m
) is the mean thermal conductivity, and

and T
m
 = (T

1
 + T

2
)/2 is the mean temperature

Heat rate,

1 2 1 2 1 2

2 1

1 2

4 ( ) 4 ( )
(W)

1 1

m mk T T k r r T T
Q

r r

r r

p p- -
= =

-Ê ˆ
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(2.139)
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Illustrative Examples

(A*) Differential Equation and Boundary Conditions

 Steady two-dimensional heat 

conduction takes place in the body shown in the 

figure. The temperature gradients over surfaces 

A and B can be considered to be uniform. The 

temperature gradient ∂T/∂y at the surface A is found 

to be 20 K/m. Surfaces A and B are maintained 

at constant temperatures, while the remaining part 

of the boundary is well insulated. The body has a 

constant thermal conductivity of 5 W/m K. Determine 

the values of ∂T/∂x and ∂T/∂y at the surface B.

Solution

Known Two-dimensional body with given thermal conductivity. Two isothermal surfaces at specified 

temperatures. Temperature gradient at one surface is prescribed.

Find Temperature gradients, ∂T/∂x and ∂T/∂y, at the surface B.

Schematic

Assumptions (1) Two-dimensional conduction. (2) Steady-state conditions. (3) No internal heat generation. 

(4) Constant properties.

Analysis We know that the heat-flux vector must always be normal to an isothermal surface. Clearly, 

at the horizontal surface A, the temperature gradient in the x-direction must be zero. That 

is, (∂T/∂x)
A
 = 0.

 The heat-flow rate by conduction at the surface A is given by Fourier’s law expressed as

, 5 W/mK 2m 20 K/m 200 W/my A A

A

T
Q kL

y

Ê ˆ∂
= - = - ¥ ¥ = -Á ˜Ë ∂ ¯

 Since the heat-flux vector has to be normal to the isothermal surface B, the temperature 

gradient can be only in the x-direction. On the vertical surface B, it is obvious that 

(∂T/∂y)
B
 = 0.

Illustrative Examples
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 Using the conservation of energy requirement,

0 0
in out gen st

steadystate(noheat generation)

E E E E- + =

 It follows that, in out , ,or y A x BE E Q Q= =

 Using the Fourier’s rate equation, ,x B B

B

T
Q kL

x

∂Ê ˆ= - Á ˜Ë ¯∂

 Since , ,x B y AQ Q= , it follows that

, ( 200 W/m)
( / ) 40 K/m

5 W/mK 1 m

y A

B
B

Q
T x

k L

- -
∂ ∂ = = =

- ¥

 Thus, at the surface B,

∂ ∂
= =

∂ ∂
40 K/m and 0

T T

x y
(Ans.)

 The temperature variation within an infinite homogeneous medium at any given 

instant is given by, T(x, y, z) = 2x2 – y2 – z2 – xy + yz

 Assuming no internal heat generation and constant properties, identify the regions in the body where 

transient conditions exist (i.e. temperature changes with time).

Solution

Known Temperature distribution in a large body at any instant.

Find Regions where unsteady state exists.

Schematic

Assumptions (1) Isotropic, homogeneous body. (2) No internal heat generation.

Analysis At any specific time, the temperature distribution throughout a homogeneous medium with 

constant thermophysical properties in three dimensional Cartesian coordinates is given by

T(x, y, z) = 2x2 – y2 – z2 – xy + yz

 If this satisfies the general differential equation (without heat generation), i.e., Fourier’s 

equation, the conservation of energy in the medium is satisfied. The relevant energy 

differential equation is

2 2 2

2 2 2

1T T T T

tx y z a

∂ ∂ ∂ ∂
+ + =

∂∂ ∂ ∂
(A)

Steady-State Heat Conduction—One Dimension
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 Let us calculate the temperature gradients in the three directions:

4 , 2 , 2
T T T

x y y x z y
x y z

∂ ∂ ∂
= - = - - = - +

∂ ∂ ∂

 Differentiating further,

2 2 2

2 2 2
4, 2, 2

T T T T T T

x x y y z zx y z

Ê ˆ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ= = = = - = = -Á ˜ Á ˜Á ˜Ë ¯ Ë ¯∂ ∂ ∂ Ë ∂ ¯ ∂ ∂∂ ∂ ∂

 Substituting in Eq. (A), we have

1
4 ( 2) ( 2) 0

T T

t ta

∂ ∂
+ - + - = fi =

∂ ∂

 Hence, at any instant of time, transient conduction does not exist and the temperature 

does not change with time in any region. (Ans.)

(A) Plane Wall with Specified Boundary Temperatures

 In an experiment for determining thermal conductivity of a given metal, a specimen 

of 2.5 cm diameter and 15 cm long is maintained at 100°C at one end and at 0°C at the other end. If 

the cylindrical surface is completely insulated and electrical measurements show a heat flow of 5 W, 

determine the thermal conductivity of the specimen material.

Solution

Known Apparatus for measurement of thermal 

conductivity.

Find Thermal conductivity of specimen material.

Assumptions (1) Steady-state, one-dimensional conduction. 

(2) Constant thermal conductivity. (3) Curved 

surface is insulated.

Analysis The cylindrical surface being insulated, heat 

flow is in an axial direction only. Thus, it is 

a plane wall problem.

 Cross sectional area, A = 
4

p
(0.025 m)2 = 4.9 ¥ 10–4 m2

 Now 1 2T T
Q kA

L

-È ˘= Í ˙Î ˚

 Thermal conductivity, 
4 2

1 2

(5 W)(0.15 m)

( ) (4.9 10 m )(100 0) C

QL
k

A T T -= =
- ¥ - ∞

= 15.3 W/m °C (Ans.)
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(B) Plane Wall Bounded by Specified Fluid Temperatures

 Two mild steel (k = 47 W/m °C) circular rods A and B are interconnected via a 

sphere C as shown below:

 The respective cross-sectional areas of the rods A and B are 15 and 7.5 cm2. The system is well 

insulated except for the left-hand face of the rod A and the right-hand face of the rod B. Under steady-

state conditions, the following data is available:

T
1
 = 80°C, T

2
 = 5°C, T

1
 = 60°C, T

3
 = 15°C, h

1
 = 25 W/m2°C

 The temperature T
3
 is measured at a point which is 10 cm from the right-hand end of the rod B. 

Determine the heat transfer coefficient, h
2
.

Solution

Known Two steel rods connected through a sphere are exposed to convective environment at their 

ends. The curved surface is insulated.

Find Heat-transfer coefficient, h
2
(W/m2 °C).

Assumptions (1) Steady-state conditions. (2) One-dimensional conduction along the rods. (3) Constant 

thermal conductivity. (4) Uniform convection coefficients.

Analysis Applying the control volume energy balance to the specified system, we have 

0 0

in out gen st

steady stateno heat generation

E E E E- + =
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 Hence, in outE E=

 or 
--

= fi =
+

3 21 1

1 2 3
A B

T TT T
Q Q

R R R

 or 2 3 3 2

1 1 1

(15 5)°C
0.5

(80 60)°C

R R T T

R T T

+ - -
= = =

- -

 or = - fi = ¥ -3 1 2
2 2 1 1 2

1 1
0.5 0.5

L
R R R

h A h A kA

 or 2 1

2 1

( / )1
0.5

A A L

h h k
= -

 The convection coefficient, h
2
 can then be expressed as

1
2

2 2 2 o

0.5 7.5 cm 0.10 m

25 W/m °C 15 cm 47 W/m C
h

-
È ˘Ê ˆ

= - =Í ˙Á ˜Ë ¯Í ˙Î ˚

2
127W / m °C (Ans.)

 A copper bus bar of 40 cm length carrying electricity produces 5 W in Joulean 

heating. The cross section is square (see the figure) and is provided with insulation of thermal conductivity 

k = 0.036 W/m °C. All four sides are cooled by air at 24°C with an average convection coefficient 

h = 18 W/m2°C. Assuming the copper to be isothermal, estimate the maximum temperature of the insulation.

Solution

Known A copper bus bar covered with insulation dissipates heat by conduction and convection.

Find Maximum temperature of insulation.

Assumptions (1) One-dimensional conduction. (2) Constant conductivity and uniform convection 

coefficient. (3) Copper is isothermal. (4) For conduction, average cross-sectional area is 

considered for analysis. (5) Steady-state conditions.

Analysis The thickness of insulation is much smaller than the dimensions in the other two directions. 

Assuming one-dimensional conduction in steady state, the heat rate is

( )c

dT
Q kA x

dx
= -
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From symmetry, the heat transfer for only one side is considered. The heat generated within 

is dissipated from all four sides by conduction through insulation and by convection from 

the surface to the surroundings.

Hence, gen 5 4 xE W Q= =     (from symmetry)

or 1 2 2 1

cond conv cond conv

1.25 W =x

T T T T T T
Q

R R R R

- - -
= = =

+

The maximum temperature of insulation will occur at x = 0, i.e., at the copper surface.

Convection resistance, conv

1

( )
R

hA L
=

where A(L) = outer surface area (one side only) = 0.4 m ¥ 0.12 m = 0.048 m

\ conv 2

1
1.1574°C/W

18 W/m °C 0.048 m
R = =

¥

Outer-surface temperature of insulation is found to be

T
2
 = T  + convxQ R  = 24°C + (1.25 W) (1.1574 °C/W) = 25.45°C

Inner-surface temperature of insulation or its maximum temperature,

max 1 cond 2xT T Q R T= = +

where cond
( )c

L
R

k A x
=

Insulation

12 cm

40 cm

12 cm

8 cm
Egen = 5 W
.

Insulation

Qx

.
T1 = Tmax

L = 0.02 m
T2

x = 0
x L=

A(0)
A L( )

R1 = ——
1

k Am

R2 =
1
( )hA L

——

Q
.

T1 T2 T
Q = Egen

. .
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 We note that the area of cross section is not constant.

At x = 0, A
c
 = A(0) = 0.4 m ¥ 0.08 m = 0.032 m2

At x = L, A
c
 = A(L) = 0.4 m ¥ 0.12 m = 0.048 m2.

 The average cross sectional area,

A
m
 = 

1

2
[A(0) + A(L)] = 

1

2
[0.032 + 0.048]m2 = 0.04 m2 (for each of the four sides)

 Hence, cond o 2

0.02 m
13.89 C/W

0.036 W/m C 0.04 m
R = = ∞

¥

 Maximum temperature,

T
max

 = (1.25 W) (13.89 °C/W) + 25.45°C = 42.81°C (Ans.)

 The rear window of an automobile is defogged by attaching a thin, transparent, 

film-type heating element to its inner surface. By electrically heating this element, a uniform heat flux 

may be established at the inner surface. What is the electrical power that must be provided per unit 

window area to maintain an inner surface temperature of 15°C when the interior air temperature and 

convective heat transfer coefficient are 25°C and 10 W/m2 K, respectively and the exterior (ambient) air 

temperature and convective heat transfer coefficient are 5°C and 50 W/m2 K? The window glass is 4 mm 

thick and k
window glass

 = 1.4 W/m K. What would be the inner surface temperature without heater power?

Solution

Known Desired inner surface temperature of rear window of a car with specified inner and outer 

air conditions.

Find Heat flux provided by heater to maintain the desired temperature.

Assumptions (1) Steady-state, one-dimensional conduction. (2) Constant thermal conductivity.
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Analysis Per unit surface area, the energy balance at the inner surface gives,

, 1 1 , 1 , , 1

1 1 1 1

i o o i

h h

i o o i

T T T T T T T T
q q

L L

h k h k h h

- - - -
+ = fi = -

+ +

 or 
2

2 2

[15 ( 5)] C (25 15)°C W
(875 100)

0.004 m 1 1 m

1.4 W/mK 50 W/m K 10 W/m K

- - ∞ -
- = - =

+

2
775W / m (Ans.)

 With q
h
 = 0, 

, 1 , ,

1/ 1/ / 1/

i i o

i i o

T T T T

h h L k h

- -
=

+ +

 Inner surface temperature without heater would be

1 , , ,

1/
( )

1/ / 1/

1/10
25 [25 ( 5)]

0.004
(1/10) (1/50)

1.4

i
i i o

i o

h
T T T T

h L k h
= - -

+ +

= - - - =
+ +

0.58°C (Ans.)

(C) Composite Wall with Prescribed Boundary Temperatures

 A furnace wall is made up of refractory brick, fire brick and an outside plaster. 

There is an air gap with a thermal resistance of 0.15 m2 K/W between the refractory brick and the fire 

brick. The refractory brick, 120 mm thick, has k
1
 = 1.58 W/m K. The fire brick, 120 mm thick, has k

2

= 0.3 W/m K. The outside plaster, 15 mm thick, has k
3
 = 0.15 W/m K. The two extreme temperatures of 

this wall are 1000°C and 100°C.

 Determine (a) the heat flow rate in kJ/h m2, and (b) the interface temperatures.

Solution

Known A composite wall comprising three layers and an air gap with end surfaces at specified 

temperatures.

Find (a) Heat-flow rate (kJ/h m2), (b) Interface temperatures, T
2
, T

3
 and T

4
 (°C).
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Assumptions (1) Steady state conduction. (2) Air is stagnant. (3) Constant properties. (4) One-dimensional 

conduction.

Analysis Total thermal resistance per m2 is

231 2
total

1 2 3

0.12 0.12 0.015
0.15 0.726 m K/W

1.58 0.3 0.15

a

a

L LL L
R

k k k k

È ˘ È ˘= + + + = + + + =Í ˙ Í ˙Î ˚Î ˚

 Steady-state heat flux is

È ˘- È ˘ È ˘= = ¥ =Í ˙Í ˙ Í ˙Î ˚Î ˚ Î ˚
2 3

(1000 100)K 1 J/s 3600 s 1 kJ

1 W h0.726 m K/W 10 J

Q
q

A

2
4463 kJ/h m (Ans.)(a)

 Interface temperatures: From the thermal network, we have,

\

21 2
2

1 1

1
2 1

1

1000 W 4463
4463 W/m

/ 3600 3.6m

4463 0.12
1000

3.6 1.58

T T
q

L k

qL
T T

k

- Ê ˆ= = ¥ =Á ˜Ë ¯

¥È ˘= - = - =Í ˙¥Î ˚
906°C (Ans.)(b)

 Also, 1 3

1

1

a

a

T T
q

LL

k k

-
=

È ˘
+Í ˙

Î ˚

\ 720°C
È ˘ È ˘ Ê ˆ= - + = - + =Á ˜Í ˙ Í ˙ Ë ¯Î ˚Î ˚

1
3 1

1

0.12 4463
1000 0.15

1.58 3.6

a

a

LL
T T q

k k
(Ans.)(b)

 Furthermore, 1 4

1 2

1 2

a

a

T T
q

LL L

k k k

-
=

È ˘
+ +Í ˙

Î ˚

\ 224°C
Ê ˆ Ï ¸= - + + =Ì ˝Á ˜Ë ¯ Ó ˛

4 1

4463 0.12 0.12
0.15

3.6 1.58 0.3
T T (Ans.)(b)

 A layer of 5 cm thick fire brick (k = 1.0 W/m K) is placed between two 6 mm 

thick steel plates (k = 52 W/m K). The faces of the bricks adjacent to the plates are rough, having solid 

to solid contact over only 20% of the total area, with the average height of asperities (projection of 

rough elements) being 0.8 mm. If the outer-surface temperatures of steel plates are 100°C and 400°C, 

respectively, find (a) the rate of heat flow per unit area. Assume that the gaps are filled with air (k = 0.035 

W/m K), and (b) the rate of heat flow per unit area if the faces of the bricks were smooth and have solid 

to solid contact over the entire area.

Solution

Known A series–parallel composite wall comprises a brick layer between two steel plates with 

brick projections and trapped air.

Find (a) Heat-flow rate per unit area, q(W/m2) with (a) 20% solid to solid contact, and (b) solid 

to solid contact over the whole area.
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Assumptions (1) Steady operating conditions exist. (2) Constant thermal conductivities. (3) Heat flow 

through air gap is by conduction. (4) One-dimensional conduction. (5) Brick projections 

are distributed.

Analysis We consider only half of the system since the composite wall is symmetrical with respect 

to the centre plane. The equivalent thermal circuit is shown in the schematic. The thermal 

resistances on the basis of unit area are as follows:

Half of the solid brick:

2
1

1
1

2.5 10
0.025 K /W

1.0 W/m K

L m
R

k

-¥
= = = [L

1
 is half of thickness of the solid brick]

Brick asperities:
3

2
2

1

0.8 10 m
0.004 K/W

0.2 0.2 1.0 W/m K

L
R

k

-¥
= = =

¥

Air gap:
3

2
3

2

0.8 10 m
0.028 57 K/W

0.8 0.8 0.035 W/m K

L
R

k

-¥
= = =

¥

Steel plate: 
3

3
4

3

6 10 m
0.000 115 K/W

52 W/m K

L
R

k

-¥
= = =

The factors 0.2 and 0.8 in R
2
 and R

3
 respectively represent the fraction of the total area 

for the two separate heat flow paths.

Since R
2
 (brick asperities) and R

3
 (air gap) are in parallel, the equivalent resistance is

1 1

eq
2 3

1 1 1 1
0.0035 K/W

0.004 0.02857
R

R R

- -È ˘ È ˘= + = + =Í ˙ Í ˙Î ˚Î ˚

The total thermal resistance is

R
tot

 = R
1
 + R

eq
 + R

4
 = (0.025 + 0.0035+ 0.000 115) K/W = 0.028 62 K/W
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 Heat-flow rate per unit area is

tot

(400 100) K

0.028 62 K/W

Q T

A R

D -
= = = 2

10 480W/m (Ans.) (a)

 If the solid-to-solid contact is 100%,

* * 1 2
tot 1 4 4

1

( ) (0.025 0.0008)m
0.00 015 K/W

1.0 W/mK

L L
R R R R

k

+ +
= + = + = +

= 0.0259 K /W

 Hence, the heat flow rate per unit area now is

*
tot

(400 100)K

0.0259 K/W

*
Q T

A R

D -
= = = 2

11576 W/m (Ans.) (b)

(D) Composite Wall Bounded by Fixed Fluid Temperatures

 A thermopane (thermally insulated glass) window that is 0.6 m long by 0.3 m wide 

comprises two 8 mm thick pieces of glass sandwiching an 8 mm thick stagnant air space. The thermal 

conductivity of glass is 1.4 W/m K and that of air is 0.025 W/m K. The window separates room air at 

20°C from outside ambient air at –10°C. The convection coefficients associated with the inner (room side) 

and the outer (ambient) surfaces are 10 W/m2K and 80 W/m2K respectively. (a) Determine the heat loss 

through the window, and the two surface temperatures. (b) What would be the heat loss if the window 

had a single glass of 8 mm thickness instead of a thermopane? (c) Calculate the heat loss for a triple 

pane construction in which a third pane and a second air space, each 8 mm thick, are added.

Solution

Known Dimensions of a thermopane window. Room and ambient air conditions.

Find (a) Heat loss through window, and surface temperatures. (b) Heat loss with a single glass. 

(c) Heat loss with a triple pane thermopane window.
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Assumptions (1) Steady state, one dimensional heat flow. (2) Constant properties. (3) Negligible radiation 

effects.

Analysis (a) From the thermal circuit, the heat loss is

, ,overall

th

2 2

2

2

1 1 1

(0.6 m 0.3 m)[20 ( 10)]°C or K

1 m K 0.008 m m K 0.008 m m K 0.008 m m K 1 m K

10 W 1.4 W 0.025 1.4 W 80 W

(0.18 m) (30 K)

[0.1 0.005714 0.32 0.005714 0.0125] m K/W

i o

i g a g o

T TT
Q

L L LR

A h k k k h

W

-D
= =

S È ˘+ + + +Í ˙
Î ˚

¥ - -
=

È ˘
+ + + +Í ˙

Î ˚

=
+ + + +

 Heat loss, Q  = 12.164 W (Ans.) (a)

 Now, ,

1 12.164
20

10 0.18
i si si

i

T T Q T
h A

Ï ¸- = fi = - =Ì ˝¥Ó ˛
13.24°C (Ans.) (a)

 Also, ,

1 12.164
10 –

80 0.18
so o s,o

o

T T Q T
h A

Ï ¸
- = ◊ fi = - + =Ì ˝¥Ó ˛

9.16°C (Ans.) (a)

 (b) With single glass:

2

th 2

1 1 1 1 1 1 0.008 1 m K
0.6567 K/W

10 1.4 80 W0.18 mi g o

R
A h k h

È ˘ È ˘S = + + = + + =Í ˙ Í ˙Î ˚Î ˚

\ Heat loss, 
[20 ( 10)] K

(0.6567 K/W)
Q

- -
= = 45.68W (Ans.) (b)

 (c) Triple pane window: th

1 1 3 2 1 K

W

1 1 3 0.008 2 0.008 1 K
4.276 K/W

1.8 10 1.4 0.025 80 W

i g a o

L L
R

A h k k h

È ˘¥ ¥
S = + + +Í ˙

Í ˙Î ˚
¥ ¥È ˘= + + + =Í ˙Î ˚

\ Heat loss, 7.02 W
D

= = =
S th

30 K

4.276 K/W

T
Q

R
(Ans.) (c)

 A 2 kW heating element of area 0.05 m2 is protected on the backside by a 50 mm 

thick insulating material (k = 1.5 W/m K) and on the front side by a 10 mm thick plate (k = 55 W/m 

K). The backside is exposed to cold environment at 5°C with convective heat-transfer coefficient of 10 

W/m2 K. The front side is exposed to warm room air at 23°C with combined convective cum radiative 

heat transfer coefficient of 220 W/m2K.

 Determine: (a) the heating element temperature (°C), (b) the rate of heat transfer into the room (W), 

(c) the surface temperatures on the front and backside (°C).
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Solution

Known A heating element sandwiched between an insulating layer and a metal plate is exposed to 

convective atmosphere on both extreme surfaces.

Find (a) Heating element temperature. (b) Heat rate into room. (c) Extreme surface temperatures.

Assumptions (1) Steady operating conditions. (2) One-dimensional conduction. (3) Constant properties.

Analysis The heat dissipated by the heating element is partly lost to the surrounding air and the rest 

enters the room to keep it warm. Thus,

1 22000 W =Q Q Q= + (A)

Now, 1 2

1 2

1 2

( )( )
and

1 1

h ih o

i o

T TT T
Q Q

L L

k A h A k A h A

--
= =

Ï ¸ Ï ¸
+ +Ì ˝ Ì ˝

Ó ˛ Ó ˛

\ 1
1

0.05 1
5 2.6667

0.05 1.5 10
h

Q
T Q

È ˘- = + =Í ˙Î ˚
(B)

and 2
2

0.01 1
23 0.09455

0.05 55 220
h

Q
T Q

È ˘- = + =Í ˙Î ˚

But 2 12000Q Q= -     from Eq. (A)

Hence, T
h
 – 23 = 0.09455 (2000 – 1Q ) or T

h
 – 23 = 189.091 – 0.09455 1Q (C)

From (B) and (C), we have

18 = 2.7612 1Q  – 189.091 fi 1Q  = 75 W

Heat-flow rate into the room, 2Q  = 2000 – 75 = 1925 W (Ans.) (b)

Heating element temperature is obtained from Eq. (B):

T
h
 = 5 + (2.6667 ¥ 75) = 205°C (Ans.) (a)
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 From the equivalent thermal circuit, the extreme surface temperatures are determined to be

1

1 1
5 (75)

10 0.05
o o

o

T T Q
h A

Ê ˆ= + ◊ = + =Á ˜Ë ¥ ¯
155°C (Ans.) (c)

2

1 1
23 (1925)

220 0.05
i i

i

T T Q
h A

Ê ˆ= + ◊ = + =Á ˜Ë ¥ ¯
198°C (Ans.) (c)

 In a manufacturing process, a large sheet of 2 cm thick plastic is to be glued to 

a 2 cm thick corkboard. To effect a good bond, the glue should be maintained at 50°C for a long time. 

This is achieved by heating the outer plastic surface by radiation. The convective heat-transfer coefficient 

is 10 W/m2 K on both sides. The conductivities of plastic and cork are 1 and 0.2 W/m K, respectively 

and the ambient temperature is 20°C. Find the temperature of outer plastic surface and the radiant heat 

flux needed. Neglect losses due to radiation.

Solution

Known Plastic sheet glued with cork board. Outer plastic surface heated by radiation.

Find Outer plastic surface temperature, T
1
 (°C). Radiant heat flux, q (W/m2).

h = 10 W/m K2
2

T = 20°C

h = 10 W/ K1
2m

= 20°CT

T = 50°C*

Radiant heat
flux, q

T1
T2

T T1 T

Schematic

Plastic

kp = 1.0 W/m K

Corkboard

kc = 0.2 W/m K

L = 2 cmp L = 2 cmc

T* T2
Rconv,1 Rcond,p Rcond,c Rconv,2

qq1 q2

Assumptions (1) Steady operating conditions. (2) Constant convection coefficients. (3) Radiation losses 

neglected. (4) One-dimensional conduction.

Analysis From energy balance: 1
1

conv,1

T T
q

R

-
=

1
2 cond, 2 conv,2

2
cond,

( *)
( * )/ ( ) /c

p

T T
q T T R T T R

R

-
= = - = -
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 With R
cond, p

 = L
p
/k

p
, R

cond, c
 = L

c
/k

c
, R

conv, 1
 = 1/h

1
 and R

conv, 2
 = 1/h

2
 we have

q
1
 = h

1
(T

1
 – T ) and 1 2 2 22

( *) ( * ) ( )
p c

p c

k k
q T T T T h T T

L L
= - = - = -

 To determine T
2
, we have

 or 

o 2 o
2 2

2 2 2 2

0.2 W/mK
(50 ) C 10 W/m K( 20) C

0.02 m

(0.02)(10)
(50 ) ( 20) ( 20) 2 70,

(0.2)

T T

T T T T

- = -

- = - = - fi =

 Hence, T
2
 = 35°C

 Heat flux, q
2
 = h

2
(T

2
 – T ) = 10 W/m2 K (35 – 20)°C or K = 150 W/m2

 We note that, 1

2

* *

/ / 1/p p c c

T T T T

L k L k h

- -
=

+

\ *
1

2

/ 0.02/1
( * ) 50 (50 20) 53 C

/ 1/ (0.02/02) (1/10)

p p

c c

L k
T T T T

L k h

Ï ¸ È ˘
= + - = + - = ∞Ì ˝ Í ˙+ +Ô Ô Î ˚Ó ˛

 Heat flux, q
1
 = h

1
 (T

1
 – T ) = 10 W/m2 K (53 – 20) = 330 W/m2 (Ans.)

1 2

Heat flux lost from both Heat flux received

exposed surfaces i.e.by radiation q qq

Ê ˆÊ ˆ
=Á ˜ Á ˜+Ë ¯ Ë ¯

 And q = q
1
 + q

2
 = 150 + 330 = 480 W/m2 (Ans.)

 A composite wall, having unit length normal to the plane of paper, is insulated 

at the top and bottom as shown in the figure. It is comprised of four different materials A, B, C and D.

 The dimensions are:

  H
A
 = H

B
 = 3m,  H

B
 = H

C
 = 1.5 m,

  L
1
 = L

3
 = 0.05 m, L

2
 = 0.1 m

 The thermal conductivities of the materials are:

  k
A
 = k

D
 = 50 W/m K, k

B
 = 10 W/m K, k

C
 = 1 W/m K

 The fluid temperature and heat-transfer coefficients (see figure) are

  T
1
 = 200°C, h

1
 = 50 W/m K, T

2
 = 25°C, h

2
 = 10 W/m2 K.
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Assuming one dimensional conduction,

(a) sketch the thermal circuit of the system, (b) determine the rate of heat transfer through the wall, 

and (c) find the interface temperatures. [GATE 2001]

Solution

Known A composite slab with inner and outer surface conditions, dimensions, and material thermal 

conductivities.

Find (a) Thermal circuit. (b) Heat transfer rate.

Assumptions (1) Steady-state conditions. (2) Temperature of the composite varies only with x (surfaces 

normal to x are isothermal). (3) Negligible contact resistance. (4) Negligible radiation. (5) 

Constant properties.

Analysis: (a) The appropriate thermal circuit is a series parallel arrangement of the form

(Ans.) (a)

For a unit length normal to the paper,

A
A
 = A

D
 = H and A

B
 = A

C
 = H/2

(b) For a unit length normal to the paper, 1 2

total

( )T T
Q

R

-
=

where

1

31
total

1 2 2 2

1

1 1

2 2

1 0.05 10 3 1 3 0.05 1
m K/W

50 3 50 3 2 0.1 2 0.1 50 3 10 3

0.0467 m K/W

CB

A D

k H LL k H
R

h H k H L L k H h H

-

-

Ï ¸
= + + + + +Ì ˝

Ó ˛
È ˘Ï ¸¥ ¥Í ˙= + + + + +Ì ˝¥ ¥ ¥ ¥ ¥ ¥Í ˙Ó ˛Î ˚

=
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 Hence, the heat-transfer rate through the wall,

o(200 25) C or K

0.0467 m K/W
Q

-
= = 3745W/m (Ans.) (b)

 From the thermal circuit, the interface temperatures are:

1
1 1

1

1 0.051
200°C - 3745 W/m mK/W

50 3 50 3

=

A

L
T T Q

h H k H

È ˘ È ˘+= - + = ¥Í ˙ Í ˙¥ ¥Î ˚Î ˚
173.8°C  (Ans.) (c)

 Similarly, o3
2 2

2

1 1 0.05
25 C 3745 W/m m K/W

10 3 50 3D

L
T T Q

h H k H

È ˘ È ˘
= + + = + +Í ˙ Í ˙¥ ¥Î ˚Î ˚

= 151.1°C (Ans.) (c)

 (a) A furnace wall, 35 cm thick, (k = 1.05 W/m °C), has its inner surface 

maintained at 1300°C while its outer surface is exposed to surrounding air at 40°C with the associated 

convection coefficient expressed as h = 10 (1 + 0.01 DT) (W/m °C) where DT is the temperature difference 

between the outer surface and the ambient air, in °C. Calculate the steady-state heat flux through the wall.

 (b) In order to curtail the heat transfer through the furnace wall by a factor of 7, it is decided to add 

a layer of red brick (k = 0.7 W/m °C) followed by a 30 cm thick layer of silicon brick (k = 0.15 W/m 

°C). Determine the thickness of the red brick layer required to effect this heat transfer.

Solution

Known A furnace wall with outer convective surface and a prescribed convection coefficient. 

Addition of two brick layers to reduce the heat flux to one seventh of the single wall case.

Find (a) Heat flux, q (W/m2); (b) Red brick layer thickness (L
2
) (cm).

Furnace wall
( = 1.05 W/m°C)k

T = 1300°Ci

h T= 10 (1 + 0.01 ) (W/m °C)D 2

T = 55°C

q (W/m )2

Schematic

L = 0.30 m

(a)

1 2

k = 1.05 W/m °C1

T = 40°C
h = 24 W/m °C2

k = 0.7 W/m °C2 k = 0.15 W/m °C3

(b)

3

Air

L = 35 cm1 L = ?2 L = 30 mm3
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Assumptions (1) Steady operating conditions exist. (2) Constant properties. (3) One dimensional heat 

conduction.

Analysis (a) The equivalent thermal circuit is

T1 T2 T
&Q&Q

R1 =
L

kA
R2 =

L

hA

Heat transfer rate, 1 2

1 1/

T T T T
Q

L hA

kA hA

- -
= =

È ˘+Í ˙Î ˚

or 1
2 1

1/
( )

1
1

T ThA
T T T T

L Lh

kA hA k

-
- = - =

È ˘ Ê ˆ+ +Á ˜Í ˙ Ë ¯Î ˚

(A)

Since h = 10 [1 + 0.01 DT] = 10 + 0.1 DT

DT = T
2
 – T  = (h – 10) / 0.1 = 10 h – 100

Substituting proper values in Eq. (A),

1300 40 1260 1.05
10 100 or 10 100

0.35 0.35 1.05
1

1.05

h h
h h

- ¥
- = - =

++

or 3.5 h2 + 10.5 h – 35 h – 105 = 1323

or 3.5 h2 – 24.5 h – 1428 = 0 or  h2 – 7h – 408 = 0

Solving this quadratic equation, we get, h = 24 W/m2°C

With this value of h, the steady-state heat transfer per unit wall area, that is, heat flux is 

determined from

1 1300 40 1260

( / ) (1/ ) (0.35/1.05) (1/24) 0.375

T TQ
q

A L k h

- -
= = = = =

+ +
2

1260W/m (Ans.) (a)

(b) With two additional brick layers to cut down heat transfer by a factor of 7, one has 

1

1 2 3 47

T TQ

R R R R

-
=

+ + +
The equivalent thermal circuit is

T1 T

R L k A1 = /1 1 R L k A2 = /2 2 R L k A3 = /3 3 R h A4 = 1/

&Q

7

&Q

7

or 1

31 2

1 2 3

17

T Tq

LL L

k h k k

-
=

È ˘+ + +Í ˙
Í ˙
Î ˚0.375

or
2 2

3360 1260 1260

7 [0.375 ( /0.7) (0.3/0.15)] ( /0.7) 2.375L L
= =

+ + +
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 or 2 1260 7

0.7 3360

L ¥Ê ˆ= Á ˜Ë ¯
 – 2.375 = 2.625 – 2.375 = 0.25

 Hence, the thickness of the red brick layer is

L
2
 = (0.7) (0.25) m = 0.175 m or 17.5 cm (Ans.) (b)

 The inside dimensions of a refrigerator are 50 cm ¥ 50 cm base and 100 cm height. 

The walls of the refrigerator are constructed of two mild steel sheets 3 mm thick with 5 cm of glass wool 

insulation between them. If the average heat-transfer coefficients at the inner and outer surfaces are 10 

and 12.5 W/m2 °C respectively, (a) estimate the steady-state cooling load, i.e., the rate at which the heat 

must be removed from the interior space to maintain the refrigerated air temperature at 4°C while the 

surrounding outside air temperature is 26°C. (b) What will be the temperature at the outer surface of the 

wall? The thermal conductivities of mild steel and glass wool are 46.5 and 0.046 W/m °C, respectively.

Solution

Known Composite wall of a refrigerator. Convective surface conditions.

Find (a) Steady-state cooling load, (W)Q . (b) Wall surface temperature, T
4
(°C).

Assumptions (1) Steady operating conditions. (2) One-dimensional heat conduction. (3) Constant 

properties. (4) Interfacial contact resistance negligible.

Analysis (a) The thermal resistance network is shown below:

 Heat-transfer area for the 6 surfaces is

A = 2 [(0.5 ¥ 0.5) + (0.5 ¥ 1.0) + (0.5 ¥ 1.0)]m2 = 2.5 m2

 Thermal resistances connected in series are:

51
1 2

1 1

1 1 0.003
0.004°C/W 2.58 10 C/W

10 2.5 46.5 2.5

L
R R

h A k A

-= = = = = = ¥ ∞
¥ ¥
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532
3 4

2 3

5
2

0.05 0.003
0.4348 C/W 2.58 10 C/W

0.046 2.5 46.5 2.5

1 1
0.032 C/W

12.5 2.5

LL
R R

k A k A

R
h A

-= = = ∞ = = = ¥ ∞
¥ ¥

= = = ∞
¥

 Total thermal resistance is, R
total

 = SR = R
1
 + R

2
 + R

3
 + R

4
 + R

5
 = 0.5068°C/W

 Rate of heat removal, that is cooling load, is

overall

total

(26 4) C

0.5068 C/W

T
Q

R

D - ∞
= = =

∞
43.4 W (Ans.) (a)

(b) Temperature at the outer surface of the refrigerator wall is

24 5T T QR= -  = 26°C – (43.4 W) (0.032°C/W) = 24.6°C (Ans.) (b)

 A furnace wall is constructed with 7.5 cm of fireclay brick (k = 1.1 W/m K) next 

to the fire box and 0.65 cm of mild steel (k = 40 W/m K) on the outside. The inside surface of the brick 

is at 920 K, and the steel is surrounded by air at 300 K with an outside surface coefficient of 70 W/m2

K. Find (a) the heat flux through each square metre of furnace wall, (b) the outside surface temperature 

of the steel, and (c) the percentage increase in the heat flux if, in addition to the conditions specified, 

eighteen 1.9 cm diameter steel bolts extend through the composite wall per square metre of wall area. 

How will the outside surface temperature of the steel get affected?

Solution

Known Composite wall with one boundary surface exposed to convective environment.

Find (a) Heat flux, q, (b) Outside surface temperature of steel, T
3
 (°C), (3) Percent increase in 

heat flux if 18 bolts pierce through the wall.

Assumptions (1) Steady-state one-dimensional conduction. (2) Constant properties. (3) Uniform convection 

coefficient.
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Analysis (a) For the composite slab, the equivalent thermal circuit is

The heat flux may be evaluated, using the following equation: 1

th

T TQ
q

A R

-
= =

S
The thermal resistances (per unit area) are, in turn

21
brick

1 brick

4 22
steel

2 steel

2
conv 2

0.075 m
0.06818 m K/W

(1.10 W/m K)

0.0065 m
1.625 10 m K/W

(40 W/m K)

1 1
0.0143 m K/W

(70 W/m K)

L
R

k

L
R

k

R
h

-

= = =

= = = ¥

= = =

The combined thermal resistance is 

SR
th
 = [(0.068 18) + (1.625 ¥ 10–4) + (0.0143)] = 0.0826 m2K/W

And, the heat flux is

-
= = =

2

(920 300) K

0.0826 m K/W

Q
q

A

2
7506 W/m (Ans.) (a)

(b) The outside surface temperature of the steel can now be found from

q R
conv

 = T
3
 – T

\ T
3
 = 300 K + (7506 W/m2) (0.0143 m2 K/W) = 407.3 K (Ans.) (b)

(c) In the case of additional steel bolts through the wall, there are now two paths whereby 

heat may flow from the inside of the furnace wall to the outside air. The equivalent thermal 

circuit in this case is shown below.

R
bricks

, R
steel

, and R
conv

 are all known. Thermal resistance for the steel bolts (per unit area)

is calculated as

23
bolts

2 23
2

(0.075 0.0065) m
0.399 m K/W

bolts
(40 W/mK) 18 0.019 m /bolts

4

L
R

k

m

p

+
= = =

È ˘Ê ˆ Ê ˆ¥Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚
The equivalent resistance of the parallel portion of the circuit is

1 1

equiv 4
bolts bricks steel

2

1 1 1 1

( ) 0.399 (0.06818 1.625 10 )

0.05835 m K/W

R
R R R

- -

-
È ˘ È ˘= + = +Í ˙ Í ˙+ + ¥Î ˚ Î ˚

=
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 The total thermal resistance for the wall and bolts is

*
totalR  = R

equiv
 + R

conv
 = 0.058 35 + 0.0143 = 0.07265 m2 K/W

 The resulting heat flux is

overall*
* 2
total

(920 300)K

(0.072 65)m K/W

TQ
q

A R

D -
= = = = 2

8534W/m (Ans.) (c)

 Percentage increase in the heat flux after the bolts are introduced is

* 8534 7506
(100) (100)

7506

q q

q

Ê ˆ- -Ê ˆ= =Á ˜Á ˜ Ë ¯Ë ¯
13.7% (Ans.) (c)

 Outside surface temperature of the steel,

* 2 2*
3 conv 300°C (8534 W/m ) (0.0143 m K/W)

(an increase by 14.7°C)

T T q R= + = +

= 422°C (Ans.) (c)

(E) Thermal Contact Resistance

 The following table gives details of a composite wall comprising two materials.

S.No. Parameter Material 1 Material 2

1. Wall thickness (L), mm 10 20

2. Thermal conductivity (k), W/m °C) 0.1 0.05

3. Contact resistance between two materials (R
c
) = 0.3 m2 °C /W

4. Convective medium adjoining the material 1: 

T = 200°C  h
1
= 10 W/m2 °C

5. Convective medium adjoining the material 2: 

T
2
 = 25°C  h

2
 = 20 W/m2°C

 Determine: (a) The steady state heat transfer rate per unit area through the wall and (b) The temperature 

distribution.

Solution

Known Temperatures and convection coefficients associated with fluids at inner and outer surfaces 

of a composite wall. Contact resistance, dimensions, and thermal conductivities of the two 

wall materials.

Find (a) Heat-transfer rate, Q (W), (b) Temperature variation across the wall.

Assumptions (1) Steady-state conditions exist. (2) One-dimensional heat transfer. (3) Constant properties. 

(4) Negligible radiation.

Analysis (a) There are in all five thermal resistances connected in series. Of these, two are conduction 

resistances, two convective resistances and one contact resistance at the interface of the 

two walls.
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Total thermal resistance,

1 2
total 1 2 3 4 5

1 1 2 2

1 1

1 0.01 0.3 0.02 1
C/W

(10)(5) (0.1)(5) 5 (0.05)(5) (20)(5)

cRL L
R R R R R R R

h A k A A k A h A
= S = + + + + = + + + +

È ˘
= + + + + ∞Í ˙

Î ˚

= [0.02 + 0.02 + 0.06 + 0.08 + 0.01] °C/W = 0.19°C /W

Rate of heat transfer across the wall,

1 2

total

(200 25) C

0.19 C/W

T T
Q

R

- - ∞
= = =

∞
921W (Ans.) (a)

(b) It follows that

T
1
 = T

1
 – 1QR  = 200°C – (921 W) (0.02°C/W) = 181.6°C

T
A
 = T

1
 – 2QR  = 181.6 – (921) (0.02) = 163.2°C

T
B
 = T

A
 – 3QR  = 163.2 – (921) (0.06) = 107.9°C

T
2
 = T

B
 – 4QR  = 107.9 – (921) (0.08) = 34.2°C

T
2
 = T

2
 – 5QR  = 34.2 – (921) (0.01) = 25°C

The temperature distribution across the wall is shown in the schematic. (Ans.) (b)

Comment As Q , k, and A are constant, the temperature gradient across each wall is also constant, 

implying linear temperature profile. A sudden temperature drop from T
A
 to T

B
 is due to 

contact resistance.
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 A multilayered plane wall is 8 m long, 5 m high and 0.25 m thick. A representative 

cross section of the wall is shown in the figure. The left and right faces of the wall are at 300°C and 

60°C respectively. The thermal conductivities of different materials used in the composite system (in W/m 

K) are k
A
 = k

F
 = 2, k

B
 = 10, k

C
 = 20, k

D
 = 15, and k

E
 = 55.

 The thermal contact resistance at the interfaces D F and E F is 1.2 ¥ 10–4 m2 K/W.

 Assuming one-dimensional heat conduction, calculate: (a) the rate of heat flow through the wall, (b) 

the temperature at the point where the sections B, D, and E meet; and (c) the temperature drop across 

the section F, (d) the temperature drop due to contact resistance.

Solution

Known A composite slab with a series–parallel combination. Exposed surfaces subjected to 

convection processes. Dimensions, conductivities, convection coefficients, and fluid 

temperatures.

Find (a) Q (W), (b) T
3
(°C), (c) (T

5
 – T

6
)°C, (d) (T

4
 – T

5
)°C.

T 1

Ri

T1

RA

RC

RB

RC

RD

RE

Rt,c RF Ro

T ,2
T2 T3 T4 T5 T6

Assumptions (1) Steady-state, one-dimensional conduction. (2) Constant properties. 

Analysis The thermal resistance network for the series–parallel arrangement is shown in the 

schematic. Let us first determine the individual thermal resistances. 

 We note that

A
A
 = A

F
 = A = 5 ¥ 8 = 40 m2; A

B
 = A

C
 = 

1

3
A  and A

D
 = A

E
 = 

2

A

 Convective resistances: 
3

2 2
1 1

1 1
0.5 10 K/W

(50 W/m K)(40 m )
iR

h A

-= = = ¥

3

2 2
2 2

1 1
1.0 10 K/W

(25 W/m K)(40 m )
oR

h A
= = = ¥
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Contact thermal resistance: 
4 2

,

, 2

1.2 10 m K/W

40 m

t c

t c

R
R

A

-¢¢ ¥
= =  = 3 ¥ 10–6 K/W

Conduction resistances: 
3

2 2

0.02 m
0.25 10 K/W

2 W/m K 40 m

A
A

A A

L
R

k A

-= = = ¥
¥

Three resistances in parallel: 
3

2

3 0.06 m
0.225 10 K/W

/3 20 W/mK 40 m

C
C

C

L
R

k A

¥
= = = ¥

¥

I

3

2

11

eq 3 3 3

3

3 0.006 m
0.45 10 K/W

/ 3 10 W/m 40 m

1 1 1 1 1 1

0.225 10 0.45 10 0.225 10

0.09 10 K/W

B
B

B

C B C

L
R

k A

R
R R R

--

- - -

¥
= = = ¥

¥

È ˘È ˘
= + + = + +Í ˙Í ˙

¥ ¥ ¥Î ˚ Î ˚

= ¥

Two resistances in parallel: 
3

2

0.1 m
0.333 10 K/W

/2 15 W/mK 20 m

D
D

D

L
R

k A

-= = = ¥
¥

II

3

2

1

1 3
eq

3

2

0.1 m
0.0909 10 K/W

/2 55 W/ mK 20 m

1 1
[3000 11000] 0.0714 10 K/W

0.07 m
0.875 10 K/W

2 W/mK 40 m

F

E
E

E

D E

F
F

L
R

k A

R
R R

L
R

k A

-
- -

-

= = = ¥
¥

È ˘
= + = + = ¥Í ˙

Î ˚

= = = ¥
¥

Total thermal resistance,

R
total

 = R
i
 + R

A
 + R

eq I
 + R

eq II
 + R

t, c
 + R

F
 + R

o

= [(0.5 ¥ 10–3) + (0.25 ¥ 10–3) + (0.09 ¥ 10–3) + (0.0714 ¥ 10–3) + (3 ¥ 10–6) + 

(0.875 ¥ 10–3) + (1 ¥ 10–3)]

= 2.6894 ¥ 10–3 K/W

\ Rate of heat flow through the wall is

overall

3 3
total

(300 60) C 1 kW

2.7894 10 K /W 10

T
Q

R W
-

D - ∞
= = =

¥
86 kW (Ans.) (a)

Temperature at which sections B, D, and E meet is

T
3
 = T

1
 – Q [R

1
 + R

A
 + r

eq I
]

= 300°C – (86.04 ¥ 103 W) [(0.5 ¥ 10–3) + (0.25 ¥ 10–3) + (0.09 ¥ 10–3)] K/W

= 227.7°C (Ans.) (b)

Temperature drop across the section F,

T
5
 – T

6
 = FQR  = (86.04 ¥ 103 W)(0.875 ¥ 10–3 K/W) = 75.3°C (Ans.) (c)

Temperature drop due to contact resistance,

T
4
 – T

5
 = t cQ R  = (86.04 ¥ 103 W)(3 ¥ 10–6 K/W) = 0.26°C (Ans.) (d)
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(F) Variable Area of Cross Section

 The diagram shows a conical 

section of circular cross section (k = 3.42 W/m K) with 

the diameter D = ax, where a = 0.30. The small end 

is at x
1
 = 75 mm and the large end at x

2
 = 300 mm. 

The end temperatures are T
1
 = 150°C and T

2
 = 350°C, 

while the lateral surface is well insulated.

 (a) Derive an expression for the temperature 

distribution assuming steady-state, one-dimensional 

conduction with no internal heat generation. (b) 

Compute the heat-transfer rate through the cone. (c) Sketch the temperature distribution and justify the 

shape of the curve.

Solution

Known Conduction in a conical section with D = ax where a = 0.30 and insulated curved surface.

Find (a) Temperature distribution, T(x). (b) Heat rate, Q (W). (c) Temperature profile.

Assumptions (1) Steady operating conditions. (2) One-dimensional conduction in x direction. (3) Constant 

properties.

Analysis (a) Fourier’ law of heat conduction is, c

dT
Q k A

d
= -

x

 where A
c
 = cross-sectional area = 

2 2 2

4 4

D ap p
=

x

2 2

4

ka dT
Q

d

p
= -

x

x

 Separating the variables, we get, 
2 2

4Qdx
dT

a kp
= -

x

 Integration from x
1
 to any x within the cone yields,

x

x

x

xp p

È ˘= - - = - -Í ˙Î ˚Ú Ú
11 1

12 2 2

4 4 1
or ( )

xT

xT

Q d Q
dT T T

xa k a k
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 or 
x x x xp p

Ê ˆ Ê ˆ
- = - = - -Á ˜ Á ˜Ë ¯ Ë ¯1 12 2

1 1

4 1 1 4 1 1
( ) or

Q Q
T T T T

a k a k
(1)

 Now, T(x
2
) = T

2
. Substituting this in the above expression, we have

2 1 2
1 2

4 1 1Q
T T

a kp

Ê ˆ
= - -Á ˜Ë ¯x x

 Solving for Q ,

2
1 2

1 2

( )

4[(1/ ) (1/ )]

T T a k
Q

x

p-
=

-x

(2)

 Substituting for Q  in the expression 

for T (Eq. 1),

2
1 2

1 2
1

1 2

( ) 4 1 1

1 1
4

T T a k
T T

a k

p

p

È ˘-
= - ◊ -Í ˙È ˘ Î ˚-Í ˙

Î ˚

x x

x x

 The temperature distribution is thus 

given by

È ˘Ê ˆ Ê ˆ
Í ˙Á ˜Á ˜ Ë ¯Ë ¯Í ˙
Í ˙Ê ˆ Ê ˆ
Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

1
1 1 2

1 2

1 1
–

( ) = – ( – )
1 1

–

x x
T x T T T

x x

(Ans.) (a)

(b) Substituting the appropriate numerical values, we get

2(150 350) C or ( ) (0.30 m) (3.42 W/m K)

1 1
4

0.075 m 0.300 m

–

K
Q

p- ∞
=

È ˘
-Í ˙

Î ˚
= 4.38W (Ans.) (b)

 The temperature distribution can be sketched qualitatively as under.

Comment Since the steady heat rate, Q  and thermal conductivity, k are constant, the product c

dT
A

dx

Ê ˆ
Á ˜Ë ¯

is constant. In the x-direction, the area of cross section A
c
 is increasing. Hence, the slope 

or temperature gradient dT/dx must decrease in the x-direction.

 A conical section of circular cross section (k = 200 W/m°C) having diameter D

= ax1/2 where a = 0.5 m1/2 has its small end located at x
1
 = 25 mm and the large end at x

2
 = 125 mm. 

The end temperatures T
1
 and T

2
 are held at T

1
 = 300°C and T

2
 = 100°C. The lateral (curved) surface 

is effectively insulated. Assuming one dimensional conditions, determine (a) the temperature profile, and 

(b) the heat-transfer rate.
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Solution

Known Geometry and surface conditions of a conical solid of circular cross section.

Find T(x) and Q .

Assumptions (1) Steady, one-dimensional conduction. (2) Constant thermal conductivity.

Analysis (a) Fourier’s rate equation

2
1/2 2

2

( )
4 4

4

c

dT D dT k dT
Q kA k ax

dx dx dx

ka dT
x
dx

p p

p

È ˘
= - = - = -Í ˙Î ˚

= -

Separating the variables and integrating between limits,

2 2

1 1

2
1 22 2

1

4 4
or ln

x T

x T

xQ dx Q
dT T T

x xka kap p
= - = -Ú Ú (A)

If the limits are identified as x = x
1
, T = T

1
 and x = x, T = T, then

12
1

4
ln ( )

Q x
T T

xkap
= - (B)

From equations (A) and (B), 1 1

2 1 1 2

ln( / )

ln( / )

x x T T

x x T T

-
=

-

The temperature distribution is then given by

= - - 1
1 1 2

2 1

ln( / )
( ) ( )

ln( / )

x x
T x T T T

x x
(Ans.) (a)

(b) The heat-transfer rate is given by

2 1/2 2
1 2

2 1

( ) (200 W/m°C)(0.5 m ) (300 100)°C

4 ln( / ) 4 ln(125 mm/25 mm)

or

ka T T
Q

x x

p p- -
= =

= ¥ 3
4.88 10 W 4.88 kW (Ans.) (b)
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(G) Variable Thermal Conductivity

 A 10 cm thick slab has its heated surface maintained at 90°C and the other 

surface exposed to convective environment at 25°C with a convection coefficient of 70 W/m2°C. The slab 

material has variable thermal conductivity given by k (T) = 10.5 [1 – 0.006 (T – 25)] W/m °C where T

is in °C. This relation is valid for the temperature range 25 °C < T < 110°C. Determine (a) the steady 

state-heat flux (W/m2), (b) the temperature of the cooled surface (°C), and (c) the temperature gradients 

at the two exposed surfaces of the slab (°C/m).

Solution

Known A slab made of a variable thermal conductivity material has one isothermal heated surface 

and the other surface subjected to convective cooling.

Find (a) Heat flux, q (W/m2). (b) Surface temperature, T
2
(°C). (c) Temperature gradients, 

0

,
x x L

dT dT

dx dx= =

Assumptions (1) Steady-state one-dimensional conduction. (2) Variable thermal conductivity. (3) Uniform 

heat-transfer coefficient.

Analysis The steady-state heat flux or transfer rate per unit area is

 i.e., 

overall 1 2

total

2

/ 1/ 1/

( )

m

T T T T TQ
q

A R L k h h

q h T T

D - -
= = = =

+

= -

 Control surface energy balance at the exposed cooled surface (x = L).

1 2
cond conv 2

( )
or ( )m

x L

k T T
q q h T T

L=

-
= = - (A)

 where k
m
 is the mean thermal conductivity, expressed as, k

m
 = k

0
(1 – bT

m
) in which k

0
 and 

b are constants and 1 2

1
( )

2
mT T T= +
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 In the present case, k
0
 = 10.5, b = 0.006, and

1 2
1 2

1
[( 25) ( 25)] 25

2 2
m

T T
T T T

+Ê ˆ= - + - = -Á ˜Ë ¯

 Hence, from Eq. (A):

 or 

{ }0 1 2 1 2
2

2 2
0 1 0 2 0 1 2 0 1 2

2

( )
1 25 ( ) 0

2

( ) 25 ( )
0

2

k T T T T
h T T

L

k T k T k T T k T T
hT hT

L L L L

b

b b

È ˘- +
- - - - =Í ˙Î ˚

- -
- - + - + =

 or { } 2
20 0 0 0 1 0 1 0 1

2 2

25 25
0

2 2

k k k k T k T k T
T h T hT

L L L L L L

b b b bÈ ˘Ê ˆ - + + + + - + =Í ˙Á ˜Ë ¯ Î ˚

 With 0 0 02510.5 0.006
0.63, 0.315, 15.75,

0.1 2

k k k

L L L

b b b¥
= = = =  we have

0.315 2
2T [105 + 15.75 + 70] + [9450 + 1417.5 – 2551.5 + (70 ¥ 25)] = 0

 or 0.315 2
2T  – 190.75 T

2
 = 10066 = 0

 This is a quadratic equation, the roots of which are

T
2
 = 547.15°C and 58.4°C

 The first value is absurd because T
1
 > T

2
 > T . Hence, the temperature of the cooled surface 

is

T
2
 = 58.4°C (Ans.) (b)

 Heat flux is determined from

q = h(T
2
 – T ) = (70 W/m2°C) (58.4 – 25)°C = 2338 W (Ans.) (a)

 The temperature gradients at the two surfaces are obtained from

0[1 { 25}]m

dT q q

dx k k Tb
= =

- -

 At x = 0 (the heated surface),

0 10

2338 W

[1 ( 25)] 10.5[1 0.006(90 25)]x

dT q

dx k Tb=
= = =

- - - -
365°C (Ans.) (c)

 and 
b=

= = =
- - -0 2

2338 W

[1 – ( 25)] 10.5[1 0.006(58.4 25)]x L

dT q

dx k T
278.5°C/m

Comment The temperature gradient is not constant but decreases with an increase in the value of x.

The temperature profile is therefore concave upwards. The thermal conductivity decreases 

with an increase in temperature.

 A 0.5 m long metal piece has a cross section in the form of a sector of a circle 

of 0.1 m radius and included angle of 90°. The thermal conductivity of the metal piece can be expressed 

as, k = 116.3 [1 – 0.0001 T] (W/m °C) where T is in °C.

 Assuming heat transfer only in axial direction, find the heat rate if the two ends of the metal piece 

are maintained at 120°C and 30°C.
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Solution

Known A metal piece with variable thermal conductivity has a cross section in the form of a sector 

of a circle. 

Find Heat rate, Q (W) in the axial direction.

Assumptions (1) One-dimensional (axial) heat conduction. (2) Steady-state conditions. (3) Boundary 

temperatures are uniform.

Analysis Area of cross section,

2 2
2 3 2( /2)(0.1 m)

( ) 7.854 10 m
2 2 2

c

r
A r

q q p
p

p
-Ê ˆ= = = = ¥Á ˜Ë ¯

 Mean thermal conductivity, k
m
 = k

0
[1 + bT

m
]

 where T
m
 = 

1

2
(T

1
 + T

2
) = 

1

2
(120 + 30)°C = 75°C

\ k
m
 = 116.3 [1 – (0.0001) (75)] = 115.43 W/m °C

 Thermal resistance,

th 3 2

0.5 m
0.5515 C/W

115.43 W/m C 7.854 10 mm c

L
R

k A -= = = ∞
∞ ¥ ¥

 Temperature difference,

DT = T
1
 – T

2
 = 120 – 30 = 90°C

 Hence, the heat rate is determined from

o
th

90°C

0.5515 C/W

T
Q

R

D
= = = 163W (Ans.)

 A composite slab, 70 mm thick, is comprised of two layers of materials A and 

B. The layer A, 50 mm thick, has its thermal conductivity k
A
 = 0.5 [1 + 0.008 T] where T is in °C. 

The layer B has constant thermal conductivity of 30 W/m K and is 20 mm thick. The exposed surface of 

layer A is effectively insulated and that of the layer B is exposed to convective environment at 20°C with 

a surface heat-transfer coefficient of 12.5 W/m2 K. The interface temperature between the two layers is 

80°C. Determine (a) the steady-state heat flux, (b) the maximum temperature in the composite slab, and 

(c) the distance of a plane from the insulated surface where the temperature is 90°C.
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Solution

Known A composite slab made up of two materials, and one of variable thermal conductivity 

and the other with constant thermal conductivity with one adiabatic surface and the other 

exposed to convective medium.

Find (a) q(W/m2); (b) T
max

 (°C); (c) x at T = 90°C.

Assumptions (1) Steady-state, one-dimensional conduction. (2) Uniform heat-transfer coefficient. (4) No 

thermal conduct resistance or internal heat generation.

Analysis (a) The steady-state heat-transfer rate through the composite slab in the absence of heat 

generation is constant throughout. The cross-sectional area being same, the heat flux is also 

constant.

Using electrical analogy,

2 2

cond conv

2

(80 20)K

1 0.02 m 1

30 W/mK 12.5 W/m K

B

B

T T T TQ
q

A R R L

k h

- - -
= = = =

+ Ê ˆ Ê ˆÊ ˆ
+ +Á ˜Á ˜ Á ˜Ë ¯Ë ¯ Ë ¯

  = 743.8 W/m2 (Ans.) (a)

(b) Considering the layer A, one has

( ) or (1 )o

dT
q k T qdx k T dT

dx
b= - = - +

Integrating between the limits: x = 0, T = T
1
 and x = L, T = T

2
,

or

2

1

2 2
1 2 1 2

00

2
2 2

1 1

(1 ) or ( ) ( )/2

743.8 W/m 0.05 m 0.008
( 80) ( 80 ) °C

0.5 W/m C 2

AL T

A
o

T

qL
q dx k T dT T T T T

k

T T

b b= - + = - + -

¥ È ˘= - + -Í ˙∞ Î ˚

Ú Ú

or 2 2
1 1

743.8 0.05
0.004 80 (0.004 80 ) 0

0.5
T T

¥Ê ˆ+ - - ¥ - =Á ˜Ë ¯
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 or 2
1 10.004 179.98 0T T+ - =

 Solving this quadratic equation, T
1
 = 121.21°C

 Noting that the maximum temperature will occur at the exposed insulated surface (x = 0) 

where 0
dT

dx
= ,  T

max
 = T(0) = T

1
 = 121.21°C (Ans.) (b)

(c) Since T(x) = 90°C at a distance x from the insulated surface, one gets

2 2 1
1 1 1

0

( ) ( ) ( )[1 ] where
2 2

m m

T Tqx
T T T T T T T T

k

b
b

+
= - + - = - + =

 Hence, 
(121.21 90) [1 0.008 (121.21 90)/2] 0.5

743.8
x

- + ¥ + ¥
=  = 0.0387 m or 38.7 mm 

(Ans.) (c)

(H) Long Cylinders Bounded by Fixed Surface Temperatures

 A hollow cylinder with 10 cm ID and 20 cm OD has an inner surface temperature 

of 300°C and an outer surface temperature of 100°C. The thermal conductivity of the cylinder material 

is 50 W/m K. Calculate the heat flow through the cylinder per linear metre. Also find the temperature 

half way between the inner and outer surfaces.

Solution

Known Hollow cylinder with specified temperatures, 

radii, and conductivity of material.

Find Heat rate. Temperature at midradius.

Assumptions (1) Steady-state radial conduction. (2) Constant 

thermal conductivity.

Analysis Heat transfer per unit length

2 ( )

ln( / )

2 (50 W/mK)(300 100)°C or K

10 cm
ln

5 cm

i o

o i

k T TQ

L r r

p

p

-
=

-
=

Ê ˆ
Á ˜Ë ¯

= 90647.2 W/m = 90.65 kW/m (Ans.)

 The radius halfway between inner and outer surfaces,

(5 10) cm
7.5 cm

2 2

i or r
r

+ +
= = =

 Radial temperature distribution is determined to be

 or 

2 ( ) 2 ( ) ln( / )

ln( / ) ln( / ) ln( / )

( ) ln( / )

ln( / )

i o i i i

o i i i o o i

i o i
i

o i

kL T T kL T T T T r r
Q

r r r r T T r r

T T r r
T T

r r

p p- - -
= = fi =

-

-
= -

 or 
ln(7.5/5)

300°C (300 100)°C
ln(10/5)

T = - - = 183°C (Ans.)
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 Compute the rate of radial heat flow from the blading periphery to the centre for 

a gas-turbine rotor as shown in the figure. The dimensions are as follows:

R = 25 cm, x
0
 = 2 cm, x

c
 = 7 cm

 The thermal conductivity of the material is 37 W/m K. The temperatures are 600°C at r
2
 = R = 

25 cm, and 330°C at r
1
 = 5 cm.

Solution

Known Heat flows radially inwards from the periphery of a gas turbine rotor blade to the centre 

of the rotor disc.

Find Heat flow rate, (W)Q .

Assumptions (1) Steady state conditions. (2) Constant properties. (3) One-dimensional heat conduction. 

(4) Only conduction heat transfer is considered.

Analysis While cooling of a gas-turbine rotor is essentially by gas convection, conduction cooling 

is also present. Heat flow is in a radial inward fashion from the blading periphery to the 

centre of the rotor disc. It is then dissipated at the centre along the axle through conduction.

 Referring to the schematic, let

  x
c
 = Thickness of the rotor disc at the centre (r = 0)

  x
0
 = Thickness of the rotor disc at the periphery (r = R).

  x = Thickness of the rotor disc at a radius r

 From the geometry of the rotor disc,

 or 

0 0

0

or =

where =

c c c
c

c
c

x x x x x x
x x r

r R R

x x
x x pr p

R

- - -
= -

-
= - (A)

 Rate of radial heat flow is given by

  
2

(2 ) or
dT dr k

Q k rx dT
dr rx Q

p
p= =

 From (A): 
2 2

1 1

2

( )

r r T T

cr r T T

dr k
dT

r x pr Q

p
= =

= =

=
-Ú Ú
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 But 
2

1

2 1

1 2

( )1
ln

( ) ( )

r

c

c c cr

r x prdr

r x pr x r x pr

-
=

- -Ú

 Hence, 12
2 1

1 2

2 1
( ) ln c

c c

x prrk
T T

Q x r x pr

p Ê ˆ-
- = Á ˜-Ë ¯

 Heat flow rate from blade periphery to centre is

  

2 1

12

1 2

2 ( )

( )
ln

( )

c

c

c

x k T T
Q

x prr

r x pr

p -
=

-
-

 With 0 (7 2) cm

25 cm

cx x
p

R

- -
= = = 0.2, the heat flow rate is

  
2 (0.07 m)(37 W/mK)[(600 330)°C]

0.25 m(0.07 0.2 0.05) m
ln

0.05 m(0.07 0.2 0.25) m

Q
p -

= =
È ˘- ¥
Í ˙- ¥Î ˚

1622.5 W (Ans.)

Comment The temperature gradient in the radial direction, 
dT

dr
 is taken as positive because in this 

case, as r increases, T also increases. Heat flows from the higher temperature to the lower 

temperature, i.e., from the blade periphery to the centre of the rotor disc.

 A pipe having an outer diameter of 300 mm is insulated by a material of thermal 

conductivity of 0.45 W/m °C. The insulation of outside diameter 600 mm due to restriction of space, is 

placed with an eccentricity of 50 mm. Determine the heat loss for a length of 1 m if the inner and outer 

surfaces are at temperatures of 270°C and 40°C, respectively.

Solution

Known An insulated pipe with specified eccentricity loses heat to the surroundings.

Find Heat loss per m length.
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Assumptions (1) Steady-state conditions. (2) Constant thermal conductivity. (3) Isothermal surfaces.

Analysis Heat-loss rate is given by

2 ( )

ln /

i okL T T
Q

A B

p -
=

 where A = 2 2 2 2( ) ( )o i o ir r e r r e+ - + - -

 and B = 2 2 2 2( ) ( )o i o ir r e r r e+ - - - -
 Substituting the numerical values,

A = 2 2 2 2(0.3 0.15) 0.05 (0.3 0.15) 0.05+ - + - -
   = 0.44 721 + 0.14142 = 0.58863

  B = 0.44 721 – 0.14142 = 0.30579

 Hence, heat loss per metre length is

  
2 (0.45 W/m°C)(1 m)(270 40)°C

0.58863
ln

0.30579

Q
p -

= = 993W (Ans.)

(I) Long Cylinder Bounded by Fixed Fluid Temperatures

 Determine the heat-transfer rate between two fluids separated by a copper pipe 

3 mm thick, 20 mm OD and 1.5 m long, if the inner fluid (water) temperature is 15°C and the outer 

fluid (steam) temperature is 100°C. The water-side coefficient is 1200 W/m2 K, the steam-side coefficient 

is 10 000 W/m2 K, and the thermal conductivity of copper is 300 W/m K. Determine the log mean area 

and the arithmetic mean area of the conducting surface and show that the arithmetic mean area can be 

used in place of log mean area.

Solution

Known A hollow pipe with convective boundaries.

Find Heat-transfer rate; Log mean area, and arithmetic mean area.
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Assumptions (1) Steady-state, one-dimensional (radial) conduction. (2) Constant thermal conductivity. 

(3) Uniform convection coefficient.

Analysis The log mean area,

 LMA or 
2 ( )

ln ln

o i o i
m

o o

i i

A A L r r
A

A r

A r

p- -
= =

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

 where 
10

ln ln 0.3567
7

o

i

r

r

Ê ˆ= =Á ˜Ë ¯

\
3(2 )(1.5 m)(10.7 10 m)

0.3567
mA

p -¥
= = 2

0.079 m (Ans.)

 The heat-transfer rate,

2 ( ) (2 )(1.5 m)(100 15)°C

1 1 1 1 10 1 1
ln ln

300 7 (10000)(0.01) (1200)(0.017)

6151.1 W or 6.15 kW

i o

o

i o o i i

L T T
Q

r mK

k r h r h r W

p p- -
= =

Ï ¸+ + + +Ì ˝
Ó ˛

=

 The arithmetic mean area,

  av

( )
2

2 2

o i o iA A r r
A Lp

+ +
= =  = p(1.5 m)(0.017 m) = 0.08 m2 ª 0.079 m2

 Hence, the arithmetic mean area can be used instead of log mean area. (Ans.)

Comment If (A
o
/A

i
) < 2, i.e., r

o
/r

i
, LMA or A

m
 can be approximated as arithmetic mean area. In this 

case, 10 mm
1.43( 2)

7 mm

o o

i i

A r

A r
= = = <

 A 100 mm diameter pipe carrying a hot chemical at 250°C is covered with two 

layers of insulation, each 50 mm thick. The length of the pipe is 5 m. The outer-surface temperature 

of the composite is 35°C. The rate of heat loss through the pipe is 270 W. If the thickness of the outer 

insulation is increased by 25%, the heat loss is reduced to 260 W. Calculate the thermal conductivities 

of the two insulating materials.

Solution

Known A pipe equipped with two insulating layers, prescribed dimensions and extreme surface 

temperatures. Outer insulation thickness increased by 25%. Heat loss with and without 

increase in insulation thickness.

Find Thermal conductivities of insulating materials.

Assumptions (1) Steady-state radial heat conduction. (2) Constant properties. (3) End surface temperatures 

are same in both cases.

Analysis Case I: Heat-transfer rate,

32

1 1 2 2

1 1
ln ln

2 2

i o
I

T T
Q r

rr

k L r k L rp p

-
=

+

32

1 1 2 2

2 ( )1 1
ln ln i o

I

r T Tr

k r k r Q

p -
+ =
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 or 
1 2

1 0.10 1 0.15 2 (250 35)(5)
ln ln

0.05 0.10 270k k

p -
+ =

 or 
1 2

1 1
ln 2 ln 1.5 215

k 27k

p
+ = ¥ (A)

 Case II: 
1 2

1 0.10 1 0.1625 2 (250 35)(5)
ln ln

0.05 0.10 260k k

p -
+ =

 or 
1 2

1 1
ln 2 ln 1.625 215

26k k

p
+ = ¥ (B)

 Subtracting (A) from (B), one gets

2 2

1 1 1 0.08
215 [ln 1.625 ln 1.5] or 0.96217

26 27 k k
p

È ˘- = - =Í ˙Î ˚

\ 2

0.08

0.96217
k = = 0.083 W/mK (Ans.)

 From Eq. (A): 
1

1 1
ln 2 ln 1.5 215

k 0.083 27

p
+ = ¥

 or 
1

1
0.693 4.8766 25.016

k
¥ + =

\ 1

0.693 0.693

25.016 4.8766 20.14
k = =

-
= 0.0344 W/mK

(Ans.)

 An electrical heating element is shrunk in a 

hollow cylinder of amorphous carbon (k = 1.6 W/m K) as shown in 

the adjoining figure. The outer surface of carbon is in contact with 

air at 20°C. The convection heat-transfer coefficient is 65 W/m2K.

Determine the maximum allowable heat generation rate per metre 
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length if the maximum temperature of carbon is not to exceed 200°C. The heating element itself may be 

assumed to be isothermal.

Solution

Known A hollow cylinder, electrically heated, of prescribed dimensions. Maximum permissible 

temperature, ambient air temperature and convection coefficient.

Find Maximum permissible electrical heating (W/m).

Assumptions (1) Steady-state, one-dimensional conduction. (2) The resistance to heat transfer within the 

heating element is negligible. (3) Constant thermal conductivity.

Analysis Heat generated by electrical heating is transferred out by conduction to outer surface of 

the cylinder and dissipated by convection to ambient air. The thermal circuit is shown in 

the schematic.

Rate of heat transfer, overall 1

total cond conv

T T T
Q

R R R

D -
= =

+

Conduction resistance, per m length,

2
cond

1

1 1 1 cm
ln ln 0.06895 K/W

2 2 (1.6 W/mK)(1 m) 0.5 cm

r
R

kL rp p
= = =

Convection resistance, per m length,

conv 2
2

1 1
0.244 85 K/W

(2 ) (65 W/m K)(2 0.01 m 1 m)
R

h r Lp p
= = =

¥ ¥

Total thermal resistance,

R
total

 = 0.068 95 + 0.244 85= 0.3138 K/W

Hence, the maximum heat-generation rate is

(200 20)°C or

0.3138 K/W

K
Q

-
= = 573.6 W (Ans.)
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(J) Composite Cylinders Bounded by Fixed Boundary Temperatures

 A steel pipe with 50 mm OD is covered with a 6.4 mm asbestos insulation (k = 

0.166 W/m K) followed by a 25 mm layer of fibre glass insulation (k = 0.0485 W/m K). The pipe wall 

temperature is 393 K and the outside insulation temperature is 311 K. Calculate the interface temperature 

between the asbestos and fibre glass.

Solution

Known A steel pipe covered with asbestos and fibre glass insulation loses heat by conduction.

Find Interface temperature, T
2
(°C).

Assumptions (1) Steady-state, one-dimensional conduction. (2) Constant properties. (3) No contact 

resistance.

Analysis The rate of heat loss is, overall 1 3 1 2

1 2 1t

T T T T T
Q

R R R R

D - -
= = =

S +

 where R
1
 and R

2
 are the thermal resistances due to asbestos and fibre-glass insulations 

respectively. T
2
 is the interface temperature.

 Therefore 1 3 1 2 2

1 2 1 1

1
T T R R R

T T R R

- +
= = +

-
(A)

 Per unit length: 2
1

1 1

1 1 31.4 mm
ln ln 0.218 53 K/W

2 2 (0.166 W/ mK) 1 m 25 mm

r
R

k L rp p
= = =

¥

\

3
2

2 2

2

1

1 1 56.4 mm
ln ln 1.92187 K/W

2 2 (0.0485 W/mK) (1 m) 31.4 mm

1.92187 K/W
8.7944

0.21853 K/W

r
R

k L r

R

R

p p
= = =

¥

= =
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 Substituting in Eq. (A), we have, 
2

393 111

393 T

-
-

 = 1 + 8.7944 = 9.7944

 Hence, the interface temperature, T
2
 = 393 K – 

(393 111) K

9.7944

-
 = 384.63 K (Ans.)

 Calculate the net conduction 

resistance for the arrangement shown in the adjoining 

figure:

 Given: Pipe material : Stainless steel (k
o
 = 14.9 W/m K)

 Inner diameter of pipe = 20 mm

 Outer diameter of pipe = 25 mm

 Radius of insulation 1 = 15 mm; k
1
 = 0.05 W/m K

 Radius of insulation 2 = 18 mm; k
2
 = 0.10 W/m K

 Radius of insulation 3 = 20 mm; k
3
 = 0.15 W/m K

 Radius of insulation 4 = 25 mm; k
4
 = 0.20 W/m K

Solution

Known A pipe is provided with four insulations in 

a prescribed arrangement.

Find Net conduction resistance, R
tot

(k/W).

Assumptions (1) Steady-state, one-dimensional conduction. (2) Constant properties.

Analysis The individual thermal resistances are

Insulation Radius (mm) Thermal conductivity (W/m K) Thermal resistance (K/W)

1 r
1
 = 15 k

1
 = 0.05

1
1

1

2
ln

o

r
R

k L rp
=

2 r
2
 = 18 k

2
 = 0.10

2
2

2

2
ln

o

r
R

k L rp
=

3 r
3
 = 20 k

3
 = 0.15

3
3

3

2
ln

o

r
R

k L rp
=

4 r
4
 = 25 k

4
 = 0.20

4
4

4

2
ln

o

r
R

k L rp
=
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1
ln

2

o
o

i

r
R

kL rp
=

 Resistances R
1
, R

2
, R

3
, and R

4
 are in parallel. The area in each case is one fourth of the 

total area.

 Net conduction resistance, 

1

tot
1 2 3 4

1 1 1 1
oR R

R R R R

-
È ˘= + + + +Í ˙
Î ˚

31 12.5
ln 2.3835 10 K/W

2 14.9 1 10
oR

p
= = ¥

¥ ¥

31 2 4

1 2 3 4 1 2 3 4

1 1 1 1 1

2 ln / 2 ln / 2 ln / 2 ln /

0.05 0.10 0.15 0.20
1

15 18 20 252
ln ln ln ln

2.5 12.5 12.5 12.5

[0.274 24 0.274 24 0.31915 0.288 54] 1.816
2

e o o o o

k Lk L k L k L

R R R R R r r r r r r r r

pp p p

p

p

È ˘ È ˘
= + + + = + + +Í ˙ Í ˙

Î ˚ Î ˚
È ˘= ¥ + + +Í ˙
Í ˙
Î ˚

= + + + =

\ R
tot

 = R
o
 + R

e
 = (2.3835 ¥ 10–3) + [1.816]–1 = 0.553 kW (Ans.)

(K) Composite Cylinders Bounded by Fixed, Fluid Temperatures

 A submarine has a 25 mm thick stainless steel (k = 14.9 W/m °C) wall insulated 

on the inside with a 37.5 mm thick layer of PUF (polyurethane foam) (k = 0.026 W/m °C). The convection 

heat-transfer coefficient on the inside is 20 W/m2°C. At full speed, the outside heat-transfer coefficient 

is 750 W/m2°C. The submarine can be approximated as a cylindrical system of 9 m diameter and 72 m 

long. If the sea water is at 5°C, at what rate should the heat be supplied (in kJ/h) to the inside air to 

maintain it at 22°C. As a first approximation, neglect heat transfer through the ends.

Solution

Known A composite cylinder with convective boundaries.

Find Rate of heat loss, Q (kJ/h).
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Assumptions (1) Steady-state, one-dimensional conduction. (2) Constant properties and uniform heat-

transfer coefficients. (3) Heat transfer through the ends is neglected.

Analysis The rate of heat transfer in the radial direction is, overall

th

T
Q

R

D
=

S

 where the overall temperature difference, DT
overall

 = 22 – 5 = 17°C and the total thermal 

resistance, SR
th
 = R

conv, 1
 + R

cond, 1
 + R

cond, 2
 + R

conv, 2

 Let us first calculate the individual thermal resistances.

1
6

conv,1 2
1 1

62
cond,1

1 1

63
cond,2

2 2

1
20 2 4.4375 m 72 m 24.907 10 C/W

(2 ) m C

1 1 4.475 m
ln ln 715.45 10 C/W

2 2 (0.026 W/m C)(72 m) 4.4375 m

1 1 4.5 m
ln ln 0.8265 10

2 2 (14.9 W/m°C)(72 m) 4.475 m

W
R

h r L

r
R

k L r

r
R

k L r

p
p

p p

p p

-

-

-

È ˘= = ¥ ¥ ¥ = ¥ ∞Í ˙∞Î ˚

= = = ¥ ∞
∞

= = = ¥

2 1 6
conv,2

2 3

C/W

1
[(750 W/m °C)(2 4.5 m 72 m)] 0.655 10 C/W

(2 )
R

h r L
p

p
- -

∞

= = ¥ ¥ = ¥ ∞

\ Total thermal resistance,

SR
th
 = [24.907 + 715.45 + 0.8265 + 0.655] (10–6°C/W) = 741.84 ¥ 10–6 °C/W

 Therefore, the heat-transfer rate from the interior air to the sea water is

6 3 6

17°C 1 J/s 3600 s 1 kJ 17 3.6 kJ

1 W 1 h h741.84 10 °C/W 10 J 741.84 10
Q

- -

¥ Ê ˆ= = =Á ˜Ë ¯¥ ¥
82.5 kJ/h (Ans.)

Comment Note the relative magnitudes of different resistances. The conduction resistance through the 

insulation is the dominant resistance. The contributions of submarine wall resistance and 

the sea water side convection resistance are comparatively much less significant.

 Steam is flowing through a 2 m long, thin-walled, 100 mm diameter pipe at a 

pressure of 25 bar. The pipe is equipped with an insulation blanket that is made up of two materials A

and B. The diameter of the insulated pipe is 200 mm with the upper half comprising material A(k
A
 = 

1.25 W/m °C) and the lower half material B(k
B
 = 0.25 W/m °C). The entire outer surface is exposed to 

24°C air with a convection coefficient of 30 W/m2°C. Determine (a) the total heat-dissipation rate from 

the pipe, and (b) the outer surface temperatures of materials A and B. (c) Show the equivalent thermal 

circuit representing the steady state heat transfer situation.

Solution

Known Two semicylindrical shells of different materials comprise an insulation blanket over a pipe 

carrying steam and exposed to ambient air.

Find (a) Heat-loss rate, Q (W). (b) Outer surface temperatures of the two insulating materials 

A and B, T
2A

 and T
2B

 (°C). Thermal circuit representation.
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Assumptions (1) Steady operating conditions. (2) One-dimensional (radial) conduction) (3) Constant 

properties. (4) Negligible contact resistance.

Analysis The equivalent thermal circuit of the specified heat transfer situation is represented below:

Let us first evaluate the various thermal resistances.

2
cond( )

1

2
cond( )

1

conv( ) conv( )2
2

1 1 100 mm
ln ln 0.08825°C/W

(1.25 W/m°C)(2 m) 50 mm

1 1 100 mm
ln ln 0.4413°C/W

(0.25 W/m°C)(2 m) 50 mm

1 1
0.05305°C/W

( ) (30 W/m C)( 0.1 m 2 m)

A
A

B
B

A B

r
R

k L r

r
R

k L r

R R
h r L

p p

p p

p p

= = =

= = =

= = = =
∞ ¥ ¥

Note that the above four resistances are for half cylinder.

Total heat-dissipation rate is, A BQ Q Q= +
Heat-transfer rates through upper half and the lower half of the cylindrical shell are

and

1

cond( ) conv( )

1

cond( ) conv( )

(224 24)°C
1415.4 W

(0.08825 0.05305)°C

(224 24)°C
404.6 W

(0.4413 0.05305)°C/W

A
A A

B
B B

T T
Q

R R

T T
Q

R R

- -
= = =

+ +

- -
= = =

+ +

Total heat loss, Q  = 1415.4 + 404.6 = 1820 W (Ans.) (a)
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 The outer surface temperatures of the two insulations are determined as follows:

T
1
 – T

2A
 = AQ R

cond(A)

 or T
2A

 = 224°C – (1415.4 W) (0.08825°C/W) = 99.1°C (Ans.) (b)

 Similarly, T
1
 – T

2B
 = BQ R

cond(B)

 or T
2B

 = 224°C – (404.6 W) (0.4413°C/W) = 45.5°C (Ans.) (b)

Comment The inner-surface temperature of both insulating materials A and B is equal to the saturation 

temperature at 25 bar which is 224°C (from steam tables). Thin-walled pipe implies 

negligible pipe wall (conduction) resistance and very high convection coefficients associated 

with condensing steam implies negligible convection resistance (T
1
 or T

sat
 = T

1
).

  This example illustrates the presence of two resistances R
A
 and R

B
 connected in parallel 

in a composite cylinder. Total heat-transfer rate can also be calculated by first determining 

the equivalent thermal resistance.

R
A
 = 0.08825 + 0.05305 = 0.1413°C/W and R

B
 = 0.4413 + 0.05305 = 0.4943°C/W

\
1

eq
eq

1 1 1 1 1
or 0.1099 C/W

0.1413 0.4943A B

R
R R R

-
È ˘= + = + = ∞Í ˙Î ˚

 Hence, 1

eq

(224 24)°C
1820 W

0.1099 C/W

T T
Q

R

- -
= = =

∞

 Steam having a quality of 98% at a pressure of 1.5 bar, is flowing at a velocity 

of 1 m/s, through a steel pipe (k = 43 W/m K) 2.7 cm OD and 2.1 cm ID. The heat-transfer coefficient 

at the inner surface, where condensation occurs is 567 W/m2 K. Scale formation at the inner surface 

contributes a unit thermal resistance of 0.18 m K/W. Estimate the heat loss per metre length of the pipe 

if (a) the pipe is bare, (b) the pipe is covered with a 5 cm thick layer of 85% magnesia insulation (k = 

0.061 W/m K). For both cases, assume that the heat-transfer coefficient at the outer surface is 11 W/m2

K, and that the environmental temperature is 20°C.

 Also estimate the change in quality per 3 m length of pipe in both cases.

 At P = 1.5 bar : T
sat

 = 111.35°C = T
i
, h

fg
 = 2226.0 kJ/kg, v

g
 = 1.1594 m3/kg

Solution

Known A steam pipe with scale formation on inside surface loses heat without and with lagging 

(insulation).

Find (a) Heat loss from bare pipe. (b) Heat loss from insulated pipe. (c) Change in quality of 

steam per 3 m length for both bare and lagged pipe.

Assumptions (1) Steady-state conditions exist. (2) One-dimensional (radial) heat conduction. (3) Radiation 

heat transfer from outside surface of the pipe is negligible. (4) Constant properties.

Analysis (a) Heat-transfer rate, 
th

i oT TQ

L R

-
=

S
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Total thermal resistance (without insulation) per unit length is

th scale

2 2

ln
1 1

2 2 2

2.7 cm
ln

2.1 cm1 1
0.18 mK/W

2 (43)(0.021 m)(567 W/m K) (0.027 m)(11 W/m K)

o

i

i i o o

r

r
R R

rh k r hp p p

pp p

S = + + +

Ê ˆ
Á ˜Ë ¯

= + + +

= 0.026733 + 0.00093 + 1.07175 + 0.18 = 1.2794 K/W

Heat loss per metre length is,

(111.35 20)K

1.2794 mK/W

Q

L

-
= = 71.4 W/m (Ans.) (a)

Total thermal resistance (with insulation) is,

ins

th
ins

12.7 cm
ln ln

2.7 cm
1.2794 1.2794

2 2 (0.061 W/mK)

1.2794 4.0398 5.3192 K/W

o

D

D
R

kp p
S = + = +

= + =

Heat-loss rate per m length of the pipe with insulation is,

(111.35 20)K

5.3192 K/W

Q

L

-
= = 17.2 W/m (Ans.) (b)

Change in quality for bare pipe: Mass-flow rate of steam,

2

4

i s i s i s
s

s g g

AV AV D V
m

v v v

p
= = =

x x

where V
s
 is the velocity of steam.

\
2

3

3

(0.021 m) (1 m/s)
0.305 10 kg/s or 0.305 g/s

4(0.98)(1.1594 m /kg)
sm

p -= = ¥
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 Mass of steam condensed in 3 m length of pipe,

3

3

(71.4 W)(3 m)
0.0982 10 kg/s or 0.0982 g/s

(0.98)(2226 10 J/kg)fg

Q
m

h

-= = = ¥
¥x

 Percentage decrease in steam quality

0.305 0.0982
(100)

0.305

-Ê ˆ= =Á ˜Ë ¯
67.8% (Ans.) (a)

 Change in quality for insulated pipe:

3

3

(17.2 W)(3 m)
0.02365 10 kg/s or 0.02365 g/s

(0.98)(2226 10 / )
sm

J kg

-= = ¥
¥

 Percentage decrease in steam quality

0.305 0.02365
(100)

0.305

-Ê ˆ= =Á ˜Ë ¯ 92.2% (Ans.) (b)

(L) Critical Radius of Insulation (Cylinder)

 A Bakelite coating (k = 1.4 W/m °C) is to be used with a 10 mm diameter circular 

rod whose surface temperature is maintained at 200°C by passing electrical current through it. The outer 

surface of the rod is exposed to a convection process characterized by a fluid at a temperature of 30°C 

and a heat transfer coefficient of 140 W/m2°C.

 Calculate (a) the critical radius of insulation, (b) the heat-loss rate per unit length of the bare rod, 

(c) the heat-transfer rate per unit length from the coated rod corresponding to critical radius of insulation, 

and (d) the thickness of insulation required to reduce the heat dissipation rate to 550 W/m. (e) Sketch 

the relationship between r
o
 and Q/L .

Solution

Known A cylindrical rod with bakelite insulation dissipating heat in a convective environment.

Find (a) r
cr
(mm), (b) bare( / ) (W/m)Q L , (c) crit ins( / ) (W/m)Q L ,

 (d) (r
o
 – r

i
)(mm) for ( / )Q L  = 550 W/m, (e) Graph showing r

o
 vs /Q L .
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Assumptions (1) Steady operating conditions. (2) One-dimensional (radial) heat conduction. (3) Contact 

thermal resistance and radiation effects are negligible. (4) Constant thermal conductivity 

and uniform heat-transfer coefficient.

Analysis (a) For a circular rod, the critical radius of insulation is

3

2

1.4 W/m K 10 mm

1 m140 W/m K
cr

k
r

h

Ê ˆ
= = =Á ˜Ë ¯

10 mm (Ans.) (a)

(b) Heat-loss rate from the bare (uninsulated) rod per unit length is

bare( / )Q L  = h(2p r
i
)(T

i
 – T ) = (140 W/m2°C) (2p ¥ 0.005 m)(200 – 30)°C

= 747.7 W/m (Ans.) (b)

(c) Heat-dissipation rate from the insulated (coated) rod with r
o
 = r

cr
 is the maximum heat 

transfer rate

Per unit length: 

overall
max crit ins

cond conv

2 3

( / ) ( / )
ln( / ) 1

2 (2 )

2 ( ) 2 (200 30)°C

ln( / ) ln(10 mm/5 mm) 11

1.4 W/m°C (140 W/m °C)(10 10 m)

i

o i

o

i

cr i

cr

T T T
Q L Q L

r rR R

k h r

T T

r r

k hr

p p

p p

-

D -
= = =

+ +

- -
= =

++
¥

= 883.2 W/m (Ans.) (c)

(d) For
2 ( )

550 W/m
ln( / ) 1

i

o i

o

T TQ

r rL

k hr

p -
= =

+

or
2 3

ln( mm/5 mm) 1 2 (200 30) C

1.4 W/m°C 550 W/m(140 W/m C)( 10 m)

o

o

r

r

p
-

- ∞
+ =

∞ ¥

or
RHS

LHS

ln( /5) 1
1.942

1.4 0.14

o

o

r

r
+ =

To solve for r
o
, we guess values of r

o
 to satisfy the above equality.

  At r
o
 = 55 mm, LHS = 1.7128 + 0.1299 = 1.8427

  At r
o
 = 65 mm, LHS = 1.8321 + 0.1099 = 1.942 (= RHS)

Hence, r
o
 = 65 mm

The required thickness of insulation is

r
o
 – r

i
 = (65 – 5) mm = 60 mm (Ans.) (d)

(e) The following graph illustrates the effect of varying the outer radius of insulation (r
o
)

on the rate of heat loss per metre length ( / )Q L .
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Comments It should be noted that for values of r
o
 other then r

cr
, the values of ( / )Q L  will be smaller.

  Furthermore, the sketch showing ( / )Q L  vs r
o
 is only qualitative since in reality, the 

convection coefficient h is a function of both r
o
 and (T

o
 – T ), and the thermal conductivity 

k is a function of temperature.

 A steel pipe of 8 cm outer diameter carries saturated steam at a pressure of 

2.5 MPa. A 4 cm thick layer of insulation (k = 0.045 W/m °C) is provided. The surface heat-transfer 

coefficient is 10 W/m °C and the ambient temperature is 12°C. The steam-side convection resistance and 

the conduction resistance of pipe material (steel) may be neglected. (a) Estimate the heat-loss rate per 

metre length of pipe. (b) What will be the thickness of the second insulation (k = 0.65 W/m °C) to be 

added to reduce the heat transfer rate by 50 per cent?

Solution

Known A steam pipe is provided with insulation to reduce heat dissipation.

Find (a) Heat loss per m length, ( / )Q L  (W/m). (b) Thickness of second layer of insulation to 

reduce heat loss by a factor of 2.

Assumptions (1) Steady-state conditions. (2) One-dimensional (radial) heat conduction. (3) Constant 

properties. (4) Steam-side convection resistance and pipe wall resistance are neglected.

Analysis (a) With one insulation:

 The rate of heat loss per unit pipe length is given by, overall 1 2

total cond,1 conv

T

R

T T
Q

R R

D -
= =

+

 Note that R
conv, 1

(steam side) and R
cond,pipe

 are neglected.

 Hence, T
1
 = T

1
 = T

sat @ 2.5 MPa
 = 224°C    (from Steam Tables)

\ 1 2

2

1 1 2 2

1 1
ln

2 (2 )

a

T T
Q

r

k L r h r Lp p

-
=

Ê ˆ +Á ˜Ë ¯
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or 1 2

2

2
1 1 2 2

2 ( ) 2 (224 12)°C

1 1 1 8 cm 1
ln ln

0.045 W/m°C 4 cm (10 W/m °C)(0.08 m)

aQ T T

rL

k r h r

p p- -
= =

Ê ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯

= o

2 212 C

16.653 m C/W

p ¥ ∞
 = 80.0 W/m (Ans.) (a)

(b) Two layers of insulation: Heat loss is reduced by 50%

\ bQ

L
 = 0.5 ¥ 80.0 = 40.0 W/m

or

1 2

1 2

32

1 1 2 2 3

32

1 2 2 3

1 1 1
ln ln

2 2 (2 )

2 ( )
40 W/m

1 1 1
ln ln

b

o

b

o

T T
Q

rr

k L r k L r h r L

T TQ

rrL

k r k r h r

p p p

p

-
=

Ê ˆÊ ˆ + +Á ˜ Á ˜Ë ¯ Ë ¯

-
= =

Ê ˆÊ ˆ + +Á ˜ Á ˜Ë ¯ Ë ¯

Hence,
3

o 2

3

2 (224 12)°C
40 W/m

( )1 8 cm 1 1
ln ln

4 cm 0.065 80.015 W/m C 10 W/m °C

1 m
(cm)

100 cm

r cm

cm

r

p -
=

Ê ˆ Ê ˆ
+ +Á ˜ Á ˜Ë ¯ Ë ¯ Ï ¸

Ô Ô
Ì ˝Ê ˆ¥ ¥Ô ÔÁ ˜Ë ¯Ó ˛

or 3

3

2 212 1 1 100
ln 2 ln

40 0.045 0.065 8 10

r

r

p ¥
= + +

or
3

3

ln( /8)10

0.065

r

r
+  = 33.3 – 15.4 = 17.9
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 The trial-and-error solution is required as tabulated below:

r
3

(cm) LHS RHS

20 14.6 17.9

30 20.67 17.9

25 17.93 17.9

 Hence, r
3
 = 25 cm

\ Thickness of second insulation = r
3
 – r

2
 = (25 – 8) cm = 17 cm (Ans.) (b)

 An electrical wire, 1 mm in diameter, dissipates 100 W/m in an air stream at 

100°C. An electrical insulation is added to the wire until the outer diameter becomes 1.5 mm. Calculate 

the temperature of the wire with and without insulation. Neglect the temperature variations within the 

wire and assume that the heat transfer coefficient is 60 W/m2K. The thermal conductivity of the insulating 

material is 0.2 W/m K.

Solution

Known An electrical wire dissipates heat to the surrounding air. It is provided with insulation for 

the same heat dissipation rate.

Find Temperature of wire with and without insulation.

Assumptions (1) Steady operating conditions prevail. (2) Constant thermal conductivity and uniform heat 

transfer coefficient. (3) Radial heat conduction. (4) Uniform temperature throughout the 

wire.

Analysis Without insulation:

0 0
 Energy balance: in out gen st

No energy Steady state
input

E E E E- + =

\ out genE E=
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 Hence, the heat generated inside the electrical wire ( genE ) is dissipated to the ambient air 

through convection from the bare wire surface.

\ conv
conv 1/ (2 )

i i

i

T T T T
Q Q

R h r Lp

- -
= = =

 Therefore, the temperature of wire without insulation is

,without 2 3

1 1
100°C + (100 W/m)

(2 ) 60 W/m K 2 0.5 10 m
i

i

Q
T T

L h rp p -
Ê ˆ Ê ˆ= + =Á ˜ Á ˜Ë ¯ Ë ¥ ¥ ¥ ¯

= 100[1 + 5.305] = 630.5°C (Ans.)

 With insulation:

 Heat-dissipation rate, overall

total cond conv

iT T T
Q

R R R

D -
= =

+

 where cond conv

1 1
ln and

2 (2 )

o

i o

r
R R

kL r h r Lp p
= =

\ 

2 3

1 1
ln

2 (2 )

1 0.75 mm 1
(100 W/m) ln

2 (0.2 W/mK) 0.5 mm (60 W/m K)(2 0.75 10 )

(100) (0.3227 3.5368] 386°C

o
i

i o

rQ
T T

L k r h r

m

p p

p p -

È ˘- = +Í ˙
Î ˚

È ˘= +Í ˙¥ ¥Î ˚
= + =

 Hence, temperature of wire with insulation is 

T
i, with

 = 100 + 386 = 486°C (Ans.)

Comments The wire temperature is reduced from 630.5°C (without insulation) to 486°C (with 

insulation) for the same heat-dissipation rate since the total thermal resistance is decreased 

after providing insulation. The total (conductive plus convective) resistance progressively 

decreases with increase in the insulation till the critical radius of insulation is reached. We 

note that r
o, critical

 = 

3

2

0.2 W/mK 10 mm

1 m60 W/m K

Ê ˆ
Á ˜Ë ¯

 = 3.33 mm. In the present case, r
o
 = 0.75 mm 

which is less than r
o,critical

.

(M) Variable Thermal Conductivity (Cylinder)

 A 20 cm diameter pipe carrying steam is provided with 5 cm thick insulation whose 

thermal conductivity varies with temperature as k(T) = 0.062 (1 + 0.362 ¥ 10–2T) W/m °C where T is in 

°C. The temperatures at the pipe surface and at the outer surface of the insulation are 275°C and 65°C 

respectively. Calculate (a) the rate of heat transfer per metre length of the pipe, (b) the temperature at 

the mid-thickness of insulation, and (c) the temperature gradients at the pipe surface, the mid-thickness 

of insulation, and the outside surface of the insulation. Sketch the temperature profile.

Solution

Known A pipe is wrapped with insulation whose thermal conductivity varies with temperature.
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Find (a) /Q L  (W/m), (b) T
m
(°C), (c) 

dT

dr
 at r = 10 cm, r = 12.5 cm and r = 15 cm.

Assumptions (1) Steady-state conditions. (2) One-dimensional radial conduction. (3) Pipe-wall resistance 

is negligible.

Analysis (a) For a cylindrical layer, the heat-flow rate per unit length is 

2 ( )

ln( / )

i o

o i

k T TQ

L r r

p -
=

For linear variation of k (T), k is replaced by mean thermal conductivity determined from

k = k(T
m
) = 0.062[1 + 0.362 ¥ 10–2 T

m
]

where
1 275 65

( ) °C 170°C
2 2

m i oT T T
+Ê ˆ= + = =Á ˜Ë ¯

\ k
m
 = 0.062 (1 + 0.362 ¥ 10–2 ¥ 170) = 0.1002 W/m °C

\
2 0.1002 W/m°C (275 65)°C

15 cm
ln

10 cm

Q

L

p ¥ ¥ -
= =

Ê ˆ
Á ˜Ë ¯

326 W (Ans.) (a)

(b) We note that for variable thermal conductivity, the Fourier’s rate equation is

or

0
0

2 2
2

0

(1 )(2 ) or (1 )
(2 )

ln
2 2 2 2

i i

i

r r T T

r r T T

T

i i
Ti

dT Q dr
Q k bT rL bT dT

dr k L r

Q r bT b bT
T T T T

k L r

p
p

p

= =

= =

= - + = - +

È ˘È ˘ Ê ˆÊ ˆ= + = + - +Í ˙Á ˜ Á ˜Í ˙ Ë ¯ Ë ¯Î ˚ Î ˚

Ú Ú

With r = 0.125 m (at mid-thickness), k
o
 = 0.062, L = 1 m,

Q  = 326 W, r
i
 = 0.10 m, T

i
 = 275°C, and b = 0.00362, we have
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or

2 2
2

2 2

326 0.125 0.362 10
ln 275 275

2 0.062 1 0.10 2 2

186.74 411.88 or 225.14 0
2 2

bT
T

bT bT
T T

p

-È ˘Ê ˆ Ê ˆ¥
= + ¥ - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯¥ ¥ Î ˚

Ê ˆ
= - + + - =Á ˜Ë ¯

This is a quadratic equation that can be solved:

2

2

1 1 4( /2)( 225.14) 1 1 (2 0.00362 225.14)

2 /2 0.362 10

b
T

b -

- ± - - - ± + ¥ ¥
= =

¥ ¥

= 171.8°C (Ans.) (b)

(c) At r = r
i
 = 0.10 m, 

T
i
 = 275°C: k = 0.062 [1 + 0.00362 ¥ 275] = 0.1237 W/m °C

Temperature gradient,

326 W/m

(2 ) 0.1237 W/m°C 2 0.10 mi

dT Q

dr k r Lp p
= - = - = -

¥ ¥
4194°C/m (Ans.) (c)

At r = 0.125 m, T = 171.8 °C:

k = 0.125 [1 + 0.00362 ¥ 171.8] = 0.1006 W/m°C

\
326

0.1006 2 0.125

dT

dr p
= - = -

¥ ¥
4126°C/m (Ans.) (c)

At r = 0.15 m, T = 65°C:

k = 0.062 [1 + 0.00362 ¥ 65] = 0.0766 W/m °C

\
326

0.0766 2 0.15

dT

dr p
= - = -

¥ ¥
4516°C/m (Ans.) (c)

Temperature gradients are negative implying that with an increase in radius, the temperature 

decreases.

The temperature profile is sketched below:
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(N) Spherical Shell with Fixed Surface Temperatures

 A hollow sphere (10 cm ID and 30 cm OD) has an inner surface temperature of 

300°C and an outer surface temperature of 100°C. The thermal conductivity of the sphere material is 50 

W/m K. Calculate the heat flow through the sphere. Determine the temperature one fourth way between 

the inner and outer surfaces.

Solution

Known A hollow sphere with prescribed 

d imens ions ,  and  sur face 

temperatures.

Find Heat-transfer rate. Temperature at 

one fourth of thickness.

Analysis Heat flow through the sphere

4 ( )

1 1

(4 )(50 W/mK) (300 100)K

1 1 1

0.05 0.15 m

i o

i o

k T T
Q

r r

p

p

-
=

Ê ˆ
-Á ˜Ë ¯

-
=

Ê ˆ-Á ˜Ë ¯

= 9424.78 W or 9.425 kW (Ans.)

 The temperature distribution is written as

( )o i
o i i

o i

r r r
T T T T

r r r

-È ˘= - +Í ˙-Î ˚

 The value of r at one-fourth way of the inner and outer surfaces is

1
5 (15 5) 7.5 cm

4
r = + - =

 Temperature at this radius is,

\
0.15 0.075 0.05

(100 300)°C 300°C =
0.075 0.15 0.05

T
Ê ˆ-Ê ˆ= - +Á ˜ Á ˜Ë ¯ Ë - ¯

200°C (Ans.)

(O) Spherical Shell Bounded by Known Fluid Temperatures

 A 9 cm outer diameter orange is placed in a refrigerator in which the temperature 

of air is –4°C. The surface temperature of the orange is 17°C and the convection heat-transfer coefficient 

between the orange surface and the refrigerated air is 12 W/m2 K. The orange peel (k = 0.45 W/m K) is 

3 mm thick and the emissivity of the orange surface may be assumed as 0.7. Calculate the inside surface 

temperature of the orange peel.

Solution

Known An orange with specified emissivity is placed in refrigerated air.

Find Inner surface temperature of the orange peel, T
1
.
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Assumptions (1) Steady-state conditions. (2) Constant thermal conductivity. (3) Uniform heat-transfer 

coefficient.

Analysis Control surface energy balance at the outer surface of the orange yields:

in outE E=

 i.e., 
Heat transfer byconduction Heat dissipated by convection Heat lost by radiation

throughorange peel tosurroundingair tosurroundings

Ê ˆ Ê ˆ Ê ˆ
= +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

 or cond conv radQ Q Q= +

 or 2 2 4 41 2 1 2
)2 2 2 2 2 sur

2 1

4 ( )( )
(4 )( ) (4 ( )

k r r T T
h r T T r T T

r r

p
p e p s

-
= - + -

-

 or 4 41 1 2
2 2 2

2 2 1

( )
( ) ( )

( )

kr T T
h T T T T

r r r
e s

-
= - + -

-
     (since T

sur
ª T )

 Inner surface temperature of the orange peel is

[

4 42 12
1 2 2 2 2

1

2

2 8 2 4

4 4 4

( )
[ ( ) ( )]

4.5 cm (0.3 10 )
290.15 K

4.2 cm (0.45 W/m°C)

W/m K(290.15 – 269.15)K + 0.7(5.67 10 W/m K )12

(290.15 269.15 )K ]

r r r
T T h T T T T

kr

m

e s

-

-

-
= + - + -

Ê ˆ¥Ê ˆ= + Á ˜Á ˜Ë ¯Ë ¯

¥ ¥

+ -

= 292.47 K or 19.3°C (Ans.)

 A hemispherical dome at the top of a 7.5 m vertical kiln is fabricated from 

0.25 m thick layer of chrome brick (k = 2.0 W /m °C). The inside surface temperature of the dome is 

870°C and the ambient air is at 30°C. The surface heat-transfer coefficient is 10 W/m2 °C. (a) Calculate 

the outside surface temperature of the dome and the rate of heat loss from the kiln. (b) Determine the 

reduction in heat loss if a flat dome 0.25 m thick were to replace this dome of the same material with 

the kiln operating under the same conditions.
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Solution

Known A hemispherical dome loses heat to surrounding air by conduction and convection. Heat 

loss if (a) the dome is hemispherical, and (b) the dome is flat.

Find (a) T
o
(°C); Q (W). (b) Reduction in Q  if flat dome replaces hemispherical dome.

Assumptions (1) Steady-state, one-dimensional heat conduction. (2) Constant thermal conductivity and 

uniform heat transfer coefficient.

Analysis (a) Hemispherical dome: Control surface energy balance at the outside surface of the dome: 

cond convQ Q=

2 22 ( ) ( )
(2 )( ) or ( )

(1/ ) (1/ )

i o i o i o
o o o o

i o o i

k T T k T T rr
h r T T hr T T

r r r r

p
p

- -
= - = -

- -

Substituting the given values, one has

2 2

2.0 W/m°C(870 )°C 3.75 m 4.0 m

0.25 m

(10 W/m °C)(4.0 m) ( 30) C

o

o

T

T

- ¥ ¥
=

= - ∞

or 120 (870 – T
o
) = 160 (T

o
 – 30) or 280 T

o
 = (120 ¥ 870) + (160 ¥ 30)

Hence, the outer surface temperature of the hemispherical dome is

109200

280
oT = = 390°C (Ans.) (a)
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 Rate of heat loss,

2 2 2 2

3

1 kW
(2 )( ) 10 W/m C (2 4 m ) (390 30) C

10 W
o oQ h r T Tp p= - = ∞ ¥ - ∞

= 361.9 kW (Ans.) (a)

(b) Flat dome: Energy balance at the outer surface gives

( )
( )i o

o

T T
kA hA T T

L

-
= -

 where L is the thickness of the flat dome.

 Substituting proper values, one gets

 or 
(2.0 W/ m°C)(870 )°C

0.25 m

oT-

= (10 W/m2 °C) (T
o
 – 30)°C

 or 8 (870 – *
oT ) = 10 ( *

oT  – 30)

\ * 7260
403.3 C

18
oT = = ∞

 Rate of heat loss, 

* * 2 2 22( ) ( ) (10 W/m °C) 7.5 m (403.3 30)°C
44

o oQ hA T T h T TD
pp* Ê ˆÊ ˆ= - = - = = ¥ -Á ˜ Á ˜Ë ¯ Ë ¯

= 164.9 kW

 Percentage reduction in heat loss

* (361.9 164.9)
100 100

361.9

Q Q

Q

- -
= ¥ = ¥ = 54.4% (Ans.) (b)

(P) Composite Sphere with Fixed Boundary Temperatures

 The heat loss from the anterior chamber of the eye through the cornea varies 

significantly depending upon whether one wears a contact lens. The cornea and the lens constitute one 

third of the spherical surface area if the eye is considered a spherical system. The inner and outer fluid 

temperatures are 37 and 20°C, respectively. The inside layer of the cornea is at a radius of 10 mm 

while the thickness of the cornea and the contact lens are 2.5 and 3.5 mm, respectively. The thermal 

conductivities of cornea and contact lens are 0.35 and 0.80 W/m K, respectively. The inside and outside 

unit surface conductances are 10 and 5 W/m2 K, respectively. Assume steady-state conditions, and the 

same outside unit surface conductance with or without contact lens in place.

 Determine the heat loss from the anterior chamber of the eye with and without the contact lens in 

place and comment on your results.

Solution

Known An eye with a contact lens is represented as a composite sphere subjected to convection 

at both inside and outside surfaces.

Find Heat loss from anterior chamber of eye with and without contact lens.
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Radius (mm)
Thermal conductivity 

(W/m K)

Convection coefficient 

(W/m2K)KKK
Fluid temperature (°C)

r
1

r
2

r
3

k
1

k
2

h
i

h
o T

, i
T

, o

10 12.5 16.0 0.35 0.80 10 5 37 20

Assumptions (1) Steady-state conditions prevail. (2) Eye is considered as 1/3 sphere. (3) Convection 

coefficient, h
o
 is unaffected with or without contact lens. (4) Contact resistance is negligible.

Analysis Note that the eye is represented as 1/3 sphere. Hence, the surface areas are

2 2
1 3

4 4
,

3 3
i oA r A rp p= =  (with contact lens) and 2

2

4

3
oA rp=  (without contact lens)

Now, the rate of heat transfer = 
th

i oT T
Q

R

-
=

S

Total thermal resistance without and with contact lens in place are now determined:

Without contact lens:

th 2 2

3 3 1 1 3

4 (0.35) 0.01 0.01254 (0.01) (10) 4 (0.0125) (5)
R

pp p

È ˘È ˘S = + - +Í ˙Í ˙Î ˚Î ˚
= 238.73 + 13.64 + 305.58 = 557.95 K/W
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 With contact lens:

th 2

3 1 1 3
238.73 13.64 +

4 (0.80) 0.0125 0.016 4 (0.016) (5)
R

p p

È ˘È ˘S = + + -Í ˙Í ˙Î ˚Î ˚

= 238.73 + 13.64 + 5.22 + 186.51= 444.10 K/W

 Hence, the heat loss rates from the anterior chamber are

without

(37 20) K

557.95 K/W
Q

-
=  = 0.0305 W or 30.5 mW (Ans.)

with

(37 20) K

444.10 K/W
Q

-
=  = 0.0383 W or 38.3 mW (Ans.)

Comment We find that the heat loss from the anterior chamber increases by 
38.3 30.5

100
30.5

-Ê ˆ¥Á ˜Ë ¯
,

i.e., 25.6% when the contact lens is worn. This implies that the outer radius r
3
 = 0.016 m 

is less than the critical radius given by 
22 2 0.80

5o

k

h

¥
=  = 0.32 m.

(Q) Composite Sphere Bounded By Fluid Temperatures

 Hot gas at a constant temperature of 400°C is contained in a spherical shell (2000 

mm ID and 50 mm thick) made of steel (k
s
 = 19 W/m K). It is wrapped with two layers of insulation. The 

first layer is of mineral wool (k
m
 = 0.05 W/m K) and is 50 mm thick. The second layer is of asbestos (k

a

= 0.2 W/m K) and is also 50 mm thick. Calculate the steady rate at which heat will flow if the outside 

air is at a temperature of 30°C. Assume that the value of heat transfer coefficient on the inner surface of 

the steel shell is 30 W/m2 K and that on the outer surface of the insulation is 15 W/m2 K. In what way, 

the heat flow will get affected if the sequence of the insulations is changed?

Solution

Known Composite spherical shell with convective surfaces.

Find Heat-transfer rate. Effect of alternate placement of insulations.
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Assumptions (1) Steady-state conditions. (2) One-dimensional heat conduction. (3) No internal heat 

generation. (4) Constant properties. (5) Uniform heat-transfer coefficients.

Analysis Case I: 

( )

,1 ,2overall

th

2 2
1 1 2 2 2 3 3 3 41 4

2 2

4 ( )

1 1 1 1 1 1 1 1 1 1 1

4 400 30

1 1 1 1 1 1 1 1 1 1 1

19 1 1.05 0.05 1.05 1.1 0.2 1.1 1.1530(1) (15)(1.15)

I

i o

T TT
Q

R

k r r k r r k r rh r h r

p

p

-D
= =

Ï ¸È ˘ È ˘Ô ÔÈ ˘+ - + - + - +Ì ˝Í ˙ Í ˙Í ˙
Ô ÔÎ ˚ Î ˚ Î ˚Ó ˛

-
=

Ï ¸Ê ˆ Ê ˆ Ê ˆ+ - + - + - +Ì ˝Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Ó

Â

˛

4 370

1.1492

p ¥
= = 4045W (Ans.)

 Case II: If the sequence of insulations is changed, i.e., the first layer of insulation is of 

asbestos and the second one is of mineral wool, then

2 2

4 (400 30)

1 1 1 1 1 1 1 1 1 1 1

19 1 1.05 0.2 1.05 1.1 0.05 1.1 1.1530(1) (15)(1.15)

4 370

1.0932

IIQ
p

p

-
=

Ï ¸Ê ˆ Ê ˆ Ê ˆ+ - + - + - +Ì ˝Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Ó ˛

¥
= = 4253 W

 Thus, by wrapping a better insulating material (of lower thermal conductivity) next to the 

shell, as in the first case, the rate of heat loss is less than in the second case where the 

inferior insulation (asbestos) is next to the shell.

 Percentage increase in heat loss by changing the sequence of insulations is

(4253 4045)
100

4045

II I

I

Q Q

Q

- -
= ¥ = 5.15% (Ans.)

(R) Critical Radius of Insulation (Sphere)

A sphere of 2 cm outside diameter maintained at a uniform temperature T
i
 = 

225°C is exposed to an ambient air at T  = 25°C with a convection heat-transfer coefficient h =10 W/

m2 °C. Calculate the critical thickness of the insulation (k = 0.08 W/m°C) required to maximize the rate 

of heat loss while the sphere is maintained at T
i
 = 225 °C.

Solution

Known Geometry and surface conditions of an insulated sphere

Find Critical thickness of insulation, Percentage increase in heat loss rate.
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Assumptions (1) Steady-state radial conduction. (2) No internal energy generation. (3) Constant thermal 

conductivity. (4) Uniform heat transfer coefficient.

Analysis Heat-loss rate without insulation is

2

2 2 2

(4 )( )

(10 W/m °C)(4 0.01 m )(225 25)°C

= 2.513 W

wo i iQ h r T Tp

p

= -

= ¥ -

Critical radius of insulation for a sphere is 

2

2 2 0.08 W/m C
or

10 W/m
o cr

k
r r

h C

¥ ∞
= = = =

∞
0.016 m 1.6 cm

\ Critical thickness of insulation,

r
cr
 – r

i
 = (1.6 – 1.0)cm = 0.6 cm or 6 mm (Ans.)

Maximum heat-loss rate corresponds to critical thickness.

Hence, max

2

1 1 1 1

4 (4 )

i o

i o o

T T
Q

k r r r hp p

-
=

È ˘
- +Í ˙

Î ˚

With r
o
 = r

cr
 = 0.016 m

max

2 2 2

4 (225 25)°C
2.92 W

1 1 1 1

0.08 W/m°C 0.01 m 0.016 m (10 W/m C) (0.016 m )

Q
p -

= =
È ˘- +Í ˙ ∞ ¥Î ˚

Percentage increase in heat-loss rate

2.92 2.513
(100)

2.513

-Ê ˆ= =Á ˜Ë ¯ 16.2% (Ans.)
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(S) Variable Thermal Conductivity (Sphere)

 Estimate the rate of evaporation of liquid oxygen from a spherical container 2 

m ID covered with 50 cm of asbestos insulation. The temperatures at the inner and outer surfaces of 

insulation are –183°C, and 0°C respectively. The boiling point of liquid oxygen is –183°C and its enthalpy 

of evaporation is 213.54 kJ/kg. The thermal conductivity of insulation is 0.155 and 0.125 W/m K at 0 

and –183°C, respectively.

 Assume that the conductivity varies linearly with temperature.

 Neglect the thermal resistance of metal container. Derive the equations that you use.

Solution

Known A liquid oxygen spherical container covered with insulation of variable thermal conductivity.

Find Rate of evaporation of liquid oxygen.

Assumptions (1) Steady-state, one-dimensional (radial) conduction. (2) Thermal conductivity varies 

linearly with temperature. (3) Thermal resistance of metal container is negligible.

Analysis As the conductivity varies linearly with temperature, we can write

0

i i

i o i

k k T T

k k T T

- -
=

- -

 where k, k
i
, and k

0
 are the thermal conductivities of the sphere material at temperatures T,

T
i
 and T

o
, respectively.

 Thus, 0( ) i
i i

o i

T T
k k k k

T T

-È ˘= + - Í ˙-Î ˚
 The Fourier’s rate equation for a sphere is

2
02

(4 ) or 4 4 ( ) i
i i

o i

T TdT dr
Q k r Q kdT k k k dT

dr T Tr
p p p

È ˘-Ï ¸= - = - = - + - Ì ˝Í ˙-Ó ˛Î ˚
 Integrating between the radii R

i
 and R

o
, and the corresponding temperatures T

i
 and T

o
, we 

have

02
4 ( )

o o

i i

R T

i
i i

o iR T

T Tdr
Q k k k dT

T Tr
p

È ˘-Ï ¸= - + - Ì ˝Í ˙-Ó ˛Î ˚
Ú Ú
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or
2 2

0

0

0 0

1 1
4 ( ) ( )

2

4 ( )
2

( )( ) 2
4 ( ) 4 ( )

2( ) 2

i o i
i o i i o i

i o o i

i o i
o i i i

o i

i o i i i
i o i i o

o i

k k T T
Q k T T T T T

R R T T

k k T T
T T k T

T T

k k T T k k k
T T k T T

T T

p

p

p p

È ˘Ï ¸- -Ê ˆÈ ˘ Ì ˝- = - - + - -Í ˙Í ˙ Á ˜- Ó ˛Ë ¯Í ˙Î ˚ Î ˚
È ˘Ê ˆ- +Ï ¸

= - - + -Ì ˝Í ˙Á ˜- Ó ˛Ë ¯Í ˙Î ˚
È ˘- - + -È ˘

= - + = -Í ˙ Í ˙- Î ˚Î ˚

\
4 ( )[( )/2] ( )

4 ( )
21 1

i o i o i o i o
i o

o i

i o

T T k k k k R R
Q Q T T

R R

R R

p
p

Ê ˆ- + +
= fi = - Á ˜-Ï ¸ Ë ¯

-Ì ˝
Ó ˛

Substituting the appropriate numerical values, we get

(0.125 0.155) 1 1.5
4 ( 183 0) 965.85 W or J/s

2 1.5 1
Q p

+ ¥Ê ˆ= - - = -Á ˜Ë - ¯

  (The negative sign indicates heat flow into the spherical container)

Hence, the rate of evaporation of liquid oxygen,

3

(965.85 J/s)(3600 s/h)

(213.54 kJ/kg)(10 J/kJ)fg

Q
m

h
= = = 16.28 kg/h (Ans.)

Points to Ponder

● Heat transfer is a non-equilibrium phenomenon.

● The heat-flux vector is related to temperature gradient vector according to the relation q = –k D T.

● For steady-state one-dimensional heat conduction, the single governing differential equation is 

1
0n

n

d dT q
r

dr dr kr

Ê ˆ + =Á ˜Ë ¯
 where n = 0, rectangular corrdinates (replace r with x)

n = 1, cylindrical coordinates

n = 2, spherical coordinates.

● —2T = 0 is called the Laplace equation.

● A material with k
x
 = k

y
 = k

z
 = k is known as isotropic.

● Imperfect thermal contact between mating surfaces is accounted for by incorporating contact resistance 

with units m2 K/W.

● Critical thickness of insulation is relevant only in radial systems.

● k
non-metallic crystals

 > k
pure metals

 > k
metal alloys

 > k
non-metallic solids

.

● k
solids

 < k
liquids

 < k
gases

● Materials that are good electrical conductors are also good thermal conductors.

● Wood has directionally dependent thermal conductivity.

● Thermal diffusivity is a composite parameter defined as a = k/rC
p
.

● The thermal conductivity of air at room temperature is lower than the conductivities of almost all the 

ordinary insulating materials.
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● The thermal conductivity of an alloy of two metals will most likely be less than the thermal conductivities 

of the two metals.

● Unlike a plane wall, steady-state heat flux is not constant in a long hollow cylinder or a hollow sphere 

in the radial direction.

● The rate of heat transfer per unit area between two large isothermal plates, a distance apart, will be 

less when the intervening space is filled with air than when it is filled with an insulating material.

● The R value can be interpreted as the thermal resistance of a 1 m2 cross section of the material.

● The temperature gradient, dT/dr, decreases with increasing radius in radial systems. For constant k,

in a long hollow cylinder. 
dT

r
dr

 = const and rQ  is constant, independent of the radial coordinate. 

For constant k, in a hollow sphere, 2 dT
r

dr
 is constant. The heat flux q

r
 is not constant everywhere.

● Logarithmic mean area is a term often used in the case of a hollow cylinder and geometric mean area

in the case of a hollow sphere.

● The temperature profile of a cylindrical annulus is logarithmic while that of a spherical shell, is 

hyperbolic.

● Heat-transfer coefficient h is not a thermophysical property such as thermal conductivity.

● Biot number is the ratio of conduction resistance to convection resistance.

● Electrical analogy is applicable only when there is no internal heat generation.

GLOSSARY of Key Terms

● Steady-state conduction Temperature is independent of time.

● One-dimensional conduction Temperature is a function of a single space coordinate.

● Thermal conductivity A property of the material that may be considered a heat 

flux per unit temperature gradient through it. It may vary 

with temperature for most substances.

● Thermal resistance Temperature difference per unit heat-transfer rate. 

Analogous to electrical resistance.

● Thermal contact resistance The resistance offered by imperfect thermal contact 

between adjacent conducting layers (units m2 K/W).

● Overall heat-transfer coefficient Heat-transfer rate per unit surface area per unit overall 

temperature difference in the case of multilayered wall/

cylinder/sphere. In radial systems, it depends on the area 

chosen.

● Heat-conduction differential equation The three-dimensional unsteady-state heat conduction in a 

solid in Cartesian/cylindrical (polar)/spherical coordinates.

● Isotropic material Thermal conductivity at any point is the same for all 

directions of heat flow.

● Thermal diffusivity An important property which is a measure of the rate at 

which heat diffuses through a material.
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● Initial condition The temperature distribution in the body at a particular 

instant (t = 0) to begin with. For instance, at t = 0, T = 

T
w
 (a constant).

● Boundary conditions Conditions that exist at the surface of the body which 

may or may not be time dependent. 

● Critical thickness of insulation The thickness in the case of an insulated cylinder or 

sphere (radial systems) corresponding to maximum heat-

transfer rate. There is no critical thickness in the case 

of an insulated plane wall since the cross-sectional area 

remains the same regardless of insulation thickness. 

● Log mean area An equivalent area that expresses the heat-transfer rate for 

a hollow cylinder in the same form as that for a plane 

wall in terms of inside and outside area of the cylinder.

● Geometric mean area An equivalent area that expresses the heat-flow rate for 

a hollow sphere in the form of a plane wall in terms of 

its inner and outer areas.

● Anisotropic material A material whose thermal conducitity parallel to the grain 

differs from that in the perpendicular direction.

Multiple-Choice Questions

2.1 T(x, y) = x3 + 4xy. The direction of 

fastest variation in temperature at the point (1, 0) is given by

(a) ˆ ˆ3 8i i+ (b) î (c) ˆ ˆ0.6 0.8i i+ (d) ˆ ˆ0.5 0.866i i+

2.2 One-dimensional unsteady-state heat-transfer equation for a sphere with heat generation at the rate of 

q  can be written as

(a)
1 1T q T

r
r r r k ta

∂ ∂ ∂Ê ˆ + =Á ˜Ë ¯∂ ∂ ∂
(b) 2

2

1 1T q T
r

r r k tr a

∂ ∂ ∂Ê ˆ + =Á ˜Ë ¯∂ ∂ ∂

(c)
2

2

1T q T

k tr a

∂ ∂
= =

∂∂
(d)

2

2

1
( )

q T
rT

k tr a

∂ ∂
+ =

∂∂

2.3 In case of a one-dimensional heat conduction in a medium with constant properties, T is the 

temperature at position x, at time t. Then 
T

t

∂
∂

 is proportional to

(a)
T

x
(b)

T

x

∂
∂

(c)
2
T

x t

∂
∂ ∂

(d)

2

2

T

x

∂
∂

2.4 The temperature distribution across a 50 cm thick plane wall (k = 1.5 W/m K) is given by 

T(x) = 40x2 – 250x + 250
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(A) The convection heat-transfer coefficient, h (W/m2 K) is

(a) 17.5 (b) 21.0 (c) 5.25 (d) 4.2

(B) The rate of change of thermal energy storage per unit area (W/m2) is

(a) 47.5 (b) 0 (c) 60.0 (d) –60.0

2.5 Heat is being transferred by convection from water at 48°C to a glass plate whose surface that is 

exposed to the water is at 40°C. The thermal conductivity of water is 0.6 W/m K and the thermal 

conductivity of glass is 1.2 W/m K. The spatial gradient of temperature in the water at the water 

glass interface is 
dT

dy
 = 1 ¥ 104 K/m.

(A)  The value of the temperature gradient in the glass at 

the water–glass interface in K/m is

(a) – 2 ¥ 104 (b) 0.0

(c) 0.5 ¥ 104 (d) 2 ¥ 104

(B) The heat-transfer coefficient h in W/m2 K is

(a) 0.0 (b) 4.8 (c) 5 (d) 750

2.6. If the ratio of thermal conductivities k
A
/k

B
 is 21.3 and the ratio of densities r

A
/r

B
 is 2.45, and the ratio 

C
p, A

/C
p, B

 is 0.27, the ratio of thermal diffusivities a
A
/a

B
 is

(a) 1.45 (b) 62.8 (c) 32.2 (d) 10.7

2.7 A wall as shown below is made up of two layers (A) and (B). The temperatures are also shown in the 

sketch. The ratio of thermal conductivities of the two layers is. What is the ratio of thicknesses of two 

layers?

(a) 0.105 (b) 0.213 (c) 0.555 (d) 0.840

2.8 A composite slab has two layers of different materials having thermal conductivities k
1
, and k

2
. If each 

layer has the same thickness then what is the equivalent thermal conductivity of the slab?

(a) 1 2

1 2( )

k k

k k+
(b) 1 2

1 22( )

k k

k k+
(c) 1

1 2

2

( )

k

k k+
(d) 1 2

1 2

2

( )

k k

k k+

2.9 Solar energy is absorbed by the wall of a building as shown in the 

are equal and considering steady state, the equivalent circuit 

R
CO

 = R
convection, outside

,

R
CI

 = R
convection, inside

, and R
W
 = R

wall
)

(a)
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(b)

(c)

(d)

2.10 A pipe carrying saturated steam is covered with a layer of insulation and exposed to ambient air. The 

  Which one of the following statements is correct in this regard?

(a) R
steam

 and R
pipe

 are negligible as compared to R
ins

 and R
air

.

(b) R
pipe

 and R
air

 are negligible as compared to R
ins

 and R
steam

.

(c) R
steam

 and R
air

 are negligible as compared to R
pipe

 and R
ins

.

(d) No quantitative data is provided; therefore no comparison is possible.

2.11 A furnace has a 20 cm thick wall with thermal conductivity 0.8 W/m K. For the same heat loss from

the furnace, what will be the thickness of the wall if the thermal conductivity of the material is 0.16 

W/m K?

(a) 4 cm (b) 6.3 cm (c) 10 cm (d) 40 cm

2.12 Which of the following expressions gives the thermal resistance for heat conduction through a hollow 

sphere of radii r
1
 and r

2
?

(a) 1 2

2 1

4 kr r

r r

p

-
(b) 2 1 2 1( ) ln /

4

r r r r

kp

-
(c) 2 1

1 24

r r

kr rp

-
(d) 2 1

1 2

4 ( )k r r

r r

p -

2.13 A furnace wall is 10 cm thick and has a thermal conductivity of 0.1 kW/m K. Inner temperature is 

maintained at 525°C, while the surrounding temperature outside the furnace is 25°C. If the surface 

area of the furnace is 20 m2

(a) 50 kW/m2 (b) 500 kW/m2 (c) 1000 kW/m2 (d) 10000 kW/m2

2.14 Consider one-dimensional steady-state heat conduction, without heat 

generation, in a plane wall; with boundary conditions as shown in the 

k = k
0
 + bT; where k

0

and b are positive constants, and T is the temperature.

  As x increases, the temperature gradient (dT/dx) will

(a) remain constant (b) be zero

(c) increase (d) decrease
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2.15 As the temperature increases, the thermal conductivity of a gas

(a) increases

(b) decreases

(c) remains constant

(d) increases up to a certain temperature and then decreases

2.16 Consider a long cylindrical tube of inner and outer radii, r
i
 and r

o
, respectively, L and thermal 

conductivity, k. Its inner and outer surfaces are maintained at T
i
 and T

o
, respectively (T

i
 > T

o
). Assuming 

one dimensional steady state heat conduction in the radial direction, the thermal resistance in the wall 

of the tube is

(a)
1

ln( / )
2

i or r
kLp

(b)
1

ln( / )
2

o ir r
kLp

(c) L/pr
i

k (d)
1

ln( / )
4

o ir r
kLp

Fill in The Blanks

2.1 Consider one-dimensional steady-state 

heat conduction across a wall (as shown 

conductivity 15 W/m K. At x = 0, a constant 

q = 1 ¥ 105 W/m2 is applied. On 

the other side of the wall, heat is removed 

W/m2 K. The temperature (in °C), at x = 0 

is ______

2.2 A material P of 1 mm thickness is 

sandwiched between two steel slabs, as 

m2 is supplied to one of the steel slabs as 

shown. The boundary temperatures of the 

thermal conductivity of this steel is 10 W/m 

K. Considering one-dimensional steady-

the thermal conductivity (k, in W/m K) of 

material P is ______

2.3 An amount of 100 kW of heat is transferred 

through a wall in steady state. One side of 

the wall is maintained at 127°C and the other side at 27°C. The 

entropy generated (in W/K) due to the heat transfer through the 

wall is ______

2.4

Both the sections of the wall have equal thickness (l). The 

conductivity of one section is k and that of the other is 2k. The 

left face of the wall is at 600 K and the right face is at 300 K. 

The interface temperature T
i
 (in K) of the composite wall is 

_____

q = 1 10 W/m¥ 5 2

T1

T2

T1 = 25°C
x

x = 0

All dimensions in mm
1

q = 10 kW/m2

T2 = 369 K

S
te

el
 s

la
b

S
te

el
 s

la
b

P

k = ?

T1 = 500 K

20 20
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2.5 A plane wall has a thermal conductivity of 1.15 W/m K. If the inner surface is at 1100°C and the outer 

2500 W/m2 should be ______

Answers

Multiple-Choice Questions

2.1 (c) 2.2 (b) 2.3 (d) 2.4(A) (d) (B) (c) 2.5(A) (c)

(B) (d) 2.6 (c) 2.7 (b) 2.8 (d) 2.9 (a) 2.10 (a)

2.11 (a) 2.12 (c) 2.13 (b) 2.14 (c) 2.15 (a) 2.16 (b)

Fill in the Blanks

2.1 625 2.2 0.1 2.3 83.3 2.4 400 2.5 0.345

2.1 What is meant by one-dimensional, steady-state heat conduction?

2.2 Write the fundamental relations used for transforming Cartesian coordinates into the cylindrical and 

spherical coordinates.

2.3 Differentiate between initial and boundary conditions. How many boundary conditions and initial 

conditions are needed to solve a general heat-conduction equation?

2.4 Discuss different types of boundary conditions applied to heat-conduction problems.

2.5 What is meant by geometric and thermal symmetry?

2.6 State the conditions under which the general heat-conduction equation reduces to the (a) Poisson 

equation, (b) Fourier, equation, and (c) the Laplace equation.

2.7 Differentiate between isotropic and anisotropic materials.

2.8 How does the thermal conductivity of a pure metal and of a non-metallic solid vary with temperature?

2.9 Is the thermal conductivity of a pure metal always higher than that of its alloys? What is the effect of 

the amount of each constituent on the thermal conductivity of an alloy?

2.10 Discuss the thermal conductivity of a gas or vapour as a function of temperature and pressure? What 

is the relation between the thermal conductivity and the molecular weight of a gas?

2.11 What is the approximate range of thermal conductivity for solid metals, non-metallic solids, liquids, 

and for gases and vapours?

2.12 What is the effect of moisture on the thermal conductivity of building materials?

2.13 How does the thermal conductivity of wood vary with moisture content?

2.14

2.15 Explain the concept of thermal resistance

2.16 What is meant by thermal contact resistance?

2.17

does it offer in heat-transfer calculations?

2.18 Why are the convection and the radiation resistances at a surface in parallel instead of being in 

temperature.

2.19

long cylinder is given by the expression, 1 2

2 1

2 ( )

ln( / )

kL T T
Q

r r

p -
=
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  where T
1
 and T

2
 are the temperatures inside and outside the thick cylinder which has inner and outer 

radii r
1
 and r

2
, length L, and thermal conductivity k.

2.20 What is meant by ? Write an expression for the overall heat-transfer 

2.21 Consider one-dimensional heat conduction through a cylindrical rod of diameter D and length L.

What is the heat-transfer area of the rod if (a) the lateral surfaces of the rods are insulated and (b) the 

top and bottom surfaces of the rod are insulated?

2.22 Explain the concept of log mean area for a cylindrical shell.

2.23

2.24 Explain the term critical insulation thickness. Derive an expression for the critical radius of insulation 

for a sphere.

2.25 Obtain an expression for the temperature distribution T(x) in a plane wall of thickness L having 

uniform wall temperatures T
1
 and T

2
. The thermal conductivity varies linearly with temperature, 

k = k
o
 (1 + bt).

2.26 Obtain an expression for the heat-transfer rate per unit length of a hollow cylinder having inner and 

outer radii r
i
 and r

o
 with corresponding surface temperatures T

i
 and T

o
. The thermal conductivity 

varies linearly with temperature k = k
o
 (1 + bt).

PRACTICE PROBLEMS

(B) Plane Wall Bounded By Specified Fluid Temperature

2.1 It is required to reduce heat loss from a slab by doubling the thickness of brick work. The temperature 

of inner surface of brick work is 500°C and ambient air is at 30°C. The temperature of outer surface 

of initial brick work was 200°C. Calculate the percentage reduction in heat loss per m2 because of 

doubling the thickness. [39%]

2.2 The wind chill, which is experienced on a cold, windy day, is related to increased heat transfer from 

exposed human skin to the surrounding atmosphere. Consider a layer of fatty tissue that is 3-mm 

thick and whose interior surface is maintained at a temperature of 36°C. On a calm day the convection 
2 K but with 30 km/h winds it reaches 65 W/

m2 K. In both cases, the ambient air temperature is –15°C. (a) What is the ratio of the heat loss per 

unit area from the skin for the calm day to that for the windy day? (b) What will be the skin’s outer 

surface temperature for the calm day and for the windy day? (c) What temperature would the air have 

to assume on the calm day to produce the same heat loss occurring with the air temperature at –15°C 

on the windy day? Take k = 0.2 W/m K (for tissue fatty layer).

[(a) 0.552 (b) 22.1°C, 10.8°C (c) 56.3°C]

2.3

surfaces are estimated to be 2830 and 1415 W/m2 °C respectively. The blade material has a thermal 

conditions have been reached. [619.14°C]
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(C) Composite Wall with Prescribed Boundary Temperatures 

2.4 An exterior wall of a house may be approximated by a 10-cm layer of common brick [k = 0.7 W/m K] 

followed by a 4.0-cm layer of gypsum plaster [k = 0.48 W/m K]. What thickness of loosely packed 

rock-wool insulation [k = 0.065 W/m K] should be added to reduce the heat loss (or gain) through the 

wall by 80 percent? [58.8 mm]

(D) Composite Wall Bounded By Fixed Fluid Temperatures

2.5 A composite insulating wall has three layers of material held together by a 3-cm diameter aluminium 

rivet per 0.1 m2 of surface. The layers of material consist of 10-cm-thick brick with hot surface at 

200°C, 1-cm-thick timber with cold surface at 10°C. These two layers are interposed by a third layer 

of insulating material 25-cm-thick. The conductivities of the materials are:

  k (brick) = 0.93 W/m K k (insulation) = 0.12 W/m K

  k (wood) = 0.175 W/m K k (aluminium) = 204 W/m K

  

rivet. [900%]

2.6 A square plate heater (15 cm ¥ 15 cm) is inserted between two slabs. Slab A is 2-cm-thick (k = 50 

W/m K) and slab B is 1-cm-thick (k A

and B are 200 and 50 W/m2 K. The surrounding air temperature is 25°C. If the rating of the heater is 1 

kW, determine (a) the maximum temperature in the system, (b) the outer surface temperatures of the 

two slabs. Draw the equivalent thermal circuit of the system.

[(a) 136.4°C (b) 128.15°C, 56.83°C]

2.7 A steam-to-liquid heat exchanger surface of 3200 cm2 face area is constructed of 0.7-cm nickel 

with a 0.2-cm plating of copper on the steam side. The resistivity of a water scale deposit on the 

steam side is 0.0017 m2 K/W and the steam and liquid surface conductances are 5465 W/m2 K and 

580 W/m2 K respectively. The heated steam is at 111°C and the heated liquid is at 75°C. Calculate: 

and (c) Temperature at the copper nickel interface.

  Take k
(Copper)

 = 384 W/m K and k
(Nickel)

 = 58 W/m K. [(a) 267.88 W/m2K (b) 16.4°C (c) 92.79°C]

2.8 A leading manufacturer of household appliances is proposing a self-cleaning oven design that 

involves use of a composite window separating the oven cavity from the room air. The composite is to 

consist of two high-temperature plastics (A and B) of thicknesses L
A
 = 2L

B
 and thermal conductivities 

k
A
 = 0.15 W/m K and k

B
 = 0.08 W/m K. During the self-cleaning process, the oven wall and air 

temperatures, T
w
 and T

a
, are 400°C, while the room air temperature T  is 25°C. The inside convection 

h
i
 and h

r
h

o
, are 

each approximately 25 W/m2K. What is the minimum window thickness, L = L
A
 + L

B
, needed to 

ensure a temperature that is 50°C or less at the outer surface of the window? [62.7 mm]

2.9 The inside temperature of a furnace wall, 200-mm-thick, is 1350°C. The mean thermal conductivity 

of temperature difference and is given by h = 7.85 + 0.08 DT where DT is the temperature difference 

between outside wall surface and surroundings. Determine the rate of heat transfer per unit area if the 

surroundings temperature is 40°C. [7131.3 W/m2]
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(E) Thermal Contact Resistance

2.10 Heat losses from the windows are to be reduced by covering them from inside with a polystyrene 

insulation (k
ins

 = 0.027 W/m K). Consider application of 25-mm-thick insulation panels to 6-mm-

thick windows (k
w
 = 1.4 W/m K). The contact resistance between the glass and the insulation may be 

approximated as (R
t,c

 = 0.02 m2

window is nominally losing heat (h
o
 = 20 W/m2

at the inner surface is h
i
 = 2 W/m2 K, and without the insulation it is h

i
 = 5 W/m2 K. (a) What is the 

percentage reduction in heat loss associated with the use of insulation? (b) If the total surface area 

of the windows is A
s
 = 12 m2, what are the heat losses associated with insulated and uninsulated 

windows for interior and exterior temperatures of T
,i
 = 20°C and T

,o
 = –12°C? (c) If the home is 

h
f
 = 0.80 and the natural gas is priced at C

g
 = `1

per MJ, what is the daily saving associated with covering windows for 12 hours?

[(a) 83.05 % (b) 1510 W (c) `67.72]

(G) Variable Thermal Conductivity

2.11 A composite slab has two layers of 5 cm and 10 cm thickness. The thermal conductivities of the 

materials of these layers are temperature dependent and are prescribed by the relations:

  k
1
 = 0.05 (1 + 0.006 T) W/ m °C, k

2
 = 0.04 (1 + 0.007 T) W/ m °C where T = temperature in degree 

centigrade. The inside and outside surface temperatures of the slab are maintained at 500°C and 

[424.27°C, 285.7 W/m2]

2.12

thick. If the wall temperature inside the boiler furnace is 1100°C and that on the outside wall is 50°C, 

determine the amount of heat loss per m2 of the furnace wall. It is desired to reduce the thickness of 

whose k

loss of heat for the same outside and inside temperatures. Assume: k k

(for red brick) = 0.7 W/m K

[1106.65 W/m2, 9.32 cm]

(K) Composite Cylinders Bounded by Fluid Temperatures

2.13

the standpoint of safety and reducing the heat loss from the pipe surface, mineral wool insulation 

(k = 0.02 W/m K) is wrapped around so that the exposed surface of the insulation is at a temperature 

of 60°C. Calculate the thickness of insulation required to achieve this temperature if the inside and 
2 K and the surrounding air temperature 

[1085.7 W]

(L) Critical Radius of Insulation (Cylinder)

2.14 A heat exchanger shell of 15 cm outside radius is to be insulated with glass wool of thermal 

conductivity 0.0825 W/m K. The temperature at the surface of the shell is 280°C and it can be 

assumed to remain constant after the layer of insulation has been applied to the shell. The convective 

air is 8 W/m2

30°C and the loss of heat per metre length of the shell should not be greater than 200 W. Would the 

slag wool serve the intended purpose of restricting the heat loss. If yes, what should be thickness of 

the insulating material to suit the prescribed conditions? [12.6 cm]
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2.15 A copper wire of 0.5 mm radius is insulated uniformly with plastic (k = 0.5 W/m K) sheathing of 
2

K. Find the maximum safe current carried by the wire, so that no part of the insulated plastic is above 

75°C. For copper: Thermal conductivity (k r) = 2 ¥ 10–8

ohm m. Would the capacity of the wire to carry more current will increase or decrease with further 

addition of insulation? [11.39 A]

(M) Variable Thermal Conductivity

2.16 A reinforced concrete smoke stack with an inner diameter of 80 cm and an outer diameter of 130 

cm is to be lined with a refractory on the inside. Determine the thickness of the refractory lining and 

the temperature of the outer surface of the smoke stack if the heat loss from the outer surface of the 

smoke stack does not exceed 2 kW per metre length of the stack and the temperature of the inner 

surface of the reinforced concrete smoke stack does not exceed 200°C. The temperature of the inner 

surface of the lining is 425°C. 

  k for refractory = ( 0.84 + 0.0006 T) W/m K, where T is in °C.

  k for reinforced concrete = 1.1 W/m K [20.65 cm, 59.5°C]

(O) Spherical Shell Bounded by Known Fluid Temperatures

2.17 A spherical, thin-walled, metallic container is used to store liquid nitrogen at –196°C. The container 

has a diameter of 45 cm and is covered with an insulation 2.5 cm thick. Its outer surface is exposed to 
2 K. The latent heat of vaporization and 

density of liquid nitrogen are 200 kJ/kg and 800 kg/m3 respectively. Determine: (a) the rate of heat 

transfer to the liquid nitrogen, and (b) the liquid boil-off rate. Take k (insulation) = 0.0017 W/m K. 

[6 litres/day]

(P) Composite Sphere with Fixed Boundary Temperatures

2.18

each 10-cm-thick. The thermal conductivities of the inner and outer layers are in the ratio of 2:3. The 

the thermal conductivities of the lagging material. [0.0436 W/m K]

2.19 A cylindrical tank with hemispherical ends is used to store liquid oxygen at –183°C. The diameter 

of the tank is 1.5 m and the total length is 8 m. The tank is covered with a 10-cm-thick layer of 

insulation. Determine the thermal conductivity of the insulation so that the boil-off rate does not 

exceed 10.8 kg/h. The latent heat of vaporization of liquid oxygen is 214 kJ/kg. Assume that the outer 

surface temperature of the insulation is 27°C and that the thermal resistance of the wall of the tank is 

negligible. [0.00752 W/m °C]

(Q) Composite Sphere Bounded by Known Fluid Temperatures

2.20

covering of 85% magnesia, 40-mm-thick. The inner surface of the oven is at 800°C and the heat 
2 °C; the room temperature is 20°C. Calculate (a) the 

rate of heat loss through the hemisphere, (b) the interface temperatures, and (c) the temperature at the 

[(a) 1.93 kW (b) 515.3°C (c) 644.2°C]



One-Dimensional
Steady-State Heat 
Conduction with 
Heat Generation

3.1 ❏ INTRODUCTION

One-dimensional, steady-state heat conduction has been studied in the previous chapter for a few simple 
geometries in which the heat conducted through the solid came from outside but there was no internal 
heat generation in the medium. However, there are many cases commonly encountered in practice where 
there is thermal energy generation within the medium resulting in a rise in temperature throughout the 
medium. One would be interested in finding the temperature distribution within the body as well as the 
heat-transfer rate at any specified location.

We will consider steady-state situations for some geometries including a plane wall, a long solid 

cylinder, a cylindrical wall (hollow cylinder) a solid sphere, and a spherical wall (hollow sphere) with heat 

sources. In steady state, no thermal energy can be stored in the solid and, hence, the heat generated within 

the solid must be conducted to the surface and then dissipated to the surroundings by either convection 

or radiation or both. The heat source is usually considered uniformly distributed throughout the material.

The source strength or the rate of volumetric internal thermal energy generation is usually expressed as 
3( / )q W m . In most cases, q  can be considered constant and uniform throughout the solid. However, in 

some situations, q  may have a different value at each location in the solid or may vary with temperature. 

We will also analyze those situations in which the heat sources are non-uniformly distributed.

3.2 ❏ APPLICATIONS

Several problems encountered in heat transfer require an analysis that takes into account the generation
or absorption of heat within a body. Some of the practical applications which involve the conversion of 
some form of energy into thermal energy in the medium are

Fission or fusion in nuclear reactors
Ohmic heating (resistance heating) in electrical current-carrying conductors
Chemical processing industries

Dielectric heating

Electronic cooling

Exothermic chemical reaction in combustion processes
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Curing (drying) and setting of concrete

Ripening of fruits

Biological decay processes

Microwave ovens

Absorption of solar radiation by water

It is to be noted that chemical reactions can also be endothermic (heat absorption) besides being 

exothermic (heat generation).

3.3 ❏  HEAT GENERATION IN A
SOLID MEDIUM

There is an increase in the temperature of the medium 

as a result of absorption of the heat generated within. 

In steady state, no energy can be stored thermally in the 

solid, so that all the energy generated must be conducted 

to the surface and then transferred to the surroundings by 

either convection or radiation or both (Fig. 3.1). Under 

steady operating conditions, the temperature of the solid 

at any location no longer changes and the energy balance 

can then be expressed as

Rate of heat transfer Rate of heat generation

the solid surroundings the solid

Ê ˆ Ê ˆ=Á ˜ Á ˜Ë ¯ Ë ¯
from

to the within

or = gen
–i.e. V (W)Q E q (3.1)

We are primarily interested in developing expressions for evaluating the maximum temperature T
max

that occurs in the medium, and the surface (wall) temperature, T
w
 for common geometries like a large 

plane wall, long cylinders, and spheres.

3.4 ❏ PLANE WALL WITH UNIFORM INTERNAL HEAT GENERATION

h T1 1, ,

h T2 2, ,

–L +L0

T1

Tmax

T x( )

T2

q

x

h T,

h T,
h T,

–L +L0

Tmax

T x( )
TwTw

qcond qconv

q
q

x

qconvqcond

T x( )
Tw

Tmax

0 L

Insulated

x

(a) (b) (c)

A plane wall with uniform internal heat generation. (a) Asymmetrical boundary conditions, 

(b) Symmetrical boundary conditions, (c) Insulated surface at one end

The heat generated in steady state must 

leave the solid through the exposed 

surface to the surrounding fluid.
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Consider a large plane wall (infinite slab) that experiences heat generation under the following assumptions.

Assumptions
One-dimensional conduction (in the x-direction). Thickness is much smaller than the dimensions 

in the y- and z-directions.

Steady operating conditions since there is no change in temperature at any point within the wall 

with time although temperatures at different locations within the wall may well be different.

Uniform thermal energy generation in the wall.

The material of the wall is homogeneous (same properties with respect to location) and isotropic 

(same properties with respect to direction).

The temperature distribution within the wall and the heat-transfer rate at any point are to be determined.

The appropriate differential equation in Cartesian coordinates can be expressed as

0 0 0
2 2 2

2 2 2

One-dimensional Steady state

1

-

T T T q T

k tx y z a

∂ ∂ ∂ ∂
+ + + =

∂∂ ∂ ∂

Heat conduction equation is thus simplified to

2

2
0

d T q

kdx
+ =

Integrating this second-order differential equation once, with respect to x, we get

1

dT q x
C

dx k

-
= +

Integrating again, the general expression for temperature distribution is given by

2

1 2( )
2

q x
T x C x C

k

-
= + + (3.2)

The desired solution for variation of temperature within the medium as a function of x can be determined 

from the appropriate boundary conditions to evaluate the two arbitrary integration constants C
1
 and C

2
.

Specific cases are analyzed as shown in Figures 3.2 (a), (b), and (c).

We note that in cases (a) and (b), the coordinate system is placed at the middle of the plane wall 

of thickness 2L (x = 0) and x to the right of the centreline is taken to be positive while that to the left 

negative. In the case (c), the wall thickness is L and x is measured from the left end.

Case (a): Plane Wall of thickness 2L with Heat Generation and Different Surface Temperatures 
(Asymmetrical boundary conditions) Figure 3.2(a) illustrates the geometry we are working with.

The asymmetrical boundary conditions (of the first kind) are

At x = – L, T = T
1

At x = +L, T = T
2

The application of the first boundary condition to Eq. (3.2) gives

2

1 1 2( )
2

qL
T C L C

k
= - + - +
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and the application of the second boundary condition results in

2

2 1 2
2

qL
T C L C

k
= - + +

Subtracting one from the other,

T
2
 – T

1
 = 2C

1
L

fi
2 2

2 1 2 1 1 2
1 2 1

( )
and

2 2 2 2 2

T T T T T Tq L qL
C C T

L k k

- - +Ê ˆ= = + + = + Á ˜Ë ¯

Substituting for C
1
 and C

2
 in Eq. (3.2), the temperature distribution is given by

or

2 2
2 1 2 1

2 2 2 1 1 2

( )
2 2 2 2

( ) ( )
( ) ( )

2 2 2

T T T Tqx x qL
T x

k L k

T T T Tq x
T x L x

k L

- +Ê ˆ Ê ˆ= - + + +Á ˜ Á ˜Ë ¯ Ë ¯

- +
= - + + (3.3)

This is a parabolic temperature distribution. Note that the variation of temperature within the wall is 

not symmetrical. Hence, the maximum temperature will not be at the midplane or the line of symmetry 

(x = 0).

To determine the location of maximum temperature, one can differentiate the expression for T(x) with 

respect to x and equate the resulting derivative to zero.

For finding x
max

 corresponding to T
max

, 0
dT

dx
=

i.e., 2 2 2 1 1 2( )
( ) 0

2 2 2

T T T Td q x
L x

dx k L

È ˘- +Ê ˆ- + + =Á ˜Í ˙Ë ¯Î ˚

or 2 1 2 1(0 2 ) (1) 0 0 or
2 2 2

T T T Tq qx
x

k L k L

- -Ê ˆ- + + = =Á ˜Ë ¯

\ 2 1
max

2

T Tk
x

q L

-Ê ˆ= Á ˜Ë ¯ (3.4)

By substituting this value of x
max

 in the expression for T(x), the value of T
max

 can be easily obtained. 

Location of T
max

 is to the left of the midplane (x = 0), i.e., x
max

 will be negative if T
1
 > T

2
 and positive

for T
2
 > T

1
, x

max
 occurring to the right of the line of symmetry. And, as the value of q  increases, the 

maximum approaches the centreline.

Total heat generated within the wall equals:

gen left right

volume

( 2 )E q A L Q Q= = + (3.5)

The surface temperatures T
1
 and T

2
 and fluid temperatures T

1
 and T

2
 can be related by surface 

energy balance:

Heat generated Heat conducted Heat carried away  the surface

the medium the surface to the surrounding fluid by convection

Ê ˆ Ê ˆ Ê ˆ= =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
within through from
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Heat generated between x = 0 to x = x
max

 has to go to the left and the heat generated in the volume 

between x = x
max

 and x = L has to go to the right, since no heat can cross the plane of maximum 

temperature (zero slope).

left max 1 1 1( )c

x L

dT
Q q A x kA h A T T

dx =-
= = + = -

fi max
1 1

1

q x
T T

h
= + (3.6a)

right max 2 2 2( ) ( )c

x L

dT
Q q A L x kA h A T T

dx =+
= - = - = -

fi max
2 2

2

( )q L x
T T

h

-
= + (3.6b)

where h
1
 and h

2
 are the convection coefficients at the left and right convective surfaces.

Case (b): Plane Wall of Thickness 2L with Heat Generation and Equal Surface Temperatures 
(Symmetrical Boundary Conditions)

The general solution is known to be
2

1 2
2

q x
T C x C

k
= - + +

The arbitrary constants C
1
 and C

2
 can be found with reference to the two boundary conditions as 

follows.

BC(I):
0

0
x

dT

dx =
=

Since 1

dT qx
C

dx k
= - +

At x = 0, 1 1

(0)
0 0

q
C C

k
= - + fi =

BC (II):
2 2

2 2( )
2 2

w w

qL qL
T L T C C T

k k

-
± = = + fi = +

Substituting for C
1
 and C

2
, the temperature profile is obtained as

2 2

( )
2 2

w

qx qL
T x T

k k

-
= + +

or 2 2( ) ( )
2

w

q
T x T L x

k
= + -

or

22

( ) 1
2

w

qL x
T x T

k L

È ˘Ê ˆ Ê ˆ- = -Í ˙Á ˜Á ˜ Ë ¯Ë ¯ Î ˚
This can be expressed in neat dimensionless form:

2

2

1
1

2/

wT T x

LqL k

È ˘- Ê ˆ= -Í ˙Á ˜Ë ¯Î ˚
(3.7)
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where L is the half-thickness of the wall.

Clearly, the temperature distribution is parabolic and symmetric about x = 0, the plane of symmetry. The 

maximum temperature naturally occurs at the midplane.

i.e., T = T
max

 at x = 0

2

max
2

w

qL
T T

k
= + (3.8)

In the dimensionless form, the temperature variation can be expressed as

22 2

2
max

( )
1w

w

T x T L x x

T T LL

È ˘- - Ê ˆ= = -Í ˙Á ˜Ë ¯- Î ˚
(3.9)

It may be noted that the temperature gradient dT/dx (and, hence, the heat-transfer rate Q) for a 

plane wall with heat generation depends on the thermal conductivity of the material while it is 

independent of it in the case of a plane wall without heat generation.

Convective Boundary Conditions on the Two Faces In many practical cases, the heat generated 

within the medium is conducted to the surface which may be exposed to the flowing fluid. Heat is thus 

carried away from the surface to the surrounding fluid characterized by the heat-transfer coefficient h, and 

the ambient fluid temperature T . Applying the surface energy balance at the two faces (x = ±L), we have

or ( )

dT
( )

dx

or

w

x L

w w

kA hA T T

qL qL
k h T T T T

k h

=±
- = -

È ˘- - = - - =Í ˙Î ˚

fi w

qL
T T

h
= + (3.10)

Substituting this value in the expression for temperature distribution, we have

or

2 2

2 2

( ) ( )
2

( )
2

qL q
T x T L x

h k

q qL
T T L x

k h

= + + -

- = - + (3.11)

The maximum temperature will obviously occur at the midplane, i.e., at x = 0,

( )w

x L

dT
kA h T T

dx =±
- = -

Hence

2

max max

1

2 2

qL qL L
T T T T qL

k h k h

È ˘- = + = + = +Í ˙Î ˚
(3.12)

Case (c): Plane Wall of Thickness L with Uniform Heat Generation with One Surface 
Insulated Consider a plane wall of thickness L, with constant thermal conductivity k, and one of the 

sides (say, left side) insulated, in which heat is generated at a uniform note of q  per unit volume. The 

other side of the wall is at a temperature of T
w
.
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We have seen that in the case of a plane wall of 

thickness 2L with common surface temperature, the 

maximum temperature occurs at the midplane (x = 

0). The temperature gradient there is zero and no heat 

can pass through it. The midplane can, therefore, be 

looked upon as an adiabatic (insulated) surface. This 

is analogous to a case in which the plane wall is 

of thickness L (not 2L) with one surface insulated 

(where T
max

 will occur) and the other at the specified 

temperature, T
w
.

Note that in this case, L is not the half-thickness

but the full thickness of the wall.

The general solution for temperature distribution 

is

2

1 2
2

qx
T C x C

k

-
= + +

C
1
 and C

2
 are obtained by applying the boundary conditions. For the present case:

BC (I): At x = 0, well-insulated surface, i.e., –kA (dT/dx) = 0, and since k and A are not zero, dT/dx

must be zero).

1

dT qx
C

dx k

-
= +

Then, applying BC (I), we get : 1 0C =

Then,
2

2and ( )
2

dT qx qx
T x C

dx k k

-
= - = +

BC (II): At x = L, T = T
w
, from BC(II),

2

2
2

w

qL
C T

k
= +

Substituting for C
1
 and C

2
, the temperature variation is given by

2 2( ) ( )
2

w

q
T x T L x

k
= + - (3.13)

Maximum Temperature T
max

 must occur on the insulated left surface of the wall since heat being 

generated in the wall is constrained to flow from left face to right face. Putting x = 0 in Eq. (3.13),

2

max
2

w

qL
T T

k
= + (3.14)

Substituting for T
w
 from Eq. (3.3),

2

max
2

qL qL
T T

h k
= + + (3.15)

Equation (3.10) gives T
max

 in terms of the fluid temperature, T .

Temperature profile in a plane wall with internal 

heat generation with one face insulated and the 

other exposed to convection
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From Eq. (3.13) and (3.14), we can write

22 2

2
max

( )
1w

w

T x T L x x

T T LL

- - Ê ˆ= = - Á ˜Ë ¯-
(3.16)

Heat-transfer rate,

Also,

2
gen 2

cond

( ) ( )

x=L

W
Q E q A m L m

m

dT qL
Q Q kA kA qAL

dx k

Ê ˆ= = ¥ ¥Á ˜Ë ¯

-Ê ˆ= = - = - =Á ˜Ë ¯

\ conv cond gen( ) volumewQ hA T T Q E q qAL= - = = = ¥ =

As h Æ , T
(x = L)

, i.e., T
w

ª T

This implies that the surface resistance between the wall surface and the fluid (R
conv

 = 1/hA) is zero, 

and the surface temperature equals the ambient temperature. Also, as h Æ 0, T(x) becomes infinite. The 

physical significance can be better appreciated if one looks at the boundary condition at x = L,
dT

dx
Æ

0 as h Æ 0.

At x = 0, 
dT

dx
 = 0.

This means that both the end faces are insulated. With no scope for escape, the heat generated will 

continuously increase the temperature with no steady-state solution.

3.5 ❏

GENERATION AND CONSTANT SURFACE TEMPERATURE

Internal thermal energy generation can occur in many radial geometries, for instance, a current carrying

electrical wire or a fuel element in a nuclear reactor. Consider a long solid cylinder of radius R (radius 

much smaller compared to its length) in which thermal energy is generated internally per unit volume at a 

uniform rate of q . Under steady-state conditions, the heat so generated equals the convective heat-transfer 

rate from the outer surface of the cylinder to the surrounding fluid. The formulation of the problem can 

be explained using Fig. 3.3.

The appropriate differential equation is

1
0

d dT q d dT qr
r r

r dr dr k dr dr k

È ˘ È ˘+ = fi = -Í ˙ Í ˙Î ˚ Î ˚

Integrating once, we get

2

1
2

dT qr
r C

dr k
= - +

Integrating once again, we have

2

1 2( ) n
4

qr
T r C r C

k
= - + +l
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The boundary conditions are

0

0
r

dT

dr =
=

and T
(r=R)

 = T
w

The first boundary condition indicates that the temperature gradient is zero as the centreline of a solid 

cylinder is a line of symmetry for the temperature distribution. You may recall that we had invoked the 

same boundary condition at the centre (midplane) of a plane wall having symmetrical boundary conditions.

Applying the first boundary condition,

i.e., 1
0

0 yields 0
r

dT
C

dx =
= =

Application of the surface boundary condition T(R) = T
w
, gives

2

2
4

w

qR
C T

k
= +

The temperature distribution is given by

22

( ) 1
4

w

qR r
T r T

k R

È ˘Ê ˆ= + -Í ˙Á ˜Ë ¯Î ˚
(3.17)

At the centreline (r = 0), the temperature will be maximum.

2 2

max max(0) or
4 4

w w

qR qR
T T T T T

k k
= = + = +

Solid cylinder with uniform internal heat generation

In the non-dimensional form, the temperature distribution can be expressed as

or

2

2

2
2

max

( )
1

/4

( )
1 1

w

w

w

T r T r

RqR k

T r T r

T T R
f r

- Ê ˆ= - Á ˜Ë ¯

- Ê ˆ= - fi = -Á ˜Ë ¯-
(3.18)
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where f is the non-dimensional temperature and r is the non-dimensional radius.

We note that larger the radius, or smaller the thermal conductivity, larger the centreline temperature.

The heat flux is given by

( )
( )

2 2

dT r qr qr
q r k k

dr k

Ê ˆ= - = - - =Á ˜Ë ¯

At r = R, the heat flux at the outer surface,

( ) 2r R

qR
q

=
=

which is a positive quantity. Thus, the heat flow is expectedly in the positive x-direction, i.e., outwards.

● Convective Boundary Condition

In most of the engineering applications, the ambient fluid temperature T  rather than the wall temperature 

T
w
 is known. Let us now consider heat conduction in a solid cylinder with uniform volumetric energy-

generation rate, q  subjected to convection at the outer surface with a heat-transfer coefficient h into the 

surrounding medium at the temperature T .

Applying the energy balance, gen convE Q=

q (pR2L) = h(2pRL) (T
w
 – T )

or q R = 2h(T
w
 – T )

It follows that

2
w

qR
T T

h
= +

Substituting T
w
 in Eq. (3.17), the temperature distribution in the cylinder given by

22

( ) 1
4 2

qR r qR
T r T

k R h

È ˘Ê ˆ= - + +Í ˙Á ˜Ë ¯Î ˚
(3.19)

This expression makes it possible to calculate the temperature at any point on the rod (cylinder) and 

shows that the temperature curve in a circular rod is parabolic.

At r = 0, the maximum centreline temperature is

2

max (0)
4 2

qR qR
T T T

k h
= = + + (3.20)

or max

1

2 2

qR R
T T

k h

È ˘= + +Í ˙Î ˚
(3.21)

Let us now examine the physical significance of the two extreme cases of solution for h Æ , and h Æ 0.

For extremely large values of h approaching infinity, the second term in Eq. (3.30) disappears and we get

22

( ) 1
4

qR r
T r T

k R

È ˘Ê ˆ= - +Í ˙Á ˜Ë ¯Î ˚
(3.22)
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which is the same as Eq. (3.17) for constant surface temperature except that T
w
 is replaced by T  now. This 

is because as h Æ , the convective resistance becomes vanishingly small, and the surface temperature, 

T
w
 assumes the value of ambient temperature, T .

If h Æ 0, that is for very small values of h, Eq. (3.18) reveals that the temperature T (r) Æ , that is, 

it will become extremely high. From the second boundary condition, as h Æ 0, the temperature gradient, 

0
r R

dT

dr =
Æ . And, negligible temperature gradient corresponds to an almost insulated or adiabatic outer

surface of the cylinder. Naturally, the internal heat generated in the cylinder cannot be convected away 

resulting in continuous rise in temperature. No steady-state solution is possible in this particular situation.

3.6 ❏

Cooling of current-carrying conductors improves their current-

carrying capacity. Knowledge of temperature distribution is 

required to make that temperatures leading to burn-out of 

the conductor are not reached. Conductors have to operate 

safely in superconducting magnets, transformers, electric 

motors and electrical machinery, since sudden failure of a 

conductor may lead to conditions unsafe to the operator as 

well as the machine.

In the case of current-carrying conductors, uniform 

internal heat generation occurs due to ohmic or Joulean 

heating.

Consider a conductor of cross-sectional area, A
c
 and length, L. Let the current carried be I in amperes. 

Let the electrical resistivity of the material be r (ohm m).

Then, heat generated per unit volume, genq E=  per unit volume of the conductor,

where genE  is the total heat generation rate (W).

genQ  = I2 R
e
 where R

e
 = electrical resistance of the conductor (ohm)

But e
c

L
R

A

r
=

Therefore,

2 2
2 3( / )

( / ) (W/m )e c
c

c c

I R I L A
q I A

A L A L

r
r= = =

or
2

2

e

i
q i

k
r= =

where i = (I/A
c
), and is known as the current density (A/m2), and k

e
 = 

1

r
 = electrical conductivity, (ohm 

m)–1 or reciprocal of resistivity.

Therefore, the temperature distribution in a current-carrying conductor (of solid, cylindrical geometry) 

is given by.

2 2( ) ( )
4

w

q
T r T R r

k
= + -

Current carrying conductor
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Substituting for q , we get

2
2 2( ) ( )

4
w

i
T r T R r

k

r
= + - (3.23)

Equation (3.25) gives the temperature variation in the current-carrying conductor, in terms of the surface 

temperature, T
w
. Maximum (centre) temperature is obtained by substituting r = 0.

2 2

max
4

w

i R
T T

k

r
= + (3.24)

And, the non-dimensional temperature distribution is given by

2

max

1w

w

T T r

T T R

- Ê ˆ= - Á ˜Ë ¯-
(3.25)

This indicates a parabolic temperature profile.

3.7 ❏ HOLLOW CYLINDER WITH INTERNAL HEAT GENERATION

Radial systems like a hollow cylinder (a long solid tube) have significant practical applications. Many a 

time, nuclear fuel rods are made of hollow cylinder geometry where the heat generated is carried away by 

a coolant like liquid metal flowing either on the inside or outside the tubes. Hollow electrical conductors 

of cylindrical shape are often used for high current-carrying applications, where cooling is effected by 

a fluid flowing on the inside. Annular reactors, insulated either from inside or outside, are often used in 

many chemical processes.

3.8 ❏  HOLLOW CYLINDER WITH UNIFORM HEAT GENERATION 
WITH INSIDE SURFACE INSULATED

The hollow cylinder with an adiabatic inner surface has application in reactor fuel rod design. 

Figure 3.6 illustrates the cylinder to be adiabatic at the inner surface and on the ends so that heat flow 

is only in the radial outward direction.

Hollow cylinder with uniform internal heat generation: adiabatic inner surface and adiabatic ends
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The general solution for temperature 

distribution is
2

1 2( ) ln
4

qr
T r C r C

k
= - + +

The first constant C
1
 is obtained from the 

boundary condition at the inner surface,

1

0
r r

dT

dr =

Ê ˆ =Á ˜Ë ¯

It follows that

1

1 1

1

0
2r r

qr CdT

dr k r=
= - + =

fi
2

1
1

2

qr
C

k
=

The second constant C
2
 can be obtained from 

the boundary condition at the outer surface: T

(r = r
2
) = T

2

Then

= + -
2 2
2 1

2 2 2ln
4 2

qr qr
C T r

k k

Substituting for C
1

and C
2
, one gets the expression for the temperature field.

or

= - + + + -

È ˘Ê ˆ Ê ˆ Ê ˆ= + - -Í ˙Á ˜Á ˜ Á ˜Ë ¯Ë ¯ Ë ¯Í ˙Î ˚

2 2 22
1 2 1

2 2

2 22
1 2 2

2
1 1

( ) ln ln
4 2 4 2

( ) 2 ln
4

qr qr qrqr
T r r T r

k k k k

qr r r r
T r T

k r r r
(3.26)

Also,

È ˘Ï ¸Ô Ô Ê ˆÊ ˆ Ê ˆÍ ˙= + - +Ì ˝Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Ô ÔÓ ˛Î ˚

222
2 1

2
2 2 2

( ) 1 2 ln
4

qr rr r
T r T

k r r r

Maximum temperature will clearly occur at the adiabatic inside surface: T (r = r
1
) = T

1
 = T

max

since

1

0
r r

dT

dr =

Ê ˆ =Á ˜Ë ¯
  (inside surface insulated)

The temperature difference across the cylindrical wall is then given by

\
È ˘Ê ˆ Ê ˆ- = - = - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

22
1 2 2

max 2 1 2
1 1

2 ln 1
4

qr r r
T T T T

k r r
(3.27)

Heat removal through the outer surface of a 

cylindrical wall with uniform heat generation
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Convective Boundary Condition If the fluid temperature surrounding the outer surface is specified, 

the entire amount of heat generated must be dissipated by convection to the flowing fluid since the inner 

surface is adiabatic (insulated).

Energy conservation requirement dictates that

i.e.,

gen conv,out

2 2
2 1 2 2

Q

( ) (2 ) ( )

Q

q r r L h r L T Tp p

=

- = -

or
2 2
2 1

2
2

( )

2

q r r
T T

hr

-
= + (3.28)

Substituting for T
2
, one gets

È ˘- Ê ˆ Ê ˆ Ê ˆ= + + - -Í ˙Á ˜Á ˜ Á ˜Ë ¯Ë ¯ Ë ¯Í ˙Î ˚

2 22 2 2
2 1 1 2 2

2 1 1

( )
( ) 2 ln

2 4

q r r q r r r r
T r T

hr k r r r
(3.29)

3.9 ❏  HOLLOW CYLINDER WITH THE OUTSIDE SURFACE 
INSULATED AND COOLED AT THE INNER SURFACE

Consider steady state, one-dimensional heat-transfer in a hollow cylinder (a long solid tube) of length 

L, inside radius r
1
 and outside radius r

2
, with a uniform volumetric heat generation rate q  and constant 

thermal conductivity k. The outside surface is effectively insulated (adiabatic) and hence the heat generated 

in the cylindrical shell will have to flow in the radial inward direction. Let the inside and outside surface 

temperatures be maintained at T
1
 and T

2
, respectively

Hollow cylinder with uniform internal heat generation: adiabatic outer surface and adiabatic ends.

● Assumptions

Steady-state conditions

One-dimensional (radial) conduction

Uniform volumetric heat generation

Constant properties

Well-insulated outer surface

To determine the temperature distribution we start with the relevant governing differential equation:

1
0 or

d dT q d dT qr
r r

r dr dr k dr dr k

Ê ˆ Ê ˆ+ = = -Á ˜ Á ˜Ë ¯ Ë ¯
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Integrating the above expression,

2
1

1 or
2 2

CdT qr dT qr
r C

dr k dr k r
= - + = - +

Further integration yields,

2

1 2( ) ln
4

qr
T r C r C

k
= - + +

This is the formal solution for the temperature profile.

To obtain the two constants of integration, the two 

boundary conditions are

2

1 10 and ( )
r r

dT
T r T

dr =
= =

It follows that

2 2
2 2

1 10
2 2

qr qr
C C

k k
= - + fi =

and
2

1
1 1 1 2ln

4

qr
T C r C

k
= - + +

\
2 2

1 2
2 1 1ln

4 2

qr qr
C T r

k k
= + -

Substituting for C
1
 and C

2
 in the general solution,

2 2
2 2 2 2

1 1 1( ) ( ) ln ln
4 2 2

qr qrq
T r T r r r r

k k k
= + - + -

Hence,

2
2 2 2

1 1
1

( ) ( ) ln
4 2

qrq r
T r T r r

k k r
= + - +

or

2 22
2 1

1
1 2 2

( ) 2 ln
4

qr rr r
T r T

k r r r

È ˘Ê ˆÊ ˆ Ê ˆ= + + -Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
(3.30)

At r = r
2
, T = T

2
 and the total temperature difference across the wall is

\
22

2 2 1
2 1

1 2

2 ln 1
4

qr r r
T T

k r r

È ˘Ê ˆ Ê ˆ- = + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
(3.31)

Convective Boundary Condition Applying the energy-conservation requirement at the inner surface, 

E
.
gen

 = Q
.
conv

2 2
2 1 1 1( ) (2 )( )q r r L h r L T Tp p- = -

r T1 1,

T T2 max=

Qcond

.

dT
dr

r r= 2

= 0

Qconv

.

T = Tw 1

r1

r2

Insulation

Inner surface
cooled

Coolant
T , h

T r( )

Outer surface insulated

r T2 2,

q k,

Removal of heat through the inner surface of a 

cylindrical wall with uniform heat generation
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or
2 2 2 2
2 1 2 1

1
1 1 1

( ) ( )
and

2 2 ( )

q r r q r r
T T h

hr r T T

- -
= + =

-
(3.32)

The temperature distribution when heat is removed only through the inside surface of the tube to the 

surrounding fluid is, thus, given by

2 22 2 2
2 1 2 1

1 1 2 2

( )
( ) 2ln

2 4

q r r qr rr r
T r T

hr k r r r

È ˘- Ê ˆÊ ˆ Ê ˆ= + + + -Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
(3.33)

Since 0
dT

dr
=  at r = r

2
, the maximum temperature will occur at the outside surface and is given by

22 2 2
2 1 2 2 1

max 2
1 1 2

( )
2ln 1

2 4

q r r q r r r
T T T

hr k r r

È ˘- Ê ˆ Ê ˆ= = + + + + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

or
È ˘Ï ¸Ô ÔÊ ˆ Ê ˆ Ê ˆÍ ˙= + - + + -Ì ˝Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Ô ÔÓ ˛Î ˚

2 22
2 1 2 1

max
2 1 1 2

2
1 2 ln 1

4

qr r r rk
T T

k r hr r r
(3.34)

or

È ˘Ï ¸Ô ÔÊ ˆ Ê ˆÊ ˆÍ ˙= + - - +Ì ˝Á ˜Á ˜ Á ˜Í ˙Ë ¯ Ë ¯ Ë ¯Ô ÔÓ ˛Î ˚

22
2 1 2

max
1 2 1

2
1 1 2 ln

4

qr r rk
T T

k hr r r
(3.35)

3.10 ❏  HOLLOW CYLINDER WITH BOTH
SURFACES HELD AT CONSTANT 
TEMPERATURES

Consider steady-state, one-dimensional heat-transfer in a hollow 

cylinder of constant thermal conductivity k, length L, inside radius 

r
1
 and outside radius r

2
, with uniform internal heat generation. 

Let the temperatures of the inside and outside surfaces be T
1
 and 

T
2
, respectively. Heat is being dissipated from both the surfaces 

(Fig. 3.10).

The governing differential equation in the cylindrical coordinates 

is given by

2

2

1 1
0 or

d T dT q d dT q
r

r dr k r dr dr kdr

Ê ˆ+ + = = -Á ˜Ë ¯

Integrating,

2
1

1 or
2 2

CdT qr dT qr
r C

dr k dr k r
= - + = - +

Heat removal through both 

surfaces of a cylindrical wall 

with uniform heat generation
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Integrating again, the following formal solution for temperature distribution is given by.

2

1 2( ) ln
4

qr
T r C r C

k

-
= + +

We now have to determine the constants of integration C
1
 and C

2
 for the following boundary conditions.

T = T
1
, at r = r

1
  (inside surface)

T = T
2
, at r = r

2
  (outside surface)

It follows that

2
1

1 1 1 2ln
4

qr
T C r C

k

-
= + + (a)

2
2

2 1 2 2ln
4

qr
T C r C

k
= - + + (b)

Subtracting Eq. (a) from Eq. (b):

2 2
2 1 2 1 1 2 1( ) ln ( / )

4

q
T T r r C r r

k
- = - - +

\

2 2
2 1 2 1

1
2 1

( ) ( )
4

ln ( / )

q
T T r r

k
C

r r

- + -
=

And, from Eq. (a):

2 2
2 2 1 2 1

1
2 1 1

2 1

( ) ( )
4

ln
4 ln ( / )

q
T T r r

qr k
C T r

k r r

- + -
= + -

Substituting for C
1
 and C

2
 in the general solution:

( )- + - - + -
= - + + + -

2 2 2 2
22 2 1 2 1 2 1 2 1

1
1 1

2 1 2 1

( ) ( ) ( )
4 4( ) . ln ln

4 ln( / ) 4 ln ( / )

q qT T r r T T r r
qrqr k kT r r T r

k r r k r r

The temperature distribution is then given by

2 2 2 2 1
1 1 2 1 2 1

2 1

ln( / )
( ) ( ) ( ) ( )

4 4 ln( / )

r rq q
T r T r r T T r r

k k r r

Ï ¸-
- = - + - + -Ì ˝

Ó ˛

or

( )

2 2 2 2
1 1 2 1 1 1

2 1 2 1 2 1 2 1 2 1

2 2 2 2
12 1 1 1

2 2
2 1 2 1 2 12 1

(r) ( ) ( ) ln(r / r ) ln(r / r )

4 ( ) 4 ( ) ln( / ) ln( / )

ln /( ) ln(r / r )

4 ( ) ln( / ) ln( / )

T T r r r rq q

T T k T T k T T r r r r

r rq r r r r

k T T r r r rr r

- - --
= + +

- - -

È ˘- -
= - +Í ˙

- -Í ˙Î ˚

\
2 2 2

1 2 1 1 1 1
2

2 1 2 1 2 1 2 12 1

( ) ( ) ln( / ) ( / ) 1 ln( / )

4 ( ) ln( / ) ln( / )( / ) 1

T r T r r r r r r r rq

T T k T T r r r rr r

È ˘- - -
= - +Í ˙

- - -Í ˙Î ˚
(3.36)
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3.10.1 ● Heat Transfer to Both Surfaces

Once the temperature distribution is known, the heat-transfer rate can be easily determined by applying 

the Fourier’s rate equation:

Heat-transfer rate at the inner surface, 
1

11

(2 )( / )
r rr r

Q k r L dT drp ==
= -

Heat-transfer rate at the outer surface, 
2

22

(2 )( / )
r rr r

Q k r L dT drp ==
= -

One must note that the heat transfer to the inner surface will be negative since the heat flows from outside 

to inside, i.e., in the negative r-direction.

Hollow cylinder with uniform internal heat generation losing heat from both inner and outer surfaces

3.10.2 ● Maximum Temperature

The location of maximum temperature will be somewhere between r
1
 and r

2
, since heat is transferred 

to both inside and outside surfaces. Let that location be at a radius of r
max

. Then, r
max

 can be found by 

differentiating T(r) with respect to r and equating the resulting derivative to zero. Then, this value of r
max

is substituted in the expression for T(r) to obtain T
max

.

3.10.3 ● Convective Boundary Condition

If the wall surface temperatures T
1
 and T

2
 are not known but the temperatures of the fluids T

,1
 and T

,2

to which the inner and outer surfaces are exposed respectively and the associated heat-transfer coefficients 

h
1
 and h

2
 are specified, then Eq. (3. ) must be supplemented with the following equations in order to 

determine r
max

.

Heat generated within the wall and conducted Heat lost to the fluids at the two 

 to the inner and outer surfaces surfaces by convection

Ê ˆ Ê ˆ=Á ˜ Á ˜Ë ¯ Ë ¯

and

2 2
max 1 1 1 1 1

2 2
2 max 2 2 2 2

( ) (2 )( )

( ) (2 )( )

q r r L h r L T T

q r r L h r L T T

p p

p p

- = -

- = -
Since heat is transferred from both inside and outside surfaces, the maximum temperature, T

max
 must 

naturally occur somewhere in the cylindrical wall. Obviously, the radius at which T = T
max

, i.e., r
max

 will 

lie between r
1
 and r

2
. The surface at r

max
 is isothermal and the maximum temperature occurs at r

max
, i.e., 

dT/dr = 0 at r = r
max

. This means that the surface at r
max

 may be considered as representing an insulated 

boundary condition 0
dT

dr

Ê ˆ=Á ˜Ë ¯ .
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Thus, the cylindrical annulus (wall) may be considered as being made up of two layers: the inner 

layer, between r = r
1
 and r = r

max
, insulated on its outer surface and, an outer layer, between r = r

max
 and 

r = r
2
, insulated at its inner surface.

Then, the maximum temperature for the inner and outer layers can be determined from the following 

equations:

For the Inner Layer (Insulated on the Outer Surface) Replacing r
2
 by r

max
 and T

2
 by T

max
 in Eq. 

(3.31), we get

22
max max 1

max 1
1 max

2 ln 1
4

qr r r
T T

k r r

È ˘Ê ˆ Ê ˆ- = + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
(a)

For the Outer Layer (Insulated on the Inner Surface) Replacing r
1
 by r

max
 and T

1
 by T

max
 in Eq. 

(3. ), we have

22
max 2 2

max 2
max max

2 ln 1
4

qr r r
T T

k r r

È ˘Ê ˆ Ê ˆ- = - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
(b)

Subtracting equations (a) from equation (b), we have

2 22
max 2 2 max 1

1 2
max max 1 max

2 22
max 2 1 max max

max max 2 1

2
2 2 max max 1
2 1

2 max

2 ln 1 2 ln 1
4

2 ln 2 ln
4

( ) 2 ln
4 4

qr r r r r
T T

k r r r r

qr r r r r

k r r r r

qr r rq
r r

k k r r

È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ- = - - - - +Í ˙Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ= - + -Í ˙Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚

Ê= - +
Ë

2
2 2 max 1
2 1

2

2 2 2 1
2 1 max

2

( ) 2 ln
4 4

( ) 2 ln
4

qr rq
r r

k k r

rq
r r r

k r

ˆ Ê ˆ= - +Á ˜ Á ˜¯ Ë ¯

È ˘Ê ˆ= - +Í ˙Á ˜Ë ¯Í ˙Î ˚

or 2 2 2 1
1 2 2 1 max

2

( )4 ( ) 2 ln
r

T T k q r r r
r

È ˘Ê ˆ- = - +Í ˙Á ˜Ë ¯Î ˚

or 2 2 22
max 2 1 1 2

1

2 ln ( ) 4 ( )
r

qr q r r k T T
r

Ê ˆ = - - -Á ˜Ë ¯

Solving for r
max

, it follows that

2 2
2 1 1 2

max
2 1

( ) 4 ( )

2 ln( / )

q r r k T T
r

q r r

- - -
= (3.37)

Substituting this value of r
max

 in either of the expressions (a) or (b), one can obtain the maximum 

temperature in the hollow cylinder.

The temperature distribution in the outer layer is determined from Eq. (3.19).

If the inside and outside surface temperatures, T
1
 and T

2
 are equal, the location of the maximum 

temperature is given by

-
=

2 2
2 1

max
2 12 ln( / )

r r
r

r r
(3.38)
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Note that r
max

 depends only on the physical dimensions of the cylindrical wall and not on the thermal 

conditions.

It is worth noting that the location of maximum temperature in the cylindrical wall will not be affected 

by the value of the uniform volumetric heat generation q .

3.11 ❏  SOLID SPHERE WITH INTERNAL HEAT GENERATION AND 
CONSTANT SURFACE TEMPERATURE

The mathematical formulation for steady-state one-dimensional heat conduction in a solid sphere of radius 

R and constant thermal conductivity k having uniform volumetric heat generation rate q  in spherical 

coordinates is
2

2 0
d dT qr

r
dr dr k

È ˘ + =Í ˙Î ˚
One boundary condition is

T = T
w

at r = R [as T
w

is specified]

As the entire outer surface of the sphere experiences the same constant temperature T
w
 and the heat 

source inside it is also uniformly distributed, the temperature distribution is obviously expected to be 

symmetrical about the centre of the sphere where the temperature will be maximum and the temperature 

gradient will be zero.

The second boundary condition then can be written as

dT

dr
 = 0 at r = 0

Separating the variables and integrating once, we have

3
2

1
3

dT qr
r C

dr k
= - +

Separating the variables and integrating yet again, we get

2
2

2( )
6

Cqr
T r C

k r
= - + +

Applying the boundary condition at r = 0, we obtain

10 (0)
0

C
= - +

To satisfy the above equation, C
1
 has got to be zero. With 1 0,C =  the temperature distribution becomes

2

2( )
6

qr
T r C

k
= - +

The first boundary condition can now be applied to get C
2
.

\
2 2

2 2or
6 6

w w

qR qR
T C C T

k k
= - + = +

Substituting this constant of integration in Eq. (3) the resulting temperature distribution is

È ˘Ê ˆ- = - = -Í ˙Á ˜Ë ¯Î ˚

22
2 2( ) ( ) 1

6 6
w

q qR r
T r T R r

k k R
(3.39)
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As expected, the maximum temperature in the sphere will be at the centre (r = 0)

2

max(0) or
6

w

qR
T T T

k
= + (3.40)

It is instructive to note that the temperature distribution is symmetrical about the centre of symmetry. 

Furthermore, the maximum temperature occurs at a location far away from the outer surface.

3.12 ❏ CONVECTIVE BOUNDARY CONDITION

If instead of the constant surface temperature at the boundary of the solid sphere (at r = R), the ambient 

temperature T  is known (which is more likely) then by applying the surface energy balance, we can 

express T
w
 in terms of T

.

At r = R, the heat flux due to conduction equals that due to convection (the boundary condition of 

the second kind). Thus,

( ) or ( )r R w

r R

dT
k h T T h T T

dr =
- = - - (3.41)

But
3r R

dT qR

dr k=
= - From Eq. (3)

Putting this value in Eq.(3), one gets

( ) or
3 3

w w

qR qR
k h T T T T

k h

Ê ˆ- - = - = +Á ˜Ë ¯
(3.42)

Substituting this value of T
w
, the temperature distribution in the sphere can now be expressed as

22

( ) 1
6 3

qR r qR
T r T

k R h

È ˘Ê ˆ- = - +Í ˙Á ˜Ë ¯Î ˚
(3.43)

Maximum temperature (at the centre, i.e., at r = 0) will be

or

2

max

max

6 3

1

3 2

qR qR
T T

k h

qR R
T T

k h

= + +

È ˘= + +Í ˙Î ˚
(3.44)

Similar to the previous cases of the thin plane wall (infinite slab) and long solid cylinder, let us see what 

happens when the surface heat-transfer coefficient h is either extremely small (h Æ 0) or inordinately 

large (h Æ ) in the case of a solid sphere.

As h Æ , Eq. (3.44) becomes

22

( ) 1
6

qR r
T r T

k R

È ˘Ê ˆ= - +Í ˙Á ˜Ë ¯Î ˚
(3.45)

because the second term on the right-hand side is eliminated. The above equation represents the temperature 

distribution for a sphere with constant surface temperature T
w
, with T

w
replaced now with T . This is clear 

when h Æ , T
w

Æ T .
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As for the second special case of when h Æ 0, from 

Eq. (3.44) again

0
r R

dT

dr =
Æ and T

r = R
Æ T (3.46)

This means that the outer surface (boundary) of the 

sphere becomes insulated or impervious to heat transfer. 

The temperature T(r) cannot attain a steady state value 

because the heat generated continuously within the sphere 

results in constant rise in temperature with no scope for 

escape (adiabatic wall). Hence, no steady-state solution 

to the problem exists.

Heat-transfer by conduction at the outer surface of the 

sphere is given by the Fourier’s rate equation:

2 3
cond

gen

4
( / ) (4 )

3 3

–(V)

r R

qR
Q kA dT dr k R R q

k

q Q

p p=
-Ê ˆ Ê ˆ= - = - =Á ˜ Á ˜Ë ¯ Ë ¯

= =

Under steady conditions, the energy balance for the solid sphere can therefore be expressed as

Ê ˆ Ê ˆ
Á ˜ Á ˜=
Á ˜ Á ˜
Ë ¯ Ë ¯

Rate of heat Rate of heat generation 

transfer by within the sphere from the 

conduction solid at the outer surface

3.13 ❏

Consider a spherical container of radioactive 

wastes with non-uniform radial distribution of 

heat dissipation. The outer surface is exposed to 

convection conditions.

Let us develop an expression for steady-state 

radial temperature distribution.

Assumptions
Steady-state conditions

One-dimensional conduction

Constant properties

Negligible temperature drop across the container wall

The appropriate form of the heat conduction equation is

2
2 0

2

4
2 2o

2

1
1

qd dT q r
r

dr dr k k Rr

qd dT r
r r

dr dr k R

È ˘Ê ˆ Ê ˆ= - = - -Í ˙Á ˜Á ˜ Ë ¯Ë ¯ Î ˚

È ˘Ê ˆ = - -Á ˜ Í ˙Ë ¯ Î ˚

Solid sphere with uniform internal heat 

generation

Solid sphere with non-uniform heat generation
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Integrating,

3 5
2 0

12

3
0 1

2 2

3 5

3 5

qdT r r
r C

dr k R

q CdT r r

dr k R r

Ê ˆ
= - - +Á ˜Ë ¯

È ˘
= - - +Í ˙

Í ˙Î ˚

Further integration yields,

2 4
0 1

22
( )

6 20

q Cr r
T r C

k rR

Ê ˆ
= - - - +Á ˜Ë ¯

(A)

From the boundary conditions:

(dT/dr)|
r=0

 = 0 (from symmetry)

and –k(dT/dr)|
r=R

 = h[T(R) – T ] (from surface energy balance)

If follows that 1 0C =

and,
2 2

0
0 2

3 5 6 20

qR R R R
q h C T

k

È ˘Ê ˆÊ ˆ- = - - + -Í ˙Á ˜Á ˜ Ë ¯Ë ¯ Î ˚

fi
2

0 0
2

2 7

15 60

q R q R
C T

h k
= + +

Substituting for C
1
 and C

2
 in Eq. (A),

2 2 4
0 0 0

0 2

2 7 1 1
( )

15 60 6 20

q R q R q r r
T r T q

h k k R
= + + - +

Simplifying and rearranging, the radial temperature distribution is given by

2 42
0 02 7 1 1

( )
15 60 6 20

q R q R r r
T r T

h k R R

È ˘Ê ˆ Ê ˆ= + + - +Í ˙Á ˜Á ˜ Ë ¯Ë ¯Î ˚
(3.47)

Maximum temperature will clearly occur at the centre (r = 0)

Then

2
0 0

max

2 7
(0)

15 60

q R q R
T T T

h k

Ê ˆ= = + +Á ˜Ë ¯
(3.48)

Surface temperature can be obtained by substituting r = R in the expression for temperature distribution.

Then
2

0 02 7 1 1
( )

15 60 6 20

q R q R
T r R T

h k

È ˘= = + + - +Í ˙Î ˚

\ 02

15
w

q R
T T

h
= + (3.49)

Also
2

0
max

7
= +

60
w

q R
T T

k
(3.50)
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3.14 ❏  HEAT TRANSFER IN A NUCLEAR FUEL ROD 
WITHOUT CLADDING

In a nuclear fuel element, the heat generated is not uniform throughout the material but varies with the 

location expressed by the following relation:

2

0 1
r

q q
R

È ˘Ê ˆ= -Í ˙Á ˜Ë ¯Î ˚

where q  = volumetric heat generation at the centre (at r = 0), and

R = outer radius of the solid fuel rod.

Our objective is to develop an expression for

The temperature distribution in the fuel rod,

The maximum temperature in the rod, and

The heat transferred.

Assumptions
Steady-state conditions prevail

One-dimensional (radial) conduction

Homogeneous and isotropic material with constant thermal conductivity

Under these assumptions, the appropriate governing differential equation in cylindrical coordinates is

2

2

1
0 or 0

d T dT q d dT qr
r

r dr k dr dr kdr

Ê ˆ+ + = + =Á ˜Ë ¯

or

2

0 1 0
q rd dT r

r
dr dr k R

È ˘Ê ˆ Ê ˆ+ - =Í ˙Á ˜Á ˜ Ë ¯Ë ¯ Î ˚
Integrating with respect to r, one gets

2 4 3
0 0 1

12 2
or

2 24 4

q q CdT r r dT r r
r C

dr k dr k rR R

Ê ˆ Ê ˆ
+ - = + - =Á ˜ Á ˜Ë ¯Ë ¯

Integrating again,

2 4
0

1 22
( ) ln

4 16

q r r
T r C r C

k R

Ê ˆ
+ - = +Á ˜Ë ¯

This is the general solution for temperature profile within the fuel rod. C
1
 and C

2
 are constants of 

integration to be obtained from the two boundary conditions, viz.,

At r = 0, 0
dT

dr
= fi 1 0C =

(since the temperature is maximum at the centre of the rod)

At r = 0, T = T
max

fi 2 maxC T=

Thus, the temperature distribution in terms of the centre (maximum) temperature of the fuel rod is 

given by

\

2 4
0

max2

2 4
0

max 2

( )
4 16

( )
4 16

q r r
T r T

k R

q r r
T r T

k R

Ê ˆ
+ - =Á ˜Ë ¯

Ê ˆ-
- = -Á ˜Ë ¯
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Surface temperature of the rod can be obtained by replacing r by R and T(r) by T
w
. It follows that

or

2 4
0

max 2

2
0

max

4 16

3

16

w

w

q R R
T T

k R

q R
T T

k

Ê ˆ
- = -Á ˜Ë ¯

- = (3.51)

This gives the maximum temperature drop in the fuel rod to ensure that adequate cooling is provided 

to protect the fuel rod from getting overheated.

Heat Flow from the Surface Knowing the temperature distribution, the heat flow rate at any point 

can be determined by applying the Fourier’s rate equation:

At the surface (r = R):

3
0

2

0

2 4

4

r R

qdT R R
Q kA kA

dr k R

q AR
Q

=

È ˘Ê ˆ-Ê ˆ= - = - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

= (3.52)

Convective Boundary Condition

or

0

0

Heat generated Heat carried away from the

in the fuel rod outside  surface by convection

( )
4

4

w

w

q AR
hA T T

q R
T T

h

Ê ˆ Ê ˆ
=Á ˜ Á ˜Ë ¯ Ë ¯

= -

= + (3.53)

Substituting this value of surface temperature, we have

or

2
0 0

max

0
max

3

4 16

1 3
– = +

4 4

q R q R
T T

h k

q R R
T T

h k

- = +

Ê ˆ
Á ˜Ë ¯

(3.54)

3.15 ❏ WITH CLADDING

Usually, the fuel rod used in a nuclear reactor is insulated on the outside with a protective cladding 

material, to prevent any damage from oxidation of its surface by direct contact with the liquid coolant. 

Generally, aluminium is used as the cladding material. Our aim is to determine the temperature distribution 

and the heat-transfer rate in the nuclear fuel rod with cladding. It is noteworthy that heat generation 

occurs only in the fissile material of the fuel rod while the cladding material does not experience any 

heat generation.

Under steady operating conditions, the heat generated in the fuel rod is conducted through the cladding 

and subsequently, dissipated to the coolant surrounding the cladding by convection. Any contact resistance 

between the fuel rod and the cladding is neglected in this analysis.
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Let R
F
 = outer radius of the fissionable fuel 

rod

k
F
 = thermal conductivity of the fuel rod

R
C
 = outer radius of the cladding material

k
C
 = thermal conductivity of the cladding 

material

The heat-generation rate in the fuel rod is not constant 

but varies with position according to the following relation:

2

0 1
r

q q
R

È ˘Ê ˆ= -Í ˙Á ˜Ë ¯Î ˚

where oq  = volumetric heat generation rate per unit 

volume at the centre (at r = 0), and

R = outer radius of the solid fuel rod.

Assumptions
Steady operating conditions.

One-dimensional conduction (in the radial direction)

Homogeneous, isotropic material with constant ther-

mal conductivity

Non-uniform internal  heat  generat ion: 
2

0[1 ( / ) ]q q r R= -
The governing differential equation in the cylindrical coordinates for one-dimensional (radial), steady-

state conduction with internal heat generation and constant thermal conductivity is

2

2

1
0 or 0

d T dT q d dT qr
r

r dr k dr dr kdr

Ê ˆ+ + = + =Á ˜Ë ¯

From Fourier’s rate equation,

Heat flux, 
dT

q k
dr

= -

\ Temperature gradient, 
dT q

dr k
= -

Therefore,

0 or ( )
d q q d

r qr qr
dr k k dr

-Ê ˆ + = =Á ˜Ë ¯

Let us denote the fuel and cladding materials by suffices F and C, respectively.

Then, for the fuel rod:

2

0

( )

( ) 1

F

F
F

d
q r qr

dr

d r
q r q r

dr R

=

È ˘Ê ˆ= -Í ˙Á ˜Ë ¯Í ˙Î ˚

Cylindrical fuel rod with cladding
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Integrating,

or

2 4

0 12

3
1

0 2

2 4

2 4

F

F

F

F

r r
q r q C

R

Cr r
q q

rR

Ê ˆ
= - +Á ˜Ë ¯

Ê ˆ
= - +Á ˜Ë ¯

For the cladding:

( ) 0C

d
q r

dr
= (there is no heat generation in the cladding)

Integrating,

2
2 orC C

C
q r C q

r
= =

The constants of integration C
1
 and C

2
 can be determined from the relevant boundary conditions.

BC (I): q
F
 = finite, at r = 0

It follows that 1 0C =

BC (II): q
F
 = q

C
, at r = R

F
, i.e., at the interface

3
2

0 22 4

F F
C F

F F

C R R
q q q

R R

Ê ˆ
= = = -Á ˜Ë ¯

(at r = R
F
)

or 2 0

4

F

F

C q R

R
=

\
2

0
2

4

Fq R
C =

The heat flux through the fuel rod and cladding may now be re-written as

3 3
0

0 2 22 24 4

F F
F F

FF F

dT dT qr r r r
q k q

dr dr kR R

È ˘Ê ˆ
= - = - fi = -Í ˙Á ˜Ë ¯ Í ˙Î ˚

and
2 2

0 0

4 4

C CF F
C C

C

dT dTq R q R
q k

dr r dr rk
= - = fi = -

To obtain the temperatures T
F
 and T

C
 in the fuel rod and cladding, respectively, we can integrate the 

expressions for temperature gradients, FdT

dr
 and CdT

drIt follows that

and

3 4 2
0 0

32 2

2 2
0 0

4

or
2 44 16

or ln
4 4

F F
F FF F

F F
C C

C C

q qr r r r
dT dr T C

k kR R

q R q Rdr
dT T r C

k r k

È ˘ Ê ˆ
= - = - +Í ˙ Á ˜Ë ¯Í ˙Î ˚

-
= - = +

Ú Ú

Ú Ú
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The constants of integration, C
3
 and C

4
, can be evaluated by applying the following boundary conditions.

BC (III): T
C
 = T

w’ 
at r = R

C
(at the outer surface of cladding)

BC (IV): T
C
 = T

F
at r = R

F
(at the interface)

Then, from Eq. and BC (III):

2
0

4 ln
4

F
w C

C

q R
C T R

k
= +

Substituting for C
4
, one gets

2 2
0 0ln ln

4 4

F F
C w C

C C

q R q R
T r T R

k k

Ê ˆ-
= + +Á ˜Ë ¯

or
2

0 ln
4

CF
C w

C

Rq R
T T

k r

Ê ˆ- = Á ˜Ë ¯

This gives the temperature drop across the cladding.

And, from Eq. and BC (IV):

4 2 2
0 0

3 32

3
or

4 1616

F F F
F C F C

F FF

q R R q R
T C T T C T

k kR

Ê ˆ
= - + = = - =Á ˜Ë ¯

(at r = R
F
)

\
2 2 2

0 0 0
3

3 3
ln

16 16 4

CF F F
C w

F F C F

Rq R q R q R
C T T

k k k R

Ï ¸Ê ˆÔ Ô= + = + + Ì ˝Á ˜Ë ¯Ô ÔÓ ˛

\
2

0
3

3 1
ln

4 4

CF
w

F C F

Rq R
C T

k k R

È ˘Ê ˆ= + +Í ˙Á ˜Ë ¯Í ˙Î ˚

Since
4 2

0
32 416

F
F F

q r r
T C

k R

Ê ˆ
= - +Á ˜Ë ¯

The temperature variation in the fuel rod is given by substituting for C
3
.

24 2
0 0

2

3 1
ln

4 4 416

CF
F w

F F C FF

Rq q Rr r
T T

k k k RR

Ê ˆ È ˘Ê ˆ= - + + +Í ˙Á ˜ Á ˜Ë ¯Ë ¯ Î ˚
(3.55)

Maximum temperature in the fuel rod occurs at its centre.

Substituting r = 0, we obtain:

È ˘Ê ˆ
Í ˙Á ˜Ë ¯Î ˚

2
0

max

3 1
= + + ln

4 4

F C
w

F C F

q R R
T T

k k R

(3.56)
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Illustrative Examples

(A) Plane Wall: Equal Surface Temperatures

 A fluid of low electrical conductivity at 26oC is heated by a 12 mm thick and 75 

mm wide iron plate. The heat is generated uniformly in the plate at a rate of 5 ¥ 106 W/m3 by passing an 

electrical current through it. Determine the required heat transfer coefficient to maintain the temperature 

of the plate below 200°C. The thermal conductivity of the plate material is 20 W/m K. Neglect the heat 

loss from the edges.

Solution

Known  Heat generated in a plate exposed to convection conditions.

Find  Heat-transfer coefficient, h (W/m2 K).

Assumptions (1) Steady conditions. (2) Uniform heat generation. (3) Uniform heat-transfer coefficient. 

(4) Heat loss from the edges is neglected.

Analysis  Temperature distribution in an infinite slab of thickness 2 L is given by

 or 
2

max( )
2

w

qL
T T

k
- =

 Surface temperature,

2 6 3 3 2

max

(5 10 W/m )(6 10 m)
200 C

2 2 20 W/m K

195.5 C

w

qL
T T

k

-¥ ¥
= - = ∞ -

¥
= ∞

 Also, w

qL
T T

h
- =

 Heat-transfer coefficient,

6 3 3(5 10 W/m ) (6 10 m)

( ) (195.5 26.0)°C or Kw

qL
h

T T

-¥ ¥
= = =

- -
2

177 W/m K (Ans.)

Illustrative Examples
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 Laminated sheets, 5 mm thick, are fabricated from single plastic sheets using a 

suitable adhesive. A number of such sheets are assembled and clamped between steel plates to prevent 

distortion during the process of hardening. The steel plates are held at 78°C and the maximum allowable 

temperature in the stack is 90°C. The heat evolved during hardening is equivalent to the volumetric uniform 

heat generation rate of 122 W/m3. The effective thermal conductivity of the sheet stack may be assumed to 

be 0.24 W/m°C. Estimate the number of sheets that may be processed at any time under these conditions.

Solution

Known  Laminated plastic sheets stacked together between steel plates. Heat generation during 

hardening of adhesive.

Find  Number of sheets in the stack.

Assumptions (1) Steady operating conditions. (2) One-dimensional conduction. (3) Uniform heat 

generation. (4) Thermal contact resistance due to adhesive is negligible.

Analysis  For this geometry,

2

max
2

w

qL
T T

k
- =

 where L is the half-thickness.

\
1/21/2 o

max 3

2 2 0.24 W/m C
( ) (90 78)°C = 0.2173 m

122 W/m
w

k
L T T

q

È ˘¥È ˘= - = -Í ˙Í ˙ Í ˙Î ˚ Î ˚
 Stack thickness, 2L = 2 ¥ 0.2173 = 0.4346 m or 434.6 mm

 Number of sheets 
2 (mm) 434.6 mm

5 mm 5 mm

L
N = = = 87 (Ans.)

 A cylindrical transformer coil made of insulated copper wire has an inside diameter 

of 16 cm and an outside diameter of 24 cm. Sixty percent of the total cross section of the coil is copper 

and the rest is insulation. The current density is 200 A/cm2 and the resistivity of copper is 200 ¥ 10–6

ohm cm2 per m. The heat-transfer coefficient on both sides of the coil is 27 W/m2K and the cooling air 

temperature is 27°C. The effective thermal conductivity of the coil is 0.35 W/m K. Determine the maximum 

temperature in the coil, assuming the coil to be a plane wall.
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Solution

Known  Heat generation in a transformer coil with convective cooling and approximated as a plane 

wall.

Find  Maximum temperature inside the coil.

Assumptions (1) Steady operating conditions. (2) One-dimensional (x direction) conduction. (3) Constant 

properties. (4) Uniform heat-transfer coefficient. (5) Uniform heat generation.

Analysis  Considering the transformer coil as a plane wall of thickness 2L = 4 cm exposed to 

convective environment, the maximum temperature in the coil (at the centre, i.e., x = 0) 

will be

2 2

max
2 2

w

qL qL qL
T T T

h k k
= + + = +

 The rate of uniform volumetric thermal energy generation is determined to be

q  =  fraction of the coil that is copper (where heat is generated) ¥ (current density)2

(A/cm2)2 ¥ copper resistivity (ohm cm2/m)
4 2

2

2 2

1 W 10 cm

1 ohm 1 m
ei

A
fr=

 = 0.6 ¥ 200 ¥ 10–6 ¥ (200)2 ¥ 104 = 48 ¥ 103 W/m3

 Substituting the known values, we get

T
max

 = 
1

2

L
T qL

h k

È ˘+ +Í ˙Î ˚

 = 27°C + (48 ¥ 103 W/m3) (0.02 m) 2

1 0.02 m

(2 0.35 W/m K)(27 W/m K)

È ˘+Í ˙¥Î ˚
 = 90.0°C (Ans.)

 A copper bus bar (k = 350 W/m °C) of rectangular cross section (6 mm ¥ 180 

mm) passes an electrical current I with the rate of volumetric heat generation, q  = 0.015 I2. The bar 

is exposed to surrounding air at 20°C with an associated convection coefficient of 6 W/m2°C. Calculate 

the maximum permissible current that can be carried by the bus bar without allowing the temperature 

to exceed 50°C.
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Solution

Known  Heat generation in a rectangular bus bar subjected to convection at the surface.

Find  Maximum allowable current, I
max

(A).

Assumptions (1) Steady operating conditions. (2) One-dimensional conduction. (3) Uniform heat-transfer 

coefficient. (4) Uniform volumetric heat generation. (5) Constant properties.

Analysis  Since b << a, heat will flow across 6 mm thick plane wall (2L = 6 mm) exposed to 

convective cooling.

 Maximum permissible temperature in the bus bar can be expressed as

2 2

max ( 0)
2 2

x w

qL qL qL
T T T T

k h k
= = + = + +

 or 
2 2

2
max max

1 0.003 0.003
or 50 – 20 0.015

2 6 2 350

L
T T q I

h k

È ˘ È ˘
- = + = +Í ˙ Í ˙¥Î ˚ Î ˚

 or 2 4
max2000 [5 10 ]I

-= ¥
 Hence, the maximum allowable current capacity in the bus bar is

max 4

2000

5 10
I -= =

¥
2000 A (Ans.)

 A composite slab comprising a large slab, 12 cm thick, of thermal conductivity 

15 W/m °C with uniform volumetric heat-generation rate of 100 kW/m3 sandwiched between two 30 mm 

thick slabs of thermal conductivity 3.0 W/m °C (with no heat generation). The two extreme surfaces are 

exposed to convective environment characterized by a convection coefficient of 120 W/m2°C and the fluid 

temperature of 40°C. Calculate (a) the interface temperatures of the composite slab, (b) the maximum 

temperature in the composite slab, and (c) the temperature gradient in each cover slab (without internal 

heat generation).

Solution

Known  A heat-generating slab covered by two slabs. Convective cooling of exposed surfaces.

Find  (a) Interface temperatures, T
i
 (°C), (b) Maximum temperature, T

max
 (°C). (c) Temperature 

gradient in the cover slab, (°C/m)
dT

dx
.
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Assumptions (1) Steady-state, one-dimensional conduction. (2) Heat generation in the central slab is 

uniform. (3) Constant properties. (4) Uniform heat transfer coefficient.

Analysis  (a) Energy balance:
0 0

out gen stinE E E E- + =
no heat inflow steady state

It follows that, gen outE E=

Heat generation rate, gen out (2 )E E qA L= =
By symmetry, the rate of heat transfer towards the left and right will be equal.

Per unit area, the heat-transfer rate passing through each cover slab will be

gen 3 2out (2 )
(100 kW/m )(0.06 m) 6 kW/m

2 2 2

EE qA L
q qL

A A A
= = = = = =

We note that, ( )c
i w

k
q T T

b
= -

where k
c
 = thermal conductivity of the cover slab material

  b = cover slab thickness

  T
i
 = interface temperature

  T
w

= outer surface temperature

Therefore,

3 2

o

(6 10 W/m )(0.03 m)
60 C

3 W/m C
i w

c

qb
T T

k

¥
- = = = ∞

Also, q = h(T
w
 – T )

so that
2

2

6000 W/m
40°C 90 C

120 W/m
w

q
T T

h C
= + = + = ∞

∞
Hence, the interface temperatures of the composite slab,

T(±L) = T
i
 = 60 + 90 = 150°C (Ans.) (a)
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 (b) In the heat-generating slab, the centre temperature (maximum temperature) is determined 

to be

2 3 3 2

max o

(100 10 W/m )(0.06 m)
150 C

2 2 15 W/m C
i

qL
T T

k

¥
= + = ∞ +

¥
 = 162°C (Ans.) (b)

 (c) Temperature gradient in each cover slab is

(90 150) C

0.03 m

w iT TdT

dx b

- - ∞
= =  = –2000°C/m (Ans.) (c)

(B) Plane Wall: One Surface Insulated

 A plane wall, 75 mm thick, generates heat internally. One side of the wall is 

insulated, and the other side is exposed to the surroundings at 90°C. The thermal conductivity of the wall 

is 0.25 W/m K and the convective heat transfer coefficient between the wall and the surroundings is 500 

W/m2 K. The maximum temperature gradient is limited to –5.4 ¥ 103 K/m to avoid thermal distortion. (a) 

Set up the appropriate differential equation and deduce an expression for the variation of temperature in 

the plate. (b) Compute the rate of volumetric heat generation in the plate. (c) Find the highest and the 

lowest temperatures in the plate and their locations.

Solution

Known  Heat generation in a plane wall with an insulated surface and the other surface exposed to 

convective environment.

Find  (a) Temperature distribution in the plate. (b) Volumetric heat generation rate, and (c) 

Maximum and minimum temperatures, and their locations in the plate.

Assumptions (1) Steady-state conditions. (2) Constant thermal conductivity. (3) One-dimensional 

conduction. (4) Uniform heat generation

Analysis  (a) The one-dimensional, steady-state heat-conduction equation with internal thermal energy 

generation is

2

2

d T q

kdx
= - (A)
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The boundary conditions are

At x = 0: 0
dT

dx
=   (insulated side)

At x = 75 mm: 
dT

k
dx

-  = h(T – T )

Integrating Eq. (A) gives

1

dT q
x C

dx k
= - + (B)

Applying the boundary condition at x = 0 to Eq. (B),

1 0C =

Integrating Eq. (B), one has

2

2
2

q x
T C

k
= - + (C)

Applying the boundary condition at x = L = 75 mm:

[ ( ) ]
x L

dT
k h T L T

dx =
- = - (D)

Also, from Eq. (B),

x L

dT
k qL

dx =
- =

Maximum temperature gradient is at the exposed surface (at x = L), and is given by

x L

dT qL

dx k=
= - (E)

From Eq. (D),

\ h [T(L) – T ] = qL or T(L) = 
qL

T
h

+

where T(L) = T
w
, the exposed surface temperature

Substituting this value into Eq. (C), one gets

2 2

2 2
2 2

qL qL qL qL
T C C T

h k h k
+ = - + fi = + +

The temperature distribution is then obtained by substituting for C
2
 in Eq. (C).

2 2( ) ( )
2

qL q
T x T L x

h k
= + + -

or
Ê ˆÊ ˆ
Á ˜Á ˜Ë ¯Ë ¯

22

( ) = + 1 –
2

w

qL x
T x T

k L
(Ans.) (a)

(b) From Eq. (E): 35.4 10 K/m
x L

dT qL

dx k=
= - = - ¥
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 Hence, the rate of uniform volumetric heat generation is

3

3

1.25 W/m K
( 5.4 10 K/m)

75 10 mx L

k dT
q

L dx -
=

= - = - ¥ - ¥
¥

   = 90 ¥ 103 W/m2 (Ans.) (b)

 (c) Maximum (highest) wall temperature will obviously occur at x = 0, i.e., at the insulated 

surface, and the minimum (lowest) temperature will occur at x = L, i.e., at the exposed 

surface. These values are

T
min

 = T
w
 = T(L) = T  + 

qL

h
 = 90°C + 

3 3 3

2

(90 10 W/m ) (75 10 m)

500 W/m K

-¥ ¥

   = 103.5°C (Ans.) (c)

T
max

 = 
2 3 3 3 2 2(90 10 W/m ) (75 10 ) m

103.5°C
2 2(1.25 W/m K)

wT

qL qL
T

h k

-¥ ¥ ¥
+ + = +

 = 306°C (Ans.) (c)

 Consider a large 25 mm thick steel plate (k = 48 W/m K) in which heat is 

generated uniformly at a rate of 30 MW/m3. The two sides of the plate are maintained at 180°C and 

120°C respectively. Determine (a) the location where the maximum temperature in the plate will occur, 

(b) the maximum temperature in the plate and the centreline temperature, and (c) the heat transferred at 

the two sides of the plate per unit area. Also sketch the temperature distribution.

Solution

Known  Heat is uniformly generated in a large steel plate whose two sides are maintained at different 

temperatures.

Find  (a) x where T
max

 will occur, (b) T
max

, (c) Q  at x = –L and x = + L.
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Assumptions (1) Steady-state, one-dimensional heat conduction. (2) Constant thermal conductivity. (3) 

Uniform internal thermal energy generation.

Analysis  (a) The governing differential equation is

2

2

d T q

kdx
= -

Integrating twice with respect to x, one gets

Temperature gradient, 1

dT qx
C

dx k
= - + (A)

Temperature at any distance x from the centreline is given by the temperature distribution 

across the plate and is expressed as

2

1 2( )
2

qx
T x C x C

k
= - + + (B)

To evaluate the two integration constants, the following two boundary conditions (BC) can 

be applied:

BC (I): At x = –L, T = T
1
 = 180°C

BC (II): At x = +L, T = T
2
 = 120°C

Therefore, from Eq. (B), we have

2 2

1 1 2 2 1 2

( ) ( )
( ) and ( )

2 2

q L q L
T C L C T C L C

k k

- +
= - + - + = - + + +

Subtracting one from the other,

T
1
 – T

2
 = –2C

1
L  or  1 2

1
2

T T
C

L

-Ê ˆ= - Á ˜Ë ¯
or C

1
L = T

2
 – T

1
)/2

Temperature distribution
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And
2

2 1 1
2

qL
C T C L

k
= + +

or
2

2 1 2

1
( )

2 2

qL
C T T

k
= + +

Substituting C
1
 and C

2
 in Eq. (B), we have

or

2 2

2 1 2 1

22

2 1 2 1

1
( ) ( ) ( )

2 2 2 2

1
( ) 1 ( ) ( )

2 2 2

qx x qL
T x T T T T

k L k

qL x x
T x T T T T

k L L

= - + - + + +

Ï ¸Ê ˆÌ ˝= - + - + +Á ˜Ë ¯Ó ˛
(C)

The temperature gradient,

2 1

2

T TdT qx

dx k L

-Ê ˆ= - + Á ˜Ë ¯
Maximum temperature will occur where 

dT

dx
 = 0

  \ 2 1( )
0

2

T Tqx

k L

--
= +

Location x from the centreline of the plate is then given by

2 1

2

T Tk
x

q L

-Ê ˆ= Á ˜Ë ¯
(D)

Location x =

o

6 3 3

48 W/mK (120 180) C or K

30 10 W/m 25 10 m-
-

¥
¥ ¥

  = –3.84 ¥ 10–3 m or –3.84 mm (Ans.) (a)

Substituting this value of x in Eq. (C) will yield the maximum temperature in the plate.

Maximum temperature,

26 3 3 2

max

(30 10 W/m )(12.5 10 m) 3.84 mm
1

2(48 W/mK) 12.5 mm

3.84 mm 120 180 1
C (120 + 180)°C =

12.5 mm 2 2

T
- Ï ¸Ô ÔÊ ˆ¥ ¥ -

= -Ì ˝Á ˜Ë ¯Ô ÔÓ ˛
Ê ˆ- -Ê ˆ+ ∞ +Á ˜Á ˜ Ë ¯Ë ¯

203.44°C

(b) Centreline temperature is

T(x = 0) =
2 6 3 3 2

1 2

1 (30 10 W/m )(12.5 10 m) 1
( ) (180 120)°C

2 2 2(48 W/mK) 2

qL
T T

k

-¥ ¥
+ + = + +

  = 198.83°C (Ans.) (b)

(c) Heat transferred per unit area at x = + L is

2 1 1 2

6 3

( )

2 2

(180 120)°C (38 W/mK)
(30 10 W/m ) (0.0125 m)

0.025 m

x Lx Lx L

T T T T kQ dT qx
k k qL

A dx k L L===

- --È ˘= - = - + = +Í ˙Î ˚

-
= ¥ +

= 490.2 ¥ 103 W/m2 or +490.2 kW/m2 (Ans.) (c)
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 i.e., q
out

 (right side) = 490.2 kW/m2

 Heat transferred per unit area at x = –L is

2 1 1 2

6 3

( )( )

2 2

(180 120) C (48 W/m K)
(30 10 W/m )(0.0125 m)

0.025 m

x Lx L

T T T T kQ dT q L
k k qL

A dx k L L= -= -

- --È ˘= - = - - + = - +Í ˙Î ˚

- ∞
= - ¥ +

   = – 259.8 ¥ 103 W/m2 or –259.8 kW/m2 (in positive x-direction)

 or q
out

 (left side) = – (–259.8 kW/m2) = 259.8 kW/m2 (Ans.) (c)

 Total heat dissipated per unit area,

q
out

 = (490.2 + 259.8) kW/m2 = 750 kW/m2

 Heat generated within the plate per unit area is

gen 6 3 3(2 )
(2 ) (30 10 W/m ) (25 10 m)

or

Q qA L
q L

A A

-= = = ¥ ¥

= ¥ 3 2 2
750 10 W/m 750 kW/m

 This satisfies the energy balance.    gen out in st[ as 0 and 0]E E E E= = =

(C) Plane Wall: Different End Surface Temperatures

 A reactor core uses enriched uranium plates 6 mm thick (k = 35 W/m K) and they 

are subjected to an internal heat generation rate of 8.3 ¥ 108 W/m3 due to the fission process. One of 

these plates is near the edge of the core and the coolant maintains one side of the plate at 315°C and 

the other side at 372°C. Calculate (a) the maximum temperature in the plate under these conditions, and 

(b) the heat flux at the two surfaces.

Solution

Known  Thermal-energy generation in uranium plates due to nuclear fission under specified operating 

conditions.

Find  (a) Maximum temperature in the plate. (b) Heat flux at the left and right faces.

Assumptions (1) Steady-state, one-dimensional conduction. (2) Constant properties. (3) Uniform 

volumetric thermal-energy generation.
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Analysis  The temperature distribution in an infinite plate of thermal conductivity (k) with uniform 

thermal-energy generation per unit volume, q  and surface temperatures T
1
 and T

2
 is given by

22

2 1 2 1

1
( ) 1 ( ) ( )

2 2 2

qL x x
T x T T T T

k L L

Ï ¸Ê ˆÌ ˝= - + - + +Á ˜Ë ¯Ó ˛
 Maximum temperature will occur at a location x from the centre where 

dT

dx
 = 0.

 Differentiating T(x) with respect to x and equating to zero, we have

 or 

2
2 1

2

2 1 2 1

( ) 2
0 0 0

2 2

0 and
2 2

T TdT x qL x

dx k LL

T T T Tqx k
x

k L q L

-Ê ˆÊ ˆ= = - + +Á ˜ Á ˜Ë ¯ Ë ¯

- -- Ê ˆ+ = = Á ˜Ë ¯

 Substituting values,

3

8 3 3

35 W/m K (372 315)°C or K 10 mm

1 m8.3 10 W/m 6 10 m
x -

-
= ¥

¥ ¥

= 0.4 mm

 Hence, the maximum temperature in the plate is
28 3 2

max

8.3 10 W/m (0.003 m) 0.4 mm
( 0.4 mm) 1

2 35 W/m K 3 mm

0.4 mm (372 315)°C
(372 315)°C

6 mm 2

T T x
Ï ¸Ô Ô¥ ¥ Ê ˆ= = = -Ì ˝Á ˜¥ Ë ¯Ô ÔÓ ˛

+Ï ¸+ - ¥ +Ì ˝
Ó ˛

  = 452.1°C (Ans.) (a)

 Heat flux at the left face (x = –L) is determined from

q(–L) = 
8 3 3 o

3

( 8.3 10 W/m )( 3 10 m) (372 315) C
( 35 W/m K)

35 W/m K 6 10 mx L

dT
k

dx

-

-
= -

È ˘- ¥ - ¥ -
- = - +Í ˙

¥Í ˙Î ˚
= 2822.5 ¥ 103 W/m2 (Ans.) (b)

 Heat flux at the right face (x = +L) is determined from

q(+L) = 
8 3 3 o

3

( 8.3 10 W/m )( 3 10 m) (372 315) C
( 35 W/m K)

35 W/m K 6 10 mx L

dT
k

dx

-

-
=

È ˘- ¥ - ¥ -
- = - +Í ˙

¥Í ˙Î ˚
= 2157.5 ¥ 103 W/m2 (Ans.) (b)

(D) Long Cylinder

 A long solid cylindrical rod of 10 cm radius is made of a material (k = 1 W/m 

K) generating 24 ¥ 103 W/m3 uniformly throughout its volume. This rod is tightly encapsulated within 

a long hollow cylinder (k = 14 W/m K), whose inner radius is 10 cm and outer radius is 20 cm. The 

outer surface is surrounded by a fluid at 200°C and the convective heat transfer coefficient between the 

surface and the fluid is 120 W/m2K. Find (a) the temperature at the outer surface of the outer cylinder, 

(b) the temperature at the interface between the two cylinders, and (c) the temperature at the centre of 

the inner cylinder.
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Solution

Known  A long cylindrical rod experiencing uniform internal heat generation is tightly enclosed 

within a long hollow cylinder exposed to convective environment.

Find  (a) T
o
 (°C), (b) T

i
 (°C), (c) T

c
 (°C).

Assumptions (1) Steady-state conditions. (2) Uniform volumetric heat generation. (3) Constant properties.

Analysis  Consider a rod of length, L [m].

Thermal (conductive) resistance of the hollow cylinder,

3

cond
2

20 cm
ln

10 cmln( / ) 7.8798 10
K/W

2 2 14 (W/mK) ( )

o ir r
R

k L L m Lp p

-
Ê ˆ
Á ˜Ë ¯ ¥

= = =
¥ ¥

Thermal convective resistance on the outer surface,

3

conv 2

1 1 6.6315 10

(2 ) 120 W/m 2 0.2 ( )o

K
R

h r L L WK m L mp p

-¥
= = =

¥ ¥ ¥

Heat-flow rate,

2 3 3 2 2
gen

–V ( ) 24 10 W/m 0.1 m (m)iQ Q q q r L Lp p= = = = ¥ ¥ ¥ ¥

   = 753.9822 L [W]

(a) Temperature at the outer surface of the outer cylinder,

T
o
 = T  + Q ◊ R

conv
 = 200°C + (753.9822L) W ¥

36.6315 10

L

-Ê ˆ¥
Á ˜Ë ¯  [K/W]

= 205.000°C (Ans.) (a)

(b) Temperature at the interface between the two cylinders,

T
i
 = T

o
 + Q ◊ R

cond
 = 205.000°C + (753.9822L) [W] ¥

37.8798 10

L

-Ê ˆ¥
Á ˜Ë ¯  [K/W]

  = 205.000 + 5.941 = 210.941°C (Ans.) (b)

(c) Temperature at the centre of the inner cylinder,

T
c
 = T

i
 + 

2
1

14

qr

k
 = 210.941 + 

2
1

14

qr

k
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   = 210.941°C + 
3 3 2 224 10 W/m 0.1 m

4 1 W/ m K

¥ ¥
¥

 = 210.941 + 60

   = 270.941°C (Ans.) (c)

 In a nuclear reactor, the fuel rods consist of a thorium core wrapped in a thin 

(2 mm thick) aluminium cladding. Consider steady state conditions for which uniform heat generation 

occurs in the 25 mm diameter fuel rod at a volumetric rate of 600 MW/m3. The outer surface of the fuel 

rod is exposed to a coolant that is characterized by a temperature of 95°C and a convection coefficient 

of 5 kW/m2 K. The melting point of thorium is 2023 K and that of aluminium is 933 K. The thermal 

conductivity of thorium is 60 W/m K and that of aluminium is 237 W/m K. Evaluate the safety and 

feasibility of the fuel element design.

Solution

Known  A thorium fuel rod with a thin aluminium cladding experiences heat generation and loses 

heat to the surrounding fluid.

Find  Feasibility of the fuel-rod design.

2 mm

T0

ro

D = 25 mm

Fuel rod (Thorium)
= 60 W/m Kkt

T(0)

ri

Ti Cladding (aluminium)
= 237 W/m Kka

r

r
i = 12.5 mm

= 14.5 mm0

h

T

= 5000 W/m K
= 95°C

2

Schematic

Assumptions (1) Steady-state, one-dimensional conduction with uniform internal heat generation. (2) 

Constant properties. (3) Uniform heat-transfer coefficient. (4) Negligible contact resistance 

between thorium and aluminium.

Analysis  Maximum temperature of thorium will occur at the centre of the fuel rod T (r = 0) and that 

of aluminium will be at the outer surface of the rod T(r = r
i
). From the safety standpoint, 
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these temperatures must be well below the melting points of the respective materials.

Volumetric heat generation,

2
i

Q
q

r Lp
=

Heat-transfer rate per unit length,

2 3 2 6 3(12.5 10 m) (600 10 W/m ) 93750 (W/m)i

Q
r q

L
p p p-= = ¥ ¥ ¥ =

Temperature drop = Heat rate ¥ Total thermal resistance

  \

6

1 1
ln

2 (2 )

1 1 93750 1 14.5 1
ln ln

2 2 237 12.5 5000 0.0145

46 875[626.24 10 0.01379] 675.9°C

o
i

a i o

o

a i o

r
T T Q

k L r h r L

rQ

L k r hr

p p

p

p p

-

È ˘
- = +Í ˙

Î ˚
È ˘ È ˘= + = +Í ˙ Í ˙¥Î ˚Î ˚

= ¥ + =

  \ T
i
 = 95 + 675.9 = 770.9°C

Temperature drop across the aluminium cladding is

6
0

1
ln 46 875 626.24 10 31.7 C

2

o
i

a i

r
T T Q

k L rp

-- = ¥ = ¥ ¥ = ∞

Also, temperature drop across the convective film is

T
o
 – T  = (T

i
 – T ) – (T

i
 – T

o
) = 675.9 – 31.7 = 644.2°C

Maximum temperature in the thorium fuel element will occur at the centre,

i.e., T
max,th

 = T(0) = T
i
 + 

2

4

i

t

qr

k

  = 770.9 + 

6 2600 10 0.0125

4 60

¥ ¥
¥

 = 1161.5°C ª 1435 K

This is well below the melting point of thorium (2023 K). Hence, the design is safe.

The maximum temperature of aluminium will equal

T
max

,
Al

 = T
i
 = 770.9°C ª 1044 K

This is, however, above the melting point of aluminium (933 K) and therefore the cladding 

will melt which is not acceptable. The design is unsafe from this point of view under the 

proposed operating conditions. (Ans.)

Comment  Note that the temperature drop across the thorium rod is (T(0) – T
i
) = (1161.5 – 770.9)°C 

= 390.6°C, while that across the aluminium cladding is 31.7°C, and across the convective 

film is a massive 644.2°C.

  If there is ‘loss of coolant’ a remote possibility h would sharply decrease, raising T
i

further. Using a cladding material with a higher melting point, or increasing h or decreasing

q can get rid of this problem.
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 Determine the current in amperes that is passed through a stainless steel wire 

(k = 15.1 W/m K), 3 mm in diameter. The electrical resistivity of the steel is 70 micro ohm cm and the 

maximum temperature of the wire is 236°C. The wire is submerged in a liquid at 110°C with a convection 

heat-transfer coefficient of 4000 W/m2 K.

Solution

Known  Current-carrying wire experiencing heat generation dissipates heat to a convective 

environment.

Find  Current, I (A).

Assumptions (1) Steady-state, one-dimensional (radial) conduction. (2) Uniform heat generation (3) 

Constant properties.

Analysis  Maximum (Centre) temperature of the wire,

 where 

2

max ( 0)
4

2

w

w

qR
T T r T

k

qR
T T

h

= = = +

= +

 It follows that

max

1

2 2

qR R
T T

k h

È ˘- = +Í ˙Î ˚

 i.e., 
3

3 91.5 10 1
236 110 1.5 10 224.75 10

2 2 15.1 4000

q
q

-
- -È ˘¥

- = ¥ ¥ + = ¥ ¥Í ˙¥Î ˚

\ 9 6 3126/224.75 10 560.6 10 W/mq
-= ¥ = ¥

 But 
2 2 2

gen

2 2 2 2 2V ( )

e e e e
e

c

E I R I L I L
q R

AR L R R L R

r r r

p p p p

¥ È ˘= = = = =Í ˙¥ Î ˚

\
6 2 4

2 3

6 2

560.6 10 (0.0015)
40.0 10

70 10 10
I

p
- -

¥ ¥ ¥
= = ¥

¥ ¥

\ Current, I = 200 A (Ans.)



202 Heat and Mass Transfer

(a)  A long stainless steel bar of 20 mm ¥ 20 mm square cross section is perfectly insulated 

on three sides and is maintained at a temperature of 400°C on the remaining side. 

Determine the maximum temperature in the bar when it is conducting a current of 

1000 amp. The thermal and electrical conductivity of stainless steel may be taken as 

16 W/m K and 1.5 ¥ 104 (ohm cm)–1 and the heat flow at the ends may be neglected.

(b)  Now consider a long stainless steel circular rod of 20 mm diameter carrying 1000 A 

current with the outer-surface temperature at 400°C and properties same as those for 

the bar. Calculate the maximum temperature in the rod.

Solution

Known  (a) A bar of square cross section insulated on three sides with both ends adiabatic carries 

current. (b) A rod of 20 mm diameter carries same currents under identical operating 

conditions.

Find  Maximum temperature, T
max

in both cases (a) and (b).

Assumptions (1) Steady operating conditions. (2) One-dimensional (x-direction for the bar) and 

(r-direction for the rod) heat conduction. (3) Constant properties.

(Bottom and side surfaces insulated. Top surface uninsulated. Heat flow from both left and 

right ends negligible.)

Analysis  (a) Bar of square cross section:

 Let x be measured across the bar from the insulated 

end where maximum temperature will occur (at x

= 0, 0
dT

dx
= ) towards the uninsulated side (x = L)

from where heat will flow out and will be equal 

to the heat generated within.

 We note that
2 2

gen

2

2 2 2

6 4 2

6 3

–V

1 1000 1

20 20 10 1.5 10 10

4.167 10 W/m

e e

e
e

E I R I l
q

Al A l

I I

A A k

r

r -

= = =

Ê ˆ Ê ˆ È ˘= = = ¥Á ˜ Á ˜ Í ˙Ë ¯ Ë ¯ ¥ ¥ ¥ ¥Î ˚

= ¥
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 For a plane wall with one surface insulated,
2

max ( 0)
2

w

qL
T T x T

k
= = = +

 where L is the thickness

 Hence,

T
max

 = 400°C + 
6 3 3 2(4.167 10 W/m )(20 10 m)

2 16 W/m K

-¥ ¥
¥

= 452.1°C (Ans.) (a)

(b) Long circular rod:

 For a long cylinder,
2

max ( 0)
4

w

qR
T T r T

k
= = = +

 In this case, R = 0.01 m

2 2

2 2 4 2

6 3

1 1000 1

0.01 1.5 10 10

6.755 10 W/m

e
e

I I
q

A kR
r

p p

Ê ˆÊ ˆ Ê ˆ= = = ¥Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¥ ¯ ¥ ¥

= ¥

 Hence, 
6 2

max

(6.755 10 )(0.01)
400

4 16
T

¥
= +

¥
= 410.6°C (Ans.) (b)

 A current-carrying conductor, 1 m long and 5 mm diameter, is made of stainless 

steel (k = 17 W/m °C) and is covered with a plastic insulation (k = 0.2 W/m °C), 2.5 mm thick. The 

outer surface of the insulation held at 75°C is exposed to convective environment at 25°C. The resistivity 

of the conductor is 70 mW cm and the current rating is 60 A. Determine (a) the convection heat-transfer 

coefficient, (b) the inner surface temperature of the insulation, and (c) the centre temperature of the 

conductor.

Solution

Known  Heat is generated in a current-carrying wire equipped with insulation and exposed to the 

convection process.

Find  (a) h (W/m2 °C); (b) T
1
(°C), and (c) T

c
 or T

max
 (°C).
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Assumptions (1) Steady operating conditions. (2) Constant properties. (3) One-dimensional conduction.

Analysis  Energy balance:

0 0
- + =in out gen st

no heat inflow steady state

E E E E

  \ out genE E=

or –VQ q=  where q  is the rate of uniform volumetric heat generation (W/m3) and –V  is 

the volume of the conductor wire 2
1(= )r Lp

(Rate of heat dissipation) = (Rate of heat generation, Q  = I2 R
e
)

where I is the current in amperes and R
e
 is the electric resistance of the wire in ohms

With
6

2 2
1

70 10 ohmcm 100 cm
0.035 65 ,

(0.25 cm)
e

c

L L
R

A r

r
r

p p

-¥ ¥
= = = = W

¥

the heat-transfer rate is

Q  = I2R
e
 = (60 A)2 (0.03565 W) = 128.34 W

Heat is transferred from the outer surface of the insulated wire to the surrounding 

environment by convection. That is,

Q  = hA
s
 (T

2
 – T ) = h(2p r

2
L) (T

2
 – T )

The convective heat-transfer coefficient is

h = 
2 2

128.34 W

(2 )( ) (2 0.005 m 1 m)(75 25) C

Q

r L T Tp p
=

- ¥ ¥ - ∞

= 81.7 W/m2 °C (Ans.) (a)

The temperature difference across the insulation is given by

T
1
 – T

2
 = Q R

cond

where 2
cond

2 1

1 1 5 mm
ln ln

2 2 (0.2 W/m°C)(1 m) 2.5 mm

0.5516 C/W

r
R

k L rp p
= =

= ∞

Inner surface temperature of insulation or outer surface temperature of the wire is

T
1
 = T

2
 + Q R

cond
 = 75°C + (128.34 W) (0.5516°C/W)

= 145.8°C (Ans.) (b)

Heat is generated within the conductor uniformly and the maximum temperature will occur 

at the centre. The centre temperature is

T
c
 = T(r = 0) = 

2 2
1 1

1 1 12
1 1 11

4 4 4

qr rQ Q
T T T

k k Lkr L pp
+ = + ¥ = +

= 146.8°C + 
128.34 W

1 m 4 17 W/m°Cp ¥ ¥ ¥
 = 146.4°C (Ans.) (c)

Comment  Note that there is just 0.6°C rise in temperature between the centre and the surface of the 

current-carrying conductor.
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 A stainless steel tube (k = 15 W/m °C) with inside and outside diameters of 

50 mm and 70 mm experiences internal heat generation induced by an electric current. The outer surface 

of the tube is effectively insulated and the heat is dissipated to the air flowing through the tube. The air 

temperature is 110°C and the heat transfer coefficient is 120 W/m2°C. The maximum allowable operating 

temperature is 1100°C. The electrical resistivity of the tube wall carrying the current is 0.70 micro-ohm 

m. Determine the temperature distribution within the tube wall and calculate the maximum permissible 

electric current.

Solution

Known  Heat generation in a hollow cylinder with outside surface insulated and inside surface 

exposed to convection.

Find  Temperature distribution in the tube wall. Maximum allowable current, I (A).

Air
T = 110°C

h = 120 W/m °C2

T1

r2 = 35 mm

Tube wall

[ = 0.7 10 ohm m, = 15 W/m° C]re ¥ –6 k

r1 = 25 mm

Insulated surface
( = 1100°C)T2

Schematic

q

Assumptions (1) Steady-state radial heat conduction. (2) Uniform volumetric heat generation. (3) Constant 

properties and uniform convection coefficient.

Analysis  The appropriate differential equation in cylindrical coordinates for steady-state, one-

dimensional conduction with uniform heat generation is

 or 

1d dT q
r

rdr dt k

d dT qr
r

dr dr k

Ê ˆ = -Á ˜Ë ¯

È ˘ = -Í ˙Î ˚

 Integrating with respect to r, one has

2

1
2

dT qr
r C

dr k
= - +

 or Temperature gradient, 1

2

CdT qr

dr k r
= - +

 Boundary condition at r = r
2

2

0
r

dT

dr
=          (insulated surface)
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Hence,
2
2

1
2

qr
C

k
=

Boundary condition at r = r
1

gen conv,out cond,inE Q Q= =

i.e.

1

1 1 1[ ](2 ) (2 )
r

dT
h T T r L k r L

dr
p p- = +

[Note that 
dT

dr
 is positive since as r increases, T also increases]

or

1

2
1 2

1

2 2 2 2 2
1 2 2 1 2 1

1 1
1 1 1

2 2

( ) ( )
( )

2 2 2 2

r

qr qrdT

dr k kr

qr qr q r r q r r
T T T T

h hr hr hr

= - +

- -
- = - + = fi = +

We note that

2
2

2 2

qrdT qr

dr k kr
= - +

Integrating with respect to r yields

22
2

2( ) ln
4 2

qrqr
T r r C

k k
= - + +

At r = r
1
,

2 2
1 2

1 2 1ln
4 2

qr qr
T C r

k k
= - +

Therefore,

2 2 2 2 2 2
1 2 1 2 2 1

2 1 1 2 1
1

( )
ln ln

4 2 4 2 2

qr qr qr qr q r r
C r T C T r

k k k k hr

-
= - + fi = + - +

Substituting for C
2
 in the expression for T(r), one gets

2 2 2
2 2 2 2 1

1 1
1

( )
( ) ( ) (ln ln )

4 2 2

qr q r rq
T r T r r r r

k k hr

-
= + - + - +

Simplifying,

È ˘- Ê ˆ Ê ˆ+ + + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

2 22 2 2
2 1 2 1

1 1 2 2

( )
( ) 2 ln

2 4

q r r qr rr r
T r T

hr k r r r
= (Ans.)

At r = r
2
, T = T

2

Hence

22 2 2
2 1 2 2 1

2
1 1 2

2ln 1
2 4

r r r r r
T T q

hr k r r

È ˘Ï ¸Ô Ô- Ê ˆÍ ˙- = + + -Ì ˝Á ˜Ë ¯Í ˙Ô ÔÓ ˛Î ˚
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 or 
2 2

3

2

22 2

(0.035 0.025 ) m
(1100 110) C = (W/m )

2 120 W/m C 0.025 m

0.035 m 35 mm 25 mm
2 ln 1

4 15 W/m°C 25 mm 35 mm

q
È -

- ∞ Í
¥ ∞ ¥ÍÎ

˘Ï ¸Ô ÔÊ ˆ Ê ˆ ˙+ + -Ì ˝Á ˜ Á ˜¥ Ë ¯ Ë ¯ ˙Ô ÔÓ ˛˚

 or - - ∞
∞ ¥ + ¥

3
3 4 6 m C

990 C = (W/m )[(1 10 ) (3.7393 10 )]
W

q

 Therefore,

6 3

4 3

990 C
9.543 10 W/m

1.0374 10 m C/ W
q -

∞
= = ¥

¥ ∞

 Heat-generation rate,

 where 

2 2 2
gen 2 1

2 2 2
2 12 2 2 2

2 1 2 1

( )

L
or ( )

( ) ( )

e

e e
e

E q r r L I R

L
R I q r r L

r r r r

p

r r
p

p p

= - =

= ¥ = -
- -

 Maximum permissible current,

6
2 2 2 2
2 1 6

9.543 10
( ) (0.035 0.025 )

0.7 10e

q
I r rp p

r -
¥

= - = -
¥

 = 6960 A (Ans.)

 A long cylindrical rod of 200 mm diameter with thermal conductivity of 0.5 W/m 

°C experiences uniform volumetric heat generation of 24 kW/m3. The rod is encapsulated by a circular 

sleeve having an outer diameter of 400 mm and a thermal conductivity of 4 W/m °C. The outer surface of 

the sleeve is exposed to cross flow of air at 27°C with a convective heat-transfer coefficient of 25 W/2°C.

 (a) Find the temperature at the interface between the rod and the sleeve on the outer surface. (b) What 

is the temperature at the centre of the rod?

Solution
Known  A long rod experiencing heat generation is encapsulated by a sleeve exposed to convective 

atmosphere.

Find  (a) Interface and outer surface temperatures. (b) Temperature at the centre of the rod.
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Assumptions (1) Steady-state radial conduction in rod and sleeve. (2) Uniform volumetric heat generation 

in the rod. (3) Negligible thermal contact resistance between the rod and the sleeve.

Analysis  (a) The thermal resistance network shown in the schematic involves two resistances in 

series which are determined to be

p p

p p

Ê ˆ
= = Á ˜¥ ¥ Ë ¯

=

= =
¥ ¥

= ∞
= + = ∞

2
cond

2 1

conv 2
2

total cond conv

1 1 0.2 m
ln ln

2 2 4 W/m°C 1 m 0.1 m

0.0276°C/W ( )

1 1

(2 ) (25 W/m °C)(2 0.2 m 1 m)

0.03183 C/W ( )

0.05943 C/W  ( )

r
R

k L r

per m length

R
h r L

per m length

R R R per m length

 From energy balance: 2
gen 1( )Q E q r Lp= =

  \ Q  = (24000 W/m3) (p ¥ 0.12 m2 ¥ 1 m)

   = 753.98 W         (per m length)

 We note that

T
1
 – T  = Q R

total
  fi  T

1
 = T  + Q R

total

 Temperature at the interface between rod and sleeve is

T
1
 = 27°C + (753.98 W) (0.05943 °C/ W) = 71.8°C (Ans.) (a)

 Outer surface temperature is determined from

T
2
 – T  = Q R

conv
  fi  T

2
 = T  + Q R

conv

  \ T
2
 = 27°C + (753.98 W) (0.03183°C/W) = 51°C (Ans.) (a)

 (b) The temperature distribution within the rod with heat generation is

2 2
1

1 2
1

( ) = 1
4

qr r
T r T

k r

È ˘
+ -Í ˙

Í ˙Î ˚

 Maximum temperature or temperature at the centre of the rod (r = 0) is

T
0
 = T

1
 + 2

1 /4qr k  = 71.8°C + (24 000 W/m2) (0.1 m)2/4 ¥ 0.5 W /m °C

 = 191.8°C (Ans.) (b)

(a)  A hollow cylindrical copper bar, having internal and external diameters of 13 mm and 

50 mm respectively, carries a current density of 5000 A/cm2. The thermal conductivity 

is 381 W/m °C and the electrical resistivity is 2 micro-ohm cm. When the outer surface 

is maintained at 40°C and no heat is removed through the central hole, determine the 

position and value of the maximum temperature.

(b)  If the inner surface is cooled to 26°C with the outer surface still at 40°C, find the 

position and value of the maximum temperature. Also calculate the heat removed 

internally and externally per metre length of the tube.
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Solution

Known  A hollow cylinder experiences internal heat generation. (a) Inner surface is adiabatic and 

outer surface temperature is specified. (b) Both inner and outer surface temperatures are 

prescribed.

Find  (a) r
m
 and T

max
 if inner surface is insulated. (b) r

m
 and T

max
 if both inner and outer surface 

temperatures are prescribed. Heat transfer rates, Q (r = r
1
) and Q (r = r

2
).

r1 = 6.5 mm

r2 = 25 mm

T2 = 40°C

k

r

i

= 381 W/m°C

= 2 10 cm

= 5000 A/cm

¥ W–6

2

Inner surface
(adiabatic)

=T T1 max

r1

r2

T1 = 26°C
(Cooled surface)

Schematic

q

q

Assumptions (1) Steady operating conditions. (2) Uniform heat generation. (3) Constant properties. (4) 

One-dimensional (radial) conduction.

Analysis  (a) The maximum temperature must occur where the temperature gradient, 
dT

dr
 = 0, i.e., 

at the inner surface which is effectively insulated (there is no heat removal, i.e., 1Q  = 0)

  \ r
m
 = r

1
 = 6.5 mm (Ans.) (a)

The rate of uniform volumetric internal heat generation,

2
gen e

c c

Q I R
q

A L A L
= =

With
2

2

2e
c c

L I L
R q i

A A L

r
r r= = =

where current intensity, i = 
c

I

A
 = 5000 A/cm2

It follows that

2 6 3
6 2 2 3

4 2 3

1 W 10 cm
(2 10 cm) 5000 50 A /cm

cm 1 A 1 m

A
q

-= ¥ W ¥ = W
W

= ¥ 7 3
5 10 W/m

For a hollow cylinder, with inner surface insulated:

22
1 2 2

1 2
1 1

2ln 1
4

qr r r
T T

k r r

È ˘Ê ˆ Ê ˆ- = - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
The maximum temperature, T

max
 = T

1
 is obtained by substituting numerical values in the 

foregoing expression.
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  \ T
max

 = T
1
 = 40°C + 

27 3 2(5 10 W/m )(0.0065 m) 25 25
2ln 1

4 381 W/m°C 6.5 6.5

È ˘¥ Ê ˆ Ê ˆ- -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯¥ Î ˚
   = 55.4°C (Ans.) (a)

 (b) For a hollow cylinder with prescribed surface temperatures, (At r = r
1
, T = T

1
 and at 

r = r
2
, T = T

2
), the radius at which maximum temperature occurs can be determined from

( )

2 2
2 1 1 2

2

1

7 3 2 2 6 2

7 3

( ) 4 ( )

2 ln

5 10 W/m (25 6.5 ) 10 4 381 W/m°C(26 40) C

2 5 10 W/m ln(25/6.5)

m

q r r k T T
r

r
q

r

m
-

- - -
=

Ê ˆ
Á ˜Ë ¯

¥ ¥ - - ¥ - ∞
=

¥ ¥ ¥

  = 0.01936 m or 19.4 mm (Ans.) (b)

 Maximum temperature,

22
2 2

max 2

27 3 2

2ln 1
4

(5 10 W/m )(0.0194 m) 25 25
40 C 2ln 1

4 381 W/m C 19.4 19.4

m

m m

qr r r
T T

k r r

È ˘Ê ˆ Ê ˆ= + - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
È ˘¥ Ê ˆ Ê ˆ= ∞ + - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯¥ ∞ Î ˚

 = 41.9°C (Ans.) (b)

 Heat removed at the inner surface,

1Q  = 2 2
1( )mq r r Lp -  = 5 ¥ 107 W/m3 ¥ p[19.362 – 6.52](10–6) m2 ¥ 1 m

 = 52.2 ¥ 103 W or 52.2 kW (Ans.) (b)

 Heat removed at the outer surface,

2Q  = 2 2
2( )mq r r Lp -  = 5 ¥ 107 W/m3 ¥ [252 – 19.362](10–6) m2 ¥ 1 m

 = 39.3 ¥ 103 W or 39.3 kW (Ans.) (b)

 A long hollow cylindrical shell made of stainless steel (k = 15.1 W/m °C) has 

6 cm inside diameter and 10 cm outside diameter with uniform internal thermal energy generation at a 

constant rate of 3 ¥ 107 W/m3. The inner and outer surface temperatures are 350°C and 250°C. Determine 

(a) the location and value of the maximum temperature, (b) the temperature at the mid thickness of the 

cylinder, and (c) the rate of heat removal at the inner surface as a percentage of the heat-generation rate.

Solution

Known  A hollow cylinder with internal heat generation has its surfaces maintained at prescribed 

temperatures.

Find  (a) r
m
, T

max
. (b) T (r = 4 cm). (c) 1 gen( / )Q Q .
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Assumptions (1) Steady-state conditions. (2) One-dimensional (r-direction) conduction. (3) Constant 

properties. (4) Uniform heat generation.

Analysis  The relevant differential equation consistent with the foregoing assumptions is

1
0

d dT q
r

r dr dr k

d dT qr
r

dr dr k

Ê ˆ + =Á ˜Ë ¯

Ê ˆ = -Á ˜Ë ¯
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Integrating with respect to r, one gets

2
1

1 or
2 2

CdT qr dT qr
r C

dr k dr k r
= - + = - +

Integrating again, one obtains

2

1 2( ) ln
4

qr
T r C r C

k
= - + + (A)

Boundary conditions:

 I. At r = r
1
, T = T

1

II. At r = r
2
, T = T

2

Substituting these in Eq. (A), one has

2
2

2 2 2 2ln
4

qr
T C r C

k
= - + +

2
1

1 1 1 2ln
4

qr
T C r C

k
= - + + (B)

Subtracting one from the other, one finds

2 22
2 1 1 2 1

1

ln ( )
4

r q
T T C r r

r k
- = - -

  \
2 2

2 1 2 1
1

2 1

7 3
2 2 4 2

( ) ( /4 )( )

ln( / )

3 10 W/m
(250 350)°C (5 3 )(10 ) m

4 15.1 W/m°C
1359.96

ln(5 cm/3 cm)

T T q k r r
C

r r

-

- + -
=

Ê ˆ¥
- + -Á ˜¥Ë ¯

= =

From Eq. (B):

2 7 3 2 2
2

2 2 1 2 o

3 10 W/m 0.05 m
ln 250°C + (1359.96) ln 0.05

4 4 15.1 W/m C

5565.795

qr
C T C r

k

Ê ˆ¥ ¥
= + - = - ¥Á ˜¥Ë ¯

=

Substituting for C
1
 and C

2
 in Eq. (A), the radial temperature distribution is given by

or

¥
= - + +

¥

¥

7 3 2

3 2

(3 10 W/m )
( ) 1359.96 ln 5565.795

4 15.1 W/m°C

( ) = – 496.689 10 + 1359.96 ln + 5565.795

r
T r r

T r r r (C)

Temperature at the mid thickness of the cylindrical shell is

T (r = 0.04 m) = 393.55°C (Ans.) (b)

Maximum temperature will occur at a position, r
m
 where 

dT

dr
 = 0.
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dT

dr
 = 0 – 2 ¥ 496.689 ¥ 103 r

m
 + 1359.96 ¥

1

mr

 Hence, 
1359.96

m
2 496689

mr =
¥

 = 0.037 m or 3.7 cm (Ans.) (a)

 Substituting r
m
 = 0.037 m in Eq. (C), one gets

T
max

 = (0.037)2 (– 496689) + 1359.96 ln (0.037) + 5565.795

 = 402.25°C (Ans.) (c)

 Heat removal rate at the inner surface,

2 2 7 3 2 2 2
1 1 3

1 kW
( ) (3 10 W/m ) [ (0.037 0.03 ) 1 m]

10 W

44.2 kW

mQ q r r L mp p= - = ¥ - ¥

=

 (Total heat-removal rate) = (Rate of heat generation)

2 2 7 3 2 2 2
gen 2 1 3

1 kW
( ) (3 10 W/m )[ (0.05 0.03 ) 1 m]

10 W

150.8 kW

Q q r r L mp p= - = ¥ - ¥

=

 Percentage of heat generated that is removed at the inner surface is

1

gen

44.2 100
(100)

150.8

Q

Q

Ê ˆ ¥
= =Á ˜Ë ¯

29.3% (Ans.) (c)

(E) Sphere

 A solid sphere of 50 cm diameter has a uniformly distributed heat source. The 

thermal conductivity is 8 W/m K. Calculate the steady-state sphere surface temperature if the maximum 

temperature in the sphere is 65°C and the ambient temperature is 25°C.

Solution

Known  Uniform volumetric heat generation in a solid sphere.

Find  Surface temperature.

Assumptions (1) Steady-state conditions. (2) One-dimensional (radial) conduction. (3) Constant properties. 

(4) Constant heat-generation rate.
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Analysis  The temperature distribution in a sphere is expressed as

2 2( )
( )

3 6

o oqr q r r
T r T

h k

-
= + +

 Maximum temperature will occur at the centre (r = 0).

2 2

max
3 6 6

o o o
s

qr qr qr
T T T

h k k
= + + = +

 Substituting the values, we get

 or 

2
3

2

3

0.25 m (0.25 m)
65 C = 25°C + (W/m )

6 8 W/m K3 15 W/m K

40
5833 W/m

0.00686

q

q

È ˘
∞ +Í ˙¥¥Í ˙Î ˚

= =

 Surface temperature of the sphere is

3

2

(5833 W/m )(0.25 m)
25 C

3 3 15 W/m K

o
s

qr
T T

h
= + = ∞ +

¥

  = 57.4°C (Ans.)

 A solid sphere of 10 cm radius generates heat according to the law q  = 5000 

(1 + 2r) [W/m3].

 Obtain the temperature distribution equation if the solid exchanges heat with the surrounding fluid at 

100°C. The thermal conductivity of the material is 0.5 W/m K and the unit thermal conductance is 20 

W/m2 K. Also find the maximum temperature and the temperature at the surface. Sketch the temperature 

distribution.

Solution

Known  Heat generation in a solid sphere exposed to convective environment.

Find  T
max

 and T
w
(°C).

Assumptions (1) Steady-state, one-dimensional heat conduction. (2) Constant thermal conductivity.

Analysis  The governing differential equation is

2

2

2 2 3

1 5000(1 2 )
or

5000
( 2 )

d dT q r
r

dr dr k kr

d dT
r r r

dr dr k

- +Ê ˆ = - =Á ˜Ë ¯

-Ê ˆ = +Á ˜Ë ¯

 Integrating with respect to r,

3 4 2
2 1

1 2

5000 2 5000
or

3 4 3 2

CdT r r dT r r
r C

dr k dr k r

È ˘ È ˘-
= + + = - + +Í ˙ Í ˙Î ˚ Î ˚

 (A)

 Further integration yields

2 3
1

2

5000
( )

6 6

Cr r
T r C

k r

È ˘
= - + - +Í ˙Î ˚

(B)
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Boundary conditions required equal the number of constants of integration.

BC(I): At r = 0, 
dT

dr
 = 0 (by symmetry)

From Eq. (A): 1 0C =

Then, the radial temperature gradient is

25000

3 2

dT r r

dr k

È ˘
= - +Í ˙Î ˚

(C)

and the temperature distribution is given by

2 3
2

5000
[ ]

6
T r r C

k
= - + + (D)

BC (II): At the outer surface of the sphere at r = R,

q
conv

 = q
cond

( )r R

r R

dT
h T T k

dr =
- = -
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 With equations (C) and (D), we have

2
2 3

2

5000 5000
{ }

6 3 2

R R
h R R C T k

k k

È ˘Ï ¸-È ˘ Ì ˝- + + - = - +Í ˙Í ˙ Ó ˛Î ˚Î ˚

 or 
2

2 3
2

5000 5000
( )

6 3 2

R R
R R T C

k h

Ê ˆ
- + - + = +Á ˜Ë ¯

  \
2 2 3

2 5000
3 2 6 6

0.1 0.01 0.01 0.001
100 5000

3 20 2 20 6 0.5 6 0.5

R R R R
C T

h h k k

È ˘
= + + + +Í ˙

Î ˚
È ˘

= + + + +Í ˙¥ ¥ ¥ ¥Î ˚

  \ 2 127.92C =

 Substituting for C
2
 in Eq. (D), we have

( )= - +2 35000
( ) 127.92

3
T r r r (Ans.)

 Maximum temperature (at r = 0) is

T
max

 = 127.92°C (Ans.)

 Surface temperature (r = R = 0.1 m) is

T
w
 = 127.92 – 

5000

3
(0.12 + 0.13)

 = 109.58°C (Ans.)

 The temperature profile is shown in the schematic.

(F) Nuclear

 Consider a nuclear fuel element (k
f
 = 60 W/m °C) covered with a steel cladding 

(k
s
 =15 W/m °C). One surface is insulated and the other exposed to a coolant fluid characterized by 

temperature T  = 200°C and a convection coefficient of h = 10 000 W/m2 °C. Heat is generated in the 

nuclear fuel at a constant rate of q  = 2 ¥ 107 W/m3. The thickness of cladding on either side is b = 4 

mm. Develop an expression for temperature distribution T(x) in the nuclear fuel element of thickness 2L

= 40 mm. Sketch the temperature profile for the composite system. Also find the maximum and minimum 

temperatures in the fuel element and their corresponding positions. What is the temperature of the exposed 

surface of the cladding?

Solution:

Known  Nuclear fuel element with steel cladding. Heat generation in fuel. One extreme surface 

adiabatic and the other subjected to convective cooling.

Find  Temperature distribution, T(x). T
max

 and T
min

 in the fuel element and their respective 

locations.

Assumptions (1) Steady-state, one-dimensional conduction. (2) Constant properties and uniform heat 

generation. (3) Negligible thermal contact resistance.
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Coolant

x L= –
x

x L= +

Steel cladding

h = 10 000 W/m °C2

T = 200°C
q = 2 10 W/m¥ 7 3

b = 4 mm2 = 40 mmL

Insulated
surface

Steel cladding
( = 15 W/m° Cks

b = 4 mm

Nuclear fuel
( = 60 W/m°C)kf

Schematic

q

Analysis  The governing differential equation for the nuclear fuel element is

2

2
f

d T q

kdx
= -

Integrating twice successively,

2

1 1 2and ( )
2f f

dT qx qx
C T x C x C

dx k k
= - + = - + +

Heat flux at x = – (L + b) = 0 because the surface is insulated. As there is no heat generation 

in the cladding, the heat flux at x = – L will also be zero, i.e, 
dT

dx
 = 0 between x = –(L + 

b) and x = – L. As a result, T
max

 will occur in the steel cladding on the left side throughout 

its thickness, b.

At x = – L,
dT

dx
 = 0

\
2

1 2and ( )
2f f f

qL qx qLx
C T x C

k k k

-
= = - - + (A)

Heat generated in the fuel, genE  has no scope for escape to the left side.

Hence, gen out,conv condE Q Q= =

gen cond 1 2 conv 2(2 ) ( ) ( )sk
E q L A Q T T A Q hA T T

b
= ◊ = = - = = -

Therefore, 1 2

(2 )

s

q Lb
T T

k
= +

where 2

(2 )q L
T T

h
= +

Hence, 1

(2 ) (2 )
( )

s

q Lb q L
T T T L

k h
= + + = (B)
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From Eq. (A):

2 2

2 2

( ) 3
( )

2 2f f f

qL qL L qL
T L C C

k k k

- -
= + + = - + (C)

Equating (B) and (C),

2

2 2 3

2s f

b L
C T qL

k h k

È ˘= + + +Í ˙
Î ˚

The temperature distribution for (–L £ x £ + L) is

È ˘
= - - + + +Í ˙

Í ˙Î ˚

2
2 2 3

( )
2 2f f s f

qx qLx b L
T x T qL

k k k h k
∞

(Ans.)

The temperature profile for the whole system is sketched below:

Zero
slope Slope increases

with x

Constant
slope

Convective cooling

T2 = 280°C

T

T
1

min

= 493.33°C
=

Tmax

Cladding Fuel element Cladding

T x( )

Tmax(760°C)

T

x

x L b= +( + )x L= +x L= –x L b= –( + )

(200° C)

Substituting numerical values, the maximum temperature in the fuel element is

max

2 2

2
7 3 7 3

o

2 o

( )

2 2 3

2 2

1 (0.02 m)
2 10 W/m (2 10 W/m 0.02 m)

2 60 W/m C

2 0.004 m 2 3 0.02 m
200 C

15 W/m C 210000 W/m C 60 W/m C

f f s f

T T x L

qL qL b L
qL T

k k k h k

= = -

È ˘
= - + + + + +Í ˙

Í ˙Î ˚
È ˘

= ¥ ¥ ¥ + ¥ ¥Í ˙
Í ˙Î ˚

È ˘¥
¥ + + ¥ + ∞Í ˙∞ ∞Î ˚

= 66.67 + 693.33 = 760°C (Ans.)
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 Minimum temperature in the fuel element is

T
min

 = T(x = +L) = T
1

=
7 2

73 2 10 0.02 0.008 2 3 0.02
(2 10 0.02) 200

2 60 15 10000 2 60

¥ ¥ È ˘- ¥ + ¥ ¥ + + ¥ +Í ˙Î ˚
= –200 + 693.33 = 493.33°C (Ans.)

 Outer surface temperature of cladding (convective side) can be found from

q
cond

 = q
conv

fi sk

b
(T

1
 – T

2
) = h(T

2
 – T ) = q (2L)

  \
7 3

2 2

(2 ) 2 10 W/m 0.04 m
200 C

10000 W/m C

q L
T T

h

¥ ¥
= + = + ∞

∞

= 280°C (Ans.)

 (a) A long solid cylindrical nuclear fuel element of outer radius r
1
 and thermal 

conductivity k
f
 experiences uniform internal heat generation at a constant volumetric rate q . It is 

encased with an annular layer of cladding material of thermal conductivity k
c
 and outer radius r

2
 to 

prevent oxidation of fuel-rod surface due to direct contact with the coolant. The outer surface of cladding 

is subjected to convective conditions characterized by coolant temperature T  and the heat-transfer 

coefficient h. Derive from first principles equations for temperature distribution in the fuel element, T
f
(r)

and the cladding material, T
c
(r). (b) Calculate the maximum temperature in the fuel element for h = 

12000 W/2°C, T  = 300°C and q  = 1.1 ¥ 108 W/m2. For fuel rod: k
f
 = 0.8 W/m °C, r

1
 = 7 mm. For 

cladding: k
c
 = 9 W /m °C, r

2
 = 7.5 mm.

