

About the Author

E Balagurusamy, former Vice Chancellor, Anna University, Chennai, is currently Member, Union

Public Service Commission, New Delhi. He is a teacher, trainer, and consultant in the fields of

Information Technology and Management. He holds an ME (Hons) in Electrical Engineering and

Ph.D. in Systems Engineering from the Indian Institute of Technology, Roorkee. His areas of interest

include Object-Oriented Software Engineering, Electronic Business, Technology Management,

Business Process Re-engineering, and Total Quality Management.

A prolific writer, he has authored a large number of research papers and several books. His best

selling books, among others, include:

∑ Programming in C#, 2e

∑ Programming in Java, 3/e

∑ Programming in ANSI C, 4/e

∑ Object-Oriented Programming with C++, 3/e

∑ Programming in BASIC, 3/e

∑ Numerical Methods

∑ Reliability Engineering

A recipient of numerous honours and awards, he has been listed in the Directory of Who�s Who of

Intellectuals and in the Directory of Distinguished Leaders in Education.

E Balagurusamy

Member, UPSC

New Delhi

Tata McGraw-Hill Publishing Company Limited
NEW DELHI

McGraw-Hill Offices

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

Published by Tata McGraw-Hill Publishing Company Limited,

7 West Patel Nagar, New Delhi 110 008.

Copyright © 2008, by Tata McGraw-Hill Publishing Company Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written per-

mission of the publishers. The program listings (if any) may be entered, stored and executed in a computer

system, but they may not be reproduced for publication.

This edition can be exported from India only by the publishers,

Tata McGraw-Hill Publishing Company Limited.

ISBN (13 digits): 978-0-07-066864-5

ISBN (10 digits): 0-07-066864-7

Managing D irector: Ajay Shukla

General Manager: Publishing�SEM & Tech Ed: Vibha Mahajan

Asst. Sponsoring Editor: SEM & Tech Ed: Shalini Jha

Editorial Executive: Nilanjan Chakravarty

Executive�Editorial Services: Sohini Mukherjee

Senior Production Executive: Anjali Razdan

General Manager: Marketing�Higher Education & School: Michael J. Cruz

Product Manager: SEM & Tech Ed: Biju Ganesan

Controller�Production: Rajender P Ghansela

Asst. General Manager�Production: B L Dogra

Information contained in this work has been obtained by Tata McGraw-Hill, from sources believed to be

reliable. However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any

information published herein, and neither Tata McGraw-Hill nor its authors shall be responsible for any

errors, omissions, or damages arising out of use of this information. This work is published with the

understanding that Tata McGraw-Hill and its authors are supplying information but are not attempting to

render engineering or other professional services. If such services are required, the assistance of an appropriate

professional should be sought.

Typeset at Script Makers, 19, A1-B, DDA Market, Paschim Vihar, New Delhi 110 063, text and cover printed at

Ram Book Binding House, C-114, Okhla Industrial Area, Phase-I, New Delhi, 110020

Cover: Rashtriya Printer

RQLLCDLYRQLRA

Contents

Preface xi

Roadmap to the Syllabus xiii

1. Fundamentals of Computers 1

1.1 Introduction 1

1.2 History of Computers 2

1.3 Generations of Computers 5

1.4 Classification of Computers 8

1.5 Basic Anatomy of a Computer System 10

1.6 Input Devices 10

1.7 Processor 13

1.8 Output Devices 14

1.9 Memory Management 16

1.10 Overview of Operating System 17

Review Questions 23

2. Computing Concepts 25

2.1 Introduction 25

2.2 Binary Number System 25

2.3 Binary Codes 27

2.4 Binary Arithmetic Operations 28

2.5 Logic Gates 33

2.6 Programming Languages 37

2.7 Translator Programs 40

2.8 Algorithm and Flow Chart 41

2.9 Using the Computer 46

Review Questions 47

Review Exercises 47

3. Constants, Variables and Data Types 49

3.1 Introduction 49

3.2 Character Set 49

3.3 C Tokens 51

vi Contents

3.4 Keywords and Identifiers 51

3.5 Constants 52

3.6 Variables 56

3.7 Data Types 57

3.8 Declaration of Variables 60

3.9 Declaration of Storage Class 63

3.10 Assigning Values to Variables 64

3.11 Defining Symbolic Constants 70

3.12 Declaring a Variable as Constant 71

3.13 Declaring a Variable as Volatile 71

3.14 Overflow and Underflow of Data 72

Case Studies 73

Review Questions 75

Programming Exercises 77

4. Operators and Expressions 78

4.1 Introduction 78

4.2 Arithmetic Operators 78

4.3 Relational Operators 81

4.4 Logical Operators 82

4.5 Assignment Operators 83

4.6 Increment and Decrement Operators 85

4.7 Conditional Operator 86

4.8 Bitwise Operators 87

4.9 Special Operators 87

4.10 Arithmetic Expressions 89

4.11 Evaluation of Expressions 90

4.12 Precedence of Arithmetic Operators 91

4.13 Some Computational Problems 93

4.14 Type Conversions in Expressions 94

4.15 Operator Precedence and Associativity 98

4.16 Mathematical Functions 100

Case Study 102

Review Questions 104

Programming Exercises 107

5. Managing Input and Output Operations 110

5.1 Introduction 110

5.2 Reading a Character 111

5.3 Writing a Character 114

5.4 Formatted Input 115

5.5 Formatted Output 124

Case Studies 132

Contents vii

Review Questions 136

Programming Exercises 138

6. Decision Making and Branching 140

6.1 Introduction 140

6.2 Decision Making with if Statement 140

6.3 Simple if Statement 141

6.4 The if.....else Statement 145

6.5 Nesting of if....else Statements 148

6.6 The else if Ladder 152

6.7 The switch Statement 155

6.8 The ? : Operator 159

6.9 The Goto Statement 161

Case Studies 165

Review Questions 169

Programming Exercises 174

7. Decision Making and Looping 177

7.1 Introduction 177

7.2 The while Statement 179

7.3 The do Statement 182

7.4 The for Statement 184

7.5 Jumps in Loops 191

Case Studies 200

Review Questions 207

Programming Exercises 211

8. User-Defined Functions 214

8.1 Introduction 214

8.2 Need for User-defined Functions 214

8.3 A Multi-function Program 215

8.4 Elements of User-defined Functions 218

8.5 Definition of Functions 219

8.6 Return Values and their Types 221

8.7 Function Calls 222

8.8 Function Declaration 224

8.9 Category of Functions 226

8.10 No Arguments and No Return Values 226

8.11 Arguments but No Return Values 229

8.12 Arguments with Return Values 232

8.13 No Arguments but Returns a Value 236

8.14 Functions that Return Multiple Values 237

viii Contents

8.15 Nesting of Functions 238

8.16 Recursion 240

8.17 Passing Arrays to Functions 241

8.18 Passing Strings to Functions 246

8.19 The Scope, Visibility and Lifetime of Variables 247

8.20 Multifile Programs 257

Case Study 260

Review Questions 263

Programming Exercises 267

9. The Preprocessor 269

9.1 Introduction 269

9.2 Macro Substitution 270

9.3 File Inclusion 274

9.4 Compiler Control Directives 275

Review Questions 278

Programming Exercises 279

10. Arrays 280

10.1 Introduction 280

10.2 One-dimensional Arrays 282

10.3 Declaration of One-dimensional Arrays 283

10.4 Initialization of One-dimensional Arrays 285

10.5 Two-dimensional Arrays 289

10.6 Initializing Two-dimensional Arrays 293

10.7 Multi-dimensional Arrays 298

10.8 Dynamic Arrays 298

10.9 More about Arrays 299

Case Studies 300

Review Questions 312

Programming Exercises 315

11. Character Arrays and Strings 318

11.1 Introduction 318

11.2 Declaring and Initializing String Variables 319

11.3 Reading Strings from Terminal 320

11.4 Writing Strings to Screen 325

11.5 Arithmetic Operations on Characters 330

11.6 Putting Strings Together 331

11.7 Comparison of Two Strings 333

11.8 String-handling Functions 333

Contents ix

11.9 Table of Strings 338

11.10 Other Features of Strings 340

Case Studies 341

Review Questions 345

Programming Exercises 348

12. Pointers 350

12.1 Introduction 350

12.2 Understanding Pointers 350

12.3 Accessing the Address of a Variable 353

12.4 Declaring Pointer Variables 354

12.5 Initialization of Pointer Variables 355

12.6 Accessing a Variable Through Its Pointer 357

12.7 Chain of Pointers 359

12.8 Pointer Expressions 360

12.9 Pointer Increments and Scale Factor 361

12.10 Pointers and Arrays 363

12.11 Pointers and Character Strings 366

12.12 Array of Pointers 368

12.13 Pointers as Function Arguments 369

12.14 Functions Returning Pointers 372

12.15 Pointers to Functions 372

12.16 Pointers and Structures 375

Case Studies 378

Review Questions 383

Programming Exercises 386

13. Structures and Unions 387

13.1 History of Computers 387

13.2 Defining a Structure 387

13.3 Declaring Structure Variables 389

13.4 Accessing Structure Members 391

13.5 Structure Initialization 392

13.6 Copying and Comparing Structure Variables 394

13.7 Operations on Individual Members 396

13.8 Arrays of Structures 397

13.9 Arrays within Structures 399

13.10 Structures within Structures 401

13.11 Structures and Functions 403

13.12 Unions 405

13.13 Size of Structures 407

13.14 Bit Fields 407

x Contents

Case Studies 411

Review Questions 414

Programming Exercises 418

14. File Management in C 420

14.1 Introduction 420

14.2 Defining and Opening a File 421

14.3 Closing a File 422

14.4 Input/Output Operations on Files 423

14.5 Error Handling During I/O Operations 429

14.6 Random Access to Files 431

14.7 Command Line Arguments 436

Review Questions 439

Programming Exercises 440

15. Developing a C Program: Some Guidelines 442

15.1 Introduction 442

15.2 Program Design 442

15.3 Program Coding 444

15.4 Common Programming Errors 446

15.5 Program Testing and Debugging 453

15.6 Program Efficiency 455

Review Questions 456

Solved Question Papers: 2003�2007 458�518

Model Question Papers 519�537

Bibliography 538

Preface

C is a powerful, flexible, portable and elegantly structured programming language. Since C

combines the features of a high-level language with the elements of the assembler, it is suitable for

both systems and applications programming. It is undoubtedly the most widely used general-purpose

language today.

This book is designed for students of West Bengal, West Bengal, taking the first semester (CS201)

paper on Introduction to Computing. This paper is common to all branches of Engineering. This book

will also be useful for students taking diploma courses in Computer Science.

The book starts with the history of computers, the different generations of computers, their

classification, input and output devices and an overview of the operating systems. Chapter 2

introduces the binary number system and explains the procedure for writing algorithms and

flowcharts. The third chapter discusses how to declare constants, variables and data types. Chapter 4

is on built-in operators and how to build expressions using them. The fifth chapter details input and

output operations. Decision-making and branching is discussed in the sixth chapter which talks about

the if-else, switch and goto statements. Further, decision-making and looping is discussed in Chapter 7

which covers the while, do and for loops. Functions are discussed in Chapter 8, and Chapter 9 deals

with the preprocessor. Arrays and ordered arrangement of data elements are important to any

programming language and have been covered in chapters 10 and 11. Strings are also covered in

Chapter 11. Pointers, perhaps the most difficult part of C to understand, are covered in Chapter 12 in

the most user-friendly manner. Chapter 13 is on structures and unions, and Chapter 14 discusses file

management. Finally, Chapter 15 is on developing a C program, which provides an insight on how to

proceed with the development of a program. The above organization would help the students in

understanding C better if followed appropriately.

In order to make the book more user-friendly, we have incorporated the following key features:

n Chapter organization is in exact agreement with the sequence given in the syllabus.

n This book covers both Computing Fundamentals and Programming portions of the syllabus.

n Case Studies accompany every chapter end.

n This book presents an exhaustive list of over a 100 solved examples, 250 review questions and

150 programming exercises.

n Solved 2003 � 2007 question papers are given as an appendix.

The concept of �learning by example� has been stressed throughout the book. Each major feature of

the language is treated in-depth followed by a complete program example to illustrate its use. The

sample programs are meant to be both simple and educational. Wherever necessary, pictorial descrip-

tions of concepts are included to improve clarity and to facilitate better understanding.

xii Preface

This book is designed for all those who wish to be C programmers, regardless of their past knowledge

and experience in programming. It explains in a simple and easy-to-understand style the what, why and

how of programming with C.

I am thankful to all those reviewers who have painstakingly gone through the contents of the book and

have provided valuable suggestions and feedback. Their names are listed below.

Mr. Soumyabrata Saha Mr. Amitava Nag

Dept. of Information Technology Dept. of Information Technology

JIS College of Engineering, West Bengal Hooghly

Academy of Technology

Mr. B. Bhuyan

Dept. of Computer Science Engineering.

ICARE Complex, Haldia

Haldia Institute of Technology

Prof. A. Dutta

Department of Computer Science Engineering

Durgapur

Dr. B.C Roy Engineering College

Prof. Debasis Chakroborty

Department of Computer Science

Asansol Engineering College

Asansol

I am also thankful to the staff of Tata McGraw-Hill for their cooperation and support in bringing out

this book on time.

Suggestions for improvement will always be welcome.

E BALAGURUSAMY

Roadmap to the Syllabus

Unit 1: Fundamentals of Computers

∑ History of computers

∑ Generations of computers

∑ Classification of computers

∑ Basic anatomy of a computer system

∑ Primary and secondary memory

∑ Processing unit

∑ Input and output devices

∑ Binary and allied number systems

∑ Representations of signed and unsigned numbers

∑ BCD; ASCII

∑ Binary arithmetic and logic gates

∑ Assembly language; High-level language

∑ Compiler and assembler (basic concepts)

∑ Basic concepts of operating systems like MS DOS, MS Windows, Unix

∑ Algorithms and flow charts

GO TO CHAPTER 1�FUNDAMENTALS OF COMPUTERS

CHAPTER 2�COMPUTING CONCEPTS

Unit 2: C Fundamentals

∑ The C character set identifiers and keywords

∑ Data types and sizes

∑ Variable names, declaration, statements

 GO TO CHAPTER 3�CONSTANTS, VARIABLES AND DATA TYPES

Unit 3: Operators and Expressions

∑ Arithmetic operators

∑ Relational and logical operators

∑ Type conversion, increment and decrement operators

∑ Bit-wise operators

∑ Assignment operators and expressions

∑ Precedence and order of evaluation

∑ Input and output�Standard input and output, formatted output (printf), formatted input (scanf)

 GO TO CHAPTER 4�OPERATORS AND EXPRESSIONS

CHAPTER 5�MANAGING INPUT AND OUTPUT

OPERATIONS

Unit 4: Flow of Control

∑ Statement and blocks

∑ If-else, switch

∑ Loops�while, for, do while, break and continue, goto and labels

 GO TO CHAPTER 6�DECISION MAKING AND BRANCHING

CHAPTER 7�DECISION MAKING AND LOOPING

Unit 5: Fundamentals and Program Structures

∑ Basics of functions; Function types

∑ Functions returning values, functions not returning values

∑ Auto, external, static and register variables

∑ Scope rules; Recursion

∑ Function prototypes

∑ C preprocessor

∑ Command line arguments

GO TO CHAPTER 8�USER-DEFINED FUNCTIONS

CHAPTER 9�THE PREPROCESSOR

Unit 6: Arrays and Pointers

∑ One-dimensional arrays

∑ Pointers and functions

∑ Multidimensional arrays

GO TO CHAPTER 10�ARRAYS

CHAPTER 11�CHARACTER ARRAYS AND STRINGS

CHAPTER 12�POINTERS

Unit 7: Structures, Unions and Files

∑ Basics of structures

∑ Structures and functions

∑ Arrays of structures

∑ Bit fields

∑ Formatted and unformatted files

 GO TO CHAPTER 13�STRUCTURES AND UNIONS

CHAPTER 14�FILE MANAGEMENT IN C

xiv Roadmap to the Syllabus

CHAPTER

1
Fundamentals of Computers

1.1 INTRODUCTION

The term computer is derived from the word compute. A computer is an electronic device that takes

data and instructions as an input from the user, processes data, and provides useful information known

as output. This cycle of operation of a computer is known as the input�process�output cycle and is

shown in Fig.1.1 The electronic device is known as hardware and the set of instructions is known as

software.

PROCESS
INPUT

Data
OUTPUT

Information

Instructions

Fig. 1.1 Input�process�output concept

The spurt of innovations and inventions in computer technology during the last few decades has led

to the development of a variety of computers. They are so versatile that they have become

indispensable to engineers, scientists, business executives, managers, administrators, accountants,

teachers and students. They have strengthened man�s powers in numerical computations and

information processing.

Modern computers possess certain characteristics and abilities peculiar to them. They can:

(i) perform complex and repetitive calculations rapidly and accurately,

 (ii) store large amounts of data and information for subsequent manipulations,

 (iii) hold a program of a model which can be explored in many different ways,

 (iv) compare items and make decisions,

 (v) provide information to the user in many different forms,

(vi) automatically correct or modify the parameters of a system under control,

 (vii) draw and print graphs,

(viii) converse with users interactively, and

(ix) receive and display audio and video signals.

2 Introduction to Computing

These capabilities of computers have enabled us to use them for a variety of tasks. Application

areas may broadly be classified into the following major categories.

1. Data processing (commercial use)

2. Numerical computing (scientific use)

3. Text (word) processing (office and educational use)

4. Message communication (e-mail)

5. Image processing (animation and industrial use)

6. Voice recognition (multimedia)

Engineers and scientists make use of the high-speed computing capability of computers to solve

complex mathematical models and design problems. Many calculations that were previously beyond

contemplation have now become possible. Many of the technological achievements such as landing

on the moon would not have been possible without computers.

The areas of computer applications are too numerous to mention. Computers have become an

integral part of man�s everyday life. They continue to grow and open new horizons of discovery and

application such as the electronic office, electronic commerce, and the home computer center.

The microelectronics revolution has placed enormous computational power within the reach of not

only every organisation but also individual professionals and businessmen. However, it must be

remembered that computers are machines created and managed by human beings. A computer has no

brain of its own. Anything it does is the result of human instructions. It is an obedient slave which

carries out the master�s instructions as long as it can understand them, no matter whether they are right

or wrong.

1.2 HISTORY OF COMPUTERS

The use of computing techniques is over 5000 years old. The Babylonians, Chinese, and Egyptians

had used numerical methods for the survey of lands and the collection of taxes as early as 3000 BC.

Computing history starts with the development of a device called the abacus (Fig.1.2) by the Chinese

around this period. This was used for the systematic calculation of arithmetic operations. Since then

the number system has undergone various changes

and has been used in different forms in computing.

The most significant development in computing was

the formulation of the decimal number system in India

around 800 AD.

Another significant development was the invention

of logarithm by John Napier (a Scottish mathe-

matician) in 1614 which made computing simple. He

also designed a set of bones known as Napier bones

which were used for multiplication. Later in 1620, the

concept of the use of these bones was modified by

Edmund Gunter to produce what was known as the

�slide rule�. This device consisted of two graduated

scales, one sliding over the other and used the

principle of logarithms. The slide rule which was Fig. 1.2 Abacus

Fundamentals of Computers 3

further improved in 1632 by William Oughtred (an English mathematician) was used by scientists and

engineers until the electronic calculators appeared in the 1960s.

The modern age of mathematics emerged during the 17th century when Johannes Kepler and Galileo

Galilee deduced laws for planetary motion and Sir Isaac Newton formulated the law of gravity. The

subsequent developments in mathematics and other sciences increased the need for new computing

techniques and devices.

The first accounting machine known as Pascaline was built by Blaise Pascal (a French

mathematician and thinker) in 1642. Then came the Leibnitz calculator developed by Gottfried

Wilhelm von Leibnitz, a German philosopher and mathematician in 1671. These machines progressed

in technology and variety and became the standard calculating machines of the business community.

During the beginning of the 19th century, Joseph Marie Jacquard a French textile manufacturer

invented an automated loom operated by a mechanism controlled by punched cards.

The origin of the modern computer can be traced back to 1834, when an English mathematician

Charles Babbage designed an analytical engine. This was considered as the first programmable digital

mechanical computer. This machine contained all the major parts of the modern computer system.

Charles Babbage is therefore known as the �father of modern computer�. Lady Ada Lovelace was one

of the strong supporters of Babbage�s work. She wrote many of the operating instructions for the

experimental machine designed by Babbage. She is therefore considered to be the �first computer

programmer�. She presented some of the key elements of programming and program design.

Around this time George Boole, a British mathematician, developed an algebra based on variables

that could have only two states, true or false. He published what is known as Boolean Logic in 1854.

All modern computers use this logic.

The first large-scale application of data processing was undertaken by the United States Census

Bureau in 1890. Dr Herman Hollerith (a mechanical engineer) who was employed by the Census

Bureau designed an electromechanical machine that could tabulate data using punched cards. This

formed the basis for the traditional punched card technology.

Later in 1896, Hollerith started the Tabulating Machine Company to manufacture the tabulating

machines. The company, later on became the well-known IBM (International Business Machines)

company.

The dream machine of Babbage was not built until 1944, when Mark I, an electromechanical

automatic computer, was developed by Howard Aiken for IBM. Subsequently, a series of

technological improvements and innovations took place and the design of computers underwent

continuous and dramatic changes.

The first electronic digital computer known as the Electronic Numerical Integrator and Calculator

(ENIAC) was developed by John Mauchly and Presper Eckert of the University of Pennsylvania, in

1946, using vacuum tubes.

The concept of �stored program� was contributed by John von Neuman, a Hungarian born

mathematician in 1945. Computers known as EDSAC (Electronic Delay Storage Automatic

Calculator) and EDVAC (Electronic Discrete Variable Automatic Computer) were built later during

the 1940s based on this concept.

The era of commercial application of modern computers began in 1951 when the UNIVAC

(Universal Automatic computer) became operational at the Bureau of Census in USA. Since then

computers started appearing in quick succession, each claiming an improvement over the other. They

represented improvements in speed, memory (storage) systems, input and output devices and

4 Introduction to Computing

programming techniques. They also showed a continuous reduction in physical size and cost. The

developments in computers are closely associated with the developments in material technology,

particularly the semiconductor technology. Some of the important developments since the slide rule

are given in Table 1.1

Table 1.1 Some Important Developments in Computing Technology

Year Device

1614 Napier bones and logarithms by John Napier

1632 Slide rule by William Oughtred

1642 Pascal calculator, an accounting machine by Blaise Pascal

1671 Leibnitz calculator by Gottfried Wilhelm von Leibnitz

1801 Punched card loom by Joseph Marie Jacquard

1822 Difference engine by Charles Babbage

1834 Analytical engine by Charles Babbage

1854 Boolean algebra by George Boole

1890 Punched card machine by Herman Hollerith

1906 Electronic valve invented by De Forest

1930 Differential analyzer by Vannevar Bush

1936 Paper on computational numbers by Alan Turing

Link between symbolic logic and electric circuit by Claude Shanon

1937 Binary adder built by George Stibitz

1941 First general-purpose computer designed by Konrad Zuse

1943 Colossus machine built to crack German secret codes, by the British

1944 First automatic computer, MARK I designed by Howard Aiken

1945 Critical elements of a computer system outlined by John Von Neumann

1946 First electronic digital computer, ENIAC put to operation by Presper Eckert and John Mauchly

1947 Transistor invented by John Bardeen, William Shockley and Walter Brattain

1951 First business computer, UNIVAC became operational

1956 Second generation computer (using transistors) introduced by Bell Laboratory

1959 Integrated circuits (ICs) demonstrated by Clair Kilby

1964 First third generation computer using ICs developed

1965 First commercial minicomputer, PDP-8 introduced by Digital Equipment Corporation

1971 Intel 4004 microprocessor designed by Ted Hoff

1974 First fourth generation computer (using microprocessors) built by Ed Roberts

1975 First personal computer software created by Bill Gates and Paul Allen

1977 Apple introduced its famous personal computer

1981 IBM PC introduced in the market

1982 Cray supercomputer marketed by Cray Research Company

1984 Apple introduced Macintosh P.C.

1989 Optical Computer demonstrated

1990 Motorola announced 32-bit microprocessor

1992 IBM introduced Thinkpad laptop computer

1995 Intel released Pentium Pro microprocessor

1996 Intel announced 200 MHz Pentium processor

1997 Pentium II microprocessor introduced

1999 Pentium III processor announced by Intel

2000 Pentium 4 released

2006 Intel core 2 processor launched.

Fundamentals of Computers 5

1.3 GENERATIONS OF COMPUTERS

The different computing devices developed over the years can be categorized into several generations.

Each generation of computer is the result of a technological development, which changed the

way computers used to operate. As we proceed from one generation to another, we will see that the

computers have become smaller and cheaper with more efficient computing capability. Computers

can be categorized into five generations:

n First generation (1940�1956)

n Second generation (1956�1963)

n Third generation (1964�1971)

n Fourth generation (1971� till date)

n Fifth generation (1980s - - -)

First-Generation Computers

In this generation of computers, vacuum tubes were used to build the circuitry for the computers and

magnetic drum was used for the memory of the computer. A vacuum tube was a device made up of

glass and used filaments to generate electrons. It was used to amplify the

electronic signals. Figure 1.3 shows a vacuum tube.

The first-generation computers used to perform calculation in

milliseconds. They were the fastest known computers of their time. The

size of these computers was very large, and a single computer was used to

cover the space of an entire room. Since the size of the computers was

very large, they used to consume a great deal of electricity and generated

a large amount of heat. To avoid malfunctioning from overheating, the

rooms where these computers were placed had to be air-conditioned.

These computers were also prone to frequent technical faults and hence

required proper maintenance at regular intervals.

The computers belonging to the first generation used machine

language to perform operations and were capable of performing one

operation at a time. These computers were used to take inputs from punch

cards and paper tapes and displayed the results on paper as printouts. The

computers that fall under the first generation of computers are ENIAC,

EDVAC and UNIVAC. These computers were used for scientific

calculations.

Second-Generation Computers

In the second generation of computers, transistors were used instead of vacuum tubes. Transistors

were invented in 1947 by John Bardeen, Willian Shockley, and Walter Brattain. The transistors were

faster and more reliable than vacuum tubes. In addition, the size of the transistors was smaller than

vacuum tubes and they generated less heat as compared to vacuum tubes. Figure 1.4 shows a transistor.

Since transistors replaced vacuum tubes in the second generation of computers, the size and cost

associated with computers had decreased to a considerable extent. The processing speed of the

Fig. 1.3 Vacuum tube

6 Introduction to Computing

computers had increased and they were more reliable than the

first generation computers. The heat generated by the

transistors was less as compared to the vacuum tubes and

therefore the damage caused to the computers was less.

The second generation computers used assembly language

instead of machine language. The use of assembly language

helped the programmer to specify instructions in the form of

words. The task of the programmer thus became easier with

the development of high-level languages like COBOL and

FORTRAN.

The main characteristic of second generation computers

was that they used the stored program concept, i.e. the

instructions were stored in the memory of the computer. Like

the previous generation computers, the second-generation

computers also accepted inputs from punch cards and magnetic tapes. The output was either stored in

punch cards or printed on a paper. These computers use magnetic tapes and magnetic disks as external

storage devices. Even though the cost associated with the development of a computer was less as

compared to the first-generation computers, still the cost associated in the commercial production of

these computers was high, because thousands of transistors were assembled manually. IBM 1620,

PDP8 and CDC1604 are examples of second generation computers.

Third-Generation Computers

The third generation of computers were characterized by the development of the Integrated Circuit

(IC), which was developed by Jack Kilby, in 1958. An IC is a silicon chip that embeds an electronic

circuit, which comprises several components, such as transistors, diodes, and resistors. The use of ICs

had increased the speed and efficiency of the computers to

a significant extent.

These computers used a keyboard, which is an input

device, for accepting data from users and displayed the

output on the monitor, which is an output device. Several

programs were developed that helped execute more than

one application at the same time on a computer. With the

introduction of ICs in the development of computers, the

cost of the computers decreased to such an extent that they

were affordable by a large part of the common population.

Figure 1.5 shows an IC. Examples of third generation

computers include IBM 370, PDP11 and CDC 7600.

Fourth-Generation Computers

The fourth generation of computers is characterized by the use of Large Scale Integration (LSI)

circuits and Very Large Scale Integration (VLSI) circuits in the construction of computing

components. In fourth generation computers, LSI and VLSI circuits were further integrated on a single

silicon chip, termed as microprocessor, containing control logic and memory. The major change in

Fig. 1.4 Transistors

Fig. 1.5 An IC

Fundamentals of Computers 7

the fourth generation of computers was seen in

the replacement of magnetic core memories by

semiconductor memories. In addition, two

types of high-speed computer networking were

established for enabling connection and

communication among multiple computers at

one time. The first one is the Local Area

Network (LAN), where multiple computers in a

local area, such as home, office, or a small

group of buildings, are connected and allowed

to communicate among them. The second type

of networking is the Wide Area Network

(WAN), which facilitates connection and

communication of hundreds of computers

located across multiple locations.

The fourth generation of computers had also seen the inceptions of several new operating systems

including MS DOS and MS Windows. An example of a fourth-generation of computer is the Personal

Computer (PC), which is shown in Fig. 1.6.

A special characteristic of the fourth generation computers is the Graphical User Interface (GUI),

which is a user-friendly interface that provides icons and menus to users to interact with the various

computer applications. Various other characteristics of the fourth generation of computers are:

n These computers were smaller and cheaper than the computers of the previous generation.

n Unlike computers of the third generation, these computers did not require proper air

conditioning.

n They were more reliable than the third generation computers.

n Unlike computers of the third generation, they had larger primary and secondary storage

memory.

n The fourth-generation of computers used high-level programming languages, which allowed a

program written for one computer to be easily executed in another computer.

During the time period of the fourth-generation computers, more and more computer components

were fabricated on a single chip so that the construction of the processor needed fewer and fewer

chips. What used to need an entire room in the first generation now can be fit in the palm of the hand.

The Intel 4004 chip, developed in 1971, was the first microprocessor for the computers of this

generation. It can locate all the components of the computer�from CPU and memory to Input/Output

controls�on a single chip.

The fourth generation of computers encountered a revolutionary breakthrough when in 1981, IBM

introduced its first computer for the home user, and in 1984, Apple introduced the Macintosh.

Microprocessors also moved out of the realm of desktop computers and entered into many real life

areas. With the enhancement of the computing power of the computers, it was possible to connect the

computers to form networks, which in the long run led to the development of the Internet.

Fig. 1.6 PC � a fourth-generation computer

8 Introduction to Computing

Fifth-Generation Computers

The fifth generation of computers is characterized by the Ultra Large Scale Integration (LSI)

technology, which is more powerful as well as faster than the microprocessors used by the computers

of the fourth generation. This generation of computers has also seen the introduction of optical disks,

which have soon emerged as a popular portable mass storage medium. These optical disks are

popularly known as Compact Disk-Read Only Memory (CD-ROM), as they are primarily used for

storing data, which is only readable. The computer communication has also become faster in the fifth

generation of computers due to the use of e-mail. The following are the characteristics of fifth

generation computers:

n The PCs in the fifth generation have become portable, which are much smaller and handy than

the fourth-generation PCs. Users can even use them while traveling.

n The desktop PCs and workstations are several times more powerful than the fourth generation

PCs.

n There is no need of air-conditioning for the portable and desktop PCs of the fifth generation.

n The fifth generation computers are more reliable and there are fewer possibilities of hardware

failures in them as compared to the fourth generation computers.

n The manufacturing of the fifth generation of computers does not require manual assembling of

the individual components, which reduces human labor, thereby making the commercial

production of systems easier and cheaper.

n These computers provide user-friendly interfaces with multimedia features, which help in

making the system more useful in every occupation.

There are some computing devices of the fifth generation still in the development phase, which are

based on artificial intelligence. Glimpses of these systems can be viewed today in the form of voice

recognition systems. In the fifth generation,

introduction of the use of parallel processing and

supercomputers have helped making artificial

intelligence a reality. In addition, advancements in the

quantum computation and molecular technology will

radically change the face of computers in the

forthcoming years. The goal of fifth-generation

computing is to develop devices that can respond to

natural language input and can learn and self-organize.

An example of the fifth generation of computing

devices (Intel Pentium microprocessor chip) is shown

in Fig. 1.7.

1.4 CLASSIFICATION OF COMPUTERS

Computers can be classified into several categories depending on their computing ability and

processing speed. These include

n Microcomputer

n Minicomputer

Fig. 1.7 Intel Pentium microprocessor chip

Fundamentals of Computers 9

n Mainframe computers

n Supercomputers

Microcomputers

A microcomputer is defined as a computer that has a microprocessor as its CPU. The microcomputer

system can perform the following basic operations:

n Inputting � It is the process of entering data and instructions into the microcomputer system.

n Storing � It is the process of saving data and instructions in the memory of the microcomputer

system, so that they can be use whenever required.

n Processing � It is the process of performing arithmetic or logical operations on data, where

data can be converted into useful information. Various arithmetic operations include addition,

subtraction, multiplication and division. Among logical operations, operations of comparisons

like equal to, less than, greater than, etc., are prominent in use.

n Outputting � It provides the results to the user, which could be in the form of visual display

and/or printed reports.

n Controlling � It helps in directing the sequence and manner in which all the above operations

are performed.

Minicomputers

A minicomputer is a medium-sized computer that is more powerful than a microcomputer. An

important distinction between a microcomputer and a minicomputer is that a minicomputer is usually

designed to serve multiple users simultaneously. A system that supports multiple users is called a

multiterminal, time-sharing system. Minicomputers are the popular computing systems among

research and business organizations today. They are more expensive than microcomputers.

Mainframe Computers

Mainframe computers are those computers, which help in handling the information processing of

various organizations like banks, insurance companies, hospitals and railways. Mainframe computers

are placed on a central location and are connected to several user terminals, which can act as access

stations and may be located in the same building. Mainframe computers are larger and expensive in

comparison to the workstations.

Supercomputers

Supercomputers are the most powerful and expensive computers available at present. They are also

the fastest computers available. Supercomputers are primarily used for complex scientific

applications, which need a higher level of processing. Some of these applications include weather

forecasting, climate research, molecular modeling used for chemical compounds, aeroplane

simulations and nuclear fusion research.

In supercomputers, multiprocessing and parallel processing technologies are used to promptly solve

complex problems. Here, the multiprocessor can enable the user to divide a complex problem into

smaller problems. A supercomputer also supports multiprogramming where multiple users can access

the computer simultaneously. Presently, some of the popular manufacturers of supercomputers are

IBM, Silicon Graphics, Fujitsu, and Intel.

10 Introduction to Computing

1.5 BASIC ANATOMY OF A COMPUTER SYSTEM

A computer system comprises hardware and software components. Hardware refers to the physical

parts of the computer system and software is the set of instructions or programs that are necessary for

the functioning of a computer. Hardware includes the following components:

n Input devices � They are used for accepting the data on which the operations are to be

performed. The examples of input devices are keyboard, mouse and track ball.

n Processor � Also known as CPU, it is used to perform the calculations and information

processing on the data that is entered through the input device.

n Output devices � They are used for providing the output of a program that is obtained after

performing the operations specified in a program. The examples of output devices are monitor

and printer.

n Memory � It is used for providing the output of a program that is obtained after performing the

operations specified in a program. Memory can be primary memory as well as secondary

memory. Primary memory includes Random Access Memory (RAM) and secondary memory

includes hard disks and floppy disks.

Software supports the functioning of a computer system internally and cannot be seen. It is stored

on secondary memory and can be an application software as well as system software. The

application software is used to perform a specific task according to requirements and the system

software is mandatory for running application software. The examples of application software include

Excel and MS Word and the examples of system software include operating system and networking

system.

All the hardware components interact with each other as well as with the software. Similarly, the

different types of software interact with each other and with the hardware components. The interaction

between various hardware components is illustrated in Fig. 1.8.

1.6 INPUT DEVICES

Input devices can be connected to the computer system using cables. The most commonly used input

devices among others are:

n Keyboard

n Mouse

n Scanner

Keyboard

A standard keyboard includes alphanumeric keys, function keys, modifier keys, cursor movement

keys, spacebar, escape key, numeric keypad, and some special keys, such as Page Up, Page Down,

Home, Insert, Delete and End. The alphanumeric keys include the number keys and the alphabet keys.

The function keys are the keys that help perform a specific task such as searching a file or refreshing

Fundamentals of Computers 11

Output
Media

Magnetic
Tape

Magnetic
Disk

EXTERNAL STORAGE UNITS

Memory
Unit

Arithmetic
Unit

Output
Unit

Input
Unit

Input
Media

Control
Unit

CPU

Data and results flow

Control Instructions to units

Instructions to control unit

Fig. 1.8 Interaction among hardware components

a Web page. The modifier keys such as Shift and Control keys modify the casing style of a character or

symbol. The cursor movement keys include up, down, left and right keys and are used to modify the

direction of the cursor on the screen. The spacebar key shifts the cursor to the right by one position.

The numeric keypad uses separate keypads for numbers and mathematical operators. A keyboard is

shown in Fig. 1.9.

Function Keys
(F1 to F12)

Escape Key

Modifier Keys

Spacebar KeyAlphanumeric
Keys

Cursor Movement
Keys

Special Keys

Numeric Keypad

Fig. 1.9 Keyboard

12 Introduction to Computing

Mouse

The mouse allows the user to select elements on the screen, such as tools, icons, and buttons, by

pointing and clicking them. We can also use a mouse to draw and paint on the screen of the computer

system. The mouse is also known as a pointing device

because it helps change the position of the pointer or

cursor on the screen.

The mouse consists of two buttons, a wheel at the

top and a ball at the bottom of the mouse. When the

ball moves, the cursor on the screen moves in the

direction in which the ball rotates. The left button of

the mouse is used to select an element and the right

button, when clicked, displays the special options such

as open and explore and shortcut menus. The wheel

is used to scroll down in a document or a Web page. A

mouse is shown in Fig. 1.10.

Scanner

A scanner is an input device that converts documents and images as the digitized images

understandable by the computer system. The digitized images can be produced as black and white

images, gray images, or colored images. In case of colored images,

an image is considered as a collection of dots with each dot

representing a combination of red, green, and blue colors, varying

in proportions. The proportions of red, green, and blue colors

assigned to a dot are together called as color description. The

scanner uses the color description of the dots to produce a digitized

image. Figure 1.11 shows a scanner.

There are the following types of scanners that can be used to

produce digitized images:

n Flatbed scanner � It contains a scanner head that moves

across a page from top to bottom to read the page and converts

the image or text available on the page in digital form. The

flatbed scanner is used to scan graphics, oversized documents,

and pages from books.

n Drum scanner � In this type of scanner, a fixed scanner head is used and the image to be

scanned is moved across the head. The drum scanners are used for scanning prepress materials.

n Slide scanner � It is a scanner that can scan photographic slides directly to produce files

understandable by the computer.

n Handheld scanner � It is a scanner that is moved by the end user across the page to be scanned.

This type of scanner is inexpensive and small in size.

Wheel

Right Button

Left Button

Fig. 1.10 Mouse

Fig. 1.11 Scanner

Fundamentals of Computers 13

1.7 PROCESSOR

The CPU consists of Control Unit (CU) and ALU. CU stores the instruction set, which specifies the

operations to be performed by the computer. CU transfers the data and the instructions to the ALU for

an arithmetic operation. ALU performs arithmetical or logical operations on the data received. The

CPU registers store the data to be processed by the CPU and the processed data also. Apart from CU

and ALU, CPU seeks help from the following hardware devices to process the data:

Motherboard

It refers to a device used for connecting the CPU with the input and output devices. The components

on the motherboard are connected to all parts of a computer and are kept insulated from each other.

Some of the components of a motherboard are:

∑ Buses: Electrical pathways that transfer data and instructions among different parts of the

computer. For example, the data bus is an electrical pathway that transfers data among the

microprocessor, memory and input/output devices connected to the computer. The address bus

is connected among the microprocessor, RAM and Read Only Memory (ROM), to transfer

addresses of RAM and ROM locations that is to be accessed by the microprocessor.

∑ System clock: It is a clock used for synchronizing the activities performed by the computer. The

electrical signals that are passed inside a computer are timed, based on the tick of the clock. As

a result, the faster the system clock, the faster is the processing speed of the computer.

∑ Microprocessor: CPU component that performs the processing and controls the activities

performed by the different parts of the computer. The microprocessor is plugged to the CPU

socket placed on the motherboard.

∑ ROM: Chip that contains the permanent memory of the computer that stores information, which

cannot be modified by the end user.

RAM

It refers to primary memory of a computer that stores information and programs, until the computer is

used. RAM is available as a chip that can be connected to the RAM slots in the motherboard.

Video Card/Sound card

The video card is an interface between the monitor and the CPU. Video cards also include their own

RAM and microprocessors that are used for speeding up the processing and display of a graphic.

These video cards are placed on the expansion slots, as these slots allow you to connect the high-speed

graphic display cards to the motherboard. A sound card is a circuit board placed on the motherboard

and is used to enhance the sound capabilities of a computer. The sound cards are plugged to the

Peripheral Component Interconnect (PCI) slots. The PCI slots also enable the connection of networks

interface card, modem cards and video cards, to the motherboard.

14 Introduction to Computing

1.8 OUTPUT DEVICES

The data, processed by the CPU, is made available to the end user by the output devices. The most

commonly used output devices are:

n Monitor

n Printer

n Speaker

n Plotter

Monitor

A monitor is the most commonly used output device that produces visual displays generated by the

computer. The monitor, also known as a screen, is connected as an external device using cables or

connected either as a part of the CPU case. The monitor connected using cables, is connected to the

video card placed on the expansion slot of the motherboard. The display device is used for visual

presentation of textual and graphical information.

The monitors can be classified as cathode ray tube (CRT) monitors or liquid crystal display (LCD)

monitors. The CRT monitors are large, occupy more space in the computer, whereas LCD monitors

are thin, light weighted, and occupy lesser space. Both the monitors are available as monochrome,

gray scale and color models. However, the quality of the visual display produced by the CRT is better

than that produced by the LCD.

The inner side of the screen of the CRT contains the red, green, and blue phosphors. When a beam

of electrons strike the screen, the beam strikes the red, green and blue phosphors on the screen and

irradiates it to produce the image. The process repeats itself for a change in the image, thus refreshing

the changing image. To change the color displayed by the monitor, the intensity of the beam striking

the screen is varied. If the rate at which the screen gets refreshed is large, then the screen starts

flickering, when the images are refreshed.

The LCD monitor is a thin display device that consists of a number of color or monochrome pixels

arrayed in front of a light source or reflector. LCD monitors consume a very small amount of electric

power.

A monitor can be characterized by its monitor size and resolution. The monitor size is the length of

the screen that is measured diagonally. The resolution of the screen is expressed as the number of

picture elements or pixels of the screen. The resolution of the monitor is also called the dot pitch. The

monitor with a higher resolution produces a clearer image.

Printer

The printer is an output device that transfers the text displayed on the screen, onto paper sheets that

can be used by the end user. The various types of printers used in the market are generally categorized

as dot matrix printers, inkjet printers, and laser printers. Dot matrix printers are commonly used in low

quality and high volume applications like invoice printing, cash registers, etc. However, inkjet printers

are slower than dot matrix printers and generate high quality photographic prints. Since laser printers

consist of microprocessor, ROM and RAM, they can produce high quality prints in quicker time

without being connected to a computer.

Fundamentals of Computers 15

The printer is an output device that is used to produce a hard copy of the electronic text displayed

on the screen, in the form of paper sheets that can be used by the end user. The printer is an external

device that is connected to the computer system using cables. The computer needs to convert the

document that is to be printed to data that is understandable by the printer. The printer driver software

or the print driver software is used to convert a document to a form understandable by the computer.

When the computer components are upgraded, the upgraded printer driver software needs to be

installed on the computer.

The performance of a printer is measured in terms of dots per inch (DPI) and pages per minute

(PPM) produced by the printer. The greater the DPI parameter of a printer, the better is the quality of

the output generated by it. The higher PPM represents higher efficiency of the printer. Printers can be

classified based on the technology they use to print the text and images:

n Dot matrix printers � Dot matrix printers are impact printers that use perforated sheet to print

the text. The process to print a text involves striking a pin against a ribbon to produce its

impression on the paper. As the striking motion of the pins help in making carbon copies of a

text, dot matrix printers are used to produce multiple copies of a print out.

n Inkjet printers � Inkjet printers are slower than dot matrix printers and are used to generate

high quality photographic prints. Inkjet printers are not impact printers. The ink cartridges are

attached to the printer head that moves horizontally, from left to right. The print out is developed

as the ink of the cartridges is sprayed onto the paper. The ink in the inkjet is heated to create a

bubble. The bubble bursts out at high pressure, emitting a jet of the ink on the paper thus

producing images.

n Laser printers � The laser printer may or may not be connected to a computer, to generate an

output. These printers consist of a microprocessor, ROM and RAM, which can be used to store

the textual information. The printer uses a cylindrical drum, a toner and the laser beam. The

toner stores the ink that is used in generating the output. The fonts used for printing in a laser

printer are stored in the ROM or in the cartridges that are attached to the printer. The laser

printers are available as gray scale, black and white or color models. To print high quality pages

that are graphic intensive, laser printers use the PageMaker software.

Speaker

The speaker is an electromechanical transducer that converts an electrical signal into sound. They are

attached to a computer as output devices, to provide audio output, such as warning sounds and Internet

audios. You can have built-in speakers or attached speakers in a computer to warn end users with error

audio messages and alerts. The audio drivers need to be installed in the computer to produce the audio

output. The sound card being used in the computer system decides the quality of audio that you listen

using music CDs or over the Internet. The computer speakers vary widely in terms of quality and

price. The sophisticated computer speakers may have a subwoofer unit, to enhance bass output.

Plotter

The plotter is another commonly used output device that is connected to a computer to print large

documents, such as engineering or constructional drawings. Plotters use multiple ink pens or inkjets

with color cartridges for printing. A computer transmits binary signals to all the print heads of the

16 Introduction to Computing

plotter. Each binary signal contains the coordinates of where a print head needs to be positioned for

printing. Plotters are classified on the basis of their performance, as follows:

n Drum plotter � They are used to draw perfect circles and other graphic images. They use a

drawing arm to draw the image. The drum plotter moves the paper back and forth through a

roller and the drawing arm moves across the paper.

n Flat-bed plotter � A flat bed plotter has a flat drawing surface and the two drawing arms that

move across the paper sheet, drawing an image. The plotter has a low speed of printing and is

large in size.

n Inkjet plotter � Spray nozzles are used to generate images by spraying droplets of ink onto the

paper. However, the spray nozzles can get clogged and require regular cleaning, thus resulting in

a high maintenance cost.

n Electrostatic plotter � As compared to other plotters, an electrostatic plotter produces quality

print with highest speed. It uses charged electric wires and special dielectric paper for drawing.

The electric wires are supplied with high voltage that attracts the ink in the toner and fuses it

with the dielectric paper.

1.9 MEMORY MANAGEMENT

The memory unit of a computer is used to store data, instructions for processing data, intermediate

results of processing and the final processed information. The memory units of a computer are

classified as primary memory and secondary memory.

Primary Memory

The primary memory is available in the computer as a built-in unit of the computer. The primary

memory is represented as a set of locations with each location occupying 8 bits. Each bit in the memory

is identified by a unique address. The data is stored in the machine-understandable binary form in

these memory locations. The commonly used primary memories are as follows:

n ROM � ROM represents Read Only Memory that stores data and instructions, even when the

computer is turned off. It is the permanent memory of the computer where the contents cannot be

modified by an end user. ROM is a chip that is inserted into the motherboard. It is generally used

to store the Basic Input/Output system (BIOS), which performs the Power On Self Test (POST).

n RAM � RAM is the read/write memory unit in which the information is retained only as long as

there is a regular power supply. When the power supply is interrupted or switched off, the

information stored in the RAM is lost. RAM is volatile memory that temporarily stores data and

applications as long as they are in use. When the use of data or the application is over, the

content in RAM is erased.

n Cache memory � Cache memory is used to store the data and the related application that was

last processed by the CPU. When the processor performs processing, it first searches the cache

memory and then the RAM, for an instruction. The cache memory can be either soldered into the

motherboard or is available as a part of RAM.

Fundamentals of Computers 17

Secondary Memory

Secondary memory represents the external storage devices that are connected to the computer. They

provide a non-volatile memory source used to store information that is not in use currently. A storage

device is either located in the CPU casing of the computer or is connected externally to the computer.

The secondary storage devices can be classified as:

n Magnetic storage device � The magnetic storage devices store information that can be read,

erased and rewritten a number of times. These include floppy disk, hard disk and magnetic tapes.

n Optical storage device � The optical storage devices are secondary storage devices that use

laser beams to read the stored data. These include CD-ROM, rewritable compact disk (CD-RW),

digital video disks with read only memory (DVD-ROM), etc.

n Magneto-optical storage device � The magneto-optical devices are generally used to store

information, such as large programs, files and back up data. The end user can modify the

information stored in magneto-optical storage devices multiple times. These devices provide

higher storage capacity as they use laser beams and magnets for reading and writing data to the

device.

1.10 OVERVIEW OF OPERATING SYSTEM

An Operating System (OS) can be defined as the system software that helps in managing the resources

of a computer as well as provides a platform for the application programs running in the computer. In

other words, the operating system acts as an interface between the computer and its application

programs. Some of the popular operating systems include MS DOS, MS Windows, and UNIX.

The primary tasks of an operating system include allocating various resources of the computer,

scheduling processes, managing storage, controlling input and output, tracking files and directories on

the disk, and handling communications with the peripheral devices, such as disk drives and printers.

Apart from these basic tasks, an operating system also exhibits functionality related to network and

security. The operating system supports various network protocols that help in sharing and accessing

the resources of the computer over a network of computers. It also provides some basic levels of

security, which includes securing the computer from the internal programs running on the computer as

well as detection and prevention of intrusion.

Types of Operating Systems

Depending on the characteristics of operating systems, they can be categorized into the following

types:

n Batch operating system � This is the earliest operating system, where only one program is

allowed to run at one time. You cannot modify any data used by the program while it is being

run. If an error is encountered, it means starting the program from scratch all over again. A

popular batch operating system is MS DOS.

n Interactive operating system � This operating system comes after the batch operating system,

where also only one program can run at one time. However, here, modification and entry of data

are allowed while the program is running. An example of an interactive operating system is

Multics (Multiplexed Information and Computing Service).

18 Introduction to Computing

n Multiuser operating system � A multiuser operating system allows more than one user to use

a computer system either at the same time or at different times. Examples of multiuser operating

systems include Linux and Windows 2000.

n Multi-tasking operating system � A multi-tasking operating system allows more than one

program to run at the same time. Examples of multi-tasking operating systems include Unix and

Windows 2000.

n Multithreading operating system � A multithreading operating system allows the running of

different parts of a program at the same time. Examples of multithreading operating system

include UNIX and Linux.

MS DOS Operating System

MS DOS is the short form of Microsoft Disk Operating System, which is marketed by Microsoft

Corporation and is one of the most commonly used members of the DOS family of operating systems.

MS DOS is a command line user interface, which was first introduced in 1981 for IBM computers. Its

last updated official version is MS DOS 6.22, which was released in the year 1994. Thereafter, various

versions of Windows operating systems started replacing MS DOS. Although MS DOS, nowadays, is

not used as a stand-alone product, but it comes as an integrated product with the various versions of

Windows.

In MS DOS, unlike Graphical User Interface (GUI)-based operating systems, there is a command

line interface, which is known as MS DOS prompt. In the MS DOS prompt or the command prompt,

you need to type the various commands to perform the operations in MS DOS operating system. The

MS DOS commands can be broadly categorized into the following three classes:

n Environment command � These commands usually provide information on or affects

operating system environment. Some of these commands are:

∑ CLS: It allows the user to clear the complete content of the screen leaving only the MS-DOS

prompt.
∑ TIME: It allows the user to view and edit the time of the computer.

∑ DATE: It allows the user to view the current date as well as change the date to an alternate

date.

∑ VER: It allows you to view the version of the MS-DOS operating system.

n File manipulation command � These commands help in manipulating files, such as copying a

file or deleting a file. Some of these commands include:

∑ COPY: It allows the user to copy one or more files from one specified location to an

alternate location.

∑ DEL: It helps in deleting a file from the computer.

∑ TYPE: It allows the user to view the contents of a file in the command prompt.

∑ DIR: It allows the user to view the files available in the current and/or parent directories.

n Utilities � These are special commands that perform various useful functions, such as

formatting a diskette or invoking the text editor in the command prompt. Some of these

commands include:

∑ FORMAT: It allows the user to erase all the content from a computer diskette or a fixed

drive.

∑ EDIT: It allows the user to view a computer file in the command prompt. It also allows the

user to create and modify the computer files.

Fundamentals of Computers 19

MS Windows Operating System

MS Windows stands for Microsoft Windows operating system, which was introduced by Microsoft

Corporation in the year 1985. It was brought in as an add-on to MS-DOS operating system due to the

growing interest of users in GUIs. However, by the early years of 90s it soon became the root cause of

extinction of stand-alone MS-DOS operating system.

The first independent version of MS Windows operating system was the Microsoft Windows,

version 1.0, which was released in 1985. The Windows 1.0 did not provide a complete system; rather

it provided an extended version of MS-DOS with less degree of functionality, which made it less

popular. In 1987, a slightly more popular version, Windows 2.0 was released, but that too was not a

commercial success for the Microsoft Corporation. In 1990, Microsoft released the Windows 3.0,

which was the first Windows operating system to get broad commercial success. Windows 3.0 featured

significant improvements in the user interface and multitasking capabilities.

After the success of Windows 3.0, Microsoft has come up with several new versions of Windows

operating systems and most of them are commercially successful. Some of the popular versions of

Windows operating systems include:

n Windows 95 � Microsoft released Windows 95 operating system in August 24, 1995, which

brought in significant improvements in the series of previous windows versions. During the

development phase, Windows 95 was known as Windows 4.0. Its internal code name was

Chicago. Various new features introduced in the Windows 95 are:

∑ Plug and play: Allows automatic installation of hardware devices into the computer with

proper software.

∑ 32-bit operating system: Enables the computer to perform in a faster and more efficient

way.

∑ Registry: Allows easier location of system configuration files.

∑ Right mouse click: Allows the use of both the buttons instead of one to provide new access

and text manipulation.

n Windows 98 � It is the upgraded version of Microsoft Windows 95 released in June 1998.

Windows 98 is the first Windows operating system to use the device driver framework Windows

Driver Model (WDM). The WDM allows the driver developers to write device drivers, which

are source-code compatible across all Microsoft Windows operating systems. In 1999, Microsoft

also released a second edition of Windows 98, known as Windows 98 Second Edition (SE),

which includes fixes for various minor issues encountered in the first edition. Some of the newly

introduced features in Windows 98 include:

∑ Protection: Provides additional protection for important files in the computer, for example

allowing automatic registry backup.