Solution

Known  Uniform heat generation in a cylindrical nuclear fuel rod encapsulated in a cladding.

Find  (a) Expressions for temperature distribution T
f
(r) and T

c
(r). (b) Maximum temperature in 

the fuel rod for the prescribed conditions.

Assumptions (1) Steady-state, one-dimensional conduction with uniform heat generation. (2) Constant 
properties. (3) Negligible thermal contact resistance.

Analysis  (a) The relevant differential equation for the fuel is

1 f

f

dTd
k r q

r dr dr

Ê ˆ
=Á ˜Ë ¯

     [0 £ r £ r
1
]
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Integrating, r
2

1
2

f

f

dT qr
C

dr k
= - +

Temperature gradient, 1

2

f

f

dT Cqr

dr k r
= - + (A)

Integrating,
2

1 2( ) ln
4

f
f

qr
T r C r C

k
= - + + (B)

The pertinent differential equation for the cladding is

1
0c

c

dTd
k r

r dr dr

Ê ˆ =Á ˜Ë ¯
     [r

1
£ r £ r

2
]

Integrating, 3c

c

dT C

dr k r
= (C)

Integrating again, 3
4( ) lnc

c

C
T r r C

k
= + (D)

Since there are four constants of integration, four boundary conditions are required.

BC (I):

0

0
f

r

dT

dr
=

Ê ˆ
=Á ˜Ë ¯

(E)

BC (II): T
f
(r

1
) = T

c
(r

1
) (F)

BC (III):

11

f c
f c

r rr r

dT dT
k k

dr dr ==

- = - (G)

BC (IV):

2

2[ ( ) ]c
c c

r r

dT
k h T r T

dr =

- = - (H)

Applying Eq. (E) to Eq. (A), we find that

1 0C =

It follows that,
2

2( )
4

f
f

qr
T r C

k
= - + (I)

Applying Eq. (F) to equations (I) and (D), we get

2
1 3

2 1 4ln
4 f c

qr C
C r C

k k
- + = + (J)

From Eq. (G), we obtain with equations (A) and (C)

2
1 3 1

3
1

or
2 2

f c
f c

qr C qr
k k C

k k r

È ˘- - = - = -Í ˙
Î ˚

(K)
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 Equation (H) with equations (C), (K) and (D) yields

2 2
1 1

4 2
2

ln
2 2 c

qr qr
C r T

hr k
= + +

 or 
2 2 2 2

1 1 1 1
2 1 2

2

ln ln
4 2 2 2f c c

qr qr qr qr
C r r T

k k hr k

-
+ = - + + + (L)

 Substituting equations (K) and (L) into Eq. (J), we have

2 2 2
1 1 2 1

2
1 2

ln
4 2 2f c

qr qr r qr
C T

k k r hr
= + + + (M)

 Substituting Eq. (M) into Eq. (I), we have the temperature distribution in the fuel rod.

-
= + + +

2 2 2 2
1 1 2 1

1 2

( )
( ) ln

4 2 2
f

f c

q r r qr r qr
T r T

k k r hr
(Ans.) (a)

 Finally, substitution of equations (K) and (L) into Eq. (D) gives the temperature distribution 

in the cladding.

= + +
2 2
1 1 2

2

( ) ln
2 2

c
c

qr qr r
T r T

hr k r
(Ans.) (a)

 (b) The maximum fuel temperature will occur at r = 0 where 
fdT

dr
 = 0. Substituting 

numerical values in the expression for T
f
(r), we obtain

T
max

 = T
f
(r = 0) = 300°C

8 3 2 3 2 8 3 3 2

o 2o 3

(1.1 10 W/m ) (7 10 m) 7.5 mm (1.1 10 W/m )(7 10 m)
ln

7 mm2 9 W/m C 2(12 000 W/m C)(7.5 10 m)

- -

-
¥ ¥ ¥ ¥

+ +
¥ ¥

= 2035°C (Ans.) (b)

Comment  The temperature drop in the fuel element,

[T
f
(r = 0) – T

f
(r = r

1
)] = 

2 8 2
1 1.1 10 0.007

4 4 0.8f

qr

k

¥ ¥
=

¥
ª 1684°C

 which is too high to justify the assumption of constant properties, i.e., constant k
f
.

 A flat-plate fuel element made of uranium (k = 27.6 W/m K, r = 19070 kg/m3)

for a nuclear reactor is 10 mm thick, and the rate of internal heat generation is 4 ¥ 104 W/kg. The fuel 

element is clad with 2 mm thick aluminium sheet (k = 237 W/m K) on each face. The heat generated within 

the nuclear fuel is removed by a coolant fluid at 130°C adjoining the cladding surface and characterized 

by the convection coefficient of 2.8 ¥ 104 W/m2 K. Determine (a) the temperature at the free surface of 

the aluminium, (b) the temperature at the uranium aluminium interface, and (c) the temperature at the 

centre of the fuel element.

Solution

Known  A flat-plate fuel element with aluminium cladding on both sides exposed to convective 

environment.

Find  (a) T
L
(°C), (b) T

C
(°C), and (c) T

0
(°C).
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Assumptions (1) The fuel element can be considered an infinite slab. (2) Uniform heat-transfer coefficient. 

(3) Constant thermal conductivities. (4) One-dimensional heat conduction. (5) Steady state 

conditions.

Analysis  Heat generated within the fuel element,

( )gen gen

gen (2 ) ( (2 ))
E E

E qA qA L V A L
m m

r r
Ê ˆ Ê ˆ

= = = =Á ˜ Á ˜Ë ¯ Ë ¯

Heat flux, gen

4 3 6 2

3

( / )( 2 )

W kg
4 10 19 070 10 10 m 7.628 10 W/m

kg m

q E m Lr

-

= ¥

Ê ˆ Ê ˆ= ¥ ¥ ¥ = ¥Á ˜Á ˜ Ë ¯Ë ¯
Half of this will flow to the either side due to symmetry,

i.e., 6 23.814 10 W/m
2

q
= ¥

Rate of volumetric heat generation,

4 3 8 3
gen( / ) (4 10 W/kg)(19070 kg/m ) 7.628 10 W/mq E m r= = ¥ = ¥

At the free surface of the cladding:

Control surface energy balance: =in outE E

i.e., cond conv

( )
or ( )

2

L C
C C

T T qA
Q Q k A hA T T

b

-
= = - =

It follows that, 
/2

C

q
T T

h
- =
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Temperature at the free surface of the cladding is

T
C
 = 

¥
+ = ∞ +

¥

6 2

4 2

/2 3.814 10 W/m
130 C

2.8 10 W/m K

q
T

h

= 266.2°C (Ans.) (a)

Also, q = Ck

b
(T

L
 – T

C
)

Hence, the temperature at the uranium-aluminium interface is

T
L
 = 

6 2 3( /2) (3.814 10 W/m )(2 10 m)
266.2 C +

237 W/m K
C

C

q b
T

k

-¥ ¥
+ = ∞

= 298.4°C (Ans.) (b)

Temperature at the centre of the fuel element is

T
0
 = 

2 8 3 3 2(7.628 10 W/m )(5 10 m)
298.4 C +

2 2 27.6 W/m K
L

F

qL
T

k

¥ ¥
+ = ∞

¥

= 643.9°C (Ans.) (c)

Comment  The temperature profile and the thermal circuit are shown in the schematic.

Points to Ponder

● Heat generation is basically the conversion of some form of energy into thermal energy in the medium.

● Internal heat generation results in the temperature rise throughout the medium.

● Transformation of electrical energy into thermal energy (when the electrical current passes through a 

wire), exothermic (heat evolving) chemical reactions involving change of chemical energy into thermal 

energy, and conversion of nuclear energy into thermal energy in nuclear fuel rods are some common 

examples of heat conduction with heat sources.

● In steady state, heat generated in a solid equals heat lost to the surrounding fluid.

● The usual assumptions in analyzing problems involving heat sources are the following:

steady-state, one-dimensional, uniform volumetric heat generation with constant thermal conductivity 

and uniform heat -transfer coefficient between the exposed surface and the ambient fluid.

● Since the heat-transfer rate is not constant when there is internal heat generation, electrical analogy 

and equivalent thermal circuit are not applicable in such situations.

● The internally distributed heat source in a nuclear reactor is not uniform.

GLOSSARY of Key Terms

● Heat generation A process occurring within the medium in which thermal energy is 

liberated due to conversion from some other energy form.

● Volumetric generation rate The rate of generation of heat per unit volume of the material.
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Multiple-Choice Questions

3.1 A plane wall of thickness 2L has a uniform volumetric heat generation q (W/m3). It is exposed to 

local ambient temperature T  at both the ends (x = ±L). The surface temperature T
s
 of the wall under 

steady-state conditions (where h and k have their usual meanings) is given by

(a) s

qL
T T

h
= + (b)

2

2
s

qL
T T

k
= + (c)

2

s

qL
T T

h
= + (d)

3

2
s

qL
T T

k
= +

3.2 How can the temperature drop in a plane wall with uniformly distributed heat generation can be 

reduced?

(a) By reducing thermal conductivity of wall material

(b) By reducing wall thickness

(c) By reducing convection coefficient at the surface

(d) By reducing heat generation rate.

3.3 A plane wall, of thickness L, has uniform internal heat generation. If the left hand face is insulated, 

the maximum temperature in the wall will occur at x equal to

(a) L (b) L/2 (c) L/4 (d) 0

3.4 A plane wall of thickness 2L and thermal conductivity k has uniform heat generation rate q . The left 

and right surface temperatures are T
1
 and T

2
. The location x (measured from the midplane) at which 

the temperature in the wall would be maximum is given by

(a) 1 2( )q T T

kL

-
– (b) 2 1

2

T Tq

k L

-Ê ˆ
Á ˜Ë ¯ (c) 1 2

2

( )q T T

kL

-
(d) 2 1

2

( )q T T

k L

-

3.5 Which one of the following is the proper expression for steady-state, one-dimensional, constant 

thermal conductivity, heat-conduction equation with internal heat generation?

(a)
1 1T q T

r
r r r k ta

∂ ∂ ∂Ê ˆ + =Á ˜Ë ¯∂ ∂ ∂
(b) 0

d dT
r

dr dr

Ê ˆ =Á ˜Ë ¯

(c)
1

p

T T
r q C

r r r t
r

∂ ∂ ∂Ê ˆ + =Á ˜Ë ¯∂ ∂ ∂
(d)

1 d dT q
r

r dr dr k

Ê ˆ = -Á ˜Ë ¯

3.6 In a long cylindrical rod of radius R q
0
, the uniform internal heat generation 

rate is

(a) 02q

R
(b) 2q

0
(c) 0q

R
(d) 0

2

q

R

3.7 The temperature distribution for a long solid cylinder of radius R with uniform internal heat generation 

is given by

[T
0
…. centreline temperature, T

w
 …. cylinder wall temperature]

(a)

2

0

1w

w

T T r

T T R

- Ê ˆ= - Á ˜Ë ¯-
  (b)

0

lnw

w

T T r

T T R

-
=

-

(c)
0

1w

w

T T r

T T R

- Ê ˆ= - Á ˜Ë ¯-
  (d)

0

1 1w

w

T T

T T r R

- Ï ¸= -Ì ˝- Ó ˛
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3.8 For a long cylinder with uniformly distributed heat sources, the temperature gradient (dT/dr) at half 

the radius will be

(a) one-fourth of that at the wall (b) one-half of that at the wall

(c) twice that at the wall   (d) four times that at the wall

3.9 Heat is uniformly generated in a copper cable with current density I (A/m2) and electrical resistivity 

r (ohm m). The rate of volumetric heat generation q (W/m3) is

(a) r/i2 (b) ri2 (c) r2i (d) ri

3.10 A hollow cylinder of thermal conductivity k with insulated inner surface and adiabatic ends having 

uniform heat generation q (W/m3) has temperatures T
1
 and T

2
 at radii r

1
 and r

2
. The temperature 

distribution is given by

2 2 2
2 2 1

2

( ) ( ) ln
4 2

q q r
T r T r r r

k k r

Ê ˆ= + - + Á ˜Ë ¯

  With q  = 6 MW/m3, r
1
 = 6 cm, r

2
 = 9 cm and k = 30 W/m K, the maximum temperature difference is

(a) 53°C (b) 46.1°C (c) 79°C (d) 256.7°C

3.11 A hollow cylinder of thermal conductivity k with insulated outer surface and adiabatic ends having 

uniform heat generation q (W/m3) has temperatures T
1
 and T

2
 at radii r

1
 and r

2
. The temperature 

distribution is given by

2 2 2
1 1 2

1

( ) ( ) ln
4 2

q q r
T r T r r r

k k r
= + - +

  With q  = 6 MW/m3, r
1
 = 6 cm, r

2
 = 9 cm and k = 30 W/m K, the maximum temperature difference is

(a) 53.5°C (b) 103.4°C (c) 283.2°C (d) 76.0°C

3.12 A long solid tube with uniform heat generation q (W/m3) is insulated at the outer radius r
2
 and cooled 

at the inner radius r
1
 with coolant temperature T .

  With q  = 5 MW/m3, r
1
 = 2 cm, r

2
 = 2.5 cm, k = 15 W/m K, T  = 75°C and T

1
 = 300°C, the convection 

h(W/m2 K) is

(a) 180 (b) 40 (c) 110 (d) 125

3.13 Current of 200 A passes through a 3 mm diameter wire, 1 m long, with a resistivity of 70 mW cm. The 

rate of volumetric heat generation in W/m3 is

(a) 5.6 ¥ 108 (b) 0.099 (c) 1.6 ¥ 109 (d) 1.4 ¥ 104

3.14 One-dimensional, steady-state heat-transfer equation for a sphere with heat generation at the rate of 

q– can be written as

(a)
1 1T q T

r
r r r k a t

∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆ+ =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯∂ ∂ ∂
(b)

2

2

1T q T

k a tr

Ê ˆ∂ ∂
+ =Á ˜Ë ¯ ∂∂

(c) 2

2

1 1T q T
r

r r k a tr

∂ ∂ ∂Ê ˆ + =Á ˜Ë ¯∂ ∂ ∂
(d)

2

2

1
( )

q T
rT

k a tr

∂ ∂
+ =

∂∂

Answers

Multiple-Choice Questions

3.1 (a) 3.2 (b) 3.3 (d) 3.4 (b) 3.5 (d) 3.6 (a)

3.7 (a) 3.8 (b) 3.9 (b) 3.10 (c) 3.11 (b) 3.12 (d)

3.13 (a) 3.14 (c)
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3.1 Give some examples of heat sources present in materials.

3.2 Sketch the temperature distribution for conduction in a plane wall with uniform volumetric heat 

generation with the following boundary conditions: (a) asymmetrical, (b) symmetrical, and (c) 

insulated surface on one side.

3.3 Show that a plane wall having uniform heat generation with same convective conditions at both 

exposed surfaces is similar to a plane wall half as thick with the same uniform heat generation but 

with one adiabatic surface, and the other, a convective surface.

3.4 Why is it not possible for a material experiencing uniform volumetric heating to be represented by a 

thermal resistance in an equivalent thermal circuit?

3.5 If both the surfaces of a plane wall with uniform volumetric heating are held at the same constant 

temperature, which point of the plate will have maximum temperature?

3.6 Where will the maximum temperature occur in a long solid cylinder that experiences uniform heat 

generation and whose outer surface is maintained at constant temperature?

3.7 Write down the expression to describe the temperature distribution in a sphere, with uniform heat 

generation, the outer surface of which is held at a constant temperature.

3.8 Is it possible to attain steady operating conditions in a long solid cylinder or a sphere with heat 

generation and its outer surface well insulated?

3.9 The difference between the centre (maximum) temperature and surface temperature of a copper cable 

in an electrical transmission line is very small. What is it due to?

3.10 Consider a plane slab, a long cylinder, and a solid sphere with the same uniform volumetric heat-

generation rate, made of the same material and having the same characteristic dimension (radius in 

cylinder and sphere, and half-thickness in a slab). In which case would the difference between the 

centre temperature and the wall temperature be minimum?

PRACTICE PROBLEMS

(A) Plane Wall with Equal Surface Temperatures

3.1 A small dam, idealized as a large slab 1.2-m-thick, has both surfaces maintained at 20°C. The 

hydration of the concrete results in the equivalent of a distributed source of constant strength of 112 

W/m3. The thermal conductivity of the wet concrete may be taken as 8.4 ¥ 10–3 W/m K. Determine 

the maximum temperature to which the concrete will be subjected, assuming steady state conditions.

[2420°C]

3.2 A plane wall of thickness 2L has an internal heat generation that varies according to 0q = q  cos ax,

where 0q  is the heat generated per unit volume at the centre of the wall (x = 0) and a is a constant. If 

both sides of the wall are maintained at a constant temperature of T
w
, derive an expression for the total 

heat loss from the wall per unit surface area.
È ˘
Í ˙Î ˚

0
loss

2
= sin

q
q aL

a

(B) Plane Wall with One Surface Insulated

3.3 L at x = 0 is insulated, the outside surface 

at x = L is maintained at a uniform temperature T
2
, and the heat generation term is in the form, 

= 3
0( ) (W/m )yx

q x q e  where 0q  and g are constants and x is measured from the insulated inside 

surface. Develop (a) an expression for the temperature distribution in the plate, and (b) an expression 
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for the temperature at the insulated surface (i.e., x = 0) of the plate. (c) Also deduce an expression for 

x = L.

- -

-

-

È ˘= + - + -Í ˙
Í ˙
Í ˙-
Í ˙= = = + +
Í ˙
Í ˙
Í ˙-
Í ˙Î ˚

( )

( )

0
2 2

0
1 max 2 2

0

(a) ( ) ( )

( 1)
(b) (0)

k

(c) = ( ) = 1

L x

L

L

q q
T T L e e

k k

q L q e
T T T T

k

q
q L e

k

x x

(C) Plane Wall: Different End Surface Temperatures

3.4 A plane wall, 10-cm-thick, has one surface maintained at 0°C and the other at 100°C. The thermal 

conductivity of the wall material is 0.1 W/m °C and the rate of uniform volumetric heat generation is 

2.2 k W/m3. Determine (a) the temperature at the midplane of the wall, (b) the location and magnitude 

[(a) 77.5 °C (b) 100.23°C  (c) 10 W/m2]

(D) Long Cylinder

3.5 A thin hollow tube, 6-mm outside diameter, and 4-mm inside diameter carries a current of 1000 A. 

Water at 27°C is circulated inside the tube for cooling it. The electrical resistivity of the material is 0.1 

W-m2/m, the thermal conductivity of the tube material is 18 W/m K, and the water-side heat transfer 
2 K. Calculate the inner surface temperature of the tube if its outer 

surface is insulated. [50.0°C]

3.6 In a graphite moderated gas cooled reactor of the type used for commercial power production, the 

uranium rods of 6-cm diameter are generating heat at the rate of 1.35 ¥ 107 W/m3. The rods are 

2K, estimate the maximum temperature of the 

uranium rod. Thermal conductivity of uranium is 25 W/m K. [701.5°C]

3.7

in a gym. Modelling the muscle as a cylinder of 20-mm-diameter with a volumetric heat generation 

at the constant rate of 6 kW/m3, determine the maximum temperature in the muscle if the thermal 

[37.4°C]

3.8 An electrical transmission wire made of a 2.5-cm-diameter annealed copper wire carries 200 amp and 

has a resistance of 0.4 ¥ 10–4 ohm per cm length. If the surface temperature is 200°C and the ambient 

surface and the ambient air, and (b) the maximum temperature in the wire. Assume k = 60 W/m K.

[11.0 W/m2 K, 200.22°C]

3.9 A power transmission line of copper, 1 cm diameter has a resistance of 0.005 W/m. It carries a 

current of 200 A. Determine the centreline and surface temperature of the wire on a breezeless day. 

Assume : h = 40 W/m2 K, k
copper

 = 375 W/m K, T
ambient

 = 30°C. [189.16 °C, 189.20°C]

3.10 Heat is generated uniformly at a constant rate of 3 MW/m3 in a long resistance wire of 0.6-cm-

diameter and thermal conductivity 15 W/m K. The wire is embedded in a 0.5-cm-thick layer of 

ceramic whose thermal conductivity is 1.2 W/m K. The outer surface of the ceramic layer loses heat 

W/m2 K. Assuming one-dimensional heat transfer determine (a) the temperatures at the centre of the 

resistance wire and the wire-ceramic layer interface under steady operating conditions.

[143.5°C, 144.4°C]
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3.11 Consider a tube that is 3-m long, has a 12.5-mm inner diameter and a 15.5-mm outer diameter, and 

is well insulated. The tube’s thermal conductivity is 14.3 W/m C
p

= 2.4 kJ/kg K) enters 

the tube at 24o

voltage drop across the length of the tube is 5.6V. At a distance of 2.5 m from the inlet, the measured 

location. [1500 W/m2K]

(E) Sphere

3.12 Develop an expression for the steady state temperature distribution T(r) in a solid sphere of radius r

= r
o
 in which heat is generated at a rate of 1

3( ) = – W/mo
o

r
q r q

r

Ê ˆ
Á ˜Ë ¯

 where oq  is a constant and the 

boundary surface at r = r
o
 is maintained at a uniform temperature T

o
. Find the position and value of 

the maximum temperature.
È ˘

= +Í ˙
Î ˚

2

max
12k

o o
o

q r
T T

3.13 850 W/m3 of heat is generated within a 15-cm-diameter nickel-steel sphere for which k = 10 W/m 
2

K around the outside of the sphere. Find the maximum temperature in the sphere at steady state.

[27.2°C]

(F) Nuclear Systems

3.14 The shielding for a nuclear reactor can be approximated as a plane wall of thickness L. Heat is generated 

per unit volume at a rate (q x)  within the shielding according to the relation aa -= 0( ) x
q x q e  where 

0q a

Obtain an expression for steady-state temperature distribution if the inner (x = 0) and outer (x = L)

surfaces of the shielding are kept at T
1
 and T

2
 respectively. (b) Determine the location in the shield at 

which maximum temperature will occur.

g

g

-

-

È ˘È ˘
= + - + - - -Í ˙Í ˙

Î ˚Í ˙
Í ˙È ˘- -Í ˙= - +Í ˙Í ˙Î ˚Î ˚

0 0[ ] ( ) ( )

( )

1 2 1

1 2

0

(a) ( ) 1 1

1 1
(b) ln

x L

L

q qx
T x T e T T e

k L k

k T T e
x

q L L

3.15 A nuclear fuel rod assembly, consisting of an outer cladding and the inner nuclear material, has 

an outside diameter of 75 mm. The outer cladding is 10-mm thick and is made of a material with 

a thermal conductivity of 3.2 W/m K. The nuclear reaction generates 90 000 W/m3 uniformly in 

the inner nuclear material.  The outside of the assembly is surrounded by water at 300°C, and the 
2 K. Determine: (a) the temperature at the assembly surface, and 

(b) the temperature at the interface between the inner nuclear material and the outer cladding.

[(a) 309.1°C (b) 312.4°C]



Heat Transfer from 
Extended Surfaces

4.1 ❏ INTRODUCTION

There are many applications where our primary aim is to increase the rate of heat transfer between the 

surface of a solid and the surrounding fluid. How can we go about it?

Consider a solid surface dissipating heat to the surrounding fluid by convection. Then, the basic 

equation governing convective heat-transfer rate Q , is given by Newton’s law of cooling:

conv

( )s s

T
Q hA T T

R

D
= - = (4.1)

where DT ∫ (Ts – T ) and Rconv = 1/hAs

h = heat-transfer coefficient between the surface and the ambient fluid

As = exposed heat-transfer area of the solid surface

Ts = surface temperature of the solid

T  = temperature of the surrounding fluid

In order to increase the heat-transfer rate from the parent (primary) surface, there are three options:

Increase the driving potential, i.e., temperature difference between the surface and the adjacent fluid 

(Ts – T ). However, this may not always be realistic because large changes in these temperatures 

may not directly be possible.

Increase the heat-transfer coefficient h. However, this may not always be possible since the fluids 

are fixed in most industrial applications. Using an external fan or pump to increase the fluid veloc-

ity and flow rate can increase the value of h. There are practical limits to the maximum convection 

coefficient that can be achieved. The additional cost may not always be justifiable.

Increase the surface area As. Yet another method of increasing the rate of heat transfer would be 

to increase the effective area of the heat-transfer surface, that is, the surface area in contact with 

the fluid.

Surface area can be increased by adding an extended surface (or fin) projecting from the base surface.

This seems to be the satisfactory solution in several situations. In the film Jurassic Park, you might have 

noticed dinosaurs with projected parts on their bodies. Dinosaurs, being huge animals (now defunct),

required these projections (cooling fins) to cool the warm blood pumped by their heart.

Generally, fins are provided on that side of the surface where the heat-transfer coefficient is less and 

the thermal resistance is more. Heat-transfer coefficients are usually less for gases as compared to liquids. 

Therefore, one can observe that fins are attached on the outside of the tubes in a car radiator, where 

cooling liquid flows inside the tubes and air flows on the outside across the fins, and when heat is to 

be dissipated from a space vehicle, where in the absence of convection, finned surfaces which radiate 

thermal energy are employed.
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In this chapter, we will analyze three types of extended surface configurations–straight fins, annular 

fins, and triangular fins. Performance parameters like fin effectiveness and fin efficiency will be discussed. 

Selection and design considerations will also be outlined. Error in temperature measurement will also be 

touched upon.

4.2 ❏ APPLICATIONS OF FINS

There are several engineering applications where fins are employed to dissipate large quantities of heat 

from relatively smaller areas particularly when the surface-film heat-transfer coefficient is rather modest. 

Some typical application areas of fins are:

Automobile radiators

Air cooling of cylinder heads of internal combustion engines (e.g., scooters, motor cycles, aircraft 

engines), air compressors, etc.

Economisers of steam power plants.

Fins on solid-state devices.

Cooling of electric motors, transformers, etc.

Fin cooling of electronic components, chips, integrated circuit boards, etc.

Cooling fins for radiation source in an optical instrument.

Finned evaporators and condensers in refrigerators and air conditioners.

Heat exchangers used in industrial and commercial installations.

4.3 ❏ TYPES OF FINS

There are several types of fins used in engineering practice. The fins may be of uniform area (longitudinal
fins) or of non-uniform area (radial fins).

Fins are available in different geometries and configurations. They may be of uniform or variable cross 
section. Fins are essentially classified as a straight fin, an annular fin, or a spine. The cross-sectional 
shape of the fin in a plane normal to the surface is called the profile. Fins can have rectangular, parabolic,
trapezoidal, or truncated conical profiles. The straight fin is an extended surface added to a plane wall 
rectangular in shape and generally of uniform cross section. The spine fin, or pin fin, is simply a short 
thin rod protruding from the surface. It may be of cylindrical or conical shape. An annular fin is the one 
attached circumferentially to a cylindrical surface to increase its surface area. Cross-sectional areas of 
annular fins vary with the radius. In contrast, rectangular cylindrical spines have constant cross-sectional 
areas. Triangular or parabolic fins are used when one optimizes the fins from the standpoint of weight 
or volume.

Fins can be of rectangular cross-section along the length of the tube, called longitudinal fins, or 
concentric annular discs around a tube, referred to as circumferential fins. Figure 4.1 illustrates different 
types of fins commonly encountered in practice.

4.4 ❏

Consider a thin rectangular fin of rectangular cross section as shown in Fig. 4.2. The problem of heat 

conduction in a fin losing heat to the surrounding fluid by convection is, strictly speaking, not a one-

dimensional problem.

The Biot number, Bi, compares conduction resistance to convection resistance. When the internal 

resistance (conduction) is small compared to the external resistance (convection), the temperature variations 
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Schematic diagrams of various types of fins
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in the solid are negligible. If we compare the 

fin conduction resistance in the transverse

direction to the convection resistance, we 

can ignore temperature variations in the 

transverse direction if

0.1chL
Bi

k
= £ (4.2)

where Lc is the characteristic length 

(dimension) of the fin, which is the plate’s 

half thickness,
2

t
 for rectangular fins and 

the radius R for cylindrical fins.

In a majority of the cases, the length (the

dimension measured perpendicular to the 

prime surface to which fins are attached)

of a straight rectangular fin from the heated 

surface is large compared to its maximum 

thickness, or in the case of a pin fin, the length of the cylindrical rod of circular cross section is very 

long compared to its diameter. Under such circumstances, the temperature can be assumed to be uniform 

over any cross section taken normal to the axis. Thus, the temperature of the fin can be assumed to 

depend only on axial coordinates. Similarly, a thin annular fin can be expected to have only radial

temperature distribution.

Figure 4.2 shows both the actual flow pattern as well as the one-dimensional flow pattern in the case 

of straight fin of uniform thickness. In the latter case, the fin is considered thin so that the heat flow 

lines are parallel and only in the axial direction.

4.5 ❏

Consider two configurations of fins of uniform cross section to be treated in an identical manner—a 

straight fin of length or height L, width w and thickness t, and a spine (pin fin) of length L and diameter 

D as shown in Fig. 4.3. Let the temperature of the wall surface and the root of the fin be Tb, the ambient 

temperature, T , uniform cross-sectional area Ac, constant perimeter of the cross section P, and the 

convective heat-transfer coefficient between the fin surface and the surrounding fluid, h.

Our aim is to determine the temperature distribution from the base to the tip of the fin and consequently, 

the heat-transfer rate from the fin.

For the heat-transfer analysis of a fin, the following assumptions are made:

Steady operating conditions exist.

There is no internal thermal energy generation.

The heat conduction is one-dimensional and the temperature at any cross section of the fin is uni-

form over the entre cross section of the fin, i.e., T = T(x) only. Temperature varies only along the 

length of the fin, not across the fin.

The fin shape is constant over the whole length of the fin. The perimeter P and cross-sectional area 

Ac are not functions of the distance x.

No contact resistance exists at the fin base. The fin material is integral with the prime surface.

Heat flow through a cooling fin—actual and one-

dimensional flow pattern
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The material of the fin is homogeneous and isotropic, having constant thermal conductivity, k, The 

thermal conductivity k of the fin material does not vary with temperature.

Heat loss by radiation and from the side edges of the fin is negligible.

The heat-transfer coefficient h is uniform over the entire fin surface and does not vary with either 

the temperature or the location.

Consider an infinitesimal element of the fin dx in length, at a distance x from the root (base) of the 

fin or the wall. The steady-state energy balance for this element is:

Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á= +
Á ˜ Á ˜ Á
Ë ¯ Ë + ¯ Ë ¯

Rate of heat Rate of heat conducted Rate of heat convected (heat loss) from 

conducted the of the element the lateral surface of the element 

element at . at ( ). exposed to the ambient fluid.

into out

x x dx

out

˜
˜

i.e., convdQ Q Q+= +x x x

or conv( )
d

Q Q Q d Q
d

È ˘= + +Í ˙Î ˚x x x x
x

or ( )( )c c c

dT dT d dT
kA kA kA d h Pd T T

d d d d

Ê ˆ- = - + - + -Á ˜Ë ¯ x x
x x x x

or
2 2

2 2
( ) 0 or ( ) 0c

d T d T hP
kA hP T T T T

kAd dx
- + - = - - =

x

or
2

2

2
( ) 0

d T
m T T

dx
- - = (4.3)

where 2

c

hP
m

kA
∫

Analysis of a fin with uniform area of cross section
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Equation (4.3) is the ordinary, second-order, linear, non-homogeneous differential equation with 

constant coefficients. The equation describes the temperature as a function of m and x. The quantity m

is a function of the properties of the fin material and the ambient fluid.

Since T is a constant ambient temperature, we can replace (T – T ) by q, the local excess temperature, 

so that,
22 2

2 2 2

( )
( constant)

d T Td d T
T

dx dx dx

q -
∫ ∫ =

Equation (4.3) can then be written as

2
2

2
0

d
m

dx

q
q- = (4.4)

The general solution of Eq. (4.4) is

1 2
mx mx

C e C eq -= + (4.5)

where 
c

hP
m

kA
= , and C1 and C2 are constants of integration to be determined from the boundary 

conditions for the problem.

It may be noted that m is not a dimensionless constant. It has the unit m–1 or reciprocal of length. 

The parameter mL is of course dimensionless and its physical significance is that it is the ratio of surface

conductance to the internal conductance.

/c

hPL
mL

kA L
=

In other words, one can also express mL as

1/2

cond

conv

/

1/ ( )

cL kA R

h PL R

È ˘ =Í ˙
Î ˚

i.e., the ratio of conductive thermal resistance to the convective (surface) thermal resistance. Note that 

Ac is the area of cross section while PL is As, the surface area.

If m is less, i.e., convective resistance is predominant due to small surface area or lower value of h,

then equipping the base surface with fins will reduce this surface resistance and increase heat transfer in 

spite of marginal addition of conductive resistance.

In the analysis and design of a finned surface, the heat dissipated by a single fin of a given geometry 

is determined from the temperature gradient and the cross-sectional area available for heat transfer rate 

at the base of the fin.

The total number of fins necessary to dissipate a specified total heat-transfer rate is determined from

total

singlefin

Number of fins,
Q

N
Q

= (4.6)

4.5.1 ● Specific Cases and Boundary Conditions

Customarily, there are two boundary conditions specified at the two ends of the fin. The first one which 

is at one end (the base or root) of the fin is of course common to all the cases. This common Boundary 
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Condition (BC) is that the temperature of the primary surface or wall which is also the base temperature 

of the fin is known. That is,

BC I: At x = 0, T = Tb or q (0) = qb ∫ Tb – T

where qb is the base excess temperature

The second boundary condition depends on the specific case depending on the physical situation. Four

possible sets of boundary conditions could be imposed.

To illustrate the physical significance of different conditions at the fin tip (x = L), the solution of 

the fin problem for each of these cases will now be presented in terms of the temperature distribution 

and hence the heat-flow rate through the fin. The schematic representation of the four sets of boundary 

conditions is shown in Fig. 4.4.

Boundary conditions at the fin base and the fin tip.

Case I: Very Long Fin (L Æ ) Let us consider 

a very long cylindrical fin of uniform cross section 

(Ac = Ab, i.e., area at the base). One can assume that 

the base is hotter than the fluid, although the same 

processes are applicable when the fluid is hotter than 

the base. Heat conducts from the base into the fin 

and is dissipated by convection at the outer surface 

of the fin. The fin is usually made of a high thermal 

conductivity material to facilitate the flow of heat 

from the base to the tip. With heat being convected 

away from the surface, the temperature of the fin 

decreases from base to tip, as shown in Figure 4.5.

4.5.2 ● Temperature Distribution

For an infinitely long fin, it is reasonable to assume 

that the temperature at the tip of the fin approaches 

the ambient fluid temperature T . That is,

BC II:  As x = L Æ , q(x) = 0 Temperature variation in a very long fin
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Applying the first boundary condition at the fin base to Eq. (4.5), we have

qb = C1 + C2 (4.7)

Applying the second boundary condition at the fin tip, we get

1 2 1 20 m m
C e C e C e C e= + = +

or 0 = C1( ) + C2(0)

This equality is valid only when

C1 = 0

Thus,

C2 = qb from Eq. (4.7)

Substituting the values of C1 and C2 in Eq. (4.4), the temperature distribution becomes

( )
ormx m

b
b b

T T
e e

T T

q
q q

q
- --

= = =
-

xx
(4.8)

This equation gives the dimensionless temperature distribution along the length of an infinite (very long)

fin of uniform cross section. This is shown graphically in Fig. 4.6. Temperature drops exponentially as the 

distance from the base increases and with increasing value of the fin parameter m, this drop is sharper.

Temperature profile in a very long fin along its length

4.5.3 ● Heat-Transfer Rate

The heat-flow rate through the fin can be determined by two different methods. From Fig. 4.7, the 

following is noteworthy:
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Ê ˆ Ê ˆ
=Á ˜ Á ˜Ë ¯ Ë ¯

Heat conducted Heat transferred by convection

the base of the fin. the surface of the fin the surrounding fluid.

across from

to

Thus, base finQ Q=

From Fourier’s law of heat conduction,

base
0

c

dT
Q kA

d =
= -

xx
(4.9)

Differentiating Eq. (4.8) and substituting the result for x = 0 in Eq. (4.9), we have

\ base c 0

( )

[ ]

m
b

m
b c b

dT d
m e

d d

Q kA m e mkA

q
q

q q

-

-
=

= = -

= - - =

x

x
x

x x

But m = 
c

hP

kA
and one can also write

base
c

b c b

c

kA
Q hP hPkA

kA
q q= =

As mentioned earlier, the heat that enters the base in steady state is dissipated to the environment all 

along the exposed surface of the fin so that we could also calculate the heat-transfer rate by integrating 

the expression for the surface convection heat transfer over the entire length of the fin. It follows that,

0

fin

0 0 0

( ) (0) –0b
0

[ ( ) ] ( )

[ ] ( ) (since 1)

mx
b

mx m mb b

Q hP T T d h Pdx hP e dx

hP hP hP
e e e e

m m m

q q

q q q

-= - = =

-
= = - - = =

Ú Ú Úx x

But we recognize that m2 = hP/kAc, so that we have

2

fin
c b

c b

m kA
Q mkA

m

q
q= =

Under steady operating conditions, heat loss by convection from the fin surface to the surrounding fluid equals 

heat conduction to the fin at its base.
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Hence, the fin heat-transfer rate is

fin orc b c b bQ mkA hPkA Mq q q= = ◊

where c cM hPkA mkA∫ = (4.10)

Case II: Fin with Negligible Heat Loss at the Tip or an Insulated End 
=

È ˘
=Í ˙

Î ˚x L

dT
0

dx

Usually, the heat-transfer area at the fin tip is small compared with the lateral surface area of the fin 

for heat transfer. In such situations, the heat loss 

from the fin tip is negligible (as if the fin were 

insulated) compared to that from the lateral surfaces, 

as shown in Fig. 4.8. The second boundary condition 

which characterizes this situation requires that the 

temperature gradient be zero at the tip (end) of the 

fin. That is,

BC II: At , 0
dT d

x L
d d

q
= = =

x x

This assumption is justified in those cases where 

h is small at the end of the fin, and k of the fin 

material is large so that the ratio (h/k) Æ 0, i.e., 

heat loss from the fin tip is negligible.

The first boundary condition is the same (as in 

Case I) which requires that

1 2b C Cq = +

Differentiating Eq. (4.4) with respect to x, one gets

1 2

1 20 [ ]

m m

mL mL

L

d
mC e mC e

d

d
m C e C e

d

q

q

-

-

=

= -

= = -

x x

x

x

x

\ 2
1 2

mL
C C e

-=

From Eq. (4.7), we now have

2
2 2 2

mL
b C e C Cq -= + =

\ 2 21

b

mL
C

e

q
-=

+

and
2 2

1 2 2 2 2 2

( )1 ( )
1

1 1 (1 ) ( ) 1

mL mL
b b b

b bmL mL mL mL mL

e e
C

e e e e e

q q q
q q

-

- - -
È ˘= - = - = =Í ˙+ + + +Î ˚

Temperature variation in a fin with an insulated tip
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The temperature distribution along the fin is then obtained by putting the values of C1 and C2 in 

Eq. (4.4):

or

2 2

2 2

1 1

1 1

m mb b

mL mL

m m

mL mL
b

e e
e e

e e

e e

q q
q

q

q

-
-

-

-

= +
+ +

= +
+ +

x x

x x

The equation can be expressed in a more compact form in terms of hyperbolic functions if we multiply 

the numerator and denominator of the first term on the right-hand side by mL
e  and the numerator and 

denominator of the second term by e+mL.

Then

( ) ( ) ( ) ( )

( )( )

[ ]/2

[ ]/2

mL m mL m

mL mL mL mL
b b

m L m L m L m L

mL mL mL mL

T T e e e e

T T e e e e

e e e e

e e e e

q

q

- + -

- + -

- - + - - - -

- + -

-
= = +

- + +

+ +
= =

+ +

x x

x x x x

xx

Noting that the hyperbolic cosine is defined as, cosx
2

x x
e e

x
-+

= , the temperature profile can be expressed 

as:

q

q

- -
= =

-
( )( ) cos ( )

cosb b

T T m L

T T mL

xx x
(4.11)

The temperature gradient at the root of the fin, i.e.,

0 0

or
x

dT d

d d

q

= =x
x x

is given by differentiating BC II with respect to x and then putting x = 0.

Thus,

q
= =

- -
= = -

0 0

sin ( )
tan

cos
b

x x

dT m m L
m mL

d mL

x

x

Hence, the heat dissipated by the fin

q q= - - = -fin ( tan ) tanc b c bQ kA m mL mkA mL

or q= =fin tan tanc bQ hPkA mL M mL (4.12)

where c cM mkA hPkA∫ =

Case III: Fin with Convection at the Tip A more realistic physical boundary condition at the other 

extremity of the fin (x = L) includes convective heat transfer from the fin tip to the surrounding fluid 

(Fig. 4.9).
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Temperature variation in a fin with a convective tip

The result obtained after applying the first boundary condition [T(0) = Tb] is already given by

1 2b C Cq = +

BC II: The second boundary condition requires that,

L L
L

d
k h
d

q
q

=
=

- =
x 

xx
(4.13)

where hL is the heat-transfer coefficient between the fin tip and the ambient fluid.

Now, 1 2
mL mL

x L C e C eq -
= = +

and 1 2[ ]mL mL

L

d
m C e C e

d

q -

=
= -

xx

Substituting these values in Eq. (4.11), and assuming hL = h, we have

1 2 1 2[ ] [ ]mL mL mL mL
mk C e C e h C e C e

- -- - = +

or 2 1 1 2[ ]mL mL mL mLh
C e C e C e C e

mk

- -- = +

or 1 2[1 ( / )] [1 ( / )]mL mL
C h mk e C h mk e

-+ = -

But C1 = qb – C2    [from Eq.(4.7)]

\ 2 2( ){1 ( / )} {1 ( / )}mL mL
b C h mk e C h mk eq -- + = -

or 2[{1 ( / )} {1 ( / )} ] {1 ( / )}mL mL mL
bC h mk e h mk e h mk eq-+ + - = +

\ 2

{1 ( / )}

( ) ( / )( )

mL
b

mL mL mL mL

h mk e
C

e e h mk e e

q
- -

+
=

+ + -
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\ 1 2

( ) ( / )( ) {1 ( / )}

( ) ( / )( )

{1 ( / )} {1 ( / )} {1 ( / )}

( )1 ( / )( )

mL mL mL mL mL

b b mL mL mL mL

mL mL mL

b mL mL mL mL

e e h mk e e h mk e
C C

e e h mk e e

h mk e h mk e h mk e

e e h mk e e

q q

q

- -

- -

-

- -

È ˘+ + - - +
= - = Í ˙

+ + +Î ˚
È ˘+ + - - +

= Í ˙
+ + -Î ˚

\ 1

(1 ( / ))

( ) ( / )( )

mL
b

mL mL mL mL

h mk e
C

e e h mk e e

q -

- -
-

=
+ + -

Substituting the values of the constants of integration C1 and C2 into Eq. (4.4), the temperature profile 

is given by

( ) ( ) ( ) ( )

(1 ( / )) (1 ( / ))

( ) ( )

[ ] ( / )[ ]

( ) ( / )( )

m mL mL m

mL mL mL mL
b

m L m L m L m L

mL mL mL mL

e e h mk e e h mk

e e e e

e e h mk e e

e e h mk e e

q

q

- -

- -

- - - - - -

- -

- + +
=

+ + +

+ + -
=

+ + -

x x

x x x x

Noting that

cosh and sinh
2 2

x x
e e e e

x
- -+ -

= =
x x

x , we finally get

( ) cosh ( ) ( / )sinh ( )

cosh ( / )sinhb b

T T m L h mk m L

T T mL h mk mL

q

q

- - + -
= =

- +
x x x

(4.14)

The heat-flow rate through the fin is

fin
0

c

d
Q kA

d

q

=
= -

xx

Differentiating Eq. (4.11) with respect to x, we have

00

1 ( )sinh ( ) ( / )( )cosh ( )

cosh ( / )sinh

[sinh ( / )cosh ]

cosh ( / )sinh

b

d m m L h mk m m L

d mL h mk mL

m mL h mk mL

mL h mk mL

q

q ==

- - + - -
=

+

- +
=

+

xx

x x

x

\ fin

sinh ( / )cosh

cosh ( / )sinh
c b

mL h mk mL
Q mkA

mL h mk mL
q

+È ˘= Í ˙+Î ˚

or fin

tanh ( / )
where

1 ( / ) tanh
c b c b

mL h mk
Q M M mkA hPkA

h mk mL
q q

+È ˘= ∫ =Í ˙+Î ˚
(4.15)

If we consider a fin of length L, and then apply the relevant boundary conditions associated with a 

very long fin, the adiabatic tip fin, and the finite convective tip fin, the following observation about the 

fin-tip temperature for these three cases can be made:

The very long fin would have the lowest tip temperature, the adiabatic tip fin would have the highest

tip temperature, and the finite fin with convective tip would have a tip temperature somewhere between 

that of the infinitely long fin and the adiabatic tip fin (Fig. 4.10).

very long convective tip adiabatic tip( ) ( ) ( )T L T L T L< < (4.16)
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Comparison of fin-tip temperatures for three different boundary conditions

4.5.4 ● Corrected Length

The expressions for the fin with convection from its tip are rather tedious compared to those of the 

insulated tip fin. One can obtain a reasonable approximation to the convective tip fin if in the insulated-tip 

fin expressions, one uses a corrected length, Lc, to account for the additional area of the fin tip (Fig. 4.11).

Corrected fin length Lc is defined such that the heat-transfer rate from a fin of length Lc with adiabatic tip 

equals the heat-transfer rate from the actual fin of length L with convection at the fin tip, and is given by

/c cL L A P= + (4.17)

(a) Actual fin of length L with convection at the tip (b) Equivalent fin of 

corrected length Lc with an adiabatic tip.
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if the convective coefficients on surface and end, are equal. For the pin fin, Lc = L + D/4, and for a 

rectangular fin, Lc = L + t/2, where t is the fin thickness. One would get essentially the same performance 

for the adiabatic tip fin of length Lc with the uninsulated fin tip of length L.

One must note that the error associated with the adiabatic tip approximation is negligible if

(ht/k) or (hD/2k) £ 0.0625

Case IV: Fin of Finite Length with 
Specified Temperature at its End 
(T(x = L) = T

L
) Consider a thin fin of 

length L with its two ends attached to two 

parallel walls, maintained at temperatures 

Tb and TL, as shown in Fig. 4.12. The fin 

loses heat by convection to the ambient 

fluid at T . Let us analyse such a fin with 

a specified tip temperature, TL, and base 

temperature To = Tb.

The general solution of temperature distribution is

1 2
mx mx

T T C e C eq -∫ - = + (A)

Boundary conditions are

BC I: q(x = 0) = qb

and BC II: q(x = L) = qL

From boundary condition I:

1 2 1 2or mL mL mL
b bC C e C e C eq q= + = + (a)

From boundary condition II:

1 2
mL mL

L C e C eq -= + (b)

Subtracting (b) from (a), we have

2 ( )mL mL mL
b Le C e eq q -- = -

or
q q q q

q q

q q q q q q

- -

- -

- -

- -
= = - = -

- -

- - + -
= =

- -

2 1 2and

mL mL
b L b L

b bmL mL mL mL

mL mL mL mL
b b b L L b

mL mL mL mL

e e
C C C

e e e e

e e e e

e e e e

Substituting for C1 and C2 in Eq. (A), one gets

mL mL
mx mxL b b L

mL mL mL mL

mx mL mx mL mx mx
L b b L

mL mL

e e
e e

e e e e

e e e e e e

e e

q q q q
q

q q q q

-
-

- -

- - -

-

Ê ˆ Ê ˆ- -
= +Á ˜ Á ˜Ë - ¯ Ë + ¯

- + -
=

-

A fin with fixed temperature at the tip
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( ) ( )

( ) ( )

( ) { }mx mx m L x m L x
L b

mL mL

mx mx m L x m L x

L bmL mL mL mL

e e e e

e e

e e e e

e e e e

q q

q q

- - - -

-

- - - -

- -

- + -
=

-

- -
= +

- -

We note that sinh mx = 
2

mx mx
e e

-+
 and 

( ) ( )

sinh ( – )
2

m L x m L x
e e

m L x
- - -+

=

Hence,
sinh sinh ( )

sinh sinh
q q q -
= +L b

mx m L x

mL mL

or
( / )sinh sinh ( )

sinh

q qq
q

L b

b

mx m L x

mL

+ -
= (4.18)

Differentiating with respect to x, one has

or
0

( / ) cosh ( )( 1)cosh ( )1

sinh

[ ( / ) cosh ]

sinh

L b

b

b L b

x

m mx m m L xd

dx mL

m m mLd

dx mL

q qq

q

q q qq

=

+ - -
=

-
=

Heat flow rate at x = 0 is

fin
0

[( / ) cosh ]
sinh

b
b c c L b

x

md
Q Q kA kA mL

dx mL

qq
q q

=
= = - = - -

or fin

[cosh ( / )]

sinh

L b
c b

mL
Q mkA

mL

q q
q

-
= (4.19)

Also, at x = L, the temperature gradient is

{( / )cosh 1}
sinh

b
L b

x L

md
mL

dx mL

qq
q q

=

Ê ˆ = -Á ˜Ë ¯

Hence, the rate of heat flow from the other end (x = L) is

{( / )cosh 1}
sinh

b
L c c L b

x L

md
Q kA kA mL

dx mL

qq
q q

=
= - = - -

or
[1 ( / )cosh ]

sinh

L b
L c b

mL
Q mkA

mL

-
=

q q
q

Net heat lost by the fin is

0 cond,in cond,out conv

[cosh ( / ) 1 ( / )cosh ]
sinh

1 [cosh 1]
sinh

L

c b
L b L b

c b L

b

Q Q Q Q Q

mkA
mL mL

mL

mkA
mL

mL

q
q q q q

q q

q

- = - =

= - - +

Ê ˆ= + ¥ -Á ˜Ë ¯
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or conv ( )[(cosh 1)/sinh ]c b LQ mkA mL mL= + -q q (4.20)

4.5.5 ●

To find the location and magnitude of minimum temperature that will occur in the fin, let us differentiate 

the expression for q with respect to x and equate the resulting derivative to zero.

sinh sinh ( ) 0
sinh

b L

b

d d
mx m L x

dx mL dx

q qq

q

È ˘Ê ˆ= + - =Í ˙Á ˜Ë ¯Î ˚

or L

b

q

q
 cosh mx (m) + cosh m (L – x) (m) (–1) = 0

or cosh mx = 
b

L

q

q
 cosh m (L – x)

or cosh mx = A cosh m (L – x)    where A b

L

q

q
∫

As cosh
2

x x
e e

x
-+

= ,

or

( ) ( )

2 2

[ ]

mx mx mL mx mL mx

mx mx mL mx mL mx

e e e e
A

e e A e e e e

- - - +

- - -

È ˘+ +
= Í ˙Î ˚

+ = +

or [1 ] [ 1]mx mL mx mL
e Ae e Ae

- -- = -

or 2 1 ( 1)

1 ( )

mL mL mL
mx

mL mL

Ae e Ae
e

Ae e A
-

Ê ˆ- -
= =Á ˜Ë - ¯ -

Taking log on both sides, we have

2 ln ( 1)
mL

mL

mL

e
mx Ae

e A

È ˘
= ¥ -Í ˙

-Î ˚
Hence, minimum temperature will occur at

min

1 ( 1)
ln

2 m

mL mL

mL

e Ae
x

e A

È ˘-
= Í ˙

-Î ˚
   where A = qb/qL (4.21)

Substituting for xmin in the equation of q(x), we can obtain the minimum temperature.

Case IV Special Case: When both Ends of the Fin are at the Same Temperature Obviously, 

the minimum temperature will occur at the centre, i.e., at x = L/2 (due to symmetry).

Then, substituting qb = qL and x = L/2 in the expression for q(x), we get the minimum temperature.

We note that

sinh ( ) sinh
( )

sinh

b bm L x mx
x

mL

q q
q

- +
=

Therefore,

min

sinh sinh
2 2

sinh

b b

L L
m L m

mL

q q

q

È ˘Ê ˆ Ê ˆ- +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚=
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or min

2 sinh
2

sinh

b

mL

mL

q
q

Ê ˆ
Á ˜Ë ¯

= (4.22a)

Since

min

sinh 2 sinh cosh ,
2 2

2 sinh( /2)

2 sinh( /2)cosh( /2)

b

mL mL
mL

mL

mL mL

q
q

Ê ˆ Ê ˆ= Á ˜ Á ˜Ë ¯ Ë ¯

=

or min /cosh( /2)b mLq q= (4.22b)

where qmin = Tmin – T

Table 4.1

Case Tip condition

(x = L)

Temperature distribution, q/qb
Fin heat transfer rate,

Qfin

I. Infinite (Very long) fin:

(L Æ )

q(L) = 0

e–mx M

II. Adiabatic fin tip:

0
x L

d

dx

q

=
=

cosh ( )

cosh

m L x

mL

-
M tanh mL

III. Convection from top:

( )
x L

d
h L k

dx

q
q

=
= -

cosh ( ) ( / )sinh ( )

cosh ( / )sinh

m L x h mk m L x

mL h mk mL

- + -
+

sinh ( / )cosh

cosh ( / )sinh

mL h mk mL
M

mL h mk mL

+Ï ¸
Ì ˝+Ó ˛

or

tanh ( / )

(1 ( / ) tanh

mL h mk
M

h mk mL

+Ï ¸
Ì ˝+Ó ˛

IV. Specified tip 

temperature:

q(L) = qL

( / )sinh sinh ( )

sinh

L b mx m L x

mL

q q + -

Location of minimum temperature, Tmin:

min
2

mL
mx

mL

e A
e

A e
-
-

=
-

 where L

b

A
q

q
∫

If min2mx
e  is negative, Tmin does not 

exist.

[cosh / ]
sinh

L b

M
mL

mL
q q-

Special case: Same fin-

end temperatures qL = qb

sinh sinh ( )

sinh

mx m L x

mL

+ -

Tmin at x = L/2, i.e., midpoint.

min

2 sinh( /2)

sinh cosh( /2)

b bmL

mL mL

q q
q = =

[cosh 1]

sinh

M mL

mL

-
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2

(0)

c

b b c b c b

hP
T T m

kA

T T M mkA hPkA

q

q q q q

∫ - ∫

∫ = - ∫ =

4.6 ❏ CONDITION FOR VERY LONG FIN

Consider the ratio of the heat-transfer rate for a fin with an adiabatic tip finite( )Q  to the heat-transfer rate 

for an infinitely long fin. ( )Q  that is, finite / tanhQ Q mL= . Figure 4.13 shows the comparative magnitude 

of the heat-transfer rates as the value of mL is increased. When the ratio approaches 1 the fin can be 

considered infinitely long. Notice that after a value of mL ª 2.65, very little increase in heat transfer is 

obtained by increasing the length of the fin. Hence, the additional (minor) increase in heat transfer can 

hardly be justified for the extra cost of the longer fin.

Comparison of heat transfer from a finite fin versus an infinite fin

Let us define the following three dimensionless parameters:

Dimensionless axial position, 
x

L
x =

Dimensionless temperature, 
cosh (1 )

coshb b

T T mL

T T mL

q x

q

- -
= =

-

Dimensionless heat-transfer rate, 
c b

Q

mkA q
 = tanh mL

The variation of dimensionless temperature with dimensionless axial position and mL as a parameter 

is shown in Fig. 4.14 for a straight, one-dimensional fin with adiabatic tip.

Also shown in Fig. 4.15 is the dimensionless tip temperature and dimensionless heat transfer varying 

with mL. The dimensionless temperature drops to about 0.014 when mL reaches a value of 5. We also 

need to understand that no noticeable improvement in heat flow will result by increasing mL beyond 3. 

Additional length (m excess of L = 3/m) would merely increase the cost without being much effective 

(Fig. 4.13).
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Heat-flow rate and the tip temperature in a straight one-dimensional fin with the insulated tip

The temperature distribution in a straight one-dimensional fin with the insulated tip.

4.7 ❏

Fin Efficiency The area equipped with fins is called the secondary area, while the bare or unfinned 

area is known as the primary area. While the heat is being convectively transferred from the fin to the 

surroundings fluid, the temperature of the fin at its base is not constant throughout its length (or height). 

In fact, the temperature continuously decreases along the length of the fin because of conduction heat 
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transfer. The tip of the fin is ultimately at a temperature lower than that at its root or base. The average 

surface temperature is thus decreased.

It is noteworthy that by artificially providing additional effective heat flow area in the form of fins, 

the effective convective thermal resistance (1/hAs) is significantly reduced, thereby increasing the rate of 

heat exchange between the surface and the fluid. However, to offset this advantage, there is an increase

in the conductive thermal resistance due to the additional metal of the fin which tends to lower the heat 

transmission rate. The convective heat-transfer rate is proportional to the temperature difference (Ts – T ).

As Ts decreases along the fin length from the root to the tip, the net rate of heat removal is adversely 

affected.

An ideal fin would be one having infinite thermal conductivity so that there is no temperature gradient. 

(Recall that heat flux is proportional to the product of thermal conductivity and temperature gradient.) In 

that event, the fin will be at a uniform temperature (the base temperature) right from the root to the tip, 

with no conductive resistance whatsoever. If the surface is properly proportioned, one can minimize the 

conductive resistance to extract the maximum benefit from the fins. It should also be borne in mind that 

if h is already large (low convective resistance) then fins may not be a sensible or attractive proposition.

Hence, the fin efficiency is defined as the amount of heat actually transferred by a prescribed fin to the 

ideal amount of heat that would be transferred if the entire fin were at its base temperature (Fig. 4.16).

(a) Ideal fin (of infinite thermal conductivity and zero heat conduction resistance) 

(b) Actual fin with insulated tip

fin
fin

max

Q

Q
h = (4.23)

where

finQ  = actual amount of heat transferred from the fin, and

maxQ  = maximum (or ideal) amount of heat that would be transferred form the fin, if the 

entire fin surface were at the temperature of the base (primary) surface.
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It is good to remember that the fin efficiency will be low for long fins, thin fins, or fins of low 

thermal conductivity material. Also, the efficiency decreases as the heat-transfer coefficient increases.

For natural convection such as in air-cooled heat-transfer equipment, fins can be made fairly large and 

of low conductivity materials, such as steel instead of copper or aluminium. On the other hand, for 

applications where large heat-transfer coefficients are involved, such as in condensation or boiling, fins 

are not advisable.

(a) For an Infinitely Long Fin For an infinitely long fin, actual heat transferred is given by

fin ( )c b c bQ hPkA hPkA T Tq= = -

To calculate maxQ , if the entire fin surface were at a temperature of Tb, the convective heat transfer 

from the surface would be

max fin( )( ) ( )( )b bQ h A T T h PL T T= - = - (4.24)

where P is the perimeter of the fin and (PL) is the surface area As or Afin of the fin.

Then fin
fin

max

( ) 1 1

( )

c b

b

c

hPkA T TQ

Q hPL T T mLhP
L

kA

h
-

= = = =
-

where
c

hP
m

kA
=

Thus, fin

1

mL
h = (4.25)

(b) For a Fin with Insulated End For the case of a fin with an insulated end, the actual heat 

transferred finQ  is

fin ( ) tanhc bQ hPkA T T mL= -

and, the fin efficiency is expressed as

fin

( ) tanh tanh

( )

c b

b

c

hPkA T T mL mL

hPL T T hP
L

kA

h
-

= =
-

or fin

tanh mL

mL
h = (4.26)

Figure 4.17 shows a plot of fin efficiency with mL for a straight fin with an adiabatic tip. With 

increasing L, the fin efficiency decreases continuously as shown, so that the most efficient fin is the fin 

of zero length.

We note that fin

tanh mL

mL
h =

At L = 0, fin

tanh 0 0

0 0
h = = , i.e., indeterminate

hfin can be evaluated at L = 0 by using L’ Hospital’s rule.



Heat Transfer from Extended Surfaces 251

Fin efficiency versus mL for a straight fin of uniform thickness with negligible heat loss form the fin tip

With L Æ 0, mL Æ 0

\
2

2
fin

0 0 0

(tanh )
sech ( )( )

lim lim lim [1 tanh ]
1

( )
( )

mL mL mL

d
mL

mLd mL
mL

d
mL

d mL

h
Æ Æ Æ

= = = +

= 1 + tanh2 0 = 1.

Thus, fin 1h = for a fin with insulated tip and of zero length

(c) For a Fin with an Active Tip If there is heat loss from the fin end, fin

tanh ( / )

1 ( / ) tanh
c b

mL h mk
Q hPkA

h mk mL
q

+
=

+

and the fin efficiency is given by fin
fin

max

1 tanh ( / )

1 ( / ) tanh

Q mL h mk

Q mL h mk mL
h

+Ê ˆ= = Á ˜Ë ¯ +
(4.27)

Using the corrected length approximation,

fin tanhc b cQ mkA mLq=

and the corresponding fin efficiency as

fin

tanh c

c

mL

mL
h = (4.28)
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We must recognize that fin efficiency is useful only for comparison of performance of different fins. 

There is, however, no simple single criterion for comparison. Generally, the comparison is based on the 

volume of material involved, since volume is related to cost.

● Fin Effectiveness (efin)

Consider a fin of uniform cross-sectional area Ac, projecting from a parent or base surface. The aim of the 

fin is to increase the heat transfer. In the absence of fin, heat would be transferred from the base area Ab,

by convection. By attaching the fin, the area for convection increases, i.e., convective resistance (= 1/hPL or 

1/hPL, decreases. However, conduction resistance due to the solid fin (= L/kAc) is now introduced and the 

total heat transfer would depend upon the combined thermal resistance. As one goes on increasing the length 

of a fin the convection resistance will go on decreasing but conduction resistance will go on increasing. A 

fin may not, therefore, necessarily result in effectively increasing the heat transfer. Therefore, how effective 

the fin is in enhancing the heat transfer is characterized by a parameter called fin effectiveness (Fig. 4.18).

Fins increase heat transfer by increasing the surface area

The fin effectiveness, efin, is defined as the ratio of the heat transfer from a fin with base area Ab to 

the heat-transfer rate from the same base area that would exist without the fin:

fin finfin fin
fin fin fin

without fin

( )
or

( )

b s

b b b c

hA T T AQ A

Q hA T T A A

h
e h h

-
= = =

-
(4.29)
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where Afin = As = PL and Ab = Ac

If efin = 1, the addition of the fin is not advantageous and, the added material is wasted. If efin < 1, 

the fin insulates the surface. Hence, the value of efin should be as large as possible, taking into account 

practical considerations, but certainly not less than about 2. A fin is often specified as the result of 

optimization, taking into account cost, weight, manufacturability, pressure drop, and so on.

While it is possible to have very high values of fin effectiveness, there are practical limitations. Consider 

a very long fin, whose efficiency is given by hfin = 1/mL. If we substitute this into the expression for 

fin effectiveness and simplify, then

2

fin 2

1 c

c cc

kAPL P kP

mL A hP hAA
e

Ê ˆ Ê ˆ= = =Á ˜ Á ˜Ë ¯ Ë ¯

or
fin

1/2

c

kP

hA
e

Ê ˆ= Á ˜Ë ¯
(4.30)

To obtain a large value of fin effectiveness, one would like to use the fin when the convective heat-

transfer coefficient, h, is low. For example, consider the car radiator. Fins are used on the air side (low

heat-transfer coefficient) while water (high heat-transfer coefficient) flows inside the unfinned tubes.

The fin thermal conductivity, k, should be high (aluminum and copper are, therefore, often used, 

though steel may be used in some applications. Aluminium alloys are also the preferred choice due 

to their lower cost and weight.

The ratio of fin perimeter to cross-sectional area (P/Ac) should be large. This suggests that slender 

or thin fins should be used. Very thin fins with very close spacing are used in the radiator. This 

combination is typical because it ensures a large surface area without obstructing the flow to such 

an extent that the heat transfer coefficient is reduced to an unacceptable level.

Due to the gradual temperature drop along the fin, the heat transfer progressively 

decreases till it is vanishingly small near the tip of a long fin.
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We have already defined a dimensionless parameter, Biot number ( ) chL
Bi

k
∫  where Lc, the charac-

teristic length equals (Ac/P). It follows that 

1/2
1

fin ( )
c

k
Bi

hL
e -Ê ˆ= =Á ˜Ë ¯

. The effectiveness is, therefore, 

inversely proportional to the square root of the Biot number. An effective fin is one with a small 

Biot number.

One of the considerations that should weigh with us in the design of fins is the determination of the 

proper length of the fin once the fin material and the fin cross section are fixed. We note that the longer 

the fin, the larger the surface area and, thus, the higher the rate of heat transfer. Therefore, for maximum 

heat transfer, the fin should be infinitely long. However, the temperature drops along the fin exponentially 

and reaches the ambient temperature at some length (Fig. 4.19). The part of the fin beyond this length 

does not contribute to heat transfer since it is at the temperature of the surroundings. Designing such an 

extra long fin is, thus, ruled out since it results in waste of material, excessive weight, and increased size

with increased cost. (Such a long fin can, as a matter of fact, adversely affect the performance since it 

will suppress fluid motion and thus reduce the convection heat transfer coefficient).

4.8 ❏ GENERALIZED EQUATION FOR FINS

In case the profile of a fin is non-uniform, and both the area and the perimeter at any section are functions 

of x then a generalized equation is useful in solving such problems. Consider an extended surface of 

unspecified configuration protruding from some primary surface as shown in Fig. 4.20. Let the area of 

cross section Ac and the perimeter P be Ac = Ac (x) and P = P(x). An appropriate general fin equation 

can be derived by making the following simplifying assumptions:

Steady-state conditions prevail.

One-dimensional heat conduction in the longitudinal direction, i.e., T = T(x), since the fin is thin.

The fin is homogeneous and radiation heat transfer, if any, is accounted for by radiation heat-transfer 

coefficient.

The heat-transfer coefficient is constant and uniform along the length of the fin.

The surrounding fluid temperature is constant.

There is no internal heat generation in the extended surface.

Constant thermal conductivity of the fin material.

A generalized extended surface (fin): Energy balance
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Performing an energy balance on an infinitesimal element of thickness dx at a distance x, one has

conv

Heat conducted Heat conducted Heat by convection
the element the element to the surrounding fluid

x x dx

into out loss
of

Q Q Q+= +

where
( )

x c

dT x
Q kA

dx
= -     (from Fourier’s law)

Using a Taylor’s series expansion, ( ) ( ) [ ( )]
d

f x dx f x f x dx
dx

+ = +

Hence,

conv

( ) ( )

( )[ ( ) ]

x dx c c

s

dT x d dT x
Q kA kA dx

dx dx dx

Q hdA x T x T

+
Ï ¸È ˘= - + -Ì ˝Í ˙Î ˚Ó ˛

= -

where dAs is the surface area of the element equal to Pdx.

It follows that

or

conv

( ) ( ) ( )
( ( ) )

x x dx

c c c

Q Q Q

dT x dT x d dT x
kA kA kA dx hPdx T x T

dx dx dx dx

+- =

Ï ¸È ˘- - - + - = -Ì ˝Í ˙Î ˚Ó ˛
Rearranging, one gets

( )
[ ( ) ]c

d dT x
kA hP T x T

dx dx

È ˘ = -Í ˙Î ˚

Since Ac and P are both functions of x for a fin of arbitrary cross section, the above equation on 

differentiation with respect to x becomes

2

2

( ) ( )
( ) [( ( ) )]c
c

dAd T x dT x
kA x k hP T x T

dx dxdx
+ = -

Dividing throughout by kAc and putting (T(x) – T ) ∫ q(x), the governing differential equation is

2

2

Varies withVaries with

( ) ( )
( ) 0c

c c

xx

dAd x d x hP
x

A dx dx kAdx

q q
q+ - = (4.31)

This is the most general from of equation of steady, one-dimensional heat conduction in fins of any 

profile or cross section. From this governing equation, corresponding to a specified fin configuration and 

using the appropriate boundary conditions, the temperature distribution and hence the fin heat transfer 

rate can be evaluated.

It is worth noting that for fins of uniform cross section or thickness, 0cdA

dx
=  since Ac would be 

constant. In such a situation, the differential equation will be reduced to

2

2
0

c

d hP

kAdx

q
q

Ê ˆ- =Á ˜Ë ¯
(4.32)
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4.9 ❏ ANNULAR
CROSS SECTION

Analysis of fins of varying cross-sectional area becomes more 

involved than for the simple pin fin. In that case, the second 

term of Eq. (4.31) must be retained. The solution is now not 

in the form of simple exponential or hyperbolic functions. Of 

great engineering significance is an annular fin of constant 

thickness attached circumferentially to a circular cylinder. Such 

fins find their application in liquid-to-gas heat exchangers 

and the cylinders of air-cooled engines. Consider the annular

(radial flat) fin shown in Fig. 4.21.

Although the fin thickness is uniform (t is independent 

of r), the cross-sectional area, Ac = 2prt, increases 

linearly with r. Replacing x by r in Eq. (4.31) and 

expressing the surface area as 2 2
12 ( )sA r rp= - ,

the general form of the fin equation now becomes.

2

2

1 2
( ) 0

d T dT h
T T

r dr ktdr
+ - - =

With m2 = (2h/kt) and q ∫ T – T ,

2
2

2

1
0

d d
m

r drdr

q q
q+ - =

This expression is a modified Bessel equation of zero order, and its general solution is of the form

1 0 2 0( ) ( ) ( )r C I mr C K mrq = +

where I0 and K0 are modified, zero-order Bessel functions of the first and second kinds, respectively. 

The temperature at the base of the fin is specified, q(r1) = qb, and the fin tip is assumed adiabatic, i.e., 

2
/ | 0rd drq = .

Temperature Distribution: The constants C1 and C2 may be determined by the boundary conditions 

to yield a temperature distribution of the form.

0 1 2 0 1 2

0 1 1 2 0 1 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )b

I mr K mr K mr I mr

I mr K mr K mr I mr

q

q

+
=

+
(4.33)

where 1 0 1 0( ) [ ( )] and ( ) [ ( )]
( ) ( )

d d
I mr I mr K mr K mr

d mr d mr
= = -  are modified, first order Bessel functions

of the first and second kinds, respectively. Properties of Bessel functions are tabulated in Table 4.2.

A circumferential (annular) fin of 

uniform thickness
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Table 4.2

x I0(x) I1(x) K0(x) K1(x)

0 1.0000 0

0.1 1.0025 0.0501 2.4271 9.8538

0.2 1.0100 0.1005 1.7527 4.7760

0.3 1.0226 0.1517 1.3725 3.0560

0.4 1.0404 0.2040 1.1145 2.1844

0.5 1.0635 0.2579 0.9244 1.6564

0.6 1.0920 0.3137 0.7775 1.3028

0.7 1.1263 0.3719 0.6605 1.0503

0.8 1.1665 0.4329 0.5653 0.8618

0.9 1.2130 0.4971 0.4867 0.7165

1.0 1.2661 0.5652 0.4210 0.6019

1.1 1.3262 0.6375 0.3656 0.5098

1.2 1.3937 0.7147 0.3185 0.4346

1.3 1.4693 0.7973 0.2782 0.3725

1.4 1.5534 0.8861 0.2437 0.3208

1.5 1.6467 0.9817 0.2138 0.2774

1.6 1.7500 1.0848 0.1880 0.2406

1.7 1.8640 1.1963 0.1655 0.2094

1.8 1.9896 1.3172 0.1459 0.1826

1.9 2.1277 1.4482 0.1288 0.1597

2.0 2.2796 1.5906 0.1139 0.1399

2.1 2.4463 1.7455 0.1008 0.1227

2.2 2.6291 1.9141 0.0893 0.1079

2.3 2.8296 2.0978 0.0791 0.0950

2.4 3.0493 2.2981 0.0702 0.0837

2.5 3.2898 2.5167 0.0623 0.0739

2.6 3.5533 2.7554 0.0554 0.0653

2.7 3.8417 3.0161 0.0493 0.0577

2.8 4.1573 3.3011 0.0438 0.0511

2.9 4.5027 3.6126 0.0390 0.0453

3.0 4.8808 3.9534 0.0347 0.0402

3.1 5.2945 4.3262 0.0310 0.0356

3.2 5.7472 4.7343 0.0276 0.0316

3.3 6.2426 5.1810 0.0246 0.0281

3.4 6.7848 5.6701 0.0220 0.0250

contd.
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3.5 7.3782 6.2058 0.0196 0.0222

3.6 8.0277 6.7927 0.0175 0.0198

3.7 8.7386 7.4357 0.0156 0.0176

3.8 9.5169 8.1404 0.0140 0.0157

3.9 10.3690 8.9128 0.0125 0.0140

4.0 11.3019 9.7595 0.0112 0.0125

4.1 12.3236 10.6877 0.0100 0.0111

4.2 13.4425 11.7056 0.0089 0.0099

4.3 14.6680 12.8219 0.0080 0.0089

4.4 16.0104 14.0462 0.0071 0.0079

4.5 17.4812 15.3892 0.0064 0.0071

4.6 19.0926 16.8626 0.0057 0.0063

4.7 20.8585 18.4791 0.0051 0.0057

4.8 22.7937 20.2528 0.0046 0.0051

4.9 24.9148 22.1993 0.0041 0.0045

5.0 27.2399 24.3356 0.0037 0.0040

5.1 29.7889 26.6804 0.0033 0.0036

5.2 32.5836 29.2543 0.0030 0.0032

5.3 35.6481 32.0799 0.0027 0.0029

5.4 39.0088 35.1827 0.0024 0.0026

5.5 42.6946 38.5882 0.0021 0.0023

5.6 46.7376 42.3283 0.0019 0.0021

5.7 51.1725 46.4355 0.0017 0.0019

5.8 56.0381 50.9462 0.0015 0.0017

5.9 61.3766 55.9003 0.0014 0.0015

6.0 67.2344 61.3419 0.0012 0.0013

6.1 73.6628 67.3194 0.0011 0.0012

6.2 80.7179 73.8859 0.0010 0.0011

6.3 88.4616 81.1000 0.0009 0.0010

6.4 96.9616 89.0261 0.0008 0.0009

6.5 106.2929 97.7350 0.0007 0.0008

contd.

contd.
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6.6 116.5373 107.3047 0.0007 0.0007

6.7 127.7853 117.8208 0.0006 0.0006

6.8 140.1362 129.3776 0.0005 0.0006

6.9 153.6990 142.0790 0.0005 0.0005

7.0 168.5939 156.0391 0.0004 0.0005

7.1 184.9529 171.3834 0.0004 0.0004

7.2 202.9213 188.2503 0.0003 0.0004

7.3 222.6588 206.7917 0.0003 0.0003

7.4 244.3410 227.1750 0.0003 0.0003

7.5 268.1613 249.5844 0.0002 0.0003

7.6 294.3322 274.2225 0.0002 0.0002

7.7 323.0875 301.3124 0.0002 0.0002

7.8 354.6845 331.0995 0.0002 0.0002

7.9 389.4063 363.8539 0.0002 0.0002

8.0 427.5641 399.8731 0.0001 0.0002

8.1 469.5006 439.4843 0.0001 0.0001

8.2 515.5927 483.0477 0.0001 0.0001

8.3 566.2551 530.9598 0.0001 0.0001

8.4 621.9441 583.6570 0.0001 0.0001

8.5 683.1619 641.6199 0.0001 0.0001

8.6 750.4612 705.3773 0.0001 0.0001

8.7 824.4499 775.5115 0.0001 0.0001

8.8 905.7973 852.6635 0.0001 0.0001

8.9 995.2399 937.5389 0.0001 0.0001

9.0 1093.6 1030.9 0.00005 0.00005

9.2 1320.7 1246.7  0.00004 0.00004

9.4 1595.3 1507.9 0.00003  0.00035

9.6 1927.5 1824.1 0.00003 0.00003

9.8 2329.4 2207.1 0.00002 0.00002

10.0 2815.2 2670.7 0.00002 0.00002

Heat Loss and Fin Efficiency The fin heat-transfer rate can be expressed as

1 1

fin base 1(2 )c
r r r r

dT d
Q Q kA k r t

dr dr

q
p

= =
= = - = -

contd.
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It follows that

1 1 1 2 1 1 1 2
fin 1

0 1 1 2 0 1 1 2

( ) ( ) ( ) ( )
2

( ) ( ) ( ) ( )
b

K mr I mr I mr K mr
Q kr t m

K mr I mr I mr K mr
p q

-
=

+
(4.34)

The fin efficiency is given by

2 2fin
fin max 2 1

max

fin 1 1 1 1 2 1 1 1 2
fin 2 2 2 2

0 1 1 2 0 1 1 22 1 2 1

where [2 ( )]( )

2 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )[2 ( )] ( )

b

b

Q
Q h r r T T

Q

Q r K mr I mr I mr K mr

K mr I mr I mr K mrh r r m r r

h p

h
p q

= = - -

-
= =

+- -
(4.35)

This result may be applied to an active (convective) tip, if the tip radius r2 is replaced by a corrected

radius of the form 2 2 ( /2)cr r t= + .

The fin resistance can then be calculated as

fin
fin fin

1
R

hA h
= (4.36)

4.10 ❏  GRAPHICAL PROCEDURE TO FIND FIN EFFICIENCY

If the width of a straight rectangular fin is much larger than its thickness, w >> t, the perimeter may be 

approximated as P = 2w

1/2 1/2
2

c c c
c

hP h
mL L L

kA kt

Ê ˆ Ê ˆ= = Á ˜Á ˜ Ë ¯Ë ¯

Multiplying the numerator and denominator by 1/2
cL , we have the correct fin profile area is defined as 

Ap = Lct.

It follows that 

1/2
3/22

c c
p

h
mL L

kA

Ê ˆ= Á ˜Ë ¯
(4.37)

Hence, the efficiency of a rectangular fin with tip convection may be represented as a function of 
3/2 1/2( / )c pL h kA  which is 2 cmL◊ .

In plotting various fin efficiencies, the profile area, Ap is generally used.

The stepwise procedure for calculating the heat flow rates from real fins is summarized below:

Step 1: Calculate the parameters required to obtain the fin efficiency

For a straight rectangular fin:

Lc = L + (t/2) Ap = Lct

For a straight triangular fin:

Lc = L Ap = Lc(t/2)

For a circumferential fin of rectangular cross section with an inner radius, r1, and the outer radius, r2:

L = r2 – r1 Lc = L + (t/2)

r2c = Lc + r1 Ap = (r2c – r1)t = Lct
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Step 2: Calculate the parameter x defined as

1/2
3/2
c

p

h
L

kA
x

Ê ˆ= Á ˜Ë ¯

Step 3: Using the appropriate chart, determine hfin.

Step 4: Calculate the maximum heat-transfer rate for the fin using its corrected fin length and assuming 

its entire surface to be at the base temperature.

(a) For a straight rectangular fin:

max ( )c bQ hPL T T= -

(b) For a straight triangular fin:

max ( )c bQ hPL T T= -

(c) For circumferential fins of rectangular cross section:

2 2
max 2 1[2 ( )]( )c bQ h r r T Tp= - -

  where P is the perimeter of the fin 

Step 5: Find the actual heat-transfer rate by multiplying maxQ  by hfin, i.e., =fin fin maxQ Qh ◊

Note that as r2c/r1 Æ 1.0, the efficiency of circumferential fin approaches that of the straight fin of 

rectangular profile.

Figure 4.23 shows fin efficiency of straight fins of rectangular, triangular and parabolic profile 

plotted against mL and x respectively. (Figure 4.22 is the graphical representation of fin efficiency of 

circumferential fin.)

Efficiency of straight fins (rectangular, triangular and parabolic profiles)
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Efficiency of circumferential (annular) fins of rectangular profile

Table 4.3 summarizes expressions for the efficiency and surface area of some common fin geometries. 

Although results for the fins of uniform thickness or diameter were obtained by assuming an adiabatic

tip, the effects of convection may be treated by using a corrected length or radius. The triangular and 

parabolic fins are of non-uniform thickness, which reduces to zero at the fin tip.

Table 4.3

[(Ac = area of cross section, Afin = total fin surface area, Ap = profile area, Lc = corrected length, 

P = perimeter of fin section, h = heat-transfer coefficient, fin parameter, m = (hP/kAc)
1/2]

Description Parameters Fin efficiency

1. Straight rectangular fin Afin = 2wLc

Lc = L + (t/2)

2h
m

kt
=

Ap = Lct

fin

tanh c

c

mL

mL
h =

contd.
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2. Straight triangular fin Afin = 2w[L2 + (t/2)2]1/2

2h
m

kt
=

Ap = Lt /2

Lc = L

1
fin

0

(2 )1

(2 )

I mL

mL I mL
h =

3. Pin fin of rectangular profile Afin = pDLc

Lc = L + (D/4)

4h
m

kD
=

fin

tanh c

c

mL

mL
h =

4. Circular fin of rectangular profile 

(annular or circumferential fin)

2 2
fin 2 12 ( )cA r rp= -

r2c = r2 + (t/2) = r1 + Lc

2h
m

kt
=

Lc = L + (t/2)

Ap = (r2c – r1)t = Lc t

1 1 1 2 1 1 1 2
fin 2

0 1 1 2 0 1 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

c c

c c

K mr I mr I mr K mr
C

I mr K mr K mr I mr
h

-È ˘= Í ˙+Î ˚

( )1
2 2 2

2 1

2 /

( )c

r m
C

r r
=

-

5. Pin fin of triangular profile
2 2 1/2

fin [ ( /2) ]
2

D
A L D

p
= +

4h
m

kD
=

2
fin

1

(2 )2

(2 )

I mL

mL I mL
h =

4.11 ❏ DESIGN ASPECTS OF FINS

The main considerations in the optimum design of fins are

Heat-dissipation rate

Mass, particularly in the case of aircraft and automobiles

contd.
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Geometrical configuration 

Manufacturing difficulties 

Pressure drop (resistance to fluid flow)

Manufacturing cost

We have so far discussed only the thermal performance of fins. For optimum design, the fins must 

be light in mass, offer minimum resistance to fluid flow, should be easy to manufacture and should have 

least fabrication cost.

The fin may be integral to the surface (e.g., the cooling fins on an air-cooled two-wheeler are cast 

as part of the cylinder head) or the fins may be manufactured separately. The fins can then be brazed or 

press-fitted onto the tube. Both heat transfer and fluid flow considerations are important in the selection 

of fins. The choice of the number of fins, spacing, length, thickness, shape, and material are equally 

significant. Manufacturing, maintenance, and operating costs are also key factors in fin design.

A straight triangular fin is quite appealing because, for equivalent heat transfer, it requires much less 

volume (fin material) compared to a rectangular profile. It is worth noting that heat dissipation per unit 

volume, fin
–( /V)Q , is the largest for a parabolic profile. But, since fin

–( /V)Q , for the parabolic profile 

is only marginally more than that for a triangular profile, its use can hardly be justified in view of its 

larger manufacturing costs. The circumferential (annular) fin of rectangular profile is commonly used to 

increase the heat transfer to or from the circular tubes.

When selecting fins for a given application, the available space, weight, and cost must all be considered. 

In addition, the thermal properties of the fluid flowing over the fins must be considered along with the 

pump work necessary to pump the fluid across the fins if they are used in a forced convection system.

If fins are machined as an integral part of the prime surface from which they extend, the two 

materials (wall and fin) are assumed to be in perfect contact and there is no contact resistance at their 

base. However, in practice, usually fins are manufactured separately and are attached to the wall by a 

metallurgical or adhesive joint. The other option is a press fit, for which the fins are forced into slots 

machined on the wall material. This involves a thermal contact resistance Rt,c, which may reduce the 

overall thermal performance.

Design of the dimensions of a fin of given mass or profile area to get the maximum heat transfer 

rate is described below.

Consider a straight rectangular fin of length L, uniform thickness t, and width w. Then the mass of 

a fin is

m = r Ap w

where r is the density of the fin material, and Ap is the profile area, i.e., the area taken in a plane that is 

parallel to the fin length, and normal to the width, w. For a fixed amount of material, Ap = Lt is constant. 

Our objective is to determine the condition for optimum length and thickness of a fin for maximum heat 

dissipation.

Let the face width of the fin be w, the length L, and the thickness, t. In most practical applications, 

the width is large as compared to the thickness, so that the perimeter P can be expressed as

2( ) 2P w t w= + ª

The cross-sectional area of the fin is given by

Ac = wt

and
2 2

c

hP h w h
m

kA kwt kt

¥
= ª ª
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The expression for the heat-flow rate in a fin with an adiabatic tip and of specified profile area is 

given by

fin tanh 2 tanh( 2 / )

2 tanh 2 /

c b b

b

Q hPkA mL whkwt h kt L

Lt
w hkt h kt

t

q q

q

= =

Ê ˆ= ◊ ◊Á ˜Ë ¯

or fin
3

2
2 tanhb p

Q h
hkt A

w kt
q

Ê ˆ
= Á ˜Ë ¯

where Ap = Lt

Rate of heat transfer per unit width,

3
fin / 2 tanh( 2 / )b PQ w hkt A h ktq=

For maximum heat-dissipation rate, we differentiate the heat flow rate, finQ  with respect to thickness 

t and equate the resulting derivative to zero. Then

3/2 1/2 2 3/2 3/2fin 1 2
2 tanh sech [ 2 / ] [ 2 / ] 0

2
b p p p

dQ h d
kh A t t A h k t A h k t

dt k dtt
q - - -

È ˘Ê ˆ
= + =Í ˙Á ˜Ë ¯Î ˚

Therefore,

or

3/2 1/2 2 3/2 5/2

3/2 3/2 2 3/2

1 2 2 2
tanh sech ( 3/2) 0

2

1 2 3 1 2 2
tanh sech 0

22

p p p

p p p

h h h
A t t A t A t

k k kt

h h h
A t A t A t

k k kt t

- - -

- - -

È ˘ È ˘ È ˘
+ - =Í ˙ Í ˙ Í ˙

Î ˚ Î ˚ Î ˚
È ˘ È ˘

- =Í ˙ Í ˙
Î ˚ Î ˚

or 3/2 3/2 2 3/22 2 2
tanh 3 sechp p p

h h h
A t A t A t

k k k

- - -È ˘ È ˘
=Í ˙ Í ˙

Î ˚ Î ˚

where 3/2 22
tanh 3 /coshp

h
A t

k
l l l l-∫ fi =

This transcendental equation can be solved graphically as shown in Fig. 4.24 and its solution is found 

to be

3/2
opt

2 2
1.4192

pAh h
A t

k kt t
l -= = =

With Ap = Lt,  
2

1.4192
h

L
kt

=

or
2 ( /2) 2 ( /2)

1.4192 or 1.4192
( /2)

h t L h t
L

kt t t k
= =

Since

( /2)h t
Bi

k
∫

(where Bi is the Biot number with its characteristic length equal to half thickness).
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Solution of transcendental equation

2
1.4192

L
Bi

t
=

1.4192 0.7096

2

L

t Bi Bi
= = (4.38)

where (L/t) is known as the optimum ratio of fin height to thickness of the fin

It follows that the maximum heat-dissipation rate per unit width is

fin 2 tanh 2 tanh 1.4192 0.8894 2

0.8894 2

b b b

b

Q
hkt hkt hkt

w

hkt

q l q q

q

= = ◊ =

=

The optimum fin thickness in terms of the fin heat-loss rate is given by

22
fin fin

2

( / ) 0.6321

(0.8894) 2

b

b

Q w Q
t

hk whk

q

q

Ê ˆ
= = Á ˜Ë ¯

Optimum length of fin can then be expressed as

fin1.4192 0.6321
1.4192

2 2 b

Qk k
L t

h wh h k q

Ê ˆ
= = Á ˜Ë ¯

\ fin /0.7979

b

Q w
L

h q

Ê ˆ
= Á ˜Ë ¯

(4.39)
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4.12 ❏ CONDITIONS WHEN FINS DO NOT HELP

It is worth noting that the installation of fins on a heat-transfer surface will not necessarily increase the 

heat-transfer rate. Situations may exist when providing fins may in fact decrease the rate of heat transfer 

for specified values of h, k, Ac, m, and qb. Heat transfer rate from the base of the fin is expressed as

fin

( / ) tanh

1 ( / ) tanh
c b

h mk mL
Q mkA

h mk mL
q

+È ˘= Í ˙+Î ˚
Differentiating this equation with respect to L and equating the resulting derivative to zero, one gets

tanh 1 tanh 0
d h h

mL mL
mk mkdL

È ˘Ê ˆ Ê ˆ+ + =Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

or 2

2

{1 ( / ) tanh }(0 sech )

( / tanh ) 0 sech 0

h mk mL mLm

h
h mk mL m mL

mk

+ +

Ï ¸Ê ˆ- + + =Ì ˝Á ˜Ë ¯Ó ˛

or
2 2

/
1 tanh tanh 0

cosh cosh

h m h h k
mL mL

mk mkmL mL

Ê ˆ Ê ˆ+ - + =Á ˜ Á ˜Ë ¯ Ë ¯

or
2

2 2 2 2 2 2

tanh tanh
0

cosh cosh cosh cosh

m h mL h m h mL

k kmL mL m k mL mL
+ - - =

or
2 2

2 2 2

1
0 or 0

cosh

h h
m m

mL mk k m

Ê ˆ
- = - =Á ˜Ë ¯

i.e,

2 2
2

2
or or c

c

h hP h
m hA kP

k kA k

Ê ˆ= = =Á ˜Ë ¯

Defining (Ac/P) as a characteristic linear dimension Lc, one can write

( / )
1ch A P

k
= or chL

Bi
k

=   where Bi is the Biot number.

Biot number can also be defined as

/ Internal resistance (conductive) of the fin material

1/ External resistance (convective) of the fluid at the fin surface

c chL L k
Bi

k h
= = =

For a rectangular fin of length L, width w, and thickness, t, the characteristic dimension,

2( ) 2

c
c

A wt t
L

P w L
∫ = ª

+
, i.e., half- thickness.

Introducing Biot number, Bi, in the equation for heat transfer, one gets,

fin [1 tanh /( / )] /[1 ( / ) tanh ]c b

h
Q mkA mL h mk h mk mL

mk
q= ¥ + +

where
1c c c

c

hL A hAh m hP h
Bi

k k P m kP kA m mk
= = = ¥ ¥ =
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fin

tanh
1

(1 tanh )
c b

mL

Bi
Q hA

Bi mL
q

Ê ˆ+Á ˜Ë ¯
=

+
(4.40)

From Eq. (4.40), three cases are classified for heat transfer from extended surfaces. These are:

When Bi = 1, i.e., 1
h

mk
=

In this case, the internal conduction resistance is equal to the external convection resistance and 

fin c bQ hA q= , which is the heat loss from the primary surface with no extended surfaces i.e. nofin .Q

An extended surface in this case will not increase the heat transfer, no matter what the fin length 

L is

When Bi > 1, i.e., 1
h

mk
>

In this case, the internal resistance is greater is than the external resistance and fin c bQ hA q< . Add-

ing fins will, therefore, reduce the heat transfer rate. This will happen when the value of h is very

high, for example, in condensers and evaporators that involve change of phase.

When Bi < 1, i.e., 1
h

mk
<

In this case, the external resistance is greater than the internal resistance, and 
fin c bQ hA q> . This 

means that attaching fins will certainly increase the heat transfer rate. For fins to be effective, fins 

of high thermal conductivity, for instance, aluminium or copper should be provided.  For gases compared to liquids, the value of h is less. Hence, fins are very effective with gases, less 

effective with liquids and are disadvantageous with two-phase fluids. All the three cases discussed 

above are shown in Fig 4.25.

Heat transfer from a fin against length for different values of h/mk.

4.13 ❏

The heat leaving the surface equipped with fins is transferred to the ambient fluid in two ways. One is the 

heat that goes from the unfinned or bare surface, directly to the fluid. The second is the heat transferred 

to the fins and then from the fins to the surrounding fluid. The two processes occur in parallel. If one 

considers the heat flow to be one-dimensional—an approximation which is usually acceptable for most 
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of the situations-the thermal circuit is as shown in Fig. 4.26. The 

resistance of the bare (unfinned) surface is

unfin
unfin

1
R

hA
=

We must recognize that the thermal resistance is the ratio of the 

temperature difference across the resistance and the heat-transfer 

rate through it.

The expression for the resistance offered by the fins is

fin

1 1

tanhtanh cc

R
NmkA mLN hPkA mL

= = (4.41)

where N is the total number of fins attached to the surface.

If the tip of the fin has a convective boundary condition and losing heat, the fin length should be 

increased by adding to it (Ac/P), thus Lc = L + Ac/P total effective. The total effective fin resistance 

of a fin array can be calculated from

tot
tot tot

1b

o

R
Q hA

q

h
= = (4.42)

Figure 4.26 illustrates the thermal circuits corresponding to the parallel paths and their representation 

in terms of an effective resistance.

4.14 ❏ FIN ARRAY

Very rarely a single fin is used. Generally, a parent (primary or base) surface is covered by an array of 

fins. Figure 4.27 shows fin arrays for straight fins and circular fins. In such a case, we can use either of 

the following concepts: (a) overall surface efficiency, or (b) effectiveness of a fin array.

Fin arrays for (a) straight rectangular fins, and (b) annular fins

Thermal circuit for a number of 

fins attached to a surface
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(a) Overall Surface Efficiency (or Area-weighted Fin Efficiency) The fin efficiency discussed 

earlier is concerned with performance of a single fin. However, in many applications an array of fins 

attached to the primary surface is commonly employed. In such cases, it is useful to define an overall

surface efficiency or area-weighted fin efficiency which gives a measure of the performance of the total 

exposed surface of the array comprising both the finned and unfinned surfaces. Let

Afin = exposed surface area of all fins only

Atot = total exposed surface area, including the finned and unfinned surface

hfin = efficiency of each individual fin in the fin array

The overall surface efficiency ho, is defined as the ratio of the actual heat transferred by the array 

to that it would transfer if its entire surface were maintained at the base temperature (i.e., maximum 

possible heat transfer rate).

Aunfin = exposed unfinned base (prime) area in the fin array, i.e., Aunfin = Atot – Afin.

The total heat-transfer rate from the fin array may then be expressed as

tot base fins fin fin tot fin fin fin

fin
tot fin fin tot fin

tot

( )

( 1) 1 (1 )

b b b b b

b b b

Q Q Q A h A h A A h A h

A
A h A h hA

A

q h q q h q

q h q q h

= + = + = - +

È ˘= + - = - -Í ˙
Î ˚

where qb is the temperature excess of the base temperature with respect to the ambient, and h is the same 

uniform heat-transfer coefficient for heat transfer by convection from all—both finned and exposed prime 

(unfinned) surfaces. The maximum possible heat-transfer rate is

max tot bQ hA q= (4.43)

It follows that

fin
tot fin

tottot

max tot

1 (1 )b

o
b

A
hA

AQ

Q hA

q h

h
q

È ˘- -Í ˙
Î ˚= =

Hence, the overall surface efficiency,

fin
fin

tot

1 (1 )o

A

A
h h= - - (4.44)

with overall effective thermal resistance, , tot
tot

1
/t o b

o

R Q
hA

q
h

= =
◊

Sometimes, the term finning factor, fF is used to denote the ratio of the finned surface area to the 

area of the non-finned surface.

Clearly, for a plane wall (flat surface) without fins, the finning factor will be unity.

fin unfin

nofin

( )
F

A A
f

A

+
= (4.45)

4.15 ❏

The theory of finned surfaces may be extended to estimate the error in the value of the temperature 

measured by a thermometer placed in a thermometer well. A thermometer well is a small tube welded 
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radially in a large pipe or duct for the measurement of temperature of the fluid, (liquid or gas) flowing 

through it. The thermometer well is filled with some other liquid and a thermometer is inserted into it 

for temperature measurement.

The temperature recorded by the thermometer will be that of the bottom of the well. The surface of 

the thermometer well is uniformly exposed to fluid temperature and its root being fixed with the pipe 

wall will have the temperature equal to the pipe wall temperature. Since the wall temperature of the pipe 

is less than the fluid temperature being exposed to atmosphere, the heat will flow from the bottom of 

the well to the pipe wall through the well wall by conduction. Thus, the bottom of the well will have a 

temperature lower than that of the flowing fluid. The thermometer will indicate a temperature somewhere 

between the true temperature of the fluid and the pipe wall temperature, thus involving an error. This 

error may be corrected by using the principles of analysis of finned surface.

Figure 4.28 shows a thermometer pocket with various temperatures mentioned in it. As an approximation 

it is assumed that there is no heat flow between top of the well and the fluid flowing in the pipe.

Error in temperature measurement

The temperature distribution at a distance x, measured from the pipe wall, along the thermometer well 

is given by,

( ) cosh ( )

coshb b

T x T m L x

T T mL

q

q

- -
= =

-

At x = L, we have,

cosh ( )

cosh

1

cosh

L

b

L

b

T T m L L

T T mL

T T

T T mL

- -
=

-

-
=

-

The error in temperature measurement is 

(True fluid temperature, T  – Measured fluid temperature, TL).

Also the thermometric error is defined as

1

cosh

L

b

T T

T T mL

-
=

-
(4.46)
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where TL = temperature recorded by the thermometer at the bottom of the well.

We note that perimeter of well, P = p(d + 2d) ª pd

Cross-sectional area, Ac = pdd

\
1

and
c c

P d hP h
m

A d kA k

p

p d d d
= = = =

Note that the temperature measured by the thermometer is not affected by the diameter of the well.

To reduce the error in temperature measurement, a good thermometer well should be designed by

Lagging (insulating) the pipe to increase the pipe wall temperature (Tw).

Increasing the product (mL).

To achieve this

 (a) L can be increased by making the thermometer well oblique (inclined) or letting it project beyond 

the pipe or tube axis.

 (b) m (∫ h/k d) can be increased by using thinner pipe (less thickness d) or using a material of low 

thermal conductivity (k) for the pocket.

Incidentally, using the material of too low a thermal conductivity may increase the radial resistance 

to heat flow to such an extent that the temperature distribution is far from one-dimensional. Hence, for 

the sound design of a thermometer pocket or well, the measures like thinner well wall and longer well

are to be preferred compared with relatively low thermal conductivity.

Illustrative Examples

(A) Very Long Fin

 Consider two very long cylinder rods of the same diameter but of different materials. 

One end of the each rod is attached to a base surface maintained at 100°C, while the surfaces of rods 

are exposed to ambient air at 20°C. By traversing the length of each rod with a thermocouple, it was 

observed that the temperatures of the rods were equal to the positions xA = 0.15 m and xB = 0.075 m, 

where x is measured from the base surface. If the thermal conductivity of rod A is known to be kA = 72 

W/m K, determine the value of kB for the rod B.

[AMIE W 2012]

Solution

Known Two long rods of different materials, but same diameters with same base and ambient 

temperatures.

Find Thermal conductivity of the rod B.

Illustrative Examples
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Assumptions Infinite fins

Analysis Excess temperature, q(x) = T(x) – T

( ) ( )
andA BA A B B

x xm x m x

b b

T T T T
e e

T T T T

- -- -
= =

- -

 Since A A B Bm x m x
e e
- -=

 or A A B Bm x m x=

 or 
0.075

0.5
0.15

A B

B A

m x

m x
= = =

 or 
2

2

( /4)( )
0.5

( )( /4)

B

A

k Dh D

h Dk D

pp

pp
¥ =

 or 0.5 0.25B B

A A

k k

k k
= fi =

\ (0.25)(72)Bk = = 18W/mK (Ans.)

(B) Fins of Finite Length

 A composite fin is made from two materials. The inner material of 10 mm diameter 

has a thermal conductivity of 16 W/m °C while the outer material of 25 mm outside diameter has a 

thermal conductivity of 52 W/m °C. The convection coefficient is 15 W/m2°C and the fin length is 160 

mm. Determine the fin efficiency assuming adiabatic fin tip.

Solution

Known A composite fin constructed from two different materials and of different diameters is 

exposed to convective environment.

Find Fin efficiency.

Assumptions (1) Steady operating conditions exist. (2) Constant properties and uniform convection 

coefficient. (3) No internal heat generation. (4) Fin tip is insulated. (5) One-dimensional 

conduction.

Analysis The general differential equation for this case is obtained from energy balance:

in out gen stE E E E- + =
0 0
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 An energy balance on a thin element of thickness dx gives

conv 0 or ( ) ( )( ( ) ) 0x x dx x

d
Q Q Q Q dx h Pdx T x T

dx
- - = - - - =

 or 1 1 2 2 ( ) 0
d dT dT

k A k A hP x
dx dx dx

q
È ˘Ê ˆ Ê ˆ- - + - - =Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

 or 
2

1 1 2 2 2
( ) 0

d T
k A k A hP

dx
q+ + - =

 where 
2 2

2 2
( ) and

d d T
x T T

dx dx

q
q q= ∫ - ∫

\
2 2

1 1 2 2 2 2
1 1 2 2

( ) 0 or 0
d d hP

k A k A hP
k A k Adx dx

q q
q q

Ê ˆ+ - = - =Á ˜+Ë ¯

 or 2 0mq q- =

 where 2 2
2 2 2

2 2 21 1 2 2 1 1 2 2 1
1 1 2 2 1

4

( )
( )

4 4

h D hDhP
m

k A k A k D k D D
k D k D D

p

p p
= = =

+ Ê ˆ + -+ -Á ˜Ë ¯

 Substituting the appropriate numerical values,

m = 

1/2
2

2 2 2 2

4 15 W/m C 0.025 m

(16 W/m°C)(0.010 m) (52 W/m°C)(0.025 0.01 )m

È ˘¥ ∞ ¥
Í ˙

+ -Î ˚
= 7.2044 m–1 and mL = (7.2044 m–1) (0.16 m) = 1.1527

tanh mL = 0.8184

 Fin efficiency of the composite fin is

tanh 0.8186

1.1527
f

mL

mL
h = =  = 0.71 or 71%  (Ans.)

 The handle of a ladle used for pouring molten lead at 328°C is 30 cm long. 

Originally the handle was made of 1.3 cm by 2.0 cm mild steel bar stock. To reduce the grip temperature, 

it is proposed to form a hollow handle of 1.5 mm thick mild steel tubing to the same rectangular shape. 

The average heat-transfer coefficient over the handle surface is 17 W/m2 °C, when the ambient air 

temperature is 28°C. The thermal conductivity of mild steel is 43 W/m °C. Determine the reduction in 

the temperature of the grip, stating the assumptions made.

Solution

Known A handle for pouring molten lead is made of mild steel with rectangular cross section. It 

is to be made hollow to reduce the temperature at the grip.

Find Reduction in the grip temperature.

Assumptions (1) One-dimensional steady-state conduction. (2) The tip is insulated. (3) Constant properties 

and uniform heat-transfer coefficient. (4) Heat transfer from the inner surface of the hollow 

shape is neglected.
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Analysis Rectangular cross section (solid shape):

Cross-sectional area, Ac = 2 cm ¥ 1.3 cm = 2.6 cm2

Perimeter, P = 2 (2 + 1.3) cm = 6.6 cm

  

2
1

2

(17 W/m °C)(6.6 cm) 100 cm
10.02 m

1 m(43 W/m°C)(2.6 cm )c

hP
m

kA

-= = =

and mL = (10.02 m–1)(0.30 m) = 3.0

cosh mL = 10.12

Hollow shape:

P* = P = 6.6 cm (same as before)

* 2 2[(2 1.3) (1.7 1)]cm 0.90 cmcA = ¥ - ¥ =

\
*

* 1

*

17 6.6 100
17.03 m

43 0.90
c

hP
m

kA

-¥ ¥
= = =

¥

and m*L = (17.03) (0.3) = 5.11

cosh m*L = 82.68

Temperature distribution along the length of a fin with insulated tip is given by

( ) cosh ( )

coshb

T x T m L x

T T mL

- -
=

-

At the grip of the handle,

T(x) = TL and cosh m (L – x) = cosh 0 = 1

Hence,
1

( )
cosh

L bT T T T
mL

- = - ◊ (A)
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 Similarly, for the proposed hollow handle:

*

*

1
( )

cosh
L bT T T T

m L
- = - ◊ (B)

 Subtracting (B) from (A), we have

*

*

1 1 1 1
( ) (328 – 28) C

cosh 10.12 82.68cosh
L L bT T T T

mL m L

È ˘ È ˘- = - - = ∞ -Í ˙ Í ˙Î ˚Î ˚
= 26.0°C  (Ans.)

 In a chemical process, the heat transfer from a surface to distilled water is increased 

by a number of thin fins, each 2 mm thick and 50 mm long. The metal fins are coated with a 0.1 mm 

thick layer of plastic to prevent ionization of the water and the ends of the fins are fitted against an 

insulated wall. The temperature at the base of the fins is 80°C, the mean water temperature is 20°C 

and the heat-transfer coefficient between the water and the plastic coating is 200 W/m2 °C. Determine 

(a) the temperature at the tip of the fins, (b) the actual heat transferred to the complete fin per unit 

width, (c) the fin efficiency, and (d) the fin effectiveness. Take thermal conductivity for aluminium as 

237 W/m °C and that for plastic as 0.50 W/m °C. Sketch the temperature profile.

Solution

Known Dimensions and base temperature of plastic-coated aluminium fins with their base attached 

to a plane wall and insulated tip. Surrounding water conditions.

Find (a) Temperature at the tip of the fins, T(x = L)°C (b) Rate of heat transfer from a single fin, 

( )Q W  (c) Fin efficiency, hf (%) (d) Fin effectiveness, ef.

Assumptions (1) Steady operating conditions exist. (2) One-dimensional conduction without heat 

generation. (3) Adiabatic fin tip. (4) Uniform convection coefficient. (5) Constant properties.

Analysis In this problem there is the layer of plastic to be taken into account and the total thermal 

resistance to heat transfer is not only 1/h but also the thermal resistance through the plastic, 

given by tp/k (where tp is the coat thickness).

 The overall heat-transfer coefficient, U can then be obtained by the following expression.

1 1 pt

U h k
= +

\ U = 

1
3

2

1 0.1 10 m

0.5 W/m°C200 W/m °C

--È ˘Ê ˆ¥Ê ˆ +Í ˙Á ˜Á ˜ Ë ¯Ë ¯Í ˙Î ˚
 = 192.3 W/m2 °C

  Temperature distribution along the length of a fin, with negligible heat transfer from the 

adiabatic tip of the fin, is given by

cosh ( )

coshbb

T T m L x

T T mL

q

q

- -
∫ =

-

 The temperature at the tip of the plastic coated fins is obtained at x = L

\ ( )

( )
1

cosh

b
x L

T T
T T

mL

-
= + ◊
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where m = 
2( ) 2U W t U

kWt kt

+
@

(It is worth noting that h is replaced by U in the expression for m because of the plastic-

coated film’s additional resistance to heat transfer).

Now, m = 

2

3

2(192.3 W/m °C)

(237 W/m°C)(2 10 m)-¥
 = 28.485 m–1

\ mL = (28.485 m–1)(0.05 m) = 1.424

( )

(80 20) C
20 C

cosh 1.424
x LT =

- ∞
= ∞ + = 47.3 C∞ (Ans.) (a)
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 Heat-transfer rate from fin,

tanhf c bQ mkA mLq=

 For a rectangular fin, Ac = Wt where W is width and t is thickness.

 For unit width,

Ac = 1 ¥ 2 ¥ 10–3 m2

\ 1 3 2
fin (28.485 m )(237 W/m°C)(1 2 10 m )Q

- -= ¥ ¥  (80 – 20)°C tanh 1.424

= 721.4 W (Ans.) (b)

 Fin efficiency is expressed as

tanh
f

mL

mL
h =

\
tanh 1.424

1.424
fh =  = 0.625 or 62.5% (Ans.) (c)

 Heat-transfer rate without fin,

nofin ( )c b bQ hA h Wtq q= =  = (192.3 W/m2°C) (1 m ¥ 0.002 m) (60°C) = 23 W

\ Fin effectiveness,

fin

nofin

721.4 W

23 W
f

Q

Q
e = = = 31.3 (Ans.) (d)

 Addition of fins in this case results in 31.3 times more heat dissipation.

 The temperature profile is sketched in the schematic.

 A 6.5 cm long turbine blade, with a cross-sectional area of 4.6 cm2 and a perimeter 

of 12.5 cm, is made of stainless steel (k = 18 W/m K). The temperature at the root is 480°C. The blade is 

exposed to a hot gas from the combustion chamber at 880°C and the convection heat-transfer coefficient 

is 450 W/m2 K. Determine (a) the temperature distribution, (b) the rate of heat flow at the root of the 

blade, and (c) the temperature at the tip. Assume that the blade tip is insulated.

Solution

Known A stainless-steel turbine blade is exposed to a hot gas.

Find (a) Temperature distribution, T(x) (b) Heat-flow rate, 0 ( )Q W  (c) Temperature at the tip, 

TL(°C)
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Assumptions (1) Steady operating conditions. (2) One-dimensional conduction. (3) Constant thermal 

conductivity (4) Uniform surface heat-transfer coefficient (5) Adiabatic fin tip.

Analysis Fin parameter,

1/2
2 2

1

2 4 2

(450 W/m K)(125 10 m)
82.42 m

(18 W/m K)(4.6 10 m )

hP
m

kA

-
-

-

È ˘¥
= = =Í ˙

¥Î ˚

The temperature distribution in the case of a fin with its tip insulated is given by

cosh ( )

coshb

T T m L x

T T mL

- -
=

-

\ T – T  = (480 – 880) 
cosh 82.42(0.065 ) 400 cosh 82.42(0.065 )

cosh(82.42)(0.065) 106

x x- - -Ï ¸ =Ì ˝
Ó ˛

or T – T = – 3.77 cosh 82.42 (0.065 – x) (Ans.) (a)

The rate of heat flow at the root of the blade,

0 fin

2 4 2

tanh

(450 W/m K)(0.125 m)(18 W/mK)(4.6 10 m ) ( 400°C) tanh (82.42 0.065)

bQ Q hPkA mLq

-

= =

= ¥ - ¥

= – 273 W (Ans.) (b)

[Negative sign implies that heat is transferred from the gas to the turbine blade.]

The temperature profile is sketched below.

Temperature at the tip of the blade, TL = T  + (Tb – T )/cosh mL

= 880 + (480 – 880)/cosh (82.42 ¥ 0.065) = 876.2°C (Ans.) (c)
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 The cylinder of an engine is 1 m long and has an outside diameter of 6 cm. The outside 

surface temperature of the cylinder is 200°C when the ambient temperature is 30°C. The film coefficient of 

heat transfer is 25 W/m2 K. The cylinder is provided with 12 longitudinal straight fins of 0.1 cm thickness 

and 3 cm length. The thermal conductivity of cylinder and fin material is 75 W/m K. Assuming that the fins 

have insulated tip, determine (a) the percentage increase in heat dissipation due to addition of fins, (b) the 

temperature at the centre of the fin, (c) the fin efficiency and fin effectiveness, and (d) the overall fin effectiveness.

Solution

Known Longitudinal fins are attached to a long cylinder to enhance heat dissipation.

Find (a) Percentage increase in heat transfer due to fins (b) Fin temperature at the centre (c) 

Efficiency and effectiveness of fin (d) Overall fin effectiveness.

Assumptions (1) Steady operating conditions exist. (2) Constant thermal conductivity (same for cylinder 

and fins). (3) Fin tip is insulated. (4) Uniform heat-transfer coefficient.

Analysis Fin heat-transfer rate,

finQ  = NM tanh mL

 where N = number of fins = 12

M = mk Ac(Tb – T )

 Fin parameter,

m = 

1/2
2 2

2

2( ) 25 W/m K 2(1 m 0.1 10 m)

75 W/mK 1 m 0.1 10 mc

hP h b t

kA kbt

-

-

Ï ¸+ ¥ + ¥Ô Ô= = Ì ˝
¥ ¥ ¥Ô ÔÓ ˛

 = 25.83 m–1

mL = (25.83 m–1) (0.03 m) = 0.775

tanh mL = 0.6498

 M = mk Ac(Tb – T ) = (25.83 m–1)(75 W/m K) (1 m ¥ 0.001 m) (200 –30)°C 

or K

= 329.37 W

\ finQ  = 12 ¥ 329.37 W ¥ 0.6498 = 2568 W

 Heat dissipation from the unfinned surface,

unfin unfin ( )bQ hA T T= -

 where unfin cylinder ,fin ( )cA A NA DL Nbt D Nt bp p= - = - = -  since b = l

= {(p ¥ 0.06 m) – (12 ¥ 0.001 m)} (1 m) = 0.1765 m2
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Hence, 2 2
unfin (25 W/m K)(0.1765 m )Q =  (200 – 30)°C or K = 750 W

Total heat dissipation from the finned cylinder is

total,fin fin unfinQ Q Q= +  = (2568 + 750) W = 3318 W

Heat loss from the cylinder without fins is

nofin cyl ( ) ( )( )b bQ hA T T h D T Tp= - = -l

= (25 W/m2 K) (p ¥ 0.06 m ¥ 1 m)(200 – 30)°C or K = 801.0 W

Percentage increase in heat transfer due to addition of fins

total,fin nofin

nofin

3318 801
(100) (100)

801

Q Q

Q

Ê ˆ- -Ê ˆ= = Á ˜Á ˜ Ë ¯Ë ¯

= 314% (Ans.) (a)

Temperature distribution along the height of the fin is given by

( )( ) cosh ( )

coshb b

T x Tx m L x

T T mL

q

q

- -
= =

-

At the centre of the fin, x = L/2

\ ( /2)

( )
cosh( /2)

cosh

b
x L

T T
T T mL

mL

-
= +

= 30°C + (200 – 30)°C 
cosh(0.775/2)

cosh 0.775
¥  = 169°C (Ans.) (b)

Fin efficiency,

fin
2

fin,max

tanh tanh tanh

( )

c b c
f

b c

mkA mL mkA mLQ mL

Q h PL mLm kA L

q
h

q
= = = =

=
tanh 0.775

0.775
 = 0.8385 or 83.85% (Ans.) (c)

Fin effectiveness, fin

nofin
f

Q

Q
e =

where nofinQ  = h Ab(Tb – T )

= (25 W/m2K)(1 m ¥ 0.001 m)(12) ¥ (200 – 30)°C or K = 51.0 W

\
2568 W

51 W
fe =  = 50.35 (Ans.) (c)

Overall fin effectiveness of the finned surface is given by

unfin fin total,fin

total,fin
nofin,total total,nofin

unfin fin

nofin,total

( )( )

( )

[ ] [ ] [2 ]

f b

b

f f

h A A T T Q

hA T T Q

A A D Nbt Lb bt N

A D

h
e

h p h

p

+ -
= =

-

+ - + +
= =

l

l
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{1 } 2

{( 0.06 m 1 m) (1 0.8385)(12 1 m 0.001 m)}

{(0.8385) 2 0.03 m 1 m 12}

0.06 m 1 m

f fD Nbt LbN

D

p h h

p

p

p

- - +
=

= ¥ ¥ - - ¥ ¥
¥ ¥ ¥ ¥

+
¥ ¥

l

l

= 0.79/0.1885 = 4.19 (Ans.) (d)

 Note that the breadth (width) of the sin b is the length of the cylinder, l.

 An array of eight aluminium alloy fins, each 3 mm wide, 0.4 mm thick, and 40 mm 

long, is used to cool a transistor. When the base is at 342 K and the ambient air is at 300 K, calculate 

(a) the fin efficiency, and (b) the power the fins would dissipate if the combined convection and radiation 

heat-transfer coefficient is estimated to be 8 W/m2 K. The alloy has a thermal conductivity of 177 W/m K.

Solution

Known Aluminium fins to cool a transistor

Find (a) Fin efficiency (b) Power dissipated by 8 fins

Assumptions (1) Heat-transfer coefficient is constant along the fin. (2) Heat loss from the fin tip is 

negligible.

Analysis For one fin,

6 2

3

1/2
2 3

6

1

1

(0.003)(0.0004) 1.2 10 m

2(0.003 0.0004) 6.8 10 m

(8.0 W/m K)(6.8 10 m)

(177 W/mK)(1.2 10 m)

16.0 m

(16.0 m )(0.040 m) 0.64

c

c

A

P

hP
m

kA

mL

-

-

-

-

-

-

= = ¥

= + = ¥

È ˘¥
= = Í ˙

¥Î ˚

=

= =
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 Fin efficiency,

fin

tanh tanh(0.64)

0.64

mL

mL
h = = = 0.883 or 88.3% (Ans.) (a)

 Power dissipated,

fin, total

6

tanh

8 16 177 1.2 10 (342 300) tanh 0.64

c bQ NmkA mLq

-

√= =

= ¥ ¥ ¥ ¥ ¥ - ¥ = 0.645W (Ans.) (b)

 A rectangular fin of 30 cm length, 30 cm width, and 2 mm thickness is attached to 

a surface at 300°C. The fin is made of aluminium (k = 204 W/m K) and is exposed to air at 30°C. The 

fin end is uninsulated and can lose heat through its end also. The convection heat-transfer coefficient 

between the fin surface and air is 15 W/m2 K.

 Determine (a) the temperature of the fin at 30 cm from the base, (b) the rate of heat transfer from the 

fin, and (c) the fin efficiency.

[IES 2012]

Solution

Known A straight rectangular aluminium fin with heat loss at the end.

Find (a) Fin tip temperature, T(x = L) (b) Fin heat-transfer rate, finQ  (c) Fin efficiency, hfin.

Assumption Heat-transfer coefficient is constant along the fin.

Analysis Fin parameter,

12[ ] 15 2 (0.3 0.002)
8.6 m

204 0.3 0.002

8.6 0.3 2.581

h W t
m

kWt

mL

-+ ¥ ¥ +
= = =

¥ ¥

= ¥ =

cosh mL = 6.6433

sinh mL = 6.5676

15
0.00855

8.6 204

h

mk
= =

¥
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 (a) At x = L = 0.30 m,

( ) 1

cosh ( / )sinhb

x L

mL h mk mL

q

q

=
=

+

 Temperature of the fin at 30 cm from the base is 

\ ( )
cosh ( / )sinh

b
x L

T T
T T

mL h mk mL

-
= +

+

=
(300 30)

30
6.6433 (0.00855)(6.5676)

-
+

+
 = 70.3°C (Ans.) (a)

 (b) Rate of heat transfer from the fin is

fin

sinh ( / )cosh

cosh ( / )sinh

6.5676 (0.00855 6.6433)
8.6 204 0.3 0.002 (300 30)

6.6433 (0.00855 6.5676)

c b

mL h mk mL
Q mkA

mL h mk mL
q

+
=

+
+ ¥

= ¥ ¥ ¥ ¥ - ¥
+ ¥

= 281.0 W (Ans.) (b)

 (c) Fin efficiency,

fin fin
fin

fin,max ( )

281 281
100

15 [2(0.3 0.002)](0.3) 270 733.86

b

Q Q

Q h PL
h

q
= =

= = ¥ =
¥ + ¥

38.3% (Ans.) (c)

(C) Number of Fins on Plane Wall

 A metal tank containing cooling coil is sought to be equipped with straight 

rectangular fins (k = 275 W/m °C) attached to its wall that is maintained at 105°C. The fins proposed 

to be used are 4 mm thick and are spaced 10 cm between centres. Heat is dissipated from the tank’s 

surface to the ambient air at 25°C with a convection heat transfer coefficient on both finned and bare 

surfaces as 30 W/m2 °C. For the finned configuration the prime surface temperature is expected to fall 

to 100°C. Determine the length (height) of the fins required for 50 % increase in the heat-transfer rate 

as a result of addition of fins.

Solution

Known Dimensions and base temperature of straight rectangular fins. Ambient air conditions.

Find Length of fins required, L (cm).

Assumptions (1) Steady-state conditions. (2) Constant thermal conductivity and uniform convection 

coefficient. (3) Tank surface temperature is reduced by 5°C after fins are provided.

Analysis Let the tank have dimensions W (width) = 1 m and H (height) = 1 m. The area without 

fins, Ano fin = WH = 1 m2

 As the spacing (centre to centre) between fins, S + t = 10 cm, the number of fins per metre 

length (height) of the tank wall, N = 
1 m

0.1 m

H

S t
=

+
= 10.
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Before fins are attached:

Heat dissipation rate, without fins is

nofin ( )wo sQ hA T T= -  = (30 W/m2°C) (1 m2) (105 – 25)°C = 2400 W

After fins are added:

Heat-transfer rate with fins is

1.5w woQ Q=  = (1.5) (2400) W = 3600 W

The total heat loss per m2 surface area comprise two components: Heat transfer from the 

unfinned surface, unfinQ  and that from the finned surface, finQ

Area of unfinned surface,

Aunfin = WH – NW t = W [H – Nt] = 1 m [1 m – (10) (0.004 m)] = 0.96 m2

\ unfin unfin ( )bQ hA T T= -  = (30 W/m2 °C) (0.96 m2) (100 – 25)°C = 2160 W

Therefore, heat-dissipation rate from the finned surface,

fin unfinwQ Q Q= -  = (3600 – 2160) W = 1440 W

fin tanhc b cQ NmkA mLq=

where Lc = corrected length = L + (t/2)

NAc = NWt = 10 ¥ 1 m ¥ 0.004 m = 0.04 m2

k = 275 W/m °C

Also, m =

2
12( ) 2 30 W/m °C (1 0.004)m

7.4 m
275 W/m°C 1 m 0.004 mc

hP h W t

kA kWt

-+ ¥ ¥ +
= = =

¥ ¥

and, qb = Tb – T  = 100 – 25 = 75°C
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\ fin

2 1

1440 W
tanh

( ) (0.04 m )(7.4 m )(275 W/m°C)(75 C)
c

c b

Q
mL

NmkA T T -
= =

- ∞
= 0.236

\ mLc = tanh–1(0.236) = 0.2405

 Corrected length of fin to account for heat loss from the fin tip,

1

0.2405
( /2) 0.0325 m

7.4 m
cL L t -= + = =

 Fin length required, L = {0.0325 – (0.004/2)} m = 0.0305 m = 3.05 cm (Ans.)

 An aluminium box encasing electronic equipment dissipates the heat generated 

within to the surrounding air at 25°C with a heat-transfer coefficient of 50 W/m2 °C. The box surface 

temperature is not to exceed 60°C. Hence to aid heat removal, vertical rectangular aluminium fins 

(k = 237 W/m °C) are attached to the top of the box. If 10 fins, spaced 1 cm centre to centre apart are 

employed which are 2.5 cm long, 2 mm thick, and 25 cm wide, determine (a) the rate of heat dissipation, 

(b) fin efficiency, (c) fin effectiveness, and (d) overall surface efficiency.

Solution

Known Vertical rectangular fins attached to a plane wall aid heat dissipation under specified 

conditions.

Find (a) Heat-dissipation rate (b) Fin efficiency (c) Fin effectiveness (d) Overall efficiency

Assumptions (1) Steady operating conditions exist. (2) Constant thermal conductivity. (3) Uniform heat-

transfer coefficient.
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Analysis Fin parameter,

2
12 2 50 W/m °C

14.525 m
237 W/m°C 0.002 mc

hP h
m

kA kt

-¥
= = = =

¥

Lc = L + (t/2) = 2.5 cm + (0.2 cm/2) = 2.6 cm = 0.026 m

\ mLc = (14.525 m–1) (0.026 m) = 0.3776

tanh mLc = 0.3607

Fin efficiency, 
tanh 0.3607

0.3776

c
f

c

mL

mL
h = =  = 0.955 (Ans.) (b)

Fin heat-transfer rate,

fin tanhc b cQ NmkA mLq=

where Ac = Wt = (0.25 m) (0.002 m) = 0.0005 m2

qb = Tb – T  = 60 – 25 = 35°C

Substituting the known values,

finQ  = (10) (14.525 m–1) (237 W/m °C) (0.0005 m2) (35°C) ¥ (0.3607)

= 217.27 W

As there are 10 fins, 1 cm apart,

H = N (S + t) = 10 ¥ 1 cm = 10 cm

Total area without fins, Ano fin = WH = 25 cm ¥ 10 cm = 0.025 m2

Heat transferred from the unfinned portion is

unfin unfin bQ hA q=

where Aunfin = WH – NW t = W (H – Nt) = 0.25 m (0.1 m – 10 ¥ 0.002 m) = 0.02 m2

\ 2 2
unfin (50 W/m °C)(0.02 m )(35 C)Q = ∞ = 35W

Total heat dissipation rate with fins

fin unfinwQ Q Q= +  = (217.27 + 35.0) W = 252.3 W (Ans.) (a)

Heat-transfer rate without fins,

nofinwo bQ hA q=  = (50 W/m2 °C) (0.025 m2) (35°C) = 43.75 W

\ Effectiveness of fin, ef = 
252.3 W

43.75 W

w

wo

Q

Q
=  = 5.8 (Ans.) (c)

Overall surface efficiency,

fin

total

1 (1 )o f

A

A
h h= - -

where Afin = 2 LW + Wt + 2 Lt

= 2(0.025 m ¥ 0.25 m) + (0.25 m ¥ 0.002 m) + 2(0.025 m ¥ 0.002 m)

= 0.013 m2  (for a single fin)
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 and for 10 fins, Afin = 0.13 m2

2 2 2
total fin unfin 0.13 m 0.02 m 0.15 mA A A= + = + =

\
2

2

0.13 m
1

0.15 m
oh = -  (1 – 0.955) = 0.961 or 96.1% (Ans.) (d)

(D) Bar With Two Ends At Specified Temperatures

 A round bronze bar (k = 52 W/m °C), 0.6 m long and 2 cm diameter extends 

between two walls, one at 40°C and the other at 20°C. Ambient air at 2°C with a convection heat transfer 

coefficient of 12 W/m2 °C on the surface of the bar. Determine (a) the location, and (b) the magnitude of 

the minimum temperature in the bar. (c) What will be the total heat-transfer rate from the fin?

Solution

Known A bronze bar spans two walls held at different temperatures with ambient air surrounding it.

Find (a) Location and magnitude of minimum bar temperature (b) Fin heat-transfer rate
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Assumptions (1) Steady-state, one-dimensional conduction. (2) Constant thermal conductivity. (3) Heat-

transfer coefficient is uniform on all fin surfaces.

Analysis The present case is one of a known tip temperature, T2 = TL = 20°C while the base 

temperature of the fin, T1 = Tb = 40°C. The temperature distribution is given by

( / )sinh sinh ( )

sinh

L b

b b

mx m L xT T

T T mL

q qq

q

+ --
= =

-
(A)

 Now, 
2

1/2
2

1

( )

/4

4 4 12 W/m °C
6.794 m

52 W/m°C 0.02 m

c

hP h D
m

kA k D

h

kD

p

p

-

= =

Ê ˆ¥
= = =Á ˜Ë ¥ ¯

\ mL = (6.794) (0.6) = 4.076

sinh mL = 29.45, emL = 58.91, e–mL = 0.017

18°C
0.4737

38 C

L

b

q

q
= =

∞
 Location for minimum temperature is given by

\ xmin = 0.357 m (Ans.) (a)

 Substituting this value in Eq. (A), we get

(0.4737)sinh(6.794 0.357) sinh{(6.794 (0.6 0.357)}

29.45

(0.4737 5.61) 2.51
0.1755

29.45

b

q

q

¥ + ¥ -
=

¥ +
= =

\ q = (0.1755) (38) = 6.67°C = T – T

 and, the minimum bar temperature,

Tmin = (2 + 6.67)°C ª 8.67°C (Ans.) (b)

 The temperature profile is shown below.

 Total fin heat-transfer rate,

fin ( )(cosh 1)/sinhc b LQ mkA mL mLq q= + -

= (6.794 m–1) (52 W/m °C) 2 20.02 m
4

pÊ ˆ¥Á ˜Ë ¯  (38 + 18)°C 
cosh 4.076 1

sinh 4.076

-Ê ˆ¥ Á ˜Ë ¯
= 6.0 W (Ans.) (c)

 The two ends of a 5 mm copper U-shaped rod 

(see schematic) are rigidly fixed to a vertical wall maintained at a 

temperature of 90°C. The developed length of the rod is 50 cm and the 

ambient air temperature is 35°C. The combined convective and radiative 

heat-transfer coefficient is 35 W/m2 K. (a) Compute the temperature at 

the centre point of the rod. (b) Also find the heat transfer from the rod.
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Solution

Known Two ends of a U-shaped rod rigidly fixed to a vertical wall dissipates heat to the surrounding 

air.

Find (a) Temperature at the centre point of the rod (b) Heat-transfer rate.

By symmetry, Figure (a) can be transformed into Figure (b), and the equivalent Figure 

(c) is obtained by neglecting the effect of curvature of the rod.

Assumptions (1) Steady state prevails. (2) Across a section of the rod, the temperature is uniform. (3) 

The U-shaped rod can be approximated as a straight rod of the same length.

Analysis The temperature distribution for a fin with insulated tip and uniform cross section is given 

by

( ) cosh ( )

coshb b

T x T m L x

T T mL

q

q

- -
= =

-

Fin parameter,

1/2
2 3

1

3 2

(35 W/m K)( 5 10 m)
8.366 m

(400 W/mK) (5 10 m)
4

c

hP
m

kA

p

p

-
-

-

È ˘¥ ¥
= = =Í ˙

Ê ˆÍ ˙¥Á ˜Ë ¯Í ˙Î ˚
mL = (8.366 m–1)(0.25 m) = 2.09

At the fin tip,

1 1
0.243

cosh cosh 2.09

L

b

T T

T T mL

-
= = =

-

\ TL – T  = 0.243 (Tb – T )

Hence, TL = 35°C + 0.243 (90 – 35)°C = 48.4°C (Ans.)

Fin heat-transfer rate, for one half of the U-shaped rod is

fin tanhc bQ mkA mLq=

= (8.366 m–1) (400 W/m K) 

2

0.005 m
4

pÊ ˆ¥Á ˜Ë ¯  (90 – 35)°C tanh (2.09)

= 3.614 tanh (2.09) = (3.614) (0.97) = 3.5 W
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\ Total heat-transfer rate,

2 3.5 W =Q = ¥ 7.0 W (Ans.)

 A cylindrical pin fin of 1 cm diameter and 5 cm length is attached to a wall at 

230°C. The thermal conductivity of the fin material is 204 W/m K. The fin is exposed to an environment 

at 30°C with a surface heat transfer coefficient of 200 W/m2 K. Calculate the fin-tip temperature and 

the heat dissipation rate from the fin for the following four boundary conditions: (a) very long fin, (b) 

adiabatic fin tip, (c) convective fin tip, and (d) the fin tip is maintained at 180°C.

 Plot the temperature distribution along the length of the fin.

Solution

Known A pin fin dissipates heat to the surroundings under different boundary conditions at the tip.

Find Fin-tip temperature, T(x = L), heat-flow rate, fin ( )Q W , and temperature profile for the given 

four boundary conditions.

Assumption (1) Steady operating conditions. (2) One-dimensional conduction. (3) Constant thermal 

conductivity and uniform heat-transfer coefficient.

Analysis Fin parameter,

1/2 2
1

2

1

4 4 200 W/m K
19.8 m

204 W/mK 0.01 m

19.8 0.05 0.99

200 W/m K
0.0495

19.8 m 204 W/mK

c

hP h
m

kA kD

mL

h

mk

-

-

¥Ê ˆ= = = =Á ˜ ¥Ë ¯

= ¥ =

= =
¥

Fin-tip temperature:

 (a) ( ) ( )exp( )

30 (230 30)exp( 0.99) .

x L bT T T T mL= + - -

= + - - = 104 3 C∞

 (b) ( ) ( )/cosh

30 200/cosh(0.99)

x L bT T T T mL= + -

= + = 160.6 C∞
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(c) ( ) ( )/[cosh ( / )sinh ]

1
30 200 .

200
cosh 0.99 sinh 0.99

19.8 204

x L bT T T T mL h mk mL= + - +

È ˘= + ¥ =Í ˙Ê ˆÍ ˙+ Á ˜Ë ¥ ¯Í ˙Î ˚

155 9 C∞

Corrected length approximation:

Since Lc = 52.5 mm,

( )/cosh 30 200/cosh(19.8 0.0525)b cT T T mL= + - = + ¥

= 155.7°C which is almost same as with the convective tip.

(d) ( )cx LT = = 180°C   (given)

180 30 150 C

230 30 200°C

( / ) 0.75

L

b

L b

q

q

q q

= - = ∞

= - =

=

Location of minimum temperature,

min

( / )1
ln 0.0413 m .

2 m ( / )

mL
L b

mL
L b

e
x

e

q q

q q -

È ˘-
= = =Í ˙

-Í ˙Î ˚
41 3 mm

Fin heat-transfer rate:

(a) fin

1 2 219.8 m 204 W/mK 0.01 m 200 K
4

c bQ mkA Mq

p-

= =

= ¥ ¥ ¥ ¥

= 63.457 W ª 63.5 W

(b) fin tanh 63.5 tanh 0.99Q M mL= =  = 48.06 W ª 48.1 W

(c) fin

tanh ( / ) tanh 0.99 (0.04905)
63.5 W

1 ( / ) tanh 1 (0.04905)(tanh 0.99)

mL h mk
Q M

h mk mL

+ +
= = ¥

+ +

= 0.7777 M = 49.4 W

Corrected length approximation

Since Lc = 52.5 mm,

tanh mLc = tanh 1.0397 = 0.77775

\ fin tanh tanh

63.5 W 0.77775 49.35 W

c b c cQ mkA mL M mLq= =

= ¥ = ª 49.4 W

which is same as with the convective tip.
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(d) fin

1 2 2

(cosh 1)
( )

sinh

(cosh 0.99 1)
19.8 m 204 W/mK (0.01) m (200 150)K

4 sinh 0.99

c b L

mL
Q mkA

mL
q q

p-

-
= +

-
= ¥ ¥ ¥ + ¥

= 50.88 W ª 50.9 W

Temperature variation along the fin length

(a) exp( )
b b

T T
mx

T T

q

q

-
= = -

-

\ 19.8( ) ( ) 30 (230 30)mx x
bT x T e T T e

- -= + - = + -

( ) 30 200exp( 19.8 )T x x= + -

(b)
cosh ( )

cosh

cosh 19.8(0.05 )
200

cosh 0.99

( ) 30 130.6 cosh 19.8(0.05 )

b

m L x

mL

x

T x x

q

q

q

-
=

-
= ¥

= + -

(c)
cosh ( ) ( / )sinh ( )

cosh ( / )sinh

[cosh 19.8(0.05 ) 0.0495 sinh 19.8(0.05 )]

200/[cosh 0.99 (0.0495) sinh 0.99]

( ) 30 125.88[cosh 19.8(0.05 ) 0.0495 sinh 19.8(0.05 )]

b

m L x h mk m L x

mL h mk mL

x x

T x x x

q

q

q

- + -
=

+

= - + -
¥ + ¥

= + - + -

(d)
( / )sinh sinh ( )

sinh

[0.75 sinh 19.8 sinh 19.8(0.05 )] 200/sinh 0.99

( ) 30 172.4[0.75 sinh 19.8 sinh 19.8(0.05 )]

L b

b

mx m L x

mL

x x

T x x x

q qq

q

q

+ -
=

= + - ¥

= + + -

Based on the above four expressions for T(x), the results are tabulated and graphically 

shown below:

x (mm) T(x) [Case (a)] T(x) [Case (b)] T(x) [Case (c)] T(x) [Case (d)]

0 230 230 230 230

10 194.0 203.8 202.9 207.1

20 164.6 184.3 182.7 191.1

30 140.4 171.0 168.4 181.5

40 120.6 163.2 159.6 177.8

50 104.3 160.6 155.9 180.0
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Temperature variation along the fin length for four different cases

Comment The infinite (very long) boundary condition can fairly accurately predict fin temperatures 

if mL is at least equal to 2.65. In this case, mL is only 0.99. Clearly, the very long fin 

approximation results in significant underestimates of temperature at all locations. For case 

(a) to be valid, 2.65/ (2.65/19.8)(1000)L mª ª = 134 mm

(E) Circumferential (Annular) Fins

 Circular aluminium disk fins of constant rectangular profile are attached to a 

tube having 2.5 cm OD with a pitch of 8 mm. Fins are 1 mm thick with 15 mm height and a thermal 

conductivity of 200 W/m °C. The tube wall is maintained at a temperature of 180°C and the fins dissipate 

heat by convection into ambient air at 40°C with a heat-transfer coefficient of 80 W/m2°C. Determine 

(a) the fin efficiency, (b) the area weighted (total) fin efficiency, (c) the net heat loss per metre length of 

tube, (d) the heat loss per metre length of tube if no fins were provided, and (e) the overall effectiveness 

of the finned tube.

Solution

Known Circumferential fins provided on a tube 

dissipate heat under specified conditions.

Find (a) hfin, (b) ho, (c) total,finQ  (W), (d) nofinQ .

 (e) efin, overall

Assumptions (1) Steady operating conditions. (2) 

Constant conductivity and uniform heat-

transfer coefficient. (3) One dimensional 

representation. (4) Radiation effects 

negligible.
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Analysis Fin parameter = 3/2 1/2( / )c pL h kA

where
2

c

t
L L= +  = 15 mm + 

1

2
 mm = 15.5 mm

Ap = Lct = 15.5 mm ¥ 1 mm = 15.5 mm2

h = 80 W/m2 °C, k = 200 W/m °C

\
1/2

3/2

1/2
2 6 2 2

3/2

2

80 W/m °C 10 mm /1 m
(0.0155 m) 0.31

200 W/m°C 15.5 mm

c
p

h
L

kA

Ê ˆ
Á ˜Ë ¯

È ˘¥
= =Í ˙

¥Í ˙Î ˚
r2c = r2 + (t/2) = 27.5 mm + 0.5 mm = 28 mm

r1 = 12.5 mm

\ 2

1

28
2.24

12.5

cr

r
= =

Fin efficiency,

1 1 1 2 1 1 1 2
fin 2

0 1 1 2 0 1 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

c c

c c

K mr I mr I mr K mr
C
I mr K mr K mr I mr

h
-

=
+

where

1
2 2 2

2 1

1/2 1/2 2
1

(2 / )

( )

2 2(80 W/m °C)
28.284 m

200 W/m°C 0.001 m

c

c

r m
C

r r

hP h
m

kA kt

-

=
-

Ê ˆ Ê ˆ= = = =Á ˜Á ˜ Ë ¯ ¥Ë ¯

mr1 = (28.284 m–1)(0.0125 m) = 0.3536

mr2c = (28.284 m–1) (0.028 m) = 0.792

From the modified Bessel Functions table,

K0(mr1) = 1.2342 K1(mr1) = 2.588

I0(mr1) = 1.0321 I1(mr1) = 0.1797

I1(mr2c) = 0.428 02 K1(mr2c) = 0.876 88

and
1

2 2 2 2

(2 0.0125 m/28.284 m )
1.408

(0.028 0.0125 )m
C

-¥
= =

-

Fin efficiency,

fin

(2.5888)(0.428 02) (0.1797)(0.876 88)
(1.408)

(1.0321)(0.876 88) (1.2342)(0.428 02)
h

-Ï ¸= Ì ˝+Ó ˛
= 1.408 ¥ 0.6631 = 0.934 (Ans.) (a)
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2 2 2 2 2 3 2
fin 2 1

fin fin,max

2 ( ) 2 [0.028 0.0125 ]m 3.944 10 m

( )

c

f f f b

A r r

Q Q hA T T

p p

h h

-= - = - = ¥

= = -

= (0.934) (80 W/m2 °C) (3.944 ¥ 10–3 m2) (190–40)°C = 44.2 W

unfin unfin ( )bQ hA T T= -

 where 

3 3 2
unfin 1

2 3 2
unfin

2 ( ) 2 0.0125 m (7 1)(10 )m 0.55 10 m

(80 W/m °C)(0.55 10 m ) (190 40) C

A r p t

Q

p p - -

-

= - = ¥ ¥ - = ¥

= ¥ - ∞ = 6.6 W

\ total,fin fin unfin( )Q N Q Q= +

 where N = number of fins or interfin spacings

3

1 m
125

8 10 m-= =
¥

\ total,finQ  = 125 (44.2 + 6.6) W

= 6350 W or 6.35 kW per m tube length (Ans.) (c)

 Area weighted (total) efficiency,

3 2
fin

fin 3 2

3.944 10 m
1 (1 ) 1 – (1 – 0.934)

(3.944 0.55) 10 m
o

A

A
h h

-

-
¥

= - - =
+ ¥

= 0.942 or 94.2%  (Ans.) (b)

 Heat transfer per m tube length without fin is

nofin nofin 1( ) (2 1)( )b bQ hA T T h r T Tp= - = ¥ -

= (80 W/m2°C) (2 p ¥ 0.0125 m ¥ 1 m) (190 – 40)°C

= 942.5 W or 0.94 kW per m length of tube (Ans.) (d)

 The overall effectiveness of the finned tube is

total,fin

fin,overall
nofin

6350 W/m

942.5 W/m

Q

Q
e = = = 6.74 (Ans.) (e)

 Steam at 1 atm condenses inside a copper pipe. Circular circumferential fins are 

fixed on the outside, which is exposed to air.

 Pipe: ID = 30 cm, OD = 36 cm

  kpipe = 380 W/m K

 Fins: Thickness = 1 mm, Pitch = 20 mm, Tip diameter = 100 mm

  kfin = 45 W/m K hair= 25 W/m2 K

 Determine (a) fin efficiency, and (b) overall heat-transfer coefficient based on the tube inner area.

[IIT, Bombay]

Solution

Known Circular fins are attached to a copper steam pipe on its outside which is exposed to air.

Find (a) Fin efficiency, hfin, (b) Overall heat-transfer coefficient based on inside area, Ui
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ri = 15 mm = 0.015 m

ro = r1 = 18 mm = 0.018 m

r2 = 50 mm = 0.05 m

kfin = 45 W/m K

hair = ho = 25 W/m2 K

t = 1 mm = 0.001 m

p = 20 mm = 0.02 m

Assumptions (1) Steady operating conditions. (2) Constant thermal conductivity. (3) Uniform heat-

transfer coefficients. (4) Negligible radiation effects and contact thermal resistance.

Analysis The overall heat-transfer coefficient based on inner area is given by

pipe ,unfin ,fin fin

,unfin ,finpipe
fin

1 1 1
ln

( )

1 1
ln

i o i

i i i o o o

i o

o oi i
o

i i

r r A

U h k r A A h

r r

A Ah k r
h

A A

h

h

= + + ◊
+ ◊

= + +
Ê ˆ

+Á ˜Ë ¯

(A)

Condensation of steam on inside is associated with a very high heat-transfer coefficient.

Hence, the first term, 
1

ih
, may be neglected in comparison with other terms.

To determine the fin efficiency, we use the graph in which the efficiency of circular fins 

of length L and constant thickness t is plotted. The parameters that govern the problem are

Radius ratio, 
2

2

1 1

11
50 1 mm

22

18 mm

c
r t

r

r r

Ê ˆ+ ¥+ Á ˜Ë ¯
= =  = 2.80

Non-dimensional fin parameter, x = 

1/2
3/2
c

p

h
L

kA

Ê ˆ
Á ˜Ë ¯

where 2 1

1 1

2 2
cL L t r r t= + = - +  = (50 – 18 + 0.5) mm = 32.5 mm or 0.0325 m

Profile area,

Ap = Lct = 0.0325 m ¥ 0.001 m = 32.5 ¥ 10–6 m2

\
1/2

6
3/2 25 10

(0.0325) 0.766
45 32.5

x
È ˘¥

= =Í ˙¥Î ˚
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 With 
2

1

cr

r
 = 2.80 and x = 0.766, from the graph:

 Fin efficiency, hfin = 0.62 or 62% (Ans.) (a)

 Now, 

,unfin

2 2 2 2
,fin 2 1

2 ( ) (20 1) 18
1.140

2 15 20

2 ( ) (50.5 18 )
7.421

2 15 20

o o

i i

o c

i i

A p t r

A r p

A r r

A r p

p

p

p

p

- - ¥
= = =

¥

- -
= = =

¥
 Substituting the known values in Eq. (A), we have

0 2
31 1 0.015 18 1 m K

ln 6.98 10
380 15 (1.140 7.421 0.62) 25 Wi iU h

-= + + = ¥
+ ¥ ¥

\ overall heat-transfer coefficient based on inner area,

Ui = 143.3 W/m2 K (Ans.) (b)

 Circumferential fins of rectangular cross section (2 mm thick and 40 mm long) are 

force fitted on a tube, 40 mm OD. The fins and the tube are made of aluminium (k = 240 W/m K). The 

thermal contact resistance between each fin and the tube is known to be 0.52 K/W. Calculate the rate of 

heat transfer from each fin if the tube wall is at 125°C, the ambient air is at 25°C and the convective 

heat-transfer coefficient is 26 W/m2 K. Also find the heat-transfer rate without the base contact resistance.

Solution

Known Circumferential aluminium fins of 

constant thickness are attached to a tube.

Find Fin heat-transfer rate, fin ( )Q W .

Assumptions (1) Steady operating conditions. (2) 

Thermal conductivity is constant. (3) 

Heat-transfer coefficient is uniform over 

the entire fin surface. (4) Radiation 

effects are negligible.

Analysis Heat-dissipation rate from each fin,

fin
, fin

w

t c

T T
Q

R R

-
=

+

 where Tw = tube wall temperature = 125°C

T  = ambient air temperature = 25°C

Rt,c = thermal contact resistance = 0.52 K/W (given)

Rfin = thermal resistance of the radial fin of uniform thickness

2 2
fin fin fin 2 1

1 1

( ) {2 ( )c
h A h r rh h p

= =
-

 Radius ratio,

2 2

1 1

( /2) [60 (2/2)]mm 0.061 m

20 mm 0.02 m

cr r t

r r

+ +
= = = = 3.05
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 Non-dimensional fin parameter, 3/2
c

p

h
L

kA
x =

 where 

2

5 2

( /2) [40 (2/2)] mm 41 mm or 0.041 m

26 W/m K, 240 W/mK

(0.04 m)(0.002 m) 8 10 m

c

p

L L t

h k

A Lt
-

= + = + =

= =

= = = ¥

\
1/2

3/2

5

26
(0.041)

240 8 10
x -

È ˘= =Í ˙¥ ¥Î ˚
0.3055

 From the graph for circumferential fin attached to a circular tube with 2

1

3.05cr

r
=

 and x = 0.3055, the fin efficiency is, hfin = 0.91

\ 2 2 2 2 1
fin [26 W/m K 0.91 2 (0.061 0.02 )m ]R p -= ¥ ¥ - = 2.0255 K/W

 Fin heat-transfer rate,

fin (125 25)K /(2.0255 0.52)K/WQ = - + = 39.3 W (Ans.)

 Without the contact resistance, Tw = Tb = 125°C, and

fin
fin

(125 25)K

2.0255 K/W

bQ
R

q -
= = = 49.4 W (Ans.)

(F) Triangular Fins

 A straight, uniform area fin and a triangular fin, both 10 cm long with 6 mm 

thickness are to be compared. The base and the surrounding temperature in both cases are 100°C and 

20°C respectively. The material of the fins is aluminium with thermal conductivity 237 W/m K and density 

of 2700 kg/m3 respectively. The surface heat-transfer coefficient is 70 W/m2 K in both cases. Determine 

the fin efficiency, fin effectiveness, and the rate of heat loss per unit mass for the two configurations.

Solution

Known Dimensions, base temperature and surrounding conditions associated with uniform area and 

triangular aluminium fins.

Find Efficiency, effectiveness, and heat loss per metre width associated with each fin.
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Assumptions (1) Steady operating conditions. (2) One-dimensional conduction. (3) Constant properties. 

(4) Uniform convection coefficient. (5) Negligible radiation and contact resistance.

Analysis Case I: Uniform area fin

Fin parameter, m = 
2( )

( )c

hP h W t

kA k Wt

◊ +
=

As t << W, W + t ª W

m = 

22 2 70 W/m K

(237 W/mK)(0.006 m)

h

kt

¥
=  = 9.922 m–1

Lc = L + t/2 = 0.1 m + (0.006 / 2) m = 0.103 m

\ mLc = (9.922 m–1) (0.103 m) = 1.022

tanh mLc = 0.7707

Fin efficiency, fin

tanh 0.7707

1.022

c

c

mL

mL
h = =  = 0.754  (or 75.4 %) 

Heat-loss rate per unit width,

fin ( ) tanhc b cQ mkA T T mL= -

= (9.922 m–1) (237 W/m K) (1 m ¥ 0.006 m) (100 – 20)°C ¥ 0.7707

= 870 W

Fin effectiveness,

fin fin
fin 2

nofin ,

870 W

( ) (70 W/m K)(1 m 0.006 m)(100 20)°Cc b b

Q Q

Q hA T T
e = = =

- ¥ -

= 870 W/33.6 W = 25.9

Fin volume per unit width,

–V tL=  = (0.006 m) (0.1 m) = 0.0006 m3

Mass of fin per unit width,

m = –Vr  = (2700 kg/m) (0.0006 m3) = 1.62 kg

Heat loss per unit mass,

870 W
/ /

1.62 kg
fQ m = = 537W kg

Case II: Triangular fin

mL = 9.922 m–1 ¥ 0.1 m = 0.9922

2mL = 1.9844

I1(1.9844) = 1.5684

Io(1.9844) = 2.2559

\ 1
fin

(2 )1 1 1.5684

(2 ) 0.9922 2.2559o

I mL

mL I mL
h = = ¥  = 0.7 or 70%
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 Heat loss per unit width,
1/2

2
2

fin fin

2 2 2 2 2 1/2

2 ( )
2

2 0.70 70 W/m K {(0.1 m 0.003 m )} (100 20) C

b

t
Q h L T Th

Ï ¸Ê ˆÌ ˝= + -Á ˜Ë ¯Ó ˛

= ¥ ¥ + - ∞
= 784 W

 Fin effectiveness,

fin
,

784 W
.

( ) 33.6 W

f

c b b

Q

hA T T
e = = =

-
23 3

 Fin volume per unit width,

1
–V 1

2
tL= ¥  = 0.006 m ¥ 0.1 m ¥ 1 m / 2 = 0.0003 m3

 Mass of fin per unit width,

–Vm r=  = (2700 kg/m3) (0.0003 m3) = 0.81 kg

\ Heat loss per unit mass,

fin

784 W
/ /

0.81 kg
Q m = = 968W kg

 The results are tabulated below for the sake of comparison:

Case # Fin efficiency Fin effectiveness Heat loss per

unit mass

Heat loss per

unit width

I.  Straight uniform 

area rectangular fin

75.4% 25.9 537 W/kg 870 W

II.  Straight triangular 

fin

70 % 23.3 968 W/kg 784 W

(Ans.)

Comment Although the rate of heat loss is slightly less in the triangular fin, it is obvious that per

unit mass basis, it dissipates (968 / 537 = 1.8) times more heat compared to uniform area 

fin. However, it may be noted that a fin of triangular profile is relatively structurally weak 

near the tip.

 Derive the differential equation for determining the steady-state temperature 

distribution in a conical fin with a semi vertex angle a and height L, and the surroundings at T . Assume 

that the local heat-transfer coefficient h is directly proportional to the one fourth power of the temperature 

difference between the fin and the surroundings q(∫T – T ). One-dimensional heat conduction (along the 

fin length) may be assumed.

Solution

Known A conical fin having semi-angle a and length L is exposed to convective environment with 

an ambient at T  and variable heat-transfer coefficient.

Find Differential equation for steady state, one-dimensional temperature variation.
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Assumptions (1) Steady-state conditions exist. (2) One-dimensional conduction. (3) Heat-transfer 

coefficient is proportional to one fourth power of the excess temperature. (4) Constant 

thermal conductivity.

Analysis Consider a volume element of the conical fin at location x having a length dx. An energy 

balance on this volume element under steady operating conditions can be expressed as

Rate of heat conduction Rate of heat conduction Rate of heat convection

the element at the element at the elementinto x x dx

Ê ˆ Ê ˆ Ê ˆ
= +Á ˜ Á ˜ Á ˜Ë ¯ Ë + ¯ Ë ¯from from

or convx x dxQ Q Q+= +

where and ( )x c x dx x x

dT d
Q kA Q Q Q dx

dx dx
+= - = +

Hence,   – ( ) ( )( )( )x

d
Q dx h x Pds T T

dx
= - or ( )c

d dT
kA x

dx dx

È ˘- -Í ˙Î ˚
dx = h (x) Pds (T – T )

We note that

2 2( ) [( ) tan ]

2 2 [( ) tan ]

cA x r L x

P r L x

p p a

p p a

= = -

= = -

h = C (T – T )1/4 where C is a constant.

Therefore, Eq. (A) can be expressed as

or 2 2 5/4{ ( ) tan } 2 [( ) tan ] ( )
cos

d dT dx
k L x dx L x C T T
dx dx

p a p a
a

È ˘- = - -Í ˙Î ˚

or
2

2 5/4

2

2
tan ( ) ( 2( )) ( )( )

cos

d T dT C
k L x L x L x T T

dxdx
a

a

Ï ¸
- + - - = - -Ì ˝

Ó ˛

or
2

2 5/4

2

2
( ) 2( ) ( )( ) 0

tan cos
f

d T dT C
L x L x L x T T

dx kdx a a
- - - - - - =
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 Substituting

(L – x) = y, – dx = dy and (T – T ) = q and dT = dq, we have

2
2 5/4

2

2
2 0

sin

d d C
y y y

dy kdx

q q
q

a
+ - =

 or 
2

5/4

2

2
2 0

k sin

d d C
y

dydx

q q
q

a
+ - =

 or 
2

5/4

2

2
( ) 2 ( ) 0

sin

d T dT C
L x T T

dx kdx
- - - - =

a
(Ans.)

(G) Error in Temperature Measurement

 A gas stream flows through a long duct. In order to estimate the gas temperature, 

two thermocouples are attached to a tube that is mounted normal to the duct wall. The tube is 250 

mm long with a perimeter of 50 mm and an area of cross section of 15 mm2. The location of the 

thermocouples measured from the duct wall is 125 mm and 250 mm with the corresponding temperatures 

measured being 390°C and 427°C. The thermal conductivity of the tube material is 240 W/m °C and the 

combined convection and radiation heat-transfer coefficient between the tube surface and the gas stream is 

12 W/m2°C. Neglecting heat loss from the exposed tube tip, determine the gas stream temperature and 

the base (tube wall) temperature.

Solution

Known Thermocouples measure temperatures at two locations along a tube projected from the wall 

of a duct carrying a hot gas stream.

Find Gas stream temperature, T  and the duct wall (base) temperature, Tb.

Assumptions (1) Steady operating conditions exist. (2) Adiabatic fin tip. (3) Uniform heat-transfer 

coefficient. (4) Constant thermal conductivity. (5) Negligible contact resistance.

Analysis Temperature distribution along the length of a fin with insulated end is given by

( ) cosh ( )

coshb

T x T m L x

T T mL

- -
=

-
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 The tube protruding from the duct wall can be treated as a fin with adiabatic end. Then

1 1( ) cosh ( )

coshb

T x T m L x

T T mL

- -
=

-
(A)

 and 2 2( ) cosh ( )

coshb

T x T m L x

T T mL

- -
=

-
(B)

 Fin parameter, m = 

1/2
2 3

2

12 W/m °C 50 mm 10 mm

1 m240 W/m°C 15 mmc

hP

kA

È ˘¥
= ¥Í ˙

¥Î ˚
 = 12.91 m–1

 and mL = (12.91 m–1) (0.25 m) = 3.2275

\ cosh mL = 12.628

x1 = 125 mm and x2 = L = 250 mm

cosh m (L – x1) = cosh {(12.91) (0.25 – 0.125)} = cosh (1.61375) = 2.6104

 Equations (A) and (B) can now be written as

390 2.6104
0.2067

12.628

427 1
0.0792

12.628

b

b

T

T T

T

T T

-
= =

-

-
= =

-

 Dividing one by the other, we have

390 0.2067
2.61

427 0.0792

T

T

-
= =

-

 or (427) (2.61) – 2.61 T = 390 – T

1.61 T  = (427 ¥ 2.61) – 390 

\ Gas temperature, T  = 450°C (Ans.)

 From Eq. (A):

390 450
0.2067

450bT

-
=

-

 Duct-wall (base) temperature,

Tb = 450 – 
(450 390)

0.2067

-
= 159.7°C (Ans.)

 Superheated steam at a mean temperature T  = 200°C flows through a pipe of 

D = 10 cm diameter. A brass pocket dips radially into the pipe with its closed end on the centre line, 

and the root of the pocket is at Tb = 140°C. The diameter of the pocket is d = 1.25 cm and its wall 

thickness is d = 1 mm. The thermal conductivity k for brass is 112 W/m K and it is estimated that the 

combined convection and radiation heat-transfer coefficient h for the pocket surface is 401 W/m2 K. 

Predict the thermometer reading TL.

 Assume that the thermometer reads the temperature of the bottom plate of the pocket, and that 

conduction in the axial direction through the thermometer and the surrounding oil is negligible compared 

with the conduction along the pocket wall. How can the error in temperature measurement be reduced?
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Solution

Known Thermometer pocket is provided in a pipe carrying superheated steam for temperature 

measurement.

Find Thermometer reading, TL (°C).

Assumptions (1) Steady operating conditions. (2) Constant properties and uniform convection coefficient. 

(3) One-dimensional conduction. (4) Adiabatic thermometer tip.

Analysis The temperature at the end of the pocket is given by putting x = L in the expression for 

temperature distribution with insulated tip.

( ) cosh ( )

coshb

T x T m L x

T T mL

- -
=

-

It follows that

cosh ( ) 1 60°C
( ) (140 200)°C

cosh cosh cosh
L b

m L L
T T T T

mL mL mL

- -
- = - = - =

The effective cross-sectional area to be used is approximately equal to pdd, and the 

circumference of the rod is pd. Hence,

1/21/2 1/2 2
1

1

401 W/m K
59.84 m

112 W/mK 0.001 m

cosh cosh(59.84 m 0.05 m) 9.99

h d h
m

k d k

mL

p

p d d
-

-

Ê ˆÊ ˆ Ê ˆ= = = =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¥ ¯

= ¥ =

\
60

6 K or 6°C
9.99

LT T
-

- = = - -

Hence, the thermometer reading is

200 6 194 CLT = - = ∞ (Ans.)

Comment The error in temperature measurement can be reduced by lagging the pipe to increase the 

wall (base) temperature Tb. The other option is to increase, the product (mL).

Fin parameter, m
h

kd

Ê ˆ
Á ˜Ë ¯

can be increased by using a thinner tube, or by using a metal of
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lower thermal conductivity. However if the thermal conductivity is reduced drastically, the

radial resistance to heat flow may increase to such an extent that the temperature distribution 

will no longer be one-dimensional.

Length, L may be increased by slanting the pocket and letting it project beyond the axis 

of the pipe as shown on the right by dotted line in the schematic.

Points To Ponder

● Fins are used to improve heat transfer by increasing the effective surface area.

● The temperature distribution in a fin is assumed to be one dimensional, i.e., along the length of the fin.

● For thin fins, the temperature drop across the fin is very small compared to the temperature drop along 

the fin. One-dimensional approximation for temperature distribution is valid in such cases.

● If the Biot number Bi, based on the cross-sectional dimensions of the fin, i.e., 
hR

k
 for a pin fin and 

2

ht

k
 for a straight rectangular fin, is less than 0.1, the temperature variation in the direction of its 

thickness is negligible.

● For mL > 2.65, the fin may be considered of infinite length.

● There are 4 options for the fin tip boundary condition: (1) Very long fin (T Æ T ), (2) Adiabatic 

tip 0
x L

dT

dx =

Ê ˆ
=Á ˜Ë ¯

, (3) Convective heat loss ( )L
x L

dT
k h T T
dx =

È ˘
- = -Í ˙
Î ˚

, (4) Specified tip temperature 

(T(x = L) = TL).

● A small value of mL corresponds to relatively short, thick fins with large thermal conductivity while 

larger values of mL mean thin, long fins with lower thermal conductivity.

● Knowledge of fin efficiency can be used to calculate the fin thermal resistance Rfin = 1/hhfinAfin.

● An actual fin with active tip (heat loss from the fin end) is equivalent to a longer, hypothetical fin 

with an insulated tip. The corrected fin length, Lc = L + (D/4) for a pin fin and Lc = L + (t/2) for a 

rectangular fin.

● The corrected length approximation is justified if (ht/k) or (hD/2k) £ 0.0625.

● The use of fins is justified if the fin effectiveness exceeds 5.

● The main considerations in the selection of fins for a given application are the available space, weight 

and cost besides the fluid properties and the pump work if forced convection is involved.

GLOSSARY of Key Terms

● Fin An extended surface used to effectively increase the heat transfer from 

a surface to the surrounding fluid.

● Fin effectiveness The ratio of heat transfer with fin to that which would be obtained 

without fin.

● Fin efficiency A ratio of the heat-transfer rate from the fin surface to the heat-transfer 

rate from an identical fin of infinite thermal conductivity.

● Fin resistance The ratio of the base-temperature difference to the total heat transfer 

rate.
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● Overall surface efficiency The ratio of total heat-transfer rate from the array of the fins and 

the unfinned surface to the maximum possible heat transfer rate if 

the whole surface (finned and unfinned) were maintained at the base 

temperature.

4.1

(1) Fins are equally effective irrespective of whether they are on the hot side or cold side of the 

the wall.

  Of these statements,

(a) 1 and 2 are correct. (b) 1 and 3 are correct.

(c) 2 and 4 are correct. (d) 2 and 3 are correct.

4.2
hA

kP
 is

(a) equal to one (b) greater than one

(c) less than one (d) greater than one but less than two

4.3 The parameter / cm hP kA=
maintained constant then

(b) The temperature drop along the length will be at a lower rate.

(c) The temperature drop along the length will be steeper.

(d) The parameter m

4.4

(d) will affect only the temperature distribution

4.5

  Which of the above statements are correct?

(a) 1, 2, and 3 (b) 1, 2, and 4 (c) 2, 3, and 4 (d) 1, 3, and 4

4.6 The effectiveness, ef
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(iii) Should always be greater than 1.

  Of these statements,

(a) only (i) is correct (b) only (i) and (ii) are correct

(c) only (i) and (iii) are correct (d) all are correct

4.7

(a) remains the same (b) becomes negligible

(c) decreases (d) increases

4.8

cross-sectional area of 2 cm2 and length of 1 cm exposed to an ambient of 40°C (with a surface heat-
2 °C) is given by

  (T – T ) = 3x2 – 5x + 6 where T is in °C and x is in cm. If the base temperature is 100°C then the heat 

(a) 6.8 W (b) 3.4 W (c) 1.7 W (d) 0.17 W

4.9

¥ 10–5, 8 ¥ 10–4, and 0.0343 respectively. The 

(a) Teflon, Stainless steel, Copper (b) Stainless steel, Teflon, Copper

(c) Copper, Teflon, Stainless steel (d) Copper, Stainless steel, Teflon

4.10 k = 400 W/m °C) is attached to a prime surface at 150°C 
2 °C the rate of 

(a) 21.5 W, 0.73 (b) 12.8 W, 0.325 (c) 15.7 W, 0.80 (d) 5.7 W, 0.933

4.11 2 2. The average heat-
2

heat transfer is:

(a) 300 W (b) 800 W (c) 1000 W (d) 1200 W

4.12

(a) 39 (b) 26 (c) 13 (d) 0.3

4.13 L protrudes from a surface held at temperature Tb greater than the ambient temperature 

T

dT/dx)x = L is

(a) Zero (b) L

b

T T

T T

-
-

(c) h(Tb – TL) (d) b LT T

L

-

4.14 From a metallic wall at 100°C, a metallic rod protrudes to the ambient air. The temperature at the tip 

will be minimum when the rod is made of:

(a) aluminium (b) steel (c) copper (d) silver

4.15

(a)
0.5

tanh

( / )

mL

hA kP
(b)

tanh mL

mL
(c)

tanh

mL

mL
(d)

1/2( / )

tanh

hA kP

mL

4.16

the most accurate measurement of temperature, the thermowell should be made of:

(a) Steel (b) Brass (c) Copper (d) Aluminium
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4.17

one of the following non-dimensional numbers decides this factor?

(a) Eckert number (b) Biot number (c) Fourier number (d) Peclet number

4.18 k = 100 W/m °C) of 6 mm diameter and 100 mm length exposed to 20°C air (h = 24 

W/m2

heat-transfer rate?

(a) 2.0 W (b) 20.0 W (c) 200 W (d) 2.4 kW

4.19

temperature should not be more than 60°C and the ambient air temperature is 20°C, the rate of heat 

(a) 3 W (b) 4 W (c) 5 W (d) 6 W

4.20 Two rods of metals A and B are positioned as shown below:

  kA,

kB), (CA, CB) (rA, rB) and (AA, AB

(a) A B

B A

k A

k A
= (b) A A

B B

k A

k A
= (c) /A

B A
A

k
A A

k
= (d)

2

A B

B A

k A

k A

Ê ˆ= Á ˜Ë ¯

4.21 Extended surfaces are used to increase the rate of heat transfer. When the convective heat transfer 

h = mk, an addition of extended surface will:

(a) Increase the rate of heat transfer.

(b) Decrease the rate of heat transfer.

(c) Not increase the rate of heat transfer.

4.22

(a) 92% (b) 78.5% (c) 88.2% (d) 98%

4.23 2 area and 6 mm thickness (k = 60 W/m 

temperature is 125°C and the ambient air temperature is 25°C. The rate of heat loss from the plate is

(a) 2275 W (b) 1600 W (c) 998 W (d) 4645 W

4.24 Which one of the following statements is correct?

(c) Fins must have small thickness for better heat dissipation.

4.25

(a) k is small and h is large (b) k is large and h is also large

(c) k is small and h is also small (d) k is large and h is small
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Answers

Multiple-Choice Questions

4.1 (d) 4.2 (c) 4.3 (c) 4.4 (a) 4.5 (d) 4.6 (d)

4.7 (c) 4.8 (c) 4.9 (d) 4.10 (a) 4.11 (a) 4.12 (b)

4.13 (a) 4.14 (b) 4.15 (b) 4.16 (a) 4.17 (b) 4.18 (a)

4.19 (d) 4.20 (a) 4.21 (c) 4.22 (a) 4.23 (d) 4.24 (c)

4.25 (d)

4.1

4.2

4.3 In the analysis of extended-surface heat transfer, under what conditions will the assumption of one-

dimensional conduction be a good approximation?

4.4

4.5

expression for heat dissipation by integrating the convective losses along its surface.

4.6

length Lc is used. Give the expression for Lc and the condition for its applicability.

4.7 Consider three

highest?

4.8

4.9

differ from the ? What is the range of their possible values?

4.10

4.11

rate?

4.12

4.13 with zero length) is 

unity (i.e., 100%).

4.14 Heat is being transferred across a metal wall from a hot gas to a cold liquid. The gas-side heat-transfer 
2 2 K. It is desired to increase the 

why?

4.15

4.16

4.17 Will an increase in the (a) height (or length), (b) thickness (or diameter), (c) thermal conductivity, and 

effectiveness and ?

4.18
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4.19

4.20

4.21

adhered to the base surface. Which alternative would you prefer and why?

4.22 What is  and what are its units?

4.23 What is the difference between the overall effectiveness

4.24

4.25 , and (b) the .

4.26 A thin rod of length L has its two ends connected to two reservoirs at temperatures T1 and T2

respectively. The rod has the perimeter P and cross-sectional area A. The rod loses heat to the 

environment at the temperature T

the environment is h. Assuming the thermal conductivity of the material of the rod to be constant k,

derive an expression for (a) the temperature distribution in the rod, and (b) the heat transfer from the 

rod to the environment.

4.27 b, thermal 

conductivity k A of the wall, the bare 

1b
A  and 

2b
A

1f
A

and
2f

A
1f

h  and 
2f

h h1 and h2.

4.28 Discuss the estimation of error in temperature measurement with the help of a thermometer well. 

4.29

PRACTICE PROBLEMS

(A) Very Long Fin

4.1 Estimate the energy input required to solder together two very long pieces of bare copper wire 1.6-

mm diameter with a solder that melts at 196°C. The wires are positioned horizontally in air at 25 °C 
2 K. The thermal conductivity of the 

wire alloy is 337 W/m K. [1.30 W]

4.2 The end of a very long cylindrical stainless steel rod is attached to a heated wall and its surface is in 

heat removal increase? (b) If the rod were made of aluminium, by what percentage would the heat 

transfer rate change from that of the stainless steel? ksteel = 16.17 W/m K, kaluminium = 204.7 W/m K

[(a) 300% (b) 1166%]

(B) Fins of Finite Length

4.3

is at 35°C, how much power do they dissipate? Take h = 8 W/m2 K and k = 200 W/m K. [0.46 W]



312 Heat and Mass Transfer

4.4 A saucepan of 20-mm diameter is exposed to 99°C temperature during a cooking process. The 

and the ambient air is 8 W/m2 K. The thermal conductivity of the handle material is 17 W/m K. The 

temperature in the last 10-cm of the handle used for hand grip should not exceed 35°C. Assuming 

[32 cm]

4.5 An electronic semi-conductor device generates 16 ¥ 10–2 kJ/h of heat of heat. To keep the surface 

temperature at an upper safe limit of 75 °C, it is desired that the generated heat should be dissipated 

o 2 h °C. Neglect the heat 

[4]

(C) Number of Fins on Plane Wall

4.6 Circular cross-section studs of radius 12 mm, length 90 mm, and thermal conductivity 25 W/m K are 

2 K. Determine the rate of heat dissipation per unit area of the studded 

surfaces. [77.3 kW /m2]

4.7 In order to reduce the thermal resistance at the surface of a vertical plane wall (50 ¥ 50 cm), 100 pin 

2 K, 

calculate the decrease in the thermal resistance. Also calculate the consequent increase in the heat 

transfer rate from the wall if it is maintained at a temperature of 200 °C and the surroundings are at 

30 oC. Assume heat transfer from the tip is negligible. [731.5 W]

(D) Bar with Two Ends At Specified Temperatures

4.8 Ac, length L, perimeter P, thermal conductivity k is 

qo at the end where x = 0 and at qL at the end 

where x = L h. Derive the following 

positive from x = 0 to x = L):

cos cos

sin sinh

o L o L
o c L c

hmL hmL
Q mkA Q mkA

hmL mL

q q q q- -
= =

2

[(a) 14.6 W, –3.15 W (b) 17.75 W]

4.9 A carbon steel rod (k = 56.7 W/m °C), 5-cm diameter, is installed as a structural support between two 

surfaces that are at a temperature of 200 °C. The length of the rod exposed to 25 °C air is 1.2 m long. 
2 °C. Determine the 

the location and magnitude of minimum temperature. [253.3 W, 0.6 m, 32.056°C]

4.10 The top of a 30-cm I-beam made of steel is maintained at a temperature of 350°C, while the bottom 

is at 150°C. The thickness of the web is 1.25 cm. The thermal conductivity of steel is 52 W/m K and 
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2°C.

Determine the temperature distribution along the web from top to bottom and plot the results.

x (cm) T(°C)

5 350.0

10 337.0

15 321.2

20 300.0

25 268.8

30 221.8

35 150.0

4.11 Two vessels are kept at 132°C and 49°C respectively, in a room at an air temperature of 19°C. The 

vessels are connected by 4 non-insulated bolts, each 1.27 cm in diameter, and 30.48 cm long. The 

between the rod and the ambient air is 5.68 W/m2 °C. Calculate how much heat energy per hour 

is conducted away from the warmer vessel and how much is supplied to the colder vessel by the 

connecting rods? [54.0 kJ/h, 0.0 kJ/h]

(E) Circumferential (Annular) Fins

4.12

on a brass tube (k = 110 W/m °C) with inner and outer radii of 3-mm and 3.5-mm. Hot water at 90°C 
2

2 °C. Calculate 

the rate of heat transfer per metre tube length. [212 W]

4.13 To increase the heat dissipation from a 3-cm-OD

k

diameter of 6-cm. The tube surface temperature is 200°C and the ambient air temperature is 35°C. 
2

[76.3 W, 73.3 W]

(F) Triangular Fins

4.14 k = 18.9 W/m K) is attached to a 

is exposed to a convective environment at 90°C with associated heat transfer 
2 [455 W]

4.15 Derive a differential equation for the temperature distribution in a straight 

L and base width t. For convenience take the 

coordinate axis as shown in the sketch below and assume one-dimensional 

results in dimensionless coordinates

( )
( )

( )

xÈ ˘
Í ˙- = =
Í ˙Î ˚
(a) + –

2 22

2 2

2 4 2
0 (b)

2

0

0

hL L t I Kd T dT
T Tè

dxdx kt I K
x
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(G) Error In Temperature Measurement

4.16

k = 58 W/m K), 

1.0-mm thick. The temperature recorded by the well is 100°C while the pipe wall temperature is 
2 K. Estimate the true 

temperature of air. [104.78°C]

4.17

pipe. The thickness of well is 2.0 mm and it is 150-mm-long. The temperature recorded by mercury 

thermometer dipped in well is 80°C, whereas the pipe wall temperature is 40°C. Estimate the 

conductance outside wall = 30 W/m2 K and conductivity of well material = 60 W/m K.

[89°C, 10.2%]

4.18 Air temperature in the receiver of a compressor unit is measured with a mercury thermometer placed 

of the wall of the well is 1 mm. The thermometer shows the temperature at the end of the well which 

is lower than the air temperature owing to the transfer of heat along the well. Find the error in the 

temperature measurement if the thermometer indicates a temperature of 100°C. The temperature 

at the base of the well is 50°C. Take the thermal conductivity of the metal as 50 W/m K and the 
2 K. [+ 4.8°C]



Unsteady-State 
Heat Conduction

5.1 ❏ INTRODUCTION

In the earlier chapters, we discussed steady-state heat conduction in solids in which temperature within 

the body varied with position but not with time. In this chapter, we will focus our attention on time-

dependent heat-transfer problems which are typically encountered when the system boundary conditions 

are changed. In such cases of unsteady or transient conduction, temperature variation is a function of both 

time and location. When the surface temperature of a body is altered, the temperature at each point in the 

body will also start changing. It takes quite some time before the steady state temperature distribution is 

attained and the temperature no longer changes with the lapse of time. All the process equipment used 

in engineering practice, such as boilers, heat exchangers, regenerators, etc., have to pass through an 

unsteady state. Eventually, steady state is reached after sufficient time has passed.

Solutions to unsteady-state problems are often difficult because of the additional independent variable 

of time, i.e., T = f (x, y, z, t). In the Cartesian coordinate system, the transient heat-conduction equation 

with constant thermal conductivity is

rÊ ˆ∂ ∂ ∂ ∂
+ + + =Á ˜ ∂∂ ∂ ∂Ë ¯

2 2 2

2 2 2

pCT T T q T

k k tx y z
(5.1)

In one-dimensional transient problems, without heat generation, T = f (x, t) and the governing differential 

equation is given by

a
a r

∂ ∂
= =

∂

2

2

1
where

p

T T k

t Cdx
(5.2)

The solution of this equation requires three conditions to be satisfied: Two boundary conditions 

(thermal boundary conditions at the surfaces of the body) and One initial condition (initial temperature 

distribution within the body).

Many methods are available for determining the temperature distribution in a solid during a transient

process.

●   Lumped-Capacity Method Simpler approach using the lumped-capacity model in which internal

temperature gradients are ignored and temperature is a function of time alone.

●   Analytical Methods When internal temperature gradients cannot be neglected, analytical solutions 

are preferred. These techniques are, however, quite complex and involved, especially pertaining to 

two-and three-dimensional transient conduction problems.
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●  Graphical Techniques The transient temperature charts for simple geometries like a plane

wall, a long cylinder, a sphere and a semi-infinite medium are available. The product solution for 

multidimensional configurations can also be obtained.

●  Numerical Techniques These include finite difference method and finite element method. Realistic 

boundary conditions can be handled easily using numerical methods.

5.2 ❏ TYPES AND APPLICATIONS OF TRANSIENT CONDUCTION

Transient conduction may be broadly classified into two categories: (a) periodic, and (b) non-periodic

Periodic In periodic heat-flow systems, the temperature within the system or body goes through periodic

changes which are cyclic in nature and may be regular or irregular. Periodic temperature changes at a 

surface occur in many applications, for example, (1) Annual or diurnal (daily) temperature variation of 

buildings. (2) The ground exposed to solar radiation. (3) Heat flow through the cylinder wall of an internal 

combustion engine. (4) Cyclic temperature fluctuation in the wall of a furnace whose heating element is 

turned on and off at regular intervals.

Non-Periodic In the non-periodic heat-flow systems, the temperature at any location within the system

varies with time in a non-linear fashion. Such effects are manifest in several engineering applications 

such as (1) Heat treatment of metals, (2) Electric irons, (3) Boiler tubes, (4) Cooling and freezing of 

perishable foodstuff, (5) Rocket nozzles, (6) Space re-entry vehicles, (7) Nuclear reactor components, and 

(8) Other industrial heating or cooling processes.

5.3 ❏

In many cases, the temperature gradients within the solid are rather negligibly small (i.e., the internal 

resistance to conduction is negligible). Heat is transferred by conduction from within the body to the 

surface and then, from the surface to the medium by convection. When the body is very small (of slender 

shape) or when the thermal conductivity of the material of the body is very large, temperature gradients 

within the body will be negligibly small. In such a case, the temperature within the body is only a function 

of time and is independent of spatial coordinates. The entire body acts as a lump and the temperatures 

at all points within the body decrease (or increase if the object is being heated) uniformly. Heat-transfer

process from the body, in this case, is controlled by the convection resistance at the surface rather than 

by the conduction resistance in the solid. Such an analysis, where the internal resistance of the body for 

heat conduction is negligible is known as lumped-capacity analysis.

The analysis of lumped systems in which the temperature varies with time only and remains uniform 

(spatially isothermal) throughout at any time provides great convenience and simplification in several cases 

of transient heat conduction problems with little sacrifice in accuracy. Hence, it would be appropriate to 

establish the suitable criterion for the applicability of this analysis.

To fix the criterion for which lumped-system analysis is applicable, let us define Biot number, in 

general, as follows: = ch L
Bi

k
where, h is the heat-transfer coefficient between the solid surface and the 

surroundings, k is the thermal conductivity of the solid, and L
c
 is a characteristic length defined as the 

ratio of the volume of the body to its surface area, –V/ sA .
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Table 5.1 gives the characteristic length for some well-known geometries.

Table 5.1

Geometry Schematic
Characteristic length, 

–V
c

s

L
A

=

Large plate of thickness, t –V  = Lbt, A
s
 = 2 Lb

L
c
 = Half-thickness, t/2

Cube of side, a –V  = a3

A
s
 = 6a2

L
c
 = a/6

Rectangular parallelepiped
= =

+ +
1 2 3

1 2 2 3 1 3

–V

2[ ]
c

s

L L L
L

A L L L L L L

Cylinder
p

p p

=

= +

=
+

2

2

–V

2 2

2( )

s

c

R L

A R R L

R L
L

R L

Long cylinder (R < < L)
p

p

=
=
=

2–V

2

/2
s

c

R L

A R L

L R

Thin shell –V  = (p D t), A
s
 = 2pDL

L
c
 = Half-thickness, t/2

Sphere
p p= =

=

3 24
–V , 4

3
/3

s

c

R A R

L R

Right circular cone
p

p

=

= +

=
+

2

2 2

2 2

1
–V

3
1

(2 )
2

3

s

c

R H

A R R H

RH
L

R H

contd.
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Triangle Ê ˆ= Á ˜Ë ¯

Ê ˆ= ¥ + ¥Á ˜Ë ¯
=

1
–V

2

1
2 ( ) 2

2

–V/

s

c s

ab L

A ab cL

L A

With this definition of Bi and L
c
, for solids such as a plane wall (infinite slab), a long cylinder and 

a sphere, it is found that the transient temperature distribution within the solid at any instant is uniform, 

with the error being less than about 5%, if the following criterion is satisfied:

= < 0.1ch L
Bi

k

In other words, if the conduction resistance of the body is less than 10% of the convective resistance 

at its surface, the temperature distribution within the body will be uniform within an error of 5%, during 

transient conditions.

Biot number is a measure of the temperature drop in the solid relative to the temperature drop in the 

convective layer. It is also interpreted as the ratio of conduction resistance in the solid to the convection 

resistance at its surface. This is precisely the criterion we are looking for. It suggests that one can assume 

a uniform temperature distribution within the solid if Bi << 1.

5.4 ❏  CRITERION FOR NEGLECTING INTERNAL TEMPERATURE 
GRADIENTS

The governing differential equation for one-dimensional transient heat conduction without internal heat 

generation is given by

a

∂ ∂
=

∂∂

2

2

1T T

tx
(5.3)

where T = f (x, t) and T = T
i
, at t = 0

Let, q(x, t) = q = (T – T )

Then,
q q

a
∂ ∂

=
∂∂

2

2 tx
(5.4)

Assuming the product solution as, q (x, t) = q = F (x) G (t)  (5.5)

Substituting in Eq. (5.3), we get

a
a

¢¢ ¢
= =¢¢ ¢

( ) 1 ( )
( ) ( ) ( ) ( ) or

( ) ( )

F x G t
F x G t F x G t

F x G t

Introducing a separation constant l as

l
a

¢¢ ¢
= = ± 2( ) 1 ( )

( ) ( )

F x G t

F x G t
(a separation constant)

contd.
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The function G(t) must decay exponentially with time, therefore, for l2 < 0 (i.e., –l2), the solutions are

l l

al

= +

= -
1 2

2
3

( ) cos( ) sin( )

( ) exp( )

F x C x C x

G t C t

Substituting, these solutions in Eq. (5.5), we have

q l l a l= + - 2
1 2 3{ cos( ) sin( )}[ exp( )]C x C x C t

Introducing, new constants A and B as

A = C
1
C

3
 and B = C

2
C

3
, we have

q l l al= + - 2{ cos( ) sin ( )} exp( )A x B x t (5.6)

Three unknowns, A, B, and l are determined from the following boundary conditions:

At
q

= =0, 0
d

x
dx

At the surfaces of the wall, i.e., at x = L,
q

q =- = ( )x L

d
k h

dx
Differentiating Eq. (5.6) with respect to x, we get

q
l l l al= - + - 2{ sin ( ) cos ( )}( )exp( )

d
A x B x t

dx

Applying the first boundary condition, at x = 0, we have

qd

dx
 = 0 = {–A sin l(0) + B cos l(0) + B cos l(0)} (l) exp (–a l2t)

\ B = 0

Equation (5.6) reduces to

q = {A cos (l(x)} exp (–a l2t)

Applying the second boundary condition at x = L, one has

or

l l al l a l

l l l l
l l

- - - = -

= = = fi =

2 2{[ sin( )]( )exp( ) { cos( ) exp ( )}

cot ( ) cot
( / )

k A L t h A L t

k L L L
L L

h h L k Bi Bi
(5.7)

which is a transcendental equation with an infinite number of roots or eigenvalues. For a given value of 

the Biot number, the eigenvalues (n = 1, 2, 3…) can be calculated.

The solution is in the following form of infinite series:

q l a l
=

= -Â 2

1

{ cos } exp( )n n n

n

A x t

At the initial condition,

t = 0, q l
=

= Â
1

{ cos( )}i n n

n

A x

For B = 1, at x = L, i.e., at the boundary surface,

q
s
 = A

1
 cos(l

1
L)
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At the centre plane, i.e., at x = 0, q
0
 = A

1
.

Hence, the dimensionless temperature distribution becomes, 
q

l
q

= 1
0

cos ( )s L

For internal temperature gradients within 5%, i.e., the temperatures within the solid varying less than 5 

per cent (negligible), one gets

q q

q q
≥ - ≥s

0 0

(1 0.05) or 0.95s

or cos (l
1
L) ≥ 0.95 or l

1
L ≥ 0.3175 radians

Substituting in Eq (5.7), we have

= =
0.3175

cot(0.3175) or 0.1Bi
Bi

(5.8)

Thus, when the Biot number is less than 0.1, the internal temperature gradients within the solid can be 

ignored. The temperature inside the solid is then essentially the same at all positions and changes only 

with time.

5.5 ❏  TRANSIENT CONDUCTION ANALYSIS WITH NEGLIGIBLE 
INTERNAL TEMPERATURE GRADIENTS

Consider an arbitrarily shaped body that is 

initially at a uniform high temperature T
i
, as 

shown in Figure 5.1.

The body is suddenly immersed in an 

ambient cold fluid at temperature T .

All the mass within the solid body is 

lumped together and assumed to be at the 

same temperature. The temperature of the 

body varies with time but not with location.

Hence, at any moment, the body is spatially

isothermal.

With this approximation, we can now apply 

the energy balance. In the rate form,
    

0 0
in out gen st out stE E E E E E- + = fi = -

We assume the entire mass of the body (including its surface) is at a uniform temperature T(t) or T at

any instant. Convective heat transfer is out ( )sE hA T T= -  and the rate of decrease of internal energy is 

st p

dT
E mC

dt
- = -

It follows that

s p

dT
hA T T mC

dt
( )- = - (5.9)

where T  is the temperature of the fluid.
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To solve this differential equation, we separate the variables so that

( )

s

p

hAdT
dt

T T mC
= -

-

Integrating from an initial temperature, T
i
, at t = 0 to a final state T(t), at time t, we have

or

( ) t

0

( )
or ln ( 0)

T

( )
exp

i

T t

s s s

p i p pT

s

i p

hA hA hAT t TdT
dt t t

T T mC T mC mC

hAT t T
t

T T mC

È ˘-
= - = - - = -Í ˙- -Î ˚

Ê ˆ-
= -Á ˜- Ë ¯

Ú Ú

Noting that m = r –V  and L
c
 = –V /A

s
, we get

( )
exp exp

–V

s

i p p c

hAT t T h
t t

T T C C Lr r

È ˘ È ˘- -
= - =Í ˙ Í ˙

- Í ˙ Í ˙Î ˚ Î ˚
(5.10)

Let, or
–V

s

p p c

hA h
a

C C Lr r
∫

Then,

( )( ) at

i i

T t Tt
e

T T

q

q
--

= =
-

(5.11)

Figure 5.2 illustrates this exponential behaviour when the ratio q(t)/q
i
 is plotted against time t for different 

values of a.

q(t)/q
i
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Note that both sides of Eq. (5.11) are non-dimensional. This equation is applicable to either a hot 

solid immersed in a cold fluid or to a cold solid immersed in a hot fluid. Both q(t) and q
i
 are positive

if the body is cooled and negative if the body is heated. The ratio q(t)/q
i
 is however always a positive 

dimensionless number in the range of 0 to 1.

Solving for the time, t, to reach a specified temperature T(t), we have from Eq. (5.11),

~

( )
ln 0.1

p c

i

C L T t T
t Bi

h T T

r È ˘-
= - <Í ˙-Î ˚

(5.12)

Furthermore, Eq. (5.12) can be rearranged to give the body temperature after an elapsed time, t, as

~
(t) ( )exp 0.1i

p c

h
T T T t T Bi

C Lr

È ˘-
= - + <Í ˙

Í ˙Î ˚
(5.13)

●  Thermal Time Constant and Fourier Number

The quantity (rC
p
L

c
/h) or 1/a is called the thermal time constant of the system, denoted by t and it 

controls the transient behaviour of the body, Eq. (5.11) can now be expressed as

( )
exp( / )

i i

T Tt
t

T T

q
t

q

-
= = -

-
(5.14)

As shown in Fig. 5.3, in both heating and cooling, we find that initially the temperature changes steeply 

and then later approaches the fluid temperature asymptotically. After about five time constants, the 

body temperature will have essentially reached a steady-state value. If we multiply the numerator and 

denominator of the exponent in Eq. (5.13) by (L
c
k) and re-arrange the variables, m  we get
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2

c c

p c c p c

Bi Fo

L k hLht k t

C L L k k C Lr r

È ˘È ˘ È ˘= Í ˙Í ˙ Í ˙Î ˚ Í ˙Î ˚ Î ˚
(5.15)

The first factor on the right-hand side is of course the non-dimensional Biot number, Bi = hL
c
/k. Physically, 

it represents a ratio of internal (conduction) and external (convection) thermal resistances. The second

factor is also non-dimensional and is called the Fourier number,
cFo t L
2/a=  where a is the thermal

diffusivity of the material. Physically, the Fourier number represents a ratio of the rate at which heat is 

conducted across a body to the rate at which heat is stored within the body.

We can now rewrite Eq. (5.12) as

or

( )
exp( )

( )
ln

i

i

T t T
BiFo

T T

T t T
BiFo

T T

-
= -

-

Ï ¸-
= -Ì ˝-Ó ˛

(5.16)

Thus, the dimensionless temperature can be expressed in terms of the product of two dimensionless 

numbers, Bi and Fo.

Equation (5.15) is represented graphically in Figure 5.4.
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5.6 ❏

CUMULATIVE

Instantaneous heat-transfer rate at any time t is given by

But,

[ ( ) ]

( )
exp

–V

s

s

i p

Q hA T t T

h A tT t T

T T Cr

= -

È ˘-
= -Í ˙

- Í ˙Î ˚

Therefore, ( )exp s
s i

p

hA
Q hA T T t

C Vr

È ˘= - -Í ˙
Î ˚

or ( )exp( / )s iQ hA T T t t= - - (5.17)

or ( ) exp[ ( )( )]iQ hA T T Bi Fo= - - (5.18)

In some situations, the change in internal energy DU of the system is important. This simply equals the 

quantity of heat transferred Q during a time interval (0 to t).

0 0

[ ( ) ]

t t

sQ Qdt hA T t T dt= = -Ú Ú

But, T(t) – T  = (T
i
 – T ) exp–

–V

s

p

hA
t

Cr

È ˘
-Í ˙

Í ˙Î ˚
and

–Vp

s

C

hA

r
t =

Simplification and integration gives

\
t

/ /
0

0

/ 0

( ) e ( )( )[ ]

( )[ ] ( )[1 exp( / )]

t t t
s i s i

t
s i s i

Q hA T T dt hA T T e

hA T T e e hA T T t

t t

t

t

t t t

- -

-

= - = - -

= - - - = - - -

Ú

or –V ( )[1 exp( / )]p iQ C T T tr t= - - - (5.19)

or p iQ C T Tmax
–V[1 exp( / )]( )r t (5.20)

If time t is allowed to go to infinity ( ), we obtain a situation corresponding to steady state. Then the 

cumulative heat transfer or total change in the internal energy of the lumped parameter system that the 

body would experience in going from the initial temperature T
i
 to the temperature T  of the environment 

in which it is placed will be maximum and is given by substituting, t = in Eq. (5.20).

max
–V[1 exp( / )]( )p iQ C T Tr t [since e– /t = 0]

With –V mr = , we have

max ( )p iQ mC T T= -   (J) (5.21)
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5.7 ❏ ELECTRICAL ANALOGY: THE RC CIRCUIT

The transient behaviour of a lumped-capacity solid is analogous to the voltage decay which occurs when 

a capacitor is discharged through a resistor in an electrical RC circuit. The process can thus be represented 

by the equivalent thermal circuit shown in Figure 5.5. With the switch is closed, the capacitor is initially 

charged to the temperature T
i
. When the switch is suddenly opened, the capacitor discharges, through the 

thermal resistor, the energy that is stored in the solid. As a result, the temperature of the solid drops or 

decays with time.

The thermal time constant is analogous to electrical time constant, RC and can be expressed as

1
–( V)p t t

s

C R C
hA

t r
Ê ˆ= =Á ˜Ë ¯

 (s) (5.22)

where R
t
 represents the thermal resistance of the solid and C

t
 is the lumped thermal capacity (capacitance)

of the solid. Any increase either in R
t
 or C

t
 will increase the time constant which will cause a solid to 

respond slowly to changes in the thermal environment.

5.8 ❏ TEMPERATURE RESPONSE OF A THERMOCOUPLE

One of the applications of the lumped-capacity model is in the case of measurement of temperature by a 

thermometer or a thermocouple. It is very important that the thermocouple indicates the source temperature 

as quickly as possible. If the thermocouple is measuring unsteady temperatures then, it should follow the 

temperature changes at a rate faster than the rate of temperature change. The temperature response of 

a thermocouple (or thermometer) is defined as the time required for it to attain the source temperature 

after being exposed to it.
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Let us recall that

( )
exp

–V

s

i i p

hA tT t T

T T C

q

q r

Ê ˆ--
= = Á ˜- Ë ¯

(if Bi < 0.1)

The parameter group (rC
p

–V )/(hA
s
) has dimensions of time and can be interpreted as time constant, t.

At t = t, i.e., at a time interval of one time constant, we have

1( )
0.368

i

T t T
e

T T

--
= =

-
(5.23)

or 1 1 – 0.368 0.632i

i i

T T T T

T T T T

- -
= - = =

- -

The body has an excess temperature at t = t which is only 1/e of what it was at t = 0. This can be 

used as a measure of response time of the body to the changes in temperature of its environment. From

Eq. (5.24), it is clear that after an interval of time equal to one time constant of the given temperature 

measurement device, the temperature difference between the body (thermocouple) and the source would 

be 36.8% of the initial temperature difference, i.e. the temperature difference would be reduced by 63.2% 

(see Figure 5.3).

The time required by a thermocouple to attain 63.2% of the value of initial temperature difference is 

called thermal time constant and is indicative of its sensitivity.

The ratio t/t can be seen as

Capacity for convection at the surface

Thermal capacity of the body

s

p

hA tt

C Vt r
= = (5.24)

For satisfactory response, the response time should obviously be as small as possible. Usually, it is 

recommended that reading of the thermocouple should be taken after a time equal to about four time 

constants (4t) has elapsed. The time constant of a thermocouple is usually maintained between 0.04 to 

2.5 s.

For rapid response, the term (hAt)/(rC
p

–V ) or t/t should be large enough so that the exponential term 

will reach zero faster. The exponential decay of (excess) temperature can be hastened and the sensitivity 

of the instrument increased by:

Increasing (A
s
/ –V ) or (pD2/(pD3/6), i.e., (6/D), i.e., decrease the wire diameter.

Decreasing density and specific heat.

Increasing the value of the heat-transfer coefficient h.

5.9 ❏ MIXED BOUNDARY CONDITION

Consider a slab of thickness L, initially at a uniform 

temperature T
i
. Heat is supplied to the slab from one of 

its boundary surfaces at a constant and uniform heat flux 

q (W/m2). Heat is dissipated by convection from the other 

boundary surface into a surrounding medium at a uniform 

temperature T  with a heat-transfer coefficient h. Figure 5.6 

shows the geometry and the boundary conditions for the 

problem.
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Applying energy balance, we have

0

or

in out gen st

–V ( )
( ( ) )

( ( ) )( )
0

– –V V

p

p p

E E E E

C dT t
qA hA T t T

dt

hA T t TdT t qA

dt C C

r

r r

- + =

- - =

-
+ - = (5.25)

Substituting q ∫ T(t) – T

i.e.,
( )

,
–V p

d dT t hA
a

dt dt C

q

r
= ∫

and
–V p

qA
b

Cr
∫

Equation (5.26) then becomes 0
d

a b
dt

q
q+ - =

Now, let 
b

a
q q∫ -¢ , i.e., aq ¢ = aq – b

Then,
d d

dt dt

q q¢
=

and 0
d

a
dt

q
q

¢
+ =¢ (5.26)

Separating the variables and integrating from t = 0 to t = t, (and q ¢ = q ¢, to q ¢ = q ¢), we get

exp( )
i

at
q

q

¢
= -

¢
(5.27)

Substituting now for q ¢ and q,

( ( ) ) ( / )
exp( )

( ) ( / )i

T t T b a
at

T T b a

- -
= -

- -
(5.28)

Dividing the numerator and denominator of the left-hand side by (T
i
 – T ), we have

or

( ) ( / )

exp(– )
( / )

1

( ) ( / ) ( / )
exp( ) 1

i i

i

i i i

T t T b a

T T T T
at

b a

T T

T t T b a b a
at

T T T T T T

-
-

- -
=

-
-

- È ˘= + - ¥ -Í ˙- - -Î ˚

or
( ) ( / )

exp( ) [1 exp( )]
i i

T t T b a
at at

T T T T

-
= - + - -

- -
(5.29)
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and, also from Eq. (5.28),

( ) ( / )1
ln

( / )i

T t T b a
t

a T T b a

È ˘- --
= Í ˙- -Î ˚

(5.30)

Note that for t = , Eq. (5.30) reduces to

( )
b q

T t T T
a h

= + = + (5.31)

Equation (5.30) gives the steady-state temperature in the slab.

5.10 ❏  TRANSIENT HEAT CONDUCTION IN LARGE PLANE WALLS, 
LONG CYLINDERS, AND SPHERES WITH CONVECTIVE 
BOUNDARY CONDITIONS Bi

There are many situations when the temperature gradients in the solid are not negligible and the lumped-

capacity analysis is no longer applicable. The analysis of heat-conduction problems in such cases involves 

temperature distribution within the solid as a function of both position and time. To determine heat-flow

rate and temperature distribution in the case of simple and common geometries like a plane wall (slab),

a long cylinder, and a sphere for Bi greater than 0.1, there are two options-analytical and chart solutions.

5.10.1 ● Analytical Solution of One-dimensional Transient Conduction Problem

The analysis of transient temperature distributions in bodies in which the internal temperature gradients 

cannot be neglected becomes much more complex because now the temperature is a function of both 

space and time.

Let us now consider the general case where the conduction and convection resistances are of comparable 

magnitude with Bi > 0.1.

Consider a plane wall of thickness 2L, a long cylinder of radius r
o
, and a sphere of radius r

o
, initially 

at a uniform temperature T
i
, as shown in Figure 5.7. At time t = 0, each geometry is placed in an ambient 

fluid which is at a constant temperature T  and placed in it for t > 0. Heat transfer by convection takes 

place between the body and its ambient with a uniform and constant heat transfer coefficient h. In all 

three cases, there is a geometric and thermal symmetry. The plane wall is symmetrical about its midplane

(x = 0), the cylinder is symmetrical about its centreline (r = 0), and the sphere is symmetrical about its 

centre (r = 0). Radiation heat transfer between the body and its surroundings is neglected or its effect is 

included in the convection heat-transfer coefficient h.
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5.10.2 ● Plane Wall-Analytical Solution

Consider a large plane wall of thickness 2L in the x-direction which extends infinitely in the y- and 

z-directions. Figure 5.8 shows a plane wall with convective boundary conditions.

i
 > T

The wall has uniform and constant convective heat transfer coefficient on both surfaces (at x = L and 

at x = –L) and the temperature inside the slab is uniform at all locations at T
i

before the plate is brought 

into convective contact with the surrounding fluid maintained at constant temperature, T .

Initial condition: (t £ 0)

T = T
i
   –L £ x £ L (5.32)

Boundary condition: (t > 0)

( ) ats

T
kA hA T T x L

x

∂
- = - =

∂

Such conditions result in thermal and geometric symmetry about the centreline of the wall. The 

temperature profile has a horizontal slope at the centreline (i.e., dT/dx = 0). Since dT/dx = 0 the heat-

transfer rate is zero at x = 0. Temperature-wise, we will get identical result for a wall with thickness L

but insulated on one face with a convective heat transfer on the other face.

We start with the general three-dimensional heat conduction equation in Cartesian coordinates and 

proceed as follows:

2 2 2

2 2 2

1T T T q T

k tx y z a

∂ ∂ ∂ ∂
+ + + =

∂∂ ∂ ∂
(5.33)

Since, there is no internal heat generation, / 0q k = . Also, the temperature does not vary in the y or z

directions, giving 
2 2

2 2
0

T T

y z

∂ ∂
= =

∂ ∂
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The appropriate form of the differential equation becomes

2

2

1T T

tx a

∂ ∂
=

∂∂
(5.34)

Due to symmetry, we can only consider the region 0 £ x £ L (For –L £ x £ 0, the transient temperature 

response is identical).

It is convenient to transform the governing differential equation in the dimensionless form.

Let us define a dimensionless space variable X = x/L and dimensionless temperature.

q(x, t) = [T(x, t) – T ]/[T
i
 – T ]

We note that, 
( / ) i

L T

X x L T T x

q q∂ ∂ ∂
= =

∂ ∂ - ∂

2 2 2

2 2

1
and

i i

L T T

T T t T T tX x

q q∂ ∂ ∂ ∂
= =

- ∂ - ∂∂ ∂

Substituting into Eqs. (5.31) and (5.33) and rearranging, one gets

or
2 2

2

(1, )
and (1, )

L t hL
t

t X kX

q q q
q

a

∂ ∂ ∂
= =

∂ ∂∂
Therefore, the proper form of the dimensionless time is Fo = at/L2, which is called the Fourier number

Fo, and we know that Bi = 
hL

k
 is the Biot number. The mathematical formulation of the one-dimensional 

transient heat conduction problem in a plane wall can then be expressed in the non-dimensionalized form as

Dimensionless differential equation:
2

2 FoX

q q∂ ∂
=

∂∂
(5.35)

Dimensionless boundary conditions:
(0, ) (1, )

0 and (1, )
Fo Fo

Bi Fo
X X

q q
q

∂ ∂
= = -

∂ ∂
(5.36)

Dimensionless initial condition: ( , 0) 1Xq = (5.37)

where

i

T x t T
X Fo

T T

( , )
( , )q

-
=

-
Dimensionless temperature

x
X

L
= Dimensionless coordinate (distance from the centre)

hL
Bi

k
= Dimensionless heat-transfer coefficient (Biot number)

2

t
Fo

L

a
= Dimensionless time (Fourier number)

Non-dimensionalisation reduces the number of independent variables and parameters from 8 to 3, i.e., 

from x, L, t, k, a, h, T
i
, and T  to just X, Bi, and Fo. The functional relationship is now given by

( , , )f X Bi Foq = (5.38)
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The temperature-time history thus depends on three dimensionless parameters: the relative distance X,

Biot number Bi and Fourier number Fo. Non-dimensionalisation of the results with the above-mentioned 

dimensionless numbers enables us to present the results practically over a wide range of operating 

parameters, either in tabular or graphical forms.

The solution to this problem is, at best, long and tedious. It has been worked out by a number of 

people and put in the form of charts. The solution takes the form of an infinite series.

2

1

sin( , )
4 exp[ ]cos

2 sin 2

n
n n

i n nn

T x t T x
Fo

T T L

l
l l

l l=

Ê ˆ- Ê ˆ= - Á ˜Á ˜ Ë ¯- +Ë ¯Â (5.39)

where the eigenvalues (positive roots), viz., l
1
, l

2
 ... l

n
 are obtained from the solution to the characteristic 

transcendental equation given below and shown graphically in Figure 5.9.

1
cot or tann n n n Bi

Bi
l l l l

Ê ˆ= =Á ˜Ë ¯ (5.40)

For most practical purposes, truncation of a series solution after a few terms gives fairly accurate results.

The strategy for obtaining solutions to other geometries like a long cylinder or a sphere is similar.

We start with the appropriate differential equation for one-dimensional, time-dependent conduction in 

cylindrical or spherical coordinates. Boundary conditions will be the same except that x is replaced by 

r
o
 and L is replaced by r

o
. Again, results are non-dimensionalised with the dimensionless parameters

mentioned above.

Characteristic length in Biot number is taken as half-thickness L for a plane wall, radius r
o
 for a long 

cylinder and sphere instead of being calculated as –V /A
s
, as in the lumped system analysis.

For all these three geometries, the solution involves infinite series, which converges rapidly for 

long times. For Fo > 0.2, only the first term of the series needs to be retained and other terms can be 

neglected, involving an error less than 2 percent. The single-term approximation solution, for all these 

three cases in terms of dimensionless temperature, Fourier number, and dimensionless distance from the 

centre is presented below
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Plane wall:
2
1

wall 1 1

( , )
( , ) cos( / )

Fo

i

T x t T
x t A e x L

T T

lq l--
= =

-
(Fo > 0.2) (5.41)

Long cylinder:
2
1

cyl 1 0 1

( , )
( , ) ( / )

Fo
o

i

T r t T
r t A e J r r

T T

lq l--
= =

-
(Fo > 0.2) (5.42)

Sphere:
Fo o

i o

r rT r t T
r t A e

T T r r

2
1 1

sph 1
1

sin( / )( , )
( , )

/

l l
q

l
--

= =
-

(Fo > 0.2) (5.43)

In the above equations, the constants A
1
 and l

1
 are functions of Biot number only.

A
1
 and l

1
 are calculated from the following relations:

Plane wall: 1 1

1
1

1 1

tan

4 sin

2 sin 2

Bi

A

l l

l

l l

=

=
+

(5.44)

Long cylinder: 1 1
1

0 1

1 1
1 2 2

1 0 1 1 1

( )

( )

2 ( )

[( ( )) ( ( ))]

J
Bi

J

J
A

J J

l
l

l

l

l l l

=

=
+

(5.45)

Sphere: 1 1

1 1 1
1

1 1

1 cot

4[sin cos ]

2 sin 2

Bi

A

l l

l l l

l l

- =

-
=

-

(5.46)

Table 5.2

Plane Wall Long Cylinder Sphere

Bi = hL/k l
1

(radian)

A
1

Bi = hr
o
/k l

1

(radian)

A
1

Bi = hr
o
/k l

1

(radian)

A
1

0 0 1.000 0.01 0.1412 1.0025 0.01 0.1730 1.0030

0.001 0.0316 1.0002 0.02 0.1995 1.0050 0.02 0.2445 1.0060

0.002 0.0447 1.0003 0.03 0.2439 1.0075 0.03 0.2989 1.0090

0.004 0.0632 1.0007 0.04 0.2814 1.0099 0.04 0.3450 1.0120

0.006 0.0774 1.0010 0.05 0.3142 1.0124 0.05 0.3852 1.0149

0.008 0.0893 1.0013 0.06 0.3438 1.0148 0.06 0.4217 1.0179

0.01 0.0998 1.0017 0.07 0.3708 0.0173 0.07 0.4550 1.0209

0.02 0.1410 1.0033 0.08 0.3960 1.0197 0.08 0.4860 1.0239

0.03 0.1732 1.0049 0.09 0.4195 1.0222 0.09 0.5150 1.0268

0.04 0.1987 1.0066 0.10 0.4417 1.0246 0.10 0.5423 1.0298

0.05 0.2217 1.0082 0.15 0.5376 1.0365 0.15 0.6608 1.0445

0.06 0.2425 1.0098 0.20 0.6170 1.04483 0.20 0.7593 1.0592

0.07 0.2615 1.0114 0.25 0.6856 1.0598 0.25 0.8448 1.0737

0.08 0.2791 1.0130 0.30 0.7465 1.0712 0.30 0.9208 1.0880

contd.
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0.09 0.2956 1.0145 0.40 0.8516 1.0932 0.40 1.0528 1.1164

0.10 0.3111 1.0160 0.50 0.9408 1.1143 0.50 1.1656 1.1441

0.15 0.3779 1.0237 0.60 1.0185 1.1346 0.60 1.2644 1.1713

0.20 0.4328 1.0311 0.70 1.0873 1.1539 0.70 1.3525 1.1978

0.25 0.4801 1.0382 0.80 1.1490 1.1725 0.80 1.4320 1.2236

0.30 0.5218 1.0450 0.90 1.2048 1.1902 0.90 1.5044 1.2488

0.40 0.5932 1.0580 1.00 1.2558 1.2071 1.00 1.5708 1.2732

0.50 0.6533 0.0701 2.00 1.5995 1.3384 2.00 2.0288 1.4793

0.60 0.7051 1.0814 3.00 1.7887 1.4191 3.00 2.2889 1.6227

0.70 0.7506 1.0919 4.00 1.9081 1.4698 4.00 2.4556 1.7201

0.80 0.7910 1.1016 5.00 1.9898 1.5029 5.00 2.5704 1.7870

0.90 0.8274 1.1107 6.00 2.0490 1.5253 6.00 2.6537 1.8338

1.00 0.8603 1.1191 7.00 2.0937 1.5411 7.00 2.7165 1.8674

1.50 0.9882 1.1537 8.00 2.1286 1.5526 8.00 2.7654 1.8921

2.00 1.0769 1.179 9.00 2.1566 1.5611 9.00 2.8044 1.9106

2.5 1.1422 1.1966 10.0 2.1795 1.5677 10.0 2.8363 1.9249

3.00 1.1925 1.2102 20.0 2.2881 1.5919 20.0 2.9857 1.9781

4.00 1.2646 1.2287 30.0 2.3261 1.5973 30.0 3.0372 1.9898

5.00 1.3138 1.2402 40.0 2.3455 1.5993 40.0 3.0632 1.9942

6.00 1.3496 1.2479 50.0 2.3572 1.6002 50.0 3.0788 1.9962

7.00 1.3766 1.2532 100.0 2.3809 1.6015 100.0 3.1102 1.9990

8.00 1.3978 1.2532 2.4050 1.6018 3.1415 2.0000

9.00 1.4149 1.2570 — — — — — —

10.0 1.4289 1.2598 — — — — — —

12.0 1.4505 1.2650 — — — — — —

14.0 1.4664 1.2669 — — — — — —

16.0 1.4786 1.2683 — — — — — —

18.0 1.4883 1.2692 — — — — — —

20.0 1.4961 1.2699 — — — — — —

30.0 1.5202 1.2717 — — — — — —

40.0 1.5325 1.2723 — — — — — —

50.0 1.5400 1.2727 — — — — — —

60.0 1.5451 1.2728 — — — — — —

70.0 1.5487 1.2729 — — — — — —

80.0 1.5514 1.2730 — — — — — —

90.0 1.5535 1.2731 — — — — — —

100.0 1.5552 1.2731 — — — — — —

p/2 4/p — — — — — —

contd.
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Table 5.3

x J
0
 (x) J

1
(x) x J

0
 (x) J

1
(x)

0.0 1.0000 0.0000 1.5 0.5118 0.5579

0.1 0.9975 0.04999 1.6 0.4554 0.5699

0.2 0.9900 0.0995 1.7 0.3980 0.5778

0.3 0.9776 0.1483 1.8 0.3400 0.5815

0.4 0.9604 0.1960 1.9 0.2818 0.5812

0.5 0.9385 0.2423 2.0 0.2239 0.5767

0.6 0.9120 0.2867 2.1 0.1666 0.5683

0.7 0.8812 0.3290 2.2 0.1104 0.5560

0.8 0.8463 0.3688 2.3 0.0555 0.5399

0.9 0.8075 0.4059 2.4 0.0025 0.5202

1.0 0.7652 0.4400 2.6 –0.0968 –0.4708

1.1 0.7196 0.4709 2.8 –0.1850 –0.4097

1.2 0.6711 0.4983 3.0 –0.2601 –0.3391

1.3 0.6201 0.5220 3.2 –0.3202 –0.2613

1.4 0.5669 0.5419 — — —

We are usually interested in the centre temperature of the body. Recognizing that cos 0° = 1, J
0
 (0) = 1, 

and the limit of (sin x/x) is also 1, the dimensionless temperature at the centre of the body is given by:

Centre of plane wall: (x = 0)
2
10

0 1
Fo

i

T T
A e

T T

lq
-

= =
-

(5.47)

Centre of long cylinder: (r = 0)
2
10

0 1
Fo

i

T T
A e

T T

lq
-

= =
-

(5.48)

Centre of sphere: (r = 0)
2
10

0 1
Fo

i

T T
A e

T T

lq --
= =

-
(5.49)

The first step in the solution is to calculate the Biot number. Once the Biot number is known, constants 

A
1
 and l

1
 are found. One can then use the relations given above to find the temperature at any specific 

location.

In addition to the temperature distribution, it is often useful to know the amount of heat lost (or gained)

by the body, Q, during the time interval t = 0 to t = t, i.e., from the beginning to the specified time.

Again, we non-dimensionalize Q by dividing it by Q
max

, the maximum possible heat transfer. Obviously, 

the maximum amount of heat is transferred when the body reaches equilibrium with the ambient fluid.

Hence,

max
–V ( ) ( )p i p iQ C T T mC T Tr= - = -

(5.50)

where r is the density, –V  is the volume, –( V)r  is the mass, C
p
 is the specific heat of the body.
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If Q
max

 is positive, the body is losing energy; and if it is negative, the body is gaining energy.

Using the one-term approximation solution, (Q/Q
max

) for the three geometrical configurations is 

calculated from the following relations:

Plane wall: 1
0

max 1

sin
1

Q

Q

l
q

l
= - (5.51)

Long cylinder: 1 1
0

max 1

( )
1 2

JQ

Q

l
q

l
= - (5.52)

Sphere: 1 1 1
0 3

max 1

sin cos
1 3

Q

Q

l l l
q

l

Ê ˆ-
= - Á ˜Ë ¯

(5.53)

5.11 ❏

Analytical results of even one-dimensional transient conduction are quite complex and inconvenient to 

use. Approximate one-term approximation solutions of adequate accuracy for some common geometries 

have already been explained.

These results have been presented conveniently in graphical form as transient temperature charts for 

rapid engineering calculations for a wide range of parameter values. The graphical plots or charts offer 

computational convenience and being in terms of dimensionless parameters enjoy universal application.

These charts are available for (1) An infinite slab (a large plane wall), (2) An infinite cylinder 

(a long cylinder), (3) A sphere, and (4) A semi-infinite solid.

The assumptions made in the use of these charts are: (1) One-dimensional conduction without internal 

heat generation, and (2) Initially the body is at a uniform temperature throughout. (3) All surfaces of the 

body are exposed to same constant and uniform convection coefficient, h and ambient fluid temperature 

T . (4) Constant thermal properties.

Some salient features of these transient temperature charts are the following:

For one-dimensional transient conduction, charts giving temperature variation as a function of 

time are available. The parameters are usually represented in dimensionless form as follows: 

2
, ,c

ic

hL T Tt
Bi Fo

k T TL

a
q

-
= = ∫

-

The initial conditions for all the three chart solutions require that the solid be at a uniform tem-

perature T
i
 initially and that at time t = 0 the entire surface of the body is in contact with the fluid 

at a temperature of T .

One boundary condition requires that the temperature gradient at the midplane of the slab, the axis

of the cylinder, and the centre of the sphere be equal to zero. Physically, it amounts to insulated

or no-heat-flow condition at these central positions.

The other boundary condition requires that the conduction heat flux at the solid–fluid interface is 

equal to the convective heat flux. That is,

( )s

s

T
k h T T

n

∂
- = -

∂
(5.54)
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where h is the uniform and constant heat transfer coefficient. The subscript s refers to conditions at the 

surface and n to the coordinate direction normal to the surface.

In the limiting case when Bi Æ , h Æ , convective thermal resistance (1/hA) Æ 0 and then the 

prescribed surface temperature, T
s
 equals the ambient temperature T .

The first chart in each of these figures gives the non-dimensionalized centre temperature q
0
, i.e., 

at x = 0 for the slab of thickness 2L, and at r = 0 for the cylinder and sphere of outer radius r
o
,

at a given time t.

The second chart, called position correction chart, enables us to calculate the temperature at any 

other position at the same time t.

The third chart gives the dimensionless heat loss Q/Q
max

, so that the heat loss (or gain) can be 

evaluated.

The general step-wise procedure for using these charts to solve a numerical problem is as follows:

Step 1: To begin with, calculate the Biot number, Bi from the given data, with the usual definition of 

Bi, i.e., Bi = (hL
c
)/k, where L

c
is the characteristic dimension, defined as L

c
 = ( –V /A

s
), [L

c
 = L, the half-

thickness, for a plane wall, L
c
 = r

o
/2 for a long cylinder, and L

c
 = r

o
/3 for a sphere.] If Bi < 0.1, use 

the lumped-heat-capacity model. Otherwise, go in for the one-term approximation or the chart solution.

Step 2: For Bi > 0.1, one needs to use the one-term approximation or the chart solution. In this case, 

calculate the Biot number again with Bi = (hL/k) for a plane wall where L is half-thickness, and Bi = 

(hr
o

/k) for a cylinder or sphere, where r
o
 is the outer radius. Also, calculate the Fourier number, Fo =

at/L2 for the plane wall, and 2= / oFo t ra  for a cylinder or sphere.

Step 3: To calculate the centre temperature, use the appropriate first chart depending on the geometry 

being considered. Enter the chart on the x-axis with the calculated value of Fourier number, Fo, and

draw a vertical line to intersect the Bi line. From the point of intersection, move horizontally to the left 

to the y-axis to read the value of (T
0
 – T )/(T

i
 – T ). Here, T

0
 is the centre temperature, which can now 

be calculated since T
i
 and T  are known.

Step 4: To calculate the temperature at any other position, use the appropriate second (position correction) 

chart. Enter the chart with Bi, on the x-axis, move vertically up to intersect the (x/L) or (r/r
o
) curve, as 

the case may be, and from the point of intersection, move to the left to read on the y-axis, the value 

of (T – T )/(T
0
 – T ). The desired temperature T at the specified location can then be evaluated from:

0

0i i

I chart II chart

T T T T T T

T T T T T T

Ê ˆ Ê ˆ- - -
=Á ˜ Á ˜- - -Ë ¯ Ë ¯

(5.55)

Step 5: To calculate the amount of heat transferred Q, during a specified time interval t from the beginning 

(i.e., t = 0), use the appropriate third (Gröber) chart, depending upon the geometry. Enter the x-axis with 

the value of (Bi2 Fo) and move vertically up to intersect the curve representing the given value of Bi, and 

move to the left to read on the y-axis, the value of Q/Q
max

. Calculate Q
max

 from Q
max

= r –V C
p

(T
i
 – T ).

Then, max max( / )Q Q Q Q= (5.56)
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The following points may be noted regarding these charts:

The transient-temperature charts are valid for Fourier number Fo > 0.2.

Specifically remember that while calculating Biot number, characteristic length (L
c
) used is L, the 

half-thickness for a plane wall, and outer radius, r
o
 for the cylinder and the sphere (L

c
 is not equal 

to –(V/ )sA ).

In these charts, Bi =  corresponds to h Æ , which means that at t = 0, the surface of the body 

is suddenly brought to a temperature of T  and maintained at T  = T
s

thereafter at all times.

From the position correction charts at Bi < 0.1, the temperature within the body can be taken as 

uniform, without introducing an error of more than 5%. This was precisely the condition for ap-

plication of lumped-capacitance analysis.

Let us face the fact that it is difficult to read the transient temperature charts accurately. Hence,

the use of one-term approximation with tabulated values of A
1
 and l

1
seems to be a better option.

The chart solution, however, is far more valuable from the point of view of convenience though 

at the cost of some accuracy.

Generally, two types of transient problems can be solved by using the charts. In one, the time is 

known while the local temperature is to be calculated. Such types of problems can be relatively 

easily solved in a straightforward manner. However, in the other type, where time is unknown while 

the local temperature is given, this may involve a trial and error procedure.

5.11.1 ● Heisler and Gröber Charts

Heisler had presented the charts in 1947 in a different format. Heisler presented as a semi-log plot with 

the temperature ratio on the log scale and Fourier number on a linear scale. Unfortunately, these charts 

are very inconvenient to read in the range of Fourier number below 1 where a lot of action takes place.

The use of reciprocal of the Biot number (1/Bi) as a parameter used in the Heisler charts is also tedious 

and confusing.

The transient temperature charts given in this book are more user-friendly and convenient to use.

Apart from the temperature distribution, we need to know the heat loss (or gain) during a given 

time interval. Gröber charts come in handy for this purpose. The heat lost or gained during time t may

be determined through the use of Gröber chart in which dimensionless heat transfer (Q/Q
max

) is plotted 

against (h2 ¥ t/k2 or Bi2 Fo) for several values of the Biot number with the Biot number as a parameter, 

where Q represents the amount of heat lost or gained during time, t.

5.11.2 ● Charts for Plane Wall (Infinite Slab)

The transient, non-dimensional temperature distribution depends upon the dimensionless distance, (x/L),

the Biot and Fourier numbers. Both Bi and Fo are significant measures as to how a system will respond 

to changes in temperature. The charts are presented in Figure 5.10 to 5.12. Figure 5.10 may be used to 

evaluate the midplane or centreline temperature of the slab at any time during the transient process. Here 

the dimensionless temperature at the midplane, is defined as:

(0, t)
(0, t)

i

T T

T T
q

-
=

-
(5.57)

It is plotted as a function of dimensionless time, i.e., Fourier number Fo, with the Biot number (Bi) as the 

constant parameter. The curve for Bi =  corresponds to the case h Æ , or negligible surface resistance 
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when the surfaces of the slab are maintained at the ambient temperature T . For a case with very low Bi

(of negligible internal thermal resistance and fairly uniform temperature distribution within the solid) the 

temperature in the slab is dependent not on x but only t (lumped-capacitance model, discussed earlier).

Figure 5.10 is first used to determine the centreline temperature T
0
 at time t. From this knowledge of 

T(0, t), Fig. 5.11 is then used to evaluate T(x, t). The time dependence of any temperature off the centreline 

corresponds to the time dependence of the centreline temperature. Hence, in Fig. 5.11, the Fourier number 

is absent. The desired temperature at any distance from the midplane, x can be calculated from

0

0wall

Fig. 6.10 Fig. 6.11

( , ) ( , )

i i

T TT x t T T x t T

T T T T T T

Ê ˆ Ê ˆ Ê ˆ-- -
=Á ˜ Á ˜ Á ˜- - -Ë ¯ Ë ¯ Ë ¯

(5.58)

Note that x is measured from the adiabatic surface of the plane of symmetry, i.e., midplane (or centreline) 

(x = 0) to either face (or extremity) of the slab irrespective of the direction. Thus, the temperature at the 

two locations on the slab or wall of thickness 2L on either side of the midplane will be the same. This, 

of course, implies that both h and T  are the same for both the left and right faces of the slab.
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If one face of the slab is insulated, the temperature distribution can be obtained by letting x = 0 at 

the insulated surface and x = L at the surface exposed to the convective environment. This is possible 

because the chart solution corresponds to the case where at x = 0, dT/dx = 0, and at x = L, there is 

convection heat transfer to the environment. The only difference is that L is now the entire wall thickness 

of the insulated wall.

The heat loss or gain during time t may be determined through the use of Fig. 5.12. The quantity of 

heat is equal to the change in the internal energy during time t,

–V ( – )pQ C T Tr= (5.59)

Defining the one-dimensional energy transfer or internal energy as Q/Q
max

or U/U
i

where Q
max

 = rC
p

–V  (T – T ). where Q
max

 represents the initial energy transfer or internal energy of the slab relative to 

the ambient temperature T . In Fig. 5.12, Q/Q
max

 is plotted exclusively against Bi2 Fo or (h2at/k2) with 

the Biot number, Bi, as a parameter.

5.11.3 ● Charts for Infinitely Long Cylinder

For an infinite (long) cylinder of radius r
o
 which is at an initial uniform temperature T

i
 and undergoes 

change in the convective environment at a constant temperature T , the heat-transfer coefficient h on the 

cylindrical (curved) surface is constant when the temperature distribution and the heat transfer can be 

obtained in a manner similar to that for the infinite slab (plane wall).

Figure 5.13 gives the axis (centreline) temperature for an infinite (very long) cylinder of radius r
o
. The 

dimensionless axis (centreline) temperature at r = 0 defined as

(0, )
(0, )

i

T t T
t

T T
q

-È ˘= Í ˙-Î ˚
(5.60)

is plotted against dimensionless time or Fo for different values of the parameter Bi. Figure 5.14 relates the 

temperature at various radial locations within the cylinder to the centreline temperature. Hence, to obtain 
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the temperature at any radial location r, at some time t, Fig. 5.13 must be used in conjunction with Fig. 

5.14. The dimensionless radial coordinate is defined as r/r
o
 (like x/L in an infinite slab). Note that the 

Biot number and Fourier number are defined in terms of r
o
 in contrast with the lumped-capacity method 

where the characteristic dimension is defined as 
2–V

A 2

o

o

R L

r L

p

p
=  or r

o
/2. Thus, Bi and Fo are defined here 

as ohr

k
 and 

2
o

t

r

a
, respectively.

To determine the local temperature at any radius r at any time t, we have

cylinder

Fig. 6.14Fig. 6.13

( , ) (0, ) ( , )

(0, )i i

T r t T T t T T r t T

T T T T T t T

Ê ˆ È ˘ È ˘- - -
= Í ˙ Í ˙Á ˜- - -Ë ¯ Î ˚Î ˚

(5.61)



Unsteady-State Heat Conduction 343

Once the temperature distribution is known, the instantaneous heat transfer rate to or from the solid 

surface can be evaluated from the Fourier law and the heat loss or change in internal energy over a time 

interval t can be computed by integrating the instantaneous heat-transfer rates. If we denote the internal 

energy relative to the ambient fluid at time interval t by Q(t) and the initial internal energy relative to 

the fluid by Q
max

, then the dimensionless heat loss per unit length is given by

loss

2
max

( )

( )( )p o i

QQ t

Q C r T Tr p
=

-
(5.62)

In Fig. 5.15, Q/Q
max

is plotted as a function of (Bi2 Fo) with Bi as the parameter. The procedure remains 

the same whether the solid is heated or cooled.

5.11.4 ● Charts for a Solid Sphere

The dimensionless temperature at the centre (r = 0) is defined as

(0, )
(0, )

i

T t T
t

T T
q

-
=

-
(5.63)

Figure 5.16 presents the dimensionless centre temperature for the sphere with uniform initial temperature 

T
i
 at time t = 0 which is exposed to the constant ambient temperature T  with constant convection

coefficient h at the surface. The centre temperature is a function of the Biot number hr
o
/k and the Fourier 

number 2/ ot ra .

The temperature of the surface of the sphere off the centre (r π 0) is obtained in exactly the same 

manner outlined earlier for an infinite cylinder. The temperature at any radial position r/r
o

for the sphere 

can be obtained from Fig. 5.17 as a product of the position correction ratio and the dimensionless centre 

temperature.
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Thus, we get 

sphere

Fig. 6.17Fig. 6.16

( , ) (0, ) ( , )

(0, )i i

T r t T T t T T r t T

T T T T T t T

Ê ˆ Ê ˆ Ê ˆ- - -
=Á ˜ Á ˜ Á ˜- - -Ë ¯Ë ¯ Ë ¯

(5.64)

Figure 5.18 presents the heat-loss ratio (Q/Q
max

), i.e., dimensionless heat transfer for various values of 

Biot numbers.

In order to decide the most satisfactory method of solution in such cases, the bottom line is

If Bi < 0.1, the lumped capacity analysis is most appropriate.

If Bi > 0.1, Fo < 0.05, semi-infinite solid solution is most appropriate. (explained in the next section).

If Bi > 0.1 and 0.05 < Fo < 0.2, complete series solution is recommended.

If Bi > 0.1 and Fo > 0.2, the one-term approximate solution or chart solution is preferable.
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5.12 ❏

A semi-infinite body is one in which at a given time there is always a portion of the body where the 

effect of heating (or cooling) is not felt at all and the temperature remains constant when a temperature 

change occurs on one of its boundaries. One example is the earth’s crust. If the temperature on the earth’s 

surface is changed, there is always some point below the surface that does not experience the effect of 

the change. Even at a distance of several metres below the surface, the surface temperature fluctuation 

may not be felt for a long time. Even the transient temperature distribution in a thick plane wall behaves 

like that of a semi-infinite solid until enough time has passed to allow any surface temperature changes 

to penetrate throughout the wall. Figure 5.19 represents such a semi-infinite solid.



Unsteady-State Heat Conduction 347

Many situations encountered in practice are such that the temperature changes do not penetrate far 

enough into the medium to have any effect on the conduction process. For example, case-hardening of 

tool steel involves fast quenching from a high temperature for a short duration. This results in rapid 

cooling and hardening of the metal close to the surface. However, the interior cools slowly after quenching 

and remains ductile. The process of conduction is, thus, limited to a region near the surface into which 

changes in temperature have been able to penetrate.

For different kinds of boundary conditions in such a semi-infinite medium, it is useful to know about 

the expressions giving solutions for the temperature distribution and heat-flow rate.

Closed-form solutions have been obtained for three types of changes in surface conditions, instantaneously 

applied at t = 0. These three cases are

A sudden change in the surface temperature, T
s

π T
i
.

A sudden application of a specified heat flux, q
s
.

A sudden exposure of the surface to a fluid at a different temperature through a uniform and con-

stant heat transfer coefficient, h.

Temperature histories for the above three cases are illustrated qualitatively in Fig. 5.20. The solutions 

for all the three cases use the Gaussian error function erf (z) and complementary error function erfc(z)

where z is a positive number. This standard mathematical function is tabulated in Table 5.4 for various 

values of z and is shown graphically in Fig. 5.21. The transient temperature solutions for a step change 

in (a) T = constant, (b) q
s
 = constant, and (c) h = constant are given below.

Case I

T(x, 0) = Ti

T(0, t) = Ts

0

0 0 0

0 0

Ts

Ts

qs

TiTi Ti

x x

xx

x

Case III

T(x, 0) = T.

Increasing time, tIncreasing time, tIncreasing time, t

Case II

T(x, 0) = Ti

T(x, t)T(x, t) T(x, t)

=

∂
= −

∂ 0
s

x

T
q k

x ∞
=

∂
− = −

∂ 0

[ (0, )]
x

T
h T T t k

h, T
∞

T
∞

x
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Table 5.4

z erfc(z) z Erfc(z) z erfc(z) z erfc(z) z erfc(z)

0.00 1.0000 0.52 0.4621 1.04 0.1414 1.56 0.0274 2.08 0.00322

0.02 0.9774 0.54 0.4451 1.06 0.1339 1.58 0.0255 2.10 0.00298

0.04 0.9549 0.56 0.4284 1.08 0.1267 1.60 0.0237 2.12 0.00272

0.06 0.9324 0.58 0.4121 1.10 0.1198 1.62 0.0220 2.14 0.00247

0.08 0.9099 0.60 0.3961 1.12 0.1132 1.64 0.0204 2.16 0.00225

0.10 0.8875 0.62 0.3806 1.14 0.1069 1.66 0.0189 2.18

2.20

0.00205

0.00186

0.12 0.8652 0.64 0.3654 1.16 0.1009 1.68 0.0175 2.22 0.00169

0.14 0.8431 0.66 0.3506 1.18 0.0952 1.70 0.0162 2.26 0.00139

0.16 0.8210 0.68 0.3362 1.20 0.0897 1.72 0.0150 2.30 0.00114

0.18 0.7991 0.70 0.3222 1.22 0.0845 1.74 0.0139 2.34 0.00094

0.20 0.7773 0.72 0.3086 1.24 0.0795 1.76 0.0128 2.38

2.42

0.00076

0.00069

0.22 0.7557 0.74 0.2953 1.26 0.0748 1.78 0.0118 2.42 0.00060

0.24 0.7343 0.76 0.2825 1.28 0.0703 1.80 0.0109 2.46 0.00050

0.26 0.7131 0.78 0.2700 1.30 0.0660 1.82 0.0101 2.50 0.00041

0.28 0.6921 0.80 0.2579 1.32 0.0619 1.84 0.0093 2.55 0.00035

0.30 0.6714 0.82 0.2462 1.34 0.0581 1.86 0.0085 2.60 0.00024

0.32 0.6509 0.84 0.2349 1.36 0.0544 1.88 0.0078 2.65 0.00018

0.34 0.6306 0.86 0.2239 1.38 0.0510 1.90 0.0072 2.70 0.00013

0.36 0.6107 0.88 0.2133 1.40 0.0477 1.92 0.0066 2.75 0.00010

0.38 0.5910 0.90 0.2031 1.42 0.0446 1.94 0.0061 2.80 0.00008

0.40 0.5716 0.92 0.1932 1.44 0.0417 1.96 0.0056 2.85 0.00006

0.42 0.5525 0.94 0.1837 1.46 0.0389 1.98 0.0051 2.90 0.00004

0.44 0.5338 0.96 0.1746 1.48 0.0363 2.00 0.0047 2.95 0.00003

0.46 0.5153 0.98 0.1658 1.50 0.0339 2.02 0.0043 3.00 0.00002

0.48 0.4973 1.00 0.1573 1.52 0.0316 2.04 0.0039 3.20 0.00001

0.50 0.4795 1.02 0.1492 1.54 0.0294 2.06 0.0036 3.40 0.00000

Case 1: Constant Surface Temperature At time t = 0, the surface is at a uniform temperature T
i

and the left face of the solid is suddenly raised to temperature T
s
 and held at that value.

See Fig. 5.21. The solid is initially at a uniform temperature T
i
 and for times t > 0, the boundary surface 

at x = 0 is maintained at temperature T
s
. (At x = 0, T = T

s
for t > 0). For these boundary conditions, the 

non-dimensional temperature distribution in the solid is obtained as

2

0

( , ) 2
( ) exp ( )

z

s

i s

T x t T
erf z u du

T T p

-
= = -

- Ú (5.65)
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s

where the similarity variable
2

x
z

ta
=  and u is a dummy variable.

or
( , ) 1

erfc erfc
2 2

i

s i

T x t T x

T T t Foa

- Ê ˆ Ê ˆ= =Á ˜ Á ˜Ë ¯ Ë ¯-
or erfc (z) (5.66)

where erfc is the complementary error function defined as erfc (z) = 1 – erf (z) and erf (z) is the Gaussian

error function.

From Eq. (5.65),

( , ) 1
[erf ( )]

( )

s

i s i s

T x t Td d dT
z

dx dx T T T T dx

È ˘-
= =Í ˙- -Î ˚

(5.67)

and ( ) [erf( )]s i

dT d
T T z

dx dx
= - -

The surface heat flux at any instant of time can be calculated from Fourier’s law.

0
0 0

( ) [erf ( )]s s i

x x

dT d
q q k k T T z

dx dx= =

Ê ˆ= = - = -Á ˜Ë ¯
(5.68)
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According to Taylor’s theorem,

But

2 2 2

3

2 2 2
[erf ( )] [erf ( )]

1

2 2

z
u z zd

d z d e du e dz z e
dz

x dz
z

dxt t

p p p

a a

- - -
È ˘

= = fi =Í ˙
Í ˙Î ˚

= fi =

Ú

We note that T is really a function of x and t so that what we want here is really the partial derivative 

of T with respect to x at some time t that we consider constant.

2
22 1

[erf ( )] [erf ( )]
2

z
zd d dz e

z z e
dx dz dx t tp a pa

-
-= ¥ = ¥ =

Substituting for 
d

dx
[erf (z)] in Eq. (5.67) and noting that 

2
2

4

x
z

ta
= , we have

2 /4

0

0

( )
x t

s s i

x

e
q q k T T

t

a

pa

-

=

= = -

\ surface heat flux,

1/2

( )
( )

( )

s i
s

k T T
q t

tpa

-
= (W/m2) (5.69)

Heat-transfer rate at time t at the surface (x = 0) is given by

1/2

1/2( )

s i
s s

T T
Q q A kA t

pa

--
= ¥ = ¥ (W)

The total amount of energy Q which has entered the surface of the semi-infinite solid in the time interval 

0 to t can be obtained as follows:

1/2
1/2

1/2 1/2
0 0 0

1/2( ) ( )

tt t

s i s i
s

T T T T t
Q Q dt kA t dt kA

pa pa

- Ê ˆ- -
= = = Á ˜Ë ¯Ú Ú

or 2
/

s iT T
Q kA

tpa

-
= (J) (5.70)

Case 2. Constant Surface Heat Flux At time t = 0, the surface is suddenly exposed to a constant 

heat flux q
s
,

At x = 0, q
s
 = q

0
 = 

T
k

x

∂
-

∂
for t > 0

The temperature distribution is

22 ( / )
( , ) exp erfc

4 2 t

s s
i

q t q xx x
T x t T

k t k

q p

a a

Ê ˆ- Ê ˆ- = - Á ˜Á ˜ Ë ¯Ë ¯
(5.71)
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or

1/2
2

1/2

4
exp( /4 ) erfc

(4 )

s
i

q t x
T T x t x

k t

a
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p a

È ˘Ê ˆ- = - -Í ˙Á ˜Ë ¯Í ˙Î ˚

Case 3: Constant Convective Heat-Transfer Coefficent At time t = 0, the surface is suddenly 

exposed to a fluid at temperature T  with a convective heat-transfer coefficient, h.

At x = 0,
0

[ (0, )]
x

T
k h T T t

x =

∂
- = -

∂

The temperature distribution is

2

2

( , )
erfc exp erfc

2 2

i

i

T x t T x hx h t x h t

T T k kkt t

a a

a a
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(5.72)

Note that the quantity h2at/k2 equals the product of the Biot number squared, 
2 2

2

2

h x
Bi

k

Ê ˆ
=Á ˜Ë ¯

 and Fourier 

number (Fo = at/x2).

In actual practice, Case 1 is approximated when there is a condensing or boiling fluid (with very high 

heat-transfer coefficient) brought in contact with the solid surface. Note that this case is equivalent to 

Case 3 (convective boundary condition) with h Æ  which results in the surface temperature, T
s
 equalling 

the fluid temperature T .

Because for h = , the second term on the right-hand side of Eq. (5.71) is zero, and the result is 

equivalent to Eq. (5.66) for Case 1.

Case 2 occurs when, for instance, on electric resistance heater is pressed against a surface so that a 

known and constant wall heat flux is imposed. This case is also an approximation of the situation when 

a high temperature radiation source is directed towards a surface with a much lower temperature.

Figure 5.22 shows the values for the temperature excess ratio calculated from Eq. (5.71) as a function

of the dimensionless distance /2x ta  with the local Biot number hx/k as the parameter. When location 

and temperature ratio are specified, time can be obtained directly from the chart. Figure 5.23 presents 

the same temperature excess ratio plotted against /2x ta  with h2at/k2 as a parameter. If the excess 

temperature ratio and time are known, this chart should be used to obtain the location directly.

Penetration Depth Penetration depth, d at any time t is the distance x from the surface where the 

temperature change is within 1% of the change in the surface temperature.

i.e.,
( , ) i

s i

T x t T

T T

-
-

 = erfc (z) = 0.01 for which 1.8
2

x
z

ta
= = (from Table 5.4)

so that the penetration depth, d is given by 3.6 td a= (5.73)

We note that the penetration depth increases as the square root of time.

Penetration time, t
p

is the time taken for the surface perturbations to be felt at that depth, d.

Hence,

2
23.6 or 0.077 /

13
p

p

t
t

d d
d a

aa
= fi =

(5.74)

If the penetration depth, d, is small compared to the body dimensions, the asumption of a semi-infinite

solid is valid.



352 Heat and Mass Transfer

a
2



Unsteady-State Heat Conduction 353

a
2



354 Heat and Mass Transfer

5.13 ❏  MULTIDIMENSIONAL TRANSIENT HEAT CONDUCTION: 
PRODUCT SOLUTION

So far we have discussed only one-dimensional heat conduction problems related to a large plane wall, 

long cylinder, a sphere and a semi-infinite medium. However, in many practical situations, the assumption 

of one-dimensional conduction may not be valid. For instance, in a short cylinder whose length is 

comparable to diameter, clearly the temperture gradients will be significant in both the longitudinal and 

radial directions. The heat transfer will, therefore, be two-dimensional. Similarly, for a long rectangular 

bar, one can recognize that heat transfer will be significant in both x- and y-diretions, and in a rectangular 

solid block (parallelepiped), the heat transfer will be three-dimensional.

In such cases, for a two-dimensional system, with no internal heat generation, one can construct 

the solutions for dimensionless temperature distribution in transient heat conduction, by combining 

the solutions of dimensionless temperature distributions obtained for one-dimensional solutions of the 

individual systems which form the two-dimensional body by their intersection.

Hence, in general, one can write solid system1 system 2 system 3q q q q= ¥ ¥  for a three-dimensional body with 

System 1, System 2, and System 3 representing the one-dimensional systems which by their intersection 

make up the body. q is the dimensionless temperature distribution of the one-dimensional system, which 

is available from the charts or one-term approximation solutions.

5.13.1 ●  Transient Heat Conduction 
in a Long Rectangular Bar

Consider the case of a long solid bar of rectangular 

cross section of width 2L
1
 and height 2L

2
 as 

shown in Fig. 5.24.

The bar is surrounded by a fluid at T  which 

removes heat by convection with an associated 

convective heat-transfer coefficient h. Initially, 

the temperature distribution in the bar is specified 

as a given function of x
1
 and x

2
. The problem 

involves a temperature field which is a function 

of three variables—two space variables x
1
 and x

2

and one time variable t.

1 2
rect bar 1 2

wall 1 wall 2

( , , )
( , , )

( , ) ( , )

i

T x x t T
x x t

T T

x t x t

q

q q

-
=

-

= ¥ (5.75)

5.13.2 ● Transient Heat Conduction in a Short (Finite) Cylinder

Consider a short cylinder of height 2L as shown in Fig. 5.25.

We can imagine this body formed by the intersection of a large plane wall of thickness 2L and a 

long cylinder of radius r
o
. We can have the convective heat-transfer coefficient, h, on the cylindrical face 

of the body which may be different from the convective heat transfer, h
p
, at the top and bottom of the 

cylinder. However, for this case, T  must be the same over all surfaces of the body. Placing the origin 
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at the midplane of the plane wall and at the axis of the cylinder. The temperature distribution in this 

body is given by

short cyl wall cyl

( , , )
( , , ) ( , ) ( , )

i

T r x t T
r x t x t r t

T T
q q q

-
= = ¥

-
(5.76)

where q
wall

 (x, t) represents a transient solution for 

a large plane wall of thickness 2L and q
cyl

(r, t)

represents a transient solution for a long cylinder of 

radius r
o
.

5.13.3 ●  Transient Heat Conduction in 
a Rectangular Parallelepiped 
(Block)

Consider a rectangular block of a material as shown 

in Fig. 5.26. The block may be looked upon as being 

obtained by the intersection at right angles to one 

another of three plane walls of thicknesses 2L
1
, 2L

2
,

and 2L
3
 parallel to the three coordinate directions. With 

proper boundary conditions, the product solution can 

be obtained in terms of three one-dimensional plane 

wall solutions. The one-term approximation or chart 

solution may be used. Three Biot numbers and three

Fourier numbers are involved in this case, because 

three characteristic length dimensions are involved 

in this geometry. The solution may be represented 

by the product solution given by

1 2 3
1 2 3

wall 1 wall 2 wall 3

( , , , )
( , , , )

( , ) ( , ) ( , )

i

T x x x t T
x x x t

T T

x t x t x t

q

q q q

-
=

-

= ¥ ¥

(5.77)
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The geometries which can be analyzed by the product solution method are illustrated in Fig. 5.27 along

with the corresponding product solutions for the cases shown. In performing the analysis, the following 

abbreviated nomenclature has been used.

wall( , )

wall

cyl( , )

longcyl

semi inf ( , )

semi inf

( , )

( , )

( , )

x t
i

r t
i

x t
i

T x t T

T T

T r t T

T T

T x t T

T T

q

q

q

Ê ˆ-
= Á ˜-Ë ¯

Ê ˆ-
= Á ˜-Ë ¯

Ê ˆ-
= Á ˜-Ë ¯

(5.78)
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h, on all surfaces

P x x x( , , )1 2 3

x3

x
2 L

2

2L
2

L
1

2L
1

x
1

T
Ti

(d) Semi-infinite rectangular bar

q q( , , ) = ( , )x t1 wall ¥x x x x t x t2 3 1 wall 2 semi-inf 3q q( , ) ( , )¥, t
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h, on three surfaces

T

T
i

L
1

2L
1

x 1

x2

P
x

x
(

,
)

1
2

(e) Semi-infinite plate

q q( , , ) = ( , )x t1 wall ¥x t x x t2 1 semi-inf 2q ( , )

h, on four surfaces

P x x( , )1 2Ti

x1 x
2

2L
2

L
2L1

2L
1

T

(f) Infinite rectangular bar

q q( , , ) = ( , )x t1 wall ¥x t x x t2 1 wall 2q ( , )

5.14 ❏  HEAT TRANSFER IN TRANSIENT CONDUCTION IN 

The total heat transfer to or from a multidimensional solid after a certain period of time can be found 

using the one-dimensional solutions.

For a two-dimensional body formed by the intersection of two one-dimensional systems 1 and 2:

max max max maxtotal 1 2 1

1
Q Q Q Q

Q Q Q Q

È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ= + -Í ˙Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
(5.79)

For a three-dimensional body formed by the intersection of three one-dimensional systems 1, 2, and 3, 

one has:

max max max maxtotal 1 2 1

max max max3 1 2

1

1 1

Q Q Q Q

Q Q Q Q

Q Q Q

Q Q Q

È ˘Ê ˆ Ê ˆ Ê ˆÊ ˆ= + -Í ˙Á ˜ Á ˜ Á ˜Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚
È ˘ È ˘Ê ˆÊ ˆ Ê ˆ+ - -Í ˙ Í ˙Á ˜Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙ Í ˙Î ˚ Î ˚

(5.80)

The product solutions are not applicable when

The initial temperature of the body is not uniform

The fluid temperature T  is not the same on all sides of the body

The body involves heat generation

The surface boundary conditions are of the second kind (specified heat flux at the surface)
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It is important to recognize the following:

Appropriate convective heat-transfer coefficient, h, associated with the surface to be analyzed must 

be used. It should be noted that the value of h may be different for the different geometries that 

make up the overall solution and that this approach is justified only for bodies whose initial tem-

perature is uniform throughout.

Dimensionless temperatures for the one-dimensional systems used to form the product solution 

for the two/three-dimensional body, must be chosen at the correct locations. In doing so, we must 

remember that for a semi-infinite plate, x is measured from the surface while for a plane wall, x 

is measured from the mid-plane.

If the temperature is to be calculated after a given time for the multi-dimensional body, the solution 

is straightforward. However, if the time is to be calculated to attain a given temperature, then, a 

trial and error solution will be necessary.

5.15 ❏ PERIODIC VARIATION OF SURFACE TEMPERATURE

There are many systems in which the surface temperature varies periodically. Periodic heat flow occurs 

in reciprocating internal combustion engines, cyclic regenerators and in the earth due to diurnal (daily)

cycle of the sun. These periodic changes are sinusoidal and complex. The surface temperature T
o

of an 

a semi-infinite solid (likely the earth’s crust) oscillates periodically about a mean temperature T
m
 in a 

sinusoidal fashion along the distance or depth from the surface at any instant as shown in Fig. 5.28.

The nomenclature commonly used in such cases is indicated in Fig. 5.29 in which the temperature 

fluctuation is shown against time at the surface (x = 0) and at the depth x. It may be noticed that the 

amplitude of the temperature variation decays exponentially while a phase lag or time lag develops.

Let the variation of surface temperature T
0
 of the solid in excess of the mean surface temperature be 

expressed as a cosine function of time as follows.

q
0
 = (T

0
 – T

m
) = (T

0
 – T

m
)

max
 (cos wt)

= (T
0
 – T

m
)

max
 (cos 2 pft)    (at x = 0, t > 0)

or q
0
 = q

0,min
 (cos wt) (5.81)

where T
0
 = surface temperature of the solid at x = 0 at any time t.

T
m
 = surface mean temperature of the surface at x = 0.

q
0,max

 = T
0,max

 – T
m
 = maximum excess of surface temperature over the mean value, i.e., 

amplitude of surface temperature variation at x = 0.
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q
0
 = (T

0
 – T

m
) = excess temperature at the surface at any time t.

w = 2p f = 2p /P

where f ∫ frequency of temperature wave, i.e., number of complete changes per unit time P = period of 

oscillation = 1/f.

Our objective is to determine the temperature at any depth x at any time t, that is, T(x, t). Since T
m

is a constant (the value of which is known) this problem can be equally well solved by finding q (x, t).

The governing differential equation is
2

2

1 T

t

T

x a

∂ ∂
=

∂∂
.

or
2 2

2

( ) ( )1m mT T T T

a tx

∂ - ∂ -
=

∂∂
  (since T

m
 is constant)

or
2

2

1

tx

q q

a

∂ ∂
=

∂∂
(5.82)

The boundary conditions are:

0 0,max

0

0

At t

x
q q

= ¸
=˝= ˛

0 0,max

0
cos

0

At t
t

x
q q w

= ¸
=˝= ˛

(a) Let us assume that the solution of Eq. (5.82) is of the form

0,max( ) cos( )mx
x e t mxq q w-= - (5.83)

It can be easily seen that Eq. (5.83) satisfies the above boundary conditions. However, to verify whether 

Eq. (5.83) satisfies Eq. (5.82), let us differentiate Eq. (5.85) partially with respect to t and x. From

Eq. (5.83),
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0,max 0,max

0,max 0,max

( ) ( )sin ( ) ( ) sin( )

( ) cos ( ) ( ) sin( )

mx mx

mx mx

e t mx e t mx
t

m e t mx m e t mx
x

q
q w w w q w

q
q w q w

- -

- -

∂
= - - = - -

∂
∂

= - - + -
∂

(5.84)

and
2

2 2
0,max 0,max2

( ) cos( ) ( )mx mx
m e t mx m e

x

q
q w q- -∂

= - -
∂

2 2
0,max 0,maxsin( ) ( ) sin( ) ( ) cos( )mx mx

t mx m e t mx m e t mxw q w q w- -- - - - -

2
0,max2 ( ) sin( )mx

m e t mxq w-= - - (5.85)

Substituting Eqs. (5.84) and (5.85) in Eq. (5.82),

2
0,max 0,max( ) sin( ) 2 ( ) sin ( )mx mx

e t mx m e t mxw q w a q w- -- - = - -

or
22 mw a= (5.86)

Thus, Eq. (5.83) satisfies Eq. (5.82) provided that

2

2
m

w

a
= or

2
m

w

a
= ± (5.87)

Note that ( /2 )m w a= -  is rejected because this will make the amplitude q
x,max

at depth x, infinite at 

large values of x. This is clearly not possible. Hence, the complete solution of Eq. (5.82) is

( )/2

0,max( )e cos
2

x
t x

w a w
q q w

a

- Ê ˆ
= -Á ˜Ë ¯

(5.88)

The temperature variation with time at any depth x, given by Eq. (5.88) is shown in Fig. 5.30, while

Fig. 5.31 shows the temperature distribution as a function of depth at wt = 0 and at wt = p.

Several important conclusions can be drawn from Eq. (5.88).
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Amplitude at any Depth x The maximum excess temperature or amplitude at any depth x, is obtained 

by putting:

cos 1
2

t x
w

w
a

Ê ˆ
- =Á ˜Ë ¯

Thus, the amplitude at a depth x is:

( /2 )
max 0,max( ) x

e
w aq q -= (5.89)

Equation (5.89) shows that the amplitude of temperature variation decreases exponentially with 

increasing depth as illustrated by Fig. 5.31. The amplitude may become negligible at a certain depth.

The lower the thermal diffusivity, the smaller will be the depth or thickness of the wall at which 

the amplitude would be negligible. In the case of earth, at a depth of nearly 8 m, this happens and the 

temperature remains almost constant throughout the year. It is also noteworthy that the amplitude decreases 

if w increases or a decreases.

Time Lag or Phase Difference at Depth x According to Eq. (5.81), the maximum fluctuation in 

surface temperature occurs when cos (wt) = 1 or when t = 0, 2p/w, 4p/w,..., 2np/w where n = 0, 1, 2, 

3, … etc. Under these conditions q
0,t

 = q
0,max

. However, at any depth x, from Eq. (5.88) the maximum 

fluctuation in temperature will occur when

cos 1 or
2 2

t x t x
w w

w w
a a

Ê ˆ
- = -Á ˜Ë ¯

 = 0, 2p, 4p, …, etc.= 2np

or
1 2

2

n
t x

p

aw w
= + (5.90)

With
1

0,
2

n t x
aw

= =

Thus, while the excess temperature at the surface is maximum when t = 2np/w it is maximum at the 

depth x later when (2 / (1/2 ) )t n xp w aw= + . This delay or phase difference is called time lag, Dt and 

is given by:
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2 1 2 1
or

2 2

n n
t x t x

p p

w aw w aw

Ï ¸
D = + - D =Ì ˝

Ó ˛
(5.91)

Significantly, the time lag increases with increasing x, and decreases with increasing a and w. It is because 

of this time lag that the inside surface of the walls of a building attain the maximum temperature at about 

6 p.m. whereas the outside surface exposed to the sun is hottest at about 3 p.m.

Form and Frequency of Wave at any Depth x Equation (5.89) shows that the form of the temperature 

wave does not change with depth. It remains a sinusoidal cosine wave. Also, from Eq. (5.90), it is seen 

that both the time interval between two successive maxima (2p/w), and the frequency of the wave (w/2p)

do not change with depth.

Wavelength and Wave Velocity It is easily seen that the wavelength of a wave is the distance between 

two adjacent crests. Now, at x = 0, the maximum occurs at t = 0. The next maximum at x = 0 occurs 

when t = t
c
 = 2p/w (Fig. 5.30). But at time equal to t

c
, a maximum also occurs at depth x given by:

or

cos 1 or 0
2 2

2
2

c c

c c

t x t x

x t t

w w
w w

a a

w
w wa

a

Ê ˆ
- = - =Á ˜Ë ¯

=

The distance x given by the last equation is, therefore, the wavelength (L) of the temperature.

2
2L

a
p

w
= (5.92)

Since, the velocity of a wave is the product of frequency and wavelength, the velocity V of the temperature 

wave is given by:

2
2

2 2c

L L
V f L

t

w a w
p

p w p

Ê ˆ= = = = Á ˜Ë ¯

or 2V aw=

Hence, the velocity with which the temperature wave penetrates the surface depends both on w and a.

The distance traversed by the wave during the time interval t
1
 to t

2
 is given by V(t

2
 – t

1
) = (t

2
 – t

1
) 2aw .

Figure 5.32 shows the temperature distribution in the wall at two instants t
1
 and t

2
 where t

2
 > t

1
. The

displacement of the wave at time (t
2
 > t

1
) is also shown. The upper and lower boundary curves represent 

(q
max

) = (q
0,max

)e–mx and –(q
max

) = –(q
0,max

)e–mx respectively.

Heat Flow Rate and Energy Storage Besides the temperature distribution, one is also interested in 

the rate of heat flow into or out of the plate at any instant and the energy stored in the wall every half 

cycle.

Since the rate at which heat enters the wall is

0 0x x

T
Q kA kA

x x

q

= =

∂ ∂Ê ˆ Ê ˆ= - = -Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂
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From Eq. (5.83), one gets

0,max 0( ) [sin( ) cos( )]mx
xQ kAm e t mx t mxq w w-

== - - - -

Heat flow at the surface is obtained by putting x = 0,

or

0,max

0,max

0,max

( )(cos sin )

( )(cos sin )
2

cos sin
( )

2 2

o

o

Q kAm t t

kA t t

t t
Q kA

q w w

w
q w w

a

w w w
q

a

= - -

= -

Ê ˆ
= -Á ˜Ë ¯

Hence, 0,max( ) cos (W)
4

oQ kA t
w p
q w

a

Ê ˆ= +Á ˜Ë ¯
(5.93)

Note that 
0Q  is positive in the limits (wt + p/4) = –p/2 to + p/2 and negative in the limits (wt + p/4)

= +p/2 to –p/2. In other words, Q  is positive between the limits:

1 3 1
and

2 4 4 2 4 4
t t

p p p p p p

w w w w

È ˘ È ˘= - - = - = - = +Í ˙ Í ˙Î ˚Î ˚
Integrating Eq. (5.94) between the two limits, we get the energy stored, Q, in a half-cycle.

/4

0,max

3 /4

/4

0,max 0,max

3 /4

( ) cos( /4)

1 2
( ) sin ( )

4

Q kA t dt

kA t kA

p w

p w

p w

p w

w
q w p

a

w p w
q w q

a w a w

-

= +

È ˘Ê ˆ Ê ˆ= + =Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

Ú

or 0,max

2
( ) (J)Q kA q

wa
= (5.94)
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(b) Note that we had considered in Eq. (5.83) a cosine variation of temperature with time and obtained 

result as Eq. (5.88). If the surface temperature varies as a sine function, i.e.,

0 ,max( ) sin tqq q w=

It can be shown, by following an exactly identical procedure that

( /2 )
0,max( ) sin

2

x
e t x

w a w
q q w

a
- Ê ˆ

= -Á ˜Ë ¯
(5.95)

Furthermore, the time lag Dt, the amplitude at depth, x, q
max

the wavelength L, the velocity V, and 

the energy stored in half-cycle Q, are all given by the same equations which were derived above for the 

cosine variation. Only in Eq. (5.95) for Q  one has to replace cos (wt – p/4) by sin (wt + p/4).

Illustrative Examples

(A) Transient Temperature Variation

 At a certain instant the temperature distribution through a large plane steel wall 

[k = 43 W/m K, a = 0.042 m2/h], 50 cm thick and 15 m2 area is expressed by the following equation: T

= 90 – 50x + 22x2 + 30x3 – 40x4 where T and x are measured in °C and m, respectively. Determine (a) 

the rate of heat transfer at x = 0 and x = 0.5 m, (b) the rate of thermal energy storage, (c) the rate of 

change of temperature at a distance of 30 cm from the heated end, and (d) the location where the rate 

of heating (or cooling) is maximum.

Solution

Known Unsteady-state heat conduction through a large steel slab with prescribed temperature 

distribution.

Find (a) Rate of heat transfer at inlet and exit, inQ  and outQ  (kW), (b) Rate of energy stored, 

stE (kW), (c) Rate of change of temperature, 
0.3x m

T

t =

∂
∂

, (d) Location, x(m) where Q  is 

maximum.

Illustrative Examples
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Assumptions (1) Constant thermal properties of the wall material. (2) One-dimensional transient heat 

conduction. (3) Convection and radiation effects are negligible. (4) Constant area of cross 

section. (5) There is no heat generation.

Analysis The temperature distribution across a large slab (plane wall) of steel at any instant t is

given by:

T (x, t) = 90 – 50x + 22x2 + 30x2 – 40x4

Differentiating the above expression with respect to x, we obtain

T

x

∂
∂

 = – 50 + 44x + 90x2 – 160x3

Further differentiation yields, 
2

2

T

x

∂
∂

 = 44 + 180x – 480 x2

Differentiating yet again, one has

3

3

T

x

∂
∂

 = 180 – 960x

Heat-transfer rate in the x-direction is, 
T

Q kA
∂Ê ˆ= - Á ˜Ë ¯∂x(a) At x = 0,

in
0x

T
Q kA

x =

∂Ê ˆ= - Á ˜Ë ¯∂
 = (–43 W/m K) (15 m2) (–50 K/m) 

3

1 kW

10 W

= 32.25 kW (Ans.) (a)

At x = 0.5 m,

out
x L

T
Q kA

x =

∂Ê ˆ= - Á ˜Ë ¯∂
 = (–43 W/m K) (15 m2)

2 3

3

1 kW
{( 50) 44(0.5) 90(0.5) 160(0.5) }(K/m)

10 W
¥ - + + -

= 16.45 kW (Ans.) (a)

(b) Energy balance: Control volume: Plane wall

in out gen stE E E E- + =

or Rate of thermal energy storage,

st in out in outE E E Q Q= - = -  = 32.25 – 16.45 = 15.8 kW (Ans.) (b)

(c) For one-dimensional, unsteady-state heat conduction without internal heat generation,

2

2

1T T

tx a

∂ ∂
=

∂∂

\ Rate of temperature change, 
2

2

T T

t x
a a

∂ ∂
= =

∂ ∂
 {44 + 180x – 480 x2}

At x = 0.3 m,
T

t

∂
∂

= 0.042 m2/h {44 + (180)(0.3) – (470)(0.3)2} K/m2

   = 2.30 K/h or °C per hour (Ans.) (c)
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 (d) To find the distance from the heated end for maximum rate of heating (or cooling), we 

have,
2

2
0 or 0

T T

x t x x
a

Ï ¸∂ ∂ ∂ ∂Ê ˆ = =Ì ˝Á ˜Ë ¯∂ ∂ ∂ ∂Ó ˛

 or 
3 3

3 3
0 i.e., 0

T T

x x
a

∂ ∂
= =

∂ ∂
 Hence,  180 – 960x = 0

\ x = 0.1875 m or 18.75 cm (Ans.) (d)

 Radiation heat flux of magnitude q
s
 falls perpendicularly on the two faces of an 

infinite slab of width 2L, which is initially at a uniform temperature T
i
. After a certain time has elapsed, 

the temperature distribution in the slab becomes parabolic and subsequently the temperature at any 

point in the slab increases linearly with time. Show that the temperature distribution at any time after 

the parabolic shape has been attained is 

2

s
i 2

q L x 2 t 1
T T

k L 3L
+ +

2

Ï ¸Ô ÔaÊ ˆ= -Ì ˝Á ˜Ë ¯Ô ÔÓ ˛
[NU: S 1992]

Solution

Known A plane wall is subjected to radiant heat flux on both faces under specified conditions.

Find Temperature distribution, T(x, t).

Assumptions (1) Transient one-dimensional conduction. (2) Constant properties. (3) After t = t
0
,

temperature variation with time is linear.

Analysis The governing differential equation is

2

2

T T

tx
a

∂ ∂
=

∂∂
(A)

 with the boundary conditions:

T

x

∂
∂

 = 0 at x = 0 (B)
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and s

x L

T
k q

x =

∂
=

∂
at x = L (C)

and, the initial condition, t = 0, T = T
i
. (D)

It is specified that after t = t
0
, the temperature varies linearly with time.

T

t

∂
∂

 = constant (E)

For t > t
0
, by the first law of thermodynamics,

0

L

p s

T
C dx q

t
r

∂
=

∂Ú (F)

or s
s

p

qT
q

t C L kL

a

r

∂
= =

∂
(G)

From Eq. (A), 
2

2

sqT

kLx

∂
=

∂

Integrating with respect to x, we have 1( )sqT
x f t

x kL

∂
= +

∂
From Eq. (B), f

1
(t) = 0

Then, sqT
x

x kL

∂
=

∂

At x = L, k
T

x

∂Ê ˆ
Á ˜Ë ¯∂

 = q
s
. This satisfies Eq. (C).

Integrating
T

x

∂
∂

 with respect to x, we get,

T = 
2

2 ( )
2

sq x
f t

kL
+ (H)

Now, differentiating T with respect to t and substituting in Eq. (G), we have

2 ( )
0 sqd f tT

t dt kL

a∂
= + =

∂

Integrating with respect to the time t, we get

2 ( ) ( )s

t
f t q C

kL

a
= + where C is a constant of integration.

Substituting in Eq, (H),

2

( )
2

s
s

q x t
T q C

kL kL

a
= + + (I)

At t = t
0
,

2
0

0( ) ( )
2

s
s

q tx
T t t q C

kL kL

a
= = + + and

0 0

0

( ) ( )

L

p t t i sC T T dx q tr = - =Ú

or

2
0

0

0
2

L

s s
p i s

q t qx
C C T dx q t

kL kL

a
r

Ï ¸Ô Ô+ + - =Ì ˝
Ô ÔÓ ˛

Ú
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 or 

3
0

0
06

L

s s
p i s

q t q xx
C Cx T x q t

kL kL

a
r

È ˘
+ + - =Í ˙Î ˚

\

3
0

0( )
6

s
p s i s

q tL
C L q CL T L q t

kL kL

a
r

È ˘
+ + - =Í ˙Î ˚

 or 

2

0 0( )
6 6

s s
p s p i s i

q qL L
C q t C L C T q t C T

k k
r r+ + - = fi = -

 Substitution in Eq. (I) yields
2 2 2

2

2

2 6 2 6

2 1

2 3

s s s
s i i

s
i

q q L qx t x t L
T q T T

kL kL k L k k

q L x t
T

k L L

a a

a

È ˘
= + + - = + + -Í ˙Î ˚

È ˘Ê ˆ= + + -Í ˙Á ˜Ë ¯Í ˙Î ˚

 or 
È ˘Ê ˆ= + + -Í ˙Á ˜Ë ¯Î ˚

2

2

2 1

2 3

s
i

q L x t
T T

k L L

a
QED

(B) Lumped Parameter Model

 A steel strip [r = 7900 kg/m3, C
p
 = 0.64 kJ/kg °C, k = 30 W/m °C], 5 mm thick, 

50 cm wide, coming out of a rolling mill is passed through a cooling chamber maintained at 50°C. How 

long should the strip stay in the chamber if the temperature at no plane in the strip is to fall below 

100°C, while the strip enters the chamber at 300°C. The surface heat-transfer coefficient is 95 W/m2 °C.

Solution

Known A steel strip from a rolling mill is allowed to cool in a cooling chamber.

Find Time required, t (s).

Steel strip
[Thickness, = 5 mm, = 50 cm]d W

T t( ) = 100°C

Ti = 300°C

h

T

= 95 W/m °C
= 50°C

2

Cooling chamber

L

Schematic

Assumptions (1) Lumped-heat-capacity model is valid. (2) Constant properties and convection coefficient.

Analysis The Biot number for this problem is, Bi = chL

k
.

 where the characteristic length,

L
c
 = 

2
3–V 50 0.5 cm 1 m

2.475 10 m
2( ) 2( ) 2(50 0.5) cm 100 cms

W L W

A WL L W

d d

d d
-Ê ˆ¥

= = = = ¥Á ˜+ + + Ë ¯
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\ Bi = 
2 o 3

o

(95 W/m C) (2.475 10 m)

30 W/m C

-¥
 = 0.007 84 (<< 0.1)

\ Internal temperature gradients can be neglected and lumped-parameter analysis is valid.

 Thermal diffusivity, a = 
o

3 o

30 W/m C

(7900 kg/m )(640 J/kg C)p

k

Cr
=  = 5.934 ¥ 10–6 m2/s

 The temperature distribution is given by

( )

i

T t T

T T

-
-

 = exp (–BiFo) or ln 
( )

iT T

T t T

-
-

= (Bi) (Fo)

 or Fo = 
1 1 300 50

ln ln 205.3
( ) 0.00784 100 50

iT T

Bi T t T

- -
= =

- -

 But Fo = 
2/ ct La

\ Time required, 
2 3 2

6 2

(205.3)(2.475 10 m)

5.934 10 m /s

cFo L
t

a

-

-
◊ ¥

= =
¥

 = 212 s or 3.53 min (Ans.)

 Stainless-steel ball bearings ( k = 22.2 W/m K, a = 4.85 ¥ 10–6 m2/s) which have 

uniformly been heated to 850°C are hardened by quenching them in an oil bath that is maintained at 

40°C. The ball diameter is 20 mm, and the convection coefficient associated with the oil bath is 600 W/m2

K. (a) If quenching is to occur until the surface temperature of the balls reaches 100°C, how long must 

the balls be kept in the Oil? (b) If 10 000 balls are to be quenched per hour, what is the rate at which 

energy must be removed by the oil-bath cooling system in order to maintain its temperature at 40°C?

Solution

Known Diameter and initial temperature of ball bearings to be 

quenched in an oil bath.

Find (a) Time required for the balls to cool to 100°C, and 

(b) oil-bath cooling requirement.

Assumptions (1) Constant properties. (2) Internal temperature 

gradients can be neglected.

Analysis: (a) To determine whether the use of the lumped 

capacitance model is suitable, let us first compute the 

Biot number.

 With 
–V

3

o
c

r
L

A
= =  for a sphere, 

2( /3) 600 W/m K(0.01 /3)
0.09 ( 0.1)

22.2 W/mK

oh r m
Bi

k
= = = <

fi Lumped capacitance model is applicable.

 We note that 
( ) 100 40

0.0741
850 40

BiFo

i

T t T
e

T T

- - -
= = =

- -

 Taking log on both sides –BiFo = ln 0.0741

\ Fourier number, 
2.602

28.9
0.09

Fo
-

= =
-

Ball bearing
= 22.4 mm
= 600°C

D

Ti

T

h

= 40°C
= 1500 W/m °C2

Oil ro
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 With 
2
c

t
Fo

L

a
= , the time required is

2 2

6 2

( /3) 28.9 (0.01 m/3)

4.85 10 m /s

oFo r
t

a -
¥

= = =
¥

66.2 s (Ans.) (a)

 The amount of energy transferred from a single ball during the cooling process is

3

3 3

6 2

3

4
–V( )[1 ] ( )[1 ]

3

22.2 W/mK 4
(0.01) m (850 40) [1 0.0741]

34.85 10 m /s

14.38 10 J or 14.38 kJ

BiFo BiFo
p i o i

k
Q C T T e r T T e

K

r p
a

p

- -

-

Ê ˆ= - - = - -Á ˜Ë ¯

Ê ˆ
= ¥ ¥ ¥ - ¥ -Á ˜Ë ¥ ¯

= ¥

 Since 10 000 balls are to be quenched per hour, the oil bath cooling requirement is

10 000
14.38 kJ =

3600 s
Q = ¥ 39.94 kW (Ans.) (b)

 A cylindrical stainless steel ingot ( k = 23 W/m K, a = 5.0 ¥ 10–6 m2/s) 0.1 m in 

diameter and 0.3 m long, passes through a heat treating furnace which is 6 m in length. The initial ingot 

temperature is 365 K, and it must reach 1100 K in preparation for working. The furnace gas is at 1540 

K, and the combined radiant and convective surface coefficient is 105 W/m2 K. In order that the required 

conditions be satisfied, what must be the maximum speed with which the ingot moves through the furnace?

Solution

Known A cylindrical ingot getting heated in a furnace.

Find Maximum ingot speed.

T

h

= 1540 K
= 105 W/m K2

D = 0.1 m

L = 0.3 m

Initially
= 365 K

( ) = 1100 K
T

T t
i

Schematic

Assumptions (1) Lumped capocity analysis is valid. (2) Constant properties.

Analysis Initially, the Biot number is calculated to be

( )( ) or ln ( )( )Bi Fo i

i

T TT T
e Bi Fo

T T T T

- -- È ˘= =Í ˙- -Î ˚
 Characteristic length,

2

2

–V 0.05 0.3
0.02143 m

2( ) 2(0.05 0.3)2 2
c

R L RL
L

A R LR RL

p

p p

¥
= = = = =

+ ++
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\
2105 W/m 0.02143 m

0.098
23 W/m K

chL K
Bi

k

¥
= = =    (< 0.1)

 Fourier number, 
2

1 1
ln ln 2.67

0.098

i

c

T Tt
Fo

Bi T TL

a -Ê ˆ= = = ¥Á ˜-Ë ¯
 = 0.9822/0.098 = 10.04

 Time required, 
2 2

2

6 2

10.04 0.02143
/ 922 s

5.0 10 m /s
c

m
t FoL a -

¥
= = =

¥

 Maximum speed of ingot,

Distance (m) 6000 mm

Time, (s) 922 s
V

t
= = = 6.5 mm/s (Ans.)

 Chromium-steel ball bearings ( k = 50 W/m K, a = 1.3 ¥ 10–5 m2/s) are to be 

heat treated. They are heated to a temperature of 650°C and then quenched in a vat of oil that has a 

temperature of 55°C. The ball bearings have a diameter of 4 cm. The heat-transfer coefficient between 

ball bearings and oil is 300 W/m2 K. Determine (a) The length of time the bearings must remain in oil 

before their temperature drops to 200°C, (b) The total amount of heat removed from each bearing during 

this time interval, and (c) The instantaneous heat-transfer rate from the bearings when they are first 

placed in the oil and when they reach 200°C.

Solution

Known Steel balls are quenched in oil to cool to a specified temperature.

Find (a) Time to reach 200°C. (b) Amount of heat removed during this period. (c) Instantaneous 

heat flow rate (initially and finally).

Assumptions (1) Lumped-capacity model is justified. (2) Constant properties. (3) Uniform heat-transfer 

coefficient.

Analysis Biot number,

Bi = chL

k
 where 

3

2

–V /6

6
c

D D
L

A D

p

p
= = =    (for spherical geometry)
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\
2(300 W/m K)(0.04/6 m)

0.04
50 W/mK

Bi = =

As the Biot number is less than 0.1, lumped-capacitance method can be used,

(a)
( ) 6

exp[ ( )( )] exp exp exp
–V /i p p

T t T hAt ht ht
Bi Fo

T T C C L k Dr r a

Ê ˆ Ê ˆ Ê ˆ-
= - = - = - = -Á ˜ Á ˜ Á ˜- Ë ¯Ë ¯ Ë ¯

\
2

5 2

(200 55) C 300 W/m K 6
exp

(650 55) C 0.04 m(50 W/m K /1.3 10 m /s)-

Ê ˆ- ∞
= -Á ˜- ∞ ¥Ë ¯

 = exp (– 0.0117 t)

or 0.0117145

595

t
e

-=  or – 0.0117 t = ln (145/595)

\ Time required, t = 
1.4118

0.0117

-
-

 = 120.67 s (Ans.) (a)

(b) From energy balance: Total amount of heat removed from each bearing,

conv,out st

out

0 0 0

0 0

Q [ ( ) ]

[ ( ) ] ( ) exp( )

V
( )exp ( ) exp

– –V V

–V ( ) exp
–V

t t t

i

tt
p

i i
p p

p i
p

E hA T t T

Q Qdt hA T t T hA T T BiFo dt

ChA h At
hA T T t dt hA T T

C C hA

hAt
C T T

C

r

r r

r
r

= - = -

= = - - - -

È ˘ È ˘Ê ˆÊ ˆ= - - = - - ¥ -Í ˙ Í ˙Á ˜Á ˜ Ë ¯Ë ¯Í ˙ Í ˙Î ˚ Î ˚

Ê ˆ
= - - - -Á ˜

Ë ¯

Ú Ú Ú

Ú

( )

2

2

5 2

0

p
0

3

(0.04)(1.3 10 m /s)(120.6

3 o

5 2

1 ( )

–( ) C V ( )[ 1]
1

k
( )[ 1]

6

50 W/m K
(0.04 m) 650 55 C or K

61.3 10 m /s

c

c

Bi tt
L

i

t
dt

Bi
L

BiFo
i i

BiFo
i

hA T T e dt

e
hA T T T T e

D T T e

e

a

r

p

a

p
-

Ê ˆ- Á ˜Ë ¯

Ê ˆ
Á ˜Á ˜Ë ¯

-

-

- ¥

-

È ˘
= - -Í ˙

Í ˙Î ˚

È ˘
Í ˙
Í ˙= - - = - - -Í ˙Î - ˚

= - - -

= - ◊ -
¥

Ú

2 2

7s)

(0.04/6) m 1

Ê ˆ
Á ˜
Ë ¯

È ˘
Í ˙

-Î ˚

= –76687 Ws (e–1.4118 – 1) = 76687 J (1 – 0.2437) = 5.8 ¥ 104 J = 58 kJ (Ans.) (b)

(c) The instantaneous heat flow rate is given by the expression.

out ( )exp( )iQ hA T T BiFo= - -
When the bearings are first placed in the oil, t = 0

Hence, Fo = 
2
c

t

L

a
 = 0
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\ 0
out ( ) ( )i iQ hA T T e hA T T

-= - = - -
   = (300 W/m2 K) (p) (0.04 m)2 (650 – 55)°C or K = 897.24 W (Ans.) (c)

 When the bearings reach the final temperature of 200°C,

t = 120.67 s

Fo = 
5 2

2 2 2

(1.3 10 m /s)(120.67 s)

(0.04/6 m )c

t

L

a -¥
=  = 35.3

e–BiFo = exp (– 0.04 ¥ 35.3) = 0.2437

\ outQ  = (300 W/m2 K)(p)(0.04 m)2 (650 – 55)°C or K (0.2437)

   = (897.24) (0.2437) = 218.65 W (Ans.) (c)

 A solid steel sphere [ k = 48.8 W/m °C, r 3, C
p
 = 0.559 kJ/kg °C] of 

0.3 m diameter is cooled with a 2.2 mm thick layer of a dielectric material (k = 0.04 W/m °C). Calculate 

the time required for the coated sphere, initially at 500°C, to attain a temperature of 150°C when it is 

suddenly quenched in an oil bath maintained at 100°C with a convection coefficient of 2.75 kW/m2°C.

Solution

Known A sphere cooled with a dielectric material layer is quenched in an oil bath.

Find Time required for sphere to attain 150°C.

Assumptions (1) Lumped-capacity model is valid. (2) Compared to steel sphere, the thermal capacitance 

of dielectric material is negligible. (3) Constant properties. 

Analysis Thermal resistance to heat transfer from the sphere is due to conduction resistance of 

dielectric layer and the convective resistance.

\ th

1 1

A

t
R

k hA UA
= + =

\ Overall heat-transfer coefficient,

11 3

o 3 2o

1 2.2 10 m 1

0.04 W/m C 2.75 10 W/m C

t
U

k h

-- -

-

È ˘¥È ˘= + = +Í ˙Í ˙Î ˚ ¥Î ˚
 = 18.06 W/m2°C

 The effective Biot number is, c
e

UL
Bi

k
=
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 where the characteristic length, 
3

2

–V /6

6
c

s

D D
L

A D

p

p
= = =

\
2 o

o

18.06 W/m C 0.3 m
0.0185

6 6 48.8 W/m C
e

UD
Bi

k

¥
= = =

¥
   (<< 0.1)

 The lumped-capacity model is, therefore, applicable.

 Time required for the sphere to reach 150°C is determined from

t = 
3 o o

2 o o

(7832 kg/m )(559 J/kg C)(0.3 m) (500 100) C
ln ln

6 ( ) 6 18.06 W/m C (150 100) C

p i
C D T T

U T t T

r - -È ˘ =Í ˙- ¥ -Î ˚

 = 25021 s or 7.0 h (Ans.)

 A solid steel sphere of 10 mm radius and a solid steel cylinder of 5 mm radius 

and 10 mm length, both initially at a temperature of 100°C, are immersed in a large reservoir of cold 

water at 20°C. After 1 minute, the sphere is at a temperature of 50°C. Estimate the temperature of the 

cylinder after 1 minute. The thermal conductivity, specific heat and density of the steel are 13.4 W/m K 

are 0.468 kJ/kg K and 8238 kg/m3.

Solution

Known A solid sphere and a solid cylinder of the same material and at the same initial temperature 

are exposed to the same ambient conditions.

Find Temperature of cylinder after 1 minute, given the sphere temperature after 1 minute.

Solid steel sphere

T t( = 1 min)
= 50°C

Ti = 100°C

R = mm

Water
R = 5 mm

L = 10 mm

Solid steel cylinder
( = 1 min) = ?T t

Schematic

Assumptions (1) Constant material properties. (2) Lumped-capacity formulation is valid.

Analysis For a sphere, the characteristic length,

3

2

–V 4/3 10
mm

3 34
c

R R
L

A R

p

p
= = = =

 For a cylinder, 
2

2

–V

2( )2 2
c

R L RL
L

A R LRL R

p

p p
= = =

++

 Biot number, Bi = 
5 10 50 5

2(5 10) 30 3

chL
Bi

k

¥
∫ = = =

+
 mm should be less than 0.1 for lumped-

capacity model to be valid.
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 For the solid steel sphere, using the lumped-capacitance method, 

( )
exp

i p c

T t T ht

T T C Lr

- Ê ˆ= -Á ˜- Ë ¯
 or 

3

50 20 (60)(3)
exp

100 20 (8238)(468)(10)(10 )

h
-

- È ˘= -Í ˙- Î ˚

 or 
30

ln
80 214.19

hÊ ˆ = -Á ˜Ë ¯
 or – 0.98083 = – h/214.19

h = 210.08 W/m2 K

 For the solid-steel cylinder,

3

( ) 20 (210.08)(60)(3)
exp 0.1406

100 20 (8238)(468)(5)(10 )

T t
-

- È ˘= - =Í ˙- Î ˚
 = 0.1406

\ T(t) = 20 + 80 (0.1406) = 20 + 11.25 = 31.25°C (Ans.)

Comment To verify the validity of lumped-capacitance model, Bi should be calculated and shown to 

be less than 0.1.

 For sphere, 
3(210.08)(10/3)(10 )

0.0523
13.4

hL
Bi

k

-

= = =

 For cylinder, 

3(210.08)(5/3)(10 )
0.026

13.4
Bi

-

= =

 In both the cases, Bi is less than 0.1

 A steel bar, 2 cm ¥ 2 cm ¥ 8 cm, is quenched from 400°C in a bath of oil at 50°C. 

Determine the immersion time so that the centre temperature of the bar reaches 100°C. Would the surface 

temperature be significantly different? Why?

Given: h = 55 W/m2 K For steel: k = 50 W/m K, C
p
 = 400 J/kg K, r = 8100 kg/m3

Solution

Known A steel bar (rectangular parallelopiped) is quenched in an oil and exposed to convective 

cooling process.

Find Time required for the centre of the bar to reach the specified temperature.

h

T

= 55 W/m K
= 50°C

2

Oil

Initially
= 400°CTi

L 3
=

8
cm

L2 = 2 cm

L1 = 2 cm

Centre temperature,
= 100°CT0

Steel bar
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Assumptions (1) Constant properties and uniform heat-transfer coefficient. (2) Lumped capacity model 

is valid.

Analysis Characteristic dimension,

3
1 2 3

2
1 2 1 3 2 3

–V (2 2 8) cm

2( ) 2[(2 2) (2 8) (2 8)] cm
c

s

L L L
L

A L L L L L L

¥ ¥
= = =

+ + ¥ + ¥ + ¥
 = 0.4444 cm

 Biot’s number, Bi = 
2 2(55 W/m K)(0.4444 10 m)

50 W/mK

chL

k

-¥
=  = 0.0049 (<< 0.1)

 Hence, the lumped-capacity model is appropriate. Internal temperature gradients can be 

neglected. Therefore, the centre temperature will not be significantly different from the 

surface temperature. (Ans.)

 The transient temperature distribution is given by

0( )
exp( / )

i i

T TT t T
t

T T T T
t

--
= = -

- -
     (A)

 where t is the thermal time constant defined as

3 2

2

–V (8100 kg/m )(400 J/kg K)(0.4444 10 m)

55 W/m K

p p c

s

C C L

hA h

r r -¥
= =  = 261.8 s

 Substituting numerical values in Eq. (A), one gets

100 50

400 50

-
-

 = exp (–t/261.8) or ln 0.14286 = – t/261.8

 Immersion time, t = (261.8 s) (1.95) = 510 s ª 8.5 min (Ans.)

 A hot cylindrical ingot ( k = 60 W/m °C, r = 7850 kg/m3 and C
p
 = 0.430 kJ/kg 

°C) of 5 cm diameter and 25 cm length is removed from a furnace at 850°C and suddenly quenched in 

water at 20°C until its temperature drops to 550°C. Subsequently, the ingot is exposed to ambient air at 

20°C and allowed to cool slowly to 100°C. The convection heat-transfer coefficient is 250 W/m2 °C when 

the cooling medium is water and 25 W/m2 °C with air is the cooling fluid. Estimate the total time required 

for cooling. State and estimate the total time required for cooling. State and justify any assumption made.

Solution

Known Cooling of a hot cylindrical ingot in two stages: first in water and then in air.

Find Total time required for cooling.

Assumptions (1) Lumped-capacity formulation is valid. (2) Constant properties. (3) Uniform heat-transfer 

coefficient.

Analysis Stage I: Cooling in water at 20°C:

 The assumption of lumped capacity model is justified if the Biot number, Bi < 0.1, 

1
1

ch L
Bi

k
=

 Characteristic length, 
2

2

–V ( /4)

2 4 2( 2 )2 ( /4)
c

s

D L DL DL
L

A D L D LD DL

p

p p
= = = =

+ +¥ +
curved surfaceend surfaces
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=
5 25

2(5 2 25)

¥
+ ¥

 = 1.136 cm or 1.136 ¥ 10–2 m

Hence,
2o 2

1 o

(250 W/m C)(1.136 10 m)
0.04735

60 W/m C
Bi

-¥
= =

As Bi
1
 < 0.1, the assumption is valid.

The temperature distribution is then given by

1 p 11

1

–/ C V1 1 1 1 1

1

( )
exp or ln

( )

sh A t i

i p c p c

T TT t T h t h t
e

T T C L T t T C L

r

r r

- -Ê ˆ- È ˘= = - =Á ˜Í ˙- -Ë ¯Î ˚

Now, rC
p
L

c
 = 7850 kg/m3 ¥ 430 J/kg °C ¥ 0.01136 m = 38.358 ¥ 103 J/m2 °C

Time required for cooling from 850°C to 550°C in water is

3 2o
1

1 2o
1 1

38.358 10 J/m C 850 20
ln ln

( ) 550 20250 W/m C

p c i
C L T T

t
h T t T

r - ¥ -Ï ¸ È ˘= =Ì ˝ Í ˙- -Î ˚Ó ˛
 = 68.82 s

T = 20°C

Cylindrical ingot

L = 25 cm

Stage I

D = 5 cm

Cylindrical ingot

D = 5 cm

L = 25 cm

Stage II

k

r

= 60 W/m°C
= 7850 kg/m3

= 430 J/kg°CCp

T = 20°C

Air

Water

h

T T

T t

1
2

1

1

= 250 W/m °C
(0) = = 850°C
( ) = 550°C

i

h

T T t

T t

2
2

2 1

2

= 25 W/m °C
= ( = 550°C

( ) = 100°C
i )

Schematic
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 Stage II: Cooling in air at 20°C:

Bi
2
 = 

2o
2

o

25 W/m C 0.01136 m

60 W/m C

ch L

k

¥
=  = 4.735 ¥ 10–3 (<< 0.1)

The assumption of lumped-capacity model is valid in this case too.

Therefore,

2

3

2
2 2

38.358 10 550 20
ln ln

( ) 25 100 20

ip c
T TC L

t
h T t T

r -È ˘ ¥ -È ˘= =Í ˙ Í ˙- -Î ˚Î ˚
 = 2901.17 s

Total time required, t = t
1
 + t

2
 = 68.82 + 2901.17 = 2970 s or 49.5 min (Ans)

 A thermocouple junction, which may be approximated as a sphere, is to be used 

to measure the temperature of a gas stream. The heat-transfer coefficient between the junction surface 

and the gas is 400 W/m2 K, the thermal conductivity of the thermocouple is 20 W/m K, the density and 

specific heat of the couple are 8500 kg/m3 and 400 J/kg K respectively.

Determine the junction diameter needed for the thermocouple to have a time constant of 1 second. If the 

junction is at 25°C and is placed in a gas stream that is at 200°C, how long will it take for the junction 

to reach 199°C.

Solution

Known A thermocouple junction (sphere) is placed in a hot-gas stream.

Find Junction diameter for time constant of 1 s. Time to attain 199°C temperature.

Assumptions (1) Lumped-capacitance analysis 

is appropriate. (2) Constant 

thermophysical properties. (3) 

Uniform heat-transfer coefficient.

Analysis The criterion for using the lumped 

capacitance method is that the Biot 

number, Bi, should be less than 0.1. 

For want of the junction diameter, 

Bi cannot be calculated. Hence, it is 

reasonable to take it for granted that internal temperature gradients can be neglected and 

lumped-capacitance model employed to find the diameter of the thermocouple junction. 

Subsequently, the criterion’s validity can be verified.

 Time constant, 

t = 
3

2

–V /6

6

p p pC C C DD

hA h hD

r r rp

p

Ê ˆ
= =Á ˜Ë ¯

\ D = 
2

3

6 (6)(400) W/m K(1s)

(8500 kg/m )(400 J/kgK)p

h

C

t

r
=  = 7.06 ¥ 10–4 m = 0.706 mm (Ans.)

 The characteristic length, L
c
 = 

–V

6

D

A
=

Initially
= 25°C

( ) = 199°C
Ti

T t

h W m= 400 / K2

Thermocouple junction
(Time  constant = 1t s
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\ Biot number, Bi = 
2 4(400 W/m K)(7.06 10 m)

6 (6)(20 W/mK)

chL hD

k k

-¥
= =  = 2.353 ¥ 10–3

 Thus, Bi < 0.1, thereby proving the validity of the assumption.

 To determine the time required for the junction to attain the temperature of 199°C, we 

have

( )
exp

i p

T t T hA
t

T T C Vr

- Ê ˆ= -Á ˜- Ë ¯
 or 

199 200
exp

25 200 p

ht

C Lr

- Ê ˆ= -Á ˜- Ë ¯

 or 
1 6 6 1

exp or ln
175 175p p

ht ht

C D C Dr r

È ˘ Ê ˆ= - - = Á ˜Í ˙ Ë ¯Î ˚

\ Time required, t = (ln 175)
6

pC D

h

r

\ t = 
3 4

2

(8500 kg/m )(400 J/kgK)(7.06 10 m)(5.1648)

(6)(400 W/m K)

-¥
 = 5.17 s (Ans.)

 An electronic device that dissipates 30 W and an attached heat sink have a 

combined mass of 0.25 kg, a surface area of 60 cm2, and an effective specific heat of 0.8 kJ/kg °C. The 

device is initially at a uniform temperature of 25°C in air at 25°C with convection heat-transfer coefficient 

of 10 W/m2 °C. The maximum permissible operating temperature is 65°C and at this temperature the device 

must be shut off. (a) Determine the steady (equilibrium) operating temperature. (b) Calculate the time 

required to reach the maximum operating temperature. (c) If a heat sink is to be added to the device so 

that the operating time is doubled, find the additional mass and area required assuming that the mass 

to area ratio of the added material is the same as that of the original device.

Solution

Known Unsteady-state conduction in an electronic device dissipating heat with one face subjected 

to constant heat flux with the other exposed to convection.

Find (a) T ( ) °C), (b) t (s), (c) (m* – m)(kg), (A* – A)(cm2).

Initially

T t T( = 0) = = 25°Ci

T t( ) = 65°C

Est

.

Q = 30 W
.

Electronic device

Qconv

.

m A

C

= 0.25 kg, = 60 cm
= 800 J/kg °C

2

p

Air
= 25°CT

q =
Q
A

.

Schematic

Assumptions (1) Lumped heat-capacity model is valid. (2) Initial and ambient temperatures are same.
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Analysis (a) For mixed boundary conditions, neglecting internal temperature gradients, the temperature 

variation is given by

where
o

( ) ( / )(1 )

( ) ( ) 65 25 40 C

at at
it e b a e

t T t T

q q

q

- -= + -

∫ - = - =

and

( )

o

2 4 2
4 1

1

25 25 0 C

(10 W/m °C)(60 10 m )
3 10 s

–V 0.25 (800 J/kg°C)

30 W
0.15 s °C

–V (0.25 kg)(800 J/kg C)

i i

o

T T

hA hA
a

c mc kg

qA Q
b

c mc

q

r

r

-
- -

-

∫ - = - =

¥
∫ = = = ¥

∫ = = =

Equilibrium (steady-state) temperature (at t = ) is determined from

4

0.15
( ) 0 (1 0) °C = 500°C

3 10

b b

a a
q -¥

Hence, T( ) = 25°C + 500°C = 525°C (Ans.) (a)

(b) To find the time needed to attain the maximum allowable temperature of 65°C;

q(t) = T(t) – T  = 65 – 25 = 40°C

q
i
(t) = T

i
 – T  = 25 – 25 = 0°C

b/a = 500°C

It follows that, 
43 1040 0 500[1 ]e t

-- ¥= + -
43 10 1 0.08t

e
-- ¥ = - or –3 ¥ 10–4 t = ln 0.92

Time required, t = 278 s (Ans.) (b)

(c) Operating time, t* = 2t = 556 s

In the changed situation, 
*

* *

*
( ) ( ) [1 ]a t

i

b
t t e

a
q q -= + -

* * * * *

* * *

/

/

b q A m c q

ha hA m c
= =

and
*

* 4 1

*
3 10 s

hA hA
a

mcm c

- -= = = ¥    since , and and remain unchanged.
*

*

m m
h c

A A

Ê ˆ
=Á ˜Ë ¯

a* t* = 3 ¥ 10–4 ¥ 556 = 0.1668

Substituting values, 
*

0.1668 * *

*
65 0 (1 ) 0.1536 /

b
e b a

a

-= + - =

or b* = a* ¥ 423.18 = 3 ¥ 10–4 ¥ 423.18 = 0.127

As * *

*

30
/ * , 0.295 kg

0.127 800

Q
b Q m c m

b c
= = = =

¥

Additional mass = (0.295 – 0.250) kg = 0.045 kg (Ans.) (c)
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*
* 2 20.295 kg

60 cm 7 0.8 cm
0.25 kg

m
A A

m
= ¥ = ¥ = -

 Additional area = (70.8 – 60)cm2 = 10.8 cm2 (Ans.) (c)

 A metallic sphere initially at a uniform temperature T
i
, is immersed in a fluid 

which is heated by an electric heater such that T  = T
i
 = 10t. Neglecting internal temperature gradients, 

derive an expression for the temperature of the sphere as a function of time and convective heat transfer 

coefficient.

Solution

Known A metallic sphere with uniform temperature (location wise) is immersed in a fluid whose 

temperature increases with time.

Find Expression for temperature variation in the sphere with time.

Fluid
Sphere

Initially Ti

T T t= + 10i

Schematic

Assumptions (1) Internal temperature gradients are negligible (sphere is spatially isothermal). (2) Thermal 

properties of sphere and heat transfer coefficient are constant.

Analysis From energy balance: Rate of heat loss by convection = Rate of decrease of internal energy:

–( ) Vp

dT
hA T T C

dt
r- = -  or ( 10 )

– –V V
i

p p

dT hA hA
T T t

dt C Cr r
+ = +  (A)

 At t = 0, T = T
i
,

0
– –V V

i

T t

p pT

dT hA hAt
dt

T T C Cr r
= - = -

-Ú Ú

 Characteristic equation: P + 
–Vp

hA

Cr
 = 0

 Characteristic root: P = 
–Vp

hA

Cr
-

 Complimentary solution: exp
–V

c
p

hAt
T C

Cr

Ê ˆ= -Á ˜Ë ¯
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 The solution is of the form: T
p
 = D + Bt where D and B are constants. Substituting T

p
 into 

Eq. (A), we have

 or 

( ) ( ) ( 10 )

10
– – –V V V

i
p p

i
p p p p

d hA hA
D Bt D Bt T t

dt C V C V

hA hA hA hA
B D Bt T t

C C C V C

r r

r r r r

+ + + = +

Ê ˆ Ê ˆ+ + = +Á ˜ Á ˜Ë ¯ Ë ¯
(B)

 If the above equality is to hold, coefficients of like power on each side of the above 

equation must be equal.

–V
i

p p

hA h A
B D T

C C Vr r
+ = (C)

 and 10
– –V Vp p

hA hA
B

C Cr r
= (D)

 Hence, D = 
–Vp

i

C
T B

h A

rÊ ˆ
- Á ˜Ë ¯

from (C)

 and B = 10 from (D)

\

10 10

–V
exp 10 10

–V

p

p i

p

c p i
p

C V
T D Bt T t

h A

ChAt
T T T C T t

C hA

r

r

r

Ê ˆ
= + = - +Á ˜Ë ¯

Ê ˆ= + = - + - +Á ˜Ë ¯
(E)

 When t = 0, T = T
i

– –V 10 V
exp(0) 10

p p

i i

C C
T C T C

h A h A

r r
= + - fi =

 Substituting this value of C in Eq. (E), we get

–V
10 1 10p

hAt

C Vp

i

C
T e T t

h A

rr -Ê ˆ
Á ˜= Ë - ¯ + +

 or 
–V–V rr -Ê ˆ

Á ˜- = Ë - ¯10 e 1 10
p

hAt

Cp

i

C
T T t

hA
+ (Ans.)

 The base plate of a 500 W household electric iron has a thickness of 5 mm and 

an ironing surface area of 0.06 m2. Initially the iron is at a uniform temperature of 33°C, equal to the 

ambient air temperature. Suddenly the heating starts and the iron dissipates heat by convection with a 

surface heat-transfer coefficient of 13 W/m2 K. Calculate how long it will take for the plate temperature 

to reach 140°C after the start of heating. The plate is made of an aluminium alloy with r = 2800 kg/

m3, C
p
 = 0.90 kJ/kg K and k = 180 W/m K. (b) What would be the equilibrium temperature of the iron 

if the control did not switch off the current?
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Solution

Known An iron with a heating element operates under prescribed conditions.

Find (a) Time required by the iron to reach a temperature of 140°C since it was plugged in, (b) 

T(t Æ ) (°C).

h = 13 W/m K2

A = 0.06 m2
T = 33°C

T t( ) = 140 °C
T t( = 0)

Base plate of iron

Est

.

Egen = 500 W
.

Eout

.

Ambient
air

V
A

L =     = 5 mm

r = 2800 kg/m

C

k

p = 0.90 kJ/kg K

= 180 W/m K

Schematic

Assumptions (1) Constant plate properties. (2) Uniform heat-generation and heat-transfer coefficient. (3) 

Internal temperature gradients are neglected.

Analysis Thickness of the base plate, L = 3–V
5 10 m

A

-= ¥

\ Volume, –V  = rA = (5 ¥ 10–3 m) (0.06 m2) = 3 ¥ 10–4 m3

Mass of the plate, m = –Vr  = (2800 kg/m3) (3 ¥ 10–4 m3) = 0.84 kg

Biot number, Bi = 
2 3(13 W/m K)(5 10 m)

180 W/m K

hL

k

-¥
=  = 3.67 ¥ 10–4 (<< 0.1)

Hence, lumped parameter analysis is justified.

Applying energy balance.

in out gen st genor [ ( ) ] p

dT
E E E E hA T t T E mC

dt
- + = - - + =

With
gen

( ) ,
p p

Ed hA
T t T d dT

dt mC mC

q
q q q- = = fi + =

Let
gen

and
p p

EhA
a b

mC mC
∫ ∫

Then
d

a b
dt

q
q+ =

The solution of this equation can be expressed as:

exp( ) ( / )[1 exp( )]i at b a atq q= - + - -

where q
i
 = T(t = 0) – T  = 0

0
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gen

2 2

2 2
3 1

500 W
/

(13 W/m K)(0.06 m )

(13 W/m K)(0.06m )
1.032 10 s

(0.84 kg)(900 J/kgK)

( ) 140 33 107 C

p

E
b a

hA

hA
a

mC

T t Tq

- -

= =

= = = ¥

= - = - = ∞

 Substituting the appropriate values in Eq. (1), we have

107 = 0 + 641 [1 – exp (–1.032 ¥ 10–3 t)]

 or exp[– 1.032 ¥ 10–3 t] = 1 – 
107

641

Ê ˆ
Á ˜Ë ¯  = 0.833

 or –1.032t ¥ 10–3 = ln 0.833 = – 0.18263

\ time required to reach 140°C,

t = 
30.18263 10

1.032

¥
 = 177 s or 2.95 min (Ans.) (a)

 Steady-state (equilibrium) temperature of the iron,

T( ) = 
b

a

Ê ˆ
Á ˜Ë ¯ = 641°C + 33oC = 674°C (Ans.) (b)

 A batch reactor provided with submerged steam coil, contains 1000 kg mass of 

reactants having a specific heat of 3.8 kJ/kg K. The coil area is 1 m2 and the steam is fed at 120°C. 

Assuming no heat loss to the surroundings, calculate the time taken to heat the material from 20°C to 

90°C. The overall heat transfer coefficient is 600 W/m2 K. If the external area of the vessel is 10 m2 and 

the outside heat-transfer coefficient is 9 W/m2 °C, what would be the time taken to heat the reactants 

over the same temperature range? What would be the maximum temperature the reactants could reach?

Solution

Known Reactants are heated in a reactor equipped with a submerged steam coil.

Find Time required (a) Neglecting heat loss to surroundings and (b) Without neglecting it. 

(c) Maximum reactants’ temperature

Assumptions (1) Reactants are well stirred. (2) Constant properties. (3) Constant heat-transfer coefficient.

Analysis Neglecting heat loss to be surroundings, the energy balance gives, in stE E=
 i.e., heat transferred to reactants = rate of increase of internal energy of the reactants 

 or coil steam( ) p

dT
UA T T mC

dt
- =

 where T is the temperature of reactants which are heated from initial atmospheric 

temperature, T
i

= T  = 20°C to the process temperature T (t) = 90°C.

 or 
coil steam( )

pmC dT
dt

UA T T
=

-

 Integrating between the limits, are have

( )

steam

coil steam coil steam0

or ln
( ) ( )

i

T T tt
p p i

T T

mC mC T Tdt
dt t

UA T T UA T t T

=

=

-
= =

- - -Ú Ú
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Time taken is

t = 
3

2 2

(1000 kg)(3.8 10 J/kgK) 20 120
ln

90 120(600 W/m K)(1 m )

¥ -Ê ˆ
Á ˜Ë - ¯

 = 7625 s or 2.12 h (Ans.)

If we take into account the convective heat loss from the vessel to the surrounding air, the 

energy balance is

in out stE E E- = or coil steam vessel( ) ( ) p

dT
UA T T hA T T mC

dt
- - - =

Rearranging,
coil steam vessel coil vessel( ) ( )

p

p

mC dT dT
dt mC

UA T hA T UA hA T a bT
= =

+ - + -

where a ∫ UA
coil

T
steam

 + hA
vessel

T and b ∫ (UA
coil

 + hA
vessel

)

Integrating between proper limits, we get

( )

0

1
or ln

ln

i

t T t

p p
iT

p i

dT a bT
dt mC t mC

a bT b a bT

mC a bT
t

b a bT

-Ê ˆ= = - Á ˜- -Ë ¯

Ê - ˆ
= Á ˜Ë - ¯

Ú Ú

With a = (600 W/m2 K ¥ 1 m2 ¥ 120°C) + (9 W/m2 K ¥ 10 m2 ¥ 20°C) = 73800 W

and b = (600 W/m2 K ¥ 1 m2) + (9 W/m2 K ¥ 10 m2) = 690 W/K

It follows that:

t = 
(1000 kg) (3800 J/kg K) 1 W 73800 W (690 W/K 20°C)

ln
(690 W/K) 1 J/s 73800 W (690 W/K 90°C)

- ¥È ˘
Í ˙- ¥Î ˚

  = 9003 s or 2.5 h (Ans.)
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 Maximum temperature of the reactants will be achieved under steady operating conditions, 

i.e., when in outE E=
UA

coil
 (T

steam
 – T

max
) = hA

vessel
 (T

max
 – T )

 or max max max

9 10
120 ( 20) 0.15 3

600 1
T T T

¥È ˘- = - = -Í ˙¥Î ˚
fi 1.15 T

max
 = 123

\ T
max

 = 107°C (Ans.)

(C) Plane Wall

 A thermoplastic material [k = 5 W/m °C and a = 1.44 ¥ 10–3 m2/ h] ought to 

be brought to at least 90°C for ease in moulding but its maximum allowable temperature at any point 

is 110°C. As a safeguard against possible damage, a sheet of this material of 2 cm thickness is placed 

in an oven which is maintained at 110°C. The sheet is initially at a uniform temperature of 40°C. The 

convection heat transfer coefficient is 80 W/m2°C. Determine the minimum time required for the sheet 

to reach 90°C everywhere.

Solution

Known A thermoplastic sheet is heated in an oven in a convective environment.

Find Minimum time of immersion of the sheet.

h = 80 W/ °Cm2

T = 110 °C

Oven

2 cm

L L

k = 5 W/m °C

= 1.44 10 /ha ¥ –3 2m
L

x
0

T

Initially

iT = 40°C

Schematic

Assumptions (1) One-dimensional transient heat conduction. (2) Constant properties and uniform heat-

transfer coefficient. (3) Fo > 0.2 so that one term analytical solution is justified.

Analysis For a plane wall, the characteristic length, L is half-thickness, i.e., 1 cm or 0.01 m.

 Biot number, Bi = 
2 o

o

(80 W/m C)(0.01 m)

5 W/m C

hL

k
=  = 0.16

 From Table 5.2, with Bi = 0.16: l
1
 = 0.3841 rad and A

1
 = 1.0251

 The dimensionless centre temperature is

  2
,wall 1 1

(0, )
exp( )o

i

T t T
A Fo

T T
q l

-
= = -

-
or 290 110

1.0251 exp(–0.3841 )
40 110

Fo
-

= ¥
-
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 or ln 
2/7

1.0251

È ˘
Í ˙Î ˚

 = –(0.3841)2Fo fi Fo = 8.66 = at/L2

 Therefore, time required, t = 
2

3 2

(8.66)(0.01 m)

1.44 10 /m h
-¥

 = 0.60 h or 36 min (Ans.)

Comment The minimum temperature will occur at the centre. Hence, once the centre attains 90°C, 

the entire sheet is at least at that temperature. The surface temperature will be

  T(x/L = 1) = T  + (T
i
 – T ) Q

o,wall
 cos l

1

   = 1104°C + (40 – 110)°C ¥ (2/7) cos 
180

0.3841
p

∞Ê ˆ¥Á ˜Ë ¯
   = 91.5°C, i.e., just 1.5°C above the midplane temperature.

(D) Long Cylinder

 A long 35 cm diameter cylindrical shaft made of stainless steel (k = 14.9 W/m 

K, r = 7900 kg/m3 and C
p
 = 0.477 kJ/kg K) comes out of an oven at a uniform temperature of 400°C. 

The shaft is then allowed to cool slowly in a chamber at 150°C with an average convection heat-transfer 

coefficient of 85 W/m2 K. Determine (a) the temperature at the centre of the shaft 45 minutes after the 

start of the cooling process, (b) the temperature at the surface of the shaft after 45 minutes, and (c) the 

heat transfer per metre length of the shaft during this period.

Solution

Known A long cylindrical shaft is cooled slowly under the given conditions.

Find (a) Centre temperature, T
0
(°C), (b) Surface temperature, T(r = r

o
). (c) Heat transfer from 

the shaft per unit length, Q (kJ).

Long cylinder

k = 170 W/m K, = 9.05 10 m /sa ¥ –7 2

r

2 cm

Medium

T = 75 °C

h = 1700 W/ Km2

r = 18 cm, / = 0.9r r0

r = 0

r = r = 20 cm0

Schematic

Assumptions (1) The shaft is long and has a thermal symmetry about its centreline. Hence, heat 

conduction is one-dimensional. (2) Thermophysical properties of the shaft material and the 

heat transfer coefficient are constant. (3) The Fourier number, Fo > 0.2 so that the transient 

temperature charts and one term approximate solutions are applicable.

Analysis (a) The temperature within the shaft is a function of both radial distance r (from the axis) 

and time t. The Biot number for this problem is

Bi = 
2(85 W/m K)(0.175 m)

14.9 W/m K

ohr

k
=  = 0.9983

 (> 0.1) fi Lumped-capacity model is not valid.
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 Fourier number, Fo = 
2

o

t

r

a
,

 where 6 2

3 3

1 J/s
14.9 W/m K

1 W
3.954 10 m /s

(7900 kg/m )(0.477 10 J/kgK)p

k

C
a

r
-= = = ¥

¥

\
6 2

2

(3.954 10 m /s)(45 60 s)
0.3486

(0.175 m)
Fo

-¥ ¥
= =

 With Bi = 0.9983 and Fo = 0.3486, we obtain from the chart.

0
0 0.7

i

T T

T T
q

-
= =

-

 and, the temperature at the centre of the shaft is

T
0
 = T  + 0.7(T

i
 – T ) = 150 + 0.7 (400 – 150) = 325°C (Ans.) (a)

 (b) The position correction factor for 

Bi = 0.9983 and r/r
o
 = 1, 0

0

( / 1)
0.64

T r r T

T T

= -
=

-
(from the chart)

\ Surface temperature,

T(r/r
o
 = 1) = T  + (0.64) (0.7) (T

i
 – T ) = 150 + 0.448 ¥ 250

 = 262°C (Ans.) (b)

 (c) The dimensionless heat-transfer ratio for a long cylinder is determined from the chart 

to be

max

0.44
i

Q Q

Q Q
= =

 Hence, Q = 0.44 Q
max

 The maximum heat transfer from the cylinder per unit length is

Q
max

 = 2–( ) V ( ) ( ) ( )p i p i o p imC T T C T T r L C T Tr r p- = - = -

 = (7900 kg/m3) (p ¥ 0.1752 m2 ¥ 1 m)(0.477 kJ/kg K) ¥ (400 – 150)°C or K

 = 90 638 kJ

 Heat transferred from the cylinder during 45 minutes,

Q = (0.44) (90 638 kJ) = 39 880 kJ (Ans.) (c)

(E) Sphere

 Stainless-steel ball bearings [ k = 21.9 W/m °C, r = 7900 kg/m3, C
p
 = 571 J/kg 

°C, a = 4.85 ¥ 10–6 m2/s] of 20 mm in diameter have an initial uniform temperature of 850°C and are 

suddenly quenched in an oil bath maintained at 40°C. The associated convective heat transfer coefficient 

is 1000 W/m2 °C. (a) If the surface temperature of the balls after quenching is 100°C, how long must 

the balls be kept in oil? (b) What is the centre temperature of the balls? (c) If 20 000 balls are to be 

quenched per hour, find the oil bath cooling rate in order to maintain its temperature at 40°C.
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Solution

Known Ball bearings are hardened by quenching 

them in the oil bath.

Find (a) Time required, t (s) to attain T (r
o
, t)

= 100°C. (b) Centre temperature of balls, 

T (0, t) (°C). (c) Oil-bath cooling rate, Q

(W ).

Assumptions (1) One-dimensional radial transient heat 

conduction. (2) Properties and convection 

coefficient are constant. (3) Fourier 

number, Fo > 0.2.

Analysis (a) Biot number for a spherical ball, 

3 2

2 o 3

o

( / ) ( /6/ )

(1000 W/m C)(20 10 m)
0.1522

6 6(21.9 W/m C)

chL h V A h D D
Bi

k k k

hD

k

p p

-

= = =

¥
= = =

As Bi > 0.1, the lumped-heat-capacity model is not quite appropriate. Transient temperature 

charts can be used for improved accuracy.

2 o

o

(1000 W/m C)(0.01 m)
0.457

21.9 W/m C

ohr
Bi

k
= = =

Also r/r
o
 = 1 at the surface of the ball.

From the chart, with Bi = 0.457 and r/r
o
 = 1, 

,

0

( )
0.80

oT r t T

T T

-
=

-

Now, 0
sph

100 40
( , ) 0.0741

850 40
o

i

T T
r t

T T
q

- -
= = =

- -

It follows that 
,

,sph
0

( )( , ) 0.0741
0.0926

0.8

oo
o

i

T r t TT r t T

T T T T
q

--
= = =

- -

With Bi = 0.457 and q
0
(t) = 0.0926, from the chart. Fo =

2
2.0

o

t

r

a
@

Hence, the time required, t = 
2

6 2

(2.0)(0.01 m)

4.85 10 m /s-¥
 = 41 s (Ans.) (a)

(b) q
o,sph

(t) = 0

i

T T

T T

-
-

 = 0.0926

Centre temperature is

T
0
 = T  + 0.0926 (T

i
 – T ) = 40°C + 0.0926 (850 – 40) = 115°C (Ans.) (b)

(c) Bi2Fo = (0.457)2 (0.0741) = 0.418

From the chart for a single ball, 0.94
i

Q

Q
@

Oil bath

h

T

= 1000 W/ °C

= 40 °C

m2 Ball

D = 20 mm

T

T r t

= 850 °C
( , )

= 100 °C

i

0

Schematic
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 Hence, Q = 0.94 m C
p
(T

i
 – T ) = 0.94 

3

( )
6

p i

D
C T T

p
r -

   = (0.94) (7900 kg/m3)
3

30.02

6
mp

Ê ˆ
¥Á ˜Ë ¯  (571 J/kg °C) (850 – 40)°C

   = 14.4 ¥ 103 J or 14.4 kJ

 The oil-bath cooling rate, for 20 000 balls per hour

14.4 kJ
20000

3600 s

Q
Q

t
= = ¥ =

D
80 kW (Ans.) (c)

 An egg with a mean diameter of 40 mm and initially at a temperature of 20°C 

is placed in a saucepan of boiling water for 4 minutes and found to be boiled to the consumer’s taste. 

For how long should a similar egg for the same consumer be boiled when taken from a refrigerator at 

a temperature of 5°C?

 The egg properties are k = 2 W/m K, r = 1200 kg/m3, C
p
 = 2 kJ/kg K and the heat-transfer coefficient 

for the shell and shell water interface may be taken as 200 W/m2 K. Compare the centre temperature 

attained with that computed by treating the egg as a lumped-heat-capacity system.

Solution

Known An egg is cooked in boiling water under prescribed conditions.

Find Centre temperature of egg, T (0, t) for t = 4 min and T
i
 = 20°C; Time required, t (s) for 

T
i
 = 5°C.

t = ?

iT = 5 °C
T t

D T

= 20 °C, = 4 min
= 40 mm, = ?

i

0

Boiling
water

h

T

= 200 W/ K

= 100 °C

m2
Egg

Schematic

Assumptions (1) The egg is spherical in shape with a radius of r
o
 = 20 mm. (2) Heat conduction in the 

egg is one-dimensional due to thermal symmetry about the centre point. (3) Constant egg 

properties and convection coefficient. (4) The Fourier number, Fo > 0.2 so that one term 

analytical approximate solution holds good.

Analysis The Biot number for this problem is
2(200 W/m K)(0.02 m)

2
2 W/mK

ohr
Bi

k
= = =

 The coefficients l
1
 and A

1
 for a sphere corresponding to Bi = 2 are from Table 5.2:

l
1
 = 2.0288 rad, A

1
 = 1.4793.

 The Fourier number, Fo =
7 2

2 2

(8.33 10 m /s)(4 60 s)

0.02o

t

r

a -¥ ¥
=  = 0.5
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Substituting these and other values,

2
10

1
Fo

i

T T
A e

T T

l--
=

-
 = 1.4793 exp [–(2.0288)2 (0.5)] = 0.1889

Hence, the centre temperature of the egg after 4 min to the consumer taste is

T
0
 = T  + 0.1889(T

i
 – T ) = 100°C + 0.1889 (20 – 100)°C = 84.9°C (Ans.)

A similar egg is cooked now with an initial uniform temperature of 5°C to the consumer’s 

taste, i.e., T
0
 = 84.9°C

Then, 0 84.9 100
0.159

5 100i

T T

T T

- -
= =

- -

The value of Bi = ohr

k
 remains unchanged at Bi = 2 and so are the coefficients l

1
 and A

1
.

Therefore, using the one-term analytical method,

0.159 = 1.4793 exp [–(2.0288)2 Fo]

where from 0.10745 = 
2(2.0288) Fo

e
- or –(2.0288)2 Fo = ln 0.10745 = –2.23075

\ Fo = 0.542 = at/ 2
or

And, the time required to reach the same temperature of 84.9°C now is

t = 
2

7 2

0.542(0.02 m)

8.33 10 m /s-¥
– = 260 s or 4 min 20 s (Ans.)

The egg should, therefore, be boiled 20 seconds longer.

Alternatively: Using the chart (since Fo > 0.2), we get for Bi = 2 and Fo = 0.5:

0

i

T T

T T

-
-

 = 0.195 and T
0
 = 100 + 0.195(20 – 100) = 84.4°C

From the chart, with

0 84.4 100

5 100i

T T

T T

- -
=

- -
 = 0.164 and Bi = 2, we read Fo = 0.54

\ t = 0.54 (0.02 m)2/(8.33 ¥ 10–7 m2/s) ª 260 s

Lumped-Capacity Model:

Using the lumped-mass approximation method,

2
0

3

2

3

4 3
exp exp exp

–V 4/3

(200 W/m K)(4 60 s)(3)
exp 0.05

(1200 kg/m )(2000 J/kgK)(0.02 m)

o

i p p p oo

T T rhAt ht ht

T T C C C rr

p

r r rp

È ˘ È ˘- È ˘= - = - ¥ = - ¥Í ˙ Í ˙Í ˙- Í ˙ Í ˙Î ˚ Î ˚ Î ˚
È ˘¥

= - =Í ˙
Í ˙Î ˚

Temperature of egg after 4 minutes is

T
0
 = 100°C + (20 – 100)°C (0.05) = 96°C
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 The discrepancy is due mainly to the assumption of uniform temperature throughout the 

egg—an assumption in which internal temperature gradients are neglected and the system 

is treated as spacewise isothermal.

Comment The use of charts is certainly simpler but less accurate. For better accuracy, analytical 

solution is preferable, though a little more time consuming, especially when the reading 

error from the charts is likely to be considerable.

(F) Semi-Infinite Medium

 During the harsh winter conditions in Kashmir, a sudden cold wave reduces the 

ambient air temperature to –25°C. Before the cold wave moved in, the earth at a location was initially 

at a uniform temperature of 10°C. High winds result in a convection heat-transfer coefficient of 40 W/m2

K on the earth’s surface for a period of 6 h. Taking the wet-soil properties at that location to be k = 2.0 

W/m K and a = 1.72 ¥ 10–3 m2/h, determine (a) the surface temperature of the earth at the end of 6 h, 

and (b) the distance from the earth’s surface up to which the freezing effect will penetrate in this period.

Solution

Known The earth’s surface is subjected to very cold and windy conditions.

Find (a) Surface temperature of earth after 6 h, T
s
(x = 0, t = 6 h). (b) Depth of penetration, x

(T = 0°C, t = 6 h).

Wind

Initially iT = 10 °C

Soil

k = 0.9 W/m K

a = 1.6 10 m /s¥ –5 2

T = –25 °C

h = 40 W /m K2

x h= (0°C, 6 ) = ?

T x t( = 0, = 6 h) = ?s

Schematic

Assumptions (1) The earth is idealized as a semi-infinite solid. (2) Latent-heat effects of freezing of 

moisture in soil are neglected. (3) Constant soil properties and heat-transfer coefficient.

Analysis: (a) At the surface of the earth, x = 0.

 Hence, the Biot number, Bi =
hx

k
 = 0

 Also, 
a -¥

=
2 2 2 3 2

2 2

(40 W/m K) (1.72 10 m /h)(6 )

(2.0 W/m K)

h t h

k
 = 4.128 and 

ah t

k
 = 2.0317

 The exact solution to this type of problem can be expressed as:

aa

a a

È ˘Ê ˆÊ ˆ- Ê ˆ= - + ¥ +Í ˙Á ˜ Á ˜Á ˜ Ë ¯Ë ¯ Ë ¯- Í ˙Î ˚

2

2

( , )
erfc exp erfc

2 2

i

i

h tT x t T x hx h t x

T T k kkt t
 (A)
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 Noting that 
a2

x

t
 = 0 at x = 0 and erfc 

a

Ê ˆ
Á ˜Ë ¯2

x

t
 = erfc (0) = 1

aÈ ˘Ê ˆ-
= - Í ˙Á ˜Ë ¯- Î ˚

2 2/(0, )
1 erfch at ki

i

h tT t T
e

T T k

\ T (0, 6 h) = T
i
 + (T  – T

i
) [1 – e4.128{erfc(2.0317)}]

   = 10°C + {–25 – (10)} [1 – (62.05 ¥ 0.00414)]

   = 10 – 35(1 – 0.257) = 10 – (0.743) (35) = –16°C (Ans.) (a) 

 (b) T (x, t = 6 h) = Freezing temperature = 0°C

 With 
ah t

k
 = 2.0317 and 

- -
=

- - -
( , 6 ) 0 10

25 10

i

i

T x h T

T T
 = 0.2857

 Equation (A) can be solved by following a trial-and-error procedure. To satisfy this 

equation, we find:

 The dimensionless distance, 
a2

x

t
 = 0.538

 Hence, the distance (depth) from the earth’s surface is,

x = 0.538 ¥ ¥2 0.00172 6 0.11 m or 11 cm (Ans.) (b)

 A passenger car travelling at a speed of 72 km/h is suddenly brought to rest 

within 5 seconds by applying the brakes. The braking system comprises four brakes (with each brake 

band of 350 cm2 area) which press against the steel drums of equivalent area. The brake lining and the 

drum surfaces are at the same temperature and the heat generated during braking is dissipated across 

the drum surfaces. Determine the maximum rise in temperature assuming the mass of the car to be 1.5 

t and the drums to be semi-infinite medium. Take for steel: k = 55 W/m K and a = 15.2 ¥ 10–6 m2/s

Solution

Known A car is brought to halt by suddenly applying the brakes.

Find Maximum temperature rise, (T
s
 – T

i
) (°C).

Assumptions (1) The drums are approximated as semi infinite slab with constant surface temperature. 

(2) Constant properties.

k = 55 W/m K

= 15.2 10a ¥ –6 2m

V = 72 km/h

4 brakes, each of

= 350 cm

= 5 s

= 1500 kg

A

t

m

2

T T t T= (0, ) =s

Initially
T T xi = ( , 0)

Steel drum
(semi-infinite solid)

( )h
x

Schematic
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Analysis Rate of decrease of kinetic energy when the brakes are applied,

Ê ˆ¥
- = = Á ˜Ë ¯

È ˘¥ =Í ˙
Î ˚

22
2 2

2
3

3 3 2 2

1 1 1 1 (1500 kg) 72 1000 m
[ 0]

2 2 2 2 5s 3600 s

kgm 1 kJ/kg
60 10 60 kJ/s

s 10 m /s

mV
m V mV

t

 Energy balance:
Ê ˆ Ê ˆ

=Á ˜ Á ˜Ë ¯ Ë ¯
Kinetic energy Heat generated and dissipated 

decrease through drum surface 

  Instantaneous heat-flow rate, at the surface (x = 0),

pa

-
= = 2

0

( ) 1

2

s ikA T T
Q mV

t
 = 60 kJ/s = 60 000 W

 Area for heat transfer 

A = (350 ¥ 10–4 m2/brake band) (4 brakes) = 0.14 m2

 Maximum temperature rise,

T
s
 – T

i
 = 

pa p -¥ ¥ ¥ ¥
=

6 2
0

2

60000 W 15.2 10 m /s 5s

(55 W/mK)(0.14m )

Q t

kA

 = 120.4 K or °C (Ans.)

 A manufacturing process requires a thin veneer, 1 mm thick, to be glued onto a 

thick piece of particle board. The adhesive is thermal setting and requires a temperature of 120°C to fuse 

and adhere to the base. Consider the veneer and base to have essentially the same thermal conductivity 

k = 0.14 W/m °C and thermal diffusivity a = 1.26 ¥ 10–7 m2/s. (a) If the particle board and veneer are 

initially at 25°C, and the surface temperature is suddenly changed to 200°C by a heated copper pressure 

plate, how long would it take for the adhesive layer to fuse and set?

 (b) If the hot plate is assumed to act like an ambient environment of 200°C with a surface heat-transfer 

coefficient of 100 W/m2 K, determine the time to bring the adhesive to the required temperature of 120°C. 

Also find the surface temperature and surface heat flux at this time.

Solution

Known A veneer and particle board have their surface temperature suddenly raised.

Find Time required for the adhesive layer to fuse and set, t (s) with (a) Sudden change in surface 

temperature, and (b) Convection boundary conditions.

Assumptions (1) The heated pressure plate makes intimate contact with the veneer layer and instantaneously 

raises the surface temperature. (2) The veneer and particle board are a semi-infinite solid. 

(3) Constant properties.

Analysis Case (a): Constant Surface Temperature

 For the sudden change in surface temperature, (due to extremely high heat-transfer 

coefficient, h Æ ), the boundary and initial conditions are the following:

 At x = 0 (the surface), T = T  for t > 0

 At t £ 0, the temperature is T
i
 at all locations x into the solid.
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Local Biot number, Bi =
hx

k
(as h Æ )

The solution to the conduction equation under these conditions is,

a

- Ê ˆ= Á ˜- Ë ¯

( , )
erfc

2

i

s i

T x t T x

T T t

T(1 mm, t) = 120°C, T
s
 = 200°C, T

i
 = 25°C

Therefore,
a

-Ê ˆ =Á ˜ -Ë ¯

120 25
erfc

200 252

x

t
 = 0.543

Table 5.3 gives a value of about 0.43 for the argument x/2 a t .

Accordingly, 
a2

x

t
 = 0.43 and solving for the time t yields

t = a - -¥ ¥2 3 2 7 2( /0.86) / {(1 10 m)/0.86} /(1.26 10 m /s)x  = 10.7 s (Ans.) (a)

Case (b): Convection on the Surface

In this case, there is a finite surface heat-transfer coefficient, h = 100 W/m2 K and an 

ambient temperature, T  = 200°C.

The local Biot number, Bi = =
2(100 W/m K)(0.001 m)

0.14 W/mK

hx

k
 = 0.714

Also,
- -

=
- -

(120 200)°C

(25 200)°C

x

i

T T

T T
 = 0.457

From the chart, the dimensionless distance x/2 a t  is estimated to be 0.19 under the above 

conditions. The time then can be calculated as follows:

\

a

a -

=

= = =
¥ ¥

2
2

2 2

7 2

(0.19)
4

( /0.19) (0.001 m /0.19)

4 4 1.26 10 m /s

x

t

x
t 55 s (Ans.) (b)

x = 0 x = 1 mm

(a) (0, ) = = 200 °CT t Ts

(b) = 200 °C

= 100 W/m K

T

h 2

T x  t( , ) = 120 °C

Surface Veneer Particle board base

Distance, x

x

Initially at Ti = 25 °C

Schematic
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 It is noteworthy that 55 s is a more realistic and exact estimate of time than 10.7 s obtained 

earlier with the assumption that h is almost infinite.

 The surface temperature, T(0, t) is given by

 With 

a a

a -

È ˘Ê ˆ
= = + - Í ˙Á ˜Ë ¯Î ˚

¥ ¥
= =

2 2/

2 7 2

(0, ) ( ) erfc

100 W/m K 1.26 10 m /s 55 s
1.88

0.14 W/m K

h t k
s i

h t
T T t T T T e

k

h t

k
,

erfc(1.88) = 0.00784, and = =
22 2 (1.88)exp( / ) 34.32h at k e

 Surface temperature,

T
s
 = 200 + (25 – 200)[(34.32)(0.00784)] = 152.9°C (Ans.) (b)

 Surface heat flux,

q
s
(t) = h[T  – T(0, t)] = 100 W/m2K[200 – 152.9]°C

 or K = 4710 W/m2 (Ans.) (b)

(G) Short Cylinder/Semi-Infinite Cylinder

 A steel disc 30 cm in diameter and 10 cm thick, initially at a uniform temperature 

of 265°C is immersed in a liquid maintained at –15°C. The convective heat-transfer coefficients on the 

ends and on the cylindrical side are 340 and 1420 W/m2 K, respectively. What is the temperature (a) 

at the centre of the disc, and (b) on the surface at the centre of one end after 5 minutes have elapsed? 

Rework the problem with the values of the convection coefficient interchanged.

The relevant properties of steel are the following:

      r = 7854 kg/m3, C
p
 = 487 J/kg K, k = 56.7 W/m K, a = 14.82 ¥ 10–6 m2/s

Solution

Known A steel disc (a short cylinder) with two convection coefficients for the ends and the lateral 

side is cooled in a liquid medium.

Find (a) Centre temperature, T (0, 0, t) and (b) Temperature at the centre of end surface 

T (0, L, t).

Assumptions (1) Two-dimensional transient heat conduction in r and x directions. (2) Constant properties. 

(3) Different heat-transfer coefficients for heat flow in radial and axial directions. (4) Fo

> 0.2 so that Heisler charts can be used.

Analysis The temperature distribution in the steel disc is given by

q q
-

= ¥
- wall cyl

( , , )
( , ) ( , )

i

T r x t T
x t r t

T T

 (a) To determine the centre temperature of the disc, we need to know q
wall

(0, t) and 

q
cyl

(0, t).
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T

h

= –15 °C

ms
2= 1420 W/ K

Steel disc
(short cylinder)

T

h

= –15 °C

mt
2= 340 W/ K

L

r0 = 15 cm = 5 mint

x L=

x

r

O

L = 5 cm

r0

Initially

Ti = 265 °C

Schematic

Plane Wall:

a -

= =

= = =

¥ ¥
= = =

2

2

6 2

2 2

0.05 m, = 340 W/m K

(340 / ) (0.05 )
0.30

56.7 /

(14.82 10 / ) (5 60 )
1.78

(0.05 )

tL h h

h L W m K m
Bi

k W m K

t m s s
Fo

L m

From the chart, with Bi = 0.30 and Fo = 1.78,

q
-

= =
-wall

wall

(0, ) 0.65o

i

T T
t

T T

Long Cylinder:

  r
o
 = 0.15 m, h

s
 = 1420 W/m2 K

a -

= =

= =

¥ ¥
= = =

2

2

6 2

2 2

0.15 m, 1420 W/m K

(1420 W/m K)(0.15 m)
= 3.76

56.7 W/mK

(14.82 10 m /s) (5 60 s)
0.198

(0.15)

o s

o

o

r h

hr
Bi

K

t
Fo

r

With Bi = 3.76 and Fo = 0.198. From the chart,

q
-

= =
-cyl

cyl

(0, ) 0.72o

i

T T
t

T T

Therefore, q
-

=
-short cylinder

o
o

i

T T

T T
 = q

wall
(0, t) ¥ q

cyl
(0, t) = (0.65) (0.72) = 0.468
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\ the centre temperature of the disc is

T(0, 0, t = 5 min) = T  + (0.468)(T
i
 – T )

= –15°C + {265 – (–15}°C (0.468) = 116°C (Ans.) (a)

(b) The centre of the one end, say, top surface of the disc is still at the centre of the long 

cylinder (r = 0), but at the outer surface of the plane wall (x = L). Hence, one must first 

find the surface temperature of the wall. We note that at the end,

x = L = 0.05 m, and =
0.05 m

0.05 m

x

L
 = 1

With Bi = 0.30 and x/L = 1.0, from the chart, we get

\ q

-
=

-

-- -
= = ¥ = ¥ =

- - -

( / 1)

0

wall
0

0.86

( , ) ( , )
( , ) (0.86) (0.65) 0.56

x L

o

i i

T T

T T

T TT L t T T L t T
L t

T T T T T T

Hence,
-Ï ¸

Ì ˝-Ó ˛short cylinder

(0, , )

i

T L t T

T T
 = q

wall
(L, t) ¥ q

cyl
(0, t) = (0.56) (0.72) = 0.403

Temperature on the surface of the disc at the centre of one end after 5 min is

T(0, 5 cm, 5 min) = –15°C + 0.403 {265 – (–15)}°C = 98°C

Now, if the the values of h are interchanged then h
t
 = 1420 W/m2 K and h

s
 = 340 W/m2 K.

Plane Wall: Bi = =
2(1420 W/m K)(0.05 m)

56.7 W/mK

hL

k
 = 1.252

Fo =
a

2

t

L
 = 1.78 (same as before)

From the chart, q
-

= =
-wall

wall

(0, )
(0, ) 0.255

i

T t T
t

T T

Long Cylinder: Bi = =
2(340 W/m K)(0.15 m)

56.7 W/mK

ohr

k
 = 0.90

Fo =
a

o

t

r
 = 0.198 (same as before)

From the chart, q
-

= =
-cyl

cyl

(0, )
(0, ) 0.89

i

T t T
t

T T

\ T(0, 0, t) = T  + T
i
 – T )(q

wall
(0, t) ¥ q

cyl
(0, t)}

   = – 15°C + {265 – (–15)}°C ¥ [0.255 ¥ 0.89]

   = – 15°C + (280°C) (0.227) = 48.5°Cq
wall

(L, t)

   =
-- -

= ¥
- - -

0

0

( , ) ( , )

i i

T TT L t T T L t T

T T T T T T
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 With Bi = 1.252 and x/ L = 1, from the chart,

-
=

-0

( , )
0.59

T L t T

T T

\ q
wall

(L, t) = (0.59) (0.255) = 0.151

 And 
-

-
(0, , )

i

T L t T

T T
 = q

wall
(L, t) ¥ q

cyl
(0, t) = (0.151)(0.89) = 0.134

\ T(0, 5 cm, 5 min) = T  + 0.0134 (T
i
 – T )

= –15°C + 0.134 {265 – (–15)}°C = 22.5°C (Ans.) (b)

Comment Notice that by interchanging the h-values, the answer changes significantly.

 A semi-infinite aluminium cylinder [ k = 240 W/m K, a = 93.6 ¥ 10–6 m2/s] of 

20 cm diameter is initially at a uniform temperature of 227°C. The cylinder is now placed in water at 

27°C where the average convection heat transfer coefficient is 120 W/m2 K. Determine the temperature 

at the centre of the cylinder 5 cm from the end surface 10 min after the start of cooling.

Solution

Known A semi-infinite aluminium cylinder is cooled in water under the given conditions.

Find Temperature at the centre of the cylinder at x = 20 cm, T (x, 0, t) (°C).

End surface

Semi-infinite
cylinderaluminium

t = 10 min

h = 120 W/ Km
= 27 °C

2

T

Water

x

r

x = 5 cm

Initially
= 227 °CTi

D = 20 cm

Schematic

Assumptions (1) Heat conduction is two-dimensional with T = f(r, x, t). (2) Properties and convection 

coefficient are constant. (3) Fo > 0.2 so that approximate analytical solutions are applicable.

Analysis The semi-infinite cylinder can be considered as a two-dimensional body obtained by 

intersection of an infinite cylinder and a semi-infinite solid.

 Infinite Cylinder: r
o
 = 0.1 m

= = =
2(120 W/m K) (0.1 m)

0.05
240 W/mK

ohr
Bi

k
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 From Table 5.2, for Bi = 0.05

l
1
 = 0.3142 rad, A

1
 = 1.0124

a -¥ ¥
= = =

6 2

2 2

(93.6 10 m /s)(10 60 s)
5.616

(0.1 m)o

t
Fo

r

 Hence, q
0
 = q

cyl
 (r = 0, t = 10 min) = l- 2

1 1exp( )A Fo

   = 1.0124 exp [–(0.3142 rad)2 (5.616)] = 0.5815

 Semi-infinite Solid:

a a
q

a a

Ï ¸Ê ˆÊ ˆ Ô ÔÊ ˆ- - + ¥ +Ì ˝Á ˜ Á ˜Á ˜ Ë ¯ Ë ¯Ô ÔË ¯ Ó ˛

2

semi-inf 2
1 ( , ) erfc exp erfc

2 2

x hx h t x h t
x t

k kkt t

 Now, 
a

a

a

-

-

= =
¥

¥
= =

= =

= =

6 2

2 6 2

2

2
2

2

0.05 m
0.1055

2 2 (93.6 10 m /s)(600 s)

(120 W/m K) (93.6 10 m /s)(600 s)
0.1185

240 W/m K

(120 W/m K)(0.05 m)
0.025

240 W/m K

(0.1185) 0.01404

x

t

h t

k

hx

k

h t

k

 Substituting these values, we have

q
semi-inf

(x, t) = 1 – erfc(0.1055) + exp(0.025 + 0.01404) ¥ erfc(0.1055 + 0.1185)

= 1 – 0.8865 + exp(0.03904) ¥ erfc(0.224)

= 0.1135 + (1.0398)(0.7514) = 0.8948

 Applying the product solution, we get

q q
-

¥
- semi-inf cyl

(0, , )
( , ) (0, )

i

T x t T
x t t

T T
 = (0.8948)(0.5815) = 0.52

 Therefore, the temperature at the centre of the cylinder (r = 0) at a distance of 5 cm from 

the exposed bottom surface (x = 5 cm) is

T(0, x, t) = 27°C + (0.52)(227 – 27)°C = 131°C (Ans.)

(H) Multi-dimensional Systems

 A concrete cubical block ( k = 0.79 W/m °C and a = 2.1 ¥ 10–3 m2/h) 15 cm 

on a side originally at a temperature of 100°C is suddenly immersed in a fluid at 25°C for which the 

convective heat transfer coefficient is 25 W/m2 °C. Calculate (a) the temperature at the centre of the 

cube, and (b) at the midpoint of one face after one hour has passed.

Solution

Known A concrete cube is allowed to cool in a convective environment.

Find (a) Centre temperature, T(0, 0, 0, t). (b) Temperature at the midpoint of one face, T(L
1
, 0, 0, t).
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Fluid

2L2 = 15 cm

h = 25 W/ °Cm
°C

2

T = 25

Concrete:
k = 0.79 W/m °C

= 21 10 m /ha ¥ –3 2

Initially

iT = 100 °C

2L
1
=

15
cm

2L3 = 15 cm

Schematic

Assumptions (1) Three-dimensional conduction. (2) Constant properties. (3) Uniform heat-transfer 

coefficient on all exposed surfaces. (4) Fo > 0.2 to ensure the validity of one term 

approximate analytical solutions.

Analysis (a) A cube has all equal sides so that 2L
1
 = 2L

2
 = 2L

3
 = 15 cm. For this three-dimensional 

geometry, the product solution can be expressed as

where

q q

q

-
= =

-

-
=

-

3

0,cube wall

wall

(0, 0, 0, )
[ (0, )]

(0, )
(0, )

i

i

T t T
t

T T

T t T
t

T T

To begin with, we must evaluate Bi of the number, Bi, and the corresponding values of 

the coefficients l
1
 and A

1
 for one-term series solution.

=
hL

Bi
k

 where L is the half-thickness of a side.

\ Bi =
-¥2o 2

o

(25 W/m C)(7.5 10 m)

0.79 W/m C
 = 2.373

With Bi = 2.373, we have from Table 5.2 after linear interpolation :

l
1
 = 1.120 rad and A

1
 = 1.1903

With Fo =
a -¥

=
3 2

2 2

(2.1 10 m /h)(1h)

(0.075 m)

t

L
 = 0.373,

the dimensionless centre temperature is,

23 3
1 3 2

0,cube 0,wall 1

3

[ ] [ ] [1.1903 exp( 1.12 0.373)]

(0.7455) 0.414

Fo
A e

lq q -= = = - ¥

= =
\ Temperature at the centre of the cube after 1 h is

T(0, 0, 0, t) = T  + 0.414(T
i
 – T ) = 25°C + 0.414 (100 – 25)°C 

= 56°C (Ans.) (a)
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 (b) Temperature at the midpoint of one face after 1 h has elapsed is,

q(L
1
, 0, 0, t) = q(0, 0, 0, t) ¥ q(L

1
, t)

 where q(L
1
, t) = q(0, t) ◊ cos l

1
 = 0.7455 ¥ cos(1.12 ¥ 57.3°) = 0.325

 Hence, T(L
1
, 0, 0, t) = T  + (0.414)(0.325)(T

i
 – T )

   = 25°C + (0.134)(100 – 25)°C = 35°C (Ans.) (b)

 A 10 cm ¥ 10 cm long wooden beam [r = 800 kg/m3, C
p
 = 2.512 kJ/kg °C, k 

= 0.346 W/m °C) is initially at 25°C. It is suddenly exposed to flames at 550°C through a heat-transfer 

coefficient of 18 W/m2 °C. (a) If the ignition temperature of the wood is 480°C, how much time will 

elapse before any portion of the wood starts burning? (b) Calculate the amount of energy transferred 

per unit length to the beam.

Solution

Known A wooden beam of square cross section is subjected to flames in a convective environment.

Find (a) Time t(s) before any part of the beam starts burning. (b) Total energy transfer, Q
2D, beam

(J) per unit length.

Wooden
beam

h = 18 W/ °Cm
°C

2

T = 550

2L2

x2

x1

2L1

Flam
es

L1

L L=2 1
Initially

i

1 2

T

T L L

= 25 °C
( , ) = 480 °C

Schematic

Assumptions (1) Two-dimensional conduction in x
1
 and x

2
 directions. (2) Constant properties and uniform 

heat-transfer coefficient.

Analysis (a) The beam is of square cross section with 2L
1
 = 2L

2
 = 10 cm and 2L

3
Æ , the transient 

temperature distribution is

- - -
= ¥

- - -
1 2 1 2

2 wall1 wall2

( , , ) ( , ) ( , )

i i iD

T x x t T T x t T T x t T

T T T T T T

 When the beam is exposed to sudden fire, its most vulnerable part will be its surface 

which will start burning first. The centre temperature T(0, 0, t) will be less than the surface 

temperature T(L
1
, L

2
, t). Time will have to be determined such that,

T
surface

 = T
ignition

 = 480°C = T(L
1
, L

2
, t)
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Plane Wall 1: L
1
 = 5 cm

a

r

= = =

È ˘
Í ˙ Ê ˆÎ ˚= = = =Á ˜Ë ¯

2 o
1

1 o

o

1 2 2 3 o 2
1 1

(18 W/m C)(0.05 m)
( ) 2.6

0.346 W/m C

1J/s
0.346 W/m C( , )

1W 3600 s
( ) 0.258 (h)

1h(800 kg/m )(2512 J/kg C) (0.05 m)p

hL
Bi

k

t s
t k

Fo t
L C L

Plane Wall 2: 2L
2
 = 2L

1
 = 10 cm

a
= = = =2

2 2 2
2

( ) 2.6 and ( ) 0.248 ( )
hL t

Bi Fo t h
k L

At the surface of the beam, = 1
x

L
 for both plane walls 1 and 2.

To use the transient temperature charts or one-term approximation solution, Fo should

be greater than 0.2. As time is unknown, let us consider this condition to be valid until 

confirmed later.

One-term approximate analytical series solution is more convenient to use here.

q l l

q l l

-

= -

2
1 1 1 1 wall1wall1

2
2 2 1 1 wall2wall2

( , ) [ exp( )cos ]

( , ) [ exp( )cos ]

L t A Fo

L t A Fo

(A)

As L
1
 and L

2
 are same, q(L

1
, t) = q(L

2
, t)

\ q(L
1
, L

2
, t) = [q(L

1
, t)]2

Dimensionless temperature difference,

q

q q

- -
= = =

- -

= = =

1 2
1 2

1 1 2

( , , ) 480 550
( , , ) 0.133

25 550

( , ) ( , , ) 0.1333 0.365

i

T L L t T
L L t

T T

L t L L t

At Bi = 2.6, from Table 5.2:

l
1
 = 1.1463 rad and A

1
 = 1.1979

Hence, substituting numerical values in (A), we have,

0.365 = 1.1979 exp[–(1.1463)2(0.248 t(h))]cos 1.1463 rad

or 0.74 = exp[–0.3259 t(h)] or –0.3259(h) = –0.3014

Time required, t = 0.925 h or 55.5 min (Ans.) (a)

(b) Total transient heat transfer for a two-dimensional geometry formed by the intersection 

of two one-dimensional geometries 1 and 2 is

È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ= + -Í ˙Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Î ˚max max max maxtotal,2 1 2 1

1

D

Q Q Q Q

Q Q Q Q

As (Bi)
1
 = (Bi)

2
, (Fo)

1
 = (Fo)

2
,

(Q/Q
max

)
1
 = (Q/Q

max
)

2
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\
È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ= + -Í ˙Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Î ˚max max max max2 1 1 1

1

D

Q Q Q Q

Q Q Q Q

 where 

l

l
q

l

q -

Ê ˆ = -Á ˜Ë ¯

-
= =

-

1

2
1 1

1

1
,wall

max 11

0,wall 1

sin
1

(0, 0, )

o

Fo

i

Q

Q

T t T
A e

T T

 where Fo
1
 = (0.248)(0.925) = 0.23 (> 0.2)

\ q -= =

Ê ˆ = - =Á ˜Ë ¯

2

1

(1.1463) (0.23)
0,wall

max 1

1.1979 0.8863

sin(1.1463 rad)
1 (0.8863) 0.2954

1.1463

e

Q

Q

 Hence, 
Ê ˆ = + - =Á ˜Ë ¯max 2

0.2954 0.2954(1 0.2954) 0.5035

D

Q

Q

 The maximum amount of heat a body can gain

Q
max

 = Q
i
 = r –V C

p
(T  – T

i
) = r(2L

1
)(2L

2
)(length, L)(C

p
)(T  – T

i
)

 Per unit length,

Q
max

 = (800 kg/m3) (0.1 m ¥ 0.1 m) (2.512 kJ/kg °C) (550 – 25)°C = 10 550.4 kJ

 Heat transferred per unit length to the beam is

Q = (0.5035)Q
max

 = (0.5035)(10550.4) kJ = 5313 kJ (Ans.) (b)

Comment As Fo > 0.2, one-term approximation solutions obtained are valid. As q
0,wall,2D

 = (0.8863)2,

the centre temperature, T(0, 0, t) = 550 + (0.8863)2 (25 – 550) = 137.6°C while T(L
1
, L

2
,

t) = 480°C. Hence, 55.5 min after the wooden beam, initially, at 25°C is exposed to the 

fire at 550°C, the outer surface of the beam will be at the ignition temperature of 480°C 

and the wood will start burning.

(P) Periodic Temperature Variation

 Experiments were performed in order to determine the thermal diffusivity of 

the soil by studying the heat flow during the usual diurnal (day–night) temperature changes. Assuming 

sinusoidal variation in surface temperature, calculate the thermal diffusivity of the soil if the thermocouples 

embedded at depths of 100 mm and 150 mm were found to record temperature of 9°C and 4°C, respectively.

Solution

Known Measurements of temperatures are made at two identified depths in the soil during a day–

night cycle.

Find Thermal diffusivity, a(m2/h).
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Assumptions (1) Sinusoidal temperature 

variations. (2) The earth is 

considered a semi-infinite medium. 

(3) Constant thermophysical 

properties of soil.

Analysis The amplitude of excess temp-

erature at any depth is expressed as

w
q q

a

Ï ¸
= -Ì ˝

Ó ˛,amp 0,amp exp
2

x x

 where a is the thermal diffusivity of the soil

p
w p p= = ¥ =

1
2 2 rad/h

24 12
f

 At x
1
 = 0.1 m, q

1,ampx  = 9°C

x
2
 = 0.15 m, q

2 ,ampx  = 4°C

 Substituting the values at the two locations in the above expression, we get

w aq q -= 1 /2
1 0

x
e

(A)

 and 
w aq q -= 2 /2

2
x

oe (B)

 Dividing (B) by (A), we have

q qw w w

q a a q a

È ˘ È ˘
= - + = -Í ˙ Í ˙

Î ˚ Î ˚
1 1

1 2 2 1
2 2

exp or exp ( )
2 2 2

x x x x

 or 
q w p

q a a

È ˘
= - = - ¥Í ˙

¥Î ˚
1

2 1 2
2

9 ( / )
ln ( ) or (0.15 0.1)

2 4 12 2 ( / )

rad h
x x m

m h

 or 
p p

a -= = = ¥
¥È ˘ ¥Í ˙Î ˚

2 6 2

2

1
m / 0.138 10 m /s

263 24 36002.25
ln 24

0.05

h
h

s

\ Thermal diffusivity of the soil is,

a = 0.138 ¥ 10–6 m2/s (Ans.)

 The surface temperature of an annealing furnace varies periodically as a sine 

function from 760°C to 850°C. The period of oscillation is 12 hours. Determine for k = 1.75 W/m K 

and a = 8.5 ¥ 10–7 m2/s: (a) the amplitude of temperature variation at a depth of 10 cm, (b) the time 

lag of wave at a depth of 10 cm, (c) the surface temperature 18 hours after the surface temperature 

begins to exceed the mean value, and (d) the temperature at a depth of 10 cm, 8 hours after the surface 

temperature starts exceeding the mean value.

Solution

Known An annealing furnace experiences periodic surface temperature variation over a given time 

interval.

x

2

1T = 9 °C1

T = 4 °C2

x = 100 mm1

x = 150 mm2

Soil

Schematic
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Find (a) q
0,amp

, (b) Dt for x = 0.1 m, (c) q
0,amp

 at t = 18 h, (d) q
x,amp

 at x = 0.1 m and t = 8 h.

Assumptions (1) Constant properties. (2) Sinusoidal temperature oscillations. (3) One-dimensional heat 

conduction in x.

Analysis Period of oscillation, t
p
 = 12 h

Frequency of temperature wave, f = -11

12
h

\
p p

w p= =
2

2 or rad/h
12 6

f

Thermal diffusivity,

a = 8.5 ¥ 10–7 ¥ 3600 = 0.00306 m2/h = 3.06 ¥ 10–3 m2/h

\
p

wa
Ê ˆ= =Á ˜Ë ¯

2 2 2rad/h (0.003 m /h) 0.0016 m /h
6

Depth, x = 0.1 m

(a) Amplitude of temperature variation at x = 0.1 m is

q q w=,amp 0,amp exp{– /2 }x x a

Mean temperature, 
+

=mean

850 760

2
T  = 805°C

Amplitude of surface temperature variation is

q
0,max

= T
max

 – T
mean

or T
mean

 – T
min

= 850 – 805 = 45°C or 805 – 760 = 45°C

\ q
x,amp

 = 45°C exp
pÈ ˘

-Í ˙
¥ ¥Í ˙Î ˚

2

rad /h
0.1

6 2 0.00306 m /h
m  = 17.84°C (Ans.) (a)
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(b) Time lag, 
wa

D = =
¥ 2 2

0.1

2 0.0016 2 /

x m
t

m h
 = 1.77 h (Ans.) (b)

(c) Surface temperature after 18 h from the point when it begins to increase from its mean 

value, at x = 0 and t = 18 h is

0

150

300

450

600

750

900

0 10 20 30 40 50 60 70

  

0,max

2

(0, ) exp sin
2 2

/6 rad/h
45°C exp 0

2 0.00306 m /h

0.0016
sin 18 0

6 2

45 C exp(0) sin 3 0

t x t x
w wa

q q w
a

p

p

p

È ˘ È ˘
= - -Í ˙ Í ˙

Î ˚Î ˚

È ˘
= - ¥Í ˙

¥Í ˙Î ˚

È ˘Ê ˆ¥ ¥ - ¥Í ˙Á ˜Ë ¯Î ˚

= ∞ ¥ = ∞

\ T(x = 0, t = 18 h) = T
mean

 = 805°C (Ans.) (c)

(d) At x = 0.1 m and t = 8 h

8
(0, ) 45 C exp[–0.1 9.25)sin 0.1 0.0008 –

6
t

p
q

È ˘Ê ˆ= ∞ ¥ - =Á ˜Í ˙Ë ¯Î ˚
15.4°C

\ T(x = 0.10 m, t = 8 h) = T
mean

 + q(x, t) = 805 + (–15.4)°C = 789.6°C (Ans.) (d)

Points to Ponder

Biot number, Bi = hL
c
/k where k is the thermal conductivity of the solid, and L

c
 is the characteristic  

length –V/ sA .

If Bi < 0.1, the body can be regarded spatially isothermal.

The temperature distribution when T = f (t) is given by 
-

=
-

( )( )( )

(0)

Bi FoT t T
e

T T
.

For lumped capacitance formulation, the characteristic length L
c
 of a cylinder of radius R and L is 

RL/2 (R + L).
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Neglecting internal thermal resistance, the convection coefficient, h = 
a

-Ê ˆ
Á ˜-Ë ¯

ln
3

iT TkR

t T T
 for a sphere 

of radius R.

Thermal time constant t = R
t
C

t
 where R

t
 is the convective thermal resistance, and C

t
 is the thermal

capacitance.

The time required by a temperature measuring instrument after which the temperature difference is 

reduced to 63.2% of the initial temperature difference is called its sensitivity.

Compared to water, air is the medium where the lumped system analysis is likely to be more ap-

plicable.

In lumped-heat-capacity model, the temperature-time history of the body is regulated by the surface 

resistance with Bi Æ 0.

For all practical purposes, temperature readings should be taken after four time constants.

Two significant dimensionless numbers in transient heat conduction are Biot number and Fourier

number.

In the lumped-capacity model of transient heat conduction, the product of Biot and Fourier numbers 

is the ratio of time required to thermal time constant.

Fourier number, Fo, is the dimensionless time.

Surface temperature of a solid changes more rapidly than temperatures in the solid if Biot number, 

Bi ≥ 10.

For high values of h and low values of k, large temperature differences occur between the inner 

and outer regions of a large solid.

One term approximation for one-dimensional unsteady-state heat conduction is valid for Fo greater

than 0.2.

Biot number, Bi, for a sphere with convection coefficient h, thermal conductivity k, and diameter 

D equals 
2

hD

k
 for use in transient-temperature charts and is equal to 

6

hD

k
 for lumped capacity 

formulation.

Heisler charts are applicable for plane wall (2L thick), long cylinder of radius r
o
 and sphere of radius 

r
o
, for Bi

Ê ˆ∫Á ˜Ë ¯
ohrhL

k k
 greater than 0.1, and Fo

a aÊ ˆ
∫Á ˜Ë ¯2 2

o

t t

L r
 greater than 0.2.

Consider a large plate of thickness L and a sphere of diameter D = L made of the same material 

with the same convection coefficient. The sphere will reach the desired temperature level about 

three times as fast as the plate does.

Heating or cooling of a road surface can be analyzed using the semi-infinite slab model.

A semi-infinite solid is characterized by a thick slab with low thermal diffusivity and short expo-

sure time.

The case of specified surface temperature for analyzing transient conduction in a semi-infinite mate-

rial can be handled by setting the convection coefficient to infinity.

The solution for a multi-dimensional geometry is the product of the solutions of the one dimensional 

geometries whose intersection is the multi-dimensional body.

Transient heat conduction in the semi-infinite cylinder is two-dimensional.

In a short cylinder, the transient conduction is two-dimensional and the temperature varies in both 

x- and r-directions.

The fraction of total heat transfer max/Q Q  up to a prescribed time t is determined using the Gröber

charts.
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Heat flow in an internal combustion engine is an example of periodic transient conduction.

In periodic unsteady-state conduction, the time lag is defined as 
x

aw
D =

2
t  where w = 2pf, x is 

depth, f is the frequency, and a is the thermal diffusivity.

GLOSSARY of Key Terms

● Transient heat conduction Heat conduction in a solid in which the temperature variation 

depends not only on space coordinates but also time.

● Lumped-heat-capacity analysis An idealized method in which the temperature distribution 

in a body is only a function of time with negligible internal 

temperature gradients and a uniform temperature throughout at 

a given time.

● Biot number Ratio of internal thermal resistance to conduction in a solid to 

external thermal resistance to convection at the solid surface.

● Fourier number A dimensionless measure of the time spent in a transient-state 

process.

● Thermal time constant The product of thermal resistance (convective) and the thermal 

capacitance in a system which has the dimensions of time.

● One-term approximation A simplified approach for simple geometries like plane wall, 

long cylinder, and sphere in the solution of one dimensional 

unsteady state problems for Fourier number greater than 0.2 with 

reasonable accuracy.

● Transient-temperature charts The graphical solution for temperature distribution in geometrical 

configurations like an infinite slab, an infinite cylinder and a 

sphere involving one dimensional transient conduction for Fourier 

number greater than 0.2.

● Semi-infinite solid (medium) A body in which at a given time, there is always a portion where 

the temperature remains unchanged when a temperature change 

occurs on one of its boundaries.

● Penetration depth The limit of penetration of the temperature change at the interface 

in a semi-infinite medium beyond which the body is effectively 

at the initial temperature.

● Penetration time The time taken for the surface perturbation of temperature to be 

felt in a semi-infinite solid at a given depth (point).

● Short cylinder A finite cylinder of short length in which the unsteady-state 

temperature distribution becomes two-dimensional requiring 

product solution involving one-dimensional transients in a long 

cylinder and a plane wall.

● Semi-infinite cylinder A cylinder which is a cross between a semi-infinite medium and 

a long cylinder with two-dimensional temperature distribution. 

The product solution involves one-dimensional transient in a 

semi-infinite body and a long cylinder.
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Multiple-Choice Questions

5.1 In transient heat conduction, the two relevant dimensionless numbers are those attributed to:

(a) Fourier and Biot (b) Reynolds and Prandtl

(c) Grashof and Prandtl (d) Biot and Nusselt

5.2 Consider the statements given below:

1. If the Biot number exceeds 0.1, the spatial effects in transient conduction analysis can be 

neglected.

2. Transient-temperature charts are reasonably adequate if the dimensionless time is greater than 

0.2.

3. A short cylinder can be viewed as an intersection of infinite slab and infinite cylinder.

4. While using the Heisler–Grober charts for a sphere, the Biot number is hr
o
/3k

(a) All the four statements are correct. (b) Only 1 is correct.

(c) 2 and 3 are correct. (d) 1, 2 and 3 are correct.

5.3 Identify the inappropriate expression in the context of transient heat conduction.

(a) Bi2Fo = h2at/k2

(b) (Q/Q
max

)2D = (Q/Q
max

)
1
 + (Q/Q

max
)

2
[1 + (Q/Q

max
)

1
]

(c) q
semi-inf cyl

 (x, r, t) = q
semi-inf

 (x, t) ¥ q
cyl

(r, t)

(d)

x

p

-= - Ú
22

erfc( ) 1 u

o

x e du

5.4 Indicate the wrong statement:

(a) The characteristic length of a cube of each side of 12 cm for the lumped system analysis is 

2 cm.

(b) The characteristic length of a spatially isothermal sphere of 4.8 kg mass with a material 

density of 2700 kg/m3 is 2.5 cm.

(c) The characteristic length of a cylindrical steel ingot of length equal to diameter 

weighing 5.5 kg with a density of 7900 kg/m3, neglecting internal temperature

 gradients, is 2.4 cm.

(d) The characteristic length of a long cylinder of 15 cm radius, ignoring internal conduction 

resistance, is 7.5 cm.

5.5 Fourier number may be expressed as:

(a) The ratio of buoyancy force to viscous force.

(b) The ratio of internal thermal resistance of a solid to the boundary layer thermal resistance.

(c) The ratio of gravitational and surface tension forces.

(d) The ratio of heat conduction rate to the rate of thermal energy storage in the solid.

5.6 Which one of the following dimensionless numbers is an indication of the ratio of internal (conduction) 

resistance to the surface (convection) resistance?

(a) Fourier number (b) Biot number (c) Nusselt number (d) Stanton number

5.7 Lumped parameter analysis for transient heat conduction is essentially valid for

(a) Bi < 0.1 (b) 0.1 < Bi < 0.5 (c) 1 < Bi < 10 (d) Bi Æ
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5.8

(a) Solids possess infinitely large thermal conductivity.

(b) Internal conduction resistance is small and convective resistance is large.

(c) Internal conduction resistance is large and the convective resistance is small.

(d) Both conduction and convection resistances are almost of equal significance.

5.9 Heating or cooling of a road surface can be analyzed using:

(a) The semi-infinite medium formulation. (b) The lumped capacitance formulation.

(c) The infinite slab formulation. (d) None of these.

5.10 The time constant of a thermocouple is the time taken to attain:

(a) 50% of the value of the initial temperature difference.

(b) 63.3% of the value of the initial temperature difference.

(c) 63.2% of the value of the initial temperature difference.

(d) 98.8% of the value of the initial temperature difference.

5.11

(a) Through the walls of a refrigerator. (b) During annealing of castings.

(c) Through the walls of a furnace. (d) Through the insulated pipe carrying steam.

5.12

(a) Bi Æ (b) Fo > 0.2 (c) Bi Æ 0 (d) Fo Æ
5.13 The temperature distribution, at a certain instant of time in a concrete slab during curing is given by T

= 3x2 + 3x + 16 where x is in cm and T is in kelvin. The rate of change of temperature with time would 

then be

(a) 0.009 K/s (b) 0.0045 K/s (c) –0.0012 K/s (d) –0.0018 K/s.

  Assume the thermal diffusivity to be 0.003 cm2/s

5.14 Match List I (Material) with List II (Time lag) according to the codes given below the lists in the 

  List I List II

  (Material) (Time lag in h for depth 1 m and wave period 24 h)

A. Steel 1. 23

B. Aluminium 2. 6.7

C. Wood 3. 2.5

D. Clay 4. 66

  Codes:  A B C D

   (a) 2 3 4 1

  (b) 1 2 5 3

  (c) 3 1 2 4

  (d) 4 2 1 3

5.15 A spherical thermocouple junction of diameter 0.706 mm is to be used for the measurement of 
2

K. Thermophysical properties of thermocouple material are: k = 20 W /m K, c = 400 J/kg K, and r = 

8500 kg/m3. If the thermocouple initially at 30°C is placed in a hot stream of 300°C, the time taken 

by the bead to reach 298°C, is

(a) 2.35 s (b) 4.9 s (c) 14.7 s (d) 29.4 s

5.16 In multi dimensional systems, if C denotes the solution for a long cylinder, and S indicates the 

temperature of 200°C and the environment temperature of 50°C for C = 0.40 and S = 0.95 is:

(a) 252.5°C (b) 132.5°C (c) 107°C (d) 71.7°C
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5.17 Assertion (A): In lumped-heat-capacity systems, the temperature gradient within the system is 

negligible.

  Reason (R): In the analysis of lumped-capacity systems, the thermal conductivity of the system 

material is considered very high irrespective of the size of the system.

  Codes:

(a) Both A and R are true and R is the correct explanation of A.

(b) Both A and R are true but R is not the correct explanation of A.

(c) A is true but R is false

(d) A is false but R is true. [IES 2004]

Multiple-Choice Questions

5.1 (a) 5.2 (c) 5.3 (b) 5.4 (c) 5.5 (d) 5.6 (b)

5.7 (a) 5.8 (d) 5.9 (a) 5.10 (c) 5.11 (b) 5.12 (b)

5.13 (d) 5.14 (a) 5.15 (b) 5.16 (c) 5.17 (a)

5.1

5.2

distribution.

5.3 Biot and Fourier numbers.

5.4

5.5

5.6 What is meant by lumped-capacity analysis? What is the criterion of its validity?

5.7

time (T – T ) to the initial excess temperature (T
i
 – T ) equals exp (–t/R

t
C

t
) where R

t
 and C

t
 are thermal 

resistance and thermal capacitance respectively.

5.8 What is the importance of Heisler and Gröber charts in solving one-dimensional transient conduction 

problems? What are their limitations?

5.9 What is one-term approximation solution in dealing with one-dimensional unsteady-state conduction 

with convective heating or cooling? What are the main assumptions and constraints?

5.10

5.11 What is the product solution method in analyzing the multi-dimentional systems? What are the 

restrictions and approximations involved?

5.12

applications.

PRACTICE PROBLEMS

(A) Transient Temperature Variation

5.1

outer radius 50 cm, is given by T = 800 + 1000 r – 5000 r2 where T is in °C and r in m. The thermal 

conductivity and thermal diffusivity of the tube material are 58 W/m K and 0.004 m2 / h, respectively. 
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per unit length, (c) the rate of change of temperature at inner and outer surfaces.

[(a) 728.85 kW (b) 510.195 (c) –72 °C/h]

(B) Lumped Parameter Model

5.2 A large aluminium plate [r = 2707 kg/m3, C
p
 = 0.896 kJ / kg °C, and k = 204 W/m °C] of thickness L

= 0.10 m, initially at a uniform temperature T
i
 = 200°C, is cooled by exposing it to an air stream at T

= 40°C. Determine the time required to cool the aluminium plate from 250 to 75°C if the heat transfer 

h = 80 W/m2 °C. [2716 s or 45 min 16 s]

5.3 A copper block 1 cm ¥ 2 cm ¥ h = 80 W/m2 K and 

3, 0.385 kJ / kg K and 389 W / m K, 

respectively. [281.1 or 4 min 41 s ]

5.4 During a manufacturing process, two brass plates are to be joined face to face at a bonding temperature 

of 500 K. The dimensions of the plates are 0.6-cm by 5-cm by 10-cm and their initial temperature 

is 300 K. For bonding the plates have to be kept in an oven and the bonding time should not exceed 
2 °C. Determine the minimum 

temperature of the oven if the bonded faces are in complete thermal contact. Properties of brass to be 

used are: k = 137 W/m°C, r = 8530 kg/m3
, C

p
= 395 J/kg °C. [550 K]

5.5 A thin shell made of aluminium (k = 237 W/m °C, a = 97.1 ¥ 10–6 m2/s) of 8-mm diameter and 0.4-

mm thickness falls off a conveyor vertically down to the ground. The shell temperature is initially at 
2 °C and the ambient air is 25°C as 

when the shell eventually hits the ground. [77.5°C]

5.6 A plane wall, 10-mm thick, is fabricated from plain carbon steel [r = 7850 kg/m3, C
p
 = 0.43 kJ/kg 

°C, k = 60 W/m °C] with an initial uniform temperature of 15°C. One side of the wall is exposed to 
2 °C, while the other surface is in 

2 °C. How long will it take for 

the wall temperature to reach 720°C? [599.2 s ª 10 min ]

5.7 A copper-constantan thermocouple junction which may be approximated as a sphere of 3-mm-

initial temperature of the junction and air are at a temperature of 25°C. The air temperature suddenly 

changes to and is maintained at 200°C. (a) Calculate the time required for the thermocouple to 

the thermocouple at that instant. (b) Discuss the suitability of this thermocouple to measure unsteady 

  Assume: h = 150 W/m2 °C, r = 8685 kg/m3
, C

p
 = 377 J/kg °C, k = 29 W/m °C [(a) 135.6]

5.8 A potato ( V– = 3.1 ¥ 10–4 m3, A
s
 = 0.025 m2), initially at a uniform temperature of 20°C, is placed in a 

microwave oven. The oven supplies 300 W of heat to the potato for 7.5 minutes. The temperature of 
2 K. Determine: (a) 

the temperature of the potato after 7.5 minutes of heating, and (b) the rate of heat transfer from the air 

to the potato in the oven at that time. The thermophysical properties of the potato are:

  r = 1055 kg/m3
, k = 0.498 W/m K, C

p
 = 3.64 kJ/kg K [(a) 138°C (b) 6.2 W]

5.9 A steel tube of length 20 cm with internal and external diameters of 10 and 12 cm is quenched from 

kW/m2 2 K.
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The density of steel is 7800 kg/m3

resistance of the steel tube, determine the quenching time. [17.50 s]

5.10

a temperature of 110°C in ambient air at 30°C. If the device is initially in equilibrium with the 

environment, calculate its temperature 7 minutes after the power is switched on. Derive the expression 

you use. The device and the heat sink may be assumed to be nearly isothermal. [82.1°C]

5.11 Pulverised coal pellets, approximated as spheres of 1-mm-diameter, are preheated by passing them 

through a cylindrical tube maintained at 1200°C before being injected into the furnace. The pellets 

pellet are 30°C and 700°C. The dominant mode of heat transfer is radiation and the pellet is very 

small compared to the surface area of the tube. Determine the length of the tube required for this 

preheating. State clearly the assumptions made. The following thermophysical properties of coal can 

be used: r = 1350 kg/m3
, C

p
 = 1.26 kJ/kg °C, k = 0.26 W/ m °C. [2.64 m]

(C) Plane Wall

5.12 A steel pipeline of 1-m-diameter and 40-mm wall thickness is effectively insulated on its exterior 

inner surface of 500 W/m2

temperature of –20°C. Determine, after a lapse of 8 min: (a) the temperature of the outer surface of 

from the oil to the pipe per metre pipe length. The properties of the pipe material are:

  r =7832 kg/m3
, C

p
 = 434 J/kg °C, k = 63.9 W/m °C.

[(a) 299.2°C (b) 7355 W/m2 (c) 27.22 MJ]

5.13 Consider the nose of a missile re-entering the earth’s relatively dense atmosphere with a very high 

velocity and creating huge heating effect. The nose section can be idealized as a 6-mm thick stainless 

steel plate with one surface adiabatic and the other exposed to convective environment. The uniform 
2 K and the initial uniform temperature is 

50°C. (a) Neglecting radiation effects, determine the maximum allowable time for heat dissipation if 

the effective air temperature in the vicinity of the nose section is estimated to be 2100°C. Metallurgical 

considerations limit the metal surface temperature to 1100°C. (b) Also compute the inside surface 

used: r = 7900 kg/m3, C
p
 = 611 J/kg K, k = 25.4 W/m K [(a) 5.06 s (b) 678°C]

5.14 A large steel plate, 75-cm-thick [k = 15 W/m °C, a = 3.96 ¥ 10–6 m2/s] is initially at a uniform 

temperature of 50°C. Suddenly both of its surfaces are raised to and maintained at 450°C. Determine 

(a) the temperature at a plane 25-cm from the surfaces one hour after the sudden change in surface 

temperature, (b) the instantaneous heat transfer rate across the above plane per m2 at 1 h, (c) the total 

hour. [(a) 106.7 (b) 9.12 kW (c) 14.35 MJ (d) 71°C]

(D) Long Cylinder

5.15 A long cylinder of radius 20 cm of a material with k = 170 W/m K and a = 9.05 ¥ 10–7 m2/s is 

initially at a uniform temperature of 650°C. The cylinder is quenched in a medium at 75°C for heat 

treatment with h = 1700 W/m2 K. Find the time at which the process should terminate to ensure that 

the temperature attained at a depth of 20 mm from its surface is 250°C. What will be the temperature 

on the axis of the cylinder at this time? Calculate the amount of energy transferred from the cylinder 

per metre length during this period. [8.15 ¥ 109 J]
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(E) Sphere

5.16 The glass beads (k = 0.7 W/m K, C
p
 = 0.75 kJ/kg K and r = 2800 kg/m3) of 0.6-mm-diameter initially 

at 520°C throughout are sprayed into 20°C air and allowed them to harden as they fall to the ground 

with a constant downward velocity of 4.7 m/s as a part of the manufacturing process. The centre 

234 W/m2 K. Calculate the surface temperature of the beads when the centre reaches 40°C, and (b) 

the distance through which the glass beads should fall from rest. Is the lumped capacity model valid?

[(a) 39°C (b) 14.0 m ]

5.17 An 8-mm-diameter sphere [k = 20 W/m °C and a = 0.024 m2/h] is initially at a uniform temperature 

2 °C until a temperature of 335°C is reached. Subsequently, the 

m2 °C. Calculate: (a) the time required to accomplish the cooling process in both steps if the centre 

end of the cooling process. [(a) 2.4 s (b) 40°C]

(F) Short Cylinder/Semi-Infinite Cylinder

5.18 A man is found dead at 7 o’clock in the morning in a room whose temperature is 17°C. The surface 

9 W/m2 K. Considering the body as a 28-cm diameter and 1.8–m long cylinder, estimate the time of 

death of that man. Assume that the man was healthy when he died with an initial uniform temperature 

of 37°C. Take the properties of the body to be k = 0.62 W/m K and a = 0.00054 m2/h.

[7 h 24 min]

5.19 A short brass cylinder of 8-cm-diameter and 15-cm-height is initially at a uniform temperature of 

400 K. The cylinder is now placed in atmospheric air at 300 K, where heat transfer takes place by 
2 K. Determine (a) the centre temperature of the 

cylinder, (b) the centre temperature of the top surface of the cylinder, (c) the temperature at the mid-

height of the side, and (d) the total heat transfer from the cylinder, 15 min after the start of the cooling.

[(a) 332.6 K (b) 331.94 K (c) 332.25 K (d) 164.63 kJ]

5.20 Short plastic cylinders, 6-cm long and 3-cm diameter, are uniformly heated in an oven as preparation 

for a pressing operation. Initially, the cylinders are at 25°C. The manufacturing requires that no portion 

the cylinders is 8 W/m2 K. The plastic properties are: k = 0.30 W/m K, and rC
p
 = 1040 kJ/m3 K. The 

supplier of the oven states that the plastic cylinders should be in the oven for 15 minutes. Determine: 

(a) the minimum temperature in the cylinder (in °C) after 15, min (b) the maximum temperature in the 

cylinder (in °C) after 15 min and (c) the rate at which heat must be added to the oven if 100 cylinders 

per minute are heated (in W). [(a) 152°C, 193°C (c) 10.64 kW]

5.21 A long Invar (36% nickel steel) rod [k = 10.7 W/m K and a = 0.0103 m2/h] 10-cm-diameter has one 

2 K. What is the temperature at a point 

[178.4°C]

5.22 Two large bodies 1 and 2 with thermal conductivities and thermal diffusivities k
1
 and k

2
, and a

1
 and 

a
2
 are initially at temperatures T

1
 and T

2
 at their plane surfaces. If the plane surfaces are placed in 

contact with each other, show that under equilibrium conditions the contact surface temperature, T
s
, is 
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given by, s

k T k T
T

k k

1 1 1 2 2 2

1 1 2 2

( / ) ( / )

( / ) ( / )

a a

a a

+
=

+
. A large mass of steel (k = 43 W/m °C and a = 1.17 ¥ 10–5

m2/s) at 100°C with one plane face, is dropped into water (k = 0.589 W/m K and a =1.41 ¥ 10–7 m2/s)

at 15°C. Determine (a) the temperature at the surface of contact and (b) How much time will elapse 

before the temperature at a location 2 m inside the surface will reach 95°C.

[(a) 90.57°C (b) 5 days ]

5.23 (a) A very strong blizzard suddenly reduces the surface temperature of the earth in an open area 

to – 25°C and stays that way for a 36 h period of time. If the ground was initially at 15°C, estimate 

how far the freezing temperature would penetrate, neglecting any latent heat effects due to the soil 

moisture, using a value of thermal diffusivity of 0.83 mm2/s. (b) If the weather front moves in, drops 

the temperature quickly to – 25°C, then becomes calm instead of blizzard so that a heat transfer 
2 K exists at the surface. The thermal conductivity of the soil is 0.43 W/m K. 

Estimate the depth of penetration of freezing temperature under these conditions in 6 h.

[(a) 0.41 m (b) 0.15 m]

5.24 2. Determine 

the temperature of the block at the surface and at a depth of 0.5 m from the surface after 20 minutes. If 

the block were made of concrete instead of aluminium, what would be the corresponding temperatures 

under identical conditions. Comment on the results obtained.

Material Thermal conductivity (W/m2 °C) Thermal diffusivity(m2/s)

Aluminium 237 9.71 ¥ 10–5

Concrete 1.06 5.19 ¥ 10–7

[20°C]

(H) Multi-Dimensional Conduction

5.25 A cylindrical granite block (k = 2.5 W/m K and a = 1.15 mm2/s) of 50-mm-diameter as well as height 

is to be compared for transient thermal response with a cubical granite block with each side 50-mm 

long. Both blocks are initially at 25°C throughout and both are exposed to hot gases at 525°C in a 
2K. Estimate the centre 

temperature of each geometry after 10, 20 and 60 min.

T = 10 min T = 20 min T = 60 min

q
o, short cyl

 Eq(a) 0.2803 0.0659 0.0002

q
o, cube

 Eq (c) 0.298 0.0725 0.000254

T
o, short cyl

 Eq. (b) 384.87 492.05 524.9

T
o, cube

 Eq (d) 376.0 488.75 524.87

5.26 On cold days, at a certain location, the temperature of the earth’s surface varies sinusoidally between 

–20°C and 20°C within a period of 24 hours. Determine the amplitude of the temperature variation at 

40 cm. What is the temperature at that depth 5 hours after the surface temperature reaches a minimum 

k = 

0.63 W/m °C, C
p
 = 1.88 kJ/kg °C and r = 1600 kg/m3.

[(a) 0.103°C (b) 20.13 h (c) 0.07°C, 6457 kJ per m2]
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5.27 A cold front moves in at a certain location for three weeks and causes a temperature drop of 20°C at 

the surface. The average thermal diffusivity of the soil is 0.15 ¥ 10–6 m2/s. Estimate the temperature 

temperature is 5°C. [0.240 m]



Fundamentals of 
Convection

6.1 ❏ INTRODUCTION

In the preceding chapters, we had discussed the conduction mode of heat-transfer that involved a stationary 

object, be it solid or fluid. Convection heat-transfer, on the other hand, involves the process of carrying 

the thermal energy away from a solid surface to an adjacent moving fluid in the presence of temperature 

differences, or vice versa. The convection process has two contributing mechanisms: (1) the conduction of 

heat from a solid surface to a thin layer of adjacent fluid, and (2) the movement of hot fluid particles away 

from the solid surface, their place in turn being taken by relatively cold fluid particles. The movement of 

the fluid particles can be attributed to pressure changes, to buoyancy, or to a combination of both. Thus, 

the study of convective heat-transfer is intimately related to the study of fluid flow.

Fluid movement occurs due to two fundamentally different mechanisms: natural and forced convection. 

The resulting heat-transfer characteristics are significantly different. Consider convective heat-transfer from 

a hot surface to a cooler fluid. In natural convection (also called free convection), heat is conducted into 

the fluid near the hot surface, thereby raising the temperature of the fluid and decreasing its density. The 

surrounding colder fluid at a higher density then flows under the action of gravity to displace the hot 

fluid. Whenever the hot fluid rises, the colder fluid falls to fill the void. An example of a circuit board 

cooled by natural convection is shown in Fig. 6.1. Natural convection occurs with either a hot surface/

cold fluid or a cold surface/hot fluid arrangement.

Air flow

Cooling of electronic components by natural convection

In forced convection, the fluid movement is caused by mechanical means, such as a fan or a blower, 

or a pump. However, it can also occur without external means being involved. For example, an ice 

skater racing across a lake experiences considerable forced convection as the air rushes past. As with 

natural convection, forced convection may involve either heating or cooling of a solid surface. Figure 

6.2 shows the schematic of a computer chip on a circuit board that is cooled when the air flows over 

it. Heat from the chip is first conducted to the flowing air, and the movement of air then convects this 

heat away from the surface.
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Circuit

Chip
Fan Air flow

Cooling of electronic components by forced convection

6.1.1 ● Laminar and Turbulent Flows

We know that there are two types of flow: laminar and turbulent. The magnitude of the Reynolds number 

determines if the flow will be laminar or turbulent. The heat-transfer analysis for convection is, in general, 

more complicated than that for heat conduction, because the conservation of mass and momentum have 

to be satisfied in addition to the principle of energy conservation.

For turbulent flow, the analysis becomes extremely complex, owing to the transport of momentum and 

energy resulting from eddy motion. Most of the convective heat-transfer problems encountered in practice 

involve turbulent flow. Therefore, it is customary to rely heavily on experimental data and empirical 

correlations. On the other hand, laminar heat-transfer analyses are useful in presenting the basic principles 

of convection and provide results of some practical importance.

6.2 ❏

The rate of convective heat-transfer, Q  from a solid surface to a surrounding fluid is given by

= -( )wQ hA T T (W)   (Newton’s law of cooling) (6.1)

where h = average convective heat-transfer coefficient, W/m2 K 

A = surface area for convective heat-transfer, m2

T
w
 = temperature of the solid surface, °C

and T  = temperature of the fluid sufficiently far from the solid surface so that it is not affected 

by the surface temperature, °C.

The heat-transfer coefficient, h, depends on several factors such as

Fluid properties (like density, viscosity, thermal conductivity, specific heat)

Type of flow (laminar or turbulent)

Geometry (shape) of fluid passage (circular, spherical, or a flat surface)

Nature of the surface (rough/smooth)

Orientation of the heat-transfer surface

In fact, in determining the heat-transfer rate in convection, our main aim is to estimate the reliable and 

accurate value of the heat-transfer coefficient.

6.3 ❏

Consider a fluid flowing over a body. If the surface temperature is T
w
 and if the free-stream temperature 

is T
¥
, the temperature of the fluid near the solid boundary will vary in some fashion as shown in Fig. 6.3
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Fluid flow

Temperature

distribution
T
s

T
s

T

Body surface

Fluid temperature gradient at the surface

=

∂
= - = -

∂
0

( )w

y

T
Q kA hA T T

y
(6.2)

where k = thermal conductivity of the fluid, W/m K, evaluated at y = 0, that is, the solid boundary-fluid 

interface, and 

=

∂Ê ˆ
Á ˜Ë ∂ ¯

0y

T

y
 = temperature gradient in the fluid at y = 0. The coordinate y is measured along 

the normal to the surface.

It follows that

=

∂Ê ˆ= - Á ˜- Ë ∂ ¯
0

1

( )w y

h T

k T T y

If a dimensionless distance h is defined as

h = (y/L
c
) where L

c
 is the characteristic length, we have

or

h

h

h

h

=

=

∂Ê ˆ= - Á ˜Ë ¯- ∂

∂Ê ˆ= = - Á ˜Ë ¯- ∂

0

0

1

( )

1

( )

w c

c

w

h T

k T T L

hL T
Nu

k T T

If a dimensionless temperature, q is defined as q = (T – T )/(T
w
 – T ), the above equation can be written as

h

q

h =

∂Ê ˆ= = -Á ˜Ë ¯∂
0

chL
Nu

k
(6.3)

The quantity (hL
c
/k) in the above equation is a dimensionless parameter called the Nusselt number. The

Nusselt number is the dimensionless temperature gradient for the fluid evaluated at the wall-fluid interface.

The Nusselt number is similar to the Biot number with an important difference that k in the Nusselt 

number is the thermal conductivity of the fluid, while in the Biot number it represents that of the solid. 
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One can also interpret Nusselt number as the ratio of convection to conduction heat-transfer or as the 

ratio of conduction to convective thermal resistance. 

Thus,
D

= = =
D

conv

cond

/
/

QhA T
Nu hL k

kA T L Q

or = = =cond

cond

/

1/

R L kA hL
Nu

R hA k

The convection coefficient, in general, varies along the flow direction. The average convective heat-

transfer coefficient h  for a surface is calculated by integrating the local convection coefficients h
x
 over 

the entire surface length L, as follows.

= Ú
0

1
L

xh h dx
L

(6.4)

6.4 ❏

It is noteworthy that the relative sizes of the velocity and thermal boundary layers depend on three

important physical properties: the thermal conductivity, k; specific heat, C
p
; and viscosity, m. Thermal

conductivity controls how easily heat is conducted in a fluid. Specific heat determines the temperature 

rise in the fluid due to conduction. And, viscosity influences the velocity field and thus the rate at which 

heat is convected. These significant physical parameters appear in a single dimensionless parameter, called 

Prandtl number, which is a fluid property itself.

m
= pC

Pr
k

Figure 6.4 shows the typical ranges of Prandtl number for different fluids. Liquid metals have very low

Prandtl numbers. For liquid metals, thermal transport is much more effective than momentum transport. 

Gases have Prandtl numbers ranging between 0.5 and 1, while liquids typically have Prandtl numbers 

greater than 1. It may be noted that there are no common fluids with Prandtl numbers of the order of 0.1.

Liquid metals

Gases

Liquid

Light organic liquids

Oils

Prandtl number, Pr

Typical Prandtl numbers for common fluids
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6.5 ❏

COEFFICIENT

In convection heat-transfer analysis, the primary purpose is to determine the heat-transfer coefficient. 

Needless to say, the heat-transfer rate from the surface can easily then be evaluated.

There are generally five methods available to determine the convective heat-transfer coefficient:

Dimensional analysis in conjunction with experimental data

Exact mathematical solutions of boundary layer equations

Integral-momentum approximate method 

Analogy between heat and momentum transfer

Numerical methods

Of course, none of them can, by itself, solve all the problems we come across in practice, since each 

method has its own limitations.

Dimensional analysis is mathematically simple, but it does not give any physical insight into the 

phenomenon. The method helps in the interpretation of the experimental data and expresses the 

data in terms of dimensionless groups.

Exact solution of boundary-layer equations involve simultaneous solutions of differential equations 

derived for the boundary layer. The method is quite complicated and solutions are available for a 

few simple flow situations, such as flow over a flat plate, or a circular cylinder, in laminar flow. 

Describing the turbulent flow mathematically is very complex.

Approximate integral-momentum method is relatively simple, and it is possible to get solutions 

to problems that cannot be treated by exact method of analysis. This method can also be applied 

to turbulent flow.

Analogy between heat and momentum transfer is a useful method to deduce the convective heat-

transfer coefficient from the knowledge of flow friction data, particularly for turbulent flows, without 

actually performing heat-transfer experiments. It is simpler to conduct flow (friction) experiments. 

The fact that the momentum and energy equations have the same form, under certain conditions, 

and therefore, the solutions also must have the same form is utilized. 

Numerical methods involves discretizing the differential equations and are therefore approximate. 

Solutions are obtained at discrete points in time and space rather than continuously; however, ac-

curacy can be improved to acceptable levels by taking sufficiently close grids. The main advantage 

of the numerical methods is that the variation in the fluid properties and boundary conditions can 

be easily taken care of.

6.6 ❏

The concept of boundary layer was introduced by Ludwig Prandtl in the year 1904. Consider a thin, flat 

plate. Let a fluid approach the flat plate at a free stream velocity of u . The fluid immediately in contact 

with the plate surface adheres to the surface and remains stationary (no slip condition). The region of 

flow which develops from the leading edge of the flat plate in which the viscous effects are observed is 

known as the velocity boundary layer, as shown in Fig. 6.5.

The boundary layer divides the flow field into two regions: one, the boundary-layer region, where 

the viscosity effects are predominant and the velocity gradients are very steep, and, second, the

inviscid region where the frictional effects are negligible and the velocity remains essentially con-

stant at the free stream value. 
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The boundary-layer thickness (d ) is arbitrarily defined as that distance from the surface in the y-

direction at which the velocity reaches 99% of the free stream velocity, u . Since the flow over 

turbine blades and aerofoil sections of airplane wings can be approximated as flow over a flat plate. 

Since the fluid layers in the boundary layer travel at different velocities, the faster layer exerts a 

drag force (or frictional force) on the slower layer below it; the drag force per unit area is known 

as shear stress (t). Shear stress is proportional to the velocity gradient at the surface. This is the 

reason why, the velocity profile has to be known to determine the frictional force exerted by a fluid 

on the surface. Shear stress is given by

t m
=

Ê ˆ= Á ˜Ë ¯
2

0

(N/m )w

y

du

dy
(6.5)

Wall shear stress is determined in terms of the free stream velocity from the following relation:

r
t =

2
2(N/m )

2
w f

u
C (6.6)

where C
f
 is a skin friction coefficient or drag coefficient. r is the density of the fluid. C

f
 is determined 

experimentally in most cases. It varies along the length of the flat plate. Average skin friction 

coefficient ( )fC  is calculated by suitably integrating the local value over the whole length of the 

plate and then the drag force over the entire plate surface is determined from

r
=

2

( )
2

D f s

u
F C A N (6.7)

where A
s
 is the surface area, (m2)

Starting from the leading edge of the plate, for some distance along the length of the plate, the 

flow in the boundary layer is laminar, i.e., the layers of fluid are parallel to each other and the 

flow proceeds in a systematic, orderly manner. However, after some distance, disturbances appear 

in the flow and the flow becomes turbulent

There is intense mixing of fluid particles in the turbulent region. Heat-transfer is, therefore, more in 

turbulent flow compared to laminar flow. However, one has to pay increased power to pump the fluid.

Velocity profile in the laminar flow is approximately parabolic.

Turbulent region of boundary layer is preceded by transition region. 

u

u

u

y

x

xcr

Laminar boundary layer
Transition
region

Turbulent boundary
layer region

Boundary-layer thickness

Buffer layer

Laminar sublayer

Turbulent region

Transition from laminar to turbulent flow over a flat plate
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Turbulent boundary layer itself is made up of three layers: a very thin layer called laminar sublayer,

then, a buffer layer and, finally, the turbulent layer.

Velocity profile in the laminar sublayer is approximately linear, whereas in the turbulent layer the 

velocity profile is somewhat flat.

Thickness of the boundary layer, d is related to the Reynolds number as follows: 

d =lam 0.5

5.0

( )x

x

Re
   (laminar flow) (6.8)

and, for turbulent flow region:

d =turb 0.2

0.381

( )x

x

Re
   (turbulent flow) (6.9)

where Re
x
 is the Reynolds number at any location x from the leading edge.

● Reynolds Number

Transition from laminar to turbulent flow depends primarily on the free stream velocity, fluid properties, 

surface temperature, and surface roughness, and is characterized by Reynolds number. Reynolds number 

is a dimensionless number, defined as

Re = (forces/viscous forces)

or
n

= cu L
Re (6.10)

where u  = free stream velocity, m/s

L
c
 = characteristic length, i.e., for a flat plate, it is the length along the plate in the flow 

direction, from the leading edge

n = kinematic viscosity of fluid = m/r, (m2/s), where r is the density of fluid

When the Reynolds number is low, i.e., when the flow is laminar, inertia forces are small compared 

to viscous forces and the velocity fluctuations are damped out by the viscosity effects and the layers of 

fluid flow systematically, parallel to each other. When the Reynolds number is large, i.e. when the flow 

is turbulent, inertia forces are large compared to the viscous forces and the flow becomes chaotic. For a 

flat plate, in general, for practical purposes, the critical Reynolds number, Re
cr
 at which the flow changes 

from laminar to turbulent is taken as 5 ¥ 105. It should be understood clearly that this is not a fixed value 

but depends on many parameters including the surface roughness.

6.7 ❏

When the temperature of a fluid flowing on a surface is different from that of the surface, a thermal

boundary layer develops on the surface, in a manner similar to the development of the velocity boundary 

layer.

Consider a fluid at a uniform velocity u  and a uniform temperature of, approach the leading edge of a 

thin, flat plate. Let the plate be at a uniform temperature of T
w
. The first layers that come in contact with 

the surface will adhere to the surface (no-slip condition) and reach thermal equilibrium with the surface 
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and attain a temperature of T
w
. A temperature profile will develop in the flow field and the temperature 

will vary from T
w
 at the surface to T  in the free stream. As shown in Fig. 6.6, at the surface, (T

w
 – T)

= 0 and at the free stream condition (T
w
 – T) = (T

w
 – T ). The region in which the temperature variation 

in the y-direction is significant is known as thermal boundary layer. Thickness of the thermal boundary 

layer (d
T
) at any location is defined as that distance from the plate surface in the y-direction where the 

temperature difference between the fluid and the surface has reached 99% of the maximum possible 

temperature difference.

The thickness of the thermal boundary layer increases with increasing distance along the plate.

Regarding the relative growth of velocity and thermal boundary layers in a fluid, we may note the 

following:

For gases, i.e., thicknesses of the hydrodynamic and thermal boundary layers are almost of the 

same order.

For liquid metals (Pr << 1), i.e., the thermal boundary layer is much thicker than the hydrodynamic 

boundary layer.

For heavy oils (Pr >> 1), i.e., the thermal boundary layer is much thinner than the hydrodynamic 

boundary layer.

For laminar flow, the thickness of the thermal boundary layer is related to that of the hydrodynamic 

boundary layer, as follows:

d

d
ª

1/3

1T

Pr
 where Pr is the Prandtl number.

6.8 ❏

In convection studies, since there is a fluid flow, we are interested in the shear stress and the friction 

coefficient. To determine these, we need the velocity gradient at the surface. To determine the velocity 

gradient at the surface, we apply the equation of conservation of momentum (in conjunction with the 

equation of conservation of mass) to a differential volume element in the boundary layer. And, to determine 

the temperature gradient at the surface, we apply the equation of conservation of energy to a differential 

volume element in the boundary layer. We start with the application of equation for conservation of mass:

Edge of
thermal
boundary
layer

T

dT

Tw

y

x

Thermal boundary layer
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6.9 ❏

THE CONTINUITY 
EQUATION FOR THE 

Consider a differential control volume, of section (dx dy)

and unit depth, within the boundary layer, as shown in 

Fig. 6.7.

Assumptions
Steady incompressible, two-dimensional fluid flow

Constant fluid properties

Shear force in the y-direction is negligible

Let u and v be the velocity components in the x and 

y-directions. Then, noting that the mass flow rate is given 

by (density ¥ mean velocity ¥ area of cross section) and 

that the depth is unity, we can write

Mass flow entering the control volume in the x-direction

= rudy

Mass flow leaving the control volume in the x-direction

= r
È ˘∂Ê ˆ+ Á ˜Í ˙Ë ¯∂Î ˚

u
u dx dy

x

The, net mass flow into the element in the x-direction = r
∂Ê ˆ- Á ˜Ë ¯∂
u

dx dy
x

Also, the net mass flow into the control volume in the y-direction = r
∂Ê ˆ- Á ˜Ë ∂ ¯
v

dydx
y

Since the net mass flow into the control volume, in steady state, must be equal to zero, we can write:

r
Ï ¸∂ ∂Ê ˆ Ê ˆ- + =Á ˜Ì ˝Á ˜Ë ¯∂ Ë ∂ ¯Ó ˛

0
u v

dx dy
x y

For an incompressible fluid, r is constant. Then, it follows that

∂ ∂
+ =

∂ ∂
0

u v

x y
(6.11)

This is the mass continuity equation for the boundary layer.

6.10 ❏

Consider again the differential control volume of section dx ¥ dy and unit depth within the boundary 

layer as depicted in Fig. 6.8.

With no pressure variation in the y-direction and with the assumption that viscous shear forces, in the 

y-direction are negligible.

y

x
dy

dx

Velocity
boundary layer

u T,

u

dy

∂u

x∂

dx
v

u + dx

∂v

y∂
v + dy

Differential control volume used in the 

derivation of the continuity equation 

for the velocity boundary layer on a flat 

surface.
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dy

dx

u

y

x

u

Pdy

v

dx

∂

∂

v

y

∂

∂

v

x

v +

u +

dy

dx

∂

∂

u

y
udx

∂

∂

u

y

∂

∂y
+

∂

∂

u

y

1 2

1 2dymdx

∂

∂

p

x
P + dx dy

Momentum equation

Assumptions
No pressure variations in the y-direction. Viscous shear forces in the y-direction are negligible.

The momentum flux in the x-direction entering the left face = (rudy)u = ru2dy

The momentum flux in the x-direction leaving the right face = r
È ˘∂Ê ˆ+ Á ˜Í ˙Ë ¯∂Î ˚

2
u

u dx dy
x

r r
È ˘∂ ∂Ê ˆ Ê ˆ= + +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯∂ ∂Î ˚

2

2 2
u u

u dy dx dy dx
x x

The momentum flux in the x-direction entering the bottom face = (rvdx)u = ruvdx

The momentum flux in the x-direction leaving the top face r
∂ ∂Ê ˆ Ê ˆ= + +Á ˜ Á ˜Ë ∂ ¯ Ë ∂ ¯
v u

v dy u dy dx
y y

0

2

2

v u u v
dx uv u dy v dy dy

y y y

v v
uvdx u dx dy v dx dy

y y

r

r r r

∂ ∂ ∂ ∂È ˘= + + +Í ˙∂ ∂ ∂Î ˚

∂ ∂Ê ˆ Ê ˆ= + +Á ˜ Á ˜Ë ∂ ¯ Ë ∂ ¯

Hence,

leaving entering

entering

Ê ˆ Ê ˆ Ê ˆ
= -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

Net momentum flux Momentum flux Momentum flux the

the -direction the right and top faces left and bottom facesx

r r r r r r r
È ˘ È ˘∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆ= + + + +Á ˜Í ˙ Í ˙Á ˜ Á ˜Ë ¯∂ Ë ∂ ¯ Ë ∂ ¯Î ˚ Î ˚

2 22 – –
u v u

u dy u dx dy u v dx u dx dy v dx dy u dy uvdx
x y y
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r r r

r r

∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆ= + +Á ˜ Á ˜ Á ˜Ë ¯∂ Ë ∂ ¯ Ë ∂ ¯

È ˘ Ï ¸∂ ∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆ Ê ˆ= + + +Á ˜ Á ˜Ì ˝Í ˙Á ˜ Á ˜Ë ¯ Ë ¯∂ Ë ∂ ¯ ∂ Ë ∂ ¯Î ˚ Ó ˛

2
v v u

u dx dy u dx dy v dx dy
x y y

u u u v
u v dx dy u dx dy

x y x y

Now, from the continuity equation, we have 
∂ ∂Ê ˆ Ê ˆ+ =Á ˜ Á ˜Ë ¯∂ Ë ∂ ¯

0
u v

x y

The net momentum transfer in the x-direction r
Ï ¸∂ ∂Ê ˆ Ê ˆ= +Á ˜Ì ˝Á ˜Ë ¯∂ Ë ∂ ¯Ó ˛

u u
u v dx dy

x y
(6.12)

The forces considered in this analysis are those due to viscous shear and the pressure forces on the 

control volume.

Pressure force on the left face is P dy and over the right face is 
È ˘∂Ê ˆ- + Á ˜Í ˙Ë ¯∂Î ˚

P
P dxdy

x

The net pressure force in the direction of motion is 
∂Ê ˆ-Á ˜Ë ¯∂
P

dxdy
x

(6.13)

Viscous shear force on the bottom face is – m
∂Ê ˆ

Á ˜Ë ∂ ¯
u

dx
y

and the shear force on the top face is m
È ˘∂ ∂ ∂Ê ˆ+Í ˙Á ˜∂ ∂ Ë ∂ ¯Î ˚

u u
dy dx

y y y

The net viscous shear force in the direction of motion is

m m m m
È ˘Ê ˆ Ê ˆ∂ ∂ ∂ ∂Ê ˆ Ê ˆ+ - =Í ˙Á ˜ Á ˜Á ˜ Á ˜Ë ∂ ¯ Ë ∂ ¯Ë ∂ ¯ Ë ∂ ¯Í ˙Î ˚

2 2

2 2

u u u u
dy dx dx dx dy

y yy y
(6.14)

Equating the sum of the viscous-shear and pressure forces to the net momentum transfer in the 

x-direction, we get

m

r

Ê ˆ∂ ∂Ê ˆ- +Á ˜ Á ˜Ë ¯∂ Ë ∂ ¯

Ï ¸∂ ∂Ê ˆ Ê ˆ+Á ˜Ì ˝Á ˜Ë ¯∂ Ë ∂ ¯Ó ˛

2

2

P u
dxdy dx dy

x y

u u
u v dx dy

x y

Simplifying,

r m
Ê ˆÏ ¸∂ ∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆ+ = -Á ˜ Á ˜Ì ˝ Á ˜Á ˜Ë ¯ Ë ¯∂ Ë ∂ ¯ ∂Ë ∂ ¯Ó ˛

2

2

u u u p
u v

x y xy
(6.15)

This is the momentum equation of the laminar boundary layer for two-dimensional, steady flow of an 

incompressible fluid.

If the pressure gradients in the x-direction is negligible, which is relevant for flow over a flat plate 

since
∂Ê ˆ =Á ˜Ë ¯∂

0
u

x
, the above equation is reduced to
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n
È ˘Ê ˆ∂ ∂ ∂Ê ˆ Ê ˆ+ =Í ˙Á ˜ Á ˜Á ˜Ë ¯∂ Ë ∂ ¯ Ë ∂ ¯Í ˙Î ˚

2

2

u u u
u v

x y y
(6.16)

where n = m/r = kinematic viscosity

6.11 ❏

We shall now apply the energy conservation requirement for the laminar thermal boundary layer to 

develop the energy equation.

Consider the elemental control volume shown in Fig. 6.9 which shows the rate at which energy is 

conducted and convected into and out.

dy
dx

u

y

x

rC uTdyp

dx

rCp

∂

∂

T

y

∂

∂y
+

∂

∂

T

y

1 2

1 2dy–kdx

∂

∂

u

x
v + dx

dy

∂

∂

T

y
–kdx

2
rvC Tdxp

1 2∂

∂

T

x
T + dx dy

Net viscous work

udx1 2∂

∂

u

y
dy

2 rCp1 2∂

∂

v

y
v + dy 1 2∂

∂

T

y
T + dy dx

Energy equation

Assumptions
Steady, incompressible two-dimensional flow.

Conduction is only in the y-direction, and negligible conduction in the direction of flow (x-direction).

Constant fluid properties: viscosity, thermal conductivity, and specific heat.

Negligible body forces: viscous energy dissipation is negligible.

Note that in addition to the conductive terms, there are four convective terms.

Convection in the x-direction Energy into the control volume = r C
p
 u T dy

Energy out of the control volume r
Ï ¸ Ï ¸∂ ∂Ê ˆ Ê ˆ= + ¥ +Ì ˝ Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂Ó ˛ Ó ˛p

u T
C u dx T dx dy

x x
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Therefore, neglecting second-order differentials, the net energy convected out in the x-direction is

r
Ï ¸∂ ∂Ê ˆ Ê ˆ+ Á ˜Ì ˝Á ˜ Ë ¯Ë ∂ ¯ ∂Ó ˛

p

T u
C v T dx dy

y x
(6.17)

In a similar fashion, the net energy convected out in the y-direction is

r
Ï ¸∂ ∂Ê ˆ Ê ˆ+Ì ˝Á ˜ Á ˜Ë ∂ ¯ Ë ∂ ¯Ó ˛

p

T v
C v T dx dy

y y
(6.18)

Conduction in the y-direction Net conduction into the control volume in the y-direction is

È ˘Ï ¸Ê ˆ Ê ˆ∂ ∂ ∂ ∂Ô ÔÊ ˆ Ê ˆÍ ˙- - - + =Ì ˝Á ˜ Á ˜Á ˜ Á ˜Ë ∂ ¯ Ë ∂ ¯ Ë ∂ ¯ Ë ∂ ¯Í ˙Ô ÔÓ ˛Î ˚

2 2

2 2

T T T T
k dx k dx dy k dx dy

y y y y

Likewise, the net conduction into the control volume in the x-direction is

Ê ˆ∂
Á ˜Ë ∂ ¯

2

2

T
k dx dy

y

When the viscous effects are neglected, the energy balance can be expressed as

(Net energy in) = (Net energy out)

r r
Ê ˆÏ ¸È ˘∂ ∂È ˘∂ ∂ ∂Ê ˆ Ê ˆÔ ÔÊ ˆ Ê ˆ ++ + =Á ˜ Á ˜Ì ˝ Á ˜Í ˙Á ˜ Á ˜Í ˙Ë ¯ Ë ¯ Ë ¯Ë ∂ ¯ Ë ∂ ¯∂ ∂ ∂Î ˚Ô ÔÎ ˚Ó ˛
Ê ˆ∂

+ Á ˜Ë ∂ ¯

2

2

2

2

p p

T vT u T
v TC u T dxdy C dxdy k dx dy

y yx x x

T
k dx dy

y

or r
È ˘Ê ˆ Ê ˆÏ ¸∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆ Ê ˆ+ + + = +Í ˙Á ˜ Á ˜Ì ˝ Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯∂ ∂ Ë ∂ ¯ Ë ∂ ¯ ∂ Ë ∂ ¯Í ˙Ó ˛ Î ˚

2 2

2 2p

T u T v T T
C u T v T dx dy k dx dy

x x y y x y

or r
Ï ¸È ˘Ê ˆ Ê ˆÏ ¸ È ˘∂ ∂ ∂ ∂ ∂ ∂Ô ÔÊ ˆ Ê ˆ Ê ˆ Ê ˆ+ + + +Í ˙Ì ˝Á ˜ Á ˜ Á ˜Ì ˝ Á ˜Í ˙ Á ˜Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯∂ Ë ∂ ¯ ∂ ∂Î ˚ ∂ Ë ∂ ¯Í ˙Ó ˛ Ô ÔÎ ˚Ó ˛

2 2

2 2p

T T u v T T
C u v T k

x y x v x y

Now, from continuity equation, for incompressible fluid flow: 
∂ ∂Ê ˆ Ê ˆ+ =Á ˜ Á ˜Ë ¯∂ Ë ∂ ¯

0
u v

x y

Since the boundary layer is very thin, 
∂ ∂Ê ˆ Ê ˆ>> Á ˜Á ˜ Ë ¯Ë ∂ ¯ ∂
T T

y x
 (i.e., conduction in the x-direction is negligible) 

and
∂

=
∂

2

2
0

T

x
.

Dividing by rC
p
, the energy equation of the laminar boundary layer becomes

a
r

Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ+ = + =Á ˜ Á ˜Á ˜ Á ˜Á ˜ Á ˜Á ˜Ë ¯ Ë ¯∂ Ë ∂ ¯ ∂ Ë ∂ ¯Ë ∂ ¯ Ë ∂ ¯Ë ¯

2 2

2 2
or

p

T T k T T T T
u v u v

x y C x yy y
(6.19)

where a
r

= =
p

k

C
 thermal diffusivity

This is the energy equation of the laminar boundary layer.
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You might have noticed the striking similarity between the momentum balance equation and the energy 

balance equation.

If v = a, i.e., Pr = 1, the solution to the momentum and energy equations will have exactly the some 

form.

When the viscous dissipation cannot be neglected, as for high velocity flow or in the case of very 

viscous fluids (e.g., in journal bearings), or when the fluid shear rate is extremely high, an additional 

term for viscous dissipation, f appears on the LHS of the energy balance. f is defined as

f m
È ˘È ˘ È ˘∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ Ê ˆ= + + + - +Í ˙Á ˜ Á ˜ Á ˜ Á ˜Í ˙ Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Ë ∂ ¯ ∂ ∂ Ë ∂ ¯ ∂ Ë ∂ ¯Í ˙Î ˚ Î ˚ Î ˚

2 22 2
2

2
3

u v u v u v

y x x y x y
(6.20)

6.12 ❏ THE 

Flow in circular tubes is of great practical importance. As shown in Fig. 6.10, fluid enters with a uniform 

velocity across the cross-sectional area of the tube, as indicated by arrows of equal length. Once the fluid 

comes in contact with the stationary wall of the tube, it is reduced to zero velocity and a layer of slow-

moving layer of the fluid, called boundary layer, forms near the tube wall. The boundary-layer thickness 

increases as the fluid moves downstream. In the entrance region, the velocity changes in both radial and 

axial directions. Eventually, the boundary layer extends to the centre of the tube and the velocity profile 

assumes a rounded shape. The profile no longer changes further downstream beyond this entrance length. 

All flow is in axial direction and there is no component of velocity in the radial direction. This is called the 

fully developed flow region, where velocity profile is independent of the distance from the tube entrance.

[( + ) ]P dP rp 2

R

r

D

CB

A
t(2 )prdx

P r( )p 2
r

x

dx

Differential control volume force balance for laminar flow through a circular tube

Consider fully developed, steady, incompressible, laminar flow in a circular tube (the Hagen–Poiseuille

flow).

Let us analyze the equilibrium of forces on a concentric cylindrical element of length dx and radius 

r, at a distance y from the tube surface.

Force balance for fully developed flow is given by 

or

2 2( ) ( )( ) (2 )

2

P r P dP r rdx

dP

dx r

p p p t

t

= + +

- =

or Shear stress, ( )
2

r dP
r

dx
t

Ê ˆ= -Á ˜Ë ¯
At the tube wall (r = R), the shear stress,

( )
2

r R w

R dP

dx
t t=

Ê ˆ= = -Á ˜Ë ¯ (6.21)
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(Note:
dP

dx

Ê ˆ-Á ˜Ë ¯  is the negative pressure gradient for a horizontal pipe or tube. But for a tube inclined 

at an angle q with the horizontal, the pressure gradient would be 
*dP

dx
 where P* = P + rgz, known as 

piezometric pressure.)

From Newton’s law of viscosity,

( ) [ – ,  – ]
du du

r y R r dy dr
dy dr

t m m= = - = =

Therefore,

or

2

2

du r dP

dr dx

r dP
du dr

dx

m

m

Ê ˆ- = -Á ˜Ë ¯

Ê ˆ= Á ˜Ë ¯

Integrating with respect to r, we have

21
( )

2 2

dP r
u r A

dxm

Ê ˆ= ◊ +Á ˜Ë ¯

The constant of integration A can be evaluated from the boundary condition:

At r = R, u = 0

It follows that

2 2

0
4 4

R dP R dP
A A

dx dxm m

-Ê ˆ Ê ˆ= + fi =Á ˜ Á ˜Ë ¯ Ë ¯

Thus, the velocity at any point is given by

\ 2 21
( ) [ ]

4

dP
u r R r

dxm

Ê ˆ= - -Á ˜Ë ¯ (6.22)

Negative sign is because of the pressure drop in the direction of flow.

Maximum velocity occurs at the centreline.

Hence,
2

max ( 0)
4

R dP
u u r

dxm

Ê ˆ= = = -Á ˜Ë ¯ (6.23)

The velocity distribution is obtained by dividing u(r) by u
max

.

or

2 2

2
max

2

max

( )

( )
1

u r R r

u R

u r r

u R

-
=

Ê ˆ= - Á ˜Ë ¯ (6.24)

Average velocity,

= Ú2
0

2
( )

R

V u r rdr
R
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or
Ê ˆ È ˘-

= ◊ = -Í ˙Á ˜Ë ¯ Î ˚Ú
2 2 2 4

2max
max2 2 4

00

22

2 4

RR
uR r r r

V u r dr R
R R R

\
4 4

max
max max4

2 1 1
2

2 4 4 2

u R R
V u u

R

È ˘
= - = ¥ =Í ˙Î ˚

This shows that the average velocity is half the maximum velocity, i.e.,

max

2

u
V = (6.25)

Substituting for u
max

 equal to 2V, the parabolic velocity profile is

2

( ) 2 1
r

u r V
R

È ˘Ê ˆ= -Í ˙Á ˜Ë ¯Î ˚
(6.26)

Volumetric flow rate or discharge through the tube is

2
2max–V

2 8
c c

um R dP
A V A R

dx
p

r m

Ê ˆ= = = = -Á ˜Ë ¯

or
4

–V
8

R dP

dx

p

m

Ê ˆ= -Á ˜Ë ¯ (6.27)

For a tube of length L with pressure dropping from P
1
 to P

2
, the pressure gradient is

2 1 1 2

0

P P P PdP

dx L L

- -Ê ˆ- = - =Á ˜Ë - ¯

The pressure drop is then expressed as

1 2
4

–8 VP PP

L L R

m

p

-D
= =

In terms of tube diameter D = 2R, we get

4

–128 VL
P

D

m

p
D = (6.28)

Note: For an inclined pipe, dP will be replaced with

1 2 1 2

1 2

* ( ) ( )

( ) sin sin

P p p g z z

P P gL P gL

r

r q r q

D ∫ - + -

= - - = D -

This is known as Hagen–Poiseuille equation.

Head lost due to friction,

Since

4

2
2

–128 V

–V ( )
4

f

P L
h

g g D

D
R V V

m

r r p

p
p

D
= =

= = ¥
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2

32
(m)f

VL
h

gD

m

r
= (6.29)

We note that

2
w

R dP

dx
t

Ê ˆ= -Á ˜Ë ¯
For the pipe of length L,

1 2

4
w

P P D

L
t

-
=

Head loss due to friction,

4 w
f L

LP
h h

g gd

t

r r

D
= = =

We define Fanning friction factor, f
F
,

2/2

w
Ff

V

t

r
=

\

2

2 2

4 4

32
8

4

2 2 8 16 16

f

w

w
F

gh DPD

L L

VL D V

L DD

V
f

VD ReV D V

r
t

m m

t m n

r r

D
= =

= ¥ =

¥
= = = =

Use or this friction factor in the UK is more prevalent. In the USA, however, the Darcy–Weisbach 

friction factor, f is commonly used which is 4 times f
F
. Hence, 

64
f

Re
= (6.30)

Pumping power requirement,

– –V V (W)f fP g h mghr√= D ◊ = = (6.31)

6.13 ❏  FRICTION FACTOR FOR FULLY DEVELOPED

In the case of smooth pipes, where relative roughness is zero, the friction factor is given by Petukhov as

or

–2

–2 6

(0.79 ln – 1.64) ,

(1.82 log – 1.64) 3000 5 10D

f Re turbulent flow smooth wall

f Re Re

=

= < < ¥

Two other simple, but less accurate, correlations for smooth tubes applicable over a more limited range 

of Reynolds number are

0.25 4

0.2 4

,

0.316/ 3000 2 10

0.184/ 2 10

D

D

turbulent flow smooth wall

f Re Re

f Re Re

= < £ ¥

= ≥ ¥
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When the tube surfaces are not smooth, the friction factor is a function of the Reynolds number, Re
D

as well as relative roughness (e/D).

One accurate way of determining the friction factor for a tube with a rough surface is to use the 

correlation given below:

1 / 2.51
2.0 log

3.7

D
turbulent flow

Re

eÊ ˆ= - +Á ˜¶ ¶Ë ¯
(6.32)

The above implicit correlation for f is known 

as the Colebrook equation. The parameter, e, in 

this relation is the roughness of the pipe wall. It 

is the mean height (typically small) of naturally 

occurring protrusions on the wall. Table 6.1 

gives the values of relative roughness, e/D for 

some common pipe surfaces. Note that e/D is 

an additional non-dimensional parameter.

The Colebrook equation is rather complex 

as it involves iterative calculation. To simplify 

calculations, an approximate explicit relation 

for f was given by Haaland in 1983:

1.11
1 / 6.9

1.8 log
3.7

D
turbulent flow

Re

eÈ ˘Ê ˆª - +Í ˙Á ˜Ë ¯¶ Î ˚
(6.33)

This relation gives values within 2% of those obtained from the Colebrook equation.

Given the uncertainties in the pipe-wall condition, the Haaland relation is often of sufficient accuracy 

and may be used instead of the Colebrook equation.

6.14 ❏

Reynolds number determines the character of the flow. Experiments show that the flow regime in a typical 

pipe is a function of Reynolds number according to

2300

2300 4000

4000

D

D

D

Re Laminar

Re Transitional

Re Turbulent

<

< <

>

These ranges are approximate and depend on various factors such as the roughness of 

the pipe wall and the nature of the inlet flow. Transitional flow is characterized by bursts of 

turbulence, which are eventually damped out. The disturbance typically starts near the wall and is 

carried into the interior of the flow, where it is smoothed out into laminar flow. If the Reynolds 

number is high enough, however, the disturbances are not damped out. The critical Reynolds 

number at which transitional flow occurs depends on the geometry and the flow situation.

For a given fluid (r and m) and characteristic length, increasing velocity tends to destabilize the flow. 

Higher velocity implies a higher Reynolds number, since velocity appears in the numerator of the Reynolds 

number. A high Reynolds number is characteristic of turbulent flow.

Table 6.1

Equivalent roughness, e

Pipe Millimetres (mm)

Riveted steel 0.9–9.0

Concrete 0.3–3.0

Cast iron 0.26

Galvanized iron 0.15

Commercial steel 0.045

Wrought iron 0.046

Stainless steel 0.002

Copper or brass tubing 0.0015

Plastic, glass 0.0 (smooth)
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The characteristic length, L
c
, appears in the numerator of the Reynolds number. For a given flow rate 

and fluid, small diameters tend to be stabilizing and lead to lower Reynolds numbers. Disturbances that 

start at the wall can be damped by the presence of the other wall. If there is enough separation between 

the walls, a packet of perturbed flow has time to develop into full-blown turbulence before getting near 

the other wall, where it can be stabilized by viscous forces.

The final parameters in the Reynolds number are the fluid properties, density, and viscosity. These are 

not independent but are a function of the type of fluid. With a given velocity and characteristic length, 

high viscosity is a stabilizing influence in the flow. It is very difficult to perturb a viscous fluid out of 

its flow pattern. Conversely, higher densities tend to destabilize the flow. Once a high-density packet of 

fluid is perturbed, it is difficult to force it back into a smooth, laminar flow pattern.

The Reynolds number can be viewed as the ratio of inertial forces to viscous forces. To understand 

this concept, imagine a small cube of fluid where each side has a length L. To accelerate this cube against 

inertia, a force equal to the mass times the acceleration is applied, that is, Inertia force, i

dV
F ma m

dt
= =

For non-circular pipes, the hydraulic diameter given by = 4 /h cD A P  should be used in place of the 

actual diameter in the Reynolds number and head loss relations. A
c
 is the cross-sectional area and P, the 

wetted perimeter.

6.15 ❏

Dimensional analysis is an important mathematical tool in the study of fluid mechanics and heat-transfer. 

It is a mathematical technique which makes use of the study of dimensions as an aid to the solution of 

many engineering problems. The main advantage of dimensional analysis of a problem is that it reduces 

the number of variables in the problem by combining dimensional variables to form nondimensional 

parameters.

It is based on the principle of dimensional homogeneity, and uses the dimensions of relevant parameters 

affecting the phenomenon.

The Buckingham P-theorem states that if, in a dimensionally homogeneous equation, there are n

dimensional variables which are completely described by m fundamental dimensions (such as M, L, t, 

etc.) they may be grouped into (n–m) P-terms. Each P–term is a dimensionless parameter.

The required number of P-terms is fewer than the number of original variables by m, where m is 

determined by the minimum number of reference dimensions required to describe the original list of 

variables.

The functional relation among the independent, dimensionless p-parameters must be determined 

experimentally.

Once the dimensionless groups are formed, these dimensionless groups are arranged in the form of a 

suitable equation. This equation would contain some constants. The values of these constants are obtained 

by performing experiments on models. A model is a representation of a physical system that may be 

used to predict the behaviour of the system in some desired respect. The physical system for which the 

predictions are to be made is called the prototype.

The process of identifying the non-dimensional or P-parameters controlling the physical phenomenon 

is carried out in two steps:

First, the number of variables, n, influencing the physical process are listed. The variables listed must 

be such that none is derivable by an algebraic combination of the others. The variables for example can 

include m and r or n and r; but not all the three.
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Secondly, the number of fundamental dimensions, m, required to specify the units of the variables 

involved are identified. The main dimensions are mass (M), length (L), time (t), and temperature (T). 

Then by Buckingham Pi theorem, the number of non-dimensional parameters will be p = (n – m).

There are two methods available for dimensional analysis:

Rayleigh method, and 

Buckingham-P theorem.

The expressions of some of the common non-dimensional groups are listed in Table 6.2.

Table 6.2

Dimensionless Number Expression Physical Significance

Biot (Bi)
chL

k

Internal resistance to heat conduction

External resistance to heat convection

Eckert (E) 2

( )p w

V

C T T-

Kinetic energy

Thermal energy

Euler (Eu)

21

2

P

Vr

D Pressure forces

Inertia forces

Fourier (Fo)

2 2
c p c

t kt

L C L

a

r
=

Dimensionless time for transient condition

Froude (Fr) 2

c

V

gL

Inertia forces

Gravity forces

Grashof (Gr) 3

2

( )c sg L T T

v

b -
2

(Buoyancy forces)(Inertia forces)

(Viscous forces)

Lewis (Le)

D

a Thermal diffusivity

Mass diffusivity

Mach (M) V

a

Flow velocity

Sonic velocity

Nusselt (Nu)
chL

k

Convection heat transfer

Conduction heat transfer

Peclet (Pe)
p cC VL

Re Pr
k

r
=

Bulk heat transfer

Conduction heat transfer

Prandtl (Pr)
pC

k

m n

a
=

Momentum diffusivity

diffusivityThermal

Rayleigh (Ra) 3 ( )c sg L T T

v

b

a

-
 = Gr Pr

Forces due to buoyancy and inertia

Forces due to viscosity and thermal diffusion

contd.
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Reynolds (Re)
c cVL VLr

m n
=

Viscous forces

Inertia forces

Schmidt (Sc)

D D

m n

r
=

Momentum diffusivity

Mass diffusivity

Sherwood (Sh)
D ch L

D

Ratio of concentration gradients

Friction factor (f)

2( / )( /2 )

fh

L D V g

Frictional head loss

Velocity head

Skin friction coefficient (C
f
) t

2

w

SV

Wall shear stress

Dynamic pressure

Stanton (St) h

p

Nu Nu

C V Re Pr Per
= =

Convective heat transfer

Thermal capacity (storage)

Typically, eight steps listed below are involved for determining the P-parameters using the Buckingham 

P theorem.

Step 1 List all the variables that are involved in the problem. (Let n be the number of parameters.)

Step 2 Express each of the variables in terms of basic dimensions. The basic dimensions will be M, L, 

and t. Add temperature T in heat-transfer problems (Let m be the number of basic dimensions.)

Step 3 Determine the required number of P-terms. [p = n – m]

Step 4 Select a number of repeating variables, where the number required is equal to the number of 

reference dimensions.

The following are the three general guidelines for selecting repeating variables.

1. In a dimensional analysis of any physical system, the repeating variables must include among 

them all of the m main dimensions.

2. Preferably, a wise mass density choice, a characteristic velocity would be to elect, and character-

istic length need as repeating variables. We can add thermal conductivity as the fourth repeating 

variable if temperature is the fourth fundamental dimension.

3. Do not choose the dependent variable as one of the repeating variables.

Step 5 Set up dimensional equation combining the repeated parameters, selected in Step 4 with each of 

the other parameters in turn to form dimensionless groups.

Essentially, each P-term will be of the form 1 2 3 4
i i i ia b c d

A A A A A
i
 where A

i
 is one of the non- repeating 

variables. A
1
, A

2
, and A

3
 are the repeating variables and the exponents a

i
, b

i
, c

i
 and d

i
 are determined so 

that the combination is dimensionless.

Step 6 Repeat Step 5 for each of the remaining non-repeating variables.

Step 7 Check all the resulting P-terms to make sure they are dimensionless.

Step 8 Express the final form as a relationship among the P-terms, and think about what it means. 

contd.
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Typically, the final form can be written as

1 2 3 4( , , )n mf -P = P P P P

The model may be larger, smaller, or even of the same size as the prototype. For complete similarity 

between the prototype and the model, every dimensionless parameter referring to the conditions in the 

model must have the same numerical value as the corresponding parameter referring to the prototype. 

Thus, the model and the prototype must be completely similar:

geometrically,

kinematically, and

dynamically.

Geometric similarity is the similarity of shape, kinematic similarity is the similarity of motion, and dynamic 

similarity is the similarity of forces acting on the body.

Illustrative Examples

A: Boundary-Layer Concept: Laminar and Turbulent Flow

 The heat-transfer coefficient for a gas flowing over a thin flat plate 3 m long and 

0.3 m wide, varies with distance from the leading edge according to, h(x) = 10x–1/4 W/m2 K

Calculate (a) the average heat-transfer coefficient, (b) the rate of heat-transfer between the plate and 

the gas if the plate is at 170°C and the gas is at 30°C, and (c) the local heat flux 2 m from the leading 

edge. [IES 1991]

Solution

Known Gas flows over a flat plate. Variation of h(x) with x is given.

Find (a) 2(W/m K)Lh , (b) (W)Q , (c) 2
( 2m)(W/m )xq = .

Gas

T = 30°C

Thin flat plate ( = 170°C)Ts

h x x( ) = 10 –1/4

b = 0.3 m

L = 3 m
x

Leading edge

Assumptions (1) Steady-state conditions. (2) Isothermal surface.

Analysis Average heat-transfer coefficient for the entire plate of length L is

1/4

0 0

1/4 1
3/4

0

1/4 0.25

1/4

1 1
10

10 40
[ ]

1 1/4 3

40/3 40 40
3 .

3 3

L L

L x

L

h h dx x dx
L L

x
L

L L

L
L

-

- +

- -

= =

È ˘
= =Í ˙

-Î ˚

= = = ¥ =

Ú Ú

2
10 13 W/m K (Ans) (a)

Illustrative Examples
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 Heat-transfer rate,

( )L sQ h A T T= -  = (10.13 W/m2 K) (3 m ¥ 0.3 m) (170 – 30) K

= 1276.5 W (Ans.)

Local heat-transfer coefficient,

h
(x = 2m)

 = 10(2)–1/4 = 8.41 W/m2 K

 Average heat-transfer coefficient at 2 m from the leading edge is

24
8.41 11.21 W/m K

3
xh = ¥ =

 Local heat flux at 2 m from the leading edge is

q(x) = ( )x sh T T-  = (11.21 W/m2 K) (170 – 30) K

 = 1570 W/m2 (Ans.) (c)

Comment We note that as the distance from the leading edge, x increases, the value of h(x) and h

decrease.

 Experimental results for the local heat-transfer coefficient h
x
 for flow over a 2.5 

m long and 0.7 m wide thin flat plate were found to fit the relation, h
x
(x) = 10x–1/4 W/m2 °C where x is 

the distance from the leading edge of the plate.

(a) Develop an expression for the ratio of the average heat-transfer coefficient xh  to the local heat-

transfer coefficient h
x
. (b) Sketch the variation of h

x
 and xh  with x. (c) Determine the rate of heat-

transfer between the plate and the gas if the plate and gas temperatures are 180°C and 20°C respectively. 

(d) What will be the local heat flux at a distance of 1.25 m from the leading edge?

Solution

Known Variation of local heat-transfer coefficient for flow over a flat plate.

Find (a) Derivation to find ( )h x /h(x). (b) Plot of ( )h x  and h(x) with x. (c) Heat rate, Q .

(d) Local heat flux, q(x).

Schematic

Gas

T = 20°C

Ts = 180°C

W = 0.7 m

L = 2.5 m
x

&Q

Assumption Steady operating conditions prevail.

Analysis (a) The average value of the convection heat-transfer coefficient over the plate from x = 

0 (leading edge) to x = x (any specified distance from the leading edge) is given by

0

1
( ) ( )

x

x x xh h x h x dx
x

= = Ú

 Substituting the expression for the local heat-transfer coefficient, h
x
(x) = 10x–1/4 and 

integrating with respect to x between the limits 0 and x.
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( )1
4

1

1/4 1/4

0 0

3/4 1/4

1 10 10
10

1
1

4

4 10 4 4
(10 ) ( )

3 3 3

x x

x

x

x
h x dx x dx

x x x

x x h x
x

- +
- -

-

È ˘
Í ˙= = =
Í ˙
- +Í ˙Î ˚

= ¥ = ¥ =

Ú Ú

\ The ratio 
( )

x

x

h

h x
=

4

3
(Ans.) (a)

(b) The variation of h
x
 and xh  with x is sketched below:

h xx = 10 –1/4

hx =
4
3
hx

0

5

10

15

20

25

30

35

40

45

0 0.5 1 21.5 2.5
x m( )

h
W

m
x(

/
°C

)
2

(c) The rate of heat-transfer from the hotter plate to the colder gas is determined from the 

Newton’s law of cooling given by ( )s sQ hA T T= -
where h  is the average heat-transfer coefficient for the entire length of the plate (in the 

direction of fluid flow). As is the total surface area of the plate, and T
s
 and –T  are the 

uniform surface temperature, and the ambient fluid temperature respectively. (T
s
 – T ) can 

be expressed either in °C or K. Average heat-transfer coefficient is

1/4 0.25 24 4 40
10 (2.5 m) 10.6 W/m C

3 3 3
L x Lh h h L

- -
== = = ¥ = = ∞

Surface area, A
s
 = LW = (2.5 m)(0.7 m) = 1.75 m2 (for one surface only)

Temperature difference, (T
s
 – T ) = 180 – 20 = 160°C

Therefore, the heat-transfer rate is

2

2

W
10.6 (1.75 m )

m C
Q

Ê ˆ= Á ˜Ë ¯∞
 (160 °C) = 2968 W (Ans.) (c)
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 (d) Local heat flux at x = 1.25 m is

0.25

2

( ) W
( ) ( ) 10(1.25) (180 – 20) C

m C
x s

Q x
q x h T T

A

-= = - = ∞
∞

= 1513 W/m2 (Ans.) (d)

(B) Internal Flow: Flow Through Closed Conduits

 Air at 3.5 bar and 27°C flows in a smooth 2.5 cm ID tube with a bulk velocity of 

10 m/s; the tube is 25 m long. What is the pressure drop and power required to move the air through 

the tube?

Solution

Known  Air flows through a tube under specified conditions.

Find Pressure drop, (Pa) and Power required (W).

Schematic

Smooth tube

Air

T = 27°C

P = 3.5 bar

D = 0.025 m V = 10 m/s OutIn

L = 25 m

Assumptions (1) Steady-state conditions. (2) Air is an ideal gas.

Analysis From property tables for air at 27°C: m = 18.46 ¥ 10–6 kg/m s

 Density, 3

3

350 kPa 1 kJ
4.063 kg/m

(0.287 kJ/kgK)(300.15 K) 1 kPa m

P

RT
r = = =

 Reynolds number, 
3

4

6

(4.063 kg/m )(10 m/s)(0.025 m)
5.5 10

18.46 10 kg/m s
D

VD
Re

r

m -
= = = ¥

¥
 (> 2300)

\ Flow is turbulent.

 Friction factor, f = 0.184 (Re
D
)–0.2 = 0.184 (5.5 ¥ 104)–0.2 = 0.0207

 Else: f = 4 2[0.79 ln(5.5 10 ) 1.64]-¥ -  = 0.0205

 Pressure drop, 
2 3 2(4.063 kg/m )(10 m/s) 25 m

0.0205
2 2 0.025 m

V L
P f

D

r
D = = ¥ ¥

= 4166 Pa or 4.17 kPa (Ans.)

 Power required, 2

2
–V ( )c

m N m
P P P A m V

smr

Ê ˆ Ê ˆ Ê ˆ√= D = D = D Á ˜Á ˜Á ˜ Ë ¯Ë ¯Ë ¯

2 2

3

1 W
(4166 Pa) 0.025 m (10 m/s)

4 1 Pa m /s

pÊ ˆ= ¥ =Á ˜Ë ¯ 20.45 W (Ans.)
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 Calculate the Darcy friction factor and the pressure drop per unit length when air 

at atmospheric pressure at 30°C flows through a 2 cm square tube with a mass flow rate of 0.7 kg/min. 

Assume that the flow is fully developed.

At 30°C, for air at 1 atm: r = 1.164 kg/m3, n = 16.08 ¥ 10– 6 m2/s

Solution

Known Air flows through a tube of square cross-section.

Find Friction factor, f and Pressure drop, dP (Pa).

Schematic

Air

= 30°CT
m = 0.7 kg/min
.

L = 1 m

a = 2 cm

a = 2 m

Assumptions (1) Fully developed flow. (2) Air is an ideal gas.

Analysis Equivalent diameter,

  

4
4 0.02 m

4

c
e

e e
D

A a a
D a

P a

VD VD
Re

r

m n

¥ ¥
= = = =

= =

 With 

3 4 2

6 2

2 2

(0.7/60)kg/s
25.0 m/s

1.164 kg/m 2 2 10 m

25 m/s 0.02 m
31165

16.08 10 m /s

(0.79 ln 1.64) (0.79 ln 31165 1.64) 0.0234

c

D

D

m
V

A

Re

f Re

r -

-

- -

= = =
¥ ¥ ¥

¥
= =

¥

= - = - =

 Pressure drop per unit length,

22 3 2 2 2

2

0.0234 1 m 1.164 kg/m 25 m /s kg 1 Ns
426

2 0.02 m 2 1 kgmmse

f L V
P

D

rÊ ˆ ¥ ¥ ¥Ê ˆD = = =Á ˜Á ˜ Ë ¯ ¥Ë ¯

= 426 N/m2 or 426 Pa (Ans.)

 A horizontal cast-iron pipe (e = 0.26 mm) of 10 cm diameter carries 125 m3/h of 

water. The length of the pipe is 15 m. Calculate the pressure drop and pumping power requirement. The 

water is at a temperature of 300 K (r = 997 kg/m3), m = 855 ¥ 10–6 kg/m s.

Solution

Known  Water flows through a CI pipe with a specified flow rate.

Find  Pressure drop and pumping power.
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Schematic

Cast iron

Water

= 125 /m h3

T = 300 K

D = 0.10 m

L = 15 m

Assumptions (1) The flow is incompressible. (2) The flow is fully developed.

Analysis Let us first determine whether the flow is laminar or turbulent. For this, we calculate the 

Reynolds number. Once the flow regime is known, the appropriate friction factor can be 

evaluated and the pressure drop calculated with dP = r g h
L
, where

2

2
L

L V
h f

D g

Ê ˆ= Á ˜Ë ¯

The Reynolds number is defined as, 
VD

Re
r

m
=

The velocity can be found from

3

2

–V (125/3600)m /s
4.42 m/s

( /4)(0.1 m)c

V
A p

= = =

The Reynolds number is

3
5

6

(997 kg/m )(4.42 m/s)(0.1 m)
5.155 10

855 10 kg/ms
Re -= = ¥

¥

The Reynolds number is greater than 4000; therefore, the flow is turbulent. Now we check 

the relative roughness. The surface roughness of a cast-iron pipe is given as

e = 0.26 mm

The relative roughness is then 

0.26 mm
0.0026

100 mmD

e
= =

With Re = 5.155 ¥ 105 and e/D = 0.0026,

1.11

1.11

5

1 / 6.9
1.8 log

3.7

0.0026 6.9
1.8 log 6.267 0.0255

3.7 5.155 10

D

Ref

f

eÈ ˘Ê ˆª - +Í ˙Á ˜Ë ¯Î ˚

È ˘Ê ˆª - + = fi ªÍ ˙Á ˜Ë ¯ ¥Í ˙Î ˚

The head loss may now be calculated as

2 2 2 2

2

15 m 4.42 m /s
(0.0255)

2 0.1 m 2 9.81 m/s

3.80 m

L

L V
h f

D g

Ê ˆÊ ˆ Ê ˆ= =Á ˜ Á ˜Á ˜Ë ¯ Ë ¯ Ë ¥ ¯

=
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 Pressure drop in a horizontal pipe is 

3

3 2

N
(997 kg/m ) 9.81 (3.80 m)

kg

37.2 10 N/m or

LP ghr
Ê ˆD = = Á ˜Ë ¯

= ¥ 37.2 kPa (Ans.)

 Pumping power,

3–V (37.2 kPa)(125/3600 m /s)P√= D =
= 1.29 kW (Ans.)

(C) Dimensional Analysis

 Experimental investigations are conducted on a long cylinder of 100 mm diameter, 

0.25 W/m K thermal conductivity with uniform volumetric internal heat generation. Using dimensional 

analysis, develop the relation between the steady-state temperature at the centre of the cylinder, T
o
, the 

diameter D, the thermal conductivity k, and the rate of heat generation, q  taking the wall temperature 

as reference. Determine the equation for the centre temperature if the difference between centre and wall 

temperature is 40°C when the rate of uniform heat generation is 4 kW/m3.

Solution

Known A long solid cylinder of diameter D

and thermal conductivity k experiences 

heat generation at the rate of q .

Find Non-dimensional relationship between 

( ), , ando wT T D k q- .

Assumptions (1) Steady operating conditions. 

(2) One-dimensional (radial) heat 

conduction

Analysis Rayleigh Method:

● Total number of parameters, n = 4, viz.,

  

3 3 1

2

3 3 1 3

3 2 3

( )( C) [T]

Nm kgm m
W/m K or or or or kgm/s K [MLt T ]

sm K sm K sm Ks

Nm kgm m
W/m or or or kg/m s [ML t ]

sm s sm

(m) [L]

o wT T

J
k

q

D

- -

- -

- ∞

Ê ˆ
Á ˜Ë ¯

Ê ˆ
Á ˜Ë ¯

● ( ) ( ) ( ) ( )a b c
o wT T A D k q- =

●

a b c3 1 1 3[T] A[L] [MLt T ] [ML t ]- - - -=

● Equating powers on both sides for

M : 0 = b + c

L : 0 = a + b – c fi 2a =

Schematic

To D

k

q

Tw
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T : 0 = – 3b – 3c fi 1c =
T : 1 = –b fi 1b = -

● The non-dimensional relationship is

2 1( ) ( ) ( )o wT T A D k q
-- =

● Constant, 2 1 1( )( ) ( ) ( )o wA T T D k q
- + -= -

 Substituting values, 
2 2 3

( ) (40 K)(0.2 W/mK)

(0.1 m) (4000 W/m )

o wT T k
A

D q

-
= =  = 0.2

 Therefore, 
2

0.2o w

D q
T T

k
- =

 or  = + ( / )
2

0.2o wT T D q k (Ans.)

 The boundary-layer thickness, d, on a smooth flat plate in an incompressible flow 

without pressure gradients depends on the free-stream velocity, V, the fluid density, r, the fluid viscosity, m,

and the distance from the leading edge of the plate, x. Use x, V, and r as repeating variables to develop 

a set of pi terms that could be used to describe this problem.

Solution

Known Velocity boundary layer thickness, d = fcn [V, r, m, x]

Find p-groups. Non-dimensional relationship.

Fluid

V

Flat plate

Boundary layer

d( )x

x

r, m

Analysis The variables involved are: d, V, r, m and x fi n = 5

 Primary (reference) dimensions are: M, L and t fi m = 3

 Applying Buckingham–p theorem:

 Dimensionless numbers,

p = n – m = 5 – 3 = 2 fi  p
1
 = f(p

2
)

 The dimensions in the M Lt system of all parameters are:

S.No. Variable Units Dimensions

1 d m [L]

2 V m/s [Lt–1]

3 r kg/m3 [ML–3]

4 m kg/m s [ML–1t–1]

5 x m [L]
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The three repeating variables are: x, V, and r

Setting up dimensional equations: 1 ( ) ( ) ( )a b c
x Vp d r=

  0 0 0 1 3[M L t ] [L][L] [Lt ] [ML ]a b c- -=

Equating indices:

  For M : 0 = c fi c = 0

  For L : 0 = 1 + a + b – 3c fi a = –1

  For t : 0 = –b fi b = 0

\ d(x)–1 (V)°(r)° fi 1
x

d
p =

  

2

1 1 1 3

( ) ( ) ( )

[M  L  t ] [ML t ][L] [Lt ] [ML ]

a b c

a b c

x Vp m r

- - - -

=

∞ ∞ ∞ =

Equating indices:

  For M : 0 = 1 + c fi c = –1

  For L : 0 = –1 + a + b – 3c fi a = –1

  For t : 0 = –1 – b fi b = –1

\ 1 1 1
2 ( ) ( ) ( )x V

Vx

m
p m r

r
- - -= =

Rearranging, the reciprocal of p is Reynolds number,

\ *
2

Vx
Re

r
p

m
=

Hence, ( / ) orf Vx
x

d
r m d f= = ( )x Re (Ans.)

Points to Ponder

Laminar sublayer is a region near the flat surface in a turbulent zone where velocity variation is 

nearly linear.

For Pr < 1, the thermal boundary layer is thicker than the velocity boundary layer.

Liquids exhibit the largest spread in Prandtl number (Pr) values with lower Pr at higher temperatures.

The power dissipated in moving water through a pipe at a flow rate of –V with a pressure drop 

of dP is dP –V .

The friction factor for flow through a pipe of constant diameter is inversely proportional to Reyn-

olds number.

The friction factor for fully turbulent flow through a circular tube in the rough regime depends 

only on relative roughness.

The dimensional analysis will yield correct result even if an extra variable is included by mistake.

The boundary-layer velocity profile for turbulent flow parallel to a flat plate can be represented 

by
d

Ê ˆ= Á ˜Ë ¯

1/7

.
u y

u
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The wall shear stress is much smaller for laminar flow than that for turbulent flow.

The critical Reynolds number for flow in smooth pipes is 2300.

The value of Prandtl number for gases is of the order of 0.7.

The maximum velocity in a fully developed turbulent flow through a circular tube is 1.25 times 

the average velocity.

In fully developed laminar flow in a circular pipe, the head loss due to friction is directly propor-

tional to square of the mean velocity.

GLOSSARY of Key Terms

● Boundary condition The condition that the flow velocity must equal the surface velocity at 

the surface.

● Boundary layer At high Reynolds numbers, relatively thin ‘boundary layers’ exist in the 

flow adjacent to surfaces where the flow is brought to rest. Boundary 

layers are characterized by high shear with the highest velocities away 

from the surface. Frictional force, viscous stress, and vorticity are 

significant in boundary layers. The associated approximation based 

on the existence of thin boundary layers surrounded by irrotational or 

inviscid flow is called the boundary-layer approximation.

● Boundary-layer thickness The full thickness of the viscous layer that defines the boundary layer, 

from the surface to the edge. The ‘edge’ of the boundary layer is often 

defined as the point where the boundary layer velocity is a large fraction 

of the free-stream velocity is 99 percent of the free-stream velocity.

● Displacement thickness Displacement thickness (d*) is a measure of the thickness of the mass 

flow rate deficit layer. In all boundary layers, d* < d.

● Momentum thickness A measure of the layer of highest deficit in momentum flow rate 

adjacent to the surface as a result of frictional resisting force (shear 

stress). Momentum thickness q is proportional to will shear stress. In 

all boundary layers, q < d*.

● Buckingham–Pi theorem A mathematical theorem used in dimensional analysis which predicts the 

number of dimensionless groups that must be functionally related from 

a set of dimensional parameters which are believed to be functionally 

related.

● Buffer layer That part of a turbulent boundary layer, close to the wall, which lies 

between the viscous and inertial sublayers.

● Friction drag The part of the drag on an object resulting from integrated surface shear 

stress in the direction of flow relative to the object.

● Flow separation A phenomenon where a boundary layer adjacent to a surface is forced 

to leave, or ‘separate’ from, the surface due to ‘adverse’ pressure forces 

(i.e., increasing pressure) in the flow direction. Flow separation occurs 

in regions of high surface curvature, for example, circular cylinders 

and spheres.
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● Similarity: The principle that allows one to quantitatively relate one flow to another 

when certain conditions are met. Geometric similarity, for example, 

must be true before one can hope for kinematic or dynamic similarity. 

● Dynamic similarity: If two objects are geometrically and kinematically similar, then if the 

ratios of all forces (pressure, viscous stress, gravity force, etc.) between 

a point in the flow surrounding one object, and the same point scaled 

appropriately in the flow surrounding the other object, are all the same 

at all corresponding pairs of points, the flow is dynamically similar.

● Geometric similarity: Two objects of different size are geometrically similar if they have the 

same geometrical shape [i.e., if all dimensions of one are a constant 

multiple of the corresponding dimensions of the other).

● Kinematic similarity: If two objects are geometrically similar then if the ratios of all velocity 

components between a point in the flow surrounding one object, and 

the same point scaled appropriately in the flow surrounding the other 

object, are all the same at all corresponding pairs of points, the flow 

is kinematically similar.

6.1 The development of boundary layer zones labelled P, Q, R

and S

  List I (boundary-layer zones) 

with List II (type of boundary layer) and select the correct 

answer using the codes given below the lists:

List I List II

A. P 1. Transitional

B. Q 2. Laminar viscous sublayer

C. R 3. Laminar

D. S 4. Turbulent

    Codes:

  A B C D

(a) 3 1 2 4

(b) 3 2 1 4

(c) 4 2 1 3

(d) 4 1 2 3

6.2 The boundary-layer thickness at a distance x from the leading edge in a laminar boundary layer is 

given by

(a) 5.0 Re–1/2 (b) 4.64 Re–1/2 (c) 1/2 1/2 1/25.0 ( )un -x (d) none of the above

6.3 Stanton number is given by

(a)
Reynolds number Prandtl number

Nusselt number

¥
(b) Reynolds number

Nusselt number Prandtl number¥

(c)
Prandtl number Reynolds number

Nusselt number

¥
(d)

Prandtl number Nusselt number

Reynolds number

¥

S

R

Q

P
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6.4 Prandtl number will be least for

(a) water (b) liquid metal (c) aqueous solution (d) engine oil

6.5 The ratio of the energy transferred by convection to that by conduction is called

(a) Stanton number (b) Nusselt number (c) Biot number (d) Peclet number

6.6 The advantages of dimensional analysis are:

(a) lays the foundation of an efficient experimental programme

(b) indicates a possible form of semi-empirical correlation

(c) suggests logical grouping of quantities for presenting the results

(d) all of the above

6.7 Choose the correct (or most appropriate) answer:

  

(a) Reynolds number only

(b) both Reynolds number and relative roughness

(c) Relative roughness only

(d) Neither on Reynolds number nor on relative roughness

6.8

(a) in linear proportion to the cross-sectional area

(b) in direct proportion to the diameter of the pipe

(c) in inverse proportion to the cross-sectional area 

(d) in inverse proportion to the square of the cross-sectional area

6.9

(a) a steady uniform flow (b) an unsteady uniform flow

(c) a steady non-uniform flow (d) an unsteady non-uniform flow

6.10 Atmospheric air at 40°C (n = 17.2 mm2

(Re
trans

 = 5 ¥ 105) is

(a) 0.43 m (b) 0.258 m (c) 0.05 m (d) 1.27 m

6.11 D. Identify the correct pair 

of statements.

I. The fluid is well-mixed II. The fluid is unmixed

III. Re
D
 < 2300 IV. Re

D
 > 2300

(a) I, III (b) II, IV (c) I, II (d) I, IV

6.12 Match Group A with Group B:

  Group A Group B

P. Biot number 1. Ratio of buoyancy to viscous force

Q. Grashof number 2. Ratio of inertia force to viscous force

R. Prandtl number 3. Ratio of momentum to thermal diffusivities

S. Reynolds number 4.  Ratio of internal thermal resistance to boundary-layer 

thermal resistance

A. P – 4, Q - 1, R – 3, S – 2 B. P – 4, Q - 3, R – 1, S – 2 

C. P – 3, Q - 2, R – 1, S – 4 D. P – 2, Q - 1, R – 3, S – 4

Answers

Multiple-Choice Questions

6.1 (a) 6.2 (c) 6.3 (a) 6.4 (b) 6.5 (b) 6.6 (d)

6.7 (a) 6.8 (c) 6.9 (c) 6.10 (a) 6.11 (d) 6.12 (a)
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6.1

6.2

external internal

6.3

6.4 With the help of a diagram, explain the difference between (a) a laminar boundary layer, (b) turbulent 

boundary layer, and (c) Laminar sub-layer.

6.5 What do you understand by (a) critical length, (b) hydrodynamic boundary-layer thickness, and (c) 

6.6

dimensions.

6.7

of applications.

6.8 What is the primary purpose of dimensional analysis in problems involving heat-transfer by 

6.9 Discuss the importance of dimensional analysis and explain clearly Buckinghan’s p theorem method 

of dimensional analysis.

6.10 Give the expressions for the following dimensionless numbers and highlight their physical 

(a) Prandtl number (b) Nusselt number (c) Peclet number

(d) Stanton number (e) Rayleigh number (f) Mach number

PRACTICE PROBLEMS

(A) Boundary Layer Concept. Laminar and Turbulent Flow

6.1

found to be well represented by 

3
3 1

2 2

w

w t t

T T y y

T T
q

d d

- Ê ˆ Ê ˆ= = -Á ˜ Á ˜- Ë ¯ Ë ¯

  At a location where the thermal boundary layer thickness d
t

  Properties of water at 45°C : k = 0.637 W/m °C [108.47 W]

(B) Internal Flow: Flow Through Closed Conduits

6.2 Water at 30°C (r = 995.6 kg/m3, n = 0.782 ¥ 10–6 m2/s)

pressure drop per unit length. [1933 Pa/m]

6.3

a velocity of 2.44 m/s through a tube (2.54-cm-ID and 

6.08-m-long) that the head lost due to friction was 1.22 m of water. Estimate the surface heat transfer 

  Take r = 998 kg/m3 and C
p
 = 4.187 kJ/kg K [21.4 kW/ m2 K]

L = 1 cm

D = 1 cm
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6.4

section of the pipe but the temperature varies linearly from 90°C at the pipewall to 0°C at the 

2. [309.33 W/m2 °C]

(C) Dimensional Analysis

6.5 Show by dimensional analysis that for forced convection heat-transfer, 
2

, ,
p

U
Nu Re Pr

C T
f
Ê ˆ

= Á ˜
Ë ¯

 when 

6.6

is estimated to be 47 W/m2

number by a factor Pr0.36

  The following properties can be used:

Fluid r(kg/m3) n(m2/s) k(W/m °C) Pr

Air (1 atm, 25°C) 1.184 15.62 ¥ 10–6 0.02551 0.7296

Saturated water (25 °C) 997.0 8.94 ¥ 10–7 0.607 6.14

[2405 W/m2 °C]

6.7 ¥
106. Under these conditions the average Nusselt number was found to be equal to 4150. Determine the 

same plate. [1625 W/m2 °C]

6.8 It is required to estimate the heat transfer from a cylinder of 50-mm-diameter and of surface 

this purpose, scale-model experiments are performed using a 1/5 scale-model with the same surface 

and air temperature but different velocities. The following results are obtained from the experiments 

on the model:

  Velocity of air (m/s) 2.0 5.0 10.0 20.0

  2 K) 39.5 71.2 106.5 165.3

  

cylinder. [165.3 W/m2 K, 311.5 83 W]

6.9 Consider a tube of 25-mm-diameter and surface temperature of 50°C losing heat by natural convection 

to still air at 15°C. In order to estimate the heat loss, model tests with a wire heated electrically 

to 270°C are to be carried out in compressed air at 15°C. The wire is to be 2.5 mm in diameter. 

Determine the pressure that would be required, assuming that Nu = f (Ra) with properties evaluated 

[24.0 bar]



Forced Convection: 
External Flow

7.1 ❏ INTRODUCTION

Heat-transfer to or from a surface in external flow has numerous engineering applications. In such a flow, 

there will always be a boundary-layer region in which velocity and temperature gradients exist and another 

region outside the boundary layer in which both the fluid velocity and temperature will remain constant. 

The growth of the boundary layer will be without restrictions. In this chapter, our main aim will be to 

determine the drag force and the heat-transfer rate for different flow geometries like parallel flow on a 

flat plate, and the flow across curved surfaces such as cylinders and spheres under forced convection 

conditions without phase change. Convection correlations for a wide range of flow conditions will be 

presented and methodology for solving practical problems will be outlined.

7.2 ❏ FLAT PLATE IN PARALLEL FLOW

The simplest case of forced convection in external flow is that of a flat plate in parallel flow. When 

any fluid flows near a stationary surface, a velocity boundary layer is formed. The edge of the velocity 

boundary layer is arbitrarily defined as the point where the local velocity, u is 99% of the free-stream 

velocity, u . If the fluid is at a different temperature than the plate temperature, a thermal boundary 

layer is also formed. The edge of the thermal boundary layer is arbitrarily defined as the point where the 

difference between the fluid temperature and the surface temperature (T – T
w
) is 99% of the difference 

between the free-stream temperature and the surface temperature (T  – T
w
). Heat is conducted from the 

surface into the fluid and then is swept downstream with the flow (bulk transport or advection). Heat is 

added to the fluid all along the plate, and the thermal boundary layer also grows in thickness with the 

distance along the plate. As discussed in the previous chapter, the laminar boundary layer begins at x = 

0 (the leading edge) as shown in Fig. 7.1. The transition to turbulence occurs at a downstream location 

x
c
 at which the critical or transition Reynolds number Re

c
(usually 5 ¥ 105) is attained.

7.3 ❏  EXACT SOLUTION OF LAMINAR BOUNDARY LAYER OVER A 
FLAT PLATE

The analytical solution involves the solution of the continuity, momentum and energy equations for the 

boundary layer on a flat plate given below:
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Trailing edge

Leading edge Flat plate ( )Tw

x

L

xcr

Fluid
,T u

Recr = 5 10¥ 5

Laminar Turbulent

d( )x

Laminar and turbulent regions of the boundary layer during flow over a flat plate

u v

x y

u u u
u v

x y y

T T T
u v

x y y

2

2

2

2

0 (Continuity)

(Momentum)

(Energy)

n

a

∂ ∂Ê ˆ Ê ˆ+ =Á ˜ Á ˜Ë ¯∂ Ë ∂ ¯

Ê ˆ∂ ∂ ∂Ê ˆ Ê ˆ+ =Á ˜ Á ˜Á ˜Ë ¯∂ Ë ∂ ¯ Ë ∂ ¯

Ê ˆ∂ ∂ ∂Ê ˆ Ê ˆ+ =Á ˜ Á ˜Á ˜Ë ¯∂ Ë ∂ ¯ Ë ∂ ¯

(7.1)

The assumptions involved are

1. Steady, incompressible, laminar, two-dimensional flow.

2. Constant property, incompressible fluid.

3. Zero pressure gradient.

4. Negligible viscous heat dissipation.

The mathematical solution is quite complex and only the major significant convection parameters obtained. 

By Blasius are presented below:

Boundary-layer thickness 
5

x

x

Re
d ª (7.2)

Thermal boundary-layer thickness, 
1/3

5
T

x

x

Re Pr
d = (7.3)

Hence, 1/3

T

Pr
d

d
= (7.4)

For three cases of fluids, the velocity and temperature profiles are shown in Figure 7.2. Note that for 

liquid metals Pr << 1 and d << d
T
, for gases Pr ª 1 (d ª d

T
) and for oils, Pr >> 1, i.e., d >> d

T
.
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Hydrodynamic
(Velocity)
boundary layer

Thermal
boundary
layer

(Liquid metals)

(Gases)

(Oils)
Pr <

1

Pr > 1
Pr

1ª

x

y

Hydrodynamic and thermal boundary layers for different Prandtl numbers

Wall shear stress,

0

0.332w x

y

udu
Re

dy x
t m m

=

Ê ˆ= =Á ˜Ë ¯
(7.5)

For laminar flow, the local skin friction coefficient at a distance x from the leading edge is

1/2 3

2
0.664 10

(1/2)

w
fx x xC Re Re

u

t

r

-= = ≥ (7.6)

where the subscript x on the Reynolds number again indicates that Reynolds number is based on the 

length x from the leading edge. The average shear stress for a plate of length L can be obtained from 

the average skin-friction coefficient,

L

f fx L LC C dx Re Re
L

1/2 3 5

0

1
1.328 10 5 10-= = < £ ¥Ú (7.7)

where the Reynolds number is now based on the plate length, L.

Thus, for laminar flow over a flat plate, the average skin-friction coefficient is twice the value of the 

local skin friction coefficient at x = L.

The equation for the local Nusselt number is

5

1/2 1/3

5 10

0.332 0.6

isothermal plate

x

x
x x

Re

h x
Nu Re Pr Pr

k

< ¥

= = > (7.8)

where h
x
 is the local heat-transfer coefficient, that is, the heat-transfer coefficient at a distance x from 

the leading edge of the plate. The local heat-transfer coefficient, depends on the local Reynolds number,

Re
x
, defined as

x

u x
Re

r

m
= (7.9)
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To obtain a correlation for the average heat-transfer coefficient, we cannot simply average the Nusselt 

number, since it contains x. Instead, we must evaluate

1/2
1/3

0 0

1 1
(0.332)

L L

x

u xk
h h dx Pr dx

L L x v

Ê ˆÊ ˆ= = Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú (7.10)

or

L
Lk u Pr udx k Pr

h x
LL x

1/21/2 1/3 1/3
1/2

01/2 1/2
0

0.332 ( ) 0.332
2[ ]

nn

Ê ˆ= = ¥Á ˜Ë ¯Ú

or   

1/21/3
1/2 1/30.664

0.664 L

u Lk Pr k
Re Pr

L Ln

Ê ˆ= =Á ˜Ë ¯

Average Nusselt number is

5

1/2 1/3

5 10

0.664 0.6

laminar flow

isothermal plate

-

L

L L

Re

hL
Nu Re Pr Pr

k

< ¥

= = > (7.11)

In the above equations, the fluid properties are evaluated at the mean temperature between the free-steam 

temperature and the plate-surface temperature, i.e., at the film temperature given by

2

w
f

T T
T

+
= (7.12)

If x > x
c
, the boundary layer becomes turbulent. The local Nusselt number in a turbulent boundary layer 

is given by the following empirical correlation:

x

x
x x

Re

h x
Nu Re Pr Pr

k

5

4/5 1/3

5 10

0.0296 0.6 60

isothermal plate

> ¥

= = < < (7.13)

x x x xNu Re Re Pr Re

Pr

2.584 1/3 7
100.185 (log 10

0.6 60

isothermal plate

)-= >

< <

(7.14)

Fluid properties in this equation are also evaluated at the film temperature.

Heat flux is related to the heat-transfer coefficient by

2( ) ( – ) (W/m )x wq x h T T= (7.15)

where q(x) is the local heat flux at a location x. For the isothermal plate, heat flux is large near the 

leading edge, where the heat-transfer coefficient is high, and smaller downstream, where the heat-transfer 

coefficient is relatively lower. In most practical applications, the average heat flux over the entire plate is 

the quantity of interest. To determine the average heat flux, we need an average heat-transfer coefficient 

which can be determined from the local heat-transfer coefficient using
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2

0

1
(W/m K)

L

xh h dx
L

= Ú (7.16)

where L is the total length of the plate.

and

0

1
L

L x

hL
Nu Nu dx

k x
= = Ú

[Note that (1/ )π Ú
L

xL

0

Nu L Nu dx , as you might like to believe]

Three cases of practical interest are shown in Fig. 7.3. In Fig. 7.3(a), the boundary layer is laminar over 

the entire length of the plate. In Fig. 7.3(b), the boundary layer is laminar on the first part of the plate 

and turbulent on the rest of the plate. In Fig. 7.3(c), the boundary layer is essentially turbulent over the 

entire plate.

Laminar boundary layer

Turbulent boundary
layer

Turbulent boundary
layer

x

(a)

Laminar
boundary
layer

xcr

(b)

Laminar
boundary
layer

xcr

(c)

L

x

L

L

ReL < 5 10¥ 5

5 10 < < 10¥ 5 8ReL

ReL > 108

Three cases of boundary-layer development on an isothermal flat plate. (a) The boundary layer is laminar 

over the entire plate. (b) The laminar and turbulent boundary layers are of comparable size. (c) The turbulent 

boundary layer extends over almost the entire plate.
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In this case, one can neglect the small part of the plate covered by a laminar boundary layer and 

assume that the boundary layer is turbulent over the entire plate. 

In many practical cases, the flow is actually turbulent starting from the leading edge. This can occur 

if the boundary layer is disturbed at the leading edge. For example, if the plate has a finite thickness, 

the corner of the leading edge can trip the boundary layer into turbulence. 

● Constant Heat Flux

All the foregoing correlations for external flows are valid for an isothermal surface. Correlations are also 

available for a uniform wall heat flux (e.g., electrically heated surface) for which the local Nusselt numbers 

tend to be higher than those for an isothermal surface. For laminar flow along a uniformly heated flat 

plate, the local Nusselt number is given by

1/2 1/30.453 0.5x xNu Re Pr Pr= > (7.17)

In terms of surface heat flux and temperature difference, we can write

( )

w
x

w

q x
Nu

k T T
=

-
(7.18)

Average temperature difference along the plate for this case is obtained by performing the integration:

0

1
( ) ( )

L

w wT T T T dx
L

- = -Ú
Substituting for (T

w
 – T ) from Eq. (7.1) and performing the integration, we get

1/2 1/3

3
( ) and ( )

20.6795

w

w w L s

L

L
q

kT T q h T T
Re Pr

- = = - (7.19)

Again, for the constant heat flux case, for very wide range of Prandtl numbers, the modified correlation is

1/2 1/3

1/4
2/3

0.4637
100

0.02052
1

Constant heat flux

x
x x

Re Pr
Nu Re Pr

Pr

= >
È ˘Ê ˆ+Í ˙Á ˜Ë ¯Î ˚

(7.20)

Fluid properties are still evaluated at the film temperature.

In all cases, average Nusselt number is 2 LNu Nu=

For turbulent gas flow along a uniformly heated flat plate, Kays and Crawford recommend for the local 

Nusselt number

4/5 1/3

5 6

0.0308 0.5 400,

5 10 5 10

x x

x

Nu Re Pr Pr

Re

= < <

¥ < < ¥

(7.21)

For the laminar case, the local heat-transfer coefficient is 36% higher
0.453 0.332

100
0.332

Ï ¸-Ê ˆ ¥Ì ˝Á ˜Ë ¯Ó ˛
 on a 

constant heat-flux plate than that on an isothermal plate. The difference is much smaller in turbulent

flow, amounting to just about 4%.
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Equation (7.41) is not valid for liquid metals (Pr << 1)

The following correlation is suggested by Kays for liquid metals.

0.50.565 ...( 0.005)x xNu Pe Pr= < (7.22)

where Pe
x
 = Re

x
 Pr = Peclet number

7.4 ❏  THE INTEGRAL METHOD: LAMINAR FORCED 
CONVECTION ON A FLAT PLATE

Assumptions (1) Steady, laminar, two-dimensional, and incompressible flow. (2) Viscosity is uniform 

with temperature.

Consider a control volume ABCD of length dx and thickness d at a distance x from the leading edge.

Rate at which mass flows through the face AB = 

0

udy

d

rÚ

Rate at which mass flows out through the face DC = 

o o

d
udy udy dx

dx

d d

r r
È ˘

+ Í ˙
Í ˙Î ˚

Ú Ú
Hence, to satisfy the equation of continuity, the rate at which mass flows in through the face AD

d
udy dx

dx
0

d

r
È ˘

= Í ˙
Í ˙Î ˚

Ú
Rate at which the x-direction momentum enters through the face 2

0

AB u dy

d

r= Ú .

Rate at which the x-direction momentum enters through the face AD

o

d
u udydx

dx

d

r
È ˘

= Í ˙
Í ˙Î ˚

Ú

Local heat-transfer coefficient and total rate of heat-transfer along a flat plate

Rate at which the x-direction momentum leaves through the face DC

2 2

0 0

d
u dy u dy dx

dx

d d

r
È ˘Ï ¸Ô ÔÍ ˙= + Ì ˝
Í ˙Ô ÔÓ ˛Î ˚
Ú Ú
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Consider the x-direction forces exerted by the surroundings on the fluid inside the control volume (CV). 

Of the surface forces, we have to consider the x-direction component of the pressures on the faces AB,

AD, and DC and the viscous forces on the faces BC and AD. The x-direction pressure forces on AB and 

AD are equal and opposite to those on DC
dP

dx
since pressure gradient 0

Ê ˆ=Á ˜Ë ¯  and cancel each other out. 

The viscous force on the face AD is zero since it is at the edge of the boundary layer.

Hence, the only surface force in the x-direction exerted on the control volume by the surroundings is 

the viscous force at the surface of the flat plate and is given by

0

w

y

u
d d

y
t m

=

∂Ê ˆ= Á ˜Ë ∂ ¯
x x

Applying Newton’s second law of motion for steady flow through the CV, we get

Rate at which -direction Rate at which -direction Net -direction forces exerted

momentum leaves the CV momentum enters the CV on the CV by the surroundings

x x xÊ ˆ Ê ˆ Ê ˆ
- =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

2 2 2

0 0 0 0

2

0

( )

w

d d
dx u dy dx u dy u udy dx u dy

dx dx

d
u uu dy dx

dx

d d d d

d

t r r r r

r

Ï ¸ ¸ Ï ¸Ô Ô Ô Ô Ô= + - -Ì ˝ ˝ Ì ˝
Ô Ô Ô Ô ÔÓ ˛ ˛ Ó ˛
Ï ¸Ô Ô= -Ì ˝
Ô ÔÓ ˛

Ú Ú Ú Ú

Ú

Therefore,

2

0

1w

d u u
u dy

dx u u

d

t r
È ˘Ê ˆ= -Í ˙Á ˜Ë ¯Í ˙Î ˚
Ú (7.23)

Equation (7.23) is known as vön Karman integral-momentum equation for the boundary layer.

Let the velocity distribution be a polynomial of the form:

u = a + by + cy2 + dy3

where a, b, c, and d are constants. The constants may be found by applying the known boundary conditions.

At y = 0, u = 0 (no-slip condition at the plate surface)

At y = d, u = u (free-stream velocity at the edge of the boundary layer)

At y = 0, both u and v are zero. Hence, 
2

2

u

y

∂
∂

 = 0 (from momentum equation)

At y = d, 0
u

y

∂
=

∂
(no shear stress a the edge of the boundary layer)

Substituting these conditions,

3

3
0, , 0, –

2 2

u u
a b c d

d d
= = = =

The velocity profile can then be expressed as

3
3 1

2 2

u y y

u d d

Ê ˆ= - Á ˜Ë ¯
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Inserting this expression in the integral momentum equation derived above, we have

3 3
2

0

3 1 3 1 3
1

2 2 2 2 2
yo

ud y y y y du
u dy

dx dy

d

r m
d d d d d=

Ï ¸È ˘ È ˘Ô ÔÊ ˆ Ê ˆ ˘- - + = =Í ˙ Í ˙Ì ˝Á ˜ Á ˜ ˙Ë ¯ Ë ¯Î ˚ Î ˚ ˚Ô ÔÓ ˛
Ú

Carrying out the integration leads to

239 3

280 2

ud
u

dx
r d

d

Ê ˆ =Á ˜Ë ¯

Since r and u  are constants, the variables may be separated to give

2140 280
and

13 13
d d C

u u

n n
d d d= = +

x
x

C = 0 as d = 0 at x = 0   
x

u

2 280

13

n
dfi =

Hence,
4.64

4.64 or
x

x

u x Re

n d
d = = (7.24)

where x

u x
Re

n
=  is called the Reynolds number.

Clearly, the boundary-layer thickness d for parallel flow over a flat plate will further decrease with an 

increase in the free-stream velocity u  (and, hence, the Reynolds number) and increase with an increase 

in the distance from the leading edge of the plate, and the kinematic viscosity of the fluid.

Let the temperature distribution be a polynomial of the form

T = a + by + cy2 + dy3

The constants can be evaluated by applying the following boundary conditions:

At y = 0, T = T
w

At y = d
t
, T = T

At y = 0, ∂2T/∂y2 = 0

At y = d
t
, 0

T

y

∂Ê ˆ =Á ˜Ë ∂ ¯

Substituting these conditions,

a = T
w
, b = 3(T  – T

w
)/2d

t

c = 0, d = –(T  – T
w
)/ 32 td

The temperature profits can then be expressed as

T = T
w
 + 

t

3

2d
 (T  – T

w
)y

–
t
3

1

2d
 (T  – T

w
)y3

or
w

w t t

T T y y

T T

3
3 1

2 2d d

- Ê ˆ= - Á ˜- Ë ¯

where d
t
 is the thermal boundary-layer thickness. The integral energy equation of the boundary layer for 

constant properties and constant free-stream temperature T  is
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0

( )
t

o y

d T
u T T dy

dx y

d

a

=

È ˘∂Í ˙- =
∂Í ˙Î ˚

Ú

Now, T  – T = (T  – T
w
) – (T – T

w
)

\ w

w w t t

T TT T y y

T T T T

3
3 1

1 1
2 2d d

-- Ê ˆ Ê ˆ Ê ˆ= - = - +Á ˜ Á ˜ Á ˜- -Ë ¯ Ë ¯ Ë ¯
Substituting the temperature and velocity distribution equations, we have

t

w
w

t t to

T Td y y y y
u T T dy

dx

3 3
3 ( )3 1 3 1

( ) 1
2 2 2 2 2

d
a

d d d d d

Ï ¸È ˘ È ˘ -Ô ÔÊ ˆ Ê ˆ- - - + =Í ˙ Í ˙Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Î ˚ Í ˙Ô ÔÎ ˚Ó ˛
Ú

Let td
h

d
∫

Carrying out the integration leads to 

2 43 3 3

20 280 2

d
u

dx

a
d h h

dh

È ˘Ê ˆ- =Á ˜Í ˙Ë ¯Î ˚
Assuming d

t
 < d and h < 1, h4 is too small to be neglected. Then

23 3
( )

20 2

d
u

dx

a
dh

hd
=

Performing the differentiation yields

or

d d
u

dx dx

u d d

dx dx

x
d dx

u u

2

2 2 3

2

1
2

10

2
10

140 280
and

13 13

h d a
dh h

dh

h d
d h h d a

n n
d d d

È ˘+ =Í ˙Î ˚

È ˘+ =Í ˙Î ˚

= =But

so that, we have

3 2 13
4

14

d

dx

h a
h h

n
+ =x

or 3 24 13
3 as

3 14

d
Pr

dx Pr

h n
h h

a
+ = =x   (Prandtl number)

or 3 34 13
( )

3 14

d
x

dx Pr
h h+ =

This is a linear differential equation of the first order in h3, and the solution is

3 3/413

14
Cx

Pr
h -= +

With the thermal boundary layer commencing at a distance x
o
 from the leading edge, Fig. 7.5 boundary 

condition h = 0 at x = x
0
 may be applied to yield

x

Pr x

3/4
3

0

13
1

14
h

-È ˘Ê ˆ= -Í ˙Á ˜Ë ¯Í ˙Î ˚
(7.25)
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For the case when it commences at the leading edge,

h = 0 (or d
T
 = 0) at x = 0, C = 0

1/3
13

or
14

T

Pr

d
h

d
-Ê ˆ= = =Á ˜Ë ¯

1/3

1/3

1 0.976

1.026

T Pr
Pr

d
d

= (7.26)

The approximate solution

= The Blasius function

D
im

en
si

o
n
le

ss
v
el

o
ci

ty
,

/
u

u

0 0.5 1.0

Dimensionless vertical position, /y d

0

0.5

1.0

u
u

=
u
u

3
2 1 2y

d
–

1
2 1 2y

d

3

Comparison of third-degree polynomial fit with the exact boundary-layer velocity profile

Note: These results are valid for laminar boundary-layer conditions only.

The approximation velocity profile is compared with the exact Blasius profile in Fig. 7.6 and the two 

prove to be equal within a maximum error of 8%.

7.4.1 ● Mass Flow through the Boundary

If we consider a section at any distance x from the leading edge, the mass flow rate through that section 

is given by:

[Density Velocity Cross-sectional area]xm = Ú ¥ ¥

Integration is performed within the limits 0 to d.

or

0

xm udy

d

r= Ú
Assuming the cubic velocity profile as done earlier, substituting for u, we get

or

3

0

2 4

3
0

3 1

2 2

3 1 3 1

4 8 4 8

5

8

x

x

x

y y
m u dy

y y
m u u

m u

d

d

r
d d

r r d
d d

r d

È ˘È ˘Ê ˆ Ê ˆÍ ˙= -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚Î ˚

È ˘ È ˘= ¥ - ¥ = -Í ˙ Í ˙Î ˚Î ˚

=

Ú
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Mass entrained between two sections at x
1
 and x

2
 can be calculated as:

2 1

5
( )

8
m ur d dD = - (7.27)

where d
1
 and d

2
 are the thicknesses of boundary layer at sections x

1
 and x

2
 respectively.

7.4.2 ● Local Heat Transfer Coefficient (h
x
)

We obtain h
x
 from the relation: 

0y

x
w

dT
k

dy
h

T T

=

Ê ˆ- Á ˜Ë ¯
=

-

7.4.3 ● Unheated Starting Length

Boundary-layer development on a flat plate with unheated starting length

Getting dT/dy from Eq. (7.26), and taking the values of d and (d
T
/d), we get for laminar flow over a 

flat plate

1/2 1/3

1/3
3/4

0

1
0.332

1

x x

k
h Re Pr

x
x

x

=
È ˘Ê ˆ-Í ˙Á ˜Ë ¯Î ˚

and, in terms of non-dimensional Nusselt number, we write

1/2 1/3

1/3
3/4

0

0.332

1

x x
x

h x Re Pr
Nu

k
x

x

= =
È ˘Ê ˆ-Í ˙Á ˜Ë ¯Î ˚

  (unheated starting length) (7.28)

If the plate is heated over the entire length, x
0
 = 0, and we get

x x

k
h Re Pr

x

1/2 1/30.332=

and x
x x

h x
Nu Re Pr

k

1/2 1/30.332= = (7.29)

Note that Eq. (7.22) is in excellent agreement with the value obtained with exact analysis.
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For unheated starting length (x
o
), for turbulent flow over a flat plate

x x
x

o

Nu
Nu

x

x

0

1/9
9/10

|

1

==
È ˘Ê ˆ-Í ˙Á ˜Ë ¯Î ˚

(7.30)

7.4.4 ● Shear Stress and Drag Coefficient

Wall shear stress, 
0

w

y

u

y
t m

=

∂
=

∂

\

3 2

3

2

3
0

3 1 3 3

2 2 2 2

3 3 3

2 22
w

y

u y y y
u u

y y

uy
u

d d d d

m
t m

d dd =

È ˘Ï ¸ È ˘∂ ∂ Ê ˆÍ ˙Ì ˝= - = -Í ˙Á ˜Ë ¯Ô Ô∂ ∂ Í ˙ Î ˚Ó ˛Î ˚
È ˘

= - =Í ˙
Î ˚

or w

uu

x

u uu u

x u u x

2

3

2 4.64

3 1
0.323

2 4.64 /

rm
t

m

r rm r

m r r m

= ¥
¥

= ¥ ¥ =
¥

Shear stress,
20.323

w

x

u

Re

r
t = (7.31)

Thus, the shear stress is proportional to x–1/2 in the laminar boundary layer.

Local skin-friction coefficient,

w
f x

x x

C
u Re Re

, 2

2 0.323 0.646

(1/2)

t

r

¥
= = =

Average skin-friction coefficient,

L L

f L f x

L

C C dx x dx
L L u

x

L u u L

1/2
, ,0 0

1/2

0

1 1
0.646

0.646
1.292

1/2

n

n n

-= = ¥

È ˘
= =Í ˙

Î ˚

Ú Ú

Drag coefficient,

D f L

L

C C
Re

1.292
= = (7.32)

Drag force, F
D
 = t

w
(bL)

where b is the width of the plate.

Equation (7.31) is valid for fluids with Prandtl numbers varying from 0.6 to 50, i.e., it is not applicable 

to liquid metals for which Pr << 0.6.
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For a wide range of Prandtl numbers, Churchill and Ozoe have given the following correlation, for 

laminar flow on an isothermal flat plate:

1/2 1/3

1/4
2/3

0.3387
100

0.0468
1

x
x

Re Pr
Nu Re Pr

Pr

= >
È ˘Ê ˆ+Í ˙Á ˜Ë ¯Î ˚

(7.33)

Based on the exact analysis and confirmed by experiment, the skin friction coefficient is given by

(7.34a)
1/5 5 7

5 71/7

0.0592 10 10

10 100.0296

fx x x

xfx x

C Re Re

ReC Re

-

-

= < <

< <= (7.34b)

In these expressions, x is the distance measured from the leading edge. 

For heat-transfer across the turbulent boundary layer, the local Nusselt number is given by 

1/2 2/3

( /2)

1 12.7( /2) ( 1)

fx x

x

fx

C Re Pr
Nu

C Pr
=

+ -
(7.35)

With C
fx
 given by Eq. (7.33), this form is valid for 0.5 < Pr < 2000, 5 ¥ 105 < Re

x
 < 107.

Alternatively, there is a simpler power law expression recommended by Whitaker,

0.8 1/30.0296x xNu Re Pr= (7.36)

which is valid for 0.7 < Pr < 400, 5 ¥ 105 < Re
x
 < 3 ¥ 107.

7.5 ❏  TURBULENT BOUNDARY LAYER CONDITION FOR 
FLOW OVER AN ISOTHERMAL FLAT PLATE

The velocity and temperature profiles for steady, turbulent boundary layer on an isothermal plate of 

temperature T
w
 are of the form 

1/7
u y

u d

Ê ˆ= Á ˜Ë ¯  and 

1/7

w

w t

T T y

T T d

- Ê ˆ= Á ˜- Ë ¯
. It is known experimentally that 

the wall (surface) shear stress is related to the boundary-layer thickness by an expression of the form 
1/4

20.0228w

u
u

d
t r

n

-
Ê ˆ= Á ˜Ë ¯

.

Assumptions (1) Steady, incompressible two-dimensional flow. (2) Constant properties. (3) Negligible 

viscous dissipation. (4) Isothermal flat plate. (5) Fully turbulent boundary layer. The momentum integral 

equation is

2

0

1 w

d u u
u dy

dx u u

d

r t
Ê ˆ- =Á ˜Ë ¯Ú

Substituting the expression for the shear stress, we get

But

1/41/7 1/7
2 2

0

1/7 2/7 8/7 9/7

1/7 2/7
00

1 0.0228

7 7

8 9

ud y y
u dy u

dx

d y y d y y
dy

dx dx

d

dd

d
r r

d d n

d d d d

-Ê ˆ Ê ˆÊ ˆ Ê ˆ- = Á ˜Á ˜ Á ˜Á ˜ Ë ¯Ë ¯ Ë ¯Ë ¯

Ï ¸ È ˘Ê ˆ Ê ˆÌ ˝- = -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Ô Ô Î ˚Ó ˛

Ú

Ú
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Isothermal flat plate

Therefore,

1/4 1/4
1/47 7 7

0.0228 or 0.0228
8 9 72

ud d

dx dx u

d d n
d d d

n

-
-Ê ˆÈ ˘ Ê ˆ- = =Á ˜Í ˙ Á ˜Ë ¯Î ˚ Ë ¯

Separating the variables and integrating, we have

or

1/4 1/4
1/4 5/4

0 0

4 1
1/54/5

5 4 4/5 1/5

7 7 4
0.0228 or 0.0228

72 72 5

72 5
0.0228 or 0.376

7 4

x

d dx x
u u

u
x x x

u

d
n n

d d d

n
d d

n

-¥
-

Ê ˆ Ê ˆ= ¥ =Á ˜ Á ˜Ë ¯ Ë ¯

¥ Ê ˆÊ ˆ Ê ˆ= ¥ ¥ = ¥ ¥Á ˜Á ˜ Á ˜ Ë ¯Ë ¥ ¯ Ë ¯

Ú Ú

or
1/5

1/50.376 0.376/ x

u x
Re

x

d

n

-
Ê ˆ= =Á ˜Ë ¯

\
1/5

0.376

x
x Re

d
= (7.37)

Substituting for d in the expression for t
s
, we obtain

1/4
2 1/5 1/40.0228 [0.376 ]w x

u
u x Ret r

n

-
- -Ê ˆ= Á ˜Ë ¯

Friction coefficient at a distance x from the leading edge (x = 0) is

1/4
1/5 1/5

, 1/5
2

2 0.0228 0.376
1

2

w
f x

u u x
C x

u

t

n nr

-- -

-

È ˘
= = ¥ Í ˙

Î ˚

or f x

u x
C

u x u x
1

4

1/4
4/5 4/5

0.25
, 4/5

4/5 1/5

0.0456 0.376

0.0592 0.0592

n

n n

-

-
-

¥ -

È ˘
= ¥ ¥ Í ˙

Î ˚

Ê ˆ Ê ˆ= =Á ˜ Á ˜Ë ¯ Ë ¯
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Local friction coefficient,

\ =, 1/5

0.0592
f x

x

C
Re

(7.38)

Average skin-friction coefficient is 

\

1/5
1/5

, ,

0 0

1/5 1/5
4/5

1 1
0.0592

1 5
0.0592 0.074

4

.

x x

f x f x

u
C C dx x dx

x x

u u x
x

x

n

n n

-
-

- -

-

Ê ˆ= = Á ˜Ë ¯

Ê ˆ Ê ˆÊ ˆ= =Á ˜Á ˜ Á ˜Ë ¯Ë ¯ Ë ¯

=

Ú Ú

1/5
, 0 074( )f x xC Re (7.39)

From Colburn analogy,

2/3 1/5
,

1
/2 (0.074 )

2
f x xSt Pr C Re

-= =

where St  is the average Stanton number 
x

x

Nu

Re Pr
∫

or
2/3 1/5

4/5 1/3

0.037

0.037

x x x

x

Nu Pr Re Re Pr

Re Pr

- -= ¥

=

= 4/5 1/3
0.037x xNu Re Pr (7.40)

For gases with d
1

ª d, the expressions for Nu
x
 and LNu  can be developed using the integral method.

The energy integral equation for turbulent flow is 

0

( )
( )

t

w w

p p

q h T Td
u T T dy

dx C C

d

r r

-
- = - = -Ú

Therefore,

or

0

0

1

t

t

w p

w

w p

T Td u h
u dy

dx u T T C

T Td u h
u dy

dx u T T C

d

d

r

r

-Ê ˆ =Á ˜-Ë ¯

È ˘-Ê ˆ- =Í ˙Á ˜-Ë ¯Î ˚

Ú

Ú

or

1/7 1/7

0

1
t

t p

d y y h
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dx C

d

d d r

È ˘Ê ˆ Ê ˆ- =Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
Ú

or

1/71/7 2

0

t

t p

d y y h
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dx C

d

d dd r

Ï ¸Ê ˆÔ ÔÊ ˆÌ ˝- =Á ˜ Á ˜Ë ¯ Ë ¯Ô ÔÓ ˛
Ú

or
8/7 9/7

1/7 1/7 1/7

0

7 7

8 9

t

pt

d y y h
u

dx C

d

rd d d

È ˘
- =Í ˙

Í ˙Î ˚
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or
8/7 9/7

1/7 1/7 1/7

7 7

8 9

t t

pt

d h
u

dx C

d d

rd d d

È ˘
- =Í ˙

Í ˙Î ˚

with

8/7 8/7

,

7 7
( ) ( )

8 9

t

p

d h
u

dx C

d
h

d

d h d h
r

∫

È ˘- =Í ˙Î ˚

or 8/77 7

8 9 p

d h
u

dx C
dh

r

È ˘- =Í ˙Î ˚

or 8/77

72 p

d h
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dx C
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Ê ˆ =Á ˜Ë ¯

with d
t

ª d, i.e. h ª 1, and d = x(0.376)(u x/v)–1/5, we have

or

1/5
4/5

7
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72 /

7
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d h k
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u d h
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Local Nusselt number,

. 4/5
0 0296x x

hx
Nu Re Pr

k
= = (7.41)

where h is the local convection heat-transfer coefficient.

Hence, the average heat-transfer coefficient is

or
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1 1
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\
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x

u x
Nu Pr

n

Ê ˆ= Á ˜Ë ¯

\ 4/5
0.037( )x xNu Re Pr= (7.42)
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7.6 ❏

● Flow Along a Flat Plate

Figure 7.7 shows the schematic of flow along a flat plate. A laminar boundary layer forms from the leading 

edge, and transition to turbulent flow usually occurs at a value of x

u x
Re

n
=  where u  is the free-stream 

velocity, in the range 50 000–500 000, for x measured from the leading edge. Higher values are associated 

with careful wind tunnel tests, and lower values are more characteristic of practical situations where such 

factors as surface roughness and vibration are present.

In many cases, we are equally interested in the average values for a flat plate of finite length, L.

Such average values may be found by appropriately integrating over the total plate length. However, in 

such instances, one must account for the laminar boundary layer which occurs on the surface between 

the leading edge and the point at which the laminar-turbulent transition is assumed to take place. If the 

presence of a transition region is ignored, laminar flow is up to the distance, x
c
 (at which transition takes 

place) and between x
c
 and the plate length L, the flow is turbulent. The distance x

c
 is calculated from

c c
c c

u x Re
Re x

u

n

n
= fi =

where Re
c
 is the critical Reynolds number.

Average Heat-Transfer Coefficient with Partly Laminar and Partly Turbulent Flow We look 

at the calculation of the average heat-transfer coefficient for flow past a flat plate wherein the flow is 

partly laminar and partly turbulent. Assuming that the transition takes place abruptly at x = x
c,
 the average

heat-transfer coefficient may be defined as

lam turb

0

1
c

c

x L

x

h h dx h dx
L

È ˘
Í ˙= +
Í ˙Î ˚
Ú Ú

The heat-transfer coefficients appearing on the right-hand side of the above equation are given by

1/2 1/3

lam

0.8 1/3

turb

0.332
( )

0.0296
( )

x x x

x x

x x x

x x

Nu k Nu Re Pru k u k
h Blasius solution

x v Re Re

Nu k Nu u k Re Pru k
h Colburn analogy

x v Re Re

n

n

= = =

= = =

We substitute these two expressions in and simplify to get

1/3 1/3

1/2 0.2
0

0.332 0.0296

xc L

xc

Re Re

x x
L

x xRe

d Re d RehL
Nu Pr Pr

k Re Re
= = +Ú Ú

1/2 0.8 0.8
1/3 1/3 ( )

0.332 0.0296
1/2 0.8

c L c
L

Re Re Re
Nu Pr Pr

-
= +

After integration, we get the following expression for the average Nusselt number

1/2 0.8 0.8 1/3[0.664 0.037 0.037 ]L c L cNu Re Re Re Pr= + -
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or 1/3 4/5 4/5 1/2

4/5 1/3

[0.037 (0.037 0.664 )]

[(0.037 )]

L L c c

L

Nu Pr Re Re Re

Nu Re B Pr

= - -

= -

where c cB Re Re
4/5 1/20.037 0.664∫ - (7.43)

With Re
c
 = 5 ¥ 105, we get

5 0.8 5 0.5

0.8 1/3

0.037(5 10 ) 0.664(5 10 ) 871.3

(0.037 871.3)L L

B

Nu Re Pr

= ¥ - ¥ =

= - (7.44)

An alternative equation recommended by Whitaker may give better results with some liquids due to the 

viscosity-ratio term:

0.43 0.8 0.25
1

5 6

0.036 ( 9200)( / )

[0.7 380; 2 10 5.5 10 ; 0.26 / 3.5]

L w

L w

Nu Pr Re

Pr Re

m m

m m

= -

< < ¥ < < ¥ < <

(7.45)

All fluid properties except m
w
 should be at the free-stream temperature and m

w
 at the wall surface 

temperature. For the gases, the viscosity ratio term is omitted and the properties are evaluated at the 

film temperature.

Average Skin-Friction Coefficient with Partly Laminar and Partly Turbulent Flow To 

determine the total drag, an average skin-friction coefficient is required. If transition is assumed to occur 

abruptly at x
c
, the average shear stress on a plate of length L is

0

1
(laminar) ( )

c

c

x L

w w w

x

dx turbulent dx
L

t t t
È ˘
Í ˙= +
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Ú Ú

Dividing by (1/2) 2
ur ,

,

0

1
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c

f L

c

x L

fx fx

x

C C dx C turbulent dx
L

È ˘
Í ˙= +
Í ˙Î ˚
Ú Ú

And substituting for local skin friction coefficient,
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f L x x
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Ú Ú

It is convenient to integrate with respect to Re
x
 rather than x:

; orx x x

u x u
Re d Re dx dx d Re

u

n

n n
= = =
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1/5 1 1/2 4/5
, 0.074 [1.328 0.074 ]f L L L c cC Re Re Re Re

- -= + - (7.46)

or f L
LL

A
C

ReRe
, 1/2

0.074
= - (7.47)

where 4/5 1/20.074 1.328c cA Re Re= - (7.48)

The above equation is accurate for Re
L
 < 107. The average 

skin friction coefficient ,f LC  is also the drag coefficient, 

C
D
. The total viscous drag force on a plate of width b and 

length L is 2(1/2)DF C u bLr= .

The quantity A depends on the transition Reynolds 

number, Re
C
, and is given in Table 7.1.

For higher Reynolds numbers, Schlichting approximates the drag coefficient with the following 

empirical formula

D L L C LC Re ARe Re Re
2.584 1 9

100.455(log ) ( 10 )- -= - < < (7.49)

7.7 ❏

Consider a liquid metal flowing across a flat plate. The Prandtl number for liquid metals is very low, of 

the order of 0.01. The thermal boundary-layer thickness, therefore, is very large compared to hydrodynamic 

boundary-layer thickness. This is due to high values of thermal conductivity of liquid metals. Since d/d ª
P

r
1/3, d << d

T
, the velocity profile has a very blunt shape over most of the length of the plate as shown 

in Fig. 7.8. As a first approximation, then, we can assume a slug flow model and a cubic temperature 

profile to calculate the heat-transfer rate. It follows that 

u u= (7.50)

Table 7.1

Reynolds number, Re
C

Re
c 3 ¥ 105 5 ¥ 105 1 ¥ 106 3 ¥ 106

A 1055 1743 3341 8944

Thermal boundary layer

Hydrodynamic
boundary layer

u u=

T T– w

T T– w

u

Isothermal flat plate ( = const)Tw

d

dT

Boundary-layer regimes for analysis of liquid metal heat-transfer
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Applying the integral energy equation,
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Hence, the local Nusselt number is,

or

1/2

1/2

0.53 0.530( )

0.530

x
x x x

x

h x k
Nu Re Pr Re Pr

k x

Nu Pe

= =

= (7.52)

where Pe is the Peclet number

This is in close correspondence with the exact solution 

1/20.564xNu Pe= (7.53)

The hydrodynamic boundary-layer thickness, with cubic velocity profile,

Then

1/2

4.64
4.64

4.64
4.64

8 8

x

T

x u xRe

xu

u x

d n

d n n

d a a

= =

= ¥ =

or 1.64
T

Pr
d

d
= (7.54)

Using Pr ~ 0.01, we get

T

d

d
~ 0.16, i.e., d << d

T

This is in reasonable agreement with our slug-flow model.

7.8 ❏  METHODOLOGY FOR CALCULATION OF CONVECTION 
COEFFICIENT

1. Identify the flow situation (parallel flow/cross flow) and geometry (flat plate/ cylinder/sphere/

tube bank).

2. Evaluate fluid properties at the reference temperature which is usually the film temperature (mean 

of surface and fluid temperatures) but in certain cases, the free-stream temperature T .

3. Calculate the Reynolds number to find if the flow is laminar or turbulent. Be careful about the 

appropriate characteristic length.

4. Ascertain the boundary condition (constant surface temperature/constant surface heat flux).

5. Select the proper latest empirical correlation, noting the conditions of its applicability and deter-

mine the heat-transfer coefficient as desired (local or average). For heat-transfer rate, always use 

the average convection coefficient.

7.9 ❏ CROSSFLOW OVER A CYLINDER

A velocity boundary layer forms on the upstream side of the cylinder. This boundary layer separates from 

the cylinder at some location, and a wake forms on the downstream side of the cylinder. Due to velocity 

variations around the circumference, the convective heat-transfer coefficient also varies, as shown in 

Fig. 7.9. However, in most cases, only the circumferentially averaged heat-transfer coefficient is required.
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Boundary-layer flow

Stream lines Wake

Inviscid flow

Favourable pressure gradient Adverse pressure gradient

P ... Forward stagnation point
S ... Separation point

B

S
F

A

P
q

D

Separation

Reverse
flow

u

Wake

Vortices

A

B
B

F

dP

dx
< 0

dP

dx
> 0

1 2du

dy y = 0
= 0

Flow past a circular cylinder and velocity profiles at various locations on the cylinder

Flow over a flat plate with zero pressure gradient was an example of external-flow forced convection 

in which the growing boundary layer remained attached to the surface all along. However, in the case of 

curved surfaces like cylinders and spheres, the pressure gradient will result in flow separation affecting 

the drag force. The fluid flow across a circular cylinder is shown in Fig. 7.9.

The flow over a cylinder strongly depends on the Reynolds number, VD V is the velocity 

of the undisturbed flow. Different flow patterns occur at different Reynolds numbers. As a result, it is 

difficult to find a simple equation for the convective heat-transfer coefficient that applies to all ranges 

of Reynolds number.

The thickness of the boundary increases as the flow proceeds along the body and velocity gradient 

near the wake keeps decreasing. At a certain location, the velocity gradient actually becomes zero and 

flow separation takes place. Beyond the separation point, the fluid separates with a reversed flow region. 

The pressure variation departs from the ideal-flow pressure variation as shown by the dashed line in 

Fig. 7.9. Pressure variation is very little beyond the separation point. Turbulent flow normal to a cylinder 

also shows flow separation as indicated in the figure.
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Determination of the drag coefficient and the heat-transfer coefficient is quite complicated due to 

complexity of flow patterns around the cylinder.

For cross flow over a cylinder, the average Nusselt number is correlated by an equation of the form

1/3m
D D

hD
Nu C Re Pr

k
= = (7.55)

Table 7.2 gives correlations for circular and non-circular cylinders in cross flow.

Table 7.2

cylinders in cross flow 

Geometry Fluid Range of Reynolds Number Nusselt number

Circle

D

Gas or 

liquid

0.4–4

4–40

40–4000

4000–40 000

40 000–400 000

Nu = 0.989 Re0.330 Pr1/3

Nu = 0.911 Re0.385 Pr1/3

Nu = 0.683 Re0.466 Pr1/3

Nu = 0.193 Re0.618 Pr1/3

Nu = 0.027 Re0.805 Pr1/3

Square

D

Gas 2500–8000

5000–100 000

Nu = 0.177 Re0.699 Pr1/3

Nu = 0.102 Re0.675 Pr1/3

Square (tilted 45°)

D

Gas 2500–7500

5000–100 000

Nu = 0.289 Re0.624 Pr1/3

Nu = 0.246 Re0.588 Pr1/3

Hexagon

D

Gas 5000–100 000 Nu = 0.153 Re0.638 Pr1/3

Hexagon (tilted 45°)

D

Gas 5000–19 500

19 500–100 000

Nu = 0.160 Re0.638 Pr1/3

Nu = 0.0385 Re0.782 Pr1/3

Vertical plate

D

Gas 4000–15 000 Nu = 0.228 Re0.731 Pr1/3

The Reynolds number and the Nusselt number are usually based on the cylinder diameter. The average 

Nusselt number is correlated by an equation of the form
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1/4
m n

D D
w

Pr
Nu C Re Pr

Pr

Ê ˆ= Á ˜Ë ¯
(7.56)

Recently, Zhukauskas has given the set of C, m, and n that are 

to be used in and the range of validity of these. Table 7.3 gives 

the values of the constants along with the ranges of applicability.

The above correlation is valid for 0.7 < Pr < 500, 1 < Re
D
 < 

106. n is specified as 0.37 for Pr £ 10 and as 0.36 for Pr ≥ 10. All properties are calculated at the mean 

temperature
( )

2

wT T+
. Pr  and Pr

w
 are evaluated at free-stream temperature T  and wall temperature 

T
w
 respectively.

The characteristic length, for a circular cylinder to calculate the Reynolds number is the external

diameter D. And the Reynolds number is defined as 

D

VD
Re

n
= (7.57)

where n is the uniform velocity of flow as it approaches the cylinder.

The critical Reynolds number for flow across the cylinder is

52 10crRe = ¥ (7.58)

Up to Re
cr
 = 2 ¥ 105, the boundary layer remains laminar and beyond this value, the boundary layer 

becomes turbulent.

Flow patterns for a flow across a cylinder are shown in Fig. 7.10. Fluid particles at the mid-plane 

of a stream approaching the cylinder strike the cylinder at the stagnation point and come to a halt, thus 

increasing the pressure. The rest of the fluid branches around the cylinder forming a boundary layer 

that embraces the cylinder walls. Pressure decreases in the flow direction and the velocity increases. At 

very low free stream velocities (Re < 4), the fluid completely wraps around the cylinder. As the velocity 

increases, the boundary layer detaches from the surface at the rear, forming a wake behind the cylinder. 

This point is called separation point. Flow separation occurs at about q = 80° measured from the stagnation 

point when the boundary layer is laminar and at about q = 140° when the boundary layer is turbulent.

Drag force for a cylinder in cross flow is primarily due to two effects: one, friction drag due to 

the shear stress at the surface, and the other, pressure drag due to the pressure difference between the 

stagnation point and the wake. At low Reynolds number (Re
D
 < 4), friction drag is predominant, and at 

high Reynolds numbers (Re
D
 > 5000), pressure drag is significant. At the intermediate values of Re

D
,

both effects contribute to the drag.

Average drag coefficient C
D
 for cross flow over a cylinder is shown in Fig. 7.12. Then, the drag force 

acting on the body in cross flow is obtained from

2

(N)
2

D
D

C Au
F

r
= (7.59)

where A is the frontal area, i.e., area normal to the direction of flow.

[A = LD for a cylinder and 
2

4

D
A

p
=  for a sphere]

Table 7.3

Re
D
 range C m

1–40 0.75 0.4

40–1000 0.51 0.5

103–2 ¥ 105 0.26 0.6

2 ¥ 105 – 106 0.076 0.7
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Another important correlation due to Whitaker applicable for gases and liquids is

0.5 0.66 0.4 0.25(0.4 0.06 ) ( / )D D D wNu Re Re Pr m m= + (7.60)

10 100 000

0.67 300

0.25 ( / ) 5.2

D

w

Re

Pr

m m

< <

< <
< <

(7.61)
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All the properties are evaluated at the free stream temperature T  except m
w
 which is at the surface 

temperature T
w
.

Fand has suggested the following correlation for calculating the heat-transfer coefficient from a liquid 

to the cylinder in cross flow

0.52 0.3 1 5(0.35 0.56 ) (valid for 10 10 )D D DNu Re Pr Re
-= + < < (7.62)

For the average Nusselt number for flow across a circular cylinder, the following comprehensive 

correlations are suggested by Churchill and Bernstein.

1/21/2 1/3

2/3 1/4

4 5

0.62
0.3 1 0.2

282 000[1 (0.4/ ) ]

2 10 4 10

D D
D D

D

Re Pr Re
Nu Re Pr

Pr

Re

È ˘Ê ˆÍ ˙= + + >Á ˜Ë ¯+ Í ˙Î ˚

¥ < < ¥ (7.63)

4/5
5/81/2 1/3

2/3 1/4

5 6

0.62
0.3 1 0.2

282 000[1 (0.4/ ) ]

4 10 5 10

D D
D D

D

Re Pr Re
Nu Re Pr

Pr

Re

È ˘Ê ˆÍ ˙= + + >Á ˜Ë ¯+ Í ˙Î ˚

¥ < < ¥ (7.64)

These correlations are valid for the constant wall temperature case. Fluid properties are to be evaluated 

at the mean film temperature 
1

( )
2

wT T+ .

7.10 ❏ FLOW ACROSS TUBE BANKS

Cross flow over tube banks and the heat-transfer associated with it occur in numerous heat-transfer 

equipment such as the condensers and evaporators of power plants, refrigerators, and air conditioners.

In such applications, one fluid moves through the tubes while the other moves over the tubes in a 

perpendicular direction.

The two frequently used geometrical arrangements in-line (aligned) or staggered tube in the direction 

of flow, velocity V are shown in Fig. 7.13. The outer tube diameter D is taken as the characteristic 

length. The configuration in the tube bank is characterized by the transverse pitch S
T
, between tubes in 

a row (the rows are perpendicular to the flow direction) and longitudinal pitch S
L
 (in the flow direction 

between adjacent rows of tubes). The diagonal pitch S
D
 between tube centres in the diagonal row is used 

in the staggered arrangement. 

As the fluid enters the tube bank, the flow area decreases from A
1
 = S

T
L to A

T
 = (S

T
 – D)L between 

the tubes, and thus flow velocity increases. In staggered arrangement, the velocity may increase further in 

the diagonal region if the tube rows are very close to each other. In tube banks, the flow characteristics 

are dominated by the maximum average in the tube bank velocity V
max

 in the tube bank rather than the 

approach velocity V. Therefore, the Reynolds number for heat-transfer and pressure drop calculations is 

then given by

max max
D

V D V D
Re

r

m n
= = (7.65)

The maximum velocity is determined from the conservation of mass requirement for steady incompressible

flow.
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AT

Du T,

(a)
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SL A1
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A S D L

A S D L

1 =

= ( – )

= ( – )

T

T T

D D

Du T,

SL

AT

AD

AD

ST

SD

(b)

Tube banks: (a) aligned (b) staggered

For the aligned (in-line) arrangement, the maximum velocity occurs at the minimum flow area between the 

tubes, and from the conservation of mass 1 max TVA V Ar r=  or max ( )T TVS V S D= - . Then the maximum 

velocity V
max

 occurs at the transverse plane.

max
T

T

S
V V

S D
=

-
(7.66)

For the staggered configuration, the fluid passes through the area A
T
 and then through the area 2A

D
. The 

maximum velocity can occur either at the transverse plane A
T
 or the diagonal plane A

D
 of Fig. 7.14. If 

2A
D
 > A

T
, the maximum velocity will occur at A

T
 between the tubes and thus the V

max
 relation for in-line 

comfiguration can also be used for staggered tube banks. But if 2A
D
 < A

T
 i.e. if 2(S

D
 – D) < (S

T
 – D)]

the maximum velocity will occur at the diagonal plane, and the maximum velocity in this case becomes

Staggered and S
D
 < (S

T
 + D)/2:

max
2( )

T

D

S
V V

S D
=

-
(7.67)
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where

1/2
2

2

2 2

T T
D L

S S D
S S

È ˘ +Ê ˆ= + <Í ˙Á ˜Ë ¯Î ˚
(7.68)

since 1 max max(2 ) or 2 ( )D T DVA V A VS V S Dr r= = -
Note that the factor 2 is because the fluid is divided into two streams as it moves from A

T
 to A

D
 planes.

Zhukauskas has recently proposed a correlation of the general form 

0.25( / )m n
D D w

hD
Nu C Re Pr Pr Pr

k
= = (7.69)

where the values of the constants C, m, and n depend on the Reynolds number. Such correlations are 

presented given in Table 7.3 for 0.7 < Pr < 500 and 0 < Re
D
 < 2 ¥ 106. All properties except Pr

w
 are to 

be evaluated at the arithmetic mean of the fluid inlet temperature and exit temperature.

The average Nusselt number relations in Table 7.4 are for tube banks with 16 or more rows. For N
L

< 16, a correction factor F is applied such that 

, LD N DNu FNu= (7.70)

Table 7.4
L

D N
Nu

, D L
 < 16 and Re

D
 > 1000 

N
L

1 2 3 4 5 7 10 13

In-line 0.70 0.80 0.86 0.90 0.93 0.96 0.98 0.99

Staggered 0.64 0.76 0.84 0.89 0.93 0.96 0.98 0.99

Vmax

V Vmax

Vmax

V

V

(a)

(b)

D

ST

SL

D ST

Vmax =1 2ST

S DT –
V

For – < 2  ( /2) + – 2S D S S DT
2 2

T L

V S S D Vmax = [ /( – )]T T

For – > 2 ( ) + – 2S D S S DT
2 2

T L

Vmax = 1 2(1 + 4( / )

2

S S

D

2
L T

ST
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The values of F are given in Table 7.5. The correction factor itself varies with the tube arrangement 

and the Reynolds number. If Re
D
 > 1000, the correction factor is independent of Reynolds number.

Table 7.5

Configuration Range of Re
D

Correlation

 In-line
0–100 0.4 0.36 0.250.9 ( / )D D wNu Re Pr Pr Pr=

100–1000 0.5 0.36 0.250.52 ( / )D D wNu Re Pr Pr Pr=

1000–2 ¥ 105 0.63 0.36 0.250.27 ( / )D D wNu Re Pr Pr Pr=

2 ¥ 105 – 2 ¥ 106 0.8 0.4 0.250.033 ( / )D D wNu Re Pr Pr Pr=

Staggered
0–500 0.4 0.36 0.251.04 ( / )D D wNu Re Pr Pr Pr=

500–1000 0.5 0.36 0.250.71 ( / )D D wNu Re Pr Pr Pr=

1000–2 ¥ 105 0.2 0.6 0.36 0.250.35( / ) ( / )D T L D wNu S S Re Pr Pr Pr=

2 ¥ 105 – 2 ¥ 106 0.2 0.8 0.36 0.250.031( / ) ( / )D T L D wNu S S Re Pr Pr Pr=

Once the Nusselt number and thus the average heat-transfer coefficient for the entire tube bank is 

known, the heat-transfer rate can be determined from Newton’s law of cooling using the logarithmic 

mean temperature difference DT
lm

 defined as

( ) ( )

ln[( )/( )] ln( / )

w i w e i e
m

w i w e i e

T T T T T T
T

T T T T T T

- - - D - D
D = =

- - D Dl
(7.71)

We also show that the exit temperature of the flow fluid T
e
 can be determined from

( )exp s
e w w i

p

hA
T T T T

mC

Ê ˆ= - - -Á ˜Ë ¯
(7.72)

where sA N DLp=  is the heat-transfer surface area and ( )T Tm V N S Lr=  is the mass flow rate of the 

fluid. Here, N is the total number of tubes in the bank, N
T
 is the number of tubes in a transverse plane, 

L is the length of the tubes, and V is the velocity of the fluid just before entering the tube bank. Then 

the heat-transfer rate can be determined from 

( )s m p e iQ hA T mC T T= D = -
l

(7.73)

All properties except Pr
w
 are evaluated at the arithmetic mean of the inlet and exit temperatures of the 

fluid. Pr
w
 is evaluated at T

w
.

7.10.1 ● Pressure Drop

The pressure drop DP for flow across a banks of N
L
 tubes can be calculated 

2
max (Pa)
2

L

V
P N f X

r
D = (7.74)
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where f is the friction factor and X is the correction factor, both plotted in Fig. 7.15(a) and 7.15(b) against 

the Reynolds number based on the maximum fluid velocity V
max

. The friction factor in Fig. 7.16(a) is 

for a square, in-line tube bank (S
T
 = S

L
), and the correction factor is used to account for the effects of 

deviation of rectangular in-line arrangements from the square arrangement. Similarly, the friction factor 
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(a) Friction factor, f and (b) Correction factor X for calculating pressure drop in an 

in-line tube-ank configuration
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(a) Friction factor, f and (b) Correction factor X for calculating pressure drop in a staggered tube-bank configuration

in Fig. 7.16(a) is applicable for an equilateral staggered tube bank (S
T
 = S

D
), and the correction factor 

Fig. 7.16(b) is to account for the effects of departure from equilateral arrangement. Note that X = 1 for 

both square and equilateral triangle arrangements. Also, pressure drop occurs in the flow direction, and 

thus we used N
L
 (the number of rows) in the DP relation.
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The pumping power requirement can be obtained from

pump
–( )V ( / ) (W)P m Pr√ = D = D (7.75)

where – –V V( )T Tm N S Lr r= =  is the mass flow rate of the fluid through the bank of tubes. The power

required is proportional to the pressure drop. Hence, the benefits of increasing heat-transfer in a tube 

bank should be compared against the cost of additional power requirement.

7.11 ❏ FLOW OVER A SPHERE

The flow pattern around a sphere is somewhat similar to that for flow normal to a circular cylinder except 

that it does not exhibit the same regular eddy shedding phenomena. Fig. 7.17 shows the variation of drag 

coefficient C
D
 as a function of Reynolds number Re

D
. For very low Reynolds numbers (creeping flow),

the Stokes law is valid and C
D
 is inversely proportional to Re.

It is expressed as

24
0.5D D

D

C Re
Re

= < (7.76)

For higher Reynolds numbers, the appropriate correlation is

2/3
24

1 2 500
6

D
D D

D

Re
C Re

Re

Ê ˆ
ª + < <Á ˜Ë ¯ (7.77)

At still higher Reynolds numbers, C
D
 is constant, equal to approximately 0.44 in the range 500 < Re

D

< 2 ¥ 105.

McAdams recommends the following correlation for heat-transfer from spheres to a flowing gas

0.60.37D DNu Re=     (for 25 < Re
D
 < 100 000) (7.78)

For forced convection over a sphere, the following correlation for average Nusselt number is recommended 

by Whitaker which is applicable for gases and liquids. 

1/4
1/2 2/3 0.42 [0.4 0.06 ] rD D

w
D

hD
Nu Re Re P

k

m

m

Ê ˆ= = + + Á ˜Ë ¯
(7.79)

43.5 8 10

0.7 380

1.0 3.2

D

w

Re

Pr

m

m

È ˘< < ¥
Í ˙

< <Í ˙
Í ˙
Í ˙< <
Í ˙Î ˚

All properties are evaluated at the fluid temperature T  except m
w
 which is evaluated at the surface

temperature, T
w
.

As the Reynolds number (Re
D
) approaches zero, the Nusselt number approaches 2 when the surface 

temperature simultaneously approaches fluid temperature and the sphere is in an infinite fluid with 

conduction as the only mechanism of heat-transfer.
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Note that the lower limit of 2DNu =  in the above expression corresponds to conduction heat-transfer 

from a sphere into stationary, infinite surroundings. Figure 7.17 illustrates this important observation.

We know that heat-flow rate across a spherical shell is given by

1 2

1 2

4 ( )

(1/ ) (1/ )

k T T
Q

r r

p -
=

-

Area of inner surface, 2
14iA rp=

For D = 2r
1
, and very large r

2
 (r

2
Æ ),

2
1 2

2

2
( )

( )( )w

k
Q D T T

D

h D T T

p

p

= -

= -
Hence, the heat-transfer coefficient is

and

22
(since )

2D

k
h A D

D

hD
Nu

k

p= =

= =

7.12 ❏ ANALOGY BETWEEN HEAT AND MOMENTUM TRANSFER

7.12.1 ● Reynolds Analogy

Reynolds has developed a relation between the heat-transfer and skin-friction coefficient. Near the surface 

the heat-transfer is always due to conduction because the flow here is stationary.

Wall shear stress in laminar flow in the normal direction to the plate

w

du

dy
t m=    (Newton’s law of viscosity) (7.80)

Heat-transfer rate along the y-direction (Fourier’s rate equation)

dT
Q kA

dy
= - (7.81)

Temperature and velocity profiles are identical when the dimensionless Prandtl number is unity which is 

approximately the case for most gases (0.6 < Pr < 1.0).

1 or
p

p

C k
Pr C

k

m

m
= = = (7.82)

Combination of expressions (7.80), (7.81) and (7.82) yields

p w

dT
Q C A

du
t= -

Separating the variables and integrating within the limits,

T = T
w
 when u = 0 at the plate surface

T = T  when u = u  at the outer edge of the boundary layer

0 w

u T

p w T

Q
du dT

C At
= -Ú Ú

T1

T1

r1

r2

&Q
D

Tw

&Q

Conduction across a spherical shell, and 

from a sphere into stationary infinite 

surroundings
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or ( ) or
( )

p

w w
p w w

CQ Q
u T T

C A A T T u
t

t
= - =

-

The left-hand side represents the heat-transfer coefficient h
x
. Also, from the definition of skin friction 

coefficient, we have 21

2
fx wC ut r= . Making these substitutions, we obtain

21
( )

2 2

p fx

x fx p

C C
h C u C u

u
r r= ¥ ¥ =

In the dimensionless form,

2

fxx

p

Ch

C ur
= (7.83)

The dimensionless group of terms h
x
/(rC

p
u ) is called the Stanton number St

x
 and it represents the Nusselt

number divided by the product of the Reynolds and Prandtl numbers, i.e.,

2

fxx
x

x

CNu
St

Re Pr
= = (7.84)

The physical significance of Stanton number is

Actual heat flux to the fluid

Heat flux capacity of the fluid flow

x

p

h t
St

C u tr

D
= =

D

Equation (7.84) is called the Reynolds analogy and is an excellent example of the similar nature of heat 

and momentum transfer. This inter-relationship can be used directly to infer heat-transfer data from the 

measurement of shear stress.

7.12.2 ● Colburn Analogy

We will now establish a relationship between the local heat-transfer coefficient and the local drag 

coefficient in laminar boundary layer flow over a flat plate

1/2 1/3

1/2

0.332( ) ( )

0.664

( )

x
x x

fx

x

h x
Nu Re Pr

k

C
Re

= =

=

Dividing both sides of expression for the by product Re
x
Pr1/3, we get

1/3 1/2

0.332

2( )

fxx

x x

CNu

Re Pr Re
= =

The left-hand side of this equality can be rearranged as

2/3 2/3

1/3

x x
x

xx

Nu Nu
Pr St Pr

Re PrRe Pr
= =

The inter-relationship between heat and momentum transfer then becomes

2/3

2

fx

x

C
St Pr = (7.85)
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Similarly, on an average basis,

2/3 /2fSt Pr C=

The above correlation for laminar boundary layer on a flat plate was applied by Colburn to a wide range 

of data for flow configurations of all types and found to be quite accurate provided that (a) there is no 

form or pressure drag, and (b) 0.6 < Pr < 60.

Equation (7.85) has been designated as Colburn analogy. It is noteworthy that for Pr = 1, the Colburn

and Reynolds analogies are the same.

The Colburn analogy is valid for the case of laminar boundary-layer flow over a flat plate because the 

pressure gradient term (dP/dx) = 0. It is not valid for other situations of laminar flow over curved surfaces 

or laminar flows inside tubes where the pressure gradient in the flow direction is non-zero. However, in 

the case of turbulent flow, conditions are less sensitive to pressure gradient. Thus, the Colburn analogy 

equation can be shown to be approximately valid for local coefficients in turbulent flow over a flat plate. 

The corresponding equation on an average basis is also valid if the boundary layer is turbulent from the 

leading edge.

7.12.3 ● The Reynolds Analogy for Turbulent Heat Transfer

In the case of turbulent flow past a flat surface, the total apparent shear stress and heat flux are given by

( ) ,

( )p H

u

y

T
q C

y

t r n e

r a e

∂
= +

∂
∂

= - +
∂

Reynolds assumed, as a simple model, that the turbulent boundary layer consisted of only the fully 

turbulent zone that is; he presumed that the laminar sublayer and the buffer zone are negligible. Thus, 

in the boundary layer e >> n and e
H
 >> a, so that n and a may be taken as negligible and the ratio of 

the two expressions given above yields

pH
p

t

Cq T T
C

u Pr u

e

t e

∂ ∂
= - ∫

∂ ∂
,

in which Pr
t
 = e/e

H
 is the turbulent Prandtl number. Reynolds further assumed that since the eddy 

viscosity and eddy diffusivity arise from the same mechanism of transverse fluctuation, the Pr
t

ª = 1, 

i.e., e ª e
H
, so that

p

q T
C

ut

∂
= -

∂
The similarity between heat and momentum transfer discussed for laminar flow in the preceding section 

noted that the ratio (q/t) was constant. Reynolds assumed that this same similarity exists for the fully 

turbulent boundary layer. Intagrating from T = T
w
, u = 0 to T = T , u = u  while taking q/t as constant 

and equal to the wall values, we obtain

0

0

w
p

q T T
C

ut

-
= -

or

0

( ) ( )w w
p

o

p

h T T T T
C

u

C
h

u

t

t

- -
=

=
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While this latter expression appears to be the same as that for laminar flow, one should note that although 

it has been presumed that the turbulent Prandtl number is unity, Pr
t
ª 1, it has not been assumed that the 

molecular Prandtl number Pr = n/a is 1. Thus, the above statement may also be written

or

20
,

1
/

2 2

2

fx x
f x

fxx
x x

CkPr u kPr
h C u k Pr u

u x

Ch
Nu Re Pr

k

t r
r m

m m
= = =

= = (7.86)

or Stanton number, 
2

fxx

x

CNu
St

Re Pr
= = (7.87)

This is known as the Reynolds analogy for turbulent heat-transfer on a flat surface. 

Illustrative Examples

(A) Flat Plate in Parallel Flow: Laminar and Turbulent

 Assuming the boundary layer to be turbulent over the entire plate, determine the 

ratio of the drag force acting on the front half of a flat plate to that on the rear half if the plate is 

oriented at zero incidence angle in a free stream of uniform velocity of fluid flowing past it.

Solution

Known Turbulent flow of a fluid over the entire flat plate.

Find
,front half

,rear half

D

D

F

F

Schematic

Flat plate

Front half Rear half

L/2 L/2

L

V

Fluid

Assumptions (1) Turbulent flow over the plate. (2) Zero incidence angle.

Analysis Drag force, 2
,

1

2
D f f LF C C AVr= =   where V is the free stream fluid velocity

, 1/5 1/5

0.074 0.074

( / )
f L

L

C
Re VL n

= =

 Then, per unit width, for the entire plate,

0.2
20.074 0.5 1DF L V

VL

n
r

È ˘= ¥ ¥ ¥ ¥Í ˙Î ˚

Illustrative Examples
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 For the front half of the plate,

0.2 0.2
2 0.8

,

2
0.074 0.5 1 2

( /2) 2 2
D I D D

L
F V F F

V L

n
r -È ˘= ¥ ¥ ¥ ¥ = ¥ =Í ˙Î ˚

 For the rear half, 0.8
, , [1 2 ]D II D D I DF F F F

-= - = -

\
0.8 0.8

,front half

0.8 0.8
,rear half

2 2

(1 2 ) 1 2

D D

D D

F F

F F

- -

- -= = =
- -

1.349 (Ans.)

 Air at a free stream temperature of 5°C and velocity of 10 m/s is in parallel flow 

over a flat plate of 3 m length and 1 m width which is maintained at a temperature of 85°C. Assuming 

the transition Reynolds number of 5 ¥ 105 and neglecting the first 5 cm for heat-transfer calculations, 

calculate the rate of heat loss from both sides of the plate and identify the location at which maximum 

heat loss occurs along the length of the plate.

Properties of air at the film temperature of 45°C are

k = 0.02763 W/m °C, n = 1.77 ¥ 10–5 m2/s, Pr = 0.7045

Solution

Known Plate dimensions and temperature. Air velocity and temperature. Flow over a flat plate.

Find Heat loss from both surfaces of the plate. Location of maximum heat loss on the plate.

Schematic

Flat plate ( = 1 m)
= 85°C

W

Ts

L = 3 m

T = 30°C

u = 10°C

Air

Transition

Laminar Turbulent

0.05 0.885

27.4

29.8

35
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0
0 0.5 1 1.5 2 2.5 3

h xμ –0.2

h xμ –0.5

x m( )

h
W

m
(

/
°C

)
2

hmax
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Assumptions (1) Steady operating conditions. (2) Critical Reynolds number is 5 ¥ 105. (3) Constant 

properties. (4) First 5 cm of plate is ignored from the heat-transfer standpoint.

Analysis ● For laminar flow over a flat plate (Re < Re
cr
)

  Since

1/2 1/3 0.5

0.5
0.5 1/3 0.5

0.332( ) ( )

, 0.332

x x x

x

hx
Nu Re Pr Re

k

u x uk
Re h x Pr x

xn n
-

= = μ

Ê ˆ= = ¥ ¥ ¥ μÁ ˜Ë ¯

● For turbulent flow over a flat plate (Re > Re
cr
)

\

4/5 1/3 0.8

0.8
0.8 1/3 0.2

0.0296( ) ( ) ( )

0.0296

x x

hx
Nu Re Pr Re

k

uk
h x Pr x

x n
-

= = μ

Ê ˆ= ¥ ¥ ¥ μÁ ˜Ë ¯

Thus, we note that the local Nusselt number varies as 1/2
xRe  for the laminar case and 

4/5
xRe  for the turbulent case. The local convection heat-transfer coefficient varies as x–1/2

for laminar flows and x–1/5 for turbulent flows. In both cases, as x increases, the value of 

h and, hence, the heat transfer rate ( )sQ hA T= D  decreases along the plate. 

  The maximum value of h in the laminar part of the boundary layer will occur at x = 

0.05 m (since for the first 5 cm from the leading edge of the plate, heat transfer is not 

considered). Properties to be used should be at the film temperature.

1
( ) (85 5)/2 i.e. 45 C.

2
f sT T T= - = + ∞

Local heat-transfer coefficient at x = 0.05 m is

\

x x

x

k k
h Nu Re Pr

x x

u x
Re

h

1/2 1/3

4

5 2

4 1/2 1/3 2

0.332( ) ( )

10 m/s 0.05 m
2.825 10

17.7 10 m /s

0.02763 W/m C
0.332 (2.825 10 ) (0.7045) 27.4 W/m °C

0.05 m

n -

= = ¥

¥
= = = ¥

¥

∞
= ¥ ¥ ¥ ¥ =

The value of h decreases with distance from the leading edge x because the boundary layer 

thickness, d increases.

0.5

1/2

5.0
( ) 5

( )x

x
x x x

u xRe

n
d ª = μ

The temperature gradient at the wall 

0

( )s

y

h T TT
h

y k=

-È ˘∂Ê ˆ = μÍ ˙Á ˜Ë ∂ ¯ -Í ˙Î ˚
decreases with increasing

x and decreasing h.

  At the transition point where the boundary layer becomes turbulent, the temperature 

gradient near the wall is steeper even though the boundary layer is thicker.



Forced Convection: External Flow 493

  Hence, the local heat-transfer coefficient suddenly increases at the transition location.

  To identify the location of the transition point, we note that 

 Hence, 

5

5 5 2

5 10

(5 10 )(1.77 10 m /s)
0.885 m

10 m/s

cr
cr

cr

u x
Re

x

n
-

= ¥ =

¥ ¥
= =

 At x = x
cr
, the boundary layer is turbulent. Hence, the local convection coefficient is 

calculated from

0.8 1/3

5 0.8 1/3 2

0.0296 ( ) ( )

0.02763 W/m C
0.0296(5 10 ) (0.7045) 29.8 W/m C

0.885 m

x cr
cr cr

k k
h Nu Re Pr

x x
= = ¥ ¥

∞
= ¥ ¥ ¥ = ∞

 This is greater than 27.4 W/m2 °C for laminar flow at x = 5 cm. As x increases beyond x
cr
,

h will decrease as x–0.2. Clearly, the maximum local heat-transfer coefficient (and, hence, 

the maximum heat loss) will occur at 

x = 0.885 m (Ans.)

 Heat-transfer rate for the entire plate from both top and bottom surfaces is determined from

(2 )( )sQ h LW T T= -

 where 
4/5 1/3

0.8
1/3

5 2

2

[0.037 871]

0.02763 W/m°C 10 m/s 3 m
0.037 871 (0.7045)

3 m 1.77 10 m /s

22 W/m °C

L L

k k
h Nu Re Pr

L L

-

= = ¥ -

È ˘¥Ê ˆ= ¥ ¥ -Í ˙Á ˜Ë ¥ ¯Í ˙Î ˚

=

 Total heat loss is

\  2(22 W/m C)(2 3 m 1 m)(85 5) CQ = ∞ ¥ ¥ - ∞  = 10.58 ¥ 103 W or 10.58 kW (Ans.)

 In a certain glass-making process, a plate of glass (1 m square, 3 mm thick) 

heated uniformly to 90°C is cooled by air at 20°C flowing over both sides parallel to the plate at 2 

m/s. Calculate the initial rate of cooling of the plate and the time required for the plate to cool to 60°C. 

Neglect temperature gradients in the glass plate and consider only forced convection effects. Properties 

of glass: r = 2500 kg/m3, C
p
 = 0.67 kJ/kg K. The following properties of air may be used: k = 27.6 ¥

10–3 W/m K, Pr = 0.709, n = 17.7 ¥ 10–6 m2/s.

Solution

Known Glass plate of prescribed dimensions and temperature in air stream at given velocity and 

temperature.

Find Initial heat-transfer (cooling) rate and time required to attain new plate temperature.
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Schematic

Glass plate [ 1 m 1 m 3 mm]¥¥

T ts( )

T ts( )x
L = 1 m

Tsi = 90°C

T ts( ) = 60°C

&Qconv

&Qconv

Air

V = 2 m/s

T = 20°C

Assumptions (1) Steady operating conditions. (2) Uniform plate surface temperature. (3) Negligible 

radiation effects. 

Analysis Film temperature, 
, 1 90 60

20 47.5 C
2 2 2

s av

f

T T
T

+ È ˘+Ê ˆ= = + = ∞Á ˜Í ˙Ë ¯Î ˚

Initial rate of cooling, ( )s siQ hA T T= -

where A
s
 = 2 ¥ 1 m ¥ 1 m = 2 m2    [considering both surfaces]

and T
si
 – T  = 90 – 20 = 70°C

5 5

6 2

2 m/s 1 m
1.13 10 ( 5 10 )

17.7 10 m /s
D

VL
Re

n -
¥

= = = ¥ < ¥
¥

Hence, the air flow is laminar.

The appropriate correlation is

Hence,

1/2 1/3

3
5 1/2 1/3 2

0.664( ) ( )

0.664 27.6 10 W/m K
(1.13 10 ) (0.709) 5.5 W/m K

1 m

L L

hL
Nu Re Pr

k

h
-

= =

¥ ¥
= ¥ ¥ =

Initial cooling rate,

2 2( ) (5.5 W/m K)(2 m )(70 C)s siQ hA T T= - = ∞ = 770 W (Ans.)

To find the time required for cooling of the plate to 60°C, one must ascertain if the lumped 

capacity model is valid.