∑ Improved device support: Provides improved support for various new devices, such as

DirectX, DVD, and USB.

∑ FAT32: Provides the capability to convert a drive to FAT32 without having the risk of

losing any information.

∑ Internet Explorer: Includes Internet Explorer 4.0.

∑ Customizable taskbar: Provides new features to customize the taskbar that were not

included in Windows 95.

20 Introduction to Computing

n Windows 2000 � Microsoft released Windows 2000 in February 2000 as a part of its

professional line. Windows 2000 is based on Windows NT kernel and therefore, it is referred as

Windows NT 5.0. There are more than 29 million lines of code, mainly written in C++ in

Windows 2000 where nearly about 8 million lines of codes are written only for the drivers. Some

of the significant features of Windows 2000 include:

∑ Supports NTFS along with the support for both FAT16 and FAT32

∑ Protects memory of individual applications and processes so that failure of a single

application cannot bring the system down

∑ Features encrypted file systems that help in protect sensitive data

∑ Allows personalization of the menus that help in adapting the menus the way a user works

∑ Includes greater support for high-speed networking devices, such as cable modems and

native ATM

∑ Includes high-level interfaces for database access and Active Directory services

n Windows Millennium � Microsoft released Windows Millennium in September 2000 as a

consumer version of Windows 2000. Popularly known as Windows Me, Windows Millennium

was released to the public as an upgrade for Windows 95 and Windows 98. The overall look of

Windows Me is somewhat like Windows 98 with some additional affixes and features that are

not available in the previous versions of operating systems. Unlike Windows 2000, Windows

Me is not built on the Windows NT architecture, which at that time was mainly used for

professional versions of operating systems only. Compared to other versions of Windows, the

Windows Me did not continue for a longer period and soon it was replaced with the inception of

NT-based Windows XP operating system. Some of the new features introduced in Windows Me

are:

∑ Allows automatic restoring of an old backup whenever there are instances of file corruption

or deletion

∑ Allows a user to protect important system files, which cannot be modified by any type of

other software

∑ Includes Windows Media Player 7 to provide an advanced and improved way of listening

and organizing media files

n Windows XP � Windows XP was released in October 2001, keeping it in line of operating

systems that are developed by Microsoft Corporation for using on general-purpose computer

systems. These computers include home and business desktops, notebook computers, and media

centers. Windows XP was developed as the successor of both Windows 2000 and Windows Me.

The letters �XP� in Windows XP stands for experience. Windows XP is the first consumer-

oriented operating system that is built on the Windows NT kernel and architecture by Microsoft.

There are several editions of Windows. The most common editions of Windows XP are the

Windows XP Home Edition and Windows XP Professional. The Home Edition is targeted for

the home users, while the Professional Edition is targeted for the power users as well as business

clients. Apart from these two editions, the following editions are available for Windows XP:

∑ Windows XP Media Center Edition: Includes additional multimedia features that enhance

the ability to record and watch TV shows, listen to music and view DVDs.

∑ Windows XP Tablet PC Edition: Provides the ability to run the ink-aware Tablet PC

platform.

Fundamentals of Computers 21

∑ Windows XP 64-bit Edition: Released for IA-64 (Itanium) processors.

∑ Windows XP Professional x64 Edition: Released for x86-64 personal computers.

n Windows Vista � Windows Vista is the latest contribution of Microsoft in the series of

Windows operating systems, which was released in January 2007. Microsoft released Windows

Vista as an upgrade to the Windows XP and Windows 2000. Microsoft planned for Windows

Vista in 2001, before the release of Windows XP. However, it took the longest time (more than

5 years) for Microsoft to actually bring in Windows Vista to life. Windows Vista includes

hundreds of new and re-worked features, some of which include:

∑ A completely new GUI and visual style known as Windows Aero

∑ Improved searching features that provide instant search available through all Explorer

windows

∑ New multimedia creation tools, such as Windows DVD Maker

∑ Newly redesigned networking system, audio, and display sub-system

∑ 3.0 version of the .NET framework for developers

∑ Direct X 10 support

∑ Ability to automatically detect and correct problems that are encountered on the computer

UNIX Operating System

UNIX operating system was developed by a group of AT&T employees at Bell Labs in the year 1969.

UNIX is primarily designed to allow multiple users access the computer at the same time and share

resources. In other words, the operating system coordinates the use of resources of the computer by its

users. For example, it can allow one user to create a document while another to format a document.

Furthermore, it can also allow another user to create graphics while letting someone else to edit one

document at the same time. The UNIX operating system controls all the commands generated from the

user keyboards as well as the data generated in such a way that each user believes that he/she is the

only person working on the computer.

The UNIX operating system is written in C language. In UNIX, everything is treated as a file and its

core part is known as the kernel. This operating system is mostly popular among engineers, scientists,

and software professionals due to its properties. The significant properties of UNIX include:

n Multi-user capability � It allows more than one user to access different resources of the

computer at the same time.

n Multitasking capability � It allows a user to run multiple programs concurrently, which can

share both CPU time as well as resources of the computer.

n Portability � It allows a user to execute the operating system code on any machine having

minimum hardware requirements for running the operating system.

n Flexibility � It uses modular programming where reuniting several small software routines

forms a complete application.

n Security � It supports a strong security system that maintains security at various levels and

helps in securely execute a program on the Internet.

22 Introduction to Computing

Architecture of UNIX

UNIX has a hierarchical architecture consisting of several layers, where each layer provides a unique

function as well as maintains interaction with its lower layers. Such a hierarchical or modular

architecture is advantageous for the operating system, as failure of one layer does not disrupt the

functioning of the whole operating system. The layers of the UNIX operating system are:

∑ Kernel

∑ Service

∑ Shell

∑ User applications

Figure 1.12 shows the various layers of the UNIX operating system.

User Applications

Shell

Service Layer

Kernel

Hardware

(Scheduler, Device Driver, I/O Buffers)

(Library Routines)

(Process Management, Memory Management, I/O
services, and File System

Fig. 1.12 The layers of UNIX operating system

n Kernel Kernel is the core of the UNIX operating system and it gets loaded into memory whenever

you switch on the computer. The kernel contains three components, which are:

∑ Scheduler � It allows scheduling the processing of various jobs.

∑ Device driver � It helps in controlling the Input/Output devices attached to the computer.

∑ I/O buffer � It controls the I/O operations in the computer.

The kernel enables a user to access the hardware with the help of system calls, where a system call

is a service request that is passed to the kernel for executing a user program. Various functions

performed by the kernel are:

∑ Initiating and executing different programs at the same time

∑ Allocating memory to various user and system processes

Fundamentals of Computers 23

∑ Monitoring the files that reside on the disk

∑ Sending and receiving information to and from the network

n Service In the service layer, requests are received from the shell and they are then transformed

into commands to the kernel. In Unix, to access the facilities of the service layer, application programs

use system calls. The service layer, which is also known as the resident module layer, is

indistinguishable from the kernel and consists of a collection of programs providing various services.

These services include:

∑ Providing access to various I/O devices, such as keyboard and monitor

∑ Providing access to storage devices, such as disk drives

∑ Controlling different file manipulation activities, such as reading from a file and writing to a file

n Shell The third layer in the UNIX architecture is the shell, which acts as an interface between a

user and the computer for accepting the requests and executing programs. The shell is also known as

the command interpreter that helps in controlling the interaction with the UNIX operating system. The

primary function of the shell is to read the data and instructions from the terminal, and then execute

commands and finally display the output on the monitor. The shell is also termed as the utility layer as

it contains various library routines for executing routine tasks. The various shells that are found in the

UNIX operating system are:

∑ Bourne shell � It is the default UNIX shell, which is initiated when a Unix user logs into the

Unix computer. The executable file of Bourne shell is sh and its command prompt is $.

∑ C shell � It is named after the C programming language, as the syntax of C shell is similar to

that of C language. The C shell is the first Unix shell that introduces the feature of command

history. The C shell also allows a user to provide short names for long command sequences. The

executable file of C shell is csh and its command prompt is %.

∑ Korn shell � The features of the Korn shell are similar to that of the Bourne shell; however, a

user can use it to avail the facilities of both the Bourne and Korn shells. The executable file of

the Korn shell is ksh and its command prompt is $.

∑ Restricted shell � It is used in secure installations where users need to be restricted to work in

a specific environment. It helps in restricting users from accessing files and directories of other

users. The executable file of the Restricted shell is rsh and its command prompt is $.

n User applications The last layer in the UNIX architecture is the user applications, which are

used to perform several tasks and communicating with other users of UNIX. Some of the important

examples of user applications include text processing, software development, database management

and electronic communication.

Review Questions

1.1 State whether the following statements are true or false.

a. Pascaline was the first digital computer invented by Blaise Pascal.

b. In the second generation of computers, vacuum tubes were used to build the circuitry for the

computers.

c. Transistors were used before the invention of vacuum tubes.

24 Introduction to Computing

d. Magnetic core memories are replaced by semiconductor memories in the fourth generation of

computers.

e. The PC is a third-generation computer.

f. Optical disks were introduced in the fourth generation.

g. There is no need of air-conditioning for portable and desktop PCs of the fifth generation.

h. The alphanumeric keys are the keys that help perform a specific task such as searching a file or

refreshing the Web pages.

i. Dot matrix printers are slower than inkjet printers and are used to generate high quality

photographic prints.

j. The UNIX operating system was written in C language.

1.2 Fill in the blanks with appropriate words in each of the following statements.

a. A was a device made up of glass and used filaments to generate electrons.

b. The size of the was smaller than the vacuum tubes and generated less heat as

compared to vacuum tubes.

c. The goal of computing is to develop devices that can respond to natural language

input and can learn and self-organize.

d. Mainframe computers are large and expensive in comparison to the .

e. The keys include the number keys and the alphabet keys.

1.3 What is the name of the first known computing device?

1.4 How is the development of computers divided into generations? What are the different generations

of computers?

1.5 How were computers of the second generation different from the computers of the first generation?

1.6 What is the major change in the fourth-generation computers? What are the various characteristics

of the computers of this generation?

1.7 How are computers classified? Explain briefly.

1.8 What are input devices? Briefly explain some popular input devices.

1.9 What is the purpose of an output device? Explain various types of output devices.

1.10 What is an operating system? What are the various categories of operating systems?

CHAPTER

2
Computing Concepts

2.1 INTRODUCTION

 Computers store and process numbers, letters and words that are often referred to as data.

∑ How do we communicate data to computers?

∑ How do the computers store and process data?

Since the computers cannot understand the Arabic numerals or the English alphabets, we should

use some �codes� that can be easily understood by them.

In all modern computers, storage and processing units are made of a set of silicon chips, each

containing a large number of transistors. A transistor is a two-state device that can be put �off� and

�on� by passing an electric current through it. Since the transistors are sensitive to currents and act like

switches, we can communicate with the computers using electric signals, which are represented as a

series of �pulse� and �no-pulse� conditions. For the sake of convenience and ease of use a pulse is

represented by the code �1� and a no-pulse by the code �0�. They are called bits, an abbreviation of

�binary digits�. A series of 1s and 0s are used to represent number or a character and thus they provide

a way for humans and computers to communicate with one another. This idea was suggested by John

Von Neumann in 1946. The numbers represented by binary digits are known as binary numbers.

Computers not only store numbers but also perform operations on them in binary form.

In this chapter, we discuss how the numbers are represented using what are known as binary codes,

how computers perform arithmetic operations using the binary representation, how digital circuits

known as logic gates are used to manipulate data, how instructions are designed using what are known

as programming languages and how algorithms and flow charts might help us in developing

programs.

2.2 BINARY NUMBER SYSTEM

The binary number system is a numeral system that represents numeric values using only two digits, 0

and 1, which are known as bits. Therefore, the base of the binary number system is 2. Each bit position

26 Introduction to Computing

in a binary number represents a power of the base 2. The internal functioning of a computer system is

carried out in binary number system format. All the decimal numbers that a user enters in a computer

system are first converted into binary numbers and then, the arithmetic operations are performed on

them. The results are again converted into its decimal equivalent and are displayed to the user.

The decimal equivalent of the binary number 10010 (written as 100102) is:

(1 ¥ 24) + (0 ¥ 23) + (0 ¥ 22) + (1 ¥ 21) + (0 ¥ 20)

= 16 + 0 + 0 + 2 + 0

= 18

In computer systems, numbers can be represented in two ways, unsigned representation and signed

representation. The binary number system can be used to represent the following two types of

numbers:

n Signed number

n Unsigned number

In signed number representation, the Most Significant Bit (MSB) of the number represents the sign of

the number. In a number, if the value of MSB is 0 then the number is considered as a positive number

and if the value of MSB is 1 then the number is considered as a negative number. In signed number

representation, the remaining bits show the absolute value of the number. For example, if we represent

an 8-bit number as a signed number then the MSB of the number represents the sign of the number and

the remaining 7 bits represents the absolute value of the number that ranges from 0 to 127.

In unsigned number representation, the number does not consist of any sign bit and therefore all the

8 bits represent the value of the number. Table 2.1 shows the signed and unsigned representation of

8-bit numbers.

Table 2.1 Signed and Unsigned Representation of 8-bit Number

Bit Representation Unsigned Signed

00000000 0 +0

00000001 1 +1

� � �

� � �

� � �

01111111 127 +127

10000000 128 �0

10000001 129 �1

� � �

� � �

� � �

11111111 255 �127

Computing Concepts 27

2.3 BINARY CODES

In digital electronics system, various binary codes are used to encode statements that consist of letters

in numeric and symbol forms, written in the computer understandable programming languages. The

commonly used binary codes are:

n Binary Coded Decimal (BCD) code

n American Standard Code for Information Interchange (ASCII) code

Binary Coded Decimal Code

In the BCD code, each decimal digit is represented by a binary code of four bits, and the binary

weights of four bits are 23, 22, 21 and 20. The decimal numbers and corresponding BCD numbers are

shown in Table 2.2.

Table 2.2 Decimal Numbers and Corresponding BCD Numbers

Decimal Number Binary Coded Decimal (BCD)

23 = 8 22 = 4 21 = 2 20 = 1

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

Example 2.1

Decimal number = 127

Equivalent in BCD code = 0001 0010 0111

In the above example, each decimal digit of number 127 is represented by a group of 4 bits in BCD

codes.

American Standard Code for Information Interchange

ASCII is a standard alphanumeric code that represents numbers, alphabetic characters, and symbols

using a 7-bit code format. The standard ASCII character set consists of 128 decimal numbers ranging

from 0 through 127, which are assigned to letters, numbers, punctuation marks, and the most common

special characters. Table 2.3 shows ASCII binary codes for some of the characters.

The extended ASCII character set consists of 128 decimal numbers that ranges from 128 through

255 representing additional special, mathematical, graphic, and foreign characters.

28 Introduction to Computing

Table 2.3 ASCII Binary Codes

Character ASCII Character ASCII Character ASCII

binary code binary code binary code

A 01000001 a 01100001 0 00110000

B 01000010 b 01100010 1 00110001

C 01000011 c 01100011 2 00110010

D 01000100 d 01100100 3 00110011

E 01000101 e 01100101 4 00110100

F 01000110 f 01100110 5 00110101

G 01000111 g 01100111 6 00110110

H 01001000 h 01101000 7 00110111

I 01001001 i 01101001 8 00111000

J 01001010 j 01101010 9 00111001

K 01001011 k 01101011 : 00111010

L 01001100 l 01101100 ; 00111011

M 01001101 m 01101101 < 00111100

N 01001110 n 01101110 = 00111101

O 01001111 o 01101111 > 00111110

P 01010000 p 01110000 ? 00111111

Q 01010001 q 01110001 SPACE 00100000

R 01010010 r 01110010 (00101000

S 01010011 s 01110011) 00101001

T 01010100 t 01110100 * 00101010

U 01010101 u 01110101 + 00101011

V 01010110 v 01110110 , 00101100

W 01010111 w 01110111 � 00101101

X 01011000 x 01111000 . 00101110

Y 01011001 y 01111001 / 00101111

Z 01011010 z 01111010 � 00100010

2.4 BINARY ARITHMETIC OPERATIONS

Arithmetic operations on binary numbers are performed in the same manner as on decimal numbers.

The basic binary arithmetic operations are:

n Binary addition

n Binary subtraction

n Binary multiplication

n Binary division

Binary Addition

In the binary number system, the simplest arithmetic operation is binary addition.

Computing Concepts 29

Rules of binary addition

The rules applied for adding binary numbers are the same as those applied for decimal numbers. That

is, sum of the columns and the carry the sum forwards to the next column. The rules of binary addition

are:

n 0 + 0 = 0, with no carry

n 0 + 1 = 1, with no carry

n 1 + 0 = 1, with no carry

n 1 + 1 = 0, with carry 1

Example 2.2

Let�s take a simple example of adding two numbers.

 1 0

+ 1 0 0

 1 1 0

In the above example, starting from the right column, 0 + 0 = 0, 1 + 0 = 1, and 0 + 1 = 1. There is no

carry to add in the next significant bit.

Example 2.3

Let�s take another example of adding two numbers.

 1 1 ¨ææ carry

 1 1 ¨ææ number 1

+ 1 0 1 ¨ææ number 2

 1 0 0 0

Starting from the right column, 1 + 1 = 0 with carry 1. In the next column, 1 + 1 + 0 = 0 with carry

1. Now in the last column, 1 +1 = 0 with carry 1. As there is no further column to add, therefore 1

(carry from the addition of the previous column) will be the resultant value for the last column.

Example 2.4

Let�s take another example.

 1 1 1 1 ¨ææ carry

 1 0 1 1 ¨ææ number 1

+ 1 1 1 1 ¨ææ number 2

 1 1 0 1 0

Starting from the right column, 1 + 1 = 0 with carry 1. In the next column, 1 + 1 + 1 = 1 with carry

1. Now in the last column, 1 +1 = 0 with carry 1. In last column, 1 + 1 + 1 = 1 with carry 1. There is no

further column to add, therefore 1 (carry from the addition of the previous column) will be the resultant

value for the last column.

30 Introduction to Computing

Binary Subtraction

In the binary number system, another simplest arithmetic operation is binary subtraction.

Rules of binary subtraction

The rules applied for subtracting binary numbers are the same as those applied for decimal numbers.

The rules of binary subtraction are:

n 0 � 0 = 0, with no borrow

n 0 � 1 = 1, with borrow 1 from the more significant bit

n 1 � 0 = 1, with no borrow

n 1 � 1 = 0, with no borrow

Example 2.5

Let�s take a simple example of subtraction

 1 1 0

� 1 0 0

 0 1 0

In the above example, starting from the right column, 0 � 0 = 0, 1 � 0 = 1, and 1 � 1 = 0.

Example 2.6

Let�s take another example of subtraction.

 1 1 1 ¨ææ borrow

 1 1 0 0 1 1 ¨ææ minuend

� 1 0 1 1 0 ¨ææ subtrahend

 0 1 1 1 0 1 ¨ææ Difference

Starting from the right column, 1 � 0 = 1, 1 � 1 = 0 and in next column 1 is to be subtracted from 0;

therefore 1 is borrowed from the adjacent bit. As 1 is not available as an adjacent bit, you borrow it

from the next column. After borrowing 1 from the next column, the result of subtraction will be 1.

Repeat the same step to solve the rest of the columns.

Example 2.7

Let�s consider one more example of subtraction.

 1 1 ¨ææ borrow

 1 1 1 0 0 ¨ææ minuend

� 1 0 1 1 1 ¨ææ subtrahend

 1 0 1 ¨ææ Difference

Starting from the right column, 1 is to be subtracted from 0; therefore 1 is borrowed from the

adjacent bit. As 1 is not available as an adjacent bit, you need to borrow it from the next column. After

Computing Concepts 31

borrowing 1 from the next column, the result of subtraction will be 1. Repeat the same step to solve the

rest of the columns.

Binary Multiplication

In the binary number system, the third arithmetic operation is binary multiplication.

Rules of binary multiplication

The same rules applied to the binary multiplication are the same as those applied for decimal

multiplication. For example, two binary numbers x and y are to be multiplied using partial products

process. In the partial product process, each digit of x is multiplied with all the digits of y and for each

digit of x, the product will be written in a new line, shifted leftward. The sum of all lines gives the final

result of the multiplication of two binary numbers. The rules of binary multiplication are:

n 0 * 0 = 0

n 0 * 1 = 0

n 1 * 0 = 0

n 1 * 1 = 1, with no carry and borrow bit

Example 2.8

Let�s take an example of multiplication

 1 1 0 ¨ææ multiplicand

* 1 0 0 ¨ææ multiplier

 0 0 0

 0 0 0 ¨ææ Partial products

 + 1 1 0

 1 1 0 0 0 ¨ææ Product

Example 2.9

Let�s take another example of multiplication

 1 1 1 0

 * 1 0 1 0

 0 0 0 0

 1 1 1 0

 0 0 0 0

 1 1 1 0

 1 0 0 0 1 1 0 0

Example 2.10

Let�s consider one more example.

 1 0 1 0

 * 1 1 1 0

32 Introduction to Computing

 0 0 0 0

 1 0 1 0

 1 0 1 0

 1 0 1 0

 1 0 0 0 1 1 0 0

Binary Division

In the binary number system, the fourth arithmetic operation is binary division.

Rules of binary division

Rules for division of binary numbers are the same as those applied for the division of decimal numbers.

Example 2.11

Let�s take an example of division.

 1 0 1 ¨ææ Quotient

 1 0 1 1 1 0 1 1 ¨ææ Dividend

 � 1 0 1

 0 0 1 1

 � 0 0 0

 0 1 1 1

 � 1 0 1

 1 0 ¨ææ Remainder

Example 2.12

Let�s take another example of division.

 1 0 1 1

 1 0 0 1 0 1 1 0 1

 � 1 0 0

 0 0 1 1 0

 � 1 0 0

 0 1 0 1

 � 1 0 0

 1

Divisor ¨ææ

Computing Concepts 33

Example 2.13

Let�s take one more example.

 1 1 1 1

 1 0 0 1 1 1 1 0 1

 � 1 0 0

 0 1 1 1

 � 1 0 0

 0 1 1 0

 � 1 0 0

 1 0 1

 � 1 0 0

 1

2.5 LOGIC GATES

Logic gates are the basic building blocks of a digital computer. In general, all the logic gates have two

input signals and one output signal. These two input signals are nothing but two binary values, 0 or 1

that helps represent different voltage levels. In all logic gates, the binary value 0 represents the low

state of voltage that is approximately 0 volt and the binary value 1 represents the high state of voltage

that is approximately +5 volts. The three basic logic gates are:

n AND

n OR

n NOT

All logic gates have a logical expression, symbol, and truth table. The logical expression helps find

the output of the logic gate on the basis of its inputs. A symbol is the pictorial presentation of a logic

gate that can have one or more than one input and one output. The truth table helps find the final

logical state, such as true/false or 1/0 of the logic gate in the form of its output.

AND Gate

The AND gate is one of the basic logic gates that give an output signal of value 1 only when all its

input signals are of value 1. In other words, the AND gate gives an output signal of value 0 whenever

its one input signal is of value 0.

Logical Expression

The logical expression for the AND function is:

F = A.B

where, F is the output that depends on inputs, A and B.

34 Introduction to Computing

Symbol

The symbol of the AND gate is shown in Fig. 2.1.

Fig. 2.1 AND gate

Truth Table

Table 2.4 Truth Table for AND Gate

Input A Input B Output F

0 0 0

0 1 0

1 0 0

1 1 1

Example 2.14

Consider the following system that has two AND gates:

I1

I2

O1

I3

O2

Assuming

I1 = 1, I2 = 0 and I3 = 0

Outputs would be

O1 = I1.I2 = 1.0 = 0

O2 = I3.O1 = 0.0 = 0

Example 2.15

Consider the following system with three AND gates:

Computing Concepts 35

I1

I2

O1

I3

O2

I4

O3

Assuming

I1 = 1, I2 = 1, I3 = 1 and I4 = 1

Outputs would be:

O1 = I1.I2 = 1.1 = 1

O2 = I3.O1 = 1.1 = 1

O3 = I4.O2 = 1.1 = 1

OR Gate

The OR gate is another basic logic gate that gives an output signal of value 1 whenever its one input

signal is of value 1. In other words, the OR gate gives an output signal of value 0 when all its input

signals are of value 0.

Logical Expression

The logical expression for the OR function is:

F = A + B

where, F is the output that depends on inputs A and B.

Symbol

The symbol of the OR gate is shown in Fig. 2.2.

Fig. 2.2 OR Gate

Truth Table

Table 2.5 Truth table for OR Gate

Input A Input B Output F

0 0 0

0 1 1

1 0 !

1 1 1

36 Introduction to Computing

Example 2.16

Consider the following configuration of OR gates:

I1

I2

O1

I3

O2

When

I1 = 1, I2 = 0 and I3 = 1

Outputs

O1 = I1.I2 = 1.0 = 1

O2 = I3.O1 = 1.1 = 1

Example 2.17

Consider the following system three OR gates,

I1

I2

O1

I3

O2

O3
I4

Assuming

I1 = 0, I2 = 0, I3 = 1 and I4 = 1

Outputs O1, O2 and O3 would be

O1 = I1.I2 = 0.0 = 0

O2 = I3.O1 = 1.0 = 1

O3 = I4.O2 = 1.1 = 1

NOT Gate

The third basic logic gate is NOT gate which produces an output of the opposite state to its input. This

logic gate always has only one input signal and one output signal.

Logical Expression

The logical expression for the NOT function is:

F = A

where, F is the output that depends on input, A.

Symbol

The symbol of the NOT gate is shown in Fig. 2.3.

Fig. 2.3 NOT gate

Computing Concepts 37

Truth Table

Table 2.6 Truth Table for NOT Gate

Input A Input F

0 1

1 0

Example 2.18

Consider two NOT gates configured as shown below:

I1
O1 2= I O2

If I1 = 1, then O1 = 1 1=I = 0

and therefore

I2 = O1=0

O2 = 2 0=I = 1

2.6 PROGRAMMING LANGUAGES

The operations of a computer are controlled by a set of instructions (called a computer program).

These instructions are written to tell the computer:

1. what operation to perform

2. where to locate data

3. how to present results

4. when to make certain decisions

The communication between two parties, whether they are machines or human beings, always

needs a common language or terminology. The language used in the communication of computer

instructions is known as the programming language. The computer has its own language and any

communication with the computer must be in its language or translated into this language.

Three levels of programming languages are available. They are:

1. machine languages (low level languages)

2. assembly (or symbolic) languages

3. procedure-oriented languages (high level languages)

38 Introduction to Computing

Machine Language

As computers are made of two-state electronic devices they can understand only pulse and no-pulse

(or �1� and �0�) conditions. Therefore, all instructions and data should be written using binary codes

1 and 0. The binary code is called the machine code or machine language.

Computers do not understand English, Hindi or Tamil. They respond only to machine language.

Added to this, computers are not identical in design, therefore, each computer has its own machine

language. (However, the script 1 and 0, is the same for all computers). This poses two problems for

the user.

First, it is difficult to understand and remember the various combinations of 1�s and 0�s

representing numerous data and instructions. Also, writing error-free instructions is a slow process.

Secondly, since every machine has its own machine language, the user cannot communicate with

other computers (If he does not know its language). Imagine a Tamilian making his first trip to Delhi.

He would face enormous obstacles as the language barrier would prevent him from communicating.

Machine languages are usually referred to as the first generation languages.

Assembly Language

The Assembly language, introduced in 1950s, reduced programming complexity and provided some

standardization to build an application. The assembly language, also referred to as the second-

generation programming language, is also a low-level language. In an assembly language, the 0s and

1s of machine language are replaced with abbreviations or mnemonic code.

The main advantages of an assembly language over a machine language are:

n As we can locate and identify syntax errors in assembly language, it is easy to debug it.

n It is easier to develop a computer application using assembly language in comparison to machine

language.

n Assembly language operates very efficiently.

An assembly language program consists of a series of instructions and mnemonics that correspond

to a stream of executable instructions. An assembly language instruction consists of a mnemonic code

followed by zero or more operands. The mnemonic code is called the operation code or opcode, which

specifies the operation to be performed on the given arguments. Consider the following machine code:

10110000 01100001

Its equivalent assembly language representation is:

mov al, 061h

In the above instruction, the opcode �move� is used to move the hexadecimal value 61 into the

processor register named �al�. The following program shows the assembly language instructions to

subtract two numbers:

ORG 500 /Origin of program is location 500

LDA SUB /Load subtrahend to AC

CMA /Complement AC

INC /Increment AC

ADD MIN /Add minuend to AC

STA DIF /Store difference

HLT /Halt computer

Computing Concepts 39

MIN, DEC 56 /Minuend

SUB, DEC -2 /subtrahend

DIF, HEX 0 /Difference stored here

END /End of symbolic program

It should be noted that during execution, the assembly language program is converted into the

machine code with the help of an assembler. The simple assembly language statements had one-to-

one correspondence with the machine language statements. This one-to-one correspondence still

generated complex programs. Then, macroinstructions were devised so that multiple machine

language statements could be represented using a single assembly language instruction. Even today

programmers prefer to use an assembly language for performing certain tasks such as:

n To initialize and test the system hardware prior to booting the operating system. This assembly

language code is stored in ROM

n To write patches for disassembling viruses, in anti-virus product development companies

n To attain extreme optimization, for example, in an inner loop in a processor-intensive algorithm

n For direct interaction with the hardware

n In extremely high-security situations where complete control over the environment is required

n To maximize the use of limited resources, in a system with severe resource constraints

High-Level Languages

High level languages further simplified programming tasks by reducing the number of computer

operation details that had to be specified. High level languages like COBOL, Pascal, FORTRAN, and

C are more abstract, easier to use, and more portable across platforms, as compared to low-level

programming languages. Instead of dealing with registers, memory addresses and call stacks, a

programmer can concentrate more on the logic to solve the problem with help of variables, arrays or

Boolean expressions. For example, consider the following assembly language code:

LOAD A

ADD B

STORE C

Using FORTRAN, the above code can be represented as:

C = A + B

The above high-level language code is executed by translating it into the corresponding machine

language code with the help of a compiler or interpreter.

High-level languages can be classified into the following three categories:

n Procedure-oriented languages (third generation)

n Problem-oriented languages (fourth generation)

n Natural languages (fifth generation)

Procedure-oriented Languages

High-level languages designed to solve general-purpose problem are called procedural languages or

third-generation languages. These include BASIC, COBOL, FORTRAN, C, C++, and JAVA, which

are designed to express the logic and procedure of a problem. Although, the syntax of these

40 Introduction to Computing

programming languages is different, they use English-like commands that are easy to follow. Another

major advantage of third-generation languages is that they are portable. You can put the compiler (or

interpreter) on any computer and create the object code. The following program represents the source

code in the C language:

if(n>10)

{

do

{

n++;

}while (n<50);

}

Problem-oriented Languages

Problem-oriented languages are used to solve specific problems and are known as the fourth-

generation languages. These include database query language and Visual Basic, which require you to

instruct the computer in a step-by-step fashion. Fourth-generation languages have reduced

programming efforts and overall cost of software development. These languages use either a visual

environment or a text environment for program development similar to that of third-generation

languages. A single statement in a fourth-generation language can perform the same task as multiple

lines of a third-generation language. Further, the programmer just needs to drag and drop from the

toolbar, to create various items like buttons, text boxes, labels, etc. Also, the programmer can quickly

create the prototype of the software application.

Natural Languages

Natural languages are designed to make a computer to behave like an expert and solve problems. The

programmer just needs to specify the problem and the constraints for problem-solving. Natural

languages such as LISP and PROLOG are mainly used to develop artificial intelligence and expert

systems. These languages are widely known as fifth generation languages.

2.7 TRANSLATOR PROGRAMS

Assembler

An assembler is a computer program that translates assembly language statements into machine

language codes. The assembler takes each of the assembly language statements from the source code

and generates a corresponding bit stream using 0�s and 1�s. The output of the assembler in the form of

sequence of 0�s and 1�s is called object code or machine code. This machine code is finally executed

to obtain the results.

A modern assembler translates the assembly instruction mnemonics into opcodes and resolves

symbolic names for memory locations and other entities to create the object code. Several

sophisticated assemblers provide additional facilities that control the assembly process, facilitate

program development, and aid debugging. The modern assemblers like Sun SPARC and MIPS based

Computing Concepts 41

on RISC architectures, optimizes instruction scheduling to attain efficient utilization of CPU. The

modern assemblers generally include a macro facility and are called macro assemblers.

Assemblers can be classified as single-pass assemblers and two-pass assemblers. The single-pass

assembler was the first assembler that processes the source code once to replace the mnemonics with

the binary code. The single-pass assembler was unable to support advanced source-code optimization.

As a result, the two-pass assembler was developed that read the program twice. During the first pass,

all the variables and labels are read and placed into the symbol table. On the second pass, the label gaps

are filled from the table by replacing the label name with the address. This helps to attain higher

optimization of the source code. The translation process of an assembler consists of the following tasks:

n Replacing symbolic addresses like LOOP, by numeric addresses

n Replacing symbolic operation code by machine operation codes

n Reserving storage for the instructions and data

n Translating constants into their machine representation

Compiler

The compiler is a computer program that translates the source code written in a high-level language

into the corresponding object code of the low-level language. This translation process is called

compilation. The entire high-level program is converted into the executable machine code file. A

program that translates from a low-level language to a high-level one is a decompiler. Compiled

languages include COBOL, FORTRAN, C, C++, etc.

In 1952, Grace Hopper wrote the first compiler for the A-0 programming language. In 1957, John

Backus at IBM introduced the first complete compiler. With the increasing complexity of computer

architectures and expanding functionality supported by newer programming languages, compilers

have become more and more complex. Though early compilers were written in assembly languages,

nowadays it has become common practice to implement a compiler in the language it compiles.

Compilers are also classified as single-pass compilers and multi-pass compilers. Though single-pass

compilers are generally faster than multi-pass compilers, for sophisticated optimization, multi-pass

assemblers are required to generate high-quality code.

Interpreter

The interpreter is a translation program that converts each high-level program statement into the

corresponding machine code. This translation process is carried out just before the program statement

is executed. Instead of the entire program, one statement at a time is translated and executed

immediately. The commonly used interpreted language is BASIC and PERL. Although, interpreters

are easier to create as compared to compilers, the compiled languages can be executed more efficiently

and are faster.

2.8 ALGORITHM AND FLOW CHART

Algorithms and flow charts are two important methods that help users in solving problems or

accomplishing tasks using a computer. An algorithm is a complete, detailed and precise sequence of

operations for solving a problem independently of the software or hardware of the computer.

42 Introduction to Computing

Let us assume that the XYZ company gives each of its salespersons Rs 5000 at the starting of the

month for covering various expenses, such as food, lodge, and travel. At the end of the month, the

salesperson must submit the receipts of his/her total expenditures to the company. If the amount is less

than Rs 5000, then the remaining amount must be returned to the company. Now, a simple algorithm

can be developed to find out how much money, if any, should be returned to the company:

1. Read the total expenses of the month.

2. Subtract this amount from Rs 5000.

3. If the remainder is greater than 0, return the amount to the company.

Now to visualize the working of an algorithm, one needs to take the help of a flow chart, which is

the pictorial representation of the algorithm depicting the flow of the various steps in the algorithm. If

we consider the above example of the expenses of the salesperson, then the flow chart of the algorithm

can be represented, as shown in Fig. 2.4.

Start

Read total
expenses

If
expenses
< 5000Rs

Subtract
expenses from

Rs 5000

Print ‘‘No
dues’’

Stop

Print ‘‘Due
amount’’

Stop

Yes

No

Fig. 2.4 Flow chart representation of an algorithm

Flow charts are an aid to writing programs and they serve several other purposes. They assist in

reviewing and debugging of a program, provide effective program documentation, and help in

explaining the solution and the program to others.

Example 2.19 Write an algorithm for finding greatest among three numbers.

Let x, y and z be the numbers. Now, you can follow the algorithm below to determine the greatest

number among the three:

Computing Concepts 43

1. Read the three numbers.

2. If x > y

a. If x > z, then x is the greatest number.

b. Else, z is the greatest number

3. Else,

a. If y > z, then y is the greatest number.

b. Else, z is the greatest number.

Example 2.20 Write the algorithm for converting the degree in Celsius from Fahrenheit

Let us consider x to be the temperature given in Celsius. Now you need to follow the algorithm below

to determine the temperature in Fahrenheit:

1. Read x

2. Multiply x with 9/5.

3. Add 32 to the multiplied result.

4. Print the final value which is the temperature in Fahrenheit.

Example 2.21 Write the algorithm for calculating the average of n integers.

The algorithm for calculating the average of n integers is as follows:

1. Read n integers.

2. Calculate the sum of the integers.

3. Divide the sum by the total number of integers, that is, n.

4. Print the final value which is the average of n integers.

Example 2.22 Write the algorithm for checking whether a number is odd or even.

The following is the algorithm to determine whether a number is odd or even:

1. Read the given number, say x.

2. Divide x by 2.

3. If the remainder is 1, then print x is odd.

4. Else, print x is even.

Example 2.23 Write the algorithm to determine whether a number is positive, negative
or zero.

1. Read the given number, say x.

2. If x π 0,

a. If x > 0, the value of x is positive.

b. Else, the value of x is negative.

3. Else, the value of x is zero.

44 Introduction to Computing

Example 2.24 Give a flow chart for addition of two numbers.

Input
Input

x
y

Sum = +x y

Print
Sum

Stop

Start

Example 2.25 Give a flow chart to print the average of three numbers.

Print
Average

Input
Input

x
y

Input z

Sum = + +
Average = Sum/3

x y z

Stop

Start

Computing Concepts 45

Example 2.26 Give a flow chart for Example 2.19

Input
Input

x
y

Start

Print
is the

largest
number

x Yes Yes

No No

Print
z is the
largest
number

If
>x z

If
>x Y

If
>y z

Yes

No

Print
z is the
largest
number

Stop

Print
y is the
largest
number

Example 2.27 Give a flow chart Example 2.22.

Input x

Start

If
remainder

= 1

Yes Print
is oddx

No

Stop

Divide by
2, i.e. /2

x
x

Print
x is even

46 Introduction to Computing

Example 2.28 Give a flow chart to determine the average of 10 numbers.

i = 0
Sum = 0

Start

False

True

Is
< 10
?

i
average =
sum/10

Print average
Input x

sum = + sum
is incremented by 1

x
iStop

2.9 USING THE COMPUTER

Computers can be used to solve specific problems that may be scientific or commercial in nature. In

either case, there are some basic steps involved in using the computers. These are as follows:

Problem analysis Identify the known and unknown parameters and state the constraints under

which the problem is to be solved. Select a method of solution.

Collecting information Collect data, information and the documents necessary for solving the

problem and also plan the layout of output results.

Preparing the computer logic Identify the sequence of operations to be performed in the prcess of

solving the problem and plan the program logic, preferably using a program flow chart.

Writing the computer program Write the program of instructions for the computer in a suitable

language.

Testing the program There are usually errors(bugs) in it. Remove all these errors which may be

either in using the language or in the logic.

Preparing the data Prepare input data in the required form.

Running the program This may be done either in batch mode or interactive mode. The

computations are performed by the computer and the results are given out.

The use of a particular input/output device depends upon the nature of the problem, type of input

data and the form of output required.

Computing Concepts 47

Review Questions

2.1 State whether the following statements are true or false.

(a) Each bit position in a binary number represents a power of base 10.

(b) In the binary number system, the simplest arithmetic operation is binary addition.

(c) In all logic gates, the binary value 0 represents the low state of voltage that is approximately 0

volt and the binary value 1 represents the high state of voltage that is approximately +5 volts.

(d) All logic gates have a logical expression, symbol and truth table.

(e) An assembly language, also referred as second-generation programming language, is a high-

level language.

2.2 Fill in the blanks with appropriate words in each of the following statements.

(a) In computer systems, numbers can be represented in two ways, representation

and representation.

(b) In the code, each decimal digit is represented by a binary code of four bits.

(c) The standard ASCII character set consists of 128 decimal numbers ranging from

through .

(d) An assembly language instruction consists of a mnemonic code followed by zero or more

.

(e) The is a translation program that converts each high-level program statement into

the corresponding machine code.

2.3 What types of numbers are represented by the binary number system? Explain briefly.

2.4 Explain the binary codes that are commonly used in digital electronics.

2.5 What is the range of extended ASCII character set?

2.6 What are the rules of binary subtraction?

2.7 What do you understand by logic gates? Explain the basic logic gates.

2.8 What is assembly language? What are its main advantages?

2.9 What is high-level language? What are the different types of high-level languages?

2.10 What do you understand by a compiler and an assembler?

2.11 What is a flow chart? How is it different from an algorithm?

2.12 What are the functions of a flow chart?

Review Exercises

2.1 Write a program to show the assembly language instructions for adding two numbers.

2.2 Write a program in Fortran to show the subtraction of two numbers.

2.3 Write a program in C to calculate the sum up to n integer numbers.

2.4 Write a program in C to determine the greater of two integers.

2.5 Consider the following pairs of sequence of bits:

(i) 101011 (ii) 00111011

110101 11100101

How would these pairs of inputs be processed by

(a) AND gate and (b) OR gate?

2.6 How would a NOT gate process the following sequences of bits?

(a) 10111010 (b) 11110011

48 Introduction to Computing

2.7 Find the truth tables for the following logic circuits.

B

A

E
B

A

EAND AND OR

(a) (b)

2.8 The logic circuit shown below combines two NOT and OR circuits. What will be its output sequence

if A = 0011 and B = 1010?

B

A

Output

2.9 A class of 50 students sits for an examination which has three sections A, B and C. Marks are

awarded separately for each section. Draw a flow chart to read these marks for each student and

print the total marks obtained by each student, the class average for each section, and the number of

students who have scored more than 60 marks.

2.10 Describe an algorithm to solve for X in the quadratic equation where

X =

2 4

2

b b ac

a

- ± -

If (b2 � 4ac) is negative do not calculate the roots but instead print 'NEGATIVE'.

Draw a flow chart to depict the algorithm pictorially.

CHAPTER

3
Constants, Variables and

Data Types

3.1 INTRODUCTION

A programming language is designed to help process certain kinds of data consisting of numbers,

characters and strings and to provide useful output known as information. The task of processing of

data is accomplished by executing a sequence of precise instructions called a program. These

instructions are formed using certain symbols and words according to some rigid rules known as

syntax rules (or grammar). Every program instruction must confirm precisely to the syntax rules of the

language.

Like any other language, C has its own vocabulary and grammar. In this chapter, we will discuss the

concepts of constants and variables and their types as they relate to C programming language.

3.2 CHARACTER SET

The characters that can be used to form words, numbers and expressions depend upon the computer on

which the program is run. However, a subset of characters is available that can be used on most

personal, micro, mini and mainframe computers. The characters in C are grouped into the following

categories:

1. Letters

2. Digits

3. Special characters

4. White spaces

The entire character set is given in Table 3.1.

The compiler ignores white spaces unless they are a part of a string constant. White spaces may be

used to separate words, but are prohibited between the characters of keywords and identifiers.

50 Introduction to Computing

Trigraph Characters

Many non-English keyboards do not support all the characters mentioned in Table 3.1. ANSI C

introduces the concept of �trigraph� sequences to provide a way to enter certain characters that are not

available on some keyboards. Each trigraph sequence consists of three characters (two question marks

followed by another character) as shown in Table 3.2. For example, if a keyboard does not support

square brackets, we can still use them in a program using the trigraphs ??(and ??).

Table 3.1 C Character Set

Letters Digits

Uppercase A.....Z All decimal digits 09

Lowercase a.....z

Special Characters

, comma & ampersand

. period ^ caret

; semicolon * asterisk

: colon � minus sign

? question mark + plus sign

� apostrophe < opening angle bracket

� quotation mark (or less than sign)

! exclamation mark > closing angle bracket

| vertical bar (or greater than sign)

/ slash (left parenthesis

\ backslash) right parenthesis

~ tilde [left bracket

_ under score] right bracket

$ dollar sign { left brace

% percent sign } right brace

number sign

White Spaces

Blank space

Horizontal tab

Carriage return

New line

Form feed

Table 3.2 ANSI C Trigraph Sequences

Trigraph sequence Translation

??= # number sign

??([left bracket

??)] right bracket

??< { left brace

??> } right brace

??! | vetical bar

??/ \ back slash

??/ ^ caret

??- ~ tilde

Constants, Variables and Data Types 51

3.3 C TOKENS

In a passage of text, individual words and punctuation marks are called tokens. Similarly, in a C

program the smallest individual units are known as C tokens. C has six types of tokens as shown in

Fig. 3.1. C programs are written using these tokens and the syntax of the language.

Keywords

float
while

+ –
* ,

"ABC"
"year"

–15.5
100

Identifiers

main
amount

[]
{ }

Special Symbols

C TOKENS

StringsConstants Operators

Fig. 3.1 C tokens and examples

3.4 KEYWORDS AND IDENTIFIERS

Every C word is classified as either a keyword or an identifier. All keywords have fixed meanings and

these meanings cannot be changed. Keywords serve as basic building blocks for program statements.

The list of all keywords of ANSI C are listed in Table 3.3. All keywords must be written in lowercase.

Some compilers may use additional keywords that must be identified from the C manual.

NOTE: C99 adds some more keywords.

Table 3.3 ANSI C Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

52 Introduction to Computing

Identifiers refer to the names of variables, functions and arrays. These are user-defined names and

consist of a sequence of letters and digits, with a letter as a first character. Both uppercase and

lowercase letters are permitted, although lowercase letters are commonly used. The underscore

character is also permitted in identifiers. It is usually used as a link between two words in long

identifiers.

Rules for Identifiers

1. First character must be an alphabet (or underscore).

2. Must consist of only letters, digits or underscore.

3. Only first 31 characters are significant.

4. Cannot use a keyword.

5. Must not contain white space.

3.5 CONSTANTS

Constants in C refer to fixed values that do not change during the execution of a program. C supports

several types of constants as illustrated in Fig. 3.2.

Fig. 3.2 Basic types of C constants

Integer Constants

An integer constant refers to a sequence of digits. There are three types of integers, namely, decimal

integer, octal integer and hexadecimal integer.

Decimal integers consist of a set of digits, 0 through 9, preceded by an optional � or + sign. Valid

examples of decimal integer constants are:

123 �321 0 654321 +78

Embedded spaces, commas, and non-digit characters are not permitted between digits. For example,

15 750 20,000 $1000

are illegal numbers.

Constants, Variables and Data Types 53

Note: ANSI C supports unary plus which was not defined earlier.

An octal integer constant consists of any combination of digits from the set 0 through 7, with a leading

0. Some examples of octal integer are:

037 0 0435 0551

A sequence of digits preceded by 0x or 0X is considered as hexadecimal integer. They may also

include alphabets A through F or a through f. The letter A through F represent the numbers 10 through

15. Following are the examples of valid hex integers:

0X2 0x9F 0Xbcd 0x

We rarely use octal and hexadecimal numbers in programming.

The largest integer value that can be stored is machine-dependent. It is 32767 on 16-bit machines

and 2,147,483,647 on 32-bit machines. It is also possible to store larger integer constants on these

machines by appending qualifiers such as U,L and UL to the constants. Examples:

56789U or 56789u (unsigned integer)

987612347UL or 98761234ul (unsigned long integer)

9876543L or 9876543l (long integer)

The concept of unsigned and long integers are discussed in detail in Section 3.7.

Example 3.1 Representation of integer constants on a 16-bit computer.

The program in Fig. 3.3 illustrates the use of integer constants on a 16-bit machine. The output in Fig.

3.3 shows that the integer values larger than 32767 are not properly stored on a 16-bit machine.

However, when they are qualified as long integer (by appending L), the values are correctly stored.

Program

main()

{

printf(“Integer values\n\n”);

printf(“%d %d %d\n”, 32767,32767+1,32767+10);

printf(“\n”);

printf(“Long integer values\n\n”);

printf(“%ld %ld %ld\n”, 32767L,32767L+1L,32767L+10L);

}

Output

Integer values
32767 -32768 -32759
Long integer values
32767 32768 32777

Fig. 3.3 Representation of integer constants on 16-bit machine

Real Constants

Integer numbers are inadequate to represent quantities that vary continuously, such as distances,

heights, temperatures, prices, and so on. These quantities are represented by numbers containing

fractional parts like 17.548. Such numbers are called real (or floating point) constants. Further

examples of real constants are:

54 Introduction to Computing

0.0083 �0.75 435.36 +247.0

These numbers are shown in decimal notation, having a whole number followed by a decimal point

and the fractional part. It is possible to omit digits before the decimal point, or digits after the decimal

point. That is,

215. .95 �.71 +.5

are all valid real numbers.

A real number may also be expressed in exponential (or scientific) notation. For example, the value

215.65 may be written as 2.1565e2 in exponential notation. e2 means multiply by 102. The general

form is:

mantissa e exponent

The mantissa is either a real number expressed in decimal notation or an integer. The exponent is

an integer number with an optional plus or minus sign. The letter e separating the mantissa and the

exponent can be written in either lowercase or uppercase. Since the exponent causes the decimal point

to �float�, this notation is said to represent a real number in floating point form. Examples of legal

floating-point constants are:

0.65e4 12e � 2 1.5e + 5 3.18E3 � 1.2E-1

Embedded white space is not allowed.

Exponential notation is useful for representing numbers that are either very large or very small in

magnitude. For example, 7500000000 may be written as 7.5E9 or 75E8. Similarly, -0.000000368 is

equivalent to �3.68E-7.

Floating-point constants are normally represented as double-precision quantities. However, the

suffixes f or F may be used to force single-precision and l or L to extend double precision further.

Some examples of valid and invalid numeric constants are given in Table 3.4.

Table 3.4 Examples of Numeric Constants

Constant Valid ? Remarks

698354L Yes Represents long integer

25,000 No Comma is not allowed

+5.0E3 Yes (ANSI C supports unary plus)

3.5e-5 Yes

7.1e 4 No No white space is permitted

-4.5e-2 Yes

1.5E+2.5 No Exponent must be an integer

$255 No $ symbol is not permitted

0X7B Yes Hexadecimal integer

Single Character Constants

A single character constant (or simply character constant) contains a single character enclosed within

a pair of single quote marks. Example of character constants are:

�5� �X� �;� � �

Constants, Variables and Data Types 55

Note that the character constant �5� is not the same as the number 5. The last constant is a blank

space.

Character constants have integer values known as ASCII values. For example, the statement

printf(“%d”, ‘a’);

would print the number 97, the ASCII value of the letter a. Similarly, the statement

printf(“%c”, ‘97’);

would output the letter �a�. ASCII values for all characters are given in Appendix II.

Since each character constant represents an integer value, it is also possible to perform arithmetic

operations on character constants.

String Constants

A string constant is a sequence of characters enclosed in double quotes. The characters may be letters,

numbers, special characters and blank space. Examples are:

�Hello!� �1987� �WELL DONE� �?...!� �5+3� �X�

Remember that a character constant (e.g., �X�) is not equivalent to the single character string

constant (e.g., �X�). Further, a single character string constant does not have an equivalent integer

value while a character constant has an integer value. Character strings are often used in programs to

build meaningful programs.

Backslash Character Constants

C supports some special backslash character constants that are used in output functions. For example,

the symbol �\n� stands for newline character. A list of such backslash character constants is given in

Table 3.5. Note that each one of them represents one character, although they consist of two characters.

These character combinations are known as escape sequences.

Table 3.5 Backslash Character Constants

Constant Meaning

�\a� audible alert (bell)

�\b� back space

�\f� form feed

�\n� new line

�\r� carriage return

�\t� horizontal tab

�\v� vertical tab

�\� single quote

�\�� double quote

�\?� question mark

�\\� backslash

�\0� null

56 Introduction to Computing

3.6 VARIABLES

A variable is a data name that may be used to store a data value. Unlike constants that remain

unchanged during the execution of a program, a variable may take different values at different times

during execution. In Chapter 1, we used several variables. For instance, we used the variable amount

in Sample Program 3 to store the value of money at the end of each year (after adding the interest

earned during that year).

A variable name can be chosen by the programmer in a meaningful way so as to reflect its function

or nature in the program. Some examples of such names are:

Average

height

Total

Counter_1

class_strength

As mentioned earlier, variable names may consist of letters, digits, and the underscore(_) character,

subject to the following conditions:

1. They must begin with a letter. Some systems permit underscore as the first character.

2. ANSI standard recognizes a length of 31 characters. However, length should not be normally

more than eight characters, since only the first eight characters are treated as significant by many

compilers. (In C99, at least 63 characters are significant.)

3. Uppercase and lowercase are significant. That is, the variable Total is not the same as total or

TOTAL.

4. It should not be a keyword.

5. White space is not allowed.

Some examples of valid variable names are:

John Value T_raise

Delhi x1 ph_value

mark sum1 distance

Invalid examples include:

123 (area)

% 25th

Further examples of variable names and their correctness are given in Table 3.6.

Table 3.6 Examples of Variable Names

Variable name Valid ? Remark

First_tag Valid

char Not valid char is a keyword

Price$ Not valid Dollar sign is illegal

group one Not valid Blank space is not permitted

average_number Valid First eight characters are significant

int_type Valid Keyword may be part of a name

Constants, Variables and Data Types 57

If only the first eight characters are recognized by a compiler, then the two names

average_height

average_weight

mean the same thing to the computer. Such names can be rewritten as

avg_height and avg_weight

or

ht_average and wt_average

without changing their meanings.

3.7 DATA TYPES

C language is rich in its data types. Storage representations and machine instructions to handle

constants differ from machine to machine. The variety of data types available allow the programmer to

select the type appropriate to the needs of the application as well as the machine.

ANSI C supports three classes of data types:

1. Primary (or fundamental) data types

2. Derived data types

3. User-defined data types

The primary data types and their extensions are discussed in this section. The user-defined data

types are defined in the next section while the derived data types such as arrays, functions, structures

and pointers are discussed as and when they are encountered.

All C compilers support five fundamental data types, namely integer (int), character (char), floating

point (float), double-precision floating point (double) and void. Many of them also offer extended

data types such as long int and long double. Various data types and the terminology used to describe

them are given in Fig. 3.4. The range of the basic four types are given in Table 3.7. We discuss briefly

each one of them in this section.

NOTE: C99 adds three more data types, namely _Bool, _Complex, and _Imaginary.

58 Introduction to Computing

PRIMARY DATA TYPES

Integral Type

signed

int

short int

long int

float double Long double
void

unsigned type

Floating point Type

unsigned int

char

Integer Character

unsigned short int

signed char

unsigned long int

unsigned char

Fig. 3.4 Primary data types in C

Table 3.7 Size and Range of Basic Data Types on 16-bit Machines

Data type Range of values

char �128 to 127

int �32,768 to 32,767

float 3.4e�38 to 3.4e+e38

double 1.7e�308 to 1.7e+308

Integer Types

Integers are whole numbers with a range of values supported by a particular machine. Generally,

integers occupy one word of storage, and since the word sizes of machines vary (typically, 16 or 32

bits) the size of an integer that can be stored depends on the computer. If we use a 16 bit word length,

the size of the integer value is limited to the range �32768 to +32767 (that is, �215 to +215�1). A signed

integer uses one bit for sign and 15 bits for the magnitude of the number. Similarly, a 32 bit word

length can store an integer ranging from �2,147,483,648 to 2,147,483,647.

In order to provide some control over the range of numbers and storage space, C has three classes of

integer storage, namely short int, int, and long int, in both signed and unsigned forms. ANSI C

defines these types so that they can be organized from the smallest to the largest, as shown in Fig. 3.5.

For example, short int represents fairly small integer values and requires half the amount of storage as

Constants, Variables and Data Types 59

a regular int number uses. Unlike signed integers, unsigned integers use all the bits for the magnitude

of the number and are always positive. Therefore, for a 16 bit machine, the range of unsigned integer

numbers will be from 0 to 65,535.

short int

long int

int

Fig. 3.5 Integer types

We declare long and unsigned integers to increase the range of values. The use of qualifier signed

on integers is optional because the default declaration assumes a signed number. Table 3.8 shows all

the allowed combinations of basic types and qualifiers and their size and range on a 16-bit machine.

NOTE: C99 allows long long integer types.

Table 3.8 Size and Range of Data Types on a 16-bit Machine

Type Size (bits) Range

char or signed char 8 �128 to 127

unsigned char 8 0 to 255

int or signed int 16 �32,768 to 32,767

unsigned int 16 0 to 65535

short int or

signed short int 8 �128 to 127

unsigned short int 8 0 to 255

long int or

signed long int 32 �2,147,483,648 to 2,147,483,647

unsigned long int 32 0 to 4,294,967,295

float 32 3.4E � 38 to 3.4E + 38

double 64 1.7E � 308 to 1.7E + 308

long double 80 3.4E � 4932 to 1.1E + 4932

Floating Point Types

Floating point (or real) numbers are stored in 32 bits (on all 16 bit and 32 bit machines), with 6 digits

of precision. Floating point numbers are defined in C by the keyword float. When the accuracy

provided by a float number is not sufficient, the type double can be used to define the number. A

double data type number uses 64 bits giving a precision of 14 digits. These are known as double

precision numbers. Remember that double type represents the same data type that float represents, but

with a greater precision. To extend the precision further, we may use long double which uses 80 bits.

The relationship among floating types is illustrated in Fig. 3.6.

60 Introduction to Computing

float

long double

double

Fig. 3.6 Floating-point types

Void Types

The void type has no values. This is usually used to specify the type of functions. The type of a

function is said to be void when it does not return any value to the calling function. It can also play the

role of a generic type, meaning that it can represent any of the other standard types.

Character Types

A single character can be defined as a character(char) type data. Characters are usually stored in 8

bits (one byte) of internal storage. The qualifier signed or unsigned may be explicitly applied to char.

While unsigned chars have values between 0 and 255, signed chars have values from �128 to 127.

3.8 DECLARATION OF VARIABLES

After designing suitable variable names, we must declare them to the compiler. Declaration does two

things:

1. It tells the compiler what the variable name is.

2. It specifies what type of data the variable will hold.

The declaration of variables must be done before they are used in the program.

Primary Type Declaration

A variable can be used to store a value of any data type. That is, the name has nothing to do with its

type. The syntax for declaring a variable is as follows:

data-type v1,v2,....vn ;

v1, v2,vn are the names of variables. Variables are separated by commas. A declaration statement

must end with a semicolon. For example, valid declarations are:

int count;
int number, total;
double ratio;

int and double are the keywords to represent integer type and real type data values respectively. Table

3.9 shows various data types and their keyword equivalents.

Constants, Variables and Data Types 61

Table 3.9 Data Types and Their Keywords

Data type Keyword equivalent

Character char

Unsigned character unsigned char

Signed character signed char

Signed integer signed int (or int)

Signed short integer signed short int

(or short int or short)

Signed long integer signed long int

(or long int or long)

Unsigned integer unsigned int (or unsigned)

Unsigned short integer unsigned short int

(or unsigned short)

Unsigned long integer unsigned long int

(or unsigned long)

Floating point float

Double-precision

floating point double

Extended double-precision

floating point long double

The program segment given in Fig. 3.7 illustrates declaration of variables. main() is the beginning

of the program. The opening brace { signals the execution of the program. Declaration of variables is

usually done immediately after the opening brace of the program. The variables can also be declared

outside (either before or after) the main function. The importance of place of declaration will be dealt

in detail later while discussing functions.

Note: C99 permits declaration of variables at any point within a function or block, prior to their use.

main() /*.........Program Name........................ */
{

/*................Declaration.......................*/
float x, y;
int code;
short int count;
long int amount;
double deviation;
unsigned n;
char c;

/*...............Computation....................... */
. . . .
. . . .
. . . .

} /*.............Program ends.........................*/

Fig. 3.7 Declaration of variables

62 Introduction to Computing

When an adjective (qualifier) short, long, or unsigned is used without a basic data type specifier,

C compilers treat the data type as an int. If we want to declare a character variable as unsigned, then

we must do so using both the terms like unsigned char.

Default values of Constants

Integer constants, by default, represent int type data. We can override this default by

specifying unsigned or long after the number (by appending U or L) as shown below:

Literal Type Value

+111 int 111

�222 int �222

45678U unsigned int 45,678

�56789L long int �56,789

987654UL unsigned long int 9,87,654

Similarly, floating point constants, by default represent double type data. If we want

the resulting data type to be float or long double, we must append the letter f or F to

the number for float and letter l or L for long double as shown below:

Literal Type Value

0. double 0.0

.0 double 0.0

12.0 double 12.0

1.234 double 1.234

�1.2f float �1.2

1.23456789L long double 1.23456789

User-Defined Type Declaration

C supports a feature known as �type definition� that allows users to define an identifier that would

represent an existing data type. The user-defined data type identifier can later be used to declare

variables. It takes the general form:

typedef type identifier;

Where type refers to an existing data type and �identifier� refers to the �new� name given to the data

type. The existing data type may belong to any class of type, including the user-defined ones.

Remember that the new type is �new� only in name, but not the data type. typedef cannot create a new

type. Some examples of type definition are:

typedef int units;
typedef float marks;

Here, units symbolizes int and marks symbolizes float. They can be later used to declare variables

as follows:

units batch1, batch2;
marks name1[50], name2[50];

Constants, Variables and Data Types 63

batch1 and batch2 are inclared as int variable and name1[50] and name2[50] are declared as 50

element floating point array variables. The main advantage of typedef is that we can create meaningful

data type names for increasing the readability of the program.

Another user-defined data type is enumerated data type provided by ANSI standard. It is defined as

follows:

enum identifier {value1, value2, ... valuen};

The �identifier� is a user-defined enumerated data type which can be used to declare variables that can

have one of the values enclosed within the braces (known as enumeration constants). After this

definition, we can declare variables to be of this �new� type as below:

enum identifier v1, v2, ... vn;
The enumerated variables v1, v2, ... vn can only have one of the values value1, value2, ... valuen. The

assignments of the following types are valid:

v1 = value3;
v5 = value1;

An example:

enum day {Monday,Tuesday, ... Sunday};
enum day week_st, week_end;
week_st = Monday;
week_end = Friday;
if(week_st == Tuesday)
week_end = Saturday;

The compiler automatically assigns integer digits beginning with 0 to all the enumeration constants.

That is, the enumeration constant value1 is assigned 0, value2 is assigned 1, and so on. However, the

automatic assignments can be overridden by assigning values explicitly to the enumeration constants.

For example:
enum day {Monday = 1, Tuesday, ... Sunday};

Here, the constant Monday is assigned the value of 1. The remaining constants are assigned values

that increase successively by 1.

The definition and declaration of enumerated variables can be combined in one statement. Example:

enum day {Monday, ... Sunday} week_st, week_end;

3.9 DECLARATION OF STORAGE CLASS

Variables in C can have not only data type but also storage class that provides information about their

location and visibility. The storage class decides the portion of the program within which the variables

are recognized. Consider the following example:

/* Example of storage classes */
int m;
main()
{

int i;
float balance;
....

64 Introduction to Computing

....
function1();

}
function1()
{

int i;
float sum;
....
....

}

The variable m which has been declared before the main is called global variable. It can be used in

all the functions in the program. It need not be declared in other functions. A global variable is also

known as an external variable.

The variables i, balance and sum are called local variables because they are declared inside a

function. Local variables are visible and meaningful only inside the functions in which they are

declared. They are not known to other functions. Note that the variable i has been declared in both the

functions. Any change in the value of i in one function does not affect its value in the other.

C provides a variety of storage class specifiers that can be used to declare explicitly the scope and

lifetime of variables. The concepts of scope and lifetime are important only in multifunction and

multiple file programs and therefore the storage classes are considered in detail later when functions

are discussed. For now, remember that there are four storage class specifiers (auto, register, static,

and extern) whose meanings are given in Table 3.10.

The storage class is another qualifier (like long or unsigned) that can be added to a variable

declaration as shown below:

auto int count;
register char ch;
static int x;
extern long total;

Static and external (extern) variables are automatically initialized to zero. Automatic (auto)

variables contain undefined values (known as �garbage�) unless they are initialized explicitly.

Table 3.10 Storage Classes and Their Meaning

Storage class Meaning

auto Local variable known only to the function in which it is declared. Default is auto.

static Local variable which exists and retains its value even after the control is transferred to the

calling function.

extern Global variable known to all functions in the file.

register Local variable which is stored in the register.

3.10 ASSIGNING VALUES TO VARIABLES

Variables are created for use in program statements such as,

value = amount + inrate * amount;

Constants, Variables and Data Types 65

while (year <= PERIOD)
{

....

....
year = year + 1;

}

In the first statement, the numeric value stored in the variable inrate is multiplied by the value

stored in amount and the product is added to amount. The result is stored in the variable value. This

process is possible only if the variables amount and inrate have already been given values. The

variable value is called the target variable. While all the variables are declared for their type, the

variables that are used in expressions (on the right side of equal (=) sign of a computational statement)

must be assigned values before they are encountered in the program. Similarly, the variable year and

the symbolic constant PERIOD in the while statement must be assigned values before this statement

is encountered.

Assignment Statement

Values can be assigned to variables using the assignment operator = as follows:

variable_name = constant;

We have already used such statements in Chapter 1. Further examples are:

initial_value = 0;
final_value = 100;
balance = 75.84;
yes = ‘x’;

C permits multiple assignments in one line. For example

initial_value = 0; final_value = 100;

are valid statements.

An assignment statement implies that the value of the variable on the left of the �equal sign� is set

equal to the value of the quantity (or the expression) on the right. The statement

year = year + 1;

means that the �new value� of year is equal to the �old value� of year plus 1.

During assignment operation, C converts the type of value on the right-hand side to the type on the

left. This may involve truncation when real value is converted to an integer.

It is also possible to assign a value to a variable at the time the variable is declared. This takes the

following form:

data-type variable_name = constant;

Some examples are:

int final_value = 100;
char yes = ‘x’;
double balance = 75.84;

66 Introduction to Computing

The process of giving initial values to variables is called initialization. C permits the initialization

of more than one variables in one statement using multiple assignment operators. For example the

statements

p = q = s = 0;
x = y = z = MAX;

are valid. The first statement initializes the variables p, q, and s to zero while the second initializes x,

y, and z with MAX. Note that MAX is a symbolic constant defined at the beginning.

Remember that external and static variables are initialized to zero by default. Automatic variables

that are not initialized explicitly will contain garbage.

Example 3.2 Program in Fig. 3.8 shows typical declarations, assignments and values
stored in various types of variables.

The variables x and p have been declared as floating-point variables. Note that the way the value of

1.234567890000 that we assigned to x is displayed under different output formats. The value of x is

displayed as 1.234567880630 under %.12lf format, while the actual value assigned is

1.234567890000. This is because the variable x has been declared as a float that can store values only

up to six decimal places.

The variable m that has been declared as int is not able to store the value 54321 correctly. Instead,

it contains some garbage. Since this program was run on a 16-bit machine, the maximum value that an

int variable can store is only 32767. However, the variable k (declared as unsigned) has stored the

value 54321 correctly. Similarly, the long int variable n has stored the value 1234567890 correctly.

The value 9.87654321 assigned to y declared as double has been stored correctly but the value is

printed as 9.876543 under %lf format. Note that unless specified otherwise, the printf function will

always display a float or double value to six decimal places. We will discuss later the output formats

for displaying numbers.

Program
main()
{
/*..........DECLARATIONS............................*/

float x, p ;
double y, q ;
unsigned k ;

/*..........DECLARATIONS AND ASSIGNMENTS............*/
int m = 54321 ;
long int n = 1234567890 ;

/*..........ASSIGNMENTS.............................*/
x = 1.234567890000 ;
y = 9.87654321 ;
k = 54321 ;
p = q = 1.0 ;

/*..........PRINTING................................*/

Constants, Variables and Data Types 67

printf(“m = %d\n”, m) ;
printf(“n = %ld\n”, n) ;
printf(“x = %.12lf\n”, x) ;
printf(“x = %f\n”, x) ;
printf(“y = %.12lf\n”,y) ;
printf(“y = %lf\n”, y) ;
printf(“k = %u p = %f q = %.12lf\n”, k, p, q) ;

}
Output

m = -11215
n = 1234567890
x = 1.234567880630
x = 1.234568
y = 9.876543210000
y = 9.876543
k = 54321 p = 1.000000 q = 1.000000000000

Fig. 3.8 Examples of assignments

Reading Data from Keyboard

Another way of giving values to variables is to input data through keyboard using the scanf function.

It is a general input function available in C and is very similar in concept to the printf function. It

works much like an INPUT statement in BASIC. The general format of scanf is as follows:

scanf(“control string”, &variable1,&variable2,....);

The control string contains the format of data being received. The ampersand symbol & before each

variable name is an operator that specifies the variable name�s address. We must always use this

operator, otherwise unexpected results may occur. Let us look at an example:

scanf(“%d”, &number);

When this statement is encountered by the computer, the execution stops and waits for the value of

the variable number to be typed in. Since the control string �%d� specifies that an integer value is to

be read from the terminal, we have to type in the value in integer form. Once the number is typed in

and the �Return� Key is pressed, the computer then proceeds to the next statement. Thus, the use of

scanf provides an interactive feature and makes the program �user friendly�. The value is assigned to

the variable number.

Example 3.3 The program in Fig. 3.9 illustrates the use of scanf function.

The first executable statement in the program is a printf, requesting the user to enter an integer

number. This is known as �prompt message� and appears on the screen like

Enter an integer number

As soon as the user types in an integer number, the computer proceeds to compare the value with

100. If the value typed in is less than 100, then a message

Your number is smaller than 100

68 Introduction to Computing

is printed on the screen. Otherwise, the message

Your number contains more than two digits

is printed. Outputs of the program run for two different inputs are also shown in Fig. 3.9.

Program
main()
{

int number;

printf(“Enter an integer number\n”);
scanf (“%d”, &number);

if (number < 100)
printf(“Your number is smaller than 100\n\n”);

else
printf(“Your number contains more than two digits\n”);

}

Output
Enter an integer number
54
Your number is smaller than 100
Enter an integer number
108
Your number contains more than two digits

Fig. 3.9 Use of scanf function for interactive computing

Some compilers permit the use of the �prompt message� as a part of the control string in scanf, like

scanf(“Enter a number %d”,&number);

We discuss more about scanf in Chapter 5.

In Fig. 3.9 we have used a decision statement if...else to decide whether the number is less than 100.

Decision statements are discussed in depth in Chapter 6.

Example 3.4 Write a flexible interactive program, using scanf to calculate the value of
money at the end of each year of investment, assuming an interest rate of
11 percent.

In this case, computer requests the user to input the values of the amount to be invested, interest rate

and period of investment by printing a prompt message

Input amount, interest rate, and period

Constants, Variables and Data Types 69

and then waits for input values. As soon as we finish entering the three values corresponding to the

Program
main()
{

int year, period ;
float amount, inrate, value ;

printf(“Input amount, interest rate, and period\n\n”) ;
scanf (“%f %f %d”, &amount, &inrate, &period) ;
printf(“\n”) ;
year = 1 ;

while(year <= period)
{

value = amount + inrate * amount ;
printf(“%2d Rs %8.2f\n”, year, value) ;
amount = value ;
year = year + 1 ;

}
}

Output
Input amount, interest rate, and period

10000 0.14 5

1 Rs 11400.00
2 Rs 12996.00
3 Rs 14815.44
4 Rs 16889.60
5 Rs 19254.15

Input amount, interest rate, and period

20000 0.12 7

1 Rs 22400.00
2 Rs 25088.00
3 Rs 28098.56
4 Rs 31470.39
5 Rs 35246.84
6 Rs 39476.46
7 Rs 44213.63

Fig. 3.10 Interactive investment program

three variables amount, inrate, and period, the computer begins to calculate the amount at the end of

each year, up to �period� and produces output as shown in Fig. 3.10.

70 Introduction to Computing

Note that the scanf function contains three variables. In such cases, care should be exercised to see

that the values entered match the order and type of the variables in the list. Any mismatch might lead

to unexpected results. The compiler may not detect such errors.

3.11 DEFINING SYMBOLIC CONSTANTS

We often use certain unique constants in a program. These constants may appear repeatedly in a

number of places in the program. One example of such a constant is 3.142, representing the value of

the mathematical constant �pi�. Another example is the total number of students whose mark-sheets

are analysed by a �test analysis program�. The number of students, say 50, may be used for calculating

the class total, class average, standard deviation, etc. We face two problems in the subsequent use of

such programs. These are

1. problem in modification of the program and

2. problem in understanding the program.

Modifiability

We may like to change the value of �pi� from 3.142 to 3.14159 to improve the accuracy of calculations

or the number 50 to 100 to process the test results of another class. In both the cases, we will have to

search throughout the program and explicitly change the value of the constant wherever it has been

used. If any value is left unchanged, the program may produce disastrous outputs.

Understandability

When a numeric value appears in a program, its use is not always clear, especially when the same

value means different things in different places. For example, the number 50 may mean the number of

students at one place and the �pass marks� at another place of the same program. We may forget what

a certain number meant, when we read the program some days later.

Assignment of such constants to a symbolic name frees us from these problems. For example, we

may use the name STRENGTH to define the number of students and PASS_MARK to define the

pass marks required in a subject. Constant values are assigned to these names at the beginning of the

program. Subsequent use of the names STRENGTH and PASS_MARK in the program has the effect

of causing their defined values to be automatically substituted at the appropriate points. A constant is

defined as follows:

#define symbolic-name value of constant

Valid examples of constant definitions are:

#define STRENGTH 100
#define PASS_MARK 50
#define MAX 200
#define PI 3.14159

Symbolic names are sometimes called constant identifiers. Since the symbolic names are constants

(not variables), they do not appear in declarations. The following rules apply to a #define statement

which define a symbolic constant:

Constants, Variables and Data Types 71

1. Symbolic names have the same form as variable names. (Symbolic names are written in

CAPITALS to visually distinguish them from the normal variable names, which are written in

lowercase letters. This is only a convention, not a rule.)

2. No blank space between the pound sign �#� and the word define is permitted.

3. �#� must be the first character in the line.

4. A blank space is required between #define and symbolic name and between the symbolic name

and the constant.

5. #define statements must not end with a semicolon.

6. After definition, the symbolic name should not be assigned any other value within the program

by using an assignment statement. For example, STRENGTH = 200; is illegal.

7. Symbolic names are NOT declared for data types. Its data type depends on the type of constant.

8. #define statements may appear anywhere in the program but before it is referenced in the

program (the usual practice is to place them in the beginning of the program).

#define statement is a preprocessor compiler directive and is much more powerful than what has

been mentioned here. More advanced types of definitions will be discussed later. Table 3.11 illustrates

some invalid statements of #define.

Table 3.11 Examples of Invalid #define Statements

Statement Validity Remark

#define X = 2.5 Invalid �=� sign is not allowed

define MAX 10 Invalid No white space between # and define

#define N 25; Invalid No semicolon at the end

#define N 5, M 10 Invalid A statement can define only one name.

#Define ARRAY 11 Invalid define should be in lowercase letters

#define PRICE$ 100 Invalid $ symbol is not permitted in name

3.12 DECLARING A VARIABLE AS CONSTANT

We may like the value of certain variables to remain constant during the execution of a program. We

can achieve this by declaring the variable with the qualifier const at the time of initialization. Example:

const int class_size = 40;

const is a new data type qualifier defined by ANSI standard. This tells the compiler that the value of

the int variable class_size must not be modified by the program. However, it can be used on the

right_hand side of an assignment statement like any other variable.

3.13 DECLARING A VARIABLE AS VOLATILE

ANSI standard defines another qualifier volatile that could be used to tell explicitly the compiler that

a variable�s value may be changed at any time by some external sources (from outside the program).

For example:

volatile int date;

72 Introduction to Computing

The value of date may be altered by some external factors even if it does not appear on the left-hand

side of an assignment statement. When we declare a variable as volatile, the compiler will examine the

value of the variable each time it is encountered to see whether any external alteration has changed the

value.

Remember that the value of a variable declared as volatile can be modified by its own program as

well. If we wish that the value must not be modified by the program while it may be altered by some

other process, then we may declare the variable as both const and volatile as shown below:

volatile const int location = 100;

NOTE: C99 adds another qualifier called restrict. See the Appendix �C99 Features�.

3.14 OVERFLOW AND UNDERFLOW OF DATA

Problem of data overflow occurs when the value of a variable is either too big or too small for the data

type to hold. The largest value that a variable can hold also depends on the machine. Since floating-

point values are rounded off to the number of significant digits allowed (or specified), an overflow

normally results in the largest possible real value, whereas an underflow results in zero.

Integers are always exact within the limits of the range of the integral data types used. However, an

overflow which is a serious problem may occur if the data type does not match the value of the

constant. C does not provide any warning or indication of integer overflow. It simply gives incorrect

results. (Overflow normally produces a negative number.) We should therefore exercise a greater care

to define correct data types for handling the input/output values.

Just Remember

Do not use the underscore as the first character of identifiers (or variable

names) because many of the identifiers in the system library start with

underscore.

Use only 31 or less characters for identifiers. This helps ensure portability of

programs.

Do not use keywords or any system library names for identifiers.

Use meaningful and intelligent variable names.

Do not create variable names that differ only by one or two letters.

Each variable used must be declared for its type at the beginning of the program

or function.

All variables must be initialized before they are used in the program.

Integer constants, by default, assume int types. To make the numbers long or

unsigned, we must append the letters L and U to them.

Floating point constants default to double. To make them to denote float or

long double, we must append the letters F or L to the numbers.

Do not use lowercase l for long as it is usually confused with the number 1.

Constants, Variables and Data Types 73

Use single quote for character constants and double quotes for string

constants.

A character is stored as an integer. It is therefore possible to perform arithmetic

operations on characters.

Do not combine declarations with executable statements.

A variable can be made constant either by using the preprocessor command

#define at the beginning of the program or by declaring it with the qualifier

const at the time of initialization.

Do not use semicolon at the end of #define directive.

The character # should be in the first column.

Do not give any space between # and define.

C does not provide any warning or indication of overflow. It simply gives

incorrect results. Care should be exercised in defining correct data type.

A variable defined before the main function is available to all the functions in the

program.

A variable defined inside a function is local to that function and not available to

other functions.

Case Studies

1. Calculation of Average of Numbers

A program to calculate the average of a set of N numbers is given in Fig. 3.11.

Program

#define N 10 /* SYMBOLIC CONSTANT */
main()
{

int count ; /* DECLARATION OF */
float sum, average, number ; /* VARIABLES */
sum = 0 ; /* INITIALIZATION */
count = 0 ; /* OF VARIABLES */
while(count < N)
{

scanf(“%f”, &number) ;
sum = sum + number ;
count = count + 1 ;

}
average = sum/N ;
printf(“N = %d Sum = %f”, N, sum);
printf(“ Average = %f”, average);

}
Output

1
2.3

74 Introduction to Computing

4.67
1.42
7
3.67
4.08
2.2
4.25
8.21
N = 10 Sum = 38.799999 Average = 3.880

Fig. 3.11 Average of N numbers

The variable number is declared as float and therefore it can take both integer and real numbers.

Since the symbolic constant N is assigned the value of 10 using the #define statement, the program

accepts ten values and calculates their sum using the while loop. The variable count counts the number

of values and as soon as it becomes 11, the while loop is exited and then the average is calculated.

Notice that the actual value of sum is 38.8 but the value displayed is 38.799999. In fact, the actual

value that is displayed is quite dependent on the computer system. Such an inaccuracy is due to the

way the floating point numbers are internally represented inside the computer.

2. Temperature Conversion Problem

The program presented in Fig. 3.12 converts the given temperature in Fahrenheit to Celsius using the

following conversion formula:

C =
F � 32

1.8

Program
#define F_LOW 0 /* — — — — — — — — — — — — — — —

*/
#define F_MAX 250 /* SYMBOLIC CONSTANTS */
#define STEP 25 /* — — — — — — — — — — — — — —

*/

main()
{

typedef float REAL ; /* TYPE DEFINITION */
REAL fahrenheit, celsius ; /* DECLARATION */

fahrenheit = F_LOW ; /* INITIALIZATION */
printf(“Fahrenheit Celsius\n\n”) ;
while(fahrenheit <= F_MAX)
{

celsius = (fahrenheit - 32.0) / 1.8 ;
printf(“ %5.1f %7.2f\n”, fahrenheit, celsius);

Constants, Variables and Data Types 75

fahrenheit = fahrenheit + STEP ;
}

}
Output

Fahrenheit Celsius
0.0 -17.78

25.0 -3.89
50.0 10.00
75.0 23.89

100.0 37.78
125.0 51.67
150.0 65.56
175.0 79.44
200.0 93.33
225.0 107.22
250.0 121.11

Fig. 3.12 Temperature conversion�Fahrenheit�Celsius

The program prints a conversion table for reading temperature in Celsius, given the Fahrenheit

values. The minimum and maximum values and step size are defined as symbolic constants. These

values can be changed by redefining the #define statements. An user-defined data type name REAL is

used to declare the variables Fahrenheit and Celsius.

The formation specifications %5.1f and %7.2 in the second printf statement produces two-column

output as shown.

Review Questions

3.1 State whether the following statements are true or false.

(a) Any valid printable ASCII character can be used in an identifier.

(b) All variables must be given a type when they are declared.

(c) Declarations can appear anywhere in a program.

(d) ANSI C treats the variables name and Name to be same.

(e) The underscore can be used anywhere in an identifier.

(f) The keyword void is a data type in C.

(g) Floating point constants, by default, denote float type values.

(h) Like variables, constants have a type.

(i) Character constants are coded using double quotes.

(j) Initialization is the process of assigning a value to a variable at the time of declaration.

(k) All static variables are automatically initialized to zero.

(l) The scanf function can be used to read only one value at a time.

3.2 Fill in the blanks with appropriate words.

(a) The keyword can be used to create a data type identifier.

(b) is the largest value that an unsigned short int type variable can store.

(c) A global variable is also known as variable.

(d) A variable can be made constant by declaring it with the qualifier at the time of

initialization.

76 Introduction to Computing

3.3 What are trigraph characters? How are they useful?

3.4 Describe the four basic data types. How could we extend the range of values they represent?

3.5 What is an unsigned integer constant? What is the significance of declaring a constant unsigned?

3.6 Describe the characteristics and purpose of escape sequence characters.

3.7 What is a variable and what is meant by the �value� of a variable?

3.8 How do variables and symbolic names differ?

3.9 State the differences between the declaration of a variable and the definition of a symbolic name.

3.10 What is initialization? Why is it important?

3.11 What are the qualifiers that an int can have at a time?

3.12 A programmer would like to use the word DPR to declare all the double-precision floating point

values in his program. How could he achieve this?

3.13 What are enumeration variables? How are they declared? What is the advantage of using them in a

program?

3.14 Describe the purpose of the qualifiers const and volatile.

3.15 When dealing with very small or very large numbers, what steps would you take to improve the

accuracy of the calculations?

3.16 Which of the following are invalid constants and why?

0.0001 5 ¥ 1.5 99999

+100 75.45 E-2 �15.75�

�45.6 �1.79 e + 4 0.00001234

3.17 Which of the following are invalid variable names and why?

Minimum First.name n1+n2 &name

doubles 3rd_row n$ Row1

float Sum Total Row Total Column-total

3.18 Find errors, if any, in the following declaration statements.

Int x;
float letter,DIGIT;
double = p,q
exponent alpha,beta;
m,n,z: INTEGER
short char c;
long int m; count;
long float temp;

3.19 What would be the value of x after execution of the following statements?

int x, y = 10;
char z = ‘a’;
x = y + z;

3.20 Identify syntax errors in the following program. After corrections, what output would you expect

when you execute it?

#define PI 3.14159
main()
{

int R,C; /* R-Radius of circle
float perimeter; /* Circumference of circle */
float area; /* Area of circle */
C = PI

Constants, Variables and Data Types 77

R = 5;
Perimeter = 2.0 * C *R;
Area = C*R*R;
printf(“%f”, “%d”,&perimeter,&area)
}

Programming Exercises

3.1 Write a program to determine and print the sum of the following harmonic series for a given value

of n:

1+ 1/2 +1/3 +....+ 1/n

The value of n should be given interactively through the terminal.

3.2 Write a program to read the price of an item in decimal form (like 15.95) and print the output in

paise (like 1595 paise).

3.3 Write a program that prints the even numbers from 1 to 100.

3.4 Write a program that requests two float type numbers from the user and then divides the first number

by the second and display the result along with the numbers.

3.5 The price of one kg of rice is Rs. 16.75 and one kg of sugar is Rs. 15. Write a program to get these

values from the user and display the prices as follows:

*** LIST OF ITEMS ***

Item Price

Rice Rs 16.75

Sugar Rs 15.00

3.6 Write program to count and print the number of negative and positive numbers in a given set of

numbers. Test your program with a suitable set of numbers. Use scanf to read the numbers. Reading

should be terminated when the value 0 is encountered.

3.7 Write a program to do the following:

(a) Declare x and y as integer variables and z as a short integer variable.

(b) Assign two 6 digit numbers to x and y

(c) Assign the sum of x and y to z

(d) Output the values of x, y and z

Comment on the output.

3.8 Write a program to read two floating point numbers using a scanf statement, assign their sum to an

integer variable and then output the values of all the three variables.

3.9 Write a program to illustrate the use of typedef declaration in a program.

3.10 Write a program to illustrate the use of symbolic constants in a real-life application.

CHAPTER

4
Operators and Expressions

4.1 INTRODUCTION

C supports a rich set of built-in operators. We have already used several of them, such as =, +, �, *, &

and <. An operator is a symbol that tells the computer to perform certain mathematical or logical

manipulations. Operators are used in programs to manipulate data and variables. They usually form a

part of the mathematical or logical expressions.

C operators can be classified into a number of categories. They include:

1. Arithmetic operators

2. Relational operators

3. Logical operators

4. Assignment operators

5. Increment and decrement operators

6. Conditional operators

7. Bitwise operators

8. Special operators

An expression is a sequence of operands and operators that reduces to a single value. For example,

10 + 15

is an expression whose value is 25. The value can be any type other than void.

4.2 ARITHMETIC OPERATORS

C provides all the basic arithmetic operators. They are listed in Table 4.1. The operators +, �, *, and /

all work the same way as they do in other languages. These can operate on any built-in data type

allowed in C. The unary minus operator, in effect, multiplies its single operand by �1. Therefore, a

number preceded by a minus sign changes its sign.

Operators and Expressions 79

Table 4.1 Arithmetic Operators

Operator Meaning

+ Addition or unary plus

� Subtraction or unary minus

* Multiplication

/ Division

% Modulo division

Integer division truncates any fractional part. The modulo division operation produces the

remainder of an integer division. Examples of use of arithmetic operators are:

a � b a + b

a * b a / b

a % b �a * b

Here a and b are variables and are known as operands. The modulo division operator % cannot be

used on floating point data. Note that C does not have an operator for exponentiation. Older versions

of C does not support unary plus but ANSI C supports it.

Integer Arithmetic

When both the operands in a single arithmetic expression such as a+b are integers, the expression is

called an integer expression, and the operation is called integer arithmetic. Integer arithmetic always

yields an integer value. The largest integer value depends on the machine, as pointed out earlier. In the

above examples, if a and b are integers, then for a = 14 and b = 4 we have the following results:

a � b = 10

a + b = 18

a * b = 56

a / b = 3 (decimal part truncated)

a % b = 2 (remainder of division)

During integer division, if both the operands are of the same sign, the result is truncated towards

zero. If one of them is negative, the direction of trunction is implementation dependent. That is,

6/7 = 0 and �6/�7 = 0

but �6/7 may be zero or �1. (Machine dependent)

Similarly, during modulo division, the sign of the result is always the sign of the first operand (the

dividend). That is

�14 % 3 = �2

�14 % �3 = �2

14 % �3 = 2

Example 4.1 The program in Fig. 4.1 shows the use of integer arithmetic to convert a
given number of days into months and days.

80 Introduction to Computing

Program

main ()
{

int months, days ;

printf(“Enter days\n”) ;
scanf(“%d”, &days) ;

months = days / 30 ;
days = days % 30 ;
printf(“Months = %d Days = %d”, months, days) ;

}
Output

Enter days
265
Months = 8 Days = 25
Enter days
364
Months = 12 Days = 4
Enter days
45
Months = 1 Days = 15

Fig. 4.1 Illustration of integer arithmetic

The variables months and days are declared as integers. Therefore, the statement

months = days/30;

truncates the decimal part and assigns the integer part to months. Similarly, the statement

days = days%30;

assigns the remainder part of the division to days. Thus the given number of days is converted into an

equivalent number of months and days and the result is printed as shown in the output.

Real Arithmetic

An arithmetic operation involving only real operands is called real arithmetic. A real operand may

assume values either in decimal or exponential notation. Since floating point values are rounded to the

number of significant digits permissible, the final value is an approximation of the correct result. If x,

y, and z are floats, then we will have:

x = 6.0/7.0 = 0.857143

y = 1.0/3.0 = 0.333333

z = �2.0/3.0 = �0.666667

The operator % cannot be used with real operands.

Operators and Expressions 81

Mixed-mode Arithmetic

When one of the operands is real and the other is integer, the expression is called a mixed-mode

arithmetic expression. If either operand is of the real type, then only the real operation is performed

and the result is always a real number. Thus

15/10.0 = 1.5

whereas

15/10 = 1

More about mixed operations will be discussed later when we deal with the evaluation of expressions.

4.3 RELATIONAL OPERATORS

We often compare two quantities and depending on their relation, take certain decisions. For example,

we may compare the age of two persons, or the price of two items, and so on. These comparisons can

be done with the help of relational operators. We have already used the symbol �<�, meaning �less

than�. An expression such as

a < b or 1 < 20

containing a relational operator is termed as a relational expression. The value of a relational

expression is either one or zero. It is one if the specified relation is true and zero if the relation is false.

For example

10 < 20 is true

but

20 < 10 is false

C supports six relational operators in all. These operators and their meanings are shown in Table 4.2.

Table 4.2 Relational Operators

Operator Meaning

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

== is equal to

!= is not equal to

A simple relational expression contains only one relational operator and takes the following form:

ae-1 relational operator ae-2

ae-1 and ae-2 are arithmetic expressions, which may be simple constants, variables or combination of

them. Given below are some examples of simple relational expressions and their values:

4.5 <= 10 TRUE

82 Introduction to Computing

4.5 < �10 FALSE

�35 >= 0 FALSE

10 < 7+5 TRUE

a+b = c+d TRUE only if the sum of values of a and b is equal to the sum of values of c and

d.

When arithmetic expressions are used on either side of a relational operator, the arithmetic

expressions will be evaluated first and then the results compared. That is, arithmetic operators have a

higher priority over relational operators.

Relational expressions are used in decision statements such as if and while to decide the course of

action of a running program. Decision statements are discussed in detail in Chapters 6 and 7.

Relational Operator Complements

Among the six relational operators, each one is a complement of another operator.

> is complement of <=

< is complement of >=

= = is complement of !=

We can simplify an expression involving the not and the less than operators using the

complements as shown below:

Actual one Simplified one

!(x<y) x >= y

!(x>y) x <= y

!(x!=y) x = = y

!(x<=y) x > y

!(x>=y) x < y

!(x = = y) x != y

4.4 LOGICAL OPERATORS

In addition to the relational operators, C has the following three logical operators.

&& meaning logical AND

| | meaning logical OR

! meaning logical NOT

The logical operators && and || are used when we want to test more than one condition and make

decisions. An example is:

a > b && x = = 10

An expression of this kind, which combines two or more relational expressions, is termed as a

logical expression or a compound relational expression. Like the simple relational expressions, a

logical expression also yields a value of one or zero, according to the truth table shown in Table 4.3.

The logical expression given above is true only if a > b is true and x = = 10 is true. If either (or both)

of them are false, the expression is false.

Operators and Expressions 83

Table 4.3 Truth Table

Value of the expression

op-1 op-2

op-1 && op-2 op-1 || op-2

Non-zero Non-zero 1 1

Non-zero 0 0 1

0 Non-zero 0 1

0 0 0 0

Some examples of the usage of logical expressions are:

1. if (age > 55 && salary < 1000)

2. if (number < 0 | | number > 100)

We shall see more of them when we discuss decision statements.

NOTE: Relative precedence of the relational and logical operators is as follows:

Highest !
> >= < <=
== !=
&&

Lowest ||

It is important to remember this when we use these operators in compound expressions.

4.5 ASSIGNMENT OPERATORS

Assignment operators are used to assign the result of an expression to a variable. We have seen the

usual assignment operator, �=�. In addition, C has a set of �shorthand� assignment operators of the

form

v op= exp;

where v is a variable, exp is an expression and op is a C binary arithmetic operator. The operator op=

is known as the shorthand assignment operator.

The assignment statement

v op= exp;

is equivalent to

v = v op (exp);

with v evaluated only once. Consider an example

x += y+1;

This is same as the statement

x = x + (y+1);

84 Introduction to Computing

The shorthand operator += means �add y+1 to x� or �increment x by y+1�. For y = 2, the above

statement becomes

xp += 3;

and when this statement is executed, 3 is added to x. If the old value of x is, say 5, then the new value

of x is 8. Some of the commonly used shorthand assignment operators are illustrated in Table 4.4.

Table 4.4 Shorthand Assignment Operators

Statement with simple Statement with

assignment operator shorthand operator

a = a + 1 a += 1

a = a � 1 a �= 1

a = a * (n+1) a *= n+1

a = a / (n+1) a /= n+1

a = a % b a %= b

The use of shorthand assignment operators has three advantages:

1. What appears on the left-hand side need not be repeated and therefore it becomes easier to write.

2. The statement is more concise and easier to read.

3. The statement is more efficient.

These advantages may be appreciated if we consider a slightly more involved statement like

value(5*j–2) = value(5*j–2) + delta;

With the help of the += operator, this can be written as follows:

value(5*j–2) += delta;

It is easier to read and understand and is more efficient because the expression 5*j�2 is evaluated

only once.

Example 4.2 Program of Fig. 4.2 prints a sequence of squares of numbers. Note the use
of the shorthand operator *= .

The program attempts to print a sequence of squares of numbers starting from 2. The statement

a *= a;

which is identical to

a = a*a;

replaces the current value of a by its square. When the value of a becomes equal or greater than N

(=100) the while is terminated. Note that the output contains only three values 2, 4 and 16.

Program

#define N 100
#define A 2
main()

Operators and Expressions 85

{
int a;
a = A;
while(a < N)
{

printf(“%d\n”, a);
a *= a;

}
}

Output

2
4
16

Fig. 4.2 Use of shorthand operator *=

4.6 INCREMENT AND DECREMENT OPERATORS

C allows two very useful operators not generally found in other languages. These are the increment

and decrement operators:

++ and — –

The operator ++ adds 1 to the operand, while � � subtracts 1. Both are unary operators and takes the

following form:

++m; or m++;

– —m; or m– —;

++m; is equivalent to m = m+1; (or m += 1;)

– —m; is equivalent to m = m–1; (or m –= 1;)

We use the increment and decrement statements in for and while loops extensively.

While ++m and m++ mean the same thing when they form statements independently, they behave

differently when they are used in expressions on the right-hand side of an assignment statement.

Consider the following:

m = 5;

y = ++m;

In this case, the value of y and m would be 6. Suppose, if we rewrite the above statements as

m = 5;

y = m++;

then, the value of y would be 5 and m would be 6. A prefix operator first adds 1 to the operand and

then the result is assigned to the variable on left. On the other hand, a postfix operator first assigns the

value to the variable on left and then increments the operand.

86 Introduction to Computing

Similar is the case, when we use ++ (or � �) in subscripted variables. That is, the statement

a[i++] = 10;

is equivalent to

a[i] = 10;

i = i+1;

The increment and decrement operators can be used in complex statements. Example:

m = n++ –j+10;

Old value of n is used in evaluating the expression. n is incremented after the evaluation. Some

compilers require a space on either side of n++ or ++n.

Rules for ++ and � � Operators

∑ Increment and decrement operators are unary operators and they require variable

as their operands.

∑ When postfix ++ (or � �) is used with a variable in an expression, the expression

is evaluated first using the original value of the variable and then the variable is

incremented (or decremented) by one.

∑ When prefix ++(or � �) is used in an expression, the variable is incremented (or

decremented) first and then the expression is evaluated using the new value of

the variable.

∑ The precedence and associatively of ++ and � � operators are the same as those

of unary + and unary �.

4.7 CONDITIONAL OPERATOR

A ternary operator pair �? :� is available in C to construct conditional expressions of the form

exp1 ? exp2 : exp3

where exp1, exp2, and exp3 are expressions.

The operator ? : works as follows: exp1 is evaluated first. If it is nonzero (true), then the expression

exp2 is evaluated and becomes the value of the expression. If exp1 is false, exp3 is evaluated and its

value becomes the value of the expression. Note that only one of the expressions (either exp2 or exp3)

is evaluated. For example, consider the following statements.

a = 10;

b = 15;

x = (a > b) ? a : b;

Operators and Expressions 87

In this example, x will be assigned the value of b. This can be achieved using the if..else statements

as follows:

if (a > b)

x = a;

else

x = b;

4.8 BITWISE OPERATORS

C has a distinction of supporting special operators known as bitwise operators for manipulation of

data at bit level. These operators are used for testing the bits, or shifting them right or left. Bitwise

operators may not be applied to float or double. Table 4.5 lists the bitwise operators and their

meanings.

Table 4.5 Bitwise Operators

Operator Meaning

& bitwise AND

| bitwise OR

^ bitwise exclusive OR

<< shift left

>> shift right

4.9 SPECIAL OPERATORS

C supports some special operators of interest such as comma operator, sizeof operator, pointer

operators (& and *) and member selection operators (. and �>). The comma and sizeof operators are

discussed in this section while the pointer operators are discussed in Chapter 12. Member selection

operators which are used to select members of a structure are discussed in Chapters 13 and 12. ANSI

committee has introduced two preprocessor operators known as �string-izing� and �token-pasting�

operators (# and ##). They will be discussed in Chapter 9.

The Comma Operator

The comma operator can be used to link the related expressions together. A comma-linked list of

expressions are evaluated left to right and the value of right-most expression is the value of the

combined expression. For example, the statement

value = (x = 10, y = 5, x+y);

first assigns the value 10 to x, then assigns 5 to y, and finally assigns 15 (i.e. 10 + 5) to value. Since

comma operator has the lowest precedence of all operators, the parentheses are necessary. Some

applications of comma operator are:

88 Introduction to Computing

In for loops:

for (n = 1, m = 10, n <=m; n++, m++)

In while loops:

while (c = getchar(), c != ‘10’)

Exchanging values:

t = x, x = y, y = t;

The sizeof Operator

The sizeof is a compile time operator and, when used with an operand, it returns the number of bytes

the operand occupies. The operand may be a variable, a constant or a data type qualifier.

Examples: m = sizeof (sum);

n = sizeof (long int);

k = sizeof (235L);

The sizeof operator is normally used to determine the lengths of arrays and structures when their

sizes are not known to the programmer. It is also used to allocate memory space dynamically to

variables during execution of a program.

Example 4.3 In Fig. 4.3, the program employs different kinds of operators. The results of
their evaluation are also shown for comparison.

Notice the way the increment operator ++ works when used in an expression. In the statement

c = ++a – b;

new value of a (= 16) is used thus giving the value 6 to c. That is, a is incremented by 1 before it is used

in the expression. However, in the statement

d = b++ + a;

the old value of b (=10) is used in the expression. Here, b is incremented by 1 after it is used in the

expression.

We can print the character % by placing it immediately after another % character in the control

string. This is illustrated by the statement

printf(“a%%b = %d\n”, a%b);

The program also illustrates that the expression

c > d ? 1 : 0
assumes the value 0 when c is less than d and 1 when c is greater than d.

Program

main()
{

int a, b, c, d;

a = 15;

Operators and Expressions 89

b = 10;
c = ++a - b;

printf(“a = %d b = %d c = %d\n”,a, b, c);

d = b++ +a;

printf(“a = %d b = %d d = %d\n”,a, b, d);
printf(“a/b = %d\n”, a/b);
printf(“a%%b = %d\n”, a%b);
printf(“a *= b = %d\n”, a*=b);
printf(“%d\n”, (c>d) ? 1 : 0);
printf(“%d\n”, (c<d) ? 1 : 0);

}

Output

a = 16 b = 10 c = 6
a = 16 b = 11 d = 26
a/b = 1
a%b = 5
a *= b = 176
0
1

Fig. 4.3 Further illustration of arithmetic operators

4.10 ARITHMETIC EXPRESSIONS

An arithmetic expression is a combination of variables, constants, and operators arranged as per the

syntax of the language. We have used a number of simple expressions in the examples discussed so

far. C can handle any complex mathematical expressions. Some of the examples of C expressions are

shown in Table 4.6. Remember that C does not have an operator for exponentiation.

Table 4.6 Expressions

Algebraic expression C expression

a x b - c a * b - c

(m+n) (x+y) (m+n) * (x+y)

ab

c

Ê ˆ
Á ˜Ë ¯

a * b/c

3x2 +2x+1 3 * x * x + 2 * x + 1

x

y

Ê ˆ
Á ˜Ë ¯

 + c x/y+c

90 Introduction to Computing

4.11 EVALUATION OF EXPRESSIONS

Expressions are evaluated using an assignment statement of the form:

variable = expression;

Variable is any valid C variable name. When the statement is encountered, the expression is evaluated

first and the result then replaces the previous value of the variable on the left-hand side. All variables

used in the expression must be assigned values before evaluation is attempted. Examples of evaluation

statements are

x = a * b - c;

y = b / c * a;

z = a - b / c + d;

The blank space around an operator is optional and adds only to improve readability. When these

statements are used in a program, the variables a, b, c, and d must be defined before they are used in

the expressions.

Example 4.4 The program in Fig. 4.4 illustrates the use of variables in expressions and
their evaluation.

Output of the program also illustrates the effect of presence of parentheses in expressions. This is

discussed in the next section.

Program

main()
{

float a, b, c, x, y, z;
a = 9;
b = 12;
c = 3;

x = a – b / 3 + c * 2 - 1;
y = a – b / (3 + c) * (2 - 1);
z = a – (b / (3 + c) * 2) - 1;

printf(“x = %f\n”, x);
printf(“y = %f\n”, y);
printf(“z = %f\n”, z);

}

Operators and Expressions 91

Output

x = 10.000000
y = 7.000000
z = 4.000000

Fig. 4.4 Illustrations of evaluation of expressions

4.12 PRECEDENCE OF ARITHMETIC OPERATORS

An arithmetic expression without parentheses will be evaluated from left to right using the rules of

precedence of operators. There are two distinct priority levels of arithmetic operators in C:

High priority * / %

Low priority + �

The basic evaluation procedure includes �two� left-to-right passes through the expression. During

the first pass, the high priority operators (if any) are applied as they are encountered. During the

second pass, the low priority operators (if any) are applied as they are encountered. Consider the

following evaluation statement that has been used in the program of Fig. 4.4.

x = a�b/3 + c*2�1

When a = 9, b = 12, and c = 3, the statement becomes

x = 9�12/3 + 3*2�1

and is evaluated as follows

First pass

Step1: x = 9�4+3*2�1

Step2: x = 9�4+6�1

Second pass

Step3: x = 5+6�1

Step4: x = 11�1

Step5: x = 10

These steps are illustrated in Fig. 4.5. The numbers inside parentheses refer to step numbers.

However, the order of evaluation can be changed by introducing parentheses into an expression.

Consider the same expression with parentheses as shown below:

9�12/(3+3)*(2�1)

Whenever parentheses are used, the expressions within parentheses assume highest priority. If two

or more sets of parentheses appear one after another as shown above, the expression contained in the

left-most set is evaluated first and the right-most in the last. Given below are the new steps.

92 Introduction to Computing

9 – 12/3 3*2+ –
(1)

1

(2)

(4)

10

(5)

(3)

4

5

11

6

Fig. 4.5 Illustration of hierarchy of operations

First pass

Step1: 9-12/6 * (2-1)

Step2: 9-12/6 * 1

Second pass

Step3: 9-2 * 1

Step4: 9-2

Third pass

Step5: 7

This time, the procedure consists of three left-to-right passes. However, the number of evaluation

steps remains the same as 5 (i.e equal to the number of arithmetic operators).

Parentheses may be nested, and in such cases, evaluation of the expression will proceed outward

from the innermost set of parentheses. Just make sure that every opening parenthesis has a matching

closing parenthesis. For example

9 � (12/(3+3) * 2) � 1 = 4

whereas

9 � ((12/3) + 3 * 2) � 1 = �2

While parentheses allow us to change the order of priority, we may also use them to improve

understandability of the program. When in doubt, we can always add an extra pair just to make sure

that the priority assumed is the one we require.

Operators and Expressions 93

Rules for Evaluation of Expression

∑ First, parenthesized sub-expression from left to right are evaluated.

∑ If parentheses are nested, the evaluation begins with the innermost sub-

expression.

∑ The precedence rule is applied in determining the order of application of

operators in evaluating sub-expressions.

∑ The associativity rule is applied when two or more operators of the same

precedence level appear in a sub-expression.

∑ Arithmetic expressions are evaluated from left to right using the rules of

precedence.

∑ When parentheses are used, the expressions within parentheses assume highest

priority.

4.13 SOME COMPUTATIONAL PROBLEMS

When expressions include real values, then it is important to take necessary precautions to guard

against certain computational errors. We know that the computer gives approximate values for real

numbers and the errors due to such approximations may lead to serious problems. For example,

consider the following statements:

a = 1.0/3.0;

b = a * 3.0;

We know that (1.0/3.0) 3.0 is equal to 1. But there is no guarantee that the value of b computed in

a program will equal 1.

Another problem is division by zero. On most computers, any attempt to divide a number by zero

will result in abnormal termination of the program. In some cases such a division may produce

meaningless results. Care should be taken to test the denominator that is likely to assume zero value

and avoid any division by zero.

The third problem is to avoid overflow or underflow errors. It is our responsibility to guarantee that

operands are of the correct type and range, and the result may not produce any overflow or underflow.

Example 4.5 Output of the program in Fig. 4.6 shows round-off errors that can occur in
computation of floating point numbers.

Program

/*————————— Sum of n terms of 1/n ————————-—*/
main()
{

94 Introduction to Computing

float sum, n, term ;

int count = 1 ;

sum = 0 ;

printf(“Enter value of n\n”) ;

scanf(“%f”, &n) ;

term = 1.0/n ;

while(count <= n)

{

sum = sum + term ;

count++ ;

}

printf(“Sum = %f\n”, sum) ;

}

Output

Enter value of n

99

Sum = 1.000001

Enter value of n

143

Sum = 0.999999

Fig. 4.6 Round-off errors in floating point computations

We know that the sum of n terms of 1/n is 1. However, due to errors in floating point representation,

the result is not always 1.

4.14 TYPE CONVERSIONS IN EXPRESSIONS

Implicit Type Conversion

C permits mixing of constants and variables of different types in an expression. C automatically

converts any intermediate values to the proper type so that the expression can be evaluated without

losing any significance. This automatic conversion is known as implicit type conversion.

During evaluation it adheres to very strict rules of type conversion. If the operands are of different

types, the �lower� type is automatically converted to the �higher� type before the operation proceeds.

The result is of the higher type. A typical type conversion process is illustrated in Fig. 4.7.

Operators and Expressions 95

int i, x;

x

long

long float

float

float

float

double

doubleint

1 i i f d*/= + –

float f;

double d;

long int 1;

Fig. 4.7 Process of implicit type conversion

Given below is the sequence of rules that are applied while evaluating expressions.

All short and char are automatically converted to int; then

1. if one of the operands is long double, the other will be converted to long double and the result

will be long double;

2. else, if one of the operands is double, the other will be converted to double and the result will be

double;

3. else, if one of the operands is float, the other will be converted to float and the result will be

float;

4. else, if one of the operands is unsigned long int, the other will be converted to unsigned long

int and the result will be unsigned long int;

5. else, if one of the operands is long int and the other is unsigned int, then

(a) if unsigned int can be converted to long int, the unsigned int operand will be converted as

such and the result will be long int;

(b) else, both operands will be converted to unsigned long int and the result will be unsigned

long int;

6. else, if one of the operands is long int, the other will be converted to long int and the result will

be long int;

7. else, if one of the operands is unsigned int, the other will be converted to unsigned int and the

result will be unsigned int.

96 Introduction to Computing

long double

Note that, C uses the rule that, in all expressions except assignments,
any implicit type conversions are made from a lower size type to a
higher size type as shown below:

double

Conversion
Hierarchy

float

unsigned long int

long int

unsigned int

int

short char

Conversion Hierarchy

Note that some versions of C automatically convert all floating-point operands to double precision.

The final result of an expression is converted to the type of the variable on the left of the assignment

sign before assigning the value to it. However, the following changes are introduced during the final

assignment.

1. float to int causes truncation of the fractional part.

2. double to float causes rounding of digits.

3. long int to int causes dropping of the excess higher order bits.

Explicit Conversion

We have just discussed how C performs type conversion automatically. However, there are instances

when we want to force a type conversion in a way that is different from the automatic conversion.