3 3
3

2

–V (1 1 3 10 )m
where 1.5 10 m

2 m

c
c

hL
Bi L

k A

-
-¥ ¥ ¥

= = = = ¥

\ Bi = 
35.5 1.5 10

1.4

-¥ ¥
 = 5.893 ¥ 10–3 (<< 0.1) (Assuming k

glass
 = 1.4 W/m K)

Thus, the validity of the assumption that internal temperature gradients can be neglected 

is established.

Time required, 

3 3

2

ln
( ( ) )

2500 kg/m 670 J/kgK 1.5 10 m (90 20) C
ln

(60 20) C5.5 W/m K

p c si

s

C L T T
t

h T t T

r

-

-
=

-

¥ ¥ ¥ - ∞È ˘= Í ˙- ∞Î ˚
= 256 s or 4 min 16 s (Ans.)
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 A flat-plate solar collector 

has a cover plate at 45°C exposed to ambient 

air at 25°C in parallel flow over the plate with 

free stream velocity of 8 km/h. (a) Compute the 

heat-loss rate from the plate. (b) If the plate is 

installed 2 m from the leading edge of a roof 

and flush with the roof surface, calculate the 

rate of heat loss.

Properties of air at 35°C are

k = 0.02625 W/m°C, n = 16.55 ¥ 10–6 m2/s,

Pr = 0.7268

Solution

Known Air flow conditions. Dimensions and temperature of cover plate of a flat plate solar 

collector.

Find (a) Heat loss without unheated starting length. (b) Heat loss with unheated starting length.

Assumptions (1) Steady-state conditions. (2) Re
cr
 = 5 ¥ 105. (3) Radiation effect is neglected. (4) Constant 

properties. (5) Boundary layer unruffled by roof plate interface.

Analysis (a) Reynolds number,

5

6 2

(8/3.6)m/s 1 m
1.343 10

16.55 10 m /s
L cr

u L
Re Re

n -
¥

= = = ¥ <
¥

 For laminar flow,

1/2 1/3 5 1/2 1/30.664 0.664(1.343 10 ) (0.7268) 218.8L LNu Re Pr= = ¥ =

 Average heat-transfer coefficient,

0.02625 W/m C
218.8 /

1 m
L

k
h Nu

L

∞
= = ¥ = 2

5.74 W m C∞

 Heat-loss rate,

2

( ) ( )( )

(5.74 W/m C)(2 m 1 m)(45 25) C .

s s sQ hA T T h WL T T= - = -

= ∞ ¥ - ∞ = 229 7 W (Ans.) (a)

 

Roof
Cover plate

2 m 1 m1 m

2 m
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(b) In this case, L = 3 m and x
o
 = 2 m.

5

6 2

(8/3.6)m/s 3 m
4.028 10

16.55 10 m /s
L crRe Re-

¥
= = ¥ <

¥

 Therefore, laminar boundary-layer conditions exist over the entire roof plate surface 

(idealized as a flat plate).

 For obtaining average convection coefficient of an isothermal plate with an unheated 

starting length, we have

2/3
3/4

1/2 1/3

2/3
3/4

5 1/2 1/3

2

1 0.664( )

0.02625 W/m C 2
1 0.664(4.028 10 ) (0.7268)

1 m 3

4.08 W/m °C

o
L

o

xk L
h Re Pr

L L L

È ˘Ê ˆÍ ˙= ¥ ¥ - ¥Á ˜Ë ¯Î ˚

È ˘∞ Ê ˆ= ¥ - ¥ ¥Í ˙Á ˜Ë ¯Î ˚

=

 Heat loss, ( )( )o sQ h L W T T= -

  
2(4.08 W/m C)(1 m 2 m)(45 25) C= ∞ ¥ - ∞ = 163 W (Ans.) (b)

Comment It is worth noting that with unheated starting length, the prior development of velocity 

boundary layer decreases h  resulting in reduced heat rate.

 A Maruti Swift is travelling at a steady speed of 108 km/h on a highway where the 

ambient air temperature is 18°C. The hood of the vehicle is at 42°C. The hood may be approximated as 

a 1.2 m square flat plate. Determine the rate of heat loss per kilometre. The following properties of air 

at the film temperature of 30°C are

C
p
 = 1.007 kJ/kg K, m = 18.72 ¥ 10–6 kg/m s, k = 0.025 88 W/m K

Solution

Known Car hood as a square flat plate. Surface and ambient temperature. Car speed and hood 

dimensions.

Find Heat dissipation rate per km.

Schematic

Air

V = 108 km/h

T = 18°C

Ts = 42°C

L = 1.2 m

W = 1.2 m
Car hood

Assumptions (1) Steady operating conditions. (2) Air is an ideal gas. (3) Constant properties.

Analysis Film temperature, 
1 1

( )
2 2

f sT T T= + = (42 + 18) = 30°C or 303.15 K
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 where 3

3

101.325 kPa 1 kJ
1.1646 kg/m

0.287 kJ/kgK 303.15 K 1 kPa m

L

VL
Re

P

RT

r

m

r

=

= = =
¥

 and 
3

3
6

6

km 10 m 1 h
108 30 m/s

h 1 km 3600 s

(1.1646 kg/m )(30 m/s)(1.2 m)
2.24 10

18.72 10 kg/ms
L

V

Re -

= =

= = ¥
¥

 Prandtl number, 
3 6(1.007 10 J/kgK)(18.72 10 kg/ms)

0.7284
0.02588 W/mK

pC
Pr

k

m -¥ ¥
= = =

 With 
5 8

0.8 1/3

5 10 10 and 0.6 60,

[0, 037 871]

LRe Pr

hL
Nu Re Pr

k

¥ £ £ < <

= - =

 Average convection heat-transfer coefficient is

0.8 1/3

6 0.8 1/3 2

(0.037 871)

0.02588 W/m K
[0.037(2.24 10 ) 871](0.7284) 69.45 W/m K

1.2 m

k k
h Nu Re Pr

L L
= = -

= ¥ ¥ - =

 Rate of heat loss per km,

2

3

( )( )

(69.45 W/m K)(1.2 m 1.2 m)(42 18) C 1 J/s 1 kJ

(108 km/h)(1 h/3600s) 1 W 10 J

sh WL T TQ

V V

-
=

¥ - ∞
=

= 80.0 kJ/km (Ans.)

 Air at 1 atm and 20°C is flowing over both sides of a flat plate at a free stream 

velocity of 3 m/s. The plate is 0.3 m square and is maintained at a uniform surface temperature of 60°C. 

Assuming cubic velocity and temperature profiles and the critical Reynolds number = 5 ¥ 105, determine 

the following quantities at the trailing edge of the plate: (a) Hydrodynamic boundary-layer thickness 

(b) Local skin-friction coefficient (c) Average skin-friction coefficient (d) Local shear stress (e) Thermal 

boundary-layer thickness (f) Local heat-transfer coefficient (g) Average heat-transfer coefficient (h) Rate 

of heat-transfer from the entire plate (i) Total drag force on the plate (j) Total mass flow rate entering 

the velocity boundary layer (k) Distance from the leading edge of the plate where transition from laminar 

to turbulent flow occurs.

Thermophysical properties of air at 1 atm and 40°C are

k = 0.02662 W/m K, C
p
 = 1.007 kJ/kg K, m = 0.06905 kg/m h
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Solution

Known Air-flow conditions on an isothermal flat plate.

Find (a) d (mm); (b) C
f,L

; (c) ,f LC ; (d) t(x = L) (N/m2); (e) d
1

(mm); (f) h
(x = L)

 (W/m2 K); 

(g) h  (W/m2 K); (h) (W)Q ; (i) F
D
(N); (j) m  (kg/s); (k) x

cr
 (m).

Schematic

Flat plate

[0.3 m 0.3m]

= 60°C

¥
Ts

Air

Leading edge L = 0.3 m
x = 0 x L=

Trailing edge
d( )L d L( )

x L= = 0.3 m
x

Velocity
boundary

layer

Thermal boundary
layer

Assumptions (1) Steady operating conditions exist. (2) Air is an ideal gas. (3) Re
cr
 = 5 ¥ 105. (4) Constant 

properties.

Analysis (a) Reynolds number, Re = 
u Lr

m

Film temperature, T
f
 = (T

s
 + T )/2 = (60 + 20)/2 = 40°C or 313.15 K

Density of air, 3

3

101.325 kPa 1 kJ
1.1274 kg/m

0.287 kJ/kgK 313.15 K 1 kPa m

P

RT
r = = =

¥

\
3

5(1.1274 kg/m )(3 m/s)(0.3 m) 3600 s
52 900 (< 5 10 )

0.069 05 kg/m h 1 h
crRe Re= = = ¥

Hence, the velocity boundary layer is laminar.

Boundary layer thickness at x = 0.3 m is given by

34.64 (4.64)(0.3 m) 10 mm
( )

1 m52 900

L
x L

Re
d = = = = 6.052 mm (Ans.) (a)

(b) Local skin-friction coefficient,

C
f(x = L)

 = 0.664(Re
(x = L)

)–1/2 = 0.664 [52 900]–0.5= 0.00289 (Ans.) (b)

(c) Average skin-friction coefficient,

, ,2 2 0.00289f L f LC C= = ¥ = 0.00578 (Ans.) (c)

(d) Local shear stress,

2 3 2 2 2
( ) ( 2

1 1 1 N
) (0.00289) 1.1274 kg/m 3 m /s

2 2 1 kgm/s
x L f x LC ut r

Ê ˆ= = ¥ ¥Á ˜Ë ¯

= 2
0.01465 N/m (Ans.) (d)

(e) Thermal boundary layer thickness, 
1/31.026

t
Pr

d
d =
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 Prandtl number,

\ 
2

1/3

(1007 J/kgK)(0.06905/3600)kg/ms 1 W 1 N 1 J
0.7256

0.02662 W/mK 1 J/s 1 Nm1 kgm/s

6.052 mm

1.026(0.7256)

p

t

C
Pr

k

m

d

= = =

= = 6.564 mm (Ans.) (e)

 (f) Local Nusselt number for laminar flow over a flat plate is

1/2 1/30.332 /x x xNu Re Pr h x K= =

 At x = L,

1/2 1/3 1/3
( )

0.02662 W/m K
0.332 0.332 52900 0.7256

0.3 m
x L L

k
h Re Pr

L
= = ¥ = ¥ ¥ ¥

= 6.09 W/m2 (Ans.) (f)

 (g) Average heat transfer coefficient,

( )2 2 6.09x Lh h == = ¥ = 2
12.18 W/m K (Ans.) (g)

 (h) Rate of heat transfer from both sides of the whole plate,

(2 )( )sQ h WL T T= -  = (12.18 W/m2K) (2 ¥ 0.3 m ¥ 0.3 m) (60 – 20)°C or K

= 87.68 W (Ans.) (h)

 (i) Total drag force on the plate,

2
,

1
2

2
D f LF C Aur= ¥ ¥  = (0.00578) (1.1274 kg/m3) (0.3 ¥ 0.3 m3) (3 m/s)2

= 0.0053 N (Ans.) (i)

 (j) Mass flow that enters the boundary layer from the free stream from x = 0 to x = 0.3 m is

3

0 0

2 4

3
0

3 1

2 2

3 1 3 1 5

2 2 2 4 8 84

y y
m udy u dy

y y
u u u

d d

d

r r
d d

r r d r d
d d

È ˘Ê ˆ= = -Í ˙Á ˜Ë ¯Î ˚

È ˘ È ˘= - = - =Í ˙ Í ˙Î ˚Î ˚

Ú Ú

\ Mass flow of air through the boundary layer, 

3 35
1.1274 kg/m 3 m/s 6.052 10 m

8
m

-= ¥ ¥ ¥ ¥ = 0.0128 kg/s (Ans.) (j)

 (k) Critical or transition Reynolds number,

\

5

5

3

5 10

(5 10 )(0.06905/3600) kg/ms

(1.1274 kg/m )(3 m/s)

cr
cr

cr

u x
Re

x

r

m
= = ¥

¥
= = 2.835 m (Ans.) (k)

 Hydrogen at 20°C and at a pressure of 1 atm is flowing along a flat plate at a 

velocity of 3 m/s. If the plate is 0.3 m wide and at 70°C, calculate the following quantities at x = 0.3 

m and at the distance corresponding to the transition point, i.e., Re
x
 = 5 ¥ 105.
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(a) Hydrodynamic boundary-layer thickness, in cm (b) Local friction coefficient (c) Average friction 

coefficient (d) Drag force in N (e) Thickness of thermal boundary layer in cm (f) Local convective heat-

transfer coefficient, in W/m2 °C (g) Average convective heat-transfer coefficient, in W/m2 °C, (h) Rate of 

heat-transfer, in W

Properties of hydrogen at 1 atm and mean film temperature of 45 °C are

r = 0.0772 kg/m3, k = 0.191 W/m °C, n = 122.5 ¥ 10–6 m2/s, Pr = 0.701

Solution

Known Hydrogen at atmospheric pressure flows along an isothermal flat plate under specified 

conditions.

Find (a) dx and d
x,c

 (cm), (b) C
f,x

 and 
,x cfC , (c) , , ,and

x xf f cC C , (d) F
D
(N)

,
(e)

,, and (cm),
x cT x Td d

(f) h
x
 and h

x,c
, (g) 2

,and (W/m C)x x ch h ∞ , (h) ,and (W)x cQ Q .

Schematic

d xT( )

d x( )

Ts = 70°C

x x= = 20.42 mc
x

L = 0.3 m

T = 20°C

V = 3 m/s

Hydrogen

Assumptions (1) Steady operating conditions. (2) The edge effects are negligible. (3) Critical Reynolds 

number Re
x,c

 = 5 ¥ 105. (4) Hydrogen is an ideal gas. (5) The local atmospheric pressure 

is 1 atm.

Analysis Critical (transitional) distance from the leading edge

5 6 2
, (5 10 )(122.5 10 m /s)

20.42 m
3 m/s

x c
c

Re
x

v

n -¥ ¥
= = =

(a) Hydrodynamic boundary layer thickness:

5.0 5.0 0.3 m
. .

7346
x

x

x

Re
d

¥
= = = 0 0175 m or 1 75 cm (Ans.) (a)

,
5

,

5.0 5 20.42 m
. or .

5 10

c
x c

x c

x

Re
d

¥
= = =

¥
0 144 m 14 4 cm (Ans.) (a)

(b) Local friction coefficient:

,

0.664 0.664

7346
f x

x

x
C

Re
= = = 0.00775 (Ans.) (b)

, ,
5

0.664

5 10
f x cC

-= = ¥
¥

4
9.39 10 (Ans.) (b)
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(c) Average friction coefficient:

, ,

1.328
2 2 0.00775f x f x

x

C C
Re

= = = ¥ = 0.0155 (Ans.) (c)

4
, ,

,

1.328
2 2 9.39 10

c cf x f x

x c

C C
Re

- -= = = ¥ ¥ = ¥ 3
1.878 10 (Ans.) (c)

(d) Drag force:

2 2
, ,

3 2

1 1
( )

2 2

1
(0.0155)(0.3 m 0.3 m) (0.0772 kg/m )(3 m/s)

2

D f x x f xF C A V C xW Vr r

-

= =

= ¥

= ¥ 4
4.846 10 N (Ans.) (d)

3

3 2

( 20.42 m) (1.878 10 )(20.42 m 0.3 m)

1
(0.0772 kg/m )(3 m/s)

2

.

D cF x
-= = ¥ ¥

¥

= 0 004 N

(Ans.) (d)

(e) Thermal boundary layer thickness:

1/3

1/3
1.75 cm(0.701)T

Pr

d
d -= = = 1.97 cm (Ans.) (e)

1/3
( ) 14.4 cm(0.701)

cT xd -= = 16.21 cm (Ans.) (e)

(f) Local heat-transfer coefficient:

1/2 1/3

1/2 1/3

0.332( ) ( )

0.191 W/m C
0.332(7346) (0.701)

0.3 m

x x x

k k
h Nu Re Pr

x x
= = ¥

∞
= ¥ = 2

16.1 W/m C∞ (Ans.) (f)

5 1/2 1/3
,

0.191 W/m C
0.332(5 10 ) (0.701) .

20.42 m
x ch

∞
= ¥ ¥ = 2

1 95 W/m C∞ (Ans.) (f)

(g) Average heat transfer coefficient:

2 2 16.1x xh h= = ¥ = 2
32.2 W/m C∞ (Ans.) (g)

, ,2 2 1.95x c x ch h= = ¥ = 2
3.90 W/m C∞ (Ans.) (g)

(h) Heat transfer rate:

2( )( ) (32.2 W/m C)(0.3 m 0.3 m)(70 20) Cx sQ h xW T T= - = ∞ ¥ - ∞

= 145 W (Ans.) (h)

2
( ) , ( )( ) (3.90 W/m C)(20.42 m 0.3 m)(70 20) C

cx x c c sQ h x W T T= - = ∞ ¥ - ∞

= 1195 W (Ans.) (h)
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 Computer chips generate heat during their operation, their failure rate increasing 

with increasing operating temperature. A square computer chip (20 mm ¥ 20 mm) is cooled by blowing 

air at local atmospheric pressure (the location is at an elevation of 1600 m above the mean sea level) 

and 20°C over the surface with a fan. The air approaches the chip with a velocity of 5 m/s. The chip 

construction is such that the electrical power dissipated in the chip results in a uniform heat flux over the 

chip surface. Any heat transfer from the chip’s bottom surface to the circuit board may be neglected. The 

maximum allowable chip surface temperature is 80°C. Determine the rate of heat dissipation permissible 

from the computer chip.

Solution

Known  Dimensions and maximum possible chip temperature. Air-flow conditions.

Find Maximum heat dissipation rate, [W]Q .

Ts(max) = 80°C

Schematic

Air

V = 5 m/s

T = 20°C Chip

&Q

L = 20 mm

W = 20 mm

Heat flux,
= const.qw

Assumptions (1) Steady-state conditions. (2) Critical Reynolds number, 

 Re
x,cr

 = 5 ¥ 105. (3) Radiation effects are negligible. (4) Heat transfer from the bottom 

surface is ignored. (5) Uniform heat flux.

Analysis Heat-transfer rate, ( )s s w sQ hA T T q A= - =

 Uniform heat flux, ( )[ ( ) ]w sq h x T x T= -

 Maximum surface temperature = Ts(x = L) and the corresponding heat-transfer coefficient, 

h(x = L) is minimum.

 Mean film temperature, T
f
 = (T

s(max)
 + T )/2 = (80 + 20)/2 = 50°C

 The properties of air at 1 atm and 50°C are:

k = 0.028 W/m K, Pr = 0.704, n = 18.2 ¥ 10–6 m2/s

 Except for n and a, all other properties of air like C
p
, m, k, and Pr are independent of 

pressure.

 The altitude (elevation) of the location, Z = 1600 m 

 Temperature of air at altitude Z is, T = T
0
 – LZ

 where L is the uniform temperature lapse rate,

 And, local atmospheric pressure at that height will be, P = P
0
(T/T

0
)g/RL

 where P
0
 = 101.325 kPa  T

0
 = 288.15 K  (Mean sea level conditions)

 With L = 6.5 K/km, R = 287 J/kg K and g = 9.81 m/s2

9.81 N/kg 1000 m 1 J
/ 5.26

287 J/kg K 6.5 K 1 Nm
g RL

¥
= =

¥
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 Temperature of air at Z = 1.6 km,

T = 288.15 – (6.5)(1.6) = 277.75 K

 Also, 

5.26
277.75 K

101.325 kPa 83.5 kPa
288.15 K

83.5 kPa 1atm
0.824 atm

101.325 kPa

P
Ê ˆ= =Á ˜Ë ¯

¥Ê ˆ= =Á ˜Ë ¯

 Note that and ( )
P

f P
RT

r r= = . Hence, 
1

P
n μ

 At 1 atm and 50°C, 
m

n
r

=  = 18.2 ¥ 10–6 m2/s

\ At 0.824 atm and 50°C: 
618.2

10
0.824

n -= ¥  = 22.08 ¥ 10–6 m2/s

 Reynolds number, 
6 2

(5 m/s)(0.02 m)

22.08 10 m /s
L

VL
Re

n -= =
¥

= 4528.5 (< 5 ¥ 105) fi The flow is laminar.

 As Pr > 0.6 and the flow is laminar, for uniform heat flux:

Nu
x
 = 0.453 (Re

x
)1/2 (Pr)1/3

\ Nu
L
 = L

h L

k
 = 0.453 (4.528.5)1/2 (0.704)1/3 = 27.12

 Hence, the heat-transfer coefficient at the tip of the chip,

20.028 W/mK
27.12 37.968 W/m K

0.02 m
L L

k
h Nu

L
= = ¥ =

 Maximum permissible rate of heat dissipation is

2 2
( )( ) (37.968 W/m K)(0.02 0.02 m )(80 – 20) C or KL s s LQ h A T T= - = ¥ ∞

= 0.911 W (Ans.)

 Several schemes have been proposed to supply arid (desert) regions with fresh water. 

One plan involves towing icebergs from the polar regions to dry regions that require fresh water. Consider 

an icebergs 1000 m long and 500 m wide, which is towed through 10°C water at a velocity of 1 km/h. 

The density of ice is 333.4 kJ/kg. Determine (a) the average rate at which the flat bottom of the iceberg 

will melt (in mm/h), (b) the amount of ice in million tonnes that will melt if the voyage is 5000 km long.

 Properties of water at 5°C are

r = 999.9 kg/m3, m = 1.519 ¥ 10–3 kg/m s, k = 0.571 W/m °C, Pr = 11.2

Ice: r = 917 kg/m3, h
sf
 = 333.4 kJ/kg

Solution

Known An iceberg of given dimensions is being towed through water.

Find (a) Rate of melting of ice (mm/h), (b) Mass of ice melted over a distance of 5000 km 

(million tones).
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Schematic

Water

T = 10°C
rice

3= 917 kg/m

Iceberg

hsf = 333.4 kJ/kg

Ts = 0°C

D

V = 1 km/h

L = 1000 m

b
=

50
0

m
Assumptions Heat transfer is essentially between the bottom surface of the iceberg and the surrounding 

water. 

Analysis Energy balance:

Heat transferred by forced convection from water to ice = Heat received by ice for its melting

i.e., ( ) ( ) ( )L s ice sf ice sf ice sf

d dD
h A T T m h AD h Ah

dt dt
r r- = = =

where D is the depth (thickness) of the iceberg and 
dD

dt
 is the rate of melting or recession 

rate

Hence,
ice

( )L s

sf

h T TdD

dt hr

-
= (A)

Reynolds number, 
3 3

3

(999.9 kg/m )(1 10 /3600 m/s)(1000 m)

1.519 10 kg/m s
L

VL
Re

r

m -

¥
= =

¥
= 182.85 ¥ 106 (> 108) fi Turbulent flow

The appropriate correlation is

LNu  = 0.037(Re
L
)0.8 (Pr)1/3 = 0.037 (182.85 ¥ 106)0.8 (11.2)1/3

= 337 ¥ 103 = Lh L

k
Average convective heat-transfer coefficient is

3
2337 10 0.571

192.42 W/m K
1000

LL

k
h Nu

L

¥ ¥
= = =

Substituting this value in Eq. (A), one gets

3 3

3 2

(192.42)(10 0) W K m 1 J 3600 s 10 mm
kg

kg J 1 Ws 1 h 1 m917 333.4 10 m K

dD

dt

È ˘- Ê ˆ= ¥ ¥ ¥ ¥ ¥Í ˙Á ˜Ë ¯¥ ¥ Î ˚
= 22.66 mm/h (Ans.) (a)

Amount of ice melted,

ice ice ice ice

3 3

10

3 6

Distance traversed
( )

Velocity

5000 km
917 kg/m 1000 m 500 m 22.66 10 m/h

1 km/h

1 tonne 1 million tonne
5.2 10 kg

10 kg 10 tonne

dD s
m m t m A

dt V
r

-

= D = ¥ = ¥

= ¥ ¥ ¥ ¥ ¥

Ê ˆ Ê ˆ= ¥ =Á ˜ Á ˜Ë ¯ Ë ¯
52 million tonnes (Ans.) (b)
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 A refrigeration truck is travelling at 90 km/h on a national highway in Rajasthan 

where the ambient temperature is 40°C. The refrigerated compartment of the truck can be considered 

to be a 3 m wide, 2 m high, and 6 m long rectangular box. The refrigeration system of the truck can 

provide 33.5 tons of refrigeration (1 ton of refrigeration = 211 kJ/min). Assume the air flow over the 

entire outer surface of the compartment to be turbulent and the heat-transfer coefficient to be same for all 

sides, determine the average outer surface temperature of the truck’s refrigerated compartment, neglecting 

radiation effects. The following property table may be used:

Temperature (°C) 20 °C 25 °C 30 °C 35 °C 40 °C

k(W/m °C) 0.025 14 0.025 51 0.025 88 0.026 25 0.026 62

n ¥ 106 (m2/s) 15.16 15.62 16.08 16.55 17.02

Pr 0.7309 0.7296 0.7282 0.7268 0.7255

If the truck has to pass through a desert region where the ambient air temperature is 50°C, by how much 

will the tonnage of the chiller increase for the same surface temperature?

Solution

Known Dimensions of the refrigerated rectangular compartment of a travelling truck. Ambient 

temperature and cooling capacity.

Find Average surface temperature of the compartment, T
s
(°C).

Schematic

Refrigerated compartment

Ts = ?

H = 2 m

W
= 3 m

L = 6 m

V = 90 km/h

u V= = 90 km/h

T = 40°C

Air

Assumptions (1) Steady operating conditions. (2) Constant properties. (3) Entire outer surface is turbulent. 

(4) Radiation effects are negligible.

Analysis Cooling load of the refrigerated compartment,

Q  = 33.5 TR (211/60) kW/1 TR = 117.8 kW

 Total surface area, A
s
 = 2[LH + LW +WH = 2[(6 ¥ 2) + (6 ¥ 3) + (3 +2)]m2 = 72 m2

 Neglecting radiation heat transfer, from energy balance:

 That is, 

Rate of heat extraction from Heat transferred from

the refrigerated compartment the air to the surface

( )s sQ hA T T

Ê ˆ Ê ˆ
=Á ˜ Á ˜Ë ¯ Ë ¯

= -

 where h is the average heat transfer coefficient.
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Hence, the heat flux is

3
2

2

117.8 10 W
( ) 1636 W/m

72 m
s s

s

Q
q h T T

A

¥
= - = = =

Average surface temperature,

1636
40s

s

q
T T

h h
= - = -

For forced convection heat transfer over a flat plate, if the boundary layer is turbulent, the 

appropriate correlation is

\

4/5 1/3

0.8 1/3

0.037( ) ( )

0.037 ( ) ( )

L L

L

hL
Nu Re Pr

k

k
h Re Pr

L

= =

=

Since h  is dependent on the properties of air to be evaluated at the film temperature, 

1
( )

2
f sT T T= +  but T

s
 is unknown, we have to go in for trial-and-error approach. Clearly, 

T
s
 has to be less than T  and looking at the cooling capacity of 33.5 TR, let

T
s
 = 10°C as a first guess.

Then
1 10 40

( ) 25 C
2 2

f sT T T
+

= + = = ∞

From the property table provided, at 25°C:

k = 0.025 51 W/m °C, Pr = 0.7296 and n = 15.62 ¥ 10–6 m2/s

Hence, 6

6 2

(90/3.6)m/s 6 m
9.6 10

15.62 10 m /s
L

u LVL
Re

v v -
¥

= = = = ¥
¥

\ 6 0.8 1/3 20.037 0.02551 W/m°C
(9.6 10 ) (0.7296) 54.6 W/m °C

6 m
h

¥
= ¥ =

Surface temperature,

T
s
 = 40 – (1636/54.6) = 10°C (Ans.)

As the assumed and calculated values of T
s
 are same, no more trial is warranted.

If T  and 
1

10 C, ( ) 30 C
2

s f sT T T T= ∞ = + = ∞ . Using the properties given in the table at 30°C,

0.8
1/3 2

6 2

0.025 88 W/m°C (90/3.6)m 6 m
0.037 (0.7282) 54 W/m °C

6 m 16.08 10 m /s
h -

¥Ê ˆ= ¥ =Á ˜Ë ¥ ¯

Cooling load, 2 254 W/m C 72 m (50 10) C 155.5Q = ∞ ¥ ¥ - ∞ =  kW = 44.22 TR

Percent increase in the tonnage of the chiller

44.22 33.5
100 %  

33.5

-
= ¥ = 32 (Ans.)
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 Consider two air streams in parallel flow over opposite surfaces of a thin, 2 m 

long flat plate. One air stream has a temperature of 180°C and a free stream velocity of 50 m/s while 

the other air stream has a temperature of 30°C and a free stream velocity of 5 m/s. Determine (a) the 

heat flux between the two air streams at the midpoint of the plate, and (b) the plate temperature.

Properties of atmospheric air:

T (°C) k (W/m °C) n (m2/s) Pr

180 0.036 46 32.12 ¥ 10–6 0.6992

30 0.025 88 16.08 ¥ 10–6 0.7282

Solution

Known Prescribed velocity and temperature on the opposite sides of a flat plate.

Find (a) Heat flux between the streams at midpoint of the plate. (b) Plate temperature.

Air

Air
Mid-point

Ts

x = 1 m
L = 2 m

T 1 = 180°C

u 1 = 50 m/s

T 2 = 30°C

u 2 = 5 m/s

T 1 Ts T 2

1/h1 1/h2

q

Assumptions (1) Air streams are at 1 atm. (2) Critical Reynolds number, Re
cr
 = 5 ¥ 105. (3) Axial 

conduction along the plate is negligible.

Analysis Let us first evaluate Reynolds number at midpoint (x = L/2).

 Stream 1:  1
1 6 2

1

50 m/s 1.0 m

32.12 10 m /s

u x
Re

n -
¥

= =
¥

  = 1.557 ¥ 106  (> 5 ¥ 106)   fi  Turbulent

 Stream 2:  2
2 6 2

2

5 m/s 1.0 m

16.08 10 m /s

u x
Re

n -
¥

= =
¥

 = 3.11 ¥ 105  (< 5 ¥ 105)  fi  Laminar

 Hence, at the midpoint stream 1 is turbulent and stream 2 is laminar. Using the appropriate 

empirical correlations, the local heat-transfer coefficients at the midpoint for the two cases 

are

1 1

1 1

4/5 1/3
1 , , 1

6 0.8 1/3 2

(0.0296)

0.03646 W/m C
(0.0296)(1.55 10 ) (0.6992) 86.13 W/m C

1 m

x x

k k
h Nu Re Pr

x x
= =

∞
= ¥ = ∞
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1/2 1/32 2
2 ,2 ,2 2

5 1/2 1/3 2

(0.332)

0.02588 W/m C
(0.332)(3.11 10 ) (0.7282) 4.31 W/m C

1 m

x x

k k
h Nu Re Pr

x x
= =

∞
= ¥ = ∞

 Referring to the thermal circuit, the heat flux at the midpoint of the plate is 

overall 1 2

2
total

1 2

(180 30) C
/

1 1 1 1 m C

86.13 4.31 W

T T T
q

R

h h

D - - ∞
= = = =

Ê ˆ Ê ˆ Ï ¸ ∞Ê ˆ Ê ˆ+ +Ì ˝Á ˜ Á ˜Á ˜ Á ˜ Ë ¯ Ë ¯Ë ¯ Ë ¯ Ó ˛

2
616 W m (Ans.) (a)

 We note that

 With 

2 2
1 1 2 2 1 2

1 1

2

1

( ) ( ) 1

4.31
0.05,

86.13

s s s

h h
q h T T h T T T T T

h h

h

h

Ê ˆ
= - = - fi + = +Á ˜Ë ¯

= =

 Plate temperature,

1 2

2

1

2

1

180 (0.05) (30)

1 0.05
1

s

h
T T

h
T

h

h

+ ◊
+ ¥

= = =
++

173 C∞ (Ans.) (b)

 A flat plate, 1.5 m wide and 2.5 m long, is to be maintained at 100°C in air with 

a free stream temperature of 20°C. Determine the velocity at which the air should flow over the flat plate 

so that the energy dissipation rate from the plate is 4.5 kW.

Properties of air at 60°C:

k = 28.08 ¥ 10–3 W/m K, Pr = 0.7202, n = 18.96 ¥ 10–3 m2/s

Solution

Known The top surface of a flat plate is to be cooled by forced air.

Find Air velocity, u  (m/s).

Schematic

Tw = 100°C

L = 2.5 m

T = 20°C

Air

W = 1.5 m

&Q = 4.5 kW

Assumptions (1) Steady-state conditions. (2) Constant air properties at the film temperature. (3) The

critical Reynolds number is 5 ¥ 105.
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Analysis The heat-dissipation rate is

( )s sQ hA T T= -

 Hence, the average heat-transfer coefficient is

3
2

2

4.5 10 W
15 W/m K

( ) ( )m ( )K[ 1.5 2.5 ][ ]100 20s s

Q
h

A T T

¥
= = =

- ¥ -

 Assuming the flow to be turbulent, 5 7(5 10 10 )LRe¥ £ £ , the average Nusselt number over 

the entire plate is determined to be

 or 

4/5 1/3

1/3 4/5

(0.037 871)

1
871

0.037

L L

L

hL
Nu Re Pr

k

hL
Pr Re

k

-

= = -

Ï ¸Ê ˆ
+ =Ì ˝Á ˜Ë ¯Ó ˛

 or 
2

4/5 1/3(15 W/m K)(2.5 m) 1
(0.7202) 871 63 807

0.02808 W/m K 0.037
LRe

-È ˘
= + =Í ˙

Î ˚

 or 6
,1.014 10L L crRe Re= ¥ >

 The assumption of turbulent flow is thus justified. Therefore, the free stream velocity is

6 6 2(1.014 10 )(18.96 10 m /s)/(2.5 m) .LRe
u

L

n -= = ¥ ¥ = 7 69 m/s  (Ans.)

 The crankcase of an automobile is approximately 0.6 m long, 0.2 m wide and 0.1 

m deep. Assuming that the surface temperature of the crankcase is 350 K, estimate the rate of heat flow 

from the crankcase to atmospheric air at 276 K at a road speed of 30 m/s. Assume that the vibration of 

the engine and the chassis induce the transition from laminar to turbulent flow so near to the leading 

edge that, for practical purposes, the boundary layer is turbulent over the entire surface. Neglect radiation 

and use for the front and rear surfaces the same average convective heat-transfer coefficient as for the 

bottom and sides. Properties of air at the mean film temperature of 313 K:

 r = 1.127 kg/m3, m = 19.18 ¥ 10–6 kg/ms, Pr = 0.7255, k = 0.02662 W/m K

Solution

Known Crankcase of an automobile loses heat by forced convection to atmospheric air.

Find Heat-loss rate, (W)Q .

Schematic

Ts = 350 K
W

= 0.2 m

L = 0.6 m
V = 30 m/s

Air

H = 0.1 m

P

T

u

= 1 atm

= 276 K

= 30 m/s

Automotive crankcase
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Assumptions (1) Steady operating conditions. (2) Constant air properties. (3) Radiation is neglected. (4) 

Flow is fully turbulent from the leading edge.

Analysis Reynolds number,

3
6

6

1.127 kg/m 30 m/s 0.6 m
1.058 10

19.18 10 kg/ms
L

u L
Re

r

m -
¥ ¥

= = = ¥
¥

 The average Nusselt number is

0.8 1/3 6 0.8 1/30.037 0.037(1.058 10 ) (0.7255) 2194L LNu Re Pr= = ¥ =

 and, the average convective heat transfer coefficient is

22194 0.02662 W/mK
97.3 W/m K

0.6 m
L

k
h Nu

L

¥
= = =

 The total surface area that dissipates heat is

2

2[( ) ( ) ( )]

2[(0.6 m 0.2 m) (0.6 m 0.1 m) (0.2 m 0.1 m)] 0.40 m

sA LW LH WH= + +

= ¥ + ¥ + ¥ =

 The rate of heat loss from the crankcase is

2 2( ) (97.3 W/m K)(0.40 m )(350 276)Ks sQ hA T T= - = - = 2880 W  (Ans.)

 The surface temperature of a thin flat plate located parallel to an air stream is 

90°C. The free stream velocity is 60 m/s and its temperature is 0°C. The plate is 60 cm wide and 45 

cm long in the direction of the air stream. Assume that the flow in the boundary layer changes abruptly 

from laminar to turbulent at a transition Reynolds number of 4 × 105. Neglecting the end effect of the 

plate, determine

(a) the average heat-transfer coefficient in the laminar and turbulent regions, (b) the rate of heat transfer 

for the entire plate, considering both sides, (c) the average friction coefficient in the laminar and turbulent 

regions, (d) the total drag force.

Properties of air at 1 atm and 45 °C are

k = 27.63 ¥ 10–3 W/m°C, n = 17.7 ¥ 10–6 m2/s, Pr = 0.704

Solution

Known Air flow over an isothermal flat plate under specified conditions.

Find (a) lam turb, ;h h  (b) Q ; (c) , lam ,turb,f fC C ; (d) F
D
.

Laminar Turbulent Ts = 90°C

L* = 0.332 mxc = 0.118 m

Rex c,
5= 4 10¥

T = 0°C

V = 60 m/s

Air
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Assumptions (1) Steady operating conditions. (2) Air is an ideal gas. (3) Constant properties. (4) End 

effects of the plate are negligible. (5) Transition Reynolds number, Re
c
 = 4 ¥ 105.

Analysis (a) Laminar boundary layer exists upto critical Re = 4 ¥ 105

54 10c
xc

Vx
Re

n
= = ¥

Distance from the leading edge up to which the flow will be laminar is determined to be

5 6 2(4 10 )(17.7 10 m /s)
0.118 m or 11.8 cm

60 m/s
cx

-¥ ¥
= =

Average heat-transfer coefficient in the laminar region is

1/2 1/3
lam ,

5 1/2 1/3

0.664 ( )

0.02763 W/m C
0.664 (4 10 ) (0.704)

0.118 m

x c
c c

k k
h Nu Re Pr

x x
= =

∞
= ¥ ¥ ¥

= 2
87.48 W/m C∞ (Ans.) (a)

Turbulent flow ranges between x = x
c
 = 0.118 m and x = L = 0.45 m. Average heat-transfer 

coefficient is 

where

*
turb turb*

0.8 1/3
turb

1
where –

0.0296

c

L

c

x

x x

h h dx L L x
L

k k
h Nu Re Pr

x x

= =

= =

Ú

\
0.8

1/3 0.2
turb *

0.8 0.8
1/3

*

0.8
1/3 0.8 0.8

*

0.8
1/3 0.8 0.8

6

1
0.0296

1
0.0296

0.8

0.037Pr [ ]

0.02763 60
0.037 0.704 [0.45 0.118 ]

0.332 17.7 10

c

c

L

x

L

x

c

V
h Pr k x dx

L

V x
Pr k

L

k V
L x

L

n

n

n

-

-

Ê ˆ= ¥ Á ˜Ë ¯

È ˘Ê ˆ= ¥ ¥ Í ˙Á ˜Ë ¯ Î ˚

Ê ˆ= -Á ˜Ë ¯

Ê ˆ= ¥ ¥ ¥ -Á ˜Ë ¥ ¯

Ú

= 159.26 W/m2 °C (Ans.) (a)

(b) Rate of heat transfer for the entire plate considering both sides is

lam turb lam lam turb turb( )( )

[{(87.48)(2 0.6 0.118)} {(159.26)(2 0.6 0.332)}](90 0)

sQ Q Q h A h A T T= + = + -

= ¥ ¥ + ¥ ¥ -
= 6825 W (Ans.) (b)

(c) Average friction coefficient, 
fC  in the laminar region (up to x

c
 = 0.118 m) is
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, lam 5 1/2
lam

1.328 1.328

(4 10 )
fC

Re

-= = = ¥
¥

3
2.1 10 (Ans.) (c)

0.2

0.2
,turb ,

0.2
0.8 0.8

6

3 0.8 0.8

1 1
0.0592

* *

0.0592 60 1
[ ]

0.332 0.817.7 10

8.814 10 (0.45 0.118 )

c c

L L

f f x

x x

c

V
C C dx x dx

L L

L x

n

-
-

-

-

- -

Ê ˆ= = ¥ Á ˜Ë ¯

Ê ˆ= ¥ ¥ -Á ˜Ë ¥ ¯

= ¥ - = ¥

Ú Ú

3
3.823 10 (Ans.) (c)

 (d) The force experienced by the plate is

 where 

2
,

3

1

2

101.325 kPa
1.11 kg/m

(0.287 kJ/kgK)(45 273.15)K

D f L sF C A V

P

RT

r

r

=

= = =
+

 For both sides of the plate,

2 2
,lam lam ,turb turb

2
,lam lam ,turb turb

2 3 3

1 1

2 2

1
[ ]

2

1
1.11 60 [{(2.1 10 )(2 0.6 0.118) (3.823 10 )(2 0.6 0.332)}]

2

D f f

f f

F C A V C A V

V C A C A

r r

r

- -

= +

= +

= ¥ ¥ ¥ ¥ ¥ + ¥ ¥ ¥

= 3.637 N (Ans.) (d)

 Consider the flow of air at T  = 24°C and P = 1 bar with a free stream velocity 

of V = 3 m/s along a flat plate of length L (equal to its width, W) with its surface held at a uniform 

temperature of 130°C. The drag force on the plate is measured experimentally to be 15.7 mN. Assuming 

laminar flow and using the Chilton Colburn analogy, calculate the rate of heat transfer from the plate 

to the air.

Properties of air at 1 bar and 77°C are:

r = 0.995 kg/m3, n = 20.92 ¥ 10–6 m2/s, Pr = 0.700, C
p
 = 1.009 kJ/kg°C

Solution

Known Temperature and velocity of free stream air flowing over a square flat plate. Plate 

temperature and drag force.

Find Heat-transfer rate.

Schematic

Air

Flat plate

L W=

P

T

V

= 1 bar

= 24°C

= 3 m/s
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Assumptions (1) Steady, incompressible flow. (2) Uniform plate surface temperature, (3) Pressure drag 

is negligible.

Analysis Drag force acting on the entire plate is, 
2

,
2

f LD s

V
F C A

r
=

 For laminar flow over the entire plate, the average friction coefficient or drag coefficient is

1/2
1/2

, 1.328 1.328D f L L

VL
C C Re

n

-
- Ê ˆ= = = Á ˜Ë ¯

 Also A
s
 = LW = L2 (since L = W)

 Therefore, 

1/2
2 21

1.328
2

DF L V
VL

n
r

Ê ˆ= ¥ ¥Á ˜Ë ¯

 or 

0.5
6

3/2 220.92 10
1.328 0.5 0.995 3 0.0157

3
L

-Ê ˆ¥
¥ ¥ ¥ ¥ =Á ˜Ë ¯

 Plate length is then, 

2/3

1/2
3

, 6 2

0.0157
1.0 m

0.0157

3 m/s 1 m
1.328 3.507 10

20.92 10 m /s
f L

L

C

-
-

-

Ê ˆ= =Á ˜Ë ¯

¥Ê ˆ= = ¥Á ˜Ë ¥ ¯

 Using the Chilton–Colburn analogy, 
,2/3

2

f LC
St Pr =

 where 
p p

Nu hL k h
St

Re Pr k VL C VC

m

r m r
= = =

 It follows that

3 3
, 2

2/3 2/3

0.995 3 1.009 10 3.507 10
6.7 W/m C

2 2 (0.7)

p f LVC C
h

Pr

r -¥ ¥ ¥ ¥ ¥
= = = ∞

¥

 Heat-transfer rate from the plate is

2( )( ) (6.7 W/m C)(1 m 1 m)(130 24) CsQ h LW T T= - = ∞ ¥ - ∞ = 710 W  (Ans.)

 Electronic components mounted on a circuit board dissipating 30 mW are cooled 

by atmospheric air at 27°C and 12 m/s. A chip of 4 mm length and 4 mm width is located 12.5 cm from 

the leading edge. Estimate the chip surface temperature. The appropriate correlation for this situation 

is, x xNu Re Pr0.85 0.333
0.04=

Properties of air at 35°C: k = 0.0269 W/m °C, n = 16.7 ¥ 10–6, Pr = 0.706

Solution

Known A chip dissipating heat is cooled by forced air flowing over it.

Find Surface temperature, T
s
.
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Schematic

Air

T = 27°C

u = 12 m/s

Dx = 4 mm Board

Chip ( = 4 mm 4mm)As ¥

xo = 12.5 cm

Assumptions (1) Heat is transferred from the upper surface of the chip. (2) Constant air properties. (3) 

Average convection coefficient over the chip length equals the local value at the centre 

position.

Analysis Heat-transfer rate by forced convection from the chip’s top surface to the ambient air is

chip

chip chip
chip

( )s s s
s

Q
Q h A T T T T

h A
= - fi = +

 Using the given correlation,

x x

u x
Nu Re Pr Pr

0.85
0.85 0.333 0.3330.04 0.04 ( )

n

È ˘= = Í ˙Î ˚
 Average convection coefficient

\
0.85

0.333

6 2

2

12 m/s 0.125 m 0.0269 W/m C
0.04 (0.706)

0.125 m16.7 10 m /s

124.4 W/m °C

ox x
o

k
h h Nu

x -
∞È ˘= = = ¥Í ˙¥Î ˚

=
\ Surface temperature,

3

2 2

30 10 W
27 C

(0.004 m) (124.4 W/m °C)
sT

-¥
= ∞ + = 42 C∞ (Ans.)

Comment T
f

= (42 + 27)/2 = 34.5 °C. Properties given were at 35°C. Hence OK.

 A 0.6 m ¥ 0.6 m electrically heated plate with the heater rating of 1 kW is placed 

in an air stream at 1 atm 27°C with a free stream velocity of 5 m/s. Calculate (a) the average temperature 

difference along the plate, (b) the average convection heat-transfer coefficient, and (c) the temperature 

of the plate at the trailing edge.

Solution

Known Flat plate with constant heat flux exposed to flowing air stream.

Find (a) sT T- ; (b) h ; (c) T
s,L

Schematic

Air

P

T

u

= 1 atm

= 27°C

= 5 m/s Flat plate ( = 0.6 m)W

x
x L= = 0.6 m
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Assumptions (1) Steady operating conditions. (2) Constant properties. (3) Air is an ideal gas.

Analysis In this case, the plate is subjected to constant heat flux, 

3 21000 W
/ 2.78 10 W/m

0.6 m 0.6 m
s sq Q A= = = ¥

¥

Since the plate temperature is not known, we cannot evaluate the air properties at the film 

temperature
1

( )
2

f sT T T
È ˘= +Í ˙Î ˚

.

Hence, initial calculations will be based on the free stream air temperature, of 27°C or 300 K.

At 300 K, k = 0.0263 W/m °C, n = 15.89 ¥ 10–6 m2/s, Pr = 0.707

Reynolds number, 

5 5

6 2

(5 m/s)(0.6 m)
1.888 10 ( 5 10 ) Laminar flow

15.89 10 m /s
L

u L
Re

n -
= = = ¥ < ¥ fi

¥
The average temperature difference is

1/2 1/3

3 2

5 1/2 1/3

/

0.6795

[(2.78 10 W/m )(0.6 m)/0.0263 W/m C]
240.9 C

0.6795(1.888 10 ) (0.707)

s
s

L

q L k
T T

Re Pr
- =

¥ ∞
= = ∞

¥
or T

s
 = 240.9 + 27 = 267.9°C

Film temperature, 
267.9 27

147.45 C 420 K
2 2

s
f

T T
T

+ +
= = = ∞ ª

Properties at 420 K:

k = 0.0352 W/m °C, n = 28.85 ¥ 10–6 m2/s, Pr = 0.688

5

6

3

5 1/2 1/3

(0.6)(5)
1.04 10

28.85 10

(2.78 10 )(0.6)/0.0352
244.5 C

0.6795(1.04 10 ) (0.688)

L

s

Re

T T

-
= = ¥

¥

¥
- = = ∞

¥

For laminar flow over a flat plate subjected to constant heat flux,

244.5 27 27
149 C 422 K

2
fT

+ +
= = ∞ ª

Properties of air at 422 K are

k = 0.0354 W/m °C, n = 29 ¥ 10–6 m2/s, Pr = 0.688

6

6

3

5 1/2 1/3

0.6 5
1.035 10

29 10

(2.78 10 0.6/0.0354)
244 C

0.6795(1.035 10 ) (0.688)

L

s

Re

T T

-
¥

= = ¥
¥

¥ ¥
- = = ∞

¥
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 Since this value is not much different from 244.5°C, we have 

 Average temperature difference along the plate 

sT T- = 244°C (Ans.) (a)

 Local heat-transfer coefficient at x = L is

1/2 1/3

6 1/2 1/3 2

0.453( ) ( )

0.453(1.035 10 ) (0.688) (0.0354 W/m C)/0.6 m 7.59 W/m C

x L LL

k k
h Nu Re Pr

L L
= = =

= ¥ ∞ = ∞

 Average convection heat-transfer coefficient is

22 2 7.59 W/m Cx Lh h == = ¥ ∞ = 2
15.18 W/m C∞ (Ans.) (b)

 Temperature of the plate at the trailing edge is

3 2

, 2

2.78 10 W/m
27 C

7.59 W/m C

s s
s L

L x L

q L q
T T T

Nu k h =

Ê ˆ¥
= + = + = ∞ + =Á ˜Ë ∞ ¯

393 C∞ (Ans.) (c)

 Air at atmospheric pressure and a temperature of 225°C flows over a flat plate 

with a velocity of 6 m/s. The plate is 15 cm wide and is maintained at a temperature of 75°C. Calculate 

(a) the thickness of the velocity, (b) thermal boundary layers, and (c) the local heat-transfer coefficient 

at a distance of 0.5 m from the leading edge. (d) Also calculate the drag force exerted on the plate, and 

(e) the rate of heat transfer to the plate over a length of 0.5 m. Assume that the flow is over both sides 

of the plate. Assume cubic velocity and temperature profile and the integral method of analysis.

Properties of air at 1 atm and 150°C:

k = 0.03541 W/m K, n = 29.16 ¥ 10–6 m2/s, Pr = 0.688, r = 0.8346 kg/m3

Solution

Known Plate dimensions and temperature. Velocity and temperature of air flowing over the plate.

Find (a) d ; (b) d
T
 ; (c) h

(x = 0.5 m)
; (d) F

D
 ; (e) Q ;

Flat plate

T A xs s= 75°C, = W

Schematic

Air

P = 1 atm

T = 225°C

u = 6 m/s

x = 0.5 m

W = 0.15 m

Assumptions (1) Air is an ideal gas. (2) Uniform plate-surface temperature. (3) Constant air properties. 

(4) Radiation heat transfer is not considered. (5) Critical Reynolds number is, Re
cr
 = 5 ¥

105. (6) Cubic velocity profile, 

3
3 1

2 2

u y y

u d d

Ê ˆ Ê ˆ= -Á ˜ Á ˜Ë ¯ Ë ¯ , and integral approximation method.
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Analysis Reynolds number at x = 0.0.5 m is

5 5

6 2

6 m/s 0.5 m
1.029 10 ( 5 10 )

29.16 10 m /s
x

u x
Re

n -
¥

= = = ¥ < ¥
¥

\ Laminar boundary layer exists.

(a) Velocity boundary-layer thickness,

3

1/2 5 1/2

4.64 4.64 0.5 m
7.23 10 m .

( ) (1.029 10 )x

x

Re
d -¥

= = = ¥ =
¥

7 23 mm  (Ans.) (a)

(b) Thermal boundary-layer thickness,

3

1/3 1/3

7.23 mm
7.98 10 m .

1.026 1.026 0.688
T

Pr

d
d -= = = ¥ =

¥
7 98 mm (Ans.) (b)

(c) Local heat-transfer coefficient,

3

3 3 0.03541 W/mK
. /

2 2 7.98 10 m
x

T

k
h

d -
¥

= = =
¥ ¥

2
6 656 W m K (Ans.) (c)

 Average heat-transfer coefficient,

h  = 2h
x
 = 2 ¥ 6.656 = 13.312 W/m2 K 

(d) Average skin friction coefficient,

1/2
, 1.292f L LC Re

-=  = (1.292) (1.029 ¥ 105)–1/2 = 0.004

 Drag force exerted on both top and bottom surfaces of the plate, 

\ 2
,

3 2 2 2

2

1
2

2

1 1 N
2 0.8346 kg/m 0.15 m 0.5 m 6 m /s 0.004

2 1 kg m/s

D s f LF A u Cr
Ê ˆ= Á ˜Ë ¯

= ¥ ¥ ¥ ¥ ¥ ¥

= 0.009 N (Ans.) (d)

(e) Rate of heat transfer to the plate 

(2 )( )s sQ h A T T= -  = (13.312 W/m2 K) (2 ¥ 0.5 m ¥ 0.15 m) (225 – 75) °C or K

= 299.5 W (Ans.) (e)

 A 2 m ¥ 2 m steel plate of 5 mm thickness at 470°C is being cooled by blowing 

air at 30°C and a velocity of 10 m/s over both its surfaces. Find the time required to cool the plate 

to 270°C. Neglect temperature gradients in the plate and heat transfer by radiation. Assume average 

properties of steel as: r = 7800 kg/m3, C
p
 = 460 J/kg °C.

Properties of air at 200°C are: k = 38.87 ¥ 10–3 W/m K, n = 35.35 ¥ 10–6 m2/s, Pr = 0.685

Solution

Known Cooling of plate under forced convection conditions.

Find Time required to cool the plate.
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Assumptions (1) Lumped capacitance method is valid and internal temperature gradients are neglected. 

(2) Negligible radiation effects. (3) Constant properties.

Analysis Mean temperature at which properties of air are to be evaluated is, 
2

s
f

T T
T

+
=

where T  is the ambient air temperature = 30°C

sT  is the average surface temperature of plate 

1 1
[ (0) ( )] (470 270) C 370 C

2 2
T T t= + = + ∞ = ∞

\ Film temperature, 
1

2
fT = (370 + 30)°C = 200°C

The properties of air at this temperature are given in the problem statement.

To determine the convection coefficient, h, let us first determine the Reynolds number to 

find whether the air flow is laminar or turbulent.

Reynolds number,

5

6 2

(10 m/s)(2 m)
5.658 10

35.35 10 m /s
L

VL
Re

n -= = = ¥
¥

(> 5 ¥ 105) fi Turbulent flow

The appropriate correlation for forced convection (external turbulent flow) is

4/5 1/3(0.037 871)L L

h L
Nu Re Pr

k
= = -

for the range 5 ¥ 105 < Re
L
 < 108

Substituting the proper numerical values, we have 

4/5 1/3

3
5 0.8 1/3 2

(0.037 871)

38.87 10 W/m K
{0.037(5.658 10 ) 871}(0.685) 10.44 W/m K

2 m

L

k k
h Nu Re Pr

L L
-

= = -

¥
= ¥ - =

Neglecting temperature gradients in the plate, we have

Heat loss rate from both sides of the plate = Rate of decrease of stored (internal) energy

\ out
–or ( ) Vst p s p

dT dT
Q E mC h A T T C

dt dt
r= - = - - = -

As d (T – T ) = dT, one can write
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\
0

( )

–V

ln
–V

i

T T t t

s

pT T t

s

i p

hAd T T
dt

T T C

hAT T
t

T T C

r

r

= =

= =

--
=

-

-
= -

-

Ú Ú

 Time required is

p i

s

C T T
t

hA T T

3

2

–V
ln

(7800 kg/m )(460 J/kg C)(2 m 2 m 0.005 m) (470 30) C
ln

(270 30) C(10.44 W/m K)(2 2 m 2 m)

r -
=

-

∞ ¥ ¥ - ∞
= ¥

- ∞¥ ¥
= 521 s (Ans.)

Comment Many a time, one is inclined to use the correlation Nu = 0.037 Re4/5 Pr1/3 if Re exceeds 

Re
cr
 = 5 ¥ 105. But there are constraints we need to pay heed to. If Re > 108, then only it 

is appropriate to use the above correlation meant for fully turbulent conditions. If we had 

used this correlation,

5 1/30.03887
0.037(5.658 10 )(0.686)

2
h = ¥ ¥

= 25.36 W/m2 K as against 10.44 W/m2 K

 Also, the time required,

–V 10.44 440
ln 859.4 ln as against

25.36 240

p i

s

C T T
t

hA T T

r - Ê ˆ= = ¥ =Á ˜Ë ¯-
214 s 521 s

 Air at 27°C is blown over a 8 m long, 1.25 m wide flat plate with a fan at a 

velocity of 12 m/s. Air flows parallel to the 8 m long side. The average temperature of the plate is not 

to exceed 227°C. The location is at an elevation of 2400 m where the atmospheric pressure is 75.6 

kPa. Determine (a) the rate of heat transfer between the plate and the air considering both laminar 

and turbulent boundary layers, (b) the percentage error involved if the boundary layer is assumed to 

be turbulent right from the leading edge of the plate. (c) If the air flows parallel to the 1.25 m side, 

find the rate of heat loss. Assume the heat transfer from the back side of the plate to be negligible and 

disregard radiation. 

Thermophysical properties of air at 1 atm, and 127°C: 

k = 33.8 ¥ 10–3 W/m K, n = 26.41 ¥ 10–6 m2/s, Pr = 0.690

Solution

Known  The top surface of a flat plate is cooled by forced air at a specified altitude. 

Find Heat-transfer rate, Q : (a) Combining laminar and turbulent flow, (b) Considering only 

turbulent flow, (c) Flow parallel to 1.25 m side.
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Schematic

Air

Air

Ts = 227°CTop surface of the flat plate

P = 75.6 kPA

u = 12 m/s

T = 27°C

L = 8 m

W = 1.25 m

&Q = 32.20 kW

(a) Flow along the longer side

u = 12 m/s

T = 27°C
&Q = 20.66 kW

1.25 m

8 m

(b) Flow along the shorter side

Assumptions (1) Steady operating conditions prevail. (2) The critical Reynolds number is 5 ¥ 105. (3) 

Radiation effects are disregarded. (4) Air is an ideal gas.

Analysis (a) Note that n is inversely proportional to density and thus to pressure for an ideal gas.

\

6 2
@1atm

6 2
@1atm 6 2

@0.746atm

and

26.41 10 m /s

1 atm
75.6 kPa 0.746 atm

101.325 kPa

1 atm 26.41 10 m /s
35.4 10 m /s

0.746 atm 0.746

P

RT

P

m
n r

r

n

n
u

-

-
-

= =

= ¥

= ¥ =

¥ ¥
= = = ¥

Reynolds number,

6
2.712 10

5 8

6 2

(12 m/s)(8 m)
( 5 10 and 10 )

35.4 10 m /s
L

u L
Re

n -
= = = ¥ > ¥ <

¥

Average Nusselt number for the entire plate, considering both laminar and turbulent flows,

is determined to be

0.8 1/3 6 0.8 1/3(0.037 871) [0.037(2.712 10 ) 871](0.690)

3812.8

L L

hL
Nu Re Pr

k
= = - = ¥ -

=
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Then
333.8 10 W/mK

8 m
L

k
h Nu

L

-¥
= = (3812.8) = 16.1 W/m2 K

Area of top surface of plate, A
s
 = WL = 1.25 m ¥ 8 m = 10 m2

Rate of heat transfer,

2 2( ) (16.1 W/m K)(10 m )(227 – 27) C or Ks sQ hA T T= - = ∞

= ¥ 3
32.2 10 W or 32.2 kW (Ans.) (a)

(b) Disregarding the laminar region and assuming turbulent flow over the entire plate,

0.8 1/30.037
hL

Nu Re Pr
k

= =

\ Average heat-transfer coefficient is

2
m

4/5 1/3 6 0.8 1/30.0338 W/m K
0.037 (0.037)(2.712 10 ) (0.69)

8 m

19.36 W/ K

k
h Re Pr

L
= = ¥

=

Heat-transfer rate is

( )s sQ hA T T= -  = (19.36 W/m2 K) (10 m2) (227 – 27)°C or K

= 38.72 ¥ 103 W or 38.72 kW

Percentage error involved

38.72 32.2
100

32.2

-
= ¥ = 20.2% (Ans.) (b)

(c) When air flow takes place along the 1.25 m side, L = 1.25 m, the Reynolds number 

at the end of the plate is

5
4.237 10

5

6 2

(12 m/s)(1.25 m)
( 5 10 )

35.4 10 m /s
L

u L
Re

n -= = = ¥ < ¥
¥

Hence, the flow is laminar over the entire length of the plate. The average Nusselt number 

is given by the following correlation.

1/2 1/30.664
hL

Nu Re Pr
k

= =

\ Average heat-transfer coefficient is

2
m

5 0.5 1/30.0338 W/m K
0.664 (4.237 10 ) (0.69) 10.33 W/ K

1.25 m
h = ¥ ¥ ¥ =

Heat-loss rate is

Ê ˆ= - = ∞ Á ˜Ë ¯

=

2 2

3

1 kW
( ) (10.33 W/m K)(10 m )(227 – 27) C or K

10 W
s sQ hA T T

20.66 kW

This is considerably less than that determined in Case (a). (Ans.) (c)
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 Engine oil at 20°C is forced over a 10 cm square plate at a velocity of 10 m/s. 

The plate is heated to a uniform temperature of 100°C. Calculate (a) the drag force, and (b) the heat 

lost by the plate.

Properties of engine oil at the film temperature of 60°C are

k = 0.1404 W/m°C, Pr = 1080, n = 8.5656 ¥ 10–5 m2/s, r = 863.9 kg/m3

Solution

Known Engine oil flows across a square plate with a specified velocity.

Find (a) Drag force, F
D
 (N), (b) Heat lost, (W)Q .

Plate ( = 10 cm)W

x

L = 10 cm

u = 10 m/s

Engine oil

Assumptions (1) Steady operating conditions exist. (2) The critical Reynolds number, Re
cr
 = 5 ¥ 105.

Analysis Reynolds number at the end of the plate at x = L = 0.10 m is

5 2

(10 m/s)(0.10 m)

8.565 10 m /s
x

u x
Re

n
= =

¥
= 11 675 (<5 ¥ 105) fi Laminar flow

(a) Drag coefficient,

1/2 1/21.328 1.328(11675) 0.0123D LC Re
- -= = =

 Surface area, 20.1 m 0.1 m 0.01 msA WL= = ¥ =
 Drag force,

2 3 2 21 1
0.0123 863.9 kg/m 0.01 m (10 m/s)

2 2

.

D D sF C A ur= = ¥ ¥ ¥ ¥

= 5 31 N  (Ans.) (a)

(b) Using Churchill–Ozoe correlation for laminar flow with Pe
x

≥ 100 and applicable for 

all Prandtl numbers, the local Nusselt number is

1/2 1/3 1/2 1/3

2/3 1/4 2/3 1/4

0.3387 0.3387(11675) (1080)
375.37

[1 (0.0468/ ) ] [1 (0.0468/1080) ]

x
x

Re Pr
Nu

Pr
= = =

+ +

 Local heat-transfer coefficient at x = L = 0.10 m is 

20.1404 W/m°C
375.37 527 W/m °C

0.10 m
x x

k
h Nu

x
= = ¥ =

 Average heat-transfer coefficient,

22 1054 W/m °Cxh h= =
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 Rate of heat loss from one side of the plate is

2 2( ) (1054 W/m °C)(0.01 m )(100 20) C

.

s sQ hA T T= - = - ∞

= 843 3 W  (Ans.) (b)

(B) Cylinder In Cross Flow

 A copper tube of 20 mm outside diameter is losing heat at a rate of 90 W/m of 

its length due to convection alone to a stream of air flowing across it. If the surface temperature is 90°C 

and the air temperature is 30°C, determine the velocity of air. Properties of air at 60°C:

k = 28.08 ¥ 10–3 W/m K, n = 18.96 ¥ 10–6 m2/s, Pr = 0.7202

Solution

Known  Air flows across a copper tube under 

specified conditions.

Find Velocity of air, u  (m/s).

Assumptions (1) Steady-state conditions. (2) Air is 

an ideal gas with constant properties. 

(3) Constant temperature around the 

boundary.

Analysis With a heat loss rate of 90 W/m and 

tube diameter, D = 20 mm = 0.02 m, 

it follows that

 Heat flux, q = 
90 W

0.02 m 1 m

Q

DLp p
=

¥ ¥
= 1432.4 W/m2

 Convective heat-transfer coefficient,

2
21432.4 W/m

23.87 W/m K
(90 30) C or Ks

q
h

T T
= = =

- - ∞

 Film temperature

90 30
60 C

2 2

s
f

T T
T

+ +
= = = ∞

 Using the specified properties of air at this temperature, we have 

 Nusselt number,

223.87 W/m K 0.02 m
17.0

0.02808 W/mK

hD
Nu

k

¥
= = =

 Let us assume that Reynolds number lies between 40 and 4000

 The appropriate correlation for this range is

Nu = C Rem Pr1/3 where C = 0.683, m = 0.466 [for 40 < Re < 4000]

 Then 17.0 = 0.683 (Re)0.466 (0.7202)1/3

\ Reynolds number,

Re = (27.768)1/0.466 = 1252

W
ate

r Ts
= 80°C

T
u

= 20°C

= 1.5 m/s

D
= 25 mm

L = 1 m



524 Heat and Mass Transfer

 As the calculated value of Re falls in the range 40 to 4000, our initial guess was OK.

 Hence, Re = 1252 = 
u D

n

 Velocity of air is then determined to be,

6 21252
18.96 10 m /s

0.02 m

Re
u

D

n -= = ¥ ¥ = 1.19 m/s (Ans.)

 A steel wire, 2 mm in diameter, is being cooled from 200°C to 100°C by passing it 

through a 2 m wide air stream at 1 bar and 30°C. The velocity of air is 50 m/s in a direction perpendicular 

to the wire. Determine the velocity of wire for this purpose. For steel, use: Density (r) = 8000 kg/m3;

Specific heat (C
p
) = 0.5 kJ/kg K; Thermal conductivity (k) = 50 W/m K.

 Properties of steel:

  r
s
 = 8000 kg/m3, C

ps
 = 500 J/kg K, k

s
 = 50 W/m K

 Properties of air at 90°C:

  n
a
 = 22.35 ¥ 10–6 m2/s, k

a
 = 0.031 W/m K, Pr

a
 = 0.697

Solution

Known A steel wire is cooled by passing through an air stream perpendicular to it.

Find Velocity of wire, V
w
 (m/s).

Assumptions (1) The situation is crossflow over a cylinder. (2) Internal temperature gradients across the 

cross section of the wire can be neglected. Hence there is uniform temperature at any cross 

section. (3) Negligible axial conduction.

Analysis Mean wire temperature, 
200 100

150 C
2

sT
+

= = ∞

\ Mean film temperature, 
1

( )/2
2

s aT T+ = (150 + 30) = 90°C

 Reynolds number,

6 2

50 m/s 0.002 m
4474.3

22.35 10 m /s

a w

a

V D
Re

n -
¥

= = =
¥
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The appropriate correlation is

4/5
5/81/2 1/3

1/4
2/3

4/5
5/81/2 1/3

1/4
2/3

0.62
0.3 1

282000
0.4

1

0.62(4474.3) (0.697) 4474.3
0.3 1 34.47

282000
0.4

1
0.697

Re Pr Re
Nu

Pr

È ˘Ê ˆ= + +Í ˙Á ˜Ë ¯Î ˚Ï ¸Ê ˆÌ ˝+ Á ˜Ë ¯Ó ˛

È ˘Ê ˆ= + + =Í ˙Á ˜Ë ¯Î ˚Ï ¸Ê ˆÌ ˝+ Á ˜Ë ¯Ó ˛
Convection heat-transfer coefficient is

2
m

0.031 W/mK
34.47 534.3 W/ K

0.002 m

a

w

Nu k
h

D

◊
= = ¥ =

Now applying energy balance to an elemental control volume in the moving wire, one gets

0 0

in out gen outst stE E E E E E- + = fi = -

As the wire is getting cooled when exposed to the cold air stream, heat is transferred out, 

resulting in a decrease in the rate of thermal energy storage. Therefore,

where

out,conv

2

4

ww p

w w c w w w w

Q m C dT

m A V D V
p

r r

= -

= =

and

w

s a w a

w
w w p w a

Q hA T T h D dx T T

D
V C dT h D dx T T

conv,out

2

( ) ( )( )

( )( )
4

p

p
r p

= - = -

- ◊ = ◊ ◊ -or

or
2

1

1

2

4 4
or ln

w w

T

a
w w

a w p w a w p wT o

T TdT h h
V dx V

T T C D T T C Dr r

-
- = ◊ =

- -Ú Ú
l

l

Velocity of wire, 
1

2

2

3

4

( )
ln

( )

4 534.3 W/m K 2.0 m

8000 kg/m 500 J/kgK 0.002 m ln{(200 30 C/100 30)} C

w

w
a

w p w
a

h
V

T T
C D

T T
r

=
-
-

¥ ¥
=

¥ ¥ ¥ - ∞ - ∞

l

= 0.60 m/s (Ans.)

Check: For wire, the Biot number is

2534 W/m K 0.002 m
0.021 0

50 W/mK

w

w

hD
Bi

k

¥
= = = ª

\ Assumption (2) is justified.

Also, V
w
 << V

a

\ Assumption (1) is justified.
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 A copper busbar of 20 mm diameter used for electrical transmission is cooled by 

air at 1 bar and 27°C flowing past it in crossflow with a free stream velocity of 2 m/s. The maximum 

allowable busbar surface temperature is 77°C. Determine the heat-transfer coefficient and the permissible 

current the busbar can carry if the electrical resistivity of copper is 0.0175 micro ohm per metre length. 

Use the following correlation for flow across a single cylinder:

s

hD
Nu Re Re Pr

k

1/ 4

1/ 2 2/ 3 0.4
[0.4 0.06 ]

m
= = +

m

È ˘
Í ˙
Î ˚

Thermophysical properties of air at 1 atm:

At T  = 27°C: k = 0.0263 W/m K, n = 15.89 ¥ 10–7 kg/m s, m = 184.6 ¥ 10–7 kg/m s, Pr = 0.707

At T
s
 = 77°C: m

s
 = 208.2 ¥ 10–7 kg/m s

Solution

Known Circular busbar in cross flow of air at specified velocity.

Find Convection coefficient, h (W/m2 K); 

Schematic

D
= 0.02 m

Air

P

T

V

= 1 bar

= 27°C

= 2 m/s

Copper busbar) = 0.0175 -m)r ue W
Ts = 77°C

Assumptions (1) Steady-state conditions. (2) Constant properties. (3) Air is an ideal gas. (4) Radiation 

is not considered.

Analysis Reynolds number,

6 2

7

7

(2 m/s)(0.02 m)
2517.3

15.89 10 m /s

184 10
( / ) 0.8866

208.2 10
s

VD
Re

n

m m

-

-

-

= = =
¥

¥
= =

¥
 Nusselt number,

0.250.5 2/3 0.4[0.4(2517.3) 0.06(2517.3) ](0.707) (0.8866) 26.33Nu = + =

 Therefore, the heat transfer coefficient is

0.0263 W/mK
26.33

0.02 m

k
h Nu

D
= = ¥ = 2

34.6 W/m K (Ans.)

 Rate of heat transfer to air is

2

( ) ( )( )

(34.6 W/m K)( 0.02 1 m)(77 27)K 108.7 W

s s sQ hA T T h DL T Tp

p

= - = -

= ¥ ¥ - =
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 The heat dissipation equals the rate of heat generation, i.e.,

2 2 2
gen 2

4
e

c

L L
Q E I R I I

A D
r r

p

¥
= = = =

 Maximum permissible current carried by the busbar is

1/2
2 2

6

108.7 0.02

4 4 0.0175 10 1

Q D
I

L

p p

r -

È ˘◊ ¥ ¥
= = =Í ˙

¥ ¥ ¥Î ˚
1397 A (Ans.)

C: Spheres

 Air at 1 atm and 30°C blows across a 15 mm diameter sphere at a free stream 

velocity of 5 m/s. A small heater inside the sphere maintains the surface temperature at 80°C. Compute 

the rate of heat lost by the sphere.

Solution

Known A sphere exposed to forced air loses 

heat.

Find Heat loss rate, (W)Q .

Assumptions (1) Steady-state conditions. (2) Radiation 

effects are negligible. (3) Air is an ideal 

gas.

Properties The relevant properties of air are

m
s
 = m

@80°C
 = 2.096 ¥ 10–5 kg / m s

 At T  = 30°C and 1 atm:

m  = 1.872 ¥ 10–5 kg/ms Pr = 0.7282

k = 0.02588 W/m °C r = 1.164 kg/m3

Analysis The appropriate empirical correlation is

1/4
1/2 2/3 0.4

sph 2 {0.4 0.06 }
s

hD
Nu Re Re Pr

k

m

m

Ê ˆ= = + + Á ˜Ë ¯

 Note that in this case, the fluid properties are evaluated at the free stream temperature T ,

except for m
s
 which is evaluated at the surface temperature.

 The Reynolds number is determined from

3

5

(1.164 kg/m )(5 m/s)(0.015 m)
4663.46

1.872 10 kg/ ms
D

VD
Re

r

m -= = =
¥

 The Nusselt number is

0.25
5

1/2 2/3 0.4

5

1.872 10
2 {0.4 (4663.46) 0.06 (4663.46) }(0.7282)

2.096 10

37.73

Nu
-

-

Ê ˆ¥
= + ¥ + ¥ ¥ Á ˜Ë ¥ ¯

=

Schematic

Sphere

D = 15 mm Ts = 80°C

8Q

V = 5 m/s

P = 1 atm

Ts = 30°C

Air
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 Then the average convection heat-transfer coefficient becomes,

20.02588 W/m C
(37.73) 65.1 W/m C

0.015 m

k
h Nu

D

∞Ê ˆ= = = ∞Á ˜Ë ¯

 The rate of heat loss is then

( )s sQ hA T T= -

 where As is the heat-transfer surface area equal to 2 2 2(0.015) mDp p=

 Hence, 2 2

2

W
65.1 ( 0.015 m ) (80 – 30) C

m C
Q p

Ê ˆ= ¥ ∞ =Á ˜Ë ∞ ¯
2.3 W (Ans.)

Comment Note that except for m
s
 which is determined at surface temperature, all other thermophysical 

properties of fluid (air) are to be evaluated for a sphere at the free stream temperature T

and not the film temperature, T
f
.

 In a powder-based surface-coating process, aluminium particles are heated in 

a very hot stream of argon gas at 1400 K before deposition on the substrate. The spherical powder 

particles of average diameter of 100 microns are injected into the stream at a temperature of 20°C. The 

velocity of the gas is 5 m/s. The particles will attain a temperature of 30°C below the melting point of 

aluminium. Determine (a) the Nusselt number, (b) the time constant, (c) the time required to reach the 

final temperature, (d) the Biot number.

 The following correlation and the properties may be used:

D D D
w

Nu Re Re Pr

1/ 4

1/ 2 2/ 3 0.4
2 (0.4 0.06 )

m
= + +

m

Ê ˆ
Á ˜Ë ¯

Properties: Aluminium: Melting point = 660°C; wT
1

(630 20)
2

= + °C = 325°C: r = 2702 kg/m3, k = 

218 W/m K, C
p
 = 0.903 kJ/kg K

Argon  [T  = 1400 K]: k = 0.0535 W/m K, Pr = 0.638, m = 6.56 ¥ 10–5 kg/ m s, r = 0.348 kg/m3

m
w
[T

w
 = 325°C] = 3.83 ¥ 10–5 kg/m s ª 600 K

Solution

Known Aluminium particles of prescribed diameter and temperature injected in an argon gas stream 

at the given temperature and velocity to attain the final temperature.

Find (a) Nusselt number, Nu, (b) Time constant, t, (c) Time required, t, and (d) Biot number, Bi.

Schematic

Argon gas
Spherical aluminium powder particle

D = 100
= 20°C

T t( ) = [Melting point of Aluminium = 660°C]

= 630°C

T = 1400 K

Assumptions (1) Lumped capacity model is valid and internal temperature gradients are negligible. (2) 

Negligible radiation effects.
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Analysis (a) Reynolds number,

3 6

5

0.348 kg/m 5 m/s 100 10 m
2.6524

6.56 10 kg/ms
D

VD
Re

r

m

-

-
¥ ¥ ¥

= = =
¥

\ Nusselt number,

1/4
5

1/2 2/3 0.4

5

6.56 10
2 [0.4 (2.6524) 0.06 (2.6524) ] (0.638)

3.83 10
DNu

-

-

Ê ˆ¥
= + ¥ + ¥ ¥ ¥ Á ˜Ë ¥ ¯

= 2.7325 (Ans.) (a)

 (b) Convective heat-transfer coefficient,

2

6

0.0535 W/mK
(2.7325) 1462 W/m K

100 10 m
D

k
h Nu

D -
Ê ˆ= = =Á ˜Ë ¥ ¯

 Time constant, 
–V p p cC C L

hA h

r r
t = =

 where, for a sphere, 
3

2

–V /6

6
c

D D
L

A D

p

p
= = =

\
3 6

2

2702 kg/m 903 J/kgK 100 10 m 1 W

6 1 J/s6 1462 W/m K

pC D

h

r
t

-¥ ¥ ¥ È ˘= = =Í ˙¥ Î ˚
0.0278 s (Ans.) (b)

 (c) Time required,

20 1400
ln ln (0.0278 s)ln

6 630 1400

p i i
C D T T T T

t
h T T T T

r
t

- - -
= = =

- - -

= 0.0162 s or 16.2 ms (Ans.) (c)

 (d) 
2 61462 W/m K 100 10 m

6 6 218 W/mK

chL hD
Bi

k k

-¥ ¥
= = =

¥

= 1.118 ¥ 10–4 (< 0.1) (Ans.) (d)

 Hence, solid temperature variation is negligible and the lumped-capacity model is valid.

 A cross-flow heat exchanger for heating air consists of a 15 ¥ 15 square aligned 

array of tubes for which S
L
 = S

T
 = 24 mm, D = 12 mm, and the length of each tube = 1.5 m. The air 

is at atmospheric pressure and 30°C and flows with a velocity of 3.5 m/s. It is heated by means of hot 

water flowing inside the tubes. Calculate the total rate of heat transfer to the air if the average surface 

temperature of the tubes is 74°C.

 Where is the controlling thermal resistance when heat flows from the water to the air? What modifications 

would you suggest in the design of the heat exchanger if the total rate of heat transfer is to be increased? 

The total number of tubes, their diameter and length, and the given temperatures and velocity are fixed. 

What penalty would one pay for making these modifications?
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Solution

Known Geometry and operating conditions of a tube bank.

Find Heat-transfer rate to air, [W]Q .

Schematic

D = 12 mmTs = 74°C

ST = 24 mm

Transverse pitch
V = 3.5 m/s

P = 1 atm

= 30°C

Longitudinal pitch

SL = 24 mm
Air

Number of rows, = 15NL

There are 15 tubes in each row.

Length of tubes, = 1.5 mL

Ntotal = 15 15 = 225¥
S D S DT/ = / = 24/12 = 2.0L

Assumptions (1) Steady operating conditions exist. (2) Negligible effect of change in air temperature 

across tube bank on air properties. (3) Negligible radiation effects.

Properties Initial estimate of T
e
 = 50°C. At 

1 30 50
( )

2 2
m i eT T T

+
= + =  = 40°C:

r = 1.164 kg/m3, n = 17.02 ¥ 10–6 m2/s, Pr = 0.7255, C
p
 = 1.007 kJ/kg °C

Pr
74°C

 = 0.7168

Analysis Square aligned array of tubes

Maximum air velocity within the tube bank is,

max

24 mm
(3.5 m/s) 7 m/s

24 mm 12 mm

T

L

S
V V

S D

Ê ˆ= = =Á ˜- Ë - ¯

Reynolds number,

max max
,max 6 2

7 m/s 0.012 m
4935

17.02 10 m /s
D

V D V D
Re

r

m n -
¥

= = = =
¥

For N
L
 = 15, correction factor, F = 0.997 

and for Re
D,max

 = 4935, the average Nusselt number is

0.63 0.36 0.25
,max

0.25
0.63 0.36

0.27( ) ( / )

0.7255
0.997 0.27 (4935) (0.7255) 51

0.7168

D D sNu F Re Pr Pr Pr= ¥

Ê ˆ= ¥ ¥ =Á ˜Ë ¯

\ 20.02662 W/m C
51 113.2 W/m C

0.012 m
D

k
h Nu

D

∞
= = ¥ = ∞
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Exit air temperature,

3

( )exp
( )

(113.2 W/m C)( 0.012 m 15 15)
74 C – (74 – 30) C exp

(1.164 kg/m )(3.5 m/s)(15 0.024 m)(1007 J/kg C)

51 C

1 30 51
( ) 40.5 C

2 2

L T
e s s i

i T T p

m i e

h DLN N
T T T T

V N S L C

T T T

p

r

p

È ˘
= - - -Í ˙

Í ˙Î ˚
∞ ¥ ¥ ¥È ˘= ∞ ∞ -Í ˙¥ ∞Î ˚

= ∞
+

= + = = ∞

\ Our initial estimate was correct.

Log mean temperature difference,

\ 2

( ) ( ) (74 30) (74 51)
32.37 C

ln[( )/( )] ln(44/23)

( ) (113.2 W/m C)(15 15 0.012 m 1.5 m) (32.37°C)

s i s e
m

s i s e

m

T T T T
T

T T T T

Q h DL Tp p

- - - - - -
D = = = ∞

- -

= D = ∞ ¥ ¥ ¥ ¥

l

l

= 46.6 ¥ 103 W= 46.6 kW

Else, 31.164 kg/m 3.5 m/s 15 0.024 m 1.5 m 2.2 kg/s

( )p e i

m

Q mC T T

= ¥ ¥ ¥ ¥ =

= -

= 2.2 kg/s ¥ 1.007 kJ/kg °C ¥ (51 – 30)°C = 46.5 kW (Ans.)

Points to Ponder

● The essential boundary conditions for any velocity distribution in a laminar boundary layer are: 

● At y = 0, u = v = 0,
2

2
0

u

y

∂
=

∂
● At y = d u = u .

● Convection heat transfer due to pressure drop induced velocities is called forced convection.

● For forced flow external to surfaces, the laminar boundary layer persists to a local Reynolds number 

of approximately 5 ¥ 105.

● The local heat-transfer coefficient for turbulent flows past a flat plate varies according to the relation 

h = Ax–0.2 where A is a constant of appropriate dimensions and x is the distance measured from the 

leading edge. The average Nusselt number is 1.25 times the local Nusselt number.

● In the case of flow normal to tube banks, there are two general types of orientation—in-line and 

staggered geometry. For minimum pressure drop, one would use in line arrangement, and for maximum 

heat transfer staggered arrangement.

● The film temperature is usually defined as 
1

( )
2

sT T+ .

● In respect of cross flow over tube banks:

   S
L
 = Longitudinal pitch S

T
 = Transverse pitch

   S
D
 = Diagonal pitch.

The diagonal pitch between tube centres is determined from 2 2( /2)D L TS S S= + .
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● The separation point, given in terms of the angle q from the front stagnation point for a cylinder in 

cross flow in about 80° for laminar flow and about 140° for turbulent flow.

● For gases with Pr ª 1, the recovery factor for high-speed flow over a flat plate is Pr1/2 for laminar 

and Pr1/3 for turbulent flow.

● The factor of two is included to account for both sides of the plate in problems pertaining to flow 

over a flat plate for calculating heat transfer or drag force.

● The expressions for velocity boundary layer thickness d(x) and friction coefficient and C
fx
, for three 

typical cases are velocity profile: 

Linear Cubic Exact solution

C
f, x 0.578 / xRe 0.646 Re

x
–1/2 0.664 Re

x
–1/2

d(x) 3.46x/ xRe
1/24.64 xx Re

-
xx Re

1/24.96 -

Linear profile results underpredict those associated with the exact solution.

● The average heat-transfer coefficient Lh  decreases with increasing Re
x,crit

 as more of the surface 

becomes covered with a laminar boundary layer, over a flat plate. For mixed boundary layer condition, 

h
x
 varies as x–1/2 and x–1/5 in laminar and turbulent flow, respectively.

Properties are generally evaluated at the mean film temperature 
1

( )
2

sT T+ .

● The unheated starting length acts to decrease the value of h
x
 at any location on the heated plate. 

However, its effect decreases with decreasing x
o
 and increasing x.

● Properties of the fluid at the free stream temperature T  must be evaluated for the Zhukauskas 

correlation for flow over a cylinder. In Whitaker correlation for cylinder and sphere too, note carefully 

that fluid properties are evaluated at the free-stream fluid temperature T .

● If the tube bank is made more compact, it has the desired effect of increasing the convection coefficient 

and therefore the heat transfer rate. However, it has the adverse effect of increasing the pressure drop 

and, hence, the fan power requirement.

GLOSSARY of Key Terms

● Stagnation point The point where the fluid stream approaching the cylinder strikes the cylinder 

and comes to a halt, thus increasing the pressure.

● Separation point The point on the cylinder where the boundary layer detaches from the surface. 

Flow separation occurs at q = 140° when the boundary layer is turbulent, q
is the angle measured clock wise from the stagnation point. 

● Drag coefficient Non-dimensional drag given by the drag force on an object nondimensionalized 

by dynamic pressure of the free stream flow times frontal area of the object: 

21
2

D
D

F
C

AVr
∫

● Drag force The force on an object opposing the motion of the object. 

● Laminar flow A stable well-ordered state of fluid flow in which all pairs of adjacent fluid 

particles move alongside one another forming laminates. A flow that is not 

laminar is either turbulent or transitional to turbulence, which occurs above 

a critical Reynolds number.
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● Skin Friction Coefficient of surface shear stress t
w
 non-dimensionalized by an appropriate 

dynamic pressure f wV C V
2 21

2

1
.

2
r t r= .

Multiple-Choice Questions

7.1

(a) is zero at the surface

(b) is negative at the surface

(c) is zero at the edge of the thermal boundary layer

(d) none of the above

7.2
0.8 1/30.037( ) ( )L LNu Re Pr=

  Which of the following is then a wrong statement?

  

(a) 4/5 power of free stream velocity

(b) 2/3 power of thermal conductivity

(c) 1/5 power of length of flat plate

(d) 1/3 power of specific heat capacity

7.3
1/30.664L LNu Re Pr=

  

(a) viscosity is to be decreased sixty four times

(b) density is to be increased four times

(c) thermal conductivity is to be increased eight times

(d) specific heat is to increased eight times

7.4

(a) zero at the plate surface (b) positive at the plate surface

(c) very steep at the plate surface (d) zero at the edge of the thermal boundary layer

7.5

the leading edge x

(a) x1/2 (b) x–1/2 (c) x1/3 (d) x–1/3

7.6

(a) increases with the distance from the leading edge

(b)

(c) increases with the velocity of the free stream

(d)

7.7 Choose the correct statement:

  

(a)

(b) increases with distance x form the leading edge

(c)

(d) is independent of the distance x
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7.8

a plate with transition Reynolds number = 3 ¥ 105 is: 

(a) 1/3(0.037 871.3)L LNu Re Pr= - (b) 1/2 1/30.664L LNu Re Pr=

(c) 0.8 1/3(0.037 572.4)L LNu Re Pr= - (d) 0.8 1/30.0296L LNu Re Pr=
7.9 L h

(other symbols have the usual meaning):

(a)

0

L

xh dxÚ (b) ( )x

d
h x

dx
(c)

0

1
L

xh dx
L Ú (d)

0

L

x

k
Nu dx

L Ú
7.10 The laminar boundary layer thickness d at any point x

(a)
0.664

Re

d
=

x
x

(b)
1.328

Re

d
=

x
x

(c)
1.75

Re

d
=

x
x

(d)
5.0

Re

d
=

x
x

7.11 Water (Prandtl number @
one of the following relationships between the hydrodynamic boundary layer thickness (d) and the 

thermal boundary layer thickness (d
t
) is true?

(a) d
t
 > d (b) dt < d (c) dt = d (d) cannot be predicted.

7.12 Based on the heat transfer tests on PCBs (printed circuit boards), the local Nusselt number is correlated 

by
0.9 40.02 for 2 10x x xNu Re Re= > ¥

  The average Nusselt number is expressed by

(a) 2x xNu Nu= (b) /0.9x xNu Nu= (c)
4

3
x xNu Nu= (d) x xNu Nu=

7.13

of the Reynolds number (Re
D

∫ u D/n) is

(a) 2300 (b) 3 ¥ 104 (c) 2 ¥ 105 (d) 5 ¥ 105

7.14

surface can be obtained by putting Nu equal to 

(a) 2.0 (b) 1.8 (c) 1.6 (d) 1.0

7.15 The critical value of Reynolds number for transition from laminar to turbulent boundary layer in 

(a) 2300 (b) 4000 (c) 5 ¥ 105 (d) 5 ¥ 106

7.16

  Dynamic viscosity: 25 ¥ 10–6 kg/ms

  

  Thermal conductivity: 0.05 W/m K

  The hydrodynamic boundary-layer thickness is measured to be 0.5 mm. The thickness of thermal 

boundary layer would be

(a) 0.1 mm (b) 0.5 mm (c) 1.0 mm (d) None of the above

7.17 ¥ 105. What is the distance from the 

  [For water, the kinematic viscosity, n = 0.858 ¥ 10–6 m2/s].

(a) 1 m (b) 0.43 m (c) 43 m (d) 103 m
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7.18 h
x

extremely rough surface is approximated by the relation h
x
 = a x–0.14 where a

and x is the distance from the leading edge of the plate. The relation between this local heat-transfer 

h  for a plate of length x is

(a) 0.568 xh h= (b) 0.852 xh h= (c) 1.163 xh h= (d) 1.988 xh h=
7.19

is given by, 

2

w

w

T T y y
a b c

T T L L

- Ê ˆ= + + Á ˜Ë ¯-
, where y is measured perpendicular to the plate, L is the 

plate length, and a, b, and c are arbitrary constants. T
w
 and T  are wall and ambient temperatures, 

k qn, the Nusselt 

number, 
w

q L
Nu

T T k

¢¢
=

-
 is equal to

(a) a (b) b (c) 2c (d) (b + 2c)

7.20

(a) remains same (b) decreases by factor of 2
(c) rises by a factor of 2 (d) rises by a factor of 4

Multiple-Choice Questions

7.1 (c) 7.2 (c) 7.3 (c) 7.4 (d) 7.5 (b) 7.6 (c)

7.7 (c) 7.8 (c) 7.9 (c) 7.10 (d) 7.11 (b) 7.12 (b)

7.13 (c) 7.14 (a) 7.15 (c) 7.16 (b) 7.17 (b) 7.18 (c)

7.19 (c) 7.20 (c)

PRACTICE PROBLEMS

(A) Flat Pate In Parallel Flow: Laminar and Turbulent

7.1

the distance from the leading edge of the plate where the air velocity is 3.96 m/s at a vertical distance 

of 1 cm from the plate surface. (b) the vertical distance from the plate surface at the same distance 

from the leading edge where the temperature will be 30.3°C. The uniform plate surface temperature 

is 60°C. Use the following properties of air at 30°C:

  r = 1.1646 kg/m3, m = 1.86 ¥ 10–5 Ns/m2, C
p
 = 1.007 kJ/kg °C, k = 0.0265 W/m °C

[(a) 1.0 m (b) 1.12 cm]

7.2

thickness of the plate are 100 cm, 50 cm and 2 cm, respectively. The top surface of the plate is 

maintained at 100°C. Calculate the heat lost by the plate and the temperature of the bottom surface 

of the plate under steady-state conditions. The thermal conductivity of the plate may be taken as 

23 W/m K. The properties of air as:

  r = 1.06 kg/m3, n = 18.97 ¥ 10–6 m2/s, k = 0.028 94 W/m K, Pr = 0.696

[100.4°C]
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7.3 ¥ 40 cm) at a velocity 

  

  k = 28.74 ¥ 10–3 W/m°C, n = 19.21 ¥ 10–6 W/m2, Pr = 0.7024

[(a) 110.8 W (b) 156.7 W (c) 45.9 W]

7.4

L = 0.2 m. Disturbances in the free stream cause the transition to occur at Re
x,trans

 = 2 ¥ 105. Determine, 

right from the leading edge. Use the following properties of air:

  k = 0.0263 W/m°C, n = 15.89 mm2/s, Pr = 0.707 [114 W/m2°C, 155 W/m°C]

7.5 A refrigerated truck is travelling on the highway at the speed of 80 km/h in a desert area where the 

temperature is 70°C. The body of the truck is considered to be a rectangular box 3 m wide, 2 m 

high and 4.5 m long. The heat transfer from the front and back end of the box is neglected. Assume 

no separation of the air stream from the surface and consider the boundary layer as turbulent over 

bottom. The temperature at the surface is uniformly at 10°C. For every heat loss, one ton capacity of 

the refrigerating unit is needed. Calculate: (a) the heat loss from the four surfaces, (b) the tonnage of 

the refrigerating unit and (c) the power required to overcome resistance acting on the four sides.

  Properties of air at 40°C:

  k = 0.0276 W/m °C, n = 16.96 ¥ 10–6 m2/s, Pr = 0.699

[(a) 142 kW (b) 40.4 TR (c) 14.44 kW]

7.6

layer thickness at distances of 20 cm and 40 cm from the leading edge of the plate. (a) Compute 

x = 20 cm and x = 40 cm per metre 

depth of the plate. The plate is heated and maintained at a temperature of 90°C over its entire length. 

  Properties of air at 60°C are:

  C
p
 = 1.007 kJ/kg K, r = 1.059 kg/m3, k = 0.02808 W/m K, n = 18.96 ¥ 10–6 m2/s,

  Pr = 0.7202

  Properties of air at 30°C are: 3 6 21.164 kg/m , 16.08 10 m /sr n -= = ¥
[(a) 3.55 ¥ 10–3 kg/s (b) 206 W (c) 5.48 mN]

7.7

plate based on the following analogies: (a) Colburn analogy, (b) Prandtl analogy and (c) Von Kármán 

  k = 30.24 ¥ 10–3 W/m°C, Pr = 0.7132, n = 22.01 ¥ 10–6 m2/s

[(a) 24.93 W/m2 °C (b) 21.15 W/m2 °C (c) 22.49 W/m2 °C]

(B) Cylinder In Cross Flow

7.8

cylinder is maintained at a temperature of 350 K. Determine (a) the drag force and (b) the rate of heat 

transfer per metre length of the cylinder. 
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  k = 0.0282 W/m °C, Pr = 0.703, n = 1.841 ¥ 10–5 m2/s [(a) 15.3 N (b) 983.7 W]

7.9

a uniform temperature of 80°C. Also estimate the heat-transfer rate per unit length of the tube.

  Properties of water at 
20 80

50°C
2

fT
+

= =  are:

  C
p
 = 4.1813 kJ/kg K Kinematic viscosity, n = 0.568 ¥ 10–6 m2/s

  Thermal conductivity, k = 0.6395 W/m K Prandtl number, Pr = 3.68

  Density, r = 990 kg/m3

  Dynamic viscosity of water:

  w
4 3at 80°C 3.5456 10 kg/ms, at 20°C 1.006 10 kg/msm m- -= ¥ = ¥

  Use the correlation: 

1/4
0.5 2/3 0.4(0.4 0.06 )

w

Nu Re Re Pr
m

m

Ê ˆ= + Á ˜Ë ¯
[52.9 kW]

(C) Spheres

7.10

removal from the oven, the sphere is exposed to an air stream at 10 m/s and 23°C. Estimate the time 

taken to cool the sphere to 35°C. Use the following correlation:

  

1/4
1/2 2/3 0.42 [0.4 0.06 ]

s

Nu Re Re Pr
m

m

Ê ˆ= + + Á ˜Ë ¯

  Properties:

  Copper: r = 8933 kg/m3
, k = 400 W/m K, C

p
 = 380 J/kg K

  Air (at T  = 23°C): m = 18.16 ¥ 10–6 N s/m2, n = 15.36 ¥ 10–6 m2/s, Pr = 0.709, k = 0.0258 W/m K 

  m
s@35°C

 = 19.78 ¥ 10–6 N s/m2 [67.9 s]

(D) Tube Bank

7.11

at an undisturbed velocity of 10 m/s measured upstream of the tubes. The surfaces of the tubes are 

maintained at 100°C. The diameter of the tubes is 26 mm, and the tubes are arranged in a staggered 

fashion. The centres of the tubes form corners of an equilateral triangle of 45 mm sides.(a) Determine 

the total heat transfer rate if the tubes are 4 m long. (b) Calculate the heat transfer rate if the tubes are 

arranged in an in-line fashion with the same row spacing. Compare it to the staggered arrangement. 

(c) Compare the pressure drops across the tube bundle for the two orientations.