Consider, for example, the calculation of ratio of females to males in a town.

ratio = female_number/male_number

Since female_number and male_number are declared as integers in the program, the decimal part

of the result of the division would be lost and ratio would represent a wrong figure. This problem can

be solved by converting locally one of the variables to the floating point as shown below:

ratio = (float) female_number/male_number

The operator (float) converts the female_number to floating point for the purpose of evaluation of

the expression. Then using the rule of automatic conversion, the division is performed in floating

point mode, thus retaining the fractional part of result.

Operators and Expressions 97

Note that in no way does the operator (float) affect the value of the variable female number. And

also, the type of female number remains as int in the other parts of the program.

The process of such a local conversion is known as explicit conversion or casting a value. The

general form of a cast is:

(type-name)expression

where type-name is one of the standard C data types. The expression may be a constant, variable or an

expression. Some examples of casts and their actions are shown in Table 4.7.

Table 4.7 Use of Casts

Example Action

x = (int) 7.5 7.5 is converted to integer by truncation.

a = (int) 21.3/(int)4.5 Evaluated as 21/4 and the result would be 5.

b = (double)sum/n Division is done in floating point mode.

y = (int) (a+b) The result of a+b is converted to integer.

z = (int)a+b a is converted to integer and then added to b.

p = cos((double)x) Converts x to double before using it.

Casting can be used to round-off a given value. Consider the following statement:

x = (int) (y+0.5);

If y is 27.6, y+0.5 is 28.1 and on casting, the result becomes 28, the value that is assigned to x. Of

course, the expression, being cast is not changed.

Example 4.6 Figure 4.8 shows a program using a cast to evaluate the equation

sum = Â
n

i=1

(1/i)

Program

main()
{

float sum ;
int n ;

sum = 0 ;

for(n = 1 ; n <= 10 ; ++n)
{

sum = sum + 1/(float)n ;
printf(“%2d %6.4f\n”, n, sum) ;

}

}

98 Introduction to Computing

Output

1 1.0000
2 1.5000
3 1.8333
4 2.0833
5 2.2833
6 2.4500
7 2.5929
8 2.7179
9 2.8290

10 2.9290

Fig. 4.8 Use of a cast

4.15 OPERATOR PRECEDENCE AND ASSOCIATIVITY

As mentioned earlier each operator, in C has a precedence associated with it. This precedence is used

to determine how an expression involving more than one operator is evaluated. There are distinct

levels of precedence and an operator may belong to one of these levels. The operators at the higher

level of precedence are evaluated first. The operators of the same precedence are evaluated either from

�left to right� or from �right to left�, depending on the level. This is known as the associativity property

of an operator. Table 4.8 provides a complete list of operators, their precedence levels, and their rules

of association. The groups are listed in the order of decreasing precedence. Rank 1 indicates the

highest precedence level and 15 the lowest. The list also includes those operators, which we have not

yet been discussed.

It is very important to note carefully, the order of precedence and associativity of operators.

Consider the following conditional statement:

if (x = = 10 + 15 && y < 10)

The precedence rules say that the addition operator has a higher priority than the logical operator

(&&) and the relational operators (== and <). Therefore, the addition of 10 and 15 is executed first.

This is equivalent to:

if (x = = 25 && y < 10)

The next step is to determine whether x is equal to 25 and y is less than 10. If we assume a value of

20 for x and 5 for y, then

x == 25 is FALSE (0)

y < 10 is TRUE (1)

Note that since the operator < enjoys a higher priority compared to = =, y < 10 is tested first and

then x == 25 is tested.

Finally we get:

if (FALSE && TRUE)

Operators and Expressions 99

Because one of the conditions is FALSE, the complex condition is FALSE.

In the case of &&, it is guaranteed that the second operand will not be evaluated if the first is zero

and in the case of | |, the second operand will not be evaluated if the first is non-zero.

Table 4.8 Summary of C Operators

Operator Description Associativity Rank

() Function call Left to right 1

[] Array element reference

+ Unary plus

� Unary minus Right to left 2

++ Increment

� � Decrement

! Logical negation

~ Ones complement

* Pointer reference (indirection)

& Address

sizeof Size of an object

(type) Type cast (conversion)

* Multiplication Left to right 3

/ Division

% Modulus

+ Addition Left to right 4

� Subtraction

<< Left shift Left to right 5

>> Right shift

< Less than Left to right 6

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equality Left to right 7

|= Inequality

& Bitwise AND Left to right 8

^ Bitwise XOR Left to right 9

| Bitwise OR Left to right 10

&& Logical AND Left to right 11

|| Logical OR Left to right 12

?: Conditional expression Right to left 13

= Assignment operators Right to left 14

* = /= %=

+= �= &=

^= |=

<<= >>=

, Comma operator Left to right 15

100 Introduction to Computing

Rules of Precedence and Associativity

∑ Precedence rules decides the order in which different operators are applied

∑ Associativity rule decides the order in which multiple occurrences of the same

level operator are applied

4.16 MATHEMATICAL FUNCTIONS

Mathematical functions such as cos, sqrt, log, etc. are frequently used in analysis of real-life problems.

Most of the C compilers support these basic math functions. However, there are systems that have a

more comprehensive math library and one should consult the reference manual to find out which

functions are available. Table 4.9 lists some standard math functions.

Table 4.9 Math functions

Function Meaning

Trigonometric

acos(x) Arc cosine of x

asin(x) Arc sine of x

atan(x) Arc tangent of x

atan 2(x,y) Arc tangent of x/y

cos(x) Cosine of x

sin(x) Sine of x

tan(x) Tangent of x

Hyperbolic

cosh(x) Hyperbolic cosine of x

sinh(x) Hyperbolic sine of x

tanh(x) Hyperbolic tangent of x

Other functions

ceil(x) x rounded up to the nearest integer

exp(x) e to the x power (ex)

fabs(x) Absolute value of x.

floor(x) x rounded down to the nearest integer

fmod(x,y) Remainder of x/y

log(x) Natural log of x, x > 0

log10(x) Base 10 log of x, x > 0

pow(x,y) x to the power y (xy)

sqrt(x) Square root of x, x > = 0

Note: 1. x and y should be declared as double.

2. In trigonometric and hyperbolic functions, x and y are in radians.

3. All the functions return a double.

Operators and Expressions 101

4. C99 has added float and long double versions of these fuctions.

5. C99 has added many more mathematical functions.

6. See the Appendix �C99 Features� for details.

As pointed out earlier in Chapter 1, to use any of these functions in a program, we should include

the line:

include <math.h>

in the beginning of the program.

Just Remember

Use decrement and increment operators carefully. Understand the difference

between postfix and prefix operations before using them.

Add parentheses wherever you feel they would help to make the evaluation

order clear.

Be aware of side effects produced by some expressions.

Avoid any attempt to divide by zero. It is normally undefined. It will either result

in a fatal error or in incorrect results.

Do not forget a semicolon at the end of an expression.

Understand clearly the precedence of operators in an expression. Use

parentheses, if necessary.

Associativity is applied when more than one operator of the same precedence

are used in an expression. Understand which operators associate from right to

left and which associate from left to right.

Do not use increment or decrement operators with any expression other than a

variable identifier.

It is illegal to apply modules operator % with anything other than integers.

Do not use a variable in an expression before it has been assigned a value.

Integer division always truncates the decimal part of the result. Use it carefully.

Use casting where necessary.

The result of an expression is converted to the type of the variable on the left of

the assignment before assigning the value to it. Be careful about the loss of

information during the conversion.

All mathematical functions implement double type parameters and return

double type values.

It is an error if any space appears between the two symbols of the operators ==,

!=, <= and >=.

It is an error if the two symbols of the operators !=, <= and >= are reversed.

Use spaces on either side of binary operator to improve the readability of the

code.

Do not use increment and decrement operators to floating point variables.

Do not confuse the equality operator == with the assignment operator =.

102 Introduction to Computing

Case Study

1. Salesman�s Salary

A computer manufacturing company has the following monthly compensation policy to their sales-

persons:

Minimum base salary : 1500.00

Bonus for every computer sold : 200.00

Commission on the total monthly sales : 2 per cent

Since the prices of computers are changing, the sales price of each computer is fixed at the

beginning of every month. A program to compute a sales-person�s gross salary is given in Fig. 4.9.

Program

#define BASE_SALAR 1500.00
#define BONUS_RATE 200.00
#define COMMISSION 0.02
main()
{

int quantity ;
float gross_salary, price ;
float bonus, commission ;
printf(“Input number sold and price\n”) ;
scanf(“%d %f”, &quantity, &price) ;
bonus = BONUS_RATE * quantity ;
commission = COMMISSION * quantity * price ;
gross_salary = BASE_SALARY + bonus + commission ;
printf(“\n”);
printf(“Bonus = %6.2f\n”, bonus) ;
printf(“Commission = %6.2f\n”, commission) ;
printf(“Gross salary = %6.2f\n”, gross_salary) ;

}
Output

Input number sold and price
5 20450.00
Bonus = 1000.00
Commission = 2045.00
Gross salary = 4545.00

Fig. 4.9 Program of salesman�s salary

Given the base salary, bonus, and commission rate, the inputs necessary to calculate the gross

salary are, the price of each computer and the number sold during the month.

The gross salary is given by the equation:

Gross salary = base salary + (quantity * bonus rate)

+ (quantity * Price) * commission rate

Operators and Expressions 103

2. Solution of the Quadratic Equation

An equation of the form

ax2 + bx + c = 0

is known as the quadratic equation. The values of x that satisfy the equation are known as the roots of

the equation. A quadratic equation has two roots which are given by the following two formulae:

root 1 =
2� b + sqrt (b � 4ac)

2a

root 2 =
2� b � sqrt (b � 4ac)

2a

A program to evaluate these roots is given in Fig. 4.10. The program requests the user to input the

values of a, b and c and outputs root 1 and root 2.

Program

#include <math.h>
main()
{

float a, b, c, discriminant,
root1, root2;

printf(“Input values of a, b, and c\n”);
scanf(“%f %f %f”, &a, &b, &c);
discriminant = b*b - 4*a*c ;
if(discriminant < 0)

printf(“\n\nROOTS ARE IMAGINARY\n”);
else
{

root1 = (-b + sqrt(discriminant))/(2.0*a);
root2 = (-b - sqrt(discriminant))/(2.0*a);
printf(“\n\nRoot1 = %5.2f\n\nRoot2 = %5.2f\n”,

root1,root2);
}

}
Output

Input values of a, b, and c
2 4 -16
Root1 = 2.00
Root2 = -4.00
Input values of a, b, and c
1 2 3
ROOTS ARE IMAGINARY

Fig. 4.10 Solution of a quadratic equation

104 Introduction to Computing

The term (b2�4ac) is called the discriminant. If the discriminant is less than zero, its square roots

cannot be evaluated. In such cases, the roots are said to be imaginary numbers and the program outputs

an appropriate message.

Review Questions

4.1 State whether the following statements are true or false.

(a) All arithmetic operators have the same level of precedence.

(b) The modulus operator % can be used only with integers.

(c) The operators <=, >= and != all enjoy the same level of priority.

(d) During modulo division, the sign of the result is positive, if both the operands are of the same

sign.

(e) In C, if a data item is zero, it is considered false.

(f) The expression !(x<=y) is same as the expression x>y.

(g) A unary expression consists of only one operand with no operators.

(h) Associativity is used to decide which of several different expressions is evaluated first.

(i) An expression statement is terminated with a period.

(j) During the evaluation of mixed expressions, an implicit cast is generated automatically.

(k) An explicit cast can be used to change the expression.

(l) Parentheses can be used to change the order of evaluation expressions.

4.2 Fill in the blanks with appropriate words.

(a) The expression containing all the integer operands is called expression.

(b) The operator cannot be used with real operands.

(c) C supports as many as relational operators.

(d) An expression that combines two or more relational expressions is termed as

expression.

(e) The operator returns the number of bytes the operand occupies.

(f) The order of evaluation can be changed by using in an expression.

(g) The use of on a variable can change its type in the memory.

(h) is used to determine the order in which different operators in an expression are

evaluated.

4.3 Given the statement

int a = 10, b = 20, c;

determine whether each of the following statements are true or false.

(a) The statement a = + 10, is valid.

(b) The expression a + 4/6 * 6/2 evaluates to 11.

(c) The expression b + 3/2 * 2/3 evaluates to 20.

(d) The statement a + = b; gives the values 30 to a and 20 to b.

(e) The statement ++a++; gives the value 12 to a

(f) The statement a = 1/b; assigns the value 0.5 to a

4.4 Declared a as int and b as float, state whether the following statements are true or false.

(a) The statement a = 1/3 + 1/3 + 1/3; assigns the value 1 to a.

(b) The statement b = 1.0/3.0 + 1.0/3.0 + 1.0/3.0; assigns a value 1.0 to b.

(c) The statement b = 1.0/3.0 * 3.0 gives a value 1.0 to b.

(d) The statement b = 1.0/3.0 + 2.0/3.0 assigns a value 1.0 to b.

(e) The statement a = 15/10.0 + 3/2; assigns a value 3 to a.

Operators and Expressions 105

4.5 Which of the following expressions are true?

(a) !(5 + 5 >=10)

(b) 5 + 5 = = 10 | | 1 + 3 = = 5

(c) 5 > 10 | | 10 < 20 && 3 < 5

(d) 10 ! = 15 && !(10<20) | | 15 > 30

4.6 Which of the following arithmetic expressions are valid ? If valid, give the value of the expression;

otherwise give reason.

(a) 25/3 % 2 (e) �14 % 3

(b) +9/4 + 5 (f) 15.25 + � 5.0

(c) 7.5 % 3 (g) (5/3) * 3 + 5 % 3

(d) 14 % 3 + 7 % 2 (h) 21 % (int)4.5

4.7 Write C assignment statements to evaluate the following equations:

(a) Area = p r2 +2 p rh

(b) Torque = 1 2

1 2

2m m

m m+
 . g

(c) Side =
2 2a +b �2ab cos(x)

(d) Energy = mass
2

(velocity)
acceleration height +

2

È ˘
¥Í ˙

Î ˚
4.8 Identify unnecessary parentheses in the following arithmetic expressions.

(a) ((x�(y/5)+z)%8) + 25

(b) ((x�y) * p)+q

(c) (m*n) + (�x/y)

(d) x/(3*y)

4.9 Find errors, if any, in the following assignment statements and rectify them.

(a) x = y = z = 0.5, 2.0. �5.75;

(b) m = ++a * 5;

(c) y = sqrt(100);

(d) p * = x/y;

(e) s = /5;

(f) a = b++ �c*2

4.10 Determine the value of each of the following logical expressions if a = 5, b = 10 and

c = �6

(a) a > b && a < c

(b) a < b && a > c

(c) a == c || b > a

(d) b > 15 && c < 0 || a > 0

(e) (a/2.0 == 0.0 && b/2.0 != 0.0) || c < 0.0

4.11 What is the output of the following program?

main ()
{

char x;
int y;

106 Introduction to Computing

x = 100;
y = 125;
printf (“%c\n”, x) ;
printf (“%c\n”, y) ;
printf (“%d\n”, x) ;

}

4.12 Find the output of the following program?

main ()
{

int x = 100;
printf(“%d/n”, 10 + x++);
printf(“%d/n”, 10 + ++x);

}

4.13 What is printed by the following program?

main
{

int x = 5, y = 10, z = 10 ;
x = y == z;
printf(“%d”,x) ;

}

4.14 What is the output of the following program?

main ()
{

int x = 100, y = 200;
printf (“%d”, (x > y)? x : y);

}

4.15 What is the output of the following program?

main ()
{

unsigned x = 1 ;
signed char y = -1 ;
if(x > y)

printf(“ x > y”);
else

printf(“x<= y”) ;
}

Did you expect this output? Explain.

4.16 What is the output of the following program? Explain the output.

main ()
{

int x = 10 ;

Operators and Expressions 107

if(x = 20) printf(“TRUE”) ;
else printf(“FALSE”) ;

}

4.17 What is the error in each of the following statements?

(a) if (m == 1 & n ! = 0)

printf(�OK�);

(b) if (x = < 5)

printf (�Jump�);

4.18 What is the error, if any, in the following segment?

int x = 10 ;
float y = 4.25 ;
x = y%x ;

4.19 What is printed when the following is executed?

for (m = 0; m <3; ++m)
printf(“%d/n”, (m%2) ? m: m+2);

4.20 What is the output of the following segment when executed?

int m = - 14, n = 3;
printf(“%d\n”, m/n * 10) ;
n = -n;
printf(“%d\n”, m/n * 10);

Programming Exercises

4.1 Given the values of the variables x, y and z, write a program to rotate their values such that x has the

value of y, y has the value of z, and z has the value of x.

4.2 Write a program that reads a floating-point number and then displays the right-most digit of the

integral part of the number.

4.3 Modify the above program to display the two right-most digits of the integral part of the number.

4.4 Write a program that will obtain the length and width of a rectangle from the user and compute its

area and perimeter.

4.5 Given an integer number, write a program that displays the number as follows:

First line : all digits

Second line : all except first digit

Third line : all except first two digits

��.

Last line : The last digit

For example, the number 5678 will be displayed as:

5 6 7 8

6 7 8

7 8

8

4.6 The straight-line method of computing the yearly depreciation of the value of an item is given by

Depreciation =
Purchase Price Salvage Value

Years of Service

-

108 Introduction to Computing

Write a program to determine the salvage value of an item when the purchase price, years of service,

and the annual depreciation are given.

4.7 Write a program that will read a real number from the keyboard and print the following output in

one line:

Smallest integer The given Largest integer

not less than number not greater than

the number the number

4.8 The total distance travelled by a vehicle in t seconds is given by

distance = ut + (at2)/2

where u is the initial velocity (metres per second), a is the acceleration (metres per second
2
). Write

a program to evaluate the distance travelled at regular intervals of time, given the values of u and a.

The program should provide the flexibility to the user to select his own time intervals and repeat the

calculations for different values of u and a.

4.9 In inventory management, the Economic Order Quantity for a single item is given by

EOQ =
2 demand rate setup costs

holding cost per item per unit time

¥ ¥

and the optimal Time Between Orders

TBO =
2 setup costs

demand rate holding cost per item per unit time

¥
¥

Write a program to compute EOQ and TBO, given demand rate (items per unit time), setup costs

(per order), and the holding cost (per item per unit time).

4.10 For a certain electrical circuit with an inductance L and resistance R, the damped natural frequency

is given by

Frequency =
2

2

1
�

4

R

LC C

It is desired to study the variation of this frequency with C (capacitance). Write a program to

calculate the frequency for different values of C starting from 0.01 to 0.1 in steps of 0.01.

4.11 Write a program to read a four digit integer and print the sum of its digits.

Hint: Use / and % operators.

4.12 Write a program to print the size of various data types in C.

4.13 Given three values, write a program to read three values from keyboard and print out the largest of

them without using if statement.

4.14 Write a program to read two integer values m and n and to decide and print whether m is a multiple

of n.

4.15 Write a program to read three values using scanf statement and print the following results:

(a) Sum of the values

(b) Average of the three values

(c) Largest of the three

(d) Smallest of the three

Operators and Expressions 109

4.16 The cost of one type of mobile service is Rs. 250 plus Rs. 1.25 for each call made over and above

100 calls. Write a program to read customer codes and calls made and print the bill for each

customer.

4.17 Write a program to print a table of sin and cos functions for the interval from 0 to 180 degrees in

increments of 15 as shown below.

x (degrees) sin (x) cos (x)

0

15

...

...

180

4.18 Write a program to compute the values of square-roots and squares of the numbers 0 to 100 in steps

10 and print the output in a tabular form as shown below.

Number Square-root Square

0 0 0

100 10 10000

4.19 Write a program that determines whether a given integer is odd or even and displays the number

and description on the same line.

4.20 Write a program to illustrate the use of cast operator in a real life situation.

Managing Input and Output
Operations

5.1 INTRODUCTION

Reading, processing, and writing of data are the three essential functions of a computer program. Most

programs take some data as input and display the processed data, often known as information or results,

on a suitable medium. So far we have seen two methods of providing data to the program variables. One

method is to assign values to variables through the assignment statements such as x = 5; a = 0; and so

on. Another method is to use the input function scanf which can read data from a keyboard. We have

used both the methods in most of our earlier example programs. For outputting results we have used

extensively the function printf which sends results out to a terminal.

Unlike other high-level languages, C does not have any built-in input/output statements as part of its

syntax. All input/output operations are carried out through function calls such as printf and scanf.

There exist several functions that have more or less become standard for input and output operations in

C. These functions are collectively known as the standard I/O library. In this chapter we shall discuss

some common I/O functions that can be used on many machines without any change. However, one

should consult the system reference manual for exact details of these functions and also to see what other

functions are available.

It may be recalled that we have included a statement

#include <math.h>

in the Sample Program 5 in Chapter 1, where a math library function cos(x) has been used. This is to

instruct the compiler to fetch the function cos(x) from the math library, and that it is not a part of C

language. Similarly, each program that uses a standard input/output function must contain the statement

#include <stdio.h>

at the beginning. However, there might be exceptions. For example, this is not necessary for the

functions printf and scanf which have been defined as a part of the C language.

CHAPTER

5

Managing Input and Output Operations 111

The file name stdio.h is an abbreviation for standard input-output header file. The instruction #in-

clude <stdio.h> tells the compiler �to search for a file named stdio.h and place its contents at this point

in the program�. The contents of the header file become part of the source code when it is compiled.

5.2 READING A CHARACTER

The simplest of all input/output operations is reading a character from the �standard input� unit (usually

the keyboard) and writing it to the �standard output� unit (usually the screen). Reading a single character

can be done by using the function getchar. (This can also be done with the help of the scanf function

which is discussed in Section 5.4.) The getchar takes the following form:

variable_name = getchar();

variable_name is a valid C name that has been declared as char type. When this statement is encoun-

tered, the computer waits until a key is pressed and then assigns this character as a value to getchar

function. Since getchar is used on the right-hand side of an assignment statement, the character value of

getchar is in turn assigned to the variable name on the left. For example

char name;
name = getchar();

Will assign the character �H� to the variable name when we press the key H on the keyboard. Since

getchar is a function, it requires a set of parentheses as shown.

Example 5.1 The program in Fig. 5.1 shows the use of getchar function in an interactive
environment.

The program displays a question of YES/NO type to the user and reads the user�s response in a single

character (Y or N). If the response is Y or y, it outputs the message

My name is BUSY BEE

otherwise, outputs

You are good for nothing

NOTE: There is one line space between the input text and output message.

Program
#include <stdio.h>

main()

{

char answer;

printf(“Would you like to know my name?\n”);

printf(“Type Y for YES and N for NO: “);

answer = getchar(); /* Reading a character...*/

112 Introduction to Computing

if(answer == ‘Y’ || answer == ‘y’)
printf(“\n\nMy name is BUSY BEE\n”);

else
printf(“\n\nYou are good for nothing\n”);

}
Output

Would you like to know my name?
Type Y for YES and N for NO: Y

My name is BUSY BEE

Would you like to know my name?
Type Y for YES and N for NO: n

You are good for nothing

Fig. 5.1 Use of getchar function to read a character from keyboard

The getchar function may be called successively to read the characters contained in a line of text. For

example, the following program segment reads characters from keyboard one after another until the

�Return� key is pressed.

— — — –— — — –

— — — –— — — –

char character;

character = ‘ ‘;
while(character != ‘\n’)
{

character = getchar();
}

— — — –— — — –

— — — –— — — –

WARNING

The getchar() function accepts any character keyed in. This includes RETURN and

TAB. This means when we enter single character input, the newline character is

waiting in the input queue after getchar() returns. This could create problems when we

use getchar() in a loop interactively. A dummy getchar() may be used to 'eat' the

unwanted newline character. We can also use the fflush function to flush out the

unwanted characters.

NOTE: We shall be using decision statements like if, if�else and while extensively in this chapter. They are

discussed in detail in Chapters 6 and 7.

Managing Input and Output Operations 113

Example 5.2 The program of Fig. 5.2 requests the user to enter a character and dis-
plays a message on the screen telling the user whether the character is
an alphabet or digit, or any other special character.

This program receives a character from the keyboard and tests whether it is a letter or digit and prints out

a message accordingly. These tests are done with the help of the following functions:

isalpha(character)
isdigit(character)

For example, isalpha assumes a value non-zero (TRUE) if the argument character contains an

alphabet; otherwise it assumes 0 (FALSE). Similar is the case with the function isdigit.

Program

#include <stdio.h>
#include <ctype.h>
main()
{

char character;

printf(“Press any key\n”);

character = getchar();

if (isalpha(character) > 0)/* Test for letter */
printf(“The character is a letter.”);

else
if (isdigit (character) > 0)/* Test for digit */

printf(“The character is a digit.”);
else

printf(“The character is not alphanumeric.”);
}

Output
Press any key
h
The character is a letter.

Press any key
5
The character is a digit.

Press any key
*

The character is not alphanumeric.

Fig. 5.2 Program to test the character type

C supports many other similar functions, which are given in Table 5.1. These character functions are

contained in the file ctype.h and therefore the statement

#include <ctype.h>

must be included in the program.

114 Introduction to Computing

Table 5.1 Character Test Functions

Function Test

isalnum(c) Is c an alphanumeric character?

isalpha(c) Is c an alphabetic character?

isdigit(c) Is c a digit?

islower(c) Is c lower case letter?

isprint(c) Is c a printable character?

ispunct(c) Is c a punctuation mark?

isspace(c) Is c a white space character?

isupper(c) Is c an upper case letter?

5.3 WRITING A CHARACTER

Like getchar, there is an analogous function putchar for writing characters one at a time to the terminal.

It takes the form as shown below:

putchar (variable_name);

where variable_name is a type char variable containing a character. This statement displays the

character contained in the variable_name at the terminal. For example, the statements

answer = ‘Y’;

putchar (answer);

will display the character Y on the screen. The statement

putchar (‘\n’);
would cause the cursor on the screen to move to the beginning of the next line.

Example 5.3 A program that reads a character from keyboard and then prints it in
reverse case is given in Fig. 5.3. That is, if the input is upper case, the output
will be lower case and vice versa.

The program uses three new functions: islower, toupper, and tolower. The function islower is a

conditional function and takes the value TRUE if the argument is a lowercase alphabet; otherwise takes

the value FALSE. The function toupper converts the lowercase argument into an uppercase alphabet

while the function tolower does the reverse.

Program

#include <stdio.h>
#include <ctype.h>
main()
{

char alphabet;
printf(“Enter an alphabet”);
putchar(‘\n’); /* move to next line */
alphabet = getchar();
if (islower(alphabet))

Managing Input and Output Operations 115

putchar(toupper(alphabet));/* Reverse and display */
else

putchar(tolower(alphabet)); /* Reverse and display */
}

Output

Enter an alphabet
a
A
Enter an alphabet
Q
q
Enter an alphabet
z
Z

Fig. 5.3 Reading and writing of alphabets in reverse case

5.4 FORMATTED INPUT

Formatted input refers to an input data that has been arranged in a particular format. For example,

consider the following data:

15.75 123 John

This line contains three pieces of data, arranged in a particular form. Such data has to be read con-

forming to the format of its appearance. For example, the first part of the data should be read into a

variable float, the second into int, and the third part into char. This is possible in C using the scanf

function. (scanf means scan formatted.)

We have already used this input function in a number of examples. Here, we shall explore all of the

options that are available for reading the formatted data with scanf function. The general form of scanf

is

scanf (“control string”, arg1, arg2, argn);

The control string specifies the field format in which the data is to be entered and the arguments

arg1, arg2,, argn specify the address of locations where the data is stored. Control string and argu-

ments are separated by commas.

Control string (also known as format string) contains field specifications, which direct the interpre-

tation of input data. It may include:

∑ Field (or format) specifications, consisting of the conversion character %, a data type character (or

type specifier), and an optional number, specifying the field width.

∑ Blanks, tabs, or newlines.

Blanks, tabs and newlines are ignored. The data type character indicates the type of data that is to be

assigned to the variable associated with the corresponding argument. The field width specifier is

optional. The discussions that follow will clarify these concepts.

116 Introduction to Computing

Inputting Integer Numbers

The field specification for reading an integer number is:

% w sd

The percentage sign (%) indicates that a conversion specification follows. w is an integer number

that specifies the field width of the number to be read and d, known as data type character, indicates that

the number to be read is in integer mode. Consider the following example:

scanf (“%2d %5d”, &num1, &num2);

Data line:

50 31426

The value 50 is assigned to num1 and 31426 to num2. Suppose the input data is as follows:

31426 50

The variable num1 will be assigned 31 (because of %2d) and num2 will be assigned 426 (unread

part of 31426). The value 50 that is unread will be assigned to the first variable in the next scanf call.

This kind of errors may be eliminated if we use the field specifications without the field width specifica-

tions. That is, the statement

scanf(“%d %d”, &num1, &num2);

will read the data

31426 50

correctly and assign 31426 to num1 and 50 to num2.

Input data items must be separated by spaces, tabs or newlines. Punctuation marks do not count as

separators. When the scanf function searches the input data line for a value to be read, it will always

bypass any white space characters.

What happens if we enter a floating point number instead of an integer? The fractional part may be

stripped away! Also, scanf may skip reading further input.

When the scanf reads a particular value, reading of the value will be terminated as soon as the

number of characters specified by the field width is reached (if specified) or until a character that is not

valid for the value being read is encountered. In the case of integers, valid characters are an optionally

signed sequence of digits.

An input field may be skipped by specifying * in the place of field width. For example, the statement

scanf(“%d %*d %d”, &a, &b)

will assign the data

123 456 789
as follows:

123 to a

456 skipped (because of *)

789 to b

The data type character d may be preceded by �l� (letter ell) to read long integers and h to read short

integers.

NOTE: We have provided white space between the field specifications. These spaces are not necessary with the

numeric input, but it is a good practice to include them.

Managing Input and Output Operations 117

Example 5.4 Various input formatting options for reading integers are experimented in
the program shown in Fig. 5.4.

Program

main()
{

int a,b,c,x,y,z;
int p,q,r;

printf(“Enter three integer numbers\n”);
scanf(“%d %*d %d”,&a,&b,&c);
printf(“%d %d %d \n\n”,a,b,c);

printf(“Enter two 4-digit numbers\n”);
scanf(“%2d %4d”,&x,&y);
printf(“%d %d\n\n”, x,y);

printf(“Enter two integers\n”);
scanf(“%d %d”, &a,&x);
printf(“%d %d \n\n”,a,x);

printf(“Enter a nine digit number\n”);
scanf(“%3d %4d %3d”,&p,&q,&r);
printf(“%d %d %d \n\n”,p,q,r);

printf(“Enter two three digit numbers\n”);
scanf(“%d %d”,&x,&y);
printf(“%d %d”,x,y);

}
Output

Enter three integer numbers
1 2 3
1 3 -3577

Enter two 4-digit numbers
6789 4321
67 89

Enter two integers
44 66
4321 44

Enter a nine-digit number
123456789
66 1234 567
Enter two three-digit numbers
123 456
89 123

Fig. 5.4 Reading integers using scanf

118 Introduction to Computing

The first scanf requests input data for three integer values a, b, and c, and accordingly three values 1,

2, and 3 are keyed in. Because of the specification %*d the value 2 has been skipped and 3 is assigned

to the variable b. Notice that since no data is available for c, it contains garbage.

The second scanf specifies the format %2d and %4d for the variables x and y respectively. Whenever

we specify field width for reading integer numbers, the input numbers should not contain more digits

that the specified size. Otherwise, the extra digits on the right-hand side will be truncated and assigned

to the next variable in the list. Thus, the second scanf has truncated the four digit number 6789 and

assigned 67 to x and 89 to y. The value 4321 has been assigned to the first variable in the immediately

following scanf statement.

NOTE: It is legal to use a non-whitespace character between field specifications. However, the scanf expects a

matching character in the given location. For example,

scanf(“%d-%d”, &a, &b);
accepts input like

123-456

to assign 123 to a and 456 to b.

Inputting Real Numbers

Unlike integer numbers, the field width of real numbers is not to be specified and therefore scanf reads

real numbers using the simple specification %f for both the notations, namely, decimal point notation

and exponential notation. For example, the statement

scanf(“%f %f %f”, &x, &y, &z);

with the input data

475.89 43.21E-1 678

will assign the value 475.89 to x, 4.321 to y, and 678.0 to z. The input field specifications may be

separated by any arbitrary blank spaces.

If the number to be read is of double type, then the specification should be %lf instead of simple %f.

A number may be skipped using %*f specification.

Example 5.5 Reading of real numbers (in both decimal point and exponential nota-
tion) is illustrated in Fig. 5.5.

Program

main()
{

float x,y;
double p,q;

printf(“Values of x and y:”);
scanf(“%f %e”, &x, &y);
printf(“\n”);
printf(“x = %f\ny = %f\n\n”, x, y);
printf(“Values of p and q:”);

Managing Input and Output Operations 119

scanf(“%lf %lf”, &p, &q);
printf(“\n\np = %.12lf\np = %.12e”, p,q);

}

Output

Values of x and y:12.3456 17.5e-2
x = 12.345600
y = 0.175000

Values of p and q:4.142857142857 18.5678901234567890

p = 4.142857142857
q = 1.856789012346e+001

Fig. 5.5 Reading of real numbers

Inputting Character Strings

We have already seen how a single character can be read from the terminal using the getchar function.

The same can be achieved using the scanf function also. In addition, a scanf function can input strings

containing more than one character. Following are the specifications for reading character strings:

%ws or %wc

The corresponding argument should be a pointer to a character array. However, %c may be used to read

a single character when the argument is a pointer to a char variable.

Example 5.6 Reading of strings using %wc and %ws is illustrated in Fig. 5.6.

The program in Fig. 5.6 illustrates the use of various field specifications for reading strings. When we use

%wc for reading a string, the system will wait until the wth character is keyed in.

Note that the specification %s terminates reading at the encounter of a blank space. Therefore, name2

has read only the first part of �New York� and the second part is automatically assigned to name3.

However, during the second run, the string �New-York� is correctly assigned to name2.

Program
main()
{

int no;
char name1[15], name2[15], name3[15];

printf(“Enter serial number and name one\n”);
scanf(“%d %15c”, &no, name1);
printf(“%d %15s\n\n”, no, name1);
printf(“Enter serial number and name two\n”);

120 Introduction to Computing

scanf(“%d %s”, &no, name2);
printf(“%d %15s\n\n”, no, name2);

printf(“Enter serial number and name three\n”);
scanf(“%d %15s”, &no, name3);
printf(“%d %15s\n\n”, no, name3);

}

Output

Enter serial number and name one
1 123456789012345
1 123456789012345r
Enter serial number and name two
2 New York
2 New
Enter serial number and name three
2 York
Enter serial number and name one
1 123456789012
1 123456789012r
Enter serial number and name two
2 New-York
2 New-York
Enter serial number and name three
3 London
3 London

Fig. 5.6 Reading of strings

Some versions of scanf support the following conversion specifications for strings:

%[characters]

%[^characters]

The specification %[characters] means that only the characters specified within the brackets are

permissible in the input string. If the input string contains any other character, the string will be

terminated at the first encounter of such a character. The specification %[^characters] does exactly the

reverse. That is, the characters specified after the circumflex (^) are not permitted in the input string.

The reading of the string will be terminated at the encounter of one of these characters.

Example 5.7 The program in Fig. 5.7 illustrates the function of %[] specification.

Program-A
main()
{

char address[80];

Managing Input and Output Operations 121

printf(“Enter address\n”);
scanf(“%[a-z]”, address);
printf(“%-80s\n\n”, address);

}

Output

Enter address
new delhi 110002
new delhi

Program-B

main()
{

char address[80];

printf(“Enter address\n”);
scanf(“%[^\n]”, address);
printf(“%-80s”, address);

}

Output

Enter address
New Delhi 110 002
New Delhi 110 002

Fig. 5.7 Illustration of conversion specification%[] for strings

Reading Blank Spaces

We have earlier seen that %s specifier cannot be used to read strings with blank spaces.

But, this can be done with the help of %[] specification. Blank spaces may be included

within the brackets, thus enabling the scanf to read strings with spaces. Remember

that the lowercase and uppercase letters are distinct. See Fig. 5.7.

Reading Mixed Data Types

It is possible to use one scanf statement to input a data line containing mixed mode data. In such cases,

care should be exercised to ensure that the input data items match the control specifications in order and

type. When an attempt is made to read an item that does not match the type expected, the scanf function

does not read any further and immediately returns the values read. The statement

scanf (“%d %c %f %s”, &count, &code, &ratio, name);

will read the data
15 p 1.575 coffee

122 Introduction to Computing

correctly and assign the values to the variables in the order in which they appear. Some systems accept

integers in the place of real numbers and vice versa, and the input data is converted to the type specified

in the control string.

NOTE: A space before the %c specification in the format string is necessary to skip the white space before p.

Detection of Errors in Input

When a scanf function completes reading its list, it returns the value of number of items that are

successfully read. This value can be used to test whether any errors occurred in reading the input. For

example, the statement

scanf(“%d %f %s, &a, &b, name);

will return the value 3 if the following data is typed in:

20 150.25 motor

and will return the value 1 if the following line is entered

20 motor 150.25

This is because the function would encounter a string when it was expecting a floating-point value, and

would therefore terminate its scan after reading the first value.

Example 5.8 The program presented in Fig. 5.8 illustrates the testing for correctness of
reading of data by scanf function.

The function scanf is expected to read three items of data and therefore, when the values for all the three

variables are read correctly, the program prints out their values. During the third run, the second item

does not match with the type of variable and therefore the reading is terminated and the error message is

printed. Same is the case with the fourth run.

In the last run, although data items do not match the variables, no error message has been printed.

When we attempt to read a real number for an int variable, the integer part is assigned to the variable,

and the truncated decimal part is assigned to the next variable.

NOTE: The character �2� is assigned to the character variable c.

Program

main()
{

int a;
float b;
char c;
printf(“Enter values of a, b and c\n”);
if (scanf(“%d %f %c”, &a, &b, &c) == 3)

printf(“a = %d b = %f c = %c\n” , a, b, c);
else

printf(“Error in input.\n”);
}

Managing Input and Output Operations 123

Output

Enter values of a, b and c
12 3.45 A
a = 12 b = 3.450000 c = A
Enter values of a, b and c
23 78 9
a = 23 b = 78.000000 c = 9
Enter values of a, b and c
8 A 5.25
Error in input.
Enter values of a, b and c
Y 12 67
Error in input.
Enter values of a, b and c
15.75 23 X
a = 15 b = 0.750000 c = 2

Fig. 5.8 Detection of errors in scanf input

Commonly used scanf format codes are given in Table 5.2

Table 5.2 Commonly used scanf Format Codes

Code Meaning

%c read a single character

%d read a decimal integer

%e read a floating point value

%f read a floating point value

%g read a floating point value

%h read a short integer

%i read a decimal, hexadecimal or octal integer

%o read an octal integer

%s read a string

%u read an unsigned decimal integer

%x read a hexadecimal integer

%[..] read a string of word(s)

The following letters may be used as prefix for certain conversion characters.

h for short integers

l for long integers or double

L for long double

NOTE: C99 adds some more format codes.

124 Introduction to Computing

Points to Remember while Using scanf

If we do not plan carefully, some �crazy� things can happen with scanf. Since the I/O routines are not a

part of C language, they are made available either as a separate module of the C library or as a part of

the operating system (like UNIX). New features are added to these routines from time to time as new

versions of systems are released. We should consult the system reference manual before using these

routines. Given below are some of the general points to keep in mind while writing a scanf statement.

1. All function arguments, except the control string, must be pointers to variables.

2. Format specifications contained in the control string should match the arguments in order.

3. Input data items must be separated by spaces and must match the variables receiving the input in

the same order.

4. The reading will be terminated, when scanf encounters a �mismatch� of data or a character that is

not valid for the value being read.

5. When searching for a value, scanf ignores line boundaries and simply looks for the next

appropriate character.

6. Any unread data items in a line will be considered as part of the data input line to the next scanf

call.

7. When the field width specifier w is used, it should be large enough to contain the input data size.

Rules for scanf

∑ Each variable to be read must have a filed specification.

∑ For each field specification, there must be a variable address of proper

type.

∑ Any non-whitespace character used in the format string must have a matching

character in the user input.

∑ Never end the format string with whitespace. It is a fatal error!

∑ The scanf reads until:

� A whitespace character is found in a numeric specification, or

� The maximum number of characters have been read or

� An error is detected, or

� The end of file is reached

5.5 FORMATTED OUTPUT

We have seen the use of printf function for printing captions and numerical results. It is highly desirable

that the outputs are produced in such a way that they are understandable and are in an easy-to-use form.

It is therefore necessary for the programmer to give careful consideration to the appearance and clarity

of the output produced by his program.

Managing Input and Output Operations 125

The printf statement provides certain features that can be effectively exploited to control the align-

ment and spacing of print-outs on the terminals. The general form of printf statement is:

printf(“control string”, arg1, arg2,, argn);

Control string consists of three types of items:

1. Characters that will be printed on the screen as they appear.

2. Format specifications that define the output format for display of each item.

3. Escape sequence characters such as \n, \t, and \b.

The control string indicates how many arguments follow and what their types are. The arguments

arg1, arg2,, argn are the variables whose values are formatted and printed according to the

specifications of the control string. The arguments should match in number, order and type with the

format specifications.

A simple format specification has the following form:

% w.p type-specifier

where w is an integer number that specifies the total number of columns for the output value and p is

another integer number that specifies the number of digits to the right of the decimal point (of a real

number) or the number of characters to be printed from a string. Both w and p are optional. Some

examples of formatted printf statement are:

printf(“Programming in C”);

printf(“ “);

printf(“\n”);

printf(“%d”, x);

printf(“a = %f\n b = %f”, a, b);

printf(“sum = %d”, 1234);

printf(“\n\n”);

printf never supplies a newline automatically and therefore multiple printf statements may be used to

build one line of output. A newline can be introduced by the help of a newline character �\n� as shown in

some of the examples above.

Output of Integer Numbers

The format specification for printing an integer number is:

% w d

where w specifies the minimum field width for the output. However, if a number is greater than the

specified field width, it will be printed in full, overriding the minimum specification. d specifies that the

value to be printed is an integer. The number is written right-justified in the given field width. Leading

blanks will appear as necessary. The following examples illustrate the output of the number 9876 under

different formats:

126 Introduction to Computing

Format Output

printf(�%d�, 9876) 9 8 7 6

printf(�%6d�, 9876) 9 8 7 6

printf(�%2d�, 9876) 9 8 7 6

printf(�%-6d�, 9876) 9 8 7 6

printf(�%06d�, 9876) 0 0 9 8 7 6

It is possible to force the printing to be left-justified by placing a minus sign directly after the %

character, as shown in the fourth example above. It is also possible to pad with zeros the leading blanks

by placing a 0 (zero) before the field width specifier as shown in the last item above. The minus (�) and

zero (0) are known as flags.

Long integers may be printed by specifying ld in the place of d in the format specification. Similarly,

we may use hd for printing short integers.

Example 5.9 The program in Fig. 5.9 illustrates the output of integer numbers under
various formats.

Program
main()
{

int m = 12345;
long n = 987654;

printf(“%d\n”,m);
printf(“%10d\n”,m);
printf(“%010d\n”,m);
printf(“%-10d\n”,m);
printf(“%10ld\n”,n);
printf(“%10ld\n”,-n);

}
Output

12345
12345

0000012345
12345

987654
– 987654

Fig. 5.9 Formatted output of integers

Output of Real Numbers

The output of a real number may be displayed in decimal notation using the following format

specification:

Managing Input and Output Operations 127

% w.p f

The integer w indicates the minimum number of positions that are to be used for the display of the value

and the integer p indicates the number of digits to be displayed after the decimal point (precision). The

value, when displayed, is rounded to p decimal places and printed right-justified in the field of w

columns. Leading blanks and trailing zeros will appear as necessary. The default precision is 6 decimal

places. The negative numbers will be printed with the minus sign. The number will be displayed in the

form [�] mmm-nnn.

We can also display a real number in exponential notation by using the specification:

% w.p e

The display takes the form

[-] m.nnnne[±]xx

where the length of the string of n�s is specified by the precision p. The default precision is 6. The field

width w should satisfy the condition.

w ≥≥≥≥≥ p+7

The value will be rounded off and printed right justified in the field of w columns.

Padding the leading blanks with zeros and printing with left-justification are also possible by using

flags 0 or � before the field width specifier w.

The following examples illustrate the output of the number y = 98.7654 under different format speci-

fications:

Format Output

printf(�%7.4f �,y) 9 8 7 6 5 4.

printf(�%7.2f �,y) 9 8 7 7.

printf(�%-7.2f �,y) 9 8 7 7.

printf(�%f �,y) 9 8 7 6 5 4.

printf(�%10.2e�,y) 9 8 8. e + 0 1

printf(�%11.4e�,-y) - +9 8 7 6 5 0 1. e

printf(�%-10.2e�,y) 9 8 8 0 1. e +

printf(�%e�,y) 9 8 7 6 5 4 0 0 1. e +

Some systems also support a special field specification character that lets the user define the field size

at run time. This takes the following form:

printf(“%*.*f”, width, precision, number);

128 Introduction to Computing

In this case, both the field width and the precision are given as arguments which will supply the values

for w and p. For example,

printf(“%*.*f”,7,2,number);

is equivalent to

printf(“%7.2f”,number);

The advantage of this format is that the values for width and precision may be supplied at run time, thus

making the format a dynamic one. For example, the above statement can be used as follows:

int width = 7;
int precision = 2;
........
........
printf(“%*.*f”, width, precision, number);

Example 5.10 All the options of printing a real number are illustrated in Fig. 5.10.

Program
main()
{

float y = 98.7654;
printf(“%7.4f\n”, y);
printf(“%f\n”, y);
printf(“%7.2f\n”, y);
printf(“%-7.2f\n”, y);
printf(“%07.2f\n”, y);
printf(“%*.*f”, 7, 2, y);
printf(“\n”);
printf(“%10.2e\n”, y);
printf(“%12.4e\n”, -y);
printf(“%-10.2e\n”, y);
printf(“%e\n”, y);

}
Output

98.7654
98.765404
98.77
98.77
0098.77
98.77
9.88e+001
-9.8765e+001
9.88e+001
9.876540e+001

Fig. 5.10 Formatted output of real numbers

Managing Input and Output Operations 129

Printing of a Single Character

A single character can be displayed in a desired position using the format:

%wc

The character will be displayed right-justified in the field of w columns. We can make the display

left-justified by placing a minus sign before the integer w. The default value for w is 1.

Printing of Strings

The format specification for outputting strings is similar to that of real numbers. It is of the form

%w.ps

where w specifies the field width for display and p instructs that only the first p characters of the string

are to be displayed. The display is right-justified.

The following examples show the effect of variety of specifications in printing a string �NEW DELHI

110001�, containing 16 characters (including blanks).

N

1 1

N

N

N

N

N

E

2 2

E

E

E

E

E

W

3 34 4

W

W

W

W

W

D

5 5

D

D

D

D

D

E

6 6

E

E

E

E

L

7 7

L

L

L

L

H

8 8

H

H

H

H

I

9 90 0

I

I

I

I

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

OutputSpecification

%s

%20s

%20.10s

%-20.10s

%.5s

%5s

Example 5.11 Printing of characters and strings is illustrated in Fig. 5.11.

Program

main()
{

char x = ‘A’;
char name[20] = “ANIL KUMAR GUPTA”;

printf(“OUTPUT OF CHARACTERS\n\n”);
printf(“%c\n%3c\n%5c\n”, x,x,x);
printf(“%3c\n%c\n”, x,x);

130 Introduction to Computing

printf(“\n”);

printf(“OUTPUT OF STRINGS\n\n”);
printf(“%s\n”, name);
printf(“%20s\n”, name);
printf(“%20.10s\n”, name);
printf(“%.5s\n”, name);
printf(“%-20.10s\n”, name);
printf(“%5s\n”, name);

}
Output

OUTPUT OF CHARACTERS
A

A
A

A
A
OUTPUT OF STRINGS
ANIL KUMAR GUPTA

ANIL KUMAR GUPTA
 ANIL KUMAR

ANIL
ANIL KUMAR
ANIL KUMAR GUPTA

Fig. 5.11 Printing of characters and strings

Mixed Data Output

It is permitted to mix data types in one printf statement. For example, the statement of the type

printf(“%d %f %s %c”, a, b, c, d);

is valid. As pointed out earlier, printf uses its control string to decide how many variables to be printed

and what their types are. Therefore, the format specifications should match the variables in number,

order, and type. If there are not enough variables or if they are of the wrong type, the output results will

be incorrect.

Table 5.3 Commonly used printf Format Codes

Code Meaning

%c print a single character

%d print a decimal integer

%e print a floating point value in exponent form

%f print a floating point value without exponent

%g print a floating point value either e-type or f-type depending on

%i print a signed decimal integer

(Contd.)

Managing Input and Output Operations 131

Table 5.3 (Contd.)

Code Meaning

%o print an octal integer, without leading zero

%s print a string

%u print an unsigned decimal integer

%x print a hexadecimal integer, without leading Ox

The following letters may be used as prefix for certain conversion characters.

h for short integers

l for long integers or double

L for long double.

Table 5.4 Commonly used Output Format Flags

Flag Meaning

� Output is left-justified within the field. Remaining field will be blank.

+ + or � will precede the signed numeric item.

0 Causes leading zeros to appear.

(with o or x) Causes octal and hex items to be preceded by O and Ox, respectively.

(with e, f or g) Causes a decimal point to be present in all floating point numbers, even

if it is whole number. Also prevents the truncation of trailing zeros in g-

type conversion.

NOTE: C99 adds some more format codes.

Enhancing the Readability of Output

Computer outputs are used as information for analysing certain relationships between variables and for

making decisions. Therefore the correctness and clarity of outputs are of utmost importance. While the

correctness depends on the solution procedure, the clarity depends on the way the output is presented.

Following are some of the steps we can take to improve the clarity and hence the readability and

understandability of outputs.

1. Provide enough blank space between two numbers.

2. Introduce appropriate headings and variable names in the output.

3. Print special messages whenever a peculiar condition occurs in the output.

4. Introduce blank lines between the important sections of the output.

The system usually provides two blank spaces between the numbers. However, this can be increased by

selecting a suitable field width for the numbers or by introducing a �tab� character between the

specifications. For example, the statement

printf(“a = %d\t b = %d”, a, b);

will provide four blank spaces between the two fields. We can also print them on two separate lines by

using the statement

printf(“a = %d\n b = %d”, a, b);

132 Introduction to Computing

Messages and headings can be printed by using the character strings directly in the printf statement.

Examples:

printf(“\n OUTPUT RESULTS \n”);
printf(“Code\t Name\t Age\n”);

printf(“Error in input data\n”);

printf(“Enter your name\n”);

Just Remember

While using getchar function, care should be exercised to clear any unwanted

characters in the input stream.

Do not forget to include <stdio.h> headerfiles when using functions from

standard input/output library.

Do not forget to include <ctype.h> header file when using functions from char-

acter handling library.

Provide proper field specifications for every variable to be read or printed.

Enclose format control strings in double quotes.

Do not forget to use address operator & for basic type variables in the input list

of scanf.

Use double quotes for character string constants.

Use single quotes for single character constants.

Provide sufficient field to handle a value to be printed.

Be aware of the situations where output may be imprecise due to formatting.

Do not specify any precision in input field specifications.

Do not provide any white-space at the end of format string of a scanf

statement.

Do not forget to close the format string in the scanf or printf statement with

double quotes.

Using an incorrect conversion code for data type being read or written will

result in runtime error.

Do not forget the comma after the format string in scanf and printf

statements.

Not separating read and write arguments is an error.

Do not use commas in the format string of a scanf statement.

Using an address operator & with a variable in the printf statement will result

in runtime error.

Case Studies

1. Inventory Report

Problem: The ABC Electric Company manufactures four consumer products. Their inventory position

on a particular day is given below:

Managing Input and Output Operations 133

Code Quantity Rate (Rs)

F105 275 575.00

H220 107 99.95

I019 321 215.50

M315 89 725.00

It is required to prepare the inventory report table in the following format:

INVENTORY REPORT

Code Quantity Rate Value

�� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� �� ��

Total Value: ���

The value of each item is given by the product of quantity and rate.

Program: The program given in Fig. 5.12 reads the data from the terminal and generates the required

output. The program uses subscripted variables which are discussed in Chapter 7.

Program
#define ITEMS 4
main()
{ /* BEGIN */

int i, quantity[5];
float rate[5], value, total_value;
char code[5][5];
/* READING VALUES */
i = 1;
while (i <= ITEMS)
{

printf(“Enter code, quantity, and rate:”);
scanf(“%s %d %f”, code[i], &quantity[i],&rate[i]);
i++;

}
/*.......Printing of Table and Column Headings.......*/

printf(“\n\n”);
printf(“ INVENTORY REPORT \n”);
printf(“— \n”);
printf(“ Code Quantity Rate Value \n”);
printf(“— \n”);

/*.......Preparation of Inventory Position..........*/
total_value = 0;
i = 1;
while (i <= ITEMS)
{

134 Introduction to Computing

value = quantity[i] * rate[i];
printf(“%5s %10d %10.2f %e\n”,code[i],quantity[i],

rate[i],value);
total_value += value;
i++;

}
/*.......Printing of End of Table..................*/

printf(“— — — — — — — — — — — — — — — — \n”);
printf(“ Total Value = %e\n”,total_value);
printf(“— — — — — — — — — — — — — — — — \n”);

} /* END */

Output

Enter code, quantity, and rate:F105 275 575.00
Enter code, quantity, and rate:H220 107 99.95
Enter code, quantity, and rate:I019 321 215.50
Enter code, quantity, and rate:M315 89 725.00

INVENTORY REPORT

Code Quantity Rate Value

F105 275 575.00 1.581250e+005
H220 107 99.95 1.069465e+004
I019 321 215.50 6.917550e+004
M315 89 725.00 6.452500e+004

Total Value = 3.025202e+005

Fig. 5.12 Program for inventory report

2. Reliability Graph

Problem: The reliability of an electronic component is given by

reliability (r) = e � l t

where l is the component failure rate per hour and t is the time of operation in hours. A graph is required

to determine the reliability at various operating times, from 0 to 3000 hours. The failure rate l (lambda)

is 0.001.

Problem

#include <math.h>
#define LAMBDA 0.001
main()
{

double t;
float r;
int i, R;
for (i=1; i<=27; ++i)
{

Managing Input and Output Operations 135

printf(“– —”);
}
printf(“\n”);
for (t=0; t<=3000; t+=150)
{

r = exp(–LAMBDA*t);
R = (int)(50*r+0.5);
printf(“ |”);
for (i=1; i<=R; ++i)
{

printf(“*”);
}
printf(“#\n”);

}
for (i=1; i<3; ++i)
{

printf(“ |\n”);
}

}

Output

– –– –– – ––– ––– –– – ––– ––– –– – – –– – –– – –– – –– – –– ––– –

|**#
|***#
|*************************************#
|********************************#
|***************************#
|************************#
|********************#
|*****************#
|***************#
|*************#
|***********#
|**********#
|********#
|*******#
|******#
|*****#
|*****#
|****#
|***#
|***#
|**#

Fig. 5.13 Program to draw reliability graph

136 Introduction to Computing

Program: The program given in Fig. 5.13 produces a shaded graph. The values of t are self-generated

by the for statement

for (t=0; t <= 3000; t = t+150)

in steps of 150. The integer 50 in the statement

R = (int)(50*r+0.5)

is a scale factor which converts r to a large value where an integer is used for plotting the curve.

Remember r is always less than 1.

Review Questions

5.1 State whether the following statements are true or false.

(a) The purpose of the header file <studio.h> is to store the programs created by the users.

(b) The C standard function that receives a single character from the keyboard is getchar.

(c) The getchar cannot be used to read a line of text from the keyboard.

(d) The input list in a scanf statement can contain one or more variables.

(e) When an input stream contains more data items than the number of specifications in a scanf

statement, the unused items will be used by the next scanf call in the program.

(f) Format specifiers for output convert internal representations for data to readable characters.

(g) Variables form a legal element of the format control string of a printf statement.

(h) The scanf function cannot be used to read a single character from the keyboard.

(i) The format specification %+ �8d prints an integer left-justified in a field width of 8 with a

plus sign, if the number is positive.

(j) If the field width of a format specifier is larger than the actual width of the value, the value is

printed right-justified in the field.

(k) The print list in a printf statement can contain function calls.

(l) The format specification %5s will print only the first 5 characters of a given string to be

printed.

5.2 Fill in the blanks in the following statements.

(a) The specification is used to read or write a short integer.

(b) The conversion specifier is used to print integers in hexadecimal form.

(c) For using character functions, we must include the header file in the program.

(d) For reading a double type value, we must use the specification .

(e) The specification is used to read a data from input list and discard it without

assigning it to many variables.

(f) The specification may be used in scanf to terminate reading at the encounter of

a particular character.

(g) The specification %[] is used for reading strings that contain .

(h) By default, the real numbers are printed with a precision of decimal places.

(i) To print the data left-justified, we must use in the field specification.

(j) The specifier prints floating-point values in the scientific notation.

5.3 Distinguish between the following pairs:

(a) getchar and scanf functions.

(b) %s and %c specifications for reading.

(c) %s and %[] specifications for reading.

Managing Input and Output Operations 137

(d) %g and %f specification for printing.

(e) %f and %e specifications for printing.

5.4 Write scanf statements to read the following data lists:

(a) 78 B 45 (b) 123 1.23 45A

(c) 15-10-2002 (d) 10 TRUE 20

5.5 State the outputs produced by the following printf statements.

(a) printf (�%d%c%f�, 10, �x�, 1.23);

(b) printf (�%2d %c %4.2f�, 1234,, �x�, 1.23);

(c) printf (�%d\t%4.2f�, 1234, 456);

(d) printf (�\�%08.2f\��, 123.4);

(e) printf (�%d%d %d�, 10, 20);

For questions 5.6 to 5.10 assume that the following declarations have been made in the

program:

int year, count;
float amount, price;
char code, city[10];
double root;

5.6 State errors, if any, in the following input statements.

(a) scanf(�%c%f%d�, city, &price, &year);

(b) scanf(�%s%d�, city, amount);

(c) scanf(�%f, %d, &amount, &year);

(d) scanf(\n�%f�, root);

(e) scanf(�%c %d %ld�, *code, &count, Root);

5.7 What will be the values stored in the variables year and code when the data

1988, x

is keyed in as a response to the following statements:

(a) scanf(�%d %c�, &year, &code);

(b) scanf(�%c %d�, &year, &code);

(c) scanf(�%d %c�, &code, &year);

(d) scanf(�%s %c�, &year, &code);

5.8 The variables count, price, and city have the following values:

count <�� 1275

price <�� �235.74

city <�� Cambridge

Show the exact output that the following output statements will produce:

(a) printf(�%d %f�, count, price);

(b) printf(�%2d\n%f�, count, price);

(c) printf(�%d %f�, price, count);

(d) printf(�%10dxxxx%5.2f�,count, price);

(e) printf(�%s�, city);

(f) printf(%-10d %-15s�, count, city);

5.9 State what (if anything) is wrong with each of the following output statements:

(a) printf(%d 7.2%f, year, amount);

(b) printf(�%-s, %c�\n, city, code);

(c) printf(�%f, %d, %s, price, count, city);

(d) printf(�%c%d%f\n�, amount, code, year);

138 Introduction to Computing

5.10 In response to the input statement

scanf(�%4d%*%d�, &year, &code, &count);

the following data is keyed in:

19883745

What values does the computer assign to the variables year, code, and count?

5.11 How can we use the getchar() function to read multicharacter strings?

5.12 How can we use the putchar () function to output multicharacter strings?

5.13 What is the purpose of scanf() function?

5.14 Describe the purpose of commonly used conversion characters in a scanf() function.

5.15 What happens when an input data item contains

(a) more characters than the specified field width and

(b) fewer characters than the specified field width?

5.16 What is the purpose of print() function?

5.17 Describe the purpose of commonly used conversion characters in a printf() function.

5.18 How does a control string in a printf() function differ from the control string in a scanf()

function?

5.19 What happens if an output data item contains

(a) more characters than the specified field width and

(b) fewer characters than the specified field width?

5.20 How are the unrecognized characters within the control string are interpreted in

(a) scanf function; and

(b) printf function?

Programming Exercises

5.1 Given the string �WORDPROCESSING�, write a program to read the string from the terminal

and display the same in the following formats:

(a) WORD PROCESSING

(b) WORD

PROCESSING

(c) W.P.

5.2 Write a program to read the values of x and y and print the results of the following expressions in

one line:

(a)
x y

x y

+

-
(b)

x y

2

+
(c) (x+y)(x�y)

5.3 Write a program to read the following numbers, round them off to the nearest integers and print

out the results in integer form:

35.7 50.21 � 23.73 � 46.45

5.4 Write a program that reads 4 floating point values in the range, 0.0 to 20.0, and prints a horizontal

bar chart to represent these values using the character * as the fill character. For the purpose of

the chart, the values may be rounded off to the nearest integer. For example, the value 4.36 should

be represented as follows.

* * * *

* * * * 4.36

* * * *

Note that the actual values are shown at the end of each bar.

Managing Input and Output Operations 139

5.5 Write an interactive program to demonstrate the process of multiplication. The program should

ask the user to enter two two-digit integers and print the product of integers as shown below.

45

¥ 37

7 ¥ 45 is 315

3 ¥ 45 is 135

Add them 1665

5.6 Write a program to read three integers from the keyboard using one scanf statement and output

them on one line using:

(a) three printf statements,

(b) only one printf with conversion specifiers, and

(c) only one printf without conversion specifiers.

5.7 Write a program that prints the value 10.45678 in exponential format with the following

specifications:

(a) correct to two decimal places;

(b) correct to four decimal places; and

(c) correct to eight decimal places.

5.8 Write a program to print the value 345.6789 in fixed-point format with the following

specifications:

(a) correct to two decimal places;

(b) correct to five decimal places; and

(c) correct to zero decimal places.

5.9 Write a program to read the name ANIL KUMAR GUPTA in three parts using the scanf

statement and to display the same in the following format using the printf statement.

(a) ANIL K. GUPTA

(b) A.K. GUPTA

(c) GUPTA A.K.

5.10 Write a program to read and display the following table of data.

Name Code Price

Fan 67831 1234.50

Motor 450 5786.70

The name and code must be left-justified and price must be right-justified.

CHAPTER

6
Decision Making and

Branching

6.1 INTRODUCTION

We have seen that a C program is a set of statements which are normally executed sequentially in the

order in which they appear. This happens when no options or no repetitions of certain calculations are

necessary. However, in practice, we have a number of situations where we may have to change the order

of execution of statements based on certain conditions, or repeat a group of statements until certain

specified conditions are met. This involves a kind of decision making to see whether a particular

condition has occurred or not and then direct the computer to execute certain statements accordingly.

C language possesses such decision-making capabilities by supporting the following statements:

1. if statement

2. switch statement

3. Conditional operator statement

4. goto statement

These statements are popularly known as decision-making statements. Since these statements �con-

trol� the flow of execution, they are also known as control statements.

We have already used some of these statements in the earlier examples. Here, we shall discuss their

features, capabilities and applications in more detail.

6.2 DECISION MAKING WITH IF STATEMENT

The if statement is a powerful decision-making statement and is used to control the flow of execution of

statements. It is basically a two-way decision statement and is used in conjunction with an expression. It

takes the following form:

if (test expression)

It allows the computer to evaluate the expression first and then, depending on whether the value of the

expression (relation or condition) is �true� (or non-zero) or �false� (zero), it transfers the control to a

Decision Making and Branching 141

particular statement. This point of program has two paths to follow, one for the true condition and the

other for the false condition as shown in Fig. 6.1.

False

True

Entry

test expression
?

Fig. 6.1 Two-way branching

Some examples of decision making, using if statements are:

1. if (bank balance is zero)

borrow money

2. if (room is dark)

put on lights

3. if (code is 1)

person is male

4. if (age is more than 55)

person is retired

The if statement may be implemented in different forms depending on the complexity of conditions to

be tested. The different forms are:

1. Simple if statement

2. if.....else statement

3. Nested if....else statement

4. else if ladder.

We shall discuss each one of them in the next few sections.

6.3 SIMPLE IF STATEMENT

The general form of a simple if statement is

if (test expression)
 {

statement-block;
 }
statement-x;

The �statement-block� may be a single statement or a group of statements. If the test expression is true,

the statement-block will be executed; otherwise the statement-block will be skipped and the execution

142 Introduction to Computing

will jump to the statement-x. Remember, when the condition is true both the statement-block and the

statement-x are executed in sequence. This is illustrated in Fig. 6.2.

False

statement - x

statement-block

Next statement

True

Entry

test
expression

?

Fig. 6.2 Flow chart of simple if control

Consider the following segment of a program that is written for processing of marks obtained in an

entrance examination.

.........

.........
if (category == SPORTS)
{

marks = marks + bonus_marks;
}
printf(“%f”, marks);
.........
.........

The program tests the type of category of the student. If the student belongs to the SPORTS category,

then additional bonus_marks are added to his marks before they are printed. For others, bonus_marks

are not added.

Example 6.1 The program in Fig. 6.3 reads four values a, b, c, and d from the terminal
and evaluates the ratio of (a+b) to (c–d) and prints the result, if c–d is not
equal to zero.

The program given in Fig. 6.3 has been run for two sets of data to see that the paths function properly.

The result of the first run is printed as,

Ratio = �3.181818

Decision Making and Branching 143

Program

main()
{

int a, b, c, d;
float ratio;

printf(“Enter four integer values\n”);
scanf(“%d %d %d %d”, &a, &b, &c, &d);

if (c-d != 0) /* Execute statement block */
{

ratio = (float)(a+b)/(float)(c-d);
printf(“Ratio = %f\n”, ratio);

}
}

Output

Enter four integer values
12 23 34 45
Ratio = -3.181818

Enter four integer values
12 23 34 34

Fig. 6.3 Illustration of simple if statement

The second run has neither produced any results nor any message. During the second run, the value of

(c�d) is equal to zero and therefore, the statements contained in the statement-block are skipped. Since

no other statement follows the statement-block, program stops without producing any output.

Note the use of float conversion in the statement evaluating the ratio. This is necessary to avoid

truncation due to integer division. Remember, the output of the first run �3.181818 is printed correct to

six decimal places. The answer contains a round off error. If we wish to have higher accuracy, we must

use double or long double data type.

The simple if is often used for counting purposes. The Example 6.2 illustrates this.

Example 6.2 The program in Fig. 6.4 counts the number of boys whose weight is less
than 50 kg and height is greater than 170 cm.

The program has to test two conditions, one for weight and another for height. This is done using the

compound relation

if (weight < 50 && height > 170)

144 Introduction to Computing

This would have been equivalently done using two if statements as follows:

if (weight < 50)

if (height > 170)

count = count +1;

If the value of weight is less than 50, then the following statement is executed, which in turn is

another if statement. This if statement tests height and if the height is greater than 170, then the count

is incremented by 1.

Program

main()
{

int count, i;
float weight, height;

count = 0;
printf(“Enter weight and height for 10 boys\n”);

for (i =1; i <= 10; i++)
{

scanf(“%f %f”, &weight, &height);
if (weight < 50 && height > 170)

count = count + 1;
}
printf(“Number of boys with weight < 50 kg\n”);
printf(“and height > 170 cm = %d\n”, count);

}

Output

Enter weight and height for 10 boys
45 176.5
55 174.2
47 168.0
49 170.7
54 169.0
53 170.5
49 167.0
48 175.0
47 167
51 170
Number of boys with weight < 50 kg
and height > 170 cm = 3

Fig. 6.4 Use of if for counting

Decision Making and Branching 145

Applying De Morgan�s Rule

While designing decision statements, we often come across a situation where the

logical NOT operator is applied to a compound logical expression, like !(x&&y||!z).

However, a positive logic is always easy to read and comprehend than a negative

logic. In such cases, we may apply what is known as De Morgan�s rule to make the

total expression positive. This rule is as follows:

�Remove the parentheses by applying the NOT operator to every logical expression

component, while complementing the relational operators.�

That is,

x becomes !x

!x becomes x

&& becomes ||

|| becomes &&

Examples:

!(x && y || !z) becomes !x || !y && z

!(x <=0 || !condition) becomes x >0&& condition

6.4 THE IF.....ELSE STATEMENT

The if...else statement is an extension of the simple if statement. The general form is

If (test expression)
{

True-block statement(s)
}

else

{
False-block statement(s)

}

statement-x

If the test expression is true, then the true-block statement(s), immediately following the if

statements are executed; otherwise, the false-block statement(s) are executed. In either case, either

true-block or false-block will be executed, not both. This is illustrated in Fig. 6.5. In both the

cases, the control is transferred subsequently to the statement-x.

146 Introduction to Computing

Fig. 6.5 Flow chart of if......else control

Let us consider an example of counting the number of boys and girls in a class. We use code 1 for a

boy and 2 for a girl. The program statement to do this may be written as follows:

.........

.........
if (code == 1)

boy = boy + 1;
if (code == 2)

girl = girl+1;
.........
.........

The first test determines whether or not the student is a boy. If yes, the number of boys is increased by

1 and the program continues to the second test. The second test again determines whether the student is

a girl. This is unnecessary. Once a student is identified as a boy, there is no need to test again for a girl.

A student can be either a boy or a girl, not both. The above program segment can be modified using the

else clause as follows:

..........

..........
if (code == 1)

boy = boy + 1;
else

girl = girl + 1;
xxxxxxxxxx

..........

Decision Making and Branching 147

Here, if the code is equal to 1, the statement boy = boy + 1; is executed and the control is transferred

to the statement xxxxxx, after skipping the else part. If the code is not equal to 1, the statement boy =

boy + 1; is skipped and the statement in the else part girl = girl + 1; is executed before the control

reaches the statement xxxxxxxx.

Consider the program given in Fig. 6.3. When the value (c�d) is zero, the ratio is not calculated and

the program stops without any message. In such cases we may not know whether the program stopped due

to a zero value or some other error. This program can be improved by adding the else clause as follows:

..........

..........
if (c-d != 0)

{
ratio = (float)(a+b)/(float)(c-d);
printf(“Ratio = %f\n”, ratio);

}
else

printf(“c-d is zero\n”);
..........
..........

Example 6.3 A program to evaluate the power series.

ex = 1 + x +
x

2!

x

3!

x

n!

2 3 n

+ +¼+ , 0 < x < 1

is given in Fig. 6.6. It uses if......else to test the accuracy.
The power series contains the recurrence relationship of the type

Tn = Tn-1

x

n
e j for n > 1

T1 = x for n = 1

T0 = 1

If Tn-1 (usually known as previous term) is known, then Tn (known as present term) can be easily found

by multiplying the previous term by x/n. Then

ex = T0 + T1 + T2 + + Tn = sum

Program

#define ACCURACY 0.0001
main()
{

int n, count;
float x, term, sum;

printf(“Enter value of x:”);

scanf(“%f”, &x);

148 Introduction to Computing

n = term = sum = count = 1;
while (n <= 100)
{

term = term * x/n;
sum = sum + term;
count = count + 1;
if (term < ACCURACY)

n = 999;
else

n = n + 1;
}
printf(“Terms = %d Sum = %f\n”, count, sum);

}

Output

Enter value of x:0
Terms = 2 Sum = 1.000000

Enter value of x:0.1
Terms = 5 Sum = 1.105171

Enter value of x:0.5
Terms = 7 Sum = 1.648720

Enter value of x:0.75
Terms = 8 Sum = 2.116997

Enter value of x:0.99
Terms = 9 Sum = 2.691232

Enter value of x:1
Terms = 9 Sum = 2.718279

Fig. 6.6 Illustration of if...else statement

The program uses count to count the number of terms added. The program stops when the value of the

term is less than 0.0001 (ACCURACY). Note that when a term is less than ACCURACY, the value of

n is set equal to 999 (a number higher than 100) and therefore the while loop terminates. The results are

printed outside the while loop.

6.5 NESTING OF IF....ELSE STATEMENTS

When a series of decisions are involved, we may have to use more than one if...else statement in nested

form as shown below:

The logic of execution is illustrated in Fig. 6.7. If the condition-1 is false, the statement-3 will be

executed; otherwise it continues to perform the second test. If the condition-2 is true, the statement-1 will

Decision Making and Branching 149

(test condition-1)

if (test condition-2);

statement -1;

statement -2;

statement -3;

statement -x;

else

else

if

be evaluated; otherwise the statement-2 will be evaluated and then the control is transferred to the

statement-x.

statement - x

Next Statement

False

False True

True

Entry

test
condition 1

?

test
condition 2

?

statement-2statement-3 statement-1

Fig. 6.7 Flow chart of nested if�else statements

150 Introduction to Computing

A commercial bank has introduced an incentive policy of giving bonus to all its deposit holders. The

policy is as follows: A bonus of 2 per cent of the balance held on 31st December is given to every one,

irrespective of their balance, and 5 per cent is given to female account holders if their balance is more

than Rs. 5000. This logic can be coded as follows:

.........
if (sex is female)

{
if (balance > 5000)

bonus = 0.05 * balance;
else

bonus = 0.02 * balance;
}
else
{

bonus = 0.02 * balance;
}
balance = balance + bonus;
.........
.........

When nesting, care should be exercised to match every if with an else. Consider the following alterna-

tive to the above program (which looks right at the first sight):

if (sex is female)
if (balance > 5000)

bonus = 0.05 * balance;
else

bonus = 0.02 * balance;
balance = balance + bonus;

There is an ambiguity as to over which if the else belongs to. In C, an else is linked to the closest non-

terminated if. Therefore, the else is associated with the inner if and there is no else option for the outer

if. This means that the computer is trying to execute the statement

balance = balance + bonus;

without really calculating the bonus for the male account holders.

Consider another alternative, which also looks correct:

if (sex is female)
{

if (balance > 5000)
bonus = 0.05 * balance;

}
else

bonus = 0.02 * balance;
balance = balance + bonus;

In this case, else is associated with the outer if and therefore bonus is calculated for the male account

holders. However, bonus for the female account holders, whose balance is equal to or less than 5000 is

not calculated because of the missing else option for the inner if.

Decision Making and Branching 151

Example 6.4 The program in Fig. 6.8 selects and prints the largest of the three numbers
using nested if....else statements.

Program

main()
{
float A, B, C;

printf(“Enter three values\n”);
scanf(“%f %f %f”, &A, &B, &C);

printf(“\nLargest value is “);
if (A>B)
{

if (A>C)
printf(“%f\n”, A);

else
printf(“%f\n”, C);

}
else
{

if (C>B)
printf(“%f\n”, C);

else
printf(“%f\n”, B);

}
}

Output

Enter three values
23445 67379 88843

Largest value is 88843.000000

Fig. 6.8 Selecting the largest of three numbers

Dangling Else Problem

One of the classic problems encountered when we start using nested if�.else state-

ments is the dangling else. This occurs when a matching else is not available for an if.

The answer to this problem is very simple. Always match an else to the most recent

unmatched if in the current block. In some cases, it is possible that the false condition

is not required. In such situations, else statement may be omitted

"else is always paired with the most recent unpaired if"

152 Introduction to Computing

6.6 THE ELSE IF LADDER

There is another way of putting ifs together when multipath decisions are involved. A multipath decision

is a chain of ifs in which the statement associated with each else is an if. It takes the following general

form:

if (condition 1)

else if (condition 2)

else if (condition 3)

else if (condition n)

else

statement-1;

statement-2;

statement-3;

statement-n;

default-statement;

statement-x;

This construct is known as the else if ladder. The conditions are evaluated from the top (of the lad-

der), downwards. As soon as a true condition is found, the statement associated with it is executed and

the control is transferred to the statement-x (skipping the rest of the ladder). When all the n conditions

become false, then the final else containing the default-statement will be executed. Figure 6.9 shows the

logic of execution of else if ladder statements.

Let us consider an example of grading the students in an academic institution. The grading is done

according to the following rules:

Average marks Grade

80 to 100 Honours

60 to 79 First Division

50 to 59 Second Division

40 to 49 Third Division

0 to 39 Fail

This grading can be done using the else if ladder as follows:

if (marks > 79)
grade = “Honours”;

else if (marks > 59)
grade = “First Division”;

else if (marks > 49)
grade = “Second Division”;

else if (marks > 39)
grade = “Third Division”;

else

Decision Making and Branching 153

grade = “Fail”;
printf (“%s\n”, grade);

Consider another example given below:

— — — —
— — — —
if (code == 1)

colour = “RED”;
else if (code == 2)

colour = “GREEN”;
else if (code == 3)

colour = “WHITE”;
else

colour = “YELLOW”;
— — —
— — —

Code numbers other than 1, 2 or 3 are considered to represent YELLOW colour. The same results can

be obtained by using nested if...else statements.

statement - x

next statement

False

False

False

False

True

True

True

True

Entry

Condition-1

Condition-2

Condition-3

Condition-n

statement-2

statement-3

statement-n default
statement

statement-1

Fig. 6.9 Flow chart of else..if ladder

154 Introduction to Computing

if (code != 1)
if (code != 2)

if (code != 3)
colour = “YELLOW”;

else

colour = “WHITE”;
else

colour = “GREEN”;
else

colour = “RED”;

In such situations, the choice is left to the programmer. However, in order to choose an if structure

that is both effective and efficient, it is important that the programmer is fully aware of the various forms

of an if statement and the rules governing their nesting.

Example 6.5 An electric power distribution company charges its domestic consumers
as follows:

Consumption Units Rate of Charge
0 – 200 Rs. 0.50 per unit

201 – 400 Rs. 100 plus Rs. 0.65 per unit excess of 200
401 – 600 Rs. 230 plus Rs. 0.80 per unit excess of 400

601 and above Rs. 390 plus Rs. 1.00 per unit excess of 600
The program in Fig. 6.10 reads the customer number and power consumed and prints

the amount to be paid by the customer.

Program

main()
{

int units, custnum;
float charges;
printf(“Enter CUSTOMER NO. and UNITS consumed\n”);
scanf(“%d %d”, &custnum, &units);
if (units <= 200)

charges = 0.5 * units;
else if (units <= 400)

charges = 100 + 0.65 * (units - 200);
else if (units <= 600)
charges = 230 + 0.8 * (units - 400);

else
charges = 390 + (units - 600);

printf(“\n\nCustomer No: %d: Charges = %.2f\n”,
custnum, charges);

}

Output

Enter CUSTOMER NO. and UNITS consumed 101 150

Decision Making and Branching 155

Customer No:101 Charges = 75.00

Enter CUSTOMER NO. and UNITS consumed 202 225
Customer No:202 Charges = 116.25

Enter CUSTOMER NO. and UNITS consumed 303 375
Customer No:303 Charges = 213.75

Enter CUSTOMER NO. and UNITS consumed 404 520
Customer No:404 Charges = 326.00

Enter CUSTOMER NO. and UNITS consumed 505 625
Customer No:505 Charges = 415.00

Fig. 6.10 Illustration of else..if ladder

Rules for Indentation

When using control structures, a statement often controls many other statements that

follow it. In such situations it is a good practice to use indentation to show that the

indented statements are dependent on the preceding controlling statement. Some guide-

lines that could be followed while using indentation are listed below:

∑ Indent statements that are dependent on the previous statements; provide

at least three spaces of indentation.

∑ Align vertically else clause with their matching if clause.

∑ Use braces on separate lines to identify a block of statements.

∑ Indent the statements in the block by at least three spaces to the right of the

braces.

∑ Align the opening and closing braces.

∑ Use appropriate comments to signify the beginning and end of blocks.

∑ Indent the nested statements as per the above rules.

∑ Code only one clause or statement on each line.

6.7 THE SWITCH STATEMENT

We have seen that when one of the many alternatives is to be selected, we can use an if statement to

control the selection. However, the complexity of such a program increases dramatically when the

number of alternatives increases. The program becomes difficult to read and follow. At times, it may

confuse even the person who designed it. Fortunately, C has a built-in multiway decision statement

known as a switch. The switch statement tests the value of a given variable (or expression) against a list

of case values and when a match is found, a block of statements associated with that case is executed.

The general form of the switch statement is as shown below:

156 Introduction to Computing

switch (expression)
{

case value-1:
block-1
break;

case value-2:
block-2
break;

......

......
default:

default-block
break;

}
statement-x;

The expression is an integer expression or characters. Value-1, value-2 are constants or constant

expressions (evaluable to an integral constant) and are known as case labels. Each of these values should

be unique within a switch statement. block-1, block-2 are statement lists and may contain zero or more

statements. There is no need to put braces around these blocks. Note that case labels end with a colon (:).

When the switch is executed, the value of the expression is successfully compared against the values

value-1, value-2,.... If a case is found whose value matches with the value of the expression, then the

block of statements that follows the case are executed.

The break statement at the end of each block signals the end of a particular case and causes an exit

from the switch statement, transferring the control to the statement-x following the switch.

The default is an optional case. When present, it will be executed if the value of the expression does

not match with any of the case values. If not present, no action takes place if all matches fail and the

control goes to the statement-x. (ANSI C permits the use of as many as 257 case labels).

The selection process of switch statement is illustrated in the flow chart shown in Fig. 6.11.

Entry

statement-x

statement-x
switch

expression

Expression = value-1 block1

block2

default
block

Expression = value-2

(no match) default

Fig. 6.11 Selection process of the switch statement

Decision Making and Branching 157

The switch statement can be used to grade the students as discussed in the last section. This is illustrated

below:

— — —
— — —
index = marks/10

switch (index)

{
case 10:

case 9:

case 8:

grade = “Honours”;
break;

case 7:

case 6:

grade = “First Division”;
break;

case 5:

grade = “Second Division”;
break;

case 4:

grade = “Third Division”;
break;

default:

grade = “Fail”;
break;

}
printf(“%s\n”, grade);

— — —
— — —

Note that we have used a conversion statement

index = marks / 10;

where, index is defined as an integer. The variable index takes the following integer values.

Marks Index
100 10

90 - 99 9
80 - 89 8
70 - 79 7
60 - 69 6
50 - 59 5
40 - 49 4

. .

. .

0 0

158 Introduction to Computing

This segment of the program illustrates two important features. First, it uses empty cases. The first three

cases will execute the same statements
grade = “Honours”;

break;

Same is the case with case 7 and case 6. Second, default condition is used for all other cases where
marks is less than 40.

The switch statement is often used for menu selection. For example:

— — — —

— — — —
printf(“ TRAVEL GUIDE\n\n”);
printf(“ A Air Timings\n”);
printf(“ T Train Timings\n”);
printf(“ B Bus Service\n”);
printf(“ X To skip\n”);
printf(“\n Enter your choice\n”);

character = getchar();

switch (character)
{

case ‘A’ :
air-display();
break;

case ‘B’ :
bus-display();
break;

case ‘T’ :
train-display();
break;

default :
printf(“ No choice\n”);

}
— — — —

— — — —

It is possible to nest the switch statements. That is, a switch may be part of a case statement. ANSI C

permits 15 levels of nesting.

Rules for Switch Statement

∑ The switch expression must be an integral type.

∑ Case labels must be constants or constant expressions.

∑ Case labels must be unique. No two labels can have the same value.

∑ Case labels must end with semicolon.

∑ The break statement transfers the control out of the switch statement.

∑ The break statement is optional. That is, two or more case labels may

belong to the same statements.

Decision Making and Branching 159

∑ The default label is optional. If present, it will be executed when the ex-

pression does not find a matching case label.

∑ There can be at most one default label.

∑ The default may be placed anywhere but usually placed at the end.

∑ It is permitted to nest switch statements.

6.8 THE ? : OPERATOR

The C language has an unusual operator, useful for making two-way decisions. This operator is a

combination of ? and :, and takes three operands. This operator is popularly known as the conditional

operator. The general form of use of the conditional operator is as follows:

Conditional expression ? expression1 : expression2

The conditional expression is evaluated first. If the result is nonzero, expression1 is evaluated and is

returned as the value of the conditional expression. Otherwise, expression2 is evaluated and its value is

returned. For example, the segment

if (x < 0)

flag = 0;

else

flag = 1;

can be written as

flag = (x < 0) ? 0 : 1;

Consider the evaluation of the following function:

y = 1.5x + 3 for x £ 2

y = 2x + 5 for x > 2

This can be evaluated using the conditional operator as follows:
y = (x > 2) ? (2 * x + 5) : (1.5 * x + 3);

The conditional operator may be nested for evaluating more complex assignment decisions. For exam-

ple, consider the weekly salary of a salesgirl who is selling some domestic products. If x is the number

of products sold in a week, her weekly salary is given by

salary =

4x 100 for x 40

300 for x 40

4.5x 150 for x 40

+ <Ï
Ô

=Ì
Ô + >Ó

This complex equation can be written as
salary = (x != 40) ? ((x < 40) ? (4*x+100) : (4.5*x+150)) : 300;

The same can be evaluated using if...else statements as follows:
if (x <= 40)

if (x < 40)
salary = 4 * x+100;

else
salary = 300;

else
salary = 4.5 * x+150;

160 Introduction to Computing

When the conditional operator is used, the code becomes more concise and perhaps, more efficient.

However, the readability is poor. It is better to use if statements when more than a single nesting of

conditional operator is required.

Example 6.6 An employee can apply for a loan at the beginning of every six months,
but he will be sanctioned the amount according to the following com-
pany rules:

Rule 1 : An employee cannot enjoy more than two loans at any point of

time.
Rule 2 : Maximum permissible total loan is limited and depends upon the
category of the employee.
A program to process loan applications and to sanction loans is given in

Fig. 6.12.

Program

#define MAXLOAN 50000
main()
{

long int loan1, loan2, loan3, sancloan, sum23;

printf(“Enter the values of previous two loans:\n”);
scanf(“ %ld %ld”, &loan1, &loan2);

printf(“\nEnter the value of new loan:\n”);
scanf(“ %ld”, &loan3);

sum23 = loan2 + loan3;
sancloan = (loan1>0)? 0 : ((sum23>MAXLOAN)?

MAXLOAN - loan2 : loan3);

printf(“\n\n”);
printf(“Previous loans pending:\n%ld %ld\n”,loan1,loan2);
printf(“Loan requested = %ld\n”, loan3);
printf(“Loan sanctioned = %ld\n”, sancloan);

}

Output

Enter the values of previous two loans:
0 20000
Enter the value of new loan:
45000
Previous loans pending:
0 20000
Loan requested = 45000
Loan sanctioned = 30000
Enter the values of previous two loans:
1000 15000
Enter the value of new loan:

Decision Making and Branching 161

25000
Previous loans pending:
1000 15000
Loan requested = 25000
Loan sanctioned = 0

Fig. 6.12 Illustration of the conditional operator

The program uses the following variables:

loan3 - present loan amount requested

loan2 - previous loan amount pending

loan1 - previous to previous loan pending

sum23 - sum of loan2 and loan3

sancloan - loan sanctioned

The rules for sanctioning new loan are:

1. loan1 should be zero.

2. loan2 + loan3 should not be more than MAXLOAN.

Note the use of long int type to declare variables.

Some Guidelines for Writing Multiway Selection
Statements

Complex multiway selection statements require special attention. The readers should

be able to understand the logic easily. Given below are some guidelines that would

help improve readability and facilitate maintenance.

∑ Avoid compound negative statements. Use positive statements wherever

possible.

∑ Keep logical expressions simple. We can achieve this using nested if statements,

if necessary (KISS - Keep It Simple and Short).

∑ Try to code the normal/anticipated condition first.

∑ Use the most probable condition first. This will eliminate unnecessary tests,

thus improving the efficiency of the program.

∑ The choice between the nested if and switch statements is a matter of indi-

vidual's preference. A good rule of thumb is to use the switch when alter-

native paths are three to ten.

∑ Use proper indentations (See Rules for Indentation).

∑ Have the habit of using default clause in switch statements.

∑ Group the case labels that have similar actions.

6.9 THE GOTO STATEMENT

So far we have discussed ways of controlling the flow of execution based on certain specified condi-

tions. Like many other languages, C supports the goto statement to branch unconditionally from one

162 Introduction to Computing

point to another in the program. Although it may not be essential to use the goto statement in a highly

structured language like C, there may be occasions when the use of goto might be desirable.

The goto requires a label in order to identify the place where the branch is to be made. A label is any

valid variable name, and must be followed by a colon. The label is placed immediately before the

statement where the control is to be transferred. The general forms of goto and label statements are

shown below:

goto label;

goto label;

label:
statement;

Forward jump Backward jump

label:
statement;

The label: can be anywhere in the program either before or after the goto label; statement.

During running of a program when a statement like

goto begin;

is met, the flow of control will jump to the statement immediately following the label begin:. This

happens unconditionally.

Note that a goto breaks the normal sequential execution of the program. If the label: is before the

statement goto label; a loop will be formed and some statements will be executed repeatedly. Such a

jump is known as a backward jump. On the other hand, if the label: is placed after the goto label; some

statements will be skipped and the jump is known as a forward jump.

A goto is often used at the end of a program to direct the control to go to the input statement, to read

further data. Consider the following example:

main()
{

double x, y;
read:
scanf(“%f”, &x);
if (x < 0) goto read;
y = sqrt(x);
printf(“%f %f\n”, x, y);
goto read;

}

This program is written to evaluate the square root of a series of numbers read from the terminal. The

program uses two goto statements, one at the end, after printing the results to transfer the control back to

the input statement and the other to skip any further computation when the number is negative.

Due to the unconditional goto statement at the end, the control is always transferred back to the input

statement. In fact, this program puts the computer in a permanent loop known as an infinite loop. The

computer goes round and round until we take some special steps to terminate the loop. Such infinite

loops should be avoided. Example 6.7 illustrates how such infinite loops can be eliminated.

Decision Making and Branching 163

Example 6.7 Program presented in Fig. 6.13 illustrates the use of the goto statement.

The program evaluates the square root for five numbers. The variable
count keeps the count of numbers read. When count is less than or
equal to 5, goto read; directs the control to the label read; otherwise,
the program prints a message and stops.

Program

#include <math.h>
main()
{

double x, y;
int count;

count = 1;

printf(“Enter FIVE real values in a LINE \n”);
read:

scanf(“%lf”, &x);
printf(“\n”);
if (x < 0)

printf(“Value - %d is negative\n”,count);
else
{

y = sqrt(x);
printf(“%lf\t %lf\n”, x, y);

}
count = count + 1;
if (count <= 5)

goto read;
printf(“\nEnd of computation”);

}

Output

Enter FIVE real values in a LINE
50.70 40 -36 75 11.25
50.750000 7.123903
40.000000 6.324555
Value -3 is negative
75.000000 8.660254
11.250000 3.354102
End of computation

Fig. 6.13 Use of the goto statement

Another use of the goto statement is to transfer the control out of a loop (or nested loops) when certain

peculiar conditions are encountered. Example:

164 Introduction to Computing

— — — —

— — — —
while (— — — —)
{

for (— — — —)
{
— — — —
— — — —
if (— — — —)goto end_of_program;
— — — —
} Jumping

— — — — out of
— — — — loops
}
end_of_program:

We should try to avoid using goto as far as possible. But there is nothing wrong, if we use it to enhance

the readability of the program or to improve the execution speed.

Just Remember

Be aware of dangling else statements.

Be aware of any side effects in the control expression such as if(x++).

Use braces to encapsulate the statements in if and else clauses of an if�.

else statement.

Check the use of =operator in place of the equal operator = =.

Do not give any spaces between the two symbols of relational operators = =,

!=, >= and <=.

Writing !=, >= and <= operators like =!, => and =< is an error.

Remember to use two ampersands (&&) and two bars (||) for logical operators.

Use of single operators will result in logical errors.

Do not forget to place parentheses for the if expression.

It is an error to place a semicolon after the if expression.

Do not use the equal operator to compare two floating-point values. They are

seldom exactly equal.

Do not forget to use a break statement when the cases in a switch statement

are exclusive.

Although it is optional, it is a good programming practice to use the default

clause in a switch statement.

It is an error to use a variable as the value in a case label of a switch state-

ment. (Only integral constants are allowed.)

Do not use the same constant in two case labels in a switch statement.

Avoid using operands that have side effects in a logical binary expression

such as (x��&&++y). The second operand may not be evaluated at all.

Try to use simple logical expressions.

Decision Making and Branching 165

Case Studies

1. Range of Numbers

Problem: A survey of the computer market shows that personal computers are sold at varying costs by

the vendors. The following is the list of costs (in hundreds) quoted by some vendors:

35.00, 40.50, 25.00, 31.25, 68.15,

47.00, 26.65, 29.00 53.45, 62.50

Determine the average cost and the range of values.

Problem analysis: Range is one of the measures of dispersion used in statistical analysis of a series of

values. The range of any series is the difference between the highest and the lowest values in the series.

That is

Range = highest value � lowest value

It is therefore necessary to find the highest and the lowest values in the series.

Program: A program to determine the range of values and the average cost of a personal computer in the

market is given in Fig. 6.14.

Program

main()
{

int count;
float value, high, low, sum, average, range;
sum = 0;
count = 0;
printf(“Enter numbers in a line :

input a NEGATIVE number to end\n”);
input:

scanf(“%f”, &value);
if (value < 0) goto output;

count = count + 1;
if (count == 1)

high = low = value;
else if (value > high)

high = value;
else if (value < low)

low = value;
sum = sum + value;
goto input;

Output:

average = sum/count;
range = high - low;
printf(“\n\n”);

166 Introduction to Computing

printf(“Total values : %d\n”, count);
printf(“Highest-value: %f\nLowest-value : %f\n”,

high, low);
printf(“Range : %f\nAverage : %f\n”,

range, average);
}

Output

Enter numbers in a line : input a NEGATIVE number to end
35 40.50 25 31.25 68.15 47 26.65 29 53.45 62.50 -1

Total values : 10
Highest-value : 68.150002
Lowest-value : 25.000000
Range : 43.150002
Average : 41.849998

Fig. 6.14 Calculation of range of values

When the value is read the first time, it is assigned to two buckets, high and low, through the statement

high = low = value;

For subsequent values, the value read is compared with high; if it is larger, the value is assigned to

high. Otherwise, the value is compared with low; if it is smaller, the value is assigned to low. Note that

at a given point, the buckets high and low hold the highest and the lowest values read so far.

The values are read in an input loop created by the goto input; statement. The control is transferred

out of the loop by inputting a negative number. This is caused by the statement

if (value < 0) goto output;

Note that this program can be written without using goto statements. Try.

2. Pay-Bill Calculations

Problem: A manufacturing company has classified its executives into four levels for the benefit of

certain perks. The levels and corresponding perks are shown below:

Perks

Level ���

Conveyance Entertainment

allowance allowance

1 1000 500

2 750 200

3 500 100

4 250 �

An executive�s gross salary includes basic pay, house rent allowance at 25% of basic pay and other

perks. Income tax is withheld from the salary on a percentage basis as follows:

Decision Making and Branching 167

Gross salary Tax rate

Gross <= 2000 No tax deduction

2000 < Gross <= 4000 3%

4000 < Gross <= 5000 5%

Gross > 5000 8%

Write a program that will read an executive�s job number, level number, and basic pay and then com-

pute the net salary after withholding income tax.

Problem analysis:

Gross salary = basic pay + house rent allowance + perks

Net salary = Gross salary � income tax.

The computation of perks depends on the level, while the income tax depends on the gross salary. The

major steps are:

1. Read data.

2. Decide level number and calculate perks.

3. Calculate gross salary.

4. Calculate income tax.

5. Compute net salary.

6. Print the results.

Program: A program and the results of the test data are given in Fig. 6.15. Note that the last statement

should be an executable statement. That is, the label stop: cannot be the last line.

Program
#define CA1 1000
#define CA2 750
#define CA3 500
#define CA4 250
#define EA1 500
#define EA2 200
#define EA3 100
#define EA4 0
main()
{

int level, jobnumber;
float gross,

basic,
house_rent,
perks,
net,
incometax;

input:
printf(“\nEnter level, job number, and basic pay\n”);
printf(“Enter 0 (zero) for level to END\n\n”);
scanf(“%d”, &level);
if (level == 0) goto stop;

168 Introduction to Computing

scanf(“%d %f”, &jobnumber, &basic);
switch (level)
{

case 1:
perks = CA1 + EA1;
break;

case 2:
perks = CA2 + EA2;
break;

case 3:
perks = CA3 + EA3;
break;

case 4:
perks = CA4 + EA4;
break;

default:
printf(“Error in level code\n”);
goto stop;

}
house_rent = 0.25 * basic;
gross = basic + house_rent + perks;
if (gross <= 2000)

incometax = 0;
else if (gross <= 4000)

incometax = 0.03 * gross;
else if (gross <= 5000)

incometax = 0.05 * gross;
else

incometax = 0.08 * gross;
net = gross - incometax;
printf(“%d %d %.2f\n”, level, jobnumber, net);
goto input;
stop: printf(“\n\nEND OF THE PROGRAM”);

}

Output

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

1 1111 4000
1 1111 5980.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

2 2222 3000
2 2222 4465.00

Decision Making and Branching 169

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

3 3333 2000
3 3333 3007.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

4 4444 1000
4 4444 1500.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

0
END OF THE PROGRAM

Fig. 6.15 Pay-bill calculations

Review Questions

6.1 State whether the following are true or false:

(a) When if statements are nested, the last else gets associated with the nearest if without an else.

(b) One if can have more than one else clause.

(c) A switch statement can always be replaced by a series of if..else statements.

(d) A switch expression can be of any type.

(e) A program stops its execution when a break statement is encountered.

(f) Each expression in the else if must test the same variable.

(g) Any expression can be used for the if expression.

(h) Each case label can have only one statement.

(i) The default case is required in the switch statement.

(j) The predicate !((x >= 10)¦(y = = 5)) is equivalent to (x < 10) && (y !=5).

6.2 Fill in the blanks in the following statements.

(a) The operator is true only when both the operands are true.

(b) Multiway selection can be accomplished using an else if statement or the state-

ment.

(c) The statement when executed in a switch statement causes immediate exit from

the structure.

(d) The ternary conditional expression using the operator ?: could be easily coded using

 statement.

(e) The expression ! (x ! = y) can be replaced by the expression .

6.3 Find errors, if any, in each of the following segments:

(a) if (x + y = z && y > 0)

printf(“ “);
(b) if (code > 1);

a = b + c
else

a = 0

170 Introduction to Computing

(c) if (p < 0) || (q < 0)
printf (“ sign is negative”);

6.4 The following is a segment of a program:

x = 1;
y = 1;
if (n > 0)

x = x + 1;
y = y - 1;

printf(“ %d %d”, x, y);
What will be the values of x and y if n assumes a value of (a) 1 and (b) 0.

6.5 Rewrite each of the following without using compound relations:

(a) if (grade <= 59 && grade >= 50)
second = second + 1;

(b) if (number > 100 || number < 0)
printf(“ Out of range”);

else
sum = sum + number;

(c) if ((M1 > 60 && M2 > 60) || T > 200)
printf(“ Admitted\n”);

else
printf(“ Not admitted\n”);

6.6 Assuming x = 10, state whether the following logical expressions are true or false.

(a) x = = 10 && x > 10 && !x (b) x = = 10 || x > 10 && ! x

(c) x = = 10 && x > 10 || ! x (d) x = = 10 || x > 10 || !x

6.7 Find errors, if any, in the following switch related statements. Assume that the variables x and y

are of int type and x = 1 and y = 2

(a) switch (y);
(b) case 10;
(c) switch (x + y)
(d) switch (x) {case 2: y = x + y; break};

6.8 Simplify the following compound logical expressions

(a) !(x <=10) (b) !(x = = 10) ||! ((y = = 5) || (z < 0))

(c) ! ((x +y = = z) && !(z > 5) (d) !((x <=5) && (y = = 10) & & (z < 5))

6.9 Assuming that x = 5, y = 0, and z = 1 initially, what will be their values after executing the

following code segments?

(a) if (x && y)
x = 10;

else
y = 10;

(b) if (x || y || z)
y = 10;

else
z = 0;

Decision Making and Branching 171

(c) if (x)
 if (y)

z = 10;
else

z = 0;
(d) if (x = = 0 || x & & y)

 if (!y)
z = 0;

else
y = 1;

6.10 Assuming that x = 2, y = 1 and z = 0 initially, what will be their values after executing the

following code segments?

(a) switch (x)

{

case 2:

x = 1;

y = x + 1;

case 1:

x = 0;

break;

default:

x = 1;

y = 0;

}

(b) switch (y)

{

case 0:

x = 0;

y = 0;

case 2:

x = 2;

z = 2;

default:

x = 1;

y = 2;

}

6.11 Find the error, if any, in the following statements:

(a) if (x > = 10) then
printf (“\n”) ;

(b) if x > = 10
printf (“OK”) ;

(c) if (x = 10)
printf (“Good”) ;

(d) if (x = < 10)
printf (“Welcome”) ;

172 Introduction to Computing

6.12 What is the output of the following program?

main ()
{

int m = 5 ;
if (m < 3) printf(“%d” , m+1) ;
else if(m < 5) printf(“%d”, m+2);
else if(m < 7) printf(“%d”, m+3);
else printf(“%d”, m+4);

}
6.13 What is the output of the following program?

main ()
{

int m = 1;
if (m==1)
{

printf (“ Delhi “) ;
if (m == 2)
printf(“Chennai”) ;
else
printf(“Bangalore”) ;

}
else;
printf(“ END”);

}
6.14 What is the output of the following program?

main()
{

int m ;
for (m = 1; m<5; m++)

printf(%d\n”, (m%2) ? m : m*2);
}

6.15 What is the output of the following program?

main()
{

int m, n, p ;
for (m = 0; m < 3; m++)
for (n = 0; n<3; n++)
for (p = 0; p < 3;; p++)
if (m + n + p == 2)
goto print;

Decision Making and Branching 173

print :
printf(“%d, %d, %d”, m, n, p);

}
6.16 What will be the value of x when the following segment is executed?

int x = 10, y = 15;
x = (x<y)? (y+x) : (y-x) ;

6.17 What will be the output when the following segment is executed?

int x = 0;
if (x >= 0)
if (x > 0)
printf(“Number is positive”);
else
printf(“Number is negative”);

6.18 What will be the output when the following segment is executed?

char ch = ‘a’ ;
switch (ch)
{

case ‘a’ :
printf(“A”) ;
case‘b’:
Printf (“B”) ;
default :
printf(“ C “) ;

}
6.19 What will be the output of the following segment when executed?

int x = 10, y = 20;
if((x<y) || (x+5) > 10)
printf(“%d”, x);
else
printf(“%d”, y);

6.20 What will be output of the following segment when executed?

int a = 10, b = 5;
if (a > b)
{

if(b > 5)
printf(“%d”, b);

}
else

printf(“%d”, a);

174 Introduction to Computing

Programming Exercises

6.1 Write a program to determine whether a given number is �odd� or �even� and print the message

NUMBER IS EVEN

or

NUMBER IS ODD

(a) without using else option, and (b) with else option.

6.2 Write a program to find the number of and sum of all integers greater than 100 and less than 200

that are divisible by 7.

6.3 A set of two linear equations with two unknowns x1 and x2 is given below:

ax1 + bx2 = m

cx1 + dx2 = n

The set has a unique solution

x1 =
md bn

ad cb

-

-

x2 =
na mc

ad cb

-

-

provided the denominator ad � cb is not equal to zero.

Write a program that will read the values of constants a, b, c, d, m, and n and compute the values

of x1 and x2. An appropriate message should be printed if ad � cb = 0.

6.4 Given a list of marks ranging from 0 to 100, write a program to compute and print the number of

students:

(a) who have obtained more than 80 marks,

(b) who have obtained more than 60 marks,

(c) who have obtained more than 40 marks,

(d) who have obtained 40 or less marks,

(e) in the range 81 to 100,

(f) in the range 61 to 80,

(g) in the range 41 to 60, and

(h) in the range 0 to 40.

The program should use a minimum number of if statements.

6.5 Admission to a professional course is subject to the following conditions:

(a) Marks in Mathematics >= 60

(b) Marks in Physics >= 50

(c) Marks in Chemistry >= 40

(d) Total in all three subjects >= 200

or

Total in Mathematics and Physics >= 150

Given the marks in the three subjects, write a program to process the applications to list the

eligible candidates.

6.6 Write a program to print a two-dimensional Square Root Table as shown below, to provide the

square root of any number from 0 to 9.9. For example, the value x will give the square root of 3.2

and y the square root of 3.9.

Decision Making and Branching 175

Square Root Table

Number 0.0 0.1 0.2 0.9

0.0

1.0

2.0

3.0 x y

9.0

6.7 Shown below is a Floyd�s triangle.

1

2 3

4 5 6

7 8 9 10

11 15

.

.

79 91

(a) Write a program to print this triangle.

(b) Modify the program to produce the following form of Floyd�s triangle.

1

0 1

1 0 1

0 1 0 1

1 0 1 0 1

6.8 A cloth showroom has announced the following seasonal discounts on purchase of items:

Purchase Discount

amount Mill cloth Handloom items

0 � 100 � 5%

101 � 200 5% 7.5%

201 � 300 7.5% 10.0%

Above 300 10.0% 15.0%

Write a program using switch and if statements to compute the net amount to be paid by a

customer.

6.9 Write a program that will read the value of x and evaluate the following function

y =

1 for x 0

0 for x 0

1 for x 0

<Ï
Ô

=Ì
Ô- <Ó

176 Introduction to Computing

using

(a) nested if statements,

(b) else if statements, and

(c) conditional operator ? :

6.10 Write a program to compute the real roots of a quadratic equation

ax2 + bx + c = 0

The roots are given by the equations

x1 = � b +

2b 4 ac

2a

-

x2 = � b �

2
b 4 ac

2a

-

The program should request for the values of the constants a, b and c and print the values of x1

and x2. Use the following rules:

(a) No solution, if both a and b are zero

(b) There is only one root, if a = 0 (x = �c/b)

(c) There are no real roots, if b2 � 4 ac is negative

(d) Otherwise, there are two real roots

Test your program with appropriate data so that all logical paths are working as per your design.

Incorporate appropriate output messages.

6.11 Write a program to read three integer values from the keyboard and displays the output stating

that they are the sides of right-angled triangle.

6.12 An electricity board charges the following rates for the use of electricity:

For the first 200 units: 80 P per unit

For the next 100 units: 90 P per unit

Beyond 300 units: Rs 1.00 per unit

All users are charged a minimum of Rs. 100 as meter charge. If the total amount is more than Rs.

400, then an additional surcharge of 15% of total amount is charged.

Write a program to read the names of users and number of units consumed and print out the

charges with names.

6.13 Write a program to compute and display the sum of all integers that are divisible by 6 but not

divisible by 4 and lie between 0 and 100. The program should also count and display the number

of such values.

6.14 Write an interactive program that could read a positive integer number and decide whether the

number is a prime number and display the output accordingly.

Modify the program to count all the prime numbers that lie between 100 and 200.

NOTE: A prime number is a positive integer that is divisible only by 1 or by itself.

6.15 Write a program to read a double-type value x that represents angle in radians and a character-

type variable T that represents the type of trigonometric function and display the value of

(a) sin(x), if s or S is assigned to T,

(b) cos (x), if c or C is assigned to T, and

(c) tan (x), if t or T is assigned to T

using (i) if......else statement and (ii) switch statement.

Decision Making and Looping

7.1 INTRODUCTION

We have seen in the previous chapter that it is possible to execute a segment of a program repeatedly by

introducing a counter and later testing it using the if statement. While this method is quite satisfactory

for all practical purposes, we need to initialize and increment a counter and test its value at an

appropriate place in the program for the completion of the loop. For example, suppose we want to

calculate the sum of squares of all integers between 1 and 10, we can write a program using the if

statement as follows:

sum = 0;
n = 1;
loop:
sum = sum + n*n;

()if n == 10
goto print;

else
n = 10,

n = n+1;
goto loop;

print:

end of loop

L
o
o
p

This program does the following things:

1. Initializes the variable n.

2. Computes the square of n and adds it to sum.

3. Tests the value of n to see whether it is equal to 10 or not. If it is equal to 10, then the program

prints the results.

4. If n is less than 10, then it is incremented by one and the control goes back to compute the sum

again.

CHAPTER

7

178 Introduction to Computing

The program evaluates the statement

sum = sum + n*n;

10 times. That is, the loop is executed 10 times. This number can be increased or decreased easily by

modifying the relational expression appropriately in the statement if (n == 10). On such occasions

where the exact number of repetitions are known, there are more convenient methods of looping in C.

These looping capabilities enable us to develop concise programs containing repetitive processes without

the use of goto statements.

In looping, a sequence of statements are executed until some conditions for termination of the loop

are satisfied. A program loop therefore consists of two segments, one known as the body of the loop and

the other known as the control statement. The control statement tests certain conditions and then directs

the repeated execution of the statements contained in the body of the loop.

Depending on the position of the control statement in the loop, a control structure may be classified

either as the entry-controlled loop or as the exit-controlled loop. The flow charts in Fig. 7.1 illustrate

these structures. In the entry-controlled loop, the control conditions are tested before the start of the loop

execution. If the conditions are not satisfied, then the body of the loop will not be executed. In the case

of an exit-controlled loop, the test is performed at the end of the body of the loop and therefore the body

is executed unconditionally for the first time. The entry-controlled and exit-controlled loops are also

known as pre-test and post-test loops respectively.

Fig. 7.1 Loop control structures

The test conditions should be carefully stated in order to perform the desired number of loop execu-

tions. It is assumed that the test condition will eventually transfer the control out of the loop. In case, due
to some reason it does not do so, the control sets up an infinite loop and the body is executed over and

over again.