[(a) 299 kW (b) 307.6 kW (c) 558 Pa, 478 Pa]

~~~



Forced Convection—
Internal Flow

8.1 ❏ INTRODUCTION

The fluid flow through circular pipes or tubes and even of non-circular geometries for heating or cooling 

applications in the industry under forced convection when a pump or fan is used to force the fluid flow is 

of great practical importance. Besides heat-transfer considerations, one is often interested in the evaluation 

of pressure drop along the tube length since it has a direct bearing on the pumping power requirements. 

Determination of heat-transfer coefficient is also important to calculate the required pipe length for the 

desired heat-transfer rate in both laminar and turbulent flows. In the following sections, we will analyze 

these issues and present some important empirical correlations.

8.2 ❏ HYDRODYNAMIC CONSIDERATIONS

In external-flow forced convection, such as for flow over a flat plate, the boundary-layer development 

was allowed to continue without any restriction since the fluid has a free surface. However, in internal 

flow, the flowing fluid is completely confined by the inside surfaces of the pipes or tubes. This imposes 

a limit on the development of boundary layer.

When a fluid, initially of uniform velocity, enters a closed conduit (a pipe or tube), a boundary layer 

builds up along the surface of the pipe. But the flow cannot be the same as in the case of a flat plate due 

to the presence of the opposite wall—where a boundary layer is also developing. As the flow proceeds 

down the pipe, the boundary layer growing along the pipe wall gets thicker, eventually growing together 

from opposite sides and filling the pipe with boundary-layer flow.

Figure 8.1 shows the development of the hydrodynamic (velocity) boundary layer in a pipe. At the pipe 

entrance, the fluid at the centre is at the undisturbed uniform free-stream velocity, but the fluid at the wall 

has zero velocity (no-slip condition). A velocity boundary layer starts building up on each wall, just as it 

does for external flow over a flat plate. With lower velocities near the pipe wall, the centreline velocity 

must increase to satisfy the principle of conservation of mass. At some distance from the entrance, the 

boundary layers become so thick that they extend to the centre of the pipe and meet at a point. At that 

point, the velocity profile no longer changes shape further downstream, and the flow is then considered 

hydrodynamically fully developed.

The pipe length required to establish this fully developed flow is called the starting or entrance

length. In the starting length, the velocity distribution across a diameter consists of a potential core region 

near the centre of the pipe (the velocity being uniform) which joins the boundary-layer region at each 

surface where the velocity varies from the potential core value to zero at the wall. As one moves along 

the pipe in the starting region, the viscous or boundary layer portion of the velocity distribution curve 
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increases while the potential core portion decreases. The law of conservation of mass requires that the 

mean velocity across the cross section (mass-flow rate divided by density and cross-sectional area) must 

remain constant for incompressible flow. Hence, the velocity of the potential core region must increase

as the flow proceeds down the starting length.

For fully developed pipe flow, the Reynolds number based on length (as in the external flow along a 

flat plate) loses its significance, and it is customary to employ the Reynolds number, based on the pipe 

diameter Re
D
, defined as

D

VD VD
Re

r

m n
= = (8.1)

Here, D denotes the pipe diameter and V is the mean velocity of the flow in the pipe. Experiments indicate 

that a critical, or transition, Reynolds number of 2300 may be used. For values of Re
D
 < 2300, laminar 

flow may be expected, whereas greater values indicate the presence of turbulent flow. This critical value 

of Re
D
 = 2300 is not to be treated as a precise value because certain extraneous conditions may result in 

the transition to take place at other values too.

The starting length for laminar pipe flow is

0.0575 0.05h
D D

L
Re Re

D
= ª (8.2)

This formula must be treated as approximate since the fully developed condition is reached asymptotically, 

and hence the starting length, L
h
, is difficult to define. No adequate theory exists which will predict the 

starting length in turbulent flow since the nature of the pipe entrance, the pipe roughness, etc., will have 

a serious effect on the growth and transition of the boundary layer in the pipe. Starting lengths of 25 to 

40 pipe diameters are typical for turbulent flow.

8.3 ❏ THERMAL CONSIDERATIONS

If the pipe wall is heated or cooled, a thermal boundary layer is also formed as shown in Fig. 8.2. It may 

be thicker, thinner, or of the same size as the velocity boundary layer, depending on the Prandtl number. 

Like the velocity boundary layer, the thermal boundary layer too grows from the wall until it reaches 

the centre of the pipe. At that point, the temperature profile becomes fully developed and its shape no 

longer changes further downstream although its temperature level does change.

x = 0 x L= h

Fully developed
velocity profile

Developing velocity
profile

u r( )

Irrotational (core)
flow region

u r x( . )

x
rR

Hydrodynamic fully developed regionHydrodynamic entrance region

d

d

Development of the laminar, velocity boundary layer in a circular pipe
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Thermal
boundary layer Temperature profileTw

r

x
Thermally fully

developed region

Tbi Tw

Thermal entrance region

Development of the thermal boundary layer in a circular tube

If a fluid enters the tube at a uniform temperature, which is less than the tube-wall temperature, convection 

heat-transfer occurs and a thermal boundary layer begins to develop. A thermally fully developed condition 

is finally reached. The shape of the fully developed temperature profile will depend on whether a uniform 

wall temperature or uniform heat flux is maintained. In both cases, the fluid temperature constantly 

increases with increasing distance from the entrance.

For laminar flow, the thermal entry length may be expressed as

ª 0.05t
D

L
Re Pr

D
(8.3)

If Pr > 1, the hydrodynamic boundary layer develops much faster than the thermal boundary layer. For 

Pr < 1, the opposite is true. For very large Prandtl number fluids, such as lubricating oils (Pr ≥ 100), 

we can assume a fully developed velocity profile throughout the thermal entrance region. In the case of 

turbulent flow, conditions are more or less independent of Prandtl number, and to a first approximation, 

we can assume L/D ª 10.

8.3.1 ● Bulk Temperature

In a confined (internal) flow through a tube, there is obviously no free stream velocity and we use a 

mean velocity instead. Similarly, unlike external flow, there is no fixed free stream temperature in internal 

flow. Hence, we must define a mean bulk temperature. The bulk temperature T
b
 is a convenient reference 

temperature playing much the same role as the free stream temperature T  for external flows. The mean (or 

bulk) temperature of the fluid at a given cross section is defined in terms of the thermal energy transported 

by the fluid as it moves along the tube. The rate of thermal energy transport, may be found by integrating 

the product of the mass flux (ru) and the internal energy per unit mass (C
p
T) over a given cross section.

c

p c

A

E uC T dAr= Ú
We define the bulk temperature such that

Then 0

2

(2 )

c

p b

R

p c p c
A

b
p c p

E mC T

uC T dA uT rdrC uT dA

T
mC A VC R V

r pr

r p

∫

= = =
Ú ÚÚ
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For incompressible flow in a circular tube with constant C
p
, it follows that

2

0

2
R

bT uTr dr
VR

= Ú (8.4)

8.3.2 ● Fully Developed Conditions

If the flow is hydrodynamically developing, the velocity does change with both r and x but (∂u/∂x) = 

0 in the fully developed region. In contrast, if there is heat-transfer, (dT
b
/dx), as well as (∂T/∂x) at any 

radius r, is not zero. Accordingly, the temperature profile T(r) is continuously changing with x, and it 

would seem that the fully developed condition could never be reached. We define the dimensionless 

temperature difference of the form (T
w
 – T)/(T

w
 – T

b
) to simplify the analysis. Although the temperature 

profile T(r) continues to change with x, the relative shape of the profile does not change in a thermally

fully developed flow. The requirement for such a condition is expressed as

( ) ( , )
0

( ) ( )

w

w b

T x T r x

x T x T x

-∂ È ˘ =Í ˙∂ -Î ˚
(8.5)

where, T
w
 is the tube-wall temperature, T is the local fluid temperature, and T

b
 is the bulk temperature 

of the fluid over the cross section of the tube.

This condition is finally reached in a tube for which there is either a uniform wall heat flux (q
w
 = 

constant) or a uniform wall temperature (T
w
 = constant). These conditions occur in many engineering 

applications. For example, a constant wall heat flux would exist if the tube wall were electrically heated

or if the outer surface were uniformly irradiated. Constant wall temperature condition would be present 

when phase change (due to boiling or condensation) were taking place at the outer surface. We must note 

that it is impossible to simultaneously impose both conditions of constant wall heat flux and constant 

wall temperature. If q
w
 is constant, T

w
 must vary with x, and if T

w
 is constant, q

w
 must change with x.

In the thermally fully developed flow of a fluid with constant properties, the local convection coefficient 

is a constant, independent of x.

8.4 ❏

Laminar convective heat-transfer is analyzed with two 

different boundary conditions. One condition is a Constant

and Uniform Heat Flux (UHF) on the wall and the other 

condition is a Constant and Uniform Wall Temperature 

(UWT). The fluid temperature develops quite differently 

in these two cases.

8.4.1 ●

Let us first consider heating of a constant property 

fluid in a pipe subjected a constant heat flux at 

the wall. In this case, the temperature field varies 

throughout the cross section of the pipe, as shown in 

Fig. 8.3. The flow field and the temperature field are 

both fully developed; that is, the profile shape does not 
Differential control volume energy balance 

for fluid flow through a circular tube
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vary with downstream location. There is one important difference between the fully developed velocity 

and fully developed temperature fields. The average velocity does not change with downstream location. 

However, due to heat addition, the average temperature does increase. Although the average temperature 

changes, the shape of the temperature profile does not.

8.4.2 ● Energy Equation for Laminar Flow in Tubes

Heat is conducted radially and convected axially in an annular control volume within the flow, as shown 

in Fig. 8.3. The radial heat flow into the control volume by conduction is given by

(2 )r

T
Q k rdx

r
p

∂
= -

∂

and out of the control volume is, ( )r dr r rQ Q Q dr
r

+
∂

= +
∂

There is no heat conduction in the axial direction.

The net rate at which heat is conducted into the control volume is given by

{ }
cond,net,in ( )

(2 )

2

r r dr rQ Q Q Q dr
r

T
k rdx dr

r r

T
k r dr dx

r r

p

p

+
∂

= - = -
∂

∂ ∂
= - -

∂ ∂
∂ ∂Ê ˆ= Á ˜Ë ¯∂ ∂

(8.6)

The rate at which energy is convected or carried into the control volume can be expressed in terms of 

the mass-flow rate of the fluid entering the control volume and the energy associated with it.

Heat convected into the control volume in the axial direction (the radial component of velocity is zero 

for fully developed flow) is given by

conv, (2 )x p pQ dmC T u rdr C Tr p= =

The heat convected out of the control volume is

conv, conv, conv,( )x dx x xQ Q Q dx
x

+
∂

= +
∂

The net heat flow out of the control volume by axial convection in the x-direction is

conv,net out conv, conv,

(2 )

x dx x

p

Q Q Q

T
u rdr C dx

x
r p

+= -

∂Ê ˆ= Á ˜Ë ¯∂
(8.7)

The energy balance then yields cond,net in conv,net outQ Q=

Substitution from Eq. (8.6) and (8.7) gives

or

2 (2 )

1

p

p

T T
k r dr dx u rdr C dx

r r x

CT T u T
r u

r r r k x x

p r p

r

a

∂ ∂ ∂Ê ˆ Ê ˆ=Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂

Ê ˆ∂ ∂ ∂ ∂Ê ˆ = =Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂
(8.8)
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For fully developed laminar flow, the velocity distribution across a pipe cross section is given by the 

well-known parabolic form,

2

2 1
u r

V R

È ˘Ê ˆ= -Í ˙Á ˜Ë ¯Î ˚
(8.9)

where u is the local velocity at the radial location r, and R is the pipe radius.

Substituting for u in Eq. (8.7), we have

2
1 2

1
T V r T

r
r r r R xa

È ˘∂ ∂ ∂Ê ˆ Ê ˆ= -Í ˙Á ˜Á ˜ Ë ¯Ë ¯∂ ∂ ∂Î ˚
(8.10)

where V is the mean velocity in the pipe and R is the pipe radius. ∂T/∂x is the rate of change of 

temperature with axial position. Figure 8.4 shows the temperature profile at two axial locations. The bulk 

fluid temperature, T
b
(x), increases with downstream location, since heat is added at the wall. The wall 

temperature, T
w
(x), also increases, but the difference between the bulk temperature and wall temperature, 

(T
w
 – T

b
) remains the same. This is because the shape of the temperature profile does not change in the 

fully developed region.

T xb( )1 T xb( )2

T xw( )2

T xw( )1

x1 x2

Temperature profiles in fully developed laminar convection

For a circular tube, referring to Fig. 8.5, one can also write

Hence,

( ) [ ( ) ]

( )
( )

w p b bi

w
b bi

p

q Dx mC T x T

q Dx
T x T

mC

p

p

= -

= + (8.11)

Differentiating with respect to x,

( ) ( )b w

p

dT x q D

dx mC

p
=

Noting that cm VAr= , where A
c
 is the cross-sectional area 

of the pipe,

2

( ) ( ) 4 ( ) 4 2b w w w w

c p p pp

dT x q D q D q q

dx VA C VDC VRCV D C

p p

r r rr p
= = = = (8.12)

where R is the radius of the pipe. Combining Eq. (8.12), Eq. (8.8), and Eq. (8.7) gives

2
41

1w

p

qT r
r

r r r RC Rar

È ˘∂ ∂Ê ˆ Ê ˆ= -Í ˙Á ˜Á ˜ Ë ¯Ë ¯∂ ∂ Î ˚
(8.13)

T xb( )
Tbi

Tbe

qw

x

A control volume that extends a distance 

x along the inside of a pipe with constant 

heat flux on the walls.
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We note that ∂T/∂r is only a function of r and a = k/rC
p
. One may then rewrite this as the following 

ordinary differential equation:

2
41

1wqT r
r

r r r kR R

È ˘∂ ∂Ê ˆ Ê ˆ= -Í ˙Á ˜Á ˜ Ë ¯Ë ¯∂ ∂ Î ˚
(8.14)

or
3

2

4 wqT r
r r

r r kR R

È ˘∂ ∂Ê ˆ = -Á ˜ Í ˙Ë ¯∂ ∂ Î ˚

Separating the variables and integrating, we have

2 4 3
1

12 2

4 4
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2 24 4

w wq q CT r r T r r
r C

r kR r kR rR R

È ˘Ê ˆ È ˘∂ ∂
= - + = - +Í ˙ Í ˙Á ˜Ë ¯∂ ∂ Î ˚Î ˚

Integrating again, we get

2

1 22

4
( ) ln

4 16

wq r r
T r C r C

kR R

È ˘
= - + +Í ˙

Î ˚
(8.15)

To evaluate the two constants of integration C
1
 and C

2
, we require two boundary conditions. The first

boundary condition is that the temperature must be finite at the pipe centre where r = 0; therefore, C
1

=

0. The second boundary condition is that the temperature at the wall is T
w
 at r = R. Applying the second 

boundary condition gives.

2 4

22

2

2

4

4 16

4 3

16

w
w

w
w

q R R
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kR R

q R
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= - Á ˜Ë ¯ (8.16)

Thus, the temperature profile in a fully developed laminar flow with constant wall heat flux and constant 

fluid properties is

or

È ˘Ê ˆ Ê ˆ= - - ¥ + ¥Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚
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Convection heat flux is given by

( )w
w w b

Q
q h T T

A
= = -

where T
b
 is the bulk temperature.

( )

,A A
b

uT r dA udA

T V
VA A

= =
Ú Ú
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The differential area dA = 2pr dr. Then the bulk (mean) temperature may be written as

0 0

2 2

( ) ( )2 2 ( ) ( )

R R

b

u r T r rdr u r T r rdr

T
V R VR

p

p
= =

Ú Ú
(8.18)

At this point, the velocity field for a fully developed flow, u(r) as given by Eq. (8.16), and the temperature 

field for a fully developed flow, T(r) as given by Eq. (8.17), are substituted into Eq. (8.18) to get

2 42

2

2

4 3 1 1
4 1

16 4 16

R

w
w
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k R RR
T

VR

Ï ¸È ˘Ê ˆ Ô ÔÊ ˆ Ê ˆ- - - +Ì ˝Í ˙Á ˜Á ˜ Á ˜ Ë ¯Ë ¯ Ë ¯Ô ÔÎ ˚Ó ˛=
Ú

Carrying out the integration yields
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k
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In fully developed laminar flow, the Nusselt number is a constant and the heat-transfer coefficient, h,

is not a function of x. However, both the wall temperature and the bulk mean temperature vary with x.
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The bulk (mean) fluid temperature increases linearly along 

the pipe starting at the initial temperature as illustrated 

in Fig. 8.6. The heat flux at the surface is related to the 

difference between the wall temperature and the bulk 

(mean) temperature through

( )w w b

Q
q h T T

A
= = -

and, the wall temperature is

w
w b

q
T T

h
= + (8.20)

The heat-transfer Q  is related to the difference in temperatures at the tube inlet and outlet. Fluid moves 

at a constant mass flow rate m , and convection heat-transfer occurs at the inner surface (tube wall). The 

fluid kinetic and potential energy changes, as well as energy transfer by conduction in the axial direction 

can be ignored.

The rate of convection heat-transfer to the fluid must, therefore, equal the rate at which the fluid 

enthalpy increases.

or ( )

p b

p be bi

dQ mC dT

Q mC T T

=

= - (8.21)

8.4.3 ●

Another common boundary condition we come across in practice is constant wall temperature. It is quite 

possible analytically to find the temperature profile in fully developed laminar flow with a constant wall 

temperature. Similar procedure is followed as in the case of constant wall heat flux, but the analysis 

becomes more complicated. To obtain the heat-transfer coefficient in a tube with constant wall temperature, 

fully developed laminar flow, and constant fluid properties, we use

Laminar, constant wall temperature= = < 23003.66D D

hD
Nu Re

k
(8.22)

The properties of the fluid in these equations are based on the bulk mean temperature, T
bm

, which is the 

mean of the inlet and exit bulk fluid temperatures, i.e. 
1

( )
2

bm bi beT T T= + .

8.5 ❏

CORRELATIONS

Completely analytical solutions for turbulent flow in pipes are simply not available. We have to depend 

on experimental and numerical investigations. Several empirical correlations are available, and some of 

the more common ones for pipe flows are presented here. Unlike laminar flow, in which the boundary 

condition (constant wall temperature or constant wall heat flux) changes the heat-transfer coefficient, 

turbulent correlations are generally valid for both situations except in the case of liquid-metal heat-transfer.

T xw( )

T xb( )= ( – )T Tw b

q

h
w

T

X

Fluid and wall (surface) temperature in 

a pipe with constant heat flux
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By far the most widely used correlation for turbulent flow in pipes is the Dittus and Boelter equation:

0.8

10 000

0.023 0.7 160 turbulent
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0.4 heating
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D D
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> ¸
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(8.23)

All fluid properties are evaluated at the bulk mean temperature, which is the average of the inlet and 

outlet fluid temperatures. The exponent on the Prandtl number depends on whether the fluid is getting 

heated or cooled.

The effect of property variations in the radial direction for laminar flow of liquids is accounted for by 

correcting the mean Nusselt number using the following expression:

0.14

corr

w

Nu Nu
m

m

Ê ˆ= Á ˜Ë ¯
(8.24)

where the subscript w indicates the wall temperature.

When there are large temperature differences present in the fluid flow, wide variations in the fluid 

properties between the tube wall and the centreline are possible. We note that the viscosity of a liquid 

decreases with an increase in temperature while the viscosity of a gas increases with an increase in 

temperature. Such appreciable changes cause deviation in the velocity profile for isothermal flow as 

indicated in Fig. 8.7.

Isothermal flow
(constant properties)

Cooling of a liquid or
heating of gas

Heating of a liquid or cooling of a gas

Influence of heating on velocity profile for laminar flow in a circular tube

When temperature differences become large, property variations may be considerable, as mentioned above. 

In that case, the following correlation by Seider and Tate should be used:
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(8.25)
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All fluid properties are evaluated at the bulk mean temperature except m
w
, which is the dynamic viscosity 

evaluated at the wall temperature T
w
. This correlation may be used for both constant wall temperature 

and constant wall heat flux conditions.

Petukhov’s correlation for forced convection heat-transfer in smooth or rough pipes gives excellent 

estimates of the heat-transfer coefficient for smooth pipes and reasonable estimates for rough pipes.

m

m
m m

¸< < ¥
ÔÊ ˆ

= < < ˝Á ˜ Ô+ - Ë ¯ < < ˛
=
= >

= >

4 6

2 /3

10 5 10
( /8)

0.5 2000

1.07 12.7 ( /8) ( 1) 0.08 / 40

0 constant heat flux

0.11

0.25

Dn
D

D

w
w

w b

b w

Re
f Re Pr

Nu Pr

f Pr

n

n T T

n T T

(8.26)

For the friction factor, use Petukhov’s correlation for smooth pipes, which is given as

2

6

(0.79 ln 1.64) turbulent flow, smooth wall

3000 5 10D

f Re

Re

-= -

< < ¥

(8.27)

The above correlations apply in the fully turbulent regime, where Re > 10 000. When 2300 < Re
D
 < 

10 000, the flow may be in transition between laminar and turbulent. A useful correlation by Gnielinski

for low Reynolds number is

6
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(8.28)

This correlation is also equally applicable for constant wall temperature or constant heat flux situations. 

Properties of the fluid are evaluated at the average temperature of the fluid at inlet and exit. It has the 

added advantage of being valid for both smooth and rough tubes.

8.6 ❏

Consider a tube-wall surface held at an almost constant temperature. For example, if a fluid is boiling or 

condensing at constant pressure on the outside of a tube or pipe, the fluid is at the saturation temperature 

all along the pipe. Since high heat-transfer coefficients are associated with boiling and condensation, the 

wall temperature is approximately equal to the fluid temperature due to negligible thermal resistance (1/

hA
s

ª 0) and is also uniform along the pipe.

To calculate the fluid temperature as a function of x, the distance along the pipe, let us begin with a 

differential control volume in Fig. 8.8. The fluid enters the left face of the control volume, exchanges 

heat with the wall, and leaves at the right face.

Assuming fully developed conditions, the only quantity that is a function of x is bulk fluid 

temperature, T
b
. The differential area may be written in terms of the perimeter, P, and the length of the 

control volume, dx.
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Differential control volume in a pipe with a constant wall temperature

Rate of heat transfer to the Rate of change of enthalpy of the
Energy Balance: =

fluid in the control volume fluid flowing through the tube

( )w b p bhP T T dx mC dT

Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

- =

Separating the variables, we have

( )

p b

w b

mC dT
dx

hP T T x

Ê ˆ= Á ˜-Ë ¯

Integrating this equation for a pipe of length L with inlet temperature T
bi
 and exit temperature T

be
 gives

0
( )

be

bi

TL
p b

b wT

mC dT
dx

hP T x T

-
=

-Ú Ú

Performing the integration,

[ln( ) ln( )] ln
p p be w

be w bi w
bi w

mC mC T T
L T T T T

hP hP T T

- - -Ê ˆ= - - - = Á ˜-Ë ¯

To determine the length of the pipe for the specified exit temperature of the fluid, this expression is 

very useful.

Length of the pipe required,

ln
p w bi

w be

mC T T
L

hP T T

-Ê ˆ= Á ˜-Ë ¯
(8.29)

where P = pD for a circular pipe with internal diameter D.

Since the surface area of the pipe is length times perimeter, i.e., A
s
 = PL, we can also write

ln be w s

bi w p

T T hA

T T mC

-Ê ˆ = -Á ˜-Ë ¯
(8.30)

or exp
Sbe w

pbi w

hAT T

mCT T

Ê ˆ- -= Á ˜
- Ë ¯
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Solving for the exit fluid temperature, we get

( )exp s
be bi w w

p

hA
T T T T

mC

Ê ˆ= - - +Á ˜Ë ¯
(8.31)

This result is shown in Fig. 8.9. At the inlet, the fluid 

temperature rises sharply towards the wall temperature, 

then approaches the wall temperature asymptotically. 

Near the outlet of the pipe, the difference between the 

wall temperature and bulk fluid temperature is smaller 

and less heat is transferred. From the first law, the total 

heat-transferred between the wall and fluid is

( )p be biQ m T TC= - (8.32)

Rearranging, p
be bi

Q
mC

T T
=

-
Let us define:

DT
i

∫ T
w
 – T

bi

DT
e

∫ T
w
 – T

be

It follows that

( ) ( )
p

be bi w bi w be i e

Q Q Q
mC

T T T T T T T T
= = =

- - - - D - D

Substituting this into Eq. (8.29) and expressing the left-hand side in terms of DT
i

and DT
e
, gives

or

( )
ln

( )

ln( / )

e s i e

i

s i e
s m

i e

T hA T T

T Q

hA T T
Q hA T

T T

D - D - DÊ ˆ =Á ˜DË ¯

D - D
= = D

D D l
(8.32a)

where DT
ln
 is called LMTD (log mean temperature difference), and can be expressed as

lm

( )

ln

i e

i

e

T T
T

T

T

D - D
D =

DÊ ˆ
Á ˜DË ¯

(8.33)

In many engineering applications, the temperature of an external fluid, rather than the tube wall temperature, 

is fixed. In such a case, we can still use the above result if T
w
 is replaced by T  (the free stream temperature 

of the external fluid) and h is replaced by U (the average overall heat-transfer coefficient).

Let us consider an insulated pipe of length L with convection on both inside and outside, as shown 

in Fig. 8.10. The fluid on the outside of the pipe is at a constant temperature, T , along the pipe length. 

The thermal circuit for this geometry consists of four resistances in series:

1. the convection resistance on the inside,

2. the conduction resistance through the wall,

3. the conduction resistance through the insulation, and

4. the convection resistance on the outside.

DTe

DTi

Tw

Tbe

Tbi

T

x0

T xb( )

Fluid and surface temperatures in a pipe with 

constant wall temperature.
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Outside
flow

Inside
flow

h Ti, bi
k2

r3

r2

k1

r1

h To

L

An insulated pipe with convection on both inside and outside

The total thermal resistance is

3 22 1
total

1 2 o

ln( / )ln( / )1 1

2 2i i o

r rr r
R

h A k L k L h Ap p
= + + + (8.34)

The areas for convection on the inside and outside are A
i
= 2pr

1
L and A

o
= 2pr

3
L, respectively. The total 

thermal resistance is then given by

3 22 1
total

1 1 2 3

ln( / )ln( / )1 1

2 2 2 2i o

r rr r
R

r Lh k L k L r Lhp p p p
= + + + (8.35)

For this length of pipe, L, the fluid temperature is T
b
 and the heat-transfer rate is

total

bT T
Q

R

-
= (8.36)

In terms of overall heat-transfer coefficient, U, one can write

( ) (W)bQ UA T T= -

The overall heat-transfer coefficient may be based on either the inside area or the outside area, that is,

( ) ( )i i b o o bQ U A T T U A T T= - = - (8.37)

Arbitrarily using the inside area as an example, we get

total

1
i iU A

R
= (8.38)

Note: The advantage of defining an overall heat-transfer coefficient is that the preceding equations for 

flow in a pipe with an isothermal wall can be applied. All that we have to do is to simply replace T
w

by T  and hA by UA. The total heat-transferred is, s mQ UA T= D
l . This is applicable only if T does not 

vary along the pipe.
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8.7 ❏

So far we have discussed internal flows in circular tubes 

but many engineering applications involve non-circular cross 

section. In fully developed turbulent flow in tubes, (Re
D
 > 

2300), the heat-transfer and pressure-drop characteristics are 

governed largely by the extremely thin viscous sublayer next 

to the tube wall. The velocity and temperature distribution 

over most of the cross-sectional flow area is relatively flat. 

Under these circumstances, the heat-transfer rate from the 

tube wall would be almost independent of the cross-sectional 

shape of the tube in turbulent flow. Circular tubes can, therefore, be used even for non-circular ducts 

with reasonable accuracy provided Pr > 0.7. The only difference is that the diameter of the circular tube 

will be replaced by hydraulic diameter (D
h
), also known as equivalent diameter (D

e
), defined as follows:

4
(or ) c

h e

A
D D

P
= (8.39)

where A
c
 = area of cross section

P = wetted perimeter

Incidentally, for a circular tube 2

4
cA D

p
=  and P = pD so that 24 /

4
hD D D D

p
p= ¥ = .

The values of D
h
 for some non-circular ducts are presented in the following table.

Table 8.1

S.No.  Cross Section of Geometry Hydraulic Diameter (D
h
)

1.

a

a

Square

A

2.

a

b

Rectangular

2ab

a b+

3.

D

Semicircular

2

Dp

p +

Turbulent core region

Viscous sublayer

r

0

u r( )

Velocity profile for turbulent flow 

in a tube

contd.



Forced Convection—Internal Flow 553

4.

Di

Do

Concentric annlus

D
o
 – D

i

5.

D B

Circular tube with
square inserted inside

( 2)

8

D p

p

-
+

6.

bb

b
Triangular

3

b

8.7.1 ● Fully Developed Laminar Flow

For laminar flow through various non-circular tubes, the Nusselt number relations are given in Table 8.2 

for both constant heat flux and constant wall temperature boundary conditions.

Table 8.2

(D
h
 = 4A

c
/P, Re = VD

h h
/k).

Tube Geometry 

(Cross Section of Tube) a/b or qo

Nusselt Number Friction Factor, f

T
w
 = Const. q

w
 = Const

Circle  
D –– 3.66 4.36 64.00/Re

Rectangle

a

b

a/b

1

2

3

4

6

8

2.98

3.39

3.96

4.44

5.14

5.60

7.54

3.61

4.12

4.79

5.33

6.05

6.49

8.24

56.92/Re

62.20/Re

68.36/Re

72.92/Re

78.80/Re

82.32/Re

96.00/Re

contd.

contd.
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Ellipse

a

b

a/b

1

2

4

8

16

3.66

3.74

3.79

3.72

3.65

4.36

4.56

4.88

5.09

5.18

64.00/Re

67.28/Re

72.96/Re

76.60/Re

78.16/Re

Triangle Isoceles

q

θ

100

300

600

900

1200

1.61

2.26

2.47

2.34

2.00

2.45

2.91

3.11

2.98

2.68

50.80/Re

52.28/Re

53.32/Re

52.60/Re

50.96/Re

8.7.2 ●

In many heat-transfer applications, one fluid passes through an annular space formed by the inner and 

outer surfaces of two concentric tubes while the other fluid passes through the inner tube.

Consider a concentric annulus of inner diameter D
i
 and outer 

diameter D
o
. The hydraulic diameter of the annulus is

2 2
14 4 ( )/4

( )

c o
h o i

o i

A D D
D D D

P D D

p

p

-
= = = -

+
(8.40)

Annular flow is associated with two Nusselt numbers—Nu
i
,

on the inner tube surface and Nu
o
 on the outer tube surface 

– since it may involve heat-transfer on both surfaces. The 

Nusselt numbers for fully developed laminar flow are with one 

surface isothermal (constant temperature) and the other surface 

adiabatic (insulated). The convection coefficients for the inner 

and the outer surface can be obtained from the Nusselt numbers 

given in Table 8.3.

andi o
i o

h h

Nu k Nu k
h h

D D
= = (8.41)

We must note that for fully developed turbulent flow, the inner and outer convection coefficients may be 

assumed equal to each other, and the tube annulus can be considered a non-circular duct with a hydraulic 

diameter of D
h
 = D

o
 – D

i
. The Nusselt number in 

this case can be determined from an appropriate 

turbulent flow relation like the Dittus–Boelter or 

Gnielinski correlation.

Thus, for a circular pipe, the hydraulic diameter 

reduces to the ordinary diameter. For turbulent 

flows, any of the empirical correlations for circular 

tube give reasonably accurate results provided the 

diameter in both the Nusselt and Reynolds numbers 

is replaced by the hydraulic diameter.

contd.

Table 8.3

laminar flow in an annulus with one 

surface insulated and the other at 

constant temperature.

D
i
 / D

o
Nu

i
Nu

o

0 –– 3.66

0.05 17.46 4.06

0.10 11.56 4.11

0.25 7.37 4.23

0.50 5.74 4.43

1.00 4.86 4.86

Outer tube

Inner tube

Fluid 2

Annulus (Fluid 1)

Do Di

concentric pipes
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8.8 ❏

The empirical correlations for developing laminar flow in the entrance region for the average Nusselt 

number under constant wall temperature through a circular tube are now presented below:

8.8.1 ● Hydrodynamically Developed, Thermally Developing Flow

When the velocity profile is fully developed in an unheated starting length, a correlation due to Hausen, 

the average heat-transfer coefficient is a circular pipe with constant wall temperature is often used:

2/3

0.0668
3.66 Entrance region, constant wall temperature

1 0.04

Unheated starting length 2300

Gz
Nu

Gz

Re

= +
+

<

(8.42)

where Graetz number 
D

Gz RePr
L

= =

Lh Lt

d dt

Isothermal section

x

Heat transfer section

0

Development of boundary layers with an unheated starting length

Properties are evaluated at the bulk mean fluid temperature. If the pipe is long, the Graetz number becomes 

very small and the correlation approaches Nu = 3.66, which is the result for fully developed flow.

If the hydrodynamic development length, L
h

ª 0.05 Re
D
D is much smaller than the length of the tube, 

the flow is assumed to be fully developed and the velocity profile is already developed. Then the thermal 

development length, L
t

ª 0.05 Re
D
 Pr

D
 should be calculated. If it is comparable to or much greater than 

the tube length, then the temperature profile is still developing.

8.8.2 ● Hydrodynamically and Thermally Developing Flow

0.14
1/3

1/3 0.14

2300

Nu 1.86 0.48 16700

0.0044 9.75

2
/

w

w

D

w

Re

Gz Pr

Re Pr

L D

m

m
m

m

m

m

< ¸
Ê ˆ Ô= < < ÔÁ ˜Ë ¯ ˝

Ê ˆ Ô< <Á ˜ ÔË ¯ ˛

Ê ˆ Ê ˆ >Á ˜ Á ˜Ë ¯ Ë ¯

(8.43)
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Heat-transfer section

d

dt

0 x

Lh

Lt

Simultaneously developing velocity and thermal profiles.

All properties in this equation are evaluated at the bulk mean fluid temperature except m
w
, which is the 

viscosity evaluated at the pipe-wall temperature. This equation does not reduce to the correct limit for 

long pipes. It should be used only when it gives Nusselt numbers larger than 3.66. If the Nusselt number 

predicted by the equation falls below 3.66 then the flow may be presumed to be fully developed and a 

constant value of 3.66 should be used.

If the hydrodynamic development length, L
h

ª 0.05 Re
D
D is much smaller than the length of the tube, 

the flow is assumed to be fully developed and the velocity profile is already developed. Then the thermal 

development length, L
t

ª 0.05 Re
D

Pr D should be calculated. If it is comparable to much the greater 

temperature profile is still developing.

The correlation should, therefore, be used only when it gives Nusselt numbers larger than 3.66. If the 

Nusselt number predicted by the equation falls below 3.66, then the flow may be presumed to be fully 

developed and a constant value of 3.66 should be used. Figure 8.15 shows the variation of local Nusselt 

number with the reciprocal of Graetz number for constant heat flux and constant wall temperature conditions.

We can see that the local Nusselt number decreases with increasing values of x and that in both 

situations, it attains the asymptotic value of 4.364 for constant heat flux and 3.657 for constant wall 

temperature corresponding to fully developed temperature profile.

Constant wall temperature (CWT)

Uniform heat flux (UHF)
4.364

3.657

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
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The velocity profile is fully developed.



Forced Convection—Internal Flow 557

Figures 8.16 and 8.17 depict the developing and fully developed temperature profiles in pipe flow for 

both cases. For constant property fluids, the Nusselt number and heat-transfer coefficient are conetant in 

fully developed flow.

qw = const

( – ) = constT Tw b

Tb

Tw

q Tw or

x

Thermal entrance region Fully developed region

Tw

Tw Tw Tw Tw

Developing and fully developed temperature profiles in pipe flow: Constant wall heat flux

Developing and fully developed temperature profiles in pipe flow : Constant wall temperature
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We present here some equations to calculate the local and average Nusselt numbers for both cases of 

laminar tube flow.

Constant wall heat flux:

Local Nusselt Number Nu
D
 = 1.302(x*)–1/3 – 0.5 for 0.00005 < x* < 0.0015

*

* 1/3 *

* 0.506 41 *

1.302( ) 0.5 for 0.00005 0.0015

4.364 8.68(1000 ) for 0.0015

D

x

Nu x x

x e x

-

- -

= - < <

= + >

Average Nusselt Number DNu  = 1.953(x*)–1/3 for x* < 0.03

= 4.364 + 0.0722/x* for x* > 0.03

x* = Dimensionless axial distance = (x/D)/Re
D
 Pr

Thermal entrance length (L
t
/D) = 0.04305 Re

D
 Pr

Constant wall temperature:

Local Nusselt Number Nu
D
 = 1.077(x*)–1/3 – 0.7 for x* < 0.01

* 0.488 57.2 *3.657 6.874(1000 )x e x
- -= + for x* > 0.01

Average Nusselt Number * 1/31.615( ) 0.2DNu x
-= - for 0.005 < x* < 0.03

= 3.657 + 0.0499/x* for x* > 0.03

Thermal entrance length (L
t
/D) = 0.03347 Re

D
 Pr

8.9 ❏

Liquid metals with very low Prandtl numbers (of the order of 0.01) have high thermal conductivities 

and high heat-transfer rates can be obtained with these fluids. High rates of heat removal from a limited 

space make them suitable for applications like nuclear reactor. Compared to water and other organic 

coolants, liquid metals continue to remain in the liquid state even at high temperatures. This can be 

helpful in compact heat exchanger design. The only drawback is that these are difficult to handle due to 

their corrosive nature and violent action if they come in contact with water or air.

It is important to note that due to very small ratio of d/d
t
 (thermal boundary layer thickness being 

much larger than velocity boundary layer thickness), and Pr < 0.5, the usual correlations for turbulent 

flow through tubes are not applicable for liquid metals.

For fully developed turbulent flow of liquid metals in smooth tubes, the following correlations are 

recommended.

0.40.625( )D DNu Re Pr=

[constant wall heat flux, properties at bulk mean temperature, L/D > 60 and 102 < Re
D

Pr < 104]

0.85.0 0.025( )D DNu Re Pr= +

[constant wall temperature, properties at bulk mean temperature, L/D > 60 and Re
D
 Pr > 102]

0.8274.82 0.0185( )D DNu Re Pr= +

[constant heat flux, properties at bulk mean temperature, 3.6 ¥ 103 < Re
D
 < 9.05 ¥ 105 and 

102 < Re
D
 Pr < 104]
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The more recent correlations recommended for calculating the local Nusselt number for fully developed 

turbulent flows for fluids with Pr < 0.1 are due to Notter and Sleicher. They are

0.85 0.934.8 0.0156D DNu Re Pr= + (constant wall temperature boundary condition)

0.85 0.936.3 0.067D DNu Re Pr= + (constant heat flux boundary condition)

These correlations are valid for 104 < Re
D
 < 106 and for 0.004 < Pr < 0.1. Properties are evaluated at 

the local bulk mean fluid temperature.

8.10 ❏

In a turbulent flow, the transport of heat is similar to the transfer of momentum. Eddies transport both 

momentum and heat.

8.10.1 ● Heat-transfer for turbulent Flow in Circular Tubes

The equation for shear stress in the fluid was then written as

( )M

du

dy
t r e n= + (8.44)

where the subscript M denotes momentum transfer. When convective heat-transfer takes place in a 

turbulent flow, a significant contribution to the heat diffusion in the fluid is made by the macroscopic 

transport owing to the eddy motion. This contribution is characterized by the eddy diffusivity for heat,

e
H
, which is defined by

( )p H

dT
q C

dy
r e a= + (8.45)

The quantity (rC
p
e

H
) may be considered as an increase in the conductivity of the fluid due to turbulence. 

The ratio, (e
M
/e

H
), is referred to as the turbulent Prandtl number, Pr

t
.

If the Prandtl number equals unity (a = n) and if the eddy diffusivities for heat and momentum are 

assumed equal (Pr
t
 = 1) then the velocity profile and the temperature profile will be similar. The similarity 

of the velocity profile and the temperature profile results in a heat flux distribution, q(y), which is identical 

to the shear stress distribution, t(y). This is known as the Reynolds analogy.

Then dividing Eq. (8.45) by Eq. (8.44) gives

( )

( )

p H

M

C dTq dT

du

e a

t e n

+
=

+

with e
H
 = e

M
 and a = n, we have

p

q
du dT

C t
= - (8.46)
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Integrating from the tube surface to the mean bulk condition, and assuming q/t is constant, equal to q
w
/

t
w
 at the surface, we have

0

or
b

w

TV

w w
w b

p w p wT

q q V
du dT T T

C Ct t
= - = -Ú Ú (8.47)

The heat flux at the wall can be written as

( ) /w w b w b wq h T T T T q h= - fi - = (8.48)

and the shear stress at the wall can be expressed as

2( )

4 4

c
w

AP P D P D

L P DL L

p
t

p

D D D
= = = ◊

where DP = the pressure drop 
2

2

L V
f

D
r= ◊

where V is the mean flow velocity

so that 2

8
w

f
Vt r=

From equations (8.47) and (8.48),

or

2

8

8

w w
p

p w

p

q q V f V
h C

h C V

h f

C V

r
t

r

= fi =

=

Stanton number is defined as

\

m r

r m r r
= = =

= =
8 2

D

D p p

f

Nu hD k h
St

Re Pr k VD C C V

Cf
St (8.49)

This expression as called the Reynolds analogy for tube flow and is valid for Pr ª 1. It gives reasonably 

good results for fluids with Pr close to unity, such as gases. It is valid for both laminar and turbulent flows.

For fluids with Pr different from unity, the dependence on Prandtl number is of the order Pr2/3. The 

Reynolds analogy then may be modified by this factor to yield in terms of the Stanton number.

2/3 2/3

8 2

fD

D

CNuf
St Pr Pr

Re Pr
= = ◊ = (8.50)

All the fluid properties in this equation are evaluated at (T
b
 + T

w
)/2 except C

p
 in the Stanton number which 

is evaluated at the bulk mean temperature of the fluid. The above expression is called the Colburn analogy.

The analogy between momentum and heat-transfer in tube flow has enable to obtain a relation between 

the heat-transfer coefficient, h, and the fluid friction factor, f. Thus, h can be evaluated from the knowledge 

of f and vice versa.
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Illustrative Examples

(A) Circular and Non-circular Tubes: Laminar Flow

 A fully developed laminar velocity profile exists in a circular pipe. A constant heat 

flux q
w
 is added to the fluid, which is initially at a uniform temperature T

o
. Show that the length of pipe 

required to achieve a fully developed temperature profile is given by

u D
L

2
max7

384 a
= [IIT, Roorkee]

Solution

Known Fully developed laminar velocity profile in a circular pipe. Constant wall heat flux is added 

to the fluid.

Find Length of pipe required to achieve fully developed temperature profile. (Thermal entrance 

length).

R
r

u r( )

r = 0

umax

To To

TwThermal entrance region

L

x

Heat transfer begins

Fully developed
temperature profile

qw = const

u V uav = = (1/2) max

D

Schematic

Assumptions (1) Steady, incompressible, laminar flow. (2) Fully developed velocity profile. (3) Uniform 

surface heat flux.

Analysis For constant wall heat flux boundary condition, 
T

x

∂
∂

 = const = 
max

4 wq

u kR

a

 The temperature distribution is given by 

\

2 4 2 4
max

max 2 2
max

2 4

2

41
or

4 2 216 8

2

2 8

w
o o

w
o

q uT r r r r
T T u T T

u kRR R

q r r
T T

kR R

a

a a

È ˘ Ê ˆ∂Ê ˆ- = - = + ◊ -Á ˜ Í ˙ Á ˜Ë ¯ Ë ¯∂ Î ˚

Ê ˆ
= + -Á ˜Ë ¯

x

 Enthalpy flowing out

r p

r p

r p

Ï ¸Ê ˆ Ê ˆÔ Ô
= - + -Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ô ÔÓ ˛

È ˘Ê ˆ Ê ˆ
= + - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˙̊

È Ê ˆ
= ◊ + - - -Í Á ˜Ë ¯Î

Ú
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2 4 6 4 6

max 2 2 2

2
1 2

2 8

2 2
2 – –

2 8 2 8

2 2
2 –

2 8 448 12

R

w
p o

o

R

w o w
p o

o

o w o w
p

qr r r
u C T rdr

kRR R

q T r qr r r r
u C T r dr

kR kRR R R R

T R q T qR R R R R
u C

kR kRR R R

˘Ê ˆ
˙Á ˜Ë ¯ ˙̊

8

464R

Illustrative Examples
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r p

r p

È ˘Ê ˆ= + ◊ - - +Í ˙Á ˜Ë ¯Î ˚
È ˘

= + ◊Í ˙
Î ˚

2
4

max

32

max

2 1 1 1 1
2

4 8 48 12 64

2 14
2

4 384

w
p o

w
p o

qR
u C T R

kR

q RR
u C T

k

 Enthalpy flowing in

2 2

max max2
1 2 2

4

R

p o p o

o

r R
u C T rdr u C T

R
r p r p

Ê ˆ
= - =Á ˜Ë ¯Ú

 Enthalpy flowing out; Enthalpy flowing in

3

max

2 14
2 Heat transferred into the fluid,

384

2

w
p

w

q R
u C

k

Q RL q

r p

p

È ˘
= ◊ =Í ˙

Î ˚
= ◊

 Thermal entrance length is then determined from

2
max 2 max

2
max

14 28
2 [since / ]

384 384

28

4 384

p

p

u C u R
L R k C

k

u D

r
a r

a

a

= ◊ = ◊ ∫

= ◊

 Hence, =
2

max7

384 a
u D

L QED

 One concept used for solar-energy collection involves placing a tube at the focal 

point of a parabolic reflector and passing a fluid through the tube. This arrangement can be approximated 

as a tube of 60 mm diameter on a sunny day with constant surface heat flux of 1900 W/m2. Pressurized 

water enters the tube at 20°C with a flow rate of 0.01 kg/s. (a) Calculate the tube length required to 

obtain an outlet temperature of 60°C. (b) Assuming fully developed conditions, determine the surface 

temperature at the tube exit. Properties of water are:

 C
p
 = 4181 kJ/kg°C, k = 0.670 W/m°C , m = 0.355 ¥ 10–3, Pr = 2.22

Solution

Known Flow of water through a tube with uniform wall heat flux.

Find (a) Tube length, L (m); (b) Tube surface temperature at exit, T
w
 (L) (oC).

qw = 1900 W/m2

x L=

Tbe = 80°C

x = 0

Tbi = 20°C

Water

D = 60 mm

T Tw L we( ) =

m = 0.06 m
.

Schematic
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Assumptions (1) Steady operating conditions. (2) Constant properties. (3) Fully developed conditions at 

tube exit. (4) Constant surface heat flux.

Analysis (a) For constant wall heat flux condition:

( ) ( )w p be biQ q DL mC T Tp= = -

 Length of the tube required is

2

(0.01 kg/s)(4181 J/kg C)
( ) (80 20) C

( ) (1900 W/m )( 0.06 m)

.  

p

be bi
w

mC
L T T

q Dp p

∞
= - = - ∞

¥
= 7 0 m  (Ans.) (a)

(b) Reynolds number,

3

4 4 0.01 kg/s
598 ( 2300)

0.06 m 0.355 10 kg/m s

m
Re

Dp m p -

¥
= = = <

¥ ¥ ¥

 The flow is laminar.

 For fully developed laminar flow through a tube with constant wall heat flux condition, 

we have

48

11

hD
Nu

k
= =

 Hence, the convection heat-transfer coefficient is

248 48 0.670 W/m°C
48.73 W/m °C

11 11 0.06 m

k
h

D
= = ¥ =

 The tube surface temperature at the exit is determined from

q
w
 = h(T

we
 – T

be
)

 Therefore,

2

2

1900 W/m
( ) 80 C .

48.73 W/m

w
we w be

q
T T L T

h
= = + = ∞ + = 119 0 C∞  (Ans.) (b)

Comment Thermal entry length, L
t

ª 0.05 Re
D
 PrD = 0.05 ¥ 598 ¥ 2.22 ¥ 0.06 = 3.98 m. Since 

the tube length L = 7.0 m is greater than L
t
 = 3.98 m, the assumption of fully developed 

conditions is appropriate.

 Hot air flowing through a metal pipe of 20 mm diameter is cooled at a constant 

rate per unit length of pipe. At a particular section, denoted (A), the air velocity in the centre of the pipe 

is found to be 2 m/s and the wall temperature, as measured by a thermocouple on the inner surface of 

the pipe, is 250°C. At a section, denoted (B), situated 1 m downstream from (A), the wall temperature is 

found to be 200°C. Estimate the mean air temperature at section (B), using the following properties of 

air at 245°C: C
p
 = 1.032 kJ/kg °C, k = 0.0407 W/m °C, r = 0.6817 kg/m3, m = 2.7417 ¥ 10–5 kg/m s

Solution

Known Hot air is being cooled as it flows through a metal pipe under constant heat flux conditions.

Find Mean air temperature at section (B), T
b,B

.
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Hot air

L = 1 m

Tb  A,

(270°C)

Tw  A,

(250°C)

Tb  B,

(220°C)

Tw  B,

(200°C)

Air

Wall

L = 1 m

VCL
= 2 m/s

A B
D = 20 mm

Tw A, = 250°C Tw B, = 200°Cqw = const

Schematic

Assumptions (1) Steady flow conditions exist. (2) The wall heat flux is uniform. (3) Air is an ideal gas. 

(4) The inner surfaces of the pipe are smooth. (5) Flow is fully developed.

Analysis An indication of whether the flow is laminar or turbulent is given by the Reynolds number 

Re = 
VDr

m
 where V is the mean fluid velocity. The centreline velocity of air, i.e., maximum 

flow velocity is 2 m/s. The mean flow velocity will depend on the velocity profile. For 

laminar flow:

2

max max2
1 and at 0 (centreline velocity, )LC

r
u V u V r V

R

Ê ˆ
= - = =Á ˜Ë ¯

The average velocity, max

1 1
1 m/s

2 2
cL

V V V= = =

Assuming laminar flow, Re
D
 = rV D/m

\
3 3

5

(0.6817 kg/m )(1 m/s)(20 10 m)
497.28

2.7417 10 kgm/s
DRe

-

-

¥
= =

¥
This confirms (as Re

D
 is less than Re

crit
 of about 2300) that the flow is laminar.

As q
w
 is given as constant along the length of the pipe,

q
w
 = q

A
 = q

a
 = h(T

b
 – T

w
) = h(T

b
 – T

w
)

B

or T
b, A

 – T
b, B

 = T
w, A

 – T
w, B

 = (250 – 200)°C = 50°C

The mean heat flux through the pipe wall between sections (A) and (B) equals the change 

in the enthalpy of air.
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, ,[ ]p b A b B

W
s s

mC T TQ
q q

A A

-
= = =

 But, the mass-flow rate of air,

2 and
4

c sm A V D V A DL
p

r r p= = =

 Hence,

2
, ,

3

[ ] ( )4

4

(0.6817 kg/m )(0.02 m)(1 m/s)(1032 J/kg C)(250 200) C

4 1 m

p b A b B
p w,A w,B

D V C T T DVC T T
q

DL L

p
r r

p

¥ ¥ - -
= =

∞ - ∞
= =

¥
2

176 W/m

 The heat-transfer coefficient may be found from the equation 
48

11
D

hD
Nu

k
= =  for laminar 

flow through a pipe under uniform surface heat flux conditions.

 At section (B), , ,b B w B

q
T T

h
= +

 where h = 248 W 1
0.0407 8.88 W/m C

11 m C 0.02 m
D

k
Nu

D
= ¥ ¥ = ∞

∞
 The mean air temperature at section (B) is then

2

, 2

176 W/m
200 C

8.88 W/m C
b BT = + ∞ =

∞
220 C∞ (Ans.)

Comment We note that 

T
b,A

 = 50 + 220 = 270°C and T
bm

 = 
1

2
(270 + 220) = 245°C

 The properties were given at 245°C indeed.

 A single-tube heat exchange device is to be designed to cool blood bypassed from 

a patient from 40 to 30°C by passing the fluid through a coiled tube placed in a water ice mixture. The 

tube diameter is 2.5 mm and the volume flow rate is 0.1 litre per minute. Neglecting entrance effects 

and assuming fully developed conditions, calculate (a) the Prandtl number, and (b) the total heat transfer 

rate lost from the blood while passing through the tube. Use the following properties of blood at the 

bulk mean temperature of 35°C: r = 1000 kg/m3, n = 7 ¥ 10–7 m2/s, k = 0.5 W/m K, C
p
 = 4.0 kJ/kg K

If the free convection effects on the outside of the tube are included, the mean overall heat transfer 

coefficient between the blood and the water ice mixture is estimated to be 300 W/m2K. (c) Determine the 

tube length required to obtain the exit blood temperature.

Solution

Known Blood is cooled while passing through a tube placed in water ice mixture (constant tube 

surface temperature).

Find (a) Prandtl number. (b) Heat-transfer rate. (c) Tube length if U = 300 W/m2 K.
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D = 2.5 mm

L

30°C40°C

Ts = 0°C
Blood

Schematic

Assumptions (1) Steady operating conditions. (2) Entrance effects are negligible and fully developed 

flow prevails. (3) Constant properties and heat transfer coefficient.

Analysis Reynolds number,

3 3

3 7 2

–4 4 4V 4(0.1 10 m /min)(1 min/60 s)

(2.5 10 m)(7 10 m /s)

1212.6 ( 2300)

D

m m
Re

D D Dp m p nr p n p

-

- -
¥

= = = =
¥ ¥

= <

Hence, the flow is laminar.

For laminar and fully developed flow conditions for constant tube wall temperature:

Average heat-transfer coefficient,

2

3

3.66(0.5 W/mK)
732 W/m K

2.5 10 m
h -= =

¥

Prandtl number,

7 2 3(400 J/kgK)(7 10 m s)(1000 kg/m )

0.5 W/m K

p pC C
Pr

k k

m nr -¥
= = = = 5.60 (Ans.)

The total heat-transfer rate can be obtained from an overall energy balance.

Knowing the inlet and exit temperatures of blood, the rate of heat transfer from the blood 

is determined to be

–( ) V ( )p be bi p bi beQ mC T T C T Tr= - - = -

= (1000 kg/m3) [(0.1 ¥ 10–3/60)m3/s] (4000 J/kg K) [(40 – 30) K]

= 66.67 W (Ans.)

Also, Q  = U A (LMTD)

(40 0) (30 0)
34.76 C

ln(40/30)
ln

i e

i

e

T T
LMTD

T

T

D - D - - -
= = = ∞

DÊ ˆ
Á ˜DË ¯

and, surface area, A = pDL

Therefore, the tube length required is, L = 
( )

Q

L D LMTDp
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 Incorporating free convection effects on the tube surface, the mean overall heat transfer 

coefficient is specified as 300 W/m2 K.

 Hence, L = 
2 3

66.67 W

(300 W/m K)( 2.5 10 m)(34.76 C)p - =
¥ ¥ ∞

0.814 m (Ans.)

B: Circular and Non-circular Tubes: Turbulent Flow

 Oil is heated from 22°C to 56°C by passing through a tube of 4 cm diameter. Find 

out the length of the tube required, for an oil flow rate of 60 kg/min, if the surface temperature of the 

tube wall is maintained at 100°C. Assume the following properties of oil at the mean bulk temperature:

r = 895 kg/m3, k = 0.151 W/m K, n = 0.40 ¥ 10–6 m2/s, C
p
 = 2.177 kJ/kg K [IES 1997]

Solution

Known Oil is heated in a tube under constant wall temperature condition.

Find Tube length required, L (m).

A Pdxs =

C.V.

Tw = 100°C

x dx

L = ?

Tbe = 56°C

D = 4 cm

Tbi = 22°C

Schematic

m = 60 kg/min
.

Assumptions (1) Steady operating conditions. (2) Fully developed turbulent flow. (3) Constant oil 

properties.

Analysis Reynolds number, Re
D
 = 

VD

n
, Mass flow rate, 2

4
m D V

p
r=

\ Mean velocity, 
2 2

4 4 4
and D

m mD m
V Re

DD D rp nrp rp n
= = =

\ 
3 6 2

6 2 3

4(60/60 kg/s)

(895 kg/m )( 0.04 m)(0.4 10 m /s)

88 913.3 ( 2300) The flow is .

(2177 J/kgK)(0.4 10 m /s)(895 kg/m )

0.151 W/m K

5.16 (0.7 100)

D

p p

Re

turbulent

C C
Pr

k k

Pr

p

m nr

-

-

=
¥ ¥

= > fi

¥
= = =

= < <
 One can use the Dittus–Boelter equation to determine h.

0.8 0.40.023( ) ( )D D

hD
Nu Re Pr

k
= =  (n = 0.4, as the oil is being heated)
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\ 0.8 0.4 20.151 W/m K
(0.023)(88913.3) (5.16) 1523.6 W/m K

0.04 m
h

Ê ˆ= =Á ˜Ë ¯

 To find out the tube length, we write the energy balance on the elemental control volume 

(CV) at a distance x from one end as shown in the schematic.

 or 

L

0

( )( )

or ln
be

bi

p b w b

T

b w bi

p w b p w beT

mC dT h Pdx T T

dT T ThP hPL
d

mC T T mC T T

= -

-Ê ˆ= = Á ˜- -Ë ¯Ú Úx

 Tube length required,

ln ( )

(60/60)kg/s(2177 J/kgK) 100 22
ln .

(1523.6 W/m K)( 0.04 m) 100 56

p w bi

w be

mC T T
L P D for a circular tube

h D T T
p

p

p

-Ê ˆ
= =Á ˜-Ë ¯

-Ê ˆ= =Á ˜¥ Ë - ¯
6 5 m  (Ans.)

 Check:  
6.5

162.5 50
0.04

L

D
= = > Hence, OK.

 (a) Consider the flow in a circular tube of diameter D and length L whose wall 

is maintained at a constant temperature T
w
 with the fluid inlet and exit temperatures of T

bi
 and T

be

respectively. Show that, T
be

 = T
w
 – (T

w
 – T

bi
)e–4St L/D where St is the Stanton number.

 (b) Ethylene glycol is cooled from 65 to 40°C while flowing at 10 m/s through a 30 mm ID pipe 

with a constant wall temperature of 20°C. Determine the length of the pipe required and the resulting 

pressure drop.

Properties of ethylene glycol at 52.5°C are

r = 1092.5 kg/m3, m = 0.649 ¥ 10–2, Pr = 63.3

At 20°C, m
s
 = 2.2 ¥ 10–2 kg/m s

Solution

Known Fluid flow through a tube with constant wall temperature.

Find (a) To prove that T
be

 = T
w
 – (T

w
 – T

bi
) exp [–4 St L/D], (b) Length of pipe and pressure 

drop.

Schematic

x T T= 0, =b bi

DC.V.Tb T T+ d bb

Tw

x dx

L

x L  T T= , = beb

Esl

.

Ethylene Glycol:

= 0.03 m

= 65°C

= 20°C

D

T

T
bi

w

= 10 m/s

= 40°C

V

Tbe

Assumption (1) Steady operating conditions. (2) Constant properties. (3) Uniform and constant tube 

surface temperature. (4) Fully developed turbulent flow.
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Analysis (a) Energy balance for an elemental control volume shown in the schematic gives

( )( )( )p b w bdQ mC dT h x Ddx T Tp= = -

Rearranging,

( )
( )

b

w b p

dT D
h x dx

T T mC

p
=

-

Integrating this between, x = 0 and x = L, one gets

0

( )

ln ( )

be

bi

T L

b

w b pT

w bi s

w be p p

dT D
h x dx

T T mC

T T hADhL

T T mC mC

p

p
p

=
-

-È ˘
= = =Í ˙-Î ˚

Ú Ú

s
DL A

where the average heat-transfer coefficient has been defined as 

0

1
( )

L

h h x dx
L

= Ú .

It follows that

expw be s

w bi p

T T hA

T T mC

- -È ˘= Í ˙- Î ˚
(A)

where A
s
 is the total heat transfer surface area. 

For the tube, 
2

4

D
m V

p
r

Ê ˆ
= Á ˜Ë ¯

 and, hence,

2

( ) 4
4

( /4)

s

p pp

hA h DL h L L
St

mC VC D DD VC

p

rr p
= = =

where St stands for Stanton number, a non-dimensional parameter. The Stanton number is 

related to three dimensionless parameters as shown below:

p p

Nu hD k h
St

Re Pr k VD C VC

m

r m r
= = =

Equation (A) can then be expressed as

-= - - 4 /
( )

St L D

be w w bi
T T T T e Hence proved.

(b) Using the Sider–Tate correlation:

0.14
0.8 1/30.027Re

w

Nu Pr
m

m

Ê ˆ= Á ˜Ë ¯

where
3

2

(1092.5 kg/m )(10 m/s)(0.03 m)

0.649 10 kg/ms

VD
Re

r

m -= =
¥

= 50 500   (< 2300)  fi  Turbulent flow

\
0.14

2
0.8 1/3

2

0.649 10
0.027(50500) (63.3) 525

2.2 10

525
0.000164

50 500 63.3

Nu

Nu
St

RePr

-

Ê ˆ¥
= =Á ˜Ë ¥ ¯

= = =
¥
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 We note that

4 40 20 4 0.000164
exp or ln

65 20 0.03

be w

bi w

T T St L L

T T D

- - - ¥ ¥È ˘ Ê ˆ= = -Á ˜Í ˙- Î ˚ Ë - ¯

 The pipe length required,

0.03 ln(20/45)

4 0.000164
L

- ¥
= =

¥
37.0 m

(Ans.) (b)

 Pressure drop, 21

2

L
P f V

D
r

Ê ˆD = Á ˜Ë ¯

 where 2 2(0.79 ln 1.64) [0.79 ln 50 500 1.64] 0.0209f Re= - = - =

\
237 1092.5 10

0.0209 ( )
0.03 2

P Pa
¥Ê ˆD = =Á ˜Ë ¯ 1409 kPa (Ans.) (b)

 Lubricating oil at a temperature of 60°C enters a 1 cm diameter tube with a velocity 

of 0.3 m/s. The tube surface is maintained at 28°C. Assuming that the oil has the following average 

properties, calculate for the tube length of 10 m, (a) the outlet temperature of the oil, (b) the heat-transfer 

rate, (c) the log mean temperature difference, and (d) the arithmetic mean temperature difference.

r = 865 kg/m3 C
p
 = 1.78 kJ/kg°C, k = 0.14 W/m K, n = 9 ¥ 10–6 m2/s

Solution

Known Oil flows through a tube under specified conditions.

Find (a) T
be

(°C), (b) (W)Q , (c) DT
lm

 and (d) DT
am

.

Assumptions (1) Steady-state conditions prevail. (2) Constant tube wall temperature. (3) Constant 

properties. (4) Thermally developing, laminar flow.

Analysis Reynolds number

6 2

0.3 m/s 0.01 m
333.3

9 10 m /s
D

VD
Re

n -
¥

= = =
¥

 Prandtl number,

6 2 31780 J/kgK 9 10 m /s 865 kg/m
98.98

0.14 W/m K

pC
Pr

k

nr -¥ ¥ ¥
= = =
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Hydrodynamic entry length,

0.0575 0.0575 333.3 0.01 mh DL Re D= = ¥ ¥ = 0.192 m

Thermal entry length,

0.03347 0.03347 333.3 98.98 0.01 mt DL Re Pr D= = ¥ ¥ ¥ = 11 m

For L
h
 << L

t
, the velocity profile may be assumed to be already developed and only the 

temperature profile is developing.

Accordingly to evaluate the convection coefficient, we use the Hausen’s correlation,

2/3

0.0668( / )
( , , / ) 3.66

1 (0.04)[( / ) ]

D
D D

D

D L Re Pr hD
Nu f Re Pr D L

kD L Re Pr
= = + =

+

Substituting proper values,

2/3

0.0668(0.01/10)(333.3)(98.98)
3.66

1 (0.04)[(0.01/10)(333.3)(98.98)]

3.66 1.56 5.22

DNu = +
+

= + =

Average heat transfer coefficient,

0.14 W/mK 5.22

0.01 m
D

k
h Nu

D

¥
= = = 2

73.1W/m K

Mass-flow rate of oil flowing through the tube,

2 3 2 2(865 kg/m ) 0.01 m (0.3 m/s) 0.02038 kg/s
4 4

m D V
p p

r
Ê ˆ= = ¥ =Á ˜Ë ¯

From energy balance:

or

[( ) ( )]
( ) ( ) ( )

ln

ln ( )

bi w be w
p bi be s m

bi w

be w

bi w
p

be w

T T T T
Q mC T T h A T h DL

T T

T T

T T
mC h DL

T T

p

p

- - -
= - = D =

-Ê ˆ
Á ˜-Ë ¯

-Ê ˆ =Á ˜-Ë ¯

l

Exit oil temperature,

2

( )exp

73.1 W/m K 0.01 m 10 m
28 C (60 28) C exp

0.02038 kg/s 1780 J/kgK

be w bi w
p

h DL
T T T T

mC

pÊ ˆ
= + - -Á ˜Ë ¯

Ê ˆ- ¥ ¥
= ∞ + - ∞ Á ˜Ë ¥ ¯

= 45 C∞ (Ans.) (a)

Heat-transfer rate,

Q  = (0.02038 kg/s) (1.78 ¥ 103 J/kg °C) (60 – 45)°C = 544 W (Ans.) (b)

Log mean temperature difference,

ln( / )

i e
m

i e

T T
T

T T

D - D
D =

D Dl
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 where DT
i

∫ T
bi
 – T

w
 = (60 – 28)°C = 32°C and DT

e
∫ T

be
 – T

w
 = (45 – 28)°C = 17°C

\ 32 17

ln(32/17)
mT

-
D = = 23.7 C

l
∞ (Ans.) (c)

 Arithmetic mean temperature difference,

1 32 17
( )

2 2
am i eT T T

+
D = D + D = = 24.5 C∞ (Ans.) (d)

Comment Check: Q = h(pDL)DT
lm

 = (73.1 W/m2 K) (p ¥ 0.01 m ¥ 10 m) (237°C) = 544 W

 Air at 2 bar and 200°C is heated as it flows through a 30 mm diameter tube at 

a velocity of 15 m/s. (a) Compute the heat-transfer rate per metre length of the tube if a constant wall 

heat flux condition is maintained and the wall temperature is 20°C above the air temperature throughout 

the length of the tube. (b) Determine the increase in the bulk temperature over a 3 m length of the tube

Thermophysical properties of air to be used are:

k = 0.03779 W/m K, m = 25.77 ¥ 10–6 kg/ms, C
p
 = 1.023 kJ/kg K, Pr = 0.6974

Solution

Known Heating of air flowing through a tube with prescribed velocity under constant wall heat 

flux condition.

Find (a) Heat rate per m tube length, ;
Q

L
 (W/m) (b) Increase in bulk temperature over 3 m 

length tube, DT
b
 (°C).

Tbi = 200°C

Schematic

Tbe

D = 0.03 m qw = const

LP = 2 bar

Air

Twe = 250°C

Tbe = 230°C

Air

Twi = 220°C

Tbi = 200°C

V = 15 m/s

Wall

Assumptions (1) Steady operating conditions. (2) Constant surface heat flux condition. (3) Air is an ideal 

gas. (4) Constant properties.

Analysis Density of air at 2 bar and 200°C is

2
3

3

3

2 10 kPa
[ 1 kJ 1 kPa m ]

(0.287 kPa m /kgK)(200 273.15)K

1.4728 kg/m

P

RT
r

¥
= = =

+

=



Forced Convection—Internal Flow 573

Reynolds number,

r

m -
= = =

¥

3

6

(1.4728 kg/m )(15 m/s)(0.03 m)

25.77 10 kg/ms
D

VD
Re 25 718

Thus the flow is turbulent.

Using the Dittus–Boelter correlation,

0.8 0.40.023( ) ( )D D

hD
Nu Re Pr

k
= = (n = 0.4 as air is being heated.)

or = =0.8 0.4 2(0.023)(0.03779 W/m K)
(25718) (0.6974) 84.65 W/m K

0.03 m
h

Constant wall heat flux implies that

( ) const ( ) constw w b w b

Q
q h T T T T

A
= = - = fi - =

In this case, (T
w
 – T

b
) = 20°C and is constant all along the length of the tube.

Hence, the heat transfer rate per metre length of the tube is

2( )( ) (84.65 W/m K)( 0.03 m)(20 K)

/

w b

Q
h D T T

L
p p= - = ¥

= 159.6 W m (Ans.) (a)

The heat-transfer rate is also given by

or

( )

( / )

p be bi

p b b
p

Q mC T T

Q Q L L
L mC T T

L mC

= -

Ê ˆ
= D fi D =Á ˜Ë ¯

Mass-flow rate of air through the tube is

3 2 2(1.4728 kg/m ) 0.03 m (15 m/s) 0.0156 kg/s
4

cm A V
p

r
È ˘Ê ˆ= = ¥ =Á ˜Í ˙Ë ¯Î ˚

Bulk temperature increase over 3 m length of the tube is

3

(159.6 W/m)(3 m)

(0.0156 kg/s)(1.023 10 J/kgK)
bTD = =

¥
30 C∞ (Ans.) (b)

Comment

Note that the Dittus–Boelter correlation holds good for both constant wall temperature 

and constant wall heat flux conditions.

It is significant that for constant wall temperature condition:

or

( )
ln

( )exp[ ( )/ ]

w bi

p w be

be w w bi p

T Th DL

mC T T

T T T T h DL mC

p

p

-Ê ˆ= Á ˜-Ë ¯

= - - -

[(T
w
 – T

b
) is not constant throughout the tube length.]
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Air properties are evaluated at the bulk mean temperature, 
1

( )
2

bm bi beT T T
Ê ˆ∫ +Á ˜Ë ¯

. As T
be

was not known initially, the properties of air at 200oC were used. Since DT
b
 comes out 

to be 30oC, T
bm

 = 
1

2
(200 + 230) = 215°C. With properties of air at 215°C, calculations 

can be repeated but without any significant change in the results.

 Water is heated while flowing through a 1.5 cm ¥ 3.5 cm rectangular cross section 

duct at a velocity of 1.25 m/s. The water enters the duct at 40°C. The duct wall surface temperature is 

maintained at 85°C. Determine the length of the duct required to raise the temperature of water by 30°C. 

Use the following correlation:

f / Re Pr
Nu

f Pr2/ 3

( 8)( 1000)

1 12.7 8( 1)

-
=

+ -/
 where f = (0.79 ln Re – 1.64)–2

The properties of water at T
bm

 = 55°C are

r = 985.2 kg/m3 C
p
 = 4.183 kJ/kg K

k = 0.649 W/m K m = 0.504 ¥ 10–3 kg/ms

Solution

Known Water flowing through a rectangular cross-section duct is heated under constant wall 

temperature condition.

Find Length of the duct (m).

Schematic

Tw = 85°C

a = 1.5 cm

Water

Tbi = 40°C
b = 3.5 cm

L = ?

Tbe = 70°C

Rectangular cross section

Tbi Tbe

x L=x = 0

x dx

Control volume energy balance

Ein

.

Est

.

Ein = Qconv

. .
T Tw bi>

Assumptions (1) Constant wall temperature. (2) Fully developed flow. (3) Constant properties. (4) Steady 

state conditions.
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Analysis Reynolds number, eVD
Re

r

m
=

where D
e
 (equivalent diameter) = 

2 3(3.5 cm)(1.5 cm)

(3.5 1.5)cm

ab

a b
=

+ +
 = 2.1 cm

3 2

3

(985.2 kg/m )(1.25 m/s)(2.1 10 m)
51312.5 ( 3000)

0.504 10 kg/m s
DRe

-

-

¥
= = >

¥

The flow is therefore turbulent.

Prandtl number,

3 3 34.183 10 J/kgK 0.504 10 kg/m
3.25

0.649 W/m K

pC
Pr

k

m -¥ ¥ ¥
= = =

Darcy friction factor,

f = (0.79 le Re – 1.64)–2 = (0.79 ln 51 312.5 – 1.64)–2 = 0.02083

Nusselt number,

2/3
2/3

/8( 1000) (0.02083/8)(51312.5 1000)(3.25)
240

1 12.7 /8( 1) 0.02083
1 12.7 (3.25 1)

8

f Re Pr
Nu

f Pr

- -
= = =

+ -
+ -

Convection coefficient,

\

20.649 W/mK
240 7420.8 W/m K

0.021 me

k
h Nu

D
= = ¥ =

Control volume energy balance:

in

( )( ) or
( )

st

p b
w b p b

w b

E E

mC dT
h P dx T T mC dT dx

hP T T

=

- = =
-

Integrating,

0
( )

ln

b be

b bi

T Tx L
p b

w bx T T

p w bi

w be

mC dT
dx

hP T T

mC T T
L

hP T T

==

= =

=
-

-Ê ˆ= Á ˜-Ë ¯

Ú Ú

where P = 2(a + b) = 2(3.5 + 1.5) cm = 10 cm or 0.1 m

and m  = rA
c
V = r(ab)V = 985.2 kg/m3 ¥ 1.5 ¥ 3.5 ¥ 10–4 m2 ¥ 1.25 m/s = 0.6465 kg/s

Length of the duct required,

2

(0.6465 kg/s)(4183 J/kgK) 85 40
ln .

85 70(7420.8 W/m K)(0.1 m)
L

-Ê ˆ= =Á ˜Ë - ¯
4 0 m (Ans.)

Comment Since L/D
e
 = 4.0/0.021 = 190.5 which is much greater than 10, the assumption of fully 

developed flow is valid.
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 Cold atmospheric air at 10°C enters a semi circular cross sectioned channel 

having a diameter of 15 cm. The channel is 6 m long. Determine the uniform temperature of the inside 

surface of the channel if the mean velocity of the air passing through the channel is 9 m/s. The temperature 

of the air exiting the channel is 30°C.

Properties of air at 1 atm and 20°C:

C
p
 = 1.007 kJ/kg°C, k = 0.02514 W/m K, n = 15.16 ¥ 10–6 kg/m s, Pr = 0.7309

Solution

Known Air is heated while flowing through a passage of semi circular cross section under constant 

wall temperature conditions.

Find Surface temperature of channel, T
s
 (°C).

Schematic

V = 9 m/s Tbe = 30°C

L = 6 mD = 15 cm

Ts = ?

Tbi = 10°C

Air

x = 0

x L=

Assumptions (1) Steady operating conditions. (2) Fully developed velocity and temperature profiles. (3) 

Constant thermophysical properties of air.

Analysis For a non-circular cross section, equivalent or hydraulic diameter, 4 c
h

A
D

P
=  should be 

used as a characteristic dimension for internal flow, forced convection conditions.

 Cross-sectional area,

2
2 2 3 21

0.15 m 8.836 10 m
2 4 8

c

D
A

p p -= = ¥ = ¥

 (Wetted perimeter, P) = (Diameter, D) + (Half the circumference, p D/2)

\
3 2

1 0.15 1 (m) 0.3856 m
2 2

4 4 8.836 10 m
0.0917 m

0.3856 m

c
h

D

A
D

P

p p

-

Ê ˆ Ê ˆ= + = + =Á ˜ Á ˜Ë ¯ Ë ¯

¥ ¥
= = =

 Reynolds number,

6 2

(9 m/s)(0.0917 m)
54 439 Turbulent flow

15.16 10 m /s

hVD
Re

v -= = = fi
¥

 Using the Dittus–Böelter correlation,

\

0.8 0.4 0.8 0.4

2

0.023( ) ( ) 0.023(54439) (0.7309) 124.74

0.02514 W/m K
(124.74) 34.2 W/m K

0.0917 mh

Nu Re Pr

k
h Nu

D

= = =

= = =
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 Mass-flow rate of air,

3 2101.325 kPa
8.836 10 m 9 m/s

0.287 kJ/kgK 283.15 K

0.0992 kg/s

i c c

P
m A V A V

RT
r -= = = ¥ ¥ ¥

¥
=

 Energy balance for constant channel surface temperature:

 where 

( )( ) ( )

( ) ( )

ln ln

m p be bi

s bi s be be bi
m

s bi s bi

s be s be

h PL T mC T T

T T T T T T
T

T T T T

T T T T

D = -

- - - -
D = =

- -Ê ˆ Ê ˆ
Á ˜ Á ˜- -Ë ¯ Ë ¯

l

l

 Hence, ln s bi

p s be

T ThPL

mC T T

-
=

-

 or exp s be
s be s bi

p s bi

T ThPL
M T T MT MT

mC T T

-Ê ˆ- = = fi - = -Á ˜ -Ë ¯

 Inner surface temperature of the channel is then given by

 where 
2

1

34.2 W/m K 0.3856 m 6 m
exp 0.453

0.0992 kg/s 1007 J/kg C

be bi
s

T M T
T

M

M

-Ê ˆ
= Á ˜Ë - ¯

È ˘¥ ¥
= - =Í ˙

¥ ∞Î ˚

\
30 (0.453)(10)

.
1 0.453

sT
-

= =
-

46 6 C∞ (Ans.)

 Blood at 32°C enters a 2.5 mm inside diameter steel tube with a volumetric flow 

rate of 15 mL/s. The tube surface is electrically heated to impart a uniform heat flux. The tube wall 

temperature must not exceed 44°C to avoid damage to the blood. Calculate the minimum length of the 

tube required to warm the blood to 37°C. Blood properties may be approximated as those of water.

Properties of water at the bulk mean temperature of 34.5°C are

  r = 994.0 kg/m3 m = 7.32 ¥ 10–4 Ns/m2, k = 0.624 W/m K,

  Pr = 4.91, C
p
 = 4.178 kJ/kg K

Solution

Known Blood is warmed in a tube under constant heat flux conditions.

Find Tube length required.

D = 2.5 mm
qw = const

L = ?

Tbe = 37°C

Tw L( ) = 44°C

Blood

T

V

bi = 32°C

= 0.015 L/s
.

Schematic
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Assumptions (1) Steady operating conditions. (2) Constant properties. (3) Blood properties are same as 

water properties. (4) Smooth tube. (5) Fully developed flow. (6) Uniform heat flux.

Analysis Reynolds number for a circular tube is, 
4VD m

Re
D

r

m p m
= =

 where 3 3 3–V (994 kg/m )(0.015 10 m /s) 0.01491 kg/sm r -= = ¥ =

\
4 2

4 0.0149 kg/s
10374

0.0025 m 7.32 10 Ns/m
Re Turbulent flow

p -

¥
= = fi

¥ ¥ ¥

 Using the Dittus–Bolter equation with n = 0.4, since the fluid (blood) is being heated,

\

0.8 0.4

0.8 0.4 3 2

0.023( ) ( )

0.023 0.624 W/m C
(10374) (4.91) 17.7 10 W/m K

0.0025 m

hD
Nu Re Pr

k

h

= =

¥ ∞
= = ¥

 Since q
w
 = const, (T

w
 – T

h
) is same throughout, 

(T
w
 – T

b
)

x=L
 = (T

w
 – T

h
)

max
 = (44 – 37)°C = 7°C or K

\

Heat transferred from the Rate of increase of stored

tube surface to the blood energy of the blood

( ) (0.01491 kg/s)(4178 J/kgK)(37 32) C or K 311.5 Wp be biQ mC T T

Ê ˆ Ê ˆ
=Á ˜ Á ˜Ë ¯ Ë ¯

= - = - ∞ =

 Furthermore, ( )( )w bQ h DL T Tp= -
 Therefore, the tube length required,

3 2 3

311.5 W

( )( ) 17.7 10 W/m K( 2.5 10 m)(7 K)w b

Q
L

h D T Tp p -
= =

- ¥ ¥ ¥
= 0.32 m (Ans.)

Comment Since L/D = 0.32 m/0.0025 m = 128 ( > 60) the assumption of fully developed flow is 

justified.

 A thick walled tube (20 mm ID and 40 mm OD) with its outer surface insulated 

is heated electrically to provide a uniform heat generation rate of 106 W/m3. Water enters the tube at a 

temperature of 25°C with a mass flow rate of 325 kg/h. 

(a) How long must the tube be to achieve the desired exit temperature of 40°C?

(b) Determine the local convection heat transfer coefficient at the tube outlet if the inner wall temperature 

of the tube at the outlet is 55°C.

(c) If the flow conditions are fully developed over the entire tube, calculate the tube’s inner surface 

temperature at the inlet.

Solution

Known Water heating system comprising thick walled tube with uniform heat generation.

Find (a) Length, L; (b) Local convection coefficient; h
(x = L)

; (c) Tube inner surface temperature, 

T
s,i,

.
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Schematic

Do = 40 mm

Exit, eInlet, i

Di = 20 mm

Tbe = 40°CTbi = 25°C

Do = 40 mm

L

( – ) = constT Ts b

Tube’s inner surface

Water

Fully developed flow

25

40

55

T(°C)

x

Egen

.

. Qconv

.

m = 325 kg/h

Water

40

q = 10 W/m36
.

Assumptions (1) Steady operating conditions. (2) Uniform wall heat flux. (3) Insulated outer tube surface. 

(4) Constant fluid properties.

Properties C
pwater

at T
bm

 = (25 + 40)/2 = 32.5°C = 4.178 kJ/kg °C.

Analysis From energy balance:

Heat generated Rate of heat transfer to water

within the tube wall flowing through the tube

Ê ˆ Ê ˆ
=Á ˜ Á ˜Ë ¯ Ë ¯

(since the outer surface of the tube is adiabatic).

–V ( )s s p be biq q A mC T T= = -

where A
s
 is the inner surface area of the tube (∫ p D

i
L)

and –V  is the volume in which electrical heating takes place 2 2( )
4

o iD D L
pÊ ˆ∫ -Á ˜Ë ¯ .

It follows that, 2 2( ) ( )
4

o i p be biq D D L mC T T
p

- = -

Hence, the tube length required is
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 or 

2 2

6 3 2 2 2

4 ( )

( )

4[(325/3600)kg/s](4178 J/kg°C)(40 25) C
.

(10 W/m )( )(0.04 0.02 )m

p be bi

o i

mC T T
L

q D D

L

p

p

-
=

-

- ∞
= =

-
6 0 m  (Ans.) (a)

 Constant surface heat flux,

2 2
2 2 6 3 2 2 2

2

( )– ( )V 10 W/m (0.04 0.02 )m4

4 4 0.02 m

15000 W/m

o i
o i

s
s i i

q D D L
q D Dq

q
A D L D

p

p

- - -
= = = =

=

 Since 

( )

conv

( ) ,

( ),

const [ ]
x L

s s s s b

s x L s i b

Q q A hA T T

q h T T
==

= = -

= = -

 Local convection heat-transfer coefficient at the outlet,

2

( )
, exit

15000 W/m

( ) (55 40) C

s
x L

s i be

q
h

T T
= = = =

- - ∞
2

1000W/m C∞ (Ans.) (b)

 In fully developed conditions for the whole tube h as well as (T
si
 – T

b
) are constant 

throughout.

 Hence, T
s,i(inlet)

 – T
bi
 = T

s,i(exit)
 – T

be

 Inner tube surface temperature at inlet is 

T
s,i(exit)

 = 25°C + (55 – 40)°C = 40°C (Ans.) (c)

 Water at 90°C enters a metal tube of 100 m length, inside diameter 0.5 cm and 

outside diameter 0.7 cm. The mass flow rate of the water is 0.05 kg/s. A 1 cm thick layer of insulation 

(k = 0.055 W/m K) is fixed on the outside of the tube. Assuming that heat is lost only by free convection 

from the outer surface of the insulation, that the free convection heat transfer coefficient is 6 W/m2 K, 

and that the ambient air is at a temperature of 20 oC, calculate the exit bulk mean temperature. Calculate 

also the pressure drop.

Solution

Known Water-flow rate and inlet temperature for an insulated tube of specified dimensions.

Find Exit bulk mean temperature, T
be

; Pressure drop, DP.

Schematic

Insulation, ( = 0.055 W/m K)k1

1 cm

1 cm

Tbi = 90°C

Water

Air
Ts,o

ho = 6 W/m K2

T = 20°C

m = 0.05 kg/s
.

Tbe

Metal tube
( = 0.5 cm, = 0.7 m)D DoiL = 100 m

Tsi
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Assumptions (1) Steady operating conditions. (2) Fully developed flow throughout the tube. (3) Negligible 

tube wall conduction resistance. (4) Uniform free convection heat transfer coefficient.

Properties Water (T
bm

 = 87°C):

C
p
 = 4.203 kJ/kg K, k = 0.674 W/m K, m = 0.324 ¥ 10–3, Pr = 2.02

r
@90°C

 = 965.3 kg/m3

Analysis Neglecting temperature drop across the metal tube wall, the thermal circuit associated with 

heat transfer from the water is given below:

where D
i
 = 0.005 m, D

o
 = 0.007 m and D

I
 = diameter of insulated tube = D

o
 + 2t = (0.007 

+ 2 ¥ 0.01) m = 0.027 m, L = 100 m, k
I
 = 0.055 W/m K, h

o
 = 6 W/m2 K.

Calculation of thermal resistances:

Conduction resistance due to insulation is

cond

ln(0.027/0.007)
.

2 (0.055 W/mK)(100 m)
R

p
= = 0 039 063 K/W

Resistance due to free convection at the outer surface of the insulated tube is

conv,2 2

1
.

6 W/m K( 0.027 m 100 m)
R

p
= =

¥ ¥
0 019 65 K/W

To calculate R
conv,1

, we need to determine inside (water side) convection heat transfer 

coefficient. For internal flow through a circular tube of inner diameter D
i
, we have

3

4 4 0.05 kg/s
39 297.5 ( 2300)

(0.005 m)(0.324 10 kg/m s)
D

i

m
Re

Dp m p -

¥
= = = >

¥

The flow is turbulent.

Friction factor, f = (0.79 ln Re
D
 – 1.64)–2 = {(0.79 ln (39297.5) – 1.64}–2 = 0.02216

Using the following correlation,

Hence,

2/3

2

( /8)( 1000)
153.1

1 12.7 /8( 1)

0.674 W/mK
(153.1) 20639 W/m K

0.005 m

i iD
D

i D
i

h Df Re Pr
Nu

kf Pr

k
h Nu

D

-
= = =

+ -

= = =

Convective resistance (water side) is

conv,1 2

1

(20639 W/m K)( 0.005 m 100 m)
R

p

-= = ¥
¥ ¥

5
3.0845 10 K/W

Total thermal resistance,

R
total

 = (UA
s
)–1 = (0.039063 + 0.01965 + 3.0845 ¥ 10–5) = 0.05874 K/W

And, UA
s
 = 17.023 W / K

We note that, ( )s m p bi beQ UA T mC T T= D = -
l
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 where 
ln( / )

i e
m

i e

T T
T

T T

D - D
D =

D Dl

 Since DT
i
 – DT

e
 = (T

bi
 – T ) – (T

be
 – T ) = T

bi
 – T

be
,

 or 

ln or exp

17.023 W/K
exp

0.05 kg/s 4203 J/kgK

s i e s

p e i p

be

bi

UA T T UA

mC T T mC

T T

T T

D D Ê ˆ= = -Á ˜D D Ë ¯

- -È ˘= Í ˙- ¥Î ˚

 or T
be

 = 20°C + (90 – 20)°C ¥ exp (–0.081) = 84.55oC (Ans.)

 Average bulk mean temperature,

1 1
( ) (90 84.55) 87.27°C

2 2
bm bi beT T T= - = + =

 Since the properties of water were at 87°C, no iteration is necessary.

 Mean flow velocity,

{ }3 2 22

0.05 kg/s
2.638 m/s

965.3 kg/m 0.005 m
44

i i

m
V

D
pp

r

= = =
Ê ˆ ¥Á ˜Ë ¯

 Pressure drop,

2 2 2 2

3

6

1 100 m 1 kg
0.02216 966.7 2.638 m /s

2 0.005 m 2 m

1.49 10 Pa .

i

L
P f V

D
r

Ê ˆ Ê ˆ Ê ˆ Ê ˆD = = ¥ ¥Á ˜ Á ˜Á ˜Á ˜ Ë ¯ Ë ¯Ë ¯Ë ¯

= ¥ = 14 9 bar (Ans.)

 Water at 50°C flows through a circular pipe of length 2.5 m and diameter 0.02 m 

with a mass flow rate of 0.06 kg/s. Heat is supplied to the water and the wall heat flux varies sinusoidally 

with axial distance x as follows: q
w
 = 50 000 sin 

x

2.5

pÊ ˆ
Á ˜Ë ¯

where q
w
 is in W/m2, and x is measured in metres from the inlet.

Calculate the variation of the bulk mean temperature of the water and the wall temperature with axial 

distance. Assume that the Dittus–Boelter equation holds for this situation.

Solution

Known  Water flows through a circular tube and is heated by wall heat flux varying sinusoidally 

with axial distance.

Find Variation of water (bulk) temperature, T
b
(x) and of wall temperature, T

w
(x).

Assumptions (1) Steady operating conditions exist. (2) Constant properties. (3) Heat flux varies 

sinusoidally with axial distance x.

Analysis Consider a control volume of length dx.

p
p p

Ê ˆ Ê ˆ
=Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ= = = Á ˜Ë ¯in,conv

Rate of heat transfer by convection Rate of increase of thermal energy

from tube wall to flowing water storage of water

or 50 000 sin
2.5

st p b w

x
Q E mC dT q D dx D dx
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Integrating from 0 to x and T
bi
 to T

b
, we have 

or

( )

( )

50000
sin

2.5

50 000 2.5
cos

2.5

b

bi

T x x

b
pT o

x

b x bi
op

D x
dT dx

mC

D x
T T

mC

p p

p p

p

=

È ˘- = ¥ -Í ˙Î ˚

Ú Ú

or
( )

50 000 2.5
1 cos

2.5
b x bi

p

D x
T T

mC

p¥ ¥ È ˘- = -Í ˙Î ˚

or
2

( ) 3

50 000 W/m 2.5 m 0.02 m
50°C 1 cos

2.50.06 kg/s 4.179 10 J/kgK
b x

x
T

p¥ ¥ È ˘= + -Í ˙Î ˚¥ ¥

È ˘Ê ˆ= + - Á ˜Í ˙Ë ¯Î ˚
( ) 50 9.97 1 cos

2.5

p
b

x
T x (Ans.)

At the tube exit, the water temperature is

x = L = 2.5 m

T
be

 = 50 + 9.970 ¥ 2 = 69.94°C

Properties will be evaluated at 
50 69.94

2

+
@ 60°C

m = 466.5 ¥ 10–6 Ns/m2, Pr = 2.98, k = 0.654 W/m K

\
6

4 4 0.06 kg/s
8188

466.5 10 kg/ms 0.02 m
D

m
Re

Dpm p -
¥

= = =
¥ ¥ ¥

8

Using the Dittus–Boelter correlation:

Nu
D
 = 0.023 ¥ 81880.8 ¥ 2.980.4 = 48.08 = 

hD

k
\ Convection coefficient,

h = 48.08 ¥
0.654 W/mK

0.02 m
 = 1572.2 W/m2 K

(T
w
 – T

b
)K ¥ 1572.2 W/m2 K = q

w
 = 50 000 sin 2(W/m )

2.5

xp
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\ 31.80 sin
2.5

w b

x
T T

p
= +

 or 
È ˘= + + -Í ˙Î ˚

( ) 31.80 sin 50 9.97 1 cos
2.5 2.5

p p
w

x x
T x (Ans.)

 Wall temperature at tube exit (x = L = 2.5 m) is 

T
we

 = 31.80 sin 
(2.5)

2.5
beT

p
+  = T

be
 = 69.94°C

T
wi

 = T
bi
 = 50°C

 The variation of T
b
(x) and T

w
(x) is graphically represented below:

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

x m( )

0

10

20

30

40

50

60

70

80

90

100

T
(°

C
)

Tw, max = 93.29

T xb( )

T xw( )

T Twi bi= =

T Twe be= = 69.94

 Hot air at 1 atm and 90°C enters a 10 m long uninsulated square duct of cross 

section 0.25 m ¥ 0.25 m which passes through the attic of a house at a volumetric flow rate of 0.20 m3/s

and leaves at 80oC. Estimate (a) the duct surface temperature, and (b) the rate of heat loss to the air 

space in the attic. Properties of air at T
bm

 = 
1

2
(90 + 80) = 85°C: r = 0.9862 kg/m3, v = 21.46 ¥ 10–6

m2/s, C
p
 = 1008.8 J/kg K, k = 30.24 ¥ 10–3 W/m K

Solution

Known Hot air passes thorough a square duct of specified length with constant wall temperature.

Find (a) Duct surface temperature, T
w

(°C) and (b) Heat loss rate, Q  (W).

Assumptions (1) Steady operating conditions. (2) Air is an ideal gas. (3) Smooth inner surface of the 

duct.
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Attice space

Square duct
(0.25 m 0.25 m)

= 10 m

¥
L

Tbe = 80°C

Tbi = 90°C

V = 0.20 m /s3
.

P = 1 atm

Air

Analysis Mass-flow rate of air,

–V (0.9862)(0.2) 0.1972 kg/sm r= = =

Reynolds number, 
–Ve e e

c c

VD D Dm
Re

A A

r r

m m r n

Ê ˆ= = =Á ˜Ë ¯

Equivalent diameter, 
4 4 4 1 1

4
4 0.25

c e
e

c

A D
D

P A P a a
= fi = = = = =

Hence,
6

–4V 4 0.2
37279 ( 2300)

21.46 10
Re

n -
¥

= = = >
¥

Prandtl number, 
6

3

1008.8 21.46 10 0.9862
0.706

30.24 10

pC
Pr

k

nr -

-
¥ ¥ ¥

= = =
¥

The Dittus–Boelter equation with n = 0.3 [as T
w
 < T

bi
]:

Nu = 0.023(Re)0.8 (Pr)0.3 = 0.023(37279)0.8 (0.706)0.3 = 94.09

Average convection heat-transfer coefficient,

3
2(94.09)(30.24 10 )

11.38 W/m K
0.25e

k
h Nu

D

-¥
= = =

Energy balance for a differential control volume of length dx with the bulk temperature 

decrease of –dT
b
 is: out out,convorst stE E Q E- = = -

or ( )( )b w p bh P dx T T mC dT- = -

Separating the variables and integrating, we have

or

0

or ln

exp

be

bi

TL

b be w

p b w p bi wT

be w

p bi w

dT T ThP hPL
dx

mC T T mC T T

T ThPL

mC T T

-Ê ˆ- = - = Á ˜- -Ë ¯

-È ˘- =Í ˙ -Î ˚

Ú Ú

With P = 4a = 4 ¥ 0.25 = 1 m

= =
2(11.38 W/m K)(1 m)(10 m)

0.572,
(0.1972 kg/s)(1008.8 J/kgK)p

hPL

mC
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 or 

--
= = - = -

-

= = 67°C

0.57280
0.5644 or 80 50.8 0.5644

90

29.2

0.4356

w
w w

w

w

T
e T T

T

T  (Ans.) (a)

 Heat-loss rate,

( )p bi beQ mC T T= -  = (0.1972 kg/s) (1008.8 J/kg K) (90 – 80)°C

= 1990 W (Ans.) (b)

 Hot exhaust gases are discharged by a plant to the atmosphere through a vertical, 

cylindrical, thin-walled chimney (stack) 0.6 m diameter and 8 m high. The gases at 500°C and 5 m/s 

enter the stack at about atmospheric pressure and may be assumed to have the properties of air. Wind 

at 10°C blows over the exterior surface of the stack at a free stream velocity of 5 m/s. Determine the 

outlet gas and stack surface temperature.

Solution

Known Exhaust gases are discharged through a stack to the environment under specified conditions.

Find Exit temperature of gas, and outer surface temperature of stack.

Assumptions (1) Steady operating conditions. (2) Constant properties. (3) Negligible radiation effects. 

(4) Fully developed flow. (5) The stack gases have properties of air.

Properties  Air (1 atm, 450°C ): k = 0.05298 W/m °C u = 34.15 ¥ 10–6 kg/m s

   C
p
 = 1.081 kJ/kg °C r = 0.488 kg/m3     Pr = 0.6965 

 Air (1 atm, 10°C): k = 0.02439 W/m °C m = 17.78 ¥ 10–6 kg/m s

   Pr = 0.7336 r = 1.246 kg/m3

 Air (1 atm, 200°C):  Pr = 0.6974

Analysis The stack surface temperature depends upon the exhaust gas outlet temperature. To determine 

exit gas temperature, we use a constant temperature condition. Since the surface temperature 

along the height of the stack is not uniform, the stack wall temperature can be replaced 

by external ambient air temperature of 10°C which is constant.
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The thermal circuit below can help in understanding this analysis better:

Overall heat-transfer coefficient, U = 

1
1 1

i oh h

-
È ˘+Í ˙
Î ˚

Internal Flow:

Properties are evaluated at the mean gas temperature of 450°C (assumed) with gas properties 

as those of air.

Roynolds number, 
3

6

(0.488 kg/m )(5 m/s)(0.6)
42 870 ( 2300)

34.15 10 kg/ms
D

VD
Re

r

m -= = = >
¥

The flow is turbulent and L/D = 
8 m

0.6 m
 = 13.3 (> 10). Hence, the Dittus–Böelter correlation 

can be used.

Nu
D
 = 0.023 (Re

D
)0.8 (Pr)0.3

We note that n = 0.3 because the exhaust gases are being cooled in the stack. 

Inside heat-transfer coefficient,

0.8 0.3 2(0.05298 W/m C)
0.023(42870) (0.6965) 9.25 W/m C

0.6 m
i D

k
h Nu

D

∞
= = ¥ = ∞

External Flow:

For cross flow over a cylinder, the Zhukauskas relation is appropriate. Properties are 

evaluated at T  = 10°C except m
w
 which is at T

w
 = 200°C (assumed). The stack is thin-

walled. Hence, D
o
 = D

i
 = D.

3

6

1/4

1.245 kg/m 5 m/s 0.6 m
210 236

17.78 10 kg/ms
D

m n
D D

s

VD
Re

Pr
Nu C Re Pr

Pr

r

m -
¥ ¥

= = =
¥

Ê ˆ= Á ˜Ë ¯

For the range 2 ¥ 105 < Re
D
 < 106, C = 0.076, m = 0.7 and n = 0.37 since Pr £ 10

Nu
D
 = 0.076 (210 236)0.7 (0.7336)0.37

0.25
0.7336

0.6974

È ˘
Í ˙Î ˚

 = 365.1

Therefore,

\

2

1
2

0.02439 W/m°C
365.1 14.84 W/m °C

0.6 m

1 1
5.7 W/m C

9.25 14.84

o D

k
h Nu

D

U

-

= = ¥ =

È ˘= + = ∞Í ˙Î ˚
Mass-flow rate of exhaust gases,

3 2 2(0.488 kg/m ) 0.6 m (5 m/s) 0.69 kg/s
4

cm A V
p

r
Ê ˆ= = ¥ =Á ˜Ë ¯

For constant temperature case: (LMTD) ( )p e iQ UA mC T T= = -

where LMTD
( ) ( )

ln( )/( )
ln ln

i e i e i e

i ii e

e e

T T T T T T T T

T T TT T T T

T T T

D - D - - - -
= = =

D -- - È ˘
Í ˙D -Î ˚
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 It follows that 

 or ln

ln exp

i
p

e

e e

p i i p

T T
UA mC

T T

T T T TUA UA

mC T T T T mC

-È ˘= Í ˙-Î ˚
- -Ê ˆ È ˘ È ˘- = fi = -Í ˙ Í ˙Á ˜- -Ë ¯ Î ˚ Î ˚

 Exit gas temperature,

2

( )exp( / )

5.7 W/m C 0.6 m 8 m
10 C (500 10) C exp

0.69 kg/s 1081 J/kg C

.

e i pT T T T U DL mCp

p

= + - -

È ˘∞ ¥ ¥ ¥
= ∞ + - ∞ -Í ˙

¥ ∞Î ˚
= 446 7 C∞  (Ans.)

 Bulk mean temperature, 
1 1

( ) (500 446.7) 473.3 C
2 2

m i eT T T= + = + = ∞

 Assumed value = 450°C. The comparison is thus reasonable.

 From the thermal circuit, we can write

 or 

or
1/ 1/

( )

e w w
i e i w o w o

i o

w o i i e o

T T T T
h T h T h T h T

h h

T h h h T h T

- -
= - = -

+ = +

 Surface temperature of stack at exit,

(9.25 446.7) (14.84 10)
.

14.84 9.25
wT

¥ + ¥
= =

+
177 7 C∞ (Ans.)

(C) Liquid Metal Heat Transfer

 Consider the constant property laminar forced flow of a liquid metal in a circular 

pipe. At the entrance, both the velocity and temperature profiles are flat and the boundary condition of a 

constant heat flux is applied. Since the Prandtl number of the liquid metal is low and of the order of 0.01, 

the velocity profile develops very slowly as compared to the temperature profile. As a first approximation, 

one may therefore assume that the velocity profile stays flat. Make this approximation and show that the 

Nusselt number after the temperature profile is fully developed is constant and equal to 8.

Solution

Known Form of velocity and temperature profiles for liquid metal flow in a circular pipe. 

Find Nusselt number, Nu.
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Assumptions (1) Steady, incompressible flow. (2) Slug flow (flat velocity profile). (3) Constant wall heat 

flux. (4) Fully developed, laminar flow. (5) Uniform properties.

Analysis For fully developed laminar flow in a circular pipe, the energy equation is

T T T
u v r

x r r r r

a∂ ∂ ∂ ∂Ê ˆ+ = Á ˜Ë ¯∂ ∂ ∂ ∂
(For fully developed flow, v = 0)  (A)

In the case of constant wall heat flux (q
w
= const),

mdTT

x dx

∂
=

∂
where T

m
 is the mean temperature of liquid metal over the cross section of the tube.

  For very low Prandtl number fluid like a liquid metal d << d
l
, the velocity profile 

develops very slowly. One, therefore, has u(t) = u
0

(slug flow)

Equation (A) becomes

0
0

m mdT u dTT T
u r r r

dx r r r r r dx

a

a

∂ ∂ ∂ ∂Ê ˆ Ê ˆ= fi =Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂
Integrating with respect to r,

2
0

1
2

mu dTT r
r C

r dxa

∂ Ê ˆ= +Á ˜Ë ¯∂
Boundary condition # 1:

0 at 0
T

r
r

∂
= =

∂
\ C

1
 = 0

Then

0

2

mu dTT r

r dxa

∂ Ê ˆ= Á ˜Ë ¯∂
(B)

Integrating again,

2
0

2( )
4

mu dT r
T r C

dxa
= +

Boundary condition # 2:

T(r = r
o
) = T

w

\
2

0
2

4

m o
w

u dT r
C T

dxa
= -

Temperature distribution is then determined to be

2 20
o( ) ( )

4
= - -m

w

u dT
T r T r r

dxa
(Ans.) (C)

Bulk or mean temperature is defined as

r r p

r p
= = =

ÚÚ Ú 0

2 2

2
2

or

or

c v m v

b m
v m o v o

rT dr
udA C T u C r T dr

T T
mC u r C r
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 or = Ú2
0

2
or

m

o

T rT dr
r

(D)

 Substituting Eq. (C) into Eq. (D), we get

 or 

2 3

2
0

2 4 4 2
0 0

2

2
0

2
( )

4

2

2 4 2 4 8

8

or

o m
m w o

o

o m o o o m
w w

o

o m
w m

u dT
T rT rr r dr

dxr

r u dT r r u r dT
T T

dx dxr

u r dT
T T

dx

a

a a

a

Ï ¸
= - -Ì ˝

Ó ˛

È ˘Ê ˆ
= - - = -Í ˙Á ˜Ë ¯Î ˚

- =

Ú

(E)

 We note that at r = r
o
, q

w
 = h(T

w
 – T

m
) = const

 Also, from Fourier’s law, 
o

w
r r

Q T
q k

A r =

∂
= =

∂

\ Convection coefficient is

or

w m

T
k

r
h

T T

∂
∂

=
-

 Therefore, substituting for 
or r

T

r =

∂
∂

 and (T
w
 – T

m
) from equations (B) and (E),

0

2
0

4 82

8

o m

oo m

u r dT
k

k kdx
h

r Du r dT

dx

a

a

Ê ˆ
Á ˜Ë ¯

= = =

\ Nusselt number, = = 8
D

hD
Nu

k
(Ans.)

Comment Note that in this case, 
T

r

∂
∂

 was positive. Hence, 

o

w

r r

T
q k

r =

∂
=

∂

 Liquid sodium is to be heated from 120 to 149oC at a rate of 2.3 kg/s. A 2.5 

cm diameter electrically heated tube is available. If the tube wall temperature is not to exceed 200oC,

calculate the minimum tube length required. Use the correlation:

  Nu = 6.3 + 0.0169 Re0.85 Pr0.93

Properties of liquid sodium at the bulk mean temperature of 134.5°C are

Density = 918.7 kg/m3 Specific heat = 1368 J/kg K

Viscosity = 6.372 ¥ 10–4 kg/m s  Thermal conductivity = 84.12 W/m K

Solution

Known Liquid sodium is heated in an electrically heated tube under constant heat flux conditions.

Find Minimum tube length.
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Schematic

Constant wall heat flux

m = 2.3 kg/s
.

D = 2.5 cm

Tw, max = 200°C

= Twe

Tbe = 149°C

L

Tbi = 120°C

( – ) = 51°CT Tw b

T Twe = = 200°C, maxw

Tbe = 149°C

Tbi = 120°C

Twi = 171°C

T

x = 0 x L=

Liquid
sodium

Assumptions (1) Steady operating conditions. (2) Constant properties. (3) Constant heat flux. (4) Fully 

developed turbulent flow.

Analysis Reynolds number,

4

4 4 2.3 kg/s
183 832

(0.025 m)(6.372 10 kg/ms)

VD m
Re

D

r

m p m p -
¥

= = = =
¥

Prandtl number, 
4(1368 J/kgK)(6.372 10 kg/m s)

0.0103
84.12 W/m K

pC
Pr

k

m -¥
= = =

Nusselt number, Nu = 6.3 + 0.0167(183.832)0.85(0.0103)0.93 = 13.4

Convection coefficient, 
84.12 W/mK

13.4
0.025 m

k
h Nu

D
= = ¥  = 45120 W/m2 K

Heat transfer rate, ( )( ) ( )we be p be biQ h DL T T mC T Tp= - = -

= (2.3 kg/s)(1368 J/kg K)(149 – 120)K = 91246 W

Maximum tube wall temperature will be at the tube exit. For constant heat flux case, 

(T
w
 – T

b
) is constant throughout the tube. Hence, the minimum tube length required is

2

91246 W

( )( ) (45120 W/m K)( 0.025 m)(200 149)K

. or .

we be

Q
L

h D T Tp p
= =

- ¥ -
= 0 505 m 50 5 cm (Ans.)
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 Sodium–potassium (22% Na + 78% K) liquid metal mixture with a flow rate of 1 

kg/s is heated in a stainless steel tube of 2.5 cm ID. The tube wall temperature is maintained at 450°C. 

The tube length is 60 cm and the fluid inlet temperature is 300°C. Calculate the exit temperature of the 

medium. Use the following correlation:

  Nu = 4.8 + 0.0156 Re0.85Pr0.93 (T
w
 = const)

Solution

Known Sodium–potassium (22/78) liquid metal mixture flows through a tube and is heated under 

constant wall temperature.

Find Exit temperature of the medium, T
be

.

Schematic

m = 2.3 kg/s
.

D = 2.5 cm

Tw = const = 450°C

Tbe = ?

L = 60 cm

Tbi = 300°C

22% Na +
78% K

Assumptions (1) Steady operating conditions. (2) Constant tube surface temperature. (3) Fully developed, 

turbulent flow.

Analysis Properties are to be evaluated at the bulk mean temperature, 
1

( )
2

bm bi beT T T= +

 However, since T
be

is to be determined, let T
be

 = 400°C with T
w
 = 450°C.

 Then the properties of (22% Na + 78% K) at (300 + 400)/2 = 350°C are:

k = 27.2 W/m°C m = 2.912 ¥ 10–4 kg/m s

C
p
 = 889.8 J/kg°C Pr = 9.57 ¥ 10–3

 Reynolds number for a circular tube is

5

4

4 4(1 kg/s)
1.75 10

(0.025 m)(2.912 10 kg/m s)

m
Re

Dp m p -
= = = ¥

¥

 Nusselt number, Nu = 4.8 = 0.0156 (1.75 ¥ 105)0.85(9.57 ¥ 10–3)0.93 = 10.71

 Heat-transfer coefficient, 227.2 W/m C
10.71 11655 W/m °C

0.025 m

k
h Na

D

∞
= = ¥ =

 From energy balance: 
( ) ( )

( ) ( )

ln

w bi w be
p be bi

w bi

w be

T T T T
h DL mC T T

T T

T T

p
- - -

= -
-È ˘

Í ˙-Î ˚

 or ln or ( )w bi
be w w bi

w be p p

T T h DL h DL
T T T T

T T mC mC

p p-È ˘ È ˘= = - - -Í ˙ Í ˙-Î ˚ Î ˚

  

211655 W/m C( 0.025 m)(0.6 m)
450 C (450 300) C exp

(1 kg/s)(889.8 J/kg°C)

pÈ ˘∞ ¥
= ∞ - - ∞ -Í ˙

Î ˚
= 369°C (Ans.)
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Comment With the calculated value of T
be

 = 369°C, 
1

(300 369) 334.5 C
2

bmT = + = ∞ . This is not too 

far from 350°C that we had assumed. Since the properties do not significantly change over 

such a small temperature difference, no more trial is necessary.

 Liquid mercury flows through a long tube (2.5 cm ID) with a velocity of 1 m/s. 

Calculate the local heat-transfer coefficient for (a) the constant wall temperature boundary condition, and 

(b) the constant heat flux boundary condition. Assume the following properties for mercury:

Density = 12 870 kg/m3

Viscosity = 0.863 ¥ 10 3 kg/m s

Specific heat = 134 J/kg K

Thermal conductivity = 14.0 W/m K

Solution

Known  Liquid mercury flows with a prescribed velocity through a circular tube.

Find 2(W/m K)h  for (a) CWT, and (b) CHF conditions.

V = 1 m/s Te

Ti

D = 2.5 cm

L

Liquid
mercury

Schematic

Assumptions (1) Steady-state conditions. (2) Tube’s inner surface is smooth.

Analysis For a circular cross section,

 Reynolds number,
3

3

3

(12870 kg/m )(1 m/s)(0.025 m)
372 827

0.863 10 kg/m s

(134 J/kgK)(0.863 10 kg/m s)
0.00826

14.0 W/m K

D

p

VD
Re

C
Pr

k

r

m

m

-

-

= = =
¥

¥
= = =

(a) Constant wall temperature: For this boundary condition, the relevant correlation is 

Nu
D
 = 4.8 + 0.0156 0.85 0.93

DRe Pr  = 4.8 + 0.0156 (372827)0.85 (0.00826)0.93

= 4.8 + (0.0156) (628.9) = 14.611

 Local heat-transfer coefficient,

h = 14.611 ¥
14.0 W/mK

0.025 m
 = 8182 W/m2 K (Ans.) (a)

 (b) Constant heat flux: Since Re
D
 is between 104 and 106 Pr between 0.004 and 0.1, the 

appropriate correlation for this boundary condition is

Nu
D
 = 6.3 + 0.0167 0.85 0.93

DRe Pr  = 6.3 + 0.0167 (372827)0.85 (0.00826)0.93

= 16.804 = 
hD

k



594 Heat and Mass Transfer

Local heat-transfer coefficient,

14.0 W/mK
16.804

0.025 m
D

k
h Nu

D
= = ¥ = 2

9410W/m K (Ans.) (b)

Points to Ponder

● For a developing velocity profile in the case of steady laminar fluid flow in a straight circular tube, 

u = u(x, r) and for developed velocity profile, u = u(r).

● The heat flux and pressure drop are higher in the entrance regions of a pipe.

● Unlike laminar flow, the heat-transfer coefficient and the friction factor in turbulent flow depend 

strongly on the surface roughness.

● The local Nusselt number in the thermal entrance region for laminar flow in a circular pipe with fully 

developed velocity profile is always less for constant wall temperature case than for constant wall 

heat flux condition.

● For a fully developed constant property laminar flow of a fluid in a circular pipe, the local and average 

heat-transfer coefficients are same.

● In non-circular tubes, the characteristic length is a hydraulic diameter which is defined as four times 

the area of cross section by the wetted perimeter.

● The hydraulic diameter for flow through tube annulus with D
i
 and D

o
 as inner and outer diameters 

respectively is (D
o
 – D

i
).

● In a fluid flow through a non-circular duct the Reynolds number based on the hydraulic diameter, D
h

cannot be expressed as 
p m

=
4

.
h

m
Re

D

● The Dittus–Boelter equation for fully developed turbulent pipe flow is applicable for both constant 

wall temperature and constant wall heat flux conditions.

● The Dittus–Boelter and Sieder–Tate equations for turbulent flow through a pipe cannot be applied for 

liquid metals.

● The Graetz number is defined as Gz = (L/D)/RePr.

● Liquid metals have Prandtl numbers in the range 0.1 ≥ Pr ≥ 0.001.

GLOSSARY of Key Terms

● Hydraulic (equivalent) 

diameter

The characteristic length used in calculating parameters such as 

Reynolds and Nusselt numbers in forced convection heat transfer 

through non-circular tubes in place of the internal diameter of a circular 

tube. This equivalent or effective diameter is 4 times the flow area of 

cross section over the wetted perimeter.

● Uniform heat f lux 

condition

Constant heat-transfer rate per unit surface area over the entire length 

of a tube during forced convection internal flow, e.g., in an electrically 

heated outer surface of a tube/pipe. The difference between the wall 

temperature and the bulk fluid temperature in this case remains constant 

along the tube axis in the fully developed region.

● Constant wall (surface) 

temperature condition

The tube wall temperature is held constant throughout the tube length, 

e.g., in a steam heated tube surface. The fluid temperatuer increases or 

decreases (depending on the wall temperature) exponentially and the 

effective temperature difference for computing heat-transfer rate is the 

logarithmic mean temperature difference (LMTD).
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● Hydrodynamic entrance 

length

The distance required for the friction factor to decrease to within 5% 

of its fully deeloped value along the tube length.

● Thermal entrance length The distance required for the Nusselt number to decrease to within 5% 

of its fully developed value along the tube length.

● Fully developed flow 

(hydrodynamically)

The shape of the velocity profile remains unchanged and the friction 

factor has a constant value along the tube length.

● Fully developed flow 

(thermally)

The shape of the temperature profile is unchanging, and the Nusselt 

number has a constant value along the tube length.

● Turbulent flow The flow is turbulent when the Reynolds number Re
D
 exceeds 2300, 

although turbulence becomes fully established for Re
D
 > 10 000.

● Laminar flow The flow is laminar when the Reynolds number Re
D
 is less than 2300 

with a characteristic parabolic velocity profile.

Multiple-Choice Questions

8.1

(a) double the original value (b) half of the original value

(c) same as before (d) four times the original value

8.2

(a)
1

bT uT dA
m

r= Ú (b)
1

bT hdA
A

= Ú

(c)
1

bT T dA
A

= Ú (d)
1

bT uT dA
m

r= Ú
8.3 :

(a) Re Pr (b) Re Pr (c) Re Pr/(x/D) (d) Gr Pr

8.4

(1) (∂u/∂x) = 0

(2) (∂T/∂x) at any radius r is not zero

(3) the temperature profile T(r) continuously changes with x

(4) for constant tube wall temperature, surface heat flux is constant

  Of the above statements:

(a) only 1 and 2 are correct (b) 1, 2 and 3 are correct

(c) 1, 2, 3 and 4 are correct (d) 1 and 4 are correct

8.5 Nu = C (Re)a (Pr)b. The values 

of a and b are:

(a) a = 0.5 and b = 0.33 for both heating and cooling.

(b) a = 0.5 and b = 0.4 for heating and b = 0.3 for cooling.

(c) a = 0.8 and b = 0.4 for heating and b = 0.3 for cooling.

(d) a = 0.8 and b = 0.3 for heating and b = 0.4 for cooling.
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8.6

of Nusselt number?

(a) 48/11 (b) 11/48 (c) 24/11 (d) 11/24

8.7 An uninsulated air conditioning duct of 1m ¥ 0.5 m rectangular cross section, carrying air at 20°C 

with a velocity of 10 m/s, is exposed to an ambient at 30°C. Neglect the effect of the duct construction 

material. For air in the range of 20 30°C, the data are as follows:

  Thermal conductivity = 0.025 W/m K, Viscosity = 18 mPa s, Prandtl number = 0.73, Density = 1.2 kg/

m3.

  Nu) is 3.4 for constant wall temperature conditions and for 

Nu = 0.023 Re0.8 Pr1/3.

(A)

(a) 444 (b) 890 (c) 4.44 ¥ 105 (d) 5.33 ¥ 105

(B) The heat transfer per metre length of the duct, in watts, is

(a) 3.8 (b) 5.3 (c) 89 (d) 769

8.8
0.8 1/30.023( ) ( )Nu Re Pr=

  

(a) 1.20 (b) 1.32 (c) 1.86 (d) 2.1

8.9

uniform wall temperature boundary conditions are, respectively

(a) 36.57 and 43.64 W/m2 K (b) 43.64 and 36.57 W/m2 K

(c) 43.64 W/m2 K for both the cases (d) 36.57 W/m2 K for both the cases

8.10 Match List I with List II according to the codes given below:

List I List II

(Cross section of the geometry) (Hydraulic diameter)

A.

Semicircular

D = 19 mm

1. 30 mm

B.
Di =

30 mm

Do = 60 mm

Concentric annulus

2. 4.78 mm
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C.

D
=

25
m

m

B

Circular tube with
square insert inside

3. 8.66 m

D.

60

b

bb

Triangular

4. 11.61 mm

  Codes: A B C D

(a) 1 2 3 4

(b) 2 3 4 1

(c) 4 1 2 3

(d) 4 2 1 3

8.11

maintaining the tube wall temperature at 90°C.

  Physical properties of water at its mean bulk temperature are

  m = 577 ¥ 10–6 kg/m s, k = 0.640 W/m K, C
p
 = 4180 J/kg K, Pr = 3.77

  Nu = 0.023 (Re)0.8 (Pr)0.4

(A) 2 K)

(a) 6.77 (b) 67.7 (c) 8.95 (d) 5.24

(B) The required tube length for these conditions is

(a) 4.3 m (b) 8.6 m (c) 0.86 m (d) 86 m

Answers

Multiple-Choice Questions

8.1 (a) 8.2 (d) 8.3 (c) 8.4 (b) 8.5 (c) 8.6 (a)

8.7(A) (c) (B) (d) 8.8 (a) 8.9 (b) 8.10 (c)

8.11(A) (a) (B) (b)

8.1

term mean bulk temperature R and 

V,
2

0

2
( ) ( )

R

bT u r T r r dr
VR

= Ú
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8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9 What does the logarithmic mean temperature difference

temperature?

8.10 What is the Dittus–Boelter equation? What are the restrictive conditions? How is Sieder–Tate

correlation different from the Dittus–Boelter equation?

8.11 Graetz number?

8.12 Show that 
8

f
St = f is the Darcy’s 

friction factor.

PRACTICE PROBLEMS

(A) Circular Tubes: Laminar Flow

8.1 A small air-cooled condenser is to be designed. The air passes through a number of small circular 

ducts which have essentially a uniform surface temperature. The ducts are 5 mm in diameter and 

  The following properties of air at 27°C may be used:

  n = 15.89 ¥ 10–6 m2/s, k = 0.0263 W/m K, Pr = 0.707, C
p
 = 1.007 kJ/kg K, m

w@52°C
 = 19.64 ¥ 10–6 kg/m s

[49.4 W/m2 K]

8.2 In a solar water heating system, water at a temperature of 27°C enters a 20-mm internal diameter tube 

at a Reynolds number of 1200. The tube is heated by concentrated sun rays such that constant tube 

length of the tube, and (c) whether boiling occurs in any part of the tube.

   Properties: Saturated water 
1

[1atm, ( ) (27 67)/2 47 C]
2

bm bi beT T T= + = + = ∞ :

  r = 989 kg/m3, C
p
 = 4.18 kJ/kg K, k = 0.640 W/m K, m = 0.577 ¥ 10–3 kg/m s, Pr = 3.77

[(a) 4608 W/m2 (b) 6.28 m (c) 100°C]

8.3

m2

(c) length of the pipe needed, (d) inner tube surface temperature at the exit, (e) friction factor, 

[(a) 714.5 (b) 132.4 W/m2°C (c) 1.33 m (d) 153.3oC (e) 0.0896 (f) 0.0 Pa (g) 6.1 ¥ 10–5 W]
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(B) Turbulent Flow: Circular and Non-circular Tubes 

8.4 Hot exhaust gases leaving a stationary diesel engine at 450°C enter a 0.15-m-diameter pipe with a 

exhaust gases and the Dittus–Boelter correlation, determine the pipe length if the exhaust gases leave 

the pipe at 250°C. Properties: At the bulk mean air temperature of 
1

2
(450 + 250)°C = 350°C:

  k = 0.0491 W/m°C, n = 55.46 ¥ 10–6 m2/s, Pr = 0.676, C
p
 = 1059 J/kg°C, r = 0.566 kg/m3 [10.81 m]

8.5 A solar concentrator focuses sunlight on a bank of molybdenum alloy tubes which are 16-mm-ID, and 

360 mm long. A pyrometer scan indicates an average surface temperature of 1650°C for a tube and 

[338.8°C]

8.6 Water at 20°C is to be heated by passing it through the tube. The surface of the tube is maintained at 

exit temperature of water will be 60°C. The properties of water are:

  r = 895 kg/m3, C
p
 = 4.174 kJ/kg K, k = 0.64 W/m K, n = 0.62 ¥ 10–6 m2/s, b = 4.25 ¥ 10–3 K–1

  Use the correlation: Nu = 0.023 Re0.8Pr0.3 [2.59 kg/s]

8.7 Hot air at atmospheric pressure and 80°C enters an 8-m-long uninsulated square duct of cross section 

0.2 ¥ 0.2 m that passes through the attic of a house at a rate of 0.15 m3/s. The duct is observed to be 

nearly isothermal at 60°C. Determine the exit temperature of the air and the rate of heat loss from the 

duct to the attic space. [71.2°C, 1325 W]

8.8 Water at a temperature of 50°C enters a 1-m-long square tube with 15-mm by 15-mm cross section. 

of 90oC. Determine (a) the water outlet temperature, (b) the heat transfer rate from the tube to the 

water, and (c) the pressure drop.

T (°C) r(kg/m3) C
p
(kJ/kg°C) k(W/m°C) m(kg/ms) Pr

325 987.2 4.182 0.645 528 ¥ 10–6 3.42

330 984.3 4.184 0.650 489 ¥ 10–6 3.15

335 982.3 4.186 0.656 453 ¥ 10–6 2.88

  Use the Gnielinski correlation: 
2/3

( /8)( 1000)

1 12.7 /8 ( 1)

f Re Pr
Nu

f Pr

-
=

+ -
 where f = (0.79 ln Re – 1.64)–2

[(a) 63.8oC (b) 13.8 kW (c) 796 N/m2]

(C) Liquid-Metal Heat Transfer

8.9

enters at 415°C and is heated to 440°C as it passes through the tube. If the tube wall is at a temperature 

calculate the length of the tube required to effect the heat transfer.

  Use the following properties at 427.5°C:

  m = 1.34 ¥ 10–3 kg/m s, k = 15.6 W/m K, C
p
 = 0.149 kJ/kg K, Pr = 0.013

  Use the following correlation (for 104 < Re < 106) for q
w
 = const: Nu = 6.3 + 0.0167 Re0.85 Pr0.93

[1.57 m]



Natural (or Free) 
Convection Heat 
Transfer

9.1 ❏ INTRODUCTION

In the previous two chapters, we focused on the forced convection heat transfer involving the mechanical 

device or external mechanism to create motion. Free convection heat transfer, on the other hand, is caused 

by the influence of a body force (gravitational, centrifugal, electrical, or magnetic) on a fluid. One

example of free convection is in the interior cooling of gas-turbine blades that spin at high rotational 

speed. But by far the most common form of natural convection encountered in engineering practice, is 

caused by the density variations in a fluid due to heating or cooling by a surface. Even in the case of 

incompressible fluid, density differences in the presence of temperature differences between the surface 

and the fluid create a flow due to buoyancy effects which is normally negligible in the case of forced 

convection. In this chapter, we concentrate primarily on temperature-induced buoyancy from a single 

surface in a quiescent (still) fluid.

In free convection, fluid movement is caused because of density differences in the fluid due to 

temperature differences under the influence of gravity. Density differences cause a buoyancy force which, 

in turn, causes the fluid circulation by convection currents. Buoyancy force is the upward force exerted 

by a fluid on a completely or partially immersed body and is equal to the weight of the fluid displaced

by the body.

Obviously, fluid velocity in natural convection is low as compared to that in forced convection. 

Velocities associated with natural convection are relatively small, not much more than 2 m/s. As a result, 

the natural convection heat-transfer coefficients tend to be much smaller than those for forced convection. 

For gases, these coefficients are of the order of only 5 W/m2 K. And yet, natural convection is one of the 

important modes of heat transfer used in practice since there are no moving parts. One must of course 

be careful to always check if simultaneous radiation heat transfer is significant to the thermal design.

All real fluids are viscous. Fluids past a solid surface result in the formation of a boundary layer. 

The thickness of the boundary layer is very small compared to the characteristic dimension of the solid 

surface. The velocity of fluid particles is zero at the solid surface and is equal to the free stream velocity 

at the edge of the boundary layer.

The boundary layer may be laminar or turbulent. In laminar flow, the fluid particles follow a smooth 

and continuous path and do not have a macroscopic mixing between successive layers. In a turbulent

flow, there is a random macroscopic mixing of fluid particles across successive layers of fluid flow.
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Natural convection requires (a) a solid–fluid interface, (b) a temperature difference between the 

temperature of the solid and the surrounding fluid, and (c) mixing motion of fluid particles due to the 

density difference created by the temperature gradient.

Natural convection flows can be either external or internal. External flows include flow up a heated 

wall and the plume rising above a power-plant stack. Internal flows are found between the cover plate 

and absorbing surface of a solar collector and inside hollow insulating walls.

Since there is no obvious characteristic velocity of a natural convection flow, the Reynolds number 

of forced convection does not play any role. It is replaced by the Grashof number or Rayleigh number.

Application Areas Natural convection heat transfer finds extensive applications in the following areas:

Cooling of transformers, transmission lines, and rectifiers

Heating of houses by steam or electrical radiators

Heat loss from the steam pipelines in power plants and heat gain in the refrigerant pipelines in 

air-conditioning applications

Cooling of electronic devices (chips, transistors, etc.) by finned heat sinks, etc.

Buoyant plume rising from a smokestack

9.2 ❏ PHYSICAL MECHANISM OF NATURAL CONVECTION

Consider the familiar example of a heated, vertical plate kept hanging in quiescent (stagnant) air. Let 

the temperature of the heated surface be T
w
 and that of the surrounding air, T  (T

w
 > T ). A layer of air 

in the immediate vicinity of the plate will get heated up by conduction and the density of this heated air 

layer decreases. As a result, the heated air rises and the cold air from the surroundings moves in to take 

its place. This layer, in turn, gets heated up, moves up and is again replaced by cooler denser air. Thus, 

convection currents are set up causing the heat to be carried away from the hot surface. The fluid near 

the plate experiences an upward force due to the effect of buoyancy.

On the other hand, if the temperature of the solid surface is lower than that of the surrounding fluid 

(T
w
 < T ), the fluid near the surface gets cooled and its density increases. As a result, the fluid starts 

moving downwards. Both situations are illustrated in Fig. 9.1.

During the temperature-induced flow, a boundary layer is set up along the length of the plate as 

shown. With the x-axis taken along the vertical length of the plate, and the y-axis perpendicular to it, 

the velocity and temperature profiles are shown in Fig. 9.2. As far as the velocity profile is concerned, 

at the plate surface, the fluid velocity is zero due to no-slip condition; then, the velocity increases to a 

maximum value and then, drops to zero at the outer edge of the boundary layer since the surrounding 

air is assumed to be quiescent. Note the difference in this velocity profile as compared to that in the 

case of forced convection. The boundary layer is laminar for some distance along the length, and then 

depending on the fluid properties and the temperature difference between the wall and the fluid, the 

boundary layer becomes turbulent.

The forces that exist near the surface due to density differences caused by heat transfer make the fluid 

move along the surface. The resulting movement convects energy to or from the surface. One may infer 

that the buoyancy-induced velocities extend into the fluid as far as the temperature changes do. Such a 

conclusion is valid for fluids whose Prandtl number is less than or equal to about 1.

One is basically interested in the events near the surface of a vertical plate in a gravitational field 

because the events are easier to visualize; the general nature of the phenomenon also applies to other 

geometries. The nature of the flow in the boundary layer will be either laminar (layer-like) or slightly 

turbulent. The nature or character of the free convection turbulent boundary layer is nowhere near as 



602 Heat and Mass Transfer

strong compared to what is observed in forced convection. In fact, it would be more appropriate to call 

the flow wavy rather than turbulent.

The flow in the boundary layer at the beginning, i.e., x = 0 (bottom for T
w
 > T  and top for T

w
 < T ),

is always laminar and as velocities along the plate increase, transition will occur when the flow becomes 

unstable and starts wavering. The heat-transfer characteristics will be more pronounced in the turbulent 

region of the boundary layer than in the laminar region.

The physical properties in the dimensionless parameters that comprise the empirical correlations are 

usually evaluated at the average film temperature T
f
 = (T

w
 + T )/2 unless otherwise specifically specified 

to use another temperature.

In pure free convection, the fluid outside the boundary layer must be at rest (quiescent), not in motion 

(u  = 0). When a small finite u  exists, the effects of forced flow becomes important when the square of 

the Reynolds number is about the same magnitude as the Grashof number (i.e., Re2 ª Gr). Mixed free 

and forced convection will be discussed later.

Flow patterns during heating and cooling of a vertical flat plate by free convection

Conditions in a fluid between large horizontal plates at different temperatures. (a) Unstable temperature 

gradient. (b) Stable temperature gradient.
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It needs to be recognized that the presence of density gradient does not always ensure free convection. 

Referring to Fig. 9.2, consider two parallel horizontal plates at different temperatures and the fluid (say 

air) between them. If the upper plate is hotter, the fluid at the top becomes lighter and being bounded 

by the upper wall, it can’t move and the heat transfer is only by conduction through the fluid. However, 

if the top surface is colder, the fluid will be heavier and convection currents will set up if the buoyancy 

forces overcome the viscous forces.

Free convection can also occur without the entire fluid being bounded by a wall.

In Fig. 9.3(a), the heating of a fluid is shown by a heater wire of small cross section submerged in 

it. The fluid will start rising entraining the quiescent fluid in the vicinity along. This will create a plume 

as shown. The plume will spread and get dispersed. The other example of a submerged buoyant jet is 

illustrated in Fig. 9.3(b).

9.3 ❏  ANALYTICAL SOLUTION OF LAMINAR FREE CONVECTION 
OVER A VERTICAL FLAT PLATE

Analytical solution of natural convection heat transfer is a little more complicated than forced convection 

since velocity field is coupled to the temperature field because the flow is induced by temperature 

differences. This coupling of velocity and temperature fields is peculiar to natural convection flows. In 

forced convection, the momentum equation can be solved in isolation from the energy equation. In free 

convection, however, the buoyancy force which is temperature dependent appears in the momentum 

equation. Hence, it is not possible to solve the momentum and energy equations separately, but together 

and simultaneously.

Schmidt and Beckmann analyzed the problem of laminar free convection on an isothermal vertical 

wall as shown in Fig. 9.4.

Buoyancy-driven free boundary layer flows in an extensive, quiescent medium. (a) Plume formation above a 

heated wire. (b) Buoyant jet associated with a heated discharge.
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The momentum and energy equations, viz.,

n b

a

∂ ∂ ∂
+ = + -

∂ ∂ ∂

∂ ∂ ∂
+ =

∂ ∂ ∂

2

2

2

2

( )
u u u

u v g T T
x y y

T T T
u v

x y y

are partial differential equations.

These are made ordinary differential equations by introducing the following parameters:

1/4

y
C

x
h = (dimensionless similarity variable) (9.1)

and
w

T T

T T
f

-
=

-
(dimensionless temperature) (9.2)

where

1/4

2

( )

4

wg T T
C

b

n

-È ˘= Í ˙Î ˚
and f is a function of h only.

Thus,

1/41/4 1/4 3

2 1/4 2

( ) ( )1

44

w wg T T g T T xy y

xx

b b
h

n n

È ˘- -È ˘ Ê ˆ= = Í ˙Á ˜Í ˙ Ë ¯Î ˚ Î ˚

or

1/4

4

xGr y

x
h

Ê ˆ= Á ˜Ë ¯  where Gr
x
 is the local Grashofnumber which represents the ratio

2

(Buoyancy forces)(Inertia forces)

(Viscous forces)
(9.3)

Typical velocity and temperature profiles for natural convection flow over a hot vertical plate at temperature 

T
s
 inserted in at temperature T .



Natural (or Free) Convection Heat Transfer 605

Let us introduce another term, 
2

( )
4 2

u
f

C x
h

n
= (9.4)

where f(h) is a function of only h.

The momentum and energy equations now take the following forms:

23 2

3 2
3 2 0

d f d f d f
f

dd d
f

hh h

Ê ˆ+ - + =Á ˜Ë ¯
(9.5a)

and
2

2
3 0

d d
Pr f

dd

f f

hh
+ = (9.5b)

The boundary conditions are as follows:

At y = 0, T = T
w
, n = u = 0 or h = 0; 0, 1

d f

d
f

h
= = ,

At y = , T = T , n = u = 0 or h = ; 0, 0
d f

d
f

h
= =

The solutions to the preceding equations were given by Ostrach, and the resulting temperature and velocity 

distributions are given in Figures 9.5 and 9.6.

The local heat-transfer coefficient may be evaluated from

\

0

0 0

( )

( )

w x w

y

w

y y

x
w w

T
q k h T T

y

T d
k k T T

y dy
h

T T T T

f h

h

=

= =

∂Ê ˆ= - = -Á ˜Ë ∂ ¯

∂ ∂Ê ˆ Ê ˆ- ¥ -Á ˜ Á ˜Ë ∂ ¯ Ë ∂ ¯
= - =

- -

or

1/4

1/4 2 1/4
0 0

1/4
3

2
0

( ) 1

4

( )

4

w
x

y y

w

y

g T TC d d
h k k

d dx x

g T T xk d

x d

bf f

h hn

b f

hn

= =

=

È ˘-Ê ˆ Ê ˆ= - = - Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

È ˘- Ê ˆ= - Í ˙ Á ˜Ë ¯Î ˚

or
1/4

0

1
( )

2
x x

y

k d
h Gr

x d

f

h =

Ê ˆ= Á ˜Ë ¯-
(9.6)

The average value of the heat-transfer coefficient is given as

or

0

1/4

0

1 4
( )

3

4 1
( )

3 2

L

L x x x L

L L

y

h h dx h
L

k d
h Gr

L d

f

h

=

=

= =

Ê ˆ= - Á ˜Ë ¯

Ú

(9.7)
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The value of (dq/dh)
y = 0

 is still unknown. Its empirical value is given below:

1/2

1/4
0

0.676

(0.861 )y

d Pr

d Pr

f

h =

Ê ˆ- =Á ˜Ë ¯ +
(9.8)

Therefore,
1/2

1/4

1/4

1 0.676
( )

(0.861 )2
x x

k Pr
h Gr

x Pr
=

+

Local Nusselt number,

1/2
1/4

1/4

1 0.676
( )

(0.861 )2

x
x x

h x Pr
Nu Gr

k Pr
= =

+

fi 1/4 1/2 1/40.478( ) (0.861 )x xNu Gr Pr Pr
-= + (9.9)

or
3

3 1/4

2
(const.)( ) sincex

x

h x g Tx
x Gr

k

b

n

È ˘D
= =Í ˙

Î ˚

or
3/4

1/4(const.) (const.)x

x
h x

x

-= =

Average heat-transfer coefficient,

\

1/4

0 0

3/4

1/2
1/4

1/4

1 (const.)

(const.) 4 4

3 3

4 1 0.676
( )

3 (0.861 )2

L L

L x

x L
x L

L
xL

h h dx x dx
L L

x h
L

h L Pr
Nu Gr

k Pr

-

=
=

= =

= ¥ =

= =
+

Ú Ú

fi 1/4 1/2 1/40.637( ) (0.861 )L xNu Gr Pr Pr
-= + (9.10)

For air, with Pr = 0.714, we have

1/4 1/40.360 and 0.480x x L LNu Gr Nu Gr= = (9.11)

The foregoing results apply irrespective of whether T
w
 > T  or T

w
 < T . If T

w
 < T , conditions are 

inverted from those of Fig. 9.4, the leading edge is at the top of the plate, and positive x is defined in 

the direction of the gravity force convection.

Note: The coefficient 
4

3
 in Eq. (9.10) for free convection on a vertical surface compares with a 

coefficient of 2 for laminar forced convection over a flat plate. Also in the laminar flow, the convection 

coefficient h varies as x–1/4 for free convection, compared with x–1/2 for forced convection.
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Analytical results for velocity profile for laminar free convection on a flat plate

Analytical results for temperature profile in laminar free convection on a vertical flat plate
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9.4 ❏  INTEGRAL METHOD FOR NATURAL CONVECTION HEAT 
TRANSFER ON A VERTICAL FLAT PLATE

The most frequently studied case of natural convection is that of a fluid adjacent to a plane vertical wall. 

Consider a heated vertical plate of length L from which heat is lost by natural convection.

The plate is maintained at a temperature T
w

and the temperature of the surrounding stagnant fluid is 

T . The motion of the fluid is confined to a region close to the surface.

Here we calculate the heat-transfer coefficient if the boundary layer is laminar. Let the thickness of 

the velocity boundary layer be d and that of the thermal boundary layer d
T
.

The velocity and temperature profiles are shown in Fig. 9.7. The velocity in the x-direction, both at 

the wall and at the edge of the plate, has to be zero. At the wall the velocity is zero because of no-slip

condition, it increases to some maximum value and again decreases to zero at the edge of the boundary 

layer since the free stream conditions are quiescent (still) in a free convection system. Both boundary 

layers remain laminar until some distance from the bottom edge and then turn turbulent. For simplicity, let 

us assume d
T
 = d, since in free convection the flow pattern exists because of the temperature difference 

and the two boundary layers may be expected to be of the same thickness. For Pr > 1, d > d
T
 and the 

typical velocity and temperature profiles are illustrated in Fig. 9.8.

Temperature and velocity distributions in the vicinity of a heated flat plate placed vertically in still air

Assumptions (1) Steady, incompressible, laminar fluid flow. It may be emphasized here that the term 

incompressible implies constant density but it is through variations in fluid density that the fluid is driven 

in free convection. In the analysis, only in the buoyancy-force term the density changes are taken into 

account but elsewhere the density is considered constant.

(2) Prandtl number is near unity which implies that d ª d
T
.

(3) Buoyancy effects are limited to the boundary-layer region and u  = 0.

(4) Viscous heat dissipation is neglected since the magnitude of velocity is small.
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Temperature profile

Tw

u = 0

T

u = 0

Velocity
profile

g

Edge of thermal boundary layer

Edge of hydrodynamic boundary layer

y

x

dT

d

Stagnant fluid,
T

u = 0

Tw

x

y

d
dT

Velocity
profile

T

Temperature profile

Typical velocity and temperature profiles in the boundary layer for natural convection heat transfer from 

(a) heated, and (b) cooled vertical plate in a stationary fluid (Pr > 1).

Consider the control volume ABCD shown in Fig. 9.9. Here, we are assuming d
T
 = d. Applying Newton’s 

second law of motion to flow through control volume (C. V). Length of CV is dx and height is d, width 

is unity.

Elemental control volume for the integral method application of Newton’s second law to a free convection 

boundary layer

(ii)(i)

Rate at which the -direction Rate at which the -direction Pressure forces exerted 

momentum per unit width momentum per unit width in the -dire

leaves the CV enters the CV

x x

x

Ê ˆ Ê ˆ
Á ˜ Á ˜- =
Á ˜ Á ˜
Ë ¯ Ë ¯

(iii)

(iv)

ction by the

 surroundings on CV

Viscous forces exerted in the -direction Body forces in the -direction

 by the surroundings on CV acting on the fluid inside the CV

x x

Ê ˆ
Á ˜
Á ˜
Ë ¯

Ê ˆ Ê ˆ
+ +Á ˜ ÁË ¯ Ë ¯

(v)

˜
(9.12)
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Each term in the above equation will have units of rate of change of momentum per unit width 

2

kg m kg

s. s m s
= =

Let us write the terms one by one,

(i)
2 2

0 0

d
u dy u dy dx

dx

d d

r
È ˘Ê ˆ
Í ˙+ Á ˜
Í ˙Ë ¯Î ˚
Ú Ú (ii)

2

0

u dy

d

rÚ

(iii) –dP d (iv)

0y

u
dx

y
m

=

∂Ê ˆ
- Á ˜Ë ∂ ¯

(v)

0

g dy dx

d

r
Ê ˆ

-Á ˜
Ë ¯
Ú

Note that (iii), (iv), and (v) have negative signs because these forces are acting on the control volume 

and the sum of the terms of RHS of the equation (9.12) is equal and opposite to that of LHS, so that 

the summation of all forces is zero. Substituting in the equation (9.12) gives

2

00 0

[ ] ]

y

ud
u dy dx dP dx g dy dx

ydx

d d

r d m r
=

È ˘ È ˘∂Ê ˆ
= - - -Í ˙ Í ˙Á ˜Ë ∂ ¯Í ˙ Í ˙Î ˚ Î ˚

Ú Ú

Dividing by dx,

2

0 00y

d dP u
u dy g dy

dx dx y

d d

r d m r
=

È ˘ ∂Ê ˆ= - - -Í ˙ Á ˜Ë ∂ ¯Í ˙Î ˚
Ú Ú (9.13)

Coefficient of volumetric thermal expansion b is defined as

( )

( )T T

r r
b

r

-
= -

-
(9.14a)

dP
g

dx
r= - (9.14b)

where r  is the density of the surrounding fluid at the temperature T .

Substituting the values from equations (9.14a) and (9.14b) in the equation (9.13) and dividing by r,

we get

2 0

0 0y

dy
gd u

u dy g
dx y

d

d
r

r m
d

r r r
=

È ˘ ∂Ê ˆ= - -Í ˙ Á ˜Ë ∂ ¯Í ˙Î ˚

Ú
Ú

Since,

0

dy

d

d = Ú  and r is a function of y it must be written under the integral sign, we can write

2

0 0 0

( )

y

d u
u dy g dy

dx y

d d
r r m

r r
=

È ˘ - ∂Ê ˆ= - -Í ˙ Á ˜Ë ∂ ¯Í ˙Î ˚
Ú Ú (9.15)
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Using Eq. (9.14a) we get, ( )T T
r r

b
r

-
= - -

Hence, replacing r by temperature by introducing b, the integral momentum equation can be expressed 

as

2

0 0 0

( )

y

d u
u dy g T T dy

dx y

d d

b n
=

È ˘ ∂Ê ˆ= - - -Í ˙ Á ˜Ë ∂ ¯Í ˙Î ˚
Ú Ú (9.16)

The integral energy equation can be obtained by integrating the energy equation over the boundary layer

0 0

( )

y

d T
T T udy

dx y

d

a
=

∂Ê ˆ- = Á ˜Ë ∂ ¯Ú (9.17)

Choice of Temperature and Velocity Profiles Equations (9.16) and (9.17) require velocity and 

temperature profiles.

For temperature distribution, we have the following boundary conditions.

At y = 0, T = T
w

(a)

At , , 0
T

y T T
y

d
∂

= = =
∂

(b) and (c)

With these three boundary conditions, the temperature distribution can be expressed with three arbitrary 

constants.

Let 2
1 2 3T C C y C y= + +

Boundary condition (a) gives, C
1
 = T

w

Boundary condition (c) gives, 
32

0 2
T

C C
y

d
∂

= = +
∂

(9.18)

Boundary condition (b) gives, 2
2 3wT T C Cd d= + + (9.19a)

Multiplying Eq. (9.18) by d, 0 = C
2
d + 2C

3
d2 (9.19b)

Solving Eqs. (9.19a) and (9.19b),

3 22

2( )
andw wT T T T

C C
dd

- - -
= = (9.20)

Substituting the three constants, the temperature distribution is given by

or

2

2

2

2

( ) ( )
2

2

w w
w

w

w

T T T T
T T y y

T T y y

T T

d d

d d

- -
= - +

-
= - +

-
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Adding 1 on both sides,

2

2
1 1 2w

w

T T y y

T T d d

-
+ = - +

-

The resulting temperature profile becomes,

2

1
w

T T y

T T d

- Ê ˆÊ ˆ= - Á ˜Á ˜Ë ¯Ë ¯-
(9.21)

For the velocity distribution, we have the following boundary conditions:

At y = 0, u = 0 (A)

At y = d, u = 0 (B)

At y = d, 0
u

y

∂
=

∂
(C)

At y = 0,

2

02
constant, say

u
C

y

∂
= =

∂
(D)

With these four boundary conditions, the velocity distribution can be assumed to be a cubic polymanial 

with four arbitrary constants.

Let 2 3
1 2 3 4

x

u
C C y C y C y

u
= + + +

where, u
x
 is some arbitrary function of x and has dimensions of u.

Boundary condition (A) gives, C
1
 = 0

Boundary condition (B) gives,

2 3
2 3 4 0C C Cd d d+ + = (9.22)

Boundary condition (C) gives,

2
2 3 40 2 3

u
C C C

y
d d

∂
= = + +

∂
(9.23)

Boundary condition (D) gives,

2

0 3 3 02
2 /2

u
C C C C

y

∂
= = fi =

∂

Solving Eqs. (9.22) with (9.23) multiplied by d, we have

\

2 2
2 3 2 3 4

2 3 4
2 3

3 4

2
3 0 0

4 43

0 2 3
0

0 2

2 2 42

C C C
C C C

C C

C C C
C C

d

d

d d
d d d

d

d

d dd

= + +
- = + + +

= +

-
= - = - fi =

¥
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From Eq. (9.22),

2
2 30 0

2 3 2
3 4 0

2
2 4

4

C C

C C C
C

d
d d

d d dd
d d d

- +- - -
= - = =

fi 0
2

4

C
C

d
= -

Solution of Equations Substituting the constants, the velocity distribution is given by

or

2 30 0 0

2 30 0 0

4 2 4

4 2 4

x

x

C C Cu
y y y

u

C C Cu y
y y y

u y

d

d

d
d

d d

-
= + -

È ˘-È ˘= + -Í ˙Í ˙Î ˚Î ˚

or 2 20 0 0

4 2 4x

C C Cu y
y y

u
d d

d

-È ˘= + -Í ˙Î ˚

or
2

2
0

1 1

4 2 4x

u y
C y y

u

d
d

d

È ˘
= - - +Í ˙Î ˚

(9.24)

or

22
0 1 2
4x

Cu y y y

u

d

d d d

È ˘È ˘- Ê ˆ= - -Í ˙Í ˙ Á ˜Ë ¯Î ˚ Î ˚

or

22
0 1
4

xC u y y
u

d

d d

È ˘- È ˘Ê ˆ= -Í ˙ Á ˜Í ˙Ë ¯Î ˚ Î ˚

Let
2

0

4

xC u
u

d-
= ¢x (another constant)

The velocity profile can now be written in a more compact form as

2

1
x

u y y

u d d

È ˘Ê ˆ= - Á ˜Í ˙Ë ¯¢ Î ˚
(9.25)

or

2

1x

y y
u u

d d

Ê ˆ= -¢ Á ˜Ë ¯

where xu¢  is an unknown quantity with the dimensions of velocity.

or
2 2 3

2 2 3
1 2 2x x

y y y y y y
u u u u

d d dd d d

È ˘Ê ˆ È ˘
= - + fi = - +¢ ¢Í ˙ Í ˙Á ˜Ë ¯ Î ˚Î ˚

Differentiating with respect to y and equating it to zero, we have

d d
d d d

È ˘
= = - + - + =¢ Í ˙

Î ˚

2
2 2

2 3

1 4 3
0 or 3 4 0x

du y y
u y y

dy
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Solving this quadratic equation,

2 2

2 2

( 4 ) ( 4 ) 4(3)( )

2 3

4 16 12 2 1
or

6 36 3 3 3

y
d d d

d d d
d d d d

- - ± - -
=

¥

-
= + ± = + ± =

The velocity will be maximum at 
3

y
d

=  since at y = d, u = 0

because

2

max

1 1 4
1

3 3 27
x xu u u

Ê ˆ= ¥ - =¢ ¢Á ˜Ë ¯

and this maximum is

max

4 1
at /

27 3
xu u y d= =¢

The velocity distribution can thus be expressed as

2

max

27
1

4

y y
u u

d d

Ê ˆ= -Á ˜Ë ¯ (9.26)

The mean or average velocity is given by

2 3

2 3

0 0

2 3 4

2 3
0

max

1 2

2 1 2 1

2 2 3 43 4

1 27 1

12 4 12

x
av

x x

x

u y y y
u udy dy

u uy y y

u u

d d

d

d d d d d

d

d d dd d

Ê ˆ¢
= = - +Á ˜Ë ¯

È ˘ ◊¢ ¢ È ˘= - + = - +Í ˙ Í ˙Î ˚Î ˚

= =¢

Ú Ú

\ max

27

48
avu u= (9.27)

Substituting the velocity and temperature distributions from equations (9.23) and (9.24) in equations (9.9) 

and (9.10), we have

24 22
2

2
00 0

III III

1 ( ) 1 1x w x

y

d y y y y y
u dy g T T dy u

dx y

d d

b n
d d d dd =

È ˘È ˘ Ê ˆ∂Ê ˆ Ê ˆ Ê ˆÍ ˙- = - - - -¢ ¢Í ˙Á ˜ Á ˜ Á ˜Á ˜Ë ¯ Ë ¯ Ë ¯Ë ¯∂Í ˙Í ˙ Î ˚Î ˚
Ú Ú

Solving terms in the equation above one by one separately,

First Term

42
2

2

0

1x

d y y
u dy

dx

d

dd

È ˘Ê ˆ-¢Í ˙Á ˜Ë ¯Í ˙Î ˚
Ú
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We note that

2 3

4 2 3 4 2 3 4

2 3 4 2 5 4

( 1) ( 1)( 2)
(1 ) 1

2! 3!

12 24 24
1 1 4 1 4 6 4

2 6 24

n n n x n n n x
x nx

y y y y y y y y y

d d dd d d d d d

- - -
- = - + - +

Ê ˆ- = - + - + = - + - +Á ˜Ë ¯

Hence,
42 2 3 4 5 6

2 2 3 4 5 6
1 4 6 4

y y y y y y y

dd d d d d d

È ˘- = - + - +Í ˙Î ˚

\
2 3 4 5 6

2 2

2 3 4 5 6
0

6 4 1
4 6 4

3 5 6 7
x x

d y y y y y d
u dy u

dx dx

d
d

d d d d
d d d d d

È ˘Ê ˆ È ˘È- + - + = - + - +¢ ¢Í ˙ Í ˙Á ˜ ÍË ¯ ÎÎ ˚Í ˙Î ˚
Ú

2 235 105 126 70 15 1

105 105
x x

d d
u u

dx dx
d d

È ˘- + - +È ˘ =¢ ¢Í ˙Í ˙Î ˚Î ˚
(9.28)

Second Term

2 2

2
0 0

( ) 1 ( ) 1 2 ( )
3

w w w

y y y
g T T dy g T T dy g T T

d d
d

b b b
d d d

Ê ˆÊ ˆ- - = - - + = -Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú (9.29)

Third Term

2 2 3

2 3
0

0

1 2 x
x x

y
y

uy y y y y
u u

y y

n
n n

d d d dd d =
=

È È ˘ ¢È ˘∂ ∂Ê ˆÍ - = - + =¢ ¢ Í ˙Á ˜Í ˙Ë ¯∂ ∂Í Î ˚ Î ˚Î
(9.30)

Substituting terms from equations (9.25), (9.26), and (9.27),

21 1
( )

105 3

x
x w

ud
u g T T

dx

n
d b d

d

¢
= - -¢ (9.31)

For Eq. (9.27), substituting the relevant terms,

0 0

( )

y

d T
T T udy

dx y

d

a

=

∂
- =

∂Ú

Solving LHS first,

22

0

4

0

2 3 4 5

2 3 4 5
0

LHS ( ) 1 1

( ) 1

( ) 4 6 4

w x

w x

w x

d y y y
T T u dy

dx

d y y
T T u dy

dx

d y y y y y
T T u dy

dx

d

d

d

d d d

d d

d d d d d

È ˘Ê ˆ Ê ˆ= - - - -¢Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

È ˘Ê ˆÊ ˆÍ ˙= - - -¢ Á ˜Á ˜Ë ¯Ë ¯Í ˙Î ˚
È ˘È ˘

= - - - + - +¢Í ˙Í ˙
Î ˚Í ˙Î ˚

Ú

Ú

Ú
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4 6 4 1
( )

2 3 4 5 6

15 40 45 24 5
( )

30

1
( ) ( )

30 30

w x

w x

w x w x

d
T T u

dx

d
T T u

dx

d d
T T u T T u

dx dx

d
d d d d

d

d
d

È ˘= - - - + - +¢ Í ˙Î ˚
- + - +È ˘= - - ¢ Í ˙Î ˚

= - - = - -¢ ¢ (9.32)

2

0 0

2

2
0

RHS ( ) 1

2
( ) 1 2 ( )

w

y y

w w

y

T y
T T T

y y

y y
T T T T

y

a a
d

a a
d dd

= =

=

È ˘∂ Ê ˆ∂Ê ˆ Ê ˆÍ ˙= = - - +Á ˜Á ˜Á ˜ Ë ¯Ë ¯Ë ∂ ¯ ∂ Í ˙Î ˚

È ˘∂ Ê ˆ= - - + = - -Í ˙ Á ˜Ë ¯∂ Î ˚
(9.33)

Substituting in Eq. (9.27),

1 2

30
x

d
u

dx

a
d

d
=¢ (9.34)

Equations (9.28) and (9.31) need to be solved now. For this, the variation in xu¢  and d with respect to x

should be known. The condition is: Both xu¢  and d are zero, at x = 0.

Assume the relationships in the form,

1

2

m
x

n

u C x

C xd

=¢

=

(9.35a)

(9.35b)

Substituting in Eqs. (9.28) and (9.31),

or

2 2 1
1 2 2

2

2 (2 1) ( )1
1 2 2

2

1 1
( )

105 3

(2 ) 1
( )

105 3

m
m n n

w n

m n n m n
w

C

C xd
C x C x g T T C x

dx C x

m n
C C x g T T C x x

C

n
b

b n+ - -

= - -

+
= - - (9.36)

For this equation to be dimensionally balanced, the indices of x on the RHS must equal the indices of 

x on the LHS.

\
1

2 1
2

m n n m+ - = fi =

and
1

2 1
4

m n m n n+ - = - fi =    (also n = m – n)

Substituting in Eq. (9.36),

or

2 1/4 1/4 1/41
1 2 2

2

2 1
1 2 2

2

5 1
( )

4 105 3

1 1
( )

84 3

w

w

C
C C x g T T C x v x

C

C v
C C g T T C

C

b

b

= - -
¥

= - -
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or 1 2

2

1 2

30

m n

n

d
C x C x

dx C x

a
=

or ( 1)
1 2

2

( ) 2

30

m n nm n
C C x x

C

a+ - -+
= (9.37)

Equating the indices of x, m + n – 1 = – n

1 1
and

2 4
m n= =

These values also satisfy (m + n – 1 = –n).

Substituting for m and n in Eq. (9.37),

or

1/4 1/4
1 2

2

2
1 2 1 2

2

3 2

4 30

1 2
or 80

40

C C x x
C

C C C C
C

a

a
a

- -=
¥

= =

\ 1 2
2

80
C

C

a
= (9.38)

Substituting in Eq. (9.37) to obtain the values of C
1
 and C

2
.

2

2 22 2
2 2 2

1 80 1 80
( )

84 3
w

C
C g T T C

C C

a a
b n

Ê ˆ = - -Á ˜Ë ¯

Dividing by C
2
, we get

or

2 2

4 4
2 2

2

4 4
2 2

1 80 1 80
( )

84 3

80 1
80 80 ( )

384

w

w

C C

C

v
g T T

v
g T T

C

a a
b

a a
b

= - -

È ˘
+ = -Í ˙

Í ˙Î ˚

or 2 4
2

20
3 80 ( )

21
wg T T Cana b+

È ˘¥ = -Í ˙Î ˚

Dividing by a 2 throughout, we get

or

4
22

1/41/4
1/4

2 2

20
240 ( )

21

( )20
(240) since

21

w

w

g
T T C

g T T
C Pr Pr

n b

a a

b n

aa

-

È ˘+ = -Í ˙Î ˚

-Ê ˆÊ ˆ Ê ˆ= + =Á ˜ Á ˜Á ˜Ë ¯ Ë ¯Ë ¯

or

1/41/4 2
1/4

2 2 2

( )
3.93(0.952 ) wg T T

C Pr
b n

n a

-- Ê ˆ-Ê ˆ= + Á ˜ Á ˜Ë ¯ Ë ¯
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or

1/4

1/4 1/2
2 2

( )
3.93(0.952 ) ( )wg T T

C Pr Pr
b

n

-
--Ê ˆ= + Á ˜Ë ¯

(9.39)

and 1 2 2
1/4

2
1/4 1/2

2

80 80

( )
3.93(0.952 ) ( )w

C
C

g T T
Pr Pr

a a

b

n

-
-

= =
È ˘-Ê ˆÍ ˙+ Á ˜Ë ¯Í ˙Î ˚

or
1 21/2 1/2

1/2

2

80

( )
15.44(0.952 ) w

C
g T T

Pr

a

b n

an

- -
=

È ˘-Ê ˆ Ê ˆ+ Í ˙Á ˜Á ˜ Ë ¯Ë ¯ Î ˚

or

1/2

1/2
1 2

( )
5.18(0.952 ) wg T T

C Pr
b

n
n

- -Ê ˆ= + Á ˜Ë ¯ (9.40)

Hence,

1/2

1/2 1/2
1 2

( )
5.18(0.952 )m w

x

g T T
u C x Pr x

b
n

n

- -Ê ˆ= = +¢ Á ˜Ë ¯
(9.41a)

and

1/4

1/4 1/2 1/4
2 2

( )
3.93(0.952 ) ( )n wg T T

C x Pr Pr x
b

d
n

-
- -Ê ˆ

= = + Á ˜Ë ¯
(9.41b)

or

1/4

1/4 1/2 3/4

2

(( )
3.93(0.952 ) ( ) wg T Tx

Pr Pr x
x

bd

n

-
- --Ê ˆ= + Á ˜Ë ¯

or

1/4
1/4

2

0.952
3.93 x

Pr
Gr

x Pr

d -+Ê ˆ= Á ˜Ë ¯ (9.42)

where
3

2

( )w
x

g T T x
Gr

b

n

-
=  is the local Grashof number.

9.4.1 ● Mass-flow Rate Through the Boundary

Mass-flow rate through the boundary layer per unit width at any location x is

1/2 1/4 3/41 1 2
2( 1)

12 12 12
av x

C C C
m u u x C x x

rd
r d r r= ¥ = = ¥ =¢

Total mass-flow rate from x = 0 to x = L per metre width through the boundary will be

7/4
3/4 7/41 2 1 2 1 2

total

00

1/47/4
1/4 1/2

2

3 2

1/2 1/4

1 4

12 12 7/4 12 7

( )
5.18 3.93(0.952 ) ( )

21

( ( ) / )5.18 3.93

21 (0.952 )
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w

w

C C C C C Cx
m x dx L

L L L

g T TL
Pr Pr

L

g T T L

Pr Pr

r r r
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n
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- -

È ˘
= = ◊ = ¥Í ˙

Î ˚

-Ê ˆ= ¥ ¥ + Á ˜Ë ¯

-¥Ê ˆ= Á ˜Ë ¯ +

Ú
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\
1/4

total 2
0.97

(0.952 )

LGr
m

Pr Pr
rn

È ˘= Í ˙+Î ˚
(9.43)

9.4.2 ● Local Nusselt Number

The local heat-transfer coefficient is given by

0

( )

y

x
w

T
k

y
h

T T

=

∂Ê ˆ
- Á ˜Ë ∂ ¯

=
-

Since

{ }

2

00

1/4

1/4

1/4 1/2 1/4

2

( ) 1

2( )1
0 ( )2 1 0

2 2

( )
3.93(0.952 ) ( )

w

w
w

yy

x

w

y
T T T T

T TT y
T T

y

k k
h Cx

g T T
Pr Pr x

d

d d d

d b

n

==

-
-

-

È ˘Ê ˆ= + - - Á ˜Í ˙Ë ¯Î ˚

- -È ˘∂Ê ˆ È ˘= + - - ¥ - =Í ˙Í ˙Á ˜Ë ∂ ¯ Î ˚Î ˚

= = =
-Ê ˆ

+ Á ˜Ë ¯

Local Nusselt number,

1/4

1/4 1/2 1/4

2

1/4
3

1/4 1/2

2

( )2
(0.952 ) ( )

3.93

( )
0.509(0.952 ) ( )

x w
x

w
x

h x g T T
Nu Pr Pr

k

g T T x
Nu Pr Pr

b

n

b

n

- -

-

-Ê ˆ= = + Á ˜Ë ¯

Ê ˆ-
= + Á ˜Ë ¯

x x

(9.44)

1/4 1/2 1/40.509(0.952 ) ( ) ( )x xNu Pr Pr Gr
-= + [Gr

x
 = local Grashof number] (9.45)

9.4.3 ● Average Nusselt Number

Average heat-transfer coefficient is given by

or

1/4 3/4 1/40

0 0

0

( )

1 4 4
or

3 3

4

3

L

x L L

L x LL

x LL

h dx
C C

h h dx x dx h L CL
L L L

dx

h h

- -

=

Ê ˆ= = = = =Á ˜Ë ¯

=

Ú
Ú Ú

Ú

The average heat-transfer coefficient is thus 4/3 times the local heat-transfer coefficient.
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It follows that

1/4

1/4 1/2 1/4

2

1/4 1/2 1/4

( )4
0.509 (0.952 ) ( )

3

0.6786(0.952 ) ( ) ( )

w
L

L
L L

g T T
h k Pr Pr L

h L
Nu Pr Pr Gr

k

b

n

- -

-

-Ê ˆ= ¥ + Á ˜Ë ¯

= = + (9.46a)

or

1/4
1/40.6786

0.952
L L

Pr
Nu Ra

Pr

Ê ˆ= Á ˜Ë + ¯ (9.46b)

where Ra
L
 is the Rayleigh number defined as

3 3

2

( ) ( )
and Grashof numberw w

L L

g T T L g T T L
Ra Gr

b b

na n

- -
= = =

In the above discussion, the plate was hotter than the surroundings, (i.e., T
w
 > T ). If T

w
 < T , the same 

results will be valid but the flow near the plate will be in the downward direction.

9.5 ❏  INTEGRAL METHOD FOR TURBULENT FREE CONVECTION 
PAST A VERTICAL SURFACE

In a long vertical wall, the laminar boundary layer goes through a transition to turbulence in free 

convection. It is found that for GrPr > 109, heat transfer from a vertical isothermal plate is controlled by 

turbulent flow. Obviously, the results of laminar-flow free convection on a vertical plate are no longer 

valid in this case.

Turbulent free convection can be analyzed by an integral method as suggested by Eckert and Jackson.

Let us rewrite the momentum and energy equations as follows:

2

00 0

00

( )

( )

y

y

d u
u dy v g T T dy
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d T
u T T dy

dx y

d d

d
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a

=

=

∂Ê ˆ= - + -Á ˜Ë ∂ ¯

∂Ê ˆ- = - Á ˜Ë ∂ ¯

Ú Ú

Ú

The thicknesses of the velocity and temperature boundary layers are assumed constant. To solve the 

above two equations, the following expressions for velocity and temperature profiles are used:

1/7 4 1/7(1 ) and 1x
w

T T
u u

T T
h h h

-
= - = -

-

where h = y/d.

Replacing the term –n[{∂u/∂y}
y = 0

] by – t
w
/r in the momentum equation and the term 

–a[{∂T/(∂y)}
y = 0

] by (q
w
)/(rC

p
), we have

and

2

0 0

0

( )

( )

w

s

p

d
u dy g T T dy

dx

qd
T T udy

dx C

d d

d

t
b

r

r
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We use the Blasius expression for the shear stress

1/4
20.0225w x

x

u
u

n
t r

d

Ê ˆ= Á ˜Ë ¯
   where u

x
 is the characteristic velocity.

Also, using the modified Reynolds’ analogy, we get

1/3
,

1

2
x x f xNu Pr Re C= (9.47)

or 1/3

2

1

1( ) 2

2

w x w

w
x

q x u x
Pr

k T T
u

t

n
r

Ê ˆ Ê ˆ= Á ˜ Á ˜Ë ¯-
Á ˜Ë ¯

or 2/3w w w

p x

q T T
Pr

C u

t

r r
- - Ê ˆ= Á ˜Ë ¯

(9.48)

Substituting Eqs. (9.44) and (9.45) into Eqs. (9.46a) and (9.46b), we get

and

1/4
2 2

1/4
2/3

0.0523 ( ) 0.125 ( ) 0.0225

0.0336 ( ) 0.0225

x w x
x

x x
x

d
u g T T u

dx u

d
u Pr u

dx u

n
d b d

d

n
d

d
-

Ê ˆ= - - Á ˜Ë ¯

Ê ˆ= Á ˜Ë ¯
(9.49)

The solutions to the preceding equations may be assumed as

1 2
1 2and

m m
xu C x C xd= =

Substituting these values in Eqs. (9.48) and (9.49), we get

and   

1 2 2 1

1 2

1 2 1

1 2

1/4
2 22 2

1 2 2 1

1 2

1/4
2/3

1 2 1

1 2

0.0523 ( ) 0.125 ( ) 0.0225

0.0366 ( ) 0.0225 ( )

m m m m
s m m

m m m

m m

d
C x C x g T T C x C x

dx C x C x

d
C x C x Pr C x

dx C x C x

n
b

n-

Ê ˆ= - - ¥ Á ˜Ë ¯

Ê ˆ= Á ˜Ë ¯
(9.50)

or 1 22 12
1 2 1 20.0523 (2 )

m m
C C m m x

+ -+

  2 1 21/4 1/4 1/4
2 1 20.125 ( ) 0.0225( ) ( )

m m m
wg T T C x C x C x n- -= - - (9.51a)

and 1 2 1 1 22/3 3/4 1/4 1/4
1 2 1 2 1 20.0366 ( ) 0.0225 ( ) ( )

m m m m
C C m m x Pr C x C x n-+ - -+ = (9.51b)

Equating the exponents of x in Eqs. (9.50) and (9.51a), we obtain

1 2 1 2

1 2 1 2 1 2

7 1
2 1

4 4

3 1 1
1 or and 0.7

4 4 2

m m m m

m m m m m m

+ - = -

+ - = - = =
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Substituting these values in Eqs. (9.50) and (9.51a) and solving for C
1
 and C

2
, we have

and

5 8/3
1 2

1/10
2

2/3 16/3
2

0.0689

0.00338 (1 0.494 )
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3

1/2
1 2

( )
and w

x x

g T T x
u C x Gr

b
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= = (9.52)

we finally get 
1/2 2/3 1/21.185 (1 0.494 )x xu Gr Pr

x

n -= +

Similarly,

0.1 8/15 2/3 1/100.565 (1 0.494 )xGr Pr Pr
x

d - -= + (9.53)
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Ê ˆ Ê ˆ= = Á ˜Á ˜ Ë ¯Ë ¯

Substituting the values of Re
x
 and (1/2) C

f,x
 in Eq. (9.47), the resulting Nusselt number is found to be

2/5 7/15 2/3 2/50.0295 (1 0.494 )x xNu Gr Pr Pr
-= + (9.54a)

or

1/15
7

2/5

2/3 6
0.0295

(1 0.494 )
x x

Pr
Nu Gr

Pr

È ˘
= Í ˙

+Î ˚
(9.54b)

This analysis suggests that h varies as x0.2.

To obtain an average heat-transfer coefficient, 

0

1
L

L xh h dx
L

= Ú
The average value of Nusselt’s number can be obtained as

or 2/5 7/15 2/3 2/5

2/5
1/6

2/3

0.0246 (1 0.494 )
1.2

0.0246
1 0.494

x L
L L

L

Nu
Nu Gr Pr Pr

Ra Pr

Pr

= -= = +

È ˘
= Í ˙

+Î ˚
(9.55)

For air, taking Pr = 0.71, we get

2/50.0183L LNu Gr= (9.56)

This equation agrees well with the experimental results.
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9.6 ❏ TRANSITION AND TURBULENCE IN NATURAL CONVECTION

We must recognize that the transition form laminar to turbulent 

condition in both free and forced convection are caused by 

hydrodynamic and thermal instabilities. In free convection on 

a vertical plate, transition occurs when the critical Rayleigh 

number,

3
9( )

10w cr
cr

g T T x
Ra Gr Pr

b

na

-
= = ª

Thus, the distance from the leading edge at which transition 

occurs is given by

na

b

È ˘= ¥ Í ˙-Î ˚

1/3
910

( )
cr

w

x
g T T

(9.57)

This transition is illustrated in Fig. 9.10.

9.7 ❏  VERTICAL PLATE AT 
CONSTANT TEMPERATURE

Vertical plate is an important geometry since heat transfer 

from the walls of a furnace can be calculated by the relations 

applicable to a vertical plate.

McAdams suggested the following relations for fluids whose Prandtl number is close to unity, i.e., for 

air and other gases, generally:

1/4 4 90.59 (10 10 )L L LNu Ra Ra= < < (laminar flow) (9.58)

and
1/3 9 120.10 (10 10 )L L LNu Ra Ra= < < (turbulent flow) (9.59)

Properties of fluid at T
f
 = 

1
( )

2
wT T+ .

In a plot of Nu against Ra, the slope is 1/4 in laminar flow and is 1/3 in the turbulent flow as shown 

in Fig. 9.11.

Note that the average heat-transfer coefficient in the turbulent flow regime is independent of the length L.

Churchill and Chu recommend the following more accurate correlations with the length (or height) L as 

the characteristic length and valid for all values of the Prandtl numbers:

1/4
1 9

4/9
9/16

0.670
0.68 (10 10 ) ( )

0.492
1

L
L L

Ra
Nu Ra laminar flow

Pr

-= + < <
È ˘Ê ˆ+Í ˙Á ˜Ë ¯Î ˚

(9.60)

Transition from laminar flow to 

turbulent flow in the boundary layer 

on a vertical flat plate with natural 

convection on the surface.
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1/6

8/27
9/16

0.387
0.825 ( )

0.492
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L
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Ra
Nu laminar and turbulent flow

Pr

Ï ¸
= +Ô Ô
Ì ˝È ˘Ê ˆ+Í ˙Ô ÔÁ ˜Ë ¯Î ˚Ó ˛

(9.61)

(for the entire range of Ra
L
 up to 1012)

For the laminar flow range (Ra
L
 < 109), however, slightly more accurate results are obtained if 

Eq. (9.60) is used instead of Eq. (9.61).

Fluid properties are evaluated at the film temperature T
f
 = (T

w
 + T )/2.

● Vertical Cylinder at Constant Temperature

A vertical cylinder or tube can be treated as a vertical plate (with length or height, L of cylinder as the 

characteristic dimension), and the correlations for the vertical plate can be applied if the cylinder diameter 

is large compared to the boundary-layer thickness. To satisfy this condition, the following criterion is 

satisfied:

1/4

35D

L Ra
≥ (9.62)

9.8 ❏ VERTICAL PLATE WITH CONSTANT HEAT FLUX

The boundary layer is laminar for Ra < 109. Modified Grashof number, *
Gr Gr Nu=  is significant in 

evaluating h under constant heat flux condition.

3 4
*

2 2

( )w w x
x x x

w

g T T x q x g q x
Gr Gr Nu

T T k

b b

n n

-
= = =

-

and the local Nusselt number, x
x

h x
Nu

k
=  where q

w
 is the constant wall heat flux
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The following two relations are recommended for local heat-transfer coefficients in laminar and 

turbulent ranges respectively:

(9.63)

and

* 0.2 5 * 11

* 0.25 13 * 6

0.60( ) for 10 10 ( )

0.17( ) for 2 10 10 ( )

x x x

x x x

Nu Gr Pr Gr Pr laminar

Nu Gr Pr Gr Pr turbulent

= < <

= ¥ < < (9.64)

The average heat-transfer coefficient in the laminar region is obtained by integration over the entire 

height L of the plate as 
5

4
x Lh h ==  and, for the turbulent region, h

x
 is independent of x. x Lh h ==

9.9 ❏ HORIZONTAL PLATE: UNIFORM WALL TEMPERATURE

Figure 9.12 shows the flow pattern from the surface of a horizontal plate under different conditions in 

free (natural) convection

Upper Surface of Heated Plate/Lower Surface of Cooled Plate
The characteristic length in the Nusselt and Rayleigh numbers for horizontal plate is evaluated as

= =
Plate surface area

Perimeter

s
c

A
L

P

Natural convection flow patterns for a horizontal plate under different conditions.
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A flat circular disk, for example, would have L
c
 = D/4 where D is the disk diameter. The correlations 

recommended by McAdams are

= < < <

= < < ¥

1/4 4 7

1/3 7 10

0.54 2.6 10 10

0.15 10 3 10

L L L

L L L

Nu Ra Ra

Nu Ra Ra

  (laminar flow) (9.65)

(turbulent flow) (9.66)

Lower Surface of a Heated Horizontal Plate/Upper Surface of a Cooled Plate

= ¥ < < ¥

+Ê ˆ=Á ˜Ë ¯

1/4 5 100.27 3 10 3 10 (  )

Properties evaluated at
2

L L L

w
f

Nu Ra Ra laminar flow

T T
T

(9.67)

9.10 ❏ HORIZONTAL PLATE: UNIFORM WALL HEAT FLUX

Heated Surface Facing Upwards

= < ¥

= ¥ < <

1/3 8

1/3 8 11

0.13( ) 2 10

0.16( ) 5 10 10

L L L

L L L

Nu Ra Ra

Nu Ra Ra (9.68)

Heated Surface Facing Downwards

= < <1/5 6 110.58( ) 10 10L L LNu Ra Ra (9.69)

Properties to be evaluated at 

= - -0.25( )f w wT T T T

except b which should be found at +
1

( )
2

wT T

9.11 ❏ FREE CONVECTION ON AN INCLINED PLATE

The heat-transfer coefficient for free convection on an inclined plate can be predicted by the vertical plate 

correlations if the gravitational term in the Grashof number is adjusted to accommodate the effect of the 

inclination. Thus, for inclined plates (inclined at an angle q to the vertical), vertical plate relations can 

be used by replacing g by (g cos q) for Ra < 109. Inclined length L is the characteristic dimension. The 

orientation of the inclined surface, whether the surface is facing upwards or downwards, is also a factor 

that affects the Nusselt number. To make a distinction in the orientation of the surface, we designate the 

sign of the angle q that the surface makes with the vertical as follows:

1. The angle q is considered negative if the hot surface is facing up, as illustrated in Fig. 9.13(a).

2. The angle q is considered positive if the hot surface is facing down, as illustrated in Fig. 9.13(c).

Figure 9.13(b) illustrates the limiting cases of q Æ –90°, the horizontal plate with hot surface facing 

upwards, and q Æ + 90°, the horizontal plate with hot surface facing downwards.

● Uniform Wall Heat Flux

Here, we present the heat-transfer correlations based on the extensive experimental investigations for free 

convection from an inclined plate subjected to approximately uniform wall flux to water.
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For an inclined plate with the heated surface facting downwards:

= + < < <1/4 5 110.56( cos ) for  88°,10  10L LNu Gr Pr Gr Prq q (9.70)

For the plate slightly inclined with the horizontal (that is, 88° < q < 90°) and the heated surface 

facing downwards, Eq. (9.70) is applicable. The 1
4

 power in Eq. (9.65) implies that the flow is always 

in the laminar regime.

For the inclined plate with the heated surface facing upwards, the heat-transfer correlation has been 

developed with the following considerations. It is assumed that Eq. (9.65) is applicable in the laminar 

flow regime of Gr
L
 Pr < Gr

c
 Pr, where Gr

c
 is is the critical Grashof number at which the transition from 

laminar to turbulent flow takes place. In the turbulent regime, it is assumed that Eq. (10-68) is applicable 

if Gr
L

Pr is replaced by Gr
L

Pr cos q. With this consideration (from the experimental data of Fujii and 

Imura), two expressions can be developed, one involving the coefficient 0.13 based on the results of 

experiments with the 30 cm test plate and the other involving the coefficient 0.16 based on a 5 cm test 

plate. Here, we present the average of these two results and give the correlation of free convection on 

an inclined plate with the heated surface facing upwards as

= - +1/3 1/3 1/40.145[( ) ( ) ] 0.56( cos )L c cNu Gr Pr Gr Pr Gr Pr q (9.71)

for Gr
L

Pr < 1011, Gr
L
 > Gr

c
, and –15° < q < –75°. Here, the value of 

the transition Grashof number Gr
c
 depends on the angle of inclination 

q, as listed in Table 9.1.

In Eqs. (9.65) and (9.66), all physical properties are evaluated at 

the mean temperature 

= - -0.25( )m w wT T T T

and b is evaluated at + -0.25( )wT T T

9.12 ❏ HORIZONTAL CYLINDERS

Correlations proposed by McAdams with the diameter D as the characteristic length are

1/4 4 9

1/3 9 12

0.53( ) 10 10

0.13( ) 10 10

D D D

D D D

Nu Ra Ra

Nu Ra Ra

= < <

= < < (9.72)

Table 9.1

(see Fig. 9.12 for the 

definition of q)

q, degrees Gr
c

–15 5 ¥ 109

–30 109

–60 108

–75 106

Hot surface
facing upwards

Hot surface
facing upwards

Hot surface facing
downwards

Hot surface
facing
downwards

q
negative q

positiveq = –90° q = +90°

(a) (b) (c)

The concept of positive and negative inclination angles from the vertical to define the orientation of the hot 

surface.
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The flow pattern on the outside of a long horizontal heated cylinder at 

the surface temperature of T
s
 (or T

w
) is shown in Fig. 9.14.

The following correlations suggested by Morgan for a horizontal 

cylinder with constant surface temperature are suitable for fluids with 

Prandtl number, Pr varying between about 0.7 and 3:

0.058 10 2

0.148 2 2

0.188 2 4

0.25 4 7

1/3 7 12

0.675 10 10

1.02 10 10

0.85 10 10

0.48 10 10

0.125 10 10

D D D

D D D

D D D

D D D

D D D

Nu Ra Ra

Nu Ra Ra

Nu Ra Ra

Nu Ra Ra

Nu Ra Ra

- -

-

= < <

= < <

= < <

= < <

= < <

(9.73)

The following Churchill–Chu correlations for the constant wall 

temperature case in the case of a horizontal cylinder with the outer 

diameter as the characteristic dimension, are the most appropriate and 

valid for all values of the Prandtl number.

1/4
6 9

9/16 4/9

0.518
0.36 (for 10 10 )

[1 (0.559/ ) ]

D
D D

Re
Nu Ra

Pr

-= + < <
+

(9.74)

2
1/6

9 12

8/27
9/16

0.387
0.60 (for 10 10 )

0.559
1

D
D D

Ra
Nu Ra

Pr

Ï ¸
= + < <Ô Ô
Ì ˝Ï ¸Ê ˆÌ ˝+Ô ÔÁ ˜Ë ¯Ó ˛Ó ˛

(9.75)

Properties in the above equations are evaluated at the film temperature, ∫ +
1

( )
2

f wT T T .

For thin wires (D = 0.2 mm to 1 mm), the Rayleigh number is usually very small and a film type 

of flow pattern is observed. The following correlation is usually used:

1/81.18( )D DNu Ra= (9.76)

Heat transfer form the horizontal cylinders to liquid metals may be calculated from

2 1/40.53( )D DNu Gr Pr= (9.77)

9.13 ❏ SPHERE

In the case of a sphere, the diameter D is the characteristic dimension in all correlations. An empirical 

correlation reported by Yuge is

È ˘= + < < = +Í ˙Î ˚
1/4 5 1

2 0.43 1 10 Properties at ( )
2

D D D f wNu Ra Ra T T T (9.78)

Fluid
T

Ts

Natural convection 

flow over a heated 

horizontal cylinder
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For free convection on a single isothermal sphere in water, the following correlation is proposed:

1/4 5 82 0.50 for 3 10 3 10D D DNu Ra Ra= + ¥ < < ¥ (9.79)

The average Nusselt number over the entire surface of an isothermal sphere can be determined more 

accurately from the following Churchill–Chu correlation:

1/4

9/16 4/9

0.589
2

[1 (0.469/ ) ]

D
D

Ra
Nu

Pr
= +

+   provided Ra
D
 < 1011 and Pr > 0.7 (9.80)

È ˘= +Í ˙Î ˚
1

Properties evaluated at ( )
2

f wT T T

It is worth noting that as DT approaches zero, the Nusselt number approaches the value 2 which is the 

case for pure conduction from the spherical surface in a very large extent of fluid.

9.14 ❏ OBJECTS OF ARBITRARY SHAPE

For a laminar free convection boundary layer on an object of any arbitrary shape, in fluids other than 

those for which Pr << 1, Lienhard recommends that the average Nusselt number is approximately given by

1/40.52L LNu Ra= (9.81)

where the characteristic length L is the length of the boundary layer, for example, L = pD/2 for a cylinder

or sphere.

9.15 ❏  FREE CONVECTION FROM RECTANGULAR BLOCKS AND 
SHORT CYLINDERS

Here, L
H
 is the horizontal dimension and L

V
 is the vertical dimension. The appropriate heat-transfer 

correlation for rectangular blocks is

= < <1/4 4 90.55( ) (10 10 )L L LNu Ra Ra (9.82)

where the characteristic length L is defined as

= + =
+

1 1 1
or H V

V H H V

L L
L

L L L L L

For short cylinders (D = L), = 0.2080.775( )Nu Ra (9.83)

9.16 ❏ SIMPLIFIED EQUATIONS FOR AIR

Since air is the common fluid in most of the free convection problems encountered in practice, it is useful 

to have simplified relations for those situations.

The simplified air correlations are tabulated in Table 9.2. These correlations can be extended for 

pressures other than atmospheric (higher or lower) by multiplying expressions for h by the following 

factors where P is in bar:
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Laminar: Ê ˆ
Á ˜Ë ¯

1/2

1.01325

P

Turbulent:
Ê ˆ
Á ˜Ë ¯

2/3

1.01325

P

Table 9.2

Geometry Characteristic

dimension, L
c

Heat-transfer 

coefficient

Laminar 

(Range of 

Gr Pr)

Heat-transfer 

coefficient

Turbulent 

(Range of Gr Pr)

Vertical plate or cylinder Height L
DÊ ˆ= Á ˜Ë ¯

1/4

1.42
T

h
L

104 to 109 h = 1.31(DT)1/3 109 to 1012

Horizontal cylinder
Outer diameter 

D

DÊ ˆ= Á ˜Ë ¯

1/4

1.32
T

h
D

104 to 109 h = 1.24(DT)1/3 109 to 1012

Horizontal plate:

(Heated surface 

facing upwards or 

cooled surface facing 

downwards)

Area/

Parameter

A/P

DÊ ˆ= Á ˜Ë ¯

1/4

1.32
T

h
L

105 to 

2 ¥ 107 h = 1.52(DT)1/3
2 ¥ 107 to 

3 ¥ 1010

Harizontal plate: 

(Heated surface facing 

downwards or cooled 

surface facing upwards)

Area/

Parameter

(A/P)

DÊ ˆ= Á ˜Ë ¯

1/4

0.59
T

h
L

3 ¥ 105 to 

3 ¥ 1010
— —

Spheres = + < <1/4 5[2 0.392 ] for 1 10D D

k
h Gr Gr

D

9.17 ❏  CORRELATIONS FOR FREE CONVECTION IN ENCLOSED 
SPACES

So far, our discussion was confined to the fluid that extended indefinitely from the surface—far enough 

so that the confining surfaces exerted no influence on the heat-transfer situations. In this section, we will 

consider some correlations for heat exchange between surfaces that are close together so that the boundary 

layers interact, enclosures in which there are internal natural flows of considerable engineering importance.

The situation is complicated because the fluid in the enclosure usually does not remain stationary. 

In a vertical enclosure, for example, the fluid adjacent to the hotter surface rises and the fluid adjacent 

to the cooler one falls, setting off a rotationary motion within the enclosure that increases heat transfer 

through the enclosure.

The characteristics of heat transfer through a horizontal enclosure depend on whether the hotter plate 

is at the top or at the bottom, as shown in Fig. 9.15. When the hotter plate is at the top, no convection 

currents develop in the enclosure, since the lighter fluid is always on top of the heavier fluid. Heat 

transfer in this case is by pure conduction, and we have Nu = 1. When the hotter plate is at the bottom, 

the heavier fluid will be on top of the lighter fluid, and there will be a tendency for the lighter fluid to 
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topple the heavier fluid and rise to the top, where it comes in contact with the cooler plate and cools 

down. Until that happens, however, heat transfer is still by pure conduction and Nu = 1. When Ra > 

1708, the buoyancy force overcomes the fluid viscous resistance and initiates natural convection currents, 

which are observed to be in the form of hexagonal cells called Benard cells. For Ra > 3 ¥ 105, the cells 

break down and the fluid motion becomes turbulent.

The Rayleigh number for an enclosure is determined from

-
=

3
1 2

2

( )
L

g T T L
Ra Pr

b

n

where the characteristic length L is the distance between the hot and cold surfaces, and T
1
 and T

2
 are the 

temperatures of the hot and cold surfaces, respectively. All fluid properties are evaluated at the average 

fluid temperature, = +1 2( )/2T T T .

● Effective Thermal Conductivity

When the Nusselt number is known, the rate of heat transfer through the enclosure is

-
= - = 1 2

1 2( )
T T

Q hA T T kNuA
L

since h = k Nu / L. The rate of steady-state heat conduction across a layer of thickness L, area A, and 

thermal conductivity k is expressed as

-
= 1 2

cond

T T
Q kA

L
(9.84)

where T
1
 and T

2
 are the temperatures on the two sides of the layer. A comparison of this relation with 

Eq. (9.77) reveals that the convection heat transfer in an enclosure is analogous to heat conduction across 

the fluid layer in the enclosure provided that the thermal conductivity k is replaced by kNu. That is, the 

fluid in an enclosure behaves like a fluid whose thermal conductivity is kNu as a result of convection 

currents. Therefore, the quantity kNu is called the effective thermal conductivity of the enclosure.

That is,

=effk kNu (9.85)

The flow structure in a horizontal enclosure heated from below
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Note that for the special case of Nu = 1, the effective thermal conductivity of the enclosure becomes 

equal to the thermal conductivity of the fluid. This is expected since this case corresponds to pure 

conduction.

9.18 ❏ HORIZONTAL RECTANGULAR ENCLOSURES

For horizontal enclosures containing air, based on the plate spacing L, Jakob recommends the following 

correlations:

1/4 4 5

1/3 5 7

0.195 10 4 10

0.068 4 10 10

L L L

L L L

Nu Ra Ra

Nu Ra Ra

= < < ¥

= ¥ < <
(9.86)

These relations can also be used for other gases with 

0.5 < Pr < 2. Using water, silicone oil, and mercury

in their experiments, Globe and Dropkin suggested 

the following empirical correlation for horizontal 

enclosures heated from below.

1/3 0.0740.069L LNu Ra Pr= (9.87)

(valid for 3 ¥ 105 < Ra
L
 < 7 ¥ 109)

The space between the plates, L is the characteristic 

dimension. All thermophysical properties are evaluated 

at the average of the two plate temperatures, i.e., 

1 2

1
( )

2
T T+ . The ratio (L/H) must be sufficiently small 

so that the effects of the side walls is negligible.

Based on experiments with air, Hollands et al. recommend this correlation for horizontal enclosures,

  
1/3

81708
1 1.44 1 1 10

18

L
L L

L

Ra
Nu Ra

Ra

++ È ˘È ˘= + - + - <Í ˙Í ˙ Î ˚Î ˚
(9.88)

The notation [ ]+ indicates that if the quantity in the bracket is 

negative, it should be set equal to zero.

9.18.1 ● Vertical Rectangular Enclosures

Consider a vertical enclosure in which a fluid contained between two 

parallel plates of height H and separated by a distance L, as illustrated 

in Fig. 9.16. The plates are maintained at uniform temperatures T
1

and T
2
. H/L is the aspect ratio.

For small aspect ratios, with the horizontal surfaces insulated, 

the following correlations due to Berkovsky and Polevikov may 

be used for fluids of any Prandtl number.

0.28 1/4
10 50.22 ; 10 , 2 / 10, 10

0.2
L L L

Pr H
Nu Ra Ra H L Pr

Pr L

-
Ê ˆ Ê ˆ= < < < <Á ˜Á ˜ Ë ¯Ë + ¯ (9.89)

Vertical enclosure with 

isothermal surfaces

L

T T> 21

T1

T2

H

Fluid

&Q

A horizontal rectangular enclosure with 

isothermal surfaces
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0.29
3 –3 50.18 ; 10 ,1 / 2,10 10

0.2 0.2
L L L

Pr Pr
Nu Ra Ra H L Pr

Pr Pr

Ê ˆ Ê ˆ= > < < < <Á ˜ Á ˜Ë + ¯ Ë + ¯
(9.90)

For larger aspect ratios, the following correlations due to can be used [McGregor and Emery]

0.3
1/4 0.012

4

4 7

0.42 10 / 40

1 2 10

10 10

L L

L

H
Nu Ra Pr H L

L

Pr

Ra

-
Ê ˆ= < <Á ˜Ë ¯

< < ¥

< <

(9.91)

1/3

6 9

0.046 1 / 40

1 20

10 10

L L

L

Nu Ra H L

Pr

Ra

= < <

< <

< <

(9.92)

For very large aspect ratios (5 < H/L < 110), the correlation due to El Shirbiny et al. given below 

is recommended.

Choose the largest of the following, i.e.,

where

1 2, 3

1/3
1

max{ , }

0.0605

D

L

Nu Nu Nu Nu

Nu Ra

=

=

1/3
3

0.293

2 1.36

0.104
1

1 (6310 )

L

L

Ra
Nu

Ra

Ï ¸È ˘Ô Ô
= +Ì ˝Í ˙

+Í ˙Ô ÔÎ ˚Ó ˛
y (9.93)

0.272

3 0.242
/

LRa
Nu

H L

Ê ˆ= Á ˜Ë ¯

These are valid for 102 < Ra
L
 < 2 ¥ 107

9.18.2 ● Inclined Rectangular Enclosures

Air spaces between two inclined parallel plates are typically 

encountered in flat-plate solar collectors (between the glass 

cover and the absorber plate). Heat transfer through an inclined 

enclosure depends on the aspect ratio H / L as well as the tilt 

angles q from the horizontal as shown in Fig. 9.17.

For large aspect ratios, the following correlation due to 

Hollands et al. correlates experimental data extremely 

well.

1/31.6

1708
1 1.44 1

cos

cos1708(sin 1.8 )
1 1

cos 5830

L

L

L

L

Nu
Ra

Ra

Ra

q

qq

q

+

+

È ˘= + -Í ˙
Î ˚

È ˘Ï ¸Ô Ô Ê ˆ- + -Í ˙Ì ˝ Á ˜Ë ¯Î ˚Ô ÔÓ ˛
(9.94)

An inclined rectangular enclosure 

with large aspect ratio. The angle 

q is measured from the horizontal
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For Ra
L
 < 105, 0° < q < 70°, and H / L ≥ 12. Any quantity in [ ]+ should be set equal to zero 

if it is negative. This is to ensure that Nu = 1 for Ra
L
 cos q < 1708. Note that this relation reduces 

to Eq. (9.88) for horizontal enclosures for q = 0°, as expected.

For enclosures with smaller aspect ratios (H / L < 12), the next correlation can be used provided 

that the tilt angle is less than the critical value q* listed in Table 9.3.

q

q q

q qq

q

q q q= ∞
= ∞

= ∞

Ê ˆ
= ∞ < <Á ˜Ë ¯

0

/ *

/4 *90

0

(sin *) 0 *L
L

L

L

Nu
Nu Nu

Nu
(9.95)

Table 9.3

Aspect ratio, (H/L) 1 3 6 12 > 12

Critical tilt angle (q*) 25° 53° 60° 67° 70°

For tilt angles greater than the critical value (q* < q < 90°), the Nusselt number can be obtained 

by multiplying the Nusselt number for a vertical enclosure by (sin q)1/4.

90

1/4 *(sin ) 90 , any /L LNu Nu H Lq q q q= ∞= < < ∞ (9.96)

For enclosures tilted more than 90°, the recommended relation is

90
1 ( 1)sin 90 180 , any /L LNu Nu H L

q
q q∞=

= + - ∞ < < ∞ (9.97)

The variation of Nusselt number as a function of tilt angle is qualitatively shown in Fig. 9.18.

Effect of inclination angle on natural convection in an inclined enclosure
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9.19 ❏ CONCENTRIC CYLINDERS AND SPHERES

Natural convection in enclosures formed between concentric cylinders and concentric spheres when the gap 

is filled with various fluids such as air, water, and oils have been correlated by Railthby and Hollands.

9.19.1 ● Concentric Cylinders

Consider a fluid contained in the annular space between two long concentric horizontal cylinders 

maintained at uniform but different temperatures of T
i
 and T

o
, as shown in Fig. 9.19. The diameters of 

the inside and outside cylinders are D
i
 and D

o
, respectively, and the characteristic length is the gap width 

between the cylinders, L = 
1

2
 (D

o
 – D

i
).

where

1/4
1/4 2 7eff
cyl cyl

4

cyl 3 3/5 3/5 5

0.386 10 10
0.861

[ln( / ]

( )

o i
L

i o

k Pr
Ra Ra

k Pr

D D
Ra Ra

L D D
- -

Ê ˆ= < <Á ˜Ë + ¯

=
+

(9.98)

9.19.2 ● Concentric Spheres

For concentric spheres of outside and inside diameters of 

D
o
 and D

i
 and held at uniform temperatures of T

o
 and T

i
,

respectively as shown in Fig. 9.20, the total heat-transfer 

rate through the gap or spacing between the spheres by free 

convection is given by

eff ( ) (W)i o
i o

D D
Q k T T

L

p
= -

(9.99)

where L = (D
o
 – D

i
)/2 is the characteristic length, and the 

effective thermal conductivity is given by

1/4
1/4eff
sph

2 4
sph sph4 7/5 7/5 5

0.74
0.861

10 10
( ) ( )

L

o i i o

k Pr
Ra

k Pr

RaL
Ra Ra

D D D D
- -

Ê ˆ= Á ˜Ë + ¯

= < <
+ (9.100)

Again, if k
eff

 / k < 1, we should use k
eff

 = k

The heat-transfer rate through the annulus between the cylinders by 

free convection per unit length is expressed as

eff2
( ) (W/m)

ln( / )
i o

o i

k
Q T T

D D

p
= - (9.101)

where the effective thermal conductivity k
eff

 is given by the following 

correlation.

Natural convection in a concentric 

cylinder

Two concentric 

isothermal spheres
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For Ra
L, cyl

 < 100, natural convection currents are negligible and if k
eff

/k is less than one then the 

process is one of pure conduction in the fluid and k
eff

 = k should be used. The fluid properties are to be 

evaluated at the average temperature (T
i
 + T

o
)/2.

9.20 ❏  NATURAL CONVECTION IN TURBINE ROTORS, ROTATING 
CYLINDERS, DISKS AND SPHERES

Significance in the thermal shafting, flywheels, turbine rotors, and machinery. In high-speed rotating 

components of compressors and turbines, the centrifugal force field is much larger compared to gravitational 

force components of rotating blades.

Cooling of Turbine Blades Free convection can occur even under the influence of centrifugal force.

Note that the acceleration due to gravity g is replaced by the centrifugal acceleration (w2 r
m
).

Grashof number is

2 3

2

( )m
L

r TL
Gr

v

w bD
= (9.102)

where L is the length of the cooling passage.

The following correlation is used to estimate the heat-transfer coefficient

0.4
1.17

2/3
0.0246

1 0.495

LPr Grh L
Nu

k Pr

È ˘
= = Í ˙

+Î ˚
(turbulent flow) Gr

L
 > 1012 (9.103)

The heat-transfer rate is given by

( )( )wQ h DL T Tp= - (9.104)

where D and L are the diameter and length of the hole drilled from the root to the tip of the blade for 

cooling, T
w
 is the surface temperature of the hole, and T  the coolant temperature.

Rotating Cylinders Natural convection from a heated horizontal rotating cylinder is characterized by 

the Grashof number,

3 2( ) /D wGr g T T Db n= - , which becomes the controlling parameter.

At speeds greater than critical (Re
w
 > 8000 in air), where the peripheral-speed Reynolds number: 

2
D

Rew
wp

n
=

The following empirical correlation is used for the average Nusselt number in natural convection 

above critical velocity:

2 0.350.11(0.5 )D D

h D
Nu Re Gr Pr

k
w= = + (9.105)

Rotating Disk At rotational speeds, Reynolds number w D2/v is below 106. The boundary layer on 

the disk is laminar and is of uniform thickness. D is the disk diameter.
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The average Nusselt number for a disk rotating in air in laminar flow regime is

1/2
2

2 60.36 (for / 10 )D

hD D
Nu D

k v

w
w n

Ê ˆ
= = <Á ˜Ë ¯ (9.106)

For turbulent flow regime, the local Nusselt number at a radius r is given approximately by

0.8
2

0.0195r

hr r
Nu

k

w

n

Ê ˆ
= = Á ˜Ë ¯

(9.107)

Laminar flow is between r = 0 and r = r
c
, and turbulent flow between r = r

c
 and r = r

o
, in the outer ring. 

The average Nusselt number can be estimated from

0.8 22

0.015 100o o c
r

o

h r r r
Nu

k v r

wÊ ˆ Ê ˆ= = -Á ˜ Á ˜Ë ¯ Ë ¯
(9.108)

Rotating Sphere For Pr > 0.7, in laminar flow regime (Re
w
 = wD2/v < 5 ¥ 104), the average Nusselt 

number can be evaluated from

and

0.5 0.4 4

0.67 0.4 4 5

0.43 ( 5 10 )

0.066 (5 10 7 10 )

D

D

Nu Re Pr Re

Nu Re Pr Re

w w

w w

= < ¥

= ¥ < < ¥
y

(9.109)

9.21 ❏ COMBINED NATURAL AND FORCED CONVECTIONS

In many practical situations, natural and forced convection may occur together. At high velocities, forced 

convection may be predominant, but at low velocities, the effect of natural convection also must be 

included. Furthermore, natural and forced convections may occur in the same direction or they may act 

in the opposite directions. The following criteria are used to determine if the combined free and forced 

convection is to be considered.

2/( ) 0.1L LGr Re << (forced convection regime)

2/( ) 10L LGr Re >> (free convection regime)

20.1 /( ) 10L LGr Re< ª (mixed (free and forced) convection regime)

The effect of buoyancy in the forced convection heat transfer is profoundly influenced by the direction 

of the buoyancy force relative to that of the forced flow. Three special cases are presented here as shown 

in Fig. 9.22.

Assisting Flow (e.g., Upward Forced Flow over a Hot Surface)

In this case, the buoyancy-induced motion is in the same direction as the forced motion. Thus, both free 

and forced convection help each other to increase heat transfer.

Opposing Flow (e.g., Upward Forced Flow over a Cold Surface). In this case, the buoyancy-induced 

motion is in the direction opposite to that of forced motion. Thus, free convection opposes forced 

convection resulting in reduced heat transfer.
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Transverse Flow (e.g., Horizontal Forced Flow over a Hot or Cold Cylinder/Sphere). In this case, the 

buoyancy-induced motion is perpendicular to the forced motion. This type of flow facilitates fluid mixing, 

thereby improving heat transfer.

In the mixed convection regime, the following expression is used to calculate the Nusselt number:

forced free
m m m

Nu Nu Nu= ± (9.110)

where the first and second terms on the right-hand side are the Nusselt numbers for the forced and 

free convection respectively. A value of m = 3 is generally recommended although a value of m = 3.5 

or 4 is preferred for transverse flows. Positive sign is used for assisting and transverse flow while the 

negative sign is used for opposing flow.

Internal Flow The following correlations are used for the average Nusselt number in the case of 

internal flow.

For mixed convection through a horizontal tube with laminar flow (Re
D
£ 2000): (correlation due to 

Brown and Gauvin):

0.14

1/3 4/3 1/31.75[ 0.012( ) ] b
D D

w

Nu Gz GzGr
m

m

Ê ˆ= + Á ˜Ë ¯
(9.111)

where m
b
 and m

w
 are the viscosities of the fluid at the bulk mean temperature and the wall (surface)

temperature respectively, and Gz is the Graetz number, given by 
D

D
Gz Re Pr

L

Ê ˆ= Á ˜Ë ¯

For mixed convection turbulent flow (correlation due to Metais and Eckert):

0.36
0.27 0.21 0.074.69D D D

D
Nu Re Pr Gr

L

Ê ˆ= Á ˜Ë ¯
(9.112)

Natural convection can increase or prevent heat transfer, depending on the relative directions of buoyancy-

induced motion and the forced convection motion.
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Illustrative Examples

(A) Exact Analysis, Integral Solution

 Thin vertical plates, 10 cm long, initially at 60°C are suspended in a water bath 

maintained at 20°C. What minimum spacing would prevent interference between their free convection 

boundary layers?

 Properties of water at 40°C are

n = 0.659 ¥ 10–6 m2/s, b = 3.87 ¥ 10–4 K–1, Pr = 4.31

Solution

Known Thin vertical plates are cooled in a 

water bath.

Find Minimum spacing, d, to prevent 

interference between boundary 

layers.

Assumptions (1) Water bath is still (quiescent). 

(2) Isothermal plates.

Analysis The minimum separation distance 

will be twice the thickness of the 

boundary layer at x = L = 0.10 m.

Grashof number,

3 2 4 1 3 3
8

2 6 2 2

9.81 m/s 3.87 10 K 40 K 0.1 m
3.497 10

(0.659 10 m /s)
x

g Tx
Gr

b

n

- -

-
D ¥ ¥ ¥ ¥

= = = ¥
¥

Transition occurs at Gr Pr > 109

8 93.497 10 4.31 1.507 10x LGr Pr= = ¥ ¥ = ¥

This value is greater than 109, indicating turbulent boundary layer.

For turbulent boundary layer (by integral method),

2/3 1/10 2/3 0.1

turb 0.1 8/15 8 0.1 8/15

–3

0.565 [1 0.494 ] 0.565 0.1[1 0.494(4.31) ]

(3.497 10 ) (4.31)

3.94 10 m or 3.94 mm

x Pr

Gr Pr
d

+ ¥ +
= =

¥ ¥

= ¥

\ Minimum spacing, d = 2d = 7.88 mm (Ans.)

 A 25 cm long glass plate maintained at 350 K is suspended vertically in the still 

atmospheric air at 300 K. Estimate (a) the boundary layer thickness at the trailing edge of the plate, 

and (b) the average heat-transfer coefficient.

 If a similar plate is placed in a wind tunnel and air at 1 atm is blown over it at a free steam velocity 

of 5 m/s, under identical steady operating conditions, estimate (c) the boundary layer thickness at the 

trailing edge of the plate, and (d) the average heat-transfer coefficient.

 The properties of air at 1 atm and 325 K are

  k = 0.0282 W/m K, n = 18.41 ¥ 10–6 m2/s, Pr = 0.703

Illustrative Examples
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Solution

Known A vertical heated plate losing heat under natural convection and forced convection 

conditions.

Find Free convection: (a) d (L), mm (b) 2, W/m KLh

Forced convection: (c) d (L), mm (d) 2, W/m KLh

Assumptions (1) Steady-state conditions. (2) Air is an ideal gas. (3) Negligible radiation. (4) Buoyancy

effects are negligible when u  = 5 m/s.

Analysis Free convection: (Still air)

Film temperature, 
1 1

( ) (350 300) 325 K
2 2

f sT T T= + = + =

With 1
idealgas

1 1
(K ),

(K) 325fT
b -= =  for the quiescent air,

the Grashof number is

3 2 3
9 3

2 6 2 2

( ) (9.81 m/s )[1/(325 K)]( , ) (350 300)K
4.453 10

(18.41 10 m /s)

s
x

g x T T x m
Gr x

b

n -
- -

= = = ¥ ¥
¥

At the trailing edge of the plate, x = L = 0.25 m.

\ 9 3 7(4.453 10 )(0.25) 6.958 10x LGr = = ¥ = ¥

Rayleigh number, 
7(6.958 10 )(0.703) 4.891 10L LRa Gr Pr= = ¥ = ¥ 7

Since Ra
L
 < 109, the free convection boundary layer is laminar.

The thickness of boundary layer is given by, 
1/4

1/4 1/2

3.93(0.952 )

x

Pr

x Gr Pr

d +
=

\ At the trailing edge of the plate,

   

1/4 1/4

1/4 1/2 7 1/4 1/2

3.93 (0.952 ) 3.93 0.25(0.952 0.703)
( ) 0.0145 m

(6.958 10 ) (0.703)

.

L

L Pr
L

Gr Pr
d

+ ¥ +
= = =

¥

= 14 5 mm (Ans.) (a)
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Local heat-transfer coefficient at x = L (At the trailing edge of the plate) is

1/2 1/4

1/4

1/2 7 1/4
2

1/4

0.508

(0.952 )

0.0282 W/m C 0.508(0.703) (6.958 10 )
3.87 W/m °C

0.25 m (0.952 0.703)

L
x L x L

Pr Grk k
h Nu

L L Pr
= == = ¥

+

∞ ¥
= ¥ =

+
Average heat-transfer coefficient,

4 4
3.87

3 3
L x Lh h == = ¥ = 2

5.16 W/m K (Ans.) (b)

Forced Convection: Reynolds number, for air flow at u  = 5 m/s is

4 5

6 2

(5 m/s)(0.25 m)
6.79 10 ( 5 10 )

18.41 10 m /s
L

u L
Re

n -= = = ¥ < ¥
¥

and the boundary layer is laminar.

Boundary-layer thickness at the trailing edge is

1/2 4

5 (5.0)(0.25 m)
( ) .

6.79 10L

L
L

Re
d -ª = = ¥

¥
3

4.8 10 m or 4 8 mm (Ans.) (c)

Average Nusselt number, 1/2 1/30.664L L

hL
Nu Re Pr

k
= =

\ Average heat-transfer coefficient,

4 1/2 1/30.0282 W/mK
0.664(6.79 10 ) (0.703)

0.25 m

/

L L

k
h Nu

L
= = ¥ ¥

= 2
17.35W m K (Ans.) (d)

It is obvious that the boundary-layer thickness in forced convection is much smaller than 

that in free convection while the average heat-transfer coefficient in forced convection is 

much larger than that in free convection.

Comment The assumption of negligible buoyancy effects for u  = 5 m/s is justified because 
7

2

4 2

6.958 10
( / )

(6.79 10 )
L LGr Re

¥
=

¥
 = 0.015 << 1.

 Consider a hot vertical plate, 30 cm high and 1.0 m wide, with a uniform surface 

temperature of 127°C suspended in quiescent air at 27°C and atmospheric pressure. Using the integral 

(approximate) solution, estimate the following:

 (a) Maximum velocity at 15 cm from the lower edge of the plate (b) Mean velocity at 15 cm from the 

lower edge of the plate (c) Boundary-layer thickness at 15 cm from the lower edge of the plate (d) Local 

heat-transfer coefficient at 15 cm from the lower edge of the plate (e) Average heat-transfer coefficient 

over the entire surface of the plate (f) Total mass flow through the boundary (g) Total heat loss from 

both sides of the plate (h) Rise in temperature of the air passing through the boundary.

 Properties of dry air at atmospheric pressure and film temperature of 77°C are

k = 0.03 W/m K, Pr = 0.700, r = 0.955 kg/m3, n = 20.92 ¥ 10–6 m2/s, C
p
 = 1.005 kJ/kg K
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Solution

Known A hot vertical plate is exposed to quiescent air.

Find (a) u
max

, (b) u
av

, (c) d (x), (d) h (x) (at x = 0.15 m). (e) h
L
, (f) totm , (g) Q , (h) DT

air

Assumptions (1) Steady operating conditions. (2) Air is an ideal gas. (3) Local atmospheric pressure is 

1 atm.

Analysis (a) With idealgas

1

( )fT K
b = , Grashof number (at x = 0.15 m),

3 2 3

2 6 2 2

7

( ) (9.81 m/s )[1/(77 273.15)K](0.15 m) (127 27) C or K

(20.92 10 m /s)

2.16 10

s
x

g x T T
Gr

b

n -

- + - ∞
= =

¥

= ¥

and

3
7 80.30

(at 0.30 m) 2.16 10 1.728 10
0.15

LGr x L
Ê ˆ= = = ¥ ¥ = ¥Á ˜Ë ¯

Maximum velocity based on integral solution is, max

4

27
xu u=

where

1/2

1/2

1/2

6
7

( ) 1
5.17 5.17

0.952 ( 0.952)

20.92 10 1
5.17 2.16 10 2.03 m/s

0.15 (0.700 0.952)

s
x x

g T T
u x Gr

Pr x Pr

b n

-

-È ˘= = ¥ ¥Í ˙+ +Î ˚

¥
= ¥ ¥ ¥ =

+

Hence, max

4
2.03

27
u = ¥ = 0.30 m/s (Ans.) (a)
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(b) Mean velocity,

max

27 27
(at 0.15 m) (0.30)

48 48
avu x u

Ê ˆ= = = =Á ˜Ë ¯ 0.169 m/s (Ans.) (b)

(c) Boundary layer thickness, d(x) (at x = 0.15 m) is

x

x x

1/4 1/4

2 7 2

0.952 0.952 0.700
( ) 3.93 3.93 0.15 m

2.16 10 0.7

  

Pr

Gr Pr
d

+ +È ˘ È ˘= = ¥ ¥Í ˙ Í ˙¥ ¥Î ˚Î ˚
= 0.0117 m or 11.7 mm (Ans.) (c)

(d) Local Nusselt number,

1/2 1/4 1/4 2
0.508 (0.952 )x x

hx
Nu Pr Pr Gr

kd
-= + = = x x

Hence, local heat-transfer coefficient at x = 0.15 m,

2 2 0.03 W/mK
. /

0.0117 m
x

k
h

d

¥
= = = 2

5 12 W m K (Ans.) (d)

(e) Average heat-transfer coefficient over the entire plate,

-

-

=

= +

= ¥ + =

1/4 1/2 1/4

8 1/4 1/2 1/4

0.677 (0.952 )

0.677(1.728 10 ) (0.7) (0.952 0.7) 57.3

LL

L L

k
h Nu

L

Nu Gr Pr Pr

\
0.03 W/mK

57.3 . /
0.30 m

Lh = ¥ = 2
5 73W m K (Ans.) (e)

(f) Total mass flow through the boundary is

rn

-

È ˘= Í ˙+Î ˚

È ˘¥
= ¥ ¥ ¥ ¥ Í ˙

+Î ˚
=

1/4

total 2

1/4
8

3 6 2

2

1.7
( 0.952)

1.728 10
1.7 0.955 kg/m 20.92 10 m /s 1.0 m

0.7 (0.7 0.952)

. /

LGr
m W

Pr Pr

0 0041 kg s Ans (f )

(g) Total heat loss from both sides of the plate is

   
2(2 )( ) (5.73 W/m K)(2 0.3 m 1.0 m)(127 27) C or K

.

L sQ h WL T T= - = ¥ ¥ - ∞

= 343 8W  (Ans.) (g)

(h) Rise in temperature of air passing through the boundary is calculated from

  \

total air

air

343.8 W or J/s
.

0.0041 kg/s 1009 J/kgK

pQ m C T

T

= D

D = = ∞
¥

83 1 C (Ans.) (h)
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(B) Vertical Plate/Tube

 A 50 cm high vertical plate is at a constant surface temperature of 120°C and 

exposed to quiescent air at 30°C. Determine the rate of heat-transfer per unit width by (a) the exact 

solution, (b) the integral solution, (c) the McAdam’s correlation, and (d) the Churchill Chu correlation.

 Properties of air at the mean film temperature of 75°C are

k = 0.029 17 W/m °C, n = 20.46 ¥ 10–6 m2/s, Pr = 0.7166

Solution

Known An isothermal vertical plate exposed to still cold 

air.

Find Heat transfer per metre width by four different 

methods.

Assumptions (1) Steady operating conditions. (2) Constant 

properties. (3) Air is an ideal gas at 1 atm.

Analysis Isobaric coefficient of volumetric thermal 

expansion, for an ideal gas,

11 1 1
K

(75 273.15)K 348.15fT
b -= = =

+

Grashof number, with plate height as the characteristic length, L is

and

3 2 3

2 6 2 2

8

8 8

( ) (9.81 m/s )[1/(348.15 K)](0.5 m) (120 30) C or K

(20.46 10 m /s)

7.5726 10

(7.5726 10 )(0.7166) 5.4265 10

s
L

L L

g L T T
Gr

Ra Gr Pr

b

n -
- - ∞

= =
¥

= ¥

= = ¥ = ¥

The value of Ra
L
 is less than 109. Hence the flow is laminar.

(a) Exact solution: The average Nusselt number for a vertical plate of length L is given 

by

1/4 1/2 1/4

8 0.25 0.5 0.25

0.64 (0.861 )

0.64(7.5726 10 ) (0.7166) (0.861 0.7166) 80.2

L LNu Gr Pr Pr
-

-

= +

= ¥ + =

Average heat-transfer coefficient,

20.02917 W/m°C
80.2 4.68 W/m °C

0.5 m
L

k
h Nu

L
= = ¥ =

Heat-transfer rate per m width is

2( 1)( ) (4.68 W/m C)(0.5 m 1 m)(120 30) C

.

sQ h L T T= ¥ - = ∞ ¥ - ∞

= 210 6 W  (Ans.) (a)

(b) Integral solution:

1/4 1/2 1/4

8 1/4 1/2 1/4

0.68 (0.952 )

0.68(7.5726 10 ) (0.7166) (0.952 0.7166) 83.9

L LNu Gr Pr Pr
-

-

= +

= ¥ + =
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  Heat rate per unit width is

= - = - = -

= - =

( ) ( ) ( )

(83.9)(0.02917)(120 30) .

s L s s

k
Q h L T T Nu L T T Nuk T T

L

220 3W (Ans.) (b)

(c) McAdam’s correlation:

1/4 8 0.250.59( ) 0.59(5.4265 10 ) 90.0L LNu Ra= = ¥ =

\ Heat transfer per metre width is

= - = =( ) (90.0)(0.02917)(90) .L sQ Nu k T T 236 3W (Ans.) (c)

(d) Churchill–Chu correlation:

1/4

9/16 4/9

8 1/4

9/16 4/9

0.67
0.68

[1 (0.492/ ) ]

0.67(5.4265 10 )
0.68 79.25

[1 (0.492/0.7166) ]

L
L

L

Ra
Nu

Pr

Nu

= +
+

¥
= + =

+

  \ Heat-loss rate per m width is

  \ ( ) (79.25)(0.02917)(120 30) .L sQ Nu k T T= - = - = 208 0W  (Ans.) (d)

Comment Values of heat-transfer rate predicted by the exact analysis and the Churchill–Chu correlation

are quite close to each other, and are more accurate and appropriate. The approximate 

integral method and the McAdam’s correlation predict higher values, and their use should 

not be preferred.

 A vertical plate, 10 cm in height and 30 cm long, is used to cool some electronic 

components mounted on it. The energy to be dissipated is 10 W and the plate temperature should not 

exceed 50°C. Assuming that the plate loses heat from only one side to ambient air at 30°C, determine 

whether a blower is necessary or not.

 Properties of air at 40°C: k = 0.02662 W/m °C, n = 17.02 ¥ 10–6 m2/s, Pr = 0.7255

Solution

Known A vertical plate is to dissipate 10 W heat from its one side to ambient air to ensure maximum 

surface temperature of 50°C.

Find If blower is required.
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Assumptions (1) Steady-state conditions. (2) Isothermal plate with one side insulated. (3) Air is an ideal 

gas.

Analysis Blower (forced convection) will be necessary if the free convection and radiation heat-

transfer from the plate is less than the stipulated dissipation rate of energy.

 Let us first check if free convection alone is sufficient to carry away heat at the rate of 

10 W or more.

Rayleigh number, 
3

2

( )c s
L

g L T T Pr
Ra

b

n

-
=

With idealgas

1
1/(313.15 K)

(40 273.15)K
b = =

+

and the characteristic length, L
c
 for vertical plate = Height, H = 0.1 m, we have

   

2 3
6 9

6 2 2

(9.81 m/s )[1/(313.15 K)](0.1 m) [(50 30) C](0.7255)]
1.569 10 ( 10 )

(17.02 10 m /s)
LRa

-

- ∞
= = ¥ <

¥

Therefore,
1/4

9/16 4/9

0.67
0.68 18.925

[1 (0.492/ ) ]

Ra
Nu

Pr
= + =

+
\ Convection coefficient,

20.02662 W/m C
18.925 5.04 W/m C

0.1 mc

k
h Nu

L

∞
= = ¥ = ∞

Rate of heat loss, conv ( )s sQ hA T T= -  = (5.04 W/m2 °C) (0.03 m2) (50 – 30)°C

  = 3.023 W < 10 W

Hence, free convection alone is not sufficient.

Let us now estimate the contribution made by radiant heat exchange too.

Radiation heat-transfer, 4 4
rad sur( )s s sQ A T Ts e= -

Assuming e
s
 = 1 and T

sur
 = T  = 30°C or 303.15 K,

  
8 2 4 2 4 4 4

rad,max (5.67 10 W/m K )(0.03 m )(1)[(323.15 303.15 )K ] 4.183 WQ
-= ¥ - =

Total heat-dissipation rate,

  max(noblower) conv rad,maxQ Q Q= +  = (3.023 + 4.183) W = 7.206 W (< 10 W) (Ans.)

A blower is therefore necessary.

 The heat-transfer rate due to natural convection from a rectangular plate maintained 

at a uniform temperature of 400 K to quiescent air at 300 K with its shorter side held vertically is 27 

per cent higher than when the larger side is vertical. Neglecting heat-transfer by radiation, estimate (a) 

the dimensions of the plate of 25 cm2 surface area, and (b) the rate of heat loss from the plate in the 

two cases. The relevant empirical correlation and the thermophysical properties of at the film temperature 

of 350 K are

T (K) k (W/m K) n (m2/s) Pr

350 0.030 20.92 ¥ 10 –6 0.700

 



Natural (or Free) Convection Heat Transfer 647

Solution

Known Surface area and temperature of a rectangular plate exposed to still atmospheric air. Heat 

transfer with smaller side vertical 27% greater than with longer side vertical.

Find (a) Dimensions of plate, L
1
¥ L

2
 (cm); (b) Heat-transfer rate in the two cases, 1 2and (W)Q Q .

Assumptions (1) Steady operating conditions. (2) The plate is isothermal. (3) Air is an ideal gas. (4) 

Radiation effects are not considered.

Analysis The empirical correlation is, Nu = 0.59(Ra)1/4

where
3

2

( )
andc c shL g L T T Pr

Nu Ra
k

b

n

-
= =

The characteristic length L
c
 for an isothermal vertical plate transferring heat by free 

convection is the height of the plate.

The dimensions of the rectangular plate are L
1
¥ L

2
 where L

1
 is the length (longer side)

and L
2

is the width (smaller side).

The rate of free convection heat loss from the hot plate.

1/4
3

2

1/4
3 0.25

( ) ( )

( )
0.59 ( )

1
(constant)[ ] (constant)[ ]

s s s s
c

c s
s s

c

c c
c

k
Q hA T T Nu A T T

L

g L T T Pr k
A T T

L

L L
L

b

n

-

= - = -

È ˘-
= ¥ -Í ˙

Î ˚

= ¥ =

Ratio of heat-transfers,

0.25

2 2

1 1

1/4
1 2 2 1

Heat loss with shorter side vertical

Heat loss with larger side vertical

( / ) 1.27 [Since is 27% more than ]

Q L

Q L

L L

-
Ê ˆ= = Á ˜Ë ¯

= = Q Q

It follows that, 41

2

(1.27) 2.60
L

L
= =

Since the surface area, A
s
 = L

1
L

2
 = 25 cm2,

or

2
2 2

2 1

(2.6 )( ) 25 cm

25/2.6 cm and 2.6 3.1

L L

L L

=

= = = ¥ =3.1 cm 8.06 cm (Ans.) (a)
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With film temperature, idealgas

1 1 1
( ) (400 300)/2 350 K,

2 350 K
f s

f

T T T
T

b= + = + = = =

Free convection heat-transfer rate with shorter side vertical (L
c
 = L

2
) is determined to be

1/4
2 3

2 6 2 2

4 2

(9.81 m/s )[1/(350 K)](0.031 m) [(400 300)K](0.7)
0.59

(20.92 10 m /s)

0.03 W/mK
(25 10 m )(400 300)K .

0.031 m

Q -

-

È ˘-
= Í ˙

¥Î ˚

¥ ¥ ¥ - = 2 73W  (Ans.) (b)

and 2
1

1.27

Q
Q = = 2.15W (Ans.) (b)

 A nuclear reactor with its core constructed of parallel vertical plates 2.5 m high and 

1.5 m wide has been designed on free convection heating of liquid bismuth. The maximum temperature 

of the plate surfaces is limited to 1200 K while the lowest permissible temperature of bismuth is 600 K. 

Determine the maximum possible heat dissipation from both sides of each plate.

 Properties of liquid bismuth at 900 K:

k = 15.6 W/m K, Pr = 0.0099, n = 9.96 ¥ 10–8 m2/s, b = 0.00012 K–1, a = 1.02 ¥ 10–5 m2/s

Solution

Known Nuclear reactor core idealized as vertical flat plate of 

prescribed dimensions. Temperatures of surface (plate)

and surrounding fluid (liquid bismuth).

Find Heat dissipation from both sides of the plate.

Assumptions (1) Liquid bismuth is quiescent. (2) Plate is isothermal. 

(3) Constant thermophysical properties.

Analysis For vertical flat plate, the characteristic length is the 

height of the plate.

\ L
c
 = L = 2.5 m

Rayleigh number, 
3

2

( )s
L L

g T T L
Ra Gr Pr

b n

an

-
= = ◊

3

2 1 3 3

8 2 5 2

13 9

( )

9.81 m/s 0.00012 K (1200 600)K 2.5 m

(9.96 10 m /s)(1.02 10 m /s)

1.1 10 ( 10 )

s
L

g T T L
Ra

b

na
-

- -

-
=

¥ ¥ - ¥
=

¥ ¥

= ¥ >

Using the Churchill–Chu correlation:

Nusselt number,

   

2 2
1/6 13 1/6

9/16 8/27 9/16 8/27

0.387 0.387 (1.1 10 )
0.825 0.825

[1 (0.492 / ) ] [1 (0.492/0.0099) ]

897.3

D
L

Ra
Nu

Pr

Ï ¸ Ï ¸¥ ¥Ô Ô Ô Ô= + = +Ì ˝ Ì ˝
+ +Ô Ô Ô ÔÓ ˛ Ó ˛

=
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Average heat-transfer coefficient,

215.6 W/mK
897.3 5599 W/m K

2.5 m
h = ¥ =

Heat-transfer rate,

2

2 6

W 1 MW
( ) 5599 (2 2.5 1.5)m (1200 600)K

m K 10 W

.

s sQ h A T T
Ê ˆ Ê ˆ= - = ¥ ¥ ¥ -Á ˜ Á ˜Ë ¯ Ë ¯

= 25 2 MW (Ans.)

 A domestic hot water radiator is situated in a room at a temperature of 20°C. The 

radiator is basically constructed of two pressed steel plates fitted together to form a number of water 

channels between them and has overall dimensions and heat-transfer areas as shown in the figure. The 

air-side heat-transfer coefficient h
r
 due to radiation is 5 W/ m2 K, the water-side coefficient is 1000 W/

m2 K and the water mass-flow rate and inlet temperature are 0.05 kg/s and 80°C respectively. Estimate 

the total heat-transfer rate to the room.

Air temperature, T
a
 = 20°C

Air-side area > 2 ¥ 3 ¥ 0.6 = 3.6 m2

Water side area, A
w
 = 2 m2

Solution

Known The hot-water radiator is transferring heat to the surrounding air by both natural convection 

and radiation.

Find Rate of heat loss, (W)Q .

Assumptions (1) Steady-state conditions. (2) Constant fluid properties. (3) Radiation effects are taken 

care of by specifying the radiation heat-transfer coefficient. (4) Air is an ideal gas.

Analysis The two sides of the radiator may be treated as two vertical plates for free convection 

purposes. Free convection air side heat-transfer coefficient can be found by determining 
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the Rayleigh number which in turn involves a knowledge of the temperature difference 

between the radiator and the surrounding air. The radiator metal temperature and the water 

temperature are almost the same owing to the large heat-transfer coefficient on the water 

side compared to the air side. The radiator temperature varies over its length between the 

inlet and exit water temperatures.

The average radiator surface temperature is then equal to mean water temperature, 

1
( )

2
wi weT T+ . But exit water temperature is not known. Hence, let us assume that T

we

is less than T
wi

 by 8°C. The mean radiator surface temperature, 
1 1

( )
2 2

s wi weT T T@ + =

[80 + (80 – 8)] = 76°C. The required surface to air temperature difference sT T-  = 76 

– 20 = 56°C. It may be added that the estimated temperature difference (T
wi

 – T
we

) is not 

going to materially affect DT, i.e., sT T- .

Film temperature, 
1

( )
2

f sT T T= +

Properties of atmospheric air at 48°C are

k = 0.02721 W/m °C, Pr = 0.7233

n = 1.779 ¥ 10–6 m2/s, b = 1/T
f
(K) = 

1

(48 273.15)K+

Rayleigh number,

3 2 3

2 5 2 2

9 9

( ) (9.81 m/s ) 1 (76 20) C (0.6 m) 0.7233

321.15 K (1.779 10 m /s)

0.845 10 ( 10 )

s
L

g T T L
Ra Pr

b

n -
- ¥ ¥ - ∞ ¥ ¥

= =
¥ ¥

= ¥ £

Using the Churchill–Chu correlation, the average Nusselt number is

4
9 9

16
1/4 0.492

0.68 0.67 1Nu Ra
Pr

-
È ˘Ê ˆÍ ˙= + + Á ˜Ë ¯Í ˙Î ˚

  = 0.68 + 0.67 (0.845 ¥ 109)1/4 ¥ [1 + (0.492/0.7233)9/16]–4/9 = 88.53

Air-side heat-transfer coefficient 

20.02721 W/m C
88.53 4.0 W/m C

0.6 m
a

k
h Nu

L

∞
= = ¥ = ∞

Total heat-transfer rate may be determined from

where *

1 1 1
55 C ands

w wa a

Q UA T

T T T
UA h Ah A

= D

D = - = ∞ = +

The term *
ah  is the total air-side heat-transfer coefficient comprising convection and 

radiation components.

*
a a rh h h= +  = 4 + 5 = 9.0 W/m2 K

Thus,
2

2

1 1 1 m K

9.0 3.6 1000 2 W mUA

Ê ˆ
= + Á ˜¥ ¥ Ë ¥ ¯
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\ UA = 32 W/K

Therefore, Q  = (32 W/K) (55°C or K) = 1760 W or 1.76 kW (Ans.)

This heat-transfer rate yields the water temperature difference (T
wi

 – T
we

) given by

\

( )

1.76 kW
8.4 C

0.05 kg/s 4.19 kJ/kgK

w

w

w p wi we

wi we
w p

Q m C T T

Q
T T

m C

= -

- = = = ∞
¥

Initially, we had assumed (T
wi

 – T
we

) = 8°C which is now justified

Comment It is noteworthy that the heat-exchange surface area is not the same on air and water sides.

Hence, area is included with the convection coefficient while computing UA.

 A vertical cylinder is 10 cm in diameter and 25 cm in height. The surface 

temperature is maintained at 50°C and the ambient fluid temperature is 5°C at a pressure of 1 atm. 

Determine the heat lost by the cylindrical surface due to free convection effects. Verify the validity of the 

usual assumption that the outer surface of a vertical cylinder can be treated as a vertical plate.
At 27.5°C and 1 atm, the properties are the following:

Air: k = 0.0257 W/m °C, n = 1.585 ¥ 10–5 m2/s, Pr = 0.7289

Water: k = 0.611 W/m °C, n = 8.474 ¥ 10–7 m2/s, b = 0.271 ¥ 10–3 K–1, Pr = 5.78

Solution

Known A vertical cylinder loses heat by natural 

convection to the surrounding atmospheric air/

water.

Find Heat-transfer rate, (W)Q  to air/water.

Assumptions (1) Steady state conditions. (2) Air is an 

ideal gas. (3) Correlation for vertical plate is 

applicable. (4) Radiation effects are neglected.

Analysis Air : Let us first determine the Rayleigh number 

to enable us to select the appropriate empirical 

correlation. The characteristic length for a 

vertical surface (plate or cylinder) is the height, 

i.e., L = 0.25 m

Grashof number

  
b n= -3 2( )/L sGr g L T T

 where 
11

( )
f

K
T

b -=  for an ideal gas.

 Film temperature, 50 5

2 2

s
f

T T
T

+ +
= =  = 27.5°C or 300.65 K

  

2 3
6

5 2 2

(9.81 m/s )[1/(300.65 K)](0.25 m) (50 5) C
91.323 10

(1.585 10 m /s)
LGr

-

- ∞
= = ¥

¥
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The correlation for vertical plate is applicable for a vertical cylinder if 

  

1/4

1/4 6 0.25

35 /

35 35 0.25
0.0895 m or 8.95 cm

(91.323 10 )

L

L

D L Gr

L

Gr

≥

¥
= =

¥

D = 10 cm which is greater than 8.95 cm. Hence, the vertical plate correlations are valid.

  Ra
L
 = Gr

L
 Pr = (91.323 ¥ 106) (0.7289) = 66.565 ¥ 106  (< 109)

Therefore the boundary layer is laminar. Using the Churchill–Chu correlation for this range,

  

4/9
9/16

1/4

4/9
9/16

6 1/4

0.492
0.68 0.67 1

0.492
0.68 0.67(66.565 10 ) 1 47.266

0.7289

L LNu Ra
Pr

-

-

Ï ¸Ê ˆÌ ˝= + + Á ˜Ë ¯Ó ˛

Ï ¸Ê ˆÌ ˝= + ¥ + =Á ˜Ë ¯Ô ÔÓ ˛
Heat-transfer coefficient,

  

20.0257 W/m C
(47.266) 4.86 W/m C

0.25 m

k
h Nu

L

∞
= = = ∞

Rate of heat-transfer by free convection from the vertical cylinder to the surrounding air 

is

  

air

2

( ) ( )( )

(4.86 W/m C)( 0.1 m 0.25 m)(50 – 5) C

s s sQ hA T T h DL T Tp

p

= - = -

= ∞ ¥ ¥ ∞ = 17.2 W (Ans.)

Water: 
3 3 3

9

2 7 2

( ) 9.81(0.271 10 )(0.25) (50 5)
2.6 10

(8.474 10 )

s
L

g L T T
Gr

b

n

-

-

- ¥ -
= = = ¥

¥

Vertical plate approximation is valid if, 1/435 LD L Gr
-≥

We note that D = 10 cm and 9 1/435 25 cm (2.6 10 ) 3.87 cm-¥ ¥ ¥ =

Since D is greater than 3.87 cm, the assumption is justified.

  
9 10 9(2.6 10 )(5.78) 1.505 10 ( 10 )L LRa Gr Pr= = ¥ = ¥ >

The boundary layer is, therefore, turbulent.

\

2
1/6

9/16 8/27

2
10 1/6

9/16 8/27

2

0.387
0.825

[1 (0.492/ ) ]

0.387(1.505 10 )
0.825 354.3

[1 (0.492/5.78) ]

0.611 W/m C
354.3 865.9 W/m C

0.25 m

L
L

L

Ra
Nu

Pr

k
h Nu

L

È ˘
= +Í ˙

+Î ˚

È ˘¥
= + =Í ˙

+Î ˚
∞Ê ˆ= = = ∞Á ˜Ë ¯
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 Heat-transfer rate to water,

  p= ¥ ¥ - =water (865.9)( 0.10 0.25)(50 5)Q 3060W (Ans.)

Comment We must recognize the fact that besides this heat transfer, the surface will also radiate 

to the surroundings an amount depending upon the nature of the surface, the geometrical 

orientation with respect to other surfaces nearby, and the temperature level of those other 

surfaces.

 A hot plate 1 m ¥ 0.5 m at 180°C is kept vertically in still air at 20°C. Find 

(a) the heat-transfer coefficient, (b) the initial rate of cooling of the plate in °C / min, and (c) the time 

required for cooling the plate from 180°C to 80°C if the heat-transfer is due to convection only.

 Mass of the plate is 20 kg and specific heat is 400 J/kg K. Assume that the 0.5 m side is vertical, 

that the heat-transfer coefficient calculated in (a) remains constant and that the heat transfer takes place 

from both sides of the plate.

Solution

Known A hot vertical plate dissipates heat to still air from both sides.

Find (a) Convection coefficient, h (W/m2 K); (b) Initial cooling rate, 
C

min

dT

dt

∞Ê ˆ
Á ˜Ë ¯ ; (c) Time 

required for cooling, t(s).

Assumptions (1) Air is an ideal gas. (2) Constant properties. (3) Radiation effects are negligible. (4) 

Lumped-parameter analysis is valid for transient conduction.

Properties Film temperature, 
180 20

2
fT

+
=  = 100°C

At 100°C and 1 atm, for air:

k = 0.03095 W/m K, n = 2.306 ¥ 10–5 m2/s, Pr = 0.7111, 
1

(373.15 K)
b =

Analysis Characteristic dimension is the height of the plate, L = 0.5 m
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Rayleigh number,

3

2

2 1 3

5 2 2

( )

(9.81 m/s )(1/373.15)K (0.5 m) (180 20) C(0.7111)

(2.306 10 m /s)

s
L

L

g L T T Pr
Ra

Ra

b

n
-

-

-
=

- ∞
=

¥

= 703.12 ¥ 106 (< 109) fi Laminar boundary layer.

The appropriate correlation is

4/9
9/16

1/4

4/9
9/16

6 1/4

0.492
0.68 0.67 1

0.492
0.68 (0.67)(703.12 10 ) 1 84.43

0.7111

LNu Ra
Pr

hL

k

-

-

È ˘Ê ˆ= + +Í ˙Á ˜Ë ¯Î ˚

È ˘Ê ˆ= + ¥ + = =Í ˙Á ˜Ë ¯Î ˚

Natural convection heat-transfer coefficient,

0.03095 W/mK
(84.43)

0.5 m

k
h Nu

L
= = = 2

5.23 W/m K (Ans.) (a)

Applying control volume energy balance:

- + = fi = -0 0
in out gen outst stE E E E E E

i.e., Heat dissipated by the plate by convection from both sides = Rate of decrease of 

internal energy

out p

dT
Q mC

dt
= -

\ Cooling rate initially in °C/min,

2 2 1 J/s( ) (5.23 W/m K)(1 m )(180 20) C or K 60 s

1 W(20 kg)(400 J/kg K) 1 min

s s

p

hA T TdT

dt mC

- - ∞
- = =

= 6.27 C or K/min∞ (Ans.) (b)

Lumped heat capacity model for transient (unsteady state) conduction [T = f(t)] is assumed 

to be valid. Then, the time required for cooling the plate is

where

ln

–V
, , ( )

p c i

c i i
s

C L
t

h

L T T T t T
A

r q

q

q q

=

= = - = -

Time required for cooling is

2 2

–V (20 kg)(400 J/kgK) (180 20) C
ln ln ln

(80 20) C(5.23 W/m K)(1 m )

p pi i

s s

C mC T T
t

A h hA T T

r q

q

- - ∞
= = =

- - ∞

= 1500 s or 25 min (Ans.) (c)
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(C) Horizontal Plate

 A fluorescent light is covered with a diffuser, which is a sheet of translucent plastic 

of 1.2 m by 0.6 m size. The electronics controlling the light are temperature sensitive and must be kept 

cool. If 65 W of heat is dissipated by the light and removed by free convection from the bottom surface 

of the diffuser to room air at 17°C, estimate the surface temperature of the diffuser.

Solution

Known A horizontal rectangular plastic plate (diffuser) with heated bottom downwards loses heat 

by natural convection.

Find Surface temperature of diffuser, T
s
(°C).

Assumptions (1) Steady operating conditions exist. (2) Air is an ideal gas. (3) Radiation effects are 

neglected. (4) All the heat generated flows through the diffuser.

Analysis Heat is dissipated from the fluorescent bulbs and transferred to the diffuser. The heated 

diffuser dissipates this heat (65 W) to the surrounding still air from its bottom surface. The 

appropriate correlation for this case is

Hot horizontal plate facing downwards:

Nu = hL/k = 0.27 Ra1/4 for 3 ¥ 105 < Ra < 3 ¥ 1010

where Ra = Gr Pr = 
3

2

( )sg L T T Prb

n

-

All thermophysical properties of air in the above correlation are to be evaluated at the film 

temperature,
1

( )
2

f sT T T= + . The characteristic length, L = Plate area, A
s
/Plate perimeter, 

P.

However, the plate surface temperature is unknown. Hence, a trial-and-error procedure is 

necessary.

The rate of heat transfer by convection is ( )s sQ hA T T= - .

where h = 
k

L
Nu = 

k

L
0.27 (Ra)1/4. The calculated value of Q  based on the assumed value 

of T
s
 must be 65 W.

Now, 

1/4
3

2

( )
0.27

( )

s

s s

g L T T PrQ k
h

A T T L

b

n

È ˘-
= = Í ˙

- Î ˚
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or

4 3
4

2

( )
(0.27)

( )

s

s s

g L T T PrQL

kA T T

b

n

È ˘È ˘ -
= Í ˙Í ˙- Î ˚Î ˚

or

4 2
5( )

(0.27)
s

s

Q L
T T

kA g Pr

n

b

È ˘
- = Í ˙

Î ˚

or
Ê ˆÈ ˘

Í ˙ Á ˜Ë ¯Î ˚

1/54/5 2

(0.27)
- =s

s

Q L
T T

kA g Pr

n
b

(A)

For the diffuser, L = 
21.2 0.6 m

2( ) 2(1.2 0.6)m

sA ab

P a b

¥
= =

+ +
 = 0.2 m

Let us assume the film temperature to be 35°C (to be modified later if necessary).

At 35°C and 1 atm, the properties of air are

2
5

1
, 0.02625 W/mK

(35 273.15)K

m
1.655 10 , 0.7268

s

k

Pr

b

n -

= =
+

= ¥ =

Substituting these values into Eq. (A), one has

0.20.8 5 265 0.2 (1.655 10 )

(0.02625)(1.2 0.6)(0.27) 9.81 (1/308.15)(0.7268)

1923.4 0.01883 36.2 C

sT T
-È ˘¥ ¥È ˘- = ¥ Í ˙Í ˙¥ ¥Î ˚ Î ˚

= ¥ = ∞

\ Surface temperature, T
s
 = 17 + 36.2 = 53.2°C (Ans.)

And, the film temperature predicted by the above calculation is

1
(53.2 + 17) 35.1 C

2
fT = = ∞

The initial guess was T
f
 = 35°C. No more trial is therefore required. Hence, the diffuser 

surface temperature is T
s
 = 53.2°C (Ans.)

Comment To justify the validity of the correlation, one must find the Rayleigh number, Ra with the 

computed value of T
s
.

3
7

5 2

(9.81)(1/308.15)(0.2) (53.2 17)(0.7268)
2.445 10

(1.655 10 )
Ra

-

-
= = ¥

¥

As this value is well within the recommended range [3 ¥ 105 to 3 ¥ 1010], the estimated 

surface temperature is correct.

 A 0.4 ¥ 0.4 m square plate receives a constant wall heat flux at a rate of 600 W/m2

and is placed in the quiescent room air at 20°C. Determine the average natural convection heat-transfer 

coefficient, and the mean surface temperature of the plate for the following three orientations of the hot 

surface: (a) Hot surface, horizontal, facing upwards (b) Hot surface, horizontal, facing downwards (c) 

Heated surface, inclined at an angle of 30°C with the vertical, facing downwards
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Solution

Known A square plate subjected to constant heat flux is exposed in still air.

Find Convection coefficient, h(W/m2 °C) and surface temperature, T
s
(°C) for three different 

geometries.

Assumptions (1) Constant-wall heat flux conditions. (2) Constant properties. (3) Radiation effects are 

neglected.

Analysis Characteristic length for a square plate is

0.4 m
0.1 m

4 4 4

s
c

A a a a
L

P a

¥
= = = = =

Reference temperature, 0.25( )e s sT T T T= - -

Since T
s
 is not known, let us guess h = 6 W/m2 °C

so that 

2

2

600 W/m
( ) 20 C 120°C

6 W/m C
s s

q
q h T T T T

h
= - fi = + = ∞ + =

∞
Then T

e
 = 120 – 0.25(120 – 20) = 95°C

Properties of air at 95°C: k = 0.0306 W/m °C, n = 2.254 ¥ 10–5 m2/s, Pr = 0.7122

Rayleigh number, 
3

2

( )s
L

g L T T Pr
Ra

b

n

-
=

where 1 1 1[ 0.50( )] (K) {[20 0.5(120 20)] 273.15}sT T Tb - - -= + - = + - + = 0.002914 K–1

(a) Hot horizontal surface facing upwards:

\

2 1 3

5 2 2

6 8

1/3 6 1/3

(9.81 m/s )(0.002914 K )(0.1 m) (120 20)K(0.7122)

(2.254 10 m /s)

4.0 10 ( 2 10 )

0.13( ) 0.13(4.0 10 ) 20.65

L

L L

Ra

h L
Nu Ra

k

-

-
-

=
¥

= ¥ < ¥

= = ¥ = =

The average convection heat-transfer coefficient,

20.0306 W/m C
20.65 6.32 W/m °C

0.1 m
L

k
h Nu

L

∞
= = ¥ =
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This is slightly more than the assumed value of h = 6 W/m2 °C.

Surface temperature, 
600

20 115 C
6.32

s

q
T T

h
= + = + = ∞

Then 0.25( ) 15 0.25(115 20) 91.3 Ce s sT T T T= - - = - - = ∞
At 91.3°C: k = 0.0303 W/m °C, n = 2.214 ¥ 10–5 m2/s, Pr = 0.7129

\

1 –1

3
6

5 2

[273.15 {20 0.5(115 20)}] 0.00294 K

9.81 0.00294 0.1 (115 20)(0.7129)
3.98 10

(2.214 10 )
LRa

b -

-

= + + - =

¥ ¥ -
= = ¥

¥

\ 6 1/30.13(3.98 10 ) 20.6LNu = ¥ =

Hence,
0.0303

20.6
0.1

h = ¥  = 6.24 W/m2 °C

This value of h is quite close to the one obtained earlier.

Hence, /= =6.24W m C and 115 C∞ ∞sh T (Ans.) (a)

(b) Hot horizontal surface facing downwards:

In this configuration, the value of h  is likely to be less.

Let 24 W/m °C.h =

\ 600
20 170 C

4

0.25( ) 170 0.25(170 20) 132.5 C

s

e s s

q
T T

h

T T T T

= + = + = ∞

= - - = - - = ∞

At 132.5°C, k = 0.0324 W/m °C, n = 2.529 ¥ 10–5 m2/s Pr = 0.7072

\

1 –1

3
6

5 2

1/5 6 11

0.2 6 0.2 2

[273.15 {20 0.5(170 20)}] 0.0027 K

9.81 0.0027 0.1 (170 20) 0.7072
4.42 10

(2.529 10 )

0.58( ) for 10 10

0.0324
0.58 ( ) 0.58 (4.42 10 ) 4.0 W/m C

0.1

L

L L L

L

Ra

h L
Nu Ra Ra

k

k
h Ra

L

b -

-

= + + - =

¥ ¥ ¥ - ¥
= = ¥

¥

= < < =

= = ¥ ¥ ¥ = ∞

This value is same as assumed. Hence, no more trial is necessary.

/= =2
4 W m C and 170 C∞ ∞sh T (Ans.) (b)

(c) Heated surface, inclined at 30°C with the vertical, facing downwards:

Assuming 25 W/m °C

600
20 140 C

5

0.25( ) 140 0.25(140 20) 110 C

s

s s

h

q
T T

h

T T T T

=

= + = + = ∞

= - - = - - = ∞

At 110°C,
1[273.15 {20 0.5(140 20)}]b -= + + -  = 0.00283 K–1
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\  

6 2

3
6

5 2

1/4 5 11

0.25 6 0.25

0.03165 W/m°C, 2.414 10 m /s, 0.7092

9.81 0.00283 0.1 (140 20) 0.7092
4.057 10

(2.414 10 )

0.56( cos ) for 88°, 10 10

0.03165
0.56 ( cos ) 0.56 (4.057 10 cos 30 )

0.1

L

L L L

L

k Pr

Ra

Nu Ra Ra

k
h Ra

L

n

q q

q

-

-

= = ¥ =

¥ ¥ ¥ - ¥
= = ¥

¥

= < < <

= = ¥ ¥ ∞ 27.67 W/m C= ∞

Then
600

20 98 C
7.67

sT = + ª ∞

At 78.5°C,

1 –1

5 2

98 0.25(98 20) 78.5 C

[273.15 {20 0.5(98 20)}] 0.003 K

0.0294 W/m°C, 2.082 10 m /s, 0.7157

eT

k Pr

b

n

-

-

= - - = ∞

= + + - =

= = ¥ =

\

3
6

5 2

6 1/4 2

9.81 0.003 0.1 (98 20) 0.7157
3.79 10

(2.082 10 )

0.0294
0.56 [3.79 10 cos 30 ] 7.0 W/m °C

0.1

LRa

h

-
¥ ¥ ¥ - ¥

= = ¥
¥

= ¥ ¥ ¥ ¥ ∞ =

Now, 
600

20 105 C
7

105 0.25(105 20) 84 C

s

e

T

T

= + ª ∞

= - - = ∞

At 84°C,
1 1

5 2

3
6

5 2

[273.15 {20 0.5(105 20)}] 0.00298 K

0.0298 W/m°C, 2.139 10 m /s, 0.7145

9.81 0.00298 0.1 (105 20) 0.7145
3.88 10

(2.139 10 )
L

k Pr

Ra

b

n

- -

-

-

= + + - =

= = ¥ =

¥ ¥ ¥ - ¥
= = ¥

¥

\ 6 1/4 20.0298
0.56 [3.88 10 cos 30 ] 7.15 W/m °C

0.1
h = ¥ ¥ ¥ ¥ ∞ =

This value is close enough to the one previously obtained.

Hence, /= =2
7.15 W m C and 105 C∞ ∞sh T (Ans.) (c)

 In a wind tunnel, 15°C air at 5 m/s flows over a flat plate (1 m ¥ 0.8 m) that 

is aligned parallel to the flow direction. The plate temperature is 35°C. One of the sides of the plate is 

arranged to be parallel to the flow direction, such that the heat transfer is less. Estimate (a) The rate 

of heat transfer from the plate from one side (top surface), and (b) The initial rate of cooling (dT/dt) 

(°C/h) if the mass of the plate is 5 kg and the specific heat of the plate is 875 J/kg K. (c) If the air 

flow is turned off, compute the heat flow rate from the upper surface of the plate in still air at 15°C. 

(d) What is the percentage change in the heat-flow rate?

Properties of air at 25°C: k = 0.0261 W/m °C, n = 15.71 ¥ 10–6 m2/s, Pr = 0.71
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Solution

Known Cooling of the top surface of a flat plate by forced air.

Find (a) forced (W)Q ; (b) ( C/h)
dT

dt

-
∞ ; (c) free (W)Q ; (d) % change in heat transfer.

Assumptions (1) Steady operating conditions exist. (2) The critical Reynolds number is 5 ¥ 105.

(3) Radiation effects are negligible. (4) Air is an ideal gas.

Analysis (a) Forced convection:

Heat transfer from the plate will be less if the air flows parallel to the 0.8 m side. Hence, 

the characteristic length, L
c
 = L = 0.8 m.

Film temperature, 
1

( ) (35 15) C/2 25 C
2

f sT T T= + = + ∞ = ∞

The Reynolds number at the end of the plate is

5

6 2

(5 m/s)(0.8 m)
2.546 10

15.71 10 m /s
L

VL
Re

n -= = = ¥
¥

which is less than the critical Reynolds number of 5 ¥ 105. The average Nusselt number 

for the entire top surface of the plate is then determined to be

1/2 1/3 5 1/2 1/30.664 0.664(2.546 10 ) (0.71) 298.9L

hL
Nu Re Pr

k
= = = ¥ =

Then, 2

2

0.0261 W/m C
(298.9) 9.75 W/m °C

0.8 m

1 m 0.8 m 0.8 ms

k
h Nu

L

A WL

∞
= = =

= = ¥ =

Heat-transfer rate,

  2 2
forced ( ) (9.75 W/m C)(0.8 m )(35 15) Cs sQ hA T T= - = ∞ - ∞ = 156.0 W (Ans.) (a)

(b) Initial rate of cooling,

156.0 W 1 J/s

(5 kg)(875 J/kgK) 1 Wp

dT Q

dt mC

-
= =

  = 0.03566 K/s or 128.4 K (or °C) per hour (Ans.) (b)

(c) Natural convection: When the air flow is turned off, the upper surface of the plate will 

be cooled in still (quiescent) air under natural (free) convection conditions.
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For free convection heat transfer from the top surface of the heated horizontal plate, the 

characteristic length,

1 m 0.8
0.222 m

2( ) 2(1 0.8)m

s
c

A WL
L

P W L

¥
= = = =

+ +

With idealgas

3 2 3

2 6 2 2

7

1 1 1

(K) (25 273.15)K 298.15 K

( ) (9.81 m/s )[1 / (298.15 K)](0.222 m) (35 15) C(0.71)

(15.71 10 m /s)

2.077 10

f

c s

T

g L T T Pr
Ra

b

b

n -

= = =
+

- - ∞
= =

¥

= ¥

which is greater than 107.

The appropriate correlation is, 1/30.15( ) chL
Nu Ra

k
= =

Then
1/3 7 1/30.0261 W/m C

0.15( ) 0.15(2.077 10 )
0.222 mc

k
h Ra

L

∞
= ¥ = ¥ ¥  = 4.843 W/m2 °C

and, the heat loss rate is

   2 2
free ( ) (4.843 W/m C)(0.8 m )(35 15) Cs sQ hA T T= - = ∞ - ∞ = 77.5 W (Ans.) (c)

Percentage change (decrease) in heat-transfer after the flow is turned off is

(156.0 77.5)W
100

156.0 W

-
¥ = 50.3% (Ans.) (d)

 A flat-plate solar collector, 1.5 m wide and 6 m long, is placed horizontally on the 

flat roof of a house. The average temperature of the exposed surface of the collector is 50°C. Determine 

the rate of heat loss from the collector by natural convection on a calm day when the ambient air 

temperature is 20°C. Also calculate the heat loss by radiation, assuming the collector surface emissivity 

to be 0.9 with an effective sky temperature of – 30°C.
 Properties of air at 35°C: k = 0.02625 W/m K, n = 1.655 ¥ 10–5 m2/s, Pr = 0.7268

Solution

Known A flat-plate solar collector loses heat by convection and radiation under specified conditions.

Find Rate of heat-transfer, convQ (W) and 
radQ (W).



662 Heat and Mass Transfer

Assumptions (1) Steady operating conditions exist. (2) Quiescent air.

Analysis Heat loss by convection:

For a horizontal plate with a hot surface facing up, the characteristic length,

6 m 1.5 m
0.6 m

2( ) 2(6 1.5)m

sA LW
L

P L W

¥
= = = =

+ +

The Rayleigh number is, 
3

2

( )s
L

g T T L
Ra Pr

b

n

-
=  where 

1

(K)fT
b =

Film temperature, 
50 20

2 2

s
f

T T
T

+ +
= =  = 35°C or 308.15 K fi 11

K
308.15

b -=

\
2 3

5 2 2

8 7 11

(9.81 m/s )[1/(308.15 K)](50 20)K(0.6 m)
(0.7268)

(1.655 10 m /s)

5.474 10 [10 10 ]

L

L

Ra

Ra

-
-

=
¥

= ¥ < <

The natural convection Nusselt number can be found from

Nu
L
 = 0.15 (Ra

L
)1/3 = 0.15 (5.474 ¥ 108)1/3 = 122.7

Then, h = 
0.02625 W/ mK

0.6 m
L

k
Nu

L
=  (122.7) = 5.368 W/m2 K

Surface area of the solar collector, A
s
 = LW = 6 m ¥ 1.5 m = 9.0 m2

and, the convection heat transfer is

  ( )s sQ hA T T= -  = (5.368 W/m2 K) (9 m2)(50 – 20)°C or K = 1449 W (Ans.)

Heat loss by radiation: The radiation heat-transfer in this case is determined to be

4 4
rad sur

8 2 4 2 4 4

( )

(5.67 10 W/m K )(9 m )(0.9)[(50 273.15 K) (20 273.15 K) ]

s sQ A T Ts e

-

= -

= ¥ + - +
= 1616 W (Ans.)

The total heat loss is estimated to be

 (1449 + 1616) W = 3065 W.

Comment Heat loss by radiation is greater than that by convection. It is therefore significant that 

radiation heat-transfer cannot be neglected in natural convection problems.

 An equilateral triangular plate of 0.7 m side is placed horizontally in a water 

tank and held at a temperature of 86°C. The water temperature is 28°C. The hotter side of the plate 

faces downwards. Calculate the rate of heat transfer. Properties of water at T
f
 = 57°C are k = 0.650 

W/m K, n = 0.497 ¥ 10–6 m2/s, b = 504 ¥ 10–6 K–1, Pr = 3.15

Solution

Known Triangular plate with hot surface facing down loses heat to water by free convection.

Find Rate of convective heat loss, [W]Q .
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Assumptions (1) Constant properties. (2) The plate is isothermal.

Analysis Characteristic length, s
c

A
L

P
=

where 2 21 1 1
sin 60 0.7 0.866 0.2122 m

2 2 2
sA ah a a= = ¥ ∞ = ¥ ¥ =

and 23 3 0.7 2.1 m 0.2122 m /2.1 m 0.101 mcP a L= = ¥ = fi = =
Rayleigh number,

3

2

2 6 1 3

6 2 2

9 5 10

( )

(9.81 m/s )(504 10 K )(0.101 m) (86 28)K(3.15)

(0.497 10 m /s)

3.77 10 (10 10 )

c s
L

L

g L T T Pr
Ra

Ra

b

n
- -

-

-
=

¥ -
=

¥

= ¥ < <

The appropriate correlation is

1/4 9 1/40.27( ) 0.27(3.77 10 ) 66.9L L

h L
Nu Ra

k
= = ¥ = =

Average convection heat-transfer coefficient,

20.650 W/mK
66.9 430.6 W/m K

0.101 m
L

k
h Nu

L
= = ¥ =

Rate of heat transfer,

2 2( ) (430.6 W/m K)(0.2122 m )(86 28)K

.

s sQ hA T T= - = -

= 5300W or 5 3 kW (Ans.)

 Water at 40°C flows across a horizontal cylinder (50 mm diameter) maintained 

at a uniform surface temperature of 20°C with a velocity of 0.05 m/s.

(a) Calculate the value of the heat-transfer coefficient. (b) If the flow is stopped, to what value would 

the heat-transfer coefficient reduce? (c) Calculate the Rayleigh number for case (b). (d) Have you any 

comments to offer after obtaining the heat-transfer coefficients in (a) and (b)?
Properties of water at 30°C.

r = 996 kg/m3, m = 798 ¥ 10–6 kg/m s, k = 0.615 W/m K,

Pr = 5.42, b = 2.94 ¥ 10–4 K–1, n = 0.8012 ¥ 10–6 m2/s
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Solution

Known Flow of water across a horizontal isothermal cylinder.

Find (a) h
forced

(W/m2 K); (b) h
free

(W/m2 K); (c) Ra
D
; (d) Comment.

Assumptions (1) Steady-state conditions. (2) Constant properties.

Analysis (a) The characteristic length in the case of horizontal cylinder is its diameter.

Reynolds number, 
3

6

(996 kg/m )(0.05 m/s)(0.05 m)
3120

798 10 kg/ms
D

u D
Re

r

m -= = =
¥

Using Fand’s correlation: 0.52 0.3 1 5

0.52 0.3

(0.35 0.56 ) [for 10 10 ]

(0.35 0.56(3120) )(5.42) 61.6

D D DNu Re Pr Re
-= + < <

= + =

Average heat-transfer coefficient,

\ (61.6)(0.615 W/mK)
/

0.05 m
D

k
h Nu

D
= = = 2

757.5 W m K (Ans.) (a)

(b) If there is no flow, the heat transfer will be by free convection.

Rayleigh number, 
3

2

2 4 1 3

6 2 2

( )

(9.81 m/s )(2.94 10 K )(40 20)K(0.05 m) (5.42)

(0.8012 10 m /s)

s
D

g T T D Pr
Ra

b

n
- -

-

-
=

¥ -
=

¥
  = 6.09 ¥ 107 (Ans.) (c)

Using Churchill–Chu correlation: (for Ra
D
 < 109)

1/4 7 1/4

9/16 9/16 4/94/9

0.518 0.518(6.09 10 )
0.36 0.36 41.38

[1 (0.559/ ) ] [1 (0.559/5.42) ]

D
D

Ra
Nu

Pr

¥
= + = + =

+ +

Average heat-transfer coefficient,

0.615 W/mK
41.38 /

0.05 m
D

k
h Nu

D
= = ¥ = 2

509W m K (Ans.) (b)

Thus,

forced

free

/

/

h

h

=

=

2

2

757.5 W m K

509.0 W m K
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Comment In case (a), there will be some effect of free convection, leading to a heat-transfer coefficient 

higher than 757.5 m2 K. (Ans.) (d)

(D) Horizontal Cylinder

 In a boiler house, there are two horizontal steam pipes of diameters 10 cm and 

25 cm. The two have the same surface temperature of 400°C. The temperature of the surrounding air is 

35°C. The pipes are sufficiently far from each other so that the thermal boundary layers do not interfere. 

Determine (a) the heat loss from each pipe per 100 m length, (b) the ratio of heat-transfer coefficients, 

and (c) the ratio of heat-transfer rates.

Solution

Known Two horizontal pipes of different diameters in a boiler house.

Find Heat loss from each pipe per 100 m length.

Assumptions (1) Steady operating conditions. (2) Air is an ideal gas. (3) Constant properties.

Properties At the film temperature, 
1 400 35

( ) C 217.5 C
2 2

f sT T T
+Ê ˆ= + = ∞ = ∞Á ˜Ë ¯  or 490.65 K, the 

atmospheric air properties are:

3 6 240.06 10 W/m C, 37.59 10 m /s,k n- -= ¥ ∞ = ¥ Pr = 0.6844, 
1

(K)fT
b =

Analysis Case I: D
1
 = 10 cm: Rayleigh number with the pipe diameter as the characteristic length 

is,
3
1

1 2

( )sg D T T Pr
Ra

b

n

-
=

2 3

6 2 2

(9.81 m/s )[1/( 490.65 K)](0.10 m) (400 35) C or K(0.6844)

(37.59 10 m /s)-

- ∞
=

¥
 = 3.535 ¥ 106 (< 109)

Using the Churchill–Chu correlation:

\

1/4
1

1 9/16 4/9

3
2

1 1
1

0.518
0.36 17.28

[1 (0.559/ ) ]

40.06 10 W/m C
17.28 6.92 W/m C

0.10 m

h D Ra
Nu

k Pr

k
h Nu

D

-

= = + =
+

¥ ∞
= = ¥ = ∞
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\ 2
1 1( )( ) (6.92 W/m C)( 0.10 m 100 m)(400 35) CsQ h D L T Tp p= - = ∞ ¥ ¥ - ∞

  = 79.35 ¥ 103 W or 79.35 kW (Ans.) (a)

Case II: D
2
 = 25 cm:

\

3 3
6 72

2 1
1

7 1/4

2 9/16 4/9

3
2

2 2
2

25 cm
3.535 10 5.523 10

10 cm

0.518(5.523 10 )
0.36 33.99

[1 (0.559/0.6844) ]

40.06 10
33.99 5.45 W/m °C

0.25

D
Ra Ra

D

Nu

k
h Nu

D

-

Ê ˆ Ê ˆ= = ¥ ¥ = ¥Á ˜Á ˜ Ë ¯Ë ¯

¥
= + =

+

¥
= = ¥ =

\
2 2 2 2( )( ) (5.45)( 0.25 100)(400 35)Q h D L T Tp p= - = ¥ ¥ -

  = 156.15 ¥ 103 W or 156.15 kW (Ans.) (a)

Ratio of heat-transfer coefficients, 1

2

6.92

5.45

h

h
=  = 1.27 (Ans.) (b)

Ratio of heat-transfer rates, 1

2

79.35

156.15

Q

Q
= = 0.508 (Ans.) (c)

 Estimate the free convection heat-transfer coefficient for a horizontal fine wire 

of 2 mm diameter exposed to atmospheric air at 20°C if the wire surface is maintained at 300°C. Also 

calculate the maximum allowable current intensity if the wire resistance is 8 ohms per metre. Use the 

correlation: Nu
D
 = 1.18(Ra

D
)1/8.

Properties of air at 160°C: k = 35.25 ¥ 10–3 W/m K, n = 29.75 ¥ 10–6 m2/s, Pr = 0.701

Solution

Known A horizontal fine wire is exposed to air.

Find Free convection heat-transfer coefficient, 

h. Maximum current, I.

Assumptions (1) Steady-state conditions exist. (2) Air is 

quiescent fluid and behaves as an ideal gas.

Analysis Film temperature,

+ +
= = = ∞

300 20
160 C

2 2

s
f

T T
T

b
ideal gas

 = 1/(160 + 273.15) = 1/433.15 K

Rayleigh number,

  

b

n -
- -

= = =
¥

3 2 o 3 3

2 6 2 2 2

( ) (9.81 m/s )(1)(300 20) C(0.002) m (0.701)
40.18

(433.15) (29.75 10 ) m /s

s
D

g T T D Pr
Ra

K

For a fine wire: Nusselt number,

DNu  = 1.18(Ra
D
)1/18 = 1.18 (40.18)1/8 = 1.872
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Average convection coefficient,

  = /Dh Nu k D  = (1.872) (35.25 ¥ 10–3 W/m K)/0.002 m = 33.0 W/m2 K (Ans.)

Heat-transfer rate per metre length of wire,

  Q  = h (pD) (T
s
 – T )

 = (33 W/m2K) (p ¥ 0.002 m) (300 – 20)°C = 58.06 W (Ans.)

But Q  = I2 R
c
 where I is the maximum current intensity.

Ê ˆ= = =Á ˜Ë ¯

1/2
58.06

8e

Q
I

R
2.69 A (Ans.)

 An uninsulated horizontal pipe of 20 cm diameter carrying high pressure steam 

is exposed to quiescent atmospheric air at 20°C. The surroundings are also at 20°C. The outer-surface 

temperature of the pipe is 180°C. The total heat loss per metre length of the pipe by both convection 

and radiation is 1700 W. Determine (a) the radiation heat-transfer coefficient, and (b) the pipe surface 

emissivity.
The properties of air at 100°C are the following:

Thermal conductivity: 0.0321 W/m K, Kinematic viscosity: 23.13 ¥ 106 m2/s, Prandtl number: 0.688

 The following relation for free convection around a long horizontal cylinder may be used:

Ï ¸Ô È ˘ ÔÊ ˆÌ ˝Í ˙Á ˜Ë ¯Ô ÔÎ ˚Ó ˛

–

DNu + Ra
Pr

2
8 / 27

9 / 16
1/ 6 0.559

= 0.60 0.387 1+

Solution

Known A horizontal steam pipe loses heat by convection and radiation.

Find h
rad

 and e.

Assumptions (1) Steady operating conditions. (2) Diffuse-gray isothermal pipe surface. (3) Air is idealized 

to behave as a prefect gas.

Analysis Total heat loss per metre length of the pipe is

= +total nat conv radQ Q Q  = h
total

 (p D) (T
s
 – T ) = (h

conv
 + h

rad
) (p D) (T

s
 – T )
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The natural convection heat-transfer coefficient is obtained from the given correlation.

-
= = + +

8/271/6 9/16 2{0.60 0.387 [1 (0.559/Pr) ] }D

h D
Nu Ra

k

where
b

n

-
=

3

2

( )Prs
D

g D T T
Ra

With 

( )

b
-

-

-

+È ˘= = =Í ˙Î ˚

-
= = ¥

¥

1
1

idealgas

3
7

6 2

1 453.15 293.15
0.00268 K

( ) 2

(9.81)(0.00268)(0.2) (180 20) 0.688
4.327 10

(23.13 10 )

f

D

T K

Ra

2
8/27

9/16
7 1/6

conv

0.0321 0.559
0.60 0.387(4.327 10 ) 1

0.2 0.688

k
h Nu

D

-Ï ¸È ˘Ô ÔÊ ˆÌ ˝= = ¥ + ¥ +Í ˙Á ˜Ë ¯Í ˙Ô ÔÎ ˚Ó ˛

= 70 W/m2K

Per unit length: totalQ  = 1700 W = h
total

 (p ¥ 0.2) (180 – 20)

\
p

= = = +
¥ ¥

2
total conv rad

1700
16.91 W/m K

0.2 160
h h h

Radiation heat-transfer coefficient,

h
rad

 = 16.91 – 7.00 = 9.91 W/m2 K (Ans.) (a)

We note that es= + +2 2
rad sur sur( ) ( )s sh T T T T

Pipe surface emissivity is

e -= =
¥ + +8 2 2

9.91

(5.67 10 )(453.15 293.15)(453.15 293.15 )
0.804 (Ans.) (b)

Comment The contribution of radiation heat loss is (h
rad

/h
total

)(100) = (9.61/16.91) (100)

= 58.6%. The radiation effects should, therefore, be considered in free convection heat-

transfer situations.

(E) Sphere

 A 60 W incandescent light bulb of 80 mm diameter placed in a room at 25°C is 

able to convert only a fraction of the electrical power it consumes into light. The remaining power is 

dissipated through convective and radiative heat transfer to the surroundings. The emissivity of the glass 

of the lightbulb is 0.90 and the equilibrium temperature of the glass bulb is 169°C. The interior surfaces 

of the room may be assumed to be at the room temperature.
 Determine (a) the percentage of power consumed by the bulb converted into light, and (b) the radiation heat-

transfer coefficient. Use the following correlation

D

–
DNu Ra [ Pr ]1/ 4 9 / 16 4 / 9

= 2 + 0.589 1+ (0.469 / )

The following properties of air at 370 K may be used:

k = 31.5 ¥ 10–3 W / m K, n = 23.12 ¥ 10–6 m2/s, Pr = 0.696
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Solution

Known A glass bulb dissipates heat by convection and radiation to the room air.

Find (a) Percentage of lightbulb power converted into light. (b) Radiation heat-transfer coefficient, 

h
r
(W/m2 K).

Assumptions (1) Steady operating conditions exist. (2) Air is an ideal gas. (3) Constant properties.

Analysis The glass bulb can be idealized as a sphere of diameter D = 0.08 m

Total heat transfer,

s e= + = - + -4 4
conv rad sur( ) [ ]s s s sQ Q Q h A T T A T T

To find the convective heat-transfer coefficient, h , we need to determine the Rayleigh 

number. For a sphere, the characteristic dimension is the diameter D.

b

n

-
=

3

2

( )s
D

g D T T Pr
Ra

Film temperature, = + = + = ∞
1 1

( ) (169 25) 97 C
2 2

f sT T T

\ b - -

- -

-

= = = ¥
+

¥ - ∞
=

¥

3 1
idealgas

2 3 1 3

6 2 2

1 1
2.70 10 K

( ) (97 273.15 K)

(9.81 m/s )(2.70 10 K )(0.08 m) (169 25) C(0.696)

(23.12 10 m /s)

f

D

T K

Ra

Nusselt number, 

-
È ˘Ê ˆ= + ¥ + =Í ˙Á ˜Ë ¯Î ˚

4/9
9/16

6 1/4 0.469
2 0.589(2.544 10 ) 1 20.11

0.696
D

Nu

The convection coefficient, 
-Ê ˆ¥

= = =Á ˜Ë ¯

3
231.5 10 W/mK

(20.11) 7.92 W/m K
0.08 m

D

k
h Nu

D

Heat dissipated by convection,

convQ  = h (pD2) (T
s
 – T ) = (7.92 W/m2 K)(p ¥ 0.08)2 m2(169 – 25)°C or K = 22.9 W

Heat dissipated by radiation, s e= -4 4
rad sur( )s sQ A T T

  = (5.67 ¥ 10–8 W/m2 K4) (p ¥ 0.082) m2 (0.9) [(169 + 273.15)4 – (25 + 273.15)4]K4

  = 31.1 W
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Total heat-dissipation rate, Q  = (22.9 + 31.1) W = 54 W

The glass bulb heats up quickly as a result of absorbing electrical energy converted into 

heat. This heat is then dissipated to the surroundings by both convection and radiation.

\ Percentage of power converted into heat = ¥ =
54 W

100
60 W

90%

Hence, the incandescent lightbulb is able to convert only 10% of the bulb power it 

consumes into light. (Ans.) (a)

Total (convection + radiation) heat-transfer coefficient,

p
= + = = =

- - ∞
2

2

54.0 W
18.65 W/m K

( ) (0.08 m) (169 25) C or K
c r

s s

Q
h h h

A T T

The convective heat-transfer coefficient, ch  = 7.92 W/m2 K

Radiation heat-transfer coefficient,

= -r ch h h  = 18.65 – 7.92 = 10.73 W/m2 K (Ans.) (b)

Comment The incandescent lightbulb is inexpensive but very inefficient means of converting electrical 

energy into light. The fluorescent tube is much more efficient.

(F) Enclosures (Channels/Cavities/Concentric Cylinders/Concentric Spheres)

 A flat-plate solar collector 2 m long and 1 m wide has its glass cover plate 

separated from the absorber plate by an air gap of 2.5 cm. The average temperature of the absorber 

plate is 95°C, while that of the glass cover is 45°C. The 2 m side of the collector is inclined at an 

angle of 21° to the horizontal. (a) Determine the rate at which heat flows by free convection from the 

absorber plate to the glass cover. (b) If the incident solar heat flux to the system is 740 W/m2, what is 

the percentage heat loss by convection?

Solution

Known Absorber plate and glass-cover 

temperatures and geometry for a flat-

plate solar collector.

Find Heat-transfer rate by free convection, 

[ ].Q W

Assumptions (1) Air is an ideal gas at 1 atm in the 

spacing. (2) Radiation effects are not 

considered.

Properties Air:
Ê ˆ= + = ∞Á ˜Ë ¯1 2

1
1atm, ( ) 70 C

2
mT T T

k = 0.02881 W/m °C, n = 19.95 ¥

10–6 m2/s, Pr = 0.7177, b -= 11
K

343.15

Analysis For the inclined enclosure, 
b

n

-
=

3
1 2

2

( )
L

g T T L
Ra Pr
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-
- ∞

= =
¥

2 3

6 2 2

(9.81 m/s )[1/ (343.15 K)](95 45) C (0.025 m) (0.7177)
40275

(19.95 10 m /s)
LRa

Aspect ratio, = =
2 m

80
0.025 m

H

L

With >12
H

L
 and tilt angle q < 70°, the appropriate correlation is

( )

qq

q q

È ˘Ï ¸Ô ÔÈ ˘= + - - + -Í ˙Ì ˝Í ˙ Î ˚Ô ÔÎ ˚ Ó ˛
Ï ¸ È ˘Ô Ô¥ ∞È ˘ Ì ˝= + - - + -Í ˙Í ˙∞ ∞ Î ˚Ô ÔÎ ˚ Ó ˛

= +

** 1/31.6

*1.6* 1/3

( cos )1708 1708(sin 1.8 )
1 1.44 1 1 1

cos cos 18

1708 sin 1.8 211708 (40275 cos 21 )
1 1.44 1 1 1

(40275 cos 21 ) 40275 cos 21 18

1 1.44(0.9

L
L

L L

Ra
Nu

Ra Ra

+ = =546)(0.9792) 0.86 3.21
h L

k

Average convection heat-transfer coefficient,

= = ¥ = ∞20.02881 W/m°C
3.21 3.7 W/m C

0.025 m
L

k
h Nu

L

Hence, the rate of heat transfer is

= - = -

= ¥ - ∞
1 2 1 2

2

( ) ( )( )

(3.7 W/m °C)(2m 1m)(95 45) C =

sQ h A T T h HW T T

370W (Ans.) (a)

Percentage heat loss by convection is calculated as

= = =
¥2 2

in

370 W

740 W/m 2 ms s

Q Q

Q q A
0.25 or 25% (Ans.) (b)

 Liquid nitrogen is stored in a thin-walled spherical vessel of 1 m diameter. The 

vessel is placed concentrically within a larger, thin-walled spherical container of 1.1 m diameter, and the 

annular space is filled with atmospheric helium. Under normal operating conditions, the inner and outer 

surface temperatures are –196°C and 22°C, respectively. If the latent heat of evaporation of nitrogen is 

201 kJ/kg, determine the mass-flow rate of gaseous nitrogen vented from the system.
 Properties of helium (P = 1 atm, T = – 87°C) are

n = 57.56 ¥ 10–6 m2/s, Pr = 0.6955, k = 0.1115 W/m K, a = 0.8285 ¥ 10–4 m2/s

Solution

Known In a concentric spherical container, liquid nitrogen is contained in the inner sphere while 

atmospheric helium fills up the annular space.

Find Rate of evaporated liquid nitrogen vented off, m

Assumptions (1) Helium is a quiescent ideal gas. (2) Constant properties. (3) Radiation effects are not 

considered. (4) Concentric spheres are isothermal.

 



672 Heat and Mass Transfer

Analysis The average temperature is

b - - -

+ - +
= = = ∞

= = ¥

mean

1 3 1
ideal gas

196 22
– 87 C = 186.15 K

2 2

1
K 5.372 10 K

186.15

i oT T
T

Energy balance for a control surface about the liquid nitrogen gives: = = convfgQ mh Q

From the Raithby and Hollands correlations for free convection between concentric spheres, 

we have

p
Ê ˆ= -Á ˜Ë ¯conv eff ( )i o

o i

D D
Q k T T

L
(1)

where the characteristic length, L = -
1

( )
2

o iD D

The Raithby and Hollands relation is

È ˘= Í ˙+Î ˚

1/4
* 1/4eff 0.74 ( )

(0.861 )
s

k Pr
Ra

k Pr
(2a)

where - -
È ˘= Í ˙+Î ˚

*

4 7/5 7/5 5( ) ( )

L
sph

o i i o

RaL
Ra

D D D D
(2b)

Rayleigh number is

b

na
-

- -

-
=

¥ ¥ - - ∞
= = ¥

¥ ¥ ¥

3

2 1 3
5

6 2 4 2

( )

9.81 m/s 0.005372 K [22 ( 196)] C(0.05 m)
3.01 10

57.56 10 m /s 0.8285 10 m /s

o i
L

g T T L
Ra
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Using Eq. (2b),

   -- - -

Ï ¸Ï ¸ ¥ ¥¥Ô Ô= = =Ì ˝ Ì ˝¥ ++Ô ÔÓ ˛ Ó ˛

55
*

4 4 1.4 57/5 ( 7/5) 5 7

0.05 m 0.05 3.01 103.01 10
433.66

(1 m 1.1 m) (1.1) (1 1.1 )[(1) (1.1) ] m
sphRa

Effective thermal conductivity is then obtained using Eq. (2a):

È ˘= =Í ˙+Î ˚

1/4
1/4

eff

0.6955
0.74(0.1115 W/mK) (443.66) 0.3096 W/mK

0.861 0.6955
k

And, the heat-transfer rate is found from Eq. (1).

p
È ˘= ( ¥Í ˙Î ˚

conv

1.1 m
(0.3096 W/mK) ) 1 m

0.05 m
Q  [22 – (–196)]°C = 4665 W

The rate at which the stored liquid nitrogen is vented after evaporation is

= =
¥

conv

3

4665 W or J/s

201 10 J/kgfg

Q
m

h
 = 0.0232 kg/s or 83.55 kg/h (Ans.)

 An annulus formed by two concentric, horizontal tubes is filled with nitrogen at 

4 atm. The inner and outer surface temperatures and diameters are 300 K, 30 cm and 400 K, 40 cm 

respectively. Calculate the heat-transfer rate by convection per unit length of the tubes.

Properties of nitrogen at 1 atm, 350 K are

r = 0.9625 kg/m3, C
p
 = 1.042 kJ/kg K, k = 0.0293 W/m K, m = 200 ¥ 10–7 N s/m2

Solution

Known The space between concentric 

cylinders with specified diameters and 

temperatures is filled with nitrogen at 

4 atm.

Find /Q L  (W/m).

Assumptions (1) Ideal-gas behaviour of nitrogen. 

(2) Density is proportional to pressure. 

(3) Properties like k, m, and Pr are 

independent of pressure.

Properties

Pr = C
p
m/k = (1.042 ¥ 103) ¥ (200 

¥ 10–7)/0.0293 = 0.711

With r r

n m r

a r

-
-

-

μ = ¥

¥
= = = ¥

¥

= = ¥ ¥ = ¥

3
(4 atm)

7
6 2

6 2

, 4 0.9625 kg/m ,

200 10
/ 5.195 10 m /s

4 0.9625

/ 0.0293 / (4 0.9625 1042) 7.304 10 m /sp

P

k C

Analysis For the annular region, 
b

na

-
=

3( )o i c
L

g T T L
Ra
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where = - = - =
1

( )/2 (0.4 0.3) m 0.05 m
2

o iL D D

and b -= = =
+

11 1 1
K

(400 300)/2 350T

Then - -
-

= = ¥
¥ ¥

2 3
6

6 2 6 2

(9.81 m/s )[1/(350 K)](400 300) (0.05 m)
9.233 10

(5.195 10 m /s)(7.304 10 m /s)
L

K
Ra

and
- -

- -

= +

= ¥ ¥ + =

* 4 3 3/5 3/5 5
cyl

4 6 3 0.6 0.6

[ln( / )] / ( )

[ln(40/30)] (9.233 10 ) / (0.05 m) (0.3 0.4 ) 645135

o i L c i oRa D D Ra L D D

Furthermore,

   

È ˘ È ˘= = =Í ˙ Í ˙+ +Î ˚ Î ˚

1/4 1/4
* 1/4 1/4eff
cyl

0.711
0.386 ( ) 0.386 (645135) 8.97

0.861 0.861 0.711

k Pr
Ra

k Pr

Therefore, the convective heat-transfer rate is

p p ¥ ¥ ¥ -
= - =eff2 2 8.97 0.0293 W/m K (400 300) K

( )
ln( / ) ln(40/30)

o i
o i

kQ
T T

L D D

  = 574 W/m (Ans.)

Comment Heat rate by convection is about nine times that for conduction. Radiation heat exchange 

will also be significant in this case. An increase in nitrogen pressure reduces n which in 

turn increases Ra
L
, thereby increasing the free convection heat-transfer.

(G) Rotating Cylinders/Discs/Spheres

 A vertical hot oven door, 0.6 m high, is at 200°C and is exposed to atmospheric 

pressure air at 40°C. If the door is subjected to an upward forced flow of air, find the minimum free 

stream air velocity for which free convection effects may be neglected. Use the following properties of 

air at 120°C and 1 atm.

k = 0.03235 W/m K, n = 25.22 ¥ 10–6 m2/s, Pr = 0.7073

Solution

Known A vertical door exposed to atmospheric air is subjected to mixed free and forced convection.

Find Minimum air velocity when natural convection is neglected, V(m/s).
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Assumptions (1) Air is an ideal gas at 1 atm. (2) Radiation heat transfer is not considered. (3) Steady 

operating conditions.

Analysis We note that the Richardson number, Ri should be less than 0.1 if natural convection effect 

is to be neglected.

To find minimum free stream air velocity to ensure pure forced convection, we equate

= =
2

0.1L

L

Gr
Ri

Re

Reynolds number, 
b

n

-È ˘= =Í ˙Î ˚

1/2 3

2

10 ( )

0.1

sL
L

g L T TGr
Re

where b -= = = 1
idealgas

1 1
0.00254 K

(K) (393.15 K)fT

   
n

-

-
¥ ¥ ¥ ¥ -

= = = ¥
¥

2 1 3
3

6 2 2

10 9.81 m/s 0.00254 K (0.6 m) (200 40)°C
116.44 10

(25.22 10 m /s)
L

VL
Re

Velocity of air is

-¥ ¥ ¥
= =

3 6 2116.44 10 25.22 10 m /s

0.6 m
V 4.90 m / s (Ans.)

 Air at 1 atm and 300 K is forced through a horizontal 30 mm diameter and 0.5 

m long tube at a mean velocity of 0.3 m/s. The tube wall is maintained at a constant temperature of 400 

K. Determine the average heat-transfer coefficient for this situation and compare it with that obtained 

for strictly laminar forced convection using the Sieder–Tate correlation.
 Properties of atmospheric air at T

f
 = 350 K:

k = 0.03 W/m K, n = 20.92 ¥ 10–6 m2/s, Pr = 0.7

m
b(300 K)

 = 18.46 ¥ 10–6 kg/m s, m
f(350 K)

 = 20.82 ¥ 10–6 kg/m s

m
w(400 K)

 = 23.01 ¥ 10–6 kg/m s

Solution

Known Air flows through a horizontal tube with a prescribed velocity.

Find Average heat-transfer coefficient, h , for mixed convection and for forced convection.

Assumptions (1) Steady state conditions. (2) Constant properties. (3) Air is an ideal gas.

Analysis Grashof number, 
b

n

-
=

3

2

( )w
D

g D T T
Gr
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where b = = =
+

idealgas

1 1 1

1 350K
(300 400)K

2
fT

\
-

-
= = ¥

¥

2 3
5

6 2 2

(9.81 m/s ) [1/(350 K)](0.03 m) (400 300) K
1.729 10

(20.92 10 m /s)
DGr

Reynolds number,

n -= = =
¥ 6 2

(0.3 m/s) (0.03 m)
430.2

20.92 10 m /s
D

VD
Re (< 2300) fi Laminar flow

¥
= =

5

2 2

1.729 10
0.934

(430.2)

D

D

Gr

Re

Since
2
D

D

Gr

Re
 is between 0.1 and 10, the situation is one of mixed convection flow.

Combined Free and Forced Convection:

Graetz number, Gz = Re
D
 Pr

D

L
 = (430.2) (0.7) (0.03 m/0.5 m) = 18.07

The appropriate correlation is

m

m

-

-

Ê ˆ
= + Á ˜Ë ¯

È ˘¥
= + ¥ ¥ =Í ˙

¥Í ˙Î ˚

0.14

1/3 4/3 1/3

0.14
6

5 1/3 4/3 1/3

6

1.75[ 0.012( ) ]

18.46 10
1.75[18.07 0.012{18.07 (1.729 10 ) } ] 8.79

23.01 10

b
DD

w

Nu Gz Gz Gr

The average heat-transfer coefficient is

= = ¥ =
0.03 W/m°C

8.79
0.03 mD

k
h Nu

D

2
8.79 W / m °C (Ans.)

Only Forced Convection: 

Using the Sieder–Tate correlation:

m
m m

m

-

-

Ê ˆ Ê ˆ= =Á ˜Á ˜ Ë ¯Ë ¯

Ê ˆ¥
= =Á ˜¥Ë ¯

0.14 1/3
1/3 1/3 0.14

0.14
6

1/3

6

1.86( ) 1.86 ( / )

20.82 10
1.86(18.07)

23.01 10

f

D f wD
w

D
Nu Re Pr Gz

L

2
4.81W/m °C (Ans.)

Comment If the calculations are made on the basis of only laminar forced convection, the percentage 

error involved would be 
-Ê ˆ

Á ˜Ë ¯
8.79 4.81

(100)
8.79

 = 45.3%.
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Points to Ponder

● Convection heat transfer from buoyancy caused velocities is called free convection.

● Grashof number represents the ratio of [(buoyancy forces) ¥ (inertia forces)] to (viscous forces).

● The coefficient of volumetric thermal expansion b is the reciprocal of the absolute film temperature 

only for an ideal gas.

● The volume expansivity, b of liquid metals is not
1

( )fT K
.

● In the case of a vertical isothermal plate in natural convection, the fluid velocity at the surface and at 

the edge of the boundary layer is zero.

● Rayleigh number is a product of Grashof number and Prandtl number.

● The larger the value of the (GrPr) product, the more one would expect natural convection effects to 

prevail.

● In the case of free convection over vertical surfaces, where the linear dimension is the height, the flow 

in the boundary layer becomes turbulent for a Rayleigh number of about 109.

● The location of transition point from the leading edge of a flat plate for flow of a fluid of kinematic 

viscosity n over it at a free stream velocity of u  is Re
cr
n/u .

● The maximum velocity within the natural convection boundary layer with cubic velocity profile based 

on the integral solution for a vertical plate is given by u
max

 = 4/27 U.

● The natural convection correlations for vertical plate (both laminar and turbulent flows) may be applied 

to a vertical cylinder (diameter D and height L) if ->> 1/4
L

D
Ra

L
.

● Free convection is of primary importance if the Richardson number defined as the ratio of Gr and 

Re2 is greater than 10.

● For a horizontal plate, the characteristic length L used in the correlations for free convection heat 

transfer is [Area, A/Perimeter, P].

● For 2/Rex xGr >> 1, the flow should be considered as entirely natural convection.

● The effective thermal conductivity of an enclosure equals the product of thermal conductivity of the 

fluid and the Nusselt number.

GLOSSARY of Key Terms

Natural convection Heat transfer in which the flow is a buoyancy-induced motion resulting 

from body forces acting on density gradients which, in turn, arise from 

temperature gradients in the quiescent fluid.

Grashof number Dimensionless number interpreted as the ratio of busoancy forces to the 

viscous forces.

Mixed convection
Combined forced and free convection characerized by the ratio 2/Gr Re

in the range of 0.3 to 16.

Volumetric coefficient of 

thermal expansion

Ratio of density difference to temperature variation times the original 

density at constant pressure for an ideal gas, this parameters is reciprocal 

of absolute film temperature.
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Critical Rayleigh number A value of the product numbers which indicates the transition from 

laminar to turbulent flow in natural convection heat transfer.

Boussinesq approximation For free convection flows, it neglects all variable property effects except 

for density in the momentum equation and approximates the density 

difference terms with a simplifed equation of state.

Benard cells A pattern of hexagonal cells created when the enclosed fluid layer when 

two horizontal plates are spaced d two apart and the lower surface is 

hotter than the upper surface with Ra
d
 > 1708.

Multiple-Choice Questions

9.1 In the laminar region, the rate of heat transfer by free convection over a vertical plate is proportional 

to

(a) (T
s
 ~ T )1/4 (b) (T

s
 ~ T )5/4 (c) (T

s
 ~ T )3/4 (d) (T

s
 ~ T )

9.2 In the turbulent region, the heat-transfer rate of a vertical surface is proportional to

(a) DT (b) DT1/3 (c) DT4/3 (d) DT3/5

  where DT ∫ (T
surface

 ~ T )

9.3

(a) density (b) coefficient of viscosity

(c) gravitational force (d) velocity

9.4 In natural convection heat transfer, the maximum velocity in the laminar boundary layer occurs when 

y is approximately equal to

(a) 0 (b) d/3 (c) d/2 (d) d
  where d is the boundary-layer thickness.

9.5 In natural convection heat transfer, the boundary layer becomes turbulent when (Gr Pr) is

(a) equal to 109 (b) equal to 1010 (c) greater than 109 (d) greater than 6 ¥ 1010

9.6 Match List I with List II and select the correct answer using the codes given below the lists:

  List I (Flow pattern) List II (Situation)

A. 1. Heated horizontal plate

B. 2. Cooled horizontal plate



Natural (or Free) Convection Heat Transfer 679

C. 3. Heated vertical plate

D. 4. Cooled vertical plate

  Codes: A B C D

(a) 4 3 2 1

(b) 3 4 1 2

(c) 3 4 2 1

(d) 4 3 1 2

9.7 When we have simultaneous free and forced convection, Gr/Re2 is

(a) greater than 1 (b) almost equal to 1

(c) less than 1 (d) equal to Peclet number

9.8 For calculation of heat transfer by natural convection from a horizontal cylinder, what is the 

characteristic length in Grashof number?

(a) Diameter of the cylinder

(b) Length of the cylinder

(c) Circumference of the base of the cylinder 

(d) Half the circumference of the base of the cylinder

9.9 The average Nusselt number in laminar natural convection from a vertical wall at 180°C with still air 

at 20°C is found to be 48. If the wall temperature becomes 30°C, all other parameters remaining the 

same, the average Nusselt number will be

(a) 8 (b) 16 (c) 24 (d) 32

Answers

Multiple-Choice Questions

9.1 (b) 9.2 (c) 9.3 (d) 9.4 (b) 9.5 (c) 9.6 (b) 9.7 (b) 9.8 (a)

9.9 (c)

9.1 What is natural convection? How is it different from forced convection? In which mode of heat 

9.2

9.3 What does the Grashof number represent? How is it different from the Reynolds number?

9.4 b = 1/T, where T is the 

absolute temperature.

9.5 How does the Rayleigh number differ from the Grashof number?

9.6 What is the criterion for transition from laminar to turbulent boundary layer in free convection on a 
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9.7 Why is an analytical solution of a free convection problem more involved than that of the forced 

convection problem? What is meant by Boussinesq approximation?

9.8

9.9

9.10 Sketch the velocity distribution and temperature distribution for free convection heat transfer on a 

9.11

9.12 the outer surface of a vertical cylinder can be treated as a 

vertical plate in natural convection calculations?

9.13 A hot horizontal plate whose back side is insulated loses heat to the surroundings. Of the two options, 

viz., hot surface facing up and hot surface facing down, in which case the plate will cool faster and 

why?

9.14 Derive an expression for the maximum velocity in the natural convection boundary layer on a vertical 

9.15 Mention a few applications of natural convection heat transfer in enclosures. How is aspect ratio

9.16 What is meant by the effective thermal conductivity of an enclosure? How are the effective 

9.17 Under what conditions does natural convection assist forced convection, and under what conditions 

does it oppose forced convection?

9.18 When neither free nor forced convection is negligible, is it appropriate to calculate Nusselt number 

for each independently and add the two to determine the total convection heat transfer? If not, how 

does one evaluate heat-transfer in a mixed convection regime?

9.19 Discuss the criterion for ascertaining the type of convection regime (free, mixed or forced) in a 

PRACTICE PROBLEMS

(A) Exact Analysis, Integral Solution

9.1 (a) A 0.03-m-long glass plate is hung vertically in the air at 27°C while its temperature is maintained 

at 77°C. Calculate the boundary layer thickness at the trailing edge of the plate and the average heat 

a velocity of 4 m/s, estimate the boundary layer thickness at its trailing edge and the average heat 

  Properties of air at 52°C: 

  b = 3.07 ¥ 10–3 K–1, k = 28.15 ¥ 10–3 W/m K, v = 18.41 ¥ 10–6 m2/s, Pr = 0.700

  Use for free convection: d = ¥ ¥1/4

1/2 1/4

1
3.93 (0.952 + Pr)

xPr Gr

  ¥1/2 –1/4 1/4= 0.508 (0.952 + )x xNu Pr Pr Gr

  Use for forced convection: 1/2 1/3= 0.664 LNu Re Pr

[(a) 8.58 mm, 8.73 W/m2 °C (b) 1.86 mm, 44.66 W/m2 °C]
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(B) Vertical Plate/Tube

9.2 Calculate the rate of heat input into a vertical steel plate that loses heat by free convection to the 

ambient air. The plate is 30 cm by 50 cm and is maintained at 150°C. The ambient air temperature is 

Fluid k [W/m K] n [m2/s] Pr b[K–1]

Air 30.5 ¥ 10–3 21.69 ¥ 10–6 0.699 0.0028

Engine oil 138 ¥ 10–3 33.3 ¥ 10–6 440.3 0.70 ¥ 10–3

  Use the empirical correlation: +[0.68 / ]LNu = A B

  where A = 1/40.67 LRe B = + 9/16 4/9[1 (0.492/ ) ]Pr

[Air: 220 W, Engine oil: 3348 W]

9.3 A thin electrically heated vertical plate, 25 ¥ 25 cm, is immersed in a large tank of water. The electrical 

energy supplied to the plate was measured and found to be 2.5 kW. The average water temperature is 

surface temperature of the plate.

  The following correlations may be used:

      

0.25 5 11

0.25 13 16

0.60( ) 10 10

0.17( ) 2 10 10

* *
x x x

* *
x x x

Nu = Ra < Ra <

Nu = Ra × < Ra <

  where *
xRa

  The following properties of water (at 40°C) may be used in the calculations:

k(W/m K) n ¥ 106(m2/s) a ¥ 107(m2/s) b ¥ 104(K–1)

0.631 0.658 1.524 3.77

[56°C]

9.4 A 25 W plate heater has a 20-cm-square area and is 3-mm-thick. It is held vertically and loses heat 

by free convection from both faces to the surrounding air at 25°C. Neglecting internal temperature 

gradients, determine the steady-state temperature attained by the heater. Properties of air at 

atmospheric pressure:

T(K) k ¥ 103 (W/m °C) n ¥ 106 (m2/s) a ¥ 106 (m2/s) Pr

300 26.3 15.89 22.5 0.707

350 30.0 20.92 29.9 0.700

400 33.8 26.41 38.3 0.690

[82.9°C]

9.5 A thin, square vertical steel plate with sides 0.4 m by 0.4-m-long, 4 mm thickness, density 7900 

kg/m3

quiescent atmospheric air at 25°C. Heat transfer from the plate to the air takes place by laminar free 

system analysis is applicable, develop an expression for the temperature of the plate as a function of 

time. Estimate the time required for the plate to cool to 115°C. [992 s]
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9.6 A window, 0.30-m-high and 0.45-m-wide, is centred in an oven door, 0.50-m-high and 0.75-m-wide. 

During steady operating conditions, when the room and surroundings temperature is 25°C, the 

window reaches a temperature of 45°C and the door surface attains a temperature of 35°C. Assuming 

the surface emissivity of unity for both the door and the window, estimate the heat transfer rate (a) 

from the door and window, and (b) from the door if the door did not have a window.

  Properties of dry air at 1 atm:

Temperature (°C) k ¥ 102 (W/m K) n ¥ 106 (m2/s) Pr

30 2.67 16.0 0.701

40 2.76 16.96 0.699

  Use the following correlation: = +
+

1/4

9/16 4/9

0.670
0.68

[1 (0.492/Pr) ]

L
L

Ra
Nu

[(a) 50.34 W (b) 34.5 W ]

(C) Horizontal Plate

9.7 ¥ 60-cm width) air conditioning duct maintains 

the duct’s outer surface temperature at 15°C. If the duct is uninsulated and exposed to air at 25°C, 

calculate the heat gained by the duct per metre length, assuming it to be horizontal. Use the following 

correlations:

(a) Upper surface heated or lower surface cooled: NU
L
 = 0.15Ra1/3

L

(b) Lower surface heated or upper surface cooled: 1/40.27L LNu = RA

(c) Vertical surfaces: 1/40.59L LNu = RA

Take the properties of air at 20 °C as r = 1.205 kg/m3, k = 25.93 ¥ 10–3 W/m K, n = 15.06 ¥ 10–6 m2/s

[(a) 3.71 W/m2K (b) 3.94 W/m2K (c) 1.70 W/m2K, 56.1 W/m]

(D) Horizontal Cylinder

9.8 A 15-m-long, horizontal copper pipe of 2.5-cm-OD conveys saturated steam at 1.43 bar (T
sat

 = 110°C, 

h
fg

temperature is maintained at 30°C, and the ambient air pressure can be changed from 0.5 atm to 2 

atm. Investigate the effect of this pressure change on the rate of condensation.

  Properties of air at 1 atm and 70°C: k = 0.0297 W/m K, n = 20.02 ¥ 10–6 m2/s, Pr = 0.694

  Use the correlations: Nu = 0.53(Ra
D
)1/4 104 < Ra

D
 < 109

  Nu = 0.13(Ra
D
)1/3 109 < Ra

D
 < 1012

[0.5 atm: 1.067 kg/h, 2 atm: 3.02 kg/h]

9.9 (a) The suction line of a refrigeration system has the refrigerant R-12 (boiling point: – 30°C) inside 

a copper tubing of 12.5-mm-outside diameter, 2 m of which is exposed to dry stagnant air at 44°C. 

Calculate the heat gain by free convection. (b) If the suction line is subjected to a cross draft of 5 m/s, 

what will be the heat gain?

  Use the following correlations and properties of dry air at atmospheric air at 7°C:

      k = 0.0247 W/m °C, n = 14.11 ¥ 10–6 m2/s, Pr = 0.712

  Free convection: -= + +1/4 9/16 8/27 2[0.60 0.387 {1 (0.559/Pr) } ]DNu Ra
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  Forced convection: 
È ˘Ê ˆÍ ˙= + + Á ˜Ë ¯Î ˚+

4/5
5/81/2 1/3

2/3 1/4

0.62 Re
0.3 1

282000[1 (0.4/ ) ]

D DRe Pr
Nu

Pr

[(a) 58.0 W (b) 397.0 W]

(E) Sphere

9.10 A 15-cm-diameter polished copper sphere (e = 0.045) with a surface temperature of 200°C is kept in 

a room where the air and surrounding objects including the room structure are at 36°C. Determine the 

heat loss from the sphere, and also the percentage of this loss due to radiation. Use the correlation: 

2 /
D

Nu = + A B

  where = 0.250.589 DA Ra

  B = [1 + (0.469/Pr)0.5625]0.4444

  

  k = 0.03312 W/m °C, n = 25.42 ¥ 10–6 m2/s, Pr = 0.692 [84.54 W]

(F) Enclosures

9.11

glass cover plate maintained at the average temperatures of 70°C and 24°C, respectively. Estimate 

the convection heat loss from the absorber plate to the glass if the spacing between the two plates is 

(a) 10 mm and (b) 30 mm. Properties of air: k = 0.02778 W/m°C, n = 17.9 ¥ 10–6 m2/s, Pr = 0.7042

[(a) 420 W (b) 362.5 W]

(H) Combined Free and Forced Convection

9.12 Consider a 0.5-m-wide and 0.4-m-high window with an interior surface temperature of 10°C. A small 

fan creates a slight upward movement of air over the window with its velocity being of the order of 

1 m/s. Determine the rate of heat transfer through the window if the room air temperature is 20°C.

  The following are the thermophysical properties of air at 15°C:

  k = 0.02476 W/m °C, n = 1.47 ¥ 10–5 m2/s, Pr = 0.7323 [11.74 W]



Heat Transfer with 
Change in Phase

10.1 ❏ INTRODUCTION

Our foregoing discussions on convection heat transfer were focussed on homogeneous, single-phase

systems. Convection processes associated with the change in phase of a fluid are also of great importance. 

In this chapter, we will consider those processes which can take place at a solid-liquid interface, viz., 

boiling and condensation. When a liquid is in contact with a solid surface which is maintained at a 

temperature greater than the saturation temperature of the liquid, the change from the liquid to the 

vapour state due to boiling can occur. Conversely, condensation from a vapour to the liquid phase takes 

place when a vapour strikes a solid surface that is at a temperature below the corresponding saturation 

temperature. Very high heat-transfer rates accompanied by quite small temperature differences make both 

these heat-transfer mechanisms of profound practical significance. Clearly, phase-change heat transfer is 

always associated with very high heat-transfer coefficients. In these cases, latent heat effects associated 

with the phase change are important. The change from the liquid to the vapour state due to boiling is 

sustained by heat transfer from the solid surface. Condensation of a vapour to the liquid phase results in 

heat transfer to the solid surface.

The energy required for phase change for some liquids like water is very high. At a saturation pressure 

of 1 atm and the corresponding saturation temperature of 100°C, the latent heat of vaporization is 2257 

kJ/kg. As the temperature increases, the energy needed to vaporize reduces and the saturation pressure 

increases. At the peak of the saturation dome, when the specific volumes of liquid and vapour are same. 

The latent heat is zero and there is no longer any phase change. The phase-change processes for some 

liquids (like boiling and condensation) occur under the saturation dome at a specific pressure shown in 

Fig. 10.1. During change of phase, the temperature remains constant at equilibrium. During a dynamic 

process, however, small temperature changes do exist which cause huge quantity of energy transfer to 

or from the surface. Naturally, very high heat-transfer coefficients are achieved and the process is an 

effective means of heat transfer.

Boiling and condensation are usually classified as forms of convective heat transfer mechanism and the 

heat transfer coefficient h is used to describe the heat flux q as a function of the temperature difference 

between the solid surface and the surrounding fluid DT
e
. This is due to the fact that both involve fluid

motion.

There are added considerations too that are unique to these phase change processes. It is important to 

note that the heat transfer to or from a fluid during a phase change can occur almost without affecting 

the fluid temperature.
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The important parameters which characterize boiling and condensation are

Latent heat (of evaporation or condensation, as the case may be)

Surface characteristics

Surface tension between the liquid-vapour interface, s, and

Density difference between the two phases (liquid and vapour).

Buoyancy force owing to the density difference and proportional to g(r
l
 – r

v
) combined with latent

heat h
fg
 contribute to much higher heat-transfer coefficients than in single phase convection systems. 

The above-mentioned additional parameters make these phase-change processes extremely complex and 

difficult to analyze.

10.2 ❏ APPLICATIONS

There are several engineering applications in which heat transfer occurs with a phase change. For instance, 

in a modern steam power plant, the pressurized liquid is converted into vapour (steam) in the boiler or 

steam generator, and the exhaust steam after expansion in the turbine is restored to the liquid state in 

the condenser for reuse so that the condensed liquid can be pumped back to the boiler to complete the 

vapour power cycle. In vapour-compression and vapour-absorption refrigeration systems, the evaporator 

where boiling of the liquid refrigerant occurs, and the condenser, are both crucial components. Besides, 

the petrochemical, chemical, and metallurgical plants also employ such heat-exchange equipment, the 

sound design of which calls for a thorough understanding of the processes of boiling and condensation. 

The potential of high heat-flux transport with modest temperature differential has also found a recent 

application in heat pipes.

Nuclear reactors, rocket nozzles, spacecraft, etc., are all high-performance machines and release a very 

large quantity of heat (of the order of 3 ¥ 106 to 3 ¥ 107 W/m2). Boiling heat transfer is used to cool the 

structural components in these machines. Hence, understanding its accurate mechanism and limitations 

is very essential.

Saturation dome (temperature-specific volume diagram) indicating phase-change processes for a pure substance 

which (A) contracts on freezing, and (B) expands on freezing (e.g., water)
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10.3 ❏

We have already learnt how the appropriate non-dimensional parameters can be obtained by using the 

Buckingham-pi theorem. For heat transfer with phase change, the heat-transfer coefficient, h depends on 

the following:

Difference between the surface and saturation temperatures, DT ∫ (T
w
 ~ T

sat
).

Body force arising from the liquid-vapour density difference, g (r
l
 – r

v
).

Latent heat of vaporization, h
fg
.

Surface tension, s.

Characteristic length, L.

Thermo-physical properties of the liquid or vapour: Density r, specific heat C
p
, thermal conductivity 

k and dynamic viscosity m.

It follows that:

r r s r m= D - ,{ , ( ), , , , , , }v fg ph f T g h L C k
l

We note that there are 10 variables in 5 dimensions (namely, mass, length, time, temperature, and 

energy). Clearly, there will be (10 – 5) = 5 dimensionless or pi-groups, which can be identified as follows:

l l
mr r r r r

sm

È ˘D- -
= Í ˙
Í ˙
Í ˙Î ˚

3 2

2

(1) (2) (3) (5)(4)

( ) ( )
, , ,

p pv v

fg

C T Cg L g LhL
f

k h k

The functional relationship involving dimensionless parameters is given by:

l
r r r

m

È ˘-
= Í ˙
Î ˚

3

2

( )
, , ,v

L

g L
Nu f Ja Pr Bo (10.1)

The Nusselt and Prandtl numbers are fairly familiar by now. The new dimensionless parameters are 

the Jacob number Ja, the Bond number, Bo, and an unnamed parameter which is similar to the Grashof

number, and represents the effect of buoyancy-induced fluid motion on heat transfer.

The Jacob number is the ratio of the maximum sensible energy absorbed by the liquid (vapour), 

i.e., C
p
DT to the latent energy absorbed by the liquid during condensation (boiling), i.e., h

fg
. In many 

applications, the sensible energy is much less than the latent energy and Ja has a small numerical value.

The Bond number is the ratio of the buoyancy force, i.e., (r
l
 – r

v
)L3 g to the surface tension force, 

i.e., sL.

10.4 ❏

Boiling heat transfer is defined as a mode of heat transfer with change in phase from liquid to vapour 

at the solid-liquid interface. Boiling is the process of intensive vaporization in the whole volume of a 

liquid that may be at the saturation temperature or slightly superheated, accompanied by the vapour bubble 

formation. Boiling is possible in the entire temperature range right from triple point to the critical point 

(0.01°C to 374.14°C for water). There is a popular misconception that evaporation and boiling are the same 

phenomena. The fact of the matter is that while boiling occurs at the solid-liquid interface characterised 

by vapour bubble formation and growth at the heating surface the evaporation process takes place at a 

liquid vapour boundary.
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The principal parameters of interest are:

The temperature of the metal surface T
w
.

The saturation temperature T
sat

 corresponding to the liquid pressure.

The heat flux q at the surface.

Heat is transferred from the solid surface to the liquid according to the following equation:

= - = Dsat( )w eq h T T h T (10.2)

where h is the boiling heat-transfer coefficient, and DT
e
∫ (T

w
 – T

sat
) is the driving potential called the 

excess temperature of the surface above the saturation temperature of the liquid. Both T
w
 and q can be 

determined experimentally.

10.4.1 ●

Boiling may be classified as either pool boiling or a forced convection flow known as flow boiling. Pool

boiling is boiling on a heating surface submerged in a pool of initially quiescent, i.e., still liquid. Heat 

is supplied to a stationary quantity of fluid from an immersed heating surface. The fluid motion near the 

surface is due to natural convection and to mixing caused by bubble growth and detachment. Although 

there is a sharp decline in the liquid temperature close to the solid surface, the temperature through most 

of the liquid remains slightly above saturation. Bubbles generated at the liquid-solid interface, therefore, 

rise to and are transported across the liquid-vapour interface. A familiar example is the boiling of water 

placed in a kettle on the top of a stove or heater. The heat can also be transferred through a heating coil.

In forced convection boiling or flow boiling, the fluid motion is induced by external agencies, (like a 

pump) as well as by natural convection and bubble-induced mixing. Flow boiling occurs when there is a 

forced flow of a stream of fluid over the surface where the heating surface may be the tube or channel 

wall confining the flow as the boiler tubes. A boiling flow is composed of a mixture of liquid and vapour 

and is a type of two-phase flow. Figure 10.2 shows pool boiling as distinguished by flow boiling.

Types of boiling based on the bulk fluid motion

10.4.2 ●

Boiling is also categorized depending on whether it is subcooled or saturated (Fig. 10.3). In subcooled or 

local boiling, the temperature of the pool of the liquid is less than the saturation temperature corresponding 
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to the pressure of the liquid. The bubbles formed at the surface eventually condense in the liquid. The 

temperature of the liquid is slightly more than the saturation temperature in saturated or bulk boiling.

Bubbles formed at the surface rise through the liquid by buoyancy forces, finally escaping from the free 

surface. Figure 10.4 depicts the temperature distribution in saturated (bulk) pool boiling. Temperature 

profile in subcooled (local) pool boiling with a liquid-vapour interface is shown in Fig. 10.5.

Types of boiling based on bulk fluid temperature

Temperature profile in saturated pool boiling [T
l
≥ T

sat
]
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Temperature profile in subcooled liquid: (1) Single-phase liquid; (2) Boiling boundary layer

10.5 ❏

Nukiyama (1934) of Japan was the first to properly identify different regimes of pool boiling. He calculated 

both the heat flux and the temperature from a horizontal nichrome wire (melting point 1500 K) immersed 

in saturated water by measuring the current flow and voltage drop. In power-controlled heating used 

by him, the wire temperature T
w

(hence, the excess temperature DT
e
) is the dependent variable and the 

power setting (hence, the heat flux) is the independent variable. Figure 10.6 shows a typical boiling curve 

in which the heat flux is plotted against the excess temperature (DT
e
∫ T

w
 – T

sat
) when the controlling 

parameter is the power input to the heater. The effect of increasing pressure is also shown in the figure.

Nukiyama boiling curve with power input as the controlling parameter, 

also indicating the effect of increasing pressure



690 Heat and Mass Transfer

It is noteworthy that the heat transfer from a heated surface (say at 110°C) to a pool of water at 1 atm 

is essentially the same no matter what the bulk temperature of water is (it could be 85°C, 90°C or 95°C). 

It is for this reason that the driving potential is (T
w
 – T

sat
) or DT

e
 rather than the difference between the 

wall surface temperature and the fluid bulk temperature. One can see that as power is applied, the heat 

flux increases, initially slowly and then very rapidly, with excess temperature.

Boiling starts and bubbles appear when DT
e
ª 5°C. With increase in power input the heat flux increases 

to a very high level, q
max

. The situation becomes unstable suddenly, for a value slightly larger than q
max

.

The wire (wall) temperature jumps to the melting point resulting in burn-out.

Nukiyama repeated the experiment with a platinum wire with higher melting point (2045 K) and could 

maintain heat fluxes above q
max

 without burn-out. After reducing the power (and the heat flux), the cooling 

curve followed. When the heat flux reached the minimum point q
min

, the situation became unstable again 

and a further decrease in q caused the excess temperature to drop suddenly, and the process followed the 

original heating curve back to the saturation point.

Nukiyama believed that this hysteresis effect was the result of the power-controlled mode of heating, 

where DT
e
 is a dependent variable.

However, if the heater surface temperature T
w
 (or excess temperature DT

e
) is the controlling parameter 

then five distinct regimes of boiling can be identified by examining the pool-boiling curve. Figure 10.7 

shows different regimes of the boiling curve for saturated pool boiling of water at the atmospheric pressure. 

This curve indicates the relation between heat flux, q, and excess temperature DT
e
. The slope of the curve 

represents the heat-transfer coefficient, h.

Nukiyama’s boiling curve at atmospheric pressure and saturation temperature 

with heater surface temperature as the controlling parameter
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Free Convection Boiling [DT
e
 < 

5°C] (Figure 10.8) In the range A-B, as 

the surface (wall) temperature rises above 

the liquid saturation temperature, natural or 

free convection currents are induced causing 

fluid motion. In this regime, the liquid is 

slightly superheated (liquid temperature 

above the saturation temperature) near the 

heated surface. There is no phase change at 

the heater surface and the superheated liquid 

near the heater rises to the free surface where 

evaporation occurs.

In single-phase free convection, the heat flux q is proportional to D 5/4
eT  (for laminar flow) and 

the DT4/3 (for turbulent flow). And, μ D 1/4
eh T  (laminar) and μ D 1/3

eh T  (turbulent) because q = h DT
e
.

Figure 10.9 displays the free convection (non-boiling) curve B for subcooled pool boiling which is slightly 

higher than the curve for saturated pool boiling A. The curve is further raised as indicated by the curve 

C in case of forced convection.

Boiling curve showing non-boiling curves for subcooled and saturated 

pool boiling, and the forced convection curve

Nucleate Boiling [5°C < DT
e
 < 30°C]

(Figure 10.10) Vapour bubbles begin to form 

at the nucleation sites such as the tiny cavities, 

pits or scratches on the submerged surface. 

The bubbles transport the latent heat of 

vaporization and cause a rapid increase in heat 

transfer by agitating the liquid near the heating 

surface. The mechanism in this range is called 

nucleate boiling. There are two subregions in 

Nucleate boiling:

Free convection boiling (A-B)

Nucleate boiling (B-C and C-D)
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Local boiling or subcooled boiling which is a nucleate boiling where the bubbles formed at the 

heating surface tend to condense in the cooler liquid as they rise and collapse before they reach 

the free surface of the liquid.

Bulk boiling which is a nucleate boiling in a saturated liquid in which the columns of bubbles do 

not collapse and rise to the interface.

In the nucleate boiling range, q varies as D n
eT , where n generally ranges from 2 to 5.

In the region B-C, isolated bubbles originate at nucleation sites and then detach from the surface. 

Both the heat flux and the convection coefficient increase as a consequence. As a result of detachment 

there is agitation and stirring of the fluid near the surface. In the region C-D, the vapour bubbles leave 

the surface as continuous stream of jets or columns. When the bubble population becomes too high at 

some high heat flux point D, the outgoing bubbles may pose hurdles in the path of incoming liquid. 

The vapour thus forms an insulating blanket covering the heating surface and thereby raises the surface 

temperature. This is referred to as the boiling crisis. It is also called burn-out, DNB (Departure from 

Nucleate Boiling) or CHF (Critical Heat Flux). In water at atmospheric pressure, the value of the peak 

heat flux is more than 1 MW/m2.

It is noteworthy that nucleate boiling is characterized by very high heat-transfer rates with relatively 

small temperature differences. It is, therefore, preferable to operate many engineering devices in this range. 

Heat-transfer coefficients in excess of 10 kW/m2 K can be obtained in this region, which are significantly 

larger than those with convection without phase change.

Transition Boiling [30°C < DT
e
 < 120°C]

(Figure 10.11) If the surface temperature is 

increased beyond that corresponding to the 

critical heat flux, boiling becomes unstable 

and the process enters the region of partial 

film boiling or transition boiling (range D-E). 

It becomes increasingly difficult for the liquid 

to reach the heated surface because the bubble 

formation is very vigorous and a vapour film or 

a bubble blanket begins to form on the surface. 

At any point on the surface, conditions oscillate between film and nucleate boiling, but the fraction of 

the total surface covered by the film increases with an increase in DT
e
. The thermal conductivity of the 

vapour being much less than that of the liquid, the surface temperature increases rapidly to reach the point 

E, called the Leidenfrost point, where the heat flux is a minimum, q
min

, and the surface is completely 

covered by a vapour blanket.

Stable Film Boiling [DT
e
 > 120oC] (Figure 12.12) At the point E, heat transfer from the surface to the 

liquid takes place by conduction through the poorly conducting vapour film. As the surface temperature 

is further increased, radiation through the vapour film becomes increasingly significant and the heat flux 

increases with increasing DT
e
. Eventually, a point F is reached at which the surface temperature may 

reach or exceed the melting point of the heater material.

So far, DT
e
 was the independent variable. However, in many applications that involve controlling heat 

flux (e.g., in a nuclear reactor or in an electric resistance heating device) q is the independent variable. 

The value of DT
e
 and, hence, the value of T

w
 will also increase, following the boiling curve to the point 

D. However, any increase in q beyond this point will induce a radical departure from the boiling curve 

in which the surface temperature will increase dramatically. Since, T
w
 may even exceed the melting point 

of the solid, destruction or failure of the system may occur. The point D is, therefore, often called the 

Heat flux

Tsat = 100 °C

Tw = 200°C
Vapour
blanket

Transition boiling (D-E)
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burn-out point or the boiling crisis, and accurate knowledge of the Critical Heat Flux (CHF) is important. 

It is, therefore, desirable to operate a heat transfer surface close to this value, but one must not exceed 

this value.

10.6 ❏

10.6.1 ●

In this section, the correlations for the boiling regions and the maximum and minimum heat fluxes as 

indicated in Fig. 10.13 are presented.

Pool-boding correlations are used to determine the heat flux in different boiling regimes

Natural Convection As stated earlier, only superheated liquid near the surface is formed and 

evaporation occurs at the surface of the pool in the natural convection region A-B of the boiling curve. 

Appropriate free convection correlations can be used to estimate heat-transfer coefficients and heat-transfer 

rates. Some of the more widely used correlations are given below:

-
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Stable film boiling (E-F)
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The properties are evaluated at the mean film temperature (T
w
 + T

sat
)/2.

10.6.2 ●

Nucleate boiling is probably the most important regime of boiling. Similar to the other types of convection 

heat transfer, Nusselt number in this regime is also a function of appropriate Reynolds and Prandtl 

numbers. The characteristic length and velocity in this case are related to the bubble diameter, bubble

velocity and the number of bubbles. The bubble diameter is controlled by the surface tension, and the 

bubble velocity, by the buoyancy force and the viscosity of the liquid.