Decision Making and Looping 179

A looping process, in general, would include the following four steps:

1. Setting and initialization of a condition variable.

2. Execution of the statements in the loop.

3. Test for a specified value of the condition variable for execution of the loop.

4. Incrementing or updating the condition variable.

The test may be either to determine whether the loop has been repeated the specified number of times

or to determine whether a particular condition has been met.

The C language provides for three constructs for performing loop operations. They are:

1. The while statement.

2. The do statement.

3. The for statement.

We shall discuss the features and applications of each of these statements in this chapter.

Sentinel Loops

Based on the nature of control variable and the kind of value assigned to it for testing

the control expression, the loops may be classified into two general categories:

1. Counter-controlled loops

2. Sentinel-controlled loops

When we know in advance exactly how many times the loop will be executed, we use

a counter-controlled loop. We use a control variable known as counter. The counter

must be initialized, tested and updated properly for the desired loop operations. The

number of times we want to execute the loop may be a constant or a variable that is

assigned a value. A counter-controlled loop is sometimes called definite repetition

loop.

In a sentinel-controlled loop, a special value called a sentinel value is used to change

the loop control expression from true to false. For example, when reading data we may

indicate the "end of data" by a special value, like �1 and 999. The control variable is

called sentinel variable. A sentinel-controlled loop is often called indefinite repetition

loop because the number of repetitions is not known before the loop begins executing.

7.2 THE WHILE STATEMENT

The simplest of all the looping structures in C is the while statement. We have used while in many of our

earlier programs. The basic format of the while statement is

while (test condition)
{

body of the loop

}

180 Introduction to Computing

The while is an entry-controlled loop statement. The test-condition is evaluated and if the condition

is true, then the body of the loop is executed. After execution of the body, the test-condition is once

again evaluated and if it is true, the body is executed once again. This process of repeated execution of

the body continues until the test-condition finally becomes false and the control is transferred out of the

loop. On exit, the program continues with the statement immediately after the body of the loop.

The body of the loop may have one or more statements. The braces are needed only if the body

contains two or more statements. However, it is a good practice to use braces even if the body has only

one statement.

We can rewrite the program loop discussed in Section 7.1 as follows:

========

sum = 0;

n = 1; /* Initialization */

while(n <= 10) /* Testing */

{

loop sum = sum + n * n;

n = n+1; /* Incrementing */

}

printf(“sum = %d\n”, sum);

========

The body of the loop is executed 10 times for n = 1, 2,, 10, each time adding the square of the

value of n, which is incremented inside the loop. The test condition may also be written as n < 11; the

result would be the same. This is a typical example of counter-controlled loops. The variable n is called

counter or control variable.

Another example of while statement, which uses the keyboard input is shown below:

=========

character = ‘ ‘ ;

while (character != ‘Y’)

character = getchar();

xxxxxxx;

=========

First the character is initialized to � �. The while statement then begins by testing whether character

is not equal to Y. Since the character was initialized to � �, the test is true and the loop statement

character = getchar();

is executed. Each time a letter is keyed in, the test is carried out and the loop statement is executed until

the letter Y is pressed. When Y is pressed, the condition becomes false because character equals Y,

and the loop terminates, thus transferring the control to the statement xxxxxxx;. This is a typical example

Decision Making and Looping 181

of sentinel-controlled loops. The character constant �y� is called sentinel value and the variable

character is the condition variable, which often referred to as the sentinel variable.

Example 7.1 A program to evaluate the equation

y = xn

when n is a non-negative integer, is given in Fig. 7.2.

The variable y is initialized to 1 and then multiplied by x, n times using the while loop. The loop

control variable count is initialized outside the loop and incremented inside the loop. When the value of

count becomes greater than n, the control exists the loop.

Program

main()

{

int count, n;

float x, y;

printf(“Enter the values of x and n : “);

scanf(“%f %d”, &x, &n);

y = 1.0;

count = 1; /* Initialisation */

/* LOOP BEGINs */

while (count <= n) /* Testing */

{

y = y*x;

count++; /* Incrementing */

}

/* END OF LOOP */

printf(“\nx = %f; n = %d; x to power n = %f\n”,x,n,y);

}

Output

Enter the values of x and n : 2.5 4

x = 2.500000; n = 4; x to power n = 39.062500

Enter the values of x and n : 0.5 4

x = 0.500000; n = 4; x to power n = 0.062500

Fig. 7.2 Program to compute x to the power n using while loop

182 Introduction to Computing

7.3 THE DO STATEMENT

The while loop construct that we have discussed in the previous section, makes a test of condition before

the loop is executed. Therefore, the body of the loop may not be executed at all if the condition is not

satisfied at the very first attempt. On some occasions it might be necessary to execute the body of the

loop before the test is performed. Such situations can be handled with the help of the do statement. This

takes the form:

 do
 {

body of the loop
 }

 while (test-condition);

On reaching the do statement, the program proceeds to evaluate the body of the loop first. At the end

of the loop, the test-condition in the while statement is evaluated. If the condition is true, the program

continues to evaluate the body of the loop once again. This process continues as long as the condition is

true. When the condition becomes false, the loop will be terminated and the control goes to the statement

that appears immediately after the while statement.

Since the test-condition is evaluated at the bottom of the loop, the do...while construct provides an

exit-controlled loop and therefore the body of the loop is always executed at least once.

A simple example of a do...while loop is:

do

printf ("Input a number\n");
loop number = getnum ();

(number > 0);while

This segment of a program reads a number from the keyboard until a zero or a negative number is
keyed in, and assigned to the sentinel variable number.

The test conditions may have compound relations as well. For instance, the statement

while (number > 0 && number < 100);

in the above example would cause the loop to be executed as long as the number keyed in lies between
0 and 100.

Consider another example:

– – – – – – –
I = 1; /* Initializing */
sum = 0;
do

{

Decision Making and Looping 183

sum = sum + I;
loop I = I+2; /* Incrementing */

}
while(sum < 40 || I < 10); /* Testing */
printf(“%d %d\n”, I, sum);
– – – – – – –

The loop will be executed as long as one of the two relations is true.

Example 7.2 A program to print the multiplication table from 1 x 1 to 12 x 10 as shown
below is given in Fig. 7.3.

1 2 3 4 10

2 4 6 8 20

3 6 9 12 30

4 40

-

-

-

12 120

This program contains two do.... while loops in nested form. The outer loop is controlled by the variable

row and executed 12 times. The inner loop is controlled by the variable column and is executed 10

times, each time the outer loop is executed. That is, the inner loop is executed a total of 120 times, each

time printing a value in the table.

Program:

#define COLMAX 10
#define ROWMAX 12
main()
{

int row,column, y;
row = 1;
printf(“ MULTIPLICATION TABLE \n”);
printf(“– \n”);
do /*......OUTER LOOP BEGINS........*/
{

column = 1;
do /*.......INNER LOOP BEGINS.......*/
{

y = row * column;
printf(“%4d”, y);
column = column + 1;

}

while (column <= COLMAX); /*... INNER LOOP ENDS ...*/

184 Introduction to Computing

printf(“\n”);
row = row + 1;

}
while (row <= ROWMAX);/*..... OUTER LOOP ENDS*/
printf(“—————————————————————————————————\n”);

}
Output

MULTIPLICATION TABLE

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90
10 20 30 40 50 60 70 80 90 100
11 22 33 44 55 66 77 88 99 110
12 24 36 48 60 72 84 96 108 120

Fig. 7.3 Printing of a multiplication table using do...while loop

Notice that the printf of the inner loop does not contain any new line character (\n). This allows the

printing of all row values in one line. The empty printf in the outer loop initiates a new line to print the

next row.

7.4 THE FOR STATEMENT

Simple �for� Loops

The for loop is another entry-controlled loop that provides a more concise loop control structure. The

general form of the for loop is

 for (initialization ; test-condition ; increment)
 {

body of the loop
 }

The execution of the for statement is as follows:

1. Initialization of the control variables is done first, using assignment statements such as i = 1 and

count = 0. The variables i and count are known as loop-control variables.

2. The value of the control variable is tested using the test-condition. The test-condition is a relational

expression, such as i < 10 that determines when the loop will exit. If the condition is true, the body

Decision Making and Looping 185

of the loop is executed; otherwise the loop is terminated and the execution continues with the

statement that immediately follows the loop.

3. When the body of the loop is executed, the control is transferred back to the for statement after

evaluating the last statement in the loop. Now, the control variable is incremented using an

assignment statement such as i = i+1 and the new value of the control variable is again tested to see

whether it satisfies the loop condition. If the condition is satisfied, the body of the loop is again

executed. This process continues till the value of the control variable fails to satisfy the test-

condition.

NOTE: C99 enhances the for loop by allowing declaration of variables in the initialization portion.

See the Appendix "C99 Features".

Consider the following segment of a program:

for (x = 0 ; x <= 9 ; x = x+1)

loop {

printf(“%d”, x);

}

printf(“\n”);

This for loop is executed 10 times and prints the digits 0 to 9 in one line. The three sections enclosed
within parentheses must be separated by semicolons. Note that there is no semicolon at the end of the
increment section, x = x+1.

The for statement allows for negative increments. For example, the loop discussed above can be

written as follows:

for (x = 9 ; x >= 0 ; x = x–1)

printf(“%d”, x);

printf(“\n”);

This loop is also executed 10 times, but the output would be from 9 to 0 instead of 0 to 9. Note that

braces are optional when the body of the loop contains only one statement.
Since the conditional test is always performed at the beginning of the loop, the body of the loop may

not be executed at all, if the condition fails at the start. For example,

for (x = 9; x < 9; x = x-1)

printf(“%d”, x);

will never be executed because the test condition fails at the very beginning itself.
Let us again consider the problem of sum of squares of integers discussed in Section 7.1. This prob-

lem can be coded using the for statement as follows:

– – – – – – – – – – – – – – – – –
sum = 0;

for (n = 1; n <= 10; n = n+1)

{

sum = sum+ n*n;

}

printf(“sum = %d\n”, sum);
– – – – – – – – – – – – – – – – –

186 Introduction to Computing

The body of the loop

sum = sum + n*n;

is executed 10 times for n = 1, 2,, 10 each time incrementing the sum by the square of the value of

n.

One of the important points about the for loop is that all the three actions, namely initialization,

testing, and incrementing, are placed in the for statement itself, thus making them visible to the
programmers and users, in one place. The for statement and its equivalent of while and do statements

are shown in Table 7.1.

Table 7.1 Comparison of the Three Loops

 for while do

for (n=1; n<=10; ++n) n = 1; n = 1;

 { while (n<=10) do

 ���� { {

���� ���� ����

 } ���� ����

 n = n+1; n = n+1;

} }

while(n<=10);

Example 7.3 The program in Fig. 7.4 uses a for loop to print the “Powers of 2” table for
the power 0 to 20, both positive and negative.

The program evaluates the value

p = 2 n

successively by multiplying 2 by itself n times.

q = 2�n =
1

p

Note that we have declared p as a long int and q as a double.

Additional Features of for Loop

The for loop in C has several capabilities that are not found in other loop constructs. For example, more

than one variable can be initialized at a time in the for statement. The statements

p = 1;

for (n=0; n<17; ++n)

can be rewritten as

for (p=1, n=0; n<17; ++n)

Program

main()
{

long int p;
int n;

Decision Making and Looping 187

double q;
printf(“– \n”);
printf(“ 2 to power n n 2 to power -n\n”);
printf(“– \n”);
p = 1;
for (n = 0; n < 21 ; ++n) /* LOOP BEGINS */
{

if (n == 0)
p = 1;

else
p = p * 2;

q = 1.0/(double)p ;
printf(“%10ld %10d %20.12lf\n”, p, n, q);

} /* LOOP ENDS */
printf(“– \n”);

}
Output

– –
2 to power n n 2 to power -n

– –
1 0 1.000000000000
2 1 0.500000000000
4 2 0.250000000000
8 3 0.125000000000

16 4 0.062500000000
32 5 0.031250000000
64 6 0.015625000000

128 7 0.007812500000
256 8 0.003906250000
512 9 0.001953125000

1024 10 0.000976562500
2048 11 0.000488281250
4096 12 0.000244140625
8192 13 0.000122070313

16384 14 0.000061035156
32768 15 0.000030517578
65536 16 0.000015258789

131072 17 0.000007629395
262144 18 0.000003814697
524288 19 0.000001907349

1048576 20 0.000000953674
– –

Fig. 7.4 Program to print �Power of 2� table using for loop

188 Introduction to Computing

Note that the initialization section has two parts p = 1 and n = 1 separated by a comma.

Like the initialization section, the increment section may also have more than one part. For example,

the loop

for (n=1, m=50; n<=m; n=n+1, m=m-1)
{

p = m/n;
printf(“%d %d %d\n”, n, m, p);

}

is perfectly valid. The multiple arguments in the increment section are separated by commas.

The third feature is that the test-condition may have any compound relation and the testing need not

be limited only to the loop control variable. Consider the example below:

sum = 0;

for (i = 1; i < 20 && sum < 100; ++i)
{

sum = sum+i;
printf(“%d %d\n”, i, sum);

}

The loop uses a compound test condition with the counter variable i and sentinel variable sum. The

loop is executed as long as both the conditions i < 20 and sum < 100 are true. The sum is evaluated

inside the loop.

It is also permissible to use expressions in the assignment statements of initialization and increment

sections. For example, a statement of the type

for (x = (m+n)/2; x > 0; x = x/2)

is perfectly valid.

Another unique aspect of for loop is that one or more sections can be omitted, if necessary. Consider

the following statements:

– – – – – – –
m = 5;

for (; m != 100 ;)

{

printf(“%d\n”, m);

m = m+5;

}

– – – – – – –

Both the initialization and increment sections are omitted in the for statement. The initialization has

been done before the for statement and the control variable is incremented inside the loop. In such cases,

the sections are left �blank�. However, the semicolons separating the sections must remain. If the test-

condition is not present, the for statement sets up an �infinite� loop. Such loops can be broken using

break or goto statements in the loop.

 We can set up time delay loops using the null statement as follows:

for (j = 1000; j > 0; j = j-1)

;

Decision Making and Looping 189

This loop is executed 1000 times without producing any output; it simply causes a time delay. Notice

that the body of the loop contains only a semicolon, known as a null statement. This can also be written

as

for (j=1000; j > 0; j = j-1)

This implies that the C compiler will not give an error message if we place a semicolon by mistake at the

end of a for statement. The semicolon will be considered as a null statement and the program may

produce some nonsense.

Nesting of for Loops

Nesting of loops, that is, one for statement within another for statement, is allowed in C. For example,

two loops can be nested as follows:

The nesting may continue up to any desired level. The loops should be properly indented so as to

enable the reader to easily determine which statements are contained within each for statement. (ANSI

C allows up to 15 levels of nesting. However, some compilers permit more.)

The program to print the multiplication table discussed in Example 7.2 can be written more concisely

using nested for statements as follows:

– – – – – – – – – – – – –
for (row = 1; row <= ROWMAX ; ++row)

{

for (column = 1; column <= COLMAX ; ++column)

{

y = row * column;

printf(“%4d”, y);

}

printf(“\n”);

}

– – – – – – – – – – – – –

190 Introduction to Computing

The outer loop controls the rows while the inner loop controls the columns.

Example 7.4 A class of n students take an annual examination in m subjects. A pro-
gram to read the marks obtained by each student in various subjects and
to compute and print the total marks obtained by each of them is given
in Fig. 7.5.

The program uses two for loops, one for controlling the number of students and the other for controlling

the number of subjects. Since both the number of students and the number of subjects are requested by

the program, the program may be used for a class of any size and any number of subjects.

The outer loop includes three parts:

(1) reading of roll-numbers of students, one after another;

(2) inner loop, where the marks are read and totalled for each student; and

(3) printing of total marks and declaration of grades.

Program

#define FIRST 360
#define SECOND 240
main()
{

int n, m, i, j,
roll_number, marks, total;

printf(“Enter number of students and subjects\n”);
scanf(“%d %d”, &n, &m);
printf(“\n”);
for (i = 1; i <= n ; ++i)
{

printf(“Enter roll_number : “);
scanf(“%d”, &roll_number);
total = 0 ;
printf(“\nEnter marks of %d subjects for ROLL NO %d\n”,

m,roll_number);
for (j = 1; j <= m; j++)
{

scanf(“%d”, &marks);
total = total + marks;

}
printf(“TOTAL MARKS = %d “, total);
if (total >= FIRST)

 printf(“(First Division)\n\n”);
else if (total >= SECOND)

printf(“(Second Division)\n\n”);
else

printf(“(*** F A I L ***)\n\n”);
}

}

Decision Making and Looping 191

Output
Enter number of students and subjects
3 6
Enter roll_number : 8701
Enter marks of 6 subjects for ROLL NO 8701
81 75 83 45 61 59
TOTAL MARKS = 404 (First Division)
Enter roll_number : 8702
Enter marks of 6 subjects for ROLL NO 8702
51 49 55 47 65 41
TOTAL MARKS = 308 (Second Division)
Enter roll_number : 8704
Enter marks of 6 subjects for ROLL NO 8704
40 19 31 47 39 25
TOTAL MARKS = 201 (*** F A I L ***)

Fig. 7.5 Illustration of nested for loops

Selecting a Loop

Given a problem, the programmer's first concern is to decide the type of loop structure

to be used. To choose one of the three loop supported by C, we may use the following

strategy:

∑ Analyse the problem and see whether it required a pre-test or post-test loop.

∑ If it requires a post-test loop, then we can use only one loop, do while.

∑ If it requires a pre-test loop, then we have two choices: for and while.

∑ Decide whether the loop termination requires counter-based control or sentinel-

based control.

∑ Use for loop if the counter-based control is necessary.

∑ Use while loop if the sentinel-based control is required.

∑ Note that both the counter-controlled and sentinel-controlled loops can be imple-

mented by all the three control structures.

7.5 JUMPS IN LOOPS

Loops perform a set of operations repeatedly until the control variable fails to satisfy the test-condition.

The number of times a loop is repeated is decided in advance and the test condition is written to achieve

this. Sometimes, when executing a loop it becomes desirable to skip a part of the loop or to leave the

loop as soon as a certain condition occurs. For example, consider the case of searching for a particular

name in a list containing, say, 100 names. A program loop written for reading and testing the names 100

192 Introduction to Computing

times must be terminated as soon as the desired name is found. C permits a jump from one statement to
another within a loop as well as a jump out of a loop.

Jumping Out of a Loop

An early exit from a loop can be accomplished by using the break statement or the goto statement.

We have already seen the use of the break in the switch statement and the goto in the if...else construct.

These statements can also be used within while, do, or for loops. They are illustrated in Fig. 7.6 and

Fig. 7.7.

When a break statement is encountered inside a loop, the loop is immediately exited and the program

continues with the statement immediately following the loop. When the loops are nested, the break

would only exit from the loop containing it. That is, the break will exit only a single loop.

Since a goto statement can transfer the control to any place in a program, it is useful to provide

branching within a loop. Another important use of goto is to exit from deeply nested loops when an error

occurs. A simple break statement would not work here.

while ()

while ()

do

for () for ()

for ()

if(condition) if(condition)

if(error)

if(condition)

(a) (b)

(c) (d)

break; break;

;

break;

break;

Exit
from
loop

Exit
from
loop

Exit
from
loop

Exit
from
inner
loop

Fig. 7.6 Exiting a loop with break statement

Decision Making and Looping 193

while () for ()

for ()

if(error)if(condition)

if(error)
stop;

error;

error;

stop:

(a) (b)

abc;

abc:

goto

goto
goto

Jump
within
loop

Exit
from
loop

Exit
from
two
loops

Fig. 7.7 Jumping within and exiting from the loops with goto statement

Example 7.5 The program in Fig. 7.8 illustrates the use of the break statement in a C
program.

The program reads a list of positive values and calculates their average. The for loop is written to read

1000 values. However, if we want the program to calculate the average of any set of values less than

1000, then we must enter a �negative� number after the last value in the list, to mark the end of input.

Program
main()
{

int m;
float x, sum, average;

printf(“This program computes the average of a
set of numbers\n”);

printf(“Enter values one after another\n”);
printf(“Enter a NEGATIVE number at the end.\n\n”);
sum = 0;
for (m = 1 ; m < = 1000 ; ++m)
{

scanf(“%f”, &x);
if (x < 0)

break;
sum += x ;

}
average = sum/(float)(m-1);
printf(“\n”);

194 Introduction to Computing

printf(“Number of values = %d\n”, m-1);
printf(“Sum = %f\n”, sum);
printf(“Average = %f\n”, average);

}
Output

This program computes the average of a set of numbers
Enter values one after another
Enter a NEGATIVE number at the end.

21 23 24 22 26 22 -1

Number of values = 6
Sum = 138.000000
Average = 23.000000

Fig. 7.8 Use of break in a program

Each value, when it is read, is tested to see whether it is a positive number or not. If it is positive, the

value is added to the sum; otherwise, the loop terminates. On exit, the average of the values read is

calculated and the results are printed out.

Example 7.6 A program to evaluate the series

-

1

1 x
 = 1 + x + x2 + x3 + + xn

for –1 < x < 1 with 0.01 per cent accuracy is given in Fig. 7.9. The goto
statement is used to exit the loop on achieving the desired accuracy.

We have used the for statement to perform the repeated addition of each of the terms in the series. Since

it is an infinite series, the evaluation of the function is terminated when the term x
n
 reaches the desired

accuracy. The value of n that decides the number of loop operations is not known and therefore we have

decided arbitrarily a value of 100, which may or may not result in the desired level of accuracy.

Program
#define LOOP 100
#define ACCURACY 0.0001
main()
{

int n;
float x, term, sum;

printf(“Input value of x : “);
scanf(“%f”, &x);
sum = 0 ;
for (term = 1, n = 1 ; n <= LOOP ; ++n)
{

sum += term ;
if (term <= ACCURACY)

Decision Making and Looping 195

goto output; /* EXIT FROM THE LOOP */
term *= x ;

}
printf(“\nFINAL VALUE OF N IS NOT SUFFICIENT\n”);
printf(“TO ACHIEVE DESIRED ACCURACY\n”);
goto end;
output:
printf(“\nEXIT FROM LOOP\n”);
printf(“Sum = %f; No.of terms = %d\n”, sum, n);
end:
; /* Null Statement */

}
Output

Input value of x : .21
EXIT FROM LOOP
Sum = 1.265800; No.of terms = 7

Input value of x : .75
EXIT FROM LOOP
Sum = 3.999774; No.of terms = 34

Input value of x : .99
FINAL VALUE OF N IS NOT SUFFICIENT
TO ACHIEVE DESIRED ACCURACY

Fig. 7.9 Use of goto to exit from a loop

The test of accuracy is made using an if statement and the goto statement exits the loop as soon as the

accuracy condition is satisfied. If the number of loop repetitions is not large enough to produce the

desired accuracy, the program prints an appropriate message.

Note that the break statement is not very convenient to use here. Both the normal exit and the break

exit will transfer the control to the same statement that appears next to the loop. But, in the present

problem, the normal exit prints the message

�FINAL VALUE OF N IS NOT SUFFICIENT

TO ACHIEVE DESIRED ACCURACY�

and the forced exit prints the results of evaluation. Notice the use of a null statement at the end. This is

necessary because a program should not end with a label.

Structured Programming

Structured programming is an approach to the design and development of programs. It

is a discipline of making a program's logic easy to understand by using only the basic

three control structures:

∑ Sequence (straight line) structure

∑ Selection (branching) structure

196 Introduction to Computing

∑ Repetition (looping) structure

While sequence and loop structures are sufficient to meet all the requirements of

programming, the selection structure proves to be more convenient in some situations.

The use of structured programming techniques helps ensure well-designed programs

that are easier to write, read, debug and maintain compared to those that are

unstructured.

Structured programming discourages the implementation of unconditional branching

using jump statements such as goto, break and continue. In its purest form, structured

programming is synonymous with "goto less programming".

Do not go to goto statement!

Skipping a Part of a Loop

During the loop operations, it may be necessary to skip a part of the body of the loop under certain

conditions. For example, in processing of applications for some job, we might like to exclude the

processing of data of applicants belonging to a certain category. On reading the category code of an

applicant, a test is made to see whether his application should be considered or not. If it is not to be

considered, the part of the program loop that processes the application details is skipped and the

execution continues with the next loop operation.

Like the break statement, C supports another similar statement called the continue statement. How-

ever, unlike the break which causes the loop to be terminated, the continue, as the name implies, causes

the loop to be continued with the next iteration after skipping any statements in between. The continue

statement tells the compiler, �SKIP THE FOLLOWING STATEMENTS AND CONTINUE WITH

THE NEXT ITERATION�. The format of the continue statement is simply

continue;

The use of the continue statement in loops is illustrated in Fig. 7.10. In while and do loops, continue

causes the control to go directly to the test-condition and then to continue the iteration process. In the

case of for loop, the increment section of the loop is executed before the test-condition is evaluated.

while (test-condition) do
{ {
--------- ---------
if (---------) if (---------)

continue; continue;
--------- ---------
--------- ---------

} } while (test-condition);
(a) (b)

Decision Making and Looping 197

for (initialization; test condition; increment)
{

if (---------)

continue;

}
(c)

Fig. 7.10 Bypassing and continuing in loops

Example 7.7 The program in Fig. 7.11 illustrates the use of continue statement.

The program evaluates the square root of a series of numbers and prints the results. The process stops

when the number 9999 is typed in.

In case, the series contains any negative numbers, the process of evaluation of square root should be

bypassed for such numbers because the square root of a negative number is not defined. The continue

statement is used to achieve this. The program also prints a message saying that the number is negative

and keeps an account of negative numbers.

The final output includes the number of positive values evaluated and the number of negative items

encountered.

Program:
#include <math.h>
main()
{

int count, negative;
double number, sqroot;
printf(“Enter 9999 to STOP\n”);
count = 0 ;
negative = 0 ;
while (count < = 100)
{

printf(“Enter a number : “);
scanf(“%lf”, &number);
if (number == 9999)

break; /* EXIT FROM THE LOOP */
if (number < 0)
{

printf(“Number is negative\n\n”);
negative++ ;
continue; /* SKIP REST OF THE LOOP */

}

198 Introduction to Computing

sqroot = sqrt(number);
printf(“Number = %lf\n Square root = %lf\n\n”,

number, sqroot);
count++ ;

}
printf(“Number of items done = %d\n”, count);
printf(“\n\nNegative items = %d\n”, negative);
printf(“END OF DATA\n”);

}
Output

Enter 9999 to STOP
Enter a number : 25.0

Number = 25.000000
Square root = 5.000000

Enter a number : 40.5
Number = 40.500000
Square root = 6.363961

Enter a number : -9
Number is negative

Enter a number : 16
Number = 16.000000
Square root = 4.000000

Enter a number : -14.75
Number is negative

Enter a number : 80
Number = 80.000000
Square root = 8.944272

Enter a number : 9999
Number of items done = 4
Negative items = 2
END OF DATA

Fig. 7.11 Use of continue statement

Avoiding goto

As mentioned earlier, it is a good practice to avoid using goto. There are many reasons for this. When

goto is used, many compilers generate a less efficient code. In addition, using many of them makes a

program logic complicated and renders the program unreadable. It is possible to avoid using goto by

careful program design. In case any goto is absolutely necessary, it should be documented. The goto

jumps shown in Fig. 7.12 would cause problems and therefore must be avoided.

Decision Making and Looping 199

Fig. 7.12 goto jumps to be avoided

Jumping out of the Program

We have just seen that we can jump out of a loop using either the break statement or goto statement. In

a similar way, we can jump out of a program by using the library function exit(). In case, due to some

reason, we wish to break out of a program and return to the operating system, we can use the exit()

function, as shown below:

........

........
if (test-condition) exit(0) ;
........
........

The exit() function takes an integer value as its argument. Normally zero is used to indicate normal

termination and a nonzero value to indicate termination due to some error or abnormal condition. The

use of exit() function requires the inclusion of the header file <stdlib.h>.

Just Remember

Do not forget to place the semicolon at the end of do �.while statement.

Placing a semicolon after the control expression in a while or for state.

ment is not a syntax error but it is most likely a logic error.

Using commas rather than semicolon in the header of a for statement is an

error.

Do not forget to place the increment statement in the body of a while or

do�while loop.

It is a common error to use wrong relational operator in test expressions.

Ensure that the loop is evaluated exactly the required number of times.

Avoid a common error using = in place of = = operator.

Do not change the control variable in both the for statement and the body

of the loop. It is a logic error.

Do not compare floating-point values for equality.

Avoid using while and for statements for implementing exit-controlled (post-

test) loops. Use do�while statement. Similarly, do not use do�while for

pre-test loops.

When performing an operation on a variable repeatedly in the body of a loop,

make sure that the variable is initialized properly before entering the loop.

200 Introduction to Computing

Although it is legally allowed to place the initialization, testing and increment

sections outside the header of a for statement, avoid them as far as possible.

Although it is permissible to use arithmetic expressions in initialization and

increment section, be aware of round off and truncation errors during their

evaluation.

Although statements preceding a for and statements in the body can be placed

in the for header, avoid doing so as it makes the program more difficult to

read.

The use of break and continue statements in any of the loops is considered

unstructured programming. Try to eliminate the use of these jump statements,

as far as possible.

Avoid the use of goto anywhere in the program.

Indent the statements in the body of loops properly to enhance readability and

understandability.

Use of blank spaces before and after the loops and terminating remarks are

highly recommended.

Use the function exit() only when breaking out of a program is necessary.

Case Studies

1. Table of Binomial Coefficients

Problem: Binomial coefficients are used in the study of binomial distributions and reliability of

multicomponent redundant systems. It is given by

B(m,x) = ()
x

m
 =

()
m!

x! m x !-
 , m >= x

A table of binomial coefficients is required to determine the binomial coefficient for any set of m and x.

Problem Analysis: The binomial coefficient can be recursively calculated as follows:

B(m,o) = 1

B(m,x) = B(m,x�1)
m x 1

x

- +È ˘
Í ˙Î ˚

, x = 1,2,3,...,m

Further,

B(o,o) = 1

That is, the binomial coefficient is one when either x is zero or m is zero. The program in Fig. 7.13

prints the table of binomial coefficients for m = 10. The program employs one do loop and one while

loop.

Program

#define MAX 10
main()
{

int m, x, binom;

Decision Making and Looping 201

printf(“ m x”);
for (m = 0; m <= 10 ; ++m)

printf(“%4d”, m);
printf(“\n– \n”);

m = 0;
do
{

printf(“%2d “, m);
x = 0; binom = 1;
while (x <= m)

{
if(m == 0 || x == 0)

printf(“%4d”, binom);
else

{
binom = binom * (m - x + 1)/x;

printf(“%4d”, binom);
}

x = x + 1;

}
printf(“\n”);
m = m + 1;

}
while (m <= MAX);
printf(“– \n”);

}
Output

mx 0 1 2 3 4 5 6 7 8 9 10
– –

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1
– –

Fig. 7.13 Program to print binomial coefficient table

202 Introduction to Computing

2. Histogram

Problem: In an organization, the employees are grouped according to their basic pay for the purpose of

certain perks. The pay-range and the number of employees in each group are as follows:

Group Pay-Range Number of Employees

1 750 � 1500 12

2 1501 � 3000 23

3 3001 � 4500 35

4 4501 � 6000 20

5 above 6000 11

Draw a histogram to highlight the group sizes.

Problem Analysis: Given the size of groups, it is required to draw bars representing the sizes of various

groups. For each bar, its group number and size are to be written.

Program in Fig. 7.14 reads the number of employees belonging to each group and draws a histogram.

The program uses four for loops and two if.....else statements.

Program

#define N 5

main()
{

int value[N];

int i, j, n, x;
for (n=0; n < N; ++n)
{

printf(“Enter employees in Group - %d : “,n+1);
scanf(“%d”, &x);
value[n] = x;

printf(“%d\n”, value[n]);
}
printf(“\n”);
printf(“|\n”);
for (n = 0 ; n < N ; ++n)
{

for (i = 1 ; i <= 3 ; i++)
{

if (i == 2)
printf(“Group-%1d |”,n+1);

else
printf(“|”);

for (j = 1 ; j <= value[n]; ++j)
printf(“*”);

if (i == 2)
printf(“(%d)\n”, value[n]);

Decision Making and Looping 203

else
printf(“\n”);

}

printf(“|\n”);
}

}
Output

Enter employees in Group - 1 : 12
12

Enter employees in Group - 2 : 23
23
Enter employees in Group - 3 : 35
35
Enter employees in Group - 4 : 20
20

Enter Employees in Group - 5 : 11
11

|
|************

Group-1 |************(12)
|************

|
|***********************

Group-2 |***********************(23)

|***********************
|
|***********************************

Group-3 |***********************************(35)
|***********************************
|

|********************
Group-4 |********************(20)

|********************
|
|***********

Group-5 |***********(11)

|***********
|

Fig. 7.14 Program to draw a histogram

204 Introduction to Computing

3. Minimum Cost

Problem: The cost of operation of a unit consists of two components C1 and C2 which can be expressed

as functions of a parameter p as follows:

C1 = 30 � 8p

C2 = 10 + p
2

The parameter p ranges from 0 to 10. Determine the value of p with an accuracy of + 0.1 where the cost

of operation would be minimum.

Problem Analysis:

Total cost = C1 + C2 = 40 � 8p + p2

The cost is 40 when p = 0, and 33 when p = 1 and 60 when p = 10. The cost, therefore, decreases first and

then increases. The program in Fig. 7.15 evaluates the cost at successive intervals of p (in steps of 0.1)

and stops when the cost begins to increase. The program employs break and continue statements to exit

the loop.

Program

main()
{

float p, cost, p1, cost1;

for (p = 0; p <= 10; p = p + 0.1)
{

cost = 40 - 8 * p + p * p;
if(p == 0)
{

cost1 = cost;

continue;
}
if (cost >= cost1)

break;
cost1 = cost;
p1 = p;

}
p = (p + p1)/2.0;
cost = 40 - 8 * p + p * p;
printf(“\nMINIMUM COST = %.2f AT p = %.1f\n”,

cost, p);
}

Output

MINIMUM COST = 24.00 AT p = 4.0

Fig. 7.15 Program of minimum cost problem

Decision Making and Looping 205

4. Plotting of Two Functions

Problem: We have two functions of the type

y1 = exp (�ax)

y2 = exp (�ax2/2)

Plot the graphs of these functions for x varying from 0 to 5.0.

Problem Analysis: Initially when x = 0, y1 = y2 =1 and the graphs start from the same point. The curves

cross when they are again equal at x = 2.0. The program should have appropriate branch statements to

print the graph points at the following three conditions:

1. y1 > y2

2. y1 < y2

3. y1 = y2

The functions y1 and y2 are normalized and converted to integers as follows:

y1 = 50 exp (�ax) + 0.5

y2 = 50 exp (�ax2/2) + 0.5

The program in Fig. 7.16 plots these two functions simultaneously. (0 for y1, * for y2, and # for the

common point.)

Program
#include <math.h>
main()
{

int i;
float a, x, y1, y2;
a = 0.4;

printf(“ Y – – – – > \n”);
printf(“ 0 – \n”);
for (x = 0; x < 5; x = x+0.25)
{ /* BEGINNING OF FOR LOOP */
/*......Evaluation of functions*/

y1 = (int) (50 * exp(-a * x) + 0.5);
y2 = (int) (50 * exp(-a * x * x/2) + 0.5);

/*......Plotting when y1 = y2.........*/
if (y1 == y2)
{

if (x == 2.5)
printf(“ X |”);

else
printf(“|”);

for (i = 1; i <= y1 - 1; ++i)
printf(“ “);

printf(“#\n”);
continue;

206 Introduction to Computing

}
/*...... Plotting when y1 > y2*/

if (y1 > y2)
{

if (x == 2.5)
printf(“ X |”);

else
printf(“ |”);

for (i = 1; i <= y2 -1 ; ++i)
printf(“ “);

printf(“*”);
for (i = 1; i <= (y1 - y2 - 1); ++i)

printf(“-”);
printf(“0\n”);
continue;

}
/*........ Plotting when y2 > y1.........*/

if (x == 2.5)
printf(“ X |”);

else
printf(“ |”);

for (i = 1 ; i <= (y1 - 1); ++i)
printf(“ “);

printf(“0”);
for (i = 1; i <= (y2 - y1 - 1); ++i)

printf(“-”);
printf(“*\n”);

} /*.......END OF FOR LOOP........*/
printf(“ |\n”);

}

Output Y
0

#
0 --- *

0------ *
0 ------- *

0------ *
0------ *

0 ---- *
0 - *

#
* -0

*X --- 0

Decision Making and Looping 207

*----- 0
* ------ 0

*-------0
*------- 0

*-------0
*-------0
*-------0
*------0
*-----0

Fig. 7.16 Plotting of two functions

Review Questions

7.1 State whether the following statements are true or false.

(a) The do�while statement first executes the loop body and then evaluate the loop control

expression.

(b) In a pretest loop, if the body is executed n times, the test expression is executed

n + 1 times.

(c) The number of times a control variable is updated always equals the number of loop

iterations.

(d) Both the pretest loops include initialization within the statement.

(e) In a for loop expression, the starting value of the control variable must be less than its ending

value.

(f) The initialization, test condition and increment parts may be missing in a for statement.

(g) while loops can be used to replace for loops without any change in the body of the loop.

(h) An exit-controlled loop is executed a minimum of one time.

(i) The use of continue statement is considered as unstructured programming.

(j) The three loop expressions used in a for loop header must be separated by commas.

7.2 Fill in the blanks in the following statements.

(a) In an exit-controlled loop, if the body is executed n times, the test condition is evaluated

 times.

(b) The statement is used to skip a part of the statements in a loop.

(c) A for loop with the no test condition is known as loop.

(d) The sentinel-controlled loop is also known as loop.

(e) In a counter-controlled loop, variable known as is used to count the loop

operations.

7.3 Can we change the value of the control variable in for statements? If yes, explain its

consequences.

7.4 What is a null statement? Explain a typical use of it.

7.5 Use of goto should be avoided. Explain a typical example where we find the application of goto

becomes necessary.

7.6 How would you decide the use of one of the three loops in C for a given problem?

208 Introduction to Computing

7.7 How can we use for loops when the number of iterations are not known?

7.8 Explain the operation of each of the following for loops.

(a) for (n = 1; n != 10; n += 2)
sum = sum + n;

(b) for (n = 5; n <= m; n -=1)
sum = sum + n;

(c) for (n = 1; n <= 5;)
sum = sum + n;

(d) for (n = 1; ; n = n + 1)
sum = sum + n;

(e) for (n = 1; n < 5; n ++)
n = n -1

7.9 What would be the output of each of the following code segments?

(a) count = 5;
while (count -- > 0)
printf(count);

(b) count = 5;
while (-- count > 0)
printf(count);

(c) count = 5;
do printf(count);
while (count > 0);

(d) for (m = 10; m > 7, m -=2)
printf(m);

7.10 Compare, in terms of their functions, the following pairs of statements:

(a) while and do...while

(b) while and for

(c) break and goto

(d) break and continue

(e) continue and goto

7.11 Analyse each of the program segments that follow and determine how many times the body of

each loop will be executed.

(a) x = 5;
y = 50;
while (x <= y)
{

x = y/x;
� � �

� � �

}
(b) m = 1;

do
{

� � �

� � �

Decision Making and Looping 209

m = m+2;
}
while (m < 10);

(c) int i;
for (i = 0; i <= 5; i = i+2/3)
{

� � �

� � �

� � �

}
(d) int m = 10;

int n = 7;
while (m % n >= 0)
{

� � �

m = m + 1;
n = n + 2;
� � �

}
7.12 Find errors, if any, in each of the following looping segments. Assume that all the variables have

been declared and assigned values.

(a) while (count != 10);
{

count = 1;
sum = sum + x;
count = count + 1;

}
(b) name = 0;

do { name = name + 1;
printf(“My name is John\n”);}
while (name = 1)

(c) do;
total = total + value;
scanf(“%f”, &value);
while (value != 999);

(d) for (x = 1, x > 10; x = x + 1)
{

� � �

� � �

� � �

}
(e) m = 1;

n = 0;
for (; m+n < 10; ++n);

210 Introduction to Computing

printf(“Hello\n”);
m = m+10

(f) for (p = 10; p > 0;)
p = p - 1;
printf(“%f”, p);

7.13 Write a for statement to print each of the following sequences of integers:

(a) 1, 2, 4, 8, 16, 32

(b) 1, 3, 9, 27, 81, 243

(c) � 4, �2, 0, 2, 4

(d) �10, �12, �14, �18, �26, � 42

7.14 Change the following for loops to while loops:

(a) for (m = 1; m < 10; m = m + 1)
printf(m);

(b) for (; scanf(“%d”, & m) != -1;)
printf(m);

7.15 Change the for loops in Exercise 7.14 to do loops.

7.16 What is the output of following code?

int m = 100, n = 0;
while (n == 0)
{

if (m < 10)
break;

m = m-10;
7.17 What is the output of the following code?

int m = 0 ;
do
{

if (m > 10)
continue ;

m = m + 10 ;
} while (m < 50) ;
printf(“%d”, m);

7.18 What is the output of the following code?

int n = 0, m = 1 ;
do
{

printf(m) ;
m++ ;

}
while (m <= n) ;

7.19 What is the output of the following code?

int n = 0, m ;
for (m = 1; m <= n + 1 ; m++)

printf(m);

Decision Making and Looping 211

7.20 When do we use the following statement?

for (; ;)

Programming Exercises

7.1 Given a number, write a program using while loop to reverse the digits of the number. For

example, the number

12345

should be written as

54321

(Hint: Use modulus operator to extract the last digit and the integer division by 10 to get the n�

1 digit number from the n digit number.)

7.2 The factorial of an integer m is the product of consecutive integers from 1 to m. That is,

factorial m = m! = m x (m�1) x x 1.

Write a program that computes and prints a table of factorials for any given m.

7.3 Write a program to compute the sum of the digits of a given integer number.

7.4 The numbers in the sequence

1 1 2 3 5 8 13 21

are called Fibonacci numbers. Write a program using a do....while loop to calculate and print the

first m Fibonacci numbers.

(Hint: After the first two numbers in the series, each number is the sum of the two preceding

numbers.)

7.5 Rewrite the program of the Example 7.1 using the for statement.

7.6 Write a program to evaluate the following investment equation

V = P(1+r)n

and print the tables which would give the value of V for various combination of the following

values of P, r, and n.

P : 1000, 2000, 3000,........, 10,000

r : 0.10, 0.11, 0.12,, 0.20

n : 1, 2, 3,, 10

(Hint: P is the principal amount and V is the value of money at the end of n years.

This equation can be recursively written as

V = P(1+r)

P = V

That is, the value of money at the end of first year becomes the principal amount for

the next year and so on.)

7.7 Write programs to print the following outputs using for loops.

(a) 1 (b) * * * * *

2 2 * * * *

3 3 3 * * *

4 4 4 4 * *

5 5 5 5 5 *

212 Introduction to Computing

7.8 Write a program to read the age of 100 persons and count the number of persons in the age group

50 to 60. Use for and continue statements.

7.9 Rewrite the program of case study 7.4 (plotting of two curves) using else...if constructs instead of

continue statements.

7.10 Write a program to print a table of values of the function

y = exp (-x)

for x varying from 0.0 to 10.0 in steps of 0.10. The table should appear as follows:

Table for Y = EXP(�X)

x 0.1 0.2 0.3 0.9

0.0

1.0

2.0

3.0

.

.

.

9.0

7.11 Write a program that will read a positive integer and determine and print its binary equivalent.

(Hint: The bits of the binary representation of an integer can be generated by repeatedly dividing

the number and the successive quotients by 2 and saving the remainder, which is either 0 or 1,

after each division.)

7.12 Write a program using for and if statement to display the capital letter S in a grid of 15 rows and

18 columns as shown below.

* * * * * * * * * * * * * * * * * * *

* * - - - - - - - - - - - - - - - - - - - * *

* * * * * * * * * - - - - - - - - - - * *

* * * *

* * * *

* * * *

* * * * * - - - - - - - - - - - - -* * * *

- - - - - - - - - - - - - - - - - - - * * * *

- - - - - - - - - - - - - - - - - - - * * * *

* * * *

* * * *

* * * *

* * * * - - - - - - - - � - - - * * * *

* * * - - - - - - - - - - - - - - * * * *

* * - - - - - - - - - - - - - - - - * * * *

7.13 Write a program to compute the value of Euler�s number e, that is used as the base of natural

logarithms. Use the following formula.

e = 1 + 1/1! + 1 /2! + 1 /3! + + 1 /n!

Use a suitable loop construct. The loop must terminate when the difference between two

successive values of e is less than 0.00001.

Decision Making and Looping 213

7.14 Write programs to evaluate the following functions to 0.0001% accuracy.

(a) sinx = x � x3/3! + x5/5! � x7/7! +

(b) cosx = 1 � x2/2! + x4/4! � x6/6! +

(c) SUM = 1 + (1/2)2 + (1/3)3 + (1/4)4 + � �

7.15 The present value (popularly known as book value) of an item is given by the relationship.

P = c (1�d)n

where c = original cost

d = rate of depreciation (per year)

n = number of years

p = present value after y years.

If P is considered the scrap value at the end of useful life of the item, write a program to compute

the useful life in years given the original cost, depreciation rate, and the scrap value.

The program should request the user to input the data interactively.

7.16 Write a program to print a square of size 5 by using the character S as shown below:

(a) S S S S S (b) S S S S S

S S S S S S S

S S S S S S S

S S S S S S S

S S S S S S S S S S

7.17 Write a program to graph the function

y = sin (x)

in the interval 0 to 180 degrees in steps of 15 degrees. Use the concepts discussed in the Case

Study 4 in Chapter 6.

7.18 Write a program to print all integers that are not divisible by either 2 or 3 and lie between 1 and

100. Program should also account the number of such integers and print the result.

7.19 Modify the program of Exercise 7.16 to print the character O instead of S at the center of the

square as shown below.

S S S S S

S S S S S

S S O S S

S S S S S

S S S S S

7.20 Given a set of 10 two-digit integers containing both positive and negative values, write a program

using for loop to compute the sum of all positive values and print the sum and the number of

values added. The program should use scanf to read the values and terminate when the sum

exceeds 999. Do not use goto statement.

User-Defined Functions

8.1 INTRODUCTION

We have mentioned earlier that one of the strengths of C language is C functions. They are easy to define

and use. We have used functions in every program that we have discussed so far. However, they have

been primarily limited to the three functions, namely, main, printf, and scanf. In this chapter, we shall

consider in detail the following:

∑ How a function is designed?

∑ How a function is integrated into a program?

∑ How two or more functions are put together? and

∑ How they communicate with one another?

C functions can be classified into two categories, namely, library functions and user-defined func-

tions. main is an example of user-defined functions. printf and scanf belong to the category of library

functions. We have also used other library functions such as sqrt, cos, strcat, etc. The main distinction

between these two categories is that library functions are not required to be written by us whereas a

user-defined function has to be developed by the user at the time of writing a program. However, a user-

defined function can later become a part of the C program library. In fact, this is one of the strengths of

C language.

8.2 NEED FOR USER-DEFINED FUNCTIONS

As pointed out earlier, main is a specially recognized function in C. Every program must have a main

function to indicate where the program has to begin its execution. While it is possible to code any

program utilizing only main function, it leads to a number of problems. The program may become too

large and complex and as a result the task of debugging, testing, and maintaining becomes difficult. If a

program is divided into functional parts, then each part may be independently coded and later combined

into a single unit. These independently coded programs are called subprograms that are much easier to

understand, debug, and test. In C, such subprograms are referred to as 'functions'.

CHAPTER

8

User-Defined Functions 215

There are times when certain type of operations or calculations are repeated at many points through-

out a program. For instance, we might use the factorial of a number at several points in the program. In

such situations, we may repeat the program statements wherever they are needed. Another approach is to

design a function that can be called and used whenever required. This saves both time and space.

This �division� approach clearly results in a number of advantages.

1. It facilitates top-down modular programming as shown in Fig. 8.1. In this programming style, the

high level logic of the overall problem is solved first while the details of each lower-level function

are addressed later.

2. The length of a source program can be reduced by using functions at appropriate places. This

factor is particularly critical with microcomputers where memory space is limited.

3. It is easy to locate and isolate a faulty function for further investigations.

4. A function may be used by many other programs. This means that a C programmer can build on

what others have already done, instead of starting all over again from scratch.

Main Program

Function
A

Function
C

Function
B

B1 B2

Fig. 8.1 Top-down modular programming using functions

8.3 A MULTI-FUNCTION PROGRAM

A function is a self-contained block of code that performs a particular task. Once a function has been

designed and packed, it can be treated as a �black box� that takes some data from the main program and

returns a value. The inner details of operation are invisible to the rest of the program. All that the

program knows about a function is: What goes in and what comes out. Every C program can be designed

using a collection of these black boxes known as functions.

Consider a set of statements as shown below:

void printline(void)

{

int i;

216 Introduction to Computing

for (i=1; i<40; i++)
printf(“–”);

printf(“\n”);
}

The above set of statements defines a function called printline, which could print a line of 39-character
length. This function can be used in a program as follows:

void printline(void); /* declaration */
 main()
 {

printline();
printf(“This illustrates the use of C functions\n”);
printline();

 }
 void printline(void)
 {
 int i;
 for(i=1; i<40; i++)
 printf(“–”);
 printf(“\n”);
 }

This program will print the following output:

���������������������-
This illustrates the use of C functions

���������������������-
The above program contains two user-defined functions:

main() function
printline() function

As we know, the program execution always begins with the main function. During execution of the

main, the first statement encountered is

printline();

which indicates that the function printline is to be executed. At this point, the program control is

transferred to the function printline. After executing the printline function, which outputs a line of 39

character length, the control is transferred back to the main. Now, the execution continues at the point

where the function call was executed. After executing the printf statement, the control is again

transferred to the printline function for printing the line once more.

The main function calls the user-defined printline function two times and the library function printf

once. We may notice that the printline function itself calls the library function printf 39 times

repeatedly.

Any function can call any other function. In fact, it can call itself. A �called function� can also call

another function. A function can be called more than once. In fact, this is one of the main features of

using functions. Figure 8.2 illustrates the flow of control in a multi-function program.

User-Defined Functions 217

Except the starting point, there are no other predetermined relationships, rules of precedence, or

hierarchies among the functions that make up a complete program. The functions can be placed in any

order. A called function can be placed either before or after the calling function. However, it is the usual

practice to put all the called functions at the end. See the box �Modular Programming�

Main ()

function 1();

function 2();

function 2();

function 1();

function 3();

function3();

function 1();

return

return

return

call

call

call

Fig. 8.2 Flow of control in a multi-function program

218 Introduction to Computing

Modular Programming

Modular programming is a strategy applied to the design and development of software

systems. It is defined as organizing a large program into small, independent program

segments called modules that are separately named and individually callable program

units. These modules are carefully integrated to become a software system that satisfies

the system requirements. It is basically a "divide-and-conquer" approach to problem

solving.

Modules are identified and designed such that they can be organized into a top-down

hierarchical structure (similar to an organization chart). In C, each module refers to a

function that is responsible for a single task.

Some characteristics of modular programming are:

1. Each module should do only one thing.

2. Communication between modules is allowed only by a calling module.

3. A module can be called by one and only one higher module.

4. No communication can take place directly between modules that do not have

calling-called relationship.

5. All modules are designed as single-entry, single-exit systems using control

structures.

8.4 ELEMENTS OF USER-DEFINED FUNCTIONS

We have discussed and used a variety of data types and variables in our programs so far. However,

declaration and use of these variables were primarily done inside the main function. As we mentioned in

Chapter 4, functions are classified as one of the derived data types in C. We can therefore define

functions and use them like any other variables in C programs. It is therefore not a surprise to note that

there exist some similarities between functions and variables in C.

∑ Both function names and variable names are considered identifiers and therefore they must adhere

to the rules for identifiers.

∑ Like variables, functions have types (such as int) associated with them.

∑ Like variables, function names and their types must be declared and defined before they are used

in a program.

In order to make use of a user-defined function, we need to establish three elements that are related to

functions.

1. Function definition.

2. Function call.

3. Function declaration.

The function definition is an independent program module that is specially written to implement the

requirements of the function. In order to use this function we need to invoke it at a required place in the

program. This is known as the function call. The program (or a function) that calls the function is

User-Defined Functions 219

referred to as the calling program or calling function. The calling program should declare any function

(like declaration of a variable) that is to be used later in the program. This is known as the function

declaration or function prototype.

8.5 DEFINITION OF FUNCTIONS

A function definition, also known as function implementation shall include the following elements;

1. function name;

2. function type;

3. list of parameters;

4. local variable declarations;

5. function statements; and

6. a return statement.

All the six elements are grouped into two parts, namely,

∑ function header (First three elements); and

∑ function body (Second three elements).

A general format of a function definition to implement these two parts is given below:

function_type function_name(parameter list)
{

local variable declaration;
executable statement1;
executable statement2;
.
.
return statement;

}

The first line function_type function_name(parameter list) is known as the function header and the

statements within the opening and closing braces constitute the function body, which is a compound

statement.

Function Header

The function header consists of three parts: the function type (also known as return type), the function

name and the formal parameter list. Note that a semicolon is not used at the end of the function header.

Name and Type

The function type specifies the type of value (like float or double) that the function is expected to return

to the program calling the function. If the return type is not explicitly specified, C will assume that it is

an integer type. If the function is not returning anything, then we need to specify the return type as void.

220 Introduction to Computing

Remember, void is one of the fundamental data types in C. It is a good programming practice to code

explicitly the return type, even when it is an integer. The value returned is the output produced by the

function.

The function name is any valid C identifier and therefore must follow the same rules of formation as

other variable names in C. The name should be appropriate to the task performed by the function.

However, care must be exercised to avoid duplicating library routine names or operating system

commands.

Formal Parameter List

The parameter list declares the variables that will receive the data sent by the calling program. They

serve as input data to the function to carry out the specified task. Since they represent actual input

values, they are often referred to as formal parameters. These parameters can also be used to send

values to the calling programs. This aspect will be covered later when we discuss more about functions.

The parameters are also known as arguments.

The parameter list contains declaration of variables separated by commas and surrounded by paren-

theses. Examples:

float quadratic (int a, int b, int c) {. . . . }

double power (double x, int n) {.}

float mul (float x, float y) {. . . . }

int sum (int a, int b) {. . . . }

Remember, there is no semicolon after the closing parenthesis. Note that the declaration of parameter

variables cannot be combined. That is, int sum (int a,b) is illegal.

A function need not always receive values from the calling program. In such cases, functions have no

formal parameters. To indicate that the parameter list is empty, we use the keyword void between the

parentheses as in

void printline (void)

{

. . . .

}

This function neither receives any input values nor returns back any value. Many compilers accept an

empty set of parentheses, without specifying anything as in

void printline ()

But, it is a good programming style to use void to indicate a nill parameter list.

Function Body

The function body contains the declarations and statements necessary for performing the required task.

The body enclosed in braces, contains three parts, in the order given below:

1. Local declarations that specify the variables needed by the function.

2. Function statements that perform the task of the function.

3. A return statement that returns the value evaluated by the function.

If a function does not return any value (like the printline function), we can omit the return state-
ment. However, note that its return type should be specified as void. Again, it is nice to have a return
statement even for void functions.

User-Defined Functions 221

Some examples of typical function definitions are:

(a) float mul (float x, float y)
{

float result; /* local variable */
result = x * y; /* computes the product */
return (result); /* returns the result */

}
(b) void sum (int a, int b)

{
printf (“sum = %s”, a + b); /* no local variables */
return; /* optional */

}
(c) void display (void)

{ /* no local variables */
printf (“No type, no parameters”);

/* no return statement */
}

NOTE:

1. When a function reaches its return statement, the control is transferred back to the calling program. In the

absence of a return statement, the closing brace acts as a void return.

2. A local variable is a variable that is defined inside a function and used without having any role in the

communication between functions.

8.6 RETURN VALUES AND THEIR TYPES

As pointed out earlier, a function may or may not send back any value to the calling function. If it does,

it is done through the return statement. While it is possible to pass to the called function any number of

values, the called function can only return one value per call, at the most.

The return statement can take one of the following forms:

return;

or
return(expression);

The first, the �plain� return does not return any value; it acts much as the closing brace of the

function. When a return is encountered, the control is immediately passed back to the calling function.

An example of the use of a simple return is as follows:

if(error)

return;

NOTE: In C99, if a function is specified as returning a value, the return must have value associated with it.

222 Introduction to Computing

The second form of return with an expression returns the value of the expression. For example, the

function

int mul (int x, int y)

{

int p;

p = x*y;

return(p);

}

returns the value of p which is the product of the values of x and y. The last two statements can be

combined into one statement as follows:

return (x*y);

A function may have more than one return statements. This situation arises when the value returned is

based on certain conditions. For example:

if(x <= 0)

return(0);

else

return(1);

What type of data does a function return? All functions by default return int type data. But what happens

if a function must return some other type? We can force a function to return a particular type of data by

using a type specifier in the function header as discussed earlier.

When a value is returned, it is automatically cast to the function�s type. In functions that do computa-

tions using doubles, yet return ints, the returned value will be truncated to an integer. For instance, the

function

int product (void)

{

return (2.5 * 3.0);

}

will return the value 7, only the integer part of the result.

8.7 FUNCTION CALLS

A function can be called by simply using the function name followed by a list of actual parameters (or

arguments), if any, enclosed in parentheses. Example:

main()

{

int y;

y = mul(10,5); /* Function call */

printf(“%d\n”, y);

}

When the compiler encounters a function call, the control is transferred to the function mul(). This

function is then executed line by line as described and a value is returned when a return statement is

encountered. This value is assigned to y. This is illustrated below:

User-Defined Functions 223

main ()

int y;

int p;

p = x* y;

return (p);

int mul(int x,int y)

y = mul(10,5); /* call*/

/* local variable*/

/* x = 10, y = 5*/

The function call sends two integer values 10 and 5 to the function.

int mul(int x, int y)

which are assigned to x and y respectively. The function computes the product x and y, assigns the result

to the local variable p, and then returns the value 25 to the main where it is assigned to y again.

There are many different ways to call a function. Listed below are some of the ways the function mul

can be invoked.

mul (10, 5)

mul (m, 5)

mul (10, n)

mul (m, n)

mul (m + 5, 10)

mul (10, mul(m,n))

mul (expression1, expression2)

Note that the sixth call uses its own call as its one of the parameters. When we use expressions, they

should be evaluated to single values that can be passed as actual parameters.

A function which returns a value can be used in expressions like any other variable. Each of the

following statements is valid:

printf(“%d\n”, mul(p,q));
y = mul(p,q) / (p+q);
if (mul(m,n)>total) printf(“large”);

However, a function cannot be used on the right side of an assignment statement. For instance,

mul(a,b) = 15;

is invalid.

A function that does not return any value may not be used in expressions; but can be called in to

perform certain tasks specified in the function. The function printline() discussed in Section 8.3 belongs

to this category. Such functions may be called in by simply stating their names as independent

statements.

224 Introduction to Computing

Example:

main()
{

printline();
}

Note the presence of a semicolon at the end.

Function Call

A function call is a postfix expression. The operator (. .) is at a very high level of

precedence. (See Table 4.8) Therefore, when a function call is used as a part of an

expression, it will be evaluated first, unless parentheses are used to change the order of

precedence.

In a function call, the function name is the operand and the parentheses set (. .)

which contains the actual parameters is the operator. The actual parameters must

match the function's formal parameters in type, order and number. Multiple actual

parameters must be separated by commas.

NOTE:

1. If the actual parameters are more than the formal parameters, the extra actual

arguments will be discarded.

2. On the other hand, if the actuals are less than the formals, the unmatched formal

arguments will be initialized to some garbage.

3. Any mismatch in data types may also result in some garbage values.

8.8 FUNCTION DECLARATION

Like variables, all functions in a C program must be declared, before they are invoked. A function

declaration (also known as function prototype) consists of four parts.

∑ Function type (return type).

∑ Function name.

∑ Parameter list.

∑ Terminating semicolon.

They are coded in the following format:

Function-type function-name (parameter list);

This is very similar to the function header line except the terminating semicolon. For example, mul

function defined in the previous section will be declared as:

int mul (int m, int n); /* Function prototype */

User-Defined Functions 225

Points to note:

1. The parameter list must be separated by commas.

2. The parameter names do not need to be the same in the prototype declaration and the function

definition.

3. The types must match the types of parameters in the function definition, in number and order.

4. Use of parameter names in the declaration is optional.

5. If the function has no formal parameters, the list is written as (void).

6. The return type is optional, when the function returns int type data.

7. The retype must be void if no value is returned.

8. When the declared types do not match with the types in the function definition, compiler will

produce an error.

Equally acceptable forms of declaration of mul function are:

int mul (int, int);
mul (int a, int b);

mul (int, int);

When a function does not take any parameters and does not return any value, its prototype is written as:

void display (void);

A prototype declaration may be placed in two places in a program.

1. Above all the functions (including main).

2. Inside a function definition.

When we place the declaration above all the functions (in the global declaration section), the proto-

type is referred to as a global prototype. Such declarations are available for all the functions in the

program.

When we place it in a function definition (in the local declaration section), the prototype is called a

local prototype. Such declarations are primarily used by the functions containing them.

The place of declaration of a function defines a region in a program in which the function may be used

by other functions. This region is known as the scope of the function. (Scope is discussed later in this

chapter.) It is a good programming style to declare prototypes in the global declaration section before

main. It adds flexibility, provides an excellent quick reference to the functions used in the program, and

enhances documentation.

Prototypes: Yes or No

Prototype declarations are not essential. If a function has not been declared before it is

used, C will assume that its details available at the time of linking. Since the prototype

is not available, C will assume that the return type is an integer and that the types of

226 Introduction to Computing

parameters match the formal definitions. If these assumptions are wrong, the linker

will fail and we will have to change the program. The moral is that we must always

include prototype declarations, preferably in global declaration section.

Parameters Everywhere!

Parameters (also known as arguments) are used in three places:

1. in declaration (prototypes),

2. in function call, and

3. in function definition.

The parameters used in prototypes and function definitions are called formal

parameters and those used in function calls are called actual parameters. Actual

parameters used in a calling statement may be simple constants, variables or expres-

sions.

The formal and actual parameters must match exactly in type, order and number.

Their names, however, do not need to match.

8.9 CATEGORY OF FUNCTIONS

A function, depending on whether arguments are present or not and whether a value is returned or not,

may belong to one of the following categories:

Category 1: Functions with no arguments and no return values.

Category 2: Functions with arguments and no return values.

Category 3: Functions with arguments and one return value.

Category 4: Functions with no arguments but return a value.

Category 5: Functions that return multiple values.

In the sections to follow, we shall discuss these categories with examples. Note that, from now on, we

shall use the term arguments (rather than parameters) more frequently:

8.10 NO ARGUMENTS AND NO RETURN VALUES

When a function has no arguments, it does not receive any data from the calling function. Similarly,

when it does not return a value, the calling function does not receive any data from the called function.

In effect, there is no data transfer between the calling function and the called function. This is depicted

in Fig. 8.3. The dotted lines indicate that there is only a transfer of control but not data.

User-Defined Functions 227

function 2 ()

control

control

No input

No output

function1()

function2 ()

Fig. 8.3 No data communication between functions

As pointed out earlier, a function that does not return any value cannot be used in an expression. It

can only be used as an independent statement.

Example 8.1 Write a program with multiple functions that do not communicate any
data between them.

A program with three user-defined functions is given in Fig. 8.4. main is the calling function that calls

printline and value functions. Since both the called functions contain no arguments, there are no

argument declarations. The printline function, when encountered, prints a line with a length of 35

characters as prescribed in the function. The value function calculates the value of principal amount

after a certain period of years and prints the results. The following equation is evaluated repeatedly:

value = principal(1+interest-rate)

Program

/* Function declaration */
void printline (void);
void value (void);

 main()
 {
 printline();
 value();
 printline();
 }

 /* Function1: printline() */

 void printline(void) /* contains no arguments */
 {
 int i ;

228 Introduction to Computing

 for(i=1; i <= 35; i++)
 printf(“%c”,’-’);
 printf(“\n”);
 }

 /* Function2: value() */

 void value(void) /* contains no arguments */
 {
 int year, period;
 float inrate, sum, principal;

 printf(“Principal amount?”);
 scanf(“%f”, &principal);
 printf(“Interest rate? “);
 scanf(“%f”, &inrate);
 printf(“Period? “);
 scanf(“%d”, &period);

 sum = principal;
 year = 1;
 while(year <= period)
 {
 sum = sum *(1+inrate);
 year = year +1;
 }
 printf(“\n%8.2f %5.2f %5d %12.2f\n”,
 principal,inrate,period,sum);
 }

Output
— —
 Principal amount? 5000
 Interest rate? 0.12
 Period? 5

 5000.00 0.12 5 8811.71
— —

Fig. 8.4 Functions with no arguments and no return values

It is important to note that the function value receives its data directly from the terminal. The input

data include principal amount, interest rate and the period for which the final value is to be calculated.

The while loop calculates the final value and the results are printed by the library function printf. When

User-Defined Functions 229

the closing brace of value() is reached, the control is transferred back to the calling function main.

Since everything is done by the value itself there is in fact nothing left to be sent back to the called

function. Return types of both printline and value are declared as void.

Note that no return statement is employed. When there is nothing to be returned, the return state-

ment is optional. The closing brace of the function signals the end of execution of the function, thus

returning the control, back to the calling function.

8.11 ARGUMENTS BUT NO RETURN VALUES

In Fig. 8.4 the main function has no control over the way the functions receive input data. For example,

the function printline will print the same line each time it is called. Same is the case with the function

value. We could make the calling function to read data from the terminal and pass it on to the called

function. This approach seems to be wiser because the calling function can check for the validity of data,

if necessary, before it is handed over to the called function.

The nature of data communication between the calling function and the called function with argu-

ments but no return value is shown in Fig. 8.5.

function 2 ()fValues
of arguments

No return value

function1 ()

function2 (a)

Fig. 8.5 One-way data communication

We shall modify the definitions of both the called functions to include arguments as follows:

void printline(char ch)

void value(float p, float r, int n)

The arguments ch, p, r, and n are called the formal arguments. The calling function can now send

values to these arguments using function calls containing appropriate arguments. For example, the

function call

value(500,0.12,5)

would send the values 500, 0.12 and 5 to the function

void value(float p, float r, int n)

and assign 500 to p, 0.12 to r and 5 to n. The values 500, 0.12 and 5 are the actual arguments, which

become the values of the formal arguments inside the called function.

230 Introduction to Computing

The actual and formal arguments should match in number, type, and order. The values of actual

arguments are assigned to the formal arguments on a one to one basis, starting with the first argument as

shown in Fig. 8.6.

main ()

function 1 (a1, a2, a3, , am)
Function
call

Called
function

function1 (f1, f2, f3, , fn)

actual arguments

formal arguments

Fig. 8.6 Arguments matching between the function call and the called function

We should ensure that the function call has matching arguments. In case, the actual arguments are

more than the formal arguments (m > n), the extra actual arguments are discarded. On the other hand, if

the actual arguments are less than the formal arguments, the unmatched formal arguments are initialized

to some garbage values. Any mismatch in data type may also result in passing of garbage values.

Remember, no error message will be generated.

While the formal arguments must be valid variable names, the actual arguments may be variable

names, expressions, or constants. The variables used in actual arguments must be assigned values before

the function call is made.

Remember that, when a function call is made, only a copy of the values of actual arguments is

passed into the called function. What occurs inside the function will have no effect on the variables

used in the actual argument list.

Example 8.2 Modify the program of Example 8.1 to include the arguments in the
function calls.

The modified program with function arguments is presented in Fig. 8.7. Most of the program is identical

to the program in Fig. 8.4. The input prompt and scanf assignment statement have been moved from

value function to main. The variables principal, inrate, and period are declared in main because they

are used in main to receive data. The function call

value(principal, inrate, period);

passes information it contains to the function value.

User-Defined Functions 231

The function header of value has three formal arguments p,r, and n which correspond to the actual

arguments in the function call, namely, principal, inrate, and period. On execution of the function call,

the values of the actual arguments are assigned to the corresponding formal arguments. In fact, the

following assignments are accomplished across the function boundaries:

p = principal;
r = inrate;
n = period;

Program

/* prototypes */
 void printline (char c);
 void value (float, float, int);

 main()
 {
 float principal, inrate;
 int period;

 printf(“Enter principal amount, interest”);
 printf(“ rate, and period \n”);
 scanf(“%f %f %d”,&principal, &inrate, &period);
 printline(‘Z’);
 value(principal,inrate,period);
 printline(‘C’);
 }
 void printline(char ch)
 {
 int i ;
 for(i=1; i <= 52; i++)

printf(“%c”,ch);
 printf(“\n”);
 }

 void value(float p, float r, int n)
 {
 int year ;
 float sum ;
 sum = p ;
 year = 1;
 while(year <= n)
 {
 sum = sum * (1+r);
 year = year +1;
 }

232 Introduction to Computing

 printf(“%f\t%f\t%d\t%f\n”,p,r,n,sum);
 }

Output

 Enter principal amount, interest rate, and period
 5000 0.12 5
 ZZ
 5000.000000 0.120000 5 8811.708984
 CC

Fig. 8.7 Functions with arguments but no return values

The variables declared inside a function are known as local variables and therefore their values are

local to the function and cannot be accessed by any other function. We shall discuss more about this

later in the chapter.

The function value calculates the final amount for a given period and prints the results as before.

Control is transferred back on reaching the closing brace of the function. Note that the function does not

return any value.

The function printline is called twice. The first call passes the character �Z�, while the second passes

the character �C� to the function. These are assigned to the formal argument ch for printing lines (see the

output).

Variable Number of Arguments

Some functions have a variable number of arguments and data types which cannot be

known at compile time. The printf and scanf functions are typical examples. The

ANSI standard proposes new symbol called the ellipsis to handle such functions. The

ellipsis consists of three periods (�) and used as shown below:

double area(float d,�)

Both the function declaration and definition should use ellipsis to indicate that the

arguments are arbitrary both in number and type.

8.12 ARGUMENTS WITH RETURN VALUES

The function value in Fig. 8.7 receives data from the calling function through arguments, but does not

send back any value. Rather, it displays the results of calculations at the terminal. However, we may not

always wish to have the result of a function displayed. We may use it in the calling function for further

processing. Moreover, to assure a high degree of portability between programs, a function should

generally be coded without involving any I/O operations. For example, different programs may require

User-Defined Functions 233

different output formats for display of results. These shortcomings can be overcome by handing over the

result of a function to its calling function where the returned value can be used as required by the

program.

A self-contained and independent function should behave like a �black box� that receives a predefined

form of input and outputs a desired value. Such functions will have two-way data communication as

shown in Fig. 8.8.

function 2 (f)

return (e)

Values
of arguments

Function result

function1()

function2 (a)

Fig. 8.8 Two-way data communication between functions

We shall modify the program in Fig. 8.7 to illustrate the use of two-way data communication between

the calling and the called functions.

Example 8.3 In the program presented in Fig. 8.7 modify the function value, to return
the final amount calculated to the main, which will display the required
output at the terminal. Also extend the versatility of the function printline

by having it to take the length of the line as an argument.

The modified program with the proposed changes is presented in Fig. 8.9. One major change is the

movement of the printf statement from value to main.

Program

void printline (char ch, int len);
value (float, float, int);

main()
{

float principal, inrate, amount;
int period;
printf(“Enter principal amount, interest”);
printf(“rate, and period\n”);
scanf(%f %f %d”, &principal, &inrate, &period);
printline (‘*’ , 52);
amount = value (principal, inrate, period);
printf(“\n%f\t%f\t%d\t%f\n\n”,principal,

inrate,period,amount);
printline(‘=’,52);

}

234 Introduction to Computing

void printline(char ch, int len)
{

int i;
for (i=1;i<=len;i++) printf(“%c”,ch);
printf(“\n”);

}

value(float p, float r, int n) /* default return type */
{

int year;
float sum;
sum = p; year = 1;
while(year <=n)
{

sum = sum * (l+r);
year = year +1;

}
return(sum); /* returns int part of sum */

}
Output

Enter principal amount, interest rate, and period
5000 0.12 5

5000.000000 0.1200000 5 8811.000000

= =

Fig. 8.9 Functions with arguments and return values

The calculated value is passed on to main through statement:

return(sum);

Since, by default, the return type of value function is int, the �integer� value of sum at this point is

returned to main and assigned to the variable amount by the functional call

amount = value (principal, inrate, period);

The following events occur, in order, when the above function call is executed:

1. The function call transfers the control along with copies of the values of the actual arguments to

the function value where the formal arguments p, r, and n are assigned the actual values of

principal, inrate and period respectively.

2. The called function value is executed line by line in a normal fashion until the return(sum);

statement is encountered. At this point, the integer value of sum is passed back to the function-call

in the main and the following indirect assignment occurs:

value(principal, inrate, period) = sum;

User-Defined Functions 235

3. The calling statement is executed normally and the returned value is thus assigned to amount, a

float variable.

4. Since amount is a float variable, the returned integer part of sum is converted to floating-point

value. See the output.

Another important change is the inclusion of second argument to printline function to receive the

value of length of the line from the calling function. Thus, the function call

printline(‘*’, 52);

will transfer the control to the function printline and assign the following values to the formal argu-

ments ch, and len;

ch = ‘*’ ;
len = 52;

Returning Float Values

We mentioned earlier that a C function returns a value of the type int as the default case when no other

type is specified explicitly. For example, the function value of Example 8.3 does all calculations using

floats but the return statement

return(sum);

returns only the integer part of sum. This is due to the absence of the type-specifier in the function

header. In this case, we can accept the integer value of sum because the truncated decimal part is

insignificant compared to the integer part. However, there will be times when we may find it necessary

to receive the float or double type of data. For example, a function that calculates the mean or standard

deviation of a set of values should return the function value in either float or double.

In all such cases, we must explicitly specify the return type in both the function definition and the
prototype declaration.

If we have a mismatch between the type of data that the called function returns and the type of data

that the calling function expects, we will have unpredictable results. We must, therefore, be very careful

to make sure that both types are compatible.

Example 8.4 Write a function power that computes x raised to the power y for integers
x and y and returns double-type value.

Figure. 8.10 shows a power function that returns a double. The prototype declaration

double power(int, int);

appears in main, before power is called.

Program

main()
{

int x,y; /*input data */

double power(int, int);/* prototype declaration*/

printf(“Enter x,y:”);

236 Introduction to Computing

scanf(“%d %d” , &x,&y);
printf(“%d to power %d is %f\n”, x,y,power (x,y));

}

double power (int x, int y);

{
double p;
p = 1.0 ; /* x to power zero */

if(y >=0)
while(y—–) /* computes positive powers */
 p *= x;

else
while (y++) /* computes negative powers */
 p /= x;

return(p); /* returns double type */

}
Output

Enter x,y:16 2
16 to power 2 is 256.000000

Enter x,y:16 -2
16 to power -2 is 0.003906

Fig. 8.10 Power fuctions: Illustration of return of float values

Another way to guarantee that power�s type is declared before it is called in main is to define the

power function before we define main. Power�s type is then known from its definition, so we no longer

need its type declaration in main.

8.13 NO ARGUMENTS BUT RETURNS A VALUE

There could be occasions where we may need to design functions that may not take any arguments but

returns a value to the calling function. A typical example is the getchar function declared in the header

file <stdio.h>. We have used this function earlier in a number of places. The getchar function has no

parameters but it returns an integer type data that represents a character.

We can design similar functions and use in our programs. Example:

int get_number(void);
main
{

User-Defined Functions 237

int m = get_number();
printf(“%d”,m);

}
int get_number(void)
{

int number;
scanf(“%d”, &number);
return(number);

}

8.14 FUNCTIONS THAT RETURN MULTIPLE VALUES

Up till now, we have illustrated functions that return just one value using a return statement. That is

because, a return statement can return only one value. Suppose, however, that we want to get more

information from a function. We can achieve this in C using the arguments not only to receive

information but also to send back information to the calling function. The arguments that are used to

�send out� information are called output parameters.

The mechanism of sending back information through arguments is achieved using what are known as

the address operator (&) and indirection operator (*). Let us consider an example to illustrate this.

void mathoperation (int x, int y, int *s, int *d);
main()
{

int x = 20, y = 10, s, d;
mathoperation(x,y, &s, &d);

printf(“s=%d\n d=%d\n”, s,d);
}

void mathoperation (int a, int b, int *sum, int *diff)

{
*sum = a+b;
*diff = a-b;

}

The actual arguments x and y are input arguments, s and d are output arguments. In the function call,

while we pass the actual values of x and y to the function, we pass the addresses of locations where the

values of s and d are stored in the memory. (That is why, the operator & is called the address operator.)

When the function is called the following assignments occur:

value of x to a

value of y to b

address of s to sum

address of d to diff

238 Introduction to Computing

Note that indirection operator * in the declaration of sum and diff in the header indicates these variables

are to store addresses, not actual values of variables. Now, the variables sum and diff point to the

memory locations of s and d respectively.

(The operator * is known as indirection operator because it gives an indirect reference to a variable

through its address.)

In the body of the function, we have two statements:

* sum = a+b;
* diff = a-b;

The first one adds the values a and b and the result is stored in the memory location pointed to by

sum. Remember, this memory location is the same as the memory location of s. Therefore, the value

stored in the location pointed to by sum is the value of s.

Similarly, the value of a�b is stored in the location pointed to by diff, which is the same as the

location d. After the function call is implemented, the value of s is a+b and the value of d is a�b. Output

will be:

s = 30

d = 10

The variables *sum and *diff are known as pointers and sum and diff as pointer variables. Since

they are declared as int, they can point to locations of int type data.

The use of pointer variables as actual parameters for communicating data between functions is called

�pass by pointers� or �call by address or reference�. Pointers and their applications are discussed in

detail in Chapter 11.

Rules for Pass by Pointers

1. The types of the actual and formal arguments must be same.

2. The actual arguments (in the function call) must be the addresses of variables that

are local to the calling function.

3. The formal arguments in the function header must be prefixed by the indirection

operatior *.

4. In the prototype, the arguments must be prefixed by the symbol *.

5. To access the value of an actual argument in the called function, we must use the

corresponding formal argument prefixed with the indirection operator *.

8.15 NESTING OF FUNCTIONS

C permits nesting of functions freely. main can call function1, which calls function2, which calls

function3, ���. and so on. There is in principle no limit as to how deeply functions can be nested.

Consider the following program:

User-Defined Functions 239

float ratio (int x, int y, int z);
int difference (int x, int y);
main()
{

int a, b, c;
scanf(“%d %d %d”, &a, &b, &c);
printf(“%f \n”, ratio(a,b,c));

}

float ratio(int x, int y, int z)
{

if(difference(y, z))
return(x/(y-z));

else
return(0.0);

}
int difference(int p, int q)
{

if(p != q)
 return (1);
else
 return(0);

}

The above program calculates the ratio

a

b c-

and prints the result. We have the following three functions:

main()

ratio()

difference()

main reads the values of a, b and c and calls the function ratio to calculate the value

a/(b�c). This ratio cannot be evaluated if (b�c) = 0. Therefore, ratio calls another function difference

to test whether the difference (b�c) is zero or not; difference returns 1, if b is not equal to c; otherwise

returns zero to the function ratio. In turn, ratio calculates the value a/(b�c) if it receives 1 and returns

the result in float. In case, ratio receives zero from difference, it sends back 0.0 to main indicating that

(b�c) = 0.

Nesting of function calls is also possible. For example, a statement like

P = mul(mul(5,2),6);

is valid. This represents two sequential function calls. The inner function call is evaluated first and the

returned value is again used as an actual argument in the outer function call. If mul returns the product

of its arguments, then the value of p would be 60 (= 5×2×6).

Note that the nesting does not mean defining one function within another. Doing this is illegal.

240 Introduction to Computing

8.16 RECURSION

When a called function in turn calls another function a process of �chaining� occurs. Recursion is a

special case of this process, where a function calls itself. A very simple example of recursion is presented

below:

main()
{

printf(“This is an example of recursion\n”)
main();

}

When executed, this program will produce an output something like this:

This is an example of recursion

This is an example of recursion

This is an example of recursion

This is an ex

Execution is terminated abruptly; otherwise the execution will continue indefinitely.

Another useful example of recursion is the evaluation of factorials of a given number. The

factorial of a number n is expressed as a series of repetitive multiplications as shown below:

factorial of n = n(n�1)(n�2).........1.

For example,

factorial of 4 = 4×3×2×1 = 24

A function to evaluate factorial of n is as follows:

factorial(int n)
{

int fact;
if (n==1)
 return(1);
else
 fact = n*factorial(n-1);
return(fact);

}

Let us see how the recursion works. Assume n = 3. Since the value of n is not 1, the statement

fact = n * factorial(n–1);

will be executed with n = 3. That is,

fact = 3 * factorial(2);

will be evaluated. The expression on the right-hand side includes a call to factorial with

n = 2. This call will return the following value:

2 * factorial(1)

Once again, factorial is called with n = 1. This time, the function returns 1. The sequence of operations

can be summarized as follows:

User-Defined Functions 241

fact = 3 * factorial(2)

= 3 * 2 * factorial(1)

= 3 * 2 * 1

= 6

Recursive functions can be effectively used to solve problems where solution is expressed in terms of

successively applying the same solution to subsets of the problem. When we write recursive functions,

we must have an if statement somewhere to force the function to return without the recursive call being

executed. Otherwise, the function will never return.

8.17 PASSING ARRAYS TO FUNCTIONS

One-Dimensional Arrays

Like the values of simple variables, it is also possible to pass the values of an array to a function. To pass

a one-dimensional an array to a called function, it is sufficient to list the name of the array, without any

subscripts, and the size of the array as arguments. For example, the call

largest(a,n)

will pass the whole array a to the called function. The called function expecting this call must be

appropriately defined. The largest function header might look like:

float largest(float array[], int size)

The function largest is defined to take two arguments, the array name and the size of the array to

specify the number of elements in the array. The declaration of the formal argument array is made as

follows:

float array[];

The pair of brackets informs the compiler that the argument array is an array of numbers. It is not

necessary to specify the size of the array here.

Let us consider a problem of finding the largest value in an array of elements. The program is as

follows:

main()
{

float largest(float a[], int n);
float value[4] = {2.5,-4.75,1.2,3.67};
printf(“%f\n”, largest(value,4));

}
float largest(float a[], int n)
{

int i;
float max;
max = a[0];
for(i = 1; i < n; i++)

if(max < a[i])

242 Introduction to Computing

max = a[i];
return(max);

}

When the function call largest(value,4) is made, the values of all elements of array value become the

corresponding elements of array a in the called function. The largest function finds the largest value in

the array and returns the result to the main.

In C, the name of the array represents the address of its first element. By passing the array name, we

are, in fact, passing the address of the array to the called function. The array in the called function now

refers to the same array stored in the memory. Therefore, any changes in the array in the called function

will be reflected in the original array.

Passing addresses of parameters to the functions is referred to as pass by address (or pass by point-

ers). Note that we cannot pass a whole array by value as we did in the case of ordinary variables.

Example 8.5 Write a program to calculate the standard deviation of an array of val-
ues. The array elements are read from the terminal. Use functions to cal-
culate standard deviation and mean.

Standard deviation of a set of n values is given by

S.D = ()
n

2

i

i 1

1
x x

n
=

-Â

where x is the mean of the values.

Program

 #include <math.h>
 #define SIZE 5
 float std_dev(float a[], int n);
 float mean (float a[], int n);

 main()
 {
 float value[SIZE];
 int i;

 printf(“Enter %d float values\n”, SIZE);
 for (i=0 ;i < SIZE ; i++)
 scanf(“%f”, &value[i]);
 printf(“Std.deviation is %f\n”, std_dev(value,SIZE));
 }

 float std_dev(float a[], int n)

User-Defined Functions 243

 { int i;

 float x, sum = 0.0;
 x = mean (a,n);
 for(i=0; i < n; i++)

sum += (x-a[i])*(x-a[i]);
 return(sqrt(sum/(float)n));
 }

 float mean(float a[],int n)

 {
 int i ;
 float sum = 0.0;
 for(i=0 ; i < n ; i++)
 sum = sum + a[i];
 return(sum/(float)n);
 }

Output
Enter 5 float values
35.0 67.0 79.5 14.20 55.75

Std.deviation is 23.231582

Fig. 8.11 Passing of arrays to a function

A multifunction program consisting of main, std_dev, and mean functions is shown in Fig. 8.11.

main reads the elements of the array value from the terminal and calls the function std_dev to print the

standard deviation of the array elements. Std_dev, in turn, calls another function mean to supply the

average value of the array elements.

Both std_dev and mean are defined as floats and therefore they are declared as floats in the global

section of the program.

Three Rules to Pass an Array to a Function

1. The function must be called by passing only the name of the array.

2. In the function definition, the formal parameter must be an array type; the size of

the array does not need to be specified.

3. The function prototype must show that the argument is an array.

244 Introduction to Computing

When dealing with array arguments, we should remember one major distinction. If a function changes

the values of the elements of an array, then these changes will be made to the original array that passed

to the function. When an entire array is passed as an argument, the contents of the array are not copied

into the formal parameter array; instead, information about the addresses of array elements are passed

on to the function. Therefore, any changes introduced to the array elements are truly reflected in the

original array in the calling function. However, this does not apply when an individual element is passed

on as argument. Example 8.6 highlights these concepts.

Example 8.6 Write a program that uses a function to sort an array of integers.

A program to sort an array of integers using the function sort() is given in Fig. 8.12. Its output clearly

shows that a function can change the values in an array passed as an argument.

Program

 void sort(int m, int x[]);
 main()
 {
 int i;
 int marks[5] = {40, 90, 73, 81, 35};

 printf(“Marks before sorting\n”);
 for(i = 0; i < 5; i++)
 printf(“%d “, marks[i]);
 printf(“\n\n”);

 sort (5, marks);

 printf(“Marks after sorting\n”);
 for(i = 0; i < 5; i++)
 printf(“%4d”, marks[i]);
 printf(“\n”);
 }

 void sort(int m, int x[])

 {
 int i, j, t;

 for(i = 1; i <= m-1; i++)
 for(j = 1; j <= m-i; j++)
 if(x[j-1] >= x[j])
 {
 t = x[j-1];
 x[j-1] = x[j];

User-Defined Functions 245

 x[j] = t;
 }
 }
Output

Marks before sorting
40 90 73 81 35

Marks after sorting
35 40 73 81 90

Fig. 8.12 Sorting of array elements using a function

Two-Dimensional Arrays

Like simple arrays, we can also pass multi-dimensional arrays to functions. The approach is similar to

the one we did with one-dimensional arrays. The rules are simple.

1. The function must be called by passing only the array name.

2. In the function definition, we must indicate that the array has two-dimensions by including two

sets of brackets.

3. The size of the second dimension must be specified.

4. The prototype declaration should be similar to the function header.

The function given below calculates the average of the values in a two-dimensional matrix.

double average(int x[][N], int M, int N)
{

int i, j;
double sum = 0.0;
for (i=0; i<M; i++)

 for(j=1; j<N; j++)
sum += x[i][j];

return(sum/(M*N));
}

This function can be used in a main function as illustrated below:

main()
{
 int M=3, N=2;
 double average(int [] [N], int, int);
 double mean;
 int matrix [M][N]=

 {
{1,2},

246 Introduction to Computing

{3,4},
{5,6}

 };

 mean = average(matrix, M, N);

}

8.18 PASSING STRINGS TO FUNCTIONS

The strings are treated as character arrays in C and therfore the rules for passing strings to functions are

very similar to those for passing arrays to functions.

Basic rules are:

1. The string to be passed must be declared as a formal argument of the function when it is defined.

Example:

void display(char item_name[])

{

.

.

}

2. The function prototype must show that the argument is a string. For the above function definition,

the prototype can be written as

void display(char str[]);

3. A call to the function must have a string array name without subscripts as its actual argument.

Example:

display (names);

where names is a properly declared string array in the calling function.

We must note here that, like arrays, strings in C cannot be passed by value to functions.

Pass by Value versus Pass by Pointers

The technique used to pass data from one function to another is known as parameter

passing. Parameter passing can be done in two ways:

∑ Pass by value (also known as call by value).

∑ Pass by pointers (also known as call by pointers).

In pass by value, values of actual parameters are copied to the variables in the

parameter list of the called function. The called function works on the copy and not on

the original values of the actual parameters. This ensures that the original data in the

calling function cannot be changed accidentally.

User-Defined Functions 247

In pass by pointers (also known as pass by address), the memory addresses of the

variables rather than the copies of values are sent to the called function. In this case,

the called function directly works on the data in the calling function and the changed

values are available in the calling function for its use.

Pass by pointers method is often used when manipulating arrays and strings. This

method is also used when we require multiple values to be returned by the called

function.

8.19 THE SCOPE, VISIBILITY AND LIFETIME OF VARIABLES

Variables in C differ in behaviour from those in most other languages. For example, in a BASIC

program, a variable retains its value throughout the program. It is not always the case in C. It all depends

on the �storage� class a variable may assume.

In C not only do all variables have a data type, they also have a storage class. The following variable

storage classes are most relevant to functions:

1. Automatic variables.

2. External variables.

3. Static variables.

4. Register variables.

We shall briefly discuss the scope, visibility and longevity of each of the above class of variables.

The scope of variable determines over what region of the program a variable is actually available for

use (�active�). Longevity refers to the period during which a variable retains a given value during

execution of a program (�alive�). So longevity has a direct effect on the utility of a given variable. The

visibility refers to the accessibility of a variable from the memory.

The variables may also be broadly categorized, depending on the place of their declaration, as inter-

nal (local) or external (global). Internal variables are those which are declared within a particular

function, while external variables are declared outside of any function.

It is very important to understand the concept of storage classes and their utility in order to develop

efficient multifunction programs.

Automatic Variables

Automatic variables are declared inside a function in which they are to be utilized. They are created

when the function is called and destroyed automatically when the function is exited, hence the name

automatic. Automatic variables are therefore private (or local) to the function in which they are declared.

Because of this property, automatic variables are also referred to as local or internal variables.

A variable declared inside a function without storage class specification is, by default, an automatic

variable. For instance, the storage class of the variable number in the example below is automatic.

248 Introduction to Computing

main()
{

int number;
– – –– –

– – –– –

}

We may also use the keyword auto to declare automatic variables explicitly.

main()
{

auto int number;
– – –– –

– – –– –

}

One important feature of automatic variables is that their value cannot be changed accidentally by

what happens in some other function in the program. This assures that we may declare and use the same

variable name in different functions in the same program without causing any confusion to the compiler.

Example 8.7 Write a multifunction to illustrate how automatic variables work.

A program with two subprograms function1 and function2 is shown in Fig. 8.13. m is an automatic

variable and it is declared at the beginning of each function. m is initialized to 10, 100, and 1000 in

function1, function2, and main respectively.

When executed, main calls function2 which in turn calls function1. When main is active, m = 1000;

but when function2 is called, the main�s m is temporarily put on the shelf and the new local m = 100

becomes active. Similarly, when function1 is called, both the previous values of m are put on the shelf

and the latest value of m (=10) becomes active. As soon as function1 (m=10) is finished, function2

(m=100) takes over again. As soon it is done, main (m=1000) takes over. The output clearly shows that

the value assigned to m in one function does not affect its value in the other functions; and the local

value of m is destroyed when it leaves a function.

Program

 void function1(void);
 void function2(void);
 main()
 {
 int m = 1000;
 function2();

 printf(“%d\n”,m); /* Third output */
 }
 void function1(void)
 {

User-Defined Functions 249

 int m = 10;

 printf(“%d\n”,m); /* First output */
 }

 void function2(void)
 {
 int m = 100;

 function1();
 printf(“%d\n”,m); /* Second output */
 }

Output
 10
 100
 1000

Fig. 8.13 Working of automatic variables

There are two consequences of the scope and longevity of auto variables worth remembering. First,

any variable local to main will be normally alive throughout the whole program, although it is active

only in main. Secondly, during recursion, the nested variables are unique auto variables, a situation

similar to function-nested auto variables with identical names.

External Variables

Variables that are both alive and active throughout the entire program are known as external variables.

They are also known as global variables. Unlike local variables, global variables can be accessed by

any function in the program. External variables are declared outside a function. For example, the

external declaration of integer number and float length might appear as:

int number;
float length = 7.5;
main()
{
 � � �� �� �

 � � �� �� �

}
function1()
{
 � � �� �� �

 � � � � � � �

250 Introduction to Computing

}
function2()
{
 � � � � � � �

 � � � � � � �

}

The variables number and length are available for use in all the three functions. In case a local

variable and a global variable have the same name, the local variable will have precedence over the

global one in the function where it is declared. Consider the following example:

int count;
main()
{
 count = 10;
 � � � � �

 � � � � �

}
function()
{
 int count = 0;
 � � � � � �

 � � � � � �

 count = count+1;
}

When the function references the variable count, it will be referencing only its local variable, not the

global one. The value of count in main will not be affected.

Example 8.8 Write a multifunction program to illustrate the properties of global vari-
ables.

A program to illustrate the properties of global variables is presented in Fig. 8.14. Note that variable x

is used in all functions but none except fun2, has a definition for x. Because x has been declared �above�

all the functions, it is available to each function without having to pass x as a function argument. Further,

since the value of x is directly available, we need not use return(x) statements in fun1 and fun3.

However, since fun2 has a definition of x, it returns its local value of x and therefore uses a return

statement. In fun2, the global x is not visible. The local x hides its visibility here.

Program

 int fun1(void);
 int fun2(void);
 int fun3(void);
 int x ; /* global */
 main()
 {
 x = 10 ; /* global x */
 printf(“x = %d\n”, x);

User-Defined Functions 251

 printf(“x = %d\n”, fun1());
 printf(“x = %d\n”, fun2());
 printf(“x = %d\n”, fun3());
 }
 fun1(void)
 {
 x = x + 10 ;
 }
 int fun2(void)
 {
 int x ; /* local */
 x = 1 ;
 return (x);
 }
 fun3(void)
 {
 x = x + 10 ; /* global x */
 }

Output
x = 10
x = 20
x = 1
x = 30

Fig. 8.14 Illustration of properties of global variables

Once a variable has been declared as global, any function can use it and change its value. Then,

subsequent functions can reference only that new value.

Global Variables as Parameters

Since all functions in a program source file can access global variables, they can be

used for passing values between the functions. However, using global variables as

parameters for passing values poses certain problems.

∑ The values of global variables which are sent to the called function may be

changed inadvertently by the called function.

∑ Functions are supposed to be independent and isolated modules. This character is

lost, if they use global variables.

∑ It is not immediately apparent to the reader which values are being sent to the

called function.

∑ A function that uses global variables suffers from reusability.

252 Introduction to Computing

One other aspect of a global variable is that it is available only from the point of declaration to the

end of the program. Consider a program segment as shown below:

main()
{

y = 5;
. . . .
. . . .

}
int y; /* global declaration */
func1()

{
y = y+1;

}

We have a problem here. As far as main is concerned, y is not defined. So, the compiler will issue an

error message. Unlike local variables, global variables are initialized to zero by default. The statement

y = y+1;

in fun1 will, therefore, assign 1 to y.

External Declaration

In the program segment above, the main cannot access the variable y as it has been declared after the

main function. This problem can be solved by declaring the variable with the storage class extern.

For example:

main()
{

extern int y; /* external declaration */
.
.

}
func1()
{

extern int y; /* external declaration */
.
.

}
int y; /* definition */

Although the variable y has been defined after both the functions, the external declaration of y inside

the functions informs the compiler that y is an integer type defined somewhere else in the program. Note

that extern declaration does not allocate storage space for variables. In case of arrays, the definition

should include their size as well.

User-Defined Functions 253

Example:

main()

{ int i;
void print_out(void);
extern float height [];
.
.
print_out();

}
void print_out(void)
{

extern float height [];
int i;
.
.

}
float height[SIZE];

An extern within a function provides the type information to just that one function. We can provide

type information to all functions within a file by placing external declarations before any of them.
Example:

extern float height[];
main()
{

int i;
void print_out(void);
.
.
print_out();

}
void print_out(void)
{

int i;
.
.

}
float height[SIZE];

The distinction between definition and declaration also applies to functions. A function is defined

when its parameters and function body are specified. This tells the compiler to allocate space for the

function code and provides type information for the parameters. Since functions are external by default,

we declare them (in the calling functions) without the qualifier extern. Therefore, the declaration

void print_out(void);

is equivalent to

extern void print_out(void);

254 Introduction to Computing

Function declarations outside of any function behave the same way as variable declarations.

Static Variables

As the name suggests, the value of static variables persists until the end of the program. A variable can

be declared static using the keyword static like

static int x;
static float y;

A static variable may be either an internal type or an external type depending on the place of declara-

tion.

Internal static variables are those which are declared inside a function. The scope of internal static

variables extend up to the end of the function in which they are defined. Therefore, internal static

variables are similar to auto variables, except that they remain in existence (alive) throughout the

remainder of the program. Therefore, internal static variables can be used to retain values between

function calls. For example, it can be used to count the number of calls made to a function.

Example 8.9 Write a program to illustrate the properties of a static variable.

The program in Fig. 8.15 explains the behavior of a static variable.

Program
void stat(void);
main ()
{

int i;
for(i=1; i<=3; i++)
stat();

}
void stat(void)
{

static int x = 0;

x = x+1;
printf(“x = %d\n”, x);

}
Output

x = 1
x = 2
x = 3

Fig. 8.15 Illustration of static variable

User-Defined Functions 255

A static variable is initialized only once, when the program is compiled. It is never initialized again.

During the first call to stat, x is incremented to 1. Because x is static, this value persists and therefore,

the next call adds another 1 to x giving it a value of 2. The value of x becomes three when the third call

is made.

Had we declared x as an auto variable, the output would have been:

x = 1

x = 1

x = 1

This is because each time stat is called, the auto variable x is initialized to zero. When the function

terminates, its value of 1 is lost.

An external static variable is declared outside of all functions and is available to all the functions in

that program. The difference between a static external variable and a simple external variable is that the

static external variable is available only within the file where it is defined while the simple external

variable can be accessed by other files.

It is also possible to control the scope of a function. For example, we would like a particular function

accessible only to the functions in the file in which it is defined, and not to any function in other files.

This can be accomplished by defining �that� function with the storage class static.

Register Variables

We can tell the compiler that a variable should be kept in one of the machine�s registers, instead of

keeping in the memory (where normal variables are stored). Since a register access is much faster than

a memory access, keeping the frequently accessed variables (e.g. loop control variables) in the register

will lead to faster execution of programs. This is done as follows:

register int count;

Although, ANSI standard does not restrict its application to any particular data type, most compilers

allow only int or char variables to be placed in the register.

Since only a few variables can be placed in the register, it is important to carefully select the vari-

ables for this purpose. However, C will automatically convert register variables into non-register

variables once the limit is reached.

Table 8.1 summarizes the information on the visibility and lifetime of variables in functions and files.

Table 8.1 Scope and Lifetime of Variables

Storage Where declared Visibility Lifetime

Class (Active) (Alive)

None Before all functions Entire file plus Entire

in a file (may be other files where program

initialized) variable is dec- (Global)

lared with extern

extern Before all functions Entire file plus Global

in a file (cannot be other files where

(Contd.)

256 Introduction to Computing

Table 8.1 (Contd.)

Storage Where declared Visibility Lifetime

Class (Active) (Alive)

initialized) variable is declared

extern and the file

where originally

declared as global.

static Before all functions Only in that file Global

in a file

None or Inside a function (or Only in that Until end of

auto a block) function or block function or

block

register Inside a function or Only in that Until end of

block function or block function or block

static Inside a function Only in that function Global

Nested Blocks

A set of statements enclosed in a set of braces is known a block or a compound statement. Note that all

functions including the main use compound statement. A block can have its own declarations and other

statements. It is also possible to have a block of such statements inside the body of a function or another

block, thus creating what is known as nested blocks as shown below:

When this program is executed, the value c will be 10, not 30. The statement b = a; assigns a value of

20 to b and not zero. Although the scope of a extends up to the end of main it is not �visible� inside the

inner block where the variable a has been declared again. The inner a hides the visibility of the outer a

in the inner block. However, when we leave the inner block, the inner a is no longer in scope and the

outer a becomes visible again.

Remember, the variable b is not re-declared in the inner block and therefore it is visible in both the

blocks. That is why when the statement

int c = a + b;

is evaluated, a assumes a values of 0 and b assumes a value of 10.

Although main�s variables are visible inside the nested block, the reverse is not true.

User-Defined Functions 257

Scope Rules

Scope

The region of a program in which a variable is available for use.

Visibility

The program�s ability to access a variable from the memory.

Lifetime

The lifetime of a variable is the duration of time in which a variable exists in the

memory during execution.

Rules of use

1. The scope of a global variable is the entire program file.

2. The scope of a local variable begins at point of declaration and ends at the end of

the block or function in which it is declared.

3. The scope of a formal function argument is its own function.

4. The lifetime (or longevity) of an auto variable declared in main is the entire

program execution time, although its scope is only the main function.

5. The life of an auto variable declared in a function ends when the function is exited.

6. A static local variable, although its scope is limited to its function, its lifetime

extends till the end of program execution.

7. All variables have visibility in their scope, provided they are not declared again.

8. If a variable is redeclared within its scope again, it loses its visibility in the scope

of the redeclared variable.

8.20 MULTIFILE PROGRAMS

So far we have been assuming that all the functions (including the main) are defined in one file.

However, in real-life programming environment, we may use more than one source files which may be

compiled separately and linked later to form an executable object code. This approach is very useful

because any change in one file does not affect other files thus eliminating the need for recompilation of

the entire program.

Multiple source files can share a variable provided it is declared as an external variable appropri-

ately. Variables that are shared by two or more files are global variables and therefore we must declare

them accordingly in one file and then explicitly define them with extern in other files. Figure 8.16

illustrates the use of extern declarations in a multifile program.

The function main in file1 can reference the variable m that is declared as global in file2. Remember,

function1 cannot access the variable m. If, however, the extern int m; statement is placed before main,

then both the functions could refer to m. This can also be achieved by using extern int m; statement

inside each function in file1.

258 Introduction to Computing

The extern specifier tells the compiler that the following variable types and names have already been

declared elsewhere and no need to create storage space for them. It is the responsibility of the linker to

resolve the reference problem. It is important to note that a multifile global variable should be declared

without extern in one (and only one) of the files. The extern declaration is done in places where

secondary references are made. If we declare a variable as global in two different files used by a single

program, then the linker will have a conflict as to which variable to use and, therefore, issues a warning.

file1.c file2.c

main() int m /* global variable */
{ function2()

extern int m; {
int i; int i;
.
.

} }

function1() function3()
{ {

int j; int count;
.
.

} }

Fig. 8.16 Use of extern in a multifile program

The multifile program shown in Fig. 8.16 can be modified as shown in Fig. 8.17.

file1.c file2.c

int m; /* global variable */ extern int m;

main() function2()

{ {
int i; int i;
.

} }
function1() function3()
{ {

int j; int count;
.

} }

Fig. 8.17 Another version of a multifile program

User-Defined Functions 259

When a function is defined in one file and accessed in another, the later file must include a function

declaration. The declaration identifies the function as an external function whose definition appears

elsewhere. We usually place such declarations at the beginning of the file, before all functions. Al-

though all functions are assumed to be external, it would be a good practice to explicitly declare such

functions with the storage class extern.

Just Remember

It is a syntax error if the types in the declaration and function definition do not

match.

It is a syntax error if the number of actual parameters in the function call do not

match the number in the declaration statement.

It is a logic error if the parameters in the function call are placed in the wrong

order.

It is illegal to use the name of a formal argument as the name of a local

variable.

Using void as return type when the function is expected to return a value is an

error.

Trying to return a value when the function type is marked void is an error.

Variables in the parameter list must be individually declared for their types.

We cannot use multiple declarations (like we do with local or global variables).

A return statement is required if the return type is anything other than void.

If a function does not return any value, the return type must be declared void.

If a function has no parameters, the parameter list must be declared void.

Placing a semicolon at the end of header line is illegal.

Forgetting the semicolon at the end of a prototype declaration is an error.

Defining a function within the body of another function is not allowed.

It is an error if the type of data returned does not match the return type of the

function.

It will most likely result in logic error if there is a mismatch in data types be-

tween the actual and formal arguments.

Functions return integer value by default.

A function without a return statement cannot return a value, when the

parameters are passed by value.

A function that returns a value can be used in expressions like any other C

variable.

When the value returned is assigned to a variable, the value will be converted

to the type of the variable receiving it.

Function cannot be the target of an assignment.

A function with void return type cannot be used in the right-hand side of an

assignment statement. It can be used only as a stand-alone statement.

A function that returns a value cannot be used as a stand-alone statement.

A return statement can occur anywhere within the body of a function.

260 Introduction to Computing

A function can have more than one return statement.

A function definition may be placed either after or before the main function.

Where more functions are used, they may be placed in any order.

A global variable used in a function will retain its value for future use.

A local variable defined inside a function is known only to that function. It is

destroyed when the function is exited.

A global variable is visible only from the point of its declaration to the end of

the program.

When a variable is redeclared within its scope either in a function or in a block,

the original variable is not visible within the scope of the redeclared variable.

A local variable declared static retains its value even after the function is

exited.

Static variables are initialized at compile time and therefore they are initialized

only once.

Use parameter passing by values as far as possible to avoid inadvertent

changes to variables of calling function in the called function.

Although not essential, include parameter names in the prototype declarations

for documentation purposes.

Avoid the use of names that hide names in outer scope.

Case Study

Calculation of Area under a Curve

One of the applications of computers in numerical analysis is computing the area under a curve. One

simple method of calculating the area under a curve is to divide the area into a number of trapezoids of

same width and summing up the area of individual trapezoids. The area of a trapezoid is given by

Area = 0.5 * (h1 + h2) * b

where h1 and h2 are the heights of two sides and b is the width as shown in Fig. 8.18.

f(x)
h1 h2

b

A Bx

Curve

Fig. 8.18 Area under a curve

User-Defined Functions 261

The program in Fig. 8.20 calculates the area for a curve of the function

f(x) = x2 + 1

between any two given limits, say, A and B.

Input

Lower limit (A)

Upper limit (B)

Number of trapezoids

Output

Total area under the curve between the given limits.

Algorithm

1. Input the lower and upper limits and the number of trapezoids.

2. Calculate the width of trapezoids.

3. Initialize the total area.

4. Calculate the area of trapezoid and add to the total area.

5. Repeat step-4 until all the trapezoids are completed.

6. Print total area.

The algorithm is implemented in top-down modular form as in Fig. 8.19.

main

input find_area

function_x trap_area

Fig. 8.19 Modular chart

The evaluation of f(x) has been done using a separate function so that it can be easily modified to

allow other functions to be evaluated.

The output for two runs shows that better accuracy is achieved with larger number of trapezoids. The

actual area for the limits 0 and 3 is 12 units (by analytical method).

Program
#include <stdio.h>
float start_point, /* GLOBAL VARIABLES */

end_point,
total_area;

int numtraps;
main()
{

262 Introduction to Computing

void input(void);
float find_area(float a,float b,int n); /* prototype */

print(“AREA UNDER A CURVE”);
input();
total_area = find_area(start_point, end_point, numtraps);
printf(“TOTAL AREA = %f”, total_area);

}
void input(void)
{

printf(“\n Enter lower limit:”);
scanf(“%f”, &start_point);
printf(“Enter upper limit:”);
scanf(“%f”, &end_point);
printf(“Enter number of trapezoids:”);
scanf(“%d”, &numtraps);

}
float find_area(float a, float b, int n)
{

float base, lower, h1, h2; /* LOCAL VARIABLES */
float function_x(float x); /* prototype */
float trap_area(float h1,float h2,float base);/*prototype*/

base = (b-1)/n;
lower = a;

 for(lower =a; lower <= b-base; lower = lower + base)
{

h1 = function_x(lower);
h1 = function_x(lower + base);
total_area += trap_area(h1, h2, base);

}
return(total_area);

float trap_area(float height_1,float height_2,float base)
{

float area; /* LOCAL VARIABLE */
area = 0.5 * (height_1 + height_2) * base;
return(area);

}
float function_x(float x)
{

/* F(X) = X * X + 1 */

return(x*x + 1);
}
Output

AREA UNDER A CURVE

User-Defined Functions 263

Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 30
TOTAL AREA = 12.005000

AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 100
TOTAL AREA = 12.000438

Fig. 8.20 Computing area under a curve

Review Questions

8.1 State whether the following statements are true or false.

(a) C functions can return only one value under their function name.

(b) A function in C should have at least one argument.

(c) A function can be defined and placed before the main function.

(d) A function can be defined within the main function.

(e) An user-defined function must be called at least once; otherwise a warning message will be

issued.

(f) Any name can be used as a function name.

(g) Only a void type function can have void as its argument.

(h) When variable values are passed to functions, a copy of them are created in the memory.

(i) Program execution always begins in the main function irrespective of its location in the

program.

(j) Global variables are visible in all blocks and functions in the program.

(k) A function can call itself.

(l) A function without a return statement is illegal.

(m) Global variables cannot be declared as auto variables.

(n) A function prototype must always be placed outside the calling function.

(o) The return type of a function is int by default.

(p) The variable names used in prototype should match those used in the function definition.

(q) In parameter passing by pointers, the formal parameters must be prefixed with the symbol *

in their declarations.