The dependence of q on DT
e
 characterizes the most popular correlation for nucleate pool boiling, which 

was developed by Rohsenow.
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Alternatively,
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where q = Surface heat flux (W/m2)

m
l
 = Liquid dynamic viscosity (kg/m s)

h
fg
 = Latent heat of vaporization (J/kg)

r
l
 = Density of saturated liquid (kg/m3)

r
v
 = Density of saturated vapour (kg/m3)

g = Gravitational acceleration (m/s2)

s = Surface tension at the liquid vapour interface (N / m).

Pr
l
 = Prandtl number of saturated liquid

C
pl

= Specific heat of saturated liquid

C
sf
 = An empirical constant depending on surface-fluid combination.

n = 1 for water, n = 1.7 for other liquids

The subscript l refers to saturated liquid and subscript v refers to saturated vapour.

The representative values of the coefficient C
sf

and the exponent n are listed in Table 10.1. Values of 

the surface tension and the latent heat of vaporization for water are given in Table 10.2 and the saturation 

pressure of water in Table 10.3. Note that the empirical correlation contains the dimensionless parameters, 

viz., Jacob number Ja = C
p
DT

e
/h

fg
 and the Prandtl number. Thus, -μ 3 3n

lq Ja Pr .



Heat Transfer with Change in Phase 695

Table 10.1
sf
 for various fluid-surface combinations

Fluid-Surface Combination C
sf

Water–Nickel 0.0060

Water–Platinum 0.0130

Water–Copper (scored surface) 0.0068

Water–Copper (polished surface) 0.0130

Water–Brass 0.0060

Water–Stainless steel (polished mechanically) 0.0132

Carbon tetrachloride–Copper 0.013

Benzene–Chromium 0.0100

n-Pentane–Copper (lapped surface) 0.0049

n-Pentane–Copper 0.0154

n-Pentane–Chromium 0.015

Ethyl alcohol–Chromium 0.0027

Iso-Propyl Alcohol–Copper 0.0025

35% Potassium Carbonate–Copper 0.0054

50% Potassium Carbonate–Copper 0.0027

n-Butyl Alcohol–Copper 0.0030

Water–stainless steel (Teflon-coated) 0.0058

Water–stainless steel (ground and polished) 0.0080

Water–stainless steel (chemically etched) 0.0133

Table 10.2

Saturation temperature T
sat

 (°C) Surface tension s (¥ 103 N/m) Latent heat of vaporization h
fg

(kJ/kg)

0 75.5 2501.3

20 72.9 2454.1

40 69.5 2406.7

60 66.1 2358.5

80 62.7 2308.8

100 58.9 2257.0

150 48.7 2114.3

200 37.8 1940.7

250 26.1 1716.2

300 14.3 1404.9

350 3.6 893.4
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Table 10.3

Temperature, °C Saturation Pressure, Pa Temperature, °C Saturation Pressure, Pa

–40 13 10 1228

–36 20 15 1 705

–32 31 20 2 339

–28 47 25 3 169

–24 70 30 4 246

–20 104 35 5 628

–16 151 40 7 384

–12 218 50 12 349

– 8 310 100 101 325

– 4 438 200 1.55 ¥ 106

0 611 300 8.58 ¥ 106

5 872 374.14* 22.09 ¥ 106*

*Critical Point

The Rohsenow correlation is applicable only to clean surfaces. When it is used to estimate the heat 

flux, errors as large as ± 100% can occur. However, since DT
e
a(q)1/3, this error is reduced by a factor 

of 3 when the expression is used to find DT
e
 from the knowledge of q. Furthermore, since -μ 2

fgq h  and 

h
fg
 decreases with increasing saturation pressure (and temperature), the nucleate boiling heat flux will 

increase as the liquid is pressurized.

10.6.3 ●

In several engineering applications, heat fluxes rather than wall temperatures are specified during heat 

transfer processes. In nuclear power plants, for instance, the heat flux from the radioactive fuel is generally 

prescribed in the boiler, and one must be careful to prevent the heat flux from reaching the burn-out 

level to avoid a severe accident.

The critical heat flux q
cr
 = q

max
 is an important quantity because one wants to operate a boiling process 

close to this point, but the possibility of dissipating heat exceeding it is dangerous. Kutateladze, through 

dimensional analysis, and Zuber, through a hydrodynamic stability analysis, obtained the following 

correlation:

l l
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which, as a first approximation, is independent of the surface material and depends only weakly on 

the geometry. If we replace the Zuber constant (p/24) = 0.131 by an experimental value of 0.149 and 

approximate the last term in parentheses by unity since r
v
 << r

l
, then

l
s r r

r
r

-È ˘= Í ˙
Î ˚

1/4

2
max 2

( )
0.149 (W/m )v

fgv
v

g
q h (10.8)
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In principle, this expression is applicable to a horizontal heater surface of infinite extent, and there is 

no characteristic length but in practice, the expression can be used if the characteristic length is large 

compared to the mean bubble diameter parameter.

The peak heat flux for other heater geometries can be evaluated by the following expression:

l
sr r r= -2 1/4

max max [ ( ) ]fg v vq C h g

The values of C
max

 and the characteristic length are given in Table 10.4.

Table 10.4
cr

or C
max

 giving the critical (maximum) heat flux. Dimensionless 

characteristic length parameter, r r s= -( )/l vL L g
*

.

No. Heater geometry C
cr

or C
max

Characteristic

heater dimension

Range of L*

1. Large horizontal flat plate 0.149 Width or diameter L* ≥ 27

2. Small horizontal flat plate 18.9 K+ Width or diameter 9 £ L* £ 20

3. Large horizontal cylinder 0.12 Radius L* > 1.2

4. Small horizontal cylinder 

(Lienhard)

0.12 L*– 0.25 Radius 0.15 £ L* £ 1.2

5. Horizontal cylinder exp - *[ 3.44 ]L Radius L* ≥ 0.15

6. Large sphere 0.11 Radius L* ≥ 4.26

7. Small sphere 0.227 L*–0.5 Radius 0.15 £ L* £ 4.26

8. Any large finite body 0.118 =
–Volume (V)

Surface area (A)
L L* ≥ 4

+K = s/[g(r
l
 – r

v
)A]

10.6.4 ●

Usually, in practice, transition boiling is not of much interest since the heat flux is the controlling parameter 

and for a prescribed value, either nucleate or stable film boiling is obtained. Hence, no satisfactory 

correlation is known for this regime.

The minimum heat flux, however, is of importance because it signifies the beginning of the stable 

film-boiling regime. If the heat flux drops below this minimum, the film will collapse, causing the surface 

to cool and nucleate boiling to be re-established.

It is interesting to mention that in both peak heating flux and minimum heat flux (i.e., q
max

 and q
min

),

the gravitational acceleration g is an important factor. Both heat fluxes are proportional to g1/4, all other 

factors remaining constant.

The expression for the minimum heat flux q
min

, for large horizontal plates is

l

l

s r r
r

r r

-È ˘= Í ˙+Î ˚
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v
v fg

v

g
q h (10.9)

All properties are evaluated at the liquid saturation temperature.
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10.7 ❏

Film boiling is characterized by a vapour film covering the heating surface. At excess temperatures beyond 

the Leidenfrost point, a continuous vapour film blankets the surface and there is no contact between the 

liquid phase and the surface. Since the vapour has a lower thermal conductivity relative to the liquid, 

very large temperature differences are necessary to transfer heat at a rate approaching the nucleate boiling 

region. Film boiling is, therefore, used only if circumstances make it unavoidable. Examples of such 

situations are when liquid gases such as oxygen or hydrogen are boiling at ordinary temperatures. It is, 

however, often encountered in chemical process equipment and in cryogenic systems. It occurs in cooling 

systems of chemical fuel and nuclear rocket engines.

The absolute values of heat-transfer coefficients become considerable at high pressures, which is why 

boiler tubes do not burn out, even though the temperature difference between wall and liquid increases 

significantly. This enables us to use film boiling process in many steam-generating installations.

The stable film boiling region was studied experimentally and analytically by Bromley for horizontal

tubes and vertical plates and suggested the following equation:
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where C is the correlation constant. For a very large diameter tube of diameter D or a horizontal surface, 

lÊ ˆ= +Á ˜Ë ¯
0.69

0.59C
D

 and L = l,

and
s

l p
r r

È ˘= Í ˙-Î ˚

1/2

l

2
( )vg

For a horizontal surface, C = 0.59, D Æ .

For a horizontal cylinder, C = 0.62 and L = D.

For a sphere, C = 0.67 and L = D.

All vapour properties are evaluated at the mean film temperature, T
f
 = (T

w
 + T

sat
)/2. The latent heat h

fg
,

and the liquid density r
l
 are taken at the saturation temperature at the given pressure.

Thus, Eq. (10.13) is true only if the heat transfer is taking place by conduction through the film and 

does not include the effects of radiation. At higher surface temperatures (T
w
≥ 300°C), radiation heat 

transfer across the vapour film becomes significant. Bromley suggested the following relation for total 

heat-transfer coefficient.

Ê ˆ= +Á ˜Ë ¯

1/3

c
c r

h
h h h

h
(10.12)

Here, h
c
 is the film boiling heat-transfer coefficient without the radiation effects and h

r
 is the radiation heat-

transfer coefficient that can be calculated from the radiation heat exchange between two parallel planes.
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where a = Absorptivity of liquid (ª 1)

e = Emissivity of heater surface

s = Stefan–Boltzmann constant (not surface tension) = 5.67 ¥10–8(W/m2 K4)

T
w
 = Wall temperature (K)

T
sat

 = Saturation temperature of liquid (K)

The effective radiation heat-transfer coefficient h
r
 is then given by:
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h

T T
(10.14)

If h
r
 < h

c
, the following simpler form can be used:

= + (3/4)c rh h h (10.15)

10.8 ❏

The following factors influence nucleate boiling:

1. Material, Shape, and Condition of the Heating Surface The boiling heat-transfer coefficient 

depends greatly on the material of the heating surface. Under identical conditions of pressure and 

temperature difference, it is different for different metals (viz., copper has a high value than steel, zinc, 

and chromium).

The heat-transfer rates are also influenced by the conditions of heating surface. A rough surface gives 

a better heat transmission than when the surface is either smooth or has been coated (smoothness weakens 

the metal tendency to get wetted).

The shape of the heating surface also affects the transmission of heat.

2. Liquid Properties Through experiments, it has been observed that the size of the bubble increases 

with the dynamic viscosity of the liquid. With an increase in the bubble size, the frequency of bubble 

formation decreases which results in reduced heat transfer.

Moreover, high thermal conductivity of the liquid improves the rate of heat transfer.

3. Pressure The pressure influences the rate of bubble growth and in turn also affects the temperature 

difference (T
sat

 – T ) causing heat flow. For a boiling liquid, the maximum allowable heat flux first 

increases with pressure until critical pressure is reached and thereafter it declines.

4. Mechanical Agitation Experiments have shown that the heat-transfer rate increases with the 

increase in the degree of agitation.

10.9 ❏

Internal flow boiling or two-phase flow with heat transfer occurs in many practical situations. For example, 

in steam generators where the fluid enters a bundle of tubes as water, heat is transferred through the 
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tube walls and the fluid leaves as steam. Flow boiling is considerably more complex than pool boiling 

because there is no free surface for the vapour to escape and the liquid and vapour have to flow together 

inside the tubes.

Consider a vertical tube heated uniformly over its length with constant heat flux and fed with 

subcooled liquid at its base at such a rate that the liquid is totally evaporated over the length of the tube. 

Figure 10.14 shows the different flow patterns encountered over the length of the tube depending on the dryness 

fraction, the fluid properties and the flow rate. The variation of wall and fluid temperatures are also shown.

Development of flow boiling (two-phase flow) in a vertical tube with a uniform wall heat flux (not to scale)

Pure saturated liquid (x = 0) flows upwards through the tube. In this case, single-phase pipe-flow 

correlations can be used to estimate the heat transfer rate.

While the liquid is being heated up to the saturation temperature and the wall temperature remains 

below that necessary for nucleation, the process of heat transfer in single phase convective heat transfer 

to the liquid phase (Region A). At some point along the tube, the conditions adjacent to the wall are 

such that the formation of vapour from nucleation sites can occur. Initially, vapour formation takes place 

in the presence of subcooled liquid (Region B) and this heat transfer mechanism is known as subcooled

nucleate boiling.
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In the subcooled boiling region B, the wall temperature remains essentially constant a few degrees above 

the saturation temperature, the mean bulk fluid temperature is increasing to the saturation temperature. 

The amount by which the wall temperature exceeds the saturation temperature is known as degree of 

superheat and the difference between the saturation and local bulk fluid temperature is known as degree 

of subcooling.

The transition between regions B and C, the subcooled nucleate boiling region and the saturated 

nucleate boiling regions is clearly defined from the thermodynamic point of view. It is the point at which 

the liquid reaches the saturation temperature (x = 0). In the region C to D, the variable characterising the 

heat transfer, (the mechanism) is the thermodynamic mass quality, x, of the fluid.

Bubble-flow Regime Nucleate boiling begins from the section A onwards. Vapour bubbles start to 

form at the tube wall and are carried along with the liquid. The flow pattern obtained is called bubbly

flow (Region I). The dryness fraction of the fluid in this region is very low, less than 0.05.

Slug-flow Regime Further along the tube, there is an increase in the production rate of vapour bubbles 

which coalesce to form larger bubbles called slugs. The flow pattern is now called slug flow (Region II).

The dryness fraction in this region is still low, usually less than 0.1.

Annular-flow Regime Increased heating leads to further production of vapour. The volume of vapour 

relative to the liquid becomes large and the vapour begins to flow in a central core with the liquid flowing 

in an annulus around it. This flow is called annular flow (Region III). In this region, the liquid annulus 

gradually reduces in thickness along the length, becomes a film and eventually disappears. Vapour bubbles 

continue to be nucleated in the liquid at the tube wall over much of the annular flow region and join 

the vapour core at the liquid-vapour interface. The annular flow region exists over a large length during 

which the dryness fraction increases from approximately 0.1 to about 0.8 or 0.9.

In the later part of the annular flow region, the vapour core exerts a large shear force on the liquid 

film and causes liquid droplets to be entrained in the vapour. This is referred to as entrainment.

Mist-flow Regime At vapour qualities (dryness fractions) of 0.25 or more, the annular liquid film 

disappears resulting in a vapour flow with fine entrained liquid drops. This is characterized as mist flow (Region 

IV). The liquid drops gradually evaporate along the length and finally one obtains a single-phase vapour

flow at the section B with vapour quality of 100%. From this section onwards, the vapour is superheated.

It is of interest to study the variation of the heat transfer coefficient and the wall temperature along 

the length of the tube. Before the heat transfer begins, the temperature of the liquid in the single-phase 

region is the saturation temperature corresponding to the pressure of the liquid. The wall is also at the 

same temperature. In regions I, II, and III, the value of the heat-transfer coefficient increases along 

the length and is relatively high. On the other hand, in the region IV, the value is low. Consequently, 

because of the constant heat flux boundary condition, the temperature difference between the wall and 

the fluid is low up to the end of the annular flow region and increases suddenly when the transition 

occurs from annular flow to mist flow. Since the fluid temperature is constant at the saturation value, the 

wall temperature also suddenly increases as seen in Fig. 10.14. The transition point is also referred to as 

dry-out point and is of significance because of the jump in wall temperature. This condition of dry-out

often puts an effective limit on the amount of evaporation that can be allowed to take place in a tube 

at a particular value of heat flux. It is extremely important in the design of evaporators, steam boilers, 

nuclear reactors and other devices cooled by forced convection boiling.

At the end of the mist-flow region, in the single-phase vapour flow region, both the fluid and the wall 

temperature increase linearly with the length.
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10.10 ❏

For forced convection boiling in smooth tubes, Rosenhow and Griffith (1955) recommended that total 

heat flux should be computed by adding the nucleate pool-boiling heat flux to the forced convection 

effect calculated from the Dittus–Boelter equation but with the coefficient 0.023 replaced by 0.019. Thus,

or

= +

= +

total nucleate boiling forced convection

two-phase nucleate pool boiling forced convection

q q q

h h h (10.16)

When one finds the heat-transfer coefficient in forced convection, only the mass-flow rate of the liquid 

at the cross section should be considered.

Chen also assumed that the mechanisms of nucleate boiling and flow boiling were additive, but 

suggested that the heat transfer coefficients should be multiplied by parameters S and F before these are 

added. Then

= +two-phase nucleate pool boiling forced convectionh Sh F h (10.17)

where S is called the suppression factor (between 0 and 1) to account for the presence of the forced 

flow, and F is correction factor (greater than 1) to take care of the presence of nucleation and a film in 

the annular region.

Chen presented correlations for calculating the values of S and F, and suggested that the Forster–Zuber

correlation be used for calculating the heat transfer coefficient in nucleate pool boiling. Chen’s correlation 

is most commonly used.

For horizontal tubes, McAdams et al. suggest the following relation for low pressure boiling water:

= D < <3.96 22.253( ) (W/m ) for 0.2 0.7 MPaeq T P (10.18)

For higher pressures, Levy recommends the relation

= D < <4/3 3 2283.2 ( ) (W/m ) for 0.7 14 MPaeq P T P (10.19)

In these equations, the pressure P is in MPa and DT
e
 is in °C.

●

DT
e
 = (T

w
 – T )(°C).

Some of the simplest empirical correlations for water boiling on the submerged surfaces are presented in 

Table 10.5 for a quick estimate of the boiling-heat-transfer coefficient.

Table 10.5

Surface Heat flux q (kW/m2) Heat-transfer coef-

ficient h (W/m2 K)

Approximate range 

of DT
e
 (K)

Approximate range 

of h (W/m2 K)

Horizontal q < 16 1042(DT
e
)1/3 0–7.76 0–2060

16 < q < 240 5.56(DT
e
)3 7.32–14.4 2180–16 600

Vertical q < 3 537(DT
e
)1/7 0–4.51 0–670

3 < q < 63 7.96(DT
e
)3 4.41–9.43 680–6680
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To account for the effect of pressure, the heat-transfer coefficients estimated by using the above 

simplified relations may be modified by using the following empirical relation:

= 0.4
1 1( / )ph h P P (10.20)

where h
p
 = heat-transfer coefficient at some pressure P

h
1
 = heat-transfer coefficient at atmospheric pressure as obtained from Table 10.6

P = system pressure

P
1
 = standard atmospheric pressure 

For forced-convection local boiling inside vertical tubes, the following relation may be used:

= D ¥3 22.54( ) exp( /1.551) (W/m K)eh T P (10.21)

where DT
e
 = temperature difference between the surface and saturated liquid in K (or °C) and P is the 

pressure in MPa. This equation can be used over a pressure range of 5 to 170 atm.

10.11 ❏

Condensation is defined as the removal of heat from a system in such a manner that vapour is converted 

into liquid. When the temperature of a vapour is decreased below its saturation temperature, the vapour 

condenses. After coming into contact with a cool surface, the vapour’s latent heat is released, and heat 

is transferred to the surface, resulting in the formation of condensate. The condensate will accumulate on 

the horizontal surface, till the whole surface is covered by the liquid. On a vertical or inclined surface, 

however, the condensate will flow downwards along the surface under the influence of gravity.

10.12 ❏

Whenever a saturated vapour comes in contact with a 

surface at a lower temperature, condensation occurs.

Irrespective of the orientation of the surface (horizontal,

vertical, or inclined), the vapour can condense in either 

of the two ways: filmwise or dropwise. In filmwise 

condensation [Fig. 10.15(a)], the dominant mode, a 

thin continuous liquid film covers the entire condensing 

surface and the condensate flows off the surface under 

the action of gravity. This occurs when the surface is 

clean and uncontaminated, and the vapour is relatively 

free of impurities.

The second type of condensation, known as dropwise

condensation [Fig. 10.15(b)] is observed to occur when 

the surface is coated with a substance that inhibits wetting or is contaminated with oil or other fatty acids 

or is highly polished. In this case, individual drops are formed on the condensing surface. These drops 

grow in size and coalesce (combine with one another), as they roll down in some random fashion, to 

form larger ones, thus leaving the surface exposed for the formation of a new drop.

In the film-condensation process, the surface is covered by the film, which grows in thickness as it 

moves down the surface. The presence of a liquid film over the surface constitutes thermal resistance to 

T Tw < sat

Film

(a)

T Tw < sat

Drop

(b)

Modes of condensation: (a) Filmwise, and 

(b) Dropwise on a vertical surface
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heat transfer. In dropwise condensation, a significantly large part of the surface is directly exposed to the 

vapour. Of the two, higher condensation and heat-transfer rates are experienced in dropwise condensation. 

For this reason, many surface coatings and vapour additives like oleic acid have been used to promote 

and maintain dropwise condensation. There is no film barrier to heat transfer in dropwise condensation, 

and a portion of the cool surface is always in contact with the vapour without the insulating influence of 

the liquid layer. This accounts for higher heat-transfer coefficients (up to 290 kW/m2 K) associated with 

dropwise condensation which is certainly preferable for industrial applications. However, commercially, 

dropwise condensation is difficult to attain and maintain for long periods of time (even the promoters 

employed to prolong this mode 1ose their effectiveness in course of time). Hence, all condensing 

equipments are usually designed by assuming that film condensation will exist.

No matter which mode of condensation occurs (filmwise or dropwise), the resistance to heat flow 

between the vapour and the cool surface increases with flow direction. It is, therefore, advisable to use 

either short vertical surfaces or horizontal cylinders in situations involving film condensation.

Film condensation being more common and amenable to analysis than dropwise condensation on which 

very little literature is available, more attention will be focused on film-condensation. Table 10.6 brings 

out briefly the salient features of film and dropwise condensation.

Table 10.6

Film Condensation Dropwise Condensation

1.  In film condensation, the condensate wets the surface 

and forms a liquid film on the surface that slides 

down under the influence of gravity.

1.  In dropwise condensation, the condensed vapour 

forms countless droplets of varying diameters on the 

surface instead of a continuous film.

2.  Relatively less heat-transfer coefficients are 

associated with film condensation.

2.  Higher heat-transfer coefficients (about 5.10 times 

greater than those in film condensation) can be 

achieved.

3.  On a rusty or etched plate, the vapour is condensed 

in a continuous film over the entire wall

3.  With a polished surface, the condensate is formed 

in drops which rapidly grow in size (up to 3 mm in 

diameter) and roll down the surface.

4.  The condensate itself forms a film (layer) on the 

surface which imposes some extra thermal resistance.

4. Droplets provide very little thermal resistance.

5.  Practical condenser design assumes film 

condensation since the cost of non-wetting agents 

can outweigh the benefits from the increase in heat-

transfer coefficient.

5.  Suitable coatings and non-wetting agents like oleic 

acid are introduced into the vapour.

10.13 ❏

Nusselt had first proposed the fundamental analysis of condensation in 1916 applicable for vertical plates 

as well as vertical tubes. To illustrate this approach, let us consider Fig. 10.16. The film originates at the 

top of the vertical plate and flows down under the influence of gravity. The plate temperature is maintained 

at T
w
 while the vapour at the edge of the film (the liquid-vapour interface) is at the saturation temperature 

T
sat

(T
w

< T
sat

). The film thickness and the condensate mass flow rate is increased with increasing x

(positive direction of x measured downwards) because of continuous condensation. The flow is assumed 

laminar everywhere. The thickening is due almost entirely to the addition of condensing vapour and not 

to retardation of the fluid in the film. The streamlines in the film can thus be assumed vertical.
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Film condensation on an isothermal vertical plate

No heat can flow from the film towards the vapour as the surface of the film is essentially at the same 

temperature as the vapour. The entire heat transfer resulting from liberation of energy from the vapour 

condensing on the liquid film, is towards the wall. And this heat transfer is entirely by conduction because 

the stream lines are vertical. The temperature gradient in the film is thus constant assuming constant liquid 

thermal conductivity within the film.

10.13.1 ●

Consider a vertical flat plate of length (height) L with width b maintained at a constant temperature of 

T
w
. Vapour at temperature, T

sat
 condenses over the plate surface. To develop the expression for the average 

Nusselt number during the laminar-film condensation on the vertical surfaces, the following assumptions

are made:

The condensate flow is laminar and the fluid’s thermophysical properties are constant.

The vapour is pure, stationary and saturated, and the plate is at a constant temperature, T
w
.

There is no thermal resistance at the liquid-vapour interface which is at the saturation temperature, 

T
sat

.

The shear stress at the liquid-vapour interface is negligible.

The heat transfer across the film occurs only by conduction and thus the liquid temperature distri-

bution is linear.

Momentum transfer in the condensate film is negligible as the flow velocity associated with the 

liquid film is low. There is thus no acceleration of the fluid in the condensate layer. It follows that 

there is only a static balance of forces.

Only viscous shear, buoyancy and gravitational forces are assumed to act on the fluid.

Enthalpy changes associated with subcooling are negligible.
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Figure 10.3 depicts the temperature profile and velocity distribution at a position x below the top of 

the plate after invoking the above assumptions.

Velocity Distribution Consider the differential control volume of the fluid (dxdy) with width at a 

distance x from the top of the vertical plate. Neglecting pressure gradient in the vertical direction, the 

force balance on the control volume gives

(Weight, or gravitational force) = (Viscous (shear) force) + (Buoyancy force)

or

l l

l l

r d m r d

m r r d

- = + -

= - -

( ) ( ) ( )

( )( )

v

v

du
g y bdx bdx g y bdx

dy

du
g y

dy

where u is the liquid velocity in the x-direction.

It follows that

Integrating,

l

l

l

l

r r
d
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r r
d
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At the wall, because of no-slip condition for a real fluid, the boundary condition is as follows:

At y = 0, u = 0

Hence, C = 0

After rearranging, the velocity distribution is given by

r r d

m d d

È ˘- Ê ˆ Ê ˆ= -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

22( ) 1
( )

2

l v

l

g y y
u y (10.22)

Equation (10.22) gives the velocity profile, u (y), which is seen to be parabolic.

Clearly, the maximum flow velocity will be at the film surface and is obtained by setting y = d.

Then l l
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Mass-flow Rate The mass-flow rate of the condensate then, at any distance x from the top of the 

plate, is given by

or

l

l l

l

l l

l

r r d
r r d

m

r r r d

m

-
= =

-
=

2

3

( )
( ) ( )

3

( )

3

v
c av

v

g
m x A u b

gb
m (10.24)

Film Thickness Differentiating the above expression,

l l l l

l l

r r r d d r r r d d

m m

- -
= =

2 2( ) (3 ) ( )

3

v vgb d gb d
dm

where dm  is the incremental mass-flow rate of condensate added as the flow proceeds from x to (x + 

dx), and the film thickens from d to (d + dd ).

The heat-transfer rate, dQ , resulting from condensation of vapour must equal the incremental mass-

flow rate, dm  times the latent heat (enthalpy) of vaporization (or condensation) h
fg
, because the vapour 

is saturated and there is no subcooling. Thus,

l l

l

r r r d d

m

-
= = ◊

2( )v
fg fg

gb d
dQ dmh h (10.25)

This amount of heat which is transferred from the vapour during condensation should be equal to the 

heat transfer by conduction across the film to the wall which is given by the Fourier law:

l d

-
= sat( )

( ) wT T
dQ k bdx (10.26)

where (bdx) is the area of cross section of the control volume

Equating the two expressions for dQ , we have

or

l l l

l

l l

l l

r r r d d

d m

m
d d

r r r
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2
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d

gh

Integrating between the top surface (x = 0) down to x, we obtain

l l

l l

md

r r r

-
= +

-

4
sat( )

4 ( )

w

v fg

k T T x
C

gh

where C is a constant of integration and is equal to zero because of the boundary condition:

d = 0 at x = 0,

so that
l l

m
d

r r r

-È ˘= Í ˙-Î ˚

1/4

sat4 ( )

( )

w

v fg

k T T x

gh
(10.27)
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Local Heat-transfer Coefficient We also note that

l

l d d

-
= - = fi =sat

sat

( )
( )( ) ( ) w

x w x

T T k
dQ h bdx T T k bdx h

where h
x
 is the local heat-transfer coefficient.

Substituting the value of d, we get

l l l

l

r r r

m
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-Í ˙Î ˚

1/4
3
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( )
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x
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gk h
h

x T T
(10.28)

Both d(x) and h
x
 vary down the vertical wall. We 

recognize that the film thickness d(x) varies as x1/4 and h
x

is proportional to x–1/4. Figure 10.17 illustrates the variation 

of d(x) and h
x
 with x.

Average Heat-transfer Coefficient The average 

condensation heat-transfer coefficient 
L

h  can be obtained 

by integrating over the entire length of the plate, L.
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Thus, the average heat-transfer coefficient over the entire length of the vertical surface (tube or plate)

L is 4/3 times the local heat-transfer coefficient at x = L.

If the buoyancy force due to the displaced vapour were neglected, since r
v
 << r

l
 except near the 

critical point, then

l l

l

r

m

È ˘
Í ˙=

-Í ˙Î ˚

1/4
2 3

sat

0.943
( )

fg

L
w

gk h
h

L T T
(10.30)

A comparison of this theoretical result with the results of experiments has indicated that the measured 

heat-transfer coefficient is about 20% higher than that predicted by the theoretical analysis. McAdams 

recommends that the constant 0.943 in the above expression be multiplied by 1.2 and replaced by 1.13. 

and of film thickness for condensate 

in laminar film condensation along a 

vertical surface



Heat Transfer with Change in Phase 709

In that case,

l l l

l
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(10.31)

where the suffix l in the properties r, k, and m unambiguously shows that these values are for the liquid. 

This is more realistic in the undulating or wavy-laminar flow, i.e., 30 < Re
f

< 1800.

All the thermophysical properties in the equation for Lh  are to be evaluated at the mean film 

temperature, i.e., +sat

1
( )

2
wT T  while h

fg
 and r

v
 should be taken at the saturation temperature, T

sat
.

It must be remembered that the heat-transfer coefficient derived above for a vertical plate is also 

applicable for laminar film condensation on the outside or inside surface of a vertical tube, provided the 

condensate film thickness d is much smaller than the tube diameter, D (i.e., d << D). A vertical tube can 

be looked upon as a vertical plate folded about a vertical axis. However, this relation may not be used 

for inclined tubes.

Some recent refined analyses take into account a non-linear temperature profile in the film and an 

additional energy to cool the film below the saturation temperature (i.e., the effect of subcooling). Both 

the effects are taken care of if we replace h
fg
 with *

fgh  where

l
= + -*

sat0.68 ( )fg fg p wh h C T T (10.32)

where C
pl
 is the specific heat of the liquid, and (T

sat
 – T

w
) = (T

saturated vapour
 – T

surface
)

Since Jacob number,
l

-
= sat( )w

p
fg

T T
Ja C

h
, one can also write

= +* (1 0.68 )fg fgh h Ja

The Jacob number is a measure of the relative magnitude of the film subcooling.

Hence, the refined version of the correlation for the average heat-transfer coefficient can be expressed as

l 1

l

nr r r

m

È ˘-
Í ˙=

-Í ˙Î ˚

1/4
*

sat

( )
0.943

( )

fg
L

w

gh
h

L T T
(10.33)

where all properties are to be evaluated at the mean film temperature except h
fg
 and r

v
 which are at T

sat
.

While there have been many refinements and extensions of Nusselt’s analysis, the above expression is 

sufficiently accurate in most of the cases involving laminar film condensation.

The heat-transfer coefficient can also be expressed in terms of a dimensionless Nusselt number.
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This can be rearranged as
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l l l

l

n rpC

k
is Prandtl number, Pr

and
l

-sat( )p w

fg

C T T

h
is Jacob number, Ja

Hence, one can write

= [ / ]1/40.943L LNu Gr Pr Ja (10.35)

The relationship is valid as long as the condensate flow is laminar. This holds good if the value of 

the film Reynolds number ( m4 / lm ), is less than 1800.

Heat-transfer Rate The average heat-transfer rate and the heat flux can now be calculated from

= - = -sat sat( ) and ( )L w L wQ h A T T q h T T (10.36a)

The area, A is equal to (bL) for a plate of width b while that for a vertical cylinder of diameter D will 

be (pDL).

Also, the condensate mass-flow rate is

-
= = sat( )L w

fg fg

h T TQ
m

h h
(10.36b)

10.14 ❏

If a plate or cylindrical tube is inclined at an angle q with the vertical, the net effect of the above analysis 

is to replace the body (gravitational) force with its component parallel to the heat-transfer surface, as 

shown in Fig. (10.18).

Film condensation on an inclined plate
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Thus, q=¢ cosg g

And if this inclination is q ° with the horizontal,

Then q=¢ sing g

The average condensation heat-transfer coefficient, h  can be is now rewritten by simply substituting g ¢
in place of g.

It follows that
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where L is the length or height measured along the plate surface and q is the angle of tilt with the vertical.

10.15 ❏

The ratio of the momentum (inertia) forces to the viscous forces is determined by the Reynolds number 

of the condensate film. In film condensation on a vertical surface, the momentum forces increase as the 

falling film thickness and velocity increase. When these forces are much greater than the viscous (shear)

forces, ripples or waves appear on the cascading condensate film which becomes turbulent. This profoundly 

affects the heat-transfer characteristics through the condensate layer.

Since the film Reynolds number, Re
f
 is an indicator of the condensate flow conditions, it is often 

convenient to express the average convection coefficient Lh  directly in terms of the Reynolds number.

The Reynolds number of a falling film is defined as

r r

m m r m

Ê ˆ Ê ˆ= = =Á ˜ Á ˜Ë ¯ Ë ¯
4 4l h l c

f
l l l c l

D V A m m
Re

P A P
(10.38)

where D
h
 = hydraulic diameter (m)

A
c
 = cross-sectional area of the condensate flow film (m2)

P = wetted perimeter (m)

V = average flow velocity (m/s)

m = dynamic viscosity (kg/m s)

For a vertical plate of width b, P b=

and, for a vertical tube or cylinder of diameter D, P Dp=

For a horizontal cylinder of diameter D and length L, 2P L=

Hydraulic Diameter (D
h
) For a vertical plate,

d
d= = =

4 4( )
4c

h

A b
D

P b

For a vertical tube,
p d

d
p

= = =
4 4( )

4c
h

A D
D

P D

For a horizontal tube,
d

d= = =
4 4(2 )

4
2

c
h

A L
D

P L
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The transition from laminar to turbulent condensation takes 

place at the critical Reynolds number of approximately 1800. 

Thus, the criterion for laminar flow is

Re
f
 < 1800

Since the film Reynolds number is generally used to 

characterize the film flow, we can identify three regions of 

film condensation on a vertical surface based on its value. 

These regions (shown in Fig. 10.19) are the following:

Wave-free laminar (Re
f
£ 30), wavy-laminar (30 £ Re

f
£

1800) and Turbulent (Re
f
 > 1800).

We note that

Hence,

= = -

-
=

sat

sat

( ),

( )

fg w

w

fg

Q mh hA T T

hA T T
m

h

Then

p

m m p m m

- - -
= = = =sat sat sat4 ( ) 4 ( ) 4 ( )4

( )

( )

l l l l

L w w w
f

fg fg fg

h A T T h DL T T hL T Tm
Re

P Ph D h h

for a vertical tube (10.39)

m m

- -
= sat sat4 ( )( ) 4 ( )

or
l l

w w
f

fg fg

h bL T T h L T T
Re

bh h

( for a vertical or inclined plate) (10.40)

10.16 ❏

Local mass-flow rate, l l

l

r r r d

m

-
=

3( )

3

v gbm

Local film Reynolds number,

\

l l

l l

l

m m

m r r r d

m

= =

-
=

3

4 4

( )

4 3

f

f l v

m m
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Re b gb
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m
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r r r

È ˘
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f

v
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g

Local heat-transfer coefficient

l l l l

l

r r r

d m

È ˘-
= = Í ˙

Í ˙Î ˚

1/3
3

2

4 ( )

3

v

f

k gk
h
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Three regions of film condensation 

on a vertical surface.
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Average heat-transfer coefficient,

l l l l l l

l l

r r r r r r

m m
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The quantity on the left-hand side is dimensionless 
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ms
 and is known as condensation

number, Co.

\ -= 1/31.47 fCo Re (10.41)

Since
l
n2 1/3( / )g  has the unit of length, 

l

= chL
Co

k
 where characteristic length, l

nÊ ˆ
= Á ˜Ë ¯

1/3
2

g
cL

This can be called modified Nusselt number

Now, let us define a dimensionless number called Condensation number (Co), or modified Nusselt 

number as follows:

l

l l l

m

r r r

È ˘
= ◊Í ˙
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1/3
2

( )v

h
Co
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For simplicity, we assume: r
v
 << r

l
. Condensation number can then be simplified as

l l
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(10.42)

Laminar Flow (Wave-Free) (Re
f
£ 30)

l

l

-

-

Ê ˆ= Á ˜Ë ¯

=

1/3
1/3

2

1/3

1.47

1.47

f

f

g
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Co Re

where Re
f
 is the film Reynolds number at the bottom of the vertical surface (x = L).

Laminar-wavy Region (30 < Re
f
 < 1800) Kutateladz proposed a correction factor of 0.8 (Re

f
/ 4)0.11

to be multiplied to local heat-transfer coefficient to account for the rippling effect, and recommended 

the following correlation:

l

l l
m

È ˘- Ê ˆ= +Í ˙Á ˜Ë ¯Í ˙Î ˚
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1/3

sat
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4.81 w
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fg

Lk T T g
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(10.43)
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and
l

l

Ê ˆ= Á ˜- Ë ¯

1/3

1.22 21.08 5.2

f

f

Re k g
h

Re v
(10.44)

=
-1.221.08 5.2

f

f

Re
Co

Re
(10.45)

Turbulent Region (Re
f
 > 1800) In many practical applications, the vertical surface (plate or tube) may 

be long enough so that the condensate film becomes sufficiently thick to cause transition to turbulence 

which is characterised by Re
f

= 1800. For turbulent flow (i.e., Re
f
 > 1800), the average convective heat-

transfer coefficient is given by the following empirical correlation for a vertical plate after the onset of 

turbulence, as suggested by McAdams.

r

m

È ˘
= Í ˙

Í ˙Î ˚

1/3
2 3

0.4

2
0.0077 l

L f

l

gk
h Re (10.46)

Incorporating the effect of buoyancy force of the displaced vapour, the same expression becomes

l l l

l

r r r

m

È ˘-
= Í ˙

Í ˙Î ˚

1/3
3

0.4

2

( )
0.0077 v

L f

gk
h Re (10.47)

All physical properties are to be evaluated at the mean film temperature, i.e., (T
sat

 + T
w
)/2.

Labuntsov recommends the following correlation for turbulent film condensation valid for Prandtl numbers 

around unity:

l l

l

l l
m
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(10.49)
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f

f l

Re
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Re Pr
(10.50)

A universal correlation for both wavy and turbulent regimes is proposed by Chen et al. (1987) as follows:

l

l

l

n - -Ê ˆ
= = + ¥ ≥Á ˜Ë ¯

1/3
2

1/20.44 6 0.8 1.3[ 5.82 10 ] ( 30)
g

f f f

h
Co Re Re Pr Re

k
(10.51)

It may be observed that in the turbulent film condensation region, the condensation number depends 

also on the liquid Prandtl number, Pr
l
 apart from the film Reynolds number, Re

f
.

A vertical tube can be looked upon as a vertical plate folded about a vertical axis.

However, this relation may not be used for inclined tubes.
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10.17 ❏

In the case of laminar-film condensation of pure, saturated, and stationary vapour on the outside of a 

horizontal tube or cylinder as illustrated in Fig. 10.20, the condensate film forms at the top of the cylinder 

and flows around it, thickening as it grows symmetrically and the angle q measured from the vertical),

increases. At any polar location q, where q = x/(D/2), the problem can be analysed by representing the 

condensate film as that along a vertical surface inclined at an angle 
p

f f q
Ê ˆ= -Á ˜Ë ¯2

 with the horizontal. 

Condensation takes place on a bank of horizontal tubes, in shell-and-tube heat exchangers commonly 

used in power plants and the process industries. Figure 10.20 depicts laminar-film condensation on a 

single horizontal tube.

Film condensation on a single horizontal tube with a continuous sheet of condensate

For the average heat-transfer coefficient for laminar-film condensation on the outside of a single 

horizontal tube, Nusselt obtained the following relation by proceeding in a manner similar to that followed 

for the vertical plate. The average heat-transfer coefficient is given by

l l

l

r

m

È ˘
Í ˙=

-Í ˙Î ˚

1/4
2 3

sat

0.729
( )

fg

D
w

gk h
h

D T T
    (laminar flow) (10.52)

where D is the outside diameter of the tube.

This result can also be expressed in terms of the film Reynolds number and condensation number as 

follows:

-Ê ˆ
= =Á ˜Ë ¯

1/3
2

1/31.51( )l
f

l

vh
Co Re

k g
(10.53)

where Re
f
 is the film Reynolds number at the bottom of the tube (q = 180°).

This equation is also valid for filmwise condensation on the inside of a horizontal tube provided the 

film does not separate and the tube is not very long.

If the vapour density is non-negligible, r
2
l  can be replaced by r

l
(r

l
 – r

v
) and h

fg
 can be replaced by, 

*
fgh  for better accuracy as in the case of vertical surfaces.
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Thus, we have

1 l

l

r r r

m

È ˘-
Í ˙=

-Í ˙Î ˚

1/4
3

sat

( )
0.729

( )

v fg

D
w

gk h
h

D T T
    (laminar flow) (10.54)

All physical properties should be evaluated at the mean film temperature, i.e., (T
sat

 + T
w
)/2 except h

fg

and C
pl
 which should be taken at the saturation temperature (or saturation pressure).

Comparing the relative merits of horizontal and vertical tubes, we have, as the ratio of the respective 

Nusselt’s numbers:

Ê ˆ Ê ˆ Ê ˆ= = = =Á ˜ Á ˜Á ˜ Ë ¯ Ë ¯Ë ¯

1/4 1/43
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(10.55)

If =D Lh h  then
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4
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2.8
0.773

L

D
(10.56)

Thus, when (L/D) = 2.8, the values of Dh  and Lh  for the horizontal and vertical surfaces are the same.

Interestingly, if for example, L = 1 m and D = 20 mm, i.e., (L/D) = 50, it follows that Dh  = 2.05 

Lh . Thus, almost twice as much steam will be condensed if a vertical tube is arranged in a horizontal 

position. In commercial condensers, the ratio (L/D) is usually in the range of 50 to 100 or even more. 

This justifies the preference for a horizontal surface as against a vertical surface. The higher condensing 

capacity of a horizontal tube is due to the fact that much thinner film forms in the horizontal position. 

Note that the condensate film on a single horizontal tube travels only a distance of (pD/2) before it falls 

off the surface at the bottom of the tube.

Condensation on a single horizontal tube seldom changes into 

turbulent flow. Hence, Eq. (10.54) holds good for all practical 

purposes.

Laminar-Film Condensation on a Sphere The following 

correlation is recommended for laminar-film condensation on the 

outer surface of a sphere (Fig. 10.21):

l l l
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sat

( )
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( )

v fg

D
w

gh k
h

D T T
(10.57)

Note that the constant 0.729 for a horizontal tube is replaced with 

the constant 0.826 for a sphere.

10.18 ❏

Most commercial condensers condense steam on a huge bundle of horizontal tubes, with condensate 

dripping from one tube to the next. Condenser design usually involves horizontal tubes arranged in a 

vertical tier or bank as illustrated in Fig. 10.22. In such a case, gravity controls the condensate run-off 

Film condensation on a 

sphere
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from the bottom of one tube onto the top of the tube below. If it is assumed that the drainage from one 

horizontal tube flows smoothly onto the next tube below, then for a vertical tier of N tubes, each of 

diameter D, the average condensation film coefficient, Dh  is obtained by replacing D by (ND) in Eq. 

(10.54). Thus, for a vertical tier of N horizontal tubes, the average heat-transfer coefficient is given by

l l

l

r r r

m

È ˘-
Í ˙=

-Í ˙Î ˚

1/4
3 *

,

sat

( )
0.729
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v l fg
D N

w

gk h
h

ND T T
(10.58)

or =, 1/4

1
[ ]D N Dh h

N

Here again, the Reynolds number must be checked for laminar flow, i.e., Re
f
 < 1800.

The heat-transfer rate is calculated from

p= -, total sat( )( )D N wQ h N DL T T (10.59)

where N
total

 is the total number of tubes, and (N
total
pDL) is the total heat-transfer surface area.

If the tubes are arranged in a rectangular array with N rows and M columns then N
total

 = M ¥ N. In 

the case of square matrix, N
total

 = N2.

The expression for ,D Nh  in a vertical bank of horizontal tubes given above presumes that the condensate 

drips from the top tube to the next tube below smoothly and completely. Experiments however reveal that 

the value of ,D Nh  based on the above analysis yields conservative results. Actual heat-transfer coefficients 

(and, hence, the condensate flow rates) are greater because of the fact that when condensate drips from 

one tube to the other some splashing does occur between the tubes resulting in smaller film thicknesses, 

less thermal resistance and large quantity of condensate. Besides, some condensation occurs on the sheets 

or condensate streams between tubes.

According to Chen, for N horizontal tubes stacked vertically, the expression is

( )
l l

l

l

r r r

m
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gk h
h CT

ND T T

CT N C T T h

(10.60)

where

If the parameter CT  is less than 2, and Pr
l
 > 1, the agreement with experimental results is found to 

be satisfactory.

For the case of a vertical bank of N horizontal tubes, the ratio of the average heat-transfer coefficient 

for N tubes ,( )D Nh  to that for the top tube 1( )h  is given by k
ern

 as

-= 1/6

1

Nh N
h

(10.61)

The ratio of the average heat-transfer coefficient for a tube in the nth row to that for a tube in the first

row is expressed as

= - -5/6 5/6

1

( 1)nh n n
h

(10.62)

where nh  is the average heat-transfer coefficient in the nth row and 1h  that for the topmost row in the bank.
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While Eq. (10.27) is valid for laminar-film 

condensation (Re
f
 < 1800), transition to turbulent mode 

may be possible at the bottom tubes of a vertical tier of 

horizontal tubes. The film Reynolds number, 
m
=

4
f

l

m
Re

P

, where m  is the condensate mass-flow rate at the lowest 

part of the tube bank and P, the wetted perimeter, for 

horizontal tubes, each of length L arranged in a vertical 

bank, is given by P = 2L.

Most condensers use horizontal tube bundles through 

which cold water flows while the vapour condenses 

outside. Generally the tubes are staggered vertically to 

impede too great a build-up of film on the lower tubes 

as the liquid drips off the upper tubes.

Staggering the condenser tube columns illustrated in 

Fig. 10.22 has a distinct advantage because it decreases 

the proportion of the tube covered with condensate from 

the tube above.

The heat-transfer coefficient depends on the number of rows starting from the top. The ratio 1( / )nh h

is plotted against the number of rows in Fig. 10.23 for both in-line and staggered banks where h
n
 is the 

heat-transfer coefficient for the nth row and h
1
, for the top (first) row.

an in-line bank and a staggered bank of tubes

10.19 ❏

The vapour outside the condensate film was so far assumed to be stationary, i.e., the condensation process 

was characterized by natural convection. When condensing vapour is forcibly pumped over a horizontal 

Film condensation on horizontal tubes 

(cylinders) with dripping condensate: (a) 

a vertical bank of aligned (in-line) tubes, 

and (b) a bank of tubes in staggered 

arrangement
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tube (cylinder) of diameter D with a free-stream velocity u , the following correlation (Shekriladze and 

Gomelauri, 1996) is recommended:

2

mÈ ˘Ï ¸Ô ÔÍ ˙= + + <Ì ˝Í ˙-Ô ÔÓ ˛Î ˚

1/2
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fgD
D D

w

gh Dh D
Re valid Re

k u k T T

l

l l

(10.63)

where
l l
r m= /DRe u D

10.20 ❏  

When saturated vapour condenses on a cool solid surface, the heat-transfer process is essentially one 

of mass transfer from vapour to liquid and the simultaneous release of latent heat of condensation. The 

mechanism of heat transfer in condensation is however qualitatively different when the condensing vapour 

is in a superheated state. Unlike the saturated vapour, the superheated vapour is not in direct contact with 

the condensing film. First, it has to be cooled to be condensed. The temperature falls gradually in the 

intermediate layer between the superheated vapour and the liquid film.

This intermediate layer acts as a boundary layer. Condensation takes place only at the interface between 

the intermediate layer and the liquid film. For film condensation of superheated vapour depends on the 

degree of superheat, i.e., (T
sup

 – T
sat

) seldom exceeds that for the saturated vapour at the same pressure. 

The temperature profile from the superheated vapour to the solid surface is depicted in Fig. 10.24.

In this case, the amount of heat liberated per unit 

mass of vapour is

= + -¢
sup sup sat

latent heat enthalpy of superheat

( )fg fg ph h C T T (10.64)

where 
suppC  and T

sup
 are the specific heat and 

temperature of the superheated vapour, respectively. 

If we assume that the liquid-vapour interface is at the 

saturation temperature then Eq. (10.10) holds good 

in this case too except that h
fg
 needs to be replaced 

by [ + -
sup sup sat( )fg ph C T T ] . Thus for stationary 

superheated vapour condensing on an isothermal 

vertical plate or tube,
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(10.65)

Similarly, for a superheated vapour condensing on a horizontal tube,

l l
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The heat-transfer rate is

= -sat( )L wQ h A T T (10.66)

Temperature profile in condensation of 

superheated vapour on a vertical surface
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and the condensate mass-flow rate is

=
+ -

sup sup sat[ ( )]fg p

Q
m

h C T T
(10.67)

The ratio of heat-transfer coefficients for superheated vapour to that with saturated vapour is

+ -È ˘
= Í ˙
Í ˙Î ˚

1/4

sup sup sup sat

sat

( )fg p

fg

h h C T T

h h
(10.68)

Depending on the degree of superheat, there is usually a slight improvement in condensation heat-

transfer coefficient for liquid non-metals. Of course, condensation is possible only when the temperature 

of the cold surface is below the saturation temperature.

In most of the situations in engineering practice, the contribution of enthalpy of superheat is usually 

very small as compared to the latent enthalpy of condensation.

For instance, let us consider superheated steam at the atmospheric pressure (T
sat

 = 100°C) and 110°C 

temperature. The enthalpy of superheat ª 2.1 (110 – 100) = 21 kJ/kg. This is far too small in comparison 

with h
fg
 which is equal to 2257 kJ/kg at 1 atm (not even 1 percent of the latent heat). In condensing steam 

with 100°C superheat, the rate of heat transfer was experimentally found to be only 3 percent higher than 

that for saturated steam at the same pressure and with the same wall temperature.

10.21 ❏

A significant decrease in the condensation heat transfer coefficient results from the presence of very small 

amounts of non-condensable gas. In most condensing equipment, such as power plant steam condensers, 

provision is, therefore, made to bleed off non-condensable gases that leak into the system. For instance, 

the average condensation-film coefficient for saturated steam condensing at 1 atm is reduced by as much 

as 50% in the presence of just 1% (by mass) of air. The non-condensable gas envelops the cooling surface 

and can only contribute to increased thermal resistance, thereby inhibiting or impeding the heat transfer. 

Furthermore, when a vapour containing non-condensable inert gas condenses, the non-condensable gas 

is left at the surface and the incoming condensable vapour has to diffuse through this body of vapour-

gas mixture collected in the proximity of the condensate surface before it can reach the cool surface to 

condense. If high heat-transfer rates are aimed at, it is a sound suggestion to make provision at the design 

stage itself to vent the non-condensable gases, accumulating inside the condenser.

10.22 ❏

For forced condensation inside horizontal tubes (Fig. 10.25) at low vapour velocities valid for Reynolds 

number, Re
v
 = (r

v
u

v
D/m

v
)

inlet
 < 3.5 ¥ 104, Chato (1962) recommends the following correlation:
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Condensate flow in a horizontal tube with (a) low vapour velocities, and (b) large vapour velocities

where ∫ + -¢ sat

3
( )

8
fg fg pl wh h C T T , D is the inside diameter of the tube and Re

v
 the Reynolds number 

of the vapour is to be evaluated at the tube inlet conditions using the internal tube diameter as the 

characteristic length.

10.23 ❏

In dropwise condensation, as stated earlier, the vapour condenses into small liquid droplets of various 

sizes which fall down the surface in random fashion. The drops form in cracks and pits on the surface, 

grow in size, break away from the surface, knock off other droplets and eventually run off the surface, 

without forming a film, under the influence of gravity.

For dropwise condensation of steam on copper surfaces, the correlations to be used are given by

+ < <¸
= ˝ >˛

sat sat
dropwise

sat

511 04 2044 22°C 100°C

100°C255 310

T T
h

T

(10.70)

where T
sat

 is in °C and the heat-transfer coefficient h
dropwise

 is in W/m2 °C or its equivalent w/m2 K.

Illustrative Examples

(A) Nucleate Boiling and Peak Heat Flux

 A tungsten wire immersed horizontally in a water bath at atmospheric pressure 

is heated electrically with a steady-state applied voltage drop of 15.8 V and a current of 53.7 A. The 

wire has a radius of 0.5 mm and is 300 mm long. Determine (a) the heat flux, and (b) the wire surface 

temperature if the boiling heat-transfer coefficient is estimated to be 45 kW/m2 K.

Solution

Known Tungsten wire, electrically heated is submerged in water at 1 atm.

Find (a) Heat flux, q [W/m2], (b) Wire-surface temperature, T
w
 [°C].

Illustrative Examples
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Tungsten wire
= 0.5 mm
= 300 mm

r

L

water,
1 atm

Q&

¸
˝
˛

V

I

= 15.8 V
= 53.7 A

Schematic

Assumptions (1) Steady state prevails. (2) Negligible heat loss from the heater surface.

Analysis (a) Steady-state heat flux,

p p - -

-

Ê ˆ= = = Á ˜¥ ¥ Ë ¯

= =
¥

3 3 3

6

(15.8)(53.7) 1 kW

2 2 (0.5 10 m)(300 10 m) 10 W

848.46

9.4248 10

s

Q VI
q

A rL

2900.24 kW/m (Ans.) (a)

(b) Also, the heat-transfer rate is

= Ds eQ hA T

 The excess temperature,

D = - = = =
2

sat 2

900.24 kW/m

45 kW/m K
e w

s

Q q
T T T

hA h

 Hence, the wire-surface temperature is

T
w
 = T

sat
 + DT

e
 = 100 + 20 = 120°C  (Ans.) (b)

 Estimate the critical heat flux for boiling water at 1 atm on the moon’s surface, 

where the gravitational acceleration is one sixth that on the earth.

Properties: Saturated water, 1 atm (T
sat

 = 100°C):

r
v
 = 0.5978 kg/m3 r

l
 = 957.9 kg/m3

h
fg
 = 2257 kJ/kg s = 0.0589 N/m

Solution

Known Boiling water at 1 atm on the moon where the gravitational field is 1/6 th that of the earth.

Find q
max

(W/m2).

Assumptions (1) Nucleate pool boiling.

Analysis Critical heat flux, on the moon at 1 atm,

l
sr r r= -2 1/4

max 0.149 [ ( )]fg v vq h g

 Here = ¥ 21
9.81 m/s

6
g

 Hence, 
È ˘= ¥ ¥ -Í ˙Î ˚

1/4
3 2

max

9.81
0.149(2257 10 ) 0.0589(0.5978) (957.9 0.5978)

6
q

    = ¥ =3 2805.7 10 W/m 2805.7 kW/m (Ans.)
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 n-butyl alcohol is to be boiled at atmospheric pressure on a 30 cm diameter 

horizontal copper heating plate. (a) Determine the critical heat flux that can be attained in the nucleate 

pool-boiling regime and the corresponding heater surface temperature. (b) Also calculate the minimum 

heat flux. (c) If the surface temperature is 130°C, find the rate of evaporation.

Properties of n-butyl alcohol at T
sat @ 1 atm

 = 117.5°C:

s = 0.0183 N/m h
fg
 = 591.5 kJ/kg

r
l
 = 737 kg/m3 r

v
 = 2.3 kg/m3

m
l
 = 0.39 ¥ 10–3 kg/ms Pr = 6.9

n = 1.7 C
sf
 = 0.00305

C
pl
 = 2.876 kJ/kg K

Solution

Known Nucleate pool boiling on a copper 

heater surface in n-butyl alcohol.

Find (a) Maximum heat flux and 

corresponding heater surface 

temperature. (b) Minimum heat flux.

Assumptions (1) Polished copper surface. (2) 

Nucleate boiling regime.

Analysis The dimensionless parameter is

l
r r

s

-È ˘= Í ˙Î ˚

-È ˘= =Í ˙Î ˚

1/2

*

1/2

( )
where = = 0.3 m

9.81(737 2.3)
0.3 188.27

0.0183

vg
L L L D

 As L* > 27, C
cr
 = 0.149

 Hence, the critical heat flux is

s r r r= -

= ¥ ¥ ¥ -

= ¥ =

2 1/4
nucleate,max

3 2 1/4

3 2

0.149 [ ( )]

0.149(591.5 10 )[0.0183 9.81 (2.3) (737 2.3)]

453 10 W/m

fg v l vq h g

2453 kW/m  (Ans.) (a)

 But 
r r

m
s

-È ˘-È ˘
= Í ˙Í ˙Î ˚ Í ˙Î ˚

-È ˘= ¥ ¥ ¥ Í ˙Î ˚

-È ˘
¥ Í ˙¥ ¥Î ˚

= - ¥

31/2
sat

nucleate

1/2
3 3

3

sat

1.7

3
sat

( )( )

9.81(737 2.3)
(0.39 10 )(591.5 10 )

0.0183

2.876( T )

0.00305 591.5 (6.9)

( ) 30.914

pl wv
fg n

sf fg

w

w

C T Tg
q h

C h Pr

T

T T

l

l

l

Copper heating plate
= 30 cmD

q

n-butyl alcohol,
1 atm

Schematic
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\ Excess temperature,

È ˘D = - = = ∞Í ˙Î ˚

1/3

sat

453000
24.47 C

30.914
e wT T T

 Hence, the heater surface temperature is

= + = 141.97°C117.50 24.47wT (Ans.) (a)

 Minimum heat flux is

l

l

s r r
r

r r

-È ˘= Í ˙+Î ˚

¥ ¥ -È ˘= ¥ ¥ ¥ Í ˙+Î ˚

= ¥ =

1/4

min 2

1/4

2

3 2

( )
0.09

( )

0.0183 9.81 (737 2.3)
0.09 2.3 591500

(737 2.3)

15.3 10 W/m

v
v fg

v

g
q h

215.3 kW/m  (Ans.) (b)

 This is 2.6% of the peak heat flux.

 For excess temperature,

D = - = - =sat 130 117.5 12.5°Ce wT T T

 The heat flux can be evaluated as follows

\

= D =

= ¥ = ¥ =

3

3 3 2 2

(const)( ) where constant 30.914

30.914 (12.5) 60.4 10 W/m 60.4 kW/m

eq T

q

 Heat-transfer rate is

p pÊ ˆ Ê ˆ= = ¥ ¥ =Á ˜ Á ˜Ë ¯ Ë ¯

2
3 2(60.4 10 ) 0.3

4 4

D
Q q 4268 W

 And, the rate of evaporation is

= = ¥ =
4268

3600 . /
591500fg

Q
m

h
26 0 kg h (Ans.) (c)

 Copper tubes 25 mm in diameter and 75 cm long are to be employed for boiling 

saturated water at 1 atm. If the tubes are to be operated at three-fourth of the critical heat flux (CHF), find 

the number of tubes required to provide an evaporation rate of 850 kg/h. What is the surface temperature 

of the tubes under these conditions?

Solution

Known Copper tubes in boiling water at 1 atm operating at 3/4th

of the CHF.

Find Number of tubes for evapm  = 850 kg/h. Tube surface 

temperature, T
w
(°C).

Assumptions (1) Steady-state conditions. (2) Water exposed to 1 atm 

and uniform temperature at 100°C.

Properties Saturated water at 100°C (T
sat

 at 1 atm):

r
l
 = 957.9 kg/m3 h

fg
 = 2257 kJ/kg

Saturated water
Tsat = 100 °C

Tubes
Ts = ?

mevap

.
Schematic
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C
pl
 = 4.217 kJ/kg K m

l
 = 0.282 ¥ 10–3 kg/m s

Pr
l
 = 1.75 s = 0.0589 N/m

r
v
 = 0.6 kg/m3

Analysis Since q < q
max

, i.e., CHF, nucleate boiling is indicated.

 Heat flux, nucleate

3

4
q = ¥  Critical Heat Flux

= (0.75) (1.26) MW/m2 = 0.945 ¥ 106 W/m2

 If N is the number of tubes required,

\

p

p

=

¥
=

¥ ¥ ¥

nucleate

3

6 2

( )( )( ) ( )( )

(850 kg/h)(1h/3600s)(2257 10 J/kg)

(0.945 10 W/m )( 0.025 m 0.75 m)

fgq DL N m h

N

= 9.6 @ 10 (Ans.)

 The tube-surface temperature can be determined by using the Roshsenow correlation:

1/3

sat
( )

n
sf fg w

w
p fg

C h Pr q
T T

C h g n

s

m r r

È ˘
- = Í ˙-Í ˙Î ˚l

l

l l

 For polished copper-water combination, C
sf
 = 0.013 and n = 1.0 for water.

 Substitution of relevant numerical values, one has

-

¥
- =

È ˘¥
¥ Í ˙

¥ ¥ -Í ˙Î ˚
=

3

sat

1/3
6 2

3 3 2 3

(0.013)(2257 10 J/kg)(1.75)

(4217 J/kgK)

(0.945 10 W/m ) 0.0589 N/m

(0.282 10 kg/m s)(2257 10 J/kg) (9.81 m/s )(957.9 0.6)kg/m

wT T

18.9°C

 Hence, the tube-surface temperature,

T
w
 = T

sat
+ 18.9 = 100 + 18.9 = 118.9°C (Ans.)

 Water at atmospheric pressure boils in a stainless steel kitchen pan with an excess 

temperature of 8°C. (a) Estimate the heat flux if water were to be boiled in a pressure cooker at a pressure 

of 2.0 bar. (b) If the excess temperature were to be increased to 14°C at 1 atm pressure, what would be 

the heat flux? Also find the percentage change in the boiling heat flux in both cases.

Solution

Known Boiling of water in a kitchen pan at 1 atm and surface temperature 7°C above the saturation 

temperature.

Find (a) q with P = 2 bar, DT
e
 = 8°C, (b) q with, P = 1 atm, DT

e
 = 14°C.

Assumptions (1) Steady operating conditions. (2) Constant properties.

Analysis (a) Anticipating nucleate boiling, for a horizontal surface we use the simplified relation: h

= 5.56 (DT
e
)3 = 5.56 (8)3 = 2846.7 W/m2 K

 Heat flux = 2 2(2846.7 W/m K)(8 C or K) 22.77 kW/meh TD = ∞ =
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Heat flux

(a) = 1 atm, = 2 bar

= – = 8 °C

(b) = = 1 atm

= 14 °C

P P

T T T

P P

t

1

sat

1

D e w

eD

*

*

Water

 Since the heat flux so calculated lies between the applicable range of 16 < q < 240 W/m2,

the empirical relation used was correct.

 When the pressure is increased to 2 bar,

0.4 0.4
2

1
1

2 bar
2846.7 W/m K

1.01325 bar
p

P
h h

P

Ê ˆ È ˘= = Í ˙Á ˜Ë ¯ Î ˚

   = 3736.5 W/m2 K

 And the heat flux = (3736.5 W/m2 K) (8 K) = 29.9 kW/m2

 Percentage increase in the heat flux = [(29.9 – 22.77) / 22.77] (100) = 27% (Ans.) (a)

(b) If P* = 1 atm and DT
e
 = 14°C then

h* = 5.56 (14)3 = 15256.4 W/m2 K

 and, the heat flux = (15256.4) (14) (10–3) = 213.6 kW/m2

 Percentage increase = [(213.6 – 22.77) / 22.77)] (100) = 838 % (Ans.) (b)

(B) Film Boiling

 A horizontal, heated aluminium cylinder (emissivity e = 0.45) of 25 mm diameter 

and 25 cm long at 500°C is immersed in a liquid nitrogen bath at –196°C. Neglecting end effects, 

determine (a) the initial heat-transfer rate, and (b) the initial heat flux.

Properties: Liquid nitrogen at 1 atm, –196°C:

h
fg
 = 201 kJ/kg r

l
 = 800 kg/m3

Nitrogen vapour at film temperature of 152°C and 1 atm:

r
v
 = 0.8034 kg/m3 k

v
 = 0.0343 W/m°C

C
pv

 = 1.043 kJ/kg°C m
v
 = 2.308 ¥ 10–5 kg/m s

Solution

Known A horizontal aluminium cylinder heated to 500°C is immersed in a liquid nitrogen bath.

Find Initial rate of heat transfer.

Assumptions (1) Steady operating conditions prevail. (2) Constant properties. (3) Heat transfer from the 

end surfaces is neglected.

Analysis Excess temperature, T
w
 – T

sat
 = 500 – (–196) = 696°C. Clearly, with such a large temperature 

difference, stable film boiling will occur.
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Œ = 0.45

D = 25 mm

Liquid nitrogen
= –196 °C

(

T

r = 900 kg/m

= 201 kJ/kg)

3

h

sat

1

fg

Cylinder
T = 500 °Cw

L = 25 cm

Schematic

Film temperature,

sat

sat

1 1
( ) (500 ( 196)) 152°C

2 2

0.4 ( ) 201 (0.4 1.043 696) 491.37 kJ/kg
v

f w

fg fg p w

T T T

h h C T T

= + = + - =

= + - = + ¥ ¥ =¢

For a horizontal cylinder, the film boiling heat-transfer coefficient

r r r

m

-

È ˘- ¢
Í ˙=

-Í ˙Î ˚

-

¥
=

¥ ∞
=

1/4
3

sat

3 3 2

3

5

( )
0.62

( )

[0.8034 kg/m (800 0.8034)kg/m (9.81 m /s )

(0.0343 W/m °C)(491.37 10 J /kg)]
0.62

[(2.308 10 kg/m s)(0.025 m)(696 C)]

82.33 W/m2°C

v v v fg

c
v w

gk h
h

D T T

l

Radiation heat-transfer coefficient is

2 2
sat sat

8 2 4

2 2 2

( )( )

(5.67 10 W/m K )(0.45)(273.15 500) (273.15 196)K

[(273.15 500) (273.15 196) K] 13.1 W/m °C

r w wh T T T Tse

-

= - +

= ¥ + + -

+ + - =

Since h
r
 < h

c
, the overall heat-transfer coefficient is

3 3
82.33 13.1 /

4 4
c rh h h= + = + ¥ = 292.2 W m C∞

Initial heat-transfer rate is

p= - = ¥ ¥ ∞

=

2
sat( ) (92.2 W/m °C)( 0.025 m 0.25 m)(696 C)s wQ hA T T

1260 W (Ans.) (a)

Initial heat flux is

2(92.2 W/m °C)(696 C) /
s

Q
q

A
= = ∞ = 264170 W m (Ans.) (b)
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(C) Forced Convection Boiling

 Saturated water at 1 atm flows through a 15 mm diameter smooth brass tube 

where the wall is maintained at 110°C. The mean flow velocity of water is 2 m/s. Determine the heat-

transfer rate per unit length of the tube.

Solution

Known Forced convection and nucleate boiling processes occur in a smooth tube with specified 

water velocity and tube wall temperature.

Find / (W/m).Q L

Saturated water
100 °C

Brass tube
D = 15 mm

T = 110 °Cw

V

T

= 2 m/s

= 100°Cb

Assumptions (1) Fully developed flow. (2) Nucleate boiling conditions prevail on the inner wall of the 

tube. (3) Forced convection and boiling effects can be separately determined.

Properties Saturated water (T
sat

 = 100°C):

r

r

m

s

-

= =

= =

= ¥ =

= =

= =

3

3

3

0.679 W/m K 0.5978 kg/m

957.9 kg/m 2257 kJ/kg

0.282 10 kg/m s 1.75

4.217 kJ/kgK 0.0589 N/m

0.006 1.0

v

fg

pl

sf

k

h

Pr

C

C n

l

l

l l

Analysis The heat-transfer rate comprises two parts: forced convection and nucleate boiling. That is,

conv boiling conv boiling[ ]Q Q Q DL q qp= + = +

 Forced convection:

 Reynolds number,

3

957.9(2.0)(0.015)
101904 ( 2300)

0.282 10

VD
Re

r

m -= = = >
¥

 Using Dittus–Boelter correlation:

0.8 0.4 0.8 0.40.023( ) ( ) 0.023(101904) (1.75) 292.08Nu Re Pr= = =

 Hence, conv

0.679
(292.08)

0.015

k
h Nu

D

Ê ˆ= = Á ˜Ë ¯
l  = 13 221 W/m2 K

 Heat flux,

q
conv

 = h
conv

(T
w
 – T

b
) = 13 221 (110 – 100) = 132.21 ¥ 103 W/m2
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 Nucleate boiling:

3

sat

nucleate

3
3 3

6 2

( )( )

9.81(957.9 0.5978) 4.217(110 100)
(0.282 10 )(2257 10 )

0.0589 (0.006)(2257)(1.75)

1.432 10 W/m

pl wv
l fg n

sf fg

C T Tg
q h

C h Pr

r r
m

s

-

È ˘ -È ˘-
= ¥Í ˙ Í ˙

Î ˚ Í ˙Î ˚

È ˘- -È ˘= ¥ ¥ ¥Í ˙ Í ˙Î ˚ Î ˚

= ¥

l

l

 Therefore, heat rate per unit tube length is

3 6
conv boiling[ ] (0.015)[(132.21 10 ) (1.432 10 )](W/m)

Q
D q q

L
p p= + = ¥ + ¥

= 73.7 kW/m (Ans.)

(P) Condensation

 Show that the condensation Reynolds number for laminar-film condensation on 

a vertical plate can be expressed as

r r r

m

È ˘- -
= Í ˙

Í ˙Î ˚

1/4
3 3 3

l l v l w
f 5 3

l fg

( )g k L (T T )
Re 3.771

h

sat

Solution

Known Laminar-film condensation on a vertical plate.

Find Expression for film Reynolds number.

Condensate m
.

Saturated steam
Tsat

Tw

b

L

d

Schematic

Assumptions (1) Steady operating conditions are established. (2) The condensate flow is laminar. (3) 

The plate is isothermal.

Analysis Film Reynolds number,

4 4
f

m m
Re

P bm m
= =

l l
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 (where perimeter P = width b for a vertical plate)

 Mass-flow rate of condensation,

3( )

3

v bgm
r r r d

m

-
= l l

l

 where film thickness,
1/4

sat4 ( )

( )

w

v fg

k L T T

gh

m
d

r r r

-È ˘= Í ˙-Î ˚

l l

l l

 Substituting for m , one has

3/4

sat

1/41/4 1/43 3 3
3/4 sat

3 4

1/4
7/4 3 3 3

sat

5 3

4 ( ) 4 ( ) 1

3 ( )

( ) ( )4 1
(4)

3

( ) ( )(4)

3

v l w
f

v fg

v w

fg

l v w

fg

bg k L T T
Re

gh b

g k L T T

h

gk L T T

h

r r r m

m r r r m

r r r

m m

r r r

m

- -È ˘= ◊Í ˙-Î ˚

È ˘- -È ˘ Ê ˆ= ¥ ¥ ¥Í ˙Í ˙ Á ˜Ë ¯Î ˚ Í ˙Î ˚

È ˘- -
= Í ˙

Í ˙Î ˚

l l l

l l l l

l l l

l l

l l

l

 or 
( )È ˘- -

= Í ˙
Í ˙Î ˚

1/4
3 3 3

sat

5 3

( )
3.771 l l v l w

f

l fg

g k L T T
Re

h

r r r
m

(Ans.)

 Hence, proved.

 A square pan with its bottom surface maintained at 77°C is exposed to steam at 

100°C and 1 atm. The pan has a lip all around so that the condensate formed cannot flow away. How 

deep will the condensate film be after 10 minutes have elapsed at this condition? Use the following 

properties of water:

sat

3

100°C : 2257 kJ/kg

1
(100 77) 88.5°C :

2

966 kg/m 0.675 W/mK

fg

f

T h

T

kr

= =

= + =

= =

Solution

Known Condensation of atmospheric steam on a square pan surface at specified temperature.

Find Condensate film thickness, d.

Assumptions (1) Laminar-film condensation. (2) Linear temperature profile with no subcooling of the 

condensate.

Analysis Energy balance at the liquid vapour interface is

fg fg

d
Q mh A h

dt

d
r
È ˘= = Í ˙Î ˚
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 or Heat flux, fg

Q d
q h

A dt

d
r= =

 Also, sat sat( ) ( )x w w

k
q h T T T T

d
= - = -

\ sat( )fg w

d k
h T T

dt

d
r

d
= -

 Separating the variables and integrating,

t 2
sat sat

0 0

( ) ( )
or

2

w w

fg fg

k T T kt T T
d dt

h h

d
d

d d
r r

- -
= =Ú Ú

 Film thickness,

1/2 1/2

sat

3

2 ( ) 2 0.675 (10 60) (100 77)

966 2257 10

w

fg

kt T T

h
d

r

- ¥ ¥ ¥ ¥ -È ˘ È ˘= =Í ˙ Í ˙¥ ¥Î ˚Î ˚

  = 2.92 ¥ 10–3 m = 2.92 mm (Ans.)

 Determine (a) the average heat-transfer coefficient, (b) the heat-transfer rate, 

and (c) the amount of condensate dripping off the bottom of a 0.25 m square vertical plate that is 

exposed to saturated steam on one side at 0.125 MPa pressure. The plate surface is maintained at a 

temperature of 105°C. (d) Plot the values of film thickness and local heat-transfer coefficient against 

different locations from the top of the plate. (e) Calculate the average velocity of the condensate film at 

the bottom of the plate, and (f) the average condensation heat-transfer coefficient over the entire plate if 

the plate is inclined at 30° with the vertical. (g) Show that the film condensation is wave free laminar.

The following thermophysical properties may be used:

Saturated steam: (T
sat @ 0.125 MPa

 = 106°C):

r
v
 = 0.7273 kg/m3 h

fg
 = 2241 kJ/kg

Saturated water: { }fT :
1
(106 105) 105.5°C

2
= + =

r
l
 = 953.9 kg/m3 k

l
 = 0.88 W/m K

C
pl
 = 4.224 kJ/kg K m

l
 = 0.267 ¥ 10–3 kg/m s

Solution

Known Condensation of saturated steam at 0.125 MPa on a vertical plate (0.25 ¥ 0.25 m) at 105°C.

Find (a) Lh  (b) Q (c) ( )m L  (d) h (x) and d(x) vs x (e) u
av(x = L)

 (f) , inclinedLh  (g) Re
f
.

Assumptions (1) Steady operating conditions prevail. (2) Laminar-film condensation. (3) Isothermal plate. 

(4) Effect of non-condensable gases on steam is negligible.

Analysis The modified latent heat of condensation is

* (1 0.68 Ja)fg fgh h= +
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g vector

Vertical plate
( = 105 °C)Tw

Liquid film
d( )x m( )x

.

m
.

b = 0.25 m

xx = 0

L = 0.25 m

x
L=

Mass f
low of

condensate

Saturated steam,
= 0.125 MPa

= 106°C
P

Tsat

Schematic

where

sat

3

( ) 4.224(106 105)
Ja

2241

1.885 10

pl w

fg

C T T

h

-

- -
= =

= ¥

\ * 32241[1 (0.68)(1.885 10 )] 2243.87 kJ/kgfgh
-= + ¥ =

Condensate film thickness,

1/41/4 3
sat

* 3

1/
3

3

4 ( ) 4 0.267 10 0.681 (106 105)
( )

( ) 953.9 (953.9 0.7273)(9.81)(2243.87 10 )

4 0.267 10 0.681 (106 105)

953.9 (953.9 0.7273)(9.81)(2243.87 10 )

w

v fg

k T T

gh

m
d

r r r

-

-

È ˘- ¥ ¥ ¥ ¥ ¥ -È ˘= = Í ˙Í ˙- ¥ - ¥Î ˚Î ˚

È ˘¥ ¥ ¥ ¥ ¥ -
= Í ˙

¥ - ¥Î ˚

l l

l l

x x
x

x

( )

4

5 1/4 1/47.764 10 (m) 0.7764 mm-= ¥ ¥ =x x

Local heat-transfer coefficient,

1/4 2

5 1/4

0.681
8.771 W/m K

( ) 7.764 10

k
h

d
-

-= = = ¥
¥

l

x
x

x x

The values of d(x) and h
x
 are tabulated below for different values of x:

Sr. No. x(m) d(x) (mm) h
x
(W/m2 K)

1 0 0

2
1

0.05 m
5
L = 0.036 71 18 550

3
2

0.10 m
5
L = 0.043 66 15 598

contd.
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4
3

0.15 m
5
L = 0.048 32 14 094

5
4

0.20 m
5
L = 0.051 92 13 116

6
5

0.25 m
6
L = 0.054 90 12 404

0 0.05 0.10 0.15 0.20 0.25

x m( )

d (x)

[mm]

Local heat transfer coefficient

Film thickness

h (W/m K)x
2

(Ans.) (d)

Local condensation coefficient, at the bottom of the tube,

2

3

0.681
12404 W/m K

( ) 0.549 10
L

k
h

Ld= -= = =
¥

l

x

Average heat-transfer coefficient,

,vertical

4 4
12404

3 3
L Lh h == = ¥ = 216539 W/m K

x
(Ans.) (a)

Average heat-transfer coefficient at q = 30° with the vertical,

1/4 1/4
,inclined ,vertical (cos ) 16539(cos 30°)L Lh h q= ¥ =

= 15955 W/m2 K (Ans.) (f)

Average flow velocity of the condensate film at x = L is

3 2
( )

3 2

3

( ) ( )

( ) ( )3 3

(953.9 0.7273)(9.81)(0.0549 10 )

3 0.267 10

L v L v L
av

L L

m g b g
u

b b

r r r d r r d

r d r d m m

=

-

-

- -
= = =

- ¥
=

¥ ¥
= 0.03518 m/s or 35.18 mm/s

x l l l

l l l l

(Ans.) (e)

Rate of condensation over the entire plate,

3
( )( ) 953.9 0.25 0.0549 10 0.03518L av Lm b ur d -
== = ¥ ¥ ¥ ¥

l x

 = 4.606 ¥ 10–4 kg/s = 1.658 kg/h (Ans.) (c)

Heat-transfer rate, * 4 3(4.606 10 )(2243.87 10 )fgQ mh
-= = ¥ ¥

  = 1033.6 W (Ans.) (b)

contd.
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 And, the rate of condensate production,

4

* 3

1033.6
4.606 10 kg/s or 1.658 kg/h

2243.87 10fg

Q
m

h

-= = = ¥
¥

 Film Reynolds number,
4

3

4 4 4.606 10
.

0.25 0.267 10
f

m
Re

bm

-

-
¥ ¥

= = =
¥ ¥

27 6
l

(< 30) (Ans.) (g)

 Hence, the laminar-film condensation is smooth and wave free.

 Saturated steam at 0.08208 bar (T
sat

 = 42°C) is exposed to a 60 cm square 

vertical plate having a uniform surface temperature of 32°C.

Estimate

 (a)  the film thickness, the mean and maximum flow velocity of the condensate, and the local heat 

transfer coefficient at 20 cm from the bottom of the plate

 (b)  the average heat-transfer coefficient and the total heat-transfer rate to the plate surface after 

applying McAdam’s correction.

 (c) the total condensation rate and the film Reynolds number

 (d) the average heat-transfer coefficient if the plate is inclined at 60°C with the vertical

Use the following properties of saturated water:

At 37°C:

k = 0.628 W/m °C

r = 993 kg/m3

m = 0.695 ¥ 10–3 kg/m s

h
fg@

42°C = 2401.9 kJ/kg

Solution

Known Vertical square plate exposed to condensing steam.

Find (a) d, u
mean

, u
max

 and h
x
 at x = 0.4 m, (b) ,Lh Q , (c) , fm Re , (d) inclinedh .

Saturated steam,
= 42 °CTsat

m
.

b = 0.6 m

x

= 32 °CTw

L = 0.6 m
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Assumptions (1) Laminar-film condensation on a vertical surface. (2) Negligible concentration of non-

condensables in steam. (3) r >> r
v
.

Analysis (a) At 20 cm from the bottom of the plate, i.e., the length x measured from the top equal 

to (60 – 20) = 40 cm or 0.4 m, we have

Film thickness at x = 0.4 m,

1/4

sat

2

1/4
3

3 2 2 3

4 ( )

4(0.695 10 kg/m s)(0.628 W/m°C)(42 32) C(0.4 m)

(993 kg/m ) (9.81 m/s )(2401.9 10 J/kg)

w

fg

k T T x

gh

m
d

r

-

-È ˘
= Í ˙
Í ˙Î ˚

È ˘¥ - ∞
= Í ˙

¥Í ˙Î ˚

= 0.132 ¥ 10–3 m or 0.132 mm (Ans.) (a)

Mean velocity,

2 3 2 3 2 3 2

mean 3

(993 kg/m )(9.81 m/s )(0.132 10 m)

3 3 3(0.695 10 kg/ms)c

m m g b g
u

A b b

r d r d

r r d mr d m

-

-
¥

= = = = =
¥

= 0.0814 m/s or 8.14 cm/s (Ans.) (a)

Maximum velocity,

2

max mean

3
1.5 8.14 cm/s . /

2 2

g
u u

r d

m
= = = ¥ = 12 21 cm s (Ans.) (a)

Local heat-transfer coefficient

3

0.628 W/m°C

0.132 10 m
x

k
h

d -= = =
¥

24757.6 W/m C∞ (Ans.) (a)

(b) Average heat-transfer coefficient,

1/4
2 3

( )
sat

4
0.943

3 ( )

fg

L x L
w

gk h
h h

L T T

r

m=

È ˘
Í ˙= =

-Í ˙Î ˚
Applying McAdam’s correction,

1/4
2 3

sat

1/4
2 3 3

3

1.2 0.943
( )

(993) (9.81)(0.628) (2401.9 10 )
1.13

(0.695 10 )(0.6 m)(42 32) C

fg

L
w

gk h
h

L T T

r

m

-

È ˘
Í ˙= ¥

-Í ˙Î ˚

È ˘¥
= Í ˙

¥ - ∞Í ˙Î ˚

= 6887 W/m2 °C (Ans.) (b)

Total heat-transfer rate,

sat

2 3

( )( )

(6887 W/m °C)(0.6 m 0.6 m)(42 32) C 24.8 10 W

L wQ h bL T T= -

= ¥ - ∞ = ¥

= 24.8 kW (Ans.) (b)
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(c) Condensation rate,

3

3

24.8 10 W 3600 s 1 J/s

1 h 1 W2401.9 10 J/kgfg

Q
m

h

¥
= = =

¥
37 kg/h

(Ans.) (c)

 Film Reynolds number,

3

4 4 (37/3600)kg/s

0.6 m 0.695 10 kg/ms
f

m
Re

bm -
¥

= = =
¥ ¥

99

(Ans.) (c)

(d) 1/4 1/4
inclined vertical (cos ) 6887 (cos 60 )h h q= ¥ = ¥ ∞

= 5791 W/m2 °C (Ans.) (d)

 Saturated steam at atmospheric pressure condenses on a vertical square plate 

(width equal to height) that is maintained at 98°C. The rate at which the condensate drips off the plate 

at the bottom is 1.85 kg/h. Calculate the dimensions of the plate and the average heat transfer coefficient 

if Nusselt’s solution is valid. Show that the film condensation is laminar. Assume linear temperature 

distribution and negligible enthalpy changes associated with liquid sub cooling.

The following properties of saturated water may be used:

r = 958.6 kg/m3 k = 0.679 W/m °C

m = 0.285 ¥ 10–3 N s/m2 h
fg
 = 2257 kJ/kg

Solution

Known Saturated steam at 1 atm condenses on a vertical square plate.

Find Dimensions of plate. Heat-transfer coefficient.

= 98 °CTw

b
L=

Saturated steam
1 atm

L

m = 1.85 kg/h
.

Assumptions (1) Steady operating conditions. (2) Laminar-film condensation. (3) Negligible effect of 

sub cooling, non-condensable gases and non-linear temperature variation.

Analysis The average heat transfer coefficient for laminar film condensation of saturated vapour on 

a vertical isothermal plate (Nusselt solution) is determined from
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1/4
2 3

1/4

sat

0.943
( )

fg

L
w

gk h
h BL

L T T

r

m
-

È ˘
Í ˙= =

-Í ˙Î ˚

 where
0.25

2 3 3

3

958.6 9.81 0.679 2257 10
0.943 9695.4

0.285 10 (100 98)
B

-

È ˘¥ ¥ ¥ ¥
= =Í ˙

¥ ¥ -Í ˙Î ˚

 Heat-transfer rate during the condensation process is

2
sat sat( )( ) ( )( ) ( )L w L wQ h bL T T h L T T b L= - = - =

= (9695.4) (L–1/4)(L2)

(100 – 98) = 19390.8 L7/4 (W) (A)

 (a) The rate of condensation of steam is

1.85
kg/s

3600
m =

 Latent heat of condensation,

h
fg
 = 2257 ¥ 103 J/kg

 Therefore,

fgQ mh=  = (1.85/3600) (2257 ¥ 103) = 1160 (W) (B)

 Equating (A) and (B), one gets

19 390.8 L7/4 = 1160 (W)

 It follows that

4/7
1160

19390.8
L b

È ˘= = Í ˙Î ˚
 = 0.2 m or 20 cm

 The plate dimensions are 20 cm ¥ 20 cm (Ans.)

 And, 1/4
Lh BL

-=  = (9695.4) (0.2)–1/4

= 14500 W/m2 °C (Ans.)

 Film Reynolds number,

3

4 4 4(1.85/3600)
36 Laminar

0.2 0.285 10
f

m m
Re

P bm m -= = = = fi
¥ ¥

Comment Since Re
f
 is marginally higher than the wave free laminar limit of 30, the effect of ripples 

will be vanishingly small.

(R) Horizontal Cylinder

 Determine the diameter of a horizontal tube, 1 m long, used to condense 

saturated steam at a pressure of 2.0 bar. The tube surface is maintained at a constant temperature of 

80°C and the rate of condensation required to be achieved is 125 kg/h.
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Solution

Known A horizontal tube of given length and surface temperature exposed to condensing steam at 

a prescribed pressure.

Find Tube diameter to achieve a specified condensation rate.

Satura
at 2 bar

ted steam

= 80°CTw

D = ?

L = 1 m

m = 125 kg/h
.

Assumptions (1) Laminar film condensation. (2) Negligible concentration of non-condensable gases in 

steam.

Properties Saturated vapour (T
sat @ 2 bar

 = 120.2°C):

3

2201.9 kJ/kg

1
1.129 kg/m

0.8857

fg

v

h

r

=

= =

Saturated water sat
120.2 80

100°C
2 2

w
f

T T
T

+ +Ê ˆ= = @Á ˜Ë ¯ :

3

3

958.1 kg/m 4.215 kJ/kgK

0.6775 W/mK 0.2822 10 kg/ms

plC

k

r

m -

= =

= = ¥

l

l l

Analysis Modified latent heat of condensation,

*
sat( )(0.68)fg fg pl wh h C T T= + -  = 2201.9 + 4.215 (120.2 – 80) (0.68)

= 2317.12 kJ/kg

Average heat-transfer coefficient for horizontal orientation is

or

1/4
3 *

sat

1/4
3 3

1/4

3

( )
0.729

( )

(958.1 1.129)(958.1)(9.81)(0.6775) (2317.12 10 )
0.729 3564

0.2822 10 (120.2 80)

v fg

w

g k h
h

D T T

h D
D

r r r

m

-
-

È ˘-
Í ˙=

-Í ˙Î ˚

È ˘- ¥
= =Í ˙

¥ ¥ ¥ -Í ˙Î ˚

l l l

l

Also, heat-transfer rate,

p
p

= = - =
-

*

*
sat

sat

( )( ) or
( )

fg

fg w
w

mh
Q mh h DL T T hD

L T T
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 or 
p p

- ¥ ¥ ¥
= =

¥ ¥ - ¥ ¥

3
1/4 3 4125 2317.12 10 125 2317.12

3564 or
3600 1 (120.2 80) 3.6 40.2 3564

D D D

\ Tube diameter,

D = (0.1786)4/3 = 0.10 m = 100 mm or 10 cm  (Ans.)

 Saturated steam at 1 atm condenses on a 2.5 cm OD vertical tube at a rate 

of 12.5 kg/h. The tube surface is maintained at 90°C by circulating cooling water. (a) Determine the 

required tube length. (b) If the tube were oriented horizontally, what would be the length of the tube for 

the same rate of condensation?

Use the following properties of saturated water at 95°C:

r = 961.5 kg/m3 m = 0.297 ¥ 10–3 kg/m s

k = 0.677 W/m °C  C
p

= 4.212 kJ/kg °C

At 100°C (1 atm): h
fg
 = 2257 kJ/kg

Solution

Known Vertical tube of 2.5 cm diameter with surface temperature of 90°C used to condense steam 

at 1 atm at a rate of 12.5 kg/h.

Find (a) Length of tube, L (m). (b) L
horiz

 (m) for same condensation rate.

Assumptions (1) Steady operating conditions exist. (2) The tube is isothermal. (3) The flow of condensate 

is wavy laminar over the entire tube (to be verified later). (4) The density of vapour is 

much smaller than the density of liquid (r
v
 << r

l
).
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Analysis (a) Vertical tube:

 The modified latent heat of vaporization is

*
sat0.68 ( )fg fg p wh h C T T= + -

     = 2257 + (0.68) (4.212) (100 – 90) = 2285.6 kJ/kg

 For wavy laminar flow, the Reynolds number and the condensation heat-transfer coefficient 

are determined to be

0.82
1/3

sat

* 2

3.70 ( )
4.81 w

fg

Lk T T g
Re

hm n

È ˘- Ê ˆ= +Í ˙Á ˜Ë ¯Í ˙Î ˚
(A)

 where 

1/31/3 21/3 2 3
1

2 2 3

961.5 kg/m
9.81 46847 m

0.297 10 kg/m s

g m
g

s

r

mn

-
-

È ˘È ˘ Ê ˆÊ ˆ Ê ˆ Í ˙= = =Í ˙Á ˜ Á ˜Á ˜Ë ¯ Í ˙Ë ¯ Ë ¥ ¯Í ˙Î ˚ Î ˚
 Film Reynolds number,

3

4 4 (12.5/3600)kg/s
595.42

(0.025 m)(0.297 10 kg/ms)

m
Re

Dp m p -
¥

= = =
¥

 Substituting values in Eq. (A), and rearranging

1.22 1

3 3

3.7 0.677 W/m°C(100 90)°C
(595.42) 4.81 46847(m )

0.297 10 kg/ms 2285.6 10 J/kg

L -
-

¥ -
- = ¥

¥ ¥ ¥

 or 2423.3 = 1728.7L

\ Tube length required,

vert

2423.3
.

1728.7
L L= = = 1 40 m (Ans.) (a)

 (b) Horizontal tube:

 The condensation heat-transfer coefficient,

1/4 0.252 3 * 2 3 3

3
sat

(961.5) (9.81)(0.677) (2285.6 10 )
0.729 0.729

( ) (0.297 10 )(0.025)(100 90)

fg

w

g k h
h

D T T

r

m -

È ˘ È ˘¥
Í ˙= = Í ˙- ¥ -Í ˙Î ˚ Î ˚

= 12506.5 W/m2 °C

 Heat-transfer rate,

*
sat( )( )w fgQ h DL T T mhp= - =

 Therefore, the tube length required,

* 3

horiz 2
sat

(12.5/3600)kg/s (2285.6 10 J/kg)

( )( ) (12506.5 W/m C)( 0.025 m)(100 90) C

fg

w

mh
L L

h D T Tp p

¥ ¥
= = =

- ∞ ¥ - ∞
= 0.808 m (Ans.) (b)

Comment For vertical tube, Re = 595.4 (30 £ Re £ 1800). Hence, the assumption of wavy laminar 

flow was valid.

 Saturated steam at 1 atm condenses on the outer surface of a thin horizontal 

tube of 6 mm diameter and 1 m long. The tube is cooled by water at 17°C flowing through inside at a 

flow rate of 0.054 kg/s.
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Calculate:

(a) the inside heat-transfer coefficient, (b) the outside (condensation) heat-transfer coefficient, (c) the 

tube-wall temperature, (d) the total heat-transfer rate, (e) the condensation rate, and (f) the film Reynolds 

number

For water on the tube inside, take:

k = 0.598 W/m K, m = 1.08 ¥10–3 Pa s, C
p
 = 4.184 kJ/kg K

For steam at 1 atm, take:

h
fg
 = 2257 kJ/kg

For the condensate, take:

r = 957.85 kg/m3, C
p

= 4.217 kJ/kg K, k = 0.680 W/m K, m = 1.0044 kg/m h

Solution

Known Condensation of steam on the outside of a thin tube cooled by internal water flow.

Find Inside and outside convection coefficients, tube surface temperature, rate of condensation, 

heat-transfer rate, and film Reynolds number.

Water

D = 6 mm

Steam, T
P

sat = 100°C
( = 1 atm)

m = 0.054 kg/s
.

hi

Tw

L = 1 m

ho

Schematic

Assumptions (1) Laminar-film condensation. (2) Fully developed flow in the tube. (3) Thermal resistance 

of tube wall is negligible. (4) Negligible concentration of non-condensable gases in the 

steam.

Analysis From an energy balance on the inner tube with a constant wall temperature:

sat( ) ( )o w i w bh T T h T T- = -
Internal flow in the tube:

Using the Properties of Water Given:

3

4 4 0.054

0.006 1.08 10
D

m
Re

Dp m p -
¥

= =
¥ ¥ ¥

  = 10610   ( > 2300)   fi Turbulent flow

3 3(4.184 10 )(1.08 10 )
7.56

0.598

pC
Pr

k

m -¥ ¥
= = =

Dittus–Boelter correlation:

0.8 0.40.023( ) ( )i
D D

h D
Nu Re Pr

k
= =
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 Hence, 0.8 0.4(0.023)(0.598)
(10610) (7.56)

0.006
ih = ¥

  = 8556 W/m2 K (Ans.) (a)

 Condensation on the outer surface of the tube:
1/4 0.252 3 2 3 3

sat

1/4

957.85 9.81 0.680 2257 10
0.729 0.729

( ) (1.0044/3600) 0.006 (100 )

32219.5(100 )

fg

o
w w

w

gk h
h

D T T T

T

r

m

-

È ˘ È ˘¥ ¥ ¥ ¥
Í ˙= = Í ˙- ¥ ¥ -Í ˙Î ˚ Î ˚

= -
 From the energy balance:

 or 

1/4

0.75

{32219.5(100 ) }(100 ) 8556( 17)

(100 ) ( 17)(0.2656)

w w w

w w

T T T

T T

-- - = -

- = -
 By trial and error:

T
w

[°C] LHS RHS

70 12.82 14.08

68 13.45 13.55

67.8 13.52 13.50

 Thus, T
w

= 67.8°C (Ans.) (c)

\ h
o
 = 32219.5 (100 – 67.8)–0.25 = 13 525 W/m2 K (Ans.) (b)

 Total heat-transfer rate,

sat( )( ) ( )( )

(13525)( 0.006 1)(100 67.8)

o w i w bQ h DL T T h DL T Tp p

p

= - = -

= ¥ ¥ -

= 8209 W or 8.21 kW (Ans.) (d)

 Condensation rate,

8.21 kW 3600 s
. /

2257 kJ/kg 1 hfg

Q
m

h

Ê ˆ= = =Á ˜Ë ¯
13 09 kg h (Ans.) (e)

 Film Reynolds number,

4 4 4 (13.09/3600)

2 2 (1.0044/3600)
f

m m
Re

P Lm m

¥
= = = =

¥
26 (< 30) (Ans.) (f)

 The flow of film is, therefore, wave-free laminar.

(S) Tube Array

 Determine the outer diameter of the 12 horizontal tubes arranged in a rectangular 

array, 3 tube high and 4 tube wide, in order to condense 300 kg/h of saturated Refrigerant –12 (CCl
2
F

2
)

at 50°C on them per unit length of the tubes. The surface of the tubes is maintained at a uniform 

temperature of 40°C.

R 12 has the following thermophysical properties:

At 50°C: h
fg
 = 121.43 kJ/kg

At 45°C: r
l
 = 1236.55 kg/m3 C

l
 = 1.01175 kJ/kg °C

m
l
 = 2.362 ¥ 10–4 kg/ms k

l
 = 0.068 W/m °C
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Solution

Known Saturated R-12 vapour condenses over 12 horizontal tubes arranged in a 3 ¥ 4 rectangular 

array.

Find Tube outside diameter, D.

Assumptions (1) Steady operating conditions. (2) Laminar-film condensation.

Analysis Heat-transfer rate, *
cond fgQ m h=

where *
fg fgh h=  (1 + 0.68 Ja)

Jacob number, Ja = C
pl
DT/h

fg

With DT ∫ T
sat

 – T
w
 = 50 – 40 = 10°C, C

pl
 = 1.01175 kJ/kg °C and h

fg
 = 121.43 kJ/kg,

1.01175 10

121.43
Ja

¥
=  = 0.08332

*
fgh  = 121.43 (1 + 0.68 ¥ 0.08332) = 128.31 kJ/kg

Hence,
300 kg

3600 s
Q
Ê ˆ= Á ˜Ë ¯

 (128.31 kJ/kg) = 10.7 kW (A)

Average condensation heat-transfer coefficient for a vertical tier of N = 3 tubes (valid for 

all M = 4 tiers) is determined from

1/4
3 *

,
sat

( )
0.729

( )( )

v fg

D N
w

gk h
h

ND T T

r r r

m

Ï ¸-Ô Ô
= Ì ˝

-Ô ÔÓ ˛

l l l

l

As r
v
 is not given, we assume r

v
 << r

l
 and 2( )vr r r r- ª

l l l
. Substituting the appropriate 

numerical values, except the diameter D, which is unknown, we have

-

Ï ¸¥Ô Ô= Ì ˝
¥ -Ô ÔÓ ˛

= ∞

0.25
2 3 3

, 4

–0.25 2

(1236.55) (9.81)(0.068) (128.31 10 )
0.729

(2.362 10 )(3 )(50 40)

349 (W/m C)

D Nh
D

D
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 Heat-transfer rate,

, sat , tot sat( ) ( )( )D N w D N wQ h A T T h N DL T Tp= - = -

 = (394 D–0.25)(12 ¥ p ¥ D ¥ 1)(50 – 40) (W) = 148.5 D0.75 kW (B)

 Equating (A) and (B), we get

148.5 D0.75 = 10.7 or D = 

4/3
10.7 kW

148.5 kW

Ê ˆ
Á ˜Ë ¯  = 0.03 m = 3.0 cm (Ans.)

 A cross section through a bundle of horizontal condenser tubes is shown in 

Fig. (a). The same bundle is rotated through 90° and is shown in the adjoining Fig. (b). Assuming 

laminar film condensation on the outside surface of the tubes, find the ratio of the condensate rates in 

the two tube configurations.

Solution

Known A bundle of horizontal condenser tubes is rotated through 90°.

Find Ratio of the rates of condensate production in the two geometries.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+ + +

+ + + +

+ + +

+ +

Horizontal tubes
[Diameter, D; Length, L ]

Schematic

Assumptions (1) Laminar-film condensation. (2) Steady operating conditions.

Analysis The average heat-transfer coefficient for each column of N horizontal tubes is given by

1/4
3 *

,
sat

( )
0.729

( )( )

v fg

D N
w

gk h
h

ND T T

r r r

m

È ˘-
Í ˙=

-Í ˙Î ˚

l l l

l

 and 3/4
, tot sat( )( )D N wQ h N DL T T CNp= - =  (where C is a constant).

 This is valid for the same dimensions and fluid properties.
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 For tube configuration (a):

◊

◊

◊

◊

3/4

3/4

3/4

3/4

3/4

1 2 (2 )

2 3 (3 )

3 4 (4 )

4 3 (3 )

5 2 (2 )

C

C

C

C

C

Column # N Q

 Total rate of heat transfer = 3/4 3/4 3/4 3/4 3/4[2 3 4 3 2 ]C + + + + ] = 10.751 C

 For tube configuration (b):

◊
◊
◊
◊
◊

3/4

3/4

3/4

3/4

3/4

1 1

2 2 (2 )

3 3 (3 )

4 2 (2 )

5 3 (3 )

6 2 (2 )

7 1

C

C

C

C

C

C

C

Column # N Q

 Total rate of heat transfer = 
3/4 3/4 3/4 3/4 3/4 3/4[1 2 3 2 3 2 2 1]C + + + + + + + = 11.604 C

 Ratio of condensation rates = 

*

*

( )

( ) ( ) 11.604 C

( )( ) ( ) 10.751 C

fg

fg

Q b

hm b Q b

Q am a Q a

h

= = =  = 1.079

Comment Stacking of individual tubes should be confined to as small a number as possible for each 

column to obtain greater condensate production.

 Saturated steam at 0.05 bar [ T
sat

 = 32.87°C, h
fg
 = 2423.0 kJ/kg, r

v
= 0.0355 

kg/m3] condenses on a coil whose surface temperature is maintained at 20°C. The tube diameter is 15 

mm, the coil diameter is 300 mm, and the pitch of the coil is 40 mm. There are 10 turns in the coil and 

its axis is vertical. Determine the rate of condensation.

Properties of saturated vapour at f wT T Tsat

1
( )

2
∫ +  are the following:

r
l
 = 996.7 kg/m3 k

l
 = 0.609 W/m °C

m
l
 = 0.864 ¥ 10–3 kg/m s C

pl
 = 4.179 kJ/kg °C

Solution

Known Saturated steam condenses on a 10-turn coil with its axis vertical.

Find Condensation rate, condm .
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is equivalent to

Dt = 15 mm

Dc = 300 mm

Saturated steam,
0.05 bar

L D=

=

p c

circumference of coil

Dt

+

Vertical bank of
N = 10 horizontal tubes

+

Dt = 15 mm
+

+

.

.

.

.

Tw = 20°C

Pitch, = 40 mmP

Schematic

Assumptions (1) Steady operating conditions exist. (2) Laminar film condensation. (3) Negligible effect 

of non-condensables on steam.

Analysis From the problem statement it is clear that the coil with 10 turns and vertical axis can be 

looked upon as a vertical tier of 10 horizontal tubes with each tube having a diameter D
t
 = 

15 mm, length equal to circumference of one turn of coil, L = (pD
c
) where D

c
 is the coil 

diameter equal to 300 mm, and centre to centre distance between two consecutive tubes, 

i.e., pitch is p = 40 mm as shown in the schematic.

  The average heat-transfer coefficient for laminar-film condensation of saturated vapour 

on a vertical stack of N horizontal tubes is determined from

1/4
3 *

,
sat

( )
0.729

( )( )

v fg

D N
w

gk h
h

ND T T

r r r

m

È ˘-
Í ˙=

-Í ˙Î ˚

l l l

l

where *
sat0.68 ( )fg fg p wh h C T T= + -

l

= 2423.0 + (0.68) (4.179) (32.87 – 20) = 2459.57 kJ/kg

Substituting numerical values, one has

1/4
3 3

, 3

996.7(996.7 0.0355)(9.81)(0.609) (2459.57 10 )
0.729

(0.864 10 )(10 0.015)(32.87 20)
D Nh

-

È ˘- ¥
= Í ˙

¥ ¥ -Í ˙Î ˚
= 5502.44 W/m2 °C

The surface area for all 10 tubes is

2 2( ) 10 0.015 0.3 0.444 ms t cA N D Dp p p= = ¥ ¥ =

Heat-transfer rate during this condensation process is

, sat( )D N s wQ h A T T= -  = (5502.44) (0.444) (32.87 – 20) = 31442.48 W

The rate of condensation is determined to be

cond * 3

31442.48 J/s 3600 s

1 h2459.57 10 J/kgfg

Q
m

h
= = =

¥
46.0 kg/h (Ans.)
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 Horizontal tubes, 2.5 cm OD and 0.6 m long, are arranged in a vertical bank. 

Saturated steam at 105°C condenses on these tubes maintained at 95°C. The condensation rate is 26.7 

kg/h. How many tubes are required?

The following properties of saturated water may be used:

T
sat

 = 105°C h
fg
 = 2243.7 kJ/kg r

v
 = 0.7045 kg/m3

T
f
 = 100°C r

l
 = 957.9 kg/m3 k

l
 = 0.679 W/m°C

m
l
 = 0.282 ¥ 10–3 kg/m s C

pl
 = 4.217 kJ/kg°C

Solution

Known Steam condenses on a vertical tier of horizontal tubes.

Find Number of tubes, N, in the vertical bank.

Assumptions (1) Steady-state conditions, (2) Laminar-film 

condensation.

Analysis Modified latent heat of vaporization (to account for 

non-linear temperature distribution and enthalpy 

change due to subcooling) is

*
sat0.68 ( )

2243.7 (0.68)(4.217)(105 95) 2272.38 kJ/kg

fg fg pl wh h C T T= + -

= + - =

 Average condensation heat-transfer coefficient for a single horizontal tube is

1/4
3 *

horiz,1tube
sat

1/4
3 3

3

2

( )
0.729

( )

(957.9)(957.9 0.7045)(9.81)(0.679) (2272.38 10 )
0.729

(0.282 10 )(0.025)(105 95)

12653.2 W/m C

v fg

w

g k h
h

D T T

r r r

m

-

È ˘-
Í ˙=

-Í ˙Î ˚

È ˘- ¥
= Í ˙

¥ -Í ˙Î ˚

= ∞

l l l

l

 For a vertical bank of N horizontal tubes, the average heat-transfer coefficient will be

1/4
horiz, tubes horiz,1tubeNh h N

-= ¥

 Heat-transfer rate during the condensation process,

horiz, tubes sat

1/4 3/4

( )( )

(12653.2)( ) ( 0.025 0.6)(105 95) 5962.68 N (W)

N wQ h N DL T T

N N

p

p-

= -

= ¥ ¥ ¥ - =

 Also, * 3
cond

26.7 kg J
2272.38 10 16853.5 (W)

3600 s kg
fgQ m h
Ê ˆ Ê ˆ= = ¥ =Á ˜ Á ˜Ë ¯ Ë ¯

 Equating the two expressions for ,Q  we get

3/45962.68 16853.5N =

\ Number of tubes required,

4/3
16853.5

3.996
5962.68

N
È ˘= = -Í ˙Î ˚

4 (Ans.)

T D L= 95°C, = 2.5 cm, = 0.6 mw

N horizontal tubes in a
vertical bank

Saturated steam
Tsat = 105°C

+

+

+

+

Schematic
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Points to Ponder

The pool boiling curve is a plot of wall heat flux, q against the excess temperature, DT
e,
 i.e., surface 

saturation temperature difference on log scale.

There are four distinct regimes in a typical boiling curve: (1) Free convection boiling (DT
e
 < 10°C), 

(2) Nucleate boiling (10°C < DT
e
 < 30°C), (3) Transition boiling (30°C < DT

e
< 120 °C), and 

(4) Film boiling (DT
e
 > 120°C).

Typically, the peak heat flux for boiling of water on a large, flat heater at a saturation temperature 

of 100°C is 1.27 MW/m2.

In the heat-input-controlled pool boiling, the boiling curve indicates unstable heating paths.

Nucleate boiling is most significant because we can obtain very high heat-transfer rates with mod-

est temperature differences.

In nucleate boiling, the surface heat flux is inversely proportional to the cube of constant C
sf
 which 

depends on the heating surface-fluid combination.

Peak heat flux or critical heat flux is also known as DNB (departure from nucleate boiling) or 

burn-out point or boiling crisis.

Nucleate boiling is strongly dependent on the surface condition but is not so sensitive to the surface 

geometry. However, peak heat flux and film boiling are influenced by surface geometry.

Knowledge of peak heat flux is necessary to prevent the failure of the heating dements.

Stable film boiling has many applications in the boiling of cryogenic fluid.

In internal flow forced convection boiling, two modes of heat transfer dominate the overall process: 

nucleate boiling and forced convection.

In film condensation, the vapour condenses into a continuous film covering the entire surface.

In dropwise condensation, the vapour condenses into small liquid droplets of different sizes.

For the same temperature difference, the heat transfer rate in dropwise condensation is much greater 

than that in film condensation. Hence, promoters like oleic acid or surface coatings with materials 

like ‘Teflon’ are used but droplet condensation is difficult to maintain.

In laminar-film condensation on a vertical plate, the average velocity of falling film is 2/3rd the 

maximum velocity, and the average heat-transfer coefficient is 4/3 times the local heat-transfer 

coefficient at the specified distance from the top of the plate.

Equations for condensation on a vertical plate are also applicable in the case of a vertical tube as 

long as the diameter of the tube is much larger than the film thickness.

The presence of small concentrations of non-condensable gases like air in vapour severely reduces 

the rate of condensation.

GLOSSARY of Key Terms

● Boiling A phase change process that occurs at the solid-liquid boundary when the 

submerged solid surface is at a temperature greater than the saturation 

temperature of the liquid.

● Burn-out A damaging phenomenon when the peak heat flux is exceeded and the 

surface temperature shoots up to the melting point.

● Condensation A phase-change process when a vapour is in contact with a surface 

which is slightly below the corresponding saturation temperature.
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● Critical heat flux At the end of the nucleate boiling regime, the heat flux reaches a 

maximum due to agitation of the liquid caused by vigorous production 

of vapour bubbles.

● Dropwise condensation The condensate coalesces into droplets, which when forced roll off the 

condensing surface under the action of gravity. There is no film barrier 

to heat transfer.

● Evaporation A phase-change process that occurs at the liquid-vapour boundary.

● Excess temperature The difference between the wall temperature of the heated surface and 

the saturation temperature of the liquid.

● Film boiling The state in which the heated surface is covered with a vapour film so 

that the liquid does not touch the heated surface.

● Film condensation The condensate is formed as a layer of liquid film condensing on the 

surface. The film represents a thermal resistance to heat transfer.

● Film Reynolds number A criterion which determines if the condensate flow is laminar or 

turbulent.

● Flow boiling Boiling of a liquid forced over a heated surface as two-phase flow 

with heat transfer.

● Free convection boiling No bubbles are formed even through the liquid may be slightly 

superheated. The vapour is formed by evaporation at the liquid surface.

● Minimum heat flux It is marked by the end of transition boiling and the beginning of the 

film boiling regime. It occurs at the Leidenfrost temperature.

● Nucleate boiling The process in which bubbles begin to form on the submerged heated 

surface, get detached from and are initially dissipated in the liquid but 

finally rise rapidly to break through the surface of the liquid.

● Pool boiling When the heated surface is submerged below the free surface of a liquid 

which has no bulk motion.

● Saturated boiling The process of pool boiling when the liquid is maintained at the 

saturation temperature.

● Subcooled boiling The process of pool boiling when the liquid is below the saturation 

temperature.

● Transition boiling Boiling regime in which parts of the heated surface are covered by the 

vapour film while nucleate boiling occurs over the remaining parts.

10.1

boiling water lie, respectively, in the ranges of 

(a) 5 – 15, 20 – 200, and 3000 – 50000 W/m2 K

(b) 20 – 50, 200 – 500, and 50000 – 105 W/m2 K 

(c) 50 – 100, 500 – 1000, and 105 – 106 W/m2 K

(d) 20 – 100, 200 – 1000, and a constant 106 W/m2 K
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10.2

entire surface is exposed to 

(a) nucleate boiling (b) film boiling (c) transition boiling (d) all modes of boiling

10.3

the entire surface is exposed to

(a) nucleate boiling (b) film boiling (c) transition boiling (d) all regimes of boiling

10.4

(a) subcooled boiling zone (b) nucleate boiling zone 

(c) partial film-boiling zone (d) film-boiling zone

10.5

1. Heat of evaporation 4. Density of liquid

2. Temperature difference 5. Vapour-liquid surface tension

3. Density of vapour

  Select the correct answer using the codes given below:

  Codes:

(a) 1, 2, 4, and 5 (b) 1, 3, 4, and 5 (c) 1, 2, 3, and 5 (d) 2, 3, and 4

10.6

statements in this regard:

1. Onset of nucleation causes a marked change in slope.

2. At the point B

3.

4. Beyond the point C

  Of these statements,

(a) 1, 2, and 4 are correct (b) 1, 3, and 4 are correct

(c) 2, 3, and 4 are correct (d) 1, 2, and 3 are correct

10.7 Consider the following statements regarding nucleate boiling:

1. The temperature of the surface is greater than the saturation temperature of the liquid.

2. Bubbles are created by the expansion of entrapped gases or vapour at small cavities in the 

surface.

3.

4. The he

  Of these statements:

(a) 1, 2, and 4 are correct (b) 1 and 3 are correct

(c) 1, 2, and 3 are correct (d) 2, 3, and 4 are correct

10.8 When water is boiling on the outside surface of a submerged body (DT = excess temperature):

1. DT)3.

2. DT)4.

3.

  Of these statements,

(a) 1, 2, and 3 are correct (b) only 1 and 2 are correct

(c) 1 and 3 are correct (d) only 3 is correct

10.9

(a) occurrence of subcooled boiling (b) promotion of nucleate boiling

(c) radiation effect becomes significant (d) vapour space becomes large
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10.10 Consider the following statements:

  If a surface is pockmarked with a number of cavities then as compared to a smooth surface,

1. radiation will increase 2. nucleate boiling will increase

3. condensation will increase 4. convection will increase.

  Of these statements,

(a) 1, 2, and 3 are correct (b) 1, 2, and 4 are correct

(c) 1, 3, and 4 are correct (d) 2, 3, and 4 are correct

10.11 The surface temperature of a 0.5 m long and 2 mm diameter electric resistance wire submerged in 

water at 1 atm is experimentally measured to be 124°C. The wattmeter reading for power consumption 

(a) 68216 W/m2 K (b) 46420 W/m2 K (c) 255 W/m2 K (d) 10120 W/m2 K

10.12

and 100°C in a nicked container (C
sf
 = 0.006) is 1.5 ¥ 105 W/m2 °C. For a polished copper surface (C

sf

(a) 147.5 kW/m2 (b) 1475 kW/m2 (c) 47.5 kW/m2 (d) 4.75 kW/m2

10.13

(a) increases continuously

(b) decreases and then increases

(c) decreases, then increases and again decreases

(d) increases, then decreases and again increases

10.14 Consider the following statements regarding condensation heat transfer:

1. For a single tube, the horizontal position is preferred over vertical position for better heat 

transfer.

2.

3. Condensation of steam on an oily surface is dropwise.

4. Condensation of pure benzene vapour is always dropwise.

  Of these statements,

(a) 1 and 2 are correct (b) 2 and 4 are correct

(c) 1 and 3 are correct (d) 3 and 4 are correct

10.15 D h, vary with the 

distance x from the leading edge as

(a) D decreases, h increases (b) both D and h increase

(c) D increases, h decreases (d) both D and h decrease

10.16 Consider the following statements:

1. If a condensing liquid does not wet a surface, dropwise condensation will take place.

2.

3.

4.

  Of these statements,

(a) 1, 2, 3, and 4 are correct (b) 2, 3, and 4 are correct

(c) 1, 2, and 3 are correct (d) 1 and 4 are correct

10.17

equal to

(a)
1

2
Lh =x (b) 0.4 h

x = L
(c)

4

3
x Lh = (d) 2 h

x = L
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10.18

heat transfer is proportional to

(a) (T
sat

 – T
w
)1/4 (b) (T

sat
 – T

w
) (c) (T

sat
 – T

w
)2/3 (d) (T

sat
 – T

w
)3/4

10.19

(a)  The rate of condensation heat transfer is maximum at the upper edge of the plate and 

progressively decreases as the lower edge is approached.

(b)  At a definite point on the heat-transfer surface, the film-heat-transfer coefficient is directly 

proportional to the thermal conductivity and inversely proportional to the thickness of the 

film at the point.

(c)  The average heat-transfer coefficient is two-third of the local heat-transfer coefficient at the 

lower edge of the plate.

(d) The film thickness increases as the fourth root of the distance from the top edge.

10.20 The rate of condensate production, condm

(a) increases with T
w

(b) decreases with T
w

(c) does not change with T
w

(d) increases, then decreases and finally increases again with T
w

10.21

vertical, when the ratio of length to diameter is

(a) 1.3 (b) 2.8 (c) 0.77 (d) more than 10

10.22 Steam condenses at 50°C on a 2 m2

2 K and the latent heat of condensation is 2383 kJ/kg. The rate at 

which condensate is being formed is

(a) 0.033 kg/s (b) 0.28 kg/s (c) 0.044 kg/s (d) 0.15 kg/s

10.23 Saturated water vapour at 95°C(h
fg
 = 2270 kJ/kg) condenses on the outer surface of a 2 m long 

horizontal tube with an outside diameter of 6 cm. The outer surface of the tube is maintained at 85°C. 

(a) 8363 W/m2 K (b) 5144 W/m2 K (c) 7258 W/m2 K (d) 10252 W/m2 K

10.24

2 °C is

(a) 6880 (b) 8160 (c) 9500 (d) 10 100

Answers

Multiple-Choice Questions

10.1 (a) 10.2 (b) 10.3 (a) 10.4 (b) 10.5 (b) 10.6 (a)

10.7 (a) 10.8 (a) 10.9 (c) 10.10 (b) 10.11 (b) 10.12 (a)

10.13 (d) 10.14 (c) 10.15 (c) 10.16 (c) 10.17 (c) 10.18 (d)

10.19 (c) 10.20 (b) 10.21 (b) 10.22 (c) 10.23 (a) 10.24 (b)

10.1 Discuss the physical mechanism of boiling.

10.2

10.3 Distinguish between evaporation and boiling.
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10.4

10.5

10.6 Distinguish between pool boiling and .

10.7 Distinguish between subcooled and saturated boiling.

10.8 Draw the Nukiyama boiling curve. Identify and indicate the different boiling regimes. Also discuss 

the characteristics of each regime.

10.9 How is  different form nucleate boiling

 regime compared to the case of nucleate boiling

10.10 Discuss various factors affecting nucleate boiling.

10.11 Explain how burn-out is caused. Indicate the burn-out point and the  on a boiling curve.

10.12 What are the different boiling regimes in a vertical tube during forced convection boiling

10.13 Distinguish between  and dropwise condensation. Which do you think is a more effective 

10.14 What is the Jacob number

10.15 Discuss the effect of the presence of a non-condensable gas in a vapour on the condensation heat 

10.16

10.17

10.18

10.19

10.20

10.21

10.22 Is it possible to use the relations which were developed for condensation of saturated vapours to 

PRACTICE PROBLEMS

(A) Nucleate Boiling and Peak Heat Flux

10.1 A resistance heater made of 2-mm-diameter nickel wire is used to heat water at atmospheric pressure. 

Estimate the highest temperature at which this heater can operate safely without the risk of burn-out.

[109.6°C]

10.2 A pool of saturated water at 130°C is boiling off a horizontal brass plate at a temperature of 140°C. 

of water at 130°C:

  C
pl
 = 4.263 kJ/kg K, h

fg
 = 2174 kJ/kg, m

l
 = 0.213 ¥10–3 kg/m s, s = 0.053 N/m,

  r
l
 = 934.6 kg/m3, r

v
 = 1.496 kg/m3, Pr

l
 = 1.33, C

sf
 = 0.006 [1.57 ¥ 106 W/m2]

(B) Film Boiling

10.3 Estimate the heat transfer rate per unit length of a polished stainless steel bar horizontally immersed 

in water at 27°C at 1 atm. The bar is of 5-cm diameter with surface emissivity of 0.17. The surface 

temperature of the bar is maintained at 250°C. [3.44 kW/m]
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(C) Forced Convection Boiling

10.4

tube wall is 15°C above the saturation temperature. Estimate the boiling heat transfer rate per metre 

length of the tube. The correlation to be used is, h = 2.54(DT
e
)3 exp(P/15.3) where P is in bar.

[28.0 kW/m]

10.5

x = 0.25 and the wall temperature is 

130°C. Use the Rohsenow’s correlation for nucleate boiling of saturated liquid and the Dittus-Boelter 

[32.2 kW/m2 °C, 322 kW/m2]

(P) Condensation

10.6 Saturated steam at 120°C condenses on a 2-cm-OD vertical tube which is 20-cm- long. The tube 

Given: P
sat

 = 1.985 bar

  k
w
 = 0.686 W/ m K, r

w
 = 943 kg / m3, m

w
 = 237.3 ¥ 10–6 N s / m2

, h
fg
 = 2202.2 kJ/kg

[17 925 W/m2 K]

10.7

atmospheric pressure (T
sat

 = 100°C, h
fg

  r
l
 = 965.3 kg/m3

, k
l
 = 0.680 W/m K, m

l
 = 3.153 ¥ 10–4 N s/m2

  The following relations may be used: 

1/4

sat4 ( ) 4
,

( ) 3

s
L

fg v

k T T x k
h

gh

m
d

r r r d

-È ˘= =Í ˙-Î ˚

l l l

l l l

[(a) 0.1136 mm (b) 7984 W/m2 K (c) 38.32 kW ]

10.8 Saturated steam at 1.43 bar and 110°C condenses on a 25-mm OD vertical tube which is 500-mm 

of condensation. The properties of condensate at 105°C are:

  r = 954.7 kg/m3
, m = 0.271 ¥ 10–3 kg/m s, 

@110°Cfgh  = 2230 kJ/kg, k = 0.68 W/ m K

[7777.4 W/m2 K, 4.93 kg/h]

10.9 The outer surface of a cylindrical drum of 25-mm-OD is exposed to saturated steam at 1.25 bar. The 

surface of the vertical drum is maintained at 94°C. Determine: (a) the height of the drum, and (b) the 

to condense 25 kg/h of steam.

  Use the following properties of water:

  Water vapour (1.25 bar, T
sat

 = 106°C): r
v
 = 0.7273 kg/m3, h

fg
 = 2241.0 kJ/kg

  Water liquid 
1

(106 94) 100°C
2

fT
Ê ˆ= + =Á ˜Ë ¯ : r

l
 = 957.9 kg/m3, k

l
 = 0.679 W/m K

  C
pl
 = 4.217 kJ/kg K, m

l
 = 0.282 ¥ 10–3 N s/m2

[(a) 15.75 (b) 10644 W/m2 K (c) 0.094 mm]
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10.10 Saturated Freon-12 (R-12) vapour at a pressure of 2.61 bar condenses on a 12.5-mm-OD, 1.25-m 

The following thermophysical properties of Freon – 12 may be used:

  

sat

3

at 10 C

at 10 C

Saturation temperature at 2.61 bar, 5°C

Latent heat of condensation at 5°C, 153.823 kJ/kg

Vapour density at 5°C, 15.393 kg/m

Liquid thermal conductivity, 0.073 W/m K

Liquid viscosity, 3.158

f

fg

v

l T

l

T

h

k

r

m

=- ∞

- ∞

= -

- =

- =

=

= 4

3
at 10 C

10 kg/m s

Liquid specific heat, 920.3 J/kgK

Liquid density, 1429 kg/m

pl

l

C

r

-

- ∞

¥

=

=

[(a) 834.4 W/m2 K (b) 204.8 W (c) 4.7 kg/h]

(R) Horizontal Cylinder

10.11 Saturated ammonia vapour at 13.12 bar is exposed to a 13-mm-outside diameter horizontal tube, 

1.2-m long. The tube wall is maintained at a uniform temperature of 26°C. Estimate the condensation 

rate in kg/h. Properties: Saturated vapour: [T
sat @ 13.12 bar

 = 34°C]

  h
fg
 = 11.27.6 KJ/kg, r

v
 = 10.142 kg/m3

  Saturated liquid: sat 34 26
30°C

2 2

w
f

T T
T

+ +È ˘= = =Í ˙Î ˚
  r

l
 = 596.37 kg/m3, C

pl
 = 4.89 kJ/kg K, m

l
 = 208.13 ¥ 10–6 kg/m s, k

l
 = 0.507 W/m K

[11.08 kg/h]

10.12 Saturated steam at 101.325 kPa is condensed on a 19-mm-diameter tube whose surface is maintained 

  Density (r
l
)… 967.12 kg/m3 Viscosity (m

l
)… 0.324 ¥ 10–3 kg/m s

  C
pl
)... 4.203 kJ/kg K Thermal conductivity (k

l
)... 0.674 W/m K

  Saturated steam at 373.15 K: Vapour density (r
v
)... 0.596 kg/m3

  Latent heat of condensation (h
fg
) ..... 2257 kJ/kg

[(a) 7.7 kg/h (b) 14.1 kg/h]

10.13

kg/min. Saturated steam at 2 bar condenses on the outside of the tube. The entering and leaving 

temperatures of the water are 35°C and 85°C, respectively. Determine the tube length required, 

making appropriate assumptions. [6.36 m]

(S) Vertical Array of Horizontal Tubes

10.14 100 tubes of 12-mm-diameter each are arranged in a square array and are exposed to steam at 

atmospheric pressure. Calculate the mass of steam condensed per unit length of tubes if the tube wall 

  r = 960 kg/m3, m = 282 ¥ 10–6 kg/ m s, k = 0.68 W/m K, h
fg @100°C

 = 2257 kJ/kg

[154 kg/h m]
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10.15 (a) Saturated Freon – 12 (R-12) vapour at 60°C is condensed over a horizontal 1.27-cm-OD tube 

1.27-cm-OD tubes, 10 in each vertical column and 12 in each horizontal row, estimate the total rate 

of condensation. Properties of Refrigerant – 12:

  Saturated vapour: (T
sat

 = 60°C): h
fg
 = 126.33 kJ/kg r

v
 = 59.84 kg/m3

  Saturated liquid: sat

1
( )

2
f wT T T

Ê ˆ= +Á ˜Ë ¯ : r
l
 = 1239.48 kg/m3, C

pl
 = 1.0283 kJ/kg K

  k
l
 = 0.06835 W/m K m

l
 = 2.34.4 ¥ 10–6 Pa s

[(a) 1184.3 W/m2K (b) 1775 kg/h]



Heat Exchangers

11.1 ❏ INTRODUCTION

Heat exchanger is a thermal device which exchanges heat from one fluid stream to the other (one or 

more) fluid stream. It is a process equipment whose sole aim is to transfer the energy stored in one fluid 

to another fluid. Simply stated, the device used to transfer thermal energy from a hotter fluid to a colder 

fluid is called a heat exchanger. In other words, heat exchangers are facilitators in ensuring effective 

exchange of heat between two fluids at different temperatures and prevention of mixing of these fluids 

through a separating wall. Strictly speaking, the word heat exchanger is a misnomer. Perhaps the more 

correct word would be heat transferer.

A large variety of heat exchangers are used extensively in engineering practice. Each of the heat 

exchanger types has advantages and disadvantages. The choice of which configuration to use will depend 

on the following factors: (1) application, (2) types of fluids, (3) pressure and temperature levels, (4) modes 

of heat transfer, (5) pressure-drop restrictions, (6) maintenance and cleaning requirements, (7) cost, (8) 

size, (9) weight, (10) construction materials needed, and so on. However, at the end of the day, the basic 

consideration is whether or not the chosen heat exchanger will handle the heat-transfer rate required in 

the particular application.

Applications include not only process industries, petrochemical industries, refrigeration and air-

conditioning systems, waste heat recovery, chemical plants, space radiators, and thermal power plants but 

also the domestic sector. Room air conditioners and household refrigerators belong to the latter category. 

Capacity varies from a few hundred watts (as in the case of chillers in photographic processing units)

to 500 MW or more for a single unit (as in the case of condensers of thermal power plants). The wide 

spectrum of capacity and application has naturally resulted in the evolution of many designs.

11.2 ❏ CLASSIFICATION OF HEAT EXCHANGERS

The word heat exchanger a broad refers to spectrum of devices which can be classified in several different 

ways. Figure 11.1 illustrates the classification of heat exchangers at a glance.

Heat exchangers are manufactured in various sizes, types, and configurations. Broadly, one can classify 

heat exchangers based on

 (a) heat-transfer process

 (b) heat-transfer mechanism

 (c) flow arrangement

 (d) degree of compactness

 (e) constructional features
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Types of heat exchanger

11.2.1 ● Classification Based on Heat-Transfer Process

Heat exchangers can be of direct contact or indirect contact type.

Direct-contact Heat Exchanger In direct-contact heat exchangers the fluids are allowed to come 

into contact directly. This is possible only when the fluids involved are immiscible like oil and water 

and can be easily separated from each other. Open-feed water heaters, desuperheaters, cooling towers,

and jet condensers are some typical examples.

Direct-contact heat exchangers are more commonly used where simultaneous heat and mass transfer is 

involved. One such exchanger is a water heater (shown in Fig. 11.2) in which steam is bubbled through 
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the water. The steam is condensed and mixes with the water. The two fluid streams (steam and water) 

enter separately but leave as a single stream (warm water). Cooling towers are heat exchangers in which 

direct contact takes place between the hot fluid (water) and the cold fluid (air).

Advantage The cost of heat-transfer surface and problems of fouling are avoided.

Disadvantage The separation of the two liquids at each end of the exchanger is quite often difficult.

Indirect-contact Heat Exchanger If heat transfer is brought about through a wall that separates the 

two fluids, such devices are called indirect-contact type. There is no mixing of the two fluids. In such 

cases such as automobile radiators, the hot and cold fluids are separated by a solid partition. These are 

also called surface heat exchangers.

Indirect-contact heat exchangers are further subdivided into two categories, viz., recuperators (heat

exchangers without storage) and regenerators (heat exchangers with storage).

Recuperative Heat Exchangers In recuperators, a solid surface separates the two fluids at different 

temperatures and the operation is in steady-state mode. Heat is transferred by both convection and 

conduction through the dividing wall.

Regenerative Heat Exchangers In regenerators, on the other hand, one heating surface is exposed at 

certain intervals of time, first to a hot fluid and then to a cold one. The regenerator surface first removes 

heat from the hot fluid and is itself heated in the process. Then the surface gives up this heat to the cold 

fluid. The heat-transfer process in the regenerator is always transient (unsteady sate) unlike recuperators 

which typically operate in steady-state conditions.

Unlike recuperators, the flow of heat in regenerative heat exchangers is not steady and continuous but 

intermittent. These can be either static (fixed bed) or dynamic (rotary). The static type has no moving 

Water heater: a direct-contact heat exchanger



760 Heat and Mass Transfer

parts and consists of a porous mass (matrix) of considerable heat-storage capacity through which the 

hot and cold fluid streams flow alternately (Fig. 11.3(a)). A flow-switching device regulates the periodic 

flowing of the two fluids. During the flow of the hot fluid, the heat is transferred from the hot fluid to 

the matrix where it is stored, making the matrix temperature rise. Later, this stored heat is given up to 

the cold fluid, when, in turn, it passes through the matrix, thus causing its temperature to fall. Then the 

hot fluid flow is switched off, and the cold fluid flow is switched on. Static-type (fixed bed) regenerators 

can be non-compact and are used extensively in high-temperature applications (900 to 1500°C), such as 

air preheaters for coke manufacturing and glass melting tanks.

Typically, in a regenerative rotary heat exchanger, when a portion of the heat exchanger is in the 

hot stream, the solid wall of the regenerator absorbs heat. This section then rotates into the cold stream, 

where the hot wall releases heat to the cold air. Thus, each section of the heat exchanger operates in a 

periodic (transient) mode as it rotates continuously [Fig. 11.3(b)].

The overall operating conditions of the heat exchanger can however be considered steady. Heat 

exchangers with a rotating matrix are also being used in gas liquefaction plants and in energy conservation 

systems.

Regenerative-type heat exchangers: (a) Fixed bed (b) Rotary

11.2.2 ● Classification Based on Heat-Transfer Mechanism

These possibilities for the heat-transfer mechanism include a combination of any two of the following:

Two-stream heat exchangers (single phase-forced or free convection)

Single-steam heat exchangers (phase change-boiling or condensation)

Radiation or combined convection and radiation
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Two-stream Heat Exchangers Usually, the mode of heat transfer is single-phase forced convection 

on both sides of the two-stream heat exchanger. The temperatures of both fluid streams (hot and cold)

change in the exchanger.

Examples Automobile radiators, aircraft oil coolers. Such exchangers can be further classified as follows:

Heat exchange can be liquid-to-liquid, liquid-to-gas, or gas-to-gas. Liquid-to-liquid heat exchangers 

are by far the most common. Both fluids are pumped through the exchanger. The heat transfer on both 

the tube-and-shell sides is by forced convection. As the heat-transfer coefficients are quite large in liquid 

flow, fins are rarely used.

In the liquid-to-gas exchanger, the fins are generally provided on the gas side, where the heat transfer 

coefficient is relatively low.

Gas-to-gas exchangers are used in the air preheaters, cryogenic gas-liquefaction systems, and steel 

furnaces. Internal and external fins generally are used in the tubes to improve heat transfer.

Single-stream Heat Exchangers Of the two fluids, one fluid undergoes phase change. The other 

fluid stream only experiences temperature variation in the exchanger. Condensers, boilers, and radiators 

for space power plants involve condensation, boiling, and radiation, respectively, on one of the surfaces 

of the heat exchanger. Condensers are used in steam power plants, chemical processing plants, and 

nuclear power plants.

Examples Evaporators and condensers in thermal power plants and refrigeration systems.

Figure 11.4 shows a few examples of the heat-exchange processes involved in recuperative heat exchangers.

Some examples of single-stream and two-stream heat exchange processes
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It is good to remember that there are two fluid streams—hot and cold—even in condensers and evaporators, 

classified as single stream exchangers. The term single-stream simply means that the temperature of only 

one stream varies along the exchanger; the other one has essentially the same temperature throughout.

Space Radiators The only way the waste heat from a condenser can be dissipated in a space vehicle 

is by thermal radiation.

11.2.3 ● Classification Based on Flow Arrangement

Depending on the relative orientation of the flow direction of the two fluids exchanging heat, many 

possibilities exist in heat exchangers.

Parallel-flow (Co-current) [Fig. 11.5(a)] Both the hot and cold fluids enter the heat exchanger at 

the same end, and flow through in the same direction, and leave together at the other end (the terms hot

and cold are used in a relative sense).

Counterflow (Counter-current) [Fig. 11.5(b)] The hot and cold fluids enter the heat exchanger at 

the opposite ends and flow through in opposite directions. Heat is transferred continuously from the hotter 

to the colder fluid along the length of the exchanger.

Typical arrangements for fluid flow in heat exchangers

Cross Flow In the cross-flow exchanger, the two fluids usually flow at right angles to each other. There 

are a number of parallel paths for the fluid flowing in the tubes as shown in Fig. 11.5(c) and each path 

is separated physically from the neighbouring paths. The fluid in the tubes is called unmixed. For the 

fluid flowing in the upward direction there are no passages for the fluid flowing across the tubes. This 

fluid is said to be mixed.
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Figure 11.5(d) shows simultaneous parallel and counterflow configuration, while 

Figure 11.5(e) indicates a complex multiple mixed-flow arrangement.

Depending on the design, there are three flow patterns in any cross-flow heat exchanger as shown 

below (Fig. 11.6). One must clearly distinguish between mixed flow and unmixed flow. If the entire fluid 

stream is spread out across the heat exchanger, it is referred to as mixed flow while if the fluid stream is 

divided across the heat exchanger by making it pass through confined passages, it is known as unmixed

flow (Fig. 11.7).

Flow variations for a cross-flow heat exchanger

Mixed and unmixed fluid flow in cross-flow heat exchangers

11.2.4 ● Classification based on Degree of Compactness

Compactness is a favourable feature for any heat exchanger. In gas-to-gas or gas-to-liquid heat exchangers, 

where at least one fluid is a gas with its associated low heat transfer coefficient, it is necessary to pack 

more surface area to compensate for it. This gives large (hA) product on the gas side. A measure of 

compactness is the area density, B. It is defined as the ratio of the heat-transfer surface area of the heat 

exchanger and its volume. If B is greater than 700 m2/m3, the heat exchangers are classified as compact

irrespective of their structural design. The compact heat exchanger itself may not be small. Table 11.1 and 

Fig. 11.8 illustrate the ranges of characteristic hydraulic diameter, D
h
 and the area density for a number 

of different types of heat exchangers.

A couple of examples of compact heat exchangers are automobile radiators with an area density of 

about 1100 m2/m3 and the glass ceramic heat exchangers for some automotive gas-turbine engines with 

an area density of the order of 6600 m2/m3. Incidentally, the human lungs, with an area density of nearly 

20 000 m2/m3, are by far the most compact ones.

Double pipe and shell-and-tube type exchangers have an area density of the order of 70 to 500 m2/m3.

Clearly, these are not considered compact.
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Table 11.1

Type of heat exchanger Hydraulic diameter (mm) Surface area/Volume (m2/m3)

Plain tube, shell-and-tube 40 to 6 60–600

Plate heat exchangers 20 to 10 180–350

Strip fin and louvred fin heat exchangers 10 to 0.5 350–7100

Automobile radiators 5 to 2.5 710–1500

Cryogenic heat exchangers 3.7 to 1.7 1000–2500

Gas turbine rotary regenerators 1.2 to 0.5 3000–7100

Matrix types, wire screen, sphere bed, 

corrugated sheets

2.5 to 0.2 1500–18000

Human lungs 0.2 to 0.15 18000–25000

Classification of heat exchangers based on compactness (surface-area-to-volume ratio)

Compact heat exchangers are generally of the cross-flow configuration (Fig. 11.9). These are used when 

the pressure drops available for pumping the fluids are limited and the heat exchanger load is moderate. 

Small flow passages and laminar flow usually characterize the compact heat exchangers.

A high degree of compactness is desirable when the weight and physical size become important. To 

improve the effectiveness or the compactness of heat exchangers, arrays of finned tubes or plates are 

usually employed. In a gas-to-liquid heat exchanger, for example, the heat-transfer coefficient on the gas

side is much lower than that on the liquid side. Fins are, therefore, used on the gas side. The extended 

heat transfer surface on the gas side becomes much more compact. Some of the applications include 

automobiles, marine, aircraft, or aerospace, cryogenic systems, and refrigeration and air conditioning.
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Cross-flow compact heat exchangers

11.2.5 ● Classification Based on Constructional Features

Heat exchangers can also be categorized according to their constructional features.

Tubular Heat Exchangers Tubular exchangers are manufactured in several sizes, flow arrangements, 

and types. They can operate over a wide range of operating pressures and temperatures. Due to ease 

of manufacturing and relatively low cost these exchangers find their widespread use in engineering 

applications.

Concentric-Tube Heat Exchangers The simplest heat-exchanger geometry is the tube-in-tube (also 

known as the co-axial, concentric tube or the double-pipe) heat exchanger. The parallel and counterflow 

patterns generally involve the tube-in-tube configuration. One fluid flows in the central (inner) tube and 

the other fluid flows through the annulus. A truly co-current or counter-current exchanger is rarely found 

in practical applications.

Shell-and-tube Heat Exchangers The commonly used shell-and-tube exchanger consists of round 

tubes mounted on a cylindrical shell with their axes parallel to that of the shell. Several types of shell-

and-tube exchanger are available based on the flow configurations and constructional details. When 

large quantities of fluid are to be handled as in the chemical process industry, the food industry, or the 

petroleum industry, pumping power (pressure drop) consideration is more important than space limitation. 

It is advisable to keep the equipment size reasonable from the point of view of capital cost. The shell and 

tube exchangers can meet these requirements. The fluid flowing outside the tubes is mixed. The baffles 

are installed to support the tubes, direct the flow on the shell side and to promote turbulence (mixing) in 

addition to keeping the velocity across the tubes high and nearly at right angles. It is a cross-counterflow

mode of operation. Figure 11.10(a) shows an arrangement with a single pass for the fluid inside the tubes 

through the exchanger and a single pass on the shell side as compared to Fig. 11.10(b) where there are two

passes through the exchanger on the tube side. Many other configurations can be obtained by combining 

and modifying the types shown in Fig. 11.10 and using them in series- or parallel-flow circuits. As the 

number of passes increases, the effectiveness approaches that of an ideal counterflow heat exchanger.

If the tube-side fluid makes a single traverse through the exchanger, it is called one-tube-pass. The 

one-shell-pass, two-tube-pass shell-and-tube heat exchanger is more popular because only one end of the 

exchanger requires perforation to lead the tubes in and out. The first tube pass gives parallel flow, and 



766 Heat and Mass Transfer

the second gives counterflow. Shell-and-tube heat exchangers are commonly used in power plants, oil 

refineries, and chemical processing plants.

The major components are tubes, tube sheets, baffles, front- end head, rear-end headers, and the shell.

Some of these are standardized (by the TEMA, i.e., Tubular Exchanger Manufacturers Association).

In Fig. 11.11, situations are depicted in which there is more than one pass for the two fluids. The fluid 

flowing through the tubes is called the tube fluid while the fluid flowing outside the tubes is known as the 

shell fluid. The baffles (Fig. 11.12) serve to create turbulence and thereby enhance the heat-transfer rate.

Cross-flow Heat Exchangers (Fig. 11.13) An increase in complexity occurs if cross flow is used. The 

two fluids follow flow paths that are perpendicular to each other. Each fluid flow must stay in a prescribed 

path and is not permitted to mix to the right or left. Usually, the mixed fluid case has the least pressure 

drop associated with the flow, because there is less surface for fluid shear to take place. But less surface 

is not so desirable from the point of view of heat transfer. Heat exchangers with both fluids unmixed are 

very efficient in transferring energy, because of the large amount of surface area in a compact volume.

Shell-and-tube heat exchanger: (a) One-shell-pass and one-tube-pass (b) One-shell-pass and two-tube-pass



Heat Exchangers 767

Two kinds of shell-and-tube heat exchangers

Types of shell baffles

Mixed and unmixed fluid flow in cross-flow heat exchangers

Cross-flow heat exchangers are more economical in space utilization compared to the concentric-tube 

type. Aircraft oil coolers are a typical example of the application of cross-flow exchangers which require 

minimum space. Sometimes these are preferable when it makes the layout of ducts and piping more 

convenient and accessible.
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Plate-heat Exchangers The plate-heat exchangers (Fig. 11.14) usually are constructed of rectangular 

metal thin plates with about 5 mm spacing. The plates may be smooth or may have some form of 

corrugation. Corrugations on the plates promote turbulence and very high heat-transfer rates. Since 

the plates are generally arranged for general countercurrent flow, very close approach temperatures are 

obtained. Due to these advantages, the plate-heat exchanger is being used extensively in an increasing 

number of industrial applications. The area density of plate exchangers is in the range of 100 to 200 m2

/ m3. The plates can be easily dismantled. These are normally used in the food-processing industry. The 

pressure and temperature are however limited to 20 bar and 150°C.

Plate-heat exchanger

Extended-Surface Heat Exchangers

Plate-fin Heat Exchangers (Fig. 11.15) The degree of 

compactness can be significantly improved (up to about 

6000 m2/m3) by using the plate-fin type of configuration. 

Louvred or corrugated fins are sandwiched between an 

array of parallel flat plates. Plate-fin exchangers are 

generally used for gas-to gas applications, but they are 

meant for low-pressure applications usually below 10 bar. 

The operating temperatures are limited to about 800°C. 

Plate-fin heat exchangers also find use in cryogenic 

applications.

Tube-fin Heat Exchangers These are used usually in gas-to-liquid heat exchange with liquid being the 

tube-side fluid. Figure 11.16 illustrates a typical configuration. Tube-fin exchangers can withstand a wide 

range of tube fluid operating pressures usually not above 30 bar and operating temperatures from ultra 

low cryogenic applications to about 870°C. These exchangers have an area density of about 330 m2 / m3

which is much less than that of the plate-fin exchangers.

Plate-fin heat exchanger
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Cross-flow heat exchangers with extended surfaces (tube-fin)

11.3 ❏ TEMPERATURE DISTRIBUTION IN HEAT EXCHANGERS

The heat-exchanger fluid temperatures vary with different geometric configurations and flow conditions. 

At different locations in the heat exchanger, the temperature differences between the two fluids are 

different. The geometry and operating conditions are taken into account when we consider a specific heat 

exchanger. The temperature of each fluid varies along the length of the heat exchanger depending on the 

heat capacity rate that is the mass flow rate-specific heat product ( )pmC  or C. Usually, the temperature 

distribution is plotted as a function of the distance along the length of the heat exchanger.

Figure 11.17(a) shows a parallel-flow arrangement in which both fluids flow in the same direction, 

with the cold fluid experiencing a temperature rise and the hot fluid a temperature drop. The exit 

temperature of the cold fluid cannot exceed of the hot fluid. The driving temperature differential DT, i.e., 

(T
hot

 – T
cold

) decreases continuously from end to end in the parallel-flow mode. Figure 11.17(b) illustrates 

a counterflow arrangement in which fluids flow in opposite directions. The exit temperature of the cold 

fluid can be higher than that of the hot fluid. Ideally, the exit temperature of one fluid may approach the 

inlet temperature of the other. Note that the temperature difference DT varies much less from end to end 

in the counterflow mode. This has significant influence on the exchanger performance. Note carefully how 

the relative values of the heat capacity rates of the two fluids affect the nature of temperature variation 

in both parallel and counterflow heat exchangers.

Figure 11.18(a) corresponds to a situation in which the hot fluid condenses and heat is transferred 

to the cold fluid, causing its temperature to rise along the path of flow. In Fig. 11.18(b) cold liquid is 

evaporating and the hot fluid is being cooled along its path of flow. Note that in the case of condensing 

vapour and evaporating liquid, the temperature remains essentially constant since during phase change, 

the heat-capacity rate becomes almost infinite. Figure 11.18(c) characterizes a counterflow heat exchanger 

in which the temperature rise in the cold fluid is equal to the temperature drop in the hot fluid; thus 

the temperature difference DT between the hot and cold fluids is constant throughout. However, in all 

other cases, the temperature difference DT between the hot and cold fluids varies with position along the 

direction of flow.

In multipass and cross-flow arrangements, the temperature distribution in the heat exchanger display 

a more complex pattern. The temperature profiles for a typical one-shell-pass and two-tube-pass heat 
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Temperature distributions in (a) parallel flow (PF), and (b) counterflow (CF), 

concentric tube (double pipe) heat exchangers

Temperature profiles for a heat exchanger with (a) C
h
Æ  (condenser), 

(b) C
c
Æ  (evaporator), and (c) C

c
 = C

h
. (balanced heat exchanger)
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(a) Temperature variation in a one-shell-pass and 

two-tube-pass heat exchanger (the hot and cold 

fluid streams enter at the same end).

(b) Temperature variation in a one-shell-pass 

and two-tube-pass heat exchanger (the hot 

and cold fluid streams enter at the opposite 

ends).

exchanger are illustrated in Fig. 11.19(a) and (b) depending on whether the two fluids enter at the same 

end or at the opposite ends. In this context, the two terms approach and cross are generally used which 

are explained below.

● Approach and Cross

The degree of approach of a heat exchanger is the minimum local temperature difference between hot and 

cold fluids along its length. Depending on the flow configuration, heat duty, single-stream or two-stream 

etc, the temperature approach could occur anywhere in the exchanger. For two-stream heat exchangers 

with constant specific heats the approach is min (T
h
 – T

c
). In the case of parallel-flow and cross-flow

exchangers, the temperature approach is (T
he

 – T
ce

). In the case of counterflow, if C
c
 < C

h
, the approach 

is (T
hi
 – T

ce
) while it is (T

he
 – T

ce
) for C

h
 < C

c
. In one-shell and two-tube-pass exchanger, (T

he
 – T

ce
) is 

the approach (when both fluid streams enter at the same end). Sometimes T
ce

 may be greater than T
he

as may happen when hot and cold fluids enter at different ends. In that case (T
ce

 – T
he

) is referred to as 

temperature cross.

In the case of a cross-flow heat exchanger, the temperature varies in two directions as illustrated in 

Fig. 11.20 for the hot and cold fluids. The temperature variation in the case of a fixed-bed regenerator 

in which the temperature is plotted along time is indicated for storage and retrieval periods in Fig. 11.21. 

For a rotary regenerator, the temperature changes are indicated in Fig. 11.22.
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Typical temperature profiles for a cross-flow heat exchanger with both fluids unmixed

Fixed-bed regenerator

A rotary regenerative heat exchanger
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11.4 ❏

FOULING FACTORS

Most heat exchangers involve heat transfer from one fluid to another across a plane wall or a tube 

wall—more commonly a tube wall.

Consider the two fluids maintained at different constant temperatures T
i
 and T

o
 flowing on the inside 

and outside of a separating plane metal wall of thermal conductivity k, thickness L and the associated 

heat-transfer coefficients on the two sides are h
i
 and h

o
. The quantity of heat to be transferred is Q  and 

the surface area is A. Referring to the schematic and the thermal resistance network shown in Fig. 11.23, 

the heat-transfer rate can be written as

1 2
1 2

( )
( ) ( )i i o o

kA T T
Q h A T T h A T T

L

-
= - = = -

Overall heat transfer through a plane-wall heat exchanger

In terms of the overall temperature difference, one can write

overall

th conv, cond,wall conv,

i o

i o

T T T
Q

R R R R

D -
= =

S + +

Also overallQ UA T= D

where th

1 1 1

i o

L
R

UA h A kA h A
= = + +Â

Hence, for this clean, unfinned plane wall heat exchanger, the overall heat-transfer coefficient, U is given by

1 1 1

i o

L

U h k h
= + +

Note that in this case the area in contact with both hot and cold fluid is the same, but in other types 

of exchangers such as concentric tube or shell-and-tube types, the inside and outside areas are different.

It is noteworthy that the overall (total) thermal resistance to heat transfer between the two fluids in a 

heat exchanger depends not only on the thermal resistances due to convective heat transfer of both fluids, 
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and conduction through the solid wall, but also due to additional scale deposits called fouling, that may 

have adhered to the wall surfaces. For a particular application, some or all of these resistances may be 

negligible. In general, there are five contributors to the overall thermal resistance:

two convective resistances,

two fouling resistances, and

a wall resistance,

Over and above these resistances, the effect of finned surfaces (on either or both sides) in reducing the 

convective resistance should also be taken into account in evaluating the overall heat-transfer coefficient.

Figure 11.24 illustrates a typical double-pipe heat exchanger and the corresponding thermal circuit 

and temperature variation.

Thermal circuit and temperature profile associated with heat transfer in a concentric tube heat exchanger.



Heat Exchangers 775

The following parameters affect the performance of any heat exchanger:

hm  = Mass-flow rate of the hot fluid (kg/s)

C
ph

 = Specific heat capacity of the hot fluid (J/kg K)

cm  = Mass-flow rate of the cold fluid (kg/s)

C
pc

 = Specific heat capacity of the cold fluid (J/kg K)

T
hi
 = Hot-fluid inlet temperature (°C)

T
he

 = Hot-fluid exit (outlet) temperature (°C)

T
ci
 = Cold-fluid inlet temperature (°C)

T
ce

 = Cold-fluid exit temperature (°C)

k = Thermal conductivity of the separating wall material (W/m K)

R
fi
 = Fouling resistance (factor) due to scaling and deposits on the inside of the separating wall (m2 K/W).

R
fo
 = Fouling resistance (factor) due to scaling and deposits on the outside of the separating wall 

(m2 K/W).

h
i
 = Convective heat-transfer coefficient on the inner surface of the separating wall (m2 K/W)

h
o
 = Convective heat-transfer coefficient on the outer surface of the separating wall (m2 K/W)

h
o,i

 = Overall fin efficiency on the inside surface

h
o,o

 = Overall fin efficiency on the outside surface

Evaluation of the overall heat-transfer coefficient is central to thermal design. Wall resistances are 

known from the material’s thermal conductivity and size. Fouling resistances are assumed based on 

experience. The inside and outside heat-transfer coefficients are obtained from the appropriate correlations 

after obtaining the relevant data.

Representing the heat-transfer rates in terms of thermal resistances, we have

overall

total

T
Q

R

D
=

where total conv, fouling, wall fouling, conv,i i o oR R R R R R= + + + +

Heat-transfer rate is

( )mQ UA T= D , where U is the overall heat-transfer coefficient.

and total

1
R R

UA
= S = , U being based on the average heat-transfer coefficient on either side and the mean 

temperature difference between the streams. A refers to the surface area of the side on which it is based.

Now,
wall

ln( / )1 1 1

( ) 2 ( )

fo f io i

o o i i

R RD D

UA hA A k L A hAp
= + + + + (11.1)

so that the overall heat-transfer coefficient based on the hot side (say outside tube) is

wall

ln( / )1 1 1

2

o o i o
fo fi

o o i i

D D D D
R R

U h k h D

Ê ˆ= + + + +Á ˜Ë ¯
(11.2)

If the fins are used then the resulting surface area has to be considered by including area- weighted-fin

efficiency, or overall fin efficiency, h
o
.
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total wall
, , , ,

1 1fi fo

o i i i o i i o o o o o o o

R R
R R

h A A A h Ah h h h
= + + + + (11.3)

For finned surfaces, the overall fin efficiencies h
o,o

 and h
o,i

 for fins on the outer and inner surfaces, 

respectively are to be used. When no fins are present, these efficiencies become unity.

An overall heat-transfer coefficient, U, is then defined through the relation

wall
, , , ,

1 1 1fi fo

o i i i o i i o o o o o o o

R R
R

UA h A A A h Ah h h h

È ˘
= + + + +Í ˙
Î ˚

(11.4)

The area used in the UA product can be either the inside area, A
i
, or the outside area, A

o
, of the tubes 

or channels in a heat exchanger. However, the product UA = U
i
A

i
 = U

o
A

o
 is a constant because a heat 

exchanger has only one total thermal resistance:

total

1 1 1

i i o o

R
UA U A U A

= = = (11.5)

If the wall resistance is negligible (due to higher thermal conductivity of wall material or due to small 

wall thickness) fouling in negligible and fins are not present on either side, then with A
i
ª A

o
,

1
1 1 i o

i o i o

h h
U

h h h h

-
È ˘= + =Í ˙ +Î ˚

(11.6)

The value of U will change, depending on whether the inside area is used to define it (U
i
) or the outside 

area is used (U
o
). For example, consider a circular tube with fins on its outside, the outside heat transfer 

area is significantly different from that on the inside of the tube. Hence, U
i
 will be different from U

o
.

The magnitude of U can be determined by evaluating each term in Eq. (11.3) using information about 

the fluids, the flow rates, and the geometry of a specified heat exchanger. The convective resistances, 

R
conv

 = 1/h
o
hA, are evaluated using appropriate correlations for the convective heat-transfer coefficients, 

h. The overall surface efficiency, h
o
 is given by

fin
fin

tot

1 (1 )o

A

A
h h= - -

where A
fin

 is the surface area of the fins and h
fin

 is the fin efficiency. A
tot

 is the total heat-transfer surface 

area including the fins and bare (exposed) surface.

h
o
, is unity if the surface has no fins or is evaluated with information about the efficiency of fins/extended 

surfaces. Alternatively, one can calculate, conv
fin fin unfin

1

[ ]
R

h A hAh
=

+
.

The wall resistance, R
w
, is due to steady one-dimensional conduction through the solid wall.

(11.7)wall

wall

ln( / )
(circular tube)

2

(plane wall)

o ir r
R

kL

L
R

kA

p
=

= (11.8)

One must note that in the wall thermal resistance, it is the wall thermal conductivity (not the fluid thermal 

conductivity) that is to be used.
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11.4.1 ● Fouling Factors

It is a well-known fact that the inner surfaces of the tubes of a heat exchanger cannot remain clean after 

many months of operation. When a heat exchanger has been in operation over a long period, deposits 

are likely to accumulate on the tube surfaces in contact with the hot and cold fluids or there could be 

deterioration of surfaces themselves due to corrosion. These effects, over a period of time, adversely affect 

the exchanger performance and the heat-transfer surface so affected is said to be fouled. In an extreme 

situation, with the passage of time, there may even be clogging of flow passages. Typical fouling materials 

are mineral deposits, corrosion products, dirt, biological growth, deposits caused by chemical reactions 

in the fluid, and sedimentation.

Usually, fouling is classified into six categories:

Precipitation fouling, or scaling when the solution of dissolved materials is crystallized on the heat 

transfer surface.

Particulate fouling, when the finely divided solids suspended in the fluid are collected on the heat 

transfer surface.

Chemical reaction fouling, when the deposits due to chemical reaction are formed on the heat 

transfer surface.

Corrosion fouling, when the corrosion products are deposited on the heat-transfer surface.

Biological fouling, when the micro-organisms get attached to a heat-transfer surface.

Solidification fouling, when pure liquid or a component from the liquid phase is crystallized on a 

sub-cooled heat transfer surface.

If the fouling thickness becomes too high, it can result in 

Increased fluid flow resistance (pressure drop)

Oversized or redundant equipment to accommodate the increased thermal resistance resulting in 

higher capital cost

Use of special materials of construction to minimize the effects of fouling

Increased cleaning requirements resulting in increased downtime and loss of production

Heat losses due to thermal inefficiencies

Costs incurred due to periodic cleaning of heat exchangers

The effects of fouling are usually expressed in terms of a fouling resistance or fouling factor, R
f
, which 

has units of m2 K/W. Fouling has the effect of adding a resistance of the order of 10–4 m2 K/W in series. 

The degree of fouling depends on the type of fluid—specific type of fluid heat exchanger materials, 

operating surface temperatures, fluid flow velocities and the length of service age.

It is noteworthy that if U is much less than 10 000 W/m2 K fouling may be insignificant as it will 

introduce only small resistances in series. Clearly, in a water-to-water heat exchanger, for instance, with 

U of the order of 2000, fouling could be important; but in a finned-tube gas-to-gas heat exchanger in 

which U may be around 200, fouling will be rather irrelevant. Hence, fouling is crucial or otherwise 

depending on the order of magnitude of U.

11.4.2 ● Comparison of Clean and Fouled Heat Exchangers

With a new or clean surface,

clean clean
total,new

LMTD
(LMTD)oQ U A

R
= =
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Similarly, for a fouled dirty surface,

dirty dirty
total,fouled

LMTD
(LMTD)oQ U A

R
= =

Now, total,new
clean

1 1 1 1
ln

2

o

i i i o o

r
R

U A h A kL r h Ap

È ˘Ê ˆ= = + +Í ˙Á ˜Ë ¯Î ˚
(11.9)

The overall heat-transfer coefficient for a clean heat-transfer surface (U
clean

) is

1

clean

1 1
lno o o

i i i o

r r r
U

r h k r h

-
È ˘Ê ˆ= + +Í ˙Á ˜Ë ¯Î ˚

(11.10)

The expression of U for a fouled heat-transfer surface that incorporates fouling factors (U
dirty

) is

1

dirty

1 1
lno o o o

fi fo
i i i i o

r r r r
U R R

r h r k r h

-
È ˘Ê ˆ= + + + +Í ˙Á ˜Ë ¯Î ˚

(11.11)

with total,fouled
dirty

1 1 1 1
ln

2

fi foo

i i i i o o o

R Rr
R

U A h A A kL r h A Ap

È ˘Ê ˆ= = + + + +Í ˙Á ˜Ë ¯Î ˚
(11.12)

When the tubes are new, one can compute the value of U
clean

 from the convective heat-transfer coefficients 

on their inside and outside surfaces, and the thermal resistance due to conduction through the tube wall.

The value of U
clean

 will be reduced to U
dirty

 after the surfaces of the tubes are covered with deposits of 

dirt, ash, soot, scale, or other substances over a period of operation. Then

fouling
dirty clean dirty clean

1 1 1 1
oro

fi fo
i

r
R R R

U U r U U

Ê ˆ
= + + = +Á ˜Ë ¯

(11.13)

For a finned heat-transfer surface, fouling thermal resistance, R
fouling

 = R
f
/h

o
A.

11.4.3 ● Dominant Resistance

It is possible that one of the resistances is significantly larger than the others. That resistance is called 

the dominant or controlling resistance. This might happen with a gas flow (low heat transfer coefficient)

on one side of a thin-walled heat exchanger and boiling (high heat-transfer coefficient) on the other 

side. If the areas on the two sides are comparable with negligible wall conduction resistance, then the 

gas-side thermal resistance would dominate the total thermal resistance. In the heat exchanger design, a 

better estimate of the exchanger area can be obtained if more effort is directed to quantify the dominant 

resistance rather than concentrating on a more accurate estimate of a minor resistance.

Consider a horizontal steel pipe carrying hot water and exposed to atmospheric air. The overall 

heat-transfer coefficient U can be estimated from the expression 

1
1 1

i o

U
h h

-
È ˘= +Í ˙
Î ˚

, neglecting pipe-wall 

resistance and assuming thin-walled pipe. Typically, in such a case h
i
 (water-side) = 2000 W/m2 K and 

h
o
 (air-side) = 10 W/m2 K, with U = 9.95 W/m2 K. Take another case of a steam condenser in which 

the water-side inside heat-transfer coefficient is 3000 W/m2 K and the outside condensation heat-transfer 
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coefficient is 15000 W/m2 K. It follows that the value of U will be 2500 W/m2 K which is less than the 

lesser of the two values of individual heat transfer coefficients. (Clearly, U is almost completely controlled 

by the lower value of the heat-transfer coefficient associated with higher thermal resistance)

11.5 ❏ ANALYSIS OF HEAT EXCHANGERS

In the analysis of a heat exchanger involving heat exchange between two fluids separated by a solid wall, 

when the temperatures of the hot and cold fluids are held constant, the rate of heat transfer is

hot cold

total

T T
Q

R

-
= (11.14)

Usually, however, the fluid temperatures are not constant along the separating wall. The analysis must 

therefore take into account the varying temperature difference between the two fluids along the heat 

exchanger.

Consider the heat transfer across a differential element of a heat exchanger of area dA with temperature 

drop dT
h
 and temperature rise dT

c
 for the hot and cold fluids respectively.

From energy balance, we have

( )p h hdQ mC dT= - (11.15)

= ( )p c cmC dT+ (11.16)

= UdA (DT) (11.17)

where subscripts

h = hot, c = cold

m  = mass flow rate, C
p
 ¼ specific heat capacity

U = local overall heat-transfer coefficient

Integrating between appropriate temperature limits, one has

( ) ( ) ( )p h hi he h hi heQ mC T T C T T= - = - (11.18)

= ( ) ( ) = ( )p c ce ci c ce ciQ mC T T C T T- - (11.19)

= mQ UA TD (11.20)

where subscripts i and e denote inlet and exit respectively where C
h
 and C

c
 are the heat capacity rates of 

the hot and cold fluid, respectively, DT
m
 is the appropriate effective mean temperature difference

The above equations can now be represented in the functional form of dependent and independent 

variables as

, ,he ceQ T T  = function (C
h
, C

c
, T

hi
, T

ci
, U, A, flow arrangement) (11.21)

Any two of the dependent variables will determine the remaining ones. The first four of the independent

variables are the operating conditions and the remaining three parameters are the ones under designer’s 

control.

In the case of condensers and evaporators, involving phase change the heat transfer rate will be given 

by fgQ mh= .

Energy balance is crucial in the heat-exchanger analysis.
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● Sizing and Rating Analyses

The analysis of heat exchangers generally involves the use of energy balance, the heat transfer 

rate equation, and the evaluation of the total thermal resistance between the two fluid streams.

The objective of the analysis is either (1) to develop the information needed to build a new heat 

exchanger that will transfer a given heat transfer rate (a design or sizing problem), or (2) to determine 

the heat transfer rate (or heat duty) possible with a given heat exchanger (a rating problem).

Sizing problem [Fig. 11.25(a)] deals with determining the surface area (and geometric configuration)

for the specified service, i.e., heating/cooling load within the constraints of pressure loss, etc. In this case, 

the type of heat exchanger is known, along with the two fluids and their flow rates. In addition, the inlet 

temperatures of the two fluids and the required heat duty are known. (This is equivalent to specifying 

the exit temperatures of the two fluids.) The task is to determine the heat exchanger size or area needed 

to provide a specified heat-transfer rate.

Rating problem [Fig. 11.25(b)] deals with determining the performance (exit temperatures, heat 

transfer rates, pressure loss) for specified inlet conditions of a specific design. For a rating problem,

geometry (number, size, spacing, and layout of tubes, fin geometry, shell geometry, etc.) and heat exchanger 

type (shell-and-tube, plate-fin, etc.) are known, and the two fluids, the flow rates, and the inlet temperatures 

are given. The task is to determine the overall heat-transfer rate. (This is equivalent to determining the 

exit temperatures of the two fluids.).

Two analyses of heat transfer in a heat exchanger are commonly used: the Log Mean Temperature 

Difference (LMTD) method and the effectiveness-NTU (e-NTU) method. While either approach can be 

used for either a sizing or a rating-type problem, typically the LMTD method is used for sizing problems 

and the e-NTU approach is used for rating. In both methods of analysis, the overall heat transfer 

coefficient is required.

Sizing and Rating analyses

11.6 ❏ THE LMTD METHOD

In this section, we develop a relationship between the effective mean temperature difference and the 

heat-exchanger configuration and operating conditions.

11.6.1 ● The Parallel-Flow Heat Exchanger

The hot and cold fluid temperature profiles are shown in Fig. 11.26. The temperature difference DT ∫
(T

h
 – T

c
) is initially large but decreases rapidly with increasing x, approaching zero asymptotically. For 
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Temperature distribution in a counter-flow heat exchanger

such an exchanger, the exit temperature of cold fluid can never exceed that of the hot fluid. The subscripts 

i and e designate inlet and exit ends of the heat exchanger.
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We apply an energy balance to differential elements in the hot and cold fluids. Each element is of length 

dx and heat-transfer surface area dA. The main assumptions involved in the analysis are the following:

1. Steady operating conditions exist.

2. The heat exchanger is insulated from its surroundings. The only heat exchange is between the 

hot and cold fluids.

3. Axial conduction along the tubes can be ignored.

4. Changes in potential and kinetic energy are negligible.

5. The specific heats of the two fluids are constant.

6. The overall heat transfer coefficient is constant and uniform.

Let us remember that the specific heats do change with temperature variations, and the overall 

heat-transfer coefficient may also change because of variations in fluid properties and flow conditions. 

Fortunately, in most of the applications such variations are insignificant, and average values of C
pc

, C
ph

and U for the heat exchanger are mostly acceptable.

Applying an energy balance to each of the differential elements, one gets

and ( )h ph h h h h hi he c pc c c cdQ m C dT C dT C T T dQ m C dT C dT= - ∫ - = - = ∫ -

where C
h
 and C

c
 are the hot and cold fluid heat-capacity rates, respectively. One can integrate these 

expressions across the heat exchanger to get the overall energy balance.

( ) ( ) and ( ) ( )h ph hi he h hi he c pc ce ci c ce ciQ m C T T C T T Q m C T T C T T= - = - = - = -

The heat transfer across the surface area dA can also be expressed as

dQ U T dA= D

where DT = (T
h
 – T

c
) is the local temperature difference between the hot and cold fluids.

But andh c
h c

dQ dQ
dT dT

C C

- -
= =

Now ( ) h cd T dT dTD = -

\
1 1

( )
h c

d T dQ
C C

Ê ˆD = - +Á ˜Ë ¯

Substituting for dQ UdA T∫ D  and integrating across the heat exchanger, one has

( ) 1 1 1 1
or ln

e A

e

h c i h ci o

Td T
U dA UA

T C C T C C

DD Ê ˆÊ ˆ Ê ˆ= + = - +Á ˜ Á ˜ Á ˜D DË ¯ Ë ¯ Ë ¯Ú Ú

Substituting for C
h
 and C

c
 equal to, /( )hi heQ T T-  and /( )ce ciQ T T- , respectively it follows that

ln [( ) ( )]e hi he ce ci
hi ci he ce

i

T T T T T UA
UA T T T T

T Q Q Q

D - -Ê ˆ Ê ˆ= - + = - - - -Á ˜Á ˜ Ë ¯DË ¯

For the parallel-flow heat exchanger, we note that, DT
i
 = (T

hi
 – T

ci
) and DT

e
 = (T

he
 – T

ce
)

Then

and

( ) ( )

or
ln( / ) ln( / )

hi ci he ce i e

e i i e

e i i e

T T T T T T

T T T T
Q UA Q UA

T T T T

- - - = D - D

D - D D - D
= =

D D D D
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Thus, the appropriate mean temperature difference is a log mean temperature difference, DT
lm

 or LMTD. 

Accordingly,

lmQ UA T= D or UA (LMTD)

where LMTD or
ln( / ) ln( / )

e i i e
m

e i i e

T T T T
T

T T T T

D - D D - D
D = =

D D D Dl
(11.22)

11.6.2 ● The Counterflow Heat Exchanger

Shown in Fig. 11.27 are a counterflow heat exchanger and the hot and cold fluid temperatures. The 

appropriate temperature difference to use is obtained by applying conservation of energy and the heat-

transfer rate equation to the differential segment shown in the figure. The positive x-direction is from 

the left end to the right end of the heat exchanger. The main assumptions involved in the analysis are 

the following:

1. Steady-state conditions prevail.

2. Constant specific heats if the flow is single phase. If there is a phase change (boiling or conden-

sation), it occurs at a constant temperature (constant pressure).

3. Constant overall heat-transfer coefficient over the complete heat exchanger.

4. If there are multiple tubes, each tube has the same mass-flow rate. Also, the flow outside the tubes 

is evenly distributed across the heat exchanger.

5. Temperatures and velocities are uniform over all cross-sectional flow areas.

6. The two fluids exchange heat only with each other, and there is no shaft work or heat generation.

7. Potential and kinetic energy effects are ignored.

8. Axial conduction along the solid surfaces is ignored.

9. Heat conduction in the longitudinal direction of the walls is negligible.

10. No heat loss from the heat exchanger.

At the differential element in the heat exchanger, the heat-transfer rate can be expressed in terms of 

the overall heat-transfer coefficient U as

( )h cdQ U T T dA= - (11.23)

where dQ  is the differential heat-transfer rate in the differential area dA, which stretches from x to (x + 

dx). The temperature difference (T
h
 – T

c
) is the local temperature difference, which varies all along the 

heat exchanger, and U is the overall heat-transfer coefficient.

Conservation of energy applied to the hot fluid gives

( ) ( )h ph hi he h hi heQ m C T T C T T= - = - (11.24)

where we define pC mC∫ , the heat-capacity rate. Similarly, for the cold fluid,

( ) ( )c pc ce ci c ce ciQ m C T T C T T= - = - (11.25)

Both the hot and cold fluid temperatures decrease in the positive x-direction. Thus, the differential heat 

transfer rates between x and (x + dx) are

( )h ph h h hdQ m C dT C dT= - = - (11.26)

( )c pc c c cdQ m C dT C dT= - = - (11.27)

\ h h c cdQ C dT C dT= - = - (11.28)

We note that ( )h c h cd T T dT dT- = - (11.29)
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Temperature distribution in a counter-flow heat exchanger
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andh c
c c

dQ dQ
dT dT

C C

- -
= =

It follows that

1 1
( )h c

h c h c

dQ dQ
d T T dQ

C C C C

- Ê ˆ- = + = - -Á ˜Ë ¯
(11.30)

Substituting for dQ  and rearranging, we get

( ) 1 1

( )

h c

h c h c

d T T
U dA

T T C C

- È ˘= - +Í ˙- Î ˚

Integrating over the heat exchanger length from end i to end e gives

0

( ) 1 1
e A

h c

h c h ci

d T T
U dA

T T C C

- Ê ˆ= - -Á ˜- Ë ¯Ú Ú (11.31)

or
1 1

ln e

i h c

T
UA

T C C

DÊ ˆ Ê ˆ= - -Á ˜ Á ˜DË ¯ Ë ¯
(11.32)

where for this counterflow heat exchanger,

counterflow
i hi ce

e he ci

T T T

T T T

D ∫ -

D ∫ -
(11.33)

We note that

1 1
( )/ and ( )/hi he ce ci

h c

T T Q T T Q
C C

= - = -

Substituting these expressions, we have

ln lne he ci hi he ce ci

i hi ce

T T T T T T T
UA

T T T Q Q

È ˘D - - -Ê ˆ Ê ˆ Ê ˆ Ê ˆ= = - -Í ˙Á ˜ Á ˜Á ˜ Á ˜ Ë ¯ Ë ¯D -Ë ¯ Ë ¯ Î ˚
(11.34)

or ln [( ) ( )]i
hi ce he ci

e

T UA
T T T T

T Q

DÊ ˆ = - - -Á ˜DË ¯

Rearranging, we obtain

ln

i e

i

e

T T
Q UA UA T

T

T

D - D
= = D

DÊ ˆ
Á ˜DË ¯

lm
(11.35)

where the quantity DT
lm

 is called the log mean temperature difference, abbreviated or LMTD and is 

defined as

ln ln

i e e i
m

i e

e i

T T T T
T

T T

T T

D - D D - D
D = =

D DÊ ˆ Ê ˆ
Á ˜ Á ˜D DË ¯ Ë ¯

l
(11.36)
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This expression for LMTD is identical to that obtained for parallel-flow arrangement. The only difference 

is in the evaluation of the temperature difference at the two ends of the heat exchanger. For the parallel-

flow heat exchanger, the end temperature differences are:

parallel flowi hi ci

e he ce

T T T

T T T

D ∫ -

D ∫ -
(11.37)

In parallel-flow arrangement, DT
i
 is always greater than DT

e
. Hence, DT

i
∫ DT

max
 and DT

e
∫ DT

min
.

However, it is possible that in a counterflow exchanger DT
i
 could be less than DT

e
 depending on the flow 

rates and heat capacities of the fluids. Equation (11.35) will still give a positive value for DT
lm

 since (DT
i

– DT
e
) is negative and ln (DT

i
 / DT

e
) will also be negative.

The average arithmetic temperature difference, DT
am

 is always larger than the LMTD or DT
lm.

If the 

ratio DT
i
/DT

e
£ 2, DT

am
 approaches DT

lm
. If there is slight variation in the temperatures of the two fluids 

along the length of the heat exchanger, the temperature difference can be calculated as the arithmetic 

mean of the inlet and exit differences:

1
( ) or 1

2 2

e i
am i e

e

T T
T T T

T

D DÊ ˆD = D + D = +Á ˜DË ¯
(11.38)

In brief, the comparison of parallel-flow and counterflow heat exchangers is given below:

Parallel-flow Counterflow

◆  For the given mass-flow rates and temperature changes, 

the counterflow heat exchanger requires less surface area 

than its parallel flow counter part.

◆  The temperature T
c, out

 can at best be equal to T
h, out

 when 

the exchanger has infinite area. T
c, out

 greater than T
h, out

 is 

impossible.

◆  Less quantity of heat is transferred.

◆  In this case with infinite area, one of the fluid 

streams would leave at the entering temperature 

of the other.

◆  The heat-transfer potential for a given pair of 

fluids in a given heat exchanger is greater for 

counterflow than for parallel flow.

◆  The temperature T
c, out

 can be greater than T
h, out

.

◆  Greater quantity of heat can be transferred 

operating under otherwise similar conditions.

11.6.3 ● Special Case: Balanced Heat Exchanger

In a balanced counterflow heat exchanger where 

h ch p c pm C m C=  (Fig. 11.28), the value of DT is the 

same all along the exchanger length. It can be proved 

that both T
h
 and T

c
 vary linearly with the same slope 

and that the temperature profiles of the two fluids 

are linear and parallel. The necessary proof is as 

follows:

Heat-transfer rate.

( ) ( )
h ch p hi he c p ce ciQ m C T T m C T T= - = -

Since ,

or

h ch p c p

hi he ce ci hi ce he ci

m C m C

T T T T T T T T

=

- = - - = -

or i eT TD = D Temperature variation in a balanced 

counterflow heat exchanger
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Also, ( ) ( )
h ch p h c p cdQ m C dT m C dT= - = -

\ dT
h
 = dT

c

( ) ( ) 0h c h cd T d T T dT dTD = - = - =
\ DT = const

Thus, constanti eT T TD = D = D = (11.39)

The difference between temperatures of hot and cold fluids is constant throughout the length of the 

heat exchanger. Hence, the two temperature profiles are parallel to each other.

Furthermore, with dA as the differential area of the exchanger and U as the overall heat transfer 

coefficient.

(– ) ( )
h ch p h c p cd Q UdA T m C dT m C dT= D = = -

The slopes of the temperature profiles of the two fluids are

( )

( )

h

c

h
h

p

c
c

c p

dTd U T
T

dA dA mC

dTd U T
T

dA dA m C

D
= = -

D
= = -

Since ,
h c

h c
h p c p

dT dT
m C m C

dA dA
= =

It follows that the two temperature profiles are linear and parallel with constant and equal but negative

slopes.

Since the temperature differences on either end of a counterflow heat exchanger, DT
i
 and DT

e
, are equal 

0
LMTD

ln( / ) 0

i e

i e

T T

T T

D - D
= =

D D
, i.e., indeterminate or mathematically absurd

Hence, it is necessary to use L’ Hospital’s rule to find the effective mean temperature difference.

Let us define i

e

T

T

D
D

 as x. Then, as DT
i
Æ DT

e
, x Æ 1.

It follows that

or

1

LMTD lim

ln

[ 1]
lim( 1)

ln

i
e

e
i e

i

e

e

T
T

T
T T

T

T

T x
x

x

DÈ ˘D -Í ˙DÎ ˚= D = D
D
D

D -
Æ

Differentiating both the numerator and denominator with respect to x, one has

1
1

[ ( 1)]
(1 0)

LMTD lim
(1/ )|

(ln )

e
e

e
x

x

d
T x

Tdx T
d x

x
dx

Æ =

D - D -
= = = D
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\ LMTD = DT
e
 = DT

i

Clearly, the effective DT must equal DT
i
 or DT

e
.

11.6.4 ● Special Case: Variable Overall Heat-Transfer Coefficient

In case the overall heat-transfer coefficient, U varies appreciably from one end of the heat exchanger 

to the other, the usual assumption of representing U by an average, constant value is no longer valid.

In a double-pipe heat exchanger if the overall heat-transfer coefficient is a linear function of the 

temperature difference, the heat-transfer rate can be determined as follows.

The temperature differences at the two ends are

andi hi ci e he ceT T T T T TD ∫ - D ∫ -

The overall heat-transfer coefficient varies linearly with the temperature difference, DT(∫T
h
 – T

c
).

Then U = a + bDT

where symbols a and b denote constants.

The heat exchanged in an incremental length of the exchanger (of surface area dA
s
) may be expressed 

in the following three ways:

( )

(negative slope)

s s

h ph h

c pc c

dQ UdA T a b T dA T

dQ m C dT

dQ m C dT

= D = + D D

= -

=

Solving for dT
h
 and dT

c
 yields

1

1

h
h ph

c
c pc

dT dQ
m C

dT dQ
m C

= -

=

Then
1 1

( ) ( )

( ) 1 1

h c h c
h ph h pc

h ph h pc

dT dT d T T d T dQ
m C m C

d T

dQ m C m C

È ˘- = - = D = - +Í ˙
Î ˚

D È ˘= - +Í ˙
Î ˚

We note that

1
( )

1
( )

hi he
h ph hi he

h ph

ce ci
c pc ce ci

c pc

T T
Q m C T T

m C Q

T T
Q m C T T

m C Q

-
= - fi =

-
= - fi =

It follows that

- + -D È ˘
= - Í ˙+ D D Î ˚

( )

( )

hi he ce ci

s

T T T Td T

a b T dA T Q
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or
D

= - - - - = - D - D
D + D

( )
[( ) ( )] ( )

( )

s s
hi ci he ce i e

dA dAd T
T T T T T T

T a b T Q Q

Integrating between limits, we have

0

( )

( )

e s

i

T A

i e
s

T

T Td T
dA

T a b T Q

D

D

D - D- D
=

D + DÚ Ú

or
( ) 1

n

1 1
n n

l

l l

i

e

T

i e s

T

i e i e

i e e i

T T A T

Q a a b T

T T T a b T

a a b T a b T a T a b T

D

D

D - D DÈ ˘= Í ˙+ DÎ ˚

È ˘D D D + DÈ ˘ Ê ˆ= - = Í ˙Í ˙ Á ˜+ D + D D + DË ¯Î ˚ Î ˚

or
( ) 1

nli e s i e

e i

T T A T U

Q a T U

D - D DÈ ˘= Í ˙DÎ ˚
Since U

i
 = a + bDT

i
 and U

e
 = a + bDT

e
, the constant a can be found as follows.

\

( )

( )/( )

i e i e

i e i e

U U b T T

b U U T T

- = D - D

= - D - D

Then
( )

( )

i e
i i i i

i e

U U
a U b T U T

T T

-
= - D = - D

D - D

or i i i e i i e i

i e

U T U T U T U T
a

T T

D - D - D + D
=

D - D

\
1 i e

e i i e

T T

a U T U T

D - D
=

D - D

Substituting for 1/a, we get

( ) ( )
nli e i e i e

s
e i i e e i

T T T T TU
A

Q U T U T T U

D - D D - D DÈ ˘= = ¥ Í ˙D - D DÎ ˚

The rate of heat transfer is

Ï ¸
Ô ÔÊ ˆÌ ˝

Á ˜Ô ÔË ¯Ó ˛
ln

e i i e
s

e i

i e

U T U T
Q A

U T

U T

D - D
=

D
D

It may be noted that this expression holds good even for the counterflow heat exchanger.

11.7 ❏ LMTD CORRECTION FACTOR

So far we have analyzed heat exchangers with simple geometry. For more complex configurations, like 

multipass and cross-flow heat exchangers the effective mean temperature difference DT
m
 is not equal to 

(LMTD)
CF

 and is to be modified by a correction factor F.
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The counterflow is used as a reference as it provides the best condition for heat transfer. The 

physical limitations however do not always allow pure counterflow arrangement. The deviation from the 

counterflow is taken care of in terms of LMTD correction factor F defined as

CF( )

m

lm

T
F

T

D
=

D
(11.40)

so that Q  = UAF(DT
lm

)
CF

(11.41)

The correction factor F depends on three pieces of information:

F = function (P, R, heat exchanger geometry and flow arrangement)

where P, a relative measure of the tube-side temperature change compared to the inlet temperature 

difference, is defined by

tube,exit tube,inlet

shell, inlet tube,inlet

Temperature gain of the cold fluid
or or

Largest temperature difference

ce ci

hi ci

T T T T
P

T T T T

- -
=

- -
(11.42)

The quantity R is a heat-capacity ratio, expressed as the tube-side fluid heat capacity rate divided by the 

shell-side heat capacity rate. It is related to the temperatures through the use of conservation of energy:

shell, inlet shell,exittube

shell tube,exit tube,inlet

Temperature drop of the hot fluid
or or

Temperature gain of the cold fluid

hi he

ce ci

T TC T T
R

C T T T T

- -
= =

- -
(11.43)

Thus, for example, the LMTD correction factor for 1-2 (one-shell pass and two-tube pass) arrangement 

is given by.

2 1/2

2 1/2

2 1/2

1
( 1) ln

1

2 ( 1 ( 1)
( 1)ln

2 ( 1 ( 1)

P
R

RP
F

P R R
R

P R R

-È ˘+ Í ˙-Î ˚=
È ˘- + - +

- Í ˙
- + + +Î ˚

(11.44)

Because of the complex nature of the dependence of F on P and R, it is usually represented in the 

graphical form as a family of curves of F versus P with R as a parameter.

Figure 11.29 is an example of how the LMTD correction is applied in such cases.

Figure 11.30 shows curves of F for some common heat-exchanger configurations. It may be noted that 

it is irrelevant whether the hot or cold fluid flows through the shell or the tubes.

The log mean temperature difference for counterflow (DT
lm, CF

) is used as the reference temperature 

difference, because a counterflow heat exchanger provides the greatest mean temperature difference 

between the two fluids with specified inlet and outlet temperatures. All other heat exchangers have a 

DT
mean

 smaller than that of a counterflow heat exchanger. Hence, for a given heat duty and overall heat-

transfer coefficient, the counterflow heat exchanger will require the smallest surface area. Note that for 

a counterflow heat exchanger, F =1. For all other heat exchangers, F < 1.

Consider the shape of the curves in Fig. 11.30 when R becomes very small, that is, when R Æ 0. In 

this situation for all heat exchanger types, flow arrangements, and values of P, the value of F Æ 1. This 

can occur in two situations:

When there is a phase change (boiling or condensing) on one side of a heat exchanger. The enthalpy 

changes, even though the temperature remains essentially constant. The definition of specific heat is 

C
p
 = ∂h/∂T|

p
, where h is the enthalpy. Hence, when C

p
Æ  during a constant-pressure phase change, 

the heat-capacity rate ( )pmC  tends towards infinity. This causes. R ∫ C
tube

/C
shell

C
min

/C
max

Æ 0.
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The basis of LMTD in a multipass exchanger, prior to LMTD correction

(a) Correction factor F for a one-shelf-pass, two-tube-pass heat exchanger
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(b) Correction factor F for a two-shelf-pass, four-tube-pass heat exchanger

(c) Correction factor F for a cross-flow heat exchanger (single-pass) both fluids mixed
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(d) Correction factor F for a cross-flow heat exchanger (single-pass): one fluid mixed and the other unmixed

(e) Correction factor F for a cross-flow heat exchanger (single-pass): both fluids unmixed

LMTD correction factors F for several heat-exchanger types. (a) Shell-and-tube with one shell pass and 

any multiple of two tube passes (two, four, etc., tube passes). (b) Shell-and-tube with two shell passes and 

any multiple of four tube passes (four, eight, etc., tube passes). (c) Single-pass, cross flow with both fluids 

unmixed. (d) Single-pass, cross flow with one fluid mixed and the other unmixed. (e) Single pass, cross flow 

with both fluids mixed.
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When the heat-capacity rate on one side of a heat exchanger is very large relative to the other 

side, perhaps due to a large difference in mass-flow rates, the heat-capacity ratio again approaches 

zero, R Æ 0.

In both these situations, the temperature of one of the fluids remains constant and the heat exchanger 

configuration becomes irrelevant in finding the value of F.

The curves drawn are only for R £ 1. For R > 1, one may find F using a simple reciprocal rule. As 

long as a heat exchanger has a uniform heat-transfer coefficient and the fluid properties are constant.

( , ) ( ,1/ )F P R F PR R= (11.45)

Thus, if R is greater than unity, one can still evaluate F using PR instead of P and 1/R in place of R.

Table 11.2 describes the steps needed to design (size) or rate a heat exchanger using the LMTD method.

Design is a straightforward calculation using the LMTD method. Rating requires an iterative procedure.

Table 11.2

Design (Sizing) Problem Rating (Performance Prediction) Problem

Known: The type of heat exchanger and basic 

e.g., diameter and wall thickness of 

tubes

transfer rate (or the two exit temperatures).

Known: The geometry (number, size, spacing, and 

.)

and type of heat exchanger (shell-and-tube, plate-

the two inlet temperatures.

Find: The surface area required, A
s
. Find: The overall heat-transfer rate, Q  or the two 

T
ce

 and T
he

.

Procedure: Procedure:

2.  Calculate the wall resistance and estimate the 

fouling factors, if required.

2.  Calculate the wall resistance and estimate the 

fouling factors, if required.

U. U.

4.  Calculate the dimensionless parameters P and R. 4. Calculate the capacity-rate ratio, R.

5.  Evaluate the LMTD correction factor, F for the 

heat exchanger geometry using a relevant chart 

or equation.

5.  Assume a value of one of the exit temperatures, 

calculate the other exit temperature and calculate 

P, or assume a value of P

exit temperatures.

temperatures, or calculate the heat duty Q  from 

the given temperatures.

6.  Evaluate the correction factor F for the heat 

exchanger geometry using a relevant plot or 

equation.

7.  Calculate DT
lm

,
CF

arrangement.

7.  Calculate DT
lm, CF

arrangement.

8.  Calculate the surface area using Eq. (11.21). 

,CF( )m

Q
A

UF T
=

D
l

8. Calculate the heat-transfer rate, Q .

contd.
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T
out

 = T
in
 ±  

( / )pQ mC . Compare them with those assumed in 

Step 5.

10.  Repeat steps 5 through 9 until the solution 

converges. (Use the temperatures calculated in 

Step 9 as the next assumed temperature.)

11.8 ❏ NTU METHOD

Number of Transfer Units and Heat-Exchanger Effectiveness The concept of the Logarithmic 

Mean Temperature Difference (LMTD) can be applied to determine the heat-transfer rate or to determine 

the exchanger surface area required for a given heat transfer rate provided that the inlet and exit 

temperatures of the two fluids are known. If only the inlet temperatures of the two fluids are known, 

it becomes necessary to adopt a trial-and-error method avoided by using the effectiveness-Number of 

Transfer Units (e-NTU) method. The e-NTU method is developed with the same energy and rate equations 

as used in the LMTD method, but the equations are manipulated differently to obtain a different but 

analogous result.

In all heat-exchanger configurations and flow arrangements, the exchanger effectiveness depends on 

three pieces of information:

e = function (R, NTU, heat exchanger geometry and flow arrangement)

The heat-exchanger geometry considerations include the type of construction (counterflow, parallel flow, 

etc.), number of fluid passes, and mixed or unmixed fluids. These considerations are identical to those 

taken into account when evaluating the correction factor F in the LMTD method.

The performance of heat exchangers can be evaluated by their effectiveness, e, defined as 

actual

max

Actual heat-transfer rate

Maximum possible heat-transfer rate

Q

Q
e = = (11.46)

The magnitude of the effectiveness ranges between 0 (no heat transfer at all) and 1 (maximum possible 

heat transfer for the given fluid inlet temperatures, the mass flow rates, and the specific heats). The actual 

heat transfer rate can be calculated as follows:

or

actual

actual

( ) ( )

( ) ( )

h ph hi he h hi he

c pc ce ci c ce ci

Q m C T T C T T

Q m C T T C T T

= - = -

= - = - (11.47)

maxQ  is obtained from an idealized heat exchanger of infinite surface area with counterflow arrangement

Thus
min min

( ) ( )

( ) ( )

c ce ci h hi he

hi ci hi ci

C T T C T T

C T T C T T
e

- -
= =

- -
(11.48)

The main equation for the effectiveness-NTU (e-NTU) method of analyzing heat exchangers is

actual max min ( )hi ciQ Q C T Te e= = -

The parameter needed to characterize the performance of a heat exchanger is the effectiveness, e. The 

effectiveness is dependent on the heat exchanger geometry (configuration), the number of transfer units,

NTU, and the ratio of heat capacity rates.

contd.



796 Heat and Mass Transfer

The NTU has been defined as the ratio of the product UA to the minimum capacity rate C
min

 and is the 

dimensionless quantity. Thus,

min

NTU
UA

C
= (11.49)

This represents the non-dimensional thermal size of the heat exchanger (but does not necessarily imply 

the physical size). This dimensionless group can be looked upon as a comparison of the heat capacity 

of the heat exchanger, expressed in W/K or W/°C, with the heat capacity of the fluid flow. NTU can 

also be looked upon as the ratio of the larger of the two fluid temperature differences and the LMTD.

Since (LMTD) ( ) ( ) ( ) ( )p h hi he p c ce ciQ UA mC T T mC T T= = - = -

or
( ) ( )

LMTD h hi he c ce ciC T T C T T

UA UA

- -
= =

where

( ) and ( )

NTU and NTU
LMTD LMTD

c p c h p h

hi he ce ci
h c

C mC C mC

T T T T

= =

- -
= =

For a given LMTD, the driving force, a well-designed heat exchanger should give maximum possible 

change in the fluid temperature.

Hence, NTU and NTUh h
h c

UA UA

C C
= =

A minimum-temperature fluid, i.e., the fluid with C
min

 will yield larger temperature difference.

Hence,
min

NTU
UA

C
=

The greater the number of transfer units, the more effective will be the heat exchanger.

A second non-dimensional parameter is the heat-capacity ratio, R.

min smallermin

max max bigger

( ) ( )

( ) ( )

p p

p p

mC mCC
R

C mC mC
= = = (11.50)

where C
min

 is the heat-capacity rate of the fluid with the smaller value of the product of mass flow rate 

and specific heat, and C
max

 is that of the fluid with the larger value.

To calculate the maximum possible heat-transfer rate (without violating the second law of 

thermodynamics), we must examine how the temperatures of the two single-phase fluids behave. The 

maximum possible heat-transfer rate would occur when one of the fluids undergoes the maximum possible 

temperature rise (or fall). That is, the highest possible exit temperature for the cold fluid would equal T
hi

and the lowest possible exit temperature for the hot fluid would equal T
ci
. Hence, the maximum possible 

temperature change of either fluid would be (T
hi
 – T

ci
), i.e., (T

h,in
 – T

c,in
).

Which fluid could undergo this maximum temperature change? We have defined the heat capacity rate 

as pC mC= . In general, this product is different for the hot (C
h
) and cold (C

c
) fluids flowing through 

a heat exchanger; that is, C
h
 need not be equal to C

c
. For example, if C

h
 > C

c
, then we designate the 

larger heat-capacity rate C
max

 = C
h
 and the smaller heat-capacity rate C

min
 = C

c
. Since the energy balance 

must be satisfied, we have

actual h h c cQ C T C T= D = D (11.51)
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As a result, the cold fluid would undergo a larger actual temperature change (DT
c
) than the hot fluid 

(DT
h
); that is, DT

c
 > DT

h
.

Clearly, the fluid with the smaller heat-capacity rate (C
min

) will undergo a greater temperature change 

than the fluid with the larger heat capacity rate (C
max

). Thus, only the fluid with the heat capacity rate, C
min

,

could experience the maximum possible temperature change (T
hi
 – T

ci
) that would lead to the maximum 

possible heat-transfer rate:

max min ( )hi ciQ C T T= -
(11.52)

The same result is obtained if we had assumed C
c
 > C

h
.

11.8.1 ● Effectiveness of a Parallel-flow Heat Exchanger

The fluid temperature variation along the length of a two-stream steady-flow coaxial parallel flow heat 

exchanger is shown in Fig. 11.31. An energy balance on an elemental area dA gives

where

( ) or

, ,
c h

h h c c h c

c c p h h p h c

dQ C dT C dT U dA T T UdA T

C m C C m C T T T

= - = + = - D

= = D ∫ - (11.53)

Fig. 11.31

Dividing through by C
c
DT, one finds

h h c

c c

C dT dTU dA

C C T T
= - =

D D

We note that if

1 1 1 1 1 1

2 2 2 2 2 2

C A B C A B

C A B C A B

+
= = fi =

+

It follows that

( ) ( )

[( / 1)]( ) ( ) [1 ( / )]

h c h c

c c h c h

dT dT d T TU dA

C C C T T C C

- - -
= = -

+ D D ¥ +
(11.54)
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or
( )

1 c

c h

CU d T
dA

C C T

DÊ ˆ+ = -Á ˜ DË ¯

Integrating, we get

0

( )
1

e

i

TA

c

c h T

CU d T
dA

C C T

D

D

- DÊ ˆ+ =Á ˜ DË ¯ Ú Ú (11.55)

or 1 lnc e

c h i

C TUA

C C T

D- Ê ˆ+ =Á ˜ DË ¯

or exp 1e he ce c

i hi ci c h

T T T CUA

T T T C C

È ˘D - Ê ˆ= = - +Í ˙Á ˜D - Ë ¯Î ˚
(11.56)

Effectiveness is defined as

max min min

( ) ( )

( ) ( )

c ce ci h hi he

hi ci hi ci

C T T C T TQ

Q C T T C T T
e

- -
= = =

- -

wherefrom

and

min

min

( )

( )

ce ci hi ci
c

he hi hi ci
h

C
T T T T

C

C
T T T T

C

e

e

¸= + - ÔÔ
˝
Ô= - -
Ǫ̂

(11.57)

Substituting for T
he

 and T
ce

 in Eq. (11.56)., we have

or

min min

min min

( ) ( )

exp 1

1 exp 1

hi ci hi ci
h c c

hi ci c h

c

h c c h

C C
T T T T

C C CUA

T T C C

CC C UA

C C C C

e

e

È ˘- - - +Í ˙ È ˘Ê ˆÎ ˚ = - +Í ˙Á ˜- Ë ¯Î ˚
È ˘Ê ˆÈ ˘

- + = - +Í ˙Í ˙ Á ˜Ë ¯Î ˚ Î ˚

Rearranging,

min min

1 exp 1 c

c h

h c

CUA

C C

C C

C C

e

È ˘- Ê ˆ- +Í ˙Á ˜Ë ¯Î ˚=
È ˘+Í ˙
Î ˚

(11.58)

If C
c

< C
h
, then C

c
 = C

min
,

min
max,

max min

and NTUc
h

h c

CC UA UA
C C R

C C C C
= = = = =
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Substituting in Eq. (11.58), the expression for e can be written more conveniently as

Effectiveness (cold fluid minimum),

min

min max

CFM
min

max

1 exp 1
1 exp[ NTU(1 )]

1
1

CUA

C C R

C R

C

e

È ˘Ê ˆ- - +Í ˙Á ˜Ë ¯ - - +Î ˚= =
++

If min
min max,

max

, h
h c

c

CC
C C C C R

C C
< = = = =,h cC C  and 

min

NTU
h

UA UA

C C
= =

Equation (11.58) can also be written as

min min min min

1 exp 1 1 exp 1h c h

c h h h c

h c h c

C C CUA UA

C C C C C

C C C C

C C C C

e

È ˘ È ˘Ê ˆ Ê ˆ
- - ¥ + - - +Í ˙ Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚ Î ˚= =

+ +

Effectiveness (hot fluid minimum),

min

min max

HFM
min

max

1 exp 1
1 exp[ NTU(1 )]

1
1

CUA

C C R

C R

C

e

È ˘Ê ˆ- - +Í ˙Á ˜Ë ¯ - - +Î ˚= =
++

Thus, we find that e
HFM

 = e
CFM

 = e. Hence, no matter which fluid (hot or cold) is the minimum fluid, 

the effectiveness of a parallel-flow heat exchanger is given by

PF

1 exp[ NTU(1 )]

1

R

R
e

- - +
=

+
(11.59)

The effectiveness lies between 0 and 1.

In other words,

PF function[NTU, ]Re = (11.60)

11.8.2 ●  Effectiveness of Counterflow Heat 
Exchanger

The fluid temperature variation along the length of a two-stream, 

steady-flow heat exchanger is shown in Fig. 11.32. The energy 

balance on an exchanger element of area dA can be expressed as

h h c cdQ U T dA C dT C dT= D = - = - (11.61)

Dividing through by C
c
DT, one gets

h h c

c c

C dT dTUdA

C C T T
= - = -

D D

Fig. 11.32
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We note that if

1 1 1 1 1 1

2 2 2 2 2 2

C A B C A B

C A B C A B

-
= = fi =

-
(11.62)

It follows that

or
( )1

( / ) 1 (1 / )

h h c

c c

h c h c

c c h c h

C dT dTUdA

C C T T

dT dT d T TUdA

C T C C T C C

= - +
D D

- -È ˘= - =Í ˙D - D -Î ˚

or
( )

1 c

c h

CU d T
dA

C C T

DÈ ˘- =Í ˙ DÎ ˚
Integrating, one gets

or

0

( )
1

1 ln

e

i

TA

c

c h T

c e

c h i

CU d T
dA

C C T

C TUA

C C T

D

D

DÈ ˘- =Í ˙ DÎ ˚

DÈ ˘- =Í ˙ DÎ ˚

Ú Ú

(11.63)

or ln 1i c

e c h

T CUA

T C C

D - È ˘= -Í ˙D Î ˚

or exp 1i hi ce c

e he ci c h

T T T CUA

T T T C C

È ˘D - Ê ˆ= = - -Í ˙Á ˜D - Ë ¯Î ˚
(11.64)

Effectiveness is defined as

max min min

( ) ( )

( ) ( )

c ce ci h hi he

hi ci hi ci

C T T C T TQ

Q C T T C T T
e

- -
= = =

- -
wherefrom

min

min

( )

( )

ce ci hi ci
c

he hi hi ci
h

C
T T T T

C

C
T T T T

C

e

e

¸= + - ÔÔ
˝
Ô= - -
Ǫ̂

(11.65)

Substituting for T
ce

 and T
he

 in Eq. (11.66), we get

or

min

min

min

min

( ) ( )

exp 1

( ) ( )

1

exp 1 (say)

1

hi ci hi ci
c c

c h
hi ci hi ci

h

c c

c h

h

C
T T T T

C CUA

C C C
T T T T

C

C

C CUA
K

C C C

C

e

e

e

e

- - -
È ˘Ê ˆ

= - -Í ˙Á ˜Ë ¯Î ˚- - -

-
È ˘Ê ˆ

= - - =Í ˙Á ˜Ë ¯Î ˚-
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or min min min min1 or 1
h c c h

C C C C
K K K K

C C C C
e e e

È ˘- = - - = -Í ˙
Î ˚

\
min min

1
where exp 1 c

c h

c h

CK UA
K

C C C C
K

C C

e
È ˘- Ê ˆ= = - -Í ˙Á ˜Ë ¯Î ˚-

(11.66)

If  C
c
 < C

h
, C

c
 = C

min
, C

h
 = C

max

With min

max min

and NTUc

h c

CC UA UA
R

C C C C
= = = =

and substituting these dimensionless parameters in Eq. (11.68), one gets

Effectiveness (cold fluid minimum),

or

min

min max

CFM

min min

max min max

CFM

1 exp 1

1 exp 1

1 exp[ NTU(1 )]

1 exp[ NTU(1 )]

CUA

C C

C CUA

C C C

R

R R

e

e

È ˘Ê ˆ- - -Í ˙Á ˜Ë ¯Î ˚=
È ˘Ê ˆ- - -Í ˙Á ˜Ë ¯Î ˚

- - -
=

- - -

If C
h
 < C

c
, C

h
 = C

min
, C

c
 = C

max

With min

max

h

c

CC
R

C C
= =  and 

min

NTU
h

UA UA

C C
= = , and substituting these dimensionless parameters in Eq. 

(11.66), one has

Effectiveness (hot fluid minimum),

max

max min

HFM

maxmin

max max min

1 exp 1

exp 1

CUA

C C

CC UA

C C C

e

È ˘Ê ˆ- - -Í ˙Á ˜Ë ¯Î ˚=
È ˘Ê ˆ- - -Í ˙Á ˜Ë ¯Î ˚

Multiplying both numerator and denominator by max

max min

exp 1
CUA

C C

È ˘Ê ˆ+ -Í ˙Á ˜Ë ¯Î ˚
, we have

max minmin

min maxmax min min

HFM

max min minmin min

max min maxmax max min min

1 exp 1exp 1 1

1 exp 1exp 1 1

C CC UAUA

C CC C C

C C CC C UAUA

C C CC C C C

e

È ˘ È ˘Ê ˆ Ê ˆ- + -- -Í ˙ Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚ Î ˚= =
È ˘ È ˘Ê ˆ Ê ˆ- + -- -Í ˙ Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚ Î ˚

or HFM

1 exp[ NTU(1 )]

1 exp[ NTU(1 )]

R

R R
e

- - -
=

- - -

Thus, we find that HFM CFMe e e= =
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Hence, no matter which fluid (hot or cold) is the minimum fluid, the effectiveness of the counterflow

heat exchanger is given by

[ NTU(1 )]

CF [ NTU(1 )]

1 exp

1 exp

R

R
R

e

- -

- -
-

=
-

Note that NTU is indicative of the physical size (i.e., surface area) and the quality of heat-transfer surfaces 

(i.e., U) of the heat exchanger. The larger the value of NTU, the closer the heat exchanger reaches 

thermodynamic limit of operation. It may be noted that NTU ≥ 0 and 0 £ R £ 1.

For example, the high-performance sodium heat exchangers used with fast breeder reactors have an 

NTU of about 6.

Special Cases:
For all heat exchangers:

With R = 0, PF

1 exp[ NTU(1 0)]
 1 – exp(–NTU)

1 0
e

- - +
= =

+

With R = 0, CF

1 exp[ NTU(1 0)]
1 – exp(–NTU)

1 0 exp[ NTU(1 0)]
e

- - -
= =

- ¥ - -

Thus, when R min

max

C

C
∫  = 0, involving phase change of one fluid:

e = 1 – exp(–NTU) for all heat exchangers.

Parallel flow C
min

 = C
max

 or R = 1 (Balanced heat exchanger) When the heat-capacity rates of hot 

and cold fluids are same, min

max

1
C

R
C

= =  and the expression for effectiveness becomes

PF( 1)

1
[1 exp( 2 NTU)]

2R
e

=
= - -

The maximum effectiveness in parallel-flow arrangement will be for very large values of NTU, i.e., NTU 

Æ  is 50 %.

max( )( 1)

1
[1 exp( )] 0.5

2
PF Re =

Counterflow C
min

 = C
max

 or R = 1(Balanced Heat Exchanger) In a gas-to-gas heat exchanger 

with comparable flow rates on either side, the ratio R is nearly one, since all gases have heat capacities 

of the same order of magnitude. In this limit, the effectiveness of counterflow heat exchanger becomes.

CF

1 exp[ NTU(1 1)] 0

1 exp[ NTU(1 1)] 0R
e

- - -
= =

- - -
, i.e., indeterminate

Using L’ Hospital’s rule,

CF
1 1 1

1 exp[ NTU(1 )] ( ) ( )
lim lim lim

1 exp[ NTU(1 )] ( ) ( )

( ) ( ) 0 exp[ NTU(1 )] ( )

R R R

R f R f R

R R g R g R

d
f R f R R NTU

dr

e
Æ Æ Æ

- - - ¢Ï ¸ Ï ¸ Ï ¸= = =Ì ˝ Ì ˝ Ì ˝- - - ¢Ó ˛ Ó ˛ Ó ˛

= = - - - ¥¢
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and ( ) ( ) 0 (1)exp[ NTU(1 )] exp[ NTU(1 )] (NTU)

exp[ NTU(1 )](1 NTU)

d
g R g R R R R

dr

R R

= = - - - - - - ¥¢

= - - - +
Therefore,

\

CF
1

0

01

exp[ NTU(1 )] NTU
lim

exp[ NTU(1 )][1 NTU]

NTU NTU
lim

1 NTU[1 NTU]

R

R

R

R R

e

e R

e
Æ

-

-Æ

- - - ¥Ï ¸= Ì ˝- - +Ó ˛
Ï ¸¥Ô Ô= =Ì ˝

++Ô ÔÓ ˛

CF( 1)

NTU

1 NTU
Re = =

+

Maximum effectiveness in this case will be for very large NTU, i.e., max 
( )

CF( 1)
( )

NTU
1

1 NTU
Re = = =

+

In a counterflow mode, the effectiveness of gas-gas exchanger can thus be 100% while for parallel flow

it is only 50%. Hence, gas-to-gas heat exchangers are invariably of counterflow type.

Table 11.3

[R = C
min

/C
max

 = pmC( )
smaller

/ pmC( )
bigger s

/C
min

]

Type of Heat Exchanger Effectiveness Relations NTU Relations

All exchangers 

with R = 0 (Evap-

orators and Con-

densers)

e = 1 – exp(–NTU) NTU = –ln(1 – e)

Double pipe

(Concentric tube)
Parallel flow

1 exp[ NTU(1 )]

1 exp[ NTU(1 )]

R

R R
e

- - -
=

- - -
1 1

NTU ln
1 1R R

e

e

-Ê ˆ= Á ˜- -Ë ¯

Counterflow (R < 1)
1 exp[ NTU(1 )]

1

R

R
e

- - +
=

+
ln[1 (1 )]

NTU
1

R

R

e- - +
=

+

Counterflow (R = 1)
NTU

1 NTU
e =

+
NTU

1

e

e
=

-

Shell-and-tube:

One-shell pass; 

2, 4, 6, … tube 

passes

1
2

2
1

2

(1 exp[ NTU 1 ])
2 (1 ) (1 )

(1 exp[ NTU 1 ])

R
R R

R
e

-
Ï ¸+ - +Ô Ô= + + + ¥Ì ˝

- - +Ô ÔÓ ˛
2

2

2

1 1
NTU ln

1(1 )

2/ (1 )

(1 )

E

ER

R
E

R

e

-Ê ˆ= - Á ˜+Ë ¯+
- +

=
+

Multiple shell passes, 

2n 4n, 6n, … tube 

passes (n = number 

of shell passes, e
1
 = 

effectiveness of each 

shell-pass)

1

1 1

1 1

1 1
1

1 1

n n
R R

R
e e

e
e e

-
È ˘ È ˘- -Ê ˆ Ê ˆ= - -Í ˙ Í ˙Á ˜ Á ˜- -Ë ¯ Ë ¯Í ˙ Í ˙Î ˚ Î ˚

Use the above two equations 

with

1/

2

1 1
,

1

n
F R

F
F R

e
e

e

- -Ê ˆ= = Á ˜- -Ë ¯

contd.
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contd.

Special case for R = 1
1

11 ( 1)

n

n

e
e

e
=

+ -

—

Cross-flow (single 

pass): Both fluids 

unmixed

0.22
0.78NTU

1 exp {exp[ (NTU )] 1}R
R

e
È ˘

= - - -Í ˙
Î ˚

—

Both fluids mixed

1
1 1

1 exp( NTU) 1 exp( NTU) NTU

R

R
e

-
È ˘= + -Í ˙- - - -Î ˚

—

C
min

mixed, C
max

unmixed
1

1 exp {1 exp( NTU)}R
R

e
È ˘= - - - - ◊Í ˙Î ˚

[ ]ln ln(1 ) 1
NTU

R

R

e- - +
=

C
max

mixed, C
min

unmixed
1

[1 exp{ (1 exp( NTU))}]R
R

e = - - - -
ln(1 )

NTU ln 1
R

R

e-Ê ˆ= - +Á ˜Ë ¯

(a) Effectiveness as a function of NTU for the simple concentric-tube heat exchanger in parallel flow
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(b) Effectiveness as a function of NTU for the simple concentric-tube heat exchanger in counterflow
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(c) Effectiveness of a shell-and-tube heat exchanger with one-shell pass and any multiple of two tube passes

(d) Effectiveness of a shell-and-tube heat exchanger with two-shell-passes and any multiple of four tube passes.
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(e) Effectiveness as a function of NTU for the cross flow heat exchanger with both fluids unmixed.

(f)  Effectiveness as a function of NTU for the cross flow heat exchanger with the minimum heat 

capacity (C
min

) fluid mixed (C
max

 fluid mixed for dashed curves)
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(g)  Effectiveness as a function of NTU for the cross flow heat exchanger with both fluids mixed.

Effectiveness curves for several heat exchanger types. (a) Parallel flow. (b) Counterflow. (c) Shell-and-tube 

with one shell pass and any multiple of two tube passes (two, four, etc., tube passes). (d) Shell-and-tube 

with two shell passes and any multiple of four tube passes (four, eight, etc. tube passes). (e) Single-pass, 

cross flow with both fluids unmixed. (f) Single-pass, cross flow with one fluid mixed and the other unmixed. 

(g) Single-pass, cross flow with both fluids mixed.

11.8.3 ● Effectiveness-NTU Relations and Charts

Note that the choice of a particular method is essentially governed by the designer’s familiarity with it. 

However, the LMTD method is widely practised by designers of heat exchangers in process industries

and power plants and the e-NTU method has found favour with designers of compact heat exchangers. 

e-NTU formulation is also preferred because of its suitability for computer-aided design.

Some common expressions for effectiveness are given in Table 11.2. Figure 11.35 shows the effect of 

varying parameters on the effectiveness for different heat-exchanger configurations. Note the exponential 

behaviour of the curves. When NTU is large, obtaining a small increase in the effectiveness may require 

a significant increase in area. For example, consider a simple counterflow heat exchanger with R = 0.6 

and NTU = 4, with an effectiveness of 0.908. If we wanted to increase the effectiveness by 3% to 0.935 

one would require an NTU of 4.78. This increase in effectiveness would require a 19.5 % increase in 

the surface area. Hence, for a heat exchanger that may have to be operated over a range of conditions, it 

would not be wise to design with an NTU near where the curve begins to flatten out. In striking contrast, 

a counterflow heat exchanger with R = 0.6 and NTU = 1.0 has an effectiveness of 0.56. To increase it 

by 3% one would need an increase in area of the order of only 5.65%.
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followed by cross flow, and the parallel flow with the lowest effectiveness.

The effectiveness relation reduces to e = e
max

when the capacity ratio R = 0
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Note that for the given values of R and NTU, a counterflow heat exchanger has the highest effectiveness 

of any heat exchanger or flow arrangement, and a parallel-flow heat exchanger has the lowest. All others 

lie between these two extremes. This is illustrated in Fig. 11.34.

What is more, with a single-phase flow on one side of the heat exchanger and a constant wall or fluid 

temperature on the other side of the heat exchanger, C
max

Æ , R Æ 0, the geometry becomes irrelevant, 

and all heat exchangers have the same expression for effectiveness as shown in Fig. 11.35.

1 exp( NTU) for 0Re = - - = (11.67)

Table 11.4 gives steps used in the e-NTU method. Regardless of whether the e-NTU or the LMTD method 

is used for either a rating or a design problem, identical results will be obtained (within round off error).

It is generally not practical to design or use a heat exchanger which has an effectiveness less than 0.70.

Table 11.4 e

Design (Sizing) Problem Rating (Performance Prediction) Problem

Known: The type of heat exchanger and basic configuration 

(e.g., diameter and wall thickness of tubes); the two fluids 

and their flow rates; the inlet temperatures of the two 

fluids; the required heat duty or the two exit temperatures

Known: The geometry (number, size, spacing, and layout 

of tubes, fin geometry, shell geometry, etc.) and type of heat 

exchanger (shell-and-tube, plate-fin, fin-tube, etc.); the two 

fluids and their flow rates; the two inlet temperatures

Find: The surface area needed, A
s
. Find: The overall heat-transfer rate, Q  or the two fluid 

exit temperatures, T
ce

 and T
he

.

Procedure: Procedure:

1. Calculate the heat transfer rate, Q. 1.  Calculate the heat-transfer coefficients on each side 

of the heat exchanger using the prescribed geometry, 

fluid flow rates, and the relevant correlations.

2.  Calculate the effectiveness from the specified data. 2.  Calculate the wall resistance and estimate the 

fouling factor (s) if required.

3.  Calculate the heat capacity rate ratio, R. 3.  Determine the overall heat transfer coefficient.

4.  Calculate C
max

, C
min

, and the wall resistance and 

estimate the fouling factor(s) if required.

4.  Calculate C
max

, C
min

 and the capacity rate ratio, 

min

max

C
R

C

Ê ˆ= Á ˜Ë ¯

5.  Assume the number of tubes required in the heat 

exchanger.
5. Calculate NTU and maxQ .

6.  Compute the heat-transfer coefficients on each 

side of the heat exchanger using the specified and 

assumed geometric parameters, fluid properties and 

flow rates and relevant correlations.

6.  Evaluate the effectiveness e, using the appropriate 

equation or figure.

7. Determine the overall heat transfer coefficient. 7.  Calculate the actual heat duty, Q  and the exit fluid 
temperatures.

out in ( / )pT T Q mC= ±

8. Evaluate the NTU for the heat exchanger geometry.

9. Calculate the heat exchanger area, A = (NTU) C
min

/U.

10.  Repeat steps 4 through 8 until the solution 

converges. (Use the area calculated in Step 8 to 

estimate the number tubes in Step 4.)
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11.9 ❏ SELECTION AND DESIGN ASPECTS OF HEAT EXCHANGERS

Heat exchangers are complex devices, and the results obtained with simplifying assumptions presented 

above should be used with caution. For example, the overall heat-transfer coefficient U was assumed 

constant throughout the heat exchanger and the convection heat transfer coefficients could be predicted 

using the empirical correlations. However, the uncertainty in the predicted value of U can sometimes exceed 

30 percent. It is but natural to over-design the heat exchangers in order to avoid unpleasant surprises.

There are two aspects to the design of a heat exchanger-thermo-hydraulic and mechanical. The thermo-

hydraulic design involves selecting the flow arrangement and geometric configuration, and determining 

the surface area. The second aspect—the mechanical design—deals with the safety considerations while 

taking note of the standards and codes. These two aspects are interdependent and cannot be carried out 

in isolation.

The range of heat-exchanger types is large, and to select a heat exchanger for a particular application 

can be a difficult decision. For a person with no experience, this could be a tall task. The task can be 

simplified by taking advantage of the experience of others. Unusual design requirements, and other 

considerations may however suggest a different approach. In such cases, it is important to consider several 

factors as follows:

Heat-transfer Mechanisms This is the most important parameter in the selection of a heat ex-

changer. A heat exchanger should be capable of transferring heat at the specified rate in order to 

achieve the required change in the fluid temperature at the given mass-flow rate.

  Different flow paths and geometric configurations are used depending on the mode of heat transfer. 

Whether the flow is laminar or turbulent, single-phase (gas or liquid), or two-phase flow (boiling 

or condensation) will have an impact on the choice of surface and the type of heat exchanger.

Cost Economy usually plays a significant role in the selection of heat exchangers, except in some 

specialized cases where money is not of much importance. An off-the-shelf heat exchanger is cer-

tainly less costly than those made to order. The operation and maintenance cost of a heat exchanger 

besides the capital cost should also be given due consideration.

Pressure Drop and Pumping Power Greater heat transfer in heat exchangers is usually associ-

ated with increased pressure drop, and thus higher pumping power. Hence, any advantage from the 

increase in heat transfer has to be balanced against the cost of the accompanying pressure drop. 

Also, one must decide which fluid should pass through the tube side and which through the shell

side. Generally, the more viscous fluid is preferable for the shell side (larger passage area and thus 

lower pressure drop) and the fluid with the higher pressure for the tube side.

  For an incompressible fluid flow: Pumping power (kW) = Pressure drop (kPa) ¥ Volumetric flow 

rate (m3/s). The operating (running) cost depends on this power consumption.

  Typically, fluid velocities in heat exchangers range between 0.7 and 7 m/s for liquids and between 

3 and 30 m/s for gases to avoid long-term operational problems.

Size and Weight Smaller and lighter heat exchangers are normally preferable. This is more so in 

the automotive and aerospace industries, where size and weight requirements are very stringent. 

In some applications like an oil refinery, a shell-and-tube heat exchanger may require a thick steel 

shell to contain a high-pressure petroleum product, and weight is not a critical consideration. But 

it also means higher running (pumping) cost.

  A heat exchanger is suitable to cool a liquid by a gas if the surface area on the gas side is several 

times that on the liquid side. A plate or shell-and-tube heat exchanger, on the other hand, is quite 

suitable for cooling a liquid by another liquid.
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Materials We should be careful in the selection of materials used in the construction of the heat 

exchanger. For example, one need not bother about the thermal and structural stress effects at pres-

sures below 15 atm or temperatures less than 150°C. But, these effects become significant above 

70 atm or 550°C.

  Another point to ponder is the high temperature differentials of 50°C or more between the tubes 

and the shell which may pose differential thermal expansion problems. Industrial heat exchangers 

using corrosive fluids, require expensive corrosion-resistant materials such as stainless steel or even 

titanium.

  Fabrication problems may also be important, since not all materials can be soldered, brazed, and/

or welded.

Heat-transfer Performance The main basis of selection of a heat exchanger is that it must satisfy 

the heat-transfer requirements for the specified application. This includes the required heat duty, the 

fluids used, their flow rates, inlet and exit temperatures, pressure levels, and permissible pressure 

drops. Since the exchanger design usually requires compromises between several competing factors, 

the relative importance of each factor should also be examined carefully.

Pressure and Temperature Certain types of heat exchanger cannot sustain high pressures. For 

example, tubular heat exchangers can withstand high pressures, but heat exchangers with large flat 

areas and thinner materials (e.g., plate-type or compact) are limited in their maximum permissible 

pressures. Similarly, many heat exchangers can have restrictions on their permissible temperature 

level.

Fouling Tendencies Fouling is difficult to predict, and fouling characteristics for a given applica-

tion will depend on several parameters. Fluid velocity, flow distribution through the heat exchanger, 

channel dimensions, and fluid type are some major factors that may make fouling problematic. 

Experience with a particular fluid and heat exchanger type can come in handy to decide if foul-

ing could be a serious problem. Periodic cleaning of the heat transfer surfaces while dealing with 

fluids that cause fouling is important. These surfaces should be easily accessible so as to reduce 

the shut-down time involved in servicing and maintenance.

Safety, Reliability, and Environmental Aspects One must not forget issues related to safety, reli-

ability and environmental considerations like the leakage of the process fluids into the environment, 

the use of toxic or inflammable fluids and waste disposal problems. Minimum noise and vibration, 

for example, is a key consideration in the selection of liquid-to-air heat exchangers used in heating 

and air-conditioning applications.

Illustrative Examples

(A) Overall Heat-Transfer Coefficient

 The steam condenser of a thermal power plant operates at a pressure of 7 kPa. 

Cooling water is circulated with a mass-flow rate of 500 kg/s through 100 tubes of 25 mm ID and 29 

mm OD made of brass (k = 110 W/m °C). The steam side heat-transfer coefficient is 11 500 W/m2 °C. 

Assuming average properties of water: k = 0.6 W/m °C, m = 9.6 E-4 kg/m s and Pr = 6.6, calculate the 

overall heat-transfer coefficient based on the outer diameter of the tubes, U
o
. If the inside surfaces of the 

tubes are fouled due to scale formation over a period of time, and the overall heat-transfer coefficient is 

estimated to be 1968 W/m2 °C, determine the corresponding fouling factor. Compute the exit temperature 

of water if the steam flow rate is 13 kg/s and the cooling-water inlet temperature is 20°C.

Illustrative Examples
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Solution

Known Steam is condensed by cooling water in the condenser of a power plant.

Find Overall heat-transfer coefficient, U
o
. Fouling factor, R

fi
. Cooling water outlet temperature, T

ce
.

Assumptions (1) Steady operating conditions, (2) Constant properties. (3) Uniform convection coefficients. 

(4) No fouling on outer surface of the tubes.

Properties

@7kPafgh  (from the steam tables) = 2409.1 kJ/kg

waterpC  = 4.18 kJ/kg °C k = 0.6 W/m °C

Pr = 6.6 m = 9.6 ¥ 10–4 kg /m s (given in the problem statement)

Analysis Overall heat-transfer coefficient based on the outside area, including fouling resistances,

1

,dirty

1 1
ln

2

o o o o
o fo fi

i i i o i

D D D D
U R R

D h k D h D

-
È ˘= + + + +Í ˙
Î ˚

In the absence of fouling resistance,

1

,clean

1 1
ln

2

o o o
o

i i i o

D D D
U

D h k D h

-
È ˘= + +Í ˙
Î ˚

h
o
 = 11 500 W/m2 °C      (given)

To determine h
i
, let us first determine Re

D

4

4m/tube 4(500 /1000)kg/s
26 526

(0.025 m)(9.6 10 kg/ms)
D

i

Re
Dp m p

-= = =
¥

Using Dittus–Boelter correlation,

\

0.8 0.4

0.8 0.4 2

0.023 ( ) ( )

0.023 0.6 W/m°C
(26526) (6.6) 4061.6 W/m °C

0.025 m

i i
D D

i

h D
Nu Re Pr

k

h

= =

¥
= =
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 Hence, 

1
4 1

,clean

29 1 0.029 29 1
ln (3.921 10 )

25 4061.6 2 110 25 11500
oU

-
- -È ˘= + + = ¥Í ˙¥Î ˚

 = 2550 W/m2 °C (Ans.)

 There is no fouling on the steam side of the tubes, i.e., R
fo
 = 0

,dirty ,clean

1 1 o
fi

o o i

D
R

U U D
= +

\ Fouling factor on the water side.

,dirty ,clean

1 1 25 1 1

29 1968 2550

i
fi

o o o

D
R

D U U

È ˘ È ˘= - = -Í ˙ Í ˙Î ˚Î ˚

= 10–4 m2 °C/W (Ans.)

 Heat-transfer rate,

( )
ch fg c p ce ciQ m h m C T T= = -

steam cooling water

 Therefore, the exit temperature of water is

(13 kg/s)(2409.1 kJ/kg)
20 C

(500 kg/s)(4.18 kJ/kg°C)
c

h fg

ce ci
c p

m h
T T

m C
= + = ∞ + = 35 C∞

 (Ans.)

(B) LMTD Method

 For what value of end temperature difference ratio (DT
max

/DT
min

) is the arithmetic 

mean temperature difference 7 per cent greater than the log mean temperature difference?

Solution

Known AMTD = 1.07 LMTD.

Find (DT
max

/DT
min

).

Assumptions (1) Steady-state conditions. (2) Constant properties.

Analysis AMTD (arithmetic mean temperature difference) max min

2

T TD + D
=
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 LMTD (log mean temperature difference) = max min

max

min

ln

T T

T

T

D - D
DÊ ˆ

Á ˜DË ¯
 The ratio

max min max

max min min

max min maxmin

min max min min

AMTD 1
ln

LMTD 2 ( )

[( / ) 1]1
ln

2 [( / ) 1]

T T T

T T T

T T TT

T T T T

D + D DÊ ˆ= Á ˜D - D DË ¯

D D + DD Ê ˆ= Á ˜D D D - DË ¯

 Let max

min

T

T

D
=

D
x

 Then 
1.7 LMTD 1 ( 1)

ln
LMTD 2 ( 1)

+
=

-
x

x
x

 or 
1

ln 2.14
1

+Ê ˆ =Á ˜Ë - ¯
x

x
x

 By trial and error, for x = 2.5

2.5 1
LHS ln 2.5 2.138

2.5 1

RHS 2.14 LHS

+Ê ˆ= =Á ˜Ë - ¯

= ª

 Hence, max

min

T

T

DÊ ˆ= =Á ˜DË ¯
2.5x (Ans.)

 In a counterflow steam superheater, steam enters at a pressure of 10 bar absolute 

as dry saturated vapour and leaves at 280°C. The hot flue gases (C
p
 = 1.05 kJ/kg °C) enter the superheater 

at 515°C. The mass-flow rates of steam and gases are 1200 kg/h and 2400 kg/h respectively. If the overall 

heat-transfer coefficient is 37 W/m2 °C, determine the heat-transfer surface area required.

Solution

Known A counterflow steam superheater operates under specified conditions.

Find Heat-exchanger area required, A(m2).

Assumptions (1) Steady operating conditions prevail. (2) Heat exchanger is well insulated. (3) Changes 

in potential and kinetic energy are negligible. (4) Constant properties. (5) Uniform overall 

heat-transfer coefficient.

Analysis From steam tables: 

sat@ 10bar 179.91 Cci PT T == = ∞
 The enthalpies of steam entering and leaving the superheater are:

h
i
 = h

g @10 bar
 = 2778.1 kJ/kg

h
e
 = h

sup
 (P = 10 bar, T = T

ce
 = 280°C) = 3008.2 kJ/kg
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Heat transferred from hot combustion (flue) gases must equal the heat transferred to steam

being superheated because the heat exchanger (superheater) is adiabatic with no loss to 

the surroundings. Hence,

out,gas in,steam or ( ) ( )
hh p hi he c e iQ Q m C T T m h h= - = -

Heat-transfer rate in the heat exchanger is

in,steam

out,gas

1200 kg
[(3008.2 2778.1)kJ/kg]

3600 s

76.7 kW

Q Q

Q

Ê ˆ= = -Á ˜Ë ¯

= =

Temperature of gases leaving the superheater is 

out,gas 76.7 kJ/s
515 C –

(2400/3600)kg/s 1.05 kJ/kg C

405.34 C

h

he hi
h p

Q
T T

m C
= - = ∞

¥ ∞

= ∞

For counterflow arrangement:

DT
i
 = T

hi
 – T

ce
 = 515 – 280 = 235°C

DT
e
 = T

he
 – T

ci
 = 405.43 – 179.91 = 225.52°C

Log mean temperature difference,

235 225.52
230.23 C

ln( / ) ln(235/225.52)

i e
m

i e

T T
T

T T

D - D -
D = = = ∞

D Dl

We note that, mQ UA T= D
l

Therefore, the heat-transfer surface area is determined to be

3

2

76.7 10 W

37 W/m °C 230.23 Cm

Q
A

U T

¥
= = =

D ¥ ∞
2

9.0 m
l

(Ans.)
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 A coaxial heat exchanger with counter-current arrangement of 33 m length is 

used to heat a cold fluid stream entering the annulus at 30°C and exiting at 80°C. The hot fluid stream 

passing through the inner tube enters at 150°C and leaves at 70°C. Determine the length of the heat 

exchanger if the cold fluid outlet temperature is to be increased by 10 K. The mass-flow rates, tube 

diameters and the fluid inlet temperatures are not to be altered for this purpose. Can parallel flow mode 

be used for the above two cases?

Solution

Known A counterflow heat exchanger of prescribed length with all terminal temperatures specified.

Find New length of the exchanger if T
ce

 is to be raised from 80°C to 90°C.

Assumptions (1) Steady operating conditions. (2) Constant properties and uniform heat-transfer coefficient. 

(3) No heat loss to the surroundings from the heat exchanger.

Analysis Case I

 Heat-transfer rate,

( ) ( )c ce ci h hi he mQ C T T C T T UA T= - = - = D
l

 where , ( ) and ( )

( ) ( ) (150 80) (70 30)
53.6 C

70
lnln

40

( ) 33(m) 53.6( C)

c p c h p h

hi ce he ci
m

hi ce

he ci

m m

A DL C mC C mC

T T T T
T

T T

T T

Q U DL T K L T K

p

p

= = =

- - - - - -
D = = = ∞

-Ê ˆ
Á ˜-Ë ¯

= D = ◊ D = ¥ ¥ ∞

l

l l

 Case II:

 The cold fluid temperature at the outlet, *
ceT  = 80 + 10 = 90°C. There is no change in 

mass-flow rates, diameters, heat-transfer coefficients or inlet temperatures of the two fluids. 

The new heat rate is

* * * * * * * * *[ ] [ ] ( )c ce ci h hi he m mQ C T T C T T U DL T K L Tp= - = - = D = ¥ ¥ D
l l

 Heat-capacity rate ratio,

*

*

150 70 80
1.6

80 30 50

c c hi he

h ce cih

C C T T

C T TC

- -
= = = = =

- -

 With * * * * * *90 C, ( ) ( )ce c ce ci h hi heT Q C T T C T T= ∞ = - = -
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 or 
* * * *1.6 (90 30) (150 )h h heQ C C T= - = -

\ *
heT  = 150 – (1.6) (60) = 54°C

* (150 90) (54 30)
39.3 C

60
ln

24

mT
- - -

D = = ∞
l

 Ratio of heat rates,

* * ** (90 30) 60

(80 30) 50

c m

c m

C K L TQ

Q C K L T

¥ ¥ D-
= = =

- ¥ ¥ D
l

l

 Hence, the new length of the heat exchanger is

*

*

60 53.6( C)
33(m) 1.2

50 39.3( C)

m

lm

T
L L

T

D ∞
= ¥ ¥ = ¥ ¥ =

∞D
54 ml (Ans.)

 In both cases, we note that cold fluid exit temperatures are greater than the hot fluid exit 

temperatures. This is just not possible in the case of a parallel-flow heat exchanger.

 A two-fluid, twin-tube, co-axial, counterflow heat exchanger is used to cool liquid 

Dowtherm J flowing through the outer annulus at a flow rate of 0.25 kg/s. The inside diameter (ID) of 

the outer tube is 25 mm. Water with a flow rate of 0.5 kg/s passes through the 15 mm ID and 1.5 mm 

thick inner copper tube (k = 393 W/m K). The length of the heat exchanger is 1 m. If the overall thermal 

resistance of the heat exchanger is 0.001 K/W, determine the length of the exchanger.

Fluid properties:

Dowtherm J: k = 0.1185 W/m K m = 1.72 ¥ 10–4 kg/m s Pr = 3.48

Water: k = 0.680 W/m K m = 2.79 ¥ 10–4 kg/m s Pr = 1.76

Solution

Known A concentric counterflow heat exchanger of given dimensions. Flow rates of the two fluids 

and their properties are specified.

Find Length of the heat exchanger for prescribed overall thermal resistance.

Assumptions (1) Steady operating conditions. (2) Constant properties and uniform heat-transfer coefficient. 

(3) Fully developed fluid flows.
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Analysis Overall thermal resistance is

th

1 1 1 1
ln

2

o

i i i o o

D K
R

UA h A kL D h A Wp

È ˘Ê ˆS = = + + Á ˜Í ˙Ë ¯Î ˚
Flow of water through inner tube:

3

5

4

15 10 m, 0.5 kg/s

4 4 0.5(kg/s)
1.52 10 (> 2300)

0.015(m) 2.79 10 (kg/m s)

i c

c
D

i

D m

m
Re

Dp m p

-

-

= ¥ =

¥
= = = ¥

¥ ¥ ¥
Accordingly, the flow is turbulent: Pr = 1.76

Using Dittus–Boelter equation:

0.8 0.40.023( ) ( )D DNu Re Pr=
Here, n = 0.4 as water is being heated.

\ 5 0.8 0.40.023(1.52 10 ) (1.76) 403 i i
D

h D
Nu

k
= ¥ = =

Inside convective resistance is

1 1 1 1 1 1

1 0.68 403i i i i i i Dh A h D L h D kNup p p p

-

= = ¥ = =
¥ ¥ ¥

= ¥ 3
1.161 10 K/W

The conduction resistance is

–

1 1 18 mm
ln ln

2 2 393(W/m K) 1 15 mm

o

i

D

kL Dp p

Ê ˆ= Á ˜¥ ¥ Ë ¯

= ¥ 5
7.836 10 K/W

Outside convective resistance is

1 1

o o o oh A h D Lp
=

Flow of liquid Dowtherm J through outer annulus:

Equivalent diameter,

2 24 [ ]
4 4

( )

h o
c

e
h o

D D
A

D
P D D

p

p

¥ -
= =

+

where D
h
 is the ID of the outer tube.

\ D
e
 = D

h
 – D

o
 = (25 – 18) (mm) = 7 mm = 0.007 m

2 2

4

( )

( )
44

( )

4 0.25(kg/s)

(0.025 0.018)(m) (1.72 10 )(kg/ms)

e

h
h o

h o
e h

D
h o

m
D D

D D
VD m

Re
D D

r
p

r
r

m m p m

p
-

◊ -
-

= = =
+

¥
=

+ ¥ ¥

  = 43 038 (> 2300)



820 Heat and Mass Transfer

 The annular flow is therefore turbulent.

 As the liquid is getting cooled, n = 0.3

\ 0.8 0.30.023( ) ( )
eD DeNu Re Pr=

= 0.023 (43038)0.8 (3.48)0.3 = 170.3 = o eh D

k

1 0.007 m

0.018 m 1 m 170.3 0.1185 W/m K

e

o o o D

D

h D L D LNu kp p p
= =

¥ ¥ ¥ ¥

 = 6.133 ¥ 10–3 K/W

 Overall thermal resistance to heat transfer is

3 5 3
th

–

1 K
[(1.161 10 ) (7.3836 10 ) (6.133 10 )]

W
R

UA

- - - Ê ˆS = = ¥ + ¥ + ¥ Á ˜Ë ¯

= ¥ 3
7.3678 10 K/W

 This resistance corresponds to tube length, L = 1 m.

 Hence, for an overall resistance of 0.0016 (K/W), the desired length of the tube will be

3
( 1m)

( )

1 m 7.3678 10 (K/W) 1(m)

0.0016(K/W)

L

L

R
L

R

-
=S ¥ ¥ ¥

= = =
S

4.6 m (Ans.)

 A heat-exchanger design is required to cool 10 kg/s of gaseous methane at 10 

bar, from 100°C to 20°C using 25 kg/s of sea water which is available at 5°C. The methane is to flow 

through 10 mm diameter tubes and the water flows over the outside.

(a)  Explain why this will not be able to operate in parallel flow.

(b)  For a stack of 1000 tubes, evaluate the overall heat-transfer coefficient assuming that the tube side 

heat-transfer coefficient is the controlling heat-transfer coefficient.

(c)  Find the heat exchanger surface area required.

(d) Estimate the length of tubing required.

For methane: C
p
 = 2.226 kJ/kg K,  m = 1.3 ¥ 10–5 N s/m2,  k = 0.03 W/m K

For water: C
p
 = 4.187 kJ/kg K

Solution

Known Methane gas passing through the tubes is cooled in a heat exchanger by sea water flowing 

over the outside.

Find (a) Suitability for parallel-flow arrangement. (b) Overall heat-transfer coefficient. (c) Heat 

exchanger area. (d) Length of tubing required.

Assumptions (1) Steady-state conditions prevail. (2) Heat exchanger is adiabatic. (3) Kinetic and potential 

energy changes are negligible. (4) Gas-side heat-transfer coefficient is the controlling 

convection coefficient.

Analysis Heat-transfer rate in the heat exchanger,

( ) ( )s m c pc ce ci h ph hi heQ UA T m C T T m C T T= D = - = -

heat transfer to water heat transfer from gas

l
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Cold fluid (sea water) outlet temperature,

( )

10 kg/s 2.226 kJ/kgK
5 C (100 – 20) C

25 kg/s 4.187 kJ/kgK

c

h ph

ce ci hi he
c p

m C
T T T T

m C
= + -

¥Ê ˆ= ∞ + ∞ =Á ˜Ë ¥ ¯
22 C∞

For parallel-flow arrangement, T
ce

 is always less than T
he

. However, in this case, T
ce

 is 22°C 

which is 2°C greater than T
he

(= 20°C).

Hence, only counterflow mode is possible. (Ans.) (a)

To evaluate tube side (gas side) heat-transfer coefficient h
i
, we first determine the Reynolds 

number.

5

4 (per tube) 4 10 kg/s/1000

0.01 m 1.3 10 kg/ms

m
Re

Dp m p
-

¥
= =

¥ ¥ ¥

= 97.94 ¥ 103 fi Turbulent flow

Prandtl number,

5 2(2226 J/kgK)(1.3 10 Ns/m ) 1 J 1 W
0.9646

0.03 W/mK 1 Nm 1 J/s

pC
Pr

k

m -¥
= = =

Using Dittus Boelter correlation, noting that n = 0.3 as methane (CH
4
) is getting cooled, 

we have

Nu = ih D

k
 = 0.023 (Re)0.8 (Pr)0.3

The heat-transfer coefficient (hot side) is

3 0.8 0.30.03 W/mK
0.023 (97.94 10 ) (0.9646)

0.01 m
ih = ¥ ¥ ¥ ¥

= 671.3 W/m2 K

Assuming thin walled tubes without fouling, the overall heat-transfer coefficient, U ª h
i

because h
i
 is the controlling heat-transfer coefficient.
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 Hence,

U = 671.3 W/m2 K (Ans.) (b)

 LMTD for counterflow configuration is

( ) ( ) (100 22) (20 5)

ln[( )/( )] ln[(100 22)/(20 5)]

hi ce he ci
m

hi ce he ci

T T T T
T

T T T T

- - - - - -
D = = =

- - - -
38.2 C

l
∞

 Heat-flow rate, 

( )h ph hi heQ m C T T= -

= (10 kg/s) (2.226 kJ/kg K) (100 – 20) K = 1780.8 kW

 Heat-exchanger surface area,

3

2

1780.8 10 W

671.3 W/m K 38.2 C
s

m

Q
A

U T

¥
= = =

D ¥ ∞
2

69.4 m
l

(Ans.) (c)

 Length of the tubing required,

269.4 m

( ) (1000) ( 0.01 m)

sAL
N Dp p

= = =
¥ ¥

2.21 m (Ans.) (d)

 A coil of single tubing is provided in a reaction vessel whose contents are at a 

uniform temperature of 85°C. The inlet and outlet temperatures of cooling water flowing through the 

tube are 5°C and 45°C respectively. If the tube length is increased three times the original, what would 

be the outlet temperature of the water. Assume the overall heat-transfer coefficient and the water flow 

rate to remain constant.

Solution

Known A single tube coil at constant surface temperature. Inlet and outlet temperatures of water 

flowing through the tube.

Find Water outlet temperature if length is increased threefold.

Assumptions (1) Flow rate of water is constant. (2) Uniform and constant overall heat-transfer coefficient.

Analysis From energy balance:

( ) ( )p c e i s mmC T T U A T- = D
l
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 As minconst, , ( ) ( )

( ) ( )

ln( )/( )
ln

s h c p c p

s i s e e i
m

s is i s e

s e

T C C mC mC

T T T T T T
T

T TT T T T

T T

= = =

- - - -
D = =

-- - Ê ˆ
Á ˜-Ë ¯

l

 and A
s
 = PL where P is the perimeter of the tube.

 or 
water

UPL
ln

( )

s i s

s e p c

T T UA

T T mC C

-Ê ˆ = =Á ˜-Ë ¯

\
UPL 85 5

ln 0.6931
85 45cC

-Ê ˆ= =Á ˜Ë - ¯
 When the length is increased (threefold), we have

**

*

UPL UPL
ln or exp 3s i s e

c s i cs e

T T T T

C T T CT T

- -Ê ˆ È ˘= = -Í ˙Á ˜ --Ë ¯ Î ˚
 Outlet temperature of water is then found to be

* ( )exp[ 3 0.6931]

85 C (85 5) C exp( 2.0793)

e s s iT T T T= - - - ¥

= ∞ - - ∞ - = 75 C∞ (Ans.)

 A simple heat exchanger consisting of two concentric-flow passages is used for 

heating 1110 kg/h of oil (specific heat = 2.1 kJ/kg K) from a temperature of 27°C of 49°C. The oil flows 

through the inner pipe made of copper (OD = 2.86 cm, ID = 2.54 cm) and the surface heat-transfer 

coefficient on the oil side is 635 W/m2 K. The oil is heated by hot water supplied at the rate of 390 kg/h 

and at an inlet temperature of 95°C. The water side heat-transfer coefficient is 1270 W/m2 K. Take the 

thermal conductivity of copper to be 350 W/m K and the fouling factors on the oil and water sides to be 

0.0001 and 0.0004 m2 K/W. What is the length of heat exchanger for (a) parallel flow, and (b) counterflow?

[NU: W 2002]

Solution

Known A double-pipe heat exchanger with cold oil in inner pipe being heated by hot water in the annulus.

Find L = ? for (a) parallel flow, and (b) counterflow
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T
ci
 = 27°C T

ce
 = 49°C

oil 1110 kg/hcm m= = water 390 kg/hhm m= =

C
pc

 = 2.1 kJ/kg K C
ph

 = 4.2 kJ/kg K (assumed)

D
i
 = 2.54 cm D

o
 = 2.86 cm

h
i
 = 635 W/m2 K k

copper
 = 350 W/m K

T
hi
 = 95°C h

o
 = 1270 W/m2 K

R
fi
 = 0.0001 m2 KW R

fo
 = 0.0004 m2 K/W

Assumptions (1) Steady operating condition. (2) U is constant throughout the length of the exchanger.

Analysis Heat-transfer rate,

3

3

( ) ( )

1110 kg J
(2.1 10 ) 647.5 W/K

3600 s kgK

390
(4.2 10 ) 455 W/K

3600

c

h

m c ce ci h hi he

c c p

h h p

Q UA T C T T C T T

C m C

C m C

= D = - = -

Ê ˆ= = ¥ ¥ =Á ˜Ë ¯

Ê ˆ= = ¥ ¥ =Á ˜Ë ¯

l

Clearly, C
h
 < C

c
 and, hence, C

c
 = C

max
 and C

h
 = C

min

\ ( ) 647.5 W/K(49 27)Kc ce ciQ C T T= - = -  = 14 245 W

th

3 3

3 3

ln /1 1 1

2

1 1

(635)( 0.0254 ) (1270)( 0.0286 )

ln(2.86/2.54) 0.0001 0.0004

2 350 0.0254 0.0286

1
[(19.735 10 ) (8.764 10 )

(0.054 10 ) (1.253 10 ) (4.4

fi foo i

i i o o i o

R RD D
R

UA h A h A kL A A

L L

L L L

L

p

p p

p p p

- -

- -

= = + + + +

= +
¥ ¥ ¥ ¥

+ + +
¥ ¥ ¥ ¥ ¥ ¥

= ¥ + ¥

+ ¥ + ¥ +

Â

3

3

52 10 )]

34.258 10
(K/W)

L

-

-

¥

¥
=

\ 29.19 (W/K)
0.034258

L
UA L= =

(a) Parallel flow:

ln( / )

i e
m

i e

T T
T

T T

D - D
D =

D Dl
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 where i hi ci

e he ce

T T T

T T T

D = -

D = -
 We note that

( )h hi heQ C T T= -

\
14245

95 .
455

he hi
h

Q
T T

C

Ê ˆ= - = - =Á ˜Ë ¯ 63 7 C∞

\ 95 27 68°C

63.7 49 14.7°C

i

e

T

T

D = - =

D = - =

\
68 14.7

34.8°C
ln(68/14.7)

lmT
-

D = =

 As lmQ UA T= D

14 245 = (29.19 L) (34.8°C)

\ Length of the heat exchanger,

14245
.

29.19 34.8
L = =

¥
14 0 m (Ans.) (a)

(b) Counterflow:

\

95 49 46°C

63.7 27 36.7°C

46 36.7
41.18°C

ln( / ) ln(46/36.7)

i hi ce

e he ci

i e
m

i e

T T T

T T T

T T
T

T T

D = - = - =

D = - = - =

D - D -
D = = =

D Dl

 Length of the heat exchanger,

14245

29.19 41.18
L = =

¥
11.85 m (Ans.) (b)

 An intercooler of air compressor takes in air at 6 bar and 150°C and passes it 

to the next stage at 30°C and at the equivalent rate of 6 m3 of free air (15°C and 1 bar) per minute. 

The cooling water passes in parallel flow over the tubes which are 10 mm outside diameter and 1.2 mm 

thick. The inlet and outlet water temperatures are 10°C and 20°C, respectively and the air velocity at 

entry into the tubes in 6 m/s. Inside heat-transfer coefficient (air side) is 90 W/m2 K and outside heat-

transfer coefficient (water side) is 1800 W/m2 K. Find (a) the number of tubes in the intercooler, and 

(b) the length of each tube. What will be the saving in the total tube length if the cooler is made 

counterflow with the inlet and outlet temperatures being maintained the same as before? [NU: S 2001]

Solution

Known Intercooler of an air compressor with parallel flow configuration.

Find (a) Number of tubes, N; (b) Tube length, L, (c) Saving in tube length if the intercooler has 

counterflow arrangement.
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Assumptions (1) Steady operating conditions. (2) U is constant along the exchanger.

Analysis Mass-flow rate of air.

air

–V 100 (6/60)
0.1209 kg/s

0.287 288.15

a a

a a

P
m

R T

¥
= = =

¥

Heat-transfer rate,

air pair ( ) 0.1209 1.005 (150 30)

14.583 kW

hi heQ m C T T= - = ¥ ¥ -

=
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 Overall heat-transfer coefficient,

1 1
21 1 1 10 1

65.9 W/m K
1800 7.6 90

o
o

o i i

D
U

h D h

- -È ˘ È ˘= + = + =Í ˙ Í ˙Î ˚Î ˚

 Area of heat exchanger,

o oA N D Lp=

 where N is the number of tubes

Mass-flow rate, 2
air

4
c im A V D NV

p
r r= =

 Density of air at the average temperature, i.e., (150 + 30)/2 = 90°C is

3600
 5.757 kg/m

0.287 (90 273.15)

P

RT
r = = =

¥ +

\ air

2 2

0.1209
77.2 78

( /4) 5.757 ( /4) 0.0076 6i

m
N

D Vr p p
= = = ª

¥ ¥ ¥
(Ans.) (a)

 Tube length with parallel-flow arrangement,

,PF

PF

o

o

A
L

N Dp
=

 where 2
,PF

,PF

14 583
4.492 m

65.9 49.26
o

o m

Q
A

U T
= = =

D ¥
l

\ PF

4.492

78 0.01
L

p
= =

¥
1.83 m (Ans.) (b)

 We note that 
1

m

L
T

μ
D

l

\ Tube length with counterflow arrangement,

,PF

CF PF
,CF

49.26
1.83

58.77

m

m

T
L L

T

D
= ¥ = ¥ =

D
1.53 m

l

l

 Percentage saving in tube length

1.83 1.53
(100)

1.83

-Ê ˆ= =Á ˜Ë ¯ 16.4% (Ans.) (c)

(C) Multipass Heat Exchangers, Condensers and Evaporators

 In a solar power plant, 1 kg/s of saturated liquid Freon (refrigerant) is to be 

completely evaporated at 100°C, in a counterflow heat exchanger. Thermic fluid at 8 kg/s and 120°C is 

available for this purpose.

(a) Determine the heat-transfer area

(b)  What is the additional area required, if the Freon after evaporation is to be superheated to 110°C?
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Neglect fouling in either case.

Data:

For thermic fluid:

C
p
 = 1.62 kJ/kg K  h = 450 W/m2 K

For Freon:

h
fg
 at 100°C = 161.8 kJ/kg

C
p
 of superheated vapour = 0.63 kJ/ kg K

h during evaporation = 2500 W/m2 K

h during superheating = 220 W/m2 K [IIT, Bombay]

Solution

Known In a solar power plant, liquid refrigerant undergoes evaporation by thermic fluid.

Find (a) Heat-exchanger area, A(m2). (b) Additional area, if the refrigerant is super heated.

Assumptions (1) Steady operating conditions. (2) Fouling is neglected on both cold and hot fluid sides. 

(3) Constant thermal properties of fluids.

Analysis (a) Evaporation (No superheating):

By energy balance:

Heat given up by Heat received by saturated liquid Freon

thermic fluid for evaporation (phase change)

Ê ˆ Ê ˆ
=Á ˜ Á ˜Ë ¯ Ë ¯

Heat-transfer rate,

( )
ch ph hi he c fgQ m C T T m h= - =

= 8 kg/s ¥ 1.62 kJ/kg K ¥ (120 – T
he

) °C = 1 kg/s ¥ 161.8 kJ/kg

= 161.8 kW

\
161.8 kJ/s

120 C – 12.48 C
8 kg/s 1.62 kJ/kgK

heT∞ = = ∞
¥
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Thermic fluid exit temperature,

T
he

 = 120 – 12.48 = 107.52°C

LMTD or 
( ) ( ) (120 100) (107.52 100) 20 7.52

120 100 20
ln lnln

107.52 100 7.52

hi ce he ci
m

hi ce

he ci

T T T T
T

T T

T T

- - - - - - -
D = = =

--Ê ˆ
Á ˜ --Ë ¯

l

  = 12.76°C or K

Heat rate, mQ UA T= D
l

Overall heat-transfer coefficient,

1 1
1 1 1 1

. /
450 2500h c

U
h h

- -
È ˘ È ˘= + = + =Í ˙ Í ˙Î ˚Î ˚

2
381 36 W m K

Heat-transfer area,

A = 
3

2

161.8 10 W

381.36 W/m K 12.76 Km

Q

U T

¥
=

D ¥l

 = 33.25 m2 (Ans.) (a)

(b) Evaporation + Superheating to 110°C.

Let suffix e stand for evaporation section and s for superheating section.

Consider the superheater part.

( ) ( )

8 kg/s 1.62 kJ/kgK (120 ) C

hs h p hi hm c pc ce cm

hm

Q m C T T m C T T

T

= - = -

= ¥ ¥ - ∞

 = 1 kg/s ¥ 0.63 kJ/kg K ¥ (110 – 100)°C = 6.3 kW

\
6.3 kJ/s

120 C
8 kg/s 1.62 kJ/kgK

hmT = ∞ -
¥

  = 119.51°C

\ ,

( ) ( ) (120 110) (119.51 100) 10 19.51
.

10120 100
lnlnln

19.51119.51 100

hi ce hm cm
m s

hi ce

hm cm

T T T T
T

T T

T T

- - - - - - -
D = = = =

- -Ê ˆ Ê ˆ
Á ˜Á ˜ Ë - ¯-Ë ¯

14 23 C
l

∞

Overall heat-transfer coefficient (superheating section) is

1 1
1 1 1 1

. /
450 220

s
h s

U
h h

- -
È ˘ È ˘= + = + =Í ˙ Í ˙Î ˚Î ˚

2
147 76 W m K
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 Heat-exchanger area (superheating section) is

3

2
,

6.3 10 W
.

147.76 W/m K 14.23 C

s
s

s m s

Q
A

U T

¥
= = =

D ¥ ∞
2

3 00 m
l

 In the evaporator section, eQ  and U
e
 do not change.

\ eQ  = 161.8 kW;  U
e
 = 381.36 W/m2 K

( )

161.8 kW 8 kg/s 1.62 kJ/kgK (119.51 ) C

e h ph hi he

he

Q m C T T

T

= -

= ¥ ¥ - ∞

\ T
he

 = 107.03°C

\ ,

( ) ( ) (119.51 100) (107.03 100)

119.51 100
lnln

107.03 100

19.51 7.03
.

19.51
ln

7.03

hm cm he ci
m e

hm cm

he ci

T T T T
T

T T

T T

- - - - - -
D = =

- -Ê ˆ Ê ˆ
Á ˜Á ˜ Ë - ¯-Ë ¯

-
= = 12 23 C

l

∞

 Heat-exchanger area (evaporating section) is

3

2
,

161.8 10 W
.

381.36 W/m K 12.23 C

e
e

e m e

Q
A

U T

¥
= = =

D ¥ ∞
2

34 70 m
l

\ Additional area required

= A
s
 + A

e
 – A = (3.00 + 34.70 – 33.25) m2 = 4.45 m2 (Ans.) (b)

 In an existing condenser of surface area 32 m2, steam condenses at a pressure 

of 0.25 bar [T
sat

 = 65°C, h
fg
 = 2345.4 kJ/kg]. The overall heat-transfer coefficient based on previous 

experience is estimated to be 865 W/m2 °C. Cooling water enters the condenser at 17°C with a flow rate 

of 14 kg/s. The mean specific heat of water may be taken as 4180 J/kg °C. Calculate the exit temperature 

of water and the rate of condensation of steam assuming that the steam entering the condenser is dry 

saturated vapour and at the exit, it is saturated liquid.

 How will the performance of the heat exchanger get affected if the overall heat-transfer coefficient is 

doubled?

Solution

Known Steam condenses in a condenser by circulating cooling water under specified conditions.

Find Cooling water exit temperature and steam-condensation rate. Effect of increasing the overall 

heat-transfer coefficient two fold on the exchanger performance.

Assumptions (1) Steady operating conditions exist. (2) Fluid properties are constant. (3) Uniform heat-

transfer coefficient. (4) The condenser is effectively insulated.

Analysis Heat-transfer rate in the condenser,

steam ( )fg c pc ce ci mQ m h m C T T UA T= = - = D
l



Heat Exchangers 831

Log mean temperature difference,

sat sat

sat

sat

( ) ( )

ln ln

ci ce ce ci
m

ci i

ce e

T T T T T T
T

T T T

T T T

- - - -
D = =

- DÊ ˆ Ê ˆ
Á ˜ Á ˜- DË ¯ Ë ¯

l

Also,
( )c pc ce ci

m

m C T TQ
T

UA UA

-
D = =

l

Hence
2 2(865 W/m °C)(32 m )

ln 0.473
(14 kg/s)(4180 J/kg C)

i

e c pc

T UA

T m C

D
= = =

D ∞

where DT
i
 = T

sat
 – T

ci
 = 65 – 17 = 48°C

and DT
e
 = T

sat
 – T

ce
 = 65 – T

ce

\ 0.473i

e

T
e

T

D
=

D
 = 1.6048

Hence,
48

65
1.6048

e ceT TD = - =  = 29.9°C

Exit temperature of cooling water is

T
ce

 = 65 – 29.9 = 35.1°C (Ans.)

Rate of condensation of steam is

steam 3

( ) (14 kg/s)(4180 J/kg C)(35.1 17) C

2345.4 10 J/kg

c pc ce ci

fg fg

m C T TQ
m

h h

- ∞ - ∞
= = =

¥

= 0.451 kg/s (Ans.)

After the overall heat-transfer coefficient is doubled, the new value of U, i.e.,

* 22 2 865 1730 W/m C.U U= = ¥ = ∞
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 It follows that

\

*

*

*

*

2
ln 2 0.473 0.946

48
2.5754 and 18.6 C

2.5754

i

c pc c pce

i
e

e

T U A UA

m C m CT

T
T

T

D
= = = ¥ =

D

D
= D = = ∞

D

 and *
ceT  = 65 – 18.6 = 46.4°C (Ans.)

 Rate of condensation of steam,
*

*
steam 3

( ) 14 4180 (46.4 17)
0.733 kg/s

2345.4 10

c pc ce ci

fg

m C T T
m

h

- ¥ ¥ -
= = =

¥
 Percentage increase of U = 100%

 Percentage increase of steam condensation rate is

0.733 0.451
(100)

0.451

-Ê ˆ= =Á ˜Ë ¯ 62.5% (Ans.)

 Carbon dioxide from a gas-cooled reactor at 500°C and 4 bar pressure enters 

a shell and tube type steam generator at the flow rate of 90 ¥ 103 kg/h through the tubes and leaves the 

tubes at 330°C. The steam is generated dry and saturated at 250°C from the shell side. Using 2.5 cm 

ID copper tubes, 2 mm thick and designed for CO
2
 mass-flow rate of 350 ¥ 103 kg/h m2 calculate the 

length and number of tubes required. Neglect steam-side thermal resistance.

Take the following properties of CO
2
:

r = 3.26 kg/m3 C
p
 = 1.172 kJ/kg K

k = 0.043 W/m K m = 0.0298 centipoise

Solution

Known Shell-and-tube steam generator with steam on the shell side and CO
2
 gas on the tube side 

operates under specified conditions.

Find Length of tubes, L(m). Number of tubes, N.
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Assumptions (1) Steady operating conditions exist. (2) Steam side thermal resistance is negligible. (3) 

Fully developed gas flow through the tube.

Analysis Log mean temperature difference,

(500 250) (330 250) 170
LMTD 149.2 C

ln( / ) ln(250/80) ln(25/8)

i e

i e

T T

T T

D - D - - -
= = = = ∞

D D

Mass-flow rate, ( )cm NA Vr=

\ 3 3 2

3
2

3

90 10 kg/h and 350 10 kg/hm
( )

90 10
0.257 m

350 10

c

c

m
m

NA

NA

= ¥ = ¥

¥
= =

¥
\ Number of tubes required,

2

0.257
.

( /4)(0.025)
N

p
= = =523 85 524 (Ans.)

Overall heat-transfer coefficient, based on the outer diameter

1
1 1o

o
o i i

D
U

h D h

-
È ˘= + ◊Í ˙
Î ˚

As steam-side thermal resistance is negligible,

1 2.5
0, and

2.9

i
o i i

o o

D
U h h

h D

Ê ˆ= = ◊ = Á ˜Ë ¯

To find h
i
, we use Dittus–Boelter equation:

0.8 0.30.023( ) ( )D DNu Re Pr=

[Note that here the index n is 0.3 as the fluid, i.e., CO
2
 is getting cooled]

Prandtl number,

3 31.172 10 0.0298 10
0.8122

0.043

pC
Pr

k

m -¥ ¥ ¥
= = = [1 centipoise = 10–3 kg/m s]

Reynolds number,

\

3

0.8 0.3

2

4( / ) 4(90000/524 3600) 10
81 540

0.025 0.0298

0.023(81540) (0.8122) 183.53

0.043
183.53 315.7 W/m K

0.025

i
D

i

D

Di
i

VD m N
Re

D

Nu

k
h Nu

D

r

m p m p

¥ ¥
= = = =

¥ ¥

= =

= ◊ = ¥ =

U
o
 = 315.7 ¥

2.5

2.9
 = 272 W/m2 K

As (LMTD) ( )o o h ph hi heQ U A m C T T= = -
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 Outside surface area required,

290000 1172 (500 330)
122.7 m

272 149.2 3600
oA

¥ ¥ -
= =

¥ ¥

 Also, A
o
 = NpD

o
L

 Length of tubes, 
122.7

524 0.029
L

p
=

¥ ¥
 = 2.57 m (Ans.)

 A single-pass steam condenser contains 100 thin-walled tubes of 25 mm nominal 

diameter and 2 m length. Cooling water enters at a temperature of 10°C, leaves at 50°C and flows through 

the tubes at a velocity of 2 m/s. The condenser pressure is 0.5 bar and the condensing heat-transfer 

coefficient is 5000 W/m2 °C. Determine (a) the condensate-flow rate, and (b) the mean temperature of 

the tube metal work at the centre of the condenser length.

The following properties of water may be used:

r = 995.8 kg/m3 m = 801 ¥ 10–6 kg/m s

C
p
 = 4.178 kJ/kg K k = 0.617 W/m K

Solution

Known Steam condenser operates under the specified conditions.

Find (a) Condensate-flow rate. (b) Mean temperature of tube metal work at the midpoint.

Assumptions (1) Steady operating conditions. (2) Uniform heat-transfer coefficient. (3) No fouling. 

(4) No subcooling of condensate.

Analysis The Dittus–Boelter equation can be used to find the heat-transfer coefficient on the cooling 

water side, h
i
.

3

6

6

0.8 0.4 0.8 0.4

(995.8 kg/m )(2 m/s)(0.025 m)
62 160

(801 10 kg/ms)

(4178 J/kgK)(801 10 kg/ms)
5.42

0.617 W/mK

0.023( ) ( ) 0.023(62 160) (5.42) 309

D

p

i
D D

VD
Re

C
Pr

k

h D
Nu Re Pr

k

r

m

m

-

-

= = =
¥

¥
= = =

= = = =
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Water-side heat-transfer coefficient,

2(309)(0.617 W/mK)
7629 W/m K

0.025 m
ih = =

  The overall heat-transfer coefficient, U, is given by the following expression (neglecting

the thermal resistance of the tube).

1 1 1 1 1

7629 5000i oU h h
= + = +

\ U = 3020 W/m2 K

At a pressure of 0.5 bar, the condensing temperature is 81.33°C (from steam tables). 

Neglecting the condensate subcooling,

(81.33 10) (81.33 50)
LMTD 48.6 C

81.33 10ln( / )
ln

81.33 50

i e

i e

T T

T T

D - D - - -
= = = ∞

-D D È ˘
Í ˙-Î ˚

and, the heat-transfer rate is

(LMTD)Q UA=  = U(NpDL)(LMTD)

         = (3020 W/m2 K) (100 ¥ p ¥ 0.025 m ¥ 2 m)(48.6°C) 
3

1 kW

10 W
 = 2305. 5 kW

Also, we note that, fgQ mh=

Latent heat of condensation,

h
fg

(at 0.5 bar) = 2305.4 kJ/kg

\ Condensate mass-flow rate,

2305.5 kJ/s/2305.4 kJ/kg
fg

Q
m

h
= = = 1.0 kg/s (Ans.) (a)

  In order to find the tube metal work temperature at the centre of the exchanger, it is 

first necessary to calculate the cooling water temperature at this point.

  The general equation for the temperature difference between the fluids may be expressed 

as log DT = Ax + B

  where DT ∫ T
h
 – T

c
 = T

sat
 – T, T is the cooling water temperature, and x is the distance 

along the heat exchanger as shown in the schematic.

At x = 0 m, DT
i
 = 71.33°C

At x = 2 m, DT
e
 = 31.33°C

log
10

 71.33 = 0 + B and log
10

 31.33 = 2A + B

or log
10

 71.33 + 2 A = log
10

 31.33 or 1.853 + 2 A = 1.496

\ A = –0.179 and B = 1.853

Thus, the equation becomes

log
10
DT = – 0.179 x + 1.853

At the centre of the condenser length, i.e., at x = 1m

log
10
DT

centre
 = – 0.179 (1) + 1.853 = 1.674
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\ DT
centre

 = 47.21°C

 and the cooling water temperature at x = 1 m,

T
centre

 = 81.33 – 47.21 = 34.12°C

 The radial conditions at the centre point are shown 

in the adjoining figure.

 The radial heat-flow rate is given by

wall wall( 34.12) (81.33 – )i oQ h A T h A T= - =

 where T
wall

 is metal work (wall) temperature

 or 7629(T
wall

 – 34.12) = 5000 (81.33 – T
wall

)

\ T
wall

= 52.81°C at midpoint (Ans.) (b)

 A feedwater heater supplying hot water to a steam generator is a one-shell pass 

and two-tube pass heat exchanger with 100 thin-walled, 2.0 cm inside diameter tubes. Saturated steam 

at 1 atm condenses on the outside surface of the tubes with a heat-transfer coefficient of 10 000 W/

m2 °C. Due to space constraints the tube length per pass is restricted to 2.0 m. Water enters the tubes 

with a mass flow rate of 10 kg/s at 15°C. Calculate (a) the overall heat-transfer coefficient, and (b) the 

temperature of the water at the outlet.

Properties of water:

r = 991 kg/m3 C
p
 = 4.179 kJ/kg °C

m = 0.631 ¥ 10–3 kg/m s k = 0.634 W/m °C

Solution

Known Feedwater heater (1-2 shell-and-tube heat exchanger) for heating water by condensing 

steam.

Find (a) U (W/m2 °C); (b) T
ce

(°C).

Assumptions (1) Steady-state conditions. (2) Constant heat-transfer coefficient. (3) No fouling. (4) Tube-

wall resistance is negligible. (5) Fully developed water flow.

Analysis Heat-transfer rate,

steam ( )
cfg c p ce ci s mQ m h m C T T UA T= = - = D

l
(A)

 where suffix c stands for cold fluid, i.e., water.
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Overall heat-transfer coefficient, 

1
1 1

i o

U
h h

-
È ˘= +Í ˙
Î ˚

where h
o
 = 10 000 W/m2 °C

To evaluate h
i
, we first determine the Reynolds number.

4( /tube)
D

VD m
Re

D

r

m p m
= = (for flow through a circular tube)

  =
3

4 (10/100)kg/s

0.02 m (0.631 10 kg/ms)p
-

¥
¥ ¥ ¥

 = 10 089 fi turbulent flow

3 o 3(4.179 10 J/kg C)(0.631 10 kg/m s) 1 W
4.16

0.634 W/m°C 1 J/s

pC
Pr

k

m -¥ ¥
= = =

For fully developed turbulent flow, using the Dittus–Boelter correlation with n = 0.4 (water

being heated);

0.8 0.40.023( ) ( )i
D D

h D
Nu Re Pr

k
= =

   = 0.023 (10089)0.4 (4.16)0.4 = 64.93

Heat-transfer coefficient (water side),

\

20.634 W/m C
64.93 2058 W/m C

0.02 m

1 1
=

2058 10000

i D

k
h Nu

D

U

∞
= = ¥ = ∞

È ˘+ =Í ˙Î ˚
∞21707 W/m C (Ans.) (a)

Heat-exchange surface area,

2

sat
sat sat

sat

sat sat

100 2 0.02 m 2 m 25.13 m

[( ) ( )]/ ln

15

100 15ln[( )/( )]
ln

100

s

ci
m ci ce

ce

ce ci ce

ci ce

ce

A NP DL

T T
T T T T T

T T

T T T

T T T T

T

p p= = ¥ ¥ ¥ ¥ =

-Ê ˆD = - - - Á ˜-Ë ¯

- -
= =

-- - Ê ˆ
Á ˜-Ë ¯

l

Substituting in Eq. (A):

(10 kg/s) (4179 J/kg °C) (T
ce

 – 15)°C

  
2 21707 W/m C 25.13 m {( 15)/ln(85/100 )}ce ceT T= ∞ ¥ ¥ - -

or
85 1707 25.13

ln 1.0266
100 10 4179ceT

¥
= =

- ¥

or 1.026685
2.7916

100 ce

e
T

= =
-

Water exit temperature,

T
ce

 = 100 – 
85

2.7916

Ê ˆ
Á ˜Ë ¯  = 69.6°C (Ans.) (b)
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 A single-pass multi-tube heat exchanger employed for the purpose of extracting 

heat from the exhaust gases of an internal combustion engine for a space heating system operates in 

counterflow. The exhaust gases (C
p
 = 1.1 kJ/kg °C and R = 0.3 kJ/kg K) flow through the tubes with a mean 

velocity of 20 m/s and are cooled from 300 to 100°C. The nominal tube diameter is 20 mm. Water flowing 

outside the tubes is heated from 20 to 90°C and the overall heat-transfer coefficient is 0.2 kW/m2 °C.

 These conditions apply when the engine is producing a brake power (bp) of 100 kW. The brake specific 

fuel consumption (bsfc) is 0.2 kg/kWh, the air-fuel ratio (AFR) is 16 to 1, and the exhaust gas pressure 

is 100 mm of water. Estimate (a) the mass-flow rate of water, (b) the number of tubes required, and 

(c) the length of each tube.

Solution

Known Exhaust gases from an internal combustion (IC) engine are used to heat water in a 

counterflow heat exchanger under specified conditions.

Find (a) Mass-flow rate of water, wm  (kg/s). (b) Number of tubes, N. (c) Length of each tube, L(m).

Assumptions (1) Steady operating conditions exist. (2) Gases are treated as an ideal gas. (3) No fouling. 

(4) Constant properties.

Analysis Rate of heat transfer,

( ) ( )
h cm h p hi he c p ce ciQ UA T m C T T m C T T= D = - = -

l

 The mass-flow rate of the hot fluid (gases), gm  may be found from the engine data:

fm =  (bp) (bsfc) = (100 kW) (0.2 kg/kWh) = 20 kg/h

1 (AFR 1)a
g a f f f

f

m
m m m m m

m

È ˘= + = + = +Í ˙
Î ˚

   = 20 kg/h (16 + 1) = 340 kg/h = hm

 Heat rate,

( )h ph hi heQ m C T T= -  = (340 kg/h) (1.1 kJ/kg °C) (300 – 100)°C
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   = 74 800 kJ/h

But ( )
cc p ce ciQ m C T T= -

With 4.18 kJ/kg Cpc pwC C= = ∞ ,

Mass-flow rate of water,

74800 kJ/h

( ) (4.18 kJ/kg C)(90 20) C
w c

pc ce ci

Q
m m

C T T
= = =

- ∞ - ∞

   = 255.6 kg/h (Ans.) (a)

Gauge pressure, P
g
 = 100 mm water = 100 ¥ 9.81 Pa = 0.981 kPa

Absolute pressure of exhaust gases,

P = Atmospheric pressure, P
a
 + Gauge pressure, P

g

= 101.3 kPa + 0.981 kPa = 102.281 kPa

From the characteristic gas equation:

Pv = RT

Specific volume of gases,

3
3(0.3 kJ/kgK)(573.15 K) 1 kPa m

1.681 m /kg
102.281 kPa 1 kJ

RT
v

P
= = =

From the equation of continuity, the mass-flow rate of gases is c
g

A V
m

v
=

Hence, the total cross-sectional area of tubes for gas flow, /c gA m v V=
3

2(340 kg/h)(1.681 m /kg)
0.007 94 m

(20 3600 m/h)
= =

¥

Number of tubes required,

2

2 2

0.00794 m

per tube ( /4) ( /4)(0.02 m)

c c

c

A A
N

A Dp p
= = =

  = 25.27 @ 26 (Ans.) (b)

Log mean temperature difference,

LMTD or DT
lm

 = 

ln

i e

i

e

T T

T

T

D - D
D
D

where DT
i
 = T

hi
 – T

ce
 = 300 – 90 = 210°C

DT
e
 = T

he
 – T

ci
 = 100 – 20 = 80°C

\
210 80

134.7 C
ln(210/80)

mT
-

D = = ∞
l

As mQ UA T= D
l

, the total heat-exchanger surface area is

2

2

(74800/3600)kW
0.7712 m

0.2 kW/m C 134.7 Cm

Q
A

U T
= = =

D ∞ ¥ ∞l
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 For a single pass heat exchanger,

A = NpDL

 Therefore, the length of each tube is

20.7712 m

26 0.02 m

A
L

N Dp p
= = =

¥ ¥
0.472 m (Ans.) (c)

 A shell-and-tube heat exchanger with 2 shell passes and 8 tube passes is to be 

designed to heat water (C
p
 = 4.18 kJ/kg °C) with ethylene glycol (C

p
 = 2.68 kJ/kg °C).

 Water enters the tubes at 20°C at a flow rate of 0.7 kg/s and leaves at 70°C. Ethylene glycol enters 

the shell at 120°C and leaves at 70°C. If the convection heat-transfer coefficient on the tube side is 840 

W/m2 °C and that on the shell side is 420 W/m2 °C, Calculate the heat-transfer area required.

Solution

Known A 2-8 shell-and-tube heat exchanger in used to heat water by ethylene glycol.

Find Heat-transfer area.

Assumptions (1) Steady operating conditions. (2) Fouling is neglected. (3) Tube wall resistance is 

negligible. (4) Constant and uniform heat-transfer coefficient.

Analysis Heat-transfer rate is

3

,CF

( ) (0.7 kg/s)(4180 J/kg C)(70 20) C 146.3 10 W

ln( / )

c pc ce ci

i e
m

i e

Q m C T T

T T
T

T T

= - = ∞ - ∞ = ¥

D - D
D =

D Dl
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 where 

120 70 50 C

70 20 50 C 50 C

i hi ce

e he ci

T T T

T T T

D = - = - = ∞

D = - = - = ∞ = ∞

 Since ,CF, 50 Ci e lm i eT T T T TD = D D = D = D = ∞

 With 2 1

1 1

1 2

2 1

70 20
0.50

120 20

120 70
1.0

70 20

t t
P

T t

T T
R

t t

- -
= = =

- -

- -
= = =

- -
 the LMTD correction factor, F = 0.95

 Overall heat-transfer coefficient,

1 1
21 1 1 1

280 W/m C
840 420i o

U
h h

- -
È ˘ È ˘= + = + = ∞Í ˙ Í ˙Î ˚Î ˚

 Heat-transfer rate,

,CFmQ UAF T= D
l

 Heat exchanger surface area is

3

2
,CF

146.3 10 W

280 W/m C 0.95 50 Cm

Q
A

UF T

¥
= =

D ∞ ¥ ¥ ∞l

  = 11.0 m2 (Ans.)

 In a shell-and-tube heat condenser steam is condensed at 0.1 bar and 0.9 dryness 

fraction. The cooling water enters at 30°C and leaves the condenser at 40°C. The condenser has 1000 

tubes of 20 mm ID and 24 mm OD. One-shell pass is used along with two-tube passes. The heat-transfer 

coefficient on the outside of the tubes where the steam condenses may be assumed to be 8600 W/m2 K. 

The rate of flow of cooling water is 1000 m3/h. Determine:

 (a) the quantity of steam condensed per hour, (b) the inside heat-transfer coefficient based on the 

correlation: Nu = 0.023(Re)0.8(Pr)0.4, (c) the overall heat-transfer coefficient, (d) the length of the tube 

bundle

 Assume that the condensate is not subcooled and that the effect of fouling on both sides of the tubes 

may be neglected.

 The properties of water at the average bulk temperature of 35°C may be taken as follows:

Dynamic viscosity = 0.72 ¥ 10–3 N s/m2

Specific heat = 4.178 kJ/kg K

Thermal conductivity = 0.623 W/m K

Density of water = 994 kg/m3

Solution

Known Steam is condensed in a surface condenser by cooling water.

Find (a) cond (kg/h)m , (b) h
i
(W/m2 K), (c) U(W/m2 K), (d) L(m).
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Assumptions (1) Steady operating conditions. (2) Constant properties. (3) Uniform overall heat-transfer 

coefficient. (4) No subcooling or fouling. (5) Tube side resistance negligible.

Analysis From steam tables:

At P = 0.1 bar, T
sat

= 45.81°C, h
fg
 = 2392.1 kJ/kg, x = 0.90

Heat-transfer rate,

steam @0.1bar @0.1bar cond[( ) ]f fg f fgQ m h h h m h= + - = ◊x x

Also
water

3

3

–( ) ( V) ( )

1000
(994 kg/m ) (4.178 kJ/kgK)(40 30)K 11535.9 kW

3600 m /s

wc pc ce ci p e iQ m C T T C T Tr= - = -

Ê ˆ= - =Á ˜Ë ¯
Hence, the mass of steam condensed is

cond

11535.9 kW
. /

0.9 2392.1 kJ/kgfg

Q
m

h
= = =

¥
5 36 kg s

x
(Ans.) (a)

Furthermore,

s mQ UA T= D
l

(For condensers, correction factor F is always 1)

where A
s
 = NPpDL

and
ln( / )

i e
m

i e

T T
T

T T

D - D
D =

D Dl

with sat

sat

45.81 30 15.81 C

45.81 40 5.81 C

i i

e e

T T T

T T T

D = - = - = ∞

D = - = - = ∞

\
15.81 5.81

10 C
ln(15.81/5.81)

mT
-

D = = ∞
l
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 If the overall heat-transfer coefficient is based on the inner surface area of the tubes,

 Then 
1 1 1

s i i

i

i i o o

UA U A

D

U h D h

=

È ˘= +Í ˙
Î ˚

 where h
i
 is the inside heat-transfer coefficient determined from

i
i

k
h Nu

D
=

 Nusselt number,

0.8 0.40.023( ) ( )Nu Re Pr=

 where 
4( /tube) 4(994 1000/1000 3600)kg/s

24413.6
(0.02 m)(0.00072 kg/ms)

4178 J/kgK 0.00072 kg/ms
4.83

0.623 W/mK

i

p

VD m
Re

D

C
Pr

k

r

m p m p

m

¥ ¥
= = = =

¥
= = =

 Hence, 0.8 0.40.023(24413.6) (4.83)Nu =  = 139.77

\ (139.77 0.623 W/mK /0.02 m)ih = ¥ = 2
4354W/m K (Ans.) (b)

 Then, 

1
1 20 1

4354 24 8600
iU

-
È ˘= +Í ˙Î ˚

 = 3062 W/m2 K (Ans.) (c)

 Length of the tube bundle,

3

2

11535.9 10 W

3062 W/m K 1000 2 m 0.02 m 10i i lm

Q
L

U NP D Tp p

¥
= =

D ¥ ¥ ¥ ¥ ¥

 = 3.0 m (Ans.) (d)

(D) Cross-Flow Heat Exchangers (LMTD Method)

 A single-pass cross-flow heat exchanger (both fluids unmixed) has the following 

operating data:

Hot fluid Cold fluid

Inlet temperature (°C) … 70.2 35.1

Exit temperature (°C) … 51.3 54.1

Mass flow rate (kg/h) … 100.0 –

Specific heat (kJ/kg °C) … 1.005 –

Overall heat-transfer coefficient … 43 W/m2 °C

Find the area of the heat exchanger.

Solution

Known A cross-flow heat exchanger (both fluids unmixed) operates under specified conditions.

Find Heat exchanger surface area, A(m2).
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Assumptions (1) Steady operating conditions. (2) Uniform overall heat-transfer coefficient. (3) Constant 

properties.

Analysis counterflow(LMTD)
ln( / )

i e

i e

T T

T T

D - D
=

D D

or ,CF

( ) ( ) (70.2 54.1) (51.3 35.1)

16.1
lnln

16.2

hi ce he ci
m

hi ce

he ci

T T T T
T

T T

T T

- - - - - -
D = = =

-Ê ˆ
Á ˜-Ë ¯

16.15 C
l

∞

To find the LMTD correction factor, F, refer to the chart, for single pass cross flow heat 

exchanger (both fluids unmixed), where

(54.1 35.1) C 19.0
0.541

(70.2 25.1) C 35.1

(70.2 51.3) C 18.9
= ~ 1.0

(54.1 35.1) C 19.0

ce ci

hi ci

hi he

ce ci

T T
P

T T

T T
R

T T

- - ∞
= = = =

- - ∞

- - ∞
= =

- - ∞

From the appropriate chart, we read F = 0.71

Heat-transfer rate,

,CF[ ] ( )m h ph hi heQ UA F T m C T T= D = -
l

Area of the heat exchanger,

2
,CF

( ) (100/3600 kg/s)(1005 J/kg C)(18.9 C) 1 W

( ) 1 J/s(43 W/m C)(0.71 16.15 C)

h ph hi he

lm

m C T T
A

U F T

- ∞ ∞
= =

D ∞ ¥ ∞

= 1.07 m2 (Ans.)
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(E) e NTU Method

 A double-pipe, parallel-flow heat exchanger is to be used to cool oil [0.25 kg/s 

at 115°C], using sea water [0.5 kg/s at 15°C]. The area of the heat exchanger is 11.5 m2 and the overall 

heat-transfer coefficient is 36.5 W/m2 K. What are the exit states of the oil and the sea water from the 

heat exchanger? For oil, take C
P
 = 2131 J/kg K and for sea water, take C

p
 = 4178 J/kg K. Use the 

effectiveness NTU method.

Solution

Known A parallel-flow heat exchanger with given (UA) value, hot and cold stream inlet temperatures, 

and flow rates.

Find Exit temperatures of hot and cold fluid streams, T
he

 and T
ce

.

Assumptions (1) Steady operating conditions. (2) Heat-transfer to the surroundings is negligible. (3) 

Negligible changes in kinetic and potential energy.

Analysis Since only inlet temperatures of the hot and cold fluids are known, we choose to use the 

e NTU method.

 Step 1: Identify C
min

 and R:

oil

water

oil

water

0.25 kg/s 2131 J/kgK 532.75 W/K

0.5 kg/s 4178 J/kgK 2089.0 W/K

h

c

h h p p

c c p p

C m C m C

C m C m C

= = = ¥ =

= = = ¥ =

 Hence, min max,h cC C C C= =

 Heat-capacity rate ratio, R
532.75 W/K

2089.0 W/K
=  = 0.255

 Step 2: Calculate NTU:

 Number of transfer units, 
min

36.5 11.5
NTU

532.75

UA

C

¥
= =  = 0.788

 Step 3: Compute effectiveness, e

 For a parallel-flow heat exchanger:

1 exp[ NTU(1 )] 1 exp[ (0.788)(1 0.255)]
0.50

1 1 0.255

R

R
e

- - + - - +
= = =

+ +
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 Step 4: Evaluate Q :

 Heat-transfer rate,

max min ( )hi ciQ Q C T Te e= = -

 = (0.5) (532.75 J/kg K) (115 – 15)°C or K = 26637.5 W

 Step 5: Apply energy balance and find exit temperatures:

( ) ( )h hi he c ce ciQ C T T C T T= - = -

 Oil exit temperature,

26637.5
115

532.75
he hi

h

Q
T T

C

Ê ˆ Ê ˆ= - = - =Á ˜Á ˜ Ë ¯Ë ¯
65 C∞ (Ans.)

 Similarly,

 Sea water exit temperature,

26637.5
15 .

2089.0
ce ci

c

Q
T T

C

Ê ˆ Ê ˆ= + = + = ∞Á ˜Á ˜ Ë ¯Ë ¯
27 75 C (Ans.)

 10 000 kg/h of furnace oil is heated from 30°C to 90°C in a shell and tube type 

heat exchanger. The oil is flowing through the tube while steam at 150°C is to flow through the shell. 

The tubes are 2 cm ID and 2.5 cm OD in size. The heat-transfer coefficient on oil side and steam side 

are 200 and 6000 W/m2 K. If the length of each tube is limited to 4 m, (a) calculate the number of tubes 

required in each pass, (b) the number of tube passes and (c) the tube length if the velocity of oil is limited 

to 20 cm/s. The properties of oil are the following: r = 900 kg/m3, C
p
 = 1970 J/kg K [NU: W 2001]

Solution

Known Shell (single-pass) and tube (multiple-pass) heat exchanger. Tube dimeters, oil-flow rate 

and oil inlet and outlet temperatures. Convection coefficients (inside and outside). Tube 

length and oil velocity. Saturation temperature of steam and oil properties.

Find Number of tubes per pass, N; Number of tube pass, P; and length of the tube, L.

Analysis Heat-transfer rate,

Ê ˆ= - = ¥ ¥ -Á ˜Ë ¯

= = ¥ 3

10000
( ) (1970) (90 30)

3600

(5472.22) (60) 328.33 10 W

c pc ce ciQ m C T T
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Maximum heat-transfer rate,

max min

3

10000
( ) ( ) (1970) (150 30)

3600

656.66 10 W

p hi ciQ mC T T
Ê ˆ= - = ¥ ¥ -Á ˜Ë ¯

= ¥

Effectiveness of the heat exchanger is

max

328.33
0.50

656.66

Q

Q
e = = =

But NTU NTU1 or 1 or ln(1 ) NTUe ee e e
- -= - = - - = -

\ Number of transfer units, NTU = – ln (1 – e)

= – ln (1 – 0.5) = 0.693

But
min

NTU
( )p

UA

mC
=

\ UA = (0.693) (5472.22) = 3793 W/K = U
o
A

o
 = U

i
A

i

Overall heat-transfer coefficient,

1

21 1 2.5 1 1
155.84 W/m K

2 200 6000

o
o

i i o

D
U

D h h

-
È ˘ È ˘= + = + =Í ˙ Í ˙Î ˚Î ˚

Hence, 23793
24.34 m

155.84
oA = =

But A
o
 = NPpD

o
L

Number of tubes/pass, N = , total

per tube

c

c

m

m

2 3 2 2 2
iper tube (900 kg/m ) 0.02 m (0.20 m )

4 4

kg 3600 s
0.05655 203.58 kg/h

s 1 h

c cm A V D V
p p

r r
Ê ˆ= = ¥ ¥ = ¥Á ˜Ë ¯

Ê ˆ Ê ˆ= =Á ˜ Á ˜Ë ¯ Ë ¯

Thus, N = 
10000 kg/h

203.58 kg/h
 = 49.12 ª 50 (Ans.) (a)

Number of tube passes,

224.34 m
1.55

50 0.025 m 4 m

o

o

A
P

N D Lp p
= = = ª

¥ ¥ ¥
2 (Ans.) (b)

Length,
224.34 m

50 2 0.025 m

o

O

A
L

NP dp p
= = =

¥ ¥ ¥
3.1m (Ans.) (c)

This is less than the permissible length of 4 m.

Comments Note that DT(°C) = DT(K) and UA = U
i
A

i
 = U

o
A

o
.

For steam condensing on the outer tube surface, steam( ) ( )p p hmC mC  as T
hi
 = T

he
 = 

T
sat

. Hence, oil min( ) ( ) ( )p c p pmC mC mC= = . For any heat exchanger involving phase change 

(evaporator/condenser),

e = 1 – exp (–NTU).
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 A parallel-flow heat exchanger of one metre length cools an oil stream from 

140°C to 100°C by a cooling water stream which enters the exchanger at 20°C and leaves at 30°C. 

Later, under the modified operating conditions, the oil is required to be cooled to 80°C and this is to 

be accomplished by increasing the length of the oil cooler. Assuming the oil and water mass-flow rates, 

their inlet temperatures and physical dimensions remain unchanged, calculate (a) the exit temperature of 

the cooling water in the modified cooler, and (b) the length of the new exchanger.

Solution

Known A parallel-flow heat exchanger for cooling oil with water. Inlet and exit temperatures of 

oil and water.

Find (a) Water outlet temperature, *
ceT , to cool the oil further to 80°C, and (b) Length of the 

modified oil cooler, L*.

Assumptions (1) Steady operating conditions. (2) Oil is the hot fluid with smaller heat-capacity rate. (3) 

No fouling.

Analysis Before increasing the length of the cooler:

 The temperature difference between the oil (hot fluid) and the water (cold fluid) at the two 

ends of the heat exchanger are

DT
i
 = T

hi
 – T

ci
 = (140 – 20)°C = 120°C

 and DT
e
 = T

he
 – T

ce
 = (100 – 30)°C = 70°C

 The specific heats of oil and water are typically 2.13 and 4.18 kJ/kg °C. It is reasonable 

to identify the oil as the fluid with smaller heat-capacity rate. Then

min

max

h

c

h ph

c c p

m CCC
R

C C m C
= = =

 From the energy balance:

( ) ( )
h ch p hi he c p ce ci s mQ m C T T m C T T UA T= - = - = D

l
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Heat-capacity rate ratio then becomes

30 20
0.25

140 100

ce ci

hi he

T T
R

T T

- -
= = =

- -

One can also write

or

min

min

( )

( ) ln( / )

hi he s m

s hi he hi he i e

m i e

C T T UA T

UA T T T T T T

C T T T

- = D

- - D D
= =

D D - D

l

l

\ NTU
min

(140 100)ln(120/70)

120 70

sUA

C

-
∫ =

-
 = 0.4312

With A
s
 = pDL = pD since L = 1 m,

UpD/C
min

 = 0.4312

After increasing the length of the cooler:

* *
* *

min min

NTU 0.4312sUA U DL
L

C C

p
= = =

Effectiveness of a parallel-flow heat exchanger in terms of NTU and R can be expressed as

1 exp[ NTU(1 )]

1

R

R
e

- - +
=

+

For the modified operating conditions, R remains same but NTU is changed. Then

* *{1 exp[ NTU (1 )]}/(1 )R Re = - - + +

   = {1 – exp [–0.4312 L* ¥ 1.25]}/1.25 (A)

Furthermore,

* *

*

min min

( ) ( )

( ) ( )

h hi he c ce ci

hi ci hi ci

C T T C T T

C T T C T T
e

- -
= =

- -
(B)

Since C
h
 = C

min
, from Eq. (B):

*

*
*

140 80
0.5 and

140 20

h ce ci

c hi he

C T T
R

C T T
e

--
= = = =

- -

Therefore,

* *( )ce ci hi heT T R T T= + -  = 20 + 0.25 (140 – 80) = 35°C (Ans.) (a)

From Eq. (A):

0.5 ¥ 1.25 = 1 – exp (– 0.4312 ¥ 1.25 L*)

or –0.4312 ¥ 1.25 L* = ln (1 – 0.625) = ln 0.375

New length, L* = 
ln 0.375

0.539
= 1.82 m (Ans.) (b)
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 A heat exchanger used in a process industry is designed to operate under the 

following conditions:

Parameter Hot fluid Cold fluid

Mass-flow rate (kg/s) 2.0 2.5

Specific heat capacity (kJ/kg °C) 3.5 4.18

Inlet temperature (°C) 80 15

Exit temperature (°C) 50 –

The overall heat-transfer coefficient is 2 kW/m2 °C.

Determine the required heat-transfer area (m2) for the following exchanger configurations.

(a) Co-current flow, (b) Counter-current flow, (c) Cross-flow, single-pass, both fluids unmixed, (d) Shell 

and tube, one-shell pass and two-tube passes.

Solution

Known A heat exchanger operates under the specified conditions.

Find Heat-exchanger surface area required, A(m2) for different configurations: (a) Parallel flow, 

(b) Counterflow, (c) Cross flow, both fluids unmixed, (d) 1-2 shell and tube.

Assumptions (1) Steady operating conditions. (2) Heat exchanger is adiabatic (no losses to surroundings). 

(3) Constant properties. (4) Constant and uniform overall heat-transfer coefficient.

Analysis Overall energy balance:

( ) ( ) UAF(LMTD)h ph hi he c pc ce ciQ m C T T m C T T= - = - =

 Heat rate, (2.0 kg/s)(3.5 kJ/kg C)(80 50) CQ = ∞ - ∞  = 210 kW

 Cold fluid outlet temperature,

210 kW
( / ) 15 C 35 C

2.5 kg/s 4.18 kJ/kg C
ce ci c pcT T Q m C

Ê ˆ= + = ∞ + = ∞Á ˜Ë ¥ ∞ ¯
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LMTD = log mean temperature difference in counterflow mode

( ) ( ) (80 35) (50 15)
.

80 35ln /
lnln

50 15

i e hi ce he ci

hi cei e

he ci

T T T T T T

T TT T

T T

D - D - - - - - -
= = = =

- -D D Ê ˆ Ê ˆ
Á ˜Á ˜ Ë - ¯-Ë ¯

39 8 C∞

F is the LMTD correction factor (< 1) for different configurations to be found from the 

appropriate chart.

F = f (P, R)

where
80 50

0.4615
80 15

35 15
= 0.667

80 50

hi he

hi ci

ce ci

hi he

T T
P

T T

T T
R

T T

- -
= = =

- -

- -
= =

- -

(a) Co-current (parallel) flow: DT
i
 = T

hi
 – T

ci
 = 80 – 15 = 65°C

PF

50 35 15 C

65 15
(LMTD) 34.1 C

ln65/15

e he ceT T TD = - = - = ∞

-
= = ∞

Area required, 
2

PF

210 kW

(LMTD) (2 kW/m C)(34.1 C)

Q
A

U
= =

∞ ∞

  = 3.08 m2 (Ans.) (a)

(b) Counter-current (Counter) flow:

Area, A = 
210

(LMTD) 2 39.8

Q

U
= =

¥
2

2.64 m (Ans.) (b)

(c) Cross flow: Single pass, Both fluids unmixed:

From the chart, with P = 0.4615 and R = 0.667, F = 0.951

Area, A = 
210

(LMTD) 2 0.951 39.8

Q

UF
= =

¥ ¥
2

2.78 m (Ans.) (c)

(d) One-shell pass, two-tube pass heat exchanger:

From the chart, with P = 0.4615 and R = 0.667, F = 0.933

Area, A = 
210

(LMTD) 2 0.933 39.8

Q

UF
= =

¥ ¥
2

2.83 m (Ans.) (d)

The lower the surface area, the better it is. Results are summarized and tabulated below, 

with the heat exchanger area in increasing order.

# Configuration Area required, A(m2)

1 Counterflow (b) 2.64

2 Cross flow (both fluids unmixed) (c) 2.78

3 1-2 shell and tube (d) 2.83

4 Parallel flow (a) 3.08
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 A chemical (C
p
 = 3.3 kJ/kg K) following at the rate of 20 000 kg/hr enters a 

parallel flow heat exchanger at 120°C. The flow rate of cooling water (C
p
 = 4.186 kJ/kg K) is 50 000 

kg/h with an inlet temperature of 20°C. The heat-transfer surface area is 10 m2 and the overall heat-

transfer coefficient is 1050 W/m2 K. Calculate the (a) effectiveness of the heat exchanger, and (b) outlet 

temperatures of water and chemical

Solution

Known A parallel-flow heat exchanger with specified hot and cold fluid inlet temperatures.

Find (a) Effectiveness, e, (b) Hot and cold fluid exit temperatures, T
he

 and T
ce

.

Assumptions (1) Steady operating conditions. (2) U is constant.

Analysis This is a rating problem since only T
hi
 and T

ci
 are given.

 Step 1: Identify C
min

(20000/3600)(3.3) 18.33 kW/K

(50000/3600)(4.186) 58.14 kW/K

h

h

h h p

c c p

C m C

C m C

= = =

= = =

\ C
h
 = C

min
 and C

c
 = C

max

min max/ 18.33/58.14 0.315R C C= = =

 Step 2: Determine NTU

3
minNTU / (1050)(10)/18.33 10 0.573UA C= = ¥ =

 Step 3: Find e

NTU(1 ) (0.573)(1.315)

parallel flow

1 1

1 1.315

R
e e

R
e

- + -- -
= =

+

= 0.402 (Ans.)

 Step 4: Calculate Q

max min ( )hi ciQ C T Te e= = -Q

= (0.402)(18.33)(120 – 20) = 737.0 kW
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 Step 5: Calculate exit temperatures from energy balance

( ) ( )c ce ci h hi heQ C T T C T T= - = -

 Hence, andce ci he hi
c h

Q Q
T T T T

C C
= + = -

737.0
20

58.14
ceT = + = 32.7 C∞ (Ans.) (b)

737.0
120

18.33
heT = - = 79.8 C∞ (Ans.) (b)

 A steam condenser is 4 m long and contains 2000 brass tubes (1.59 cm OD). In 

a test 125 kg/s cooling water at 22°C is supplied to the condenser, and when the steam pressure in the 

shell is 61 mm Hg(abs) the condensate is produced at a rate of 3.05 kg/s. Determine (a) the effectiveness 

of the exchanger, and (b) the overall heat-transfer coefficient. Take the specific heat of the water to be 

4.178 kJ/kg K.

Solution

Known A shell and tube steam condenser.

Find (a) Effectiveness, e, (b) Overall heat-transfer coefficient, U.

Assumptions U is constant along the exchanger.

Analysis The hot fluid temperature T
h
is the saturation temperature corresponding to the given steam 

pressure of 61 mmHg which is equal to (61/750) bar = 0.0813 bar. T
sat@0.0813

 = 42°C. The 

cooling water exit temperature can be found from the exchanger energy balance:

( )c pc ce ci h fgm C T T m h- = (A)

 From steam tables, the enthalpy of vaporization at

sat 42 C is 2402 kJ/kgfgT h= ∞ =

 Substituting values in Eq. (A), we have

(125 kg/s)(4.178 kJ/kgK)( 22 C) (3.05 kg/s)(2402 kJ/kg)ceT - ∞ =

fi T
ce

= 36°C
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 The effectiveness, e, is then obtained from

sat

36 22 14

42 22 20

ce ci

ci

T T

T T
e

- -
= = = =

- -
0.7 (Ans.) (a)

 For a condenser, e = 1 – exp (–NTU)

 Hence, the number of transfer units is

1 1
NTU ln ln 1.2

1 1 0.7 c pc

UA

m Ce
= = = =

- -

 It follows that

1.2 (1.2)(125 kg/s)(4.178 kJ/kgK) 627 kW/Kc pcUA m C= = =

 For N tubes, the heat-transfer area is

2 2(2000)( )(1.59 10 m)(4 m) 399.6 mA N DLp p
-= = ¥ =

 Hence, the overall heat-transfer coefficient based on the outside area of the tubes, is

3 2/ 627 10 W/K/399.6 mU UA A= = ¥ = 2
1569W/m K (Ans.) (b)

(F) Both LMTD and e NTU Methods of Analysis

 Air enters a 5 m long, 15 mm ID and 25 mm OD tube (k = 50 W/m K) with a 

mass-flow rate of 50 kg/h and an inlet temperature of 45°C. The required outlet air temperature is 55°C. 

Air heating is accomplished by condensing steam on the outside surface of the tube. The condensation 

heat-transfer coefficient is estimated to be 915 W/m2 K over a range of steam pressures.

 Determine: (a) the steam temperature and pressure required to obtain the specified outlet air temperature. 

(b) What is the steam-flow rate? Use both LMTD method and e-NTU method.

The air properties at the average air temperature of 50°C are the following:

r = 1.092 kg/m3 m = 1.963 ¥ 10–5 kg/m s Pr = 0.7228

Cp = 1.007 kJ/kg K k = 0.2735 W/m K

Solution

Known A heat exchanger is used to raise the air temperature by means of condensing steam, thereby 

maintaining the constant wall temperature.

Find Saturation temperature of steam, T
sat

 (°C) and its pressure (bar). Steam-flow rate.
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Assumptions (1) Steady operating conditions exist. (2) Potential and kinetic energy effects are negligible. 

(3) No work occurs in the heat exchanger. (4) There is no fouling.

Analysis LMTD method:

For constant wall temperature, the energy balance gives:

air steam( ) ( )lm p e i fgQ UA T mC T T m h= D = - = (A)

where sat sat

sat sat sat

sat

( ) ( )

ln{( )/( )}
ln

i e e i
lm

i i e

e

T T T T T T
T

T T T T T T

T T

- - - -
D = =

- - -Ê ˆ
Á ˜-Ë ¯

(B)

From Eq. (A): m

Q
T

UA
D =

l
 and ( )/m p e iT mC T T UAD = -

l

or ( )( / )e i m pT T T UA mC- = D
l

or
sat

sat

( )
( / )

ln

e i
e i p

i

e

T T
T T UA mC

T T

T T

-
- =

-Ê ˆ
Á ˜-Ë ¯

from Eq. (B)

or sat

sat

ln /e
p

i

T T
UA mC

T T

-Ê ˆ = -Á ˜-Ë ¯

\ sat sat( )exp( / )e i pT T T T UA mC- = - -

or sat 1 exp expe i
p p

UA UA
T T T

mC mC

È ˘Ê ˆ Ê ˆ- - = - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

\ sat

exp( / )

1 exp( / )

e i p

p

T T UA mC
T

UA mC

- -
=

- -

The Reynolds number is Re = rVD/m. For a straight circular tube, we rewrite the Reynolds 

number as 
4

D
i

m
Re

Dp m
=

Therefore,
5

1 h
4(50 kg/h)

3600 s4

(1.963 10 kg/ms)(0.015 m)i

m
Re

Dp m p
-

Ê ˆ
Á ˜Ë ¯

= =
¥

 = 60 057 (> 10 000)

This is turbulent flow. Using the Dittus–Böelter equation,

0.8 0.4 0.8 0.40.023 0.023(60057) (0.7228) 134
hD

Nu Re Pr
k

= = = =

Inside heat-transfer coefficient,

2134(0.02735 W/mK)
248.94 W/m K

0.015 m
ih = =
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Now, we can calculate the overall heat-transfer coefficient.

2

2

ln( / )1 1 1 1

2 (244.94 W/m ) (0.015 m)(5 m)

ln(2.5/1.5) 1

2 (50 W/m K)(5 m) (915 W/m K) (0.025 m)(5 m)

o i

i i o o

r r

UA h A kL h Ap p

p p

Ï= + + = Ì
Ó

¸+ + ˝
˛

= [0.017 33 K/W + 0.000 325 K/W + 0.002 78 K/W] = 0.020 435 K/W

\

Incorporating these into our main equation,

sat

exp( / ) 55 C (45 C)exp( 3.5)
.

1 exp( / ) 1 exp( 3.5)

e i p

p

T T UA mC
T

UA mC

- - ∞ - ∞ -
= = =

- - - -
55 3 C∞ (Ans.) (a)

At this temperature, from steam tables, the saturation pressure is 

P = 0.16 bar (Ans.) (a)

Latent heat of steam at 0.16 bar = h
fg
 = 2369 kJ/kg

Mass-flow rate of steam is then

air( ) ( ) (50 kg/h)(1.007 kJ/kgK)(55 45)°C

2369 kJ/kg

p e i

s
fg fg

mC T TQ
m

h h

- -
= = =

= 0.213 kg/h (Ans.) (b)

e NTU method

Heat-transfer rate, max min( ) ( )p hi ciQ Q mC T Te e= = -

For condensing steam, T
hi
 = T

he
 = T

sat
 and steam( )pmC  approaches infinity.

Obviously, min air( ) ( )p pmC mC= .

Then air air sat( ) ( ) ( ) ( )p ce ci p ciQ mC T T mC T Te= - = -

\ sat

( )ce ci
ci

T T
T T

e

-
= +

and,
248.94 W/m K

NTU 3.5
( ) (50/3600 kg/s)(1007 J / kgK)p

UA

mC
= = =

\ Effectiveness of the heat exchanger,

NTU 3.51 1 0.97e ee
- -= - = - =

Hence, saturation temperature of steam,

sat

(55°C 45°C)
45°C .

0.97

ce ci
ci

T T
T T

e

- -Ê ˆ= + = + =Á ˜Ë ¯ 55 3 C∞ (Ans.) (a)

The corresponding saturation pressure from steam tables is found to be

0.16 bar or 16 kPa (Ans.) (a)

Latent heat of vaporization at 0.16 bar = 2369 kJ/kg from the steam table.

48.94 W/K
48.94 W/K 3.5

( ) (50 kg/h)(1 h/3600s)(1007 J/kgK)p

UA
UA

mC
= fi = =
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 Heat-transfer rate,

air( ) ( )p ce ciQ mC T T= -  = 50 kg/h ¥ 1.007 kJ/kg K ¥ (55 – 45) K = 503.5 kJ/h

 With s fgQ m h=
 Mass flow of steam or steam consumption is

503.5 kJ/h

2369 kJ/kg
s

fg

Q
m

h
= = = 0.213 kg/h (Ans.) (b)

 A counterflow heat exchanger is designed for the following specifications:

hm  = 10 kg/s cm  = 20 kg/s

C
ph

 = 1.6 kJ/kg K C
pc

 = 1.0 kJ/kg K

h
h

= 80 W/m2 K h
c
 =100 W/m2 K

R
fh
 = 0.005 m2 K/W R

fc
 = 0.005 m2 K/W

T
hi
 = 200°C T

ci
 = 40°C

T
he

 = 100°C

(a) Determine the heat-transfer area for the heat exchanger.

(b) When the heat exchanger is new (i.e., unfouled), the heat-transfer rate is higher. What will be the 

exit temperatures of the hot and cold fluids in this case?

(c) It is required that even for the new heat exchanger, the hot fluid exit temperature be 100°C. It is 

proposed to do this by adjusting the flow rate of the cold side fluid. Determine the mass flow rate of the 

cold side fluid (to the nearest 1 kg/s) which will achieve this. Assume that h
c
 does not depend on cm .

Solution

Known A counterflow heat exchanger operates under specified conditions.

Find (a) Heat-transfer area, A(m2). (b) Hot fluid exit temperature, T
he

(without fouling resistances).

(c) Mass-flow rate of cold fluid, cm (kg/s) required for clean HX with T
he

 same as that for 

fouled HX.
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Assumptions (1) Steady operating conditions exist. (2) Constant fluid properties. (3) Tube wall conduction 

resistance is negligible. (4) Uniform heat-transfer coefficient. (5) Cold fluid convection 

coefficient, h
c
 is independent of its mass flow rate, cm .

Analysis (a) Fouled Heat Exchanger (HX):

The overall heat-transfer coefficient is given by

21 1 1 1 1
0.005 0.005 m K /W

80 100
fh fc

h c

R R
U h h

È ˘= + + + = + + +Í ˙Î ˚

   = 0.0325 m2 K/W

\ U = 30.77 W/m2 K

Energy balance:

Heat rate, ( )
hh p hi heQ m C T T= -

= (10 kg/s)(1600 J/kg K) [(200 – 100) K] W = 1.6 ¥ 106 W

( )c pc ce cim C T T= -

\
6

3

1.6 10 W
40

20 kg/s 1.0 10 J/kgK

80 60
69.52 C

80
ln

60

ce

m

T

T

¥
= + =

¥ ¥
-

D = = ∞

120 C

l

∞

\ Heat-exchanger surface area,

\
6

2

1.6 10 W

30.77 W/m K 69.52 Km

Q
A

U T

¥
= = =

D ¥
2

748 m
l

(Ans.) (a)

(b) Unfouled HX:

Overall heat-transfer coefficient,

1 1
21 1 1 1

 44.44 W/m K
80 100h c

U
h h

- -
È ˘ È ˘= + = + =Í ˙ Í ˙Î ˚Î ˚

Heat-capacity rate ratio,

min

max

( )
. { ( ) ( ) }

( )

p h

p h p c
p c

mCC
R mC mC

C mC
= = = <0 8

Number of transfer units,

2 244.44 W/m K 748 m
NTU .

( ) 10 kg/s 1600 J/kgKp h

UA

mC

¥
= = =

¥
2 0775

Effectiveness,

(1 0.8)(2.0775)

(1 0.8)(2.0775)

1 exp( (1 )NTU) 1
 .

1 exp( (1 )NTU) 1 0.8

R e

R R e
e

- -

- -
- - - -

= = =
- - - -

0 7204
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 Heat-transfer rate,

( ) ( ) 0.7204 10 kg/s 1.6 kJ/kgK (200 – 40) Cp h hi ciQ mC T Te= - = ¥ ¥ ¥ ∞

 = 1844 kW

 Exit fluid temperatures are

T
he

 = 200°C – (1844 kW/10 kg/s ¥ 1.6 kJ/kg K) = 84.74°C (Ans.) (b)

T
ce

 = 40°C + (1844 kW/20 kg/s ¥ 1.0 kJ/kg K) = 132.2°C (Ans.) (b)

 We must now change cm  to obtain T
ce

 = 100°C,

 with ( ) ( )p h hi heQ mC T T= -  = 1600 kW (as before)

 Let us use the DT
lm

 method with U = 44.44 W/m2 K to find the desired value of cm . This 

involves an iterative procedure. A sample calculation and the results are tabulated below.

 Let cm  = 13 kg/s.

 With Q  = 1600 kW,

1600 kJ/s
( / ) 40 C 163.1 C

13 kg/s 1 kJ/kgK
ce ci c pcT T Q m C

È ˘= + = ∞ + = ∞Í ˙¥Î ˚

DT
i
 = T

hi
 – T

ce
 = 200°C – 163.1°C = 36.9°C

DT
e
 = T

he
 – T

ci
 = 100°C – 40°C = 60°C

\
36.9 60

ln / (36.9/60)

i e
m

i e

T T
T

T T

D - D -
D = =

D Dl
 = 47.52°C

\ calculatedQ  = UADT
lm

 = (44.44 ¥ 10–3 kW/m2 K)(748 m2)(47.52°C)

   = 1580 kW

cm  (kg/s) Desired Q  (kW) T
ce

(°C) DT
lm

 (°C) Calculated Q  (kW)

20 1600 120 69.52 2311

15 1600 146.6 56.6 1882

14 1600 154.2 52.53 1746

13 1600 163.1 47.52 1580 (ª 1600)

12 1600 173.3 41.11 1366

 By linear interpolation, the cold-side fluid-flow rate,

(1580 1746)

(1366 1746)
cm

-
=

-
 (12 – 14) + 14 = 13.13 kg/s

  ª 13 kg/s (to the nearest 1 kg/s) (Ans.) (c)

 A shell-and-tube type steam condenser employed in a large steam power plant, 

effects a heat exchange rate of 2200 MW. The condenser consists of a single pass shell and 32 000 tubes, 

each executing two passes. The water at the rate of 3.2 ¥ 104 kg/s passes through the tubes which are 
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thin walled and of diameter 30 mm. The steam condenses on the outer surface of the tubes. The heat-

transfer coefficient on the steam side may be taken as 11 500 W/m2 K. Steam condenses at 50°C while 

water enters the condenser at 20°C.

Using the LMTD method and the e–NTU method, calculate (a) the outlet temperature of the cooling 

water, and (b) the length of the tubes per pass.

Properties of water at 300 K:

C
p
 = 4.179 kJ/kg K k = 0.613 W/m °C

m = 855 ¥ 10–6 N s /m2 Pr = 5.83

[NU: S 2005]

Solution

Analysis Heat-exchange rate,

62200 10 J/s ( )
cc p ce ciQ m C T T= ¥ = -

The cold fluid is cooling water passing through the tubes.

\ Outlet temperature of cooling water,

6

,out ,in 4

2200 10 J/s
20 C

3.2 10 kg/s 4179 J/kgK
W

w w
w p

Q
T T

m C

¥
= + = ∞ +

¥ ¥

= 36.45°C (Ans.) (a)

LMTD Method:

Tubes are thin walled (D
o

ª D
i
).

Hence, wall

1
ln 0

2

o

i

D
R

kL Dp
= =

Hence,
1 1 1

i oU h h
= +
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To find inside heat-transfer coefficient, h
i
, we use Dittus–Boelter correlation, provided the 

flow is turbulent.

Reynolds number,

4

3 6 2

4 (per tube) 4(3.2 10 /32000)kg/s

(30 10 m)(855 10 Ns/m or kg/m s)
D

m
Re

Dp m p
- -

¥
= =

¥ ¥

= 49 639 fi Turbulent flow

or

0.8 0.4

0.8 0.4

0.023( ) ( )

0.613 W/mK
0.023(49639) (5.83)

0.03 m

D D

Di

Nu Re Pr

k
h Nu

D

=

= = ¥ ¥

    = 5432.4 W/m2 K

Overall heat-transfer coefficient,

1
21 1

3689.54 W/m K
5432.4 11500

U

-
È ˘= + =Í ˙Î ˚

LMTD = 
(50 20) (50 36.45)

30
lnln

13.55

i e

i

e

T T

T

T

D - D - - -
=

DÊ ˆ
Á ˜DË ¯

 = 20.7°C

\ Area of heat exchanger,

A = NPpDL = 
(LMTD)( )

Q

U F

Length of the heat exchanger required,
6

2

2200 10 W

( ) (LMTD) (32000 2 0.03 m)(3689.54 W/m C)(20.7 C)

Q
L

NP D Up p

¥
= =

¥ ¥ ¥ ∞ ∞

= 4.78 m (Ans.) (b)

Note that LMTD correlation factor, F = 1 for condensers and evaporators.

Effectiveness–NTU Method:

e = 1 – exp [–NTU]

where NTU = 
min c pc

UA UA

C m C
=

Now (1 – e) = e–NTU or ln(1 – e) = –NTU

Effectiveness,

max

(36.45 20) C
0.5483

(50 20) C

ce ci

hi ci

T TQ

Q T T
e

- - ∞
= = = =

- - ∞

\ NTU = 0.7948 

And,
4

2

2

NTU 3.2 10 kg/s 4180 J/ kgK 0.7948
28815 m

3689.54 W/m K

cc pm C
A

U

¥ ¥ ¥
= = =

But A = NPpDL
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\ Length of the tubes required, per pass is

228815 m

32000 2 0.03 m

A
L

NP Dp p
= = =

¥ ¥ ¥
4.78 m (Ans.) (b)

 A plate-type heat exchanger cross flow, both fluids unmixed is to be designed to 

heat 1.5 kg/s of air (C
p
 = 1.046 kJ/kg K) from 50°C to 200°C. For this purpose, hot gases (C

p
 = 1.255 

kJ/kg K) are available at 350°C and 1.8 kg/s.

Assume h
air

 = 350 W/m2 K, and h
gas

 = 465 W/m2 K.

(a)  Determine the heat-exchanger surface area. Neglect fouling.

(b)  After one year of use, the heat exchanger is fouled, and the fouling factors are estimated to be 0.001 

m2 K/W on the air side and 0.0012 m2 K/W on the gas side. Determine the exit temperature of air in 

the fouled condition. [IIT, Bombay]

Solution

Known A plate-type cross-flow heat exchanger (both fluids unmixed) operates under specified 

conditions.

Find (a) Area of heat exchanger, A(m2) (b) Exit air temperature in the fouled condition, T
ce

(°C).

Assumptions (1) Steady-state conditions. (2) Heat-transfer coefficients are constant and uniform in both 

fouled and unfouled conditions. (3) Constant fluid properties.

Analysis (a) Heat-transfer rate,

( ) ( )
h ch p hi he c p ce ciQ m C T T m C T T= - = -

 = 1.8 kg/s ¥ 1.255 kJ/kg K ¥ (350 – T
he

)°C

 = 1.5 kg/s ¥ 1.046 kJ/kg K ¥ (200 – 50)°C = 235.4 kW

\ T
he

 = 245.8°C

 Calculation of DT
lm

:

,CF

195.8 150
.

195.8
ln

150

mT
-

D = = 171 9 C
l
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 From the schematic with

350 245.8
0.695

200 50

200 50
= 0.50

350 50

hi he

ce ci

ce ci

hi ci

T T
R

T T

T T
P

T T

- -
= = =

- -

- -
= =

- -

 LMTD correction factor, F is found to be

F = 0.94

\ DT
m
 = F ◊ DT

lm
 = 0.94 ¥ 171.9 = 161.6°C

 Overall heat-transfer coefficient,

1 1

air gas

1 1 1 1
. /

350 465
U

h h

- -
È ˘ È ˘= + = + =Í ˙ Í ˙Î ˚Î ˚

2
199 7W m K

 Heat-exchanger surface area is 

\
3

2

235.4 10 W
.

199.7 W/m K 161.6m

Q
A

U T

¥
= = =

D ¥
2

7 295 m (Ans.) (a)

(b) Overall heat-transfer coefficient,

1 1
2

,air ,gas
air gas

1 1 1 1
0.001 0.0012 W/m K

350 465
f fU R R

h h

- -
È ˘ È ˘= + + + = + + +Í ˙ Í ˙Î ˚Î ˚

= 138.7 W/m2 K

\

2 2

min

minmin

max max

138.7 W/m K 7.295 m
NTU 0.645

( ) 1.5 kg/s (1.046 1000)J/kgK

( ) 1.5 kg/s 1.046 kJ/kgK
= 0.695

( ) 1.8 kg/s 1.255 kJ/kgK

p

p

p

UA

mC

mCC
R

C mC

¥
= = =

¥ ¥

¥
= = =

¥

\ Effectiveness,

50 50
0.4

350 50 300

ce ci ce ce

hi ci

T T T T

T T
e

- - -
= = = =

- -

 Exit temperature of cold side fluid (air) is

T
ce

 = 50 + 0.4 (300) = 170°C (Ans.) (b)

 A cross-flow heat exchanger is to be designed to heat hydrogen gas with hot 

water. The water is on the tube side and enters at 150°C at a flow rate of 3 kg/s with a heat-transfer 

coefficient of 1250 W/m2 °C. The hydrogen (C
p
 = 14.4 kJ/kg °C) is on the shell side and enters at 30°C 

at a flow rate of 120 kg/min with a heat-transfer coefficient of 1800 W/m2 °C. The required hydrogen exit 

temperature is 60°C. The heat exchanger has 100, 2.5 mm thick tubes of 15 mm ID, made of stainless 

steel (k = 14.2 W/m °C).

 Determine (a) the overall heat-transfer coefficient based on the inner area, and (b) the required length 

of the tubes.
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Solution

Known Cross-flow heat exchanger with hot fluid (water) on tube side and cold fluid (hydrogen) 

on shell side. Operating data are specified.

Find (a) U
i
(W/m2 °C); (b) L(m).

Assumptions (1) Steady operating conditions. (2) Constant properties. (3) Uniform heat-transfer 

coefficient. (4) No fouling.

Analysis

LMTD approach:

Heat-transferred by water to hydrogen,

( )
hh p hi heQ m C T T= -

Heat received by hydrogen from water,

( )c pc ce ciQ m C T T= -

Cross-flow heat exchanger [Hydrogen: mixed; Water: unmixed]

Hydrogen

Water

h

N k

ID t

T T

o

he

= 1800 W/m °C

= 100, = 14.2 W/m°C

= 15 mm, = 2.5 mm

= = 82°C

2

tube, out

m

C

T T

c

pc

ci

= 120 kg/min

= 14.4 kJ/kg°C

= = 30°Cshell, in

Tce = 60°C

mh = 3 kg/s

T T

h

tube,in
2

= = 150°C

= 1250 W/m °C
hi

i

.

.

Schematic

Heat-capacity rates:

waterwaterhh h p pC m C m C= =

waterpC  is to be evaluated at the mean temperature, 
1

( )
2

bm hi heT T T= +

But T
he

 is not known.

At an assumed mean water temperature of 120°C, 
waterpC  = 4.232 kJ/kg °C

\ C
h
 = (3 kg/s) (4.232 kJ/kg °C) = 12.7 kW/ °C

2 2

120
kg/s

60Hc c pc H pC m C m C
Ê ˆ= = = Á ˜Ë ¯  (14.4 kJ/kg °C) = 28.8 kW/°C

Clearly,
2mixed maxc HC C C C= = =
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And,
2unmixed H O minhC C C C= = =

Heat rate,

( )c ce ciQ C T T= -  = (28.8 kW/°C)(60 – 30)°C = 864 kW

Water outlet temperature, T
he

 can be found from an energy balance.

Q  = 864 kW = C
h
(T

hi
 – T

he
)

\
864 kW

150 C – 82 C
12.7 kW/°C

he hi
h

Q
T T

C
= - = ∞ = ∞

For counter-current flow:

DT
i
 = T

hi
 – T

ce
 = 150 – 60 = 90°C

DT
e
 = T

he
 – T

ci
 = 82 – 30 = 52°C

\ CF

90 52
(LMTD) 69.27 C

ln( / ) ln(90/52)

i e

i e

T T

T T

D - D -
= = = ∞

D D

Now, let us calculate the parameters P and R to find the LMTD correction factor for cross 

flow arrangement (one fluid mixed, the other unmixed).

tube,out tube,in

shell, in tube,in

shell, in shell,out

tube,out tube,in

82 150
0.566

30 150

30 60
= 0.441

82 150

T T
P

T T

T T
R

T T

- -
= = =

- -

- -
= =

- -

From the chart, LMTD correction factor, F = 0.93

Mean temperature difference,

DT
m
 = F(LMTD)

CF
 = 0.93 ¥ 69.27= 64.4°C

For the tubes, 
1

2
i ir D=  = 7.5 mm

r
o
 = r

i
 + t = 7.5 + 2.5 = 10 mm

Overall heat-transfer coefficient based on inner area,

11 31 1 1 7.5 1 7.5 10 10
ln ln

1250 10 1800 14.2 7.5

i i o
i

i o o i

r r r
U

h r h k r

-- -È ˘¥È ˘= + + = + +Í ˙Í ˙ Î ˚Î ˚
   = 730.7 W/m2 °C (Ans.) (a)

With i i mQ U A T= D
Area of heat exchanger, A

i
 = NPpD

i
L

where P is the number of passes = 1

N is the number of tubes = 100

D
i
 is the ID of tubes = 0.015 m

\ Required tube length is

3

2

864 10 W

( ) (730.7 W/m C)(100 0.015 m)(64.4 C)i i m

Q
L

U N D Tp p

¥
= =

D ∞ ¥ ¥ ∞
= 3.9 m (Ans.) (b)
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 Effectiveness–NTU approach:

 Capacity-rate ratio, 

unmixedmin

max mixed

12.7
0.441

28.8

h

c

C CC
R

C C C
= = = = =

 Effectiveness,

max min

( ) 150 82
0.566

( ) 150 30

h hi he hi he

hi ci hi ci

C T T T TQ

Q C T T T T
e

- - -
= = = = =

- - -

 For C
max

 = C
mixed

e
È ˘Ê ˆ È ˘= + = + ¥ ¥Á ˜Í ˙ Í ˙Ë ¯ Î ˚Î ˚

1 1
NTU – ln 1 ln(1 – ) – ln 1 ln(1 – 0.566 0.441)

0.441
R

R

    = 1.056

 But NTU = 
min

i i

h

U AUA

C C
=

\
3

2

2

NTU (12.7 10 W/ C)(1.056)
18.354 m

730.7 W/m C

h
i

i

C
A

U

¥ ∞
= = =

∞
 As A

i
 = NpD

i
L

218.354 m

(100)( 0.015 m)

i

i

A
L

N Dp p
= = =

¥
3.9 m (Ans.)

Comment One can also find NTU from the chart, corresponding to R = 0.441 and e = 0.566 as 1.06. 

Then A
i
 = 18.4 m2 and L = 3.9 m

 A shell-and-tube heat exchanger (1-shell pass and 2-tube passes) is to be used 

to condense 2.73 kg/s of saturated steam at 67°C. Condensation takes place on the outer surface of the 

tubes and the steam side heat-transfer coefficient is 10 kW/m2 °C. The temperature of the cooling water at 

inlet to the tubes is 15°C and the exit water temperature must not exceed 30°C. Thin-walled tubes of 19 

mm diameter are prescribed and the average velocity of water flow through the tubes is to be maintained 

at 0.5 m/s. Determine (a) the minimum number of tubes that can be used and the corresponding length 

of the tubes per pass. (b) If the water-side heat-transfer coefficient is doubled by using a heat-transfer 

augmentation technique like inserting a wire mesh in the tubes, what would be the required tube length 

per pass? Use the following properties of water:

Properties of saturated water:

r
@15°C

 = 999 kg/m3

@67 Cfgh 2341.3
∞

=  kJ/kg

At T
bm

 = (15 + 30)/2 = 22.5°C:

r = 998 kg/m3 C
p
 = 4.181 kJ/kg °C

m = 9.46 ¥ 10–4 kg/ms k = 0.607 W/m °C    Pr = 6.52

Solution

Known Shell-and-tube heat exchanger for condensing steam with water as coolant operates under 

the specified conditions.

Find (a) Maximum number of tubes, N, and tube length, L(m). (b) Tube length, L(m) if h
water

 is 

increased by a factor of two.
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Assumptions (1) Steady operating conditions exist. (2) The thickness of the tubes is negligible because 

the tubes are thin walled. (3) Kinetic and potential energy changes of fluid streams 

are negligible. (4) The heat-transfer coefficients are constant and uniform. (5) The heat 

exchanger is effectively insulated. (6) Tube internal flow and thermal conditions are fully 

developed.

Analysis The heat-transfer rate is

( )c pc ce ci h fgQ m C T T m h= - =

Heat rate, 3 6(2.73 kg/s)(2341.3 10 J/kg) 6.39 10 WQ = ¥ = ¥
Mass-flow rate of cooling water is

66.39 10 J/s
101.9 kg/s

( ) 4181 J/kg C (30 15) C
c

pc ce ci

Q
m

C T T

¥
= = =

- ∞ ¥ - ∞

Per tube, mass-flow rate,

2 3 2 2/tube (999 kg/m ) 0.019 m (0.5 m/s) 0.1416 kg/s
4 4

cm D V
p p

r
Ê ˆ= = ¥ =Á ˜Ë ¯

Hence, the minimum number of tubes is

101.9 kg/s

/tube 0.1416 kg/s

c

c

m
N

m
= = ª 720 (Ans.) (a)

Overall heat-transfer coefficient is determined to be

1
1 1

i o

U
h h

-
È ˘= +Í ˙
Î ˚

where h
o
 = 10 000 W/m2 °C

To calculate h
i
, let us first determine R

eD
.

3

4

(998 kg/m )(0.5 m/s)(0.019 m)
10 022

9.46 10 kg/ms
D

VD
Re

r

m -= = =
¥
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Using Dittus–Boelter equation:

0.8 0.40.023( ) ( )i
D D

h D
Nu Re Pr

k
= =

It follows that

0.8 0.4 20.023 607 W/m C
(10022) (6.52) 2470 W/m C

0.019 m
ih

¥ ∞
= ¥ = ∞

Hence,

1
21 1

1980 W/m C
2470 10000

U

-
È ˘= + = ∞Í ˙Î ˚

e–NTU Method:

Heat-capacity rates:

Hot fluid (steam): maxh h phC m C C (Phase change)

Cold fluid (water)

3
min

(101.9 kg/s)(4181 J/kg C)

426 10 W/ C

c c pcC m C

C

= = = ∞

= ¥ ∞ =
Heat-capacity rate ratio,

min

max

0cCC
R

C
= = =

Effectiveness of any heat exchanger with R = 0 is

1 exp( NTU) or ln(1 ) NTUe e= - - - - =

where
max min

( ) 30 15
0.289

( ) 67 15

c ce ci ce ci

hi ci hi ci

C T T T TQ

Q C T T T T
e

- - -
= = = = =

- - -

Number of transfer units, NTU = UA/C
min

= – ln (1 – 0.289) = 0.341

Area of the heat exchanger is

3
2

2

(0.341)(426 10 W/ C)
73.4 m

1980 W/m C
A

¥ ∞
= =

∞
But A = NPpDL

Hence, the tube length required,

273.4 m
.

(720)(2)( 0.019 m)
L

p
= =

¥
0 85 m (Ans.) (a)

If h
i
 increases by a factor of two then

1
* 2

* * * *

min

1 1
3307 W/m C

2 2470 10000

NTU = 0.341
c

U

U A U NP DL

C C

p

-
È ˘= + = ∞Í ˙¥Î ˚

= =

New tube length,

3
*

2

0.341 426 10 W/ C
.

3307 W/m C 2 0.019 m 720
L

p

¥ ¥ ∞
= =

∞ ¥ ¥ ¥ ¥
0 51 m (Ans.) (b)
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 LMTD Method:

counterflow

(67 15) (67 30)
(LMTD) 44 C

52
lnln

37

i e

i

e

T T

T

T

D - D - - -
= = = ∞

D
D

 Heat rate,

CF(LMTD)Q UA F=

 LMTD correction factor, F = 1 for a heat exchanger with R = 0.

LMTD

Q
A NP DL

U
p= =

◊

 Tube length is

6

2

6.39 10 W
.

1980 W/m C 44 C 720 0.019 m
L

p

¥
= =

∞ ¥ ∞ ¥ ¥ ¥
0 85 m  (Ans.) (a)

 For U* = 3307 W/m2 °C the new tube length will be

6
*

2

6.39 10 W
.

3307 W/m C 44 C 720 2 0.019 m
L

p

¥
= =

∞ ¥ ∞ ¥ ¥ ¥ ¥
0 51 m  (Ans.) (b)

Comment The tube length required is significantly reduced by enhancing the water side heat-transfer 

coefficient. It is noteworthy that it is the smaller convection coefficient (in this case h
i
)

which is decisive in evaluating the overall heat-transfer coefficient.

 In a regenerative gas turbine cycle, the pressure ratio is 11.2, the inlet air is 

at 30°C, 1 atm, and the turbine inlet temperature is 1150°C. Compressor and turbine are isentropic. 

The regenerator is a single pass, crossflow heat exchanger. One hundred silicon carbide ceramic tubes 

(k = 24 W/m K, 50 mm inner diameter, 75 mm outer diameter, L = 9.0 m) are arranged such that the 

outside heat-transfer coefficient is 35 W/m2 K. The total air-flow rate inside the tubes is 1.3 kg/s; the 

fuel flow rate is 5% of that of the air. The outer tube surface is clean and the inner tube surface has a 

fouling factor of 2 ¥ 10–4 m2 K/W. Determine the net power output and the cycle thermal efficiency. The 

following properties of air may be used: 

k = 0.0261 W/m K,   m = 1.85 ¥ 10–5 kg/m s, and Pr = 0.712

Solution

Known Regenerator (cross-flow heat exchanger with one fluid mixed) operates under specified 

conditions.

Find Net power output. Thermal efficiency.

Assumptions (1) The system operates under steady conditions. (2) Potential and kinetic energy effects 

are negligible. (3) Air is the working fluid and is an ideal gas with constant specific heats. 

(4) Specific heat is constant. (5) The turbine and compressor are isentropic.

Analysis The net power output is net t cW W W= - .

2 1 3 4( ) and ( )c c p t t pW m C T T W m C T T= - = -
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Since fuel mass-flow rate is 5% of that of the air, 1.05t cm m= . The inlet temperatures (T
1

and T
3
) are given. The pressure ratio is known for an isentropic turbine and compressor. 

Therefore, the outlet temperatures can be determined.

( )1/
(1.40 1)/(1.4)2

2 1
1

( 1/ )
(1.4 1)/(1.4)4

4 3
3

303.15 K (11.2) 604.55 K

1423.15 K(1/11.2) 713.63 K

k k

k k

P
T T

P

P
T T

P

-
-

-
-

Ê ˆ= = =Á ˜Ë ¯

Ê ˆ= = =Á ˜Ë ¯
The net power output is

net 3 4 2 1( ) ( ) (1.3 kg/s)(1.005 kJ/kgK)(1.05)

1 kW
[(1423.15 713.63) (604.55 303.15)]K

1 kJ/s

t p c pW m C T T m C T T= - - - =

Ê ˆ¥ - - - =Á ˜Ë ¯
580 kW (Ans.)

The rate of heat supplied,

in 3( )t pQ m C T T= -
x

We note that the heat-exchanger effectiveness,

2act

max min 4 2

( )

( )

c p xm C T TQ

Q C T T
e

-
= =

-
  Since we have assumed constant specific heats and the mass flow rate through the 

compressor is smaller than that through the turbine, minC c pm C= .

Hence, e = (T
x
 – T

2
)/(T

4
 – T

2
)

Solving for T
x
, we have

2 4 2( )T T T Te= + -
x

The only unknown in this expression is the heat-exchanger effectiveness.
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  The heat-exchanger geometry, the flow rates, and the inlet temperatures are specified. We 

want to determine the heat-transfer rate. Hence, this is a rating problem, and the e–NTU

approach is preferred. This is a cross-flow heat exchanger, with one fluid mixed (outside

the tubes) and one fluid unmixed (inside the tubes). We can obtain the effectiveness from 

the chart, once we have the heat-capacity ratio and the NTU. The heat capacity ratio is 

mixed unmixed/ / 1.05/1 1.05t p c pC C m C m C= = = .

  As NTU = UA/C
min

, we need to evaluate the overall heat-transfer coefficient and the 

total surface area. Based on the inside surface area, A
i
 = NpD

i
L, the overall heat-transfer 

coefficient is defined as

wall

1 1 1fi fo

i i i i i o o o

R R
R

U A h A A A h A
= + + + +

  We are given the outside heat-transfer coefficient, the fouling resistance, and enough 

information to calculate the wall resistance.

  To evaluate the inside heat-transfer coefficient, we need the Reynolds number, Re = 

rVD
i
/m. For a straight circular tube, we rewrite the Reynolds number as 

4

i

m
Re

Dp m
= .

Hence, total

5

4 / 4(1.3 kg/s/100)
17894

(0.05 m)(1.85 10 kg/ms)(0.05 m)i

m N
Re

Dp m p
-= = =

¥
This is a turbulent flow, and the Gnielinski correlation is appropriate:

1/2 2/3

( /8)( 1000)

1 12.7( /8) ( 1)

Df Re PrhD
Nu

k f Pr

-
= =

+ -

The friction factor is

2 2(0.79 ln 1.64) [0.79 ln 17894 1.64] 0.027f Re
- -= - = - =

and the Nusselt number is

1/2 2/3

2

(0.027/8)(17894 1000)(0.712)
Nu 47.7

1 12.7(0.027/8) (0.712 1)

47.7(0.0261 W/mK)
24.9 W/m K

0.05 m
i

i

Nuk
h

D

-
= =

+ -

= = =

The overall heat-transfer coefficient is determined to be

1

4 2

2

1

2

2

min air

ln( / )1 1

2

1 (0.05 m)ln(0.075/0.05)
2 10 m K /W

2(24 W/m K)24.9 W/m K

0.05 m
/

(35 W/m K)(0.075 m)

( ) (16.7 W/m K) (100 0.05 m 9 m)
NTU 1

( )

i o i i
i fi

i o o

i i i i

p

D r r D
U R

h k h D

U A U N D L

C mC

p p

-

-

-

È ˘Ê ˆ
= + + +Í ˙Á ˜Ë ¯Î ˚

È= + ¥ +Í
Î

˘+ =˙
˚

¥ ¥
= = =

2
16.7 W m K

(1 J/1Ws)
1.8

(1.3 kg/s)(1.005 kJ/kgK)(1000 J/1 kJ)
=
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 The heat-capacity ratio is 1.05. Therefore, from the chart, e ª 0.58.

 We use T
2
, T

4
, and the heat exchanger effectiveness to determine the outlet temperature 

from the regenerator:

2 4 2( ) 604.55 K 0.58(713.63 604.55)K 667.8 KT T T Te= + - = + - =
x

 The input heat-transfer rate is

in 3( )

1 kW
1.05(1.3 kg/s)(1.005 kJ/kgK)(1423.15 667.8)K

1 kJ/s

t p xQ m C T T= -

Ê ˆ= - Á ˜Ë ¯

    = 1036.2 kW

 Hence, the cycle thermal efficiency is

net
cycle

in

580 kW
or

1036.2 kW

W

Q
h = = = 56%0.56 (Ans.)

 Cooling water at a steady rate of 0.5 kg/s flows through an inner tube having 

inner diameter of 25 mm and length of 10 m of a tube in tube condenser. The mean inlet temperature 

of cooling water is 10°C. Saturated steam condenses in the annulus at a uniform rate such that the 

inner surface temperature of the tube is constant throughout the length of the tube at 40°C. The average 

condensing side heat-transfer coefficient is 10000 W/m2 K. Neglect the thickness of the heat exchanger 

tube. Calculate the effectiveness of the heat exchanger and the exit water temperature.

Properties of water are given below:

Specific heat = 4180 J/kg K

Density = 90 kg/m3

Dynamic viscosity = 0.8 ¥ 10–3 Pa s

Thermal conductivity = 0.57 W/m K

You may use the relation
0.8 0.4
DNu 0.023 Re Pr= [IES 2012]

Solution

Known A co-axial, single stream (cooling water) heat exchanger with condensing steam in the annulus.

Find Heat-exchanger effectiveness, e; cooling water exit temperature T
ce

.

Assumptions (1) Thin-walled, inner tube with negligible tube-wall resistance. (2) The effect of fouling 

is ignored. (3) Constant U along the exchanger.

Analysis Reynolds number,

3

4 4 0.5
31831

0.025 0.8 10
D

VD m
Re

D

r

m p m p
-

¥
= = = =

¥ ¥ ¥

 Prandtl number, 
34180 0.8 10

5.867
0.57

pC
Pr

k

m -¥ ¥
= = =

 Using the given relation:

0.8 0.40.023( ) ( )i
D

h D
Nu Re Pr

k
= =
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\ Inside (water side) heat-transfer coefficient

0.8 0.4 20.023 0.57
(31831) (5.867) 4258.9 W/m K

0.025
ih

¥
= ¥ ¥ =

Outside (steam side) heat-transfer coefficient, h
o
 = 10 000 W/m2 K

Overall heat-transfer coefficient,

1 1
21 1 1 1

2986.85 W/m K
4258.9 10000i o

U
h h

- -
Ê ˆ È ˘= + = + =Í ˙Á ˜Ë ¯ Î ˚

Heat-exchanger surface area,

2(0.025)(10) 0.7854 mA DLp p= = =

(UA) value = (2986.85) (0.7854) = 2345.86 W/K

min (0.5)(4180) 2090 W/K
cc pC m C= = =

\ Number of transfer units,

min

2345.86
NTU 1.122

2090

UA

C
= = =

Effectiveness of the heat exchanger,

1.1221 exp( NTU) 1 ee
-= - - = - = 0.6745 (Ans.)
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Heat-transfer rate,

max min( )( )hi ciQ Q C T Te e= = -  = (0.6745) (2090) (40 – 10)

= 42.3 ¥ 103 W or 42.3 kW

Also, ( )c ce ciQ C T T= -
\ Exit water temperature, 

342.3 10
( / ) 10 .

2090
ce ci cT T Q C

Ê ˆ¥
= + = + =Á ˜Ë ¯ 30 24 C∞ (Ans.)

Points to Ponder

A heat exchanger is a process component which has the primary purpose of transferring thermal 

energy stored in one fluid to the other fluid.

Heat exchangers can be classified as recuperators (without storage), regenerators (with storage) and 

direct contact type.

According to flow arrangement, heat exchangers can be parallel flow, counterflow or cross flow.

While evaluating the overall heat-transfer coefficient, we should be more particular about the 

controlling heat-transfer coefficient which the lower heat-transfer coefficient (with larger thermal 

resistance), and the use of fins, extended surfaces or turbulent promoters to increase the higher 

heat-transfer coefficient is wasteful.

dirty clean

1 1
fR

U U
= +  where R

f
 is the fouling factor or resistance

The expression for LMTD is the same for both parallel flow and counterflow heat exchangers.

  

LMTD
ln( / )

i e

i e

T T

T T

D - D
=

D D

  where DT
i
∫ T

hi
 – T

ci
( )

  ∫ T
hi
 – T

ce
( )

  DT
e
∫ T

he
 – T

ce
( )

  ∫ T
he

 – T
ci

( )

In the case of a counterflow heat exchanger with DT
i
 = DT

e
, the fluid temperature distributions are 

parallel and LMTD = DT
i
 = DT

e
.

(LMTD)
counterflow

 is greater than (LMTD)
parallel flow

Hence, A
counterflow

 is less than A
parallel flow

T
ce

 can be greater than T
he

 only in a counterflow heat exchanger.

Baffles are used in shell-and-tube heat exchanger

● to provide support to tubes

●

●

Known: U, T
hi
, T

he
, T

ci
, T

ce
Known: (UA), T

hi
, T

ci

Find: Heat exchanger area, A Find: T
he

, T
ce

Use: LMTD approach Use: e–NTU approach

Effectiveness–NTU approach facilitates comparison between the various types of exchangers which 

may be used for a particular application.
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The maximum possible energy transfer is max xamller ,inlet ,inlet( ) [ ]p h cQ mC T T= = .

For calculating the maximum possible heat-transfer, the maximum temperature difference (T
h,in

 – 

T
c,in

) is to be multiplied by the smaller heat capacity rate min( )pmC , i.e., hot( )pmC  or cold( )pmC ,

whichever is smaller.

The Number of Transfer Units (NTU) provides some indication of the physical size of a heat ex-

changer.

All heat exchangers (concentric tube, crossflow, multipass exchangers or any other geometry) in 

which the capacity-rate ratio R is found to be zero, that is, when one of the fluids either evaporates 

or condenses (phase change), the effectiveness will always be given by

e = 1 – exp (–NTU)

In a multipass, shell-and-tube heat exchanger, the mass flow rate of the fluid flowing through a 

number of tubes is 2

4
im N D V

p
r

È ˘= Í ˙Î ˚
where N = Number of tubes per pass 

and, heat exchanger surface area,

A = NPpD
o
L

where P = Number of tube passes

L = Length of the tubes per pass

No matter which fluid has smaller mass-flow specific heat product ( )pmC , the maximum effective-

ness of a parallel-flow heat exchanger is max

1

1 R
e =

+
 (as NTU Æ )

Irrespective of which fluid has smaller capacity ratio ( )pmC , the maximum effectiveness of a 

counterflow heat exchanger is e
max

 = 1.0

(as NTU Æ )

For min
counter flow

max

NTU
1,

1 NTU

C
R

C
e= = =

+
, and parallel flow

1
[1 exp( 2 NTU)]

2
e = - -

GLOSSARY of Key Terms

● Balanced heat exchanger A heat exchanger with equivalent fluid heat capacity rates.

● Capacity-rate ratio Ratio of the smaller heat-capacity rate to the larger heat capacity rate.

● Compact heat exchanger A device with high surface area density, usually greater than 700 

m2/m3.

● Condenser The temperature of the hot fluid remains essentially constant (due to 

change of phase from vapour to liquid).

● Correction factor A multiplying factor (< 1) applied to the LMTD of a counterflow 

double-pipe heat exchanger with the same hot and cold fluid 

temperatures to take into account the departure from counter flow 

behaviour in the case of multi pass and cross-flow heat exchangers.

● Counterflow: The two fluid flows are in the opposite direction.

● Cross flow: One fluid stream flows across the direction of the other.
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● Direct-contact exchanger: Heat is transferred by direct contact between hot and cold fluids and 

their mixing.

● Effectiveness: The ratio of the actual heat-transfer rate to the maximum possible 

heat-transfer rate.

● Evaporator: The temperature of the cold fluid remains essentially constant (due 

to change of phase from liquid to vapour).

● Fouling: Deposits on the heat exchanger passages formed from accumulation 

of dissolved salts, corrosion, chemical reactions, biological organisms, 

etc., which increase additional thermal resistance.

● Heat exchanger: A device which facilitates transfer of heat from one fluid stream to 

another.

● Log Mean Temperature 

Difference (LMTD):

Effective mean temperature difference.

● Mixed flow: The temperature variation is both in the flow and normal directions.

● Multi-pass exchanger: A fluid (shell side or tube side) moving from one end to the other 

end of the exchanger many times.

● Number of Transfer Units 

(NTU):

The ratio of the product of overall heat-transfer coefficient and the 

exchanger surface area to the smaller heat capacity rate.

● Parallel flow: The two fluid streams are in the same direction.

● Rating: To determine the fluid outlet temperatures in a performance problem.

● Recuperator: Heat exchangers without storage, with the two fluids separated by 

a solid partition.

● Regenerator: Heat exchangers with storage in which a surface is alternately exposed 

to a hot fluid and then to a cold one.

● Single stream exchanger: The temperature of only one stream changes, the temperature of the 

other stream being constant (due to phase change).

● Sizing: To determine the heat exchange surface area required in a design 

problem

● Two-stream exchanger: The temperatures of both streams change in the exchanger.

● Unmixed flow: The temperature variation is only in the flow direction.

Multiple-Choice Questions

11.1 The log mean temperature difference, DT
lm

 is given by

(a)
ln( / )

i e
m

i e

T T
T

T T

D - D
D =

D Dl
(b)

ln( )

ln /

i e
m

i e

T T
T

T T

D - D
D =

D Dl

(c) ( ) ln i
m i e

e

T
T T T

T

DÊ ˆD = D - D Á ˜DË ¯l
(d)

ln( / )

/

i e
m

i e

T T
T

T T

D D
D =

D Dl
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  where DT
i
 and DT

e

respectively.

11.2 Which one of the following heat exchangers gives parallel straight-line pattern of temperature 

(a) Parallel flow with unequal heat capacities

(b) Counterflow with equal heat capacities

(c) Parallel flow with equal heat capacities

(d) Counterflow with unequal heat capacities

11.3

(a) parallel flow (b) counterflow (c) Cross flow (d) Same in all the above

11.4

(a) wet or saturated steam to water (b) oil to gas

(c) oil to water (d) water to air

11.5 The steam condenser in a thermal power plant is a heat exchanger of the type

(a) recuperator (b) direct contact (c) regenerator (d) none of the above

11.6

(a) direct contact exchanger (b) parallel-flow exchanger

(c) regenerator (d) all the above

11.7 Mark the correct answer in respect of heat exchanger area for the same heat duty:

(a) counter flow crossflow parallel flowA A A> > (b) counter flow parallel flow crossflowA A A< <

(c) counter flow crossflow parallel flowA A A< < (d) crossflow parallel flow counter flowA A A< <

11.8 Fins are usually provided to a heat-exchanger surface

(a) to augment heat transfer by increasing the heat-transfer coefficient

(b) to augment heat transfer by increasing the surface area

(c) to augment heat transfer by increasing the temperature difference

(d) to augment heat transfer by increasing turbulence [CSE: 2001]

11.9 Match List I with List II and List III according to the code given below:

  List I List II List III

  (Heat exchangers) (Hydraulic diameter, mm) (Surface area density, mm–1)

A. Human lungs 1. 0.5–1.2 5. 700–1700

B. Automotive radiators 2. 0.15–0.20 6. 60–600

C. Shell-and-tube heat exchanger 3. 2.5–5.0 7. 3000–7000

D. Gas turbine rotary regenerators 4. 5.5–60.0 8. 15000–20000

  Codes:

  A B C D

(a) 2,8 1,5 3,7 4,6

(b) 2,8 3,5 4,6 1,7

(c) 1,7 3,5 2,6 4,8

11.10 Fouling is considered in the design and selection of heat exchangers. Consider the following 

statements pertaining to fouling:

1. Fouling factor increases with increasing velocity and decreasing temperature.

2. Fouling factor is generally of the order of 10–4 m2 K/W

3. Fouling is essentially the precipitation and accumulation of solid deposits on the heat transfer 

surfaces of a heat exchanger.
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  Of these statements:

(a) 1, 2, and 3 are correct. (b) 2 and 3 are correct

(c) 1 and 2 are correct (d) 1 and 3 are correct.

11.11 For multi-pass heat exchangers, the correction factor

(a) is less than unity

(b) is equal to one for a condenser or boiler

(c) depends on the geometry of the exit temperatures of the hot and cold fluid streams

(d) all of the above

11.12

the heat exchanger would be

(a) ( )/( )hi he hi ciT T T T- - (b) ( )/( )ce ci hi ciT T T T- -

(c) ( )/( )hi he hi ceT T T T- - (d) ( )/( )hi ci ce ciT T T T- -

11.13 A heat exchanger with heat-transfer surface area A U handles 

C
max

 and C
min

. The parameter NTU (number of transfer units) used in the 

(a) minAC

U
(b)

min

U

AC
(c) AU C

min
(d)

min

AU

C

11.14 The equation of effectiveness of a heat exchanger e = 1 – exp (–NTU) is valid [(NTU is number of 

transfer units] in the case of 

(a) boiler and condenser for parallel flow

(b) boiler and condenser for counterflow

(c) boiler and condenser for both parallel flow and counterflow

(d) gas turbine for both parallel flow and counterflow

11.15 unmixed

shell pass, two-tube pass heat exchangers, the correct sequence in the order of increasing effectiveness 

for C
min

/C
max

 = 1 is

(a) A B C D (b) A D B C (c) B C D A (d) A C B D

11.16 The governing rate equation for a heat exchanger is

(a) min ,in ,in( )h cQ C T Te= - (b) ,out ,in( )c c cQ C T T= -

(c) , in ,out( )h h hQ C T T= - (d) all of the above

11.17

(a) the maximum possible heat-transfer rate

(b) the minimum heat-transfer rate

(c) the area of the heat exchanger

(d) the overall heat-transfer coefficient.

11.18

C
p
 = 4 kJ/kg K, enters the heat exchanger at 102°C while the cold 

is estimated to be 1 kW/m2 K and the corresponding heat-transfer surface area is 5 m2. Neglect heat 

transfer between the heat exchanger and the ambient. The heat exchanger is characterized by the 

following relation.

  2e

(a) 45 (b) 56 (c) 65 (d) 75
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11.19 In a condenser of a power plant, the steam condenses at a temperature of 60°C. The cooling water 

enters at 30°C and leaves at 45°C. The logarithmic mean temperature difference (LMTD) of the 

condenser is

(a) 16.2°C (b) 21.6°C (c) 30°C (d) 37.5°C

11.20

(a) dirty cleanfR U U= - (b)
dirty clean

1 1
fR

U U
= -

(c)
dirty clean

1 1 1

fR U U
= - (d) dirty clean

1

f

U U
R

= -

11.21

(a) Effectiveness of a heat exchanger (b) Efficiency of a heat exchanger

(c) Size of a heat exchanger (d) Temperature drop in a heat exchanger

11.22 In a heat exchanger, the hot gases enter with a temperature of 150°C and leave at 75°C and 125°C. 

The capacity ratio of the exchanger

(a) 0.65 (b) 0.75 (c) 0.85 (d) 0.95

Answers

Multiple-Choice Questions

11.1 (a) 11.2 (b) 11.3 (d) 11.4 (a) 11.5 (a) 11.6 (c)

11.7 (c) 11.8 (b) 11.9 (b) 11.10 (b) 11.11 (d) 11.12 (b)

11.13 (d) 11.14 (c) 11.15 (b) 11.16 (d) 11.17 (a) 11.18 (b)

11.19 (b) 11.20 (b) 11.21 (c) 11.22 (b)

11.1

of them giving its advantages and disadvantages.

11.2

11.3

stream heat exchangers, balanced heat exchanger.

11.4

Distinguish between a shell-and-tube heat exchanger and a  heat exchanger.

11.5

exchanger.

11.6 What is the main distinguishing feature of compact heat exchangers

11.7 Distinguish between recuperative and regenerative types of heat exchangers.

11.8

11.9

mixed and unmixed

11.10 co-current and counter-current

11.11

  c pc h phm C m C<  and when c pc h phm C m C> , and when c pc h phm C m C=
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11.12 Enumerate the heat-transfer mechanisms and thermal resistances during heat transfer from the hot to 

11.13
1 1 1

i oU h h

È ˘= +Í ˙
Î ˚what conditions can one write U ª h

i

11.14

of various terms in the expression.

11.15

11.16 What is meant by fouling factor

11.17 List the common assumptions made in the analysis of double-pipe heat exchangers.

11.18 Derive an expression for LMTD for a  and for a  heat exchanger.

11.19 Why are the  heat exchangers more effective than 

11.20

11.21 F and 

F

11.22

11.23 Explain the effectiveness-NTU method of heat exchanger analysis. Discuss the conditions under 

which you would prefer the effectiveness-NTU method over the LMTD method for performing a heat 

11.24 Why is the LMTD method preferred in sizing of a heat exchanger and is not usually applicable in 

11.25

11.26

11.27

rate ratio of one, the effectiveness, e = NTU/(1 + NTU).

11.28

2NTU1
(1 )

2
ee

-= -

11.29

(a) C
min

/C
max

Æ 0 (b) C
min

/C
max

Æ 1

11.30 Discuss the effect of 

11.31 Explain the following terms as applied to heat exchangers:

(a) Capacity-rate ratio (b) Number of transfer units (c) Effectiveness

11.32 Describe the salient aspects in the selection and design of heat exchangers.
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PRACTICE PROBLEMS

(A) Overall Heat-Transfer Coefficient

11.1 Lubricating oil is expected to be cooled in a double pipe heat exchanger from about 70°C to 30°C 

by passing cold water in the outer pipe (annulus). The inner pipe diameter is 2-cm and the outer pipe 

is 140 W/m2 K and the oil side is 150 W/m2 K. The pipes are made of galvanized iron (GI) whose 

thermal conductivity is 30 W/m K. Unfortunately the rate of heat transfer is grossly inadequate and 

copper pipes of the same dimensions (whose thermal conductivity is 385 W/m K) to increase the heat 

answer. [The decision of the maintenance engineer is therefore not correct.]

(B) LMTD-Method

11.2

2

[(a) 1.294 m2 (b) 1.165 m2]

11.3
h ch p c pm C = m C

11.4

space. The length of the heat exchanger is 22 m. Determine the new length of the exchanger if the exit 

[36.4 m]

11.5

tube and outer steel tube (30-mm-OD and 26-mm-ID). The steel tube is insulated from outside. The 

oil enters at 0.4 kg/s and is cooled from 65°C to 50°C whereas water enters at 32°C. Neglecting the 

resistance of the copper tube, calculate the length of the tube required.

  Fouling factor, water side = 0.0005 m2 K/W

  Fouling factor, oil side = 0.0008 m2 K/W

  Water and oil properties:

Property Oil (330 K) Water (310 K)

r (kg/m3) 865.8 993

C
p
 (kJ/kg K) 2.035 4.178

k (W/m K) 0.141 0.628

n (m2/s) 9.66 ¥ 10–5 7.0 ¥ 10–7

[109 m]

11.6 Exhaust gases (C
p

are cooled from 400 °C to 120 °C. The cooling is effected by water (C
p
 = 4.18 kJ/kg °C) that enters 

2 h 

[(a) 4.55 m2 (b) 3.76 m2]



882 Heat and Mass Transfer

11.7

of the temperature difference, the heat transfer rate is given by 

D - DÈ ˘
Í ˙D= Ê ˆÍ ˙Á ˜DÍ ˙Ë ¯Î ˚

ln

e i i e

e is

e

U T U T

U TQ A

Ui T

 where the 

i and e denote inlet and exit of the heat exchanger and A
s
 is the heat transfer surface area.

(C) Multipass Heat Exchangers, Condensers and Evaporators

11.8 A shell-and-tube heat exchanger is to be designed to heat 2.5 kg/s of water from 15°C to 85°C. 

2 K on the outer side of the tubes. 

Ten thin-walled tubes, each of 25-mm diameter and making 8 number of passes through the shell 

Nu = 

0.023 (Re)0.8 (Pr)0.4

  Oil : C
p
 = 2.35 kJ/kg K

  Water : C
p
 = 4.181 kJ/kg K, Pr = 3.56, k = 0.643 W/m K, m = 5.48 ¥ 10–4 Pa s [4.85 m]

11.9 Lubricating oil at 17 °C is to be heated by saturated steam at 115°C in a double pipe heat exchanger 

to a temperature of 37 °C. The inner and outer diameters of the annular space are 30 mm and 50 

mm respectively, and the oil enters the annulus with an average velocity of 0.8 m/s. The inner tube 

may be assumed to be isothermal at 115°C, and the outer tube is effectively insulated. Assuming 

temperature. Thermophysical properties of oil at 27°C are:

r = 884.1 kg/m3 n = 550 ¥ 10–6 m2/s m = 0.486 kg/m s

C
p
 = 1909 J/kg K Pr = 6400 k = 0.145 W/m K [38.2 m]

11.10

to the next stage at 30°C and at the equivalent rate of 6 m3/min of free air (at atmospheric conditions). 

The cooling water passes over tubes of 10-mm outside diameter and 1.2-mm thick each. The inlet 

and outlet water temperatures are 12°C and 28°C respectively and the air velocity through the tubes 

is limited to 6 m/s. Atmospheric pressure and temperature are 1.013 bar and 15°C respectively. Find 

(a) the number of tubes required, and (b) the length of each tube.

  Take
airpC  = 1.005 kJ/kg K, R = 0.287 kJ/kg K

   h
a(air-side)

 = 105 W/m2 K, h
w(water-side)

 = 2100 W/m2 K

[(a) 82 (b) 2.5 m (c) 40.6%]

(D) Cross Flow Heat Exchangers (LMTD Method)

11.11 Determine the heat transfer surface area required for a heat exchanger constructed from a 2.5-cm-OD 

tube to cool 25 300 kg/h of alcohol (C
p
 = 3.81 kJ/kg °C) from 66°C to 40°C, using 23 000 kg/h of 

water (C
p

the outer tube area to be 580 W/m2
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Flow arrangement Heat transfer surface area, A
o
 (m2)

61.2

46.0

41.2

(d) 2-shell pass and 72-tube pass 40.0

(E) e-NTU METHOD

11.12
2 K 

exhaust gas can be taken as 1100 kJ/kg K. Calculate the heat transfer area needed and the number of 

transfer units. [48 m2
, 1.09]

11.13

20°C. The heat transfer area is 10 m2 2 K. Find 

the outlet temperatures of water and chemical, and the effectiveness of the heat exchanger. Take for 

[0.402, 79.8, 32.7°C]

11.14 o 4

2 is 250 

W/m2 [191.67°C]

11.15

respectively. Calculate the number of transfer units (NTU) of the exchanger. (b) If the same heat 

[(a) 2.22, 47.6°C (b) 47.6°C 76.2°C (c) 66.7°C (d) 0.667, 1.0]

11.16 The feed water heater for a boiler is a shell-and-tube heat exchanger (single-pass on the shell side and 

two-pass on the tube side). 10 000 kg/h of water (C
p
 = 4.18 kJ/kg °C) are heated from 20 to 65°C by 

condensing steam at 1.3 bar (T
sat

 =107.3°C and h
fg
 = 2238 kJ/kg). Determine (a) the surface area of 

2 °C. (b) What will be the steam 

[(a) 4.2 m2 (b) 14.0 kg/min]

11.17

exchangers are used for heating water at 30°C 

with the help of hot oil (C
p
 = 2.09 kJ/kg °C) 

and oil are 50 and 100 kg/min respectively. 

The heat exchangers are connected in series 

on the water side and in parallel on the oil 
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U = 

350 W/m2 °C and A = 10 m2, calculate the exit temperatures of the water and the oil. [56.2°C]

11.18 In a gas turbine power plant, heat is being transferred in an exchanger from the hot gases leaving 

0.015 kg/kg. The inlet temperatures on the air and gas sides are 170 and 450°C, respectively. The 
2 K, the surface area is 50 m2 and the 

[338°C, 284.5°C, 245 kW]

11.19

5 L/min from a normal body temperature of 37°C to 25°C in order to induce body hypothermia, 

2

blood are 1050 kg/m3 and 3740 J/kg K respectively. Determine (a) the heat transfer rate for the heat 

[(a) 3927 W (b) 3.76 L/min (c) 0.24 m2]

11.20 A and B, exchange heat in a counter current heat exchanger. Fluid A enters at 420 °C 

B

Effectiveness of heat exchanger is 75%. Determine the heat transfer rate and exit temperature of Fluid 

B A is 1 kJ/kg K and that of Fluid B is 4 kJ/kg K). [95°C, 300 kW]

11.21 The hot and cold water inlet temperatures in a very long double-pipe heat exchanger are 85 °C and 

[(a) 0.667 (b) 55°C]

(F) Both LMTD and e-NTU Methods of Analysis

11.22 A double-pipe heat exchanger is made up of inner tube 37.5-mm-ID, 44.8-mm-OD and outer tube 

72.7-mm-OD and 5.1-mm thick wall steel pipe, has an effective heating surface of 2.4 m2 based on 

the outer surface of the inner pipe. This exchanger has a scale deposit on the heating surface with a 

fouling factor of 4.13 ¥ 10–4 m2 K/W. It is proposed to use this exchanger to preheat benzene from an 

initial temperature of 20°C by means of hot water which will enter the exchanger at 88°C. Benzene 

conductivity of steel = 45.7 W/m K.

  Data:

Viscosity 

(C
p
)

Thermal conductivity 

(W/m K)

Specific heat capacity 

(kJ/kg °C)

Density (kg/m3)

Water 0.8 0.640 4.187 970

Benzene 0.57 0.160 1.675 860

hD

k
– = 0.023 (Re)0.8 (Pr)n

n = 0.3 for cooling, n = 0.4 for heating

[52.17°C]
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11.23

95°C to 65°C. At the same time 50 000 kg/h of cooling water at 30°C enters the heat exchanger. The 
2

K. Determine the heat transfer area required and the effectiveness, assuming the two streams are in 

C
p
 = 4.2 kJ/kg K. [32.96 m2, 0.4615]

11.24 In a large steam power plant, the condenser, a shell-and-tube heat exchanger, consists of a single shell 

h
o
 = 11 500 W/m2

K. The heat transfer rate in the exchanger is 2200 MW. Cooling water passes through the tubes at a 

rate of 31 500 kg/s. Water enters at 18 °C, while the steam enters as saturated vapour at 60°C. What 

  C
p
 = 4.18 kJ/kg K, m = 866 ¥ 10–6 N s/m2, k = 0.609 W/m K

  The correlation to be used is
-

=
+ -2/3

( /8) ( 1000)

1 12.7 /8 ( 1)

D
D

f Re Pr
Nu

f Pr

  where f = [0.79 ln Re
D
 – 1.64]–2 [34.7°C, 2.74 m ]

11.25 In a tubular heat exchanger with two shell passes and eight tube passes, 12.6 kg/s of water are heated 

in the shell from 80 to 150°C. Hot exhaust gases (with almost the same thermophysical properties 

of air) enter the tubes at 350oC and leave at 180oC. The total outer surface area of the tubes is 930 

m2. Calculate

[(a) 144.3°C (b) 0.975 (c) 0.59 (d) 28.2 W/m2 K]



Radiation Heat 
Transfer: Properties 
and Processes

12.1 ❏ INTRODUCTION

Radiation is one of the basic mechanisms by which energy is transferred between regions at different 
temperatures. It is essentially the transport of energy by electromagnetic waves. All materials continuously 
emit thermal radiation as long as they are above absolute zero temperature. It can occur irrespective of 
the material medium between the surfaces exchanging radiation. For example, radiation coming from the 
sun travels through the vacuum of outer space and penetrates the glass of a window pane before it is 
absorbed in a room. Radiation heat transfer can even occur between two bodies separated by a medium 
which may be colder than both bodies. Solar radiation, for instance, reaches the earth’s surface after 
passing through the cold atmosphere at high altitudes. Inside a greenhouse, objects that absorb radiation 
attain high temperatures even though the glass cover remains colder.

If a heated solid is placed in a vacuum chamber whose surfaces are at the ambient temperature, it will 
lose heat until its temperature reaches the temperature of the chamber walls. It is noteworthy that heat 
transfer between the object and the chamber by conduction or by convection is impossible in an evacuated 
space simply because both require a physical medium. In fact, heat transfer by radiation is the fastest (at

the speed of light) mode and there is no reduction in it in a vacuum. Radiation heat transfer takes place 
in solids as well as liquids and gases. In many engineering applications, all three modes of heat transfer 
can occur simultaneously but radiation is the only significant mode of heat transfer in the evacuated space.

Some familiar examples of thermal radiation are the heat dissipation from the filament of a light bulb or 
the heat leakage through the evacuated walls of a thermos flask. Thermal radiation also finds applications 
in many energy-conversion systems like powers plants that involve combustion and solar radiation. It is 
also of use in several industrial heating, cooling and drying processes, laser cutting and welding, climate 

control of buildings, automobiles, combustion chambers, cryogenic containers, high-performance thermal 

insulation, solar collectors, spacecraft, etc.
While radiation is usually important in high-temperature applications, it can also be significant in 

many moderate and low-temperature applications. When other modes of heat transfer are relatively weak, 
radiation needs to be considered.

12.2 ❏ NATURE OF THERMAL RADIATION

The basic nature, composition, and velocity of propagation of all radiation is the same. However, the 
significant feature is frequency (or wavelength). Propagation of radiation takes place at the velocity of 
light in a vacuum, c

o
. The wavelength l, the velocity c

o
, and the frequency (number of oscillations per 
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8 82.998 10 m/s 3 10 m/socln = = ¥ ª ¥ (12.1)

The wavelength and frequency of electromagnetic radiation are inversely proportional to each other.
The frequency of radiation n is independent of the medium through which the radiation propagates. The 

speed of propagation and wavelength vary alike so that n remains constant. If the speed of propagation 
of radiation is c in a medium, the refractive index n of the medium equals c

o
/c. By definition, n ≥ 1, 

because the speed of light in a medium cannot exceed c
o
.

The frequency of electromagnetic radiation depends only on the nature of the source and does not 
depend on the medium through which it travels.

The unit of wavelength is the micron (mm) or the angstrom (Å).

6 4 3 4

4 10

1 m (micron) 10 m 10 cm 10 mm 10 Å

1Å(angstrom) 10 m 10 m

- - -

- -

m ∫ ∫ ∫ ∫

∫ m ∫

A body emits radiation in the form of continuous or discontinuous spectrum with respect to wavelength.
The nature of radiation and its transport are not fully understood but they can be described satisfactorily 

either by wave or particle theory.

12.2.1 ● Maxwell’s Wave Theory

Radiation has a dual character since it possesses the continuity properties of electromagnetic waves and 
the properties of discreteness of photons. The wave properties are distinctly observed in radio waves while 
the quantum properties are most pronounced in short-wave radiation. According to Maxwell’s classical 
electromagnetic theory, the energy transfer may be considered as being transported by electromagnetic waves.

For example, a metal bombarded by high-energy electrons emits X-rays, high-frequency electric currents 
generate radio waves and a body emits thermal radiation by virtue of its temperature. This wave model 
is useful in studies involving prediction of the radiation properties of the surfaces and materials.

12.2.2 ● Max Planck’s Quantum Theory

According to the quantum theory, when a solid body is heated, its atoms and molecules are raised to 
excited states of higher energy. These atoms tend to return spontaneously to lower energy states. The 
energy which is released is not continuous but is in the form of a collection of successive and separate 
discrete packets or quanta of energy called photons. The photons are propagated through space as rays, 
the movement of swarm of photons is known as electromagnetic waves. These electromagnetic waves 
travel with the speed of light in a straight path with unchanged frequency.

The particle model, in which radiation energy is carried by photons, helps in understanding emission

and absorption. At an atomic level when an electron falls from a high-energy level to a low-energy level, 
a photon is emitted. The photon travels at the speed of light through the space until it is absorbed by 
another atom. When a photon is absorbed, an electron rises from a low energy level to a high energy level.

The energy carried by a photon is proportional to the frequency of the electromagnetic waves. The 
energy associated with the photon is given by

hc
E hn

l
= = (12.2)

and each photon has a momentum equal to 
2

mc E h
mc

c c c

n
= = =
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where h = 6.626 069 ¥ 10–34 J s is Planck’s constant and n is the frequency of emitted photons. The 
energy of a photon is, therefore, inversely proportional to its wavelength. The shorter the wavelength of 
radiation, the larger the energy of the photon. Gamma rays and X-rays with their very short wavelengths 
are considered highly destructive and must be avoided. This particle model is used to predict the magnitude 
of energy emitted by a body at a given temperature under ideal conditions.

Prevost’s Principle of Exchange If a body is placed in the surroundings at the same temperature as 
itself, its temperature does not change. Nevertheless, it continues to radiate energy and, simultaneously, 
receive energy at the same rate from its surroundings.

12.2.3 ● Electromagnetic Spectrum

The electromagnetic radiation covers a wide range of wavelengths, varying from less than 10–10 mm for 
cosmic rays to greater than 1010 mm for electrical power waves. The electromagnetic spectrum shown
in Fig. 12.1 includes gamma rays, X-rays, ultraviolet radiation, visible light, infrared radiation, thermal 

radiation, and microwaves.

Electromagnetic radiation spectrum

Nuclear engineers are more interested in the short-wavelength gamma rays with powers of penetration 
while the electrical engineers find the long wavelength microwaves and radio waves more useful. 
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We are primarily concerned with the thermal radiation which is that portion of the electromagnetic 
spectrum which ranges from about 0.1 to 100 mm, and includes the entire visible and infrared (IR) 
radiation as well as a part of the ultraviolet (UV) radiation. Thermal radiation, like the other forms 
of electromagnetic radiation, can often be considered to travel in straight lines in a uniform medium. 
Consequently, opaque bodies cast shadows when placed in the path of thermal radiation and one body 
cannot receive radiation directly from another unless it can see it.

The visible part of the spectrum (radiation to which the human eye is sensitive) falls in the thermal 
range. Light is nothing but the visible range of the electromagnetic spectrum lying between 0.40 and 0.76 
mm. The visible spectrum, consists of narrow bands of colour from violet (0.40 0.44 mm) to red (0.63 
0.76 mm), as shown in Table 12.1.

Table 12.1

Colour Violet Blue Green Yellow Orange Red

Wavelength band (mm) 0.40 to 0.44 0.44 to 0.49 0.49 to 0.54 0.54 to 0.60 0.60 to 0.63 0.63  to 0.76

The electromagnetic radiation emitted by the sun is solar radiation, with a wavelength range of 0.3–3 
mm. Almost half of solar radiation is light and the rest is ultraviolet and infrared radiation. Also radiation 
emitted by earth is in the IR region and has a peak at around 10 mm.

The radiation emitted by bodies at the room temperature is in the infrared region of the spectrum, 
which ranges from 0.76 to 100 mm. Bodies start emitting visible radiation at temperatures above 500°C. 
The tungsten filament of a light bulb is to be heated to temperatures above 1700°C before it emits some 
radiation in the visible range.

The ultraviolet radiation is in the wavelength band of 0.01 to 0.40 mm. Ultraviolet rays can destroy 
microorganisms and are very harmful to human beings and other living creatures. About 12.5 percent of 
solar radiation lies in the ultraviolet range. The ozone (O

3
) layer in the stratosphere acts as a protective 

umbrella and absorbs most of it.

12.2.4 ● Volumetric vs Surface Phenomenon

Radiation is constantly emitted, as well as absorbed or transmitted throughout the whole volume of 
matter above absolute zero temperature. Radiation can, therefore, be viewed as a volumetric phenomenon

especially at high temperatures, for gases and semi-transparent solids like glass as depicted in Fig. 12.2. 
However, for opaque (non transparent) solids and liquids, radiation is essentially a surface phenomenon,
because the radiation emitted by the inner regions hardly reaches the surface, and the radiation incident 
on such bodies is usually absorbed within a few microns from the surface. It is, therefore, mostly the 
surface finish rather than the material itself which governs the radiation properties. Thin layers of coatings 
on the surfaces can significantly change the radiation characteristics.

12.2.5 ● Participating vs Non-participating Medium

Radiation transport can involve either a non-participating or participating medium. We are basically 
interested in a solid surface surrounded by a transparent gas or a vacuum. Air is transparent to thermal 
radiation, except when distances are very large. Thus, a non-participating medium includes not only 
vacuum and outer space but also atmospheric air over short distances. Photons can travel from one surface 
to another without any restriction or resistance by the intervening medium. Radiation heat exchange 
between such bodies is dependent only on the exchanging surfaces, their radiative properties and the 
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geometrical configuration. On the other hand, radiation heat exchange between surfaces separated by 
participating media like water vapour, carbon dioxide, etc., also depend on the radiation properties of 
medium like emissivity and absorptivity which in turn are a strong function of temperature.

12.2.6 ● Spectral vs Directional Characteristics

Thermal radiation depends on two factors, viz., wavelength and direction. The wavelength dependence is 
illustrated in Fig. 12.3(a) which shows how the monochromatic or spectral (at a particular wavelength) 
radiation emission per unit area (W/m2 mm) varies with wavelength. The nature and temperature of the 
emitting surface govern the magnitude of radiation at a single wavelength (monochromatic) and the 
spectral distribution. The area under the graph is a measure of radiation emission per unit area (W/m2) over 
the entire range of wavelengths. Figure 12.3(b) shows the directional nature of radiation. A surface emits 
radiation preferentially in different directions and magnitude depends on the nature of the surface. In the 
analysis of thermal radiation problems, we should address both wavelength and direction related issues.
We can, thus, define radiation properties in four different ways: (a) Monochromatic directional (for a 
particular wavelength in a particular direction, (b) Total directional (of all wavelengths in a specific 
direction), (c) Monochromatic hemispherical (at a given wavelength in all directions, and (d) Total 

hemispherical (including all wavelength and all directions).
For the purpose of engineering analysis, two simplifying approximations and assumptions are generally 

made:
The surface emits uniformly in all directions as a diffuse emitter.
The total emission is integrated over all wavelengths.
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12.3 ❏ RADIATION DEFINITIONS

Emissive Power (E) It is defined as the radiant energy leaving the surface, in all directions, due 
only to the absolute temperature of the surface. The quantity E or 

rad
/Q A  is the total energy summed 

up over all wavelengths. The monochromatic emissive power E
l

(W/m2 mm) is the energy contained in 
an infinitesimally small wavelength band centred about the particular wavelength l being considered. It 
follows that the total, hemispherical emissive power is

2

0

(W/m )E E dl l= Ú (12.3)

The term total means the quantity in question is the summation of radiation over all wavelengths and the 
term hemispherical indicates that the summation is in all directions over a hemisphere.

Black-body Emissive Power Different bodies may emit different amounts of radiation per unit surface 
area, even when they are at the same temperature. The maximum amount of radiation is emitted by a 
black body at a given temperature.

The total radiation emitted by a black body at all wavelengths from l = 0 to l =  per unit time and 
per unit area is called black body emissive power and denoted by E

b
.

That is,

2

0

(W/m )b bE E dl l= Ú (12.4)

where E
bl

 is the monochromatic black-body emissive power (W/m2 mm)
Since the emissive power depends on the fourth power of the absolute temperature, high-temperature 

bodies emit much more than the low temperature ones.

Emissivity Emissivity, of a surface is defined as

Actual emissive power,

Blackbody emissive power, b

E

E
e =

The value of emissivity ranges between zero and unity. For a black surface, e = 1. In general, emissivity 
depends on temperature, wavelength, and direction of emission.



892 Heat and Mass Transfer

Irradiation Irradiation (G) is defined as the combination, from all sources and directions, of radiant 

energy that strikes the surface per unit time and per unit area. Note that G does not depend on the 

temperature of the surface concerned. There may, however, be an indirect dependence. For instance, the 

radiation received by a surface is partly its only reflected radiation. Irradiation is not a surface property 

and may not be constant unless the surface is receiving radiation from a very distant source. The solar 

radiation flux incident on the earth’s surface can therefore be taken as uniform. Total irradiation G is 

expressed as

2

0

(W/m )G G dl l= Ú

where G
y
(W/m2 mm) denotes spectral irradiation

Radiosity Radiosity (J) is defined as the rate at which the total is radiant energy leaves the surface per 

unit time and per unit area in all directions. Surfaces both emit as well as reflect radiation. The radiation 

leaving a surface thus has two separating components: one which is reflected by the surface, and the 

other which is emitted by the surface by virtue of its temperature (see Figure 12.4).

If the spectral radiation J
l
 (W/m mm) represents the radiation flux at wavelength l leaving the follows 

wavelength l

0

J J dl l= Ú

The emissive power E and radiosity J will be equal only when there is no reflection from the surface. 

This is possible when either the irradiation G is zero, or when the surface absorbs (or transmits) all the 

energy incident on it (i.e., when the surface is a black body or is completely transparent). Radiosity is 

constant only when there is uniform irradiation.

12.4 ❏  SURFACE CHARACTERISTICS: ABSORPTIVITY, REFLECTIVITY 
AND TRANSMISSIVITY

When radiation energy per unit time, per unit surface area, called irradiation, G, strikes a surface, part 

of it is absorbed, part of it reflected, and the remaining part, if any, is transmitted as shown in Fig. 12.5
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The fraction of incident radiation absorbed by a surface is called absorptivity, the fraction reflected by 

the surface is known as reflectivity, and the fraction transmitted is referred to as transmissivity.

Absorptivity, reflectivity and transmissivity for a medium can be expressed as follows:

Absorptivity absAbsorbed radiation
, 0 1

Incident radiation

G

G
a a= = £ £

Reflectivity: refReflected radiation
, 0 1

Incident radiation

G

G
r r= = £ £ (12.5)

Transmissivity: transTransmitted radiation
, 0 1

Incident radiation

G

G
t t= = £ £ (12.6)

If G is the radiation flux (irradiation) incident on the surface (solid, liquid or gas) and G
abs

, G
ref

, and G
trans

are the absorbed, reflected, and transmitted components of it, respectively, the sum total of the absorbed, 

reflected, and transmitted radiation is equal to incident radiation. That is,

abs ref transG G G G+ + = (12.7)

Dividing each term by G gives

1a r t+ + = (12.8)

The above definitions are for total hemispherical properties, since G represents the irradiation incident 

on the surface from all directions over the hemispherical space and over all wavelengths. Thus, a, r,

and t are the average properties of a medium for all directions and all wavelengths.

Opaque Body A material with a transmissivity of zero is opaque (t = 0). Most solids are opaque in 

the visible wavelength range. Even glass and water, which transmit visible light, are opaque to infrared 

radiation. For an opaque body, the transmissivity, t = 0 and a + r = 1. Most of our discussion will be 

concentrated on solids which are treated as opaque. Glass and rock salt and other inorganic crystals are 

some exceptions among the solids, because, unless very thick, they are to a certain degree transparent to 

radiation of certain wavelengths. Many surfaces of engineering importance are opaque.
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Black Body When a body is such that no incident radiation is reflected or transmitted, all the radiant 

energy must be absorbed. For a black body, therefore,

0, 0, and 1r t a= = =

Black surfaces are perfect absorbers as well as perfect emitters, emitting the maximum possible energy 

that any surface can emit at a given temperature.

In practice, there is no perfectly black body but many surfaces can be made to approach it. For 

example, a body may be coated with carbon black to produce a near black surface from the point of 

view of thermal radiation.

The concept of a black body is very useful in the study of radiation heat transfer much like the concept 

of an ideal gas in the study of thermodynamics.

White Body It reflects all the incident thermal radiation and neither transmits nor absorbs any part of it.

For a white body, a = 0, t = 0, and 1r = .

Gray Body A gray body is one whose absorptivity of a surface does not vary with temperature and 

wavelength of the incident radiation. For a gray body,

constantla a= =

A surface whose a
l
 is independent of l would absorb equal fraction of each wavelength. Absorptivity of 

a gray body is independent of the spectrum of the irradiation.

Coloured Body A coloured body is one whose absorptivity of a surface varies with the wavelength 

of radiation, a π a
l

It is important recognize that the dependence of surface-radiation properties on the wavelength and 

direction, makes the analysis more complicated. Hence, very often gray and diffuse approximations are 

used in radiation calculations. A surface is called diffuse if its properties are independent of direction,

and gray if its properties are independent of wavelength.

12.5 ❏

A black body is defined as a perfect absorber and a perfect emitter. All real (non-ideal) surfaces emit 

less than a black surface. Real surfaces are characterized by how closely they resemble black surfaces. 

By definition:

A black body absorbs all the radiation incident upon it, 

The black body is a diffuse emitter. The radiation emitted by a black body irrespective of wavelength 

and directon is independent of direction, though it does depend on the wave length and temperature.

For a given wavelength and temperature, no surface can emit more energy as thermal radiation 

than a black body.

A black body does not reflect or transmit any incident radiation.

Materials such as carbon black, carborundum, and platinum black are good approximations of black 

surfaces in their ability to absorb incident radiation.

We must recognize that surfaces which are nearly black, for radiation purposes, are not necessarily 

black to visible light, because the visible-light wavelength range is only a small part of the overall thermal 

radiation range. White paper, for example, is nearly radiation black with an absorptivity of 0.97.



Radiation Heat Transfer: Properties and Processes 895

● Concept of a Black Body

It is possible to artificially create an almost perfect black body by forming a cavity in a material. A large 

cavity with a small opening called Hohlraum, closely approximates a black body as shown in Fig. 12.6. 

Radiation enters the cavity through the opening (a narrow 

aperture) and the incident radiation undergoes repeated 

reflections on the wall of the cavity. Thus, there are many 

chances for it be absorbed by the interior surfaces of the 

cavity before any part of it can possibly escape. Also, 

if the surface of the cavity is at a unform temperature, 

the radiation emitted by the interior surfaces comes out 

through the opening after undergoing multiple internal 

reflections, and thus it has a diffuse nature. Therefore, 

the cavity acts as a perfect absorber and perfect emitter, 

and the opening will behave as an idealized black body 

regardless of whether the surface the cavity of highly 

absorbing or highly reflecting.
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The opening of a peephole on the side of a large boiler is another fairly good approximation of a black 

surface. The beam leaving the boiler through the peephole is weekened by multiple absorption reflection 

processes to the point where the escaped radiation is negligible. Thus, all the energy of the radiant beam 

is absorbed when it passes through the opening.

12.6 ❏

12.6.1 ● Stefan–Boltzmann Law

The radiation energy emitted by a black body per unit time and per unit surface area is expressed as

4 2max ( ) (W/m )b

Q
E T T

A
s= = (12.9)

where s = 5.67 ¥ 10–8 W/m2 K4 is called the Stefan–Boltzmann constant and T is the absolute temperature 

of the surface in K. Equation (12.9) is known as the Stefan–Boltzmann law and E
b
 is called the black-

body emissive power. The emission of thermal radiation is thus proportional to the fourth power of the 

absolute temperature. For calculations, it is convenient to use this expression in the form: E
b
 = 5.67 ¥

(T/100)4 (W/m2).

12.6.2 ● Planck’s Law of Distribution

Thermal energy is not emitted at a single wavelength but rather over a range of wavelengths. In 1900, 

Max Planck derived an equation for the energy emitted by a black body into vacuum as a function of 

wavelength.

A black body absorbs all radiant energy incident on it and at a prescribed temperature it possesses the 

maximum emissive power of any body. Planck’s law of distribution gives the energy emitted by a black 

body as a function of wavelength and absolute temperature.

5
1

2{exp[ / ] 1}b

C
E

C T
l

l

l

-

=
-

(12.10)

where E
bl

 is the maximum radiant energy emitted by a black body per unit area per unit wavelength (W/

m2 mm), called the monochromatic or spectral hemispherical emissive power of a black body.

where E
bl

 is emissive power per unit area, per unit wavelength, and l is wavelength. The constants C
1

and C
2
 are

2 8 4 2
1 0

4
2

2 3.741 77 10 (W m /m )

1.438 78 10 ( mK)o

C hc

hc
C

k

p= = ¥ m

= = ¥ m

where h is Planck’s constant, k is Boltzmann’s constant, and C
o
 is the speed of light in vacuum. Wavelength 

is typically measured in microns, with 1 mm = 10–6 m.

12.6.3 ● Maximum Monochromatic Emissive Power

The value of maximum monochromatic emissive power of a black body at a given temperature can be 

obtained by substituting this value of l
max

T(= 2897.8 mm K) in the Planck’s equation.
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5
8 4 2

5
1

,max 4
2

9 2 5 5 5

4.965

11 5 2 5 5 3
,max

2897.8 m K
(3.74177 10 W m /m )

( )

1.43878 10 m Kexp 1 exp 1
2897.8 m K

1.8312 10 W/ m m ( )

1

1.2868 10 (W/m m) 1.287 10 (W/m )

b

b

C T K
E

C

T

T K K

e

E T T

l

l

l

l

-

-

- -

- -

mÊ ˆ¥ m Á ˜Ë ¯
= =

Ê ˆ Ê ˆ¥ m-Á ˜ -Á ˜Ë ¯ Ë m ¯

¥ m ¥
=

-

= ¥ m ª ¥ (12.11)

Note: The maximum monochromatic emissive power of a black body varies as the fifth power of the 

absolute temperature of the body.

This expression can be used to predict very high temperatures simply by measuring the wavelength 

of the radiation emitted.

Figure 12.7 is a plot of Planck’s law and shows the spectral energy distribution from a black body 

at different temperatures (spectral refers to any quantity which varies with wavelength). The following 

important features of black-body radiation are quite obvious from this figure:

1. The monochromatic emissive power varies continuously with wavelength.

2. The amount of emitted radiation at any wavelength increases with increasing temperature.

3. As temperature increases, the total amount of radiation emitted also increases. This is consistent 

with the Stefan–Boltzmann law.

4. The wavelength corresponding to the maximum monochromatic emissive power depends on tem-

perature.

5. At higher temperatures, the peak of the distribution shifts to the left, and comparatively the more 

radiation is emitted at short wavelengths.

6. A significant portion of the radiation emitted by the sun (approximated as a black body at a surface 

temperature of 5779 K or about 5800 K) lies in the visible region of the spectrum. However, at 

low temperatures (£ 800 K), most of the radiation emitted by surfaces is in the infrared range of 

the spectrum and is hardly visible to the eye, unless the surfaces reflect light coming from other 

sources.

It is important to note that if the temperature of a hot body is less than 500°C (ª 800 K), virtually none 

of the radiation will fall within the band of wavelengths corresponding to visible light. If the temperature 

of the body is increased, some radiation will fall within the visible range and, at about 700°C, the surface 

glows dull red. With further increase in temperature, the colour changes to cherry red at 900°C, orange

red at 1100°C and, finally, at temperatures greater than about 1400°C, when sufficient energy is emitted 

in the visible range, the body becomes white hot. At the same time, the total quantity of heat radiated, 

which is proportional to T 4, increases rapidly. Even at 2500°C, the average temperature of the tungsten 

filament of the incandescent lamp, only about 10 percent of the energy is emitted in the visible range, 

which illustrates that the incandescent lamp is a more efficient source of heat than light.

12.6.4 ● Derivation of Stefan–Boltzmann Law from Planck’s Law

The emissive power of a black body given by the Stefan–Boltzmann law can be found by integrating 

the expression for Planck’s law over all wavelengths. The total amount of radiation emitted at a given 

temperature is the area under the curve in Fig. 12.8.
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Planck’s distribution law for the monochromatic emissive power of a black body is expressed as
5

1 2( ) / [exp( / ) 1]bE T C C Tl l l l= - (A)

The total emissive power is then given by, 

0

( ) ( , )b bE T E T dl l l= Ú (B)

Substituting from Eq. (A), one has, 1
5

20

( )
[exp( / ) 1]

b

C
E T d

C T
l

l l
=

-Ú (C)

Defining the variable x as
22

2 2 2
2

2 2

( / )
or

C C C xT T dxT
x dx d d dx

T C CT

l
l l

l l
= = - = - = -

The limits of integration are l = 0, x = , and l = , x = 0

Substituting for the new variable x with its limits, Eq. (C) becomes

0 2 3
41 2 1

5 4
22 2 0

( / )
( )

( / ) [ 1] 1
b x x

C C xT T C x
E T dx T dx

CC xT e C e

Ê ˆ
= - =Á ˜Ë ¯- -Ú Ú (D)

We note that 1 2( 1)x x x nx
e e e e

- - - -- = + + =

The definite integral 3
4 4 4

0

3! 3! 3 2 6

(3 1)
nx

x e dx
n n n

- ¥
= = = =

+Ú

\
44 4

4 41 1 1
4 4 4 4 4

22 2

6 61 1 1
( )

90 151 2 3
b

C C T C
E T T T

CC C

p pÈ ˘ Ê ˆ= + + + = ¥ =Í ˙ Á ˜Ë ¯Î ˚

Thus 4
bE Ts=

where

4
1

2 15

C

C

p
s

Ê ˆ= Á ˜Ë ¯

Substituting numerical values for C
1
 and C

2
, the Stefan–Boltzmann constant is

4 8 4 2
8 2 43.74177 10 W m /m

5.670 10 W/m K
14387.8 m K 15

p
s -¥ mÊ ˆ= = ¥Á ˜Ë m ¯
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12.6.5 ● Wien’s Displacement Law

Figure 12.6 shows the variation of E
bl

 with wavelength at different temperatures. The curve of 

monochromatic emissive power versus wavelength has the same form for every temperature but as the 

temperature is increased, the height of the curve increases and the maximum moves towards the shorter 

wavelengths. At each temperature, there is a maximum in the spectral energy distribution. The dashed 

line in the figure represents the locus of the maximum emissive power and we note the maximum shifts 

towards lower wavelengths as the surface temperature increases. The location of the maximum emissive 

power at a given temperature can be calculated from Wien’s law, which states that

max 3 2897.8 2898 ( mK)T Cl = = ª m (12.12)

where l
max

 is the wavelength at which the spectral black-body emissive power is a maximum for a specified 

temperature and is inversely proportional to the absolute temperature, T. The greater the temperature, the 

shorter the wavelength at which the peak occurs. The peak of solar radiation, for instance, occurs at l
ª 2898/5880 ª 0.5 mm which is almost at the middle of the visible band while the peak of the radiation 

emitted at the room temperature of 300 K occurs at l ª 2898/300 = 9.66 mm which is in the infrared 

(IR) range of the spectrum. Infrared radiation caanot be sensed by our eyes.

Derivation of Wien’s Displacement Law from Planck’s Law To find the wavelength at a specified 

temperature for which the black-body spectral (monochromatic) emissive power is a maximum, we can 

differentiate E
bl

 with respect to l and equate the resulting derivative to zero.

2

2

1
/5

/5
,max

( 1)

( ) 0 for or [ ( 1)] 0

b C T

C T
b b

C
E

e

d d
E E e

d d

l l

l
l l

l

l
l l

=
-

= - = (since C
1
 is a constant)

or 2 2/ /5 42 0 ( 1)(5 ) 0C T C TCd
e e

d T

l ll l
l l

È ˘Ê ˆ◊ - + - =Á ˜Í ˙Ë ¯Î ˚

or 2 2/ /2
2

5( 1) 0C T C TC
e e

T

l ll
l

È ˘Ê ˆ- + - =Á ˜Í ˙Ë ¯Î ˚

Let 2C
x

Tl
∫

Then, xex + 5(ex – 1) = 0 or ex[5 – x] = 5

To solve this equation, a trial-and-error solution is necessary.

x LHS RHS

4.9 13.43 5.0

4.95 7.06 5.0

4.97 4.32 5.0

4.965 5.0158 5.0

4.9651 5.0 5.0

\ x = 2C

Tl
 = 4.9651
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\ l
¥ m

= =
4

max power
1.43878 10 m K

( )
4.9651

T 2898 mKm

=max 2898 mm Kl T

Clearly, the wavelength at which the spectral emissive power is maximum goes on decreasing as the 

temperature goes on increasing as illustrated in Fig. 12.7.

12.6.6 ● Corollaries of Planck’s Law

Approximations to Planck’s law of distribution are the Wien and Rayleigh–Jeans laws which can be used 

to determine the monochromatic emissive power fairly easily for the extremely low and high limits of 

the product lT, respectively.

Now consider these two extreme cases when C
2
/lT >> 1 (very low lT) and C

2
/lT << 1 (very high lT).

Planck’s law has two limiting cases, one of which is that when the product lT is small compared with 

the constant C
2
. The second extreme case corresponds to a large value of the product lT as compared 

to the constant C
2
.

Wien’s Law When C
2
/lT >> 1 (or lT << C

2
), it follows that exp (C

2
/lT) >> 1. Hence, the –1 term in 

the denominator of the Planck’s law is insignificant and can be dropped giving

5
1 2( , ) / exp( / )bE T C C Tl l l lª - (12.13)

This relationship is known as Wien’s law. The ratio of the emissive power by Wien’s law to that by the 

Planck’s law is,

Wien 2

Planck 2

| 1/exp( / )

| 1/[exp( / ) 1]
b

b

E C T

E C T

l

l

l

l
=

-

For the condition max 2
14387.8 mK

2897.8 mK, / 4.965
2897.8 mK

T T C Tl l l
m

= = m = =
m

and Wien

Planck

| 1/exp(4.965) [exp(4.965) 1]

| 1/[exp(4.965) 1] exp(4.965)
b

b

E

E

l

l

-
= = =

-
0.9930

That is, for lT £ 2898 mm K, Wien’s law is a good approximation (accurate within 1%) to the Planck 

distribution.

Rayleigh–Jean’s Law This law is useful in analyzing long-wavelength radiation such as radio waves.

When the product lT is large compared with the constant C
2
, i.e., C

2
/lT << 1 (or lT >> C

2
), the 

exponential term expressed as a series can be approximated by the first two terms. That is,

2 3

1 1 when 1
2! 3!

x x x
e x x x= + + + + ª + <<

The Rayleigh–Jean’s (RJ) approximation is then

5
1 2( ) / [1 ( / ) 1]bE T C C Tl l l lª + -

or 4
1 2( ) /bE T C T Cl l lª (12.14)
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For the condition lT ≥ 105 mm K, C
2
/lT = 0.143 878

4
1 2

2 2 25
Planck 1

| /
[exp( / ) 1] ( / )[exp( / ) 1]

| /

exp(0.143 878) 1

0.143 878

b R J

b

E C T C
C T T C C T

E C

l

l

l
l l l

l

- = - = -

-
= = 1.0755

That is, for lT ≥ 105 mm K, the Rayleigh–Jean’s law is a good approximation better than 10% to the 

Planck distribution.

12.6.7 ● Black-body Radiation Functions

Many problems involve an estimate of the energy radiated at a specified wavelength or within a finite 

band of wavelengths.

The radiation energy emitted by a black body per unit area over a wavelength band from l = 0 to l
can be determined from

2
,0

0

( ) ( , ) (W/m )b bE T E T d

l

l l l l- = Ú (12.15)

Figure 12.9 shows graphically (the shaded area) the 

representation of E
b
((0 – l) (T)). The total area under the 

curve obviously represents E
b(0 Æ )

(T) which is the black-

body emissive power at temperature T given by sT4.

A dimensionless quantity f
l
 called the black-body radiation 

function, is defined as

0
4

( , )

( )
bE T d

f T
T

l

l

l

l l

s
=
Ú

(12.16)

Substituting the expression for Planck’s law and rearranging 

terms, we get

1
0 5 4

20

1
5

20

1
( )

[exp( / ) 1]

( ) [exp( / ) 1]

C
f T f d

C T T

C
Td

T C T

l

l l

l

l
l l s

l
s l l

-= =
-

=
-

Ú

Ú

Changing the variable of integration from l to lT, we get

l

l l
s l l

=
-Ú 1

5
20

( ) ( )
( ) [exp( / ) 1]

T
C

f T d T
T C T

(12.17)

The function f
l
 represents the fraction of radiation emitted from a black body at temperature T in the 

wavelength band from l = 0 to l, where l is in mm and T is in K.

l
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Table 12.2 lists the radiation functions f
(0–l)

(T) as functions of lT.

Table 12.2

lT

(mm K)
f

0 – l
(T)

lT

(mm K)
f

0 – l
(T)

lT

(mm K)
f

0 – l
(T)

lT

(mm K)
f

0 – l
(T)

500 0 3600 0.40360 6800 0.79610 10 000 0.91416

600 0 3700 0.42376 6900 0.80220 10 500 0.92367

700 0 3800 0.44337 7000 0.80808 11 000 0.93185

800 0.000016 3900 0.46241 7100 0.81373 11 500 0.93892

900 0.000087 4000 0.48087 7200 0.81918 12 000 0.94505

1000 0.000321 4100 0.49873 7300 0.82443 12 500 0.95041

1100 0.000911 4200 0.51600 7400 0.82949 13 000 0.95509

1200 0.00213 4300 0.53268 7500 0.83437 13 500 0.95921

1300 0.00432 4400 0.54878 7600 0.83906 14 000 0.96285

1400 0.00779 4500 0.5643 7700 0.84359 14 500 0.96607

1500 0.01285 4600 0.57926 7800 0.84796 15 000 0.96893

1600 0.01972 4700 0.59367 7900 0.85218 15 500 0.97149

1700 0.02853 4800 0.60754 8000 0.85625 16 000 0.97377

1800 0.03934 4900 0.62089 8100 0.86017 16 500 0.97581

1900 0.05211 5000 0.63373 8200 0.86396 17 000 0.97765

2000 0.06673 5100 0.64608 8300 0.86762 18 000 0.98081

2100 0.08305 5200 0.65795 8400 0.87115 19 000 0.98341

2200 0.10089 5300 0.66936 8500 0.87457 20 000 0.98555

2300 0.12003 5400 0.68034 8600 0.87786 25 000 0.99217

2400 0.14026 5500 0.69088 8700 0.88105 30 000 0.99529

2500 0.16136 5600 0.70102 8800 0.88413 35 000 0.99695

2600 0.18312 5700 0.71077 8900 0.88711 40 000 0.99792

2700 0.20536 5800 0.72013 9000 0.88999 45 000 0.99852

2800 0.22789 5900 0.72914 9100 0.89277 50 000 0.99890

2897.8 0.25011 6000 0.73779 9200 0.89547 55 000 0.99917

2900 0.25056 6100 0.74611 9300 0.89807 60 000 0.99935

3000 0.27323 6200 0.75411 9400 0.90060 65 000 0.99949

3100 0.29578 6300 0.76181 9500 0.90304 70 000 0.99959

3200 0.3181 6400 0.7692 9600 0.90541 75 000 0.99966

3300 0.34011 6500 0.77632 9700 0.90770 85 000 0.99977

3400 0.36173 6600 0.78317 9800 0.90992 100 000 0.99985

3500 0.38291 6700 0.78976 9900 0.91207 1.0000
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12.6.8 ● Band Emission

We are often interested in knowing the fraction of the total radiation emission from a black body over a 

certain wavelength interval or band.

The energy emitted by a black body in the wavelength band defined by l
1
 and l

2
 is 

2

1

bE d

l

l

l

lÚ , or the 

area under the curve in Fig. 12.10 between l
1
 and l

2
.

l
1
 to l

2
 at temperature T

The fraction of radiation energy emitted by a black body at temperature T over a finite wavelength 

band from l = l
1
 to l = l

2
 can be obtained from

2 2 1

1

1 2 2 1

0 0
4

0

b b b

b

E d E d E d

f f f
T

E d

l l l

l l l
l

l l l l

l

l l l

s
l

-

-

= = = -
Ú Ú Ú

Ú

or
1 2 2 1

( ) ( ) ( )f T f T f Tl l l l- = - (12.18)

where
1
( )f Tl  and 

2
( )f Tl  are black-body radiation functions corresponding to l

1
T and l

2
T, respectively.

12.7 ❏ INTENSITY OF RADIATION

Radiation is emitted by all parts of a body in all directions into the surrounding hemispherical space 

above it. However, the directional distribution of emitted (or incident) radiation is generally not uniform. 

It is of great importance to know the amount of radiation emitted or streaming into a given direction. 

This quantity is radiation intensity, denoted by I. The direction of radiation passing through a point 

is best described in spherical coordinates in terms of zenith (polar) angle q and the azimuth angle f,
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Fig. 12.11. The intensity of radiation is used to describe 

how the emitted radiation varies with the zenith and azimuth 

angles. One must note that the radiation emission by a black 

body per unit normal area is uniform in all directions, and 

is independent of direction. But for non-black surfaces, this 

is not the case.

We should also note that intensity could be due to 

some other aspect than emission, such as reflection or

transmission.

12.7.1 ● Plane Angle and Solid Angle

Radiation is emitted in three dimensional space and 

propagates in all directions from a given surface area. To 

describe such a propagation process, we need to define the geometric concept of the solid angle, which 

is analogous to the plane angle. Figure 12.12 indicates how a plane angle and a solid angle are defined. 

Solid angle is defined as the region in sphere which is enclosed by a conical surface whose vertex is 

the centre of the sphere. The differential plane angle da is the arc length ds on a circle divided by the 

circle radius. That is, da = ds/r. Similarly, the differential solid angle is the area element dA on a sphere 

divided by the square of the sphere radius. That is, 
2

dA
d

r
w = . While the plane angle (two-dimensional)

has the unit of radian (rad), the solid angle (three-dimensional) is measured in steradian (sr).

The total solid angle subtended by the sphere at its centre is 
2

2 2

sphere surface area 4
4 (sr)

r

r r

p
w p= = = .

The solid angle subtended by a complete hemisphere is 
2

2

2
2

r

r

p
p= .

Note that the area dA
n
 is normal to the direction of viewing since dA

n
 is viewed from the centre of 

the sphere.

When the solid angle subtended by an area element at an arbitrarily located point with respect to it is 

required, the solid angle is defined as

w =
2
ndA

d
r

(12.19)

where the subscript n is used to denote that the receiving area is normal to the radiation emitted from dA.

Intensity of radiation emitted from 

a surface
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12.7.2 ● Relation to Emission

The intensity of emitted radiation I
e
(q, f) is defined as 

the rate at which the radiation energy edQ  is emitted 

ina given direction per unit area of the emitting surface 

perpendicular to this direction and per unit solid angle 

about this direction.

We should note that the area used to define the radiation 

intensity is the component of area dA
1
 normal to the 

direction of radiation. From Fig. 12.13, it can be seen that 

this projected area is dA
1
 cos q. What it means is that this 

is how the area dA
1
 would appear to an observer at dA

n
.

2

1

( , ) (W/m sr)
cos cos sin

e e
e

dQ dQ
I

dA d dA d d
q f

q w q q q f
= = (12.20)

We know that the rate at which the radinat energy is emitted per unit area of the emitting surface is the 

emissive power which can be expressed in differential form,

1

( , )cos sine
e

dQ
dE I d d

dA
q f q q q f= = (12.21)

By integrating the above expression, we can get the emissive power from the surface into the hemisphere. 

Thus,

2 /2

hemisphere 0 0

( , )cos sineE dE I d d

p p

f q

q f q q q f
= =

= =Ú Ú Ú (W/m2) (12.22)

12.7.3 ● Relation between Emissive Power and Intensity of Radiation

Consider the radiation emitted from the differential area dA at the centre of a sphere towards the area dA
n
.

Suppose this radiation is absorbed by a second elemental area dA
n
, a portion of the hemispherical surface.

The amount of radiation falling on area dA
n
 is given by

dQ  = (Intensity of radiation of the area dA) ¥ (Projected area of dA on the plane perpendicular to the 

line joining dA and dA
n
) ¥ (Solid angle made by the area dA

n
 with the centre of the base circle of the 

hemisphere)

( cos ) ( )edQ I dA dq w=

where I
e
 = intensity of emitted radiation 

The differential solid angle dw can be related to the polar angle q and the azimuth angle f. By 

definition,
2
ndA

d
r

w = .

From Figure 12.14,

or

2

2

2

( )( sin )( sin ) sin

sin
sin

ndA rd r r d r d d

r d d
d d d

r

q q q f q q f

q q f
w q q f

= =

= =

Projection of area dA
1
 perpendicular 



906 Heat and Mass Transfer

Total radiation emission EdA from the surface can be obtained by integrating dQ  over the hemispherical 

surface

/2 2

hemisphere 0 0

sin coseEdA dQ dA I d d

q p f p

q f

q q q f
= =

= =

= =Ú Ú Ú

The intensity of radiation emitted by a surface, usually varies with direction (especially with the polar 

(zenith) angle q). But many surfaces in practice can be approximated as being diffuse. For a diffusely
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emitting (isotropic) surface, the intensity of the emitted radiation is independent of direction and I
e
 = 

constant.

Emissive power,

or

/2 2

0 0

/2 /2
2

0
0 0

cos sin

cos sin [ ] 2 cos sin

e

e e

E I d d

E I d I d

q p f p

q f

q p q p
p

q q

q q q f

q q q f p q q q

= =

= =

= =

= =

=

È ˘
= Í ˙ =

Í ˙Î ˚

Ú Ú

Ú Ú

or

/2 /2

0 0

2 cos sin sine eE I d I d

q p q p

q q

p q q q p q q
= =

= =

= =Ú Ú

or

/2

0

cos 2 ( 1 1)
[cos 0 cos ]

2 2 2 2
e e

e e

I I
E I I

p
p pq

p p p
- - - -È ˘ È ˘= = - = =Í ˙ Í ˙Î ˚ Î ˚

Thus, the emissive power relation reduces to

\ 2(W/m )eE Ip= (12.23)

The total emissive power of a diffuse surface is equal to p times its intensity of radiation.

Note that the emissive power is based on the actual surface area whereas the intensity is based on 

the projected area. Also note that the constant appearing in the two expressions is p and not 2p and has 

the unit steradian (sr).

For a black body, which is a diffuse emitter, one can write

b bE Ip= (12.24)

where E
b
 = sT4 is the black-body emissive power.

The intensity of the radiation emitted by a black body at the absolute temperature T is

4
2( )

( ) (W/m sr)b
b

E T T
I T

s

p p
= = (12.25)

12.7.4 ● Relation to Irradiation

Apart from emitting radiation, all surfaces also receive 

radiation emitted or reflected by other surfaces.

The intensity of radiation incident on a surface I
i
,

(Fig. 12.15) is related to the total irradiation from all 

directions. The intensity of incident radiation I
i
(q, f)

is defined as the rate at which the energy is incident 

from a given direction per unit area of the receiving 

surface normal to this direction and per unit solid 

angle about this direction. Here, q is the angle between 

the direction of incident radiation and the normal to the 

surface. Total irradiation G can then be expressed as
Intensity of radiation incident on a surface
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p p

l l q f q q q f= = ◊Ú Ú Ú
2 /2

2

0 0 0

and ( , ) cos sin (W/m )iG G d G I d d (12.26)

If the intensity of incident radiation is independent of q and f, i.e., diffuse then we will get

2(W/m )iG Ip= (12.27)

Note that irradiation is based on the actual surface area, while the intensity of incident radiation is based 

on the projected area.

12.7.5 ● Relation to Radiosity

Radiosity J accounts for both the emitted radiation as well as the reflected component of irradiation. 

Hence, integrating over the hemisphere, we obtain the radiosity J.

2 /2
2

( )
0 0

( , )cos sin (W/m )e rJ I d d

p p

f q

q f q q q f+
= =

= Ú Ú (12.28)

where I
(e + r)

 is the sum of the emitted and reflected intensities. For a surface that is both a diffuse emitter

and a diffuse reflector, I
(e + r)

 = constant, and the radiosity can be expressed as 

( )e rJ Ip += (12.29)

A black surface radiates diffusely with a radiosity J = E
b
. Then J = E

b
 = pI

e

12.8 ❏ LAMBERT’S COSINE LAW

Lambert’s cosine law states that the total emissive power E
q
 from a radiating plane surface in any 

particular direction is directly proportional to the cosine of the angle between the direction under 

consideration and the normal to the surface. If the total emissive power of the radiating surface in the 

direction of its normal is E
n
, then

q q= cosnE E (12.30)

Clearly, it decreases with an increase in the angle q and is zero when q is 90°.

Consider an elemental area dA of a diffuse radiating surface. The total amount of energy radiating from 

this surface will be

or

q q

q q

q w

q w

=

=

1 cos

1 cos

dAE dA d

E d (12.31)

where dw = differential solid angle

and dA E
n
 = 1

n
dAdw  (since q = 0°) or w=n nE I d (12.32)

Dividing one by the other, we get

1 cos

n n

E

E I

q q q
= (12.33)

But from the Lambert’s cosine law, E
q
 = E

n
 cos q (Fig. 12.16).
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Equation (12.33) then becomes,

cos cosn

n n

E I

E I

qq q
=

i.e. 1nI q= (12.34)

This shows that if the surface is diffuse, the intensity of 

radiation is uniform in all directions. Such surfaces which 

behave in this way are often known as Lambertonian 

surfaces.

A black body is also a Lambertonian surface. The 

surfaces which obey Lambert’s law have radiation 

intensities independent of direction.

12.9 ❏ KIRCHHOFF’S LAW

Consider a large evacuated isothermal enclosure (at uniform absolute temperature T) in which several 

small bodies are placed. The irradiation experienced by any body in the enclosure, regardless of its 

orientation, is diffuse and equal to emission from the walls of the enclosure acting as a black body at 

temperature T. Thus, G = E
b
(T)

Under steady-state conditions, thermal equilibrium must exist between the bodies and the enclosure. 

Hence, T
1
 = T

2
 = T

3
 … = T, and the net rate of energy transfer to each surface has to be zero. Applying 

control surface energy balance about body of the area A
1

Energy absorbed in( )E  – Energy emitted out( ) 0E =

i.e., 1 1 1 1( ) 0GA E T Aa - = (12.35)

where a
1
 is the absorptivity of body 1 and A1 its area.

or 1 1( ) ( )bE T E Ta = (12.36)

Since this result must apply to each of the enclosed bodies, it follows that under thermal equilibrium 

conditions,

1 2

1 2

( ) ( )
( )b

E T E T
E T

a a
= = = (12.37)

This relation is known as Kirchhoff’s law or Kirchhoff’s identity. Since a £ 1, E(T) £ E
b
(T).

Thus, no real surface can have an emissive power greater than that of a black body at the same temperature.

Total, hemispherical emissivity is defined as the ratio of emissive power of a real surface to that of a 

black surface at the same temperature.

Thus, 1 2
1 2, and so on

b b

E E

E E
e e= = (12.38)

Hence, for any surface in the enclosure, e a=

Thus, the total, hemispherical emissivity of the surface is equal to its total hemispherical absorptivity.

It is important to recognize the restrictive conditions because of dependence of emissivity on 

temperature, wavelength, and direction.
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uniform temperature T

The monochromatic emissivity, like monochromatic absorptivity, is generally found to be a function 

of surface temperature as well as wavelength and angle of emission.

There are no restrictions if the Kirchhoff’s law is expressed in the form

, ,l q l qe a= (12.39)

This involves spectral as well as spatial (directional) properties.

In practice, it is usually assumed that there is little variation of emissivity with angle of emission.

The spectral form of the Kirchhoff’s law is given by

( ) ( )T Tl le a= (12.40)

Kirchhoff’s law may thus be stated as: The monochromatic emissivity of a surface (e
l
) is equal to its 

monochromatic absorptivity (a
l
) regardless of the difference in temperatures corresponding to the emitted 

(T
surface

) and incident (T
source

) radiation.

i.e., l le a= (12.41)

It must be emphasized that the absorptivity of 

a surface equals the emissivity of the surface only 

when the source temperature of the irradiation is the 

same as the surface temperature. Fortunately, most 

substances have a that is relatively insensitive to 

wavelength so that a change in the temperature of the 

irradiating source (or irradiation from several different 

source temperatures) does not change the absorptivity. 

Consequently, the emissivity remains the same.

In the case of black or gray bodies T
source

 = T
surface

(whose emissivities do not vary with wavelength), the 

total absorptivity and emissivity are the same even 

when T
source

π T
surface

. But, for real surfaces, when T
source

π T
surface

, the deviation from this law increases as (T
source

– T
surface

) increases. For example, in a tropical climate, white clothing is preferable because white has a 

low absorptivity for the high temperature, short wavelength, radiation from the sun (ª 5800 K) but a high

emissivity for its own low-temperature radiation (ª 300 K).

If the temperature difference between the surfaces is well within a few hundred degrees, Kirchhoff’s 

law can be applied as an approximation. Kirchhoff’s law is not applicable for example, to solar radiation 

exchanging radiant energy with surfaces at room or moderate temperatures. The sun is thousands of degrees 

hotter than the surface of a solar collector, and the absorptivity of the solar collector is not generally 

same as its emissivity.

The emissivity of a surface at a particular wavelength, direction, and temperature is thus always equal 

to the absorptivity at the same wavelength, direction and temperature.

For gray diffuse surfaces an idealization the properties like emissivity are independent of wavelength 

as well as direction.

Kirchhoff’s law is very useful in radiation analysis because by using the relation e = a along with r
= 1 – a, we can find all three properties of an opaque surface from a knowledge of just one property.
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12.10 ❏ RADIATION FROM REAL SURFACES

12.10.1 ● Real Surfaces and Band Approximation

If the variation of monochromatic emissivity of an engineering (non-gray) surface with wavelength at 

the specified temperature is known, we can divide the spectrum into a sufficient number of wavelength

bands and take the emissivity to be constant over each band by expressing the function e
l
(l, T) as a step

function. Let the three-band approximation be an adequate representation of the variation of emissivity 

of a real engineering surface as shown in Fig. 12.18. The constant band emissivities e
1
, e

2
, and e

3
 and 

the corresponding wavelength bands are

1 1

2 1 2

3 2

constant, 0

constant,

constant,
l

e l l

e e l l l

e l l

= £ <Ï
Ô= = £ <Ì
Ô
Ó

(12.42)

The average emissivity can now be found by breaking the integral into three parts and using the definition 

of the black-body radiation function as follows:

21

1 2

1 1 2 2

2 31
0

1 0 2 3

( )

( ) ( ) ( )

b bb

b b b

E d E dE d

T
E E E

T T T

ll

l ll
l l

l l l l

e l e le l

e

e e e
-

= + +

= + +

Ú ÚÚ

f f f

(12.43)

12.10.2 ● Monochromatic Directional Surface Radiation Properties

In the earlier section, we had defined total hemispherical absorptivity, reflectivity, transmissivity.

The properties that characterize absorption reflection and transmission processes depend upon surface 

material and finish, surface temperature, and the direction and wavelength of the incident radiation.
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Reflectivity Like emissivity, reflectivity of real surfaces depends on temperature, wavelength, and

direction. Reflectivity is actually more complex than emissivity, because it varies, in general, with both 

angle of incidence and angle of reflection. The reflection of radiation can be either regular or diffuse. 

In the case of highly polished and smooth surface, the reflection of radiation is similar to the reflection 

of a light beam, i.e., the angle of incidence equals the angle of reflection. This is known as specular

reflection. Most materials that we come across are rough because their surfaces have asperities which are 

large compared with the wavelength. The reflection of radiation from a rough surface occurs in almost 

all directions and is known as diffuse. There are two limiting cases of reflective behaviour that are used 

to simplify analysis the diffuse surface and the specular surface. In a diffuse (optically rough) reflector, 

the angle of reflection is independent of the angle of incidence. In a specular (optically smooth) reflector, 

the angle of reflection equals the angle of incidence. Real surfaces often fall somewhere between these 

two behaviours, as shown in Fig. 12.8.

Specular and diffuse reflection of radiation

Specular reflectors in the visible range include mirrors, shiny metal surfaces, glass sheets, and still 

water. The near-perfect reflection behaviour allows us to see images in these surfaces. Surfaces that are 

specular in the visible range are generally specular in the infrared range as well, since infrared radiation 

has longer wavelengths than visible light. It is possible to perform straightforward radiation analyses 

assuming either perfectly diffuse reflectors or perfectly specular reflectors. Most common surfaces are 

more nearly diffuse than specular.

Absorptivity The total or average absorptivity depends on the spectral distribution of the irradiation

itself. Hence, if a red surface is irradiated by light dominated by red colour (l ª 0.65 mm), its absorptivity 

would be much less than that when the irradiation is dominated by blue light (l ª 0.47 mm).

We must realize that while freshly fallen snow with its almost blinding whiteness would appear 

to possess very large reflectivity, this high reflectivity is only in the visible part of the spectrum. Its 

absorptivity for the wider band of infrared radiation is quite large and, thus, its total absorptivity is fairly 

high. In fact, snow can be idealized as a black body for longer wavelength (infrared) radiation.

Depending on different radiation properties, we can broadly classify various bodies as follows:

Transparent Body It transmits the entire incident radiation falling on its surface and allows it to pass 

through 1, 0t a r= = = .
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Transmissivity Transmissivity like the other radiative properties depends on temperature, wavelength,

and direction. It also depends on the thickness of the layer through which radiation travels. A material 

with a transmissivity of unity (t = 1) is perfectly transparent. Thin layers of some gases, like air and 

oxygen, are virtually transparent to thermal radiation. A material with a transmissivity between zero and 

unity is called semi-transparent. Ordinary glass is semi-transparent in the visible wavelength range, and 

so is liquid water.

Solids generally transmit no radiation unless the material is of very thin section. Metals absorb radiation 

within a fraction of a micrometre (mm) and electrical insulators within a fraction of a millimetre (mm).

1a r+ =

On the other hand, most elementary gases such as hydrogen, oxygen, and nitrogen (and mixtures of 

these such as air) have a transmissivity of practically unity; i.e., their reflectivity and absorptivity are nearly 

zero. For this reason, radiation heat transfer through air is generally estimated using the relationships for 

radiation through a vacuum. Gases with a more complicated structure, such as steam (H
2
O) and carbon

dioxide, (CO
2
) generally absorb and emit as well as transmit radiation.

Certain solids and liquids transmit radiation at specific wavelengths unless they are very thick. These 

materials (glass, inorganic crystals, etc.) are transparent to radiation only at these wavelengths; at other 

wavelengths they are opaque to radiation. Thus, ordinary clear glass is transparent in the visible (short

wavelength) range and in the infrared (long wavelength) range up to 2.5 mm, whereas very thin slices of 

semi conductor materials such as silicon and germanium are opaque in the visible region but transparent 

over parts of the infra redregion beyond 1.0 and 1.8 mm respectively.

Monochromatic (or Spectral) Emissivity It is the ratio of the monochromatic emissive power of a 

surface to the monochromatic emissive power of a black body at the same wavelength and temperature. 

Emissivity can be defined in three ways.

The spectral hemispherical emissivity is given by

( , )
( , )

( , )b

E T
T

E T

l
l

l

l
e l

l
= (12.44)

The emissivity of a surface at a given wavelength changes with temperature.

Total Hemispherical Emissivity It can be expressed in terms of the radiant energy emitted over all 

wavelengths and in all directions as

( )
( )

( )b

E T
T

E T
e = (12.45)

Since 

0

and ( , ) ( , ) ( , )bE E d E T T E Tl l l ll l e l l= =Ú , the total hemispherical emissivity can also be 

expressed as

0

( , ) ( , )
( )

( )
( ) ( )

b

b b

T E T d
E T

T
E T E T

l le l l l

e = =
Ú

(12.46)
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Normal Total Emissivity e
n

Is the ratio of the normal component of the total emissive power of 

a surface (E
n
) to the normal component of the total emissive power of a black body E

bn
 at the same 

temperature

n
n

bn

E

E
e = (12.47)

Clearly, for a black body,

1, 1, 1b b bnle e e= = = (12.48)

Now, considering the wavelength and direction dependence, the monochromatic directional absorptivity

and the monochromatic directional reflectivity of a surface are defined, respectively, as the absorbed and 

reflected fractions of the intensity of radiation incident at a particular wavelength in a specified direction as

,abs ,ref
, ,

, ,

( , , ) ( , , )
( , , ) and ( , , )

( , , ) ( , , )i i

I I

I I

l l
l q l q

l l

l q f l q f
a l q f r l q f

l q f l q f
= = (12.49)

The monochromatic hemispherical absorptivity and monochromatic hemispherical reflectivity of a surface

can be expressed as

,abs ,ref( ) ( )
( ) and ( )

( ) ( )

G G

G G

l l
l l

l l

l l
a l r l

l l
= = (12.50)

where G
l
 is the monochromatic irradiation (in W/m2 mm) incident on the surface, and G

l, abs
 and G

l, ref
 are 

its reflected and absorbed components, respectively. In a similar fashion, for the transmissivity of semi-

transparent materials, the monochromatic hemispherical transmissivity of a medium can be expressed as

, trans ( )
( )

( )

G

G

l
l

l

l
t l

l
= (12.51)

The average (total, hemispherical) absorptivity, reflectivity, and transmissivity of a surface are the 

integrated effect of their monochromatic values and can be expressed as

0 0 0

0 0 0

G d G d G d

G d G d G d

l l l l l l

l l l

a l r l t l

a r t

l l l

= = =
Ú Ú Ú

Ú Ú Ú
(12.52)

The absorptivity of aluminium increases with the source temperature, a characteristic for metals, and 

the absorptivity of non-conductors, in general, decreases with temperature. This decrease is most obvious 

for surfaces which appear white to the eye. For example, the absorptivity of a white painted surface is 

low for solar radiation, but it is quite high for infrared radiation.

Emissivity depends also, on whether or not a material is an electrical conductor. Insulators usually 

have high values of emissivity, typically between 0.8 to 0.99. Metals, on the contrary, have low values 

of emissivity, varying from 0.001 to 0.7. Surface condition also affects significantly the emissivity, 

particularly in metals.
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12.10.3 ● Gray Surface

The effect of the gray approximation on emissivity and emissive power of a real surface is shown in 

Fig. 12.20 and 12.21. The radiation emission from a real surface, differs by and large, from the Planck 

distribution, and the emission curve may have several peaks and valleys. A gray surface must emit as 

much radiation as the real surface it represents at the same temperature. The areas under the emission 

curves of the real and gray surfaces must, therefore, be equal.

4 2emitted (W/m )
A

Q
E Tes= = (12.53)

where E is the emissive power of a real surface.

e
l

l
 and E

l

Emissive power is a constant proportion of the black-body emissive power at any wavelength, i.e., 

its emissivity at every wavelength is the same. A surface which has this type of spectral distribution is 

called a gray surface. This is a useful concept, because it enables non-black surfaces to be simplified 

and analyzed without bothering about the details of their spectral emission bands. Many real surfaces do 

approximate to gray surfaces and the error involved in the simplification is often very small. It should 

be noted that the relationships derived for non-black surfaces are strictly applicable only to gray surfaces 

or, alternatively, to monochromatic radiation. Thus, a body whose emissivity is constant with wavelength 

is known as a gray body and many materials approximate to this ideal case.

A material whose monochromatic emissivity is not constant with wavelength, angle of emission, and 

surface temperature is called a selective emitter.

Analysis of radiation heat transfer is greatly simplified by assuming that surfaces are both gray and diffuse.

If e
l
 and a

l
 do not vary with l, the surface is said to be gray. When an opaque surface absorbs all 

incident radiation, nothing is reflected for the eye to see. Such surfaces are, therefore, called black surfaces 

or perfect absorbers. Perfect absorbers are naturally perfect emitters. An opaque surface that does not 

absorb any radiation will reflect all radiation. When our eye sees all radiation to which it is sensitive (in

relatively equal energy amounts); the visual sensation is described as white. Hence, surfaces which absorb 

and reflect between these limits and are insensitive to wavelength are known as gray surfaces, since a 
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combination of black and white gives gray! The spectral behaviour of block, gray and real surfaces at 

1600 K is shown in Fig. 12.22.

12.10.4 ● Specular and Diffuse Surfaces

A body that reflects all the incident thermal radiation is known as a specular surface. A specular surface 

is a highly polished and smooth mirrorlike surface in which the angle of incidence is equal to the angle 

of reflection. On the other hand, a surface on which an incident beam is distributed uniformly in all 

directions after reflection, is called a diffuse surface.

Non-conductors show a relative insensitivity to polar angle, whereas conductors (metals) show a strong 

dependence on polar angles.

Surfaces having a roughness whose dimensions (for example mean pit depth) are large compared to 

the wavelength of the incident radiation reflect diffusively. On the other hand, surfaces whose roughness 

dimensions are considerably smaller than the wavelength of the radiation behave as specular reflectors. 

A diffuse surface can thus be defined as one whose intensity of emitted and reflected radiation is neither 

a function of polar (or zenith) angle q nor of azimuthal angle f. A diffuse gray surface obeys Lambert’s 

law, i.e., the intensity of radiation leaving the surface does not depend on direction. This means that the 

emissivity and reflectivity are independent of angle. Fortunately, most of the real surfaces behave in an 

almost diffuse manner.
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Emissivity and Absorptivity The emissivity of a surface (e) is defined as the ratio of the emissive 

power of the surface to the emissive power of a hypothetical black body at the same temperature. 

According to Kirchhoff’s identity, this ratio (E/E
b
) at the same temperature also equals the absorptivity (a).

Emissivity is a property of the surface. It depends only on the nature or characteristics of the surface 

and is independent of the nature or wavelength of the incident radiation.

The fraction of incident radiation absorbed by a surface is called absorptivity (a).

It may be noted that unlike emissivity, the absorptivity of a material is almost independent of the 

surface temperature. However, the absorptivity does depend strongly on the temperature of the source of 

the incident radiation. For example, the absorptivity of the roof of a house is nearly 0.6 for solar radiation 

(source temperature: 5779 K) and 0.9 for radiation originating from the surrounding trees and buildings 

(source temperature: 300 K).

0
4

( ) ( )

Emissivity, ( )
b

b

T E T d
E

T
E T

l le l

e e
s

= = =
Ú

(12.54)

*

*abs 0
*

( ) ( )

Absorptivity, ( , )
( )

T G T d
G

T T
G G T

l la l

a a= = =
Ú

(12.55)

It is noteworthy that a depends on the source temperature T* while e is independent of T* but a 

function of the surface temperature T. Hence, a and e will usually be unequal.

Even when the emissivity does vary with wavelength, an average emissivity or absorptivity for the 

wavelength band in which the bulk of the radiation is emitted or absorbed is often sufficiently accurate 

for calculation.

The emissivity and absorptivity for a non-gray surface are not equal.

Selective Surfaces A selective surface is one in which radiation properties are manipulated to meet 

the specific requirement. Selective surfaces are non-gray surfaces which play an important role in solar

energy devices and thermal control of spacecraft systems. In the case of solar collectors, the aim is to 

gather solar heat while in the spacecraft systems, the purpose is to keep the solar heat away. Hence, the 

name selective surface.

Higher emissivity (and, hence, absorptivity) up to 4 mm and low emissivity beyond 4 mm in the 

infrared (IR) region will lead to higher equilibrium surface temperature. Thus, typically for a selective 

surface with a
solar

ª 0.9 and e
IR
ª 0.2, T

equil
ª 300°C for an incident solar flux of 1300 W/m2. Hence, it 

is desirable to have a selective surface for solar heating application with a high (a
s
/e) ratio.

Lower emissivity up to 4 mm and higher emissivity beyond 4 mm (T
equil

ª 140°C with a
solar

ª 0.11 and 

e
IR

 = 0.9 for the same solar flux of 1300 W/m2) will make the surface cool while dissipating heat. Thus, 

a selective surface with lower (a
s
/e) ratio is desirable for spacecraft systems.

At very large differences (like solar irradiation) in temperatures compared to ambient temperatures, 

the absorptivity is vastly different from the emissivity. For example, for clean, smooth aluminium the 

absorptivity at T = 24°C to solar radiation is (T*= 5500°C) a = 0.45 and the emissivity at 24°C is (T = 

24°C) e = 0.09 so that in this case, a is five times as large as e ! 

The ratio (a
S
/e) is an important engineering parameter. Kirchhoff’s law (a = e) is not applicable in this case.
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12.10.5 ● Real Surfaces: Directional Dependence

Real surfaces do not emit radiation in a perfectly diffuse manner and the variation of emissivity with 

direction for both electrical conductors and non-conductors is given in Fig. 12.23. Here, q is the angle 

measured from the normal of the surface, and thus q = 0° is for radiation emitted in a direction normal 

to the surface e
q
 remains almost constant for about q < 40° for conductors such as metals and for q < 

70° for non-conductors such as plastics. The directional emissivity of a surface in the normal direction 

is representative of the hemispherical emissivity of the surface. The surfaces are generally assumed to be 

diffuse emitters with an emissivity equal to that in the normal (q = 0) direction.

The emissivities of some common materials are given in Table 12.3. The variation of emissivity with 

wavelength and temperature is indicated in Fig. 12.25. Typical ranges of emissivity of various materials 

are presented in Fig. 12.26. It may be noted that metals generally have low emissivities, as low as 0.02 

for polished surfaces. Non-metals such as ceramics and organic materials have high emissivities. The 

emissivity of metals increases with temperature. Also, oxidation results in significant increase in the 

emissivity of metals. Heavily oxidized metals can have emissivities almost equal to those of non-metals. 

Most non-metallic substances have high emissivities and are usually considered gray. Radiation from 

electrical conductors, especially polished metals, is markedly different. Emissivities are much lower and 

vary considerably with wavelength (Fig. 12.23).

The radiation properties depend strongly on the surface conditions like oxidation, roughness, type

of finish, and cleanliness. In general, dirt and oxidation considerably increase the emissivities of most 

surfaces, both dirt and oxides being poor conductors.

Over small temperature ranges, emissivities do not vary much. When considering the absorption 

of radiation from a high-temperature source to a much cooler surface, it is usually necessary to use 

an emissivity corresponding to the lower temperature and an absorptivity corresponding to the high 

temperature.



Radiation Heat Transfer: Properties and Processes 919

Table 12.3

Material Emissivity Material Emissivity

Aluminium, polished

oxidized

0.0095

0.20

White epoxy paint 0.88

Aluminium foil 0.04 White acrylic paint 0.92

Brass, polished

dull plate

0.03

0.60

Snow 0.82

Copper, polished

oxidized

0.02

0.80

Water 0.96

Iron, polished

oxidized

0.20

0.70

Concrete 0.94

Steel, polished

galvanized

oxidized

0.07

0.30

0.80

White marble 0.95

Black enamel paint 0.81 Rubber 0.92

Stainless steels 0.2 to 0.7 Silver, polished 0.01 0.03

Alumina 0.40 Gold, polished 0.018

Asbestos 0.95 Tin, polished 0.05

Brick, red

building

fireclay

0.93

0.45

0.75

White paper 0.97

Glass 0.95 Wood 0.94

Silica 0.4
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Furthermore, the emissivity of many surfaces varies with the angle of emission. Not much experimental 

data on the directional variation of emissivity is available. Generally, we take e/e
n
 = 1.2 for low-emissivity 

polished metallic surfaces and e/e
n
 = 0.96 for high-emissivity non-metallic surfaces, where e is the 

average emissivity throughout the hemispherical solid angle of 2p steradians and e
n
 is the emissivity in 

the direction normal to the surface.

Figure 12.24 shows some simplified spectral reflectivity curves for some selected opaque surfaces. Note 

that many surfaces such as white paint or aluminium paint demonstrate snowlike behaviour, but not as 

marked. In these cases, high reflectivity is spread over a wider band of wavelengths.
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Figure 12.25 shows the spectral transmissivity of some types of glasses. Note that in each case, 

the high value of transmissivity occurs for low wavelengths, and in each case, t
l
 drops to almost zero 

very sharply at a specific wavelength. This property is responsible for the greenhouse effect, where the 

temperature within a glass enclosure for plants is higher than the ambient. The solar radiation at the 

higher radiation temperature is dominated by shorter wavelength, which pass into the enclosure across 

the glass walls. But the radiation from the plants, being at a lower colour temperature, is dominated by 

higher wavelengths, and is blocked by the glass. This results in retention of heat within the enclosure, 

giving rise to the hot house effect.

A layer of carbon dioxide has similar properties, and hence the ever-increasing concentration of CO
2
 in 

the atmosphere due to the increased energy consumption in the world is producing the so-called greenhouse 

effect. This is raising the atmospheric temperature, and is threatening to melt the polar ice caps, raising 

the level of oceans and submerging vast tracts of lands.

Figure 12.26 shows the variation of spectral emissivity with wavelength for same selected materials.

12.11 ❏ SOLAR AND ENVIRONMENTAL RADIATION

The energy emitted by the sun and incident on the earth’s surface is known as solar radiation. The sun is 

an almost spherical body of diameter D = 1.39 ¥ 106 km and is located at a mean distance of L = 1.495 

¥ 108 km from the earth. Even though the sun radiates an enormous amount of energy, (E
sun

ª 3.81 ¥ 1026

W) only less than a billionth of this energy (ª 1.7 ¥ 1017 W) reaches the earth’s surface. Solar radiation 

travels through the vacuum of space till it encounters earth’s atmosphere. The average value of solar 

energy reaching the upper surface of the earth’s atmosphere is about 1367 W/m2. This value is known as 

solar constant, G
s

which is defined as the rate at which solar energy is incident on a surface normal to 

the sun’s rays at the outer edge of the atmosphere when the earth is at its mean distance from the sun.
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As the earth moves in an elliptical orbit around the sun, the mean sun–earth distance (L) varies with 

the position of the earth. The value of G
S
 also varies, as a result. Constituents of the atmosphere absorb 

and/or scatter radiation of different wavelengths contained in solar radiation. As a result, the amount of 

solar energy actually reaching the earth’s surface is consideratly reduced.

The approximate break-up of solar energy to and from the earth’s surface is given as follows 

(Fig. 12.27).

9% is scattered.

15% is absorbed in the atmosphere and out of it, 4% reaches the earth’s surface by convection.

43% is transmitted to the earth directly and by diffuse radiation.

33% is reflected back to space.

With so much clean, safe and reliable solar energy falling on all parts of the world today, the spotlight 

today is on sunlight.

The spectral distribution of solar radiation shows that the sun behaves almost like a black body. Hence, 

for engineering calculations, the sun is assumed to be a black body at an effective surface temperature 

of 5779 K. 

The solar radiation has to first penetrate the earth’s atmospheric layer in order to reach the earth’s 

surface. For a horizontal surface outside the earth’s atmosphere, the solar radiation appears as a beam 
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of nearly parallel rays. The spectral distribution of solar radiation on the ground as compared to that of 

extraterrestrial solar radiation is shown in Fig. 12.28. Clearly, there is a significant reduction of solar 

radiation as it passes through the earth’s atmosphere due to absorption and scattering as illustrated in 

Fig. 12.29.

Usually, about 950 W/m2 of solar energy reaches the earth’s surface on a sunny day and much less 

on a cloudy day. Almost all the solar radiation reaching the earth falls in the wavelength range of 0.3 

to 2.5 mm.

The absorption of solar radiation is mainly by O
3
 (ozone), H

2
O, O

2
, and CO

2
.

The scattering of solar radiation occurs because of scattering by the gas molecules (known as Rayleigh

scattering) and scattering by the dust and aerosol particles of the atmosphere (known as Mie scattering).

The portion of radiation that has penetrated the atmosphere without having been scattered is termed direct 

radiation. The remaining radiation (i.e., scattered) is known as diffuse radiation. Hence, the total solar 

radiation reaching the earth’s surface is the sum of direct and diffuse radiation (Fig. 12.29). The diffuse 

radiation may vary from 10% of total radiation on a clear day to nearly 100% on a cloudy day.

Solar energy incident on the earth’s surface consists of two parts: direct or beam solar radiation, G
D

(which reaches the surface without any attenuation in the atmosphere) and diffuse solar radiation G
d

(scattered radiation reaching the earth uniformly from all directions).
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Then, the total solar energy incident on a horizontal surface per unit area on the ground is

2
solar cos (W/m )D dG G Gq= + (12.56)

where q is the angle between the sun’s rays and the normal to the surface.

The extraterrestrial solar irradiation G
S,0

 depends on the angle q between the incident rays from the sun 

and a normal to the surface of the earth. Hence,

,0 coss SG f G q= (12.57)

where f is a correction factor to account for the eccentricity of the earth’s orbit around the sun (0.97 £
f £ 1.03). G

S
 is the solar constant which can be calculated from 4

sun sunE Ts= , and since the intensity of 

radiation obeys the inverse square law
2 2

4sun
sun sun

orbit

29
8 2 4 4 4 2

11
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0.695 10
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G E T

r L
s

-
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An important consideration when dealing with solar radiation to and from surfaces at temperatures 

significantly different from the source of radiation is that e π a. Consider a surface absorbing radiation 

from the sun which is known to approximate a black body at 5779 K. The surface also emits radiant 

energy but at a much lower temperature. This difference in temperatures is large enough for there to be 

a significant difference in the respective wavelengths of the absorbed and emitted radiation: l
absorbed

 << 

l
emitted

 and, hence, a π e. This may be summarized by the rule that a sees T
source

, while e sees T
sink

. The 

absorptivity of a surface designed to receive radiation from the sun is usually referred to as the solar

absorptivity a
S
.

Table 12.4 lists the values of solar absorptivity, a
S
 and emissivity e (at 300 K) for some selective 

materials. Obviously, solar collectors, widely used in solar energy applications, must be made of materials 

having higher value of a
S
/e.
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Table 12.4 a
S

e

Surface a
S

e(300 K) a
S
/e

Aluminium

 Polished 0.09 0.03 3.0

 Anodized 0.14 0.84 0.17

 Foil 0.15 0.05 3.0

Copper

 Polished 0.18 0.03 6.0

 Tarnished 0.65 0.75 0.87

Stainless steel

 Polished 0.37 0.60 0.62

 Dull 0.50 0.21 2.4

Concrete 0.60 0.88 0.68

White marble 0.46 0.95 0.48

Red brick 0.63 0.93 0.68

Asphalt 0.90 0.90 1.0

Black paint 0.97 0.97 1.0

White paint 0.21 0.96  0.22

Snow 0.28 0.97 0.29

Human skin 0.62 0.97 0.64

12.11.1 ● Environmental Radiation

The environmental radiation includes both the emission from the earth’s surface, and the emission from 

the atmosphere.

Atmospheric molecules, especially CO
2
 and H

2
O vapour, not only absorb solar radiation but also absorb 

radiation from the earth’s surface. The radiation emission from ground is usually from sources at 250 to 

320 K which produce radiation of wavelengths from nearly 4 to 40 mm with a maximum of about 10 mm.

Environmental emission and absorption is in the range of wavelengths of 5 to 8 mm and above 13 mm,

and this radiation is not distributed like the black-body radiation. However, it is possible to approximate 

the emission from the atmosphere or sky as a fraction of black-body radiation corresponding to the air 

temperature on the ground.

4
sky skyJ Te s= (12.58)

Emissive power associated with the earth’s surface is given by

4
earth sE Tes= (12.59)

where e = surface emissivity (ª 1)

T
s
 = surface temperature (250 K £ T < 320 K)

The main constituents contributing to the atmospheric radiation are CO
2
 and H

2
O molecules.
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Effective sky temperature, T
sky

 is calculated assuming the atmosphere to be a black body, i.e.,

4 2
sky sky (W/m )G Ts= (12.60)

The value of T
sky

 varies from 230 K to 285 K, depending on the atmospheric conditions.

Sky radiation absorbed by the earth’s surface can be expressed as:

4 4 2
sky,absorbed sky sky sky (W/m )E G T Ta as es= = =

When the surface at a temperature T
s
 is exposed to both solar and atmospheric radiation, the net rate of 

heat transfer to the surface is found from the energy balance as follows:

net,rad absorbed emitted

24 4 4 4
solar sky solar sky (W/m )( ) ( )s s s s

q E E

G T T G T Ta es es a es

= S - S

= + - = + - (12.61)

12.11.2 ● Greenhouse Effect

Typically, a greenhouse is a closed chamber made up of glass or plastic sheets.

In a greenhouse, window glass transmits radiation in the range of wavelengths from about 0.15 to 3 mm

as shown in Fig. 12.31. It is almost opaque to infrared radiation of longer wavelengths; i.e., above 3 mm

which is absorbed or reflected. Most of the radiation which reaches the earth from the sun is within this 
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range and solar radiation is, therefore, passed through the glass to the plants and soil in the greenhouse. 

On the other hand, the earth’s surface radiates mainly in the longer wavelengths and re-radiation from it to 

the surroundings is unable to pass through the glass. The heat transferred by solar radiation is, therefore, 

trapped in the greenhouse and causes the temperature to be higher than the external surroundings. The 

steady-state temperature in the greenhouse is dictated by an equilibrium between the radiant heat entering 

and the heat loss to the surroundings. You might have experienced the heating effect due to accumulation 

of energy inside a closed compartment of a car, which is exposed under direct sunlight. The ozone layer 

along with the CO
2
 and H

2
O vapour surrounding the earth also exhibits a similar behaviour as that of 

the glass. This results in global warming of the earth’s atmosphere.

The average global temperature has risen by about 0.3 to 0.6°C over the past 100 years, and that the 

rate of rise is increasing alarmingly. Even a small increase in the average global temperature may lead 

to catastrophic consequences. Global warming (or a global warning!) is due to what is popularly called 

greenhouse effect. Reduced consumption of energy and enhanced efficiency of energy utilization have 

been identified as the feasible strategies for the reduction of emission of greenhouse gases, particularly 

of carbon dioxide, thereby mitigating the adverse effects of global warming.

We must, therefore, recognize that in solar energy applications, the radiation properties of surfaces 

are appreciably different for incident solar radiation and surface emission. Solar radiation is concentrated 

in the short wavelength region but the emitted radiation is in the longer wavelength infra red region. 

Clearly, such surfaces cannot be approximated as gray. We, therefore, require two sets of properties: solar 

absorptivity a
S
 and emissivity e at moderate temperatures. The ratio a

s
/e is a significant parameter. Large 

values of a
S
/e are desirable if we intend to collect solar energy (as in solar collectors) while smaller values 

are preferred if our intention is to reject heat to keep the surface cool under the sun.

Illustrative Examples

(A) Black-body Radiation

(a)  Calculate the wavelength of the telephone waves if a cordless telephone is designed for a frequency 

of 850 MHz.

(b)  Determine the frequency of the radio waves which are broadcast from a radio station at a wavelength 

of 200 m.

Illustrative Examples
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(c)  A microwave oven is designed to operate at a frequency of 2.2 GHz. Find the wavelength of these 

microwaves and the energy of each microwave.

(d)  Generation and transmission of electricity in power lines take place at a frequency of 50 hertz (1 

hertz is 1 cycle per second) in India. What is the wavelength of the electromagnetic waves generated 

by the passage of electricity in the power lines?

Solution

Known Telephone waves, radio waves, microwaves and electromagnetic waves.

Find (a) l(mm) for n = 850 MHz; (b) n for l = 200 m; (c) l and E for n = 2.2 GHz; (d) l for 

n = 50 Hz.

Analysis (a) Wavelength of telephone waves is

8

6

3 10 m/s

850 10 Hz

c
l

n

¥
= = =

¥
0.353 m  (1 Hz = 1 cycle/s ) (Ans.) (a)

 where c is the velocity of light in vacuum.

(b) Frequency of radio waves,

8
63 10 m/s

1.5 10 Hz .
200 m

c
n

l

¥
= = = ¥ = 1 5 MHz (Ans.) (b)

(c) Wavelength of the microwaves,

8

9

3 10 m/s

2.2 10 cycles/s

c
l

n

¥
= = =

¥
0.136 m (Ans.) (c)

 Energy of each microwave, E = hn
 where h = 6.626069 ¥ 10–34 (J s) is Planck’s constant.

\ 34 9(6.626069 10 (J s))(2.2 10 cycles/s)E
- -= ¥ ¥ = ¥ 24

1.458 10 J (Ans.) (c)

(d) Wavelength of electromagnetic waves,

83 10 m/s

50 Hz

c
l

n

¥
= = = ¥ 6

6 10 m (Ans.) (d)

 A large industrial furnace can be approximated as a black body with a uniform 

surface temperature of 2300 K. Determine (a) the monochromatic emissive power at a wavelength of 

1 mm, (b) the total (hemispherical) emissive power, (c) the wavelength and magnitude of the maximum 

monochormatic emissive power, (d) the fraction of the total emission which occurs between the wavelength 

of 2.0 and 6.0 mm, (e) the percentage reduction in the total emissive power when the temperature falls to 

1800 K, and (f) the wavelength l such that the emission from 0 to l equals the emission from l to .

Solution

Known Black body at a specified temperature.

Find (a) E
bl

 at l = 1 mm, (b) E
b
, (c) E

bl,max
, and l

max
, (d) f

(2Æ6 mm)
, (e) Percent change in E

b
 if T

= 1800 K, (f) the value of l such that the emission from 0 to l equals that from l to .
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Assumption Diffuse black surface.

Analysis (a) Monochromatic emissive power at 1 mm is

5 8 5
1

2

3.74177 10 (1)

14387.8exp( / ) 1
exp 1

1 2300

b

C
E

C T
l

l

l

- -¥ ¥
= = =

- È ˘ -Í ˙¥Î ˚

2
719.7 kW/m mm (Ans.) (a)

(b) Total emissive power

4 8 2 4 4

4 6 2

(5.67 10 W/m K )(2300 K)

5.67(23) 1.587 10 W/m or /

bE Ts -= = ¥

= = ¥ 2
1587 kW m (Ans.) (b)

(c) Wavelength of maximum monochromatic emissive power is

max
2897.8

2300
l = = 1.26 mm (Ans.) (c)

 We note that

11 2
5

11 5
,max

1.287 10 W/m m

(1.287 10 )(2300)

b

b

E

T

E

l

l

-

-

= ¥ m

= ¥ = 2
828.36 kW/m mm (Ans.) (c)

(d) From Table 12.1, ll -= ¥ = m fi =
11 (0 )2 2300 4600 m K 0.57926T f

ll -= ¥ = fi =
11 (0 )6 2300 13800 0.96144T f

 The fraction of total emission occurring between l
1
 = 2 mm and l

2
 = 6 mm is

2 2 11
( ) (0 ) ( )f f fl l l l lÆ Æ Æ= -  = 0.9614 – 0.57926 = 0.382 (Ans.) (d)

(e) Percentage reduction in total emissive power when the temperature falls to 1800 K

4(2300 K) (1800 K) (1800) 1800
100 1 1 100

(2300 K) (2300) 2300

.

b b b

b b

E E E

E E

È ˘- Ê ˆ= ¥ = - = - ¥Í ˙Á ˜Ë ¯Î ˚
= 62 5% (Ans.) (e)

(f) Since emissive power from 0 to l is same as that from l to  at the given temperature 

T = 2300 K, f
0Æl

= 0.5. From Table 12.1, lT (corresponding to f = 0.5 at 2300 K) = 

0.50000 0.49873
(4200 4100) 4100

0.51600 0.49873

-Ê ˆ - +Á ˜Ë - ¯
 = 4107.35 mm K.

 Hence, l = 4107.35/2300 = 1.786 mm (Ans.) (f)

 What is the rate of emission at which a surface idealized as a black body of area 

A = 4 cm2 at 2000 K emits radiation in directions corresponding to 0° £ q £ 60° and in the wavelength 

band of 2.5 mm £ l £ 5 mm?

Solution

Known Temperature of a surface which emits as a black body.
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Find Rate of emitted energy for 0° < q < 60° and 2.5 mm £ l
£ 5 mm.

Assumptions Surface is a black body that emits diffusely.

Analysis The desired emission by the black body with the limits of 

integration imposed as follows is given by

5 2 /3

2.5 0 0

5 2 /3

2.5 0 0

/35 2

02.5

cos sin

cos sin

sin
2

2

b

b

b

E I d d d

I d d d

I d

p p

l

p p

l

p

l

q q q f l

q q q f l

q
p l

D =

Ï ¸Ô Ô= Ì ˝
Ô ÔÓ ˛
Ê ˆ
Á ˜=
Ë ¯

Ú Ú Ú

Ú Ú Ú

Ú

 Noting that 

2
2

0

2 , 2 sin cos sind d

p

f p q q q q= =Ú Ú , and E
bl

 = I
bl
p, we have

5 5
2

2.5 2.5

5 5 2.5

2.5 0 0
4

4
(0 5) (0 2.5) (0 5) (0 2.5)

( ){(sin 60 0)} 0.75

0.75 0.75

0.75 [ ] 0.75( )[ ]

b b

b b b

b b
b

b

E I d E d

E d E d E d

E E
E T

E f f T f f

l l

l l l

p l l

l l l

s

sÆ Æ Æ Æ

D = ∞ - =

È ˘
-Í ˙

Í ˙
= =Í ˙

Î ˚

= - = -

Ú Ú

Ú Ú Ú

 From Table 12.1, for

1 (0 2.5)

2 (0 5)

2.5 m 2000 K 5000 mK 0.634

5 m 2000 K 10 000 m K 0.914

T f

T f

l

l

Æ

Æ

= m ¥ = m =

= m ¥ = m =
 Hence, substituting the values, we get

8 2 4 40.75 5.67 10 W/m K (2000 K) (0.914 – 0.634)E
-D = ¥ ¥ ¥

= 3 2
190.8 10 W/m¥  (Ans.)

\ Rate of emission

3 2 4 2(190.8 10 W/m )(4 10 m ) .-= ¥ ¥ = 76 3W (Ans.)

 Approximating the sun’s surface as black and an equivalent black body temperature 

of 5779 K, (a) estimate the rate at which the sun emits radiant energy. (b) What fraction of this energy 

is intercepted by the earth, and (c) what is the amount intercepted? Given: Diameter of the sun = 1.39 

¥ 109 m, Diameter of the earth = 1.27 ¥ 107 m, Distance between the sun and the earth = 1.5 ¥ 1011 m.

Solution

Known Radiation emitted by the sun is intercepted by the earth.
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Find (a) Solar radiation emitted. (b) Fraction intercepted by the earth. (c) Intercepted radiation 

by the earth.

Assumptions (1) The sun is a black body. (2) Both the sun and the earth are spheres.

Analysis (a) Rate at which the sun emits energy is

4 2 4 9 2 8 2 4 4
emit,sun ( ) (1.39 10 m) (5.67 10 W/m K )(5779 K)s s s sQ A T D Ts p s p -= = = ¥ ¥ ¥

= 26
3.84 10 W (Ans.) (a)

(b) Radiation from the sun (1) spreads out evenly in all directions and we imagine that it 

falls on the inside of a hollow sphere of radius L (the earth–sun distance). It follows that 

the proportion of the total radiation falling on the earth (2) from the sun (1) is the ratio 

of the projected area of the earth (2) (which will be a circle of diameter D
2
) to the total

area of the sphere (of radius L). Then, the fraction of radiation emitted by the sun and 

intercepted by the earth is

22 22 2 7
2 2 2

1 2 2 2 11 4

( /4) 1.27 10 m 1.27

44 16 4 1.5 10 m 6 10
S E

D D D
F F

LL L

p

p
- -

-

È ˘¥Ê ˆ Ê ˆ= = = = = =Á ˜ Í ˙ Á ˜Ë ¯ ¥ ¥ Ë ¥ ¯Î ˚

= 10
4.48 10 (Ans.) (b)

(c) The amount of energy from the sun intercepted by the earth is

26 10
recd,earth emit,sun 12 (3.84 10 W)(4.48 10 )Q Q F

-= ¥ = ¥ ¥ = 17
1.72 10 W (Ans.) (c)

 The directional distribution of the solar radiation incident on the earth’s surface 

is approximately given by I
inc

 = I
n
 cos q, where q is the zenith angle and I

n
 = 85 W/m2 sr is the total 

intensity of radiation normal to the surface. Determine the solar irradiation on the earth’s surface.

Solution

Known Directional distribution of solar radiation 

incident on earth surface.

Find Solar irradiation on the earth surface.

Assumptions Intensity is independent of azimuth angle f.

Analysis The solar radiation flux incident on the 

earth’s surface from all directions, that 

is, solar irradiation can be expressed as
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2 /2
2

inc
hemisphere 0 0

2 /2 /2
2

0 0 0

( )cos (W/m )

cos cos sin 2 cos sinn n

G dG I d d

d I d I d

p p

f q

p p p

f q

q q q f

f q q q q p q q q

= =

= =

= =

= ◊ =

Ú Ú Ú

Ú Ú Ú

 Noting that 3 2(cos ) 3 cos ( sin )
d

d
q q q

q
= - ,

/2
3 3 3

0

1 2
2 cos [cos 0 cos /2]

3 3

2 2
(1 0) 85 .

3 3

n n

n

G I I

I

p

p q p p

p p

È ˘= - = -Í ˙Î ˚

= - = ¥ = 2
178 0W/m (Ans.)

(B) Radiation Properties

 A metallic bar at 37°C is placed inside an oven whose interior is maintained at a 

temperature of 1100 K. The absorptivity of the bar (at 37°C) is a function of the temperature of incident 

radiation and a few representative values are given below:

Temperature (K) 310 700 1100

a 0.8 0.68 0.52

Estimate the rate of absorption and emission by the metallic bar. [AMIE S 2007]

Solution

Known A metallic bar is placed inside an oven.

Find Rate of absorption and emission.

Assumptions (1) Constant surface temperature. (2) Diffuse gray 

surface.

Analysis We note that the emissivity of the bar is at its 

surface temperature,

  T
s
 = 37°C or 310 K (from the given table)

 Hence, e = a(at 310 K) = 0.8

 The rate of emission from the metallic bar,

es -= = ¥ ¥ ¥

= ª

4 8 2 4 4emit 0.8 5.67 10 W/m K (310 K)

/ /

Q
T

A
2 2

418.9 W m 0.42 kW m (Ans.)

 Significantly, the absorptivity is always taken at the radiation source (oven) temperature 

(T* = 1100 K). Hence,

a (at 1100 K) = 0.52 (from the given table)

 The rate of absorption by the metallic bar,

as -= = ¥ ¥ ¥

= ¥ ª

4* 8 2 4 4abs

3 2

0.52 5.67 10 W/m K (1100 K)

43.17 10 W/m /

Q
T

A
2

43.2 kW m (Ans.)
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 Determine the ratio of the total hemispherical emissivity to the normal emissivity 

for a non-diffuse surface if the intensity of emission varies as the cosine of the angle measured from the 

normal.

Solution

Known In a non-diffuse surface, the intensity of emission varies as the cosine of angle measured 

from normal.

Find Ratio of total emissivity to normal emissivity.

Assumption The surface is opaque, isothermal, and gray.

Analysis Total hemispherical emittance, 

2 /2

0 0

cos sinNE I d d

p p

f q

q q q f
= =

= Ú Ú
where q is the zenith angle and f is the azimuth angle

 Here, I = I
0
 cos q(Lambert’s cosine law) where I

0
 is the normal intensity of radiation.

 We also note that d(cos q) = –sin q dq

\

/2/2 3
2 3 3

0 0
00

0 0

cos 2
2 cos (cos ) 2 [cos 0 cos ( /2)]

3 3

2
(2/3) (1 0)

3

N oE I d I I

I I

pp

q

q
p q q p p p

p p

=

È ˘
= - = - = -Í ˙

Î ˚

= - =

Ú

 For a diffuse surface, E
D
 = pI

0

 Hence, the ratio of total directional emissivity to total hemispherical emissivity is

0

0

/ (2/3)

/
N N b N

D D b D

E E E I

E E E I

e p

e p
= = = =

2

3

 or e(T)/e(q, T) = 3/2 = 1.5 (Ans.)

 The spectral distribution of monochromatic emissive power for a diffuse emitting 

surface at 1100 K can be expressed as

E

E

E E

E

E

1

2

3

4

5

0 for 0 1

1500 for 1 3

4000 for 3 5

2700 for 5 7

0 for 7

l

= £ l £

= £ l £

= £ l £

= £ l £

= l >

Ï
Ô
ÔÔ
Ì
Ô
Ô
ÔÓ

where E
l
 is in W/m2 mm and l is in mm. Determine (a) the total emissive power, (b) the total intensity 

of radiation associated with q = 0° and q = 40°, (c) the total emissivity of the surface, (d) the spectral 

emissivity at l = 6 mm, and (e) the spectral intensity of radiation in the normal direction at l = 4.5 mm.

Solution

Known Spectral distribution of E
l
 for a diffuse emitting surface.

Find (a) E(W/m2); (b) I
e
 at q = 0° and q = 40°(W/m2 sr); (c) e; (d) e

l
 at l = 6 mm; 

(e) I
e
,
l
(W/m2 mm sr) at l = 4.5 mm.
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Schematic

4000

0 1 3 5 7

l1 l2 l3 l4 E5 = 0
l m( m)0

3000

2000

1000

E1 = 0

E2 = 1500

E3 = 4000

E4 = 2700

T = 1100 K

El (W/m m)2 m

Assumption Diffusely emitting surface.

Analysis (a) Total emissive power,

ll l l

l

l l l l

l l l l l l

l l l l l

= = + + + +

= + + + +

= + - + - + - + =

Ú Ú Ú Ú Ú Ú

Ú Ú Ú Ú Ú

31 2 4

1 2 3 4

1 2 3 4 5
0 0
1 3 5 7

0 1 3 5 7

(0) (1500) (4000) (2700) (0)

0 1500(3 1) 4000(5 3) 2700(7 5) 0

E E d E d E d E d E d E d

d d d d d

2
16 400 W/m (Ans.) (a)

(b) For a diffuse emitter, I
e
 is independent of the angle q.

Hence, for both q = 0° and q = 40°, the total intensity of radiation,

216400 W/m
/

sre

E
I

p p
= = = 2

5220W m sr (Ans.) (b)

(c) Total emissivity of surface, 
b

E

E
e =

where the black-body emissive power,

Hence,

4 8 2 4 4 2

2

2

(5.67 10 W/m K )(1100 K) 83015 W/m

16400 W/m

83015 W/m

bE Ts

e

-= = ¥ =

= = 0.198 (Ans.) (c)

(d) Spectral emissivity at l = 6 mm,
b

E

E

l
l

l

e =

At 1100 K and l = 6 mm, the spectral emissive power is known to be E
l
 = 2700 W/m2

mm

And, the spectral emissive power of a black surface at l = 6 mm and T = 1100 K is

l

l
l

¥ m
= =

È ˘ È ˘Ê ˆ Ê ˆ¥ m-Á ˜ m -Í ˙ Í ˙Á ˜Ë ¯Î ˚ Ë m ¥ ¯Í ˙Î ˚
= m

8 4 2
1

4
5 2 5

2

3.742 10 W /m

1.4387 10 m Kexp 1 (6 m) exp 1
6 m 1100 K

6134 W/m m

b

C m
E

C

T
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 Therefore, 

le
m

= =
m

2

2

2700 W/m m
.

6134 W/m m
0 44 (Ans.) (d)

(e) Spectral intensity of radiation in the normal direction at l = 4.5 mm is
2

,
4000 W/m m

/
sre

E
I l

l p p

m
= = = 2

1273W m m srm (Ans.) (e)

 The typical variation of monochromatic emissivity of a real surface is shown below: 

 Determine using the band approximation: (a) the 

effective emissivity over the whole spectrum, (b) the 

emissive power at T = 1200 K, and (c) the solar 

absorptivity based on black-body distribution at T
S
 = 

5800 K.

Solution

Known Spectral emissivity distribution of a non-

gray engineering surface at a specified 

temperature.

Find (a) Effective emissivity, e(T), (b) Emissive 

power, E(T), and (c) Solar absorptivity, a
S
(T

S
).

Gray approximation

1

0.9

0.5

0.3

0
0 1 2 3 4 5 6 7

l ( m)m

el

Real surface

e2

e3

e1

l1 l2

Gray approximation

Assumptions (1) Isothermal surface. (2) A piecewise gray model approximates the real non-gray surface.

Analysis The three-band approximation is a satisfactory representation of the monochromatic variation 

of emissivity of the real surface as illustrated in the schematic.

 The equivalent gray emissivity of a non-gray body is determined from

1
1

( ) ( )
i i

N

i

i

T f Tl le e
- Æ

=

= Â

 where there are N bands with constant band emissivities given by e
i
.
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(a) In this case, l
1
 = 2 mm, l

2
 = 4 mm, and l

3
 = .

e
1
 = 0.3, e

2
 = 0.9, and e

3
 = 0.5

\
1 1 2 2 1 1 2 21 0 2 3 1 2 3( ) ( ) (1 )T f f f f f fl l l l l l l le e e e e e e= + + = + + -

 From Table 12.1, with T = 1200 K:

l

l

l

l

= m = m fi =

= m = m fi =
1

2

1

2

(2 m)(1200 K) 2400 m K 0.14026

(4 m)(1200 K) 4800 m K 0.60754

T f

T f

 Substituting the values of 
1

fl  and 
2

fl  in the expression for equivalent (effective) emissivity, 

we have

  e = + - + -
=

( ) (0.3)(0.14026) 0.9(0.60754 0.14026) 0.5(1 0.60754)T

0.659 (Ans.) (a)

 (b) Emissive power,

4 8 2 4 4( ) (0.659)(5.67 10 W/m K )(1200 K)

or

E T Tes -= = ¥

= 3 2 2
77.5 10 W/m 77.5 kW/m¥ (Ans.) (b)

 (c) Solar absorptivity, 0

0

( )

( )

( )

S

S S

S

G T d

T

G T d

l l

l

a l

a

l

=
Ú

Ú

 Since 
1 1 2 2

1 2 1 2

1 2 3

1 2 3

, ( ) ( ) ( ) ( )

( ) ( )( ) (1 )( )

S S S S S

S S S

T f T f T f T

f T f f T f T

l l l l l l

l l l l

a e a e e e

e e e

= = + +

= + - + -

 With T
S
 = 5800 K, from Table 12.1, by interpolation

l

l

l

l

= = m fi =

= = m fi =
11

2 2

2(5800) 11600 m K 0.94015

4(5800) 23200 m K 0.9898

S

S

T f

T f

\ a = + - + -( ) (0.3)(0.94015) 0.9(0.9898 0.94015) 0.5(1 0.9898)S ST

= 0.332 (Ans.) (c)

 An opaque surface has the spectral reflectivity given by (l in mm):

0 5

0.5 5 10

0.9 10

l

l

r = < l <

l >

<Ï
Ô
Ì
Ô
Ó

The surface is subjected to the spectral irradiation given by 

120 5

600 5 10
G

1200 60 10 20

0 20

l

l l <

< l <

l < l <

l >

Ï
ÔÔ= Ì -Ô
ÔÓ

Calculate (a) the total irradiation of the surface, (b) the total absorptivity of the surface, (c) the total 

emissivity of the surface if the surface is at 300 K, and (d) the total radiosity of the surface
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Solution

Known Spectral reflectivity and spectral irradiation for an opaque surface at 300 K.

Find (a) G, (b) G
abs

, (c) e, (d) J.

Assumptions (1) Opaque and diffuse surface. (2) e
l
 = a

l
.

Analysis (a) Total irradiation of the surface,

2 2

2

2

1
(600 W/m m)(5 0) m (600 W/m m)(10 5) m

2
1

(600 W/m m)(20 10) m
2

(1500 3000 3000)W/m /

G = m - m + m - m

+ m - m

= + + = 2
7500W m (Ans.) (a)

(b) For an opaque surface, t
l
 = 0 and a

l
 = 1 – r

l

Total absorptivity of the surface is abs

0 0

G
G d G d

G
l l l la a l= =Ú Ú

Subdividing the integral into parts,

1 2 3

5 10 20

abs
0 5 10

2 2

2

2 2

(1 ) (1 ) (1 )

(1 0)[0.5 600 W/m m(5 0) m] (1 0.5)[600 W/m m(10 5) m]

(1 0.9)[0.5 600 W/m m(20 10) m]

[(1 1500) (0.5 3000) (0.1 3000)]W/m 3300 W/m

G G d G d G dl l l l l l lr r l r l= - + - + -

= - ¥ m - m + - m - m

+ - ¥ m - m

= ¥ + ¥ + ¥ =

Ú Ú Ú

\
2

abs
2

3300 W/m

7500 W/m

G

G
a = = = 0.44 (Ans.) (b)

(c) Total emissivity of the surface is, 

0

( , ) / ( )b bE T d E Tl le e l l= Ú

Since
0

1 , (1 ) /b bE d El l l l le a r e r l= = - = -Ú
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1 2

3 1

2 3

5 10

0 5

(0 5 m)
10

(5 10 m) (10 m)

(1 ) / (1 ) /

(1 ) / (1 )

(1 ) (1 )

b b b b

b b

E d E E d E

E d E f

f f

l l l l

l l l

l l

r l r l

r l r

r r

Æ m

= - + -

+ - = -

+ - + -

Ú Ú

Ú

 From Table 12.1:

 With 1 (0 5 m)5 300 1500 mK, 0.013754T fl Æ m= ¥ = m =

 and, with 2 (0 10 m)10 300 3000 mK, 0.273232T fl Æ m= ¥ = m =

 Then, 
1 2

3

(0 5 m) (0 10 m) (0 5 m)

(0 ) (0 10 m)

(1 ) (1 )( )

(1 )( )

(1 0.013754) (1 0.5)(0.273232 0.013754)

(1 0.9)(1 0.273232)

f f f

f f

l l

l

e r r

r

Æ m Æ m Æ m= - + - -

+ - -

= ¥ + - -
+ - -

  = 0.216 (Ans.) (c)

(d) Radiosity of the surface, 
4 (1 )bJ E G T Ge r es a= + = + -

8 2 4 4 2(0.216)(5.67 10 W/m K )(300 K) (1 0.44)(7500 W/m )-= ¥ + -

= 2
4299W/m (Ans.) (d)

 Consider the directionally selective surface having 

the directional emissivity e
q
 as shown.

Calculate the ratio of the normal emissivity to the hemispherical emissivity.

Solution

Known Directional emissivity, e
q
, of a selective surface.

Find Ratio of normal emissivity to hemispherical emissivity.

Assumptions Surface is isotropic in the f-direction.

Analysis Hemispherical emissivity, 

2 /2

0 0
2 /2

0 0

cos sin

cos sin

d d

d d

p p

q

p p

e q q q f

e

q q q f

=
Ú Ú

Ú Ú
 Assuming e to be independent of f, we have

/2 /2

0 0
/2 /22

00

2 cos sin 2 sin cos /2

sin2 cos sin
2

d d

d

p p

q q

p p

p e q q q e q q q

e
qp q q q

= =
È ˘
Í ˙Î ˚

Ú Ú

Ú
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/4 /2

0 /4

2 2

/42 2 /2
/40

2 2 2

1 1
0.8 2 sin cos 0.3 2 sin cos

2 2

1
sin sin 0

2 2
1 1

0.8[sin ] 0.3[sin ]
2 2

1
(1 0)

2

0.8 sin 0 0.3 sin sin (0.8)(0.5 0) (0.3)(1 0.5) 0.55
4 2 4

d d

p p

p

p p
p

q q q q q q

p

q q

p p p

-

¥ + ¥

=
È ˘-Í ˙Î ˚

¥ + ¥
=

-

È ˘ È ˘Ê ˆ Ê ˆ= ¥ - + ¥ - = - + - =Á ˜ Á ˜Í ˙ Í ˙Ë ¯ Ë ¯Î ˚ Î ˚

Ú Ú

 Ratio of normal emissivity, e
n
 to hemispherical emissivity is, 

0.8

0.55
ne

e
= = 1.455 (Ans.)

 Consider an incandescent tungsten filament light bulb whose filament is at a 

temperature of 2500 K. Assuming the filament to be a black body, determine the fraction of the total 

radiation energy emitted by the bulb in the visible wavelength spectrum from 0.38 mm to 0.78 mm. Also 

find the wavelength at which the emission of radiation from the filament is maximum.

Solution

Known The filament of a light bulb is at 2500 K. The visible wavelength band is 0.38 to 0.78 

micron.

Find
1 2( ) max,f l l lÆ .

Assumptions The filament closely approximates a black body.

Analysis The black-body radiation fractions corresponding to l
1
T and l

2
T are determined from 

Table 12.1.

l
1
T = (0.38 mm) (2500 K) = 950 mm K
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fi
1 1(0 )f fl lÆ =  = 0.000 204

l
2
T = (0.78 mm) (2500 K) = 1950 mm K 

fi
2 2(0 )f fl lÆ =  = 0.059 42

 The fraction of radiation emitted between these two wavelengths is 

1 2 2 1
f f fl l l l- = -  = 0.059 42 – 0.000 204 = 0.0592 ª 0.06 (Ans.)

 According to Wien’s displacement law,

l
max

 T = 2898 mm K

 The wavelength at which the emission of radiation from the filament is maximum, is

max
2898 m K

2500 K
l

m
= = 1.16 mm (Ans.)

Comment Only about 6% of the radiation emitted by the filament of the bulb falls in the visible 

range. The remaining 94% of the radiation appears in the infrared region as radiant heat 

and goes into heating the surrounding room. Incandescent bulbs are, therefore, considered 

very inefficient as sources of light. Fluorescent tubes are a better option.

 The spectral hemispherical transmissivity of a 3 mm thick glass varies with 

wavelength in the following manner:

(a) Calculate the average transmissivity and the rate of radiation transmitted through a 2 m by 2 m glass 

window if irradiation from a black surface at 1600 K is incident on it. (b) What will be the amount of 

solar radiation transmitted through the window assuming the sun to be a black-body source at 5780 K?

Solution

Known Spectral transmissivity of glass.

Find Amount of heat transmitted through a glass window for, T
source

 = 1600 K, and (b) T
source

 = 5780 K.
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Assumption Spectral distribution is proportional to that of black-body emission at the source temperature.

Analysis (a) Average transmissivity, T = 1600 K: 
0 0

/G d G dl l lt t l l= Ú Ú
 We note that, G

l
μ E

bl
 (T = 1600 K)

 With the proportionality constant cancelling out in the numerator and denominator of the 

expression for t, we have

21

1 2

1 1 2 2 2 1

2 31
0 0

0

(0 ) ( ) ( ) (0 ) (0 )

(1600 K)

(1600 K)

0 0.85 0 0.85[ ]

b bb b

b b b

b

E d E dE d E d

E E E
E d

f f f f f

ll

l ll l l
l l

l

l l l l l l

t l t lt l t l

t

l

= = + +

= ¥ + + ¥ = -

Ú ÚÚ Ú

Ú

 Rate of radiation transmitted,

tr tr

4
8 2 4 4

(1600 K)

(2 m 2 m)(5.67 10 W/m K )( , ) 22.68 ( )
100

bQ AG A E

T
T K T

t

t t-

= =

Ê ˆ= ¥ ¥ ¥ = ¥Á ˜Ë ¯

 With l

l

l

l

= ¥ = m fi = Ô̧
˝= ¥ = m fi = Ǫ̂

2

1

2

1

2.5 1600 4000 m K 0.48087

0.35 1600 560 m K 0.0000

T f

T f
 [from Table 12.1]

 and

\ t (1600 K) = 0.85[0.48087 – 0.0000] = .0 409 (Ans.) (a)

 Hence, 

4

tr
1600

22.68 0.409 or .
100

Q
Ê ˆ= ¥ = ¥Á ˜Ë ¯

3
607.5 10 W 607 5 kW (Ans.) (a)

(b) With T = 5780 K,

\

1

2

1

2

0.35 5780 2023 mK 0.07066

2.5 5780 14450 mK 0.966

(5780 K) 0.85(0.966 0.07066) 0.761

T f

T f

l

l

l

l

t

= ¥ = m fi =

= ¥ = m fi =

= - =

 and 

4

tr
5780

22.68 0.761 or .
100

Q
Ê ˆ= ¥ = ¥Á ˜Ë ¯

6
192.6 10 W 192 6 MW (Ans.) (b)

 An opaque horizontal plate, well insulated on its back is at 500 K and has an 

emissive power of 1100 W/m2. The irradiation on the plate is 2000 W/m2, of which 400 W/m2 is reflected. 

Air at 375 K flows over the plate, the convective heat-transfer coefficient being 10 W/m2 K. Determine 

the emissivity, absorptivity, and radiosity of the plate. Also calculate the net heat flux.

Solution

Known An isothermal plate loses heat by both radiation and convection.

Find Emissivity (e), Absorptivity (a), Radiosity (J), and net heat flux (q
net

).
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Assumptions (1) Opaque, isothermal, diffuse surface. (2) The back of the plate is effectively insulated.

Analysis The total hemispherical emissivity of the plate,

2

8 2 4 4

( ) 1100 W/m
.

( ) (5.67 10 W/m K )(500 K)b

E T

E T
e -= = =

¥
0 31 (Ans.)

 The total hemispherical absorptivity for an opaque surface is related to its reflectivity. 

a = 1 – r

 The reflectivity is the fraction of the irradiation reflected.

 Thus, 
2

ref
2

400 W/m
0.20

2000 W/m

G

G
r = = =

 Hence, a = 1 – r = 1 – 0.20 = 0.80 (Ans.)

 The radiosity, J, is the radiant flux leaving the plate surface by both emission and reflection.

J = eE
b
 + rG = E + G

ref
 = (1100 + 400) W/m2 = 1500 W/m2 (Ans.)

 From the energy balance,

 Net heat flux, q
net

 = q
in
 – q

out
 = G – J – q

conv

 Convective heat flux, q
conv

 = h(T
s
 – T ) = (10 W/m2 K) (500 – 375) K = 1250 W/m2

 Hence, q
net

 = (2000 – 1500 – 1250) W/m2 = – 750 W/m2 (Ans.)

Comment The negative sign indicates that energy must be added to the plate to enable it to maintain 

the temperature of 500 K. Note that a π e. The plate is thus not a gray body.

(C) Solar and Environmental Radiation

 A deep space probe is constructed as a 1 m diameter polished aluminium sphere. 

Determine the equilibrium temperature that the probe reaches if the incident solar radiation is 950 

W/m2. For solar radiation, the absorptivity of aluminium is 0.3 and the emissivity of aluminium is 0.04.

Solution

Known Spherical space probe is exposed to solar radiation under 

specified conditions.

Find Equilibrium temperature, T
s
(K).

Assumptions (1) Steady-state conditions. (2) Surface is diffuse gray. 

(3) Sky temperature is too low to be negligible.

Analysis Under equilibrium conditions,

 or 
in outE E=
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4
solar solar projected

Rate of radiation heat transfer to the Rate at which radiation is emitted by the

probe surface exposed to solar energy probe surface at its temperature

s s sG A A Ta e s

Ê ˆ Ê ˆ
=Á ˜ Á ˜Ë ¯ Ë ¯

=

 The projection of a sphere is a circle. Hence, the projected area = 2

4
D

p
 while the surface 

area of the spherical probe, A
s
 = pD2

 Inserting the appropriate values, we have

2 2 2 8 2 4 2 2 4 4(0.3)(950 W/m ) 1 m 0.04 5.67 10 W/m K ( 1 m ) ( )
4 sT K
p

p-Ê ˆ¥ = ¥ ¥ ¥ ¥ ¥Á ˜Ë ¯
 Equilibrium surface temperature of the probe is

1/480.3 950 10
)

0.04 4 5.67sT
È ˘¥ ¥

= =Í ˙¥ ¥Î ˚
421K( 148 Cª ∞ (Ans.)

 A flat-plate solar collector with no cover plate is used to collect the solar 

radiation to heat water in a commercial installation. The surface emissivity of the absorber is 0.12 while 

its solar absorptivity is 0.95. At a given time of the day, the absorber surface temperature is 130°C when 

the solar irradiation is 850 W/m2, the effective sky temperature is –4°C and the ambient air temperature 

is 27°C. Assume that the heat-transfer convection coefficient for the calm day condition is given by, h = 

0.23(T
s
 – T )1/3 W/m2 K where T

s
 is the surface temperature and T  is free stream ambient temperature. 

Assume steady-state conditions, the bottom surface is well insulated and the absorber surface is diffuse.

Work out the following: (a) Sketch the system and show the control volume. (b) The useful heat removal 

rate in W/m2 from the collector. (c) The efficiency of collector. (d) Comment on the results. [IES 2007]

Solution

Known Operating conditions for a flat-plate solar collector.

Find (a) Sketch of the system. (b) Useful heat-removal rate (W/m2). (c) Collector efficiency. (d) 

Comment.
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Assumptions (1) Steady-state conditions. (2) The bottom of the collector is well insulated. (3) Absorber 

surface is diffuse.

Analysis (b) Performing an energy balance on the absorber, in out 0E E- =
 Per unit surface area

 where 

solar sky sky conv

4
sky sky

0S uG G q E q

G T

a a

s

+ - - - =

=

 Since the sky radiation is concentrated in approximately the same spectral region as that 

of surface emission, it is reasonable to assume that, a
sky

ª e = 0.12

 Now, 1/3 4/3
conv ( ) 0.23( ) ( ) 0.23( )s s s sq h T T T T T T T T= - = - - = -

 Also, 4
sE Tes=

 Useful heat-removal rate,

4 4/3 4
solar sky

7/3 4 4
solar sky

4/3 8 4 4

0.23( )

0.23( ) ( )

(0.95 850) 0.23(130 27) 0.12 5.67 10 (403.15 269.15 )

.

u S S S

S S S

q G T T T T

G T T T T

a es es

a es

-

= + - - -

= - - - -

= ¥ - - - ¥ ¥ -

= 2
552 6 W/m (Ans.) (b)

(c) Efficiency of collector

solar

Useful energy extracted, 552.6
0.65 or .

Solar irradiation, 850
uq

G
h = = = 65 0%  (Ans.) (c)

(d) Comments:

 Since the spectral range of G
sky

 is entirely different from that of G
S
 it would be incorrect 

to assume that a
sky

 = a
S

 The convection heat transfer coefficient is very low (h ª 0.23 (130 – 371/3 ª 1 Wm2 K). 

With a slight increase in h, both the collector efficiency h and useful heat flux q
u
 would 

reduce substantially. Hence, it is advisable to use the cover plate to reduce convection (and 

radiation) heat loss from the absorber plate. (Ans.) (d)

 The irradiation received by a stratospheric balloon was found to be 1250 

W/m2. If the earth’s atmosphere allows only 82% of the emitted radiation reaching the receiver, estimate 

the temperature of the sun. The sun may be considered a black body. The distance from the earth to the 

sun is 1.49 ¥ 108 km and the diameter of the sun is 1.39 ¥ 106 km.

Solution

Known Solar irradiance. Distance between sun and earth. Diameters of sun and earth.

Find Temperature of the sun, T
S
(K).

Assumption (1) The sun is a black body. (2) 18% attenuation of solar irradiation en route to earth.

Analysis Solar heat flux,

2 2
space

1250
W/m 1524.39 W/m

0.82
G = =
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 If the sun is black, 
22

4
space ,Sun 2 24

S S
b S

D D
G E T

RR

p
s

p

Ê ˆ= ¥ = Á ˜Ë ¯

 Here, 
2

24
SD

R

p

p
 is the solid angle ratio.

 where D
S
 = Diameter of the sun

R = Distance between the earth and the sun.

 Then 

22 2 8
space4 12 4

8 2 4 6

2 1524.39 W/m 2 1.49 10 km
1235.93 10 K

5.67 10 W/m K 1.39 10 km
S

S

G R
T

Ds -

Ê ˆ¥ ¥Ê ˆ= = = ¥Á ˜Á ˜Ë ¯ ¥ Ë ¥ ¯
\ Surface temperature of the sun is

12 4 1/4[1235.93 10 K ]ST = ¥ = 5929 K (Ans.)

 The main body of a communications satellite, modelled as a 50 cm diameter 

sphere, rotates continuously and is exposed to solar radiation with an energy flux of 1350 W/m2. Determine 

how much of its surface should be covered with each of the following materials to maintain the temperature 

of the surface material at 25°C.
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Material A: a
A
 = 0.8 for solar radiation

e
A
 = 0.5 for all wavelengths associated with emitted radiation

Material B: a
B
 = e

B
 = 0.08 for all wavelengths

Solution

Known A spherical communications satellite with the surface covered with two different materials 

continuously rotates while exposed to solar radiation.

Find Surface area covered with each material to maintain constant surface temperature.

Assumption (1) Outer space is a black body at 0 K. (2) Let x equal the fraction of area to be covered 

by material A.

Analysis Energy absorbed = [G
s
 xa

A
 + G

s
(1 – x)a

B
] ¥ Projected area, A

p
.

2 2
2 2 ( )

= [(1350 W/m )( )(0.8) + (1350 W/m )(1 )(0.08)]
4

D mp
- ¥x x

 Energy emitted = [e
A

xE
b
(T) + e

B
(1 – x)E

b
(T)] ¥ Surface area, A

s
= [0.5) (x) sT4 + (0.08) 

(1 – x) (s T4)] ¥ pD2

 [Note that the projected area of a sphere of diameter D is a circle of area, pD2/4 and the 

surface area of a sphere is pD2.]

 Since no energy is supplied from within the satellite, the energy absorbed must equal the 

energy emitted,

 Hence, from energy balance: Energy absorbed = Energy emitted

 or 

4 4
298.15 298.15

1080 108 – 108 4 (0.5)( )(5.67) (0.08)(1 )(5.67)
100 100

972 108 4[224 35.84 35.84 ]

x x x x

x x x

È ˘Ê ˆ Ê ˆ+ = + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚
+ = + -

 or [972 752.64] 143.375 108 or 219.36 35.375x - = - =x

\ 35.375/219.36 0.16 or 16% and (1 ) (1 0.16)x = = - = - = 0.84 or 84%x

\ 2 2( ) (0.16)( )(0.5 m)AA x Dp p= = = 2
0.126 m (Ans.)

2 2(1 )( ) (0.84)( )(0.5 m)BA x Dp p= - = = 2
0.66 m

(Ans.)

Comment 16 percent (0.126 m2) of the surface must be covered with material ‘A’ and 84 percent 

(0.66 m2) must be covered with material ‘B’ to maintain a surface temperature of 25°C.

 The sun may be idealized as a black body with a surface temperature of 5779 

K at a mean distance of 1.495 ¥ 1011 m from the earth. The diameters of the sun and earth are 1.39 ¥
109 m and 1.27 ¥ 107 m, respectively. Evaluate (a) the total radiation energy emitted by the sun, (b) the 

solar constant (the energy received per unit time per unit area normal to sun’s rays in the extraterrestrial 

atmosphere at the mean earth–sun distance, (c) the total radiant energy intercepted by the earth in the 

absence of the earth’s atmosphere, and (d) the energy received by a 1.5 m ¥ 1.5 m flat-plate solar collector 

whose normal is inclined at 40° to the sun. The energy lost in the earth’s atmosphere is estimated to be 

30% and the diffuse radiation is 12% of the total energy received by the earth.

Solution

Known Diameter and surface temperature of sun, diameter of earth and mean earth–sun distance.
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Find (a) Energy emitted by the sun; (b) Solar constant; (c) Total radiant energy received by the 

earth; (d) Energy received by a solar collector.

Assumptions (1) Sun is a black body. (2) Sun and earth are spherical bodies.

Analysis (a) Total radiant energy emitted by the sun,

4 2 8 2 4 4
sun

9 2

( ) (5.67 10 W/m K )(5779 K)

[ (1.39 10 m) ]

S S s sQ E A T Ds p

p

-= = = ¥

¥ ¥

= 26
3.84 10 W¥ (Ans.) (a)

(b) Solar constant or solar flux at the outer edge of the earth’s atmosphere is

26
sun

2 11 7 2

3.84 10 W

4 [1.495 10 (0.5 1.27 10 )]
4

2

S

E
S E

Q
G

mD
R

p
p -

¥
= =

¥ - ¥ ¥È ˘-Í ˙Î ˚

= 2
1367W/m

(Ans.) (b)

(c) Total radiant energy intercepted by the earth

  = G
S
¥ Projected area of the earth (as a circle of diameter D

E
)

2 2 7 2(1367 W/m ) (1.27 10 m)
4 4S EG D
p pÈ ˘= ¥ = ¥ ¥ =Í ˙Î ˚

17
1.73 10 W¥

(Ans.) (c)

(d) Total energy received by the solar collector

collector collector

diffuse radiationdirect radiation

cosS D dA G A G Gq= ¥ = ¥ +È ˘
Í ˙Î ˚

where
2(1 0.30) 0.7 1367 W/mD SG G= - = ¥

q = 40° (angle of incidence)

G
d
 = 0.12 ¥ G

s

\

2

(0.7 1367)cos 40 0.12

0.7
1367 cos 40 833 W/m

[1 0.12]

S S

S

G G

G

= ¥ ∞ + ¥

= ¥ ¥ ∞ =
-

or

Energy received = (1.5 m ¥ 1.5 m)(833 W/m2) = 1874 W (Ans.) (d)
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Points to Ponder

● The surface temperature of the sun is nearly 5800 K.

● The black body emissive power, E
b
 and wavelength l

max
 at 5800 K are 64.16 ¥ 106 W/m2 and 0.5 

respectively.

● The Planck’s spectral distribution function is given by 11
25

[exp( / ) 1]b

C
E C Tl l

l

-= -
● Selective surfaces exhibit non-gray surface properties.

● According to Wien’s displacement law: l
max

T = 2898 mm K.

● Gray body assumption for white paint is not valid.

● For a diffusely emitting surface, intensity is independent of direction.

● The emissive power distribution for a gray surface is a scaled version of the black-body spectral 

emissive power distribution with a constant scale factor less than or equal to one.

● The emissive power of a surface also depends on the surface material and roughness.

● White paper is nearly radiation black with an absorptivity of 0.97.

● Window glass transmits radiation in the range of wavelengths from about 0.15 to 3 mm.

● Window glass does not transmit radiation in the range of wavelengths from about 3 mm to 10 mm.

● A highly polished surface can be called a specular surface.

● The albedo of a surface is defined as the ratio of the reflected energy to the incident energy.

● The blue colour of the sky does not result from particulate scattering in the atmosphere.

● The value of the solar constant is 1376 W/m2.

● No medium is necessary for radiative heat transfer.

● All bodies at above the absolute zero temperature emit thermal radiation. This statement is based on 

the Prevost theory of heat exchange.

● Gases have poor reflectivity.

● Emissivity and absorptivity of a surface are equal for radiation with equal temperature and wavelength.

● The Stefan–Boltzman constant has a value of 5.67 ¥ 10–8 W/m2 K4.

● Thermal radiation refers to the portion of the wavelength spectrum between 0.1 mm and 100 mm.

● Visible radiation range is between the wavelengths of 0.4 and 0.76 micron.

● The emission of radiation from a semi-transparent material is a volumetric phenomenon while that 

from an opaque material is regarded as a surface phenomenon.

● Spectral radiation intensity has the units of W/m2 mm sr.

● The ratio of I
b
(T) and E

b
(T) is 1/p.

● Solar radiation ranges between the wavelengths of 0.1 and 3 mm.

● Solid angle is defined as normal
2

dA
d

r
w = .

● The fractions of ultraviolet, visible, and infrared radiation at T = 5800 K are 0.112, 0.456, and 0.432

respectively.

● If r
1
 and T

1
 denote the radius and absolute temperature of the sun, and x is the mean earth-sun distance, 

then the mean earth temperature, T
2
 is estimated to be 2 1 1 /2T T r x= .

● The expression for solar constant G
S
 in terms of earth–sun distance L, sun’s surface temperature T, its 

radius r and Stefan–Boltzmann constant s is given by s
Ê ˆ= Á ˜Ë ¯

2
4 .S

r
G T

L

● The intensity of radiation at an angle to the diffuse surface, I
q
 is related to the normal intensity I

n
 by 

the relation I
q
/I

n
 = cos q.
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● Solar constant is the amount of solar radiation incident upon a surface of unit area that is normal to 

the sun rays and situated just outside the earth’s atmosphere.

● The intensity of radiation leaving the sun is 20.354 ¥ 106 W/m2 sr.

● A diffuse gray surface at 0°C and of emissivity 0.9 radiates to the environment at absolute zero 

temperature. The radiation heat loss per unit area is 284 W.

● Spectral concentration of surface radiation depends strongly on surface temperature.

● Much of the UV solar radiation is absorbed in the earth’s atmosphere.

● Less than 6% of the energy consumed by the lamp is converted to visible light.

● The assumption e
l
 = a

l
 can be satisfied if this surface were irradiated diffusely or if the surface itself 

were diffuse. Under the specified conditions of solar irradiation and surface temperature, a
S
π e. Such 

a surface is referred to as a spectrally selective surface.

● A large value of a/e is desirable for solar absorbers.

GLOSSARY of Key Terms

● Absorption The process of converting radiation intercepted by matter to 

internal thermal energy.

● Absorptivity Fraction of the incident radiation absorbed by a body. Ratio 

of the radiation absorbed by a body to that incident upon it.

● Albedo Ratio of the radiation reflected from the earth to the incident 

radiation.

● Black body or black surface A body (or surface) which (a) absorbs all radiation incident 

upon it (and reflects or transmits none), or (b) emits, at any 

particular temperature, the maximum possible amount of 

thermal radiation.

● Black-body source or enclosure A source (or enclosure) whose absorption and emission 

characteristics closely approach that of a black body.

● Diffuse reflection Uniform reflection of radiation over all angles, independent of 

the angle of incidence.

● Effective black-body temperature 

(brightness temperature)

The temperature of a black body which emits the same amount 

of radiation as the body being considered.

● Emission The process of radiation production by matter at a finite 

temperature.

● Emissive power Rate of radiant energy emitted by a surface in all directions 

per unit area of the surface, E (W/m2).

● Emissivity The ratio of the radiant energy emitted by the body under 

consideration to that emitted by a black body at the same 

temperature.

● Gray surface Surface for which the spectral absorptivity and the emissivity 

are independent of wavelength over the spectral regions of 

surface irradiation and emission.

● Global radiation The sum of the vertical component of the direct solar radiation 

on the earth and the diffuse (or scattered) solar radiation.
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● Greenhouse effect Solar heating of objects shielded by glass which transmit solar 

radiation but absorb most of the radiation emitted by the bodies 

themselves.

● Intensity of radiation Radiant energy per unit area per unit time per unit solid angle.

● Irradiation Rate at which radiation is incident on a surface from all 

directions per unit area of the surface, G(W/m2).

● Kirchhoff’s law Relation between emission and absorption properties for 

surfaces irradiated by a black body at the same temperature.

● Monochromatic radiation Radiation of one particular wavelength.

● Planck’s law Spectral distribution of emission from a black body.

● Photon Quantum or bundle of radiation.

● Pyrometer A radiometer calibrated to read temperature.

● Radiation (1) Transmission of energy by electromagnetic waves; (2) 

Radiant energy.

● Radiosity The sum of the incident and reflected radiation fluxes from a 

surface.

● Reflectivity The ratio of the radiation reflected by a body to that incident 

upon it.

● Reflection The process of redirection of radiation incident on a surface.

● Semi-transparent Refers to a medium in which radiation absorption is a 

volumetric process.

● Solid angle Region subtended by an element of area on the surface of a 

sphere with respect to the centre of the sphere, w (sr).

● Specular Refers to a surface for which the angle of reflected radiation 

is equal to the angle of incident radiation.

● Scattering Attenuation of radiation passing through a medium by means 

other than absorption.

● Selective emitter A material whose monochromatic emissivity is a function of 

wavelength, angle of emission, or surface temperature.

● Solar constant The amount of solar radiation incident upon a surface normal 

to the radiation and situated just outside the earth’s atmosphere.

● Thermal radiation Electromagnetic energy emitted by matter at a finite temperature 

and concentrated in the spectral region from approximately 0.1 

to 100 mm.

● Transmission The process of thermal radiation passing through matter.

● Transmissivity Fraction of the incident radiation transmitted by matter.

● Ultraviolet Radiation characterized by wavelengths in the 0.1 to 0.4 mm

range. Radiation emitted by one surface which is directly 

incident upon a second surface.

● Wien’s law Locus of the wavelength corresponding to peak emission by 

a black body.



Radiation Heat Transfer: Properties and Processes 951

Multiple-Choice Questions

12.1 A diffuse radiating surface has

(a) radiation intensity independent of angle

(b) emissive power independent of angle

(c) emissive power independent of wavelength

(d) radiation intensity independent of both angle and wavelength.

12.2 In radiation heat transfer, a gray surface is one

(a) which appears gray to the eye (b) whose emissivity is independent of wavelength

(c) which has reflectivity equal to zero. (d) which appears equally bright from all directions.

12.3 What is the basic equation of thermal radiation from which all other equations of radiation can be 

derived?

(a) Stefan–Boltzmann equation (b) Planck’s equation

(c) Wien’s equation (d) Rayleigh–Jeans formula

12.4 What is the radiation intensity in a particular direction?

(a) Radiant energy per unit time per unit area of the radiating surface

(b) Radiant energy per unit time per unit solid angle per unit area of the radiating surface

(c) Radiant energy per unit time per unit solid angle per unit projected area of the radiating 

surface in the given direction

(d) Radiant energy per unit time per unit projected area of the radiating surface in the given 

direction.

12.5 All bodies emit thermal radiation, unless the body is at absolute zero temperature. This statement is 

based upon

(a) Stefan–Boltzmann law (b) Prevost theory

(c) Wien’s law (d) Planck’s law

12.6

power to wavelength at the three temperatures T
1
, T

2
 and T

3
(T

1
 > T

2
 > T

3
).

  The conclusion is that the measurements are

(a)  correct because the maxima in bE l
 show the correct trend

(b) correct because Planck’s law is satisfied

(c) wrong because the Stefan–Boltzmann law is not satisfied

(d) wrong because Wien’s displacement law is not satisfied

12.7 A source of radiation has an emissive power of 1500 W/m2. How many photons per second per square 

metre does this intensity represent if the wavelength is 530 nm?

  (Speed of light = 2.998 ¥ 108 m/s and Planck’s constant = 6.6256 ¥ 10–34 J s )

(a) 4.0 ¥ 1021 (b) 12.8 ¥ 1021 (c) 7.55 ¥ 1021 (d) 1.0 ¥ 1021

12.8 A small body at 40°C is placed in a large heating oven whose walls are maintained at 1100°C. The 

average absorptivity of the body varies with the temperature of the emitter as follows:

Temperature (°C) 40 540 1100

Absorptivity, a 0.8 0.6 0.5

  What is the rate at which radiant energy is absorbed by the body per unit surface area? (Stefan–

Boltzmann constant, s = 5.67 ¥ 10–8 W/m2 K4)

(a) 6.65 ¥ 106 W/m2 (b) 43.3 W/m2 (c) 10.66 ¥ 105 W/m2 (d) 1.0 ¥ 105 W/m2
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12.9 A 10 cm diameter spherical ball is known to emit radiation at a rate of 57 W when its surface 

temperature is 550 K. The average emissivity of the ball at this temperature is 

(a) 0.173 (b) 0.35 (c) 0.50 (d) 0.75

12.10

opening is 7.35 kW/m2. The temperature at the inner surface of the sphere will be about (assume 

Stefan–Boltzmann constant s = 5.67 ¥ 108 W/m2 K4)

(a) 600 K (b) 330 K (c) 373 K (d) 1000 K

12.11 The maximum rate of heat that can be emitted by radiation per unit area (W/m2) from a surface at 

–3°C kept in an environment at 40°C is

(a) 302 (b) 175 (c) 590 (d) 0

12.12 Ten percent of radiation at wavelengths less that l = 3 mm and 50 per cent of radiation at wavelengths 

more than 3 mm is absorbed by a surface. If the radiation emitted by the sun is at T = 5800 K, the 

average solar absorptivity of the surface [f
0–l

(5800 K) = 0.98] is

(a) 0.272 (b) 0.108 (c) 0.425 (d) 0.306

12.13 Match List I with List II according to the code given below:

     List I List II

  (Body temperature) (Body colour)

A. 700°C 1. While hot

B. 900°C 2. Cherry red

C. 1100°C 3. Dull red

D. 1400°C 4. Orange red

    Codes:

  A B C D

(a) 1 3 4 2

(b) 4 1 2 3

(c) 3 2 1 4

(d) 3 2 4 1

Multiple-Choice Questions

12.1 (b) 12.2 (b) 12.3 (b) 12.4 (c) 12.5 (b) 12.6 (d)

12.7 (a) 12.8 (d) 12.9 (b) 12.10 (a) 12.11 (a) 12.12 (b)

12.13 (d)

12.1 Explain the nature of thermal radiation. Which important features characterize radiation?

12.2 What is an electromagnetic wave? How is it different from an acoustic wave? What is the relation 

between wavelength and frequency of radiation propagating in a medium?

12.3 What is visible light? How does it differ from the other forms of electromagnetic radiation? What is 

the range of wavelength for visible radiation?

12.4 What are the wavelength bands covering ultraviolet (UV), visible, and infrared (IR) radiation?

12.5 What is thermal radiation? In what region of the electromagnetic spectrum is it concentrated?

12.6 Explain why freshly fallen snow gives high glare but melts quickly when the sun shines.

12.7 When a body is said to be black, what is the range of wavelengths which it will absorb?
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12.8 What do you mean by a black body? Does a black body actually exist? Describe an arrangement by 

which a black body can be approximated in a laboratory.

12.9 Distinguish between the total and monochromatic emissive powers. How are they related to each 

other and what are their units?

12.10 Distinguish between spectral and total radiation. What is the distinction between directional and 

hemispherical radiation?

12.11 solid angle and intensity of radiation.

12.12 What is the black-body radiation function? What does it represent? For what is it used?

12.13 Describe the phenomenon of radiation from real surfaces.

12.14 Does emissivity or absorptivity vary with temperature? Would their change in turn affect transmissivity?

12.15 Differentiate between specular and diffuse surfaces.

12.16 Show that emissivity e and absorptivity a are not necessarily equal for irradiation of a source at 

temperature T by a source at a different temperature T*.

12.17 What is the Stefan–Boltzmann law?

12.18 Distinguish between black-body radiation and gray-body radiation. Can the Wiens’ displacement law

of radiation be applied to gray-body radiation?

12.19 Planck’s distribution law and derive Stefan–Boltzmann law from Planck’s distribution 

equation.

12.20 State Planck’s distribution law. For extremely low and high limits of the wavelength absolute 

temperature product lT, derive the Wien’s law and Rayleigh–Jeans law from the Planck’s law.

12.21 Enunciate and explain the Wien’s displacement law. Show that the spectral emissive power of a black 

body will be maximum when l
max

T = 2897.8 mm K.

12.22 Prove that for a diffusely emitted surface, the emissive power is p times the intensity of emitted 

radiation.

12.23 What is Kirchhoff’s law? What are the conditions under which it is applicable?

12.24 What is meant by a black body and a gray body? Is the black body always black?

12.25 What is Lambert’s cosine law?

12.26 absorptivity, emissivity,  and transmissivity.

12.27 What is the solar constant? How is it used to determine the effective surface temperature of the sun?

12.28 What is meant by effective sky temperature?

12.29 Explain what is meant by greenhouse effect?

12.30

PRACTICE PROBLEMS

(A) Black-Body Radiation

12.1 A large isothermal enclosure is maintained at a uniform temperature of 2000 K. (a) Calculate the 

emissive power of a small aperture on the enclosure. (b) What are the wavelengths below which and 

above which 10% of the emission is concentrated? (c) Find the monochromatic emissive power and 

the wavelength associated with maximum emission. (d) Determine the irradiation on a small object 

placed inside the enclosure.

[(a) 907.2 kW/m2 (b) 1.10 mm, 4.69 mm (c) 411.7 W/m2 mm (d) 907.2 kW/m2]
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12.2 A spherical ball of 15 cm diameter is known to emit radiant energy at a rate of 650 kJ/h when its 

surface temperature is 250°C. What is the average emissivity of the ball at this temperature? [0.60]

12.3 The intensity of radiation leaving a surface varies as follows: I(q) = I
0
(cos q)0.2 where q is the angle to 

the normal and I
o
 is a constant that corresponds to the intensity of a blackbody at 2350 K. Calculate 

[1.729 ¥ 106 W/m2]

12.4 A mildly polished steel surface with an emissivity of 0.07 and held at a temperature of 760°C emits 

radiation diffusely. Compute (a) the total radiation intensity in the normal direction, and (b) the 

fraction of the total hemispherical emissive power irradiated into a solid angle subtended by 0° £ q £
55° and 0 £ j £ 2p? [0.671]

12.5 An industrial furnace in the form of a black body emits radiation at 3000 K. Calculate the following: 

(a) Monochromatic emissive power at 1 micrometre wavelength (b) Wavelength at which the emission 

is maximum (c) Total and maximum emissive power (d) Wavelength l such that the emission in the 

wavelength band 0 to l equals that from l to .

[(a) 3.12 ¥ 106 W/m2 mm (b) 0.966 mm (c) 4592.7 kW/m2 (d) 1.37 mm]

12.6 A hole of area dA = 2 cm2 is opened on the surface of a large spherical cavity whose inside is 

maintained at T = 1000 K. (a) Calculate the radiant energy streaming through the hole in all directions 

into space. (b) Find the radiant energy streaming per unit solid angle in the direction making an angle 

of 50° with the normal to the surface of the opening. [(a) 11.34 W (b) 2.32 W]

12.7 A body having an area of 1000 cm2 has an effective temperature of 900 K. Determine (a) the total 

rate of energy emission, (b) the intensity of normal radiation, (c) the intensity of radiation along a 

direction at 60° to the normal, and (d) the wavelength of maximum monochromatic emissive power.

[(a) 3.72 kW (b) 11.84 kW/m2 mm (c) 5.92 kW/m2 (d) 3.22 mm]

12.8 ¥ 10–5 m2 is calibrated by irradiating it with 1 kW/m2 from an 

aperture in the furnace. The aperture diameter is 20 mm and its emissive power is 6.25 ¥ 105 W/m2.  

(a) Find the distance (along the normal to the aperture) at which the gauge must be held to receive 

the requisite irradiation. (b) If the gauge is tilted at 40° to the normal, what will be the irradiation?

[(a) 250 mm (b) 766 W/m2]

12.9 Show that the ratio of the fractional change in the monochromatic intensity of radiation of a blackbody 

to the fractional change in its absolute temperature is given by 
dI

l
/I
l

dT/T
 = 

C
2

lT
 [1 – exp(–C

2
/lT)]–1. Using 

the above expression, calculate the permissible variation in the temperature of a furnace at 2200 K if 

the variation in the monochromatic intensity of radiation at 0.65 mm is restricted to 1%.  What would 

this variation be if the wavelength were 10 m
of the blackbody curve at 2200 K. [2.2 K, 16.2 K, 1.32 mm]

(B) Radiation Properties

12.10 Calculate the absorptivity of a surface having the following characteristics:

a
l
 = 0.92 0 £ l £ 4 mm

a
l
 = 0.15 4 mm £ l £

  Assume that blackbody radiation at 5770 K is incident on the surface.

  If e
l
 = a

l
, calculate the emissivity of the surface if it is at 400 K. [0.912, 0.165]

12.11 The spectral hemispherical transmissivity of a 3 mm thick glass varies with wavelength in the 

following manner:
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  (a) Calculate the average transmissivity and the rate of radiation transmitted through a 2 m by 2 m 

glass window if irradiation from a black surface at 1600 K is incident on it. (b) What will be the 

amount of solar radiation transmitted through the window assuming the sun to be a blackbody source 

at 5780 K. [(a) 0.409, 607.5 kW (b) 0.761, 192.6 kW]

12.12 T
b
 = 600 K has the spectral emissivity distribution 

approximated by the following stair step function:

e
l

0.1 0.5 0.8

l (mm) < 2.0 2.0–15.0 > 15.0

  The brick wall is exposed to a bed of coals at T
c
 = 2000 K. Calculate (a) the total hemispherical 

emissivity, and (b) the total emissive power of the brick wall. (c) Determine the total absorptivity of 

the wall to irradiation resulting from emission by the coals. [(a) 0.532 (b) 3910 W/m2 (c) 0.309]

12.13 (a) Determine the hemispherical absorptivity of a gray but directionally selective material with 

a(q, f) = 0.6(1 – cos f) when the solar irradiation on the surface is such that the zenith angle is 45° 

and the azimuth angle is 0°. (b) Also calculate the material’s hemispherical emissivity. [0.6]

(C) Solar and Environmental Radiation

12.14 A sheet of glass is placed over a number of black objects in direct sunlight. The glass transmits the short 

wavelength radiation from the sun but absorbs 90 percent of the longer wavelength radiation from 

the objects themselves. Estimate the equilibrium temperature of the objects for a glass temperature of 

20°C. [75.5°C]

12.15 A thin metal plate is exposed to solar radiation. The air and the surroundings are at 30°C. The heat 
2 K. The 

plate has an absorptivity of 0.9 at solar wavelength and an emissivity of 0.1 at the long wavelength. 

Neglecting any heat loss from the lower surface, determine the incident solar radiation intensity in 

kW/m2, if the measured equilibrium temperature of the plate is 50°C. Stefan–Boltzmann constant is 

5.67 ¥ 10–8 W/m2 K4. [0.402 kW/m2]

12.16 Droplets are injected into open space in extraterrestrial applications for radiation cooling. After a 

short interval, a liquid collector collects them under microgravity conditions. The initial temperature 

of a spatially isothermal droplet is 50°C and the temperature of the outer space, assumed as blackbody 

is 3 K. Determine the time elapsed during cooling of the droplets of 2 mm diameter to 30°C. The 

emissivity of the droplet may be taken as 0.8. [63.6 s]

12.17 The distance of the sun from the earth is 150 ¥ 106 km. If the radius of the sun is 0.7 ¥ 106 km and its 

temperature is 6200 K, estimate approximately the mean temperature of the earth. Assume that the 

rate of radiative transfer from the sun to the earth is equal to the radiant transfer from the earth to the 

outer space which is at 0 K. Consider the earth and the sun as black bodies. [299.5 K]
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12.18 2 and convection 
2 K. If the plate is coated with

(a) White paint: a
sun

 = 0.12; a
low temp.

 = 0.9.

(b) Flat black lacquer: a
sun

 = 0.96; a
low temp.

 = 0.95.

[64.6°C]

12.19 Solar irradiation of 850 W/m2

2 K. The ambient temperature is 

25°C, the metal surface emissivity is 0.30, the metal surface absorptivity for the incident solar radiation 

is 0.70, and the roof is essentially insulated from below. Estimate the roof surface temperature under 

steady-state conditions. [39.4°C]



Radiation Heat 
Exchange Between 
Surfaces

13.1 ❏ INTRODUCTION

In the previous chapter, we discussed the radiation properties of a single surface. In engineering practice, 

however, we are mostly interested in the radiation heat exchange between two or more surfaces. This 

exchange among surfaces depends not only on the surface characteristics like temperature, emissivity,

absorptivity, reflectivity, etc, but also the surface geometry, relative orientation, and the distance between

the exchanging surfaces.

In this chapter, the concept of shape factor will be introduced first to be followed by the methods 

to determine it for different configurations. The net radiation heat exchange in a two-surface enclosure 

for black and non-black bodies will then be dealt with. Three-surface enclosure, assuming diffuse-gray 

surfaces, will be analyzed. Refractory (reradiating) surfaces and radiation shields will then be discussed. 

The main assumption will be the non-participating medium (ideally vacuum but practically most of the 

gases) between surfaces.

Towards the end, we will also deal with radiation exchange involving a participating medium like 

some gases, primarily carbon dioxide and water vapour.

13.2 ❏ THE CONCEPT OF SHAPE FACTOR

Radiation heat exchange between surfaces depends on their radiation properties and temperatures as well 

as the orientation of the surfaces relative to each other.

The fraction of radiation leaving a surface that strikes another surface can be expressed in terms of the 

orientation of these two surfaces with respect to each other. The surfaces are assumed to be isothermal 

and diffuse emitters and reflectors and the surfaces are separated by a non-participating medium such 

as vacuum or air.

To take into account the effects of orientation on radiation exchange between two bodies (surfaces), we 

define a new quantity called the shape factor, which is a purely geometric parameter and is independent 

of the surface properties and temperature. The shape factor depends only on the shape, size, orientation,

and spacing of the surfaces involved. The shape factor from an emitting surface i to a receiving surface 

j is denoted by F
iÆj

 or just F
ij
 and is defined as

F
ij

= fraction of the radiation leaving the surface i that strikes the surface j directly, i.e., by a straight-

line route.
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The notation F
iÆj

 or F
ij
 emphasizes that the shape factor is for radiation that travels from the surface i

to the surface j. Radiation leaving the surface i may either arrive at or miss the surface j. The shape factor 

is the ratio of all the radiative contributions that strike the surface j to all the energy leaving the surface i.

It is a dimensionless quantity with a value varying between zero and unity. Shape factors are also called 

configuration factors, view factors, or angle factors. The shape factor F
12

, for example, represents the 

fraction of radiation leaving the surface 1 heading towards the surface 2, and F
21

, represents the fraction 

of radiation leaving the surface 2 heading towards the surface 1. It is worth noting that the radiation that 

strikes a surface need not necessarily be absorbed by that surface. Furthermore, radiation that strikes a 

surface after being reflected by other surfaces is not included in the evaluation of shape factors.

13.3 ❏

1. Shape Factor ÆdA dAF
1 2

To derive an expression for 

the shape factor, we first consider two elemental surfaces 

dA
1
 and dA

2
 on two arbitrarily oriented surfaces A

1
 and A

2
,

respectively, as shown in Fig. 13.1. The distance between 

dA
1
 and dA

2
 is r, and the angles between the normals of 

the surfaces and the line joining dA
1
 and dA

2
 are q

1
 and q

2
,

respectively. Surface 1 emits and reflects radiation diffusely 

in all directions with a constant intensity of I
1
, and the solid 

angle subtended by dA
2
 when viewed from dA

1
 is dw

21
.

The rate at which radiation leaves dA
1
 in the direction 

of q
1
 is I

1
 cos q

1
dA

1
. Also, dw

21
 = dA

2
 cos q

2
/r2. Then the 

portion of this radiation that is intercepted by dA
2
 is

1 2

2 2
1 1 1 21 1 1 1 2

cos
cos cosdA dA

dA
Q I dA d I dA

r

q
q w qÆ = = (13.1)

The total radiation leaving dA
1
 (through emission and reflection) in all directions is 

1 1 1 1 1dAQ J dA I dAp= = (13.2)

where J
1
 = p I

1
 is the radiosity and dA

1
 is the surface area.

The differential shape factor 
1 2dA dAdF Æ , which is the fraction of the radiation leaving dA

1
, intercepted 

by dA
2
 is

1 2

1 2

1

1 2
22

cos cosdA dA

dA dA
dA

Q
dF dA

Q r

q q

p

Æ
Æ = = (13.3)

From the symmetry of the problem, the differential shape factor 
2 1dA dAdF Æ  can be simply written by 

interchanging the subscripts 1 and 2. Thus,

2 1

2 1 1
2

cos cos
dA dA

dA
dF

r

q q

p
Æ =

Hence, it follows that

1 2 2 11 2dA dA dA dAdA dF dA dFÆ Æ= (13.4)

This is the reciprocity relationship for infinitesimal or differential shape factors.

Shape-factor geometry: Radiant heat 

exchange between area elements
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2. Shape Factor ÆdAF A
1 2 The shape factor from the element dA

1
 to a finite area A

2
 can be found 

from the fact that the fraction of radiation leaving dA
1
 that is intercepted by A

2
 is the sum of the fractions 

of radiation striking the elemental areas dA
2
. Hence, the shape factor 

1 2dA AF Æ  is obtained by integrating 

1 2dA dAdF Æ  over the area A
2
.

1 2

2

1 2
22

cos cos
dA A

A

F dA
r

q q

p
Æ = Ú (13.5)

3. Shape Factor ÆAF A
1 2 The total rate at which radiation leaves the entire surface A

1
 (through emission

and reflection) in all directions is

1 1 1 1 1AQ J A I Ap= =

The part of this radiation intercepted by dA
2
 is found by considering the radiation that leaves dA

1
 and 

strikes dA
2
, and integrating it over A

1
,

1 2 1 2

1 1

1 1 2
2 12

cos cos
A dA dA dA

A A

I
Q Q dA dA

r

q q
Æ Æ= =Ú Ú (13.6a)

Integration of this relation over A
2
 yields the radiation that strikes the entire surface A

2
,

1 2 1 2

2 2 1

1 1 2
1 22

cos cos
A A A dA

A A A

I
Q Q dA dA

r

q q
Æ Æ= =Ú Ú Ú (13.6b)

Dividing this by the total radiation leaving A
1
, we obtain the fraction of radiation leaving A

1
 that strikes 

A
2
, that is the shape factor 

1 2A AF Æ  or F
12

.

1 2

1 2

1 2 1

1 2
12 1 22

1

cos cos1A A

A A
A A A

Q
F F dA dA

Q A r

q q

p

Æ
Æ= = = Ú Ú (13.7)

The shape factor 
2 1A AF Æ  is readily obtained by simply interchanging the subscripts 1 and 2 in the above 

equation.

2 1

2 1

2 2 1

1 2
21 1 22

2

cos cos1A A

A A
A A A

Q
F F dA dA

Q A r

q q

p

Æ
Æ= = = Ú Ú (13.8)

It is worth mentioning that the order of integration does not matter since the integration limits are 

constants. Also, the shape factor between two surfaces depends on their relative orientation and the 

distance between them.

Combining Eqs. (13.7) and (13.8) after multiplying the former by A
1
 and the latter by A

2
 gives

2 1

1 2
1 12 2 21 1 22

cos cos

A A

A F A F dA dA
r

q q

p
= = Ú Ú (13.9)

It is worth noting that the radiation heat exchange between two surfaces is dependent not only on the 

areas but also on their distance apart. More precisely, it is inversely proportional to the square of the 

distance between them.



960 Heat and Mass Transfer

This is both an expression for the shape factor and a statement of the reciprocal relation for shape 

factors.

Shape factor (view factor) F
1-2

 between two surfaces A
1
 and A

1
 can be determined directly by performing 

integration as explained above. But this method is quite complicated even for simple geometries. Hence, 

usually the analytical, tabular or graphical methods are preferred. Shape factors for some common geometries 

are given in analgitical form in Tables 13.1 to 13.3 and in Figs 13.2 to 13.5 in the graphical form (as charts).

Table 13.1

Configuration Equation

1. Aligned parallel rectangles Let /X X L=  and Y  = Y/L. Then

1/2
2 2

12 2 2

2 1 2

2

1 1 1

2

2 (1 )(1 )
ln

1

1 tan 1
1

tan tan tan
1

X Y
F

XY X Y

X
X Y Y X

Y

Y
X X Y Y

X

p

-

- - -

Ï È ˘+ +Ô= Í ˙Ì
+ +Î ˚ÔÓ

+ + + +
+

Ô̧- - ˝
+ Ǫ̂

2. Perpendicular rectangles with a common edge Let H = Z/X and W = Y/X. Then

2

2

1 1
12

2 2 1 2 2 1/2

2 2 2 2 2

2 2 2 2 2

2 2 2

2 2 2

1 1 1
tan tan

( ) tan ( )

1 (1 )(1 ) (1 )
ln

4 1 (1 )( )

(1 )

(1 )( )

W

H

F W H
W W H

H W H W

W H W W H

W H W W H

H H W

H W H

p
- -

- -

È= +ÍÎ

- + +

Ï È ˘+ + + +Ô+ ¥ Í ˙Ì
+ + + +Ô Î ˚Ó

˘Ô̧È ˘+ + ˙¥ ˝Í ˙ ˙+ + ÔÎ ˚ ˛˚

3. Coaxial parallel disks Let R
1
 = r

1
/L, R

2
 = r

2
/L, and

2
2

2
1

1
1

R
S

R

+
= +

Then 2 2
12 2 1

1
[ 4( / ) ]

2
F S S R R= - -
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Table 13.2

Configuration Equation

1. Parallel plates with centrelines connected by 

perpendicular line 
2 1/2 2 1/2

1 2 2 1
1,2

1

[( ) 4] [( ) 4]

2

W W W W
F

W

+ + - - +
=

W
1
 = w

1
/L, W

2
 = w

2
/L

2. Long parallel plates of equal width 2

12 21 1
h h

F F
w w

Ê ˆ Ê ˆ= = + -Á ˜ Á ˜Ë ¯ Ë ¯

3. Inclined plates of equal width and with a common 

edge

F
12

 = F
21

 = 1 – sin(a/2)

4. Long perpendicular plates with a common edge
2

12

1
[1 1 ]

2
F H H

h
H

w

= + - +

∫

5. Three-sided enclosure F
12

 = (A
1
 + A

2
 – A

3
)/2 A

1

= (a + b – c)/2a

Contd.
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Contd.

6. Long cylinder and parallel rectangle
1 1

12 tan tan
r b a

F
b a c c

- -È ˘= -Í ˙- Î ˚

7. Concentric cylinders F
12

 = 1, F
21

 = r
1
/r

2

F
22

 = 1 – (r
1
/r

2
)

8. Concentric spheres F
12

 = 1, F
21

 = (r
1
/r

2
)2

F
22

 = 1 – (r
1
/r

2
)2

9. Long adjacent parallel cylinders of equal 

diameters

Let X = 1 + (s / D). Then

2 1
12 21

1 1
1 sinF F X X

Xp
-È ˘= = - + -Í ˙Î ˚

10. Long adjacent parallel cylinders of different radii

{ 2 2 1/2 2 2 1/2
12

1
[ ( 1) ] [ ( 1) ]

2
F C R C Rp

p
= + - + - - -

1 11 1
( 1)cos ( 1)cos

R R
R R

C C C C

- - ¸È ˘ È ˘Ê ˆ Ê ˆ Ê ˆ Ê ˆ+ - - - + + ˝Á ˜ Á ˜ Á ˜ Á ˜Í ˙ Í ˙Ë ¯ Ë ¯ Ë ¯ Ë ¯Î ˚ Î ˚˛

R = r
2
/r

1
, S = s/r

1

C = 1 + R + S

Contd.
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Contd.

11. Infinite plane and row of cylinders 1/2
2

12

1/2
2 2

1

2

1 1

tan

D
F

s

D s D

s D

-

È ˘Ê ˆ= - -Í ˙Á ˜Ë ¯Î ˚

Ê ˆ-Ê ˆ+ Á ˜ Á ˜Ë ¯ Ë ¯

Table 13.3

1. Area dA
1
 to rectangle; normal to dA

1
 perpendicular to plane of 

rectangle as shown.

1
12

2 2

1

2 2

1
tan

2 1 1

tan
1 1

Y X
F

Y Y

X Y

X X

p
-

-

È Ê ˆ= Í Á ˜+ +Ë ¯ÍÎ
˘Ê ˆ+ ˙Á ˜+ +Ë ¯ ˙̊

2. Area dA
1
 to rectangle; normal to dA

1
 parallel to plane of rectangle as 

shown.

1 1
12

2 2 2 2

1 1 1
tan tan

2

M
F

M M N M Np
- -È ˘Ê ˆ= -Í ˙Á ˜+ +Ë ¯Í ˙Î ˚

3. Area dA
1
 to disk; normal to dA

1
 perpendicular to and passing 

through the centre of disk.

2
2

12 2 2
2

R
F

R L
=

+

4. Area dA
1
 to washer; normal to dA

1
 perpendicular to and passing 

through the centre of hole.

2 2
2 1

12 2 2 2 2
2 1

R R
F

R L R L
= -

+ +
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Shape factor between two aligned parallel rectangles of equal size
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Shape factor between two perpendicular rectangles with a common edge
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Shape factor between two aligned parallel discs
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Shape factor between a surface element dA
1
 and a rectangular surface A

2
 parallel to it

13.4 ❏

Consider an enclosure with N surfaces. The number of shape factors involved is N2 (all F
ij
’s for i = 1… 

N and j = 1 … N) as represented in the matrix form given below.

11 12 1

21 22 2

1 2

N

N

N N NN

F F F

F F F

F F F

È ˘
Í ˙
Í ˙
Í ˙
Î ˚

(13.10)

However, it is tedious and time consuming to evaluate all the shape factors directly. Once a sufficient 

number of shape factors are available, the rest of them can be determined by utilizing some fundamental 

relations for shape factors.

Summation rule applied to every surface yields N relations among the shape factors.

Considering the reciprocity relation, for the N-walled enclosures, we have NC
2
 or N (N – 1) / 2 equations 

in the shape factors. For a given i, there are (N – 1) values of j. Now, i may be varied from 1 to N.

Thus, the total number of equations available is
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( 1) ( 1)

2 2

N N N N
N

- +
+ = (13.11)

The independent shape factors to be determined are

2 ( 1) ( 1)

2 2

N N N N
N

+ -
- = (13.12)

If all the surfaces are convex or flat, F
ii
 = 0 for i = 1 … N. Thus, the number of independent shape 

factors to be determined is 
( 1) ( 3)

2 2

N N N N
N

- -
- = . For instance, if N = 3, the shape factor algebra 

provides all the shape factors.

Determination of shape factor often becomes difficult for bodies having complex geometries. Sometimes 

the problem can be tackled by making use of the definition of shape factor and the reciprocity relation. 

Shape-factor algebra is a methodology to determine the shape factor for a pair of surfaces from known 

shape factors of surfaces of other geometries and orientations.

13.4.1 ● Summation Rule

An enclosure is a three-dimensional region in space completely encased 

by bounding surfaces, as shown schematically in Fig. 13.6. Generally, all 

the enclosure surfaces are plane or flat so that none of the radiation that 

leaves the surface strikes the surface itself directly (non-reentrant). For 

surfaces that have a concave curvature, a fraction of the radiant energy 

that leaves the surface strikes the surface directly i.e. the surface sees

itself. For example, the inside of a hemisphere can see itself.

This fraction is called self-view factor and is designated as F
11

 or F
ii

in the general sense. Figure 13.7 illustrates this concept.

Consider radiation leaving the surface 1 in Fig. 13.6. Conservation of energy states that we must 

account for all the energy leaving the surface 1. Since the enclosure is closed, all the radiation leaving 

the surface 1 must arrive at either 2, 3, or 4.

More generally, the principle of conservation of energy requires that the entire radiation leaving any 

surface i of an enclosure be intercepted by the surface of the enclosure. The sum of the shape factors 

from the surface i to all the surfaces of the enclosure, including to itself, must, therefore, equal unity. 

This is known as the summation rule for an enclosure and can be expressed as.

A black-body enclosure 

with N surfaces
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1

1
N

i j

j

FÆ
=

=Â

where N is the number of surfaces of the enclosure, i.e., all the radiation leaving a surface must be 

accounted for by the radiation received by all the surfaces in an enclosure.

If the surface A
1
 is re-entrant (not flat), the summation should include surface A

1
 and the index j should 

range from 1 to the Nth surface. Thus, for re-entrant surfaces,

11 12 13 14 1NF F F F F+ + + + + =

For non-re-entrant surfaces.

12 13 14 1NF F F F+ + + + =

13.4.2 ● Reciprocity Rule

We have shown earlier that the pair of shape factors F
i–j

 and F
j–i

 are related to each other by

i i j j j iA F A F- -=

This relation is referred to as the reciprocity relation or the reciprocity rule. The shape factors F
iÆj

and F
jÆi

are not equal to each other unless the areas of the two surfaces are equal. That is,

F
j–i

 = F
i–j

when A
i
 = A

j

F
j–i
π F

i–j
when A

i
π A

j

When determining the pair of shape factors F
i–j

 and 

F
j–i

, it makes sense to evaluate first the easier one 

directly and then the more difficult one by applying 

the reciprocity relation. If a surface A
1
 is completely 

enclosed by a second surface A
2
, and if A

1
 does not see

itself (F
1–1

 = 0) then F
1–2

 = 1.

Let us now consider a simple example of radiation 

exchange in an enclosure formed by two concentric 

spherical surfaces (Fig. 13.8). The outer surface has an 

area A
2
, and the inner one has an area A

1
. The inner 

surface cannot see itself and all the radiation it emits is 

intercepted by the area A
2
 of the outer sphere. Hence, 

F
12

 = 1. But the outer spherical surface, being concave 

inwards, can see itself partly (‘partly’, because its view is partially obstructed by the surface A
1
). Using 

the reciprocity relation, we have

1 1
1 12 2 21 21 12

2 2

or
A A

A F A F F F
A A

= = =

shape factor F
12

 = 1 as the entire radiation 

emitted by the surface 1  is intercepted by 

the surface 2
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13.4.3 ● Symmetry Rule

The presence of symmetry can be determined by inspection, keeping the 

definition of the shape factor in mind. Identical surfaces that are oriented in 

an identical manner with respect to another surface will intercept identical 

amounts of radiation leaving that surface, Therefore, the symmetry rule can 

be expressed as two (or more) surfaces that possess symmetry about a third 

surface will have identical shape factors from that surface.

Consider a right circular cylinder with the cylindrical (lateral) surface A
3
,

one flat end surface A
1
, the other flat end surface A

2
 and we can determine the 

shape factor F
33

 from F
31

 + F
32

 + F
33

 = 1. We note that F
31

 = F
32

 by symmetry

(from the observation) so that 2F
31

 + F
33

 = 1. Together with reciprocity rule,

A
3
F

31
 = A

1
F

13
, we can determine F

33
 because F

12
 can be obtained from the 

chart or Table and F
13

 = 1 – F
12

.

13.4.4 ●

As shown in Fig. 13.10, by simple observation, one can write

1 12 3 34A F A F=

This is often referred to as the law of corresponding corners.

13.4.5 ●  

Sometimes the shape factor associated with a given geometry is not available in standard tables and 

charts. In such a case, it is desirable to use the method of shape decomposition. A major advantage of 

shape decomposition is that it allows the calculation of shape factors without resorting to integration. 

In this case, we express the given geometry as the sum or difference of some geometries with known 

shape factors, and then apply the superposition rule, which can be expressed as the shape factor from a 

surface i to a surface j is equal to the sum of the shape factors from surface i to the parts of surface j.

Referring to Fig. 13.10, the arbitrary surface 1 radiates to the arbitrary surface 2, which is composed 

of two subsurfaces, 2a and 2b. All the radiation striking 2 must strike either 2a or 2b; therefore,

1 2 1 2 1 2a bF F FÆ Æ Æ= + (13.13)

This equation is useful if two of the shape factors are known and third one is to be evaluated. Shape 

decomposition is thus a simple and effective technique for finding this shape factor.

The receiving surface 2 can be divided into any arbitrary number of subsurfaces and is not confined 

to two. If the surface 2 is subdivided into N subsurfaces then

1 2 1 2 1 2 1 2 1 2 1 2

1

N

a b c N i

i

F F F F F FÆ Æ Æ Æ Æ -
=

= + + + + =Â

Shape decomposition is specially useful when used along with reciprocity relation and principle of 

symmetry.

Symmetry rule

Law of corresponding corners
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Note that the reverse of this is not true. That is, the shape factor 

from a surface j to a surface i is not equal to the sum of the shape 

factors from the parts of surface j to surface i.

Consider the geometry in Fig. 13.11, which is infinitely long in 

the direction perpendicular to the plane of the paper. The radiation 

that leaves the surface 1 and strikes the combined surfaces 2 and 

3 is equal to the sum of the radiation that strikes surfaces 2 and 3. 

Therefore, the shape factor from surface 1 to the combined surfaces 

of 2 and 3 is

1 (2,3) 1 2 1 3F F F- - -= + (13.14)

Summation rule

To obtain a relation for the shape factor F
(2, 3)–1

, we multiply Eq. (13.14) by A
1
,

1 1 (2,3) 1 1 2 1 1 3A F A F A F- - -= +

and apply the reciprocity relation to each term to get

or

2 3 (2,3) 1 2 2 1 3 3 1

2 2 1 3 3 1
(2,3) 1

2 3

( )A A F A F A F

A F A F
F

A A

- - -

- -
-

+ = +

+
=

+

Thus, if the transmitting (radiating or emitting) surface is subdivided, the shape factor for that surface 

with respect to a receiving surface is not simply the sum of the individual shape factors, although the 

AF product is expressed by such a sum. On the other hand, the shape factor from a radiating surface to 

a subdivided (decomposed), receiving surface is simply the sum of the individual shape factors.

In some cases, the geometry under consideration is not totally enclosed. For example, consider a small, 

cylindrical tube open at both ends suspended in a large room. It is usually possible to plug the open ends 

by using black hypothetical surfaces.

Take another case of a cavity. Radiation incident on the opening in the cavity is effectively trapped 

inside. One can cover the opening with an imaginary black surface at the temperature of the interior 

walls of the cavity.

13.5 ❏

This is a simple method to determine shape factors of two-dimensional configurations. We come across 

many problems in practice involving geometries of constant cross section such as ducts and channels 

which are very long in one direction relative to the other directions. Such geometries are considered two-

Shape decomposition rule
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dimensional, because any radiation exchange through their end surfaces is negligible. The shape factor 

between the surfaces of such geometries can be determined by the crossed-strings method developed by 

H C Hottel in the 1950s.

The crossed-string rule is applicable when the surfaces have

lengths much greater than their widths and separation,

constant cross sections normal to their lengths, and

constant separation along their lengths.

The surfaces of these geometrical arrangements need not be flat. They can be convex, concave, or of 

any irregular shape.

To find the shape factor F
1–2

 between surfaces 1 and 2 (Fig. 13.13), first we identify the end points 

of the surfaces A, B, C, and D and connect them to each other with tightly stretched strings. The shape 

factor F
1–2

 can be expressed in terms of the lengths of these stretched strings, as follows:

1 2

( ) ( )

2

AD BC AC BD
F

AB
-

+ - +
=

Note that (AD + BC) is the sum of the lengths of the crossed strings, and (AC + BD) is the sum of the 

lengths of the uncrossed strings attached to the end points. Therefore, Hottel’s crossed-strings method 

can be expressed as

12

(Sum of the crossed strings) (Sum of the uncrossed or straight strings)

2 String on Surface 1
F

-
=

¥
(13.15)

The ‘string rule’ for shape factors of two-dimensional configurations

The crossed-strings method is also useful even 

when the two surfaces of interest share a common 

edge, as in a triangle. The common edge in this case 

can be looked upon as an imaginary string of zero 

length. One can also apply this method to surfaces 

partially blocked by other surfaces by allowing the 

strings to bend around the blocking surfaces.

Let me illustrate the use of the Hottel’s string 

rule for the determination of shape factor for the 

configuration shown in Fig. 13.14. Hottel’s crossed-strings rule
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The shape factor is given by

1 12

Sum of lengths Sum of the lengths
2

of two crossed strings of uncrossed strings

( ) ( )

L F

AD BC AC BD

Ê ˆ Ê ˆ
= -Á ˜ Á ˜Ë ¯ Ë ¯

= + - +

Now, 2 2 2 2
1

2 2 2 2
2

2 2 2 2 2 2
1 2( ) ( )

AC AB BC L D

BD BC CD L D

AD AE DE AE EC CD D L L

= + = +

= + = +

= + = + + = + +

Therefore, 2 2 2 2 2 2
12 1 2 1 2 1[ ( ) ( )/2 ]F D L L D L D L D L= + + + - + + +

For D = L
1
 = L

2
, the shape factor will be

12 [ 1 4 1 2 2]/2 .F = + + - = 0 204

13.6 ❏

13.6.1 ●

Consider two small grey bodies 1 and 2 of areas A
1
 and A

2
 having emissivities e

1
 and e

2
 or absorptivities 

a
1
 and a

2
. The radiation emitted by the surface 1 is partly absorbed by the surface 2. The part of radiation 

not absorbed and thus reflected on the first incidence is considered lost in space (because of the assumption 

of small surfaces compared to the distance between them). This means that nothing returns again to the 

surface 1. The same can be said about the surface 2 as well.

The radiant energy emitted by the body 4
1 1 11 A Te s=

The fraction of this energy striking the body 4
12 1 1 12 F A Te s=

The energy absorbed by the body 4
2 12 1 1 12 F A Ta e s=

The radiant energy transfer from the surface 1 to the surface 2 is 

4
1 2 1 2 1 12 1Q A F Te e s- =      ( a

2
 = e

2
 by Kirchhoff’s law)

Similarly, energy transfer from the surface 2 to the surface 1 is

4
2 1 1 2 2 21 2Q A F Te e s- =

By reciprocity relation: A
1
F

12
 = A

2
F

21

or 4 4
12 1 1 2 1 2( )Q A F T Te s-= -

Net radiant interchange between the two bodies is

e e s- -= - = -4 4
12 1 2 2 1 1 2 1 12 1 2( )Q Q Q A F T T (13.16)

where 1 2e e e=  is called the equivalent emissivity of the system comprising two small grey bodies.
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13.6.2 ●

When a small grey body 1 is placed in a large grey enclosure 2 (A
2
 >> A

1
), the enclosure acts like a 

black body. The grey surroundings are effectively black because only a negligible amount of energy is 

reradiated to the small grey body. Thus, if the small body 1 emits a radiation of 4
1 1 1A Te s , all of it will 

be absorbed by the enclosure. The enclosure emits 4
2 2A Ts , of which 4

21 2 2F A Ts  will be intercepted by 

the body 1. Out of this, 4
1 21 2 2F A Ta s  will be absorbed by the body 1.

The net radiant exchange is given by

4 4
12 1 1 1 1 2 21 2Q A T A F Te s e s= -   (since a

1
 = e

1
 by Kirchhaff’s law)

By reciprocity,

A
2
F

21
 = A

1
F

12
 = A  since F

12
 = 1.

It follows that

4 4
12 1 1 1 2( )Q A T Te s= - (13.17)

13.6.3 ●

Consider two infinite (very large) flat parallel planes 1 and 2 which are maintained at absolute temperatures 

T
1
 and T

2
 and have emissivities e

1
 and e

2
, respectively, as shown in Fig. 13.15. Together they constitute 

a two-surface enclosure. Our objective is to determine the net exchange of radiant heat transfer between 

the two surfaces.

Radiant heat exchange between two infinite parallel plates

Assumptions
The two surfaces are opaque (no transmissivity), isothermal (constant and uniform temperature) and

diffuse grey (independent of direction and wavelength).

There exists a vacuum or non-participating medium between the two surfaces.

Since the surfaces are very large, the areas are equal (A
1
 = A

2
ª A).

Kirchhoff’s law is applicable (a = e).

Surfaces being parallel and large, the entire radiation leaving one is intercepted completely by the 

other. Hence, the shape factor, F
12

 = F
21

 = 1.

All emission and reflection properties are same over the whole surface.

The emissive powers of the surfaces 1 and 2 are

4 4
1 1 1 1 1 2 2 2 2 2andb bE E T E E Te e s e e s= = = =
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The radiant heat flux emitted by the surface 1 that strikes the surface 2 is E
1
. A fraction of it (a

2
E

1
)

is absorbed by the surface 2 and the rest (r
2

E
1
) is reflected back towards the surface 2. This process of 

successive absorption and reflection back and forth goes on indefinitely and the amounts involved become 

progressively smaller. The radiant heat flux emitted by the surface 1 and absorbed by the surface 2 is

2 2
1 2 2 1 2 1 2 1 2 1 2 1

2
2 1 1 2 1 2 2 1

1 2

1
[1 ( ) ]

1

q E E E

E E

a a r r a r r

a r r r r a
r r

- = + + +

= + + + = ¥
-

Since for r
1
r

2
 < 1, the infinite series 2 2

1 2 1 2
1 2

1
[1 ]

1
r r r r

r r

Ê ˆ
Á ˜-Ë ¯

In a similar way, the radiant heat flux emitted by the surface 2 and absorbed by the surface 1 is

2 2
2 1 1 2 1 1 2 2 1 1 2 2

2
1 2 1 2 1 2 1 2

1 2

1
[1 ( ) ]

1

q E E E

E E

a a r r a r r

a r r r r a
r r

- = + +

= + + + = ¥
-

Thus, the net radiant heat flux is

12 2 1 1 2
12 1 2 2 1

1 2 1 21 1

Q E E
q q q

A

a a

r r r r- -= = - = -
- -

From Kirchhoff’s law: a
1
 = e

1
, and a

2
 = e

2
. For an opaque surface, the reflectivities are r

1
 = 1 – a

1
 = 

1 – e
1
 and r

2
 = 1 – a

2
 = 1 – e

2
.

It follows that

or

4 4
2 1 1 2 2 1 1 1 2 2

12
1 2 1 2 1 2

4 4 4 4
21 2 1 2 1 2

1 2 1 2

1 2

4 4
1 2

12

1 2

1 (1 )(1 ) 1 [1 ]

( ) ( )
(W/m )

1 1
1

( )
(W)

1 1
1

E E T T
q

T T T T

A T T
Q

e e e se e se

e e e e e e

s e e s

e e e e

e e

s

e e

- -
= =

- - - - - - +

- -
= =

+ - + -

-
=

+ -
(13.18)

The equivalent emissity, e  for this case is 

1

1 2

1 2 1 2 1 2

1 1
1

e e

e e e e e e

-
È ˘+ - =Í ˙ + -Î ˚

13.6.4 ●

Consider two large concentric cylinders of areas, A
1
 = p D

1
L and A

2
 = p D

2
L, as shown in Fig. 13.16. 

The inner and outer surfaces of the concentric cylinders facing each other across the annular space are 

maintained at temperatures T
1
 and T

2
. The surfaces are assumed to be diffuse-grey and opaque, and their 

emissivities are e
1
 and e

2
, respectively. As the inner cylinder is entirely enclosed by the outer cylinder, 

F
12

 = 1, and since by reciprocity relation: A
1
F

12
 = A

2
F

21
, 1

21
2

A
F

A
= . From Kirchhoff’s law, the absorptivities 
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of the two surfaces are a
1
 = e

1
 and a

2
 = e

2
. The surfaces being opaque, t = 0 and (a + r) = 1 and the 

reflectivities are r
1
 = (1 – e

1
) and r

2
 = (1 – e

2
), respectively.

The radiant energy emitted (per unit area) from the outer surface of the inner cylinder (Surface 1)

towards the inner surface of the outer cylinder (Surface 2) is E
1
. As F

1–2
 = 1, the whole emissive power 

(E
1
) is intercepted by the outer cylinder (Surface 2). Out of this, a

2
E

1
 or e

2
E

1
 is absorbed by the outer 

cylinder. The remaining energy r
2

E
1
 or (1 – e

2
) E

1
 is diffusely reflected back towards the inner cylinder 

(Surface 1).

By reciprocity: A
1
F

12
 = A

1
F

21

Hence, F
21

 = A
1
/A

2
  (as F

12
 = 1)

The energy intercepted by the inner cylinder will then be F
21

(1– e
2
) e

1
 = (A

1
/A

2
) (1 – e

2
) E

1
. Out of 

this, the energy absorbed by the inner cylinder is e
1
(A

1
/A

2
) (1 – e

2
)E

1
 (since a

1
 = e

1
).

1 2 1 1 2 2 1

1 2 1 1 2

The energy now reflected Energy reflected by Energy absorbed by

from the inner cylinder the outer cylinder the inner cylinder

(1 ) ( / )(1 )

(1 )[1 ( / )]

E A A E

E A A

e e e

e e

Ê ˆ Ê ˆ Ê ˆ
= -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

= - - -

= - -

And the energy absorbed by the outer cylinder

= e
2

E
1
(1 – e

2
)[1 – e

1
(A

1
/A

2
)]     (since a

2
 = e

2
)

This process of partial absorption and reflection back and forth continues endlessly and the quantities 

involved become progressively smaller.

Finally, the rate at which radiation is emitted by the inner cylinder and absorbed by the outer cylinder is

2

2
21 1

1 2 1 2 1 1 2 2 1 1 2 2 1
2 2

2
21 1

1 2 1 1 2 1 2
2 2

21 2 1

1
2 1

2

1 (1 ) 1 (1 )

1 1 (1 ) 1 (1 )

since 1

1 (1 ) 1

x x

A A
Q A E E E

A A

A A
A E

A A

A E
x x

A

A

e e e e e e e

e e e e e

e

e e

-
È ˘Ê ˆ Ê ˆ= + - - + - - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

È ˘Ê ˆ Ê ˆ= + - - + - - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙
Í ˙Î ˚

= + + + =
Ê ˆ- - -Á ˜Ë ¯

1 2 1 1 2 1

1 1 1 2 1 2 1 2 1 2
2 1 1 2

2 2

1

1

( / ) ( / )
1 1

x

A E A E

A A A A A A

A A

e e

e e e e
e e e e

Ê ˆ
Á ˜Ë - ¯

= =
+ -- + + -
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Likewise, the rate at which radiation is emitted by the outer cylinder (Surface 2) and absorbed by the 

inner cylinder (Surface 1) is

1 1 2
2 1

1 2 1 2 1 2 1 2( / ) ( / )

A E
Q

A A A A

e

e e e e- =
+ -

The net radiant heat exchange between the inner and outer surfaces is then given by

1 2 1 1 1 2
12

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 1 2 1 1 1 2 2 1 1 2 1 2

1 1
1 1 2 2 1 2 2

2 2

4 4
1 1 2

1 1 2 2 2

( / ) ( / ) ( / ) ( / )

( )

( ) (1 )

( )

(1/ ) ( / )[(1 )/ ]

b b b b

A E A E
Q

A A A A A A A A

A E A E A E E

A A

A A

A T T

A A

e e

e e e e e e e e

e e e e e e

e e e e e e e

s

e e e

= -
+ - + -

- -
= =

Ê ˆ- + - +Á ˜Ë ¯

-
=

+ -

\
4 4

1 1 2
12

1 1 2 2

( )

(1/ ) ( / )[(1/ ) 1]

A T T
Q

A A

s

e e

-
=

+ -
(13.19)

As 1 2 1 2 1 2 1 2/ / / or / ,A A D L D L D D r rp p= =
we have for concentric cylinders,

4 4
1 1 2

12
1 1 2 2

( )( )

(1/ ) ( / ){(1/ ) 1}

D L T T
Q

D D

s p

e e

-
=

+ -
(13.20)

Similarly, for concentric spheres, the only difference will be the areas:
2

1 1A Dp=  and 2
2 2A Dp= , so that

and

22
21 1 1

1 22
2 22

2 4 4
1 1 2

12 2
1 1 2 2

or ( / )

( )( )

(1/ ) ( / ) [(1/ ) 1]

A D D
r r

A DD

D T T
Q

D D

p

p

s p

e e

Ê ˆ= = Á ˜Ë ¯

-
=

+ -
(13.21)

13.7 ❏

By and large, radiation leaving a surface is by both emission 

and reflection and after being intercepted by another surface, it 

is partly absorbed and partly reflected. The analysis of radiation 

exchange between surfaces can be simplified considerably by 

assuming black-body behaviour. Radiation leaving a black 

surface is then by emission only and the entire radiation is 

absorbed by the other black surface without any reflection. 

Hence, radiosity J equals black-body emissive power E
b
.

Consider two black surfaces of arbitrary shape at specified 

uniform temperatures T
1
 and T

2
 that exchange heat by radiation, 

as shown in Fig. 13.17. Surface 1 emits radiation, and some 

fraction of this radiation strikes the surface 2. In addition, 
Two isothermal black surfaces 

exchanging heat by radiation
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the surface 2 emits radiation, some of which strikes the surface 1. The net rate of radiation heat transfer 

between them is given by

Net radiation heat transfer Radiation the entire

between surfaces 1 and 2 surface 1 and the striking surface 2

Radiation the entire

surface 2 and the striking surface 1

leaving

leaving

Ê ˆ Ê ˆ
=Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ
- Á ˜Ë ¯

i.e., 12 1 2 2 1Q Q QÆ Æ= -

We note that the radiant energy emitted by a black surface per unit surface area is the emissive 

power, E
b
 = sT4, and the rate of energy emitted by it is E

b
A, where A is the surface area. The fraction 

of radiation leaving the surface 1 that strikes the surface 2 is the shape factor F
1Æ2

 and that leaving the 

surface 2 and striking the surface 1 is F
2Æ1

.

Net radiant heat exchange between the surfaces 1 and 2 can then be expressed as

12 1 1 1 2 2 2 2 1b bQ E A F E A F- -= -
Since A

1
F

1Æ2
 = A

2
F

2Æ1
,   (reciprocity relation)

12 1 1 1 2 2 1 1 2 1 1 2 1 2( )b b b bQ E A F E A F A F E EÆ Æ Æ= - = -
With E

b
 = sT4, we have

4 4
12 1 1 2 1 2( ) (W)Q A F T TsÆ= - (13.22)

If T
1
 > T

2
, 12Q  is positive. Conversely, if T

2
 > T

1
, 12Q  is 

negative.

This result can also be used to evaluate the net radiation 

transfer from any surface in an enclosure of surfaces.

Consider an enclosure with four black surfaces as shown 

in Fig 13.18. The net heat leaving the surface 1 by radiation 

is given by

1 1 2 1 3 1 4Q Q Q QÆ Æ Æ= + +

In general, for an enclosure comprising N black surfaces 

maintained at different temperatures, the net radiation heat 

transfer from the surface i of this enclosure can be expressed as

4 4

1 1

( T ) (W)
N N

i i j i i j i j

j j

Q Q A F TsÆ Æ
= =

= = -Â Â (13.23)

The net radiant heat that leaves one surface must arrive at one or more other surfaces in the enclosure. 

The net radiant heat leaving is a positive quantity and the net radiant heat arriving is a negative quantity. 

Energy conservation requires that, in the steady state, for a complete enclosure, the net radiation heat 

transfer from a surface to itself is zero, irrespective of the shape of the surface. That is,

1

0
N

i

i

Q
=

=Â (13.24)

An enclosure consisting of four 

isothermal black bodies surfaces
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It is worth noting that if a system of black surfaces does not form a complete enclosure, it may be 

treated as one, by enclosing the system with a fictitious surface with E
b
 = 0 and e = 1.

13.8 ❏

Consider two spheres, the sun (1) and the earth (2), situated a large distance apart in surroundings which 

are essentially black. This includes surroundings which are non-black but at a large distance from the 

bodies so that hardly any radiation from the bodies is reflected back to them from the surroundings. 

The radiation from the sun (Body 1) spreads out evenly in all directions and that it falls on the inside 

of a hollow sphere of radius L which is the earth–sun distance which is the earth-sun distance. Since the 

radiation is spread evenly on the hollow sphere it follows that the proportion of the total radiation falling 

on the Body 2 (the earth) from the body 1 (the sun) is the ratio of the projected area of the body 2 to 

the total area of the sphere. Therefore,

22
2

12 2

1

44

r r
F

LL

p

p

Ê ˆ= = Á ˜Ë ¯

where r
2
 is the radius of the body 2. The net radiant heat exchange between two black surfaces is given by

4 4
12 1 12 1 2( )Q A F T Ts= - (13.25)

Substitution in Eq. (13.25) yields

2 2 2
2 4 4 4 42 1 2

12 1 1 2 1 22

1
(4 ) ( ) ( )

4

r r r
Q r T T T T

L L

p
p s s

Ê ˆ= ¥ ¥ - = -Á ˜Ë ¯

The radiation emitted from the earth to the outer space (assumed at 0) is given by

2 4 2 4
20 2 2 2 24 1 ( 0) (4 )Q r T r Tp s p s= ¥ ¥ - =

Energy Balance (Heat received from the sun) = (Heat radiated from the earth to the outer space)

i.e.,
2 2

4 4 2 41 2
12 20 1 2 2 22

or ( ) 4
r r

Q Q T T r T
L

p
s p s= - =

or
2 4

1 2
2 4 4

1 24

r T

L T T
=

-

Since 2 earth 1 sun

4 4 4
1 2 1

or orT T T T

T T T

<<<

- ª

\
2

4 4 1 1
2 1 2 1or

2 2

r r
T T T T

L L

Ê ˆ= =Á ˜Ë ¯ (13.26)
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13.9 ❏

13.9.1 ●

When incident radiation, G, strikes a diffuse-grey surface, it is partially (rG) reflected. Additionally, the 

surface emits radiation eE
b
. Then, the radiosity, J, is defined as all the radiation leaving a surface and 

includes both emitted and reflected components.
2(W/m )bJ E Ge r= + (13.27)

For an opaque surface, a + r = 1

or 1r a= -

Using Kirchhoff’s law, a = e

Hence, (1 )bJ E Ge e= + -

or
1

bJ E
G

e

e

-
=

-
(13.28)

The net heat flux leaving a surface by radiation is then the difference between outgoing and incoming 

radiation. It follows that

Q
J G

A
= - (13.29)

Substituting for G, we have

( )

(1 ) 1 1

b b bJ E J J J E E JQ
J

A

e e e e

e e e

- - - + -È ˘= - = =Í ˙- - -Î ˚
Net radiation heat-transfer rate from a surface,

( ) (W) -
1

b

A
Q E J diffuse grey surface

e

e
= -

-
(13.30)

For a black surface, the only radiant energy that leaves the black surface is the black-body emissive 

power and there is no reflected component.

4 2(W/m )bJ E T black surfaces= = (13.31)

where the only radiant energy that leaves the black surface is the black-body emissive power and there 

is no reflected component.

One can also write using electrical analogy: 

(1 )/

bE J
Q

Ae e

-
=

-

where the driving potential is (E
b
 – J) and the surface resistance, R is (1 – e)/eA. The surface resistance 

depends only on the area and the emissivity of the surface and does not depend on the placement, size,

or properties of any other surface in the enclosure. For a black surface, R = 0 and J = E
b
.
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13.9.2 ●

Consider radiation in an enclosure of diffuse-grey surfaces. If there are two, diffuse-grey surfaces that 

exchange heat by radiation, the net radiant heat transfer between the two surfaces is

Net radiation heat transfer Radiation leaving 1 Radiation leaving 2

between 1and 2 and striking at 2 and striking at 1

Ï ¸ Ï ¸ Ï ¸
= -Ì ˝ Ì ˝ Ì ˝

Ó ˛ Ó ˛ Ó ˛
(13.32)

The total radiant energy leaving the surface 1 per unit area is radiosity J
1
 and the total energy leaving the 

surface is J
1
A

1
, where A

1
 is the surface area. The fraction of this energy that strikes 2 is F

1Æ2
.

It is follows that

1 2 1 1 1 2 2 2 2 1Q J A F J A FÆ Æ Æ= - (13.33)

From reciprocity, A
1
F

1Æ2
 = A

2
F

2Æ1
.

Hence, 1 2
1 2 1 1 2 1 2

1 12

( ) (W)
1/

J J
Q A F J J

A F
Æ Æ

-
= - = (13.34)

We can look upon (J
1
 – J

2
) as the driving potential and (1/A

1
F

12
) as the space resistance, R

12
 which 

involves the shape factor.

Likewise, 2 1 2 2 2 1 1 1 1 2

2 1 1 1 2 1 2( )

Q J A F J A F

J J A F Q

Æ Æ Æ

Æ Æ

= -

= - = = -

In an enclosure of N surfaces, the net heat leaving the surface i by radiation is the sum of the net 

radiation heat transfers between the surface i and each of the other surfaces in the enclosure. In the 

equation form,

1

N

i i j

j

Q Q Æ
=

=Â (13.35)

With i = 1 and N = 3, 1 1 2 1 2 1 3Q Q Q QÆ Æ Æ= + +

since 1 3Q Æ  is identically zero.

As in the case of an enclosure with black surfaces, energy conservation requires that

1

0
N

i

i

Q
=

=Â

The assumptions in this analysis are: The radiosity is uniform over the surface. In other words, the

surface must be isothermal and must reflect the same amount of energy at every location.
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13.10 ❏

Let us now consider the general case of radiation heat exchange in which the surfaces involved are of 

finite size so that the shape factor F
i–j
π 1. We assume that the surfaces constitute a complete enclosure. In 

cases where the surfaces do not form an enclosure, but radiate at each another in an otherwise radiation-

free environment, for instance, between parts of a spacecraft in deep space. In such cases, the system 

may be made an enclosure by adding an enclosing surface with E
b
 = 0 and a = e = 1.

Assumptions (1) All surfaces are opaque and grey-diffuse emitters and reflectors. (2) Emissive power, 

irradiation, and radiosity of each isothermal surface are uniform. (3) Steady state exists so that all quantities 

are time independent. (4) The medium within the enclosure is non-participating.

Two methods are commonly used in the radiation analysis of such an enclosure. 

1. Direct Method: Surfaces with Known Surface Temperature, T
i

4 1 31 2
1 1 1 1

12 13
b

J JJ J
E T J R

R R
s

--Ï ¸= = + +Ì ˝
Ó ˛

In general, for the N-surface enclosure,

4

1

N
i j

i i i
ijj

J J
T J R

R
s

=

-Ï ¸Ô Ô= + Ì ˝
Ô ÔÓ ˛

Â

The network representation of net radiation heat transfer from the surface i to the remaining surfaces 

of an N-surface enclosure is given in Fig. 13.19. Note that i iQÆ  (the net rate of heat transfer from a 

surface to itself) is zero regardless of the shape of the surface.

Network representation of net radiation heat transfer from surface to the remaining surfaces of an 

N-surface enclosure
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1

(W)
N

i jbi i

i i jj

J JE J

R R Æ=

--
=Â (13.36)

which has the electrical analogy interpretation that the net radiation flow from a surface through its surface

resistance is equal to the sum of the radiation flows from that surface to all other surfaces through the 

corresponding space resistances.

In terms of shape factors, 
1

ij
i ij

R
A F

=

and

4

1

(1 )/

1
( )

i i i i

N
i

i i i ij i j
i i j

R A

T J A F J J
A

e e

e
s

e =

= -

-Ê ˆ
= + -Á ˜Ë ¯

Â

or 4

1

1
( ) (W)

N
i

i i ij i j
i j

T J F J J
e

s
e =

-Ê ˆ= + -Á ˜Ë ¯Â (13.37)

Surfaces with Known Net Heat-Transfer Rate iQ For a three-surface enclosure,

or

1 1 1 31 2
1 12 13

1 12 13

1 1 12 1 2 1 13 1 3 1 12 1 2 13 1 3( ) ( ) [ ( ) ( )]

bE J J JJ J
Q Q Q

R R R

Q A F J J A F J J A F J J F J J

- --
= = + = +

= - + - = - + -

If the net heat-transfer rate is known for each surface in the N-surface enclosure,

1 1 1

( )
N N N

i j

i i j i ij i j
ijj j j

J J
Q Q A F J J

R
Æ

= = =

-
= = - =Â Â Â (13.38)

It is noteworthy that

For a black surface, 4
bi i iE J Ts= =  and R

i
 = 0 since e

i
 = 1.

For an insulated (or re-radiating) surface, 0Q =  and E
bi
 = J

i
.

It is well known that the number of unknowns must be equal to the number of equations to be solved. 

There are N linear algebraic equations and N unknown radiosities for an N-surface enclosure. Now, the 

radiosities J
1
, J

2
,..., J

N
 can be evaluated. The unknown heat-transfer rates can then be determined from 

Eq. 13.37. To determine the unknown surface temperatures Eq. (13.38) can be used. The temperatures of 

insulated or reradiating surfaces can be calculated from J
i
 = 4

iTs . A positive value for iQ implies net 

radiation heat-transfer rate from surface i to other surfaces in the enclosure whereas a negative value of 

iQ  indicates net radiation heat-transfer rate to the surface.

2. Electrical Network Analogy Method Draw a surface resistance associated with each surface 

of an enclosure and connect them with space resistances. Then solve the radiation problem by treating 

it as an electrical network problem where the radiation heat transfer replaces the current and radiosity 

replaces the potential.
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The resistance analogy for two surfaces

The network method is not preferable for enclosures with more than three or four surfaces since the 

analysis becomes quite involved.

13.11 ❏

A two-surface enclosure exchanging radiation only with each other is shown schematically in Fig. 13.20. 

Since there are only two surfaces, the net rate of radiation transfer from surface 1, 1Q , must equal the 

net rate of radiation transfer to surface 2, – 2Q , and both 

quantities must equal the net rate at which radiation is 

exchanged between 1 and 2. Accordingly,

1 2 12Q Q Q= - = (13.39)

The radiation network of this two-surface enclosure

consists of two surface resistances and one space 

resistance, as shown in Fig. 13.20. Using the electrical 

analogy the net rate of radiation heat transfer can be 

expressed as

12

1 2
1 2

1 12 2

Potential difference between points 1and 2

Total resistance between the same two points

b b

Q

E E
Q Q

R R R

=

-
= = = -

+ +
(13.40a)

Noting that, 4 4
1 1 2 2b bE T E Ts s= =

1 2
1 12 2

1 1 1 12 2 2

1 11
, , andR R R

A A F A

e e

e e

- -
= = = , we can write

4 4
1 2

12
1 2

1 1 1 12 2 2

( )
(W)

1 11

T T
Q

A A F A

s

e e

e e

-
=

- -
+ +

(13.40b)

This important result is applicable to any two gray, diffuse, and opaque surfaces that make up an enclosure. 

The shape factor F
12

 depends on the geometry and must be determined first. Note that F
12

 = 1 for all 

of these special cases.

To solve problems with two surface enclosures, the surface temperature must be known at one or 

both surfaces. If the surface temperature is not known at one of the surfaces, the net radiation leaving 

the surface, 1Q  must be known.

If the surrounding surfaces are large compared to the surface 1 and all radiation from the surface 1 

reaches the surroundings, then A
2
 >> A

1
 and F

12
 = 1, and Eq. (13.40b) reduces to

4 4
1 2

12
1

1 1 1

( )

1 1

T T
Q

A A

s

e

e

-
=

-
+
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which simplifies to 4 4
12 1 1 1 2( )Q A T Ts e= - (13.41)

The direction of the net radiation heat transfer between two surfaces i and j depends on the relative 

magnitudes of J
i
 and J

j
. A positive value for i jQÆ  indicates that the net heat transfer is from the surface 

i to the surface j. A negative value indicates the opposite.

Situations may arise for which the net radiation transfer rate at the surface iQ , rather than the 

temperature T
i
, is known.

13.12 ❏

Consider a grey cavity as shown in Fig. 13.21. Let e
1
, A

1
 and 

T
1
 be its emissivity, surface area, and temperature (in kelvin), 

respectively. The radiant energy will stream out of the cavity into 

the surrounding space through the opening of the cavity. Let the 

opening be covered by a hypothetical surface A
2
. This is a two-

surface enclosure problem. As the cavity is very small compared 

to the space outside, almost all the energy emitted by the cavity 

will be absorbed by space. The radiation entering the cavity from 

space can be assumed to be negligibly small. Hence, the space 

can be idealized to behave like a black body at the temperature 

of the cavity. Thus, the surface 2 is a black body at 0 K for the 

purpose of our analysis. It implies that the surface resistance of 

the surface 2 is zero, and radiosity of the surface 2 equals its emissive power, which is equal to zero 

since the temperature is 0 K. The radiation network for this configuration is also shown in Fig. 13.21.

Net energy radiated from a grey cavity is then expressed as

-
=

+ +
1 2

net
1 12 2

b bE E
Q

R R R
  (where R

1
 is surface resistance for the cavity and R

12
 is the space 

resistance)

or
s

e

e

=
-

+

4
1

net
1

1 1 1 12

1 1

T
Q

A A F

Surface 1: F
11

 + F
12

 = 1  (summation rule)

or F
12

 = 1 – F
11

Then,
s e s e s

e e e e e e

e

- -
= = =

- - - + - - + ++
-

4 4 4
1 1 1 1 11 1 1 1 11

net
1 1 11 1 1 11 1 11 1

1 1 1 11

(1 ) (1 )

1 1 (1 )(1 ) 1

(1 )

T A T F A T F
Q

F F F

A A F

Simplifying,

e s
e

-È ˘= Í ˙- -Î ˚
4 11

net 1 1 1
1 11

1
(W)

1 (1 )

F
Q A T

F
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●

Consider an enclosure comprising three opaque, diffuse, and grey surfaces, as shown in Fig. 13.22. 

Surfaces 1, 2, and 3 have areas A
1
, A

2
, and A

3
; emissivities e

1
, e

2
, and e

3
; and uniform temperatures T

1
,

T
2
, and T

3
, respectively. The radiation network of this geometry is constructed with each of the three 

surfaces and connects these surface resistances with space resistances.

Network representation of a three-surface enclosure

Relations for the surface and space resistances are given by Eqs. (13.28) and (13.33). The three end-

point potentials E
b1

, E
b2

, and E
b3

 are considered known, since the surface temperatures are specified. Then 

all we need to find are the radiosities J
1
, J

2
, and J

3
. The three equations for the determination of these 

three unknowns are obtained from the requirement that the algebraic sum of the currents (net radiation 

heat transfer) at each node must equal zero. That is,

- --
+ + =1 1 3 12 1

1 12 13

0bE J J JJ J

R R R
(13.42a)

- --
+ + =2 2 3 21 2

12 2 23

0bE J J JJ J

R R R
(13.42b)

- - -
+ + =1 3 2 3 3 3

13 23 3

0bJ J J J E J

R R R
(13.42c)

Once the radiosities J
1
, J

2
 and J

3
 are available, the net rate of radiation heat transfers at each surface 

can be determined from Eq. (13.34).

The set of equations above can be simplified further if one or more surfaces are special in some way. 

For example, s= = 4
i bi iJ E T  for a black or reradiating surface. Also, = 0iQ  for a reradiating surface. 
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Finally, when the net rate of radiation heat transfer iQ  is specified at surface i instead of the temperature, 

the term (E
bi
 – J

i
)/R

i
 should be replaced by the specified iQ .

In Fig. 13.22, the resistance analogy for an enclosure formed from three diffuse-grey surfaces is 

illustrated. Each surface is at a uniform temperature and radiosity. At each of the three node points, J
1
,

and J
2
, and J

3
, the sum of the incoming heat fluxes must equal the sum of the outgoing heat fluxes (see 

Eq. 13.35). This leads to the following three equations:

- -

- -

-

--
= + = +

- -
= + = +

- -
= + = +

1 31 2
1 12 13

1 2 1 3

2 3 2 1
2 23 21

2 3 2 1

3 1 3 2
3 31 32

3 1 3-2

J JJ J
Q Q Q

R R

J J J J
Q Q Q

R R

J J J J
Q Q Q

R R
(13.43)

The net heat transfer at each surface is related to the surface resistance by

s

s

s

- -
= =

- -
= =

- -
= =

4
1 1 1 1

1
1 1

4
2 2 2 2

2
2 2

4
3 3 3 3

3
3 3

b

b

b

E J T J
Q

R R

E J T J
Q

R R

E J T J
Q

R R

(13.44)

Rearranging, we have

4
1 1 1 1

4
2 2 2 2

4
3 3 3 3

J T Q R

J T Q R

J T Q R

s

s

s

= -

= -

= - (13.45)

Equations (13.43) and (13.45) are six equations with six unknowns. There are there unknown quantities: 

the radiosities, J
1
, J

2
, and J

3
. The other three are temperatures or net heat-transfer rates at a surface. At 

each surface, either T
i
 or iQ  must be known. Furthermore, the temperature must be known for at least 

one surface. For example, the six unknowns might be 1 2 3 1 2 3, , , , ,J J J T Q Q . Alternatively, the six unknowns 

might be J
1
, J

2
, J

3
, T

1
, T

2
, T

3
. However, the six unknowns cannot be 1 2 3 1 2 3, , , , ,J J J Q Q Q . In practical 

applications, the basic quantities of interest are surface temperature and net heat-transfer rate at a surface. 

The radiosity is only an intermediate variable required to determine radiation heat exchange.

Equations (13.43) and (13.45) have been written for three surfaces. The analysis can easily be extended 

to any finite number of surfaces.

In addition to the six equations in Eq. (13.43) and Eq. (13.45), we may also write (see Eq. 13.24)

+ + =1 2 3 0Q Q Q (13.46)

This equation is not linearly independent of the other six. It may be used in place of one of the six 

equations in the system. Note that all of the above equations apply to only steady-state systems.
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Special Cases
1. If the surface 3 is black then the surface resistance R

3
, is zero, and the radiosity is equal to the 

emissive power

=
33 bJ E

2. If the third surface is of large surface area (A
3
Æ ) then 

e

e

-
= 3

3
3 3

1
R

A
 approaches zero and again

=
33 bJ E

3. If the third surface is insulated, = - =3 3 3 3( ) 0Q A J G

Then J
3
 = G

3
.

Also, since e e

e e

= - +

= - +
3

3

3 3 3 3

3 3 3 3

(1 )

(1 )

b

b

J G E

J J E

It follows that =
33 bJ E
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13.13 ❏

A refractory surface is that surface which receives radiant energy and reaches a temperature that is just 

high enough to reradiate all the energy received. Consequently, the surface has no net radiant energy 

associated with it. Such surfaces are also sometimes called reradiating surfaces, but since the application 

is mostly in furnace calculations where such surfaces are made of refractory materials, the name refractory 

surface is usually used.

Some surfaces encountered in numerous practical heat-transfer applications are modelled as being 

adiabatic since their back sides are well insulated and the net heat transfer through them is zero. When 

the convection effects on the front (heat transfer) side of such a surface is negligible and steady-state 

conditions are reached, the surface must lose as much radiation energy as it gains, and thus = 0iQ . In 

such cases, the surface is said to reradiate all the radiation energy it receives, and such a surface is called 

a reradiating surface. Setting = 0iQ  in Eq. (13.27) yields

s= = 4 2(W/m )i bi iJ E T

Therefore, the temperature of a re-radiating surface under steady conditions can easily be determined 

from the equation above, once its radiosity is known. Note that the temperature of a reradiating surface 

is independent of its emissivity. In radiation analysis, the surface resistance of a reradiating surface is 

disregarded since there is no net heat transfer through it. (This is like the fact that there is no need to 

consider a resistance in an electrical network if no current is flowing through it.).

In an enclosure, reradiating surface is defined as one which is thermally isolated so that the net heat 

flow away from the surface is zero. Such a surface interacts with the other surfaces of the enclosure, 

absorbing and reflecting incident irradiation and re-emitting the absorbed energy. Through this interaction 

it is allowed to come to an equilibrium emissive power (or temperature) compatible with its radiative 

environment so that its net heat flow is zero. The refractory walls in a furnace which serve to reflect or 

absorb and re-radiate energy from the fire are examples of such surfaces.

Consider two grey surfaces connected by a third surface which is non-conducting. This three-surface 

enclosure, for which the third surface R, is reradiating, is shown in Fig. 13.23a, along with the radiation 

network. Surface R is presumed to be well insulated, and convection effects are assumed to be negligible. 

Hence, with RQ  = 0, the net radiation transfer from the surface 1 must equal the net radiation transfer 

to the surface 2. The network is a simple series–parallel arrangement.

Since the refractory wall does not exchange energy, its surface resistance will be zero and hence, the 

node J
R
 is not connected to a surface resistance.

As the reradiating surface is characterized by zero net radiation heat transfer ( RQ  = 0), 

s= = = 4
R R bR RG J E T . Therefore, if one knows the radiosity of a reradiating surface, one can easily 

find its temperature. In an enclosure, the equilibrium temperature of a reradiating surface is obtained by 

its interaction with the other surfaces, and it is independent of the emissivity of the re-radiating surface.

The network shown in Fig. 13.23(a) is further simplified as shown in Fig. 13.23(b).

We have

= +
+eq 1 12 1 1 2 2

1 1 1

1/ 1/ 1/R RR A F A F A F

Since the two active surfaces 1 and 2 are plane or convex, F
11

 = F
22

 = 0,

+ = fi = -

+ = fi = -
12 1 1 12

21 2 2 21

1 1

1 1

R R

R R

F F F F

F F F F
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Substituting these values, we get

-

= =
+ +

- + -È ˘+ Í ˙- - - -Î ˚

=
- -

+
- + -

- + -
=

- + - + - -

=

eq

1 1 2 1 12
2 21 1 12

1 12 2 21 1 2 12 21

1 2 12 21
1 12

2 21 1 12

2 21 1 12

1 12 2 21 1 12 1 12 1 2 12 21

1 1

1 1

1 1 (1 ) (1 )

(1 ) (1 ) (1 )(1 )

1

(1 )(1 )

(1 ) (1 )

(1 ) (1 )

(1 ) (1 ) (1 )(1 )

R

A F A F
A F A F

A F A F A A F F

A A F F
A F

A F A F

A F A F

A F A F A F A F A A F F

+ - -

- + - + - - +
1 2 2 21 1 12

2 2
1 2 12 12 21 1 12 12 1 2 12 21 12 21( ) ( ) (1 )

A A A F A F

A A F F F A F F A A F F F F

or

-

+ -
= =

- + - - + + -

+ - + -
= =

- + - - + -

1 2 1 12
eq 1 12 2 212 2

1 2 12 12 21 12 21 12 21 1 12 12

1 2 1 12 1 2 1 1 2

2 2 2
1 2 21 1 12 12 1 2 2 21 1 12 1 12

2
( )

( 1 ) ( )

2 2

(1 ) ( ) ( )

A A A F
R A F A F

A A F F F F F F F A F F

A A A F A A A F

A A F A F F A A A F A F A F

As A
2
F

21
 = A

1
F

12
, one gets

Therefore,
e e

e e

+ -
=

-

-
=

- - + -
+ +

-

1 2

1 2 1 12
eq 2

1 2 1 12

1
1 2 1 2 1 12

2
1 1 2 2 1 2 1 12

2

( )

1 1 2

( )

b b

A A A F
R

A A A F

E E
Q

A A A F

A A A A A F

i.e.,
s

e e

-
=

+ -Ê ˆÊ ˆ Ê ˆ- + - +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ -Ë ¯

4 4
1 1 2

1
1 1 2 1 12

2
1 2 2 2 1 12

( )

21 1
1 1

A T T
Q

A A A A F

A A A F

(13.47)

If the two grey bodies are replaced by black bodies then we have e
1
 = 1 and e

2
 = 1.

Then, = =1 2 12Q Q Q  is given by

s
s

È ˘- -
= = - Í ˙+ - + -Î ˚

-

4 4 2
4 41 1 2 2 1 12

1 1 1 2
1 2 1 12 1 2 1 13

2
2 1 12

( )
( )

2 2

A T T A A F
Q A T T

A A A F A A A F

A A F

(13.48)

The term 
Ï ¸-Ô Ô
Ì ˝

+ -Ô ÔÓ ˛

2
2 1 12

1 2 1 122

A A F

A A A F
 represents the shape factor of the surface 1 with respect to the surface 2, 

when the two surfaces are connected by a reradiating surface.



Radiation Heat Exchange Between Surfaces 991

If A
1
 = A

2
 then the shape factor simply becomes

Hence, s

- - +
= = +

- -

+Ê ˆ
= - ¥ Á ˜Ë ¯

2
1 12 1 12 12

12
1 1 12 1 12

4 4 12
1 1 1 2

(1 ) (1 )(1 )
(1 )/2

2 2 2 (1 )

1
( )

2

A F A F F
F

A A F A F

F
Q A T T (13.49)

To find the temperature of the adiabatic (reradiating) surface, we have = = -2 20 ( )R R R RQ A F J J

By symmetry: F
R1

 = F
R2

 and for black bodies,

= =
1 21 2,b bJ E J E

Also, R
R
 = E

bR

Hence, - + - =
1 2

( ) ( ) 0bR b b bE E E E

or s s s= + fi = +
1 2

4 4 4
1 22 2bR b b RE E E T T T

The radiosity of the reradiating surface J
R
 can be found from the radiation balance:

- -
- =1 2

1 1 2 2

0
(1/ ) (1/ )

R R

R R

J J J J

A F A F
(13.50)

The temperature of the reradiating surface may then be readily determined from 

s =4
R RT J

It may be noted that in the above analysis, only the single shape factor between the two active surfaces, 

F
1–2

, is needed, and the configuration of the adiabatic surface is immaterial as long as it does not obstruct 

the view of A
1
 and A

2
. Again, the reduction to the case when the active surfaces are black is obvious.

Furthermore, the expressions derived above are applicable only to those surfaces which do not ‘see’ 

themselves, that is, flat or convex surfaces for which F
11

 = F
22

 = 0.

13.14 ❏

1. All Surfaces are Diffuse-Grey (Fig. 13.24)

Net radiant heat flow rate from the surface 1 is

- -- -
= = = =1 1 1 31 2 1 4

1
1 12 13 14

bE J J JJ J J J
Q

R R R R

Similarly,

- - - -
= = = =

- - - -
= = = =

2 2 2 3 2 4 2 1
2

2 23 24 21

3 3 3 4 3 1 3 2
3

3 34 31 32

b

b

E J J J J J J J
Q

R R R R

E J J J J J J J
Q

R R R R

- -- -
= = = =4 4 4 34 1 4 2

4
4 41 42 43

bE J J JJ J J J
Q

R R R R

Note that R
12

 = R
21

, R
13

 = R
31

, R
14

 = R
41

R
23

 = R
32

, R
24

 = R
42

, R
34

 = R
43
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Network representation of four diffuse-grey surfaces Fig. 13.25

surface enclosures

2. All Surfaces are Black Refer Fig. 13.25 showing the radiation network for four black surface 

enclosures.

In this case, E
b1

 = J
1
, E

b2
 = J

2
, E

b3
 = J

3
, and E

b4
 = J

4

3. Four Surface Enclosures with One Surface Black and One Surface Adiabatic Refer 

Fig. 13.26. Clearly, =4 0Q  and E
b4

 = J
4
 and E

b1
 = J

1
 but π1 0Q

adiabatic surface
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13.15 ❏

It is possible to reduce the amount of radiant energy exchange between two surfaces by placing a thin, 

opaque, high-reflectivity (low emissivity) barrier (thin plate or shell) between the surfaces. This introduces 

additional surface and space resistances into the thermal circuit which reduces considerably the net 

radiation heat transfer. The lower the emissivity of the shield, the higher the surface resistance 
e

Ê ˆ-Á ˜Ë ¯
1 1

1
A

.

Remember that the radiation shield neither adds nor removes any energy from the system.

Multiple radiation shields are extensively used in cryogenic and space applications. In temperature 

measurement of fluids, the use of shield is common to reduce the error caused by the radiation effect.

Let us examine the benefit derived in terms of the reduction in radiation heat exchange by using a 

radiation shield.

The emissivities of the two surfaces of the shield may be same or different depending on the surface 

characteristics. Let the emissivity of one side of the shield facing plate 1 is e
3,1

 and that on the opposite 

side facing the plate 2 is (e
3,2

). If the emissivity on both sides of the shield is same then e
3,1

 = e
3,2

 = e
3
.

The two large parallel plates are maintained at temperatures T
1
 and T

2
 (T

1
 > T

2
). The equilibrium (steady-

state) temperature of the shield, T
3
 will be between T

1
 and T

2
.

The resistances are connected in series, and the rate of radiation heat transfer is given by 

e ee e

e e e e

-
=

- -- -
+ + + + +

1 2
12,oneshield

3,1 3,21 2

1 1 1 12 3,1 3 3,2 3 3 32 2 2

1 11 11 1

b bE E
Q

A A F A A A F A

(13.51)

Clearly, F
13

 = F
32

 = 1 and A
1
 = A

2
 = A

3
 = A for large parallel plates.

It follows that

s

e ee e

e e e e

s

e ee e

e e e e

-
=

- -È ˘- -
+ + + + +Í ˙

Î ˚

-
=

- -È ˘- -
+ + + + +Í ˙

Î ˚

4 4
1 2

12,oneshield
3,1 3,21 2

1 3,1 3,2 2

4 4
1 2

3,1 3,21 2

1 3,1 3,2 2

( )

1 11 11
1 1

( )

1 11 1
1 1

T T
Q

A

A T T

s

e e e e

-
=
Ê ˆ Ê ˆ+ - + + -Á ˜ Á ˜Ë ¯ Ë ¯

4 4
1 2

12,oneshield

1 2 3,1 3,2

additional resistance
for one shield

( )

1 1 1 1
1 1

A T T
Q (13.52)

The radiation heat transfer through large parallel plates separated by N radiation shields can now be 

expressed as

s

e e e e e e

-
=
Ê ˆ Ê ˆ Ê ˆ+ - + + - + + -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

4 4
1 2

12, shields

1 2 3,1 3,2 ,1 ,2

additional resistance for shields

( )

1 1 1 1 1 1
1 1 1

N

N N

N

A T T
Q (13.53)
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It is important to recognize that the resistances associated with the radiation shield become very large 

when the emissivities e
3,1

 and e
3,2

 are very small.

In the absence of any radiation shield or screen, the network representation is shown in Fig. 13.27.

Radiation network for a pair of two large parallel plane surfaces without a radiation shield

The net rate of radiation heat transfer between surfaces 1 and 2 without a radiation shield is given by

s

e e

-
=

+ -

4 4
21 2

12,without

1 2

( )
(W/m )

1 1
1

A T T
Q (13.54)

If the emissivities of all surfaces are equal, including the N shields and the two large parallel planes, 

there will be (N + 1) spaces created by (N + 2) parallel planes. The space resistance of each space will 

be
1

A
. Also there will be two surface resistances for the original two surfaces plus 2N surface resistances 

for the N shields. Each surface resistance will be equal to 
e

e

-(1 )

A
.

Hence, the total resistance with N shields will be

e

e e

e e

È ˘-Ê ˆ Ê ˆ Ê ˆ= + + + = + + + -Á ˜ Á ˜ Á ˜Í ˙Ë ¯ Ë ¯ Ë ¯Î ˚

È ˘ Ê ˆ= + + - = + -Á ˜Í ˙ Ë ¯Î ˚

tot,with

space resistance surface resistance

tot,with

1 1 1 1
( 1) (2 2) ( 1) 2( 1) 1

1 2 2 1
( 1) 1 2 ( 1) 1

R N N N N
A A A

R N N
A A

Without shields, the total resistance is

\

e

e e

e

e

-Ê ˆ Ê ˆ= + = -Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ-Á ˜Ë ¯
= = =

+Ê ˆ+ -Á ˜Ë ¯

tot,without

withshields without

without shields with

1 1 2 1
2 1

2 1
1

1

2 1 1
( 1) 1

R
A A A

Q R A

Q R N
N

A
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This results in the reduction of radiation heat transfer by a factor of 
Ê ˆ
Á ˜Ë + ¯

1

1N
 when there are N shields.

s

e e

-
= =

+Ê ˆ+ + -Á ˜Ë ¯

4 4
1 2

12, shields 12,noshield

( ) 1

1 1 1
( 1) 1

N

A T T
Q Q

N
N

(13.55)

Therefore, when all emissivities are equal, one shield reduces the rate of radiation heat transfer to one-half,

9 shields reduce it to one-tenth, and 19 shields reduce it to one-twentieth (or 5 percent) of what it was 

without any shield. Note that the exact position of the shield between the plates does not affect the result. 

Also, note the assumption that the reduction in heat transfer does not affect the plate surface temperatures.

If the emissivity of the shield (3) is much less than that of the original surfaces (i.e., if e
3
 << e

1
 or 

e
2
) then the net radiative heat transfer will be reduced by a considerably larger amount than would be 

the case when all emissivities are same. This principle is utilized in multi-layer insulation in which each 

layer is an aluminium foil or mylar (plastic) with e ª 0.05. Several such layers can be prepared in the 

form of a blanket.

The equilibrium temperature of the radiation shield T
3
 in Fig. 13.28 can be determined by expressing 

Eq. (13.52) for 13Q  or 32Q  (which involves T
3
) after 12Q  from Eq. (13.52) and noting that = =12 13 32Q Q Q

under steady state conditions.

Energy balance: =13 32Q Q

s s

e e e e

- -
=

+ - + -

4 4 2 4
1 3 3 2

1 3,1 3,2 2

( ) ( )

1 1 1 1
1 1

A T T A T T

If e e e

e e e e

= =

È ˘ È ˘- + - = - + -Í ˙ Í ˙
Î ˚ Î ˚

3,1 3,2 3

4 4 2 4
1 3 3 2

3 2 1 3

1 1 1 1
( ) 1 ( ) 1

L M

T T T T

or - = -4 4 4 4
1 3 3 2LT LT MT MT

or + = +

È ˘+
= Í ˙

+Î ˚

4 4 4
3 1 2

1/4
4 4

1 2
3

( )L M T LT MT

LT MT
T

L M

If e
1
 = e

2
 = e

3
 = e

Then
e

= = -
2

1L M

Radiation shield temperature,

or { }

Ï ¸+
Ì ˝=
Ó ˛

= +

1/4
4 4

1 2
3

1/4
4 4

3 1 2

( )

2

1
( )

2

L T T
T

L

T T T (13.56)
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Radiation network for two parallel plane surfaces with a radiation shield between them

ee

e e

e e

e e

--
= = =

-

- -
= = =

3,11
1 3,1 32

1 1 3,1 3 3 32

3,2 2
13 3,2 2

1 13 3,2 3 2 2

11 1

1 11

R R R
A A A F

R R R
A F A A

Radiation Shield in Concentric Long Cylinders and Concentric Spheres The effect of radiation 

shields between concentric cylinders or concentric spheres can be determined in a similar fashion: With 

one shield, Eq. (13.51) can be used by noting F
13

 = F
32

 = 1 for both cases and replacing with respective 

areas A
1
, A

2
, and A

3
.

In the case of concentric tubes or coaxial cylinders, A = p DL and for concentric spheres, A = pD2.

To find the temperature of the shield, the energy balance becomes: =13 32Q Q .

s s

e e e e

- -
=

Ê ˆ Ê ˆ+ - + -Á ˜Á ˜ Ë ¯Ë ¯

4 4 4 4
1 1 3 3 3 2

31

1 3 3,1 3,2 2 2

( ) ( )

1 1 1 1
1 1

A T T A T T

AA

A A

13.16 ❏

Gas temperature measurement by means of a thermocouple involves a radiation error so that the 

temperature measured is less than the true gas temperature. When a thermocouple is placed in a fluid 

stream, heat transfer takes place between the couple and the fluid by convection until the couple reaches 

the fluid temperature. But when the couple is surrounded by surfaces that are at a temperature different 

from the fluid, there is radiation exchange between the couple and the surrounding surfaces. When the 

convection and radiation balance each other, the thermocouple indicates a temperature which is less than 

the true fluid temperature. To account for the radiation effect and to determine the error in temperature 

measurement, consider a thermocouple placed in a fluid flowing through a large duct whose walls are at 

a lower temperature than that of the fluid (Fig. 13.29).
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Error in measurement of temperature caused by radiation effect

Under equilibrium conditions:

(Heat gain by convection) = (Heat loss by radiation)

i.e., e s= - = -4 4
conv rad or ( ) ( )c c c c c wQ Q hA T T A T T

The error in temperature measurement is

or
e s -

- =
4 4( )c c w

c

T T
T T

h
(13.57)

where

T  = true temperature of the fluid (K)

T
c
 = temperature measured by the thermocouple (K)

T
w
 = temperature of the surrounding duct wall (K)

h = convection heat transfer coefficient (W/m2 K)

e
c
 = emissivity of the thermocouple

It is obvious that to reduce this error, the convection heat-transfer coefficient h should be small and the 

emissivity of the surface of the thermocouple should be large. Hence, the thermocouple is usually coated 

with a material of high reflectivity (low emissivity) to reduce the error. This error can also be considerably 

reduced by placing a cylindrical shield over the thermocouple (or other temperature-measuring device)

in such a manner that the gas flow over the thermocouple is not hampered but the radiation from the 

thermocouple to the wall is partially blocked.

The above equation is valid only under the assumption of very large or black surroundings, and large 

errors in temperature measurement may result in actual practice. The thermocouple and a low emissivity 

radiation shield are arranged as shown in Fig. 13.30.

Radiation shield to reduce the error in temperature measurement



998 Heat and Mass Transfer

With the radiation shield in place, radiation from the thermocouple is determined by the temperature of 

the shield. If the shield is long compared to its diameter, the following approximations can be made:

Radiation from the shield to the surroundings is totally from the outer surface of the shield.

Radiation from the thermocouple bead is entirely to the inner surface of the shield, and is negli-

gible compared to the radiation from the outer surface of the shield to the surroundings (due to the 

surface areas and temperature differences involved).

Convection occurs both inside and outside the shield.

The internal resistance of the shield is negligible (the temperature on both sides of the shield is 

the same).

Under these assumptions, an energy balance yields

e s- = -4 42 ( ) ( )s s s s s whA T T A T T (13.58)

where A
s
 is the area of the shield and e

s
 is its emissivity. The factor 2 arises since convection occurs 

both outside and inside the shield. The temperature of the shield, T
s
, can be found from this equation by 

trial and error.

An energy balance between convection to the thermocouple bead and radiation from the bead to the 

shield (assuming it to be a small body in a large gray enclosure) gives

e s- = -4 4( ) ( )c c c c c shA T T A T T (13.59)

The temperature, T
c
, can be calculated from this equation. The temperature error with shield will be 

found to be considerably less than tha without shield. The lower the value of e
s
, the greater will be the 

reduction in error.

13.17 ❏

Heat transfer from any surface usually takes place by convection as well as radiation. Typical examples 

of such practical situations include heat loss from a steam pipe passing through a room, heat loss from 

the door and walls of a furnace, and hot combustion gases passing through a duct. In such cases, the 

heat-transfer calculations become complicated due to the fact that

The rate of convection heat transfer is proportional to (T – T ), while

The rate of radiation heat transfer is proportional to -4 4
sur( )T T  or -4 4( )T T  if T

sur
ª T .

The analysis becomes simpler by expressing the radiation heat transfer radQ  in the same manner as the 

convection heat transfer, convQ .

One can then write: = -rad rad ( )sQ h A T T (A)

where radQ  = rate of heat flow by radiation [W]

A
s
 = surface area (m2)

h
rad

 = radiation heat transfer coefficient [W/m2 K]

The heat-transfer rate by radiation from the surface to the large surroundings is expressed as:

s e= -4 4
rad ( )sQ A T T

Rearranging, one obtains

s e= + + -2 2
rad [( )( )]( )sQ A T T T T T T (B)
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Comparing Eq. (A) with Eq. (B), one can express the radiation heat-transfer coefficient as

se= + +2 2 2
rad ( )( ) (W/m K)h T T T T (13.60)

But in many cases such as composite slabs, composite cylinders, composite spheres, etc., one often 

does not know the surface temperature and, hence, it becomes very difficult to estimate the value of h
rad

since the analysis involves trial and error. However, with the help of a little approximation, the trial-

and-error method can be avoided as follows.

s e s e
Ï ¸Ô ÔÊ ˆ= - = -Ì ˝Á ˜Ë ¯Ô ÔÓ ˛

4
4 4 4

rad rad( ) or 1s s

T
Q A T T Q A T

T

Let (T – T ) ∫ q or T = T  + q

Then,
q q qÈ ˘ + Ï ¸Ê ˆÊ ˆ Ê ˆ È ˘- = - = + - = + + -Í ˙ Ì ˝Í ˙Á ˜ Á ˜Á ˜ Ë ¯ Ë ¯Ë ¯Í ˙ Î ˚Ó ˛Î ˚

44 4
4

1 1 1 1 1 1
TT

T T TT

[As q < < < T , the terms with higher powers of 
q

T
are neglected.]

It follows that

q qÈ ˘ È ˘Ê ˆ Ê ˆ- @ + - - @Í ˙ Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙ Í ˙Î ˚ Î ˚

4 4
4 4

1 1 1 or 1
T T

T T T T

The rate of radiation heat transfer is then given by

\

q
s e s e q

s e

È ˘@ @Í ˙
Î ˚

@ -

4 3
rad

3
rad

4
4

4 ( )

s s

s

Q A T A T
T

Q A T T T

Comparing the above equation with Eq. (A), one gets,

se= 3 2
rad 4 (W/m K)h T (13.61)

It is worth noting that unlike convection heat-transfer coefficient, the radiation heat-transfer coefficient 

is strongly dependent on temperature.

The total heat transfer rate, = + = + - = -conv rad conv rad( ) ( ) ( )s sQ Q Q h h A T T hA T T  where h is the 

combined heat-transfer coefficient.

13.18 ❏

Consider a gas layer (participating medium) of thickness L. A monochromatic beam of intensity I
l,0

 is 

incident on the medium, which is attenuated (reduced) as it propagates due to absorption. The decrease 

in the intensity of radiation as it passes through a layer of thickness dx is proportional to the intensity 

itself and the thickness dx.

This decay in radiation intensity expressed as the local intensity where I
l
,
x
 and the proportionality 

constant called the monochromatic absorption or extinction coefficient.
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Figure 13.31 shows a monochromatic beam of intensity 1
l,0

incident on the gas layer at x = 0. Its intensity reduces as a 

result of absorption. At x = L, intensity I
l, L

 is less than I
l,0

.

l l l= -, ,x xdI k I dx

The absorption coefficient k
l

has the units of m–1.

Separating variables in the above equation and integrating 

over the limits x = 0 where I
l,x

 = I
l,0

 and x = L where I
l,x

 = I
l,L

yields
l

l
l

= -,

,0

ln
LI

k L
I

 where k
l
 is assumed to be independent 

of x.

The monochromatic transmissivity of the gas can be defined 

as the ratio of the intensity of radiation leaving the medium 

to that entering the medium. That is,

ll
l

l

t -= =,

,0

L k L
g

I
e

I

This exponential decay, known as Beer’s law, is a valuable tool in radiation analysis.

Note that t
l
 = 1 when no radiation is absorbed and thus radiation intensity remains constant. Also, the 

monochromatic transmissivity of a medium represents the fraction of radiation transmitted by the medium 

at a given wavelength.

The amount of radiant energy absorbed in the length L is (I
l,0

– I
l,L

) and the ratio of energy absorbed 

to incident energy gives the monochromatic absorptivity of the gas, a
g ◊ l. Thus,

l
l l l l lt a-- = - = - =L

,0 , ,0( )/ 1 1
k

L g gI I I e (13.62)

Then, from the Kirchhoff’s law, since absorptivity is equal to emissivity, we have

l le = - -1 exp( )g k L      (monochromatic emissivity of gas)

For an optically thick medium (a medium with a large value of k
l

L), e
gl
ª a

gl
ª 1. For k

l
L = 5, for 

example, e
gl

 = a
gl

 = 0.993. Therefore, an optically thick medium emits like a blackbody at the given 

wavelength. As a result, an optically thick absorbing-emitting gas with no significant scattering at a given 

temperature T
g
 can be viewed as a black surface at T

g
 since it will absorb essentially all the radiation 

passing through it, and it will emit the maximum possible radiation that can be emitted by a surface at 

T
g
, which is E

bl
(T

g
).

i.e., l la e= = 1g g

If the radiation is not parallel, the various beams will travel different distances through the medium 

and will be attenuated by different amounts. The overall attenuation can still be described by Eq. (13.62) 

if an appropriate average length (the mean or effective beam length, L) is chosen. In general, the mean 

beam length is a function of the geometry and the attenuation coefficient.

Note that the monochromatic absorptivity, transmissivity, and emissivity of a medium are dimensionless 

quantities, with values less than or equal to 1. The monochromatic absorption coefficient of a medium 

and thus (e
l
, a

l
, and t

l
), in general, vary with wavelength, temperature, pressure, and composition.

Absorption of a radiation beam 
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13.19 ❏

We restricted our attention so far to radiation heat transfer between surfaces that are separated by a non-

participating medium which does not emit, absorb, or scatter radiation and is completely transparent to 

thermal radiation. A vacuum is ideally suited and air at ordinary temperatures and pressures is considered a 

non-participating medium. Radiation calculations involve complexity if a participating medium is present.

A participating medium emits and absorbs radiation throughout its entire volume. That is, gaseous 

radiation is a volumetric phenomenon, and thus it depends on the size and shape of the body. This is the 

case even if the temperature is uniform throughout the medium.

Gases emit and absorb radiation at a number of narrow wavelength bands. This is in contrast to 

solids, which emit and absorb radiation over the entire spectrum. Therefore, the grey assumption 

is usually not appropriate for a gas.

The emission and absorption characteristics of the components of a gas mixture also depend on the 

temperature, pressure, and composition of the gas mixture. Hence the presence of other participating 

gases also affects the radiation characteristics of a particular gas.

We will consider only those gases which emit and absorb radiation, specially H
2
O and CO

2
 since they 

are most commonly encountered in practice

We have discussed so far the radiant heat exchange between surfaces in an enclosure, separated by 

perfectly transparent or a non-participating medium. This assumption is justified for monatomic gases 

like argon and helium, and for diatomic gases such as oxygen and nitrogen. These gases are inert to 

thermal radiation. However, for polyatomic gases like CO
2
, H

2
O (vapour), NH

3
, and hydrocarbon gases 

which absorb and emit radiation the assumption is not valid. Moreover, radiation from solids and liquids 

covers the entire wavelength range while radiation from gases cover selected wavelength bands. Gaseous 

radiation is concentrated in specific wavelength intervals (called bands). As mentioned earlier, radiation 

from solids is a surface phenomenon but that from gases is a volumetric phenomenon.

The absorption (or emissiion) does not take place continuously over the entire spectrum. Clearly the 

wide radiation bands of relatively strong absorption properties are not grey.

The shape and size of a gas volume affects the gas emissivity. This dependence is reflected through 

the mean beam length. The emissivity of a gas also depends upon its concentration which is related to 

the partial pressure of the gas. When a gas mixture is considered, the total pressure of the gas (if it is a 

mixture of several gases) and the concentration of other gases also influence absorptivity and emissivity 

since the absorption bands of these constituents may interfere with the absorption bands of the gas.

A common engineering calculation is one that requires determination of the radiant heat flux from 

a gas to an adjoining surface. Despite the complicated spectral and directional effects inherent in such 

calculations, a simplified procedure may be used.

We must note that the emissivity of a gas also depends on the mean length an emitted radiation beam 

travels in the gas before reaching a bounding surface, and thus on the shape and the size of the gas 

body involved.

Results for the emissivity of water vapour in a mixture of non-participating gases are plotted in Fig. 

13.33 as a function of the gas temperature, for a total pressure of 1 atm, and for different values of the 

product of the partial pressure of H
2
O vapour and the mean path length of the beam, L

1
 which may be 

interpreted as the radius of a hemi-spherical gas volume radiating to the centre of the base. 

Emissivity at a total pressure P other than P = 1 atm is determined by multiplying the emissivity 

value at 1 atm by a pressure correction factor C
w

obtained from Fig. 13.34 for water vapour. That is,

e e= ,1atmw w wC (13.63)
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Temperature (K)
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2 L

0.24
0.180.120.091

0.0610.046

0.0240.018

P

= 0.0030 atm
m

CO
2 L

0.0120.00910.00610.0046P

=
0.030 atm

m

CO
2 L

0.00240.00180.00150.00120.00091

0.00061

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.2

0.3

E
m
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v
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, 
o
r

e
e

C
O

3
c
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250 500 750 1000 1250 1500 1750 2000 2250 2500 2750

Temperature (K)

0.007

0.008

0.009

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P

=
0.00030

atm
m

H
O2

L

P
= 6.10 atm m

H O2 L

3.05

1.52
0.91

0.61
0.460.370.300.24

P

= 0.18 atm
m

H
O2 L

0.15
0.12

0.091
0.076

0.061

0.046
0.0370.030

P

= 0.024 atm
 m

H
O2
L

0.0210.0180.0150.012

0.011

0.0091

0.0076

0.0061

0.0046

0.0037
0.0030

0.0021

E
m

is
si

v
it

y,
e H

0
2
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w

P(atm)
0.05 0.08 0.1 0.2 0.3 0.5 0.8 1.0 2.0 3.0 5.0

0.3

0.4

0.6

0.8

1.0

1.5

2.0

P
re

ss
u
re

 c
o
rr

ec
ti

o
n
,
C
c

0.152 0.31 0.76

0.0760.037
0.015

P L
P

L

c
=

= 0 – 0.0061 atm m

CO2

P L P L
c

= = 0.76 atm m
CO2

0 – 0.00610.015
0.037

0.076
0.152

0.31

c

Note that C
w
 = 1 for P = 1 atm and thus (P

w
 + P)/2 @ 0.5. Emissivity values are presented in a similar 

manner for a mixture of CO
2
 and non-participating gases in Fig. 13.32 and 13.35.

If the CO
2
 and H

2
O gases appear together in a mixture with other non-radiating gases, the emissivity 

of each participating gas can still be determined using its partial pressure, but the effective emissivity of 

the mixture cannot be determined by simply adding the emissivities of individual gases. In such a case, 

the total gas emissivity can be expressed as
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e e e e e e e= + - D = + - D,1atm ,1atmg c w c c w wC C (13.64)

where De is the emission correction factor to account for the overlapping of the carbon dioxide and water 

vapour emission bands and can be obtained form Fig. 13.36.

Similarly, in the presence of both water vapour and carbon dioxide, the total gas absorptivity can be 

expressed as

a a a a= + - Dg c w (13.65)

The pressure correction factors C
c
 and C

w
 are evaluated using P

c
L and P

w
L, as in emissivity calculations.

The absorptivity of the gas depends not only on the gas temperature, but also on the source temperature 

of the radiation being absorbed, T
s
.

For water vapour and carbon dioxide, the required gas absorptivity a
g
 may be evaluated from the 

emissivity by expressions of the following form:

Water vapour:

a
Ê ˆ Ê ˆ

= ¥Á ˜ Á ˜Ë ¯ Ë ¯

0.45

,
g s

w w s w
s g

T T
C T P L

T T
(13.66a)

Carbon dioxide:

a e
Ê ˆ Ê ˆ

= ¥Á ˜ Á ˜Ë ¯ Ë ¯

0.65

,
g s

c c c s c
s g

T T
C T P L

T T
(13.66b)

where Da = De and is determined from Fig. 13.36 at the source temperature T
s
.

E
m

is
si

v
it

y
 c

o
rr

el
at

io
n
,
De

0.061

0

( + ) = 1.52 atm mP P Lc w

T = 400 K

0.091
0.15
0.23

0.31

0.46

0.61

0.91

0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

( + ) = 1.52 atm mP P Lc w

T = 811 K

0.061
0.091

0.15

0.23

0.31

0.46

0.61
0.91

E
m

is
si

v
it

y
 c

o
rr

el
at

io
n
,
De

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

( + ) = 1.52 atm mP P Lc w

T = 1200 K and above

0.061

0.091

0.15

0.23

0.31

0.46

0.61

0.91

(a)

P

P P

w

+c w

P

P P

v

+c w

P

P P

u

+c w

(b) (c)

De for mutual absorption when both CO
2
 and H

2

Table 13.4 gives a few mean beam length values, L for certain geometries of a gas body used in 

Figs. 13.32 to 13.36.
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Table 13.4

S.No Geometry of gas body Mean beam length, L

1. Sphere of diameter D radiating to its inner surface 0.65 D

2. Hemisphere of radius R radiating to the centre of its base R

3. Infinitely long circular cylinder of diameter D radiating to inner cylindrical 

(curved) surface

0.95 D

4. Semi-infinite circular cylinder of diameter D radiating to (a) its entire base, 

and (b) the element at the centre of its base

0.65 D

0.90 D

5. Infinite semi-circular cylinder of radius R radiating to the centre of its base 1.26 R

6. Circular cylinder of height equal to diameter D radiating to (a) the entire 

surface,and (b) the centre of its base

0.60 D

0.70 D

7. Cube of edge (side length) L radiating to any of its six faces 0.6 L

8. Arbitrary shape of volume –V  and surface area A
s
 radiating to surface 3.6 ( –V/ sA )

When the total emissivity of a gas e
g
 at a temperature T

g
 is known, the emissive power of the gas can 

be expressed as e s= 4
g g gE T .

Then the rate of radiation energy emitted by a gas to a bounding surface of area A
s
 becomes

e s= 4
,g e g s gQ A T (13.67)

If the bounding surface is black at temperature T
s
, the surface will emit radiation to the gas at a rate 

of s 4
s gA T  and the gas will absorb all this radiation at a rate of a s 4

g s sA T , where a
g
 is the absorptivity 

of the gas. Then the net rate of radiation heat transfer between the gas and surrounding black surface is 

given by

s e a= -4 4
net ( )s g g g sQ A T T          (Black enclosure) (13.68)

If the surface is not black, the analysis becomes quite complex because of the radiation reflected by the 

surface. However, for nearly black surfaces with an emissivity e
s
 > 0.7, we have

e
e s e a

+Ê ˆ
= = -Á ˜Ë ¯

4 4
net,gray ,eff net,black

1
( ) ( )

2

s
s s g g g sQ Q A T T Grey enclosure (13.69)

The functional notation means that the emissivity of CO
2
 is evaluated at the temperature of the source T

s

and an adjusted optical depth P
c
L(T

s
/T

g
) and then multiplied by the ratio T

g
/T

s
 raised to the power 0.65. 

Remember that the temperature ratios must always be calculated with absolute temperatures in kelvin.

For water vapour the procedure is similar to that for CO
2
 except that the ratio of absolute temperatures 

T
g
/T

s
 is raised to a different power as follows:

a
Ê ˆ Ê ˆ= ¥Á ˜ Á ˜Ë ¯ Ë ¯2

045

( , , ) ,
g s

g H O g s wL gw s wL
s s

T T
T T P E T P

T T
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Illustrative Examples

(A) Shape Factor

 Calculate the solar constant from the following data:

 Diameter of the sun = 1.39 ¥ 109 m

 Diameter of the earth = 1.27 ¥107 m

 Distance between the sun and the earth = 1.495 ¥ 1011 m

 Effective black body temperature of the sun = 5779 K.

Solution

Known Diameters of sun and earth. Distance between sun and earth and the surface temperature 

of the sun.

Find Solar constant, G
S
.

1

2Ds = 1.39 10 m¥ 9

T1 = 5779 K

Earth <<E Eb b2 1

since <<T Tearth sun

Sun
q2

r = 1.495 10 m¥ 11 q = = tan = sin–1 ª1 2
–1q

D

r

s

2

D

r

s

2

D

r

s

2

=
1.39 10 m

2 1.495 10 m

¥ 9

11¥ ¥
= 0.00465 rad

cos = cos cos(0.00465 rad) 1q q1 2 ª ª

Schematic

Assumptions (1) The sun is a black body. (2) q
1
 = q

2
ª 0. (3) T

2
 << T

1
 and ª

2
0bE .

Analysis The solar constant, G
S
, is the energy from the sun, per unit time, received on a unit area 

of surface perpendicular to the direction of propagation of the radiation, at mean earth sun 

distance, outside the earth’s atmosphere.

 The sun appears as a circular disc of area p 2/4sD . The net radiant heat exchange between 

the differential areas dA
1
 and dA

2
 on the sun (1) and the earth (2) is given by

q q p= -
1 2

2
12 1 2 1 2( )(cos cos / )b bdQ E E dA dA r

 The earth sun distance (r) being very large, q
1
 and q

2
 may be considered zero (the sun 

rays fall normal on the earth surface). The emissive power of the earth is also vanishingly 

small as compared to that of the sun.

 Thus, solar constant, G
s

s ps

p p
-

= = =

¥ ¥
=

¥

Ê ˆ= =Á ˜Ë ¯

4 24
12 1 1

2 2
2

8 2 4 4 9 2

11 2

24

2

( /4)

(5.67 10 W/m K )(5779 K) (1.39 10 m) /4

(1.495 10 m)

5.67(57.79) 1.39 W
/

4 149.5 m

s sT DdQ T dA

dA r r

2
1367 W m (Ans.)

Illustrative Examples
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b

ca

A1 A2

A3

a

SchematicA
1
 and A

3
 are two rectangular flat surfaces having a 

common edge and inclined at an arbitrary angle a to each other. They are 

very long along the common edge and have lengths of ab and ac respectively 

in the other directions. Show that

-
+ -

=1 3

(ab) (ac) (bc)
F

2ab

Solution

Known Two inclined rectangular flat surfaces with a common edge.

Find Shape factor, F
1–3

.

Assumption Diffuse grey surfaces.

Analysis Let us introduce and define a hypothetical surface A
2
 of length bc joining lengths ab and 

ac of surfaces A
1
 and A

3
 to form an enclosure.

 We note that A
1
, A

2
, and A

3
 are flat surfaces and form an enclosure.  

0
 Surface A

1:
+ + =11 12 13

flat surface

1F F F (summation rule)

 Also, - -=1 1 2 2 2 1A F A F (reciprocity rule)

Hence, - - -= - = 2
1 3 1 2 2 1

1

1 1 –
A

F F F
A

  
0Surface A

2
: - - -+ + =2 1 2 2 2 3

flat surface

1F F F (summation rule)

\ - -= -2 1 2 31F F

 Hence, - - -= - - = - +2 2 2
1 3 2 3 2 3

1 1 1

1 [1 ] 1
A A A

F F F
A A A

 But, A
2
F

2–3
 = A

3
F

3–2
(reciprocity rule)

\ - -= 3
2 3 3 2

2

A
F F

A
  

0Surface A
3
: - - -+ + =3 1 3 2 3 3

flat surface

1F F F (summation rule)

\ - -= -3 2 3 11F F

\ - - - -= + ◊ = + -3 32 2 2
1 3 3 2 1 3 3 1

1 1 2 1 1

1 – or 1 – (1 )
A AA A A

F F F F
A A A A A

 Since A
1
F

1–3
 = A

3
F

3–1
, (reciprocity rule)

- -=3 1 1 1 3 3/F A F A

 Hence, - - -
- +

= - + - ◊ = - + =3 3 3 1 2 32 1 2
1 3 1 3 1 3

1 1 1 3 1 1 1

1 or 2 1
A A A A A AA A A

F F F
A A A A A A A

\ -
- +

= 1 2 3
1 3

12

A A A
F

A
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 It follows that

-
+ -

=1 3

( ) ( ) ( )

2( )

ab ac bc
F

ab
QED

 The frustum of a cone has a base diameter of 1.2 m and a height of 0.4. The 

semicone angle is 30°. Determine all the view factors.

Solution

Known Dimensions of the frustum of a cone.

Find All view factors.

L/cos a

a = 30°

L

( – )/2D D1 2

Base (or bottom)

D1 = 1.2 m
1

3 L = 0.4 m

D2

Top

Side (lateral surface)

2

Assumptions (1) Diffuse surfaces.

Analysis As there are three surfaces involved, namely, top, bottom, and side, N = 3. The number 

of view factors available is N2 = 32 = 9. The number of independent view factors to be 

calculated = 
-

=
( 1)

3
2

N N

 For the given geometric configuration, tan a = (D
1
 – D

2
)/2

 Diameter of the top surface, D
2
 = D

1
 – 2 L tan a

= - ∞ =1.2 m (2)(0.4 m)tan 30 0.738 m

 Area calculations:

 Area of the base surface, p
p= = ¥ =2 2 2

1 1 /4 1.2 1.131 m
4

A D

 Area of the top surface, 
p

p= = ¥ =2 2 2
2 2 /4 0.738 0.428 m

4
A D

 Area of the lateral (curved) surface,

p
p

a

+Ê ˆ= = + ¥ =Á ˜Ë ¯ ∞
21 2

3

0.4 m
(1.131 0.428)m 1.131 m

2 cos 2 cos 30

D D L
A

 View factor calculations:

F
12

 is base to top view factor. The geometry corresponds to two directly opposed, parallel 

circular discs with
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= = = = = =
¥ ¥

1 2
1 2

1.2 m 0.738 m
1.5 and 0.923

(2 0.4)m 2 0.4

r r
R R

L L

 From the appropriate chart,

=12 0.24F

 Since A
1
F

12
 = A

2
F

21
 (reciprocity rule)

Ê ˆ Ê ˆ= = Á ˜Á ˜ Ë ¯Ë ¯
1

21 12
2

1.131
(0.24)

0.428

A
F F

A
fi F

21
 = 0.63

0+ + =11 12 13

flat surface

1F F F (summation rule)

F
13

 = 1 – F
12

 = 1 – 0.24 fi F
13

 = 0.76

0+ + =21 22 23

flat surface

1F F F (summation rule)

F
23

 = 1 – F
21

 = 1 – 0.63 fi F
23

 = 0.37

 Now, A
1
F

13
 = A

3
F

31
(reciprocity rule)

= =31 13 1 3( / ) (0.76)(1.131/1.131)F F A A fi F
31

 = 0.76

 Also, A
2
F

23
 = A

3
F

32
(reciprocity rule)

= = fi =32 2 3 23 32( / ) (0.428/1.131)(0.37) 0.14F A A F F

 Furthermore, F
31

 + F
32

 + F
33

 = 1 (summation rule)

 As the curved surface is concave, the self-view factor, F
33
π 0.

 Hence, F
33

 = 1 – F
31

 – F
32

 = 1 – 0.76 – 0.14 fi F
33

 = 0.10

 All the possible 9 view factors are arranged in the form of a matrix below:

= =
11 12 13

21 22 23

31 32 33

0 0.24 0.76

0.63 0 0.37

0.76 0.14 0.10

F F F

F F F F

F F F

(Ans.)

 An infinitely long semi-cylindrical surface A
1
 of radius 10 cm and an infinitely long 

flat plate A
2
 of half width 20 cm are located a 14 cm distance apart as shown in the figure. Determine 

the shape factor F
1 2

 between surfaces A
1
 and A

2
, using the crossed string method.

10 cm

A1

A2

20 cm 20 cm

14 cm
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Solution

Known A long semi-cylindrical surface and a long flat plate a distance apart with prescribed 

dimensions.

Find Shape factor, F
12

.

Long semi-cylindrical
surface, A1

A

CD

L4

L5L6L3

Long flat plate, A2b( – )c b

c = 20 cm

( + )c b

c = 20 cm

2

d = 14 cm

FE L2

b = 10 cm

B
L1

1

Schematic

Assumptions The surfaces are diffuse emitters and reflectors.

Analysis The end points of both surfaces A
1
 and A

2
 are located as A, B, C, and D. We draw dashed 

straight lines between the end points and identify the crossed and uncrossed strings.

Hottel’s crossed strings method can be stated as

\ 5 6 3 4
12

1

Crossed strings Uncrossed strings

2 String on surface

( ) ( )

2

i jF
i

L L L L
F

L

-
S - S

=
¥

+ - +
=

where 1

2

2 2 2 2 1/2
3 4

2 2 1/2

2 2 2 2 1/2
5 6

2 2 1/2

2 2 10 cm 20 cm

2 2 20 cm 40 cm

[( ) ]

[(20 10) 14 ]

[( ) ]

[(20 10) 14 ]

L b

L c

L L AD DE AE c b d

L L BD DF BF c b d

= = ¥ =

= = ¥ =

= = = + = - +

= - + =

= = = + = + +

= + + =

17.2 cm

33.1 cm

Shape factor,

- - -
= = = =5 3 5 3

12
1 1

2 2 (33.1 17.2)cm

2 20 cm

L L L L
F

L L
0.795 (Ans.)
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 A room is 3 m by 4.8 m with a 2.4 m high ceiling. The ceiling contains heating 

elements and is textured so that it acts essentially as a black diffuse surface. What percentage of the 

radiant energy leaving the ceiling strikes all four walls?

Solution

Known Dimensions of a room with its ceiling containing heating elements.

Find Percentage of radiation energy leaving ceiling and striking the four walls.

4.8 m

2.4 m3
m

Ceiling
1

Y = 4.8 m

Z = 2.4 m

X
=

3
m

F F

by symmetry
12 14=

( )

X = 4.8 m

Y
=

3
m

Z = 2.4 m

F F

by symmetry
13 15=

( )

Schematic

2

3

4

5
2

1

1

3

Assumption Black diffuse surfaces.

Analysis Fraction of energy emitted by surface 1 (ceiling) and striking the four walls 2, 3, 4, and 

5 is the sum total of shape factors F
12

, F
13

, F
14

 and F
15

.

 From symmetry: F
12

 = F
14

 and F
13

 = F
15

\ Percentage of radiation intercepted by four walls is

100[(2 ¥ F
12

) + (2 ¥ F
13

)]

 To determine F
12

: = = = =
4.8 m 2.4 m

1.6 m 0.8
3 m 3 m

Y Z

X X

 From the chart for perpendicular rectangles with a common edge:

F
12

 = 0.125

 To determine F
13

: = = = = =13

3 m 2.4 m
0.625 0.5 .

4.8 m 4.8 m

Y Z
F

X X
0 21

 Hence, percentage of radiant energy striking the walls is

100[(2 ¥ 0.125) + (2 ¥ 0.21)] = 67 % (Ans.)
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 A 10 mm diameter hole 

is drilled into a metal slab as shown. If the 

metal is at a uniform temperature and has a 

black body behaviour, determine the percentage 

of the emission from the cavity surface that will 

escape to the surroundings.

Solution

Known A hole is drilled into a slab of 

metal.

Find Emission from the cavity surface lost 

through the opening, i.e., shape factor F
12

.

Assumptions The metal slab is isothermal and 

approximated as a black surface.

Analysis The walls in the cavity are represented 

as the surface 1 and the circular hole is 

designated as the surface 2. Let us first 

calculate the surface areas of 1 and 2.

( )

1

2

22 6 2
2

1 /2

2 sin 45

1
(0.01 m)(0.038 m) (0.01 m) (0.005 m/sin 45 ) 0.0013 m

2

0.01 m 78.54 10 m
4 4

D
A DL D

A D

p p

p p

p p -

Ê ˆ= + Á ˜Ë ∞¯

= + ¥ ∞ =

Ê ˆ= = = ¥Á ˜Ë ¯

 The shape factor between 2 and 1 is

F
21

 = 1

A
1
F

12
 = A

2
F

21
 = A

2
(Reciprocity theorem)

\
-¥

= = =
6 2

2
12 2

1

78.54 10 m

0.0013 m

A
F

A
0.06

 Hence, 6% of the emission from the surface of the cavity escapes to the surroundings 

through the opening. (Ans.)

(B) Black Bodies: Radiation Heat Exchange

 Two perfectly black, parallel disks, 1 m in diameter are separated by a distance 

of 0.25 m. One disk is kept at 60°C while the other is held at 20°C. The discs are placed in a large 

room whose walls are maintained at 40°C. Determine the net radiation heat exchange (a) between the 

disks, and (b) between the discs and the room.

Solution

Known Two black parallel disks opposite each other are placed in a large room.

Find Net radiation heat exchange (a) between the disks, and (b) between discs and room.

10-mm dia
45°

45°

38 mm

45°
45°

1

2

0.005 m

D/2 = 0.005 m
D = 0.01 m

L = 0.038 m

Schematic
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Room

TR = 40°C

T2 = 20°C

T1 = 60°C

2

1 m

1 m

r2

1 r1

L = 0.25 cm

Schematic

Assumptions (1) All surfaces are black and isothermal. (2) Exterior surfaces (the surfaces which do not 

face each other) are well insulated.

Analysis (a) Net rate of radiation heat transfer from the surface 1 to the surface 2 is

 where 

s

p

= -

=

4 4
12 1 12 1 2

2
1

( )

4

Q A F T T

A D

 From the relevant shape-factor chart with = =1 2 0.50 m

0.25 m

r r

L L
 = 2, we get F

12
 = 0.62

\

4

2 2 8 2 4 8 4
12 4

60 273.15

100
1 m (0.62)(5.67 10 W/m K ) (10 )K

4 20 273.15

100

Q
p -

È ˘+Ê ˆÍ ˙Á ˜Ë ¯Ê ˆ Í ˙= ¥ ¥Á ˜ Í ˙Ë ¯ +Ê ˆÍ ˙- Á ˜Ë ¯Í ˙Î ˚
= 2.76[3.33154 – 2.93154]W = 136.2 W (Ans.) (a)

(b) Disk 1 to room: s= -4 4
1 1 1 1( )R R RQ A F T T

 where F
1R

 = 1 – F
12

 = 1 – 0.62 = 0.38

 Therefore, 2 2 8 2 4 4 4 8 4
1 1 m (0.38)(5.67 10 )W/m K [3.3315 3.1315 ](10 )K

4

45.72 W

RQ
p -Ê ˆ= ¥ ¥ -Á ˜Ë ¯

=

 Disk 2 to room: s= -4 4
2 2 2 2( )R R RQ A F T T

 where F
2R

 = 1 – F
12

 = 1 – 0.62 = 0.38

 Therefore, 2 2 8 2 4 4 4 8 4
2 1 m (0.38)(5.67 10 W/m K )[2.9315 3.1315 ](10 )K

4

– 37.76 W

RQ
p -Ê ˆ= ¥ ¥ -Á ˜Ë ¯

=

 The net radiative heat exchange, then, between the two discs and the room is

(12)RQ  = (45.72 – 37.76) W = 7.96 W (Ans.) (b)

 Determine the view factor F
12

 for the areas A
1
 and A

2
 oriented as shown in the 

accompanying figure and calculate the net radiative heat exchange between the two surfaces.
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10 cm

15 cm

T2 = 300 K, = 1e2

T1 = 1000 K, = 1e1

r1

2

5 cm

1

r2

Solution

Known Two parallel, black, ring shaped, coaxial and identical disks at a specified distance apart 

with prescribed temperatures.

Find View factor, 12 netandF Q .

Hypothetical solid disc, A3

Hypothetical solid disc, A4
A2 (ring)

2

L = 5 cm

15 cm

10 cm

A1 (ring)

1

Schematic

Assumptions (1) The two ring shaped disks are black and diffuse surfaces. (2) Convection is neglected.

Analysis Let A
3
 and A

4
 represent the hypothetical co planar central solid disks of radius, 10 cm. 

(Area A
3
 + Area A

1
) = Area, A

1,3
 of the solid disks of 15 cm radius. Similarly, (Area A

2
 + 

Area A
4
) = Area A

2,4
 of the solid disk of radius 15 cm.

Then, we have, using the view-factor algebra.

A
1
F

12
 = A

2
F

21
(reciprocity relation)

= - = -2 21 2 2(1,3) 23 2 2(1,3) 2 23[ ]A F A F F A F A F

Using the reciprocity relation, A
2
F

2(1,3)
 = A

(1,3)
F

(1,3)2
 and A

2
F

23
 = A

3
F

32

Now, = - = -(1,3)2 (1,3)(2,4) (1,3)4 32 3(2,4) 34andF F F F F F

Hence, = - - -2 21 1,3 (1,3)(2,4) (1,3)4 3 3(2,4) 34[ ] [ ]A F A F F A F F

Reciprocity relation: A
2
F

21
 = A

1
F

12

\ = - - -1 12 1,3 (1,3)(2,4) (1,3)4 3 3(2,4) 34[ ] [ ]A F A F F A F F
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 The view factor,

= - - -[ ] [ ]
1,3 3

12 (1,3)(2,4) (1,3)4 3(2,4) 34
1 1

A A
F F F F F

A A

 With p p p= = = - = -2 2 2 2 2 2 2
1,3 3 1 1,3 3(15) cm , (10) cm and [15 10 ]cmA A A A A

p p

p p
= = = =

- -

2 2
1,3 3

2 2 2 2
1 1

(15) (10)
1.8 and 0.8

(15 10 ) (15 10 )

A A

A A

 Each term in the expression for F
12

 can be evaluated from the appropriate chart.

 Calculation of F
(1,3)(2,4)

: = = =
15

3
5

ji
rr

L L

=(1,3)(2,4) 0.72F

 Calculation of F
(1,3)4

: = = = =
15 10

3, 2
5 5

ji
rr

L L

=(1,3)4 0.38F

 Calculation of F
3(2,4)

: = = = =
10 15

2, 3
5 5

ji
rr

L L

=3(2,4) 0.85F

Calculation of F
34

: = = = =
10 10

2, 2
5 5

ji
rr

L L

=34 0.61F

 Substituting the relevant values, the view factor F
12

 is determined to be

= - - - =12 1.8[0.72 0.38] 0.8[0.85 0.61] .F 0 42

 Net radiation heat exchange between the two surfaces is

s

p -

= -

= - ¥ ¥ ¥ ¥ -
=

4 4
net 1 12 1 2

2 2 2 8 2 4 4 4

[ ]

[0.15 0.10 ]m 0.42 5.67 10 W/m K [(1000 K) (300 K) ]

Q A F T T

928W  (Ans.)

 Two directly opposed, parallel black disks are 50 cm apart. The diameter of the 

top disk is 25 cm. The bottom disk of 60 cm diameter is maintained at a uniform temperature of 400 K. 

An electric power of 60 W is supplied to the heater on the back side of the 25 cm diameter top disk. If 

the surroundings are at a temperature of 300 K, determine the temperature of the top disk.

Solution

Known Two parallel, black, coaxial disks with surroundings around. Heater input to upper disk, 

disk diameters and lower disk temperature are specified.
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Find Upper disk temperature (K).

A T, = 400 K2 2

T Tsur = 300 K = 3

A T, = ?1 1

Heater (60 W)
1

2

3

D = 0.6 m2

D = 0.25 m1

L = 0.5 m

Assumptions (1) Black disks at uniform temperatures. (2) Backside of heater is insulated.

Analysis
Ê ˆÊ ˆ

=Á ˜ Á ˜Ë ¯ Ë = ¯

Net radiation heat transfer from the Electrical power input

to the heater top disk 1, 60 WQ

s s

s

= - + -

= - + -

4 4 4 4
1 1 12 1 2 1 13 1 3

4 4 4 4
1 12 1 2 13 1 sur

( ) ( )

[ ( ) ( )]

Q A F T T A F T T

A F T T F T T (A)

where
p p

= = = = = =2 2 2
1 1 2 3 sur(0.25 m) 0.0491 m , 400 K, 300 K

4 4
A D T T T

Calculation of shape factors: = = = = = =1 2
1 2

0.125 m 0.3 m
0.25, 0.6

0.5 m 0.5 m

r r
R R

L L

Ê ˆ+ +
= + = + =Á ˜Ë ¯

2 2
2

2 2
1

1 1 0.6
1 1 22.76

0.25

R
S

R

0

\ = - - = - - =

+ + =

2 2 2 2
12 2 1

11 12 13

flat surface

1 1
[ 4( / ) ] [22.76 22.76 4(0.6/0.25) ] .

2 2

1 ( )

F S S R R

F F F summation rule

0 256

\ = - = - =13 121 1 0.256F F 0.744

Hence, substituting the known quantities in Eq. (A), one gets

or

2 8 2 4 4 4 4 4 4
1 1

4 4 1

60 W 0.0491m 5.67 10 W/m K [0.256( 400 ) 0.744( 300 )]K

215.6 0.256[ 256] 0.744[ 81] where
100

T T

T
x x x

-= ¥ ¥ - + -

= - + - ∫

By trial and error, one finds, x = 4.3 and, the top-disk temperature, 

T
1
 = 430 K (Ans.)
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(C) Grey Bodies: Two Surface Enclosures

 Radiative heat transfer is intended between the inner surfaces of two very large 

isothermal parallel metal plates. While the upper plate (designated as Plate 1) is a black surface and 

is the warmer one being maintained at 1000 K, the lower plate (Plate 2) is a diffuse and grey surface 

with an emissivity of 0.8 and is kept at 500 K. Assume that the surfaces are sufficiently large to form a 

two-surface enclosure and steady-state conditions exist.

 Determine (a) irradiation to the top plate, (b) radiosity of the top plate, (c) radiosity of the lower 

plate, and (d) net radiative heat exchange between the plates per unit area of the plates if the plate 1 is 

a diffused grey surface with an emissivity of 0.5.

Solution

Known Two large horizontal, parallel plates with given surface conditions and temperatures.

Find (a) Irradiation to the top plate, G
1
. (b) Radiosity of the top plate, J

1
. (c) Radiosity of the 

lower plate, J
2
. (d) Net radiative exchange between the plates per unit area of the plates 

if e
1
 is 0.7.

Schematic

T1 = 1000 K, = 1

(black body)

e1

T2 = 500 K, = 0.8

(grey body)

e2

1

2

J G= 12

r2 1Eb e2 2Eb

Assumptions (1) The plates make up a two-surface enclosure (2) Diffuse grey surfaces.

Analysis (a) The irradiation to the upper plate is defined as the radiant flux incident on that surface. 

The irradiation to the upper plate, G
1
 is comprises the radiant flux emitted by the surface 

2 and the reflected flux emitted by the surface 1.

e r e s e s= + = + -4 4
1 2 2 2 1 2 2 2 1(1 )b bG E E T T

 or 8 2 4 4 8 2 4 4
1 0.8 5.67 10 W/m K (500 K) (1 0.8) 5.67 10 W/m K (1000 K)G

- -= ¥ ¥ + - ¥ ¥

= + =2 2
1 2835 W/m 11 340 W/mG

2
14 175W/m (Ans.) (a)

 (b) The radiosity is the radiant flux leaving the surface by emission and reflection. For the 

black body surface 1,

s -= = = ¥ =4 8 2 4 4
1 1 1 5.67 10 W/m K (1000 K)bJ E T

2
56 700W/m (Ans.) (b)

 (c) The radiosity of the surface 2 is,

e r= +2 2 1 2 2bJ E G

 Since the upper plate is a black body, we note that G
2
 = E

b1
 and

e r e s e s= + = + - =4 4
2 2 1 2 1 2 2 2 1(1 )b bJ E E T T

2
14 175W/m (Ans.) (c)

 Note that J
2
 = G

1
. That is, the radiant flux leaving the surface 2 (J

2
) is incident upon the 

surface 1 (G
1
).
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 (d) The net radiation heat exchange per unit area is

s

e e

-- ¥ -
= = =

+ - + -

4 4 8 4 4
21 2

net

1 2

( ) 5.67 10 (1000 500 )

1 1 1 1
1 1

0.5 0.8

T T
q 23 625W/m (Ans.) (d)

 Hot coffee at 70°C is contained in a cylindrical vacuum bottle with a height of 25 

cm. The coffee container consists of an inner bottle centred within an outer casing that is at 2°C. The space 

between the inner bottle and the casing is evacuated, and the walls are coated with aluminium to minimize 

radiative heat loss. There is negligible heat transfer at the ends of the container. In a new vacuum bottle, 

the emissivity of all surfaces is 0.05, but in an older container, the finish becomes dull and the emissivity 

rises to 0.25. Calculate the rate of heat loss from the coffee for both a new and an old vacuum bottle.

Solution

Known A vacuum bottle comprising two concentric cylinders with evacuated space in between 

contains coffee. Surface emissivities for old and new bottle are specified.

Find Heat loss from the coffee for both new and old bottle.

Schematic

Inner bottle

Evacuated
space

D1 = 8 cm

D2 = 10.5 cm

1

2

Outer casting

L = 25 cm

New bottle: = = 0.05e e21

1 2Old bottle: = = 0.25e e

T = 70°C = 343.15 K1

2T = 2°C = 275.15 K

Assumptions (1) The walls are grey and diffuse. (2) The walls are isothermal. (3) Radiosity on each 

surface is constant. (4) There is no net radiation in the axial direction outside the ends of 

the evacuated space.

Analysis The net rate of heat transfer between the inner bottle (Surface 1) and the casing (Surface 2) is

s

e e

e e

Æ

-

- -
= =

- -
+ +

4 4
1 2 1 2

1 2
1 2total

1 1 1 1 2     2 2

( )

1 11
b bE E T T

Q
R

A A F A

 If we neglect the ends of the container, all the radiation leaving the bottle arrives at the 

casing. Therefore, F
1Æ2

 = 1. The areas of the two cylinders are 

p p

p p

= = =
= =

= = =

2
1 1 1 1

2
2 22 2

(8 cm)(25 cm) 628.32 cm 8 cm

10.5 cm(10.5 cm)(25 cm) 324.67 cm

A D L A D

A DA D L

When the vacuum bottle is new, the emissivity of both surfaces is 0.05 and the rate of 

heat loss is calculated as
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s

e e

e e

Æ

- -

-
=

- -Ê ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯

¥ ¥ -
=

Ê ˆ+ + Á ˜Ë ¯

=

4 4
1 1 2

1 2
1 1 2

1 2 2

8 2 4 4 2 4 4 4

( )

1 1
1

(5.67 10 W/m K )(628.32 10 m )[343.15 275.15 ]K

0.95 8 0.95
1

0.05 10.5 0.05

.

A T T
Q

A

A

0 84 W (Ans.)

For an old vacuum bottle, the calculation is repeated with e
1
 = e

2
 = 0.25

  The heat loss rate from coffee is determined to be

- -

Æ
¥ ¥ -

=
- -Ê ˆ Ê ˆ+ +Á ˜ Á ˜Ë ¯ Ë ¯

=

8 2 4 4 2 4 4 4

1 2

(5.67 10 W/m K )(638.32 10 m )[343.15 275.15 ]K

1 0.25 8 1 0.25
1

0.25 10.5 0.25

.

Q

4 61W  (Ans.)

Comments Aging of the coating on a vacuum bottle can adversely affect its performance. Coffee will 

cool faster in the older container.

 Two concentric spheres of radii R
1
 = 0.4 m and R

2
 = 0.6 m are separated by a 

vacuum and have surface temperatures of T
1
 = 90 K and T

2
 = 300 K. The surfaces of the sphere have 

the same emissivity and the system is used for storing liquid oxygen. The latent heat of vaporization of 

liquid oxygen is 210 kJ/kg. The boil-off rate is 2.95 kg/h. Calculate the emissivity of the surfaces. If the 

rate of evaporation is to be reduced by 90.7%, what should be the surface emissivity?

Solution

Known Concentric sphere system for storage of liquid oxygen. Diameters and temperatures. Rate 

of evaporation.

Find Emissivity e = e
1
 = e

2
 for two specified boil-off rates.

Schematic

R T1 1= 0.4 m, = 90 K

R T2 2= 0.6 m, = 300 K

e2 1= =e e

Vacuum

mevap = 2.95 kg/h
.

8Q21

Liquid
oxygen
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Assumptions (1) Steady operating conditions. (2) Diffuse grey surfaces.

Analysis Rate of heat transfer by radiation,

=21Q  (Rate of evaporation, ¥evap )m  (Latent heat of vaporization, h
fg
).

Ê ˆ Ê ˆ= ¥ =Á ˜ Á ˜Ë ¯ Ë ¯
32.95 kg J

210 10 172.08 W
3600 s kg

 For two concentric spheres,

4 4 2 4 4
1 2 1 1 2 1

21 2
1 1

1 2 2 1 2 2

8 2 4 2 2 4 4 4

2

( ) (4 )( )

1 1 1 11 1

(5.67 10 W/m K )(4 0.4 m )(300 90 )K

(1/ ) (0.4/0.6) {(1/ ) 1}

915.94 W
172.08 W

1
(1 0.4444) 0.4444

A T T R T T
Q

A R

A R

s s p

e e e e

p

e e

e

-

- -
= =

Ê ˆ Ê ˆ Ê ˆ+ - + -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

¥ ¥ -
=

+ -

= =
+ -

 Hence, the emissivity of both surfaces is determined to be

e = =
+

1.4444

0.4444 (915.94/172.08)
0.25 (Ans.)

 If the evaporation rate (and hence the heat transfer rate) is to be reduced by 90.7 percent 

i.e. = - =21 (1 0.907)(172.08) 16 W,Q  then

e = =
+ +

1.4444

1 0.4444 (915.94/16)
0.025 (Ans.)

 A spherical tank of 2 m diameter that is filled with liquid oxygen at–183°C is 

kept in an evacuated cubic enclosure whose sides are 3 m long. The emissivities of the spherical tank 

and the enclosure are 0.1 and 0.9, respectively. If the temperature of the cubic enclosure is measured to 

be –1°C, determine the net rate of radiation heat transfer to the liquid oxygen.

Solution

Known A spherical tank filled with liquid oxygen is kept in a cubic enclosure.

Find Net radiation heat transfer, net (W)Q .

Assumptions (1) All surfaces are opaque, grey, and diffuse. (2) Steady operating conditions exist.

Analysis The net radiant heat exchange is given by

s

e e

-
=

+ -

4 4
1 2 1

net(21)
1 1 2 2

[ ]

(1/ ) ( / ){(1/ ) 1}

A T T
Q

A A

 where s = 5.67 ¥ 10–8 W/m2 K4 (Stefan–Boltzmann constant)

p p p= = = = = =2 2 2 2 2 2
1 1 2(2 m) 4 6 6(3 m) 54 mA D m A L
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T
1
 = –183 + 273.15 = 90.15 K T

2
 = – 1 + 273.15 = 272.15 K

e
1
 = 0.1 e

2
 = 0.9

 Substituting the numerical values, we have

{ }
p

p

-¥ -
= =

+ -

8 2 4 2 4 4 4

net

(5.67 10 W/m K )(4 )[272.15 90.15 ]K

1 4 1
1

0.1 54 0.9

m
Q 385 W (Ans.)

 Calculate the net radiation heat exchange between the surfaces 1 and 2 as 

shown in the adjoining figure:

 Given: T
1
 = 300 K T

2
 = 1000 K

  e
1
 = 0.7 e

2
 = 0.9

2

1.0 m

0.75 m

0.25 m

1

0.5 m

Solution

Known Arrangement of rectangles.

Find Net radiation heat exchange, netQ .

Spherical tank

1

2

Cubic enclosure

T2

A D1
2= p i

&Qnet

L
A L2

2= 6

L = 3 m

L

e1 = 0.1, = 183°CT1

2 2

1

e = 0.9, = 1°C

= 2 m

T

D
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Schematic

22B2A

1.0 m T2 = 100 K

e2 = 0.9

0.75 m

0.25 m

T1 = 300 K

e1 = 0.7

1

0.5 m0.5 m

3

A A

A A A A

A

= = 0.5 m 0.75 m = 0.375 m

= + = 2

= 2 0.5 0.75 m = 2

2

2 2 2 2

2
1

1 3 ¥

¥
A B A

¥

Assumption Diffuse grey surface behaviour.

Analysis Let us define the hypothetical surface A
3
 and divide A

2
 into two sections A

2A
 and A

2B
.

= +

= = +

= + +

(1,3) (1,3)2 1 12 3 32

3 32 3 3(2 ,2 ) 3 3(2 ) 3 3(2 )

1 12 3 3(2 ) 3 3(2 )

( )

A B A B

A B

A F A F A F Summation rule

A F A F A F A F

A F A F A F(1,3) (1,3)2A F (A)

The boldface type shape factors can be evaluated directly from the chart 13.9 for aligned, 

parallel rectangles.

To evaluate F
3(2B)

, we will ultimately need a relationship involving F
(2B)1

.

Summation rule: = +2 (2 )(1,3) 2 (2 )3B B B BA F A F2 (2 )1B B
A F (B)

By symmetry: =2 (2 )(1,3) 1 1(2 ,2 ) 1 12orB B A BA F A F A F (C)

Reciprocity rule: =3 3(2 ) 2 (2 )3B B BA F A F (D)

Substituting for A
3
F

3(2B)
 from Eq. (D), Eq. (A) becomes

= + +1 12 2 (2 )3B BA F A F(1,3) (1,3)2 3 3(2 )AA F A F

From Eq. (B) =2 (2 )3 2 (2 )(1,3) –B B B BA F A F 2 (2 )1B B
A F

From Eq. (C), =2 (2 )(1,3) 1 12B BA F A F

Substituting these values, Eq. (A) finally becomes

or

= + + -

= + -
1 12 1 12

1 12 (1,3) (1,3)2 2 (2 )1 3 3(2 )2 B B A

A F A F

A F A F A F A F

(1,3) (1,3)2 3 3 2 (2 )1(2 )
B B

A F A F A A F

Noting that A
(1,3)

 = A
2
 = 2 A

1
, and A

2B
 = A

1
 = A

3
, we have

Shape factor, = + -12 1 (1,3)2 1 (2 )1 1 3(2 )
1

1
[2 ]

2
B AF A F A F A F

A

or = + -[ ]12 (1,3)2 (2 )1 3(2 )

1
2

2
B A

F F F F (E)
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 Using the relevant chart, we evaluate the shape factors which are tabulated below:

i
j

X/L Y/L F
ij

(1, 3) 2 1

0.25
 = 4

0.75

0.25
 = 3

0.588

(2 B) 1 0.5

0.25
 = 2

0.75

0.25
 = 3

0.48

3 (2 A) 0.5

0.25
 = 2

0.75

0.25
 = 3

0.48

 Substituting numerical values in Eq. (E), = ¥ + -12

1
[(2 0.588) 0.48 0.48]

2
F  = 0.588

 Not radiant heat exchange between surfaces 1 and 2 is

s

e e e e

e e e e

-

- -
= = =

- - - -Ê ˆ Ê ˆ+ + + +Á ˜ Á ˜Ë ¯ Ë ¯

¥ -
=

Ê ˆ- -Ê ˆ Ê ˆ+ +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

= ¥

2 1

4 4
1 2 1

net 21
1 2 1 2 1

1 1 1 12 2 2 1 12 2 2

8 2 4 2 4 4 4

2

2

( )

1 11 1 11

(5.67 10 W/m K )(0.375 m )[1000 300 ]K

1 0.7 1 1 0.9 0.375 m

0.7 0.588 0.9 0.75 m

b bE E A T T
Q Q

A

A A F A F A

3
9.65 10 W or 9.65 kW (Ans.)

 A blind cylindrical hole of 20 mm diameter and 30 mm length is drilled into a 

metal block having an emissivity of 0.7. If the metal slab temperature is maintained at 650 K, determine 

the rate at which radiant heat escapes the hole. Also calculate the effective emissivity of the hole described 

above.

Solution

Known Heat (radiant energy) streams out of a 

cylindrical hole (cavity) of given dimensions 

at specified temperature and emissivity to the 

surrounding space.

Find Heat transfer rate by radiation leaving 

the opening of the cavity, 1Q ; Effective 

emissivity, e
e
.

Assumptions (1) Grey diffuse surface of the hole (cavity). 

(2) The fictitious closing surface is black at 

zero kelvin.

Analysis The equivalent radiation network of the prescribed two surface enclosure is

Schematic

Fictitious surface

1

2
e2

2

= 1.0

= 0 KT

e1

1

= 0.7

= 650 KT

D = 0.02 m

L = 0.03 m
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Cavity surface 1: F
11

 + F
12

 = 1 (Summation rule)

  0
Closing imaginary surface 2: + = fi =21 22 21

flat surface

1 1F F F

A
1
F

12
 = A

2
F

21
 = A

2
    (Reciprocity rule)  ( F

21
 = 1)

\ = 2
12

1

A
F

A

Hence, F
11

 = 1 – F
12

 = 1 - 2

1

A

A

Area of the opening, 
p

= 2
2

4
A D

Area of the inner surfaces of the cavity, 
p

p= +2
1

4
A D DL

p p

p

È ˘+Í ˙+ +Î ˚= = =
2

1
2

2

( /4) 44

/4( /4)

D
L

A D DL D L

A D DD

\

p p

= - = - = =
+ + ¥

È ˘ È ˘= + = ¥ + =Í ˙ Í ˙Î ˚ Î ˚

2
11

1

2
1

20
1 1 1 – 0.857

4 20 (4 30)

0.02
0.02 0.03 0.0022 m

4 4

A D
F

A D L

D
A D L

Radiant heat exchange between the two surfaces 1 and 2 is, 
-

=
+

1 2
12

1 12

b bE E
Q

R R

  0
Surface resistances:

e e
e

e e

- -
= = =1 2

1 2 2
1 1 2 2

1 1
, ( 1)R R

A A

Space resistance: =12
1 12

1
R

A F

Black-body emissive powers:

  0
s s= = =

1 2

4 4
1 2 2( 0 K)b bE T E T T

\
s s s e

e e e e

e e

e s e s

e e e e

-
= = =

- - - - ++ +
-

- -
= =

- - - + - -

4 4 4
1 1 1 1 1 1 11

1
1 1 1 11 1

1 1 1 12 1 11

4 4
1 1 1 11 1 1 1 11

1 1 11 1 1 11

(1 )

1 11 1 (1 )(1 )

(1 )

(1 ) (1 )

(1 ) (1 ) 1 (1 )

T A T A T F
Q

F

A A F F

A T F A T F

F F
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 Radiant power leaving the hole is

e s
e

-

-È ˘
= Í ˙- -Î ˚

-È ˘= ¥ ¥ ¥ ¥ ¥ Í ˙- -Î ˚
=

4 11
1 1 1 1

1 11

2 8 2 4 4 4

1

1 (1 )

1 0.857
0.0022 m 0.7 5.67 10 W/m K 650 K

1 (1 0.7)(0.857)

F
Q A T

F

3.0 W (Ans.)

 Effective emissivity e =
Ê ˆ
Á ˜Ë ¯

Radiant power streaming out of the cavity
( )

Radiant power from a black body with the area of the cavity

opening and the temperature of inner surfaces of the cavity

e

 or e
s s p

= = =
1

1 1 1
4 4 2

2 1 2 1 ( /4)
e

b

Q Q Q

E A T A T D

p-

¥
= =

¥ ¥ ¥ ¥8 2 4 4 4 2 2

4 3.0

5.67 10 W/m K 650 K 0.02 m
0.9435 (Ans.)

(D) Three Surface Enclosures

 A hemispherical cavity of 60 cm radius is covered by a plate with a hole of 

20 cm diameter drilled in its centre. The inner surface of the plate is maintained at 250°C by a heater 

embedded in the surface. The surfaces may be assumed to be black and the hemisphere is well insulated. 

Assuming that the energy entering the hole from outside is negligible, calculate the temperature of the 

surface of the hemisphere and the power input to the heater. 

Solution

Known A hemispherical insulated cavity is covered with a heated plate having a hole at the centre 

and held at a specified temperature. All surfaces are black.

Find Hemisphere surface temperature (°C) and power input to heater (W).

Assumptions (1) All surfaces are black. (2) Hemispherical surface is adiabatic. (3) No heat enters the 

hole from outside. (4) Steady operating conditions.

Analysis We can treat this problem as a three-surface enclosure: Plate 1, Hole (covered with an 

imaginary surface) 2, and hemispherical cavity as a re-radiating surface R. Since no energy 
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enters the hole from the surroundings, T
2
 = T

sur
 = 0 K. The hemispherical surface is adiabatic 

(insulated). Hence, 1 2Q Q=-  where 1Q  is the power supplied to the heater embedded in 

the plate.

 For a three surface enclosure involving a re radiating surface, we have

1 2
1 2

1 2

1
1 1 2 2

1 12
1 1 2 2

1 11

1 1

b b

R R

E E
Q Q

A A
A F

A F A F

e e

e e-

-
= - =

- -
+ +
È ˘Ï ¸+ +Í ˙Ì ˝
Í ˙Ó ˛Î ˚

 We note that since T
2
 = 0 K, 

2

4
2bE Ts=  = 0

 Also, e
1
 = e

2
 = 1 because the surfaces are black.

 Furthermore, F
12

 = 0, F
1R

 = F
2R

 = 1

 One can therefore write 
4 4 4

1 1 1 1
1

1
1

1 2 2

1 2

1 1 1
0 0 1

1 1
0

T T A T
Q

A

A A A

A A

s s s

-

= = =
Ê ˆ Ê ˆ È ˘Ê ˆ+ + + +Í ˙Á ˜ Á ˜ Á ˜È ˘ Ë ¯ Ë ¯ Ë ¯Ï ¸ Î ˚+ +Í ˙Ì ˝

Í ˙Ó ˛Î ˚

 With 2 2 2 2 2 2
1 ( ) [60 10 ]cm 3500 (cm )o iA r rp p p= - = - =

 and 2 2 2 2 1
2

2

3500
(10 )cm 100 (cm ), 35

100
i

A
A r

A

p
p p p

p
= = = = =

 Power input to the heater is then determined from

8 2 4 4 2 4 4

1

(5.67 10 W/m K )(3500 10 m )(523.15 )K
.

[1 35]
Q

p- -¥ ¥
= =

+
129 7 W  (Ans.)

 We note that for black surfaces forming an enclosure:

4 4

1 1

( )
N N

i i j i ij i j

j j

Q Q A F T Ts-
= =

= = -Â Â

 or 4 4 4 4
1 1 12 1 2 1 1 1( ) ( )R RQ A F T T A F T Ts s= - + -  [The third term is zero because F

11
 = 0]

  

0

 or 4 4
1 1 1( )RQ A T Ts= -   since F

1R
 = 1

\
1/4

4 4 8 1/41
1

1

[523.15 {129.7/(0.35 5.67 10 )}] 519.48 KR

Q
T T

A
p

s
-È ˘

= - = - ¥ ¥ =Í ˙
Î ˚

 Hemispherical surface temperature,

T
R
 = (519.48 – 273.15)°C = 246.3°C (Ans.)

 A furnace of cylindrical shape has both diameter and length of 0.6 m. The top 

(surface 1) and the base (surface 2) of the furnace has emissivities of 0.4 and 0.5 respectively, and are 

maintained at uniform temperatures of 400 K and 500 K respectively. The lateral surface has emissivity of 

0.8 and is maintained at 800 K. Determine the net rate of radiation heat transfer at each surface during 

steady operation. How these surfaces can be maintained at prescribed temperatures?
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Solution

Known A circular furnace with specified dimensions, emissivities and temperatures.

Find Radiation heat transfer rate at each of the three surfaces.

Schematic

1

3

2

L D= = 0.6 m

D
r

L
2 =

r

L
1 =

0.3 m
0.6 m

= 0.5

e1 1= 0.4, = 400 KT

e2 2= 0.5, = 500 KT

A D1
2= = /4pA2

A D3
2= = ppDL

e3 3= 0.8, = 800 KT

Assumptions (1) Steady operating conditions exist. (2) All surfaces are opaque, isothermal, diffuse, and grey.

Analysis Shape factor, F
12

 = 0.17 for 
1 2r r

L L
=  = 0.5  (from the chart)

  
0

11 12 13

flat surface

1F F F+ + = (Summation rule)

\ F
13

 = 1 – F
12

 = 1 – 0.17 = 0.83

A
1
F

12
 = A

2
F

21
(Reciprocity rule)

\ F
21

 = F
12

 = 0.83 (because A
2
 = A

1
)

F
32

 = F
31

(By symmetry)  
0

21 22 23

flat surface

1F F F+ + = (Summation rule)

\ F
23

 = 1 – F
21

 = 1 – 0.17 = 0.83

A
2
F

23
 = A

3
F

32
(Reciprocity rule)

\
2

2
32 23 312

3

( /4)
0.83 0.2075

A D
F F F

A D

p

p
= ¥ = ¥ = =

Black-body emissive powers:

1

2

3

4 8 2 4 4 2
1

4 8 4 2
2

4 8 4 2
3

(5.67 10 W/m K )(400 K) 1452 W/m

(5.67 10 )(500) 3 544 W/m

(5.67 10 )(800) 23 224 W/m

b

b

b

E T

E T

E T

s

s

s

-

-

-

= = ¥ =

= = ¥ =

= = ¥ =

Also, 1 2

1 2

3

3

1 11 0.4 1 0.5
1.5, 1

0.4 0.5

1 1 0.8
0.25

0.8

e e

e e

e

e

- -- -
= = = =

- -
= =
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Using the direct method, we can write for the three surfaces:

1

2

3

1
1 12 1 2 13 1 3

1

2
2 21 2 1 23 2 3

2

3
3 31 3 1 32 3 2

3

1
: [ ( ) ( )

1
: [ ( ) ( )]

1
: [ ( ) ( )]

b

b

b

E J F J J F J J

E J F J J F J J

E J F J J F J J

e

e

e

e

e

e

-Ê ˆ= + - + -Á ˜Ë ¯

-Ê ˆ= + - + -Á ˜Ë ¯

-Ê ˆ= + - + -Á ˜Ë ¯

1

2

3

A

A

A

Substituting the values, we get

1

1 1 1
1 12 13 12 2 13

1 1 1

1 1 1
: 1 ( ) bJ F F F J F E

e e e

e e e

È ˘- - -Ê ˆ Ê ˆ Ê ˆ+ + - - =Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚
1A

or

2

1 2

2 2 2
1 21 2 21 23 23 3

2 2 2

[1 (0.17 0.83)(1.5)] (0.17)(1.5) (0.83)(1.5) 1452

1 1 1
: 1 ( ) b

J J

J F J F F F J E
e e e

e e e

+ + - - =

È ˘ È ˘- - -Ê ˆ Ê ˆ Ê ˆ
- + + + - =Í ˙ Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚ Î ˚

2A

or

3

1 2 3

3 3 3
1 31 2 32 3 31 32

3 3 3

[ (0.17)(1)] [1 (0.17 0.83)(1)] (0.83)(1) 3544

1 1 1
: 1 ( ) b

J J J

J F J F J F F E
e e e

e e e

- + + + - =

È ˘ È ˘ È ˘- - -Ê ˆ Ê ˆ Ê ˆ
- + - + + + ¥ =Í ˙ Í ˙ Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚ Î ˚ Î ˚

3A

or 1 2 3[ (0.2075)(0.25)] [ (0.2075)(0.25)] [1 (0.2075 0.2075)(0.25)] 23 224J J J- + - + + + =
Simplifying, we obtain

1 2 3

1 2 3

1 2 3

2.5 0.255 1.245 1452

– 0.17 2.0 – 0.83 3544

– 0.052 – 0.052 1.104 23 224

J J J

J J J

J J J

- - =

+ =

+ =

(A)

(B)

(C)

Solving these simultaneous equations with three unknowns, we have

J
1
 = 12 875 W/m2, J

2
 = 12 084 W/m2, J

3
 = 22 212 W/m2

Net radiation heat transfer rates at each surface:

( )
1 1 12 1 2 13 1 3

2 2

[ ( ) ( )]

0.6 m [0.17(12875 12084) 0.83(12875 22212)]W/m
4

–

Q A F J J F J J

p

= - + -

= - + -

= 2153W (Ans.)

2 2 21 2 1 23 2 3

2 2

[ ( ) ( )]

(0.6 m) [0.17(12084 12875) 0.83(12 084 22 212)]W/m
4

–

Q A F J J F J J

p

= - + -

= - + -

= 2415 W (Ans.)

3 3 31 3 1 32 3 2[ ( ) ( )]Q A F J J F J J= - + -

= p (0.6 m) (0.6 m) [0.2075 (22 212 – 12 875) + (0.2075) (22 212 – 12 084)] W/m2

= + 4568 W (Ans.)
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 Check: The algebraic sum of all heat-transfer rates should be zero.

 i.e., 
3

1 2 3

1

0 or 0i

i

Q Q Q Q
=

= + + =Â
 or (–2153 W) + (–2415 W) + (4568 W) = 0

 The negative sign implies that the heat is received by surfaces 1 and 2, and must be 

extracted out non radiatively and continuously for equilibrium at the rates of 2153 W and 

2415 W respectively. Similarly, to ensure steady operation (to maintain the three surfaces 

at constant temperatures), we should also supply heat to the side surface continuously at 

a rate of 4568 W. (Ans.)

 Two parallel and directly opposed rectangles of the same size (1.5 m ¥ 3 m) are 

separated by a distance of 1.5 m. One rectangle is maintained at T
1
 = 900 K and has an emissivity of 

e
1
 = 0.7. The second rectangle has a temperature of T

2
 = 500 K and emissivity e

2
 = 0.9. Determine the 

net radiative heat transfer at each of the two surfaces (considering only the opposed faces) if (a) they 

are located in a radiation free environment, (b) they are connected by a single re radiating or adiabatic 

surface. (c) Find the temperature of the adiabatic surface, T
3
. Sketch the radiation network.

Solution

Known Two aligned parallel rectangles of equal size. Dimensions, temperatures, and emissivities.

Find Net rate of radiation heat transfer at each surface if (a) the surroundings are radiation free, and 

(b) the two surfaces are connected by an adiabatic surface. (c) Adiabatic surface temperature.

Schematic

L = 1.5 m

X = 1.5 m

Y
=

3
m

T1 = 900 K

= 0.7e1

T2 = 500 K

= 0.9e2

A A= 21

2

1

Y

L

3 m
1.5 m

= = 2
X

L

1.5 m
1.5 m

= = 1

Eb1 Eb2

1

A F1 13

J3

R13 =
1

A F2 23

R23 =

1

A F1 12

R12 =
1 – e

e

1

1 1A
R1 =

1 – e

e

2

2 2A
R2 =

J1 J2

&Q1
&Q2

&Q12

&Q13

&Q23

Part (a): = = 0

Part (b): unknown

E

J
b3

3

J3
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Assumptions (1) Steady operating conditions exist. (2) The surfaces are opaque, diffuse and grey. 

(3) Convection heat transfer is ignored.

Analysis The shape factor, { }12 for 2 and 1
Y X

F
L L
= =  = 0.286  (from the chart)

Reciprocity theorem: A
1
F

12
 = A

2
F

21

As A
1
 = A

2
 = 1.5 ¥ 3 = 4.5 m2, F

21
 = F

12
 = 0.286

If A
3
 is used to denote the radiation free space in part (a) or the adiabatic surface in part 

(b), one has

Summation rule: F
11

 + F
12

 + F
13

 = 1 and F
21

 + F
22

 + F
23

 = 1

Since F
11

 = F
22

 = 0  (flat surface),

\ F
13

 = 1 – F
12

 = 1 – 0.286 = 0.714 and F
23

 = 1 – F
21

 = 1 – 0.286 = 0.714

Now, 1 1 2 2

1

2 2 2 2

2

2 2
1 12 2 21

2 2
1 13 2 23 3 31 3 32

0.7
(4.5 m ) 10.5 m

1 1 0.7

0.9
(4.5 m ) 40.5 m

1 1 0.9

(4.5 m )(0.286) 1.287 m

(4.5 m )(0.714) 3.213 m

A

A

A F A F

A F A F A F A F

e

e

e

e

Ê ˆ= =Á ˜- Ë - ¯

Ê ˆ= =Á ˜- Ë - ¯

= = =

= = = = =
4 8 2 4 4 4 2

1 1 1

4 8 2 4 4 4 2
2 2 2

900 K (5.67 10 W/m K )(900 )K 37 201 W/m

500 K (5.67 10 W/m K )(500 )K 3543.75 W/m

b

b

T E T

T E T

s

s

-

-

= = = ¥ =

= = = ¥ =

(a) In this case, the surfaces are located in a radiation free space. We complete the enclosure 

by representing the space as a third active black surface at T
3
 = 0 K.

\ 4
3 3bE Ts=  = 0. No adiabatic surfaces are present. Hence, only energy balances need to 

be made at the three active ones.

Node J
1
: 1 1 3 12 1

1

1 12 1 131 1

0
1 1 1
bE J J JJ J

A F A FA

e

e

- --
+ + =

-
(A)

Node J
2
: 2 2 3 21 2

2

1 12 2 232 2

0
1 1 1
bE J J JJ J

A F A FA

e

e

- --
+ + =

-
(B)

Node J
3
: J

3
 = E

b3
 = 0

On rearrangement: 1 1
1 1 1 12 2 1 1 13 1

1

( ) ( ) (0 ) 0
1

b

A
E J A F J J A F J

e

e
- + - + - =

-

or 2 2 2 2 2 2
1 2 1 110.5 m (37201 )W/m 1.287 m ( )W/m – 3.213 m ( )W/m 0J J J J- + - =

or 3
1 215 1.287 390.6 10J J- = ¥ (C)

Also, 2 2
2 2 1 12 1 2 2 23 2

2

( ) ( ) (0 ) 0
1

b

A
E J A F J J A F J

e

e
- + - + - =

-
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or 40.5(3543.75 – J
2
) + 1.287 (J

1
 – J

2
)– 3.213 J

2
 = 0

or 2 145 1.287 143522J J- = (D)

Solving equations (C) and (D), we have

J
1
 = 26378.4 W/m2 and J

2
 = 3943.8 W/m2

The radiation heat transfers at each of the two surfaces are

2 21 1
1 1 1

1

( ) (10.5 m )(37 201 – 26 378.4)W/m
1

b

A
Q E J

e

e
= - =

-

= 113.637 ¥ 103 W @ 113.64 kW (Ans.) (a)

2 22 2
2 2 2

2

( ) (40.5 m )(3543.75 3943.8)W/m
1

b

A
Q E T

e

e
= - = -

-

= –16.20 ¥ 103 W = –16.20 kW (Ans.) (a)

The heat flows 1Q  and 2Q  are not equal in magnitude because some energy is lost to the 

radiation free space.

(b) In this case, the surfaces are enclosed by a single adiabatic surface 3( 0)Q =
There are three unknowns, viz., J

1
, J

2
, and J

3
.

Hence three equations are required to evaluate them.

Node J
1
: 1 1

1 1 1 12 2 1 1 13 3 1
1

( ) ( ) ( ) 0
1

b

A
E J A F J J A F J J

e

e
- + - + - =

-

Node J
2
: 2 2

2 2 2 21 1 2 2 23 3 2
2

( ) ( ) ( ) 0
1

b

A
E J A F J J A F J J

e

e
- + - + - =

-

Node J
3
: 1 13 1 3 2 23 1 3( ) ( ) 0A F J J A F J J- + - =

10.5 (37201 – J
1
) + 1.287 (J

2
 – J

1
) + 3.213 (J

3
 – J

1
) = 0 (E)

40.5 (3543.75 – J
2
) + 1.287 (J

1
 – J

2
) + 3.213 (J

3
 – J

2
) = 0 (F)

3.213 (J
1
 – J

3
) + 3.213 (J

2
 – J

3
) = 0 (G)

On rearrangement,

1 2 3

1 2 3

1 2 3

15 – 1.287 – 3.213 390 610.5

–1.287 45 – 3.213 143 521.9

–3.213 – 3.213 6.426 0

J J J

J J J

J J J

=

+ =

+ =

Solving the above three simultaneous equations, we have

J
1
 = 30 315.5 W/m2

J
2
 = 5328.88 W/m2 and J

3
 = 17 822.1 W/m2

For the active surfaces:

1

21 1
1 1

1

( ) 10.5 m
1

b

A
Q E J

e

e
= - =

-
(37 201 – 30 315.4) W/m2

= 72.3 ¥ 103 W = 72.3 kW (Ans.) (b)
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2

2 2
2 2

2

( )
1

b

A
Q E J

e

e
= -

-
 = 40.5 m2 (3543.75 – 5328.88) W/m2

= –72.3 ¥ 103 W = –72.3 kW (Ans.) (b)

 The heat flows 1Q  and 2Q  are equal in magnitude since there are just two active surfaces 

and no energy is lost to the surroundings.

 As 
3

4
3 3bJ E Ts= =  = 17 822.1 W/m2, the adiabatic surface temperature is

1/41/4 2
3

3 8 2 4

17822.1 W/m

5.67 10 W/m K

J
T

s -

Ê ˆÈ ˘= = Á ˜Í ˙Î ˚ Ë ¥ ¯

= 748.76 K or 475.6°C  (Ans.) (c)

 Two very long, inclined black surfaces A
1
 and A

2

are maintained at uniform temperatures of T
1
 = 1000 K and T

2
 = 600 K as 

indicated below:

 (a) Calculate the net radiative heat exchange between the two surfaces per 

unit length. (b) If a black surface A
3
 with its backside insulated is placed along 

the third side of the triangle shown above (dashed line) to form a three surface 

enclosure, determine the net radiation heat transfer to surface A
2
 per unit length. 

(c) Compute the equilibrium temperature of the third insulated surface A
3
.

Solution

Known Long, inclined black surfaces at specified temperatures.

Find (a) Net radiation heat exchange, 12Q  per metre length. (b) Net radiation heat transfer to 

surface 2 if insulated black surface 3 is positioned along the dashed line. (c) Insulated 

surface temperature T
3
.

Schematic

Insulated black
surface

T2 = 600 K

1

T1 = 1000 K A W1 1
2

= L = (0.15 m) (1 m)
= 0.15 m

3
2

60°

&( = 0)
= =

Q

A A A3 1 2

Assumptions (1) Black, diffuse surfaces. (2) Surfaces are very long in a direction perpendicular to the 

plane of the paper.

Analysis Net radiation heat exchange between two black surfaces is determined from

4 4
12 1 12 1 2( )Q A F T Ts= -

 For inclined parallel plates of equal width and a common edge with the angle of inclination 

a, the shape factor is given by

F
12

 = 1 – sin(a/2)

 With a = 60°C,

F
12

 = 1 – sin (60/2)° = 1 – 0.5 = 0.5
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 Hence, per unit length, 

2 8 2 4
12

4 4

3

(0.15 m) (0.5)(5.67 10 W/m K )

1 kW
[(1000 K) (600 K) ]

10 W

Q
-= ¥

¥ - = 3.7 kW (Ans.) (a)

 With insulated surface A
3
 put in place as prescribed in the problem, we end up with a 

three-black surface enclosure whose radiation network is shown in the figure above.

 Consider energy balance on the node representing surface A
2
.

4 4 4 4
2 12 32 1 12 1 2 3 32 3 2( ) ( )Q Q Q A F T T A F T Ts s- = + = - + -

 Noting that F
32

 = F
12

 = 0.5 (from symmetry), radiation heat transfer to surface A
2
 is

2 8 2 4 4 4 4
2 3 3

1 kW
3.7 kW (0.15 m )(0.5)(5.67 10 W/m K )( 600 )K

10 W
Q T

-- = + ¥ -  (A)

 To find T
3
, concentrate on the node 3.

 As 3 13 320,Q Q Q= =

 i.e., 4 4 2 4
1 12 1 3 3 32 3 2( ) ( )A F T T A F T Ts s- = -

 With A
1
 = A

3
 and F

12
 = F

32
, we have

4 4 4 4 4 4 4 4 4 4 8 4
1 3 3 2 3 1 2

1 1
or ( ) (1000 600 )K 5648 10 K

2 2
T T T T T T T- = - = + = + = ¥

\ Equilibrium surface temperature, T
3
 = [5648 ¥ 108]0.25 = 866.9 K (Ans.) (c)

 Substituting this value of T
3
 in Eq. (A), the net radiative heat transfer to the surface A

2
 is

8 4 4 3
2 1 3.7 kW {(0.15)(0.5)(5.67 10 )(866.9 600 )}(10 )kWQ Q

- -- = = + ¥ -

= 3.7 kW + 1.85 kW = 5.55 kW (Ans.) (b)

0
Comment Overall energy balance: 1 2 3

Insulated

0Q Q Q+ + =

 Hence, 1 2Q Q= - . The net radiation heat transfer from the surface 1 is equal to that of the

surface 2.

 A thermocouple sensor of 1 mm diameter and emissivity of 0.4 measures the 

temperature of air stream in a large channel having a wall temperature of 640°C. The temperature 

indicated by the thermocouple is 760°C. The air velocity is 3 m/s. Calculate the true temperature of air. 

Use the following correlation and properties of air: Nu = 0.8 (Re)0.38

k = 0.06581 W/m °C and n = 1.133 ¥ 10–4 m2/s

 What should be the emissivity of the sensor in order to reduce the error by 30%?

Solution

Known A thermocouple is placed in an air stream passing through a duct for temperature 

measurement.

Find True air temperature. Emissivity to reduce the error by 30%.
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Schematic

Thermocouple

= 0.4

= 760°C

et
tT

qconv

qrad

Channel
= 640°CTw

V = 3 m/s

Ta

Air

Assumptions (1) Diffuse grey surfaces. (2) Steady-state conditions.

Analysis To find convective heat transfer coefficient, h:

0.38
0.380.8( ) 0.8

hD VD
Nu Re

k n

Ê ˆ= = = Á ˜Ë ¯
0.38

0.38
2

4 2

0.06581 W/m°C
0.8

0.001 m

3 m/s 0.001 m
0.8 182.84 W/m C

1.133 10 m /s

k k VD
h Nu

D D n

-

È ˘= = ¥ =Í ˙Î ˚

¥È ˘¥ = ∞Í ˙¥Î ˚

 Energy balance: conv,tosensor rad,fromsensorQ Q=

 i.e., 4 4( ) ( )t a t t t t whA T T A T Ts e- = -
 Hence, the true temperature of the air stream,

4 4

4 48 2 4
8 4

2

( )

(5.67 10 W/m K )(0.4) 1033.15 913.15
760°C 10 K

100 100182.84 W/m C

(760 55) C

t
a t t wT T T T

h

se

-

= + -

È ˘¥ Ê ˆ Ê ˆ= + -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯∞ Î ˚
= + ∞ = ∞815 C (Ans.)

 If the error is reduced by 30%,

*( ) will be 55(1 0.3) 38.5 C or Ka tT T- - = ∞

 The sensor will then indicate a temperature, *
tT  equal to (815 – 38.5)°C

 i.e., 776.5°C or 1049.65 K

 The new emissivity is

4* * * 4

4 4

(38.5)(182.84)
( )/ ( ) .

5.67[ ]10.4965 9.1315
t a t t wT T T Te s= - - = =

-
0 24  (Ans.)

 A thermocouple of emissivity 0.8 is used to measure the temperature of non-

absorbing gas flowing in a large duct. The temperature of the duct wall is 227°C. The temperature 

indicated by the thermocouple is 505°C. Determine the true temperature of the gas if the value of 

convection heat transfer coefficient is 142.5 W/m2 K.

 To measure the gas temperature more accurately, a thin cylindrical radiation shield (e = 0.3) with 

inside diameter 4 times the outer diameter of the thermocouple is placed around the thermocouple. 
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The temperature indicated by the thermocouple is 505°C. Determine the true temperature of the gas if 

the convection heat transfer coefficient for the shielded thermocouple remains 142.5 W/m2 K.

Solution

Known A thermocouple placed in a gas stream inside a duct measures the gas temperature. A shield 

is inserted to reduce the error in temperature measurement.

Find True temperature of the gas for unshielded and shielded thermocouple.

Duct wall ( )Tw

Thermocouple

( , , )T Ae tt t

Radiation shield ( , , )T As s seA A= 4 ts

Gas ( )Tg

Schematic

Assumptions (1) Steady operating conditions exist. (2) Radiation surfaces are diffuse grey. (3) The gas 

is non-absorbing. (4) The shield is too small relative to the large duct.

Analysis Let the suffixes g, t, and w relate to gas, thermocouple, and wall of the duct, respectively.

(a) Without radiation shield: Under steady-state conditions, applying energy balance, we 

have:

Heat transfer from gas to Heat transfer from thermocouple to

thermocouple by convection duct wall by radiation

Ê ˆ Ê ˆ
=Á ˜ Á ˜Ë ¯ Ë ¯

i.e., 4 4
conv rad or ( ) ( )c t g t t t t wQ Q h A T T A T Ts e= - = -

or 4 4

4

8 2 4
4 8

2 4

( )

505 273.15

(5.67) 10 W/m K (0.8) 100
K (10 ) 96.8 K

142.5 W/m K 227 273.15

100

t
g t t w

c

T T T T
h

se

-

- = -

È ˘+Ê ˆÍ ˙Á ˜Ë ¯¥ Í ˙= =Í ˙+Ê ˆÍ ˙- Á ˜Ë ¯Í ˙Î ˚
True temperature of the gas is

T
g
 = (778.15 + 96.8) K = 874.95 K or 601.8°C (Ans.) (a)

(b) With radiation shield: An energy balance on the shield gives:

Convective heat transfer from Radiative heat transfer from the

the gas to the shield thermocouple to the shield

Radiative heat transfer from

the shield to the duct wall

Ê ˆ Ê ˆ
+Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ
= Á ˜Ë ¯
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Exponential decay
of intensity

I I1, 1, 0L = 0.10

I1, 0

L = 0.075 m
x = 0 x L=

 or 
4 4

4 4( )
2 ( ) ( )

1 1
1

t s t
cs s g s s s s w

t

t s s

T T A
h A T T A T T

A

A

s
s e

e e

-
- + = -

Ê ˆ+ -Á ˜Ë ¯

 or 

4 4

4 4

( )

2 ( ) ( )
1 1

1

t
t s

s
cs g s s s w

t

t s s

A
T T

A
h T T T T

A

A

s

se

e e

Ê ˆ- Á ˜Ë ¯
- + = -

Ê ˆ+ -Á ˜Ë ¯

 or 

44

4 4
778.15

(5.67/4)
500.15100 100

2(142.5)( ) (5.67)(0.3)
1 1 1 100 100

1
0.8 4 0.3

s

s
g s

T

T
T T

È ˘Ê ˆÊ ˆ -Í ˙Á ˜ Á ˜ È ˘Ë ¯ Ë ¯ Ê ˆ Ê ˆÎ ˚- + = -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Ê ˆ Î ˚+ -Á ˜Ë ¯

 or 4 4 4 4285( ) 0.7732[(7.7815) ( /100) ] 1.701[( /100) (5.0015) ]g s s sT T T T- + - = -  (A)

 An energy balance on the thermocouple gives

4 4( ) ( )ct t g t t t t sh A T T A T Ts e- = -

 or (142.5) (T
g
 – 778.15) = (5.67)(0.8)[7.78154 – (T

s
/100)4]

 or T
g
 = 778.15 + 0.03183[3666.5 – (T

s
/100)4] (B)

 Substituting the value of T
g
 from Eq. (B) into Eq. (A),

285 [778.15 + 0.03183 {3666.5 – (T
s
/100)4} – T

s
] + 0.7732 [3666.5 – (T

s
/100)4]

= 1.701 [(T
s
/100)4 – 625.75] (C)

 The solution of Eq. (C) for finding T
s
 is by trial and error.

T
s
 K LHS RHS

770 3694.33 + 116.90 = 3811.23 4915.13

768 4594.36 + 145.0 = 4739.36 4853.25

767.8 4679.29 + 147.42 = 4826.71 4847.08

 Thus, T
s
 = 767.8 K and T

g
 = 784.2 K or 511°C (Ans.) (b)

  Error = 511 – 505 = 6°C or 6 K.

 The error is reduced from 96.8 K to 6 K.

(G) Gas Radiation

 Determine the spectral absorption 

(extinction) coefficient for radiation passing through a 7.5 

cm thick gas layer if the monochromatic intensity of radiation 

is reduced by 90 percent. What is the spectral transmissivity 

of the gas?
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Solution

Known Extinction coefficient, K
l
. Transmissivity of the medium.

Assumptions The absorption coefficient is independent of x.

Analysis According to Beer’s law:

,0

,
exp( , )

I L
K L

I

l
l

l

= - (A)

 where K
l
 is the extinction coefficient for a specific wavelength l, also called spectral 

absorption coefficient whose unit is m–1. L is the thickness of the participating medium 

(the gas layer) and I
l
 is the spectral (monochromatic) intensity of radiation.

 As I
l,L

 = 0.101
l,0

 we have from Eq. (A):

,

, ,0

,1 1
ln ln ln(0.10) .

0.075

L

o

I I L
K L K

I L I

l l
l l

l l

-Ê ˆ Ê ˆ
= - fi = - = - =Á ˜ Á ˜Ë ¯ Ë ¯

1
30 7 m  (Ans.)

 Spectral transmissivity of the medium is, 
,

,o

I L

I

l
l

l

t =  = 0.10

 Combustion products at 1250 K leave a very long cylindrical flue, which is 0.8 

m in diameter. The partial pressure of carbon dioxide (CO
2
) is 0.08 atm, and its total pressure is 1.1 atm. 

Calculate the radiation heat transfer per metre length from CO
2
 to the flue wall if the wall emissivity is 

unity and its temperature is 500 K.

Solution

Known Combustion products pass through a long cylindrical flue under specified conditions.

Find Radiation heat transfer from CO
2
 to flue wall.

Pc = 0.08 atm

P = 1.1 atm Tg = 1250 K
CO2

Flue wall ( = 1)ef

Tf = 500 K

L = 1 m

D = 0.8 m

Schematic

Assumptions (1) Steady operating conditions. (2) Interior of flue wall is essentially black. (3) CO
2
 is an 

ideal gas.

Analysis Since the gas (CO
2
) is enclosed, it can be looked upon as a small body in a large enclosure 

(long cylindrical flue).

 Radiation heat transfer, 4 4( )c f c c c fQ A T Ts e- = -

 where the suffix c stands for CO
2
, and f for flue wall.

 Effective area of CO
2
 is the inner area of the flue, i.e., A

c
 = pDL

 Per unit length, A
c
 = p ¥ 0.8 m

 To determine the effective emissivity e
c:
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2Partial pressure of COOptical thickness Mean beam length

in the combustion products,c cP L P L

Ê ˆÊ ˆ Ê ˆ
= ¥ Á ˜Á ˜ Á ˜ Ë ¯Ë ¯ Ë ¯

Mean beam length for an infinitely long circular cylinder of diameter D radiating to curved 

surface is

0.95 0.95 0.8 m 0.76 m (0.08 atm)(0.76 m) 0.061 m atmcL D P L= = ¥ = fi = =

With ,1atm0.061 m atm and 1250 K 0.09c cP L T e= = =

Correction factor for CO
2
 at P

c
L = 0.061 m atm and 1.1 atm is, C

c
ª 1

Hence, e
c
 = (0.09)(1) = 0.09

Radiation heat transfer per m length is

8 2 4 4 4 4( 0.8 m 1 m)(5.67 10 W/m K )(0.09)[1250 500 ]Kc fQ p -
- = ¥ ¥ ¥ -

= 30510 W or 30.5 kW (Ans.)

Points to Ponder

● The fraction of the radiant energy leaving one surface that strikes the other surface directly is called 

shape factor.

● The shape factors with themselves of two infinitely long black body concentric spheres with a diameter 

ratio of 3 are 1 for the inner and 8/9 for the outer.

● The shape factor from the base of a tetragon to each of its four side surfaces is 0.25.

● The shape factor from a surface of a long equiangular triangular duct to another surface is 0.5.

● In a cubical enclosure, there are 36 individual view factors between the 6 surfaces that constitute the 

enclosure.

● The view factor of a small enclosed body with respect to the enclosing surface is one.

● Radiation need not always be considered in natural convection systems with polished surfaces.

● The surface resistance to radiation for a black body is zero.

● The radiosity of a black body is equal to its emissive power.

● Crossed string method is a technique for determining exchange areas between long, parallel bodies of 

uniform cross section.

● The temperature of a reradiating surface is not dependent on its emissivity.

● The shape factor between two black parallel planes of equal area placed symmetrically with re radiating 

enclosure is (1 + F
12

)/2 if the shape factor without re radiation is F
12

.

● Radiation heat transfer between two surfaces can be decreased by introducing radiation shields between 

the surfaces.

● A radiation shield should have high reflectivity.

● The ratio of heat transfer rates for parallel plate systems having three radiation shields and no shield, 

when all emissivities are equal is 0.25.

● Increasing the heat transfer coefficient and reducing the emissivity of the thermocouple placed in a 

duct reduces the error in temperature measurement.

● Gases such as carbon dioxide and water vapour are opaque to thermal radiation.

● The mean beam length for radiation of an arbitrary volume –V  of surface area A is 3.6 ( –V/ A ).

● Since gases are inherently non-grey, the emissivity, and absorptivity are not the same.
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● The rate of decrease of radiation with distance as it passes through an absorbing medium is known 

as extinction coefficient.

● The monochromatic absorptivity a
l
 of a gas is related to the gas thickness L and the monochromatic 

absorption coefficient k
l
 by the expression 1

L
e lk

la
-= - .

● For a grey gas has an emissivity e its transmissivity is (1 – e).
● The absorptivity of CO

2
 gas depends, in addition to gas temperature, on the surface temperature.

● Note that the summation rule is applied to an enclosure. To complete the enclosure, it to necessary in 

several cases to define a third surface which is shown by dashed lines.

● Remember that Hottel’s crossed string method is applicable only to surfaces that are of infinite extent 

in one direction and have unobstructed views of one another.

● With the re radiating walls, 

1 2 1 2( )/2 ( )/2R bR b bJ E J J E E= = + = +

GLOSSARY of Key Terms

● Non-participating medium A medium which does not emit, absorb, or scatter radiation and 

has no effect on the radiation exchange between surfaces.

● Self-view factor The fraction of the radiation which leaves a surface and is directly 

intercepted by it. If the surface is concave, it sees itself and is 

non zero. For a flat or convex surface, it is zero.

● Shape factor The fraction of the radiant energy leaving one surface which 

strikes the other surface directly. (Energy transferred by reflection 

or re radiation from other surfaces that may be present is not to 

be considered.)

● Adiabatic, reradiating surface A surface which is thermally insulated so that the net heat flow 

away from the surface is zero. Such surface interacts radiatively 

with the other surfaces of the enclosure, absorbing and reflecting 

incident irradiation and re emitting the absorbed energy. Radiation 

shields and refractory walls in a furnace are examples of adiabatic 

surface.

● Radiation-free space When two surfaces are located in a radiation-free space, the 

space is treated as a third active black surface to complete the 

enclosure at J
3
 = E

b3
 = 0.

● Shape-factor algebra The interrelation between various shape factors.

● Radiation shield A low-emissivity surface inserted between two radiation 

exchanging surfaces to effectively reduce the net radiation heat 

transfer without actually adding to or removing any heat from 

the overall system.

● Space resistance In electrical network analogy, the resistance across which the 

potential difference is the difference between radiosities.

● Surface resistance The resistance across which the potential difference is the black 

body emissive power minus radiosity.
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● Solar constant The average solar-energy flux incident on the outer fringes of 

the earth’s atmosphere when the earth is at its mean distance 

from the sun.

● Summation rule The rule that follows from the conservation requirement that all 

thermal radiation leaving a surface must be intercepted by the 

enclosure surfaces.

● Reciprocity rule A
i

F
ij
 = A

j
F

ji
 is useful in determining one shape factor form the 

knowledge of the other.

● Volumetric absorption Spectral absorption of radiation in a gas (or semi-transparent 

liquid or solid) follows exponential decay.

● Mean beam length Interpreted as the radius of a hemispherical gas mass whose 

emissivity is equivalent to that for the geometry of interest.

13.1 Which of the following is a wrong statement?

  The shape factor is equal to one

(a) for any surface completely enclosed by another surface

(b) for infinite parallel planes radiating only to each other

(c) for a flat or convex surface with respect to itself

(d) inner cylinder to outer cylinder of a long coaxial cylinder

13.2 The number of shape factors that need to be determined directly for a four-surface enclosure is

(a) 6 (b) 1 (c) 10 (d) 16

13.3 The reciprocity theorem states that

(a) F
12

 = F
21

(b) A
1
F

12
 = A

2
F

21
(c) A

1
/F

12
 = A

2
/F

21
(d) A

2
F

12
 = A

1
F

21

  where the symbols have their usual meanings

13.4 A solid cylinder (Surface 2) is located at the centre of a hollow sphere (Surface 1). The diameter of the 

factor F
11

 is

(a) 0.375 (b) 0.625 (c) 0.75 (d) 1

13.5

with an angle of 35 degrees is

(a) 0.70 (b) 1.17 (c) 0.66 (d) 1.34

13.6

1 m

Floor T = 400 K
e = 0.5

T = 800 K
e = 1

Roof
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  The net radiation heat transfer is

(a) 34.2 kW (b) 68.4 kW (c) 136.8 kW (d) 17.1 kW

13.7 The energy radiated from a cavity of area A
1
, emissivity e

1
 and absolute temperature T

1
 to the 

surrounding space is given by

(a) 4 11
1 1 1

1 11

1

1 (1 )

F
A T

F
s e

e

-Ï ¸
Ì ˝- -Ó ˛

(b) 4
1 1 1 11{1 }A T Fs e -

(c) 4
1 1 1 11A T Fs e (d) 4

1 1 1 1 11[1 (1 ) ]A T Fs e e- -

13.8 A spherical tank of 10 cm diameter is placed in a cubic enclosure whose sides are 10 cm long. The 

shape factor from any of the square cube surfaces to the sphere is

(a) 0.52 (b) 0.08 (c) 1.0 (d) 0.26

13.9 Consider a two-surface enclosure.

Surface Temperature (K) Emissivity Area (m2)

1

2

300

500

0.3

1

0.3

04

  Shape factor F
12

 = 0.25

  The net radiant heat exchange between the two surfaces is

(a) 85 W (b) 467 W (c) 146 W (d) 737 W

13.10

between the plates without touching any of them to reduce heat exchange between the plates. Assume 

that the emissivities of plates and radiation shield are equal. The ratio of the net heat exchange 

between the plates with and without the shield is

(a) 1 / 2 (b) 1 / 3 (c) 1 / 4 (d) 1 / 8

13.11 Which of these gases absorb and emit thermal radiation?

(1) Oxygen (2) Water vapour

(3) Nitrogen (4) Carbon dioxide

  Codes:

(a) 1 and 2 (b) 1 and 3 (c) 2 and 4 (d) 1, 3 and 4

13.12

(a) volume, –V / surface area, A (b) (volume, –V/3.6 ) (surface area, A)

(c) 3.6 –V /A (d) 4 –V /A

13.13 The error in temperature measurement by a thermocouple placed in a gas stream due to radiation can 

be reduced by

(a) shielding the thermocouple junction with one or more concentric radiation shields

(b) increasing the gas velocity over the junction 

(c) using finer wire of thermocouple

(d) all of the above

Answers

Multiple-Choice Questions

13.1 (c) 13.2 (a) 13.3 (b) 13.4 (c) 13.5 (a) 13.6 (a)

13.7 (a) 13.8 (a) 13.9 (c) 13.10 (a) 13.11 (c) 13.12 (c)

13.13 (d)
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13.1

not zero?
13.2 What assumptions are associated with determining shape factor between two bodies?
13.3 How would you determine the shape factor F

12
 when the shape factor F

21
and the surface areas are 

13.4 Explain the summation rule, reciprocity rule, and the superposition rule for shape factors?
13.5 Explain the Hottel’s crossed-strings method. For what kind of geometries is the crossed-strings 

method appropriate?
13.6 Discuss the radiation analysis of enclosures which comprise black surfaces only. How is the rate of 

radiation heat transfer between two surfaces expressed?
13.7 Discuss the usefulness of shape factor charts.
13.8 Distinguish between radiosity and radiation emission for a surface. When will these two quantities 

be identical?
13.9 surface and space resistances in radiant heat exchange between two diffuse grey surfaces. 

In which type of surface will the surface resistance be zero?
13.10 Explain the two methods used in solving radiation problems, viz., direct method and network method.
13.11 Obtain an expression for radiative heat transfer between two grey surfaces connected by a single 

refractory surface using the electrical network method.
13.12 Explain the meaning of the term geometric factor in relation to heat exchange by radiation. Derive an 

expression for the geometric factor F
11

 for the inside surface of a black hemispherical cavity of radius 
R with respect to itself.

13.13 Show that the shape factor F
1R2

 for two parallel black surfaces of equal area connected by the re 
radiating walls at constant temperature is given by 

  F
1R2

 = (1 + F
12

)/2
  where F

1R2
 is the shape factor of surface 1 with respect to the surface 2, when connected by a 

reradiating surface R.
13.14 What is a reradiating surface

analysis? Does the temperature of such a surface depend on its radiative properties?
13.15 What is a radiation shield

have a large  or absorptivity?
13.16 What is the radiation effect? How does it cause an error in the temperature measurement?
13.17 What is a non-participating medium? How does radiation heat transfer through a participating 

medium differ from that through a non participating one?
13.18 Gaseous radiation is a volumetric phenomenon. Explain. What is Beer’s law?
13.19 Explain the concept of mean beam length.
13.20 How does the wavelength distribution of radiation emitted by a gas differ from that of a surface at the 

same temperature?

PRACTICE PROBLEMS

(A) Shape Factor

13.1 The sun and the earth are separated by a distance of 149.5 ¥ 106 km on an average. The diameter of 

the sun is approximately 1.384 ¥ 106 km and that of the earth is approximately 12 900 km. On a clear 

day solar irradiation has been measured at the earth’s surface to be 1135 W/m2, with an additional 

284 W/m2 absorbed by the earth’s atmosphere. Assuming the sun emits as a black body, estimate its 

surface temperature from this information. The emissive power of the earth may be neglected.

[5846 K]
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L

r1

2

1

3

13.2 To construct a hohlraum, a small opening is made on the surface of a sphere of diameter 10 cm with 

its internal surface highly oxidized. Find the area of the opening if the desired absorptivity is 0.95.

[14.28 cm2]

13.3 Find the shape factor between two areas 1 and 2 which are in the form of circular ring, are co-axial 

and in two parallel planes at a distance of 10 cm. Area 1 has inner radius of 5 cm and outer radius 

of 10 cm. Area 2 has inner radius of 8 cm and outer radius of 20 cm. Use the following formula for 

calculating the shape factor between the two circular areas located coaxially in two parallel planes: 

  
2 2 2

2

1
[ 4 ]

2
ijF X X B C

B
= - -  where 2 2, and (1 )

ji
RR

B C X B C
H H

= = = + +

  where R
i
 and R

j
 are the radii of the circular planes and H is the 

distance between them. [0.513]

13.4

shown below:

  F
12

 = 0.12

  r
1
 = 0.1 m

  r
2
 = 0.05 m 

  L = 0.1 m

  Calculate F
13

, F
32

 and F
33

. [0.398]

(B) Black Bodies: Radiation Heat Exchange

13.5 An electrically heated industrial furnace cavity is modelled in the form of a cylinder having diameter 

10-cm and length 20-cm. It is opened at one end to surroundings that are at a temperature of 300 

K. The electrically heated sides and the bottom of the cavity which are well insulated and may be 

approximated as blackbodies are maintained at a temperature of 1800 K and 2000 K, respectively. By 

Take shape factor from the bottom surface to surroundings as 0.06. [4818 W]

(C) Grey Bodies: Two-Surface Enclosures

13.6 The heat exchange between two walls coated with silver on sides facing each other is by radiation 

only. The contents of the bottle are at 100°C. The ambient temperature is 14°C. The emissivity of 

silver is 0.02. Calculate the heat loss. If the inner diameter of the thermos bottle is 10 cm, calculate 

approximately the outer diameter of the thermos if the thickness of the cork insulation is such as to 

achieve the same heat transfer. Thermal conductivity of cork is 0.042 W/m °C. [1.1 m]

13.7 An evacuated cylindrical cavity 100-mm-diameter and 150-mm-deep is covered with a black lid as 

shown. The cavity surface is maintained at 150°C and has an emissivity of 0.7. If the lid is exposed to 
2 K and the temperature equal 

to 25°C calculate the steady state lid temperature. [118°C]

Lid

Cavity

100 mm

1
5
0
 m

m Ts = 150°C
e = 0.7

h = 5 W/m K2

T = 25°C
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13.8 Consider a long V-groove, 10-mm deep, machined on a block that 

is maintained at 1000°C. (a) If the emissivity of the groove surface 

[117 W]

13.9 A hot steel billet, 3-m ¥ 1-m ¥ 1-m has 95% of its surface exposed. The billet has an emissivity (gray) 

density of steel are 0.50 kJ/kg K and 7800 kg / m3 respectively.

  Assuming that negligible heat is lost by conduction through the supports and that the convective heat 

losses are small, calculate the time for the billet to cool from 1000°C to 800°C.

[5595 s or 1.55 h]

13.10

of both surfaces is 0.05. Liquid oxygen at 90 K is kept in the inner sphere while the temperature 

of outer sphere is 300 K. Assuming only radiation heat transfer, determine the evaporation rate of 

oxygen if latent heat of evaporation for oxygen is 214.2 kJ/kg and s = 5.67 ¥ 10–8 W/m2 K4. What 

should be the emissivity of the two surfaces if the rate of boil-off is to be reduced by 80 percent?

[0.01]

13.11 An enclosure measures 1.5 m ¥ 1.7 m with a height of 2 m. The walls and ceiling are maintained 

[4785]

13.12 Figure shows a cavity having a surface temperature of 900°C 

and an emissivity of 0.6. Determine the rate of radiant heat 

loss from the cavity to the surroundings. [201 W]

13.13 A hot water radiator of overall dimensions 2 m ¥ 1 m ¥ 0.2 

m is used to heat a room at 18°C. The surface temperature of 

the radiator is 60°C, and its surface is nearly black. The actual 

surface area of the radiator is 2.5 times the area of its envelope, 

h
c
 = 1.31(q)1/13

W/m2 K. Calculate the rate of heat loss from the radiator. [4000 W]

(D) Three-Surface Enclosures

13.14 Two rectangles 0.6 by 0.6 m are placed at right angles with a common edge. The temperature and 

emissivity of one surface are 1200 K and 0.4 respectively, while the other surface is effectively 

insulated and in radiant balance with a large surrounding room at 300 K. Calculate the temperature of 

the insulated surface and the heat lost by the surface at 1200 K. [16.6 kW, 649 K]

13.15 A heater of 1-m-diameter is covered by a hemisphere of 4-m-diameter. The surface of the hemisphere 

is maintained at 400 K. The emissivity of the hemisphere as well as the heater is 0.8. The heater 

surface is maintained at 1000 K. The remaining base area is open to surroundings at 300 K. The 

surroundings may be considered as black. Determine the net radiation heat exchange from the heater 

to the hemisphere and to the surroundings. [–14 kW]

13.16 A paint-baking oven consists of a long, triangular duct in which a heated surface is maintained at 

1200 K and another surface is insulated. Painted panels, which are maintained at 500 K, occupy the 

third surface. The triangle is of width 1 m on a side, and the heated and insulated surfaces have an 

emissivity of 0.8. The emissivity of the panels is 0.4. During steady-state operation, at what rate must 

energy be supplied to the heated side per unit length of the duct to maintain its temperature at 1200 

K? What is the temperature of the insulated surface? [1102 K]
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13.17 Figure shows a radiant furnace in the form of a rectangular box. The ceiling (surface 1) is at 1200 

temperature of the side walls (surface 3). [1177 K]

Ceiling

Floor

5 m
e2 = 0.5

e1
= 0.9

T1
= 1200 K

2 m

2 m

1

2

3
Side walls

(E) Radiation Shields

13.18 A large pandal is usually put up for big social events. Find the percentage reduction in the net radiative 

pandal. Assume the ground and the pandal
2. Assume the ground and the sky to be blackbodies at 27°C and 

the pandal a gray-diffuse surface of emissivity 0.8. [60%]

13.19 Two very large parallel plates are maintained at uniform temperatures of 1000 K and 300 K. Two 

the steady-state temperatures of the two shields and the percentage reduction in heat transfer by 

placing the shields. [3.2 kW/m2]

(F) Error in Temperature Measurement

13.20 A black thermocouple of 2-mm-diameter is inserted at the middle of a 30-cm-long pipe of 75-mm-

temperature recorded by the thermocouple is 80°C when the pipe wall temperature is 50°C, determine 

the true temperature of air.

  Properties of air: k = 0.0291 W/m K v = 19.73 ¥ 10–6 m2/s Pr = 0.702

[86.9°C]

13.21 3/s along an exhaust duct with a diameter 

of 40 mm. The temperature of the gas is measured using a spherical probe of 3-mm-diameter and 

emissivity 0.5. If the duct walls are at 500 K and the thermocouple records a temperature of 785 K, 

what is the actual temperature of the exhaust gas? Gas properties may be approximated as those of 

atmospheric air. For a sphere of diameter D, the Nusselt number is given by 

  

1/4
1/2 2/3 0.42 (0.4 0.06 )D D D

w

Nu Re Re Pr
m

m

Ê ˆ= + + Á ˜Ë ¯

  Properties of air at 1 bar, 800 K: k = 0.0573 W/m K, C
p
 = 1.099 kJ/kg K, r = 0.4354 kg/m3

  m  = 369.8 ¥ 10–7 kg/m s, m
w
 = 270.1 ¥ 10–7 kg/m s

[802 K]



Mass Transfer

14.1 ❏ INTRODUCTION

Mass-transfer phenomena are found everywhere in nature. The transport of one component in a mixture 
from a region of higher concentration to that of lower concentration is known as mass transfer. For 
example, if a pan with some water in the bottom is placed in a room, water vapour will diffuse into the 
air. There is a mass transfer of water from just above the liquid surface where its concentration is higher 
to the main portion of the air stream where the water concentration is lower.

Consider another example: When a crystal of potassium permanganate (KMnO4) is dropped in a beaker 
containing clear, stagnant water, the KMnO4 crystal starts dissolving in water and a dark purple colour is 
absorbed in the vicinity of the crystal. The local concentration of permanganate, indicated by the deepest 
purple colour will be in the neighbourhood of the crystal. The diffusion is always in the direction of 
decreasing concentration.

Even though molecular diffusion also takes place in solids and liquids, the mass-transfer rates are lower

because the molecules are more closely packed in solids and liquids compared to gases.
It is worth noting that the term mass transfer refers to the movement of a component in a mixture in 

the presence of the concentration gradient and does not include gross or bulk motion of the fluid. For 
instance, air, a mixture of several gases, flowing down a tube is not the mass transfer we have in mind 
but the mixing of oxygen and nitrogen in a container—whether stirred or not—is certainly a mass-transfer 
process.

14.2 ❏ AREAS OF APPLICATION

Mass-transfer processes find vast industrial applications in varied fields such as mechanical, chemical

and aerospace engineering, physics, chemistry, biology, etc.
Some of the important industrial and day-to-day applications involving mass transfer are

Absorption and desorption (e.g., ammonia-water absorption refrigeration systems)
Solvent extraction
Humidification of air (e.g., cooling towers, desert coolers, and air-conditioning applications)
Oxygenation of blood, food, and drug assimilation
Transpiration cooling of jet engines and rocket motors
Ablative cooling of space re-entry vehicles
Sublimation
Respiratory mechanism
Desalination of water by reverse osmosis, ultra-filtration, etc.
Evaporation of petrol in internal combustion engines
Neutron diffusion in nuclear reactors
Distillation columns to separate components in a mixture
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Evaporation of liquid ammonia in the atmosphere of hydrogen in a three-fluid vapour absorption 
refrigeration system (electrolux refrigerator)
Evaporation of water vapour into dry air
Diffusion of smoke from a tall chimney into the atmosphere
Dissolution of sugar added to a cup of tea or coffee
Diffusion of exhaust gases from an engine into the stagnant ambient air
Spread of fragrance of perfumes or flowers in the surrounding atmosphere
Drying of wood, clothes, and coal from mines
Penetration of carbon in mild steel in the carburizing process (case hardening)

14.3 ❏ DIFFERENT MODES OF MASS TRANSFER

Mass transfer occurs whenever there is a concentration gradient between two fluids, just as heat transfer 
takes place whenever there exists a temperature gradient. There are essentially three modes of mass 
transfer.

14.3.1 ● Mass Transfer by Diffusion

Whenever the transfer of mass of one substance or species through another occurs at a microscopic level, it 
is called molecular diffusion. Molecular diffusion occurs in a gaseous mixture as a result of random motion 

of the molecules. If such diffusion occurs through a layer of stagnant fluid, it may do so as a result of
Concentration gradient (ordinary diffusion)
Temperature gradient (thermal diffusion)
Pressure gradient (pressure diffusion)

The mechanism of mass transfer by molecular diffusion is akin to heat transfer by conduction.
When one of the diffusing fluids is in turbulent motion, the mass transfer process is known as eddy

diffusion. Dissipation of smoke from a smoke stack (chimney) involves an eddy diffusion process. 
Turbulence causes mixing and transfer of smoke to the ambient air. The mass transfer increases at a 
slower rate by molecular diffusion than by eddy diffusion.

14.3.2 ● Mass Transfer by Convection

In most cases, diffusion proceeds simultaneously with convection. This occurs when the fluid is in motion. 
When water vaporizes in a lake, the mixing of water vapour with air is partly due to convection and 
partly due to diffusion. Mass transfer by convection occurs between a moving fluid and a surface, or 

between two relatively immiscible moving fluids which do not mix with each other. The evaporation of 
ether is an example of convection mass transfer.

In fact, convective mass transfer occurs by both molecular diffusion and convective motion of the 
fluid. This process is analogous to convective heat transfer. For low concentrations and low mass-transfer 

rates, many of the equations for convective mass transfer are analogous to those derived for convective 
heat transfer.

14.3.3 ● Mass Transfer by Change of Phase

Mass transfer also occurs in some cases that involve a change from one phase to another. This is 
characterized by the simultaneous action of convection and diffusion.
The familiar example is the evaporation of a cryogenic fluid from its container.
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When water boils in open air, mass is transferred from liquid to vapour. There is further transfer 
of vapour from the liquid-vapour interface to the open air by convection as well as by diffusion.

14.4 ❏ CONCENTRATIONS, VELOCITIES, AND FLUXES

In diffusion mass transfer, the concentration gradient of a component in a mixture provides the driving

potential. There are many ways of defining concentrations, velocities, and fluxes pertinent to mass transfer. 
We confine our discussion to the non-reactive, two-component systems only for the sake of simplicity.

14.4.1 ● Concentrations

The concentration of species in a multi-component fluid mixture can be expressed in many ways. The 
molar concentration, CA, of a component A (or molar density) is defined as the number of moles of 
component A per unit volume of the mixture. It is expressed in kg mole/m3 or kmol/m3. The mass 

concentration of a component A, rA (or mass density) is the mass of component A per unit volume of 
the mixture. It is expressed in kg/m3.

Concentration, on mass basis, is more appropriate in the study of diffusion in liquids and solids, while 
molar concentration is more convenient to use in the case of gases. Mass and molar concentrations are 
related to each other as follows:

r
=

3
3 (kg/m )

(kmol/m )
M (kg/kmol)

A
A

A

C (14.1)

where AM  is the molecular weight (relative molar mass) of the component A.

The mass fraction, wA, is defined as the ratio of the mass concentration of component A to the total 
mass density, r, of the mixture, and is given by.

r r

r
= =

/

/

A AA
A

M
w

r M
(14.2)

The molar fraction, yA, of the component A is defined as the ratio of molar concentration of the 
species A to the total molar concentration of the mixture, and is expressed as

= A
A

C
y

C
(14.3)

For a binary mixture of two components A and B, the following summation rules are valid.

+ = 1A Bw w (14.4)

+ = 1A By y (14.5)

r r r+ =A B (14.6)

+ =A BC C C (14.7)

Ideal-Gas Mixtures At low pressures, a gas or gas mixture can be considered an ideal gas. The familiar 
example of such a case is the mixture of dry air and water vapour existing under atmospheric conditions.

Assuming the mixture of ideal gases, the Dalton’s law of partial pressures states that the total pressure 
of the mixture equals the sum total of the partial pressures of the constituent components. That is, P = 
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(PA + PB) for a binary (two-component) maxture of species A and B or, in general, P = Â Pi, where Pi

is the partial pressure of the component i and it is the pressure that would be exerted by the component 
i if it alone occupied the entire volume of the mixture. Then, using the ideal-gas relation –V ,P n RT=

where R  = universal gas constant = 8.3143 kJ/kmol K), one can write –V

–V

i

i i
i

n RT

P n
y

nRTP n
= = = .

Molar density of a multi-component mixture, and, mass density, C = ÂCi, r = Âri

Clearly, Âyi = 1 and Âwi = 1
We note that the pressure fraction is equal to the mole fraction for an ideal-gas mixture.
As stated earlier for an ideal gas mixture of the two components A and B.

BAP P P= +

From the equation of state (the perfect-gas equation),

we have –VA AP n RT= (14.8)

Also
–V

A A
A

n P
C

RT
= = (14.9)

Therefore
/

/

A A A

A

C P RT P
y

C P RT P
= = = (14.10)

or BA
A B

P P P
C C C

RT RT RT
= + = + = (14.11)

14.4.2 ● Velocities: Diffusion in a Moving Medium

Let us now consider mass diffusion in a moving medium. In a multi-component mixture, various 
constituent components move at different velocities. Here, we consider only one-dimensional steady state 
problems. Assume that there is a mixture of two gases A and B moving at different velocities VA and 
VB in a direction x relative to a stationary frame of reference. We assume further that diffusion is taking 
place in the direction of the flow because of the presence of concentration gradients. Thus, the molar 
densities CA and CB and the molar fractions yA and yB also vary with the direction x.

Let VA and VB be the mean velocities of components A and B, respectively, in a mixture of two 
components, relative to a stationary frame of reference, One can define two types of average velocities, 
depending on whether one is interested in the mass movement or the molar movement.

The molar-average velocity of the gas mixture is defined in terms of the velocities and molar densities 
of the components by the equation

A A B B

A B

V C V C
V

C C

+
=

+
(14.12)

or A A B BV C V C
V

C

+
= (14.13)

Noting that CA/C = yA, and CB/C = yB,

A A B BV y V y V= + (14.14)
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where yA and yB are the mole-fractions of the components A and B, respectively.
Similar to the molar-average velocity of the mixture ( )V , one can also define the mass-average 

velocity of the mixture (V) in terms of the velocities VA and VB and the mass densities rA and rB of the 
components. Thus, we have

A Bm m m= + i.e., rAV = rA AVA + rB AVB

or A A B B A A B B

A B

V V V V
V

r r r r

r r r

+ +
= =

+
(14.15)

Noting that rA/r = wA and rB/r = wB

A A B BV w V w V= + (14.16)

where wA and wB are the mass fractions of the components A and B, respectively.
In general, the values of the molar-average velocity and the mass-average velocity will be different. In 

the case of a stationary medium, mass-average velocity as well as molar-average velocity is equal to zero.
The molar diffusion velocities of components A and B with respect to the molar average velocity diffV

are as follows:

Molar diffusion velocity of the component A, diff,A AV V V= - (14.17)

Molar diffusion velocity of the component B, iff,d B BV V V= - (14.18)

Mass transfer by diffusion can take place either in a stationary medium or a moving medium. The 
movement of components in a mixture in a stationary medium is due only to the concentration gradients 
and the velocity of each component is equal to the diffusion velocity. However, in a moving medium, the 
absolute velocity of a component will be equal to the diffusion velocity plus the bulk flow velocity as well.

When there is no concentration gradient, the velocity of all species is equal to mass-average velocity 
of flow.

14.4.3 ● Fluxes

We will express here four types of fluxes: two with reference to stationary surfaces and two relative to 
the molar average velocity V  or mass average velocity V.

The molar flux is defined as the amount of that component, in moles, which crosses a given area per 
unit time.

Let Aj  and Bj  be the molar fluxes of components A and B, respectively, relative to stationary

coordinates. We then have

2(kmol/s m )

A A A

B B B

j C V

j C V

=

=

(14.19)

and (14.20)

These are known as total (convection + diffusion) fluxes on molar basis.
Let

diff ,Aj  and 
diff ,Bj  be the molar fluxes of the components A and B, respectively, relative to the 

molar average velocity, V . Therefore,

diff , 2

diff ,

= ( )
(kmol/s m )

( V)

A A A

B B B

j C V V

j C V

-
= -

(14.21)

(14.22)
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These are defined as diffusion fluxes or molar basis.
The mass flux is defined as the amount of that component in mass units that passes a unit area 

perpendicular to the x-axis per unit time.
Let jA and jB be the mass fluxes of the components A and B, respectively, relative to stationary

coordinates. Then, we have

2(kg/s m )
A AA

BB B

j V

j V

r

r

=
=

(14.23)

(14.24)

These are called total fluxes on mass basis.
Let jdiff, A and jdiff, B be the mass fluxes of the components A and B, respectively, relative to mass

average velocity, V. Then

diff,A 2

diff,

( )
(kg/s m )

( )

A A

B B B

j V V

j V V

r

r

= -

= -

(14.25)

(14.26)

These are diffusion fluxes on mass basis.
Substituting for V , one gets

diff,

diff,

( )

( )

A
A A A A A B B

B
B B B A A B B

C
j C V V C V C

C

C
j C V V C V C

C

= - +

= - +

(14.27)

(14.28)

Adding the two equations (14.27) and (14.28), one gets

diff, diff, ( ) ( )A B
A B A A B B A A B B

C C
j j C V C V C V C V

C

+
+ = + - +

Therefore, diff, diff, 0A Bj j+ =  (since CA + CB = C) (14.29)

or diff, diff, 0A Bj j+ = (14.30)

This shows that the diffusion fluxes A Bj j= -  and diff,Aj  in a mixture of two components are equal

in magnitude but in the opposite direction.
Table 14.1 presents the summary of definitions of basic quantities used in mass transfer.

Table 14.1

Mass quantities Molar quantities Relationships

Densities
Species density ri(kg/m3) Ci(kmol/m3) Ci = ri/<Mi (for species i)

C
M

r
=  (for the mixture)

Fractional density wi = ri/r
(mass fraction)

yi = Ci/C
(mole fraction) withi i

i

w M

y M
=

Mixture density r = Âri = constant C = ÂCi = constant
i iM y M=Â

contd.
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Velocities

Species velocity Vi (m/s) Vi (m/s) Vi = Vdiff,i + V

diff,i iV V V= +

Average (bulk) flow 
velocity

V = ÂwiVi

(mass-average velocity) i iV yV=Â
(molar-average velocity)

Vi = V
(no concentration gradient)

Diffusion velocity Vdiff,i = Vi – V
diff, i iV V V= - V = 0 (stationary medium)

Fluxes
Total flux

(Convection flux + 
Diffusion flux)

Ji = riVi(kg/s m2)
ij  = CiVi (kmol/s m2) ji = riVi = riV = riVdiff,i = wi(Âji)

Diffusion flux Jdiff,i = riVdiff,i = ri(Vi – V)
diff, diff , ( )i i i i ij C V C V V= = -

diff,

diff,( )

i i i i i i

i i i

j CV CV CV

y j j

= = +

= S +

14.5 ❏ FICK’S LAW OF DIFFUSION

Fick’s law is based on experimental evidence and cannot be derived from first principles. It is valid 
for all types of matter-solid, liquid, or gas. In general, the diffusion coefficient DAB depends upon the 
pressure, the temperature and the nature of the constituents. However, for ideal gases and dilute liquids,
the diffusion coefficient is presumed to be constant for a given range of pressure and temperature. The 
diffusion coefficient is a property of the system and is expressed in m2/s.

Mass flux being a vector quantity, a more general statement of the Fick’s law can be written as follows:

Am

A

Ê ˆ
Á ˜Ë ¯  = –r DAB — wA where — is the three-dimensional del operator. (14.31)

The concentration of the gas A can also be described in terms of a molar fraction or a molar density.
In that case,

( / )A A A
AB AB

n

N C C y
C D C D

A n n

Ê ˆ ∂ ∂
= - = -Á ˜Ë ¯ ∂ ∂

(14.32)

where ( / )A nN A =  molar flux of the gas A (kmol/m2 s) in the n-direction.

If CA = molar density of the gas A, i.e., moles of the gas A per unit volume of mixture in (kmol/m3), and
CB = molar density of gas B, i.e. moles of the gas B per unit volume of mixture in (kmol/m3).

The molar density of the mixture is given by A BC C C= +  and yA, the molar fraction of A is

A
A

C
y

C
=

If the molar density of the mixture C is constant then

A A
AB

n

N C
D

A n

Ê ˆ ∂
= -Á ˜Ë ¯ ∂

(14.33)

contd.
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If the gases constituting the mixture obey the perfect gas law, then in terms of the partial pressure,

( / ) ( / )
andA A

AB AB
n n

N NP PA P PA RT
D D

A RT n A n

Ê ˆ Ê ˆ∂ ∂
= - = -Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂

(14.34)

where PA is the partial pressure of the gas A, P, the total absolute pressure, and T, the absolute temperature.
Consider a stationary mixture of two gases A and B in a chamber which is divided into two equal 

compartments by a partition, as shown in Figure 14.1. The concentration of the two gases is not uniform.

Let the gas mixture in the volume A be rich in the species A, and the volume B be rich in the species 
B. In such a situation, if the partition is removed, molecules of A would diffuse to the right, i.e., in the 
direction of decreasing concentration of A, and the molecules of B would diffuse to the left. The lower 
part of Figure 14.1 also shows the concentration profiles of A and B shortly after the partition is removed. 
After sufficient time has elapsed, equilibrium conditions would be achieved, i.e., uniform concentrations 
of A and B would be attained and there would be no more mass diffusion.

Fick’s law relates the mass flux by diffusion to the concentration gradient. Diffusion mass flux of a 
species through a medium is proportional to the concentration gradient, i.e.,

A Am d

A dx

r
a (14.35)

or 2(kg/s m )A A
A AB

m d
j D

A dx

r
= = - (14.36)
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or in general,

A A
AB

n

m w
D

A n
r

∂Ê ˆ = -Á ˜Ë ¯ ∂
(14.37)

where n = direction under consideration
jA = /Am A  = mass flux (kg/s m2)
A = area normal to the direction of propagation of mass (m2)
rA = concentration of the species A (kg/m3)

drA/dx = concentration gradient for species Adw
A

dx
r=  where A

Aw
r

r
=

DAB = constant of proportionality called binary diffusion coefficient or mass diffusivity for the binary 
mixture of A and B (m2/s).

The negative sign in Eq. (14.18) indicates that diffusion takes place in the direction of decreasing

concentration, so that mass flux is a positive quantity.
Molar flux can be obtained by simply dividing jA by the molecular weight of the species A.

2(kmole/s m )A
A

A

j
j

M
= (14.38)

Fick’s law of diffusion is analogous to the Fourier’s law of heat conduction and to the Newton’s law 
of viscosity, i.e.,

( )p

Q dT d
q k C T

A dx dx
a r= = - =   

p

k

C
a

r

Ê ˆ=Á ˜Ë ¯
(Fourier’s law of heat conduction) (14.39)

m
nt m n r

r

Ê ˆ== = Á ˜Ë ¯
( )

du d
u

dy dy
  (Newton’s law of viscosity) (14.40)

The following table sums up the analogy of heat, mass and momentum transfer.
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Table 14.2

Heat transfer Fourier’s law Transport of heat due to tempera-

ture gradient (dT/dx)
Thermal conductivity (k)

Momentum
transfer

Newton’s law Transport of momentum due to 
velocity gradient (du/dy)

Dynamic viscosity (m)

Mass transfer Fick’s law Transport of mass due to 
concentration gradient (drA/dx)

Mass diffusivity (DAB)

We note that the units of mass diffusivity (D), thermal diffusivity (a), and kinematic viscosity (n) are 
all same, i.e., m2/s.

The analogy between heat transfer and diffusion mass transfer is illustrated in Figure 14.2.

For the species A: From the equation of state: PA = rARAT (kPa)A
A

RT

M
r= (14.41)

where R = universal gas constant = 8.3143 kJ/kmol K

PA = partial pressure of the species A (kPa)
rA = density of species A (kg/m3)

AM  = molecular weight of species A (kg/kmol)

and T = absolute temperature (K)

Mass diffusion flux, A A A A
A AB AB

m d P Md
j D D

A dx dx RT

r Ê ˆ
= = - = - Á ˜Ë ¯

(14.42)

or A A
A AB

M dP
j D

RT dx
= - (14.43)

Similarly, for the species B, one can write

B B B
B AB

m M dP
j D

A RT dx
= = - (14.44)

Note that the above equations are valid for isothermal conditions only.
The statements of Fick’s law given so far have been for the diffusion of the gas A in the gas B.
Similar equations could also be written for the diffusion of the gas B in the gas A. For example, 
corresponding to Eq. (14.37), we have

B B
BA

n

m w
D

A n
r

∂Ê ˆ = -Á ˜Ë ¯ ∂
(14.45)

The Fick’s law is not only applicable to binary gas mixtures but is also valid for a mixture contain-
ing more than two gases.
The applicability of Fick’s law is not confined to mass diffusion in stationary gas mixtures. It can 
be used for mass diffusion in stationary liquid solutions and in solid solutions in which the con-
centrations of the components are not uniform.
This law holds good for mass diffusion due only to concentration gradient. It cannot be used in the 
case of mass diffusion due to other reasons like pressure gradient, temperature gradient or other 
external influences.
Fick’s law, like Fourier’s law, is developed based on experimental observation. One cannot analyti-
cally derive it from first principles.
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Mass diffusion takes place in the direction of decreasing concentration, in the same manner as heat

transfer occurs in the direction of decreasing temperature.
Mass diffusivity or binary diffusion coefficient (D) depends upon pressure, temperature and the 
nature of the component concerned. However, it can be assumed as constant for ideal gases and 
dilute liquids for a specified range of temperature and pressure.

● Diffusion Coefficient: Equivalence of Diffusivities

The molar flux of a species (which occurs due to concentration gradients) causes the species to have a 
velocity relative to the molar-average velocity of the mixture. The magnitude of this molar flux is given 
by Fick’s law. Thus the total molar flux of a species at any cross-section in a moving medium equals 
the sum of the flux of the species due to the molar-average velocity of the mixture and the flux given 
by the Fick’s law. We have the following equations:

For the species A: A A
A AB

N dy
C V CD

A dx

Ê ˆ
= -Á ˜Ë ¯ (14.46)

For the species B: B B
B BA

N dy
C V C D

A dx

Ê ˆ
= -Á ˜Ë ¯ (14.47)

If C, the molar density of the mixture, is a constant, one can also write

and

A A A
A AB A

B B
B BA

N dC C
C V D y

A dx C

N dC
C V D

A dx

Ê ˆ Ê ˆ= - =Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ
= -Á ˜Ë ¯

The molar flux of the mixture at any cross-section must be equal to the sum of the molar fluxes of the 
two species. Thus,

A BN NN

A A A

Ê ˆ Ê ˆÊ ˆ
= +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ (14.48)

Substituting ( / )N A CV=  and the expressions for ( / )AN A  and ( / )BN A  from equations (14.46) and 

(14.47) in Eq. (14.48), we have

A B
A AB B BA

dy dyN
CV C V CD C V CD

A dx dx
= = - + - (14.49)

or ( ) A B
A B AB BA

dy dy
CV C C V CD CD

dx dx
= + - - (14.50)

As C = CA + CB, we have

A B
AB BA

dy dy
CD CD

dx dx
- =

Since (yA + yB) = 1, (dyA/dx) = (–dyB/dx)
It follows that

AB BAD D D= = (14.51)
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Thus, the binary diffusion coefficient of the species A with respect to the species B, (DAB) is equal to 
the binary diffusion coefficient of B with respect to A, (DBA).

From the kinetic theory of gases, it can be shown that at ordinary pressures, the diffusion coefficient 
is independent of mixture composition, but increases with temperature and decreases with pressure, i.e., 
for a binary gas mixture of two components A and B, we have

1/22/3
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1 1
0.0043 [cm /s]

– –(V V )
AB

A BA B
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D

M MP

Ê ˆ= +Á ˜Ë ¯+
(14.52)

where P = Total pressure (atm)
T = Absolute temperature (K)

,A BM M  = Molecular weights of gas species (kg/kmol)

– –V VA B  = Molecular volumes of A and B at normal boiling points, (cm3/gmol)

Molecular weights and molecular volumes of a few gases are presented in Table 14.3.

Table 14.3

Gas Molecular weight (relative molecular 

mass) (kg/kmol) or (g/gmol)
Molecular volume at normal boiling 

point (cm3/gmol)

Air 29 29.89

Ammonia (NH3) 17 25.81

Carbon dioxide (CO2) 44 34.00

Carbon monoxide (CO) 28 30.71

Hydrogen (H2) 2 14.28

Nitrogen (N2) 28 31.20

Oxygen (O2) 32 25.63

Sulphur dioxide (SO2) 64 44.78

Another equation suggested for the diffusion coefficient for gas pairs of non-polar, non-reacting

molecules is of the form
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(14.53)

where, DAB = Mass diffusivity of the gas species A diffusing through another gas species B, cm2/s
T = Absolute temperature, K

MA, MB = Molecular weights of the components A and B respectively
P = Absolute pressure in atmospheres

sAB = Collision diameter in oA (angstroms)
W = Collision integral or a dimensionless function depending on the temperature and 

of the intermolecular forces.
The values of collision integral W have been compiled as a function of kE/eAB where k is the Boltzman 

constant (1.38 ¥ 10–6 ergs/K) and eAB is the energy of molecular interaction for the binary system.
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For a binary system composed of non-polar molecule pairs,

and
2

A B
AB AB A B

s s
s e e e

+
= = (14.54)

Charts are available to determine the value of F for different values of solute molal volume and 
solvent factor (a ratio of the value of F in the solvent of the value F for diffusion in water at constant 
molal volume).

Table 14.4 gives the values of diffusion coefficient and Schmidt number for some important substances 
diffusing through air at 25oC and 1 atm.

Table 14.4

Substance Diffusion coefficient, DAB(m2/s) Schmidt number, Sc ∫ n/D

Ammonia 2.80 ¥ 10–5 0.78

Carbon dioxide 1.64 ¥ 10–5 0.94

Hydrogen 4.10 ¥ 10–5 0.22

Oxygen 2.06 ¥ 10–5 0.75

Water 2.56 ¥ 10–5 0.60

Methanol 1.59 ¥ 10–5 0.97

Ethyl alcohol 1.19 ¥ 10–5 1.30

Acetic acid 1.33 ¥ 10–5 1.16

Benzene 0.88 ¥ 10–5 1.76

Toluene 0.84 ¥ 10–5 1.84

Ethyl benzene 0.77 ¥ 10–5 2.01

Propyl benzene 0.59 ¥ 10–5 2.62

It can be seen from Table 14.5 that the diffusion coefficient of water vapour in air increases with 
temperature. This statement is true in general for gases or vapours diffusing in a gaseous medium. 
Furthermore, the diffusion coefficient decreases with increase in pressure and can be accounted for in 
the following approximate relation:

n

AB

T
D

P
μ (14.55)

where T is the absolute temperature and P, the total pressure. The exponent n varies from 1.5 to 2. This 
equation can be used over a limited range to estimate the diffusion coefficient in a binary system at a 
desired temperature and pressure, if the value at a certain temperature and pressure is known.

With n = 1.5, Eq. (14.56) can be expressed as

3/2
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2 2 1

D T P

D T P

Ê ˆ Ê ˆ= Á ˜ Á ˜Ë ¯ Ë ¯
(14.56)

For values of diffusion coefficient of water vapour in air, the following formula has been suggested 
by Marrero and Mason:
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where, P is the total pressure (atm) and T is the absolute temperature in (kelvin).
Variation of diffusion coefficient for water vapour in air at a total pressure of 1 atm with temperature 

can be seen from Table 14.5.

Table 14.5

T(oC) DAB (m2/s) T(oC) DAB (m2/s)

0 2.09 ¥ 10–5 80 3.55 ¥ 10–5

5 2.17 ¥ 10–5 85 3.66 ¥ 10–5

10 2.25 ¥ 10–5 90 3.77 ¥ 10–5

15 2.33 ¥ 10–5 95 3.88 ¥ 10–5

20 2.42 ¥ 10–5 100 3.99 ¥ 10–5

25 2.5 ¥ 10–5 105 4.10 ¥ 10–5

30 2.59 ¥ 10–5 110 4.21 ¥ 10–5

35 2.68 ¥ 10–5 115 4.32 ¥ 10–5

40 2.77 ¥ 10–5 120 4.44 ¥ 10–5

45 2.86 ¥ 10–5 125 4.56 ¥ 10–5

50 2.96 ¥ 10–5 130 4.68 ¥ 10–5

55 3.05 ¥ 10–5 135 4.80 ¥ 10–5

60 3.15 ¥ 10–5 140 4.92 ¥ 10–5

65 3.25 ¥ 10–5 145 5.05 ¥ 10–5

70 3.35 ¥ 10–5 150 5.18 ¥ 10–5

75 3.45 ¥ 10–5

In a binary ideal-gas mixture of species A and B, the diffusion coefficient of A in B is equal to the 
diffusion coefficient of B in A, and both increase with temperature but decrease with increase in pressure.

For steady-state diffusion through a non-diffusing, multi-component mixture, an effective diffusivity is 
defined as
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D D D

=
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(14.58)

where yB, yC, yD … mole fractions of components of the mixture on a free basis.

DAB, DAC, DAD … diffusivities of the species A through B, C, D.

For the determination of the binary diffusion coefficient of liquids and solids, there are no established 
methods available and one has to depend on experimentally obtained values. The following semi-empirical

relation is suggested to estimate the diffusion coefficient of dilute liquids.
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AB B

T
F

D m
= (14.59)

where T = Absolute temperature (K)
DAB = Diffusivity of the solute A through a solvent B (cm2/s)
mB = Viscosity of the solvent B (centipoise), and
F = A function of molal volume of the solute A (K s/cm2 centipoise)

The values of DAB for liquids are much less then those for gases because of higher molecular density. 
These values also show an increase with increase in temperature. In the case of solids, the diffusion 
processe is far more complex and the values of diffusion coefficients are even significantly lower then 
those for liquids.

14.6 ❏

The mole fractions of a species A in the gas and liquid phases at the interface of a dilute mixture are 
proportional to each other and are expressed by Henry’s law as

,gasside

,liquidside (at the interface)
A

A

P
y

H
= (14.60)

where H is Henry’s constant.
When the mixture is not dilute, an approximate relation for the mole fraction of a species on the liquid 

and gas sides of the interface is expressed approximately by Raoult’s law as

,gasside ,gasside , liquidside ,sat ( )A A A iP y P y P T= = (14.61)

where PA,sat (T) is the saturated pressure of the species A at the interface temperature and P is the total

pressure on the gas-phase side.
The concentration of the gas species A in the solid at the interface CA, solid side is proportional to the 

partial pressure of the species A in the gas Pi,gas side on the gas side of the interface and is given by

3
,solidside ,gas side (kmol/m )A AC S P= ¥ (14.62)

where S is the property called solubility. The product of the solubility of a gas and the diffusion coefficient

of the gas in a solid is defined as the permeability P, which is a measure of the ability of the gas to 
penetrate a solid. Table 14.6 presents the solubility of a few gases and solids.

Table 14.6

Gas Solid T (K) S = CA,i/PA,i (kmol/m3 bar)

O2 Rubber 298 3.12 ¥ 10–3

N2 Rubber 298 1.56 ¥ 10–3

CO2 Rubber 298 40.15 ¥ 10–3

He SiO2 293 0.45 ¥ 10–3

H2 Ni 358 9.01 ¥ 10–3

(Note: Permeability, P = S.DAB where DAB = diffusivity of gas in a solid)
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14.7 ❏

DIFFUSION IN STATIONARY MEDIA

14.7.1 ● Species Conservation Balance in a Control Volume

Similar to the control volume energy balance in heat transfer 
discussed in Chapter 1, in mass transfer toowe have a 
conservation balance for a species mass diffusing through 
a medium. Referring to Fig. 14.3, the rate at which the 
mass of some species enters a control volume minus the 
rate at which this species mass leaves the control volume 
plus the rate at which the mass of the species is generated 
(or absorbed), due to chemical reactions occurring within 
the system, must equal the rate at which the species mass is stored in the control volume.

Any species A may enter and leave the control volume due to both fluid motion and mass diffusion

across the control surface. These processes are surface phenomena represented by ,inAm  and ,outAm . The 
same species A may also be generated, ,genAm , and accumulated or stored, ,A stm , within the control 
volume. On a rate basis it follows that

,in ,out ,gen ,orA
A A A A st

dm
m m m m

dt
- + = (14.63)

14.7.2 ● General Mass Diffusion Equation in Cartesian Coordinates

Let us consider a homogeneous and stationary 
medium which is a binary mixture of the species 
A and B. The mass-average or molar-average

velocity of the mixture will be zero everywhere 
and mass transfer will occur only by diffusion 
because the medium is stationary. Fick’s law 
can be used to determine the species diffusion 
rate at any point in the medium.

In Cartesian coordinates, there will, in 
general be the concentration gradients in 
each of the x, y, and z-directions. Consider a 
differential control volume, (dxdydz), within 
the medium as shown in Fig. 14.4. With these 
concentration gradients, mass diffusion of the 
species A will occur through the surfaces. 
Relative to stationary coordinates, the species 
diffusion rates at opposite surfaces take the 
following forms:

,
, , , , ,
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A x
A x dx A x A x A x dx A x

j dy dz
m m m dx j dy dz j dy dz dx

x x
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∂ ∂
(14.64)

,

, , , , ,

( )
( )

A y

A y dy A y A x A y dy A y

j dxdz
m m m dy j dxdz j dxdz dy

y y
+ +

∂∂
= + fi = +

∂ ∂
(14.65)
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z z
+ +

∂∂
= + fi = +

∂ ∂
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There may also be volumetric (homogeneous) chemical reactions taking place throughout the medium. 
The rate at which the species A is generated within the control volume due to these chemical reactions 
may be written as

,gen ,genA Am j dxdy dz= (14.67)

where jA, B is the rate of increase of the mass of the species A per unit volume of the mixture (kg/s m3)
(analogous to the rate of heat generation, W/m3) The rate of change of the mass of the species A stored 
within the control volume, can be expressed as

,
A

A stm dxdy dz
t

r∂
=

∂
(14.68)

Now, ,in ,outA Am m-  = (Total mass influx – Total mass efflux) in all the three (x, y, z) directions

, , ,( ) ( ) ( )A x A y A zj j j dx dy dz
x y z

Ï ¸∂ ∂ ∂
= - + +Ì ˝∂ ∂ ∂Ó ˛

(14.69)

Substituting Eqs. (14.67) to (14.69) into Eq. (14.63), we have

,, ,
,gen

A yA x A z A
A

jj j
j

x y z t

r∂∂ ∂ ∂
- - - + =

∂ ∂ ∂ ∂
(14.70)

For a stationary medium, the mass-average velocity V is zero, and A
A

m
j

A
= . From Fick’s law of 

diffusion, we note that

, , ,, andA A A
A x AB A y AB A z AB

w w w
j D j D j D
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r r r

∂ ∂ ∂
= - = - = -
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Substituting these values in Eq. (14.70), we obtain
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w w w
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r
r r r

Ê ˆ∂ ∂ ∂ ∂∂ ∂ ∂Ê ˆ Ê ˆ+ + + =Á ˜ Á ˜Á ˜Ë ¯ Ë ¯∂ ∂ ∂ Ë ∂ ¯ ∂ ∂ ∂
(14.71)

On the basis of the molar concentration, a similar derivation will give

,gen
A A A A

AB AB AB A

y y y C
CD CD CD j

x x y y z z t

Ê ˆ∂ ∂ ∂ ∂∂ ∂ ∂Ê ˆ Ê ˆ+ + + =Á ˜ Á ˜Á ˜Ë ¯ Ë ¯∂ ∂ ∂ Ë ∂ ¯ ∂ ∂ ∂
(14.72)

If DAB and r are constant, Eq. (14.71) may be expressed as

2 2 2

,gen2 2 2

1A A A A
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j
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(14.73)

Likewise, if DAB and C are constant, Eq. (14.72) may be written as

2 2 2

,gen2 2 2

1A A A A
A
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C C C C
j

D tx y z

∂ ∂ ∂ ∂
+ + + =

∂∂ ∂ ∂
(14.74)

In the absence of chemical reactions ,gen ,gen( 0)A Aj j= =  and with one-dimensional, steady-state conditions, 
one can write
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2 2

2 2
0 and 0A Ad d C

dx dx

r
= = (14.75)

In cylindrical and spherical coordinates too, in terms of the molar concentration, we can write the 
general species diffusion equation analogous to conduction heat transfer, as follows:

Cylindrical Coordinates

,gen2

1 1A A A A
AB AB AB A

y y y C
CD r CD CD j

r r r z z tr f f
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(14.76)

Spherical Coordinates
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∂ ∂∂ Ê ˆ+ + =Á ˜Ë ¯∂ ∂ ∂
(14.77)

14.7.3 ● Boundary Conditions

Boundary conditions in mass transfer are very similar to those in heat transfer. Some of these boundary 
conditions generally encountered in engineering practice are the following:

● Specified Concentrations at the Boundary (analogous to specified temperature, Ts at the boundary)

,0 ,at 0and atA A A A Lx x Lr r r r= = = = (14.78)

● Impermeable Surface at the Boundary (analogous to insulated surface in heat transfer)

( / ) 0 at 0, (0) 0A Ax x mr∂ ∂ = = = (14.79)

● Specified Mass Flux at the Surface (analogous to specified heat flux, qw at the surface)

, ,

0

( / ) A
A s A s AB

x

j m A D
x

r

=

∂
= = -

∂
(14.80)

● Specified Mass Transfer Coefficient (Convective) at the Surface

, ,( )A
A m A s A

m
j h

A
r r= = - (14.81)

where hm = convective mass-transfer coefficient (analogous to specified convection coefficient, h),

rA,s = concentration in the fluid adjacent to the surface, and

rA,  = bulk concentration in the fluid stream.

14.8 ❏

Let us now obtain solutions to some simple one-dimensional steady state problems of mass diffusion in 
a stationary medium.
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14.8.1 ● Steady-state Diffusion Through a Plain Membrane (Wall)

Consider a plane membrane (wall) of thickness L with the mass fractions of the species A on the two 
faces as 

1A
w  and 

2A
w .

Assumptions (1) Steady-state, one-dimensional mass diffusion. (2) Constant mass diffusivity. (3) No 
chemical rections (no internal mass generation).
For steady-state diffusion, according to Fick’s law, we know that

A A
AB

m dw
D

A d x
r= - (14.82)

Assuming that r, the density of the binary mixture, is a constant, we have

A A
AB

m d
D

A d x

r
= - (14.83)

Integrating Eq. (14.80) between the limits 0 and L, and assuming that the diffusion coefficient is a 
constant, we get
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(14.84)

Also, 1 2 1 2( ) ( )
(on molar basis)A A A A A

AB AB

N C C y y
D CD

A L L

- -
= = (14.85)

Similarly, integrating between 0 and x with corresponding values 
1A

r  and rA, we have

1
( )A AB

A A

m D

A x
r r= - (14.86)

Equating the two, we get the linear concentration distribution

1
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1

1 2

A A A A

A A A A

w w x

w w L

r r

r r

- -
= =

- -
(14.87)

or 1 1 2( )A A A A

x

L
r r r r= - - (14.88)

We can also express the mass-diffusion rate as

1 2
Concentration potential

Diffusion resistance

A A

A

AB

m
L

D A

r r-
= = (14.89)

Note that the above equation gives diffusion mass-flow rate (kg/s), which can be expressed in a form 
analogous to Ohm’s law, i.e., as a ratio of concentration potential to the diffusion resistance.

The diffusion resistance for a plane membrane is given by

3
diff (s/m )

AB

L
R

D A
= (14.90)
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14.8.2 ●  Steady-State Diffusion Through a Cylindrical Shell
(a Long Hollow Cylinder)

Consider a cylindrical shell of length L and inner and outer radii equal to r1 and r2, respectively. Let the 

corresponding concentrations of the species A at these radii be 
1A

r  and 
2A

r .

Assumptions
Steady-state, one-dimensional diffusion in the radial direction
Constant mass diffusivity
No internal mass generation

For an elemental cylindrical shell at any radius r, with a thickness dr, one can write,

From Fick’s law, 
( )

A A
AB

m d
D

A r dr

r
= -

For this system, we write 
2

A A
AB

m d
D

r L dr

r

p
= -

Separating the variables, and integrating form r1 to r2,
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2

1 2
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m dr D L d
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m r r D L

r

r

p r

p r r
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or 1 21 2

2 1 diff,cyl

or (kg/s)
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ln
2

A AA A
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AB

m m
r r R

D L

r rr r

p

--
= = (14.91)

where, 2 1
diff,cyl

ln ( / )

2 AB

r r
R

D Lp
= (s/m3) = is the diffusion resistance of cylindrical shell. (14.92)

Integrating from r1 to r (and mass concentration from rA1 to rA), we can obtain

1

1
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A A
A
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D L

r r

p

-
= (14.93)

Equating the two, we have

1 2 1 1

1 2

1

2 1 1 2 1

ln ( / )
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ln ( / ) ln ( / ) ln ( / )

2 2

A A A A A A

A A

AB AB

r r

r r r r r r

D L D L

r r r r r r

r r

p p
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-
(14.94)

In terms of mass fractions, we can write

1 2 1 2 1

2 1 2 1 2 1

2 ( ) ln ( / )
and

ln ( / ) ln ( / )

AB A A A A
A

A A

LD w w w w r r
m

r r w w r r

p r - -
= =

-
(14.95)

The concentration profile can be obtained, on similar lines, as this gives the concentration distribution in 
the cylindrical shell as a function of the radius, r. Note that the concentration distribution is logarithmic.
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14.8.3 ● Steady-state Diffusion through a Spherical Shell

Consider a spherical shell of inner and outer radii r1 and r2 with corresponding mass density concentrations 

of
1A

r  and 
2A

r .

Assumptions (1) Steady-state, one-dimensional (radial) diffusion. (2) Constant binary diffusion 
coeffcient. (3) No internal mass generation.
Then, according to

Fick’s law,
2

or
( ) 4

A A A A
AB AB

m d m dw
D D

A r dr drr

r
r

p
= - = -

Separating the varratles and integrating, we have

or
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4 4
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È ˘
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Î ˚
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or 1 2
1 2

1 1
4 ( )A AB A Am D w w

r r
pr

Ê ˆ
= - -Á ˜Ë ¯

(14.96)

The concentration distribution can be obtained, on similar lines, as

1

1 1 21 2

1 1 1 1A A

A A

w w

r r r rw w

- Ê ˆ Ê ˆ= - -Á ˜ Á ˜- Ë ¯ Ë ¯
(14.97)

Table 14.7 summarizes the concentration variation and the molar diffusion resistance for the three

geometries discussed above.

Table 14.7

S.
No.

Geometry Concentration distribution 
yA(x) or yA(r)

Molar diffusion resistance
R
–

diff (s/kmol)

1.

1 1 2

1

1 2

( ) ( )A A A A

A A

A A

x
y x y y y

L
y y x

y y L

= - -

-
=

-

diff
AB

L
R

CD A
=

contd.
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2.

L

Cylindrical shell

r

yA1 2, r

yA1 1, r

1 2

1

1

1 2

1
2 1

1

2 1

( ) ln ( / )
ln ( / )
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=
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=
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1 2
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(1/ 1/ 2)
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y y r r

- Ê ˆ-= - Á ˜Ë ¯-
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=
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diff
1 2

1 1 1

4 AB

R
C D r rp

Ê ˆ= -Á ˜Ë ¯

14.9 ❏

TWO GASES

Consider two large reservoirs (chambers) containing uniform binary mixtures of two gases A and B at 
different concentrations as shown in Figure 14.5. In the reservoir 1, the molar densities of A and B are 
CA1 and CB1, while in the reservoir 2, they are CA2 and CB2 respectively. Let us assume that the reservoirs 
are at the same pressure P and at a uniform temperature T and that they are connected by a long pipe 
(passage) of length L having a small diameter. Thus, the mass transfer through the pipe is basically one-
dimensional. Also, since the reservoirs are of large capacity, the molar densities of the gases inside them 
do not change with time and a steady-state condition exists in the connecting pipe.

contd.
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For the reservoir 1, the total pressure P which is the sum of the partial pressures of gases A and B,
is constant in steady state and can be expressed as

P = PA1 + PB1 = R T(CA1 + CB1)

Similarly, for the reservoir 2:

P = PA2 + PB2 = R T(CA2 + CB2)

Hence, CA1 + CB1 = CA2 + CB2 = constant
This constant value is the molar density of the mixture in either reservoir.

Let CA1 > CB1. Then CA2 > CB2. Thus, the gas A will diffuse from left to right, while the gas B will 
diffuse from right to left. Since the molar density of the mixture is constant everywhere, the counter-
diffusion of A and B occurs in such a manner that. This process is called equimolar counter-diffusion. In 
equimolar counter-diffusion, the molar-average velocity of the gas mixture, 0V = . Therefore,

2

2 3

kmol kmol 1

mm m

A A
AB

N dC m
D

A dx s

Ê ˆÊ ˆ Ê ˆ Ê ˆ= -Á ˜ Á ˜Á ˜ Á ˜Ë ¯ Ë ¯Ë ¯ Ë ¯
(14.98)

and B B
BA

N dC
D

A dx

Ê ˆ
= -Á ˜Ë ¯ (14.99)

Integrating equations (14.96) and (14.97) between the limits x = 0 to x = L and using the ideal-gas 
equation, we have

2 1 2 1

2 1 2 1

( ) ( )

( ) ( )

A A A AB A A
AB

B B B AB B B
AB

N C C D P P
D

A L RT L

N C C D P P
D

A L RT L

Ê ˆ - -
= - = -Á ˜Ë ¯

Ê ˆ - -
= - = -Á ˜Ë ¯

Obviously, ( ) ( )A BN N= -
Integrating between the limits 0 and x, the molar density distribution can be expressed as

1 1

2 1 2 1

A A B B

A A B B

C C C C x

C C C C L

- -
= =

- -
(14.100)

This shows that during the process of equimolal counter-diffusion, the molar density and partial 

pressure of each gas varies linearly in the pipe connecting the reservoirs.
It may be noted that although the molar-average velocity V  is zero during equimolal counter-diffusion, 

the mass-average velocity V will not be equal to zero.
Since P = PA + PB, we get after differentiation

or

0A B

A B

dP dP

dx dx

dP dP

dx dx

+ =

= - (14.101)

This shows that the partial-pressure gradients are equal.

Substitution of asB AdP dP

dx dx
-  gives
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BA A
B

D dP
N A

RT dx
= +

(14.102)

Since A BN N= - , we have AB A BA AD dP D dP
A A

RT dx RT dx
- = -

We thus find AB BAD D= (14.103)

AB A
A

D dP
N A

RT dx
= -

Integration of the preceding equation between any two planes gives

1 2 (kmol/s)AB A A
A

D P P
N A

RT L

-Ê ˆ= - Á ˜Ë ¯
(14.104)

where PA1 and PA2 are the partial pressures of the gas A at locations 0 and L of the system.
A similar relation can be written for BN . Figure 14.6 shows the distribution of partial pressures of 

the two components as a function of the distance x, which is linear. Also, diff,A A Am N M= ◊  where AM

is the molecular weight of the species A.
Distillation columns are good examples for equimolal counter-diffusion. Venting of a gas to atmosphere 

also involves equimolal counter-diffusion.

14.10 ❏  ISOTHERMAL EVAPORATION OF WATER INTO AIR FROM A 
SURFACE

Diffusion of one gas component through another non-diffusing (stagrant) gas component occurs in many 
mass-transfer opertions. Familiar examples of such a unidirectional diffusion through a stagnant gas layer 
are absorption, humidification, and the diffusion of water vapour through a layer of air when evaporation 

of water occurs, say in a well or a test tube.
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Now consider the isothermal evaporation of water contained in a well and the subsequent diffusion of 
this water vapour through the stagnant air layer above the water as illustrated in Figure 14.7.

Assumptions
Steady-state and isothermal conditions exist.
Total pressure within the system remains constant.
Both air and water vapour behave like perfect gases.
Air has negligible solubility in water.
Air movement over the top of the liquid surface does not create turbulence and is just sufficient 
to carry away the evaporated water, but not large enough to cause any change in the concentration 
profile of air.

As the water (Species A) evaporates, it diffuses upwards through the air. The upward movement of 
water must be balanced by a downward diffusion of air so (Species B) that the concentration at any 
distance from the water surface remains constant.

Mass diffusion of air in the downward direction is given as follows:

AB B B
B

D M dP
m

RT dx
= - (14.105)

where A is the cross-sectional area of the tube. At the surface of water, since air is not soluble in water, 
the air cannot move downwards. Hence, there must be a bulk mass movement upwards with a velocity 
just large enough balance the diffusion of air downwards. Consequently, this will produce on additional 
mass flux of water vapour upwards.
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Bulk mass transfer of air is given by rBAV, i.e.,

B B
B

P M
m AV

RT
= - (14.106)

where V is the bulk mass velocity in the upward direction.

Combining the two expressions of Bm , we have

or

AB B B B B

AB B

B

D M dP P M
AV

RT dx RT

D dP
V

P dx

- = -

= (14.107)

The mass diffusion of water vapour upwards,

A A
A AB

M dP
m D A

RT dx
= -

Clearly,

Total mass transport Upward mass diffusion Water vapour carried upwards
= +

of water vapour of water vapour along with bulk movement of air

Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

Bulk transport of water vapour,

A A
A A

P M
m AV AV

RT
r= =

Hence, , total
AB A A A A

A

D AM dP P M
m AV

RT dx RT

-
= +

Substituting the value of V, we get

, total AA A A A AB B
A AB

B

AM dP P M D dP
m D

RT dx RT P dx

Ê ˆ= - - + Á ˜Ë ¯
(14.108)

or , total
AB A A A B

A
B

D M A dP P dP
m

RT dx P dx

Ê ˆ-
= -Á ˜Ë ¯

(14.109)

Making use of Dalton’s law of partial pressures, we get A BP P P= +

where P = total pressure, PA = partial pressure of water vapour, and PB = partial pressure of air

Differentiating, we get 0A BdP dP

dx dx
+ =

or A BdP dP

dx dx
= - (14.110)

Substituting Eq. (14.110) into Eq. (14.109), we get

, total

, total
–

AB wAB A A A A A A B
A

B B

AB A A
A

A

D MD M A dP P dP dP P P
m A

RT dx P dx RT dx P

D M A dPP
m

RT P P dx

-- +È ˘ È ˘= + =Í ˙ Í ˙
Î ˚ Î ˚

-
= (14.111)
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This relation is called Stefan’s law for an ideal gas diffusing through another stationary ideal gas in a 
binary gas mixture. Integration of this equation gives

2

1

2

1

L

, total

0

2
, total

1

ln ln (kg/s)

A

A

P

AB A A
A

AP

BAB A A AB A
A

A B

D M A dP
m dx P

RT P P

PD M A P P D PM A
m P

LRT P P LRT P

= -
-

-È ˘= =Í ˙-Î ˚

Ú Ú

(14.112)

where PB1 = P – 
1A

P  or P – PA,0 and PB2 = P – 
2A

P  or P – PA,L

Total molar transport of water vapour is

or

, total 2
, total

1

2
, total

1

1 ( / )
ln

1 ( / )

1
ln (kmol/s)

1

A AB A
A

A

AB A
A

A

m CD A P P
N

M L P P

CD A y
N

L y

È ˘-
= = Í ˙-Î ˚

È ˘-
= Í ˙-Î ˚

(14.113)

where
2

, ( ),A A

P
C y y L

RT
= =  and 

1
(0)A Ay y=

Figure 14.8 illustrates the distribution of partial pressures of air and water vapour with distance x in 
the medium.

Now, let us define Log Mean Partial Pressure of Air (LMPA) as 2 1

2 1ln ( / )

B B

B B

P P
LMPA

P P

-
=

or 2 2 1

1

ln B B B

B

P P P

P LMPA

-Ê ˆ =Á ˜Ë ¯
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Total mass flow of water vapour can now be written as

2 1 1 2
, total

( ) ( )
(kg/s)AB A B B AB A A

A

D A M P P P D A P PMP
m

RT L LMPA RT A LMPA

- -
= = (14.114)

Note that, in Eq. (14.114), instead of LMPA we can use arithmetic mean pressure, [i.e., (PB1 + PB2)/2],
if the partial pressure of water vapour does not change much as compared to the total pressure of the 
mixture.

Let the partial pressure of water be PA at any plane x. Then, integrating the Stefan’s equation between 

planes 0 and x, we get , total
1

lnAB A
A A

A

D A P P
m M P

RT x P P

Ê ˆ-
= Á ˜◊ -Ë ¯

, total

1( ) ( ) exp
A

A A
A AB

m RT x
P x P P P

PM D A

È ˘◊
= - - Í ˙

Î ˚
(14.115)

Equation (14.115) gives the variation of partial pressure of water vapour with the distance x along the tube.
And, for the stagnant gas, i.e., air PB = P – PB. It follows that

, total

1( ) ( ) exp (Air)
A

B A
A AB

m RT x
P x P P

PM D A

È ˘◊
= - Í ˙

Î ˚
(14.116)

14.11 ❏

STATIONARY MEDIUM

Transient mass diffusion processes occur when the concentration at any location varies with time. Consider
the diffusion of a dilute species A in a stationary medium with constant mass diffusivity DAB.

Transient mass diffusion finds an important application in case hardening of mild steel by carburizing 
process in which the steel component is packed in a carbonaceous material and kept in a furnace at high 
temperature for a desired length of time.

The mathematical formulation and solution are exactly similar to that for transient heat conduction 
discussed in Chapter 5. The one-term approximation (analytical) and transient temperature chart (graphical) 
solutions presented for transient conduction problems are also applicable to transient mass diffusion 
problems, provided:

The diffusion coefficient (DAB) is constant (corresponding to constant thermal diffusivity, in transient 
heat conduction).
There are no homogeneous reactions occurring (corresponding to no heat generation).
Initial concentration of the species A is constant throughout the medium (corresponding to uniform

initial temperature).
The correspondence between heat and mass transfer variables for transient diffusion is summarized in 
Table 14.8.

Let us now consider the problem of diffusion of the component A in a semi-infinite slab of material B
with an initial concentration of A as CA,i. At t = 0, the slab is suddenly exposed to a surface concentration, 
CA,s. For CA,s > CA,i, the diffusion of component A into the surface of a semi-infinite medium will result 
in different concentration profiles at different times as shown in Figure 14.9.
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Table 14.8

Heat conduction Mass diffusion

( , )
( , )

i

T x t T
x t

T T
q

-
=

-
( , ) , ( , ) ,

, , , ,

or
A x t A s A x t A

m
A i A s A i A

C C w w

C C w w
q

- -
=

- -

2

x

ta 2 AB

x

D t

hL
Bi

k
= m

m
AB

h L
Bi

D
=

2

t
Fo

L

a
=

2
AB

m

D t
Fo

L
=

The appropriate differential equaiton for one-dimensional, transient mass diffusion in the x-direction
in a stationary medium is given by

2

2

1A A

AB

C C

D tx

∂ ∂Ê ˆ= Á ˜Ë ¯∂∂
(14.117)
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The above equation can be solved with the following initial and boundary conditions:

CA(x, 0) = CA, i at t = 0 for all values of x

CA(x, 0) = CA, s at x = 0 for all values of t

CA( , t) = CA, i at x Æ , for all values of t

By analogy, the solution to the diffusion problem is

( , ) ,

,

erf erf( )
2

A x t A s

Ai A s AB

C C x

C C D t
h

- Ê ˆ= =Á ˜- Ë ¯

or ( , ) ,

, ,

erfc
2

A x t A i

A s A i AB

C C x

C C D t

- Ê ˆ= Á ˜- Ë ¯
(14.118)

where
2 AB

x

D t
h =

Another quantity of interest in mass diffusion process is the penetration depth (ddiff), usually defined 
as the location x where the tangent to the concentration profile at the surface (x = 0) intercepts the CA

= CA,i line.
The penetration depth is sometimes also defined as the depth from the surface where the effect of 

surface concentration change has been reduced to 1 per cent. Then, ddiff = 3.6 ABD t .

14.12 ❏

Mass-transfer coefficient is in many ways analogous to convective heat-transfer coefficient. You will recall 
that the rate of heat convection was expressed by Newton’s law of cooling as

conv ( )sQ hA T T= -
where hc is the average heat-transfer coefficient, A the surface area and (Ts – T ) is the temperature 
difference causing heat flow. Similarly, the rate of mass transfer is given by

, ,( )A m A s Am h A r r= -
where hm is the average mass-transfer coefficient, A is the surface area and (rA, s – rA, ) is the mass 
concentration difference. If the mixture density r is constant,

2
conv , ,/ ( ) (kg/s m )m A s Am A h w wr= -

Note that hm has the units of m/s while hc has the units of W/m2 K.

(a) Steady-state Diffusion of a Fluid Across a Plane Membrane (Solid Layer) of Thickness, 
L Mass-transfer rate for diffusion through a plane membrane is given by

1 2

1 2

1 2

( )
(kg/s)

( )
( )

AB A A

A

AB A A
A m A A

D A
m

L

D A
m h A

L

r r

r r
r r

-
=

-
= = -
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Therefore, hm, the mass-transfer coefficient based on concentration difference, can be written as

(m/s)AB
m

D
h

L
= (14.119)

(b) Steady-state Equimolal Counter-Diffusion The mass diffusion rate in this case is

1 2
diff, 1 2

1 2

( )
( )

( ) (kg/s)

A A A AB A
A AB A A

A
mc A A

M P P D M
m D A A P P

RT L L RT

M
h A P P

RT

-
= = -

= -

Defining a mass-transfer coefficient hmp, based on partial pressure difference, we get: 

Clearly, diff, 1 2 1 2( ) ( )A
A mc A A mp A A

mcA
mp mc

M
m h A P P h A P P

RT

hM
h h

RT RT

= - = -

= =

(14.120)

where / AR R M∫
Thus the mass-transfer coefficient based osn pressure difference is obtained by simply dividing the 

mass-transfer coefficient based on concentration differences by (RT) where R = characteristic gas constant 
and T = absolute temperature in kelvin.

(c) Diffusion of Water Vapour Through a Layer of Stagnant Air In this case, the mass diffusion 
rate of water vapour

2 2
diff , 1 2

1 1

ln ln ( )AB A A AB A A
A mp A A

B A

D A M P P D A M P P P
m h A P P

RT L P RT L P P

-Ê ˆ Ê ˆ= = = -Á ˜ Á ˜-Ë ¯ Ë ¯

Then, for this case, the mass-transfer coefficient based on pressure difference can be written as

2 2

1 2 1 1 2 1

ln ln
( ) ( )

AB A A AB A
mp

A A A A A A

D P M P P D P P P
h

L P P RT P P L P P RT P P

- -Ê ˆ Ê ˆ
= =Á ˜ Á ˜- - - -Ë ¯ Ë ¯

Obviously, the mass-transfer coefficient based on concentration difference would be

2

1 2 1

( ) ln
( )

AB A
mc mp

A A A

D P P P
h h RT

L P P P P

-Ê ˆ= = Á ˜- -Ë ¯
(14.121)

14.13 ❏ MASS CONVECTION

So far, we have discussed mass diffusion due only to a concentration gradient. Now, we will focus on 
mass convection involving transfer of mass due to both mass diffusion as well as bulk fluid transport. 
This is analogous to convective heat transfer, just as molecular diffusion is analogous to conduction heat 
transfer. This analogy between heat and mass convection is valid for both free and forced convection, 
external and internal flow, as also laminar and turbulent flow.

Analytical treatment of convective mass transfer is complicated, because of the effects of flow velocity,
surface geometry, flow conditions (i.e., external or internal flow), composition, and variation of fluid 

properties. Empirical relations, based on experimentation, are, therefore, usually relied upon. In convective 
heat transfer, the heat-transfer coefficient is defined by the relation
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( )s
s

Q
h T T

A
= -

On similar footing, the convective mass-transfer coefficient is defined as

, ,( )A
m A s A

s

m
h

A
r r= -

The units of hm are those of velocity, i.e., m/s. The empirical correlations used in solving convective 
mass-transfer problems are in terms of dimensionless numbers which have a functional relationship 
determined by dimensional analysis as explained in the following sections.

14.14 ❏  DIMENSIONAL ANALYSIS: FORCED CONVECTION 
MASS TRANSFER

The general functional relationship between the convective mass transfer coefficient and the several 
variables that affect it can be expressed as

[ , , , , ]m ABh f D V Dm r= (14.122)

The dimensions of the variables using the MLt system are

Mass transfer coefficient, hm (m/s) … [L t–1]

Binary diffusion coefficient, DAB(m2/s) … [L2 t–1]

Absolute viscosity, m (kg/m s) … [ML–1t–1]

Density, r(kg/m3) … … [M L–3]

Velocity, V (m/s) … … [L t–1]

Diameter, D (m) … … [L]

There are in all six variables and three basic dimensions so that three pi-terms will be needed.

(p = n – m = 6 – 3 = 3)

We select three repeating variables such as D, DAB, and r.
Starting with the first non-repeating (dependent) variable hm, with the repeating variables, such that

P1 = hmDa b c
ABD r

and in terms of dimensions

[Lt–1][L]a [L2 t–1]b [M L–3]c = [M0 L0 t0]

For P1 to be dimensionless, it follows that
c = 0 (for M)
1 + a + 2b – 3c = 0 (for L)
– 1 – b = 0 (for t)

and, therefore, c = 0, b = –1, and a = 1
The first pi-term then becomes

1
m

AB

h D

D
P =
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The procedure is repeated with the second non-repeating variable, m, so that

2
a b c

ABD Dm rP =

It follows that

[ML–1 t–1][L]a [L2 t–1]b [M L–3]c = [M0 L0 t0]

Equating powers on both sides,

1 + c = 0 (for M)

–1 + a + 2b –3c = 0 (for L)

–1 – b = 0 (for t)
so that c = –1, b = – 1 and a = 0
The second pi-term is then

2
ABD

m

r
P =

Finally, with the third non-repeating variable V, P3 = V Da b c
ABD r

It follows that

[LT–1][L]a [L2 t–1]b [M L–3]c = [Mo Lo to]

Equating powers on both sides,
and c = 0 (for M)

1 + a + 2b –3c = 0 (for L)
– 1 – b = 0 (for t)

so that c = 0, b = –1, and a = 1
The third pi-term becomes

3
AB

VD

D
P =

One can also define 3
4

2

AB

AB

DVD VD

D

r r

m m

P
P = = ¥ =

P

\
4

VDr

m
P =

Then,

1 2 4[ , ]fP = P P

where 1
m

AB

h D

D
P ∫ is called Sherwood number, Sh

2
AB ABD D

m n

r
P ∫ = is known as Schmidt number, Sc

4

VD VDr

m n
P ∫ = is identified as Reynolds number, Re
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The non-dimensional relationship is given by

[ , ]Sh Sc Re= f (14.123)

14.15 ❏ FREE
MASS TRANSFER

The variables involved in this case are functionally related as

[ , , , , ( )]m ABh f D L gr m r= D (14.124)

The dimensions of these parameters are listed in the following table:

hm DAB L r m (gDr)

(m/s) (m2/s) (m) (kg/m3) (kg/m s) (kg/m2 s2)

[L t–1] [L2t–1] [L] [ML–3] [ML–1t–1] [ML–2 t–2]

Number of P-terms, p = number of variables, n = mumber of main dimensions, m = 6 – 3 = 3.
Using the Buckingham– , three dimensionless parameters can be formed with three repeating 

variables, namely, r, DAB and L where L is the characteristic length.
It follows that with the first non-repeating (dependent) variable, hm:

1 3 2 1 0 0 0
1 or [ ][ ] [ ] [ ] [ ]

a b ca b c
m ABh D L Lt ML L t L M L tr - - -P = =

Equating the exponents on both sides,

a = 0 (for M)

1 + 3a + 2b + c = 0 (for L)

– 1 – b = 0 (for t)
Then, a = 0, b = –1, and c = 1
The first pi-term is given by

\ 1 /m ABh L DP =   This is the Sherwood number, Sh.

Also, with the second non-repeating variable m,

or

2

1 1 3 2 1 0 0 0[ ][ ] [ ] [ ] [ ]

a b c
AB

b ca

D L

ML t ML L t L M L t

mr

- - - -

P =

=

Equating the powers on both sides,

1 + a = 0 (for M)

–1 – 3a + 2b + c = 0 (for L)

– 1 – b = 0 (for t)

Then a = – 1, b = –1, and c = 0
The second pi-term then becomes

2 or
AB ABD D

m n

r
P ∫    This is the Schmidt number, Sc.
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Similarly, with the third non-repeating variable (gDr), the third pi-term will be

or

3

2 2 3 2 1 0 0 0

( )

[ ][ ] [ ] [ ] [ ]

a b c
AB

a b c

g D L

ML t ML L t L M L t

r r

- - - -

P = D

=

Equating the exponents on both sides,

1 + a = 0 (for M)

– 2 – 3a + 2b + c = 0 (for L)

– 2 – b = 0 (for t)

Then a = – 1, b = –2, and c = 3
The third pi-term is then

3

3 2

( )

AB

g L

D

r

r

D
P =

One can define P4 as 2
3 2/P P  to eliminate DAB.

2 23 3

4 2 2 2 2

( ) ( ) /

/

AB

AB

Dg L g L

D

rr r r

r m m r

D D
P = ¥ =

or
3

4 2

( / )g Lr r

n

D
P = This is the Grashof number, Gr.

The correlation in the dimensionless form is thus given by

P1 = f(P2, P4)

or ( , )Sh Sc Gr= f (14.125)

14.16 ❏  ANALOGIES BETWEEN HEAT, MASS, AND MOMENTUM
TRANSFER

Recall that the phenomenological laws governing heat, mass, and momentum transfer are strikingly similar. 
The equations pertaining to the three transport phenomena for a laminar boundary layer over a flat plate are

2

2

u u u
u v v

x y y

∂ ∂ ∂
+ =

∂ ∂ ∂
(Momentum Transfer)

2

2

T T T
u v

x y y
a

∂ ∂ ∂
+ =

∂ ∂ ∂
(Heat Transfer)

2

2
A A A

AB

C C C
u v D

x y y

∂ ∂ ∂
+ =

∂ ∂ ∂
(Mass Transfer)

where CA is the molar concentration of the component A that diffuses through the boundary layer.

where is the molecular weight of the componentA
AC M A

M

rÈ ˘=Í ˙Î ˚
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The dimensionless ratio v/a defines the Prandtl number and it forms the connecting link between 
the velocity and temperature profiles. These profiles become identical when Pr = v/a = 1.
Prandtl number, Pr ∫ (Momentum diffusivity)/(Thermal diffusivity) = n/a.
The dimensionless ratio v/DAB defines the Schmidt number, Sc = v/DAB, and it forms the connecting 
link between the velocity and concentration profiles. These profiles will have the same shape when 
the Schmidt number equals unity.
Schmidt number, Sc = (Momentum diffusivity) /(Mass diffusivity) = AB

The dimensionless ratio a/DAB defines the Lewis number, Le = a/DAB, and it forms the connecting 
link between the temperature and concentration profiles. When Lewis number equals unity, these 
two profiles are identical.
Lewis number, Le = (Thermal diffusivity)/(Mass diffusivity)

/

/ Pr

AB

AB

D Sc

D

na

n a
= = =

Clearly, the solution for velocity, temperature and concentration boundary layers will be same if, 

Pr Sc Le= = and all the three boundary layers coincide with each other.
The empirical correlations for mass transfer coefficient hm are similar to those for the heat-transfer 

coefficient, h. For example, corresponding to the correlation

( , )
hL

Nu f Re Pr
k

= =

for heat-transfer coefficient, we have the following correlation for convective mass-transfer coefficient.

( , )mh L
Sh f Re Sc

D
= =

where Sh is Sherwood number, which represents a non-dimensional mass-transfer coefficient.

14.17 ❏ CONCENTRATION BOUNDARY LAYER

14.17.1 ● External Flow

Consider the flow of air over a water surface like a lake surface under isothermal conditions. Assume that 
in the free stream, the air is not saturated and has a mass density rA, . As a result, the concentration of 
the water vapour (Species A) in the mixture will vary from the water surface to the free stream. At the 
water surface, the concentration mass density rA,s or rA,w will be a maximum corresponding to saturation 
conditions. The concentration boundary layer and the concentration profile at a location are shown in 
Figure 14.10. The thickness of the concentration boundary layer, dc at any location is defined as the 

normal distance y above the flat surface (fluid side) such that ,

, ,

0.99
A w A

A w A

C C

C C

-
=

-
 where CA,w and CA,

are the molar concentrations of the species A at the surface and free stream respectively.
The convective mass transfer is given by

, , 2
( )A

m A s A

m kg
h

A sm
r r

Ê ˆ= - Á ˜Ë ¯
(14.126)
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or ,( )A
m A s A

m
h w w

A
r= -   (If the mixture density r is a constant) (14.127)

where ( / )Am A  = convective mass flux of the water vapour (Species A) in (kg/s m2).
rA,s = mass density of the water vapour in the saturated air at the water surface in 

(kg/m3).
wA,s = (rA,s/r) = mass fraction of the water vapour in the saturated air
rA,  = mass density of the water vapour in the free stream in (kg/m3)
wA,  = (rA, /r) = mass fraction of the water vapour in the free stream

and hm = convective mass-transfer coefficient in (m/s).

14.17.2 ● Internal Flow

Consider convective mass transfer taking place in a tube. A concentration boundary layer develops along 
with hydrodynamic and thermal boundary leyers in the flow direction. Beyond the concentration entry 
length, there is a fully developed region. The three boundary layers can be seen in Figure 14.11.
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14.18 ❏

Recall the case of laminar-flow heat transfer over a flat plate in which the expression for the local drag 
coefficient was determined to be

1/2
, 0.664f x xC Re

-= (14.128)

Also, the local heat-transfer coefficient, expressed as a Nusselt number, was derived as
1/3

1/2 1/3 1/20.332 or 0.332x x x

hx
Re Nu Pr Re

k

n

a

Ê ˆ= =Á ˜Ë ¯ (14.129)

The analogy between convection heat transfer and mass convection is a powerful tool which makes it 
possible to predict the heat-transfer coefficient from the knowledge of mass-transfer coefficient and vice

versa provided the thermal and concentration boundary layers are similar. Table 14.9 shows the analogy 
between the quantities appearing in the formulation and solution of heat and mass convection.

Table 14.9

Convective heat Transfer Convective Mass Yransfer

T rA

h hm

dT dc

cVL
Re

r

m
= cVL

Re
r

m
=

3

2

( )s cg T T L
Gr

b

n

-
=

3

2

( )s cg L
Gr

r r

rn

-
=

Pr
n

a
=

AB

Sc
D

n
=

p

h
St

C Vr
= mass

mhSt
V

=

chL
Nu

k
= m c

AB

h L
Sh

D
=

Nu = f (Re, Pr) Sh = f (Re, Sc)

Nu = f (Gr, Pr) Sh = f (Gr, Sc)

Using the heat-mass transfer analogy, the following expression for the local mass transfer coefficient

can be written as

1/3
1/20.332m
x

AB AB

h x
Re

D D

nÊ ˆ= Á ˜Ë ¯
(14.130)
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The dimensionless parameter (hmx/DAB) on the left-hand side is called the local Sherwood number

(Sh). It is the mass transfer equivalent of the local Nusselt number (hx/k). The dimensionless number (n/

DAB) is the ratio of the kinematic viscosity to the diffusion coefficient. It is called the Schmidt number

(Sc) and is analogous to the Prandtl number (Pr). Thus,

1/3 1/20.332x xSh Sc Re= (14.131)

By integrating, we get the average mass-transfer coefficient for a plate of length L as

1/3 1/20.664L LSh Sc Re= (14.132)

where ( / )L m ABSh h L D=  is the average Sherwood number based on the length L. Table 14.12 summarizes 
some of the significant convective heat- and mass-transfer correlations.
It may be noted that for mass transfer, the Grashof number is defined as follows:

3
3

2 2

( )s
g L

g L
Gr

v

r

rr r

rn

DÊ ˆ
Á ˜Ë ¯-

= = (14.133)

This is applicable for both homogeneous fluids (fluids in which density differences are due only to 
temperature differences with no concentration gradients) and non-homogeneous fluids (in which density 
differences are the result of combined effects of temperature and concentration difference). Dr/r can be 
replaced by bDT only when there is no mass transfer involved.

Table 14.10

Convective Heat Transfer Convective Mass Transfer

Forced convection over a flat plate

Local heat-transfer coefficient:

Nux = 1/2 1/30.332x
x

h x
Re Pr

k
= Laminar flow (Re < 5 ¥ 105)

4/5 1/30.0296x
x x

h x
Nu Re Pr

k
= Turbulent flow (Re > 5 ¥ 105)

Local mass-transfer coefficient:

1/2 1/30.332m
x x

h x
Sh Re Sc

D
= =

4/5 1/30.0296m
x x

h x
Sh Re Sc

D
= =

Average heat-transfer coefficient:

1/2 1/30.664 xL

h L
Nu Re Pr

k
= = Laminar flow

4/5 1/30.037 L

hL
Nu Re Pr

k
= = Turbulent flow

For mixed boundary layer conditions with Rec = 5 ¥ 105:
4/5 1/3(0.037 871)LNu Re Pr= -

Average mass-transfer coefficient:

1/2 1/30.664 , 0.5m
L

h L
Sh Re Sc Sc

D
= = >

4/5 1/30.037 , 0.5m
L

h L
Sh Re Sc Sc

D
= = >

For mixed boundary layer conditions with Rec = 5 ¥ 105:
4/5 1/3(0.037 871)Sh Re Sc= -

Fully developed flow in smooth, circular pipes

Laminar flow (Re < 2300):

Nux = 
hD

k
 = 3.657 (for uniform wall temperature)

Nu = 4.364 (for uniform wall heat flux)

Laminar flow (Re < 2300):

3.657m

AB

h D
Sh

D
= =

(for uniform wall mass concentration)
Sh = 4.364 (for uniform wall mass flux).

contd.
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Turbulent flow:
NuD = 0.023 Re0.8 Pr1/3

(0.7 < Pr < 100, ReD > 10 000)

1/2 2/3

( /8)( 1000)

1 12.7( /8) ( 1)

D
D

f Re Pr
Nu

f Pr

-
=

+ -

(3000 < ReD < 5 ¥ 106 and 0.5 < Pr < 2000)

Turbulent flow: Gilliland and Sherwood correlation
ShD = 0.023 Re0.83 Sc0.44

(2000 < Re < 35 000, 0.6 < Sc < 2.5)

1/2 2/3

( /8)( 1000)

1 12.7( /8) ( 1)

D
D

f Re Sc
Sh

f Sc

-
=

+ -

(3000 < ReD < 5 ¥ 106 and 0.5 < Sc < 2000)

Natural convection over surfaces

 (a) Vertical plate:
Nu = 0.59 (Gr Pr)1/4 105 < GrPr < 109

Nu = 0.10 (Gr Pr)1/3 109 < GrPr < 1013

(b) Upper surface of a horizontal plate:

 (Surface is hot, Ts > T ):
Nu = 0.54 (Gr Pr)1/4 104 < GrPr < 107

Nu = 0.15 (Gr Pr)1/3 107 < GrPr < 1011

(c) Lower surface of a horizontal plate:

(Surface is hot, Ts > T ):
Nu = 0.27 (Gr Pr)1/4 105 < GrPr < 1011

(a) Vertical plate:

Sh = 0.59 (GrSc)1/4 105 < GrSc < 109

Sh = 0.10 (GrSc)1/4 109 < GrSc < 1013

(b) Fluid near the surface is light, (rs < r ):

Sh = 0.54 (GrSc)1/4 104 < GrPr < 107

Sh = 0.15 (GrSc)1/3 107 < GrPr < 1011

(c) Fluid near the surface is light (rs < r ):

Sh = 0.27 (GrSc)1/4 105 < GrSc < 1011

Chilton–Colburn analogy

(Cf/2 = St Pr2/3 = jH) (0.5 < Pr < 50) (Cf /2 = Stm Sc2/3 = jM) (0.6 < Sc < 3000)

jH and jM are Colburn factors for heat and mass transfer, respectively

Forced convection mass transfer from a sphere

Nu = 2 + [0.4Re + 0.06Re2/3]Pr0.4 Sh = 2 + [0.4Re1/2 + 0.06Re2/3] (Sc)0.4

14.19 ❏  REYNOLDS AND COLBURN ANALOGIES FOR 
MASS TRANSFER

Reynolds and Colburn analogies for heat transfer can be extended to the case of mass transfer to get a 
relation between the mass transfer coefficient and the friction factor.
Reynolds analogy for heat transfer over a flat plate can be expressed as

2

f

p

CNu h
St

RePr C Vr
= = = (14.134)

where St is the Stanton number for heat transfer and Cf is the skin-friction coefficient.
Similarly, for mass transfer, we write

2

fm
m

ChSh
St

ReSc V
= = = (14.135)

where Stm is the Stanton number for mass transfer.

Remember that Reynolds analogy is valid only when 1Pr Scª ª .

When Pr (or Sc) is different form unity, we use the Chilton–Colburn analogy:

2/3( )
2

f

H

C
j St Pr= = (for 0.6 < Pr < 60) (14.136)

contd.
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and 2/3( )
2

f

M m

C
j St Sc= = (0.6 < Sc < 3000) (14.137)

where jH and jM are the Colburn factors for heat transfer and mass transfer, respectively.
From Eqs (14.136) and (14.137), we can write

2/3

m

St Sc

St Pr

Ê ˆ= Á ˜Ë ¯

Also, from Eqs (14.134) and (14.135),

2/32/3 2/3
/

/

AB
p p p p

m m AB

Dh St Sc
C C C C

h St Pr D

n a
r r r r

n a

Ê ˆÊ ˆ Ê ˆ= = = =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

We recognise the non-dimensional number (a/DAB) as Lewis number, Le.

Therefore, the analogy can be expressed as

2/3
p

m

h
C Le

h
r= (14.138)

The above relation is useful in cases of simultaneous heat and mass transfer.
Air-water vapour mixtures are of special interest in air conditioning applications. For air-water vapour 

mixtures, Le = 0.872 and Le2/3 = nearly equal to unity. Therefore, for air-water vapour mixtures, the 
relation between heat- and mass-transfer coefficients can be conveniently expressed as

p mh C hrª   (air-water vapour mixture, i.e., moist air) (14.139)

Equation (14.139) is known as Lewis relation and is normally used in air-conditioning applications.
Note: It should be remembered that the analogy between convection heat and mass transfer is valid only

for low mass flux conditions, i.e., when the mass flux of the diffusing species is low compared to the 
mass flux existing in a tube or over a surface in the absence of the mass transfer process.

The results for laminar boundary-layer flow over a flat plate can also be expressed in terms of a local

and average Stanton number for mass transfer as follows:

1/2 2/30.332m xSt Re Sc
- -= (14.140)

1/2 2/30.664m LSt Re Sc
- -= (14.141)

where

Stm = local Stanton number for mass transfer = (Shx/Rex Sc) = (hm/u )

mSt  = average Stanton number for mass transfer = ( LSh /ReL Sc) = ( mh /u )

Combining equations (14.136) and (14.137) giving the Colburn analogy between heat and momentum 
transfer, we have

2/3 2/3
, /2m f xSt Sc St Pr C= = (14.142)

2/3 2/3 /2m fSt Sc St Pr C= = (14.143)

The Colburn analogy for heat and momentum transfer has thus been extended to mass transfer as well.
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The usefulness of the Colburn analogy lies in the fact that it can be shown to be reasonably applicable 
for turbulent flow cases.

For turbulent flow through a circular tube, we can evaluate the mass-transfer coefficient by replacing the 
Nusselt number by the Sherwood number and the Prandtl number by the Schmidt number in the Dittus–

Boelter equation or in the Gnielinski equation. Thus, we have the equivalent mass-transfer correlations:

0.83 0.440.023D DSh Re Sc= (14.144)

and
2/3

( /2)( 1000)

1 12.7( /2)( 1)

D
D

f Re Sc
Sh

f Sc

-
=

+ -
(14.145)

where ShD = (hmD/DAB)

14.20 ❏ SIMULTANEOUS HEAT AND MASS TRANSFER

There are many engineering situations in which heat and mass transfer take place simultaneously, i.e., 
humidifiers, dehumidifiers, absorbers, desert coolers, wet-bulb thermometer, etc.

14.20.1 ● Evaporation of Water into Air

When the evaporation of water into air or condensation of water vapour from moist air takes place on a 
surface, the heat-mass convection analogy can be used.

2/3
2/3

p p e
m

h Sc
C C L

h Pr
r r

Ê ˆ= =Á ˜Ë ¯ (14.146)

During evaporation of water by blowing air 
over the water surface (evaporative cooling)
(Figure 14.12), the energy associated with the 
phase change is the latent heat of vaporisation 
of water. The energy required for evaporation 
must come from the internal energy of the 
water lowering its temperature. However, 
under steady-state conditions, the latent heat 
lost by water due to evaporation must be equal 
to the heat supplied to the water from the 
surrounding air which in turn gets cooled. 
Applying the energy balance at the air-water 
interface under steady-state conditions and 
neglecting radiation effects, we get

conv evapQ Q=

Now evap , , , ,( ) [ ( )]A fg m s A s A A m s A s AQ m h h A M h A C Cr r= = - = -

and
conv ( )s sQ hA T T= -

Hence, , ,( ) [ ( )]s A m A s A fgh T T M h C C h- = -
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where CA,s is the water-vapour concentration corresponding to the saturation conditions at Ts. Assuming 
water vapour to be an ideal gas, one can write

, ,( / )
( )

A s AA m
s fg

s

P PM h h
T T h

R T T

È ˘
- = -Í ˙

Î ˚

Since h/hm = rCpLe2/3, we have

, ,

2/3
( )

fg A A s A
s

sp e

h M P P
T T

T TR C Lr

È ˘
- = -Í ˙

Î ˚
(14.147)

Equation (14.147) represents the cooling effect in evaporative cooling. The properties of air in the 
above equation (r, Cp, Le) are to be evaluated at the mean film temperature,

1
( )

2
sT T T= +

If Ts and T  are approximately equal to T then

, ,2/3

1 1 1

( ) [ ]

s

fg A

s A s A

p

T T T

h M
T T P P

R C Le Tr

= =

◊
- ª -

Also, from the ideal-gas equation,

P = rRT = 
B

R
T

M
r

or BRT M Pr = where P = PA + PB

It follows that

, ,

2/3

( / )
( )

A B fg A s A
s

p

M M h P P
T T

PC Le

-È ˘
- ª Í ˙Î ˚

(14.148)

14.20.2 ● Wet-bulb Thermometer

Consider the measurement of wet-bulb temperature of an air stream flowing with a velocity u  having a 
dry-bulb temperature T  or Tdb and water vapour concentration rA,  or rv, . The wet-bulb temperature is 
measured by wrapping the thermometer bulb with a damp cloth (Fig. 14.13). Let the wet bulb temperature 
be Ts or Twb and the corresponding water vapour mass density for saturated air at that temperature be rA,s

or rv,s. Heat is transferred from the air stream to the surface of the wet bulb because of the temperature 
difference (T  – Ts), while water vapour is being transferred from the wet bulb surface to the air stream 
because of the mass concentration difference (rA,s – rA, ).
The heat-transfer rate is given by

( )sQ hA T T= - (14.149)

while the mass-transfer rate is given by

, ,( )A m A s Am h A r r= - (14.150)
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Under steady operating conditions,

or

sensible, lost latent, gained

evap fg

Q Q

Q m h

=

=

where evap , ,( )m v s v

v v v

m h A

P R T

r r

r

= -

=

Hence, , ,
evap

v s vm

v s

P Ph A
m

R T T

È ˘
= -Í ˙

Î ˚
Using heat-mass transfer analogy,

2/3/ ( )m ph h C Ler=

Therefore, , ,
evap 2/3

v s v

wb dbp v

P PhA
m

T TC Le Rr

È ˘
= -Í ˙

Î ˚

Also,
evap( ) ( )s db wb fgQ hA T T hA T T m h= - = - =

Hence, , ,

2/3
( )

fg v v s v
db wb

wb dbp

hAh M P P
hA T T

T TC Rr

È ˘
- = -Í ˙

Î ˚

Noting that

, ,2/3

1 1 1
,

1
[ ]

wb db

fg v

db wb v s v

p

T T T

h M
T T P P

RTC Le r

- ª

- = -

Since , a
a

R
P RT T RT PM

M
r r r= = =

, ,

2/3

fg v s vv
db wb

ap

h P PM
T T

M PC Le

-Ê ˆ
- = Á ˜Ë ¯ (14.151)

Defining the specific humidity, w (also called absolute humidity or humidity ratio) as

Mass of water vapour,

Mass of dry air,

v

a

m

m
w =

According to Dalton’s law of partial pressures, P = Pa + Pv

Assuming air and water vapour to be an ideal gas, we get

– –V and Va v v v a a a a
v a

R R
P m R T m T P m R T m T

M M
= = = =

Therefore, v v v

a a a

m M P

m M P
w = =
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Taking 
2 11 2 , ,and , and ,ab wb v s v v vT T T T P P P P= = = =

,1 1
1

1

vv v v v v

a a a a

PM P M P M

M P M P M P
w = ◊ ª ◊ = ◊ (since Pa ª P as Pv << Pa)

and ,2
2

v sv v v

a a

PM P M

M P M P
w ª ◊ = ◊

Substituting these values in Eq. (14.149), we get

, ,
1 2 1 22/3 2/3

1 2 2/3

2/32 1

1 2

[ ]

( )

fg fgv s vv

ap e p e

fg

p a

p

fg

h hP PM
T T

M P PC L C L

h
T T

C L

C
Le

T T h

w w

w w

È ˘Ê ˆ
- = - - = -Á ˜Í ˙Ë ¯Î ˚

- =

-
=

-
(14.152)

In this case, air is dry, i.e., relative humidity, f  = 0.

As ,
,

sat,

0, 0
v

v

P
P

P
f = = =

\ ,

2/3

kJ /kg kg/kmol kPa
(°C) (°C)

kJ/kg°C kg/kmol kPa

fg v sv
wb db

p

h PM
T T

M PC Le

Ï ¸Ô Ô= - ¥Ì ˝
Ô ÔÓ ˛

or
, @

2/3
@

( )

( )

wb

f

v s fg Tv
wb db

p T

P hM
T T

MP C Le

¥Ê ˆ
= - Á ˜Ë ¯ (14.153)

Illustrative Examples

(A) Mixture Composition, Fick’s Law, Diffusivity

 A binary mixture of oxygen and nitrogen with their partial pressures in the ratio 

of 0.21 to 0.79 is contained in a vessel at 300 K. Determine (a) the molar concentration, (b) the mass 

density, (c) the mole fraction of each component for a total pressure of 1 atm. Also calculate (e) the 

average relative molecular mass (molecular weight) of the mixture.

Solution

Known A mixture of O2 and N2 at the prescribed pressure and temperature, and the proportion of 
their pressures.

Find (a) Molar concentration, (b) Mass density, (c) Mole fraction, (d) Mass fraction, (e) Relative 
molecular mass (average).

Illustrative Examples
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Assumptions (1) Ideal-gas behaviour. (2) Constant total pressure and temperature.

Analysis (a) Molar concentration of a species or constituent, Ci = Pi/ R T.

where Pi is the partial pressure of a species or constituent, R  is the universal gas constant, 
and T is the absolute temperature.

CA = 
2O 2 3

( / ) 0.21 1atm

8.205 10 atm m /kmol K 300 K

A AP P P P
C

RT RT -
¥

= = =
¥ ¥

= 0.008 53 kmol/m3 (Ans.) (a)

Else CA = 
¥

= =
¥2 3

0.21 101.325 kPa 1 kJ
.

8.3143 kJ/kmol K 300 K 1 kPa m
OC

3
0 008 53 kmol/m

  CB = 
2 2 3

( / ) 0.79 1atm

8.205 10 atm m /kmol K 300 K

B B
N

P P P P
C

RT RT -
¥

= = =
¥ ¥

  = 0.032 09 kmol/m3 (Ans.) (a)

(b) Mass density can be obtained from, i i iM Cr =

Hence,
2 2 3

kg kmol
32 0.008 53 .

kmol m
A A A O OM C M Cr

Ê ˆ Ê ˆ= = = =Á ˜ Á ˜Ë ¯ Ë ¯
3

0 273 kg/m (Ans.) (b)

and
2 2 3

kg kmol
28 0.032 09 .

kmol m
B B B N NM C M Cr

Ê ˆ Ê ˆ= = = =Á ˜ Á ˜Ë ¯ Ë ¯
3

0 899 kg/m (Ans.) (b)

The total mass density of the mixture,

r = Âri = rA + rB = 0.273 + 0.899 = 1.172 kg/m3

(c) Mole fraction of a component of an ideal-gas mixture is equal to its pressure fraction.

Hence, i
i

P
y

P
=

Then, yA = 
2Oy  = 0.21, and yB = 

2Ny  = 0.79 (Ans.) (c)

(d) Mass fraction of a species, i i
i i

M
w y

M

r

r
= =

Therefore,
2

3

3

0.273 kg/m

1.172 kg/m

A
A Ow w

r

r
= = = = 0.233 (Ans.) (d)

2

3

3

0.899 kg/m

1.172 kg/m

B
B Nw w

r

r
= = = = 0.767 (Ans.) (d)

Check: Âwi = 1 i.e. wA + wB = 0.233 + 0.767 = 1.0
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(e) Average relative molecular mass or molecular weight of the mixture,

i i A A B BM y M y M y M= S = +

= (0.21) (32 kg/kmol) + (0.79) (28 kg/kmol) = 28.84 kg/mol (Ans.) (e)

Comment Note that mole fractions are different from mass fractions.

 Estimate the mass diffusivity of ammonia in air (a) at 300 K and 1 atm and (b) 

at 350 K and 3 atm. Given:

Species Molecular weight Molecular volume

Ammonia
Air

17
28.97

25.8
29.9

Solution

Known Molecular weight and molecular volume of ammonia and 
air in the binary mixture.

Find Mass diffusivity, DAB (a) at 1 atm, 300 K, and (b) at 3 atm, 
350 K.

Assumption Ideal-gas behaviour.

Analysis (a) The binary diffusion coefficient (or mass diffusivity) is determined from

3/2
2

1/3 1/3 2

1 1
(cm /s) 435.7

– –(V V )
AB

A BA B

T
D

M MP
= +

+

 where T is absolute temperature in K, P is total system pressure in Pa and –VA  and –VB

are the molecular volumes of constituents A and B.

\
1/23/2

5 1/3 1/3 2

435.7(300) 1 1

17 28.97(1.01325 10 )[25.8 29.9 ]
ABD

È ˘= +Í ˙Î ˚¥ +

    = 0.186 cm2/s or 1.86 ¥ 10–5 m2/s (Ans.) (a)

(b) We note that 
3/2

2 2 2

1 1 1

D T P

D T P

Ê ˆ Ê ˆ= Á ˜ Á ˜Ë ¯ Ë ¯

\ DAB(3 atm, 350 K) = DAB(1 atm, 300 K) ¥
3/2

350 K 3 atm

300 K 1atm

Ê ˆ ¥Á ˜Ë ¯

  = 0.186 cm2/s ¥ 1.26 ¥ 3 = 0.703 cm2/s (Ans.) (b)

(B) Stationary Media, Equimolar Counter-Diffusion, Evaporation in a Column

 The leakage of air from pneumatic tyres over a period of time is a common 

experience. The air pressure in a tyre reduces from 2 bar gauge to 1.99 bar gauge in five days. If 

the volume of air in the tube is 0.025 m3, the surface area of the tube permitting diffusion is 0.5 m2,

and the wall thickness of the tube is 2 mm, estimate the mass diffusivity of air (Component A) in rubber 

(Component B). The ambient air temperature is 25°C. The solubility of air in rubber is 3.12 ¥ 10–3

kmol/m3 bar.
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Solution

Known Reduction in pressure in five days due to diffusion of air across the rubber-tube wall. 
Operating data are provided.

Find Mass diffusivity, DAB(m2/s).

L = 2 mm

Ambient air (1 bar, abs, 25°C)

Air at 2 bar (g)
and 1.99 bar (g) after 5 days

Air (species A)

Pabs

2

= +
Rubber tube wall

= 0.5 m

P P

A

g atm

S = 3.12 10 kmol/m bar

= 0.025 m

¥ –3 3

3V

Rubber (species B)

Assumptions (1) Steady-state, one-dimensional diffusion through a stationary medium. (2) The radius of 
curvature of tyre being large compared to its thickness, the tube wall can be approximated 
as a plane wall. (3) No chemical reactions.

Analysis Applying mass balance to a control volume: , stored ,outA AM M= -

or – –( V) or ( V )A A A A A A A

d d
N M C M N M

dt dt
r = - = -

or –V or or
– –V V

A A A A A
A

P dP N RT dP N RTd
N

dt RT dt dt

˘È = - = - - =˙Í
Î ˚

where
, initial ,final 8(2.0 1.99)bar

2.315 10 bar/s
5 24 3600s

A AA
P PdP

dt t

-- -
- = = = ¥

D ¥ ¥

For diffusion of air through a stationary medium, ,1 ,2A A
A AB

C C
N AD

L

-
=

where
1,1 3

kmol 2 1.99
0.0312 bar( ) 1 bar)

2m bar
A AC S P g

Ï ¸+Ê ˆ Ê ˆ= ◊ = +Ì ˝Á ˜Á ˜ Ë ¯Ë ¯ Ó ˛
 = 0.009 34 kmol/m3

CA,2 = S ◊
2A

P  = (0.0312 kmol/m3 bar) (1 bar)

82.315 10 bar/s
–V

A AN RT dP

dt

-= = ¥

\
8 3

11

2 3

(2.315 10 bar)(0.025 m )
2.336 10 kmol/s

(8.3143 10 bar m /kmol K)(298 K)
AN

-
-

-

¥
= = ¥

¥
Mass diffusivity,

11

2 3
,1 ,2

(2.336 10 kmol/s)(0.002 m)

( ) 0.5 m (0.00934 0.00312)kmol/m

A
AB

A A

N L
D

A C C

-
-¥

= = = ¥
- -

11 2
1.5 10 m /s (Ans.)
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 Helium gas is stored at 20oC in a spherical container of 3.5 m outer diameter 

made of 5 cm thick Pyrex. The molar concentrations of helium in the Pyrex at the inner and outer surfaces 

are determined to be 0.000 75 and 0 kmol/m3, respectively. What is the mass flow rate of helium by 

diffusion through the Pyrex container? The binary diffusion coefficient of helium in Pyrex at the operation 

temperature is 4.5 ¥ 10–15 m2/s.

Solution

Known A spherical Pyrex container stores helium gas.

Find diff, or (kg/ )A Hem m s
.

Assumptions (1) Steady-state, one-dimensional (radial) diffusion through stationary container. 
(2) No chemical reaction in the Pyrex shell with no generation or depletion of helium.

Analysis The mass diffusion rate through a spherical shell is determined from

,1 ,2
diff, 1 2

2 1

15 2

3

( )
4

4 (1.7 m)(1.75 m) kmol kg
0.00075 4.0 4.5 10 m /s

0.05 m kmolm

A A He
A He AB

C C M
m m r r D

r r
p

p -

-
= =

-

= ¥ ¥ ¥ ¥

= 1.0 ¥ 10–14 kg/s (Ans.)

 An open tank of 5.5 m diameter, contains a 1 mm deep layer of benzene at 1 atm 

and 298 K, at its bottom. The vapour pressure of benzene in the tank is 0.14 bar and its diffusion takes 

place through a stagnant 3 mm thick air film. Determine the time taken for the entire benzene to evaporate, 

neglecting diffusive resistance of benzene beyond the air film. Take the binary diffusion coefficient, DAB

= 0.88 ¥ 10–5 m2/s and the density of benzene, r = 880 kg/m3.

Solution

Known A thin layer of benzene in a large tank exposed to stagnant air film.

Find Time taken for complete evaporation of benzene.
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Assumptions (1) Diffusion resistance of benzene beyond the air film is negligible. (2) Perfect gas 
behaviour (3) Steady-state, one-dimensional diffusion.

Analysis Total pressure, P = PA + PB = 1 atm = 101.325 kPa
Partial pressure of benzene vapour, PA = 0.14 bar = 14 kPa
At x = 0 (surface of benzene layer): PB,0 = P – PA,0 = 101.325 – 14.0 = 87.325 kPa.
At x = L (stagnant air film thickness): PA,L = 0, PB,L = P = 101.325 kPa

Molar diffusion rate, ,

,0

ln
B LA AB

B

PN CD

A L P
=

where 3

3

101.325 kPa 1 kJ
0.0409 kmol/m

8.3143 kJ/kmol K 298 K 1 kPa m

P
C

RT
= = =

¥

and 2 2 2(5.5 m) 23.76 m
4 4

A D
p p

= = =

Hence, the mass diffusion rate, ,
diff

,0

ln
B LAB

A A
B

PCAD M
m N M

L P
= =

Molecular weight of benzene (C6H6) = (6 ¥ 12) + (6 ¥ 1) = 78 kg/kmol

\
3 2 5 2(0.0409 kmol/m )(23.76 m )(0.88 10 m /s)(78 kg/kmol) 101.325

ln
0.003 m 87.325

0.0331 kg/s

Am
-¥

=

=

Mass of benzene contained in the tank.

3 2 3Density Volume 880 kg/m (5.5 m) (1 10 m) 20.91 kg
4

A cm A
p

r -= ¥ = = ¥ ¥ ¥ =l

\ Time required for the entire benzene to evaporate is

20.9 kg

0.0331 kg/s

A

A

m
t

m
= =  = 631.6 s or 10.52 min (Ans.)
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(C) Transient Diffusion

 A steel rod (0.2% carbon) is preheated to 900°C, and is packed in a carburizing 

mixture at 900°C. The concentration of carbon at the surface of the rod is maintained at 1.4% by the 

carburizing mixture. Calculate the time required for the percentage of carbon to be at least 0.8 at a depth 

of 1 mm. The value of the diffusion coefficient DAB = 5.8 ¥ 10–10 m2/s.

Solution

Known Case hardening of steel at the prescribed temperature.

Find Time required for the prescribed penetration depth.

Assumptions (1) Diffusion coefficient is constant. (2) There are no homogeneous reactions. (3) Initially, 
the concentration of the species A is constant throughout the medium. (4) The steel rod is 
modelled as a semi-infinite medium.

Analysis For transient mass diffusion, ( , ) ,

, ,

erfc
2

A x t A i

A s A i AB

C C x

C C D t

- Ê ˆ= Á ˜- Ë ¯
 where CA,s = 1.4%, CA(x, t) = 0.8%, CA,i = 0.2%

x = 1 mm, DAB = 5.8 ¥ 10–10 m2/s

 Hence, substituting the information above, we get

10

0.8 0.2 0.001
erfc

1.4 0.2 2 5.8 10 3600t
-

- È ˘= Í ˙- ¥ ¥ ¥Í ˙Î ˚

 where t is in h. or 
0.346

erfc 0.5
t

È ˘ =Í ˙Î ˚
 From complementary error function tables (chapter 6), we note that for erfc (z) = 0.5, z = 0.477
 Therefore, the time needed for the required penetration depth of 1 mm is

2
0.346

.
0.477

t
È ˘= =Í ˙Î ˚

0 526 h (Ans.)
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(D) Convective Mass Transfer

 A solid naphthalene cylinder of 30 mm diameter is exposed to an air stream 

with a mass sublimation rate of 0.013 kg/h per metre length and the saturated vapour concentration of 

naphthalene is 6 ¥ 10–6 kmol/m3, Find the convective mass-transfer coefficient. The relative molecular 

mass of naphthalene is 128 kg/kmol.

Solution

Known Sublimation of naphthalene as air flows over it.

Find Mass-transfer coefficient, hm (m/s).

Assumptions (1) Steady-state conditions. (2) Naphthalene concentration in air is negligible.

Analysis Convection mass-transfer rate,

0

 or 

, , , ,

,

( ) ( )( )

( )( )( )

A m s A s A m A s A

A m A s A

m h A h d C C M

m h d C M

r r p

p

= - = -

=

l

l

 Mass-transfer coefficient,

hm = 3 6 3
,

(0.013/3600)(kg/sm)

( )( )( ) ( 30 10 m 1 m)(6 10 kmol/m )(128 kg/k mol)

A

A s A

m

d C Mp p - -=
¥ ¥ ¥ ¥l

= 0.05 m/s (Ans.)

 An earthen pitcher (a ‘matka’) containing drinking water is wrapped with a moist 

cloth (to be maintained wet continually) and is kept in gentle breeze by a housewife on a typical day 

when the environment conditions are 1 atm, 31°C and 52% relative humidity. Estimate the temperature 

of the water when equilibrium conditions are attainted.

 Properties: Air (1 atm, 300 K): Cp = 1.007 kJ/kg °C, a = 22.5 ¥ 10–6 m2/s

 Saturated water vapour: (At an assumed Ts = 23°C): Pg = 2.81 kPa, hfg = 2447.0 kJ/kg

  Pg@31°C = 4.496 kPa. DAB@300K = 26 ¥ 10–6 m2/s.

 The molecular weights of air and water vapour are 28.966 and 18.016 kg/kmol.

Solution

Known Water in a ‘matka’ being cooled in gentle breeze by evaporative cooling process under 
specified conditions.
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Find Steady-state temperature of water in the vessel.

Assumptions (1) Steady operating conditions. (2) Heat and mass transfer analogy is applicable. (3) 
Radiation effects are negligible. (4) Air and water vapour behave as ideal gases.

Analysis Ts = Temperature of saturated water vapour at control surface.
T  = Temperature of water vapour far away from control surface.
Under equilibrium conditions:

or

conv,in evap,out , ,

, ,

Heat gained by water by Heat lost by water by convection

convection heat transfer mass transfer ( )

or ( ) ( )

[ ]

A s v fg m v s v fg

m
s v s v fg

evaporation

Q Q h T T m h h A h

h
T T h

h

r r

r r

Ê ˆ Ê ˆ
=Á ˜ Á ˜Ë ¯ Ë ¯

= - = = -

= - - (A)

Using Chilton–Colburn analogy, h = (rCpLe2/3)hm

Assuming water vapour as an ideal gas, P = rRT or
R

P T
M

r
Ê ˆ

= Á ˜Ë ¯

\ , ,
, ,and

v s v v v
v s v

s

P M P M

RT RT
r r= =

Substituting these values in Eq. (A):

, ,

2/3

1 v s vv
s fg

sp

P PM
T T h

R T TC Ler

È ˘
= - -Í ˙

Î ˚

Taking
1 1 1 1

where ( )
2

s
s

T T T
T T T

ª ª = +  and P = 
a

R

M
r T where P is the total 

pressure and aM  is the molecular weight of air, we have
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, , , ,2/3 2/3
[ ] ( )

fg fgv v
s v s v v s v

ap p

h hM M
T T P P T P P

RT PMC Le C Ler
= - - = - -

 With 
18.016

0.622,
28.966

v

a

M

M
= =  we have

È ˘
Í ˙Î ˚

@ @

2/3

0.622

( )

f
sg T g Tfg

s

p

P Ph
T T

PC Le

-
= -

 Lewis number, 
6 2

6 2

22.5 10 m /s
0.8654

26 10 m /sAB

Le
D

a -

-
¥

= = =
¥

 Let us assume Ts = 23°C.

 With @ 23°C @ 31°C2.81 kPa, 4.496 kPa
sg T g TP P= == =

P = 101.3 kPa, hfg = kJ/kg, Cp = 1.007 kJ/kg °C

f = 0.52 and Le = 0.8654, we get

2/3

0.622 2447 kJ/kg [2.81 (0.52)(4.496)]kPa
31 C

101.325 kPa1.007 kJ/kg°C (0.8654)
sT

¥ -Ï ¸= ∞ - Ì ˝
¥ Ó ˛

  = 23.2°C (Ans.)

 As the assumed value of 23°C is quite close to the calculated value, the steady-state 
temperature of water in the ‘matka’ will be

Ts = 23.2°C (Ans.)

Comment A drop in temperature of water of about 8°C results without refrigeration due to evaporative 
cooling. The steady-state temperature reached is commonly called wet-bulb temperature

and is the minimum temperature to which water can be cooled without mechanical 
refrigeration. In dry weather, when the relative humidity is very low, the cooling effect is 
more pronounced. For example, had there been 20% RH in 31°C air, the minimum water 
temperature reached (TS) would be 16°C.

 A solar pond 20 m ¥ 20 m and 2-m deep is maintained isothermally at 30°C 

at a location where the atmospheric pressure is 1 atm. The ambient air conditions are 20°C and 65% 

relative humidity. Determine the rate of heat loss from the top surface of the pond by (a) radiation, (b) 

free convection, and (c) evaporation. Take the average temperature of the surrounding surfaces to be 

15°C and the emissivity of liquid water is 0.95. The following properties may be used:

 Air: s

1
T T T

2

20 30
1 atm, ( ) 25 C

2

+
+ = = ∞

Ê ˆ=Á ˜Ë ¯

  k = 0.02551 W/m K, Pr = 0.7296 a = 21.41 mm2/s v = 15.62 mm2/s

 Saturated water vapour (1 atm, 30°C)

  hfg = 2430.5 kJ/kg r = 0.0304 m3/kg Pg = 4.246 kPa

 Air water vapour (25°C): DAB = 0.256 ¥ 10–4 m2/s

Solution

Known A large solar pond is exposed to still air and surrounding surfaces.
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Find Heat loss by (a) radiation, (b) free convection, and (c) evaporation.

Assumptions (1) Steady operating conditions. (2) Heat and mass transfer analogy is relevant because 
low mass flux conditions exist. (3) Water vapour and air are both ideal gases.

Analysis (a) The rate of heat loss by radiation from the water to the surrounding surfaces is 
determined from

4 4 2 8 2 4 4 4 4
rad sur[ ] (400 m )(5.67 10 W/m K )(0.95)[303.15 288.15 ]KsQ A T Tse -= - = ¥ -

= 33430 W (Ans.) (a)

(b) The rate of heat loss by free (natural) convection is obtained from

conv ( )sQ hA T T= -

Let us first determine the Rayleigh number, RaL based on the characteristic length, L defined 
for a horizontal surface as

220 20 m
5 m

2[20 20]m

A
L

P

¥
∫ = =

+

Now, RaL = GrLPr

where
3

2

( )s
L

g L
Gr

v

r r

r

-
=

Partial pressure of water vapour, Pv,  = f Pg = 0.65 ¥ 4.246 kPa = 2.76 kPa
At the pond’s top surface: Pv,S = Pv,sat = Pg @ 30°C = 4.246 kPa

\

, 3
,

, 3
,

3
, ,

4.246 kPa
0.0304 kg/m

(0.4615 kJ/kgK)(303.15 K)

(101.325 4.246)kPa
1.116 kg/m

(0.287 kJ/kgK)(303.15 K)

0.0304 1.116 1.146 kg/m

v s
v s

v s

a s
a s

a s

s v s a s

P

R T

P

R T

r

r

r r r

= = =

-
= = =

= + = + =

and
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Far away from the pond surface:

, 3
,

2.76 kPa
0.0204 kg/m

(0.4615 kJ/kgK)(293.15 K)

v
v

v

P

R T
r = = =

\

, 3
,

3
, ,

3

(101.325 2.76)kPa
1.1715 kg/m

(0.287 kJ/kgK)(293.15 K)

0.0204 1.1715 1.192 kg/m

1 1
( ) (1.146 1.192) 1.169 kg/m

2 2

a
a

a

v a

s

P

R T
r

r r r

r r r

-
= = =

= + = + =

= + = + =

 Substituting these values,
2 3 3

3 2 11

3 6 2 2

(9.81 m/s )(1.192 1.146)kg/m (5 m)
( ) / 1.98 10

(1.169 kg/m )(15.62 10 m /s)
L sGr g Lr r rn

-

-
= - = = ¥

¥

 and RaL = GrLPr = (1.98 ¥ 1011)(0.7296) = 1.44 ¥ 1011

 This is a case of hot horizontal surface facing up with RaL > 107, and the correlation to 
be used is

1/30.15( )L L

hL
Nu Ra

k
= =

 and 11 1/3 2
conv

0.15 0.02551 W/mK
(1.44 10 ) 4.014 W/m K

5 m
h

¥
= ¥ =

\ conv conv ( )sQ h A T T= -
= (4.014 W/m2K) (400 m2) (30 – 20)°C or K = 16 056 W (Ans.) (b)

 Using the analogy between heat and mass convection, Sh = 0.15 (GrSc)1/3

 where 
6 2

4 2

15.62 10 m /s

0.256 10 m /sAB

Sc
D

n -

-
¥

= =
¥

 = 0.61

 or 11 1/30.15(1.98 10 0.61) 741.5m

AB

h L

D
= ¥ ¥ =

\ hm = (741.5) (0.256 ¥ 10–4 m2/s)/5 m = 0.0038 m/s
 Now, vm  = hmA(rv,s – rv, )  = (0.0038 m/s) (400 m2) (0.0304 – 0.0204) kg/m3

= 0.0151 kg/s

 Hence, evap v fgQ m h=  = (0.0151 kg/s) (2430.5 ¥ 103 J/Kg) = 36 700 W (Ans.) (c)

 Total heat loss from the surface of the pond is

total rad conv evapQ Q Q Q= + +  = 33430 + 16 056 + 36 700 = 86 186 W = 86.2 kW

 A dry-and wet-bulb thermometer records the following readings: Dry-bulb 

temperature (dbt) = 44°C. Wet-bulb temperature (wbt) = 28°C Determine the Schmidt number and Lewis 

number as also the specific humidities of the air far away from the wetted surface and near the wetted 

surface of the thermometer bulb. Hence, determine the relative humidity of air. Using the Carrier’s equation 

given below, calculate the relative humidity for the sake of comparison. 
g

g

P P T T
P P

T K

*

*

*

( )( )

1810 ( )
n

-
=

-
-

-

*
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where T and T* are dbt and wbt in kelvin. gP*  is the saturated vapour pressure at T*. Use the following 

data: DAB = 2.7 ¥ 10–5 m2/s

Air (1 atm, 36 °C): r = 1.142 kg/m3, Cp = 1.0063 kJ/kg °C,

  v = 16.59 ¥ 10–6 m2/s, a = 23.54 ¥ 10–6 m2/s

Saturated water vapour: Pg = Psat@44°C = 9.111 kPa, rg = 
kg

m3

1

16.02

  
g gP P* *

sat@28 C 3

1 kg
3.782 kPa,

36.69 m
∞= = r =

  hfg@28°C = 2435.2 kJ/kg [VTU, 2000]

Solution

Known Dry-bulb and wet-bulb temperatures of atmospheric air.

Find Relative humidity, Sc, Le, w, and w*.

Assumptions (1) Steady operating conditions. (2) Negligible radiation and conduction along the 
thermometer. (3) Water vapour has ideal-gas behaviour. (4) Heat- and mass-transfer analogy 
is applicable.

Analysis Schmidt number, 
6 2

5 2

16.59 10 m /s
.

2.7 10 m /sAB

Sc
D

n -

-
¥

= = =
¥

0 614 (Ans.)

Lewis number, 
6 2

5 2

23.54 10 m /s
.

2.7 10 m /sAB

Le
D

a -

-
¥

= = =
¥

0 872 (Ans.)

Incidentally, 
0.614

0.704
0.872

Sc

Le
= =

Applying energy balance on a thin layer of water at the wet-bulb surface,

or

sensible,transferred latent,absorbed

conv , ,or ( ) ( )A fg s m A s A fg

Q Q

Q m h hA T T h A hr r

=

= - = -

or *
,sat ,sat

( )
( ) ( )s

A s A g g
m fg

T Th
T T

h h
r fr r fr

-
= - = -
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 Relative humidity, * ( / )( ) 1m s
g

fg g

h h T T

h
f r

r

-È ˘= -Í ˙
Î ˚

 But using the analogy between heat and mass transfer,

2/3 3 2/3

2

3

( ) (1.142 kg/m )(1006.3 J/kg°C)(0.872)

W/m °C
1048.9 or

m/s m °C

p
m

h
C Le

h

J

r= =

=

\
*

3 3 3

3 3

( / )( )

16.02 kg/m 16.02 m /kg 1048.9 J/m °C (44 28)°C

36.69 kg/m 2435.2 10 J/kg

g m s

g g fg

h h T T

h

r
f

r r

-
= -

¥ ¥ -
= -

¥

    = 0.4366 – 0.1104 = 0.326 or 32.6% (Ans.)

 Specific humidities: 
–( ) V

–V

v v v a a

a v v a a

m T P R T

m R T P
w w= = = ¥

 As –V  and T are same for air and water vapour,

,

,

0.287 kJ/kgK

0.4615 kJ/kgK

0.6220.622 0.622 0.326 9.111

101.325 (0.326 9.111)

v a v

a v v

gA

A g

P R P

P R P P

PP

P P P P

w

f

f

= =
-

¥ ¥ ¥
= = =

- - - ¥

    = 0.0576 kg H2O/kg dry air (Ans.)

 and 
*

*

*

0.622 3.782
0.622

101.325 3.782

g

s

g

P

P P
w w

¥
= = =

--

= 0.0241 kg H2O/kg dry air (Ans.)

 For comparison, using the Carrier equation,

\

(101.325 3.782)(44 28)
3.782 2.7476 kPa

1810 (28 273.15)

2.7476 kPa
0.302 or 30.2%

9.111 kPa

v

v

g

P

P

P
f

- -
= - =

- +

= = =

 The two values of f are quite comparable.

Comment Latent heat of evaporation, hfg is always evaluated at the surface temperature, i.e., wet-bulb 
temperature, because vaporization takes place at the wetted surface.

 A teenage boy in swimming trunks steps out of a swimming pool on a cold 

windy day. Approximating the teenager as a circular cylinder of 0.3 m diameter and 1.65 m long, the 
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average skin surface temperature is 30°C. The wind speed is 

36 km/h and the atmospheric air conditions are 20°C, 60 % 

relative humidity. Determine the rate of total heat loss from 

the drenched skin to air, neglecting radiation effects.

Solution

Known A boy with wet skin, idealized as a cylinder, 
loses heat under prescribed conditions.

Find Total heat loss by forced convection and 
convective mass transfer.

Assumptions (1) Water vapour is an ideal gas. (2) Unclothed 
body, i.e., direct exposure of skin to air. (3) 
Heat- and mass-transfer analogy is relevant.

Properties Air (1 atm, T  = 20°C):

k = 0.02514 W/m K, n = 15.16 ¥ 10–6m2/s

Pr = 0.7309, Pr(Ts = 30°C) = 0.7282

Saturated water vapour: (T  = 20°C): rg = 0.0173 kg/m3

(T  = 30°C): rg = 0.0304 kg/m3, hfg = 2431 kJ/kg

Water vapour-air: DAB = 26 ¥ 10–6 m2/s, Sc = 
AB

v

D
 = 0.583

Analysis: (a) Forced convection heat transfer: conv ( )( )sQ h DL T Tp= -

Reynolds number, 
6

5

2

36 m 10
(0.3 m) 1.98 10

3.6 s 15.16 m /s
D

VD
Re

n
-Ê ˆÊ ˆ= = = ¥Á ˜Á ˜Ë ¯ Ë ¯

Nusselt number, 
0.25

0.6 0.37

0.25
5 0.6 0.37

Pr
0.26( ) ( )

0.7309
0.26(1.98 10 ) (0.7309) 349

0.7282

D D
s

Nu Re Pr
Pr

Ê ˆ= Á ˜Ë ¯

Ê ˆ= ¥ =Á ˜Ë ¯

Therefore, 20.02514 W/mK
349 29.26 W/m K

0.3 m

k
h Nu

D
= = ¥ =

\ conv 2
29.26 ( 0.3 m 1.65 m)(30 20)°C or K 455 W

m K

W
Q p

Ê ˆ= ¥ ¥ - =Á ˜Ë ¯

Convective mass transfer: evap evap fgQ m h=

where evap , ,( )[ ]m v s vm h DLp r r= -

rv,s = rv,sat at (Ts = 30°C) = 0.0304 kg/m3

rv,  = frv,sat at (Ts = 20°C) = 0.6 ¥ 0.0173 kg/m3 = 0.01038 kg/m3

To find ,mh  the analogy between heat and mass transfer can be used. Neglecting the Pr

ratio term, the analogous form is
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D
Sh  = 0.26 (ReD)0.6(Sc)0.37 = 0.26 (1.98 ¥ 105)0.6(0.,583)0.37 = 320.8

 Therefore, 
6 226 10 m /s

320.8 0.0278 m/s
0.3 m

D

AB
m

D
h Sh

D

-¥
= = ¥ =

 The rate of evaporation is

evapm   = (0.0278 m/s) (p ¥ 0.3 m ¥ 1.65 m) (0.0304 – 0.01038) kg/m3

= 8.655 ¥ 10–4 kg/s

 Hence, evapQ  = (8.655 ¥ 10–4 kg/s) (2431 ¥ 103 J/kg) = 2104 W

 The rate of total heat loss is

conv evapQ Q Q= +  = 455 W + 2104 W = 2559 W or 2.56 kW (Ans)

Comment The total heat transfer comprises two contributions, viz., sensible (heat transfer) and latent 
(mass transfer).

  Heat loss due to moisture transfer or evaporation far outweighs the heat loss due to 
forced convection. This is only to be expected when wet human skin is in direct contact 
with cold air.

 Benzene has been spilled on the floor and has spread to a length of 2.5 m. If a 

1 mm deep film is formed, find the time taken for the benzene to evaporate completely. Air flows parallel 

to the surface at 1.2 m/s. Benzene and air are both at 25oC. The densities of benzene in the saturated 

vapour and liquid states are rv = 0.417 and rl = 900 kg/m3

Properties of air at 1 atm, 25oC: DAB = 8.8 ¥ 10–6 m2/s.

Solution

Known Air flows parallel to and over a thin benzene layer.

Find Time required for complete evaporation.

Assumptions (1) Steady operating conditions. (2) Negligible turbulence and smooth liquid surface. (3)
Heat- and mass-transfer analogy is applicable. (4) Negligible benzene vapour concentration 
in free steam air. (5) Isothermal conditions prevail at 25oC.

Analysis Reynolds number,

5 5

6 2

1.2 m/s 2.0 m
1.5365 10 ( 5 10 )

15.62 10 m /s
L

u L
Re

n -
¥

= = = ¥ < ¥
¥

fi  Laminar flow.
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 The appropriate correlation is, 1/2 1/30.664( ) ( ) m
L L

AB

h L
Sh Re Sc

D
= =

 where 
6 2

6 2

15.62 10 m /s
1.775

8.8 10 m /sAB

Sc
D

n -

-
¥

= = =
¥

 Convection mass-transfer coefficient is,

1/2 1/3

6 2
5 1/2 1/3 3

0.664

8.8 10 m /s
0.664 (1.5365 10 ) (1.775) 1.11 10 m /s

2.5 m

AB
m L

D
h Re Sc

L
-

-

= ¥ ¥ ¥

¥
= ¥ ¥ ¥ ¥ = ¥

 Mass, –V sm Ar r d= =
l l

 Rate of mass diffusion of benzene in air, evap ( )s

dm d
m A

dt dt
d r= - = -

l

 After time t, benzene will be completely evaporated and the layer thickness d will become 
zero.

 It follows that

 or 

evap ,sat ,

negligible mass fraction
of vapour in air

0

,sat

0

( )m s A A s

t

m A

d
m h A A

dt

h dt d

d

d
r r r

r r d

= = --

= -Ú Ú

l

l

 Time required, 
3 3

3 3
,sat

900 kg/m 1 10 m

1.11 10 m/s 0.417 kg/mm A

t
h

r d

r

-

-
¥ ¥

= =
¥ ¥

l = 1944 s = 32.4 min (Ans.)

 Dry air at 1 atm and 40oC flows with a velocity of 0.5 m/s across a wet-bulb 

thermometer. What would be the reading on the thermometer?

Solution

Known Dry air is blown over the wet 
bulb of a thermometer.

Find Wet-bulb temperature, Twb (
oC).

Assumptions (1) Air and water vapour are 
ideal gases. (2) Steady-state 
conditions.

Analysis Under steady operating 
conditions, we have

, @

2/3
@

( )

( )

wb

f

v s fg Tv
wb db

p T

P hM
T T

MP C Le

¥Ê ˆ
= - Á ˜Ë ¯

 or 
sat @

2/3
@

( )18.016
40°C

28.97 101.325 ( )

wb

f

fg T

wb

p T

P h
T

C Le

Ê ˆ= - Á ˜Ë ¥ ¯
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As Cp = 1.007 kJ/kg°C from 15oC to 70oC,

sat @

2/3
@

( )18
40

28.97 101.325 1.007 ( )

wb

f

fg T

wb

p T

P h
T

C Le

Ê ˆ= - ¥Á ˜Ë ¥ ¥ ¯

or
sat @

2/3
@

[ (kPa) (kJ/kg)]
40 0.0061

( / )

wb

f

fg T

wb

AB T

P h
T

Da

¥Ï ¸Ô Ô= - ¥Ì ˝
Ô ÔÓ ˛

Let sat14°C: 1.598 2468.3 3944.34

1
( ) (40 14)/2 27°C or 300.15 K

2

wb fg

f db wb

T P h

T T T

= = ¥ =

= + = + =

Mass diffusivity,
10

2.072 10 2.072 5 21.87 10
( ) 1.87 10 (300.15) 2.54 10 m /s

(atm)
ABD T K

P

-
- -¥

= = ¥ ¥ = ¥

Thermal diffusivity, a = 2.25 ¥ 10–5 m2/s

\
2/3

2/3 2.25
( / ) 0.923

2.54
ABDa

Ê ˆ= =Á ˜Ë ¯

\
(3944.34 0.0061)

40 40 26 14°C
0.923

wbT
¥

= - = - =

Since Twb (calculated) = Twb (assumed), the reading on the thermometer is

Twb = 14°C (Ans.)

Points to Ponder

● The larger the molecular spacing, the higher is the rate of diffusion.
● In a binary ideal gas mixture of species A and B, DAB = DBA and both increase with temperature.
● The pressure fraction of a species in an ideal-gas mixture is equivalent to the mole fraction of that 

species.
● Fick’s law of diffusion is analogous to Newton’s law of viscosity and Fourier’s law of heat conduction.
● The diffusion coefficient in solid solutions is strongly dependent on temperature.
● Diffusion in solids is normally done at high temperatures to reduce the diffusion time.

● Penetration depth in transient mass diffusion is ABD tp .

● Mass convection between a surface and moving fluid involves both mass diffusion and bulk fluid 
motion.

● The density of a mixture is always equal to the sum of the densities of its constituents.
● The molar concentration of a mixture is always equal to the sum of the molar

concentrations of its constituents.
● If the mole fractions of A and B are both 0.5, then the molar mass of the mixture is simply the 

arithmetic average of the molar masses of A and B.
● The mass and the mole fractions for a mixture of CO2 and N2O gases are identical.
● The free surface of a lake is exposed to the atmosphere. If the air at the lake surface is saturated, the 

mole fraction of water vapour in air at the lake surface will not be the same as the mole fraction of 
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water in the lake.
● For steady, one-dimensional mass diffusion through a wall, other things being equal, the higher the 

density of the wall, the higher the rate of mass transfer.
● The driving force for mass transfer is the concentration difference.
● According to Fick’s law of diffusion, the mass flux is proportional to the concentration gradient.
● The SI unit of binary diffusion coefficient is m2/s.
● Dependence of mass diffusivity, DAB for dilute gases on pressure and temperature for dilute gases can 

be expressed as DAB a T3/2/P.
● The unit of solubility is kmol /m3 bar.
● As Henry’s constant increases with increasing temperature, the dissolved gasses in a liquid can be 

driven off by heating the liquid.
● When the penetration depth is small compared to the thickness of the solid, the solid can be treated 

as semi-infinite medium during transient mass diffusion.
● Permeability is a product of diffusion coefficient and solubility.
● Use of Schmidt number in mass transfer is analogous to Prandtl number in heat transfer.
● Diffusion coefficients are highest in gases and lowest in solids.
● Solubility ¥ Diffusion coefficient = Permeability.
● When the Lewis number is unity, the thermal diffusivity and mass diffusivity are of the same order 

of magnitude.
● An impermeable surface in mass transfer corresponds to an adiabatic surface in heat transfer.
● Fick’s law of diffusion is expressed on the mass and mole basis as diff,Am  = –rADAB(dwA/dx) and 

diff,AN  = –CADAB(dyA/dx), respectively. The diffusion coefficients DAB in the two relations are same.
● If a gas mixture has constant total pressure P and temperature T throughout, the concentration of the 

mixture (molar density) C will always be constant but the mass concentration (density), r may not be 
constant unless the composition of the mixture remains unchanged.

GLOSSARY of Key Terms

● Diffusion coefficient Constant of proportionality in the Fick’s law and a transport property 
which is a measure of the ability of a gas to diffuse through another gas 
at constant and temperature pressure. It depends upon the temperature, 
pressure and composition of the binary mixture.

● Relative humidity Ratio of the partial pressure of water vapour in the air stream to the 
partial pressure that would exist if the air stream was saturated with 
water vapour

● Mass transfer The process of movement or traansport of a chemical species in a 
mixture from a region of higher concentration to a region of lower 
concentration.

● Concentration In a multi-component mixture, the concentration (mass) in the mass of 
a species per unit volume of the mixture while the molar concentration 
is the number of moles per unit volume of the mixture.

● Transient diffusion The process of diffusion of a species in a stationary medium in which 
the concentration at a given point varies with time.
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● Stefan flow Mass diffusion of a vapour through a stagnant (stationary) gas at 
constant pressure and temperaure.

● Equimolar counter-
diffusion

A mass transfer process in a binary gas mixture in which two gases 
diffuse simultaneously in opposite directions

● Fick’s law of diffusion The mass flux (mass transfer rate by molecular diffusion per unit area) 
is directly proportional to the concentration gradient in a stationary 
medium in a specified direciton.

● Reynolds analogy in mass 
transfer

It expresses the mass transfer coefficient in terms of the friction factor.

● Lewis number It is the ratio of thermal diffusivity to mass diffusivity. Also the ratio 
of Schmidt number to Prandtl number.

● Schmidt number It is the ratio of kinematic viscosity to mass diffusivity analogous to 
Prandtl number in heat transfer.

● Permeability It is the product of solutility of a gas and the mass diffusivity of the gas 
in a solid. It is a measure of the ability of a gas to penetrate a solid.

● Sherwood number It is the ratio of the product of mass-transfer coefficient and characteristic 
length to the binary diffusion coefficient analogous to Nusselt number 
in heat transfer.

14.1
appropriate
(a) in a solid (b) in a dilute liquid solution
(c) in a dilute gaseous mixture (d) when the mixture density is not constant.

14.2 During the process of equimolar counter diffusion,
(a) the molar-average velocity of the gas mixture is zero
(b) the molar density and partial pressure of each gas vary linearly in the pipe connecting the 

reservoirs
(c) the mass-average velocity is not equal to zero
(d) all of the above

14.3 The mass transfer Biot number (Bim hmL/rDAB. If Rdiff is the resistance to species 
transfer by diffusion in the medium and Rconv is the resistance to species transfer by convection at the 
surface then Bim is
(a) Rdiff/Rconv (b) Rconv/Rdiff (c) Rconv Rdiff (d) Rconv + Rdiff

14.4 Choose the incorrect statement:
  During the isothermal evaporation of water vapour into still air, it is assumed that

(a) the total pressure remains constant
(b) air and water vapour behave like perfect gases
(c) the air movement creates a little turbulence
(d) the system is in steady state

14.5
(a) Pressure only (b) Temperature only(c) Volume only (d) All the above
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14.6 The solubility of oxygen gas in rubber is 0.00312 kmol/m3 bar. The mass density of oxygen at the 
interface is 0.35 kg/m3. The partial pressure on the gas side at 25oC is
(a) 250 kPa (b) 100 kPa (c) 350 kPa (d) 400 kPa

14.7 A soda bottle contains a solution of water (H2O) and carbon dioxide (CO2). The concentration of the 
dissolved CO2 gas in the liquid H2O is 0.00076. The partial pressure of H2O vapour in the gas volume 
at the top of the bottle is negligible. The Henry’s constant at 300 K is 1710 bar. The pressure in the 
bottle is
(a) 2.25 bar (b) 25.6 bar (c) 1.87 bar (d) 1.3 bar

14.8 The case hardening of low carbon steel is done by the process of carburization at high temperature. 
o ¥ 10–11 m2/s The penetration 

depth of carbon in steel is required to be 1.3 mm. The estimated time required for this hardening 
process is
(a) 4.98 h (b) 11.2 h (c) 1.87 h (d) 36.8 h

14.9 Select the wrong statement below:
(a) Dissolution of sugar in a tea cup
(b) Diffusion of smoke into the atmosphere
(c) Boiling of water in a kettle
(d) Penetration of carbon in mild steel during case hardening

14.10
processes occur simultaneously is
(a) Sherwood number (b) Schmidt number
(c) Lewis number (d) Stanton number

Multiple-Choice Questions

14.1 (d) 14.2 (d) 14.3 (a) 14.4 (c) 14.5 (b) 14.6 (c)
14.7 (d) 14.8 (a) 14.9 (c) 14.10 (b)

14.1 mass transfer

14.2 List some industrial and day-to-day applications of mass transfer.
14.3

14.4
14.5 What is the effect of temperature and pressure on the 
14.6 mass-average velocity, molar-average velocity, diffusion velocity,

stationary medium, and moving medium.
14.7 State Fick’s law of diffusion for mass transfer. How does it closely resemble Fourier’s law of heat 

conduction, Ohm’s law of electrical conduction, and Newton’s law of viscosity

14.8 Show that kinematic viscosity, thermal diffusivity, and mass diffusivity have the same units.
14.9 equimolar counter diffusion and derive an expression for the mass diffusion rate 

for a binary gas mixture.
14.10 isothermal evaporation of water).
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14.11 Derive the general mass-diffusion equation, on a mass basis, in a stationary medium in Cartesian 
coordinates.

14.12 What is Henry’s law and Henry’s constant

14.13 solubility and permeability

14.14 How is mass-transfer Biot number

14.15
14.16 Schmidt number

(b) Sherwood number (c) Lewis number. Which dimensionless number does each corrospond to in 

14.17

14.18 The Chilton-Colburn analogy is expressed by the relation f/2 = St Pr2/3 = Stmass Sc2/3 What are the 

14.19
14.20 Discuss the  in heat-mass convection analogy. Is the evaporation of 

PRACTICE PROBLEMS

(A) Mixture Composition, Fick’s Law, Diffusivity, Solubility, Henry’s Law
14.1 DAB for carbon dioxide (Species A) in air (Species B) at 1 atm 

and 27°C. Given:

 Gas Molecular Weight Molecular Volume

Air 28.97 29.9

CO2 44 34

  Then, calculate DAB for a pressure of 2 atm and 47oC. [0.293 cm2/s]
14.2 DAB) of an air-carbon dioxide gas mixture at 1 atm and 

298 K predicted by the following equation: 
1/23

3/2

2
,

1.8583 10 1 1
AB

A AAB D AB

D T
M MPs

- È ˘¥ Ê ˆ Ê ˆ= +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯W Î ˚
 where DAB

is in cm2/s, P in atm, and T in K, AM  and BM  are the molar masses of the two species A and B, sAB

is the collision diameter in, Å and WD,AB is the collision integral. The values of sAB and WD,AB can be 
used from the following table.

Species s, Å e/k Molar mass

Air 3.617 97 28.97

CO2 3.996 190 44.01

kT/e 2.0 2.1 2.2 2.3

WD,AB
1.075 1.057 1.041 1.026

  Compare the result with the experimental value of DAB = 0.16 ¥ 10–4 m2/s. Determine DAB if P = 3 
atm and T = 600 K. [0.152 cm2/s, 0.034 cm2/s]
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(B) Sationary Media, Equimolar Counter Diffusion, 
Evaporation in a Column, Moving Medium

14.3 A deep, narrow cylindrical vessel which is open at the top contains some toluene at the bottom. The 

the vessel that any toluene vapour arriving at the top surface is immediately removed to ensure zero 
toluene concentration at the top surface. The entire system is at 1 atm and 18.7°C. The saturated 
vapour pressure of toluene at the liquid surface in the vessel is 0.026 atm. Calculate the rate of 
evaporation of toluene into the air per unit area of the liquid surface if the distance between the liquid 
toluene surface and the top of the vessel is 1.5 m. The mass diffusivity of air-toluene vapour air at 
25°C is 0.0844 cm2/s. [5.995 ¥ 10–9 k mol/m2s]

14.4 Calculate the rate of burning of a coal particle of 2.5-mm diameter in an atmosphere of pure oxygen at 
1200 K and 1 atm, assuming that a very large blanketing layer of CO2 has formed around the particle. 
Assume that the combustion rate is such that all the oxygen reaching the surface is instantaneously 
consumed. Hence, the concentration of oxygen at the surface is effectively zero. Also, assume that 
the concentration of CO2 DAB = 0.14 ¥ 10–4 m2/s.

[2.47 ¥ 10–7 kg/s]
14.5 An open pan, 18 cm in diameter with 6 cm depth, contains water at 28°C and is exposed to dry 

atmospheric air. If the rate of diffusion of water vapour is 8.54 ¥ 10–4 kg/h, estimate the diffusion 
[0.202 cm2/s]

(C) Transient Diffusion
14.6 Steel is carburized in a high-temperature process which depends on the transfer of carbon by diffusion. 

A steel component with an initial carbon content of 0.11 per cent by mass is case hardened in a furnace 
by exposing it to a carburising gas. The carbon-rich atmosphere in the furnace maintains the mass 
fraction at the exposed surface of the steel component at 0.011. The hardening process continues till 

of carbon in steel is DAB = 2.67 ¥ 10–5 exp (–17400/T) (m2/s) where T is in K. The time required for 
the component to be kept in the furnace is 9 h. Determine the temperature of the furnace. [1179 K]

(D) Convective Transfer
14.7 Consider a drop of water, of 0.3-mm diameter, travelling through air at a velocity of 5 m/s. If the 

air temperature is 20°C, determine the steady-state temperature of the drop. Neglect radiation and 
assume the relative humidity to be 50%. [13.3°C]

14.8 A swimming pool of dimensions 6 m by 12 m has its water surface temperature of 20°C. The ambient 
air conditions are 20°C and 30% relative humidity. The wind blows in the direction of the long (12 
m) side of the pool with a speed of 7.2 km/h. Estimate the daily evaporative water loss from the pool. 
Use the following relation for evaluating 

2H O(A) Air(B)D - :

  DAB = (1.87 ¥ 10–10) (T2.072/P) ((m2/s)) with T in K and P in atm.
  Properties: Dry air (1 atm, 20°C): n = 15.16 ¥ 10–6 m2/s
  Saturated water (1atm, 20°C): Pg = 2.339 kPa, rg = 0.0173 kg/m3 [325 kg/day]

14.9
[14°C]

14.10
(RMM = 128.16 kg/kmol) with a free stream velocity of 2.0 m/s. The surface area of the body is 0.7 
m2. It is observed that sublimation of 100 g of naphthalene has taken 50 min. During the experiment, 
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both the air and the body were maintained at 26°C, at which the mass diffusivity is DAB = 0.62 ¥
10–5 m2

  Properties of dry air at
  r = 1.165 kg/m3   Cp = 1.007 kJ/kg °C   a = 2.33 ¥ 10–5 m2/s
  Saturated vapour pressure of naphthalene can be found from Psat = P ¥ 10E where E = 8.67 – (3766/T)

with P in bar and T in K. [211.5 W/m2 °C]



Multi-Dimensional 
Heat Conduction

15.1 ❏ INTRODUCTION

In Chapter 2, we analyzed steady-state one-dimensional heat conduction in plane walls cylinders, and 

spheres. There are many engineering applications, for which the assumption of one-dimensional heat 

conduction may be too much of a simplification or inappropriate. In that case, a multidimensional 

conduction problem must be solved. Such multidimensional heat conduction occurs in the block of an 

internal combustion engine, heat treatment of various metal parts, composite systems comprising materials 

with different thermal conductivities, large chimneys, and L-shaped bars.

The main objective of any heat-transfer analysis is the determination of the temperature distribution 

and the heat flow within and at the boundary of a given body. In solving two-dimensional problems, 

analytical, graphical, analogical, or numerical techniques are usually used. Analytical, analogical and 

graphical methods are normally used for simpler cases, while the numerical techniques are used to solve 

the more complex problems. The analytical solution requires basic knowledge of Fourier’s series, Bessel

functions, Legendre polynomials, Laplace transform methods, and complex variable theory. The knowledge 

of advanced mathematics is not necessary in the remaining three cases. 

The general three-dimensional heat conduction equation is

2 2 2

2 2 2

1T T T q T

k tx y z a

∂ ∂ ∂ ∂
+ + + =

∂∂ ∂ ∂
(15.1)

For steady-state conditions, ∂T/∂t = 0.

For no heat generation, / 0q k = .

For two-dimensional heat conduction, ∂2T/∂z2 = 0.

The governing differential equation for two-dimensional steady-state conduction in a material with constant 

thermal conductivity and without heat generation becomes 

2 2

2 2
0

T T

x y

∂ ∂
+ =

∂ ∂
 (15.2)

An example of a two-dimensional problem is the temperature distribution in a horizontal section of the 

corner of a wall shown in Fig. 15.1. The points of equal temperature joined to form isothermal surfaces 

are shown and the lines of heat flow are indicated at right angles to these isothermals. 
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Surfaces at T2

Isothermals

Surfaces at T1

Lines of heat flow

T varies
from T1

to T2

Heat flow in the corner of a wall: Two-dimensional heat conduction 

15.2 ❏

The analytical method involves the exact solution of partial differential equations which can be used to 

compute the temperature at any point of interest in the medium.

The method involves the solution of the governing differential equation for conduction in the 

appropriate coordinate system subject to the initial and boundary conditions. However, rigorous and 

complex mathematical treatment, except in simple geometries, makes this method of limited use.

In this method, we start with the general differential equation for conduction in the required coordinate 

system and solve it in conjunction with given initial and boundary conditions to get the temperature field; 

then apply the Fourier’s equation and get the heat flux at any desired point.

Let us consider a thin rectangular plate (Fig. 15.2) without heat generation and insulated at the top 

and bottom surfaces. For a thin plate, ∂T/∂z is negligible and temperature is a function of x and y only. 

Assume that three faces of this plate are maintained at a constant temperature T = 0, and the fourth face 

is held at a constant temperature Ts.

Let k be the thermal conductivity and let it be uniform, i.e., independent of both temperature and 

direction.

For steady equilibrium conditions, the temperature distribution must satisfy the following equation:

2 2

2 2
0

T T

y

∂ ∂
+ =

∂ ∂x

(15.3)

Equation (15.3) is a linear and homogeneous partial differential equation. The solution to this equation 

may be expressed as a product of two functions each of which are only functions of one independent 

variable as:

X x=( , ) ( ) ( )T x y Y y (15.4)
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where X is a function of x only and Y is a function of y only. Substituting this solution into Eq. (15.3), 

we get
2 2

2 2
0

d X d Y
Y X
dx dy

+ =

Dividing by XY, we get

2 2

2 2

1 1d X d Y

X ydx dy
- = (15.5)

Since the variables in this equation are separated, each side 

is a constant. Taking this constant to be l2, we obtain the 

following two separate equations:

2
2

2
0

d

d
l+ =

X
X

x
(15.6)

2
2

2
0

d
Y

d
l- =

Y

y

(15.7)

The general solution to Eq. (15.6) is

1 2cos sinX C Cl l= +x x

and the solution to Eq. (15.7) is

3 4
y y

Y C e C e
l l-= +

These solutions can be verified by substituting them into the corresponding differential equation. The 

general solution of Eq. (15.3) is 

y yx x l ll l -= = + +1 2 3 4( , ) ( cos sin )( )T x y XY C C C e C e (15.8)

where C1, C2, C3, C4, and l are determined from the boundary conditions. 

The boundary conditions are (BCs) as follows:

1. T = 0 along y = 0.

2. T = 0 along x = 0.

3. T = 0 along x = L.

4. T = Ts along y = b

From BC (2), we get C1 = 0 and from BC (1), we get 

C3 + C4 = 0 or C3 = –C4.

Therefore, 2 4 2 4sin ( ) or 2 sin sinh sin sinhy y
T C C e e T C C y C y

l ll l l l l-= - = =x x x

where C = 2C2C4.

From BC (3), we get, 0 = C sin lL sin ly

Therefore,

sin lL = 0 (for all values of y)

n

L

p
l = (n = 1,2,3,4, …)

y

y b=

T = 0

y = 0
x = 0 T = 0 x L=

x

T = 0

b

T T= s

L

Two-dimensional conduction in a 

rectangular plate
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Therefore, sin sinh
n

T C y
L

p
l=

x
 or sin sinh

n n y
T C

L L

p p
=

x
(15.9)

There exists a different solution for each integer n and each solution has a separate integration constant 

Cn. Summing these solutions, we get

xp p

=

= Â
1

( , ) sin sinhn

n

n n y
T x y C

L L
(15.10)

From the boundary condition (4), we get

xp p
=

=

= = Â
1

sin sinhy b s n

n

n n b
T T C

L L

The problem is now reduced to one of a Fourier sine series.

Solving for Cn, we get

p

p p

-
=

2 (1 cos )

sinh ( / )
n s

n
C T

n n b L
(15.11)

The solution, therefore, becomes

1

2(1 cos ) sinh sin

( , )
sinh ( / )

s

n

n y n x
n

a aT x y T
n b L

p p
p

p=

-
= Â  (15.12)

15.3 ❏

Consider a semi-infinite plate as shown in Fig. 15.3. The length 

of the plate in the y-direction is extremely large. The procedure 

is exactly the same as given earlier.

The general differential equation is given by

2 2
0

T T

x y

∂ ∂
+ =

∂ ∂

2 2

and its solution is of the form

1 2 3 4

( ) ( )

( cos sin )( )

T X x Y y

C C C e C e
l ll l -

=

= + +y yx x

The boundary conditions needed to complete the problem 

formulation are

1. T = 0 at x = 0

2. T = 0 at x = L

3. T = 0 at y = 

4. T = f(x) at y = 0

T = 0

T = 0

∞
T

x
x = LT f x= ( )

x = 0
y = 0

T = 0

L

Two-dimensional conduction in a 

semi-infinite plate
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From the boundary condition (1), we get

1 3 40 ( 0)( )C C e C e
l l-= + +y y

Hence, C1 = 0. 

Thus, the general solution reduces to the following equation:

2 3 4sin [ ] sin [ ]T C C e C e Ce De
l l l ll l- -= + = +y y y yx x  where C = C2C3 and D = C2C4

From the boundary condition (3), we get

0 sin ( ) sin (0 )Ce De De
l l ll l= + = +x x (15.13)

Thus, D = 0. Therefore,

x ll -= sin y
T C e

Using the boundary condition (2), we have

ll -=0 sin y
C L e

Therefore, sin lL = 0 = sin np or
n

L

p
l = , where n is an integer

It follows that,

x yp p

=

-Ê ˆ= Á ˜Ë ¯Â
0

sin expn

n

n n
T C

L L (15.14)

From the boundary condition (4), we have

xp

=

=Â
0

( ) sinn

n

n
f x C

L

which is a Fourier expansion of f(x) in an infinite series of sine functions.

\
x

x x
pÊ ˆ= Á ˜Ë ¯Ú

0

2
( )sin

L

n

n
C f d

L L
(15.15)

Thus, the final form of the solution is

1 0

2
sin exp ( )sin

L L

L

n

n n y n
T f d

L

p p p

=

-Ê ˆ Ê ˆ= Á ˜ Á ˜Ë ¯ Ë ¯Â Ú
x x

x x
L

(15.16)

15.4 ❏

Analogies have been found to exist between heat transfer and the flow of electrical current, and fluid 

flow which provide a useful tool for obtaining temperature distribution and the rate of heat transfer in 

a two-dimensional system. The two-dimensional Laplace equation applies to a temperature field. If the 

temperature T is replaced by the electric potential f then the steady-state distribution of electric potential 

governing the voltage distribution in an electrical field is obtained. The differential equations associated 

with heat conduction and those governing the steady-state distribution of electric potential are analogous. 

These two equations are
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2 2 2 2

2 2 2 2
0 0

T T

x y x y

f f∂ ∂ ∂ ∂
+ = + =

∂ ∂ ∂ ∂
(15.17)

The analogy between electrical and temperature fields provides the basis for an experimental electrical 

analogy method. Such experimental arrangements are known as analog field plotters. A thin sheet of 

electrically conducting paper of high resistivity is used for the purpose. This sheet is cut to an exact 

geometric model of the two-dimensional heat conduction system. With regard to boundary conditions, a 

uniform surface temperature is modelled by maintaining a uniform voltage at the surface and insulated 

surfaces which are not connected to voltage sources.

An electric potential is then impressed on the model. Lines of constant voltage which correspond to 

isotherms are then found by using a millivoltmeter. The current flow lines which are perpendicular to the 

potential lines are drawn in free hand in such a way that the resulting network forms curvilinear squares. 

The current-flow lines can sometimes be determined by reversing the electrical boundary conditions.

Equipotential lines on the model surface that are plotted, correspond to isothermal lines in the 

temperature field.

Thus, the temperature distribution can be inferred.

In this method, a model of the given geometry is used with analogous boundary conditions. 

15.5 ❏

Graphical methods are used for two-dimensional problems with isothermal lines (constant temperature) 

lines and adiabatic (constant heat flux) boundaries. This is an approximate but versatile method applicable 

to many irregularly shaped two-dimensional geometries of practical interest and can give rapidly a 

reasonably good estimate of the temperature distribution. Here, temperature and heat flow lines are drawn 

by free hand, remembering that isothermal and heat-flow lines are orthogonal, thus forming curvilinear 

squares. Once such a flux plot is drawn, heat flow is easily calculated by applying Fourier’s law to each 

heat-flow lane.

The basis of the graphical method is to draw, by trial and error, the heat-flow lines and isotherms 

in a curvilinear section in such a way that they are perpendicular at their points of intersection. This 

technique is called flux plotting. Consider an element of unit thickness of the material in a flux plot as 

shown in Fig. 15.4.

The heat-flow rate is

( )( ) l
T

Q k x
y

D= - D
D

 (15.18)

This heat flow will be the same through each flow line. If the sketch is drawn so that Dx ª Dy, then the 

rate of heat transfer is proportional to DT across the element. Thus 

DToverall = N DT (15.19)

where N is the number of temperature increments between the two boundaries at T1 and T2. Therefore, 

the total heat-transfer rate is

overall 1 2( )
M M

Q k T k T T
N N

= D = - (15.20)
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(1,1)

Boundary
isotherm

>T T1 2

Heat flow lines

(5,2)

(3,4)

8
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6

5

4

3

2

1

1
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3
4

5

6
7

N = 8

Number of heat
flow lanes, M

M = 7

Symmetry
lines

T1 T1

T1

T1

T1 T1

T1

T1

Arrangement of arbitrary isotherms and constant heat-flow lines

where M is the number of heat flow lanes and (T1 – T2), is the overall temperature difference between two 

isothermal boundaries. The ratio M/N, i.e., the number of flow lanes divided by the number of temperature 

increments, is called the conduction shape factor, S. Therefore, Eq. (15.20), reduces to

1 2( )Q S k T T= -   (W) (15.21)

15.6 ❏

A simple, though approximate, approach to determining the heat-transfer rate by conduction in two 

dimensions is by using the conduction shape factors. In 2-D heat transfer, let the two surfaces of a solid 

medium are held at temperatures, T1 and T2 and k is the thermal conductivity of the medium. The heat-

transfer rate with no heat generation within the medium is then given by 

1 2( )Q k S T T= - (15.22)

where S is called conduction shape factor and has the dimension of length. It may be noted that for 

liquids and gases where convection is dominant, the above equation is not applicable.
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Table 15.1 gives conduction shape factors for some selected two-dimensional systems.

Table 15.1

No. System Schematic Restrictions Shape Factor

1. Isothermal sphere 

buried in a semi-

infinite medium

T2

T1

D

z

z > D/2 2

1 /4

D

D z

p

-

2. Horizontal

isothermal

cylinder of 

length L buried 

in a semi-infinite 

medium

T2

Z

D

L

T1

L >> D

L >> D

z >> 3D/2

1

2

cosh (2 / )

L

z D

p
-

2

ln(4 / )

L

z D

p

3.  Vertical cylinder 

in a semi-infinite 

medium

T2

T1 L

D

L >> D 2

ln(4 / )

L

L D

p

4. Conduction

between two 

cylinders of 

length L in an 

infinite medium

T1

D1

T2

w

D2

L >> D1, D2

L >> w 2 2 2
1 1 2

1 2

2

4
cosh

2

L

w D D

D D

p

- Ê ˆ- -
Á ˜Ë ¯

5. Horizontal

circular cylinder 

of length L

midway between 

parallel planes of 

equal length and 

infinite width

D

T1

T2

z

z

z > D/2

L >> z
p

p

2

ln(8 / )

L

z D

(Contd.)
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6. Circular cylinder 

of length L

centred in a 

square solid of 

equal length

D

T1

T2

w w > D

L >> w
2

ln(1.08 / )

L

w D

p

7. Eccentric circular 

cylinder of length 

L in a cylinder of 

equal length

L > D2 p

- Ê ˆ+ -
Á ˜Ë ¯

2 2 2
1 1 2

1 2

2

4
cosh

2

L

D D z

D D

8.  Plane wall

T1

T2

A

L

One-

dimensional 

conduction

A

L

9. Conduction

through the edge 

of adjoining 

walls

T1

T2

D

L

L

D > L/5 0.54 D

(Contd.)

(Contd.)
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10. Conduction

through corner of 

three walls with 

a temperature 

difference of 

DT1–2 across the 

walls

L

L

L

L << length 

and width 

of wall

0.15 L

11. Disk of diameter 

D and T1 on a 

semi-infinite

medium

of thermal 

conductivity k

and T2

T1
D

k

T2

None 2D

15.7 ❏

The main difference between the analytical solution method and the numerical solution method is that the 

former will give an equation from which the temperature may be obtained anywhere in the solid, whereas 

the latter will give values of temperatures at specified points only. With a widespread use of digital 

computers, the numerical analysis is energising as the method of choice for solving multidimensional 

heat transfer problems.

The numerical relaxation method was first introduced by Sir Richard Southwell and is used to solve 

a set of algebraic equations.

The step-wise procedure is given below:

Subdivide the system into a number of small subvolumes and assign a reference number to each.

Assume values of temperatures at the various nodes.

Calculate the residuals at each node, using the assumed temperature.

Relax the largest residual to zero by changing the corresponding nodal temperature by an appropri-

ate amount.

Change the residuals of the surrounding nodes to correspond with the temperature change in Step 4.

Continue to relax residuals until all are as close to zero as desired.

15.7.1 ●

Consider a two-dimensional system such as a solid of constant thickness divided into equal increments 

in both x- and y-directions. The nodal points designated are shown in Fig. 15.5. The nodal network has 

m locations indicating the x-increment and the n locations indicating the y-increment. Let us focus our 

attention on a nodal point (m, n) and its four neighbouring points as shown in Fig. 15.6. Let Tm,n be the 

temperature at the node m, n, Tm+1,n at the node (m + 1), n, and so on. The first derivative of temperature 

with respect to x, i.e., temperature gradient at the node [m + (1/2)], n is

(Contd.)
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, left right top bottom

1
[ ]

4
m nT T T T T= + + +

1, ,

1
,

2

m n m n

m n

T TT

x x

+

+

-∂
ª

∂ D

and at the node [m – (1/2)]n is

, 1,

1
,

2

m n m n

m n

T TT

x x

-

-

-∂
ª

∂ D

Proceeding in a similar fashion, we can readily write

, 1 ,

1
,

2

m n m n

n
m

T TT

y y

+

+

-∂
ª

∂ D

, , 1

1
,

2

m n m n

n
m

T TT

y y

-

-

-∂
ª

∂ D

The second derivatives at m, n nodal points may be approximated as

( )

2
1 1 ,1/2, 1/2,

2 2

2m n m n m nm n m n

T T

y y T T TT

xx x

+ -+ -

∂ ∂
-

∂ ∂ + -∂
ª =

D∂ D

1 12 , ,
, 1 , 1 ,2 2

2 2

2

( )

n n
m m

m n m n m n

T T

y y
T T TT

yy y

+ -
+ -

∂ ∂
-

∂ ∂ + -∂
ª =

D∂ D
(15.23)

2

4

3
10

Dx

Dy

Network of curvilinear squares with nodal points

m n, + 1

m n, – 1

m n– 1, m n+ 1,m n,

Dx

Dx

Dy

Dy

m n, + 1

Conduction to an interior node from its 

neighbouring nodes
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Substituting the values of ∂2T/∂x2 and ∂2T/∂y2 in the two-dimensional steady-state Laplace equation, we 

get

1, 1, , , 1 , 1 ,

2 2

2 2
0

( ) ( )

m n m n m n m n m n m nT T T T T T

x y

+ - + -+ - + -
+ =

D D

For a square mesh, we have Dx = Dy.

Therefore, for an interior node in a two-dimensional solid, energy balance of Eq. (15.21) reduces to

1, 1, , 1 , 1 ,4 0m n m n m n m n m nT T T T T+ - + -+ + + - = (15.24a)

or right left top bottom ,4 m nT T T T T+ + + = (15.24b)

Equation (15.22) is the finite difference form of the two-dimensional heat conduction equation for the node 

(m, n) that is equidistant from its four adjacent nodes. This equation must be written for each node within 

the material and the equations are then solved for temperatures at the various nodes. Remember that the 

sum of the temperatures associated with the neighbouring nodes equal to four times the temperature of 

the node in question. In the method the right side of Eq. (15.24) is set equal to some residual R which 

we want to relax to zero.

There are mainly four methods of solving a system of simultaneous, algebraic equations:

Relaxation method

Gauss–Siedel iteration method

Matrix inversion method

Gauss elimination method

15.8 ❏

Numerical analysis using the relaxation method is quite suitable for the approximate determination of 

temperature fields in several practical situations. The residual errors at each point are successively reduced. 

Finally, acceptable accuracy is achieved.

If we carefully estimate the initial temperature then with moderate over-relaxation of points with large 

residuals, the number of iterations required can be considerably reduced.

The relaxation method is a numerical method for solving a set of algebraic equations and was first 

used by Sir Richard Southwell. The basic principles of the relaxation method are illustrated below by 

solving the following pair of algebraic equations:

12x – 13y = 232

6x – 25y = –155

To obtain a solution of the above equations, we rewrite the given equations as

R1 = –12x + 13y + 232

R2 = 6x – 25y + 155

where R1 and R2 are called residuals. Our aim in the relaxation method is to reduce the residuals 

systematically to zero or close to zero. The values of x and y which make the residuals zero are the 

desired values since they satisfy the given system of equations.

The first step in the solution is to choose the initial values of x and y. Let us choose x = 0 and 

y = 0. Then the residuals are R1 = 232 and R2 = 155.
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The second step is to set up an operation table which 

will indicate the effect of a unit positive increment in the 

values of x and y on the residuals. The operation table for 

the present problem is shown in Table 15.2.

The third step is to reduce the currently largest 

residual to zero. Since the largest residual is R1 = 232, 

Dx = 19 makes R1 = 4 but R2 will become 269. The next and subsequent steps concentrate on the currently 

largest residual to find the incremental changes in x and y to reduce the residuals to zero or as close as 

possible to zero. The subsequent calculations are summarized in tabular form in Table 15.3.

Table 15.3

X Y R1 R2

0 0 232 155

Dx = 19 4 269

Dy = 11 147 –6

Dx = 13 –9 72

Dy = 3 30 –3

Dx = 3 –6 15

x = 35 y = 14 –6 –15

The last row of the table gives the values of x and y, which are correct to the nearest whole number. 

Then the calculations can be refined to obtain a solution to the first decimal place by using first decimal 

increments. Further refinements can be made in a similar manner depending on the required accuracy of 

the final solution. A summary of the first decimal and subsequent increment calculations are presented 

in tabular form in Table 15.4.

Table 15.4

X Y R1 R2

35 14 –6 15

Dy = 0.6 1.8 0

Dx = 0.2 –0.6 1.2

Dy = 0.05 0.05 –0.05

Dx = 35.2 y = 14.65 0.05 –0.05

The residuals are almost zero. Hence, the final values of x and y are 35.2 and 14.65, respectively.

15.8.1 ●

The relaxation method (explained above) can also be applied to complex problems. However, by modifying 

the method, one can save considerable effort and time. These modifications are called shortcuts.

1. The first shortcut is to assign some initial values to the variables, instead of assigning zero values. 

The initial values can be guessed based on a close look at the physical problem.

2. The second shortcut, called over-relaxation, is used to change the residuals from a positive value 

to a negative value and vice versa, by choosing larger increments. However, one cannot quantify 

Table 15.2

Increment DR1 DR2

Dx = 1 –12 6

Dy = 1 13 –25
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the size of the increment to choose. The choice of the increment size may vary from person to 

person analyzing the problem.

3. The third shortcut, called block operation, is to change each of the variables by the same amount. 

The changes in the residuals due to the individual unit increments in the variables are added to 

obtain the effect of the unit block operation. This unit block operation can be used at any stage 

of calculation, but it is quite valuable in the initial step of the calculation. To apply this unit block 

operation in the initial step, we add the residuals and divide the sum by the effect of the unit block 

operation to obtain the size of the increment. If one uses the increment size thus obtained in a 

block operation, it will reduce the sum of the residuals to zero and the initial step considerably 

reduces the subsequent steps to obtain the final solution.

The method of applying the unit block operation is 

illustrated below by considering the earlier example. 

The operation table for the earlier example (Table 15.2)

is given in Table 15.5.

Sum of residuals = 1 – 19 = –18 = effect of unit block 

operation.

Sum of residuals in the initial stage (with x = 0 and y

= 0) = 232 + 155 = 387 (see Table 15.3)

Step size in the initial step 
387

22
18

= ª

Now, we can use a step size of 22 for both the variables x and 

y to apply the unit block operation. Table 15.6 illustrates the 

application of unit block operation.

The subsequent calculations can be carried out as in Table 15.3.

Illustrative Examples

(A) Two-Dimensional Steady-State Conduction

 In a two-dimensional 

domain shown in the figure, show that the 

temperature distribution is given by

( )
( )m

y ax
T T

a b a

sinh
sin

sinh

pp

p

Ê ˆ= Á ˜Ë ¯

Solution

Known A rectangular bar with three 

lateral sides maintained at 

T = 0 and the fourth side 

with sinusoidal temperature 

distribution.

Find Temperature distribution.

Assumptions (1) Steady-state, two-dimensional conduction.

Illustrative Examples

Table 15.5

table

 Increment DR1 DR2

Dx = 1 –12  6

Dy = 1 13 – 25

Dx = 1; Dy = 1 1 –19

Table 15.6

operation

X Y R1 R2

0 0 232 155

Dx = 22 Dy = 22 254 –263

T = 0

a

b

x0

y

T = 0T = 0

T x a= sin ( / )πTm
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Analysis Since there is no temperature gradient in the z-direction (being very long), the Laplace 

equation is.

2 2

2 2
0

T T

y

∂ ∂
+ =

∂ ∂x

(A)

subject to the boundary conditions

(i) T(0, y) = 0 (0 < y < b)

(ii) T(a, y) = 0 (0 < y < b)

(iii) T(x, 0) = 0 (0 < x < a)

(iv) ( , ) sinmT b T
pÊ ˆ= Á ˜Ë ¯

x
x

a
(0 < x < a)

Assume a solution of the form

T(x, y) = X(x) Y(y)

When substituted into the Laplace equation, this yields,

2 2

2 2

1 1d X d Y

X Yd dy
- =

x
(B)

The left side of (B), a function of x alone, can equal the right side, a function of y alone, 

only if both sides have a constant value, say l2 (> 0).

2 2
2 2

2 2
0 0

d X d Y
X Y

dx dy
l l+ = - =

with general solutions.

1 2

3 4

cos sin

cosh sinh

X C C

Y C y C y

l l

l l

= +

= +

x x

so that 1 2 3 4( cos sin ) ( cosh sinh )T C C C y C yl l l l= + +x x

Now applying the boundary conditions gives, (i) C1 = 0, and (iii) C3 = 0. Using these 

together with (ii) yields 0 = C2C4 (sin la)(sinh ly)

which requires that

sin la = 0 or
n

a

p
l = (n is a positive integer)

Since the original differential equation (A) is linear, the sum of any number of solutions 

constitutes a solution. Thus, T can be written as the sum of an infinite series:

1

sin sinhn

n

n n y
T C

a a

p p

=

= Â x

where the constants have been combined.

Finally, the boundary condition (iv) gives 

1

sin sin sinm n

n

n n b
T C

a a a

p p p

=

= Âx x
 (0 < x < a)
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 which holds only if

( )2 3 4 10 and sinhmC C C C T b ap= = = = =
 Therefore,

( )
( ) ( )sin

sin
sinh

p
p

p
= m

y a
T T a

b a
x   Hence, proved.

(B) Graphical Method

 Determine the heat-flow rate per metre length from the inner to the outer surface 

of the object shown below using the graphical method (heat flux plot):

100°C

k = 5 W/m K

400°C

100°C 100°C

1 m
1 m 1 m

2 m

Solution

Known Surface thermal conditions and dimensions of an object with specified thermal conductivity.

Find Heat flow per unit length (flux plot method).

A

400°C
1 m

1 m 1 m

T2

T2

T2 = 100°C

2 m

A

Insulated

Schematic

Assumptions (1) Two-dimensional, steady-state conduction. (2) Uniform thermal conductivity.

Analysis AA is the line of symmetry which is adiabatic. We draw the flux plot for the left half of 

the object. The shape factor, 
M

S
N

= l and the heat flow per metre length is

( )1 2

Q S
k T T
Ê ˆ= -Á ˜Ë ¯l l

 where l is the distance perpendicular to the plane of the figure.
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Symmetry
adiabatic

2 m

2 mT = 100°C2

Heat flux lines

Isotherms

1

1

2

3

4 5 6 7 8

2 3 4 5 6

1 m

Insulated

1 m

T = 400°C1

 We select N = 6. With 6 increments, we can approximate

1 2( ) (400 100) 6 50 CT T T ND ∫ - = - = ∞

 We draw the flux plot using the graphical method and count the number of heat flow 

channels, M = 8.

 Hence, for the left half of the object,

 Shape factor, 
8

1.33
6

M
S

N
= = =l l l

 For the whole object, S = 2 ¥ 1.33l = 2.666l

 Heat-transfer rate per unit length is

(5 W/m K) (2.666)(400 100) C
Q

= - ∞
l

= 4000 W or 4 kW (Ans.)

 Estimate the heat-transfer rate through the object (k = 15 W/m K) shown below 

using the flux plot method. Heat loss from the sides may be assumed negligible.

T = 20°C2

5 m

T = 60°C
1

10 m

20 m

10 m

k = 15 W/m K
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Solution

Known Shape and surface conditions of an object.

Find Heat flow rate.

5 m

T = 60°C
1

10 m

20 m

T = 20°C2

10 m

k = 15 W/m K

Assumptions (1) Two-dimensional, steady-state conduction. (2) Constant thermal conductivity.

Analysis We draw the flux plot for the cross-hatched symmetrical section and find the shape factor. 

For the entire object, the shape factor will be double this value.

N = 5

52°C

44°C

36°C

28°C

ΔQ1

ΔQ2

ΔQ5

ΔQ4

ΔQ5

.

.

.

.

.

M = 5

T = 20°C2

T = 60°C1

10 m

5 m

Symmetry line
adiabatic

5 m

We select 5 temperature increments i.e. N = 5 so that each 

From the flux plot drawn, we find that the number of heat flow lanes, M = 5.

Hence, S for half-section 
5

20 m
5

M

N
= = ¥l  = 20 m

For the whole object, S = 2 ¥ 20 m = 40 m

It follows that, ( )1 2( ) (15 W/m K) (40 m) 60 20 CQ k S T T= - = - ∞  = 24 kW (Ans.)
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(C) Conduction Shape Factors

 A 30 cm diameter steam pipe at a constant surface temperature of 120°C is 

buried horizontally with its centreline at a depth of 1.5 m below the earth’s surface having a uniform 

temperature of 0°C. The thermal conductivity of the soil at that location is 0.38 W/m °C. Using a flux 

plot, determine the heat loss per linear metre of pipe. Check your result against that obtained by using 

the appropriate shape factor.

Solution

Known  A horizontal isothermal pipe laid beneath 

the earth carries steam at a specified 

temperature.

Find  Flux plot. Conduction shape factor, S.

Assumptions (1) Steady-state conditions. (2) Two-

dimensional conduction. (3) Temperature 

drop across the pipe wall is negligible. 

(4) Constant soil thermal conductivity. 

(5) The earth is a semi-infinite medium.

Analysis The pipe carrying steam loses heat to the 

soil surrounding it.

 Heat-transfer rate, 1 2( )Q S k T T= -
 where, using the analytical expression the conduction shape factor is 

S = 
1

2

cosh (2 / )

L

z D

p
-  (L >> D)

=
1

2 (1 m)

cosh (2 1.5 m/0.3 m)

p
- ¥

 = 2.1 m

\ Q  = (2.1 m) (0.38 W/m °C) (120 – 0) °C = 95.8 W (Ans.)

 For the flux plot: 

S = 
Total heat flow lanes Depth of segment

Number of temperature increments

M

N

¥
= l

 Only one half of the heat flow field is shown because of the symmetry of the configuration. 

We have arbitrarily selected 8 temperature increments of 15°C each, given the overall 

temperature difference of (120 – 0)°C or 120°C. There are 18 heat flow lanes. Therefore,

18
2.25

8

M
S

N
= = =    (per unit length)

 and 1 2( )Q S k T T= -  = (2.25 m) (0.38 W/m °C) (120 – 0)°C = 102.6 W

Comments The answers obtained by flux plotting compare favourably with those obtained by using 

the analytical expression.

 A 25 m long and 12 cm diameter hot-water pipe is buried in the soil 60 cm below 

the ground surface. The outer surface temperature of the pipe is 70°C. Taking the surface temperature of 

the earth to be 10°C and the thermal conductivity of the soil at that location to be 0.55 W/m K, determine 

the rate of heat loss from the pipe.

Schematic

T = 0°C2

z = 1.5 m

T = 120°C1

D
= 0.30 m

L
Soil

= 0.38 W/m °Ck
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Solution

Known  The hot water pipe is buried in the soil.

Find Rate of heat loss from the pipe.

Assumptions (1) Steady operating conditions prevail. 

(2) Constant thermal conductivity of 

the soil. (3) Two-dimensional heat 

conduction (no change in the axial 

direction).

Analysis The conduction shape factor for this 

configuration is, S = ( )
2

ln 4 /

L

z D

p

 Since z > 1.5 D where z is the distance of the pipe from the ground surface and D is the 

diameter of the pipe. Substituting the relevant values,

S = 
2 (25 m)

ln (4 0.60 m/0.12 m)

p

¥
 = 52.43 m

 Steady-state heat-transfer rate from the pipe is

( )1 2Q k S T T= -  = (0.55 W/m K) (52.43 m) (70 – 10) K = 1730 W (Ans.)

Comment The heat is transferred to the ground surface by conduction through the soil and then 

dissipated to the atmosphere by convection and radiation.

 Hot water pipes of 2.5 cm diameter, are located at the midplane of a 10 cm thick 

concrete floor (k = 0.75 W/m °C) and are spaced 20 cm apart centre to centre. Water flowing through the 

pipes is 60°C. The ambient air temperature is 18°C and the convection heat transfer coefficient is 10 W/m2 K. 

Determine (a) the heat-transfer rate per m length of the pipe, and (b) the surface temperature of the concrete.

Solution

Known  Hot-water pipes are placed parallel to each other at the centreline of a concrete floor 

exposed to convective environment.

Find (a) Heat-transfer rate, (b) Concrete surface temperature per unit length.

L t D.... Length (1m) ( > )2.5 cm

Water pipe
= 60°CT1

∞

∞

T = ?2

t = 5 cm

t = 5 cm

w = 20 cm

Concrete
= 0.75 W/m Kk

Air
h

T

= 10 W/m K
= 18°C

2

∞

T∞

T1

T = ?2

Rsoil

Rconv

Q = ?
.

Schematic

T = 10°C2

T = 70°C1

Soil ( = 0.55 W/m K)k

D = 0.12 m

L = 25 m

z = 0.6 m

Schematic
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Assumptions (1) Steady operating conditions exist. (2) Constant soil properties and uniform air side heat-

transfer coefficient. (3) Water-side convection coefficient is very high. (4) Two-dimensional 

conduction in soil.

Analysis For the prescribed geometrical configuration, the conduction shape factor is

S = 
2 2 1 m

2.0 m
2 2 20 cm 5 cm

ln sinh ln sinh
2.5 cm 20 cm

L

w t

D w

p p

p p

p p

¥
= =

È ˘ Ï ¸Ê ˆ Ê ˆ Ê ˆ¥ ¥Ê ˆ
Ì ˝Í ˙Á ˜Á ˜ Á ˜ Á ˜Ë ¯Ë ¯ Ë ¥ ¯ Ë ¯ ÔÎ ˚ Ó ˛

 (t > D)

 Heat-loss rate from water to air is 

overall 1

total soil conv

T T T
Q

R R R

D -
= =

+

 Thermal resistances

 Conduction resistance through soil

1 1
0.666 K /W

(2 m)(0.75 W/m K)S k
= = =

 Convection resistance (air side)

2

1 1 1
4.0 K /W

( ) (10 W/m K) (0.025 m 1 m)h A h DL
= = = =

¥

\ Rtotal = 0.666 + 4.0 = 4.666 K/W

\
(60 18) C or

4.666 K /W

K
Q

- ∞
=  = 9.0 W (Ans.) (a)

 Also 
2

conv

T T
Q

R

-
=

\ Concrete floor temperature,

  2 convT T Q R= + ◊  = 18°C + (9 W) (4 K/W) = 54°C (Ans.) (b)

 Determine the rate of heat transfer per m 

length from a 5 cm OD pipe at 150°C placed eccentrically within 

a large cylinder of rockwool as shown in the figure. The outside 

diameter of the larger cylinder of rockwool is 15 cm and the surface 

temperature is 25°C. Take k for rockwool = 0.065 W/m °C.

Solution

Known  Eccentric insulation to prevent heat loss from a pipe 

with a specified geometry.

Find  Heat-transfer rate per m length. 

Assumptions (1) Pipe and larger cylinder are thin-walled (wall resistance is negligible). (2) Constant 

properties. (3) Steady-state conditions prevail. (4) Two-dimensional conduction.

25°C

150°C

2.5 cm
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Schematic

2.5 cm

Rockwool
= 0.065 W/m °C

= 25°C
k

T2

T = 150°C
1

D = 5 cm1

D = 15 cm2

D = 5 cm
1

Analysis Conduction shape factor,

S = 
2 2 2

1 1 2

1 2

2

4
cosh

2

L

D D z

D D

p

- Ï ¸+ -Ô Ô
Ì ˝
Ô ÔÓ ˛

 Substituting numerical values,

12 2 2
1

2 1 m 2
6.53 m

cosh 1.55 15 4(2.5)
cosh

2 5 15

S
p p

-
-

¥
= = =

Ï ¸+ -Ô Ô
Ì ˝¥ ¥Ô ÔÓ ˛

 Heat loss per metre length of the pipe is

1 2( )Q Sk T T= -  = (6.53 m) (0.065 W/m °C) (150 – 25)°C = 53.0 W (Ans.)

 A small cubical furnace, 1 m ¥ 1 m ¥ 1 m on the inside, is made of 10 cm thick 

fireclay brick (k = 1.5 W/m K). Calculate the rate of heat loss if the inside is maintained at 650°C and 

the outside at 200°C.

Solution

Known A cubical furnace made of fireclay brick has specified inside and outside temperatures.

Find Heat transfer rate.

A = 1 1 = 1 m× 2

t = 0.1 m

1 m

Inside
= 200°CT2

Inside
= 650°CT1

L = 1 m

k = 1.5 W/m Kfirebrick

6 walls

8 corners

12 edges

s
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Assumptions (1) Steady-state conditions. (2) Constant properties. (3) Isothermal surfaces.

Analysis Conduction shape factor for the specified geometry: 

 Per wall:  
21 1 m

0.1 m

A
S

t

¥
= =  = 10 m

 Per edge:  S = 0.54 L = 0.54 (1 m) = 0.54 m

 Per corner:  S = 0.15 t = 0.15 (0.1 m) = 0.015 m

 For the six walls, twelve edges and eight corners,

  S = (6 ¥ 10) + (12 ¥ 0.54) + (8 ¥ 0.15) = 66.6 m

 and the rate of heat loss is

  Q  = S k (T1 – T2) = (66.6 m) (1.5 W/m K) (650 – 200)°C or K

  = 45 ¥ W or 45 kW (Ans.)

(D) Numerical Methods: Relaxation Technique

 Calculate, using the relaxation method, 

the steady-state temperature at the four interior nodes of the 

square plate shown:

Solution

Known A square plate subjected to uniform surface 

temperature conditions.

Find Temperatures at the specified four nodes.

1000°C

700°C

400°C100°C

1 2

3 4

Schematic

Assumptions (1) Two-dimensional conduction. (2) Steady-state conditions.

Analysis The residuals for the four nodes 1, 2, 3 and 4 are:

 Node 1:  
1 2 3 1700 100 4R T T T= + + + -

  1 2 3 1800 4R T T T= + + -

 Node 2:  2 1 4 2700 400 4R T T T= + + + -

  2 1 4 21100 4R T T T= + + -

 Node 3:  3 1 4 31000 100 4R T T T= + + + -

  3 1 4 31100 4R T T T= + + -
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Node 4: 4 2 3 41000 400 4R T T T= + + + -

  4 2 3 41400 4R T T T= + + -

Initial guess for node temperatures T, T2, T3, and T4:

  T1 = 400°C T3 = 500°C

  T2 = 500°C T4 = 600°C

The residuals are then calculated to be

  1 800 500 500 (4 400) 200R = + + - ¥ =

  2 1100 400 600 (4 500) 100R = + + - ¥ =

  3 1100 400 600 (4 500) 100R = + + - ¥ =

  4 1400 500 500 (4 600) 0R = + + - ¥ =

We now calculate the initial step size and prepare the table for unit block operation below:

T1 R1 T2 R2 T3 R3 T4 R4

400 200 500 100 500 100 600 0

DT1 = 1 – 4  1  1

DT2 = 1  1 – 4  1

DT3 = 1  1 – 4  1

DT4 = 1  1  1 – 4

Total with 

DT1 = DT2 = DT3 = DT4 = 1

–2 –2 –2 –2

Sum of residuals as a result of unit block operation 

  = (–2) + (–2) + (–2) + (–2) = – 8

Sum of residuals with initial guesses of the four node temperatures is

  200 + 100 + 100 – 0 = 400

Step size = 400/(–8) = –50

Relaxation table is now prepared.

T1 R1 T2 R2 T3 R3 T4 R4

Initial values 400 200 500 100 500 100 600 0

Block (50) +50 +50 +50 +50

100 0 0 –100

+25 0 +25 +25 –100

0 0 0 –25 0

475 550 550 625

With an increment of 50 for T1, T2, T3, and T4, the new residuals are

R1 : [ ]2 3 1200 4 200 50 50 4 50T T T+ + - = + + - ¥È ˘Î ˚  = 200 – 100 = 100
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Similarly,

R2 : 100 + (T1 + T4 – 2T2) = 100 + (–100) = 0

R3 : 100 + (–100) = 0

R4 : 0 – 100 = 100

Our objective should be to reduce the maximum value of the residual to zero.

For T1 = 25, R1 = –4T1 + 100 = 0

  R2 = 25 + 0 = 25

  R3 = 25 + 0 = 25

  R4 = –100

To reduce R4 to 0, we take T4 = –25, so that R4 = –100 + [–4 (–25)] = 0

R3 becomes 25 + (–25) = 0 and R2 also becomes 25 + (–25) = 0. R1 remains unaffected 

and is 0. Since R1, R2, R3 and R4 have zero values now, we add up the values of node 

temperatures to get the final answer.

Finally,

  = = = =ando o o o
1 2 3 4T 475 C, T 550 C, T 550 C T 625 C (Ans.)

Check: 1 800 550 550 (4 475) 0R = + + - ¥ =

  2 1100 475 625 (4 550) 0R = + + - ¥ =

  3 1100 475 625 (4 550) 0R = + + - ¥ =

  4 1400 550 550 (4 625) 0R = + + - ¥ =

Points to Ponder

● The analytical method used to deal with two-dimensional conduction problems yields solutions that 

are exact at any point in the conducting material.

● The numerical method of solution gives temperatures only at specified points in the solid involving 

two dimensional steady state conduction.

● If the number of heat-flow lanes and the number of temperature increments are 15 and 5 each, then 

the conduction shape factor is equal to 3.

● When two different physical phenomena can be described by the same equation, the two phenomena 

are said to be analogous.

● In the numerical method of analysis, the differential equation and the boundary conditions are expressed 

as a set of algebraic equations.

● Multi-dimensional steady-state conduction heat-transfer problems can be solved analytically, graphically,

analogically or numerically.

● Separation of variables technique can be applied to solve linear partial differential equations provided 

the differential equation can be expressed in a product form satisfying the prescribed boundary 

conditions.
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● Graphical methods give an approximate solution to steady-state, two-dimensional conduction heat-

transfer problems.

● Isotherms are constant temperature lines and are perpendicular to insulated surfaces in the graphical solution.

● Heat-flow lines are always perpendicular to isotherms and bisect the corners of isothermal boundaries.

GLOSSARY of Key Terms

● Conduction shape factor It is a characteristic of the specific geometry defined as the 

heat-transfer rate per unit thermal conductivity and per unit 

temperature difference and has the dimension of length

● Flux plotting It is an approximate graphical method to solve two-dimensional 

conduction problems with isothermal and adiabatic boundaries.

● Isotherms Lines of constant temperature.

● Adiabats Lines perpendicular to heat-flow lines without heat flow. Also 

called lines of symmetry.

● Curvilinear square Squares in which isotherms and heat-flow lines are orthogonal 

to each other.

● Numerical analysis It involves the development of an approximate solution to the 

heat conduction equation for complex geometries in multiple 

dimension.

15.1 Select the correct answer:

Isotherms are constant temperature lines and they are 

(a) parallel to insulated surfaces

(b)

(c)

(d) bisecting the corners of isothermal boundaries

15.2 Select the incorrect answer:

(a)

corners

(b) Flow lines are perpendicular to isothermal boundaries 

(c) Isotherms are perpendicular to insulated boundaries

(d)

15.3 If the number of isotherms is M N, the conduction shape factor 

S

(a) M/N (b) N/M (c) (M – 1)/N (d) (N – 1)M

15.4 Conduction shape factor has the SI unit of 

(a) m–1 (b) m2 (c) m (d) dimensionless

15.5 Using the graphical method to solve a two-dimensional heat conduction problem, if N is the number 

M

conduction shape factor S is

(a) M/N (b) N/M (c) MN (d) MN2
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15.6

(a) 7 2 3 10 11

1
( )

2
T T T T T= + + +

(b) 7 6 8 3 11

1
( )

2
T T T T T= + + +

(c) 7 6 3 8 11

1
( )

4
T T T T T= + + +

(d) 7 2 4 10 12

1
( )

4
T T T T T= + + +

Answers

Multiple-Choice Questions

15.1 (c) 15.2 (a) 15.3 (c) 15.4 (c) 15.5 (a) 15.6 (c)

15.1

15.2

15.3

15.4

15.5 What is the advantage associated with the graphical and numerical methods of analysis of two- and 

15.6 What advantage is obtained by choosing Dx = Dy in the graphical method of analyzing the heat 

15.7

15.8 What is the basic procedure in setting up a numerical solution to a two-dimensional conduction 

15.9

15.10 What purpose does an operation table 

15.11 Name a few shortcuts which can be introduced in the relaxation technique to save considerable effort 

and time.

15.12 What is meant by block operation

PRACTICE PROBLEMS

(A) Two-Dimensional Steady-State conduction

15.1 A rectangular plate of 1 m width in the x y direction, has a temperature 

distribution given by T(x,0) = 100 sin px imposed on the y = 0 edge. Determine the temperature 

distribution T(x, y). [T(x, y) = 100e–py sin px]

1 2 3 4

5 6 7 8

9 10 11 12
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15.2

y

T = 0

T = 0
b

L

T = 0

T = 100
x

p p p

p =

È ˘- + +
= +Í ˙+Î ˚

Â ( )( ) ( )
( )

( )
0

400 1 2 1 2 1
sin 2 1 sinh cosech

2 1n

x b y n n b
T n

n L L L

(B) Graphical Method

15.3 A structural member fabricated from a material 

with a thermal conductivity of 60 W/m°C has the 

temperature of the end faces are T1 = 100°C and 

T2 = 0°C, while the remaining sides are insulated.

  (a) Estimate the temperature at the position P (b) 

conduction shape factor and the heat transfer rate 

through the strut per metre length.

[(a) 50oC (b) 0.53 L, 3180 W/m]

15.4

unit depth of the V-grooved channel shown below, 

[2.34 l , 468 W/m]

T = 300°C1

2 m

k = 1.0 W/m °C

4 m

1 m 1 m

T = 100°C2

Insulated

P

+

45°

T2

0.1 m T1

0.2 m

0.2 m
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(C) Conduction Shape Factors

15.5 Saturated steam at 7 bar (Tsat = 165°C, hfg = 2066.3 kJ/kg) is piped vertically into the earth at a mass 

1.4 W/m K and the outside diameter of the pipe is 10 cm. The ground surface temperature is 15°C. 

[1170 m]

15.6 A 25-mm-OD heating rod is eccentrically embedded 

heating rod per unit length. (b) If the same heat loss takes 

place under insulation without any eccentricity, what will 

be the outer diameter of insulation for the same values of 

temperature.

[(a) 4.77 kW (b) 9.33 cm]

15.7 A radioactive sample is to be stored in a protective box 

with 10 cm thick walls having inside dimensions of 

4 cm ¥ 4 cm ¥ 12 cm. The radiation emitted by the sample 

is completely absorbed at the inner surface of the box, 

which is made of concrete (k = 1.37 W/m°C. If the outside temperature of the box is 25°C, but 

the inside temperature is limited to a maximum of 50°C, estimate the maximum allowable rate of 

radiation from the sample. [26.6 W]

(D) Relaxation Method

15.8 By using the relaxation method, determine the temperatures at the points 1, 2, 3, and 4 under steady 

operating conditions.

350°C

1 2

3 4

250°C

150°C50°C

[T1 = 200°C, T2 = 225°C, T3 = 175°C, T4 = 200°C]

k = 10 W/m K

5 
cm

120°C

1.25 cm

20°C





Appendix

Table A-1

T, °C m, kg/m3 C
p
, kJ/kg K k (W/m K) m ¥ 106 N s/m2 n ¥ 106 m2/s a ¥ 106 m2/s Pr

–50 1.584 1.013 0.0204 12.7 9.23 14.6 0.728

–40 1.515 1.013 0.0212 13.8 10.04 15.2 0.728

–30 1.453 1.013 0.0220 14.9 10.8 15.7 0.723

–20 1.395 1.009 0.0228 16.2 12.79 16.2 0.716

–10 1.342 1.009 0.0236 17.4 12.43 16.7 0.712

0 1.293 1.005 0.0244 18.8 13.28 17.2 0.707

10 1.247 1.005 0.0251 20.0 14.16 17.6 0.705

20 1.205 1.005 0.0259 21.4 15.06 18.1 0.703

30 1.165 1.005 0.0267 22.9 16.00 18.6 0.701

40 1.128 1.005 0.0276 24.3 16.96 19.1 0.699

50 1.093 1.005 0.0283 25.7 17.95 19.6 0.698

60 1.060 1.005 0.0290 27.2 18.97 20.1 0.696

70 1.029 1.009 0.0296 28.6 20.02 20.6 0.694

80 1.000 1.009 0.0305 30.2 21.09 21.1 0.692

90 0.972 1.009 0.0313 31.9 22.10 21.5 0.690

100 0.946 1.009 0.0321 33.6 23.13 21.9 0.688

120 0.898 1.009 0.0334 36.8 25.45 22.8 0.686

140 0.854 1.013 0.0349 40.3 27.8 23.7 0.684

160 0.815 1.017 0.0364 43.9 30.09 24.5 0.682

180 0.779 1.022 0.0378 47.5 32.49 25.3 0.681

200 0.746 1.026 0.0393 51.4 34.85 26.0 0.680

250 0.674 1.038 0.0427 61.0 40.61 27.4 0.677

300 0.615 1.047 0.0460 71.6 48.33 29.7 0.674

350 0.566 1.059 0.0491 81.9 55.46 31.4 0.676

400 0.524 1.068 0.0521 93.1 63.09 33.0 0.678

500 0.456 1.093 0.0574 115.3 79.38 36.2 0.687

600 0.404 1.114 0.0622 138.3 96.89 39.1 0.699

700 0.362 1.135 0.0671 163.4 115.4 41.8 0.706

800 0.329 1.156 0.0718 188.8 134.8 44.3 0.713

900 0.301 1.172 0.0763 216.2 155.1 46.7 0.717

1000 0.277 1.185 0.0807 245.9 177.1 49.0 0.719

1100 0.257 1.197 0.0850 276.2 199.3 51.2 0.722

1200 0.239 1.210 0.0915 316.5 233.7 53.5 0.724
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Table A-2

T, °C r, kg/m3 C
p
, kJ/kg K k(W/m K) a ¥ 106 m2/s m ¥ 106, N s/m2 n ¥ 106, m2/s b ¥ 104 1/K Pr

0 999.9 4.212 0.551 0.131 1788 1.789 –0.63 13.67

10 999.7 4.191 0.574 0.137 1306 1.306 +0.70 9.52

20 998.2 4.183 0.599 0.143 1004 1.006 1.82 7.02

30 995.7 4.174 0.618 0.149 801.5 0.805 3.21 5.42

40 992.2 4.174 0.635 0.153 653.3 0.659 3.87 4.31

50 988.1 4.174 0.648 0.157 549.4 0.556 4.49 3.54

60 983.1 4.179 0.659 0.160 469.9 0.478 5.11 2.98

70 977.8 4.187 0.668 0.163 406.1 0.415 5.70 2.55

80 971.8 4.195 0.674 0.166 355.1 0.365 6.32 2.21

90 965.3 4.208 0.680 0.168 314.9 0.326 6.95 1.95

100 958.4 4.220 0.683 0.169 282.5 0.295 7.52 1.75

110 951.0 4.233 0.685 0.170 259.0 0.272 8.08 1.60

120 943.1 4.250 0.686 0.171 237.4 0.252 8.64 1.47

130 934.8 4.266 0.686 0.172 217.8 0.233 9.19 1.36

140 926.1 4.287 0.685 0.172 201.1 0.217 9.72 1.26

150 917.0 4.313 0.684 0.173 186.4 0.203 10.3 1.17

160 907.0 4.346 0.683 0.173 173.6 0.191 10.7 1.10

170 897.3 4.380 0.679 0.173 162.8 0.181 11.3 1.05

180 886.9 4.417 0.674 0.172 153.0 0.173 11.9 1.00

190 876.0 4.459 0.670 0.171 144.2 0.165 12.6 0.96

200 863.0 4.505 0.663 0.170 136.4 0.158 13.3 0.93

210 852.8 4.555 0.655 0.169 130.5 0.153 14.1 0.91

220 840.3 4.614 0.645 0.166 124.6 0.148 14.8 0.89

230 827.3 4.681 0.637 0.164 119.7 0.145 15.9 0.88

240 813.6 4.756 0.628 0.162 114.8 0.141 16.8 0.87

250 799.0 4.844 0.618 0.159 109.9 0.137 18.1 0.86

260 784.0 4.949 0.605 0.156 105.9 0.135 19.7 0.87

270 767.9 5.070 0.590 0.151 102.0 0.133 21.6 0.88

280 750.7 5.230 0.574 0.146 98.1 0.131 23.7 0.90

290 732.3 5.485 0.558 0.139 94.2 0.129 26.2 0.93

300 712.5 5.736 0.540 0.132 91.2 0.128 29.2 0.97

310 691.1 6.071 0.523 0.125 88.3 0.128 32.9 1.03

320 667.1 6.574 0.506 0.115 85.3 0.128 38.2 1.11

330 640.2 7.244 0.484 0.104 81.4 0.127 43.3 1.22

340 610.1 8.165 0.457 0.917 77.5 0.127 53.4 1.39

350 574.4 9.504 0.430 0.788 72.6 0.126 66.8 1.60

360 528.0 13.984 0.395 0.536 66.7 0.126 109 2.35

370 450.5 40.321 0.337 0.186 56.9 0.126 164 6.79
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Many symbols have more than one meaning. The 

context will indicate the specific meaning.

a Speed of sound, m/s

Bi Biot number

C
p

Specific heat, kJ/kg °C   or   

kJ/kg K or J/kg K

C Thermal capacity, W/°C

c
o

Speed of light, m/s

C
f

Friction coefficient

d, D Diameter, m

D
h

Hydraulic diameter, m

E, E Emissive power, W/m2 (total)

or W/m2 mm (spectral)

E
st

Total energy stored, J

erf Error function

erfc Complementary error function

F
ij

Shape factor between surface 

i and surface j

f Frequency, Hz

f Friction factor

f
l

Fraction of blackbody 

radiation between wavelengths 

0 and l

Fo Fourier number

g Acceleration due to gravity, 

m/s2

q– Heat generation rate, W/m3

G Irradiation, W/m2

Gr Grashof number

Gz Graetz number

h Heat transfer coefficient, W/

m2 °C or W/m2 K

Nomenclature

h Planck’s constant, J s

h
r

Radiation heat-transfer 

coefficient, W/m2 °C or W/

m2 K

h
sf

Latent heat of melting/

solidification, kJ/kg

I
0
, I

1
Modified Bessel function of 

order zero and order one, 

respectively

I Radiation intensity, W/m2

sr (total) or W/m2 sr mm 

(monochromatic)

J Radiosity, W/m2

k Thermal conductivity, W/m 

°C or W/m  K

L Length, m

L
c

Characteristic length, m,

LMTD Logarithmic mean temperature 

difference, °C  or  K

L
m
, L

e
Mean (effectives) beam 

length, m

M Fin parameter for a uniform 

area fin, m–1

M Mach number

M Mass, kg

NTU Number of transfer units

Nu Nusselt number

P Perimeter, m

P Pressure, atm

Pe Peclet number

Pr Prandtl number

Q Heat flux, W/m2
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Q
.

Heat transfer rate, W

R
e

Electrical resistance, W

R Radial coordinate, m

R Radius, m

R Ratio of heat capacities in 

heat exchangers

R Thermal resistance, °C/W  or   

m2 °C/W

Ra Rayleigh number

Re Reynolds number 

R
f

Fouling resistance, m2 °C/W

S Conduction shape factor

G
s

Solar constant, W/m2

A
s

Surface area, m2

S
D

Diagonal pitch, m

S
L

Longitudinal pitch, m

St Stanton number

S
T

Transverse pitch, m

T Temperature, °C  or  K

t Time, s

t T r a n s m i s s i v i t y  o r 

transmittance

U , u Free stream velocity, m/s

U Overall  heat  t ransfer 

coefficient, W/m2 °C  or  W/

m2 K

U x-component of velocity, m/s

V y-component of velocity, m/s

V– Volume, m3

V Arrange velocity

x x-coordinate, m

y y-coordinate, m

z z-coordinate, m

GREEK SYMBOLS

a Absorptivity

a Thermal diffusivity, m2/s

b Isobaric volumetric expansion 

coefficient, K–1

d Boundary layer thickness, m

d Depth of penetration, m

d
t

Thermal boundary layer 

thickness, m

f Phase angle, rad

e Eddy viscosity

e Effectiveness of a fin

e Emissivity

e Heat exchanger effectiveness

a
H

Eddy diffusivity of heat

h Similarity variable 

h Fin efficiency

k Absorption coefficient, m–1

m Cosine of angle with respect 

to normal

n Kinematic viscosity, m2/s

n Photon frequency, Hz

q Angle, degree or radian

q Non-dimensional temperature 

r Density, kg/m3

r Radius ratio

r Reflectivity

r Resistivity, W-m

s Stefan-Boltzmann constant, 

W/m2 K4

t Shear stress, Pa

t Time constant, s

t Transmissivity

w Circular frequency, rad/s

w Solid angle, sr

SUBSCRIPTS

f Fluid

Pertaining to the ambient

rad Pertaining to radiation

r Radial

sur Pertaining to surroundings

1, 2, etc. Pertaining to a specific 

position



Absorbing-emitting gas  1000

Absorption  14, 887

Absorptivity  912, 917

Adhesive joint  264

Adiabatic (insulated) boundary  54

Advection  453

Analytical methods  315

Angle factors  958

Anisotropic  7

Approximate integral-momentum method  422

Area density  763

Average Nusselt number  619

Axial coordinates  232

Balanced heat exchanger  786

Band approximation  911

Band emission  903

Beckmann  603

Benard cells  631

Biological fouling  777

Biot number  61

Black body  894

Black-body radiation  894

Black-body radiation functions  901

Black surface  980

Blasius expression  621

Boiling  11, 684

Boiling crisis  692, 693

Boiling curve  689

Bond number  686

Boundary conditions  36, 53

Boundary layer  422

Boundary-layer region  422

Bubble diameter  694

Bubble velocity  694

Buckingham-p theorem  436, 686

Buckingham–P method  1080

Buffer layer  424

Bulk boiling  688

, 556

Bulk temperature  540

Bulk transport  453

Buoyancy force  685

Burn-out  692

Burn-out point  693

Capacitance  325

Change in phase  684

Change of phase  7

Charts for a solid sphere  343

Chato  720

Chemical reaction fouling  777

Chen  702

Chilton–colburn analogy  1086

Chu  623

Churchill  623

Churchill–chu correlations  628

Cladding  181

Index
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Closed system  2

Colburn analogies  1086

Colburn analogy  488, 1087

Colebrook equation  435

Coloured body  894

Colour temperature  921

Complementary error function  349

Concentration difference  13, 1077

Concentration gradient  1048

Concentrations  1049

Concentric annular discs  230

Concentric cylinders  635

Concentric spheres  635

Concentric-tube heat exchangers  765

Condensation  7, 684, 703

Conduction  4

Conduction resistance  230

surfaces  59

Conductive resistance  78

Conductive thermal resistance  234

Constant thermal conductivity  39, 49

Constant thermal diffusivity  1074

Continuity equation  426

Controlling resistance  778

Control surface  11

Convection  7

Convection boundary condition  54

Convection currents  600

Convection resistance  230

Convective boundary condition  167, 178

Convective resistance  78

Convective (surface) thermal resistance  234

Coordinate transformation method  43

Corrosion fouling  777

Critical reynolds number  424, 470

, 766

Degree of approach  771

Degree of subcooling  701

Degree of superheat  701

Density difference  685

Desorption  14

Diffuse-grey surface  980

Diffuse surface  916

Diffusion velocity  1051

Dimensional analysis  422

Direct-contact heat exchanger  758

Direction  37

Directional characteristics  890

Directional dependence  7

Dirichlet condition  53

Dissipative effects  2

Distillation  14

Dittus–boelter equation  702

DNB (departure from nucleate boiling)  692

Dominant resistance  778

, 465

Driving force  4

Driving potential  980

Dropkin  632

, 721

Drying  14

Eckert  620, 638

Eddy diffusion  1048

Effective emissivity  1004

Effectiveness-NTU  780

Effective thermal conductivity  631

Electrical analogy  5

Electric resistance heating device  692

Electromagnetic spectrum  888

Emission  9, 887

, 905

Emissivity  9, 891, 917

Endothermic reaction  11

Energy storage  362

Enthalpy  707

Entrainment  701
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Environmental radiation  925

Equilateral staggered tube bank  485

Equivalent diameter  552

Equivalent thermal circuit  325

Evaporation  11

Evaporative cooling  1088

Exact differential  40

Extended surface  229

Extended-surface heat exchangers  768

Fabrication cost  264

Film boiling  698

Film-condensation  703

Film reynolds number  711

Fin array  269

Fin effectiveness  252

Finning factor  270

Fluid motion  8

Fluid properties  8

Fluid side  1082

Fluid temperature  486

Fluxes  1051

Forced convection  7, 600, 606

Fouling factors  777

Fouling tendencies  812

Fourier equation  40

Fourier number  322

Free convection  418, 606

Free convection boiling  691

Free electrons  49

Free (or natural) convection  7

Free stream conditions  608

Free stream velocity  424, 600

Freezing  11

Frictional force  423

Friction drag  477

Frontal area  477

Gamma rays  888

Gas-to-gas exchangers  761

Gas-to-liquid heat exchanger  764

Gaussian error function  349

Gauvin  638

Geometric mean area  69

Globe  632

Graetz number  638

Gray body  894

Gray surface  915

Greenhouse  926

Greenhouse effect  921, 926

Gröber charts  337

Haaland  435

Haaland relation  435

Hagen–poiseuille equation  433

Heat  2

Heat conducted in the axial direction  41

Heat conducted in the circumferential direction  41

Heat conducted in the radial direction  41

Heat conduction  49

Heat exchanger  757

Heat exchanger geometry  795

Heat generation  11

Heat interaction  2

Heat transfer  1

Heat transferer  757

Heat-transfer mechanisms  811

Heat-transfer performance  812

Heat-transfer rate  37

Heisler charts  337

Henry’s constant  1061

Hohlraum  895

Hollands  632, 635

Homogeneous  7

Horizontal plate  625

Hottel’s crossed-strings method  971

Hysteresis effect  690

Ideal-gas mixtures  1049
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Indirect-contact heat exchanger  759

, 337

Initial condition  53

Instantaneous heat-transfer rate  35

Intensity  905

Intensity of radiation  905

Interface boundary condition  55

Internal conductance  234

1083

Inviscid region  422

Irradiation  892, 907

Isolated bubbles  692

Isothermal  35

Isotropic  7, 37

Jackson  620

Jacob number  686, 709

Joseph fourier  4

Kirchhoff’s identity  909

Kutateladze  696

Lambertonian surface  909

Laminar boundary layer  620

Laplace equation  40

Laplacian operator  39

Latent heat  685

Lattice component  4

Lattice vibrations  49

Leidenfrost point  692, 698

Lienhard  629

Liquid metal  50, 472

Liquid-metal heat-transfer  546

Liquid non-metals  720

Liquid-to-gas exchanger  761

Liquid vapour boundary  686

LMTD correction factor  789

LMTD method  780

Local boiling  687

Local Grashof number  618

Local Nusselt number  619

Log mean area  65

Log mean partial pressure of air (LMPA)  1073

Log mean temperature difference  550

Log mean temperature difference (LMTD)  780

Log scale  337

Lumped-capacity analysis  316

Lumped-capacity method  315

Lumped-capacity model  315

Lumped systems  316

Lumped thermal capacity  325

Macroscopic  14

Magneto-hydrodynamic (MHD) processes  1

Magnitude  37

Marrero  1059

Mason  1059

Mass average velocity  1051

Mass convection  1077

Mass density  1049

Mass diffusivity  1057

Mass fraction  1049

Mass transfer  14

Mass-transfer phenomena  1047

Max Planck’s quantum theory  887

McAdams  623, 627, 702

Melting  11

Metais  638

Minimum local temperature difference  771

Mixed boundary condition  326
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Model  436

Molar-average velocity  1050

Molar concentration  1049

Molar density  1049

Molar fraction  1049

Molecular diffusion  1048

Momentum equation  428

Monochromatic (or spectral) emissivity  913

Monochromatic radiation  915

Monochromatic transmissivity  1000

Natural convection  418

Negative temperature gradient  5

Net radiant energy interchange  9

Neumann condition  54

Non-participating medium  889

Normal total emissivity  914

No-slip condition  424, 538, 608

NTU method  795

Nucleate boiling  691

Nucleate pool boiling  694

Nukiyama  689

Nusselt number  419

One-dimensional  42

One-term approximation  337

Opaque body  893

Optimum ratio  266

Ordinary diffusion  1048

Ordinary linear differential equation  53

, 775, 776

Parabolic temperature distribution  161

Partial derivative  35

Participating medium  889

Particle model  887

Particulate fouling  777

Penetration depth  351, 1076

Penetration time  351

Perfect thermal contact  71

Permeability  1061

Petukhov  548

Planck’s constant  888

Plane angle  904

Plate-heat exchangers  768

Poisson equation  40

Pool boiling  687

Pool boiling correlations  693

Position correction charts  337

Prandtl number  421, 623

Precipitation fouling  777

Pressure diffusion  1048

Pressure drag  477

Pressure drop  483, 811

Pressure fraction  1050

Prevost’s principle of exchange  888

Primary area  248

Product solutions  357

Prototype  436

Quiescent  602

Radiation  9

Radiation boundary condition  55

Radiation shielding  993

Radiosity  892, 908

Radiosity-irradiation method  980

Railthby  635

Rate of change of internal energy  38

Rating problem  780

Rayleigh number  620
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Real non-black bodies  9

Real surfaces  911

Reciprocal relation  960

Reciprocity rule  969

Rectangular coordinates  35

Recuperative heat exchangers  759

Refractory materials  50

Refractory surfaces  988

Regenerative heat exchangers  759

Relative molecular mass (RMM)  50

Resistance heating  158

Restrictive conditions  909

Reynolds analogy  487, 560, 1086

Reynolds number  424, 461

Rotating cylinders  636

Rotating disk  636

Rotating sphere  637

R-values  71

Saturated boiling  687

Schlichting approximates  472

Schmidt  603

Secondary area  248

Seider  547

Selective emitter  915

Selective surfaces  917

Separation point  477

Series–parallel arrangement  989

Shape decomposition  970

Shape factor  957

Shape-factor algebra  967

Shape-factor properties  967

Shear stress  465

Shell-and-tube heat exchangers  765

Single-stream  762

Single-stream heat exchangers  761

Sizing problem  780

Solar absorptivity  924

Solar constant  921

Solid angle  904

Solid-liquid interface  686

Solubility  1061

Solvent extraction  14

Space radiators  762

Spatially isothermal  320

Spectral transmissivity  921

Specular surface  916

Spine  230

Stagnation point  477

Stanton number  1086

Starting length  539

Steady-state conduction  39

generation  42

Steady-state heat transfer rate  37

Steady-state problem  53

Step function  911

Subcooled (local) boiling  688

Subcooled nucleate boiling  700

Sublimation  14

Summation rule  968

Superposition rule  970

Suppression factor  702

Surface characteristics  685

Surface conductance  234

Surface energy balance  11

Surface phenomenon  11, 889

Surface resistance  165, 989

Surface roughness  424

Surface temperature  486

Surface tension  685

Symmetry rule  970

Tate  547

Temperature cross  771

Temperature difference  2

Temperature distribution  35, 160
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, 37

Temperature gradient  37, 234, 1048

Thermal and geometric symmetry  54

Thermal barrier  2

Thermal boundary layer  424, 425

Thermal conductance  5

Thermal conductivity  5, 11, 36

Thermal diffusion  1048

Thermal diffusivity  51

Thermal equilibrium  3

Thermal non-equilibrium  3

Thermal radiation  887

Thermal resistance  58, 71, 325

Thermal time constant  322

Thermometric error  270

Time constant  325

Total hemispherical emissivity  913

Transcendental equation  319

Transient  2

Transition boiling  692, 697

Transmissivity  913

Transport property  5

Triangular spine  231

Tubular heat exchangers  765

Turbine blades  636

, 600

Turbulent layer  424

Turbulent region  714

Unheated starting length  464

UHF)  541

UWT)  541

Vaporization  11

Vapour blanket  692

Variable thermal conductivity  81

Vector quantity  35

Velocities  1050

Velocity boundary layer  422

Vertical plate  624

Volumetric phenomenon  11, 889, 1001

vön karman integral-momentum  460

Wavelength bands  911

Wet-bulb thermometer  1089

Whitaker  479

White body  894

Work interaction  2

Zero slope  162

Zhukauskas  477

Zuber  696

Zuber constant  696
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