(r) In parameter passing by pointers, the actual parameters in the function call may be variables

or constants.

(s) In passing arrays to functions, the function call must have the name of the array to be passed

without brackets.

(t) In passing strings to functions, the actual parameter must be name of the string post-fixed

with size in brackets.

8.2 Fill in the blanks in the following statements.

(a) The parameters used in a function call are called .

(b) A variable declared inside a function is called .

264 Introduction to Computing

(c) By default, is the return type of a C function.

(d) In passing by pointers, the variables of the formal parameters must be prefixed with

 in their declaration.

(e) In prototype declaration, specifying is optional.

(f) _________ refers to the region where a variable is actually available for use.

(g) A function that calls itself is known as a function.

(h) If a local variable has to retain its value between calls to the function, it must be declared as

.

(i) A aids the compiler to check the matching between the actual arguments and

the formal ones.

(j) A variable declared inside a function by default assumes storage class.

8.3 The main is a user-defined function. How does it differ from other user-defined functions?

8.4 Describe the two ways of passing parameters to functions. When do you prefer to use each of

them?

8.5 What is prototyping? Why is it necessary?

8.6 Distinguish between the following:

(a) Actual and formal arguments

(b) Global and local variables

(c) Automatic and static variables

(d) Scope and visibility of variables

(e) & operator and * operator

8.7 Explain what is likely to happen when the following situations are encountered in a program.

(a) Actual arguments are less than the formal arguments in a function.

(b) Data type of one of the actual arguments does not match with the type of the corresponding

formal argument.

(c) Data type of one of the arguments in a prototype does not match with the type of the

corresponding formal parameter in the header line.

(d) The order of actual parameters in the function call is different from the order of formal

parameters in a function where all the parameters are of the same type.

(e) The type of expression used in return statement does not match with the type of the function.

8.8 Which of the following prototype declarations are invalid? Why?

(a) int (fun) void;
(b) double fun (void)
(c) float fun (x, y, n);
(d) void fun (void, void);
(e) int fun (int a, b);
(f) fun (int, float, char);
(g) void fun (int a, int &b);

8.9 Which of the following header lines are invalid? Why?

(a) float average (float x, float y, float z);
(b) double power (double a, int n – 1)
(c) int product (int m, 10)
(d) double minimum (double x; double y;)
(e) int mul (int x, y)
(f) exchange (int *a, int *b)
(g) void sum (int a, int b, int &c)

User-Defined Functions 265

8.10 Find errors, if any, in the following function definitions:

(a) void abc (int a, int b)
{

int c;
. . . .
return (c);

}
(b) int abc (int a, int b)

{
. . . .
. . . .

}
(c) int abc (int a, int b)

{
double c = a + b;
return (c);

}
(d) void abc (void)

{
. . . .
. . . .
return;

}
(e) int abc(void)

{
. . . .
. . . .
return;

}
8.11 Find errors in the following function calls:

(a) void xyz ();
(b) xyx (void);
(c) xyx (int x, int y);
(d) xyzz ();
(e) xyz () + xyz ();

8.12 A function to divide two floating point numbers is as follows:

divide (float x, float y)
{

return (x / y);
}

What will be the value of the following function calls:

(a) divide (10, 2)

(b) divide (9, 2)

(c) divide (4.5, 1.5)

(d) divide (2.0, 3.0)

266 Introduction to Computing

8.13 What will be the effect on the above function calls if we change the header line as follows:

(a) int divide (int x, int y)

(b) double divide (float x, float y)

8.14 Determine the output of the following program?

int prod(int m, int n);
main ()
{

int x = 10;
int y = 20;
int p, q;
p = prod (x,y);
q = prod (p, prod (x,z));
printf (“%d %d\n”, p,q);

}
int prod(int a, int b)
{

return (a * b);
}

8.15 What will be the output of the following program?

void test (int *a);
main ()
{

int x = 50;
test (&x);
printf(“%d\n”, x);

}
void test (int *a);
{

*a = *a + 50;
}

8.16 The function test is coded as follows:

int test (int number)
{

int m, n = 0;
while (number)
{

m = number % 10;
if (m % 2)

n = n + 1;
number = number /10;

}
return (n);

}
What will be the values of x and y when the following statements are executed?

int x = test (135);
int y = test (246);

User-Defined Functions 267

8.17 Enumerate the rules that apply to a function call.

8.18 Summarize the rules for passing parameters to functions by pointers.

8.19 What are the rules that govern the passing of arrays to function?

8.20 State the problems we are likely to encounter when we pass global variables as parameters to

functions.

Programming Exercises

8.1 Write a function exchange to interchange the values of two variables, say x and y. Illustrate the

use of this function, in a calling function. Assume that x and y are defined as global variables.

8.2 Write a function space(x) that can be used to provide a space of x positions between two output

numbers. Demonstrate its application.

8.3 Use recursive function calls to evaluate

f(x) = x �

3x

3!
 +

5x

5!
 �

7x

7!
 +.....

8.4 An n_order polynomial can be evaluated as follows:

P = (.....(((a0x+a1)x+a2)x+a3)x+..+an)

Write a function to evaluate the polynomial, using an array variable. Test it using a main program.

8.5 The Fibonacci numbers are defined recursively as follows:

F1 = 1

F2 = 1

Fn = F n�1+F n�2, n > 2

Write a function that will generate and print the first n Fibonacci numbers. Test the function for

n = 5, 10, and 15.

8.6 Write a function that will round a floating-point number to an indicated decimal place. For

example the number 17.457 would yield the value 17.46 when it is rounded off to two decimal

places.

8.7 Write a function prime that returns 1 if its argument is a prime number and returns zero

otherwise.

8.8 Write a function that will scan a character string passed as an argument and convert all lowercase

characters into their uppercase equivalents.

8.9 Develop a top_down modular program to implement a calculator. The program should request

the user to input two numbers and display one of the following as per the desire of the user:

(a) Sum of the numbers

(b) Difference of the numbers

(c) Product of the numbers

(d) Division of the numbers

Provide separate functions for performing various tasks such as reading, calculating and

displaying. Calculating module should call second level modules to perform the individual

mathematical operations. The main function should have only function calls.

8.10 Develop a modular interactive program using functions that reads the values of three sides of a

triangle and displays either its area or its perimeter as per the request of the user. Given the three

sides a, b and c.

268 Introduction to Computing

Perimeter = a + b + c

Area = (s�a) (s�b) (s�c)

where s = (a+b+c)/2

8.11 Write a function that can be called to find the largest element of an m by n matrix.

8.12 Write a function that can be called to compute the product of two matrices of size m by n and n by

m. The main function provides the values for m and n and two matrices.

8.13 Design and code an interactive modular program that will use functions to a matrix of m by n

size, compute column averages and row averages, and then print the entire matrix with averages

shown in respective rows and columns.

8.14 Develop a top-down modular program that will perform the following tasks:

(a) Read two integer arrays with unsorted elements.

(b) Sort them in ascending order

(c) Merge the sorted arrays

(d) Print the sorted list

Use functions for carrying out each of the above tasks. The main function should have only function

calls.

8.15 Develop your own functions for performing following operations on strings:

(a) Copying one string to another

(b) Comparing two strings

(c) Adding a string to the end of another string

Write a driver program to test your functions.

8.16 Write a program that invokes a function called find() to perform the following tasks:

(a) Receives a character array and a single character.

(b) Returns 1 if the specified character is found in the array, 0 otherwise.

8.17 Design a function locate () that takes two character arrays s1 and s2 and one integer value m as

parameters and inserts the string s2 into s1 immediately after the index m.

Write a program to test the function using a real-life situation. (Hint: s2 may be a missing word in

s1 that represents a line of text.)

8.18 Write a function that takes an integer parameter m representing the month number of the year

and returns the corresponding name of the month. For instance, if m = 3, the month is March.

Test your program.

8.19 In preparing the calendar for a year we need to know whether that particular year is leap year or

not. Design a function leap() that receives the year as a parameter and returns an appropriate

message.

What modifications are required if we want to use the function in preparing the actual calendar?

8.20 Write a function that receives a floating point value x and returns it as a value rounded to two

nearest decimal places. For example, the value 123.4567 will be rounded to 123.46. (Hint: Seek

help of one of the math functions available in math library.)

The Preprocessor

9.1 INTRODUCTION

C is a unique language in many respects. We have already seen features such as structures and pointers.

Yet another unique feature of the C language is the preprocessor. The C preprocessor provides several

tools that are unavailable in other high-level languages. The programmer can use these tools to make his

program easy to read, easy to modify, portable, and more efficient.

The preprocessor, as its name implies, is a program that processes the source code before it passes

through the compiler. It operates under the control of what is known as preprocessor command lines or

directives. Preprocessor directives are placed in the source program before the main line. Before the

source code passes through the compiler, it is examined by the preprocessor for any preprocessor direc-

tives. If there are any, appropriate actions (as per the directives) are taken and then the source program

is handed over to the compiler.

Preprocessor directives follow special syntax rules that are different from the normal C syntax. They

all begin with the symbol # in column one and do not require a semicolon at the end. We have already

used the directives #define and #include to a limited extent. A set of commonly used preprocessor

directives and their functions is given in Table 9.1.

Table 9.1 Preprocessor Directives

Directive Function

#define Defines a macro substitution

#undef Undefines a macro

#include Specifies the files to be included

#ifdef Test for a macro definition

#endif Specifies the end of #if.

#ifndef Tests whether a macro is not defined.

#if Test a compile-time condition

#else Specifies alternatives when #if test fails.

CHAPTER

9

270 Introduction to Computing

These directives can be divided into three categories:

1. Macro substitution directives.

2. File inclusion directives.

3. Compiler control directives.

9.2 MACRO SUBSTITUTION

Macro substitution is a process where an identifier in a program is replaced by a predefined string

composed of one or more tokens. The preprocessor accomplishes this task under the direction of #define

statement. This statement, usually known as a macro definition (or simply a macro) takes the following

general form:

#define Identifier String

If this statement is included in the program at the beginning, then the preprocessor replaces every occur-

rence of the identifier in the source code by the string. The keyword #define is written just as shown

(starting from the first column) followed by the identifier and a string, with at least one blank space

between them. Note that the definition is not terminated by a semicolon. The string may be any text,

while the identifier must be a valid C name.

There are different forms of macro substitution. The most common forms are:

1. Simple macro substitution.

2. Argumented macro substitution.

3. Nested macro substitution.

Simple Macro Substitution

Simple string replacement is commonly used to define constants. Examples of definition of constants are:

#define COUNT 100

#define FALSE 0

#define SUBJECTS 6

#define PI 3.1415926

#define CAPITAL �DELHI�

Notice that we have written all macros (identifiers) in capitals. It is a convention to write all macros

in capitals to identify them as symbolic constants. A definition, such as

#define M 5

will replace all occurrences of M with 5, starting from the line of definition to the end of the program.

However, a macro inside a string does not get replaced. Consider the following two lines:

total = M * value;

printf(“M = %d\n”, M);

These two lines would be changed during preprocessing as follows:

total = 5 * value;

printf(“M = %d\n”, 5);

Notice that the string �M=%d\n� is left unchanged.

The Preprocessor 271

A macro definition can include more than a simple constant value. It can include expressions as well.

Following are valid definitions:

#define AREA 5 * 12.46

#define SIZE sizeof(int) * 4

#define TWO-PI 2.0 * 3.1415926

Whenever we use expressions for replacement, care should be taken to prevent an unexpected order

of evaluation. Consider the evaluation of the equation

ratio = D/A;

where D and A are macros defined as follows:

#define D 45 � 22

#define A 78 + 32

The result of the preprocessor�s substitution for D and A is:

ratio = 45–22/78+32;

This is certainly different from the expected expression

(45 � 22)/(78+32)

Correct results can be obtained by using parentheses around the strings as:

#define D (45 � 22)

#define A (78 + 32)

It is a wise practice to use parentheses for expressions used in macro definitions.

As mentioned earlier, the preprocessor performs a literal text substitution, whenever the defined

name occurs. This explains why we cannot use a semicolon to terminate the #define statement. This also

suggests that we can use a macro to define almost anything. For example, we can use the definitions

#define TEST if (x > y)

#define AND

#define PRINT printf(�Very Good. \n�);

to build a statement as follows:

TEST AND PRINT

The preprocessor would translate this line to

if(x>y) printf(“Very Good.\n”);

Some tokens of C syntax are confusing or are error-prone. For example, a common programming

mistake is to use the token = in place of the token == in logical expressions. Similar is the case with the

token &&.

Following are a few definitions that might be useful in building error free and more readable programs:

#define EQUALS ==

#define AND &&

#define OR | |

#define NOT_EQUAL !=

#define START main() {

#define END }

#define MOD %

272 Introduction to Computing

#define BLANK_LINE printf(�\n�);

#define INCREMENT ++

An example of the use of syntactic replacement is:

START

… …..

… …..

if(total EQUALS 240 AND average EQUALS 60)

INCREMENT count;

… …..

… ….

END

Macros with Arguments

The preprocessor permits us to define more complex and more useful form of replacements. It takes the

form:

#define identifier(f1, f2, fn) string

Notice that there is no space between the macro identifier and the left parentheses. The identifiers f1,

f2, � � .,fn are the formal macro arguments that are analogous to the formal arguments in a function

definition.

There is a basic difference between the simple replacement discussed above and the replacement of

macros with arguments. Subsequent occurrence of a macro with arguments is known as a macro call

(similar to a function call). When a macro is called, the preprocessor substitutes the string, replacing the

formal parameters with the actual parameters. Hence, the string behaves like a template.

A simple example of a macro with arguments is

#define CUBE(x) (x*x*x)

If the following statement appears later in the program

volume = CUBE(side);

Then the preprocessor would expand this statement to:

volume = (side * side * side);

Consider the following statement:

volume = CUBE(a+b);

This would expand to:

volume = (a+b * a+b * a+b);

which would obviously not produce the correct results. This is because the preprocessor performs a

blind test substitution of the argument a+b in place of x. This shortcoming can be corrected by using

parentheses for each occurrence of a formal argument in the string.

Example:

#define CUBE(x) ((x) * (x) *(x))

This would result in correct expansion of CUBE(a+b) as:

volume = ((a+b) * (a+b) * (a+b));

The Preprocessor 273

Remember to use parentheses for each occurrence of a formal argument, as well as the whole string.

Some commonly used definitions are:

#define MAX(a,b) (((a) > (b)) ? (a) : (b))

#define MIN(a,b) (((a) < (b)) ? (a) : (b))

#define ABS(x) (((x) > 0) ? (x) : (�(x)))

#define STREQ(s1,s2) (strcmp((s1,) (s2)) == 0)

#define STRGT(s1,s2) (strcmp((s1,) (s2)) > 0)

The argument supplied to a macro can be any series of characters. For example, the definition

#define PRINT(variable, format) printf(�variable = %format \n�, variable)

can be called-in by

PRINT(price x quantity, f);

The preprocessor will expand this as

printf(“price x quantity = %f\n”, price x quantity);

Note that the actual parameters are substituted for formal parameters in a macro call, although they

are within a string. This definition can be used for printing integers and character strings as well.

Nesting of Macros

We can also use one macro in the definition of another macro. That is, macro definitions may be nested.

For instance, consider the following macro definitions.

#define M 5

#define N M+1

#define SQUARE(x) ((x) * (x))

#define CUBE(x) (SQUARE (x) * (x))

#define SIXTH(x) (CUBE(x) * CUBE(x))

The preprocessor expands each #define macro, until no more macros appear in the text. For example,

the last definition is first expanded into

((SQUARE(x) * (x)) * (SQUARE(x) * (x)))

Since SQUARE (x) is still a macro, it is further expanded into

((((x)*(x)) * (x)) * (((x) * (x)) * (x)))

which is finally evaluated as x6.

Macros can also be used as parameters of other macros. For example, given the definitions of M and

N, we can define the following macro to give the maximum of these two:

#define MAX(M,N) (((M) > (N)) ? (M) : (N))

Macro calls can be nested in much the same fashion as function calls. Example:

#define HALF(x) ((x)/2.0)

#define Y HALF(HALF(x))

274 Introduction to Computing

Similarly, given the definition of MAX(a,b) we can use the following nested call to give the maxi-
mum of the three values x,y, and z:

MAX (x, MAX(y,z))

Undefining a Macro

A defined macro can be undefined, using the statement

#undef identifier

This is useful when we want to restrict the definition only to a particular part of the program.

9.3 FILE INCLUSION

An external file containing functions or macro definitions can be included as a part of a program so that

we need not rewrite those functions or macro definitions. This is achieved by the preprocessor directive

#include �filename�

where filename is the name of the file containing the required definitions or functions. At this point, the

preprocessor inserts the entire contents of filename into the source code of the program. When the

filename is included within the double quotation marks, the search for the file is made first in the current

directory and then in the standard directories.

Alternatively this directive can take the form

#include <filename>

without double quotation marks. In this case, the file is searched only in the standard directories.

Nesting of included files is allowed. That is, an included file can include other files. However, a file

cannot include itself.

If an included file is not found, an error is reported and compilation is terminated.

Let us assume that we have created the following three files:

SYNTAX.C contains syntax definitions.

STAT.C contains statistical functions.

TEST.C contains test functions.

We can make use of a definition or function contained in any of these files by including them in the

program as:

#include <stdio.h>

#include �SYNTAX.C�

#include �STAT.C�

#include �TEST.C�

#define M 100

main ()

{

}

The Preprocessor 275

9.4 COMPILER CONTROL DIRECTIVES

While developing large programs, you may face one or more of the following situations:

1. You have included a file containing some macro definitions. It is not known whether a particular

macro (say, TEST) has been defined in that header file. However, you want to be certain that Test

is defined (or not defined).

2. Suppose a customer has two different types of computers and you are required to write a program

that will run on both the systems. You want to use the same program, although certain lines of code

must be different for each system.

3. You are developing a program (say, for sales analysis) for selling in the open market. Some cus-

tomers may insist on having certain additional features. However, you would like to have a single

program that would satisfy both types of customers.

4. Suppose you are in the process of testing your program, which is rather a large one. You would

like to have print calls inserted in certain places to display intermediate results and messages in

order to trace the flow of execution and errors, if any. Such statements are called �debugging�

statements. You want these statements to be a part of the program and to become �active� only

when you decide so.

One solution to these problems is to develop different programs to suit the needs of different situa-

tions. Another method is to develop a single, comprehensive program that includes all optional codes

and then directs the compiler to skip over certain parts of source code when they are not required.

Fortunately, the C preprocessor offers a feature known as conditional compilation, which can be used

to �switch� on or off a particular line or group of lines in a program.

Situation 1

This situation refers to the conditional definition of a macro. We want to ensure that the macro TEST is

always defined, irrespective of whether it has been defined in the header file or not. This can be achieved

as follows:

#include �DEFINE.H�
#ifndef TEST
#define TEST 1
#endif

� �

DEFINE.H is the header file that is supposed to contain the definition of TEST macro. The directive.

#ifndef TEST

searches for the definition of TEST in the header file and if not defined, then all the lines between the
#ifndef and the corresponding #endif directive are left �active� in the program. That is, the preprocessor

directive

define TEST is processed.

In case, the TEST has been defined in the header file, the #ifndef condition becomes false, therefore

the directive #define TEST is ignored. Remember, you cannot simply write

define TEST 1

because if TEST is already defined, an error will occur.

276 Introduction to Computing

Similar is the case when we want the macro TEST never to be defined. Looking at the following code:

� � �

#ifdef TEST

#undef TEST

#endif

� �

� �

This ensures that even if TEST is defined in the header file, its definition is removed. Here again we

cannot simply say

#undef TEST

because, if TEST is not defined, the directive is erroneous.

Situation 2

The main concern here is to make the program portable. This can be achieved as follows:

� �

� �

main()

{

� �

� �

#ifdef IBM_PC

{

� �

� � code for IBM_PC

� �

}

#else

{

� �

� � code for HP machine

� �

}

#endif

� ..

� ..

}

If we want the program to run on IBM PC, we include the directive

#define IBM_PC

in the program; otherwise we don�t. Note that the compiler control directives are inside the function.

Care must be taken to put the # character at column one.

The compiler complies the code for IBM PC if IBM-PC is defined, or the code for the HP machine if

it is not.

The Preprocessor 277

Situation 3

This is similar to the above situation and therefore the control directives take the following form:

#ifdef ABC

group-A lines

#else

group-B lines

#endif

Group-A lines are included if the customer ABC is defined. Otherwise, group-B lines are included.

Situation 4

Debugging and testing are done to detect errors in the program. While the Compiler can detect syntactic

and semantic errors, it cannot detect a faulty algorithm where the program executes, but produces wrong

results.

The process of error detection and isolation begins with the testing of the program with a known set of

test data. The program is divided down and printf statements are placed in different parts to see interme-

diate results. Such statements are called debugging statements and are not required once the errors are

isolated and corrected. We can either delete all of them or, alternately, make them inactive using control

directives as:

… …

… …

#ifdef TEST

{

printf(“Array elements\n”);

for (i = 0; i< m; i++)

printf(“x[%d] = %d\n”, i, x[i]);

}

#endif

… ..

… ..

#ifdef TEST

printf(….);

#endif

… …

The statements between the directives #ifdef and #endif are included only if the macro TEST is

defined. Once everything is OK, delete or undefine the TEST. This makes the #ifdef TEST conditions

false and therefore all the debugging statements are left out.

The C preprocessor also supports a more general form of test condition - #if directive. This takes the

following form:

278 Introduction to Computing

#if constant expression
{

statement-1;

statement-2;

… …

… …

}

#endif

The constant-expression may be any logical expression such as:

TEST <= 3
(LEVEL == 1 || LEVEL == 2)
MACHINE == �A�

If the result of the constant-expression is nonzero (true), then all the statements between the #if and
#endif are included for processing; otherwise they are skipped. The names TEST, LEVEL, etc. may be

defined as macros.

Review Questions

9.1 Explain the role of the C preprocessor.

9.2 What is a macro and how is it different from a C variable name?

9.3 What precautions one should take when using macros with argument?

9.4 What are the advantages of using macro definitions in a program?

9.5 When does a programmer use #include directive?

9.6 The value of a macro name cannot be changed during the running of a program. Comment?

9.7 What is conditional compilation? How does it help a programmer?

9.8 Distinguish between #ifdef and #if directives.

9.9 Comment on the following code fragment:

#if 0

{

line-1;

line-2;

… …

… …

line-n;

}

#endif

9.10 Identify errors, if any, in the following macro definitions:

(a) #define until(x) while(!x)

(b) #define ABS(x) (x > 0) ? (x) : (�x)

(c) #ifdef(FLAG)

#undef FLAG

#endif

The Preprocessor 279

(d) #if n == 1 update(item)

#else print-out(item)

#endif

9.11 State whether the following statements are true or false.

(a) The keyword #define must be written starting from the first column.

(b) Like other statements, a processor directive must end with a semicolon.

(c) All preprocessor directives begin with #.

(d) We cannot use a macro in the definition of another macro.

9.12 Fill in the blanks in the following statements.

(a) The directive discords a macro.

(b) The operator is used to concatenate two arguments.

(c) The operator converts its operand.

(d) The directive causes an implementation-oriented action.

9.13 Enumerate the differences between functions and parameterized macros.

9.14 In #include directives, some file names are enclosed in angle brackets while others are enclosed

in double quotation marks. Why?

9.15 Why do we recommend the use of parentheses for formal arguments used in a macro definition?

Give an example.

Programming Exercises

9.1 Define a macro PRINT_VALUE that can be used to print two values of arbitrary type.

9.2 Write a nested macro that gives the minimum of three values.

9.3 Define a macro with one parameter to compute the volume of a sphere. Write a program using

this macro to compute the volume for spheres of radius 5, 10 and 15 metres.

9.4 Define a macro that receives an array and the number of elements in the array as arguments.

Write a program using this macro to print out the elements of an array.

9.5 Using the macro defined in Exercise 9.4, write a program to compute the sum of all elements in

an array.

9.6 Write symbolic constants for the binary arithmetic operators +, �, * and /. Write a short program

to illustrate the use of these symbolic constants.

9.7 Define symbolic constants for { and } and printing a blank line. Write a small program using

these constants.

Arrays

10.1 INTRODUCTION

So far we have used only the fundamental data types, namely char, int, float, double and variations of

int and double. Although these types are very useful, they are constrained by the fact that a variable

of these types can store only one value at any given time. Therefore, they can be used only to handle

limited amounts of data. In many applications, however, we need to handle a large volume of data in

terms of reading, processing and printing. To process such large amounts of data, we need a powerful

data type that would facilitate efficient storing, accessing and manipulation of data items. C supports

a derived data type known as array that can be used for such applications.

An array is a fixed-size sequenced collection of elements of the same data type. It is simply a

grouping of like-type data. In its simplest form, an array can be used to represent a list of numbers, or

a list of names. Some examples where the concept of an array can be used:

∑ List of temperatures recorded every hour in a day, or a month, or a year.

∑ List of employees in an organization.

∑ List of products and their cost sold by a store.

∑ Test scores of a class of students.

∑ List of customers and their telephone numbers.

∑ Table of daily rainfall data.

and so on.

Since an array provides a convenient structure for representing data, it is classified as one of the

data structures in C. Other data structures include structures, lists, queues and trees. A complete

discussion of all data structures is beyond the scope of this text.

As we mentioned earlier, an array is a sequenced collection of related data items that share a

common name. For instance, we can use an array name salary to represent a set of salaries of a group

of employees in an organization. We can refer to the individual salaries by writing a number called

index or subscript in brackets after the array name. For example,

salary [10]

CHAPTER

10

Arrays 281

represents the salary of 10th employee. While the complete set of values is referred to as an array,

individual values are called elements.

The ability to use a single name to represent a collection of items and to refer to an item by

specifying the item number enables us to develop concise and efficient programs. For example, we can

use a loop construct, discussed earlier, with the subscript as the control variable to read the entire

array, perform calculations, and print out the results.

We can use arrays to represent not only simple lists of values but also tables of data in two, three or

more dimensions. In this chapter, we introduce the concept of an array and discuss how to use it to

create and apply the following types of arrays.

∑ One-dimensional arrays

∑ Two-dimensional arrays

∑ Multidimensional arrays

Data Structures

C supports a rich set of derived and user-defined data types in addition to a variety of

fundamental types as shown below:

Fundmental

Types
User-defined

Types

Data Types

Derived

Types

- Arrays - Integral Types - Structures

- Functions - Float Types - Unions

- Pointers - Character Types - Enumerations

Arrays and structures are referred to as structured data types because they can be

used to represent data values that have a structure of some sort. Structured data types

provide an organizational scheme that shows the relationships among the individual

elements and facilitate efficient data manipulations. In programming parlance, such

data types are known as data structures.

In addition to arrays and structures, C supports creation and manipulation of the

following data structures:

∑ Linked Lists

∑ Stacks

∑ Queues

∑ Trees

282 Introduction to Computing

10.2 ONE-DIMENSIONAL ARRAYS

A list of items can be given one variable name using only one subscript and such a variable is called a

single-subscripted variable or a one-dimensional array. In mathematics, we often deal with variables

that are single-subscripted. For instance, we use the equation

A =

n

i

i 1

x

n

=

Â

to calculate the average of n values of x. The subscripted variable xi refers to the ith element of x. In C,

single-subscripted variable xi can be expressed as

x[1], x[2], x[3],.........x[n]

The subscript can begin with number 0. That is

x[0]

is allowed. For example, if we want to represent a set of five numbers, say (35,40,20,57,19), by an

array variable number, then we may declare the variable number as follows

int number[5];

and the computer reserves five storage locations as shown below:

number [0]

number [1]

number [2]

number [3]

number [4]

The values to the array elements can be assigned as follows:

number[0] = 35;
number[1] = 40;

number[2] = 20;
number[3] = 57;
number[4] = 19;

This would cause the array number to store the values as shown below:

number [0]

number [1]

number [2]

number [3]

number [4]

35
40
20
57
19

These elements may be used in programs just like any other C variable. For example, the following

are valid statements:

a = number[0] + 10;

number[4] = number[0] + number [2];

number[2] = x[5] + y[10];

value[6] = number[i] * 3;

Arrays 283

The subscripts of an array can be integer constants, integer variables like i, or expressions that yield

integers. C performs no bounds checking and, therefore, care should be exercised to ensure that the

array indices are within the declared limits.

10.3 DECLARATION OF ONE-DIMENSIONAL ARRAYS

Like any other variable, arrays must be declared before they are used so that the compiler can allocate

space for them in memory. The general form of array declaration is

type variable-name[size];

The type specifies the type of element that will be contained in the array, such as int, float, or char

and the size indicates the maximum number of elements that can be stored inside the array. For

example,

float height[50];

declares the height to be an array containing 50 real elements. Any subscripts 0 to 49 are valid.

Similarly,

int group[10];

declares the group as an array to contain a maximum of 10 integer constants. Remember:

∑ Any reference to the arrays outside the declared limits would not necessarily cause an error.

Rather, it might result in unpredictable program results.

∑ The size should be either a numeric constant or a symbolic constant.

The C language treats character strings simply as arrays of characters. The size in a character string

represents the maximum number of characters that the string can hold. For instance,

char name[10];

declares the name as a character array (string) variable that can hold a maximum of 10 characters.

Suppose we read the following string constant into the string variable name.

�WELL DONE�

Each character of the string is treated as an element of the array name and is stored in the memory

as follows:

'W'

'E'

'L'

'L'

''

'D'

'O'

'N'

'E'

'\0'

284 Introduction to Computing

When the compiler sees a character string, it terminates it with an additional null character. Thus,

the element name[10] holds the null character �\0�. When declaring character arrays, we must allow

one extra element space for the null terminator.

Example 10.1 Write a program using a single-subscripted variable to evaluate the
following expressions:

Total =
=
Â
10

2
i

i 1

x

The values of x1,x2,....are read from the terminal.

Program in Fig. 10.1 uses a one-dimensional array x to read the values and compute the sum of their

squares.

Program

main()
{

int i ;
float x[10], value, total ;

/*READING VALUES INTO ARRAY */

printf(“ENTER 10 REAL NUMBERS\n”) ;

for(i = 0 ; i < 10 ; i++)
{

scanf(“%f”, &value) ;
x[i] = value ;

}
/*COMPUTATION OF TOTAL*/

total = 0.0 ;
for(i = 0 ; i < 10 ; i++)

total = total + x[i] * x[i] ;

/*. . . . PRINTING OF x[i] VALUES AND TOTAL . . . */

printf(“\n”);
for(i = 0 ; i < 10 ; i++)

printf(“x[%2d] = %5.2f\n”, i+1, x[i]) ;

printf(“\ntotal = %.2f\n”, total) ;
}

Output

ENTER 10 REAL NUMBERS

Arrays 285

1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8 9.9 10.10

x[1] = 1.10
x[2] = 2.20
x[3] = 3.30
x[4] = 4.40
x[5] = 5.50
x[6] = 6.60
x[7] = 7.70
x[8] = 8.80
x[9] = 9.90
x[10] = 10.10

Total = 446.86

Fig. 10.1 Program to illustrate one-dimensional array

NOTE: C99 permits arrays whose size can be specified at run time. See Appendix "C99 Features".

10.4 INITIALIZATION OF ONE-DIMENSIONAL ARRAYS

After an array is declared, its elements must be initialized. Otherwise, they will contain �garbage�. An

array can be initialized at either of the following stages:

∑ At compile time

∑ At run time

Compile Time Initialization

We can initialize the elements of arrays in the same way as the ordinary variables when they are

declared. The general form of initialization of arrays is:

type array-name[size] = { list of values };

The values in the list are separated by commas. For example, the statement

int number[3] = { 0,0,0 };

will declare the variable number as an array of size 3 and will assign zero to each element. If the

number of values in the list is less than the number of elements, then only that many elements will be

initialized. The remaining elements will be set to zero automatically. For instance,

float total[5] = {0.0,15.75,–10};

will initialize the first three elements to 0.0, 15.75, and �10.0 and the remaining two elements to zero.

The size may be omitted. In such cases, the compiler allocates enough space for all initialized

elements. For example, the statement

int counter[] = {1,1,1,1};

286 Introduction to Computing

will declare the counter array to contain four elements with initial values 1. This approach works fine

as long as we initialize every element in the array.

Character arrays may be initialized in a similar manner. Thus, the statement

char name[] = {‘J’,‘o’, ‘h’, ‘n’, ‘\0’};

declares the name to be an array of five characters, initialized with the string �John� ending with the

null character. Alternatively, we can assign the string literal directly as under:

char name [] = “John”;

(Character arrays and strings are discussed in detail in Chapter 8.)

Compile time initialization may be partial. That is, the number of initializers may be less than the

declared size. In such cases, the remaining elements are inilialized to zero, if the array type is numeric

and NULL if the type is char. For example,

int number [5] = {10, 20};

will initialize the first two elements to 10 and 20 respectively, and the remaining elements to 0. Simi-

larly, the declaration.

char city [5] = {‘B’};

will initialize the first element to �B� and the remaining four to NULL. It is a good idea, however, to

declare the size explicitly, as it allows the compiler to do some error checking.

Remember, however, if we have more initializers than the declared size, the compiler will produce

an error. That is, the statement

int number [3] = {10, 20, 30, 40};

will not work. It is illegal in C.

Run Time Initialization

An array can be explicitly initialized at run time. This approach is usually applied for initializing large

arrays. For example, consider the following segment of a C program.

� � � �� � � �

� � � �� � � �

for (i = 0; i < 100; i = i+1)
{

if i < 50
sum[i] = 0.0; /* assignment statement */

else
sum[i] = 1.0;

}
� � � �� � � �

� � � �� � � �

The first 50 elements of the array sum are initialized to zero while the remaining 50 elements are

initialized to 1.0 at run time.

Arrays 287

We can also use a read function such as scanf to initialize an array. For example, the statements

int x [3];

scanf(“%d%d%d”, &x[0], &[1], &x[2]);

will initialize array elements with the values entered through the keyboard.

Example 10.2 Given below is the list of marks obtained by a class of 50 students in an
annual examination.

43 65 51 27 79 11 56 61 82 09 25 36 07 49 55 63 74 81 49 37
40 49 16 75 87 91 33 24 58 78 65 56 76 67 45 54 36 63 12 21
73 49 51 19 39 49 68 93 85 59

Write a program to count the number of students belonging to each of

following groups of marks: 0–9, 10–19, 20–29,.....,100.

The program coded in Fig. 10.2 uses the array group containing 11 elements, one for each range of

marks. Each element counts those values falling within the range of values it represents.

For any value, we can determine the correct group element by dividing the value by 10. For exam-

ple, consider the value 59. The integer division of 59 by 10 yields 5. This is the element into which 59

is counted.

Program
#define MAXVAL 50
#define COUNTER 11
main()
{

float value[MAXVAL];
int i, low, high;
int group[COUNTER] = {0,0,0,0,0,0,0,0,0,0,0};
/*READING AND COUNTING*/
for(i = 0 ; i < MAXVAL ; i++)
{
/*.READING OF VALUES */

scanf(“%f”, &value[i]) ;
/*.COUNTING FREQUENCY OF GROUPS. */

++ group[(int) (value[i]) / 10] ;
}
/*PRINTING OF FREQUENCY TABLE*/
printf(“\n”);
printf(“ GROUP RANGE FREQUENCY\n\n”) ;
for(i = 0 ; i < COUNTER ; i++)
{

low = i * 10 ;
if(i == 10)

high = 100 ;

288 Introduction to Computing

else
high = low + 9 ;

printf(“ %2d %3d to %3d %d\n”,
i+1, low, high, group[i]) ;

}
}

Output

43 65 51 27 79 11 56 61 82 09 25 36 07 49 55 63 74
81 49 37 40 49 16 75 87 91 33 24 58 78 65 56 76 67 (Input data)
45 54 36 63 12 21 73 49 51 19 39 49 68 93 85 59

GROUP RANGE FREQUENCY
1 0 to 9 2
2 10 to 19 4
3 20 to 29 4
4 30 to 39 5
5 40 to 49 8
6 50 to 59 8
7 60 to 69 7
8 70 to 79 6
9 80 to 89 4
10 90 to 99 2
11 100 to 100 0

Fig. 10.2 Program for frequency counting

Note that we have used an initialization statement.

int group [COUNTER] = {0,0,0,0,0,0,0,0,0,0,0};

which can be replaced by

int group [COUNTER] = {0};

This will initialize all the elements to zero.

Searching and Sorting

Searching and sorting are the two most frequent operations performed on arrays.

Computer Scientists have devised several data structures and searching and sorting

techniques that facilitate rapid access to data stored in lists.

Sorting is the process of arranging elements in the list according to their values, in

ascending or descending order. A sorted list is called an ordered list. Sorted lists are

especially important in list searching because they facilitate rapid search operations.

Many sorting techniques are available. The three simple and most important among

them are:

Arrays 289

∑ Bubble sort

∑ Selection sort

∑ Insertion sort

Other sorting techniques include Shell sort, Merge sort and Quick sort.

Searching is the process of finding the location of the specified element in a list. The

specified element is often called the search key. If the process of searching finds a

match of the search key with a list element value, the search said to be successful;

otherwise, it is unsuccessful. The two most commonly used search techniques are:

∑ Sequential search

∑ Binary search

A detailed discussion on these techniques is beyond the scope of this text. Consult

any good book on data structures and algorithms.

10.5 TWO-DIMENSIONAL ARRAYS

So far we have discussed the array variables that can store a list of values. There could be situations

where a table of values will have to be stored. Consider the following data table, which shows the

value of sales of three items by four sales girls:

Item1 Item2 Item3

Salesgirl #1 310 275 365

Salesgirl #2 210 190 325

Salesgirl #3 405 235 240

Salesgirl #4 260 300 380

The table contains a total of 12 values, three in each line. We can think of this table as a matrix

consisting of four rows and three columns. Each row represents the values of sales by a particular

salesgirl and each column represents the values of sales of a particular item.

In mathematics, we represent a particular value in a matrix by using two subscripts such as vij. Here

v denotes the entire matrix and vij refers to the value in the ith row and jth column. For example, in the

above table v23 refers to the value 325.

C allows us to define such tables of items by using two-dimensional arrays. The table discussed

above can be defined in C as

v[4][3]

Two-dimensional arrays are declared as follows:

type array_name [row_size][column_size];

Note that unlike most other languages, which use one pair of parentheses with commas to separate

array sizes, C places each size in its own set of brackets.

Two-dimensional arrays are stored in memory, as shown in Fig.10.3. As with the single-

dimensional arrays, each dimension of the array is indexed from zero to its maximum size minus one;

the first index selects the row and the second index selects the column within that row.

290 Introduction to Computing

Column0

Row 0

Row 2

Row 1

Row 3

Column1 Column2

0 0 00 1 2

1

3

2

310

405

10

310

275

235

190

275

365

240

325

365

1

3

2

1

3

2

0

0

0

1

1

1

2

2

2

[[[[[[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[[[[[[

[

[

[

[

[

[[

[

[

[

[

[

[

[

[

[

[

[

[

Fig. 10.3 Representation of a two-dimensional array in memory

Example 10.3 Write a program using a two-dimensional array to compute and print the
following information from the table of data discussed above:
(a) Total value of sales by each girl.
(b) Total value of each item sold.
(c) Grand total of sales of all items by all girls.

The program and its output are shown in Fig. 10.4. The program uses the variable value in two-

dimensions with the index i representing girls and j representing items. The following equations are

used in computing the results:

(a) Total sales by mth girl =
2

j 0=
Â value [m][j] (girl_total[m])

(b) Total value of nth item =
3

i 0=
Â value [i][n] (item_total[n])

(c) Grand total =
3 2

i 0 j 0= =
ÂÂ value[i][j]

=
3

i 0=
Â girl_total[i]

=
2

j 0=
Â item_total[j]

Arrays 291

Program

#define MAXGIRLS 4
#define MAXITEMS 3

main()
{

int value[MAXGIRLS][MAXITEMS];
int girl_total[MAXGIRLS] , item_total[MAXITEMS];
int i, j, grand_total;

/*.......READING OF VALUES AND COMPUTING girl_total ...*/

printf(“Input data\n”);
printf(“Enter values, one at a time, row-wise\n\n”);

for(i = 0 ; i < MAXGIRLS ; i++)
{

girl_total[i] = 0;
for(j = 0 ; j < MAXITEMS ; j++)
{

scanf(“%d”, &value[i][j]);
girl_total[i] = girl_total[i] + value[i][j];

}
}

/*.......COMPUTING item_total..........................*/

for(j = 0 ; j < MAXITEMS ; j++)
{

item_total[j] = 0;
for(i =0 ; i < MAXGIRLS ; i++)

item_total[j] = item_total[j] + value[i][j];
}

/*.......COMPUTING grand_total.........................*/

grand_total = 0;
for(i =0 ; i < MAXGIRLS ; i++)

grand_total = grand_total + girl_total[i];
/*PRINTING OF RESULTS...........................*/

printf(“\n GIRLS TOTALS\n\n”);

for(i = 0 ; i < MAXGIRLS ; i++)
printf(“Salesgirl[%d] = %d\n”, i+1, girl_total[i]);

printf(“\n ITEM TOTALS\n\n”);
for(j = 0 ; j < MAXITEMS ; j++)

printf(“Item[%d] = %d\n”, j+1 , item_total[j]);

292 Introduction to Computing

printf(“\nGrand Total = %d\n”, grand_total);
}

Output

Input data
Enter values, one at a time, row_wise

310 257 365
210 190 325
405 235 240
260 300 380

GIRLS TOTALS

Salesgirl[1] = 950
Salesgirl[2] = 725
Salesgirl[3] = 880
Salesgirl[4] = 940

ITEM TOTALS

Item[1] = 1185
Item[2] = 1000
Item[3] = 1310

Grand Total = 3495

Fig. 10.4 Illustration of two-dimensional arrays

Example 10.4 Write a program to compute and print a multiplication table for numbers
1 to 5 as shown below:

1 2 3 4 5

1 1 2 3 4 5

2 2 4 6 8 10

3 3 6 . . .

4 4 8 . . .

5 5 10 . . 25

The program shown in Fig. 10.5 uses a two-dimensional array to store the table values. Each value is

calculated using the control variables of the nested for loops as follows:

product[i] [j] = row * column

where i denotes rows and j denotes columns of the product table. Since the indices i and j range from

0 to 4, we have introduced the following transformation:

row = i+1

column = j+1

Arrays 293

Program

#define ROWS 5
#define COLUMNS 5
main()
{

int row, column, product[ROWS][COLUMNS] ;
int i, j ;
printf(“ MULTIPLICATION TABLE\n\n”) ;
printf(“ “) ;
for(j = 1 ; j <= COLUMNS ; j++)

printf(“%4d” , j) ;
printf(“\n”) ;
printf(“——————————————————————————————\n”);
for(i = 0 ; i < ROWS ; i++)
{

row = i + 1 ;
printf(“%2d |”, row) ;
for(j = 1 ; j <= COLUMNS ; j++)
{

column = j ;
product[i][j] = row * column ;
printf(“%4d”, product[i][j]) ;

}
printf(“\n”) ;

}
}

Output

MULTIPLICATION TABLE
1 2 3 4 5

1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 5 10 15 20 25

Fig. 10.5 Program to print multiplication table using two-dimensional array

10.6 INITIALIZING TWO-DIMENSIONAL ARRAYS

Like the one-dimensional arrays, two-dimensional arrays may be initialized by following their decla-

ration with a list of initial values enclosed in braces. For example,

int table[2][3] = { 0,0,0,1,1,1};

294 Introduction to Computing

initializes the elements of the first row to zero and the second row to one. The initialization is done

row by row. The above statement can be equivalently written as

int table[2][3] = {{0,0,0}, {1,1,1}};

by surrounding the elements of the each row by braces.

We can also initialize a two-dimensional array in the form of a matrix as shown below:

int table[2][3] = {

{0,0,0},

{1,1,1}

};

Note the syntax of the above statements. Commas are required after each brace that closes off a

row, except in the case of the last row.

When the array is completely initialized with all values, explicitly, we need not specify the size of

the first dimension. That is, the statement

int table [] [3] = {

{ 0, 0, 0},

{ 1, 1, 1}

};

is permitted.
If the values are missing in an initializer, they are automatically set to zero. For instance, the state-

ment

int table[2][3] = {

{1,1},

{2}

};

will initialize the first two elements of the first row to one, the first element of the second row to two,

and all other elements to zero.

When all the elements are to be initialized to zero, the following short-cut method may be used.

int m[3][5] = { {0}, {0}, {0}};

The first element of each row is explicitly initialized to zero while other elements are automatically

initialized to zero. The following statement will also achieve the same result:

int m [3] [5] = { 0, 0};

Example 10.5 A survey to know the popularity of four cars (Ambassador, Fiat, Dolphin
and Maruti) was conducted in four cities (Bombay, Calcutta, Delhi and
Madras). Each person surveyed was asked to give his city and the type of
car he was using. The results, in coded form, are tabulated as follows:
M 1 C 2 B 1 D 3 M 2 B 4
C 1 D 3 M 4 B 2 D 1 C 3
D 4 D 4 M 1 M 1 B 3 B 3
C 1 C 1 C 2 M 4 M 4 C 2
D 1 C 2 B 3 M 1 B 1 C 2

D 3 M 4 C 1 D 2 M 3 B 4

Arrays 295

Codes represent the following information:

M � Madras 1 � Ambassador

D � Delhi 2 � Fiat

C � Calcutta 3 � Dolphin

B � Bombay 4 � Maruti

Write a program to produce a table showing popularity of various cars in four cities.

A two-dimensional array frequency is used as an accumulator to store the number of cars used,

under various categories in each city. For example, the element frequency [i][j] denotes the number of

cars of type j used in city i. The frequency is declared as an array of size 5 × 5 and all the elements are

initialized to zero.

The program shown in Fig. 10.6 reads the city code and the car code, one set after another, from the

terminal. Tabulation ends when the letter X is read in place of a city code.

Program

main()
{

int i, j, car;
int frequency[5][5] = { {0},{0},{0},{0},{0} };
char city;
printf(“For each person, enter the city code \n”);
printf(“followed by the car code.\n”);
printf(“Enter the letter X to indicate end.\n”);

/*. TABULATION BEGINS */
for(i = 1 ; i < 100 ; i++)
{

scanf(“%c”, &city);
if(city == ‘X’)

break;
scanf(“%d”, &car);
switch(city)
{

case ‘B’ : frequency[1][car]++;
break;

case ‘C’ : frequency[2][car]++;
break;

case ‘D’ : frequency[3][car]++;
break;

case ‘M’ : frequency[4][car]++;

break;
}

}
 /*.TABULATION COMPLETED AND PRINTING BEGINS. . . .*/

printf(“\n\n”);

296 Introduction to Computing

printf(“ POPULARITY TABLE\n\n”);
printf(“——————————————————————————————–————–\n”);
printf(“City Ambassador Fiat Dolphin Maruti \n”);

printf(“———————————————————————————————————–\n”);
for(i = 1 ; i <= 4 ; i++)
{

switch(i)
{

case 1 : printf(“Bombay “) ;
break ;

case 2 : printf(“Calcutta “) ;
break ;

case 3 : printf(“Delhi “) ;
break ;

case 4 : printf(“Madras “) ;
break ;

}
for(j = 1 ; j <= 4 ; j++)

printf(“%7d”, frequency[i][j]) ;
printf(“\n”) ;

}
printf(“——\n”);

/*. PRINTING ENDS.*/
}
Output

For each person, enter the city code
followed by the car code.
Enter the letter X to indicate end.
M 1 C 2 B 1 D 3 M 2 B 4
C 1 D 3 M 4 B 2 D 1 C 3
D 4 D 4 M 1 M 1 B 3 B 3
C 1 C 1 C 2 M 4 M 4 C 2
D 1 C 2 B 3 M 1 B 1 C 2
D 3 M 4 C 1 D 2 M 3 B 4 X

POPULARITY TABLE

City Ambassador Fiat Dolphin Maruti

Bombay 2 1 3 2
Calcutta 4 5 1 0
Delhi 2 1 3 2
Madras 4 1 1 4

Fig. 10.6 Program to tabulate a survey data

Arrays 297

Memory Layout

The subscripts in the definition of a two-dimensional array represent rows and col-

umns. This format maps the way that data elements are laid out in the memory. The

elements of all arrays are stored contiguously in increasing memory locations, essen-

tially in a single list. If we consider the memory as a row of bytes, with the lowest

address on the left and the highest address on the right, a simple array will be stored

in memory with the first element at the left end and the last element at the right end.

Similarly, a two-dimensional array is stored "row-wise, starting from the first row

and ending with the last row, treating each row like a simple array. This is illustrated

below.

Column

3 3 array¥

0

0

1

1

2

2

30

60

10 20

5040

8070 90

row

row 0 row 1 row 2

10 40 7020 50 8030 60 90

[0][0] [0][1] [0][2] 1][[0] [1][1] [1][2] [2][0] [2][1] [2][2]
1 2 3 4 5 6 7 8 9

Memory Layout

For a multi-dimensional array, the order of storage is that the first element stored has

0 in all its subscripts, the second has all of its subscripts 0 except the far right which

has a value of 1 and so on.

The elements of a 2 x 3 x 3 array will be stored as under

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

000 001 002 010 011 012 020 021 022 ..

.. 100 101 102 110 111 112 120 121 122

The far right subscript increments first and the other subscripts increment in order

from right to left. The sequence numbers 1, 2,��, 18 represents the location of that

element in the list

298 Introduction to Computing

10.7 MULTI-DIMENSIONAL ARRAYS

C allows arrays of three or more dimensions. The exact limit is determined by the compiler. The

general form of a multi-dimensional array is

type array_name[s1][s2][s3]....[sm];

where si is the size of the ith dimension. Some examples are:

int survey[3][5][12];

float table[5][4][5][3];

survey is a three-dimensional array declared to contain 180 integer type elements. Similarly table is a

four-dimensional array containing 300 elements of floating-point type.

The array survey may represent a survey data of rainfall during the last three years from January to

December in five cities.

If the first index denotes year, the second city and the third month, then the element sur-

vey[2][3][10] denotes the rainfall in the month of October during the second year in city-3.

Remember that a three-dimensional array can be represented as a series of two-dimensional arrays

as shown below:

month 1 2 ������� 12

city

Year 1 1

.

.

.

.

5

month 1 2 ������� 12

city

Year 2 1

.

.

.

.

5

ANSI C does not specify any limit for array dimension. However, most compilers permit seven to

ten dimensions. Some allow even more.

10.8 DYNAMIC ARRAYS

So far, we created arrays at compile time. An array created at compile time by specifying size in the

source code has a fixed size and cannot be modified at run time. The process of allocating memory at

Arrays 299

compile time is known as static memory allocation and the arrays that receive static memory alloca-

tion are called static arrays. This approach works fine as long as we know exactly what our data

requirements are.

Consider a situation where we want to use an array that can vary greatly in size. We must guess

what will be the largest size ever needed and create the array accordingly. A difficult task in fact!

Modern languages like C do not have this limitation. In C it is possible to allocate memory to arrays at

run time. This feature is known as dynamic memory allocation and the arrays created at run time are

called dynamic arrays. This effectively postpones the array definition to run time.

Dynamic arrays are created using what are known as pointer variables and memory management

functions malloc, calloc and realloc. These functions are included in the header file <stdlib.h>. The

concept of dynamic arrays is used in creating and manipulating data structures such as linked lists,

stacks and queues. We discuss in detail pointers and pointer variables in Chapter 11 and creating and

managing linked lists in Chapter 13.

10.9 MORE ABOUT ARRAYS

What we have discussed in this chapter are the basic concepts of arrays and their applications to a

limited extent. There are some more important aspects of application of arrays. They include:

∑ using printers for accessing arrays;

∑ passing arrays as function parameters;

∑ arrays as members of structures;

∑ using structure type data as array elements;

∑ arrays as dynamic data structures; and

∑ manipulating character arrays and strings.

These aspects of arrays are covered later in the following chapters:

Chapter 8 : Strings

Chapter 9 : Functions

Chapter 10 : Structures

Chapter 11 : Pointers

Chapter 13 : Linked Lists

Just Remember

We need to specify three things, namely, name, type and size, when we de-

clare an array.

Always remember that subscripts begin at 0 (not 1) and end at size �1.

Defining the size of an array as a symbolic constant makes a program more

scalable.

Be aware of the difference between the "kth element" and the "element k". The

kth element has a subscript k-1, whereas the element k has a subscript of k

itself.

300 Introduction to Computing

Do not forget to initialize the elements; otherwise they will contain "garbage".

Supplying more initializers in the initializer list is a compile time error.

Use of invalid subscript is one of the common errors. An incorrect or invalid

index may cause unexpected results.

When using expressions for subscripts, make sure that their results do not go

outside the permissible range of 0 to size �1. Referring to an element outside

the array bounds is an error.

When using control structures for looping through an array, use proper rela-

tional expressions to eliminate "off-by-one" errors. For example, for an array of

size 5, the following for statements are wrong:

for (i = 1; i < =5; i+ +)

for (i = 0; i < =5; i+ +)

for (i = 0; i = =5; i+ +)

for (i = 0; i < 4; i+ +)

Referring a two-dimensional array element like x[i, j] instead of x[i][j] is a

compile time error.

When initializing character arrays, provide enough space for the terminating

null character.

Make sure that the subscript variables have been properly initialized before

they are used.

Leaving out the subscript reference operator [] in an assignment operation is

compile time error.

During initialization of multi�dimensional arrays, it is an error to omit the array

size for any dimension other than the first.

Case Studies

1. Median of a List of Numbers

When all the items in a list are arranged in an order, the middle value which divides the items into two

parts with equal number of items on either side is called the median. Odd number of items have just

one middle value while even number of items have two middle values. The median for even number of

items is therefore designated as the average of the two middle values.

The major steps for finding the median are as follows:

1. Read the items into an array while keeping a count of the items.

2. Sort the items in increasing order.

3. Compute median.

The program and sample output are shown in Fig. 10.7. The sorting algorithm used is as follows:

1. Compare the first two elements in the list, say a[1], and a[2]. If a[2] is smaller than a[1], then

interchange their values.

2. Compare a[2] and a[3]; interchange them if a[3] is smaller than a[2].

3. Continue this process till the last two elements are compared and interchanged.

4. Repeat the above steps n�1 times.

Arrays 301

In repeated trips through the array, the smallest elements �bubble up� to the top. Because of this

bubbling up effect, this algorithm is called bubble sorting. The bubbling effect is illustrated below for

four items.

80

Initial
values

35

After
step 1

35

After
step 2

35

After
step 3

35 80 65 65

65

Trip-1

65 80 10

10 10 10 80

35 35 35

65 65 10

10

Trip-2

10 65

80 80 80

35 10

10 35

65

Trip-3

65

80 80

During the first trip, three pairs of items are compared and interchanged whenever needed. It should

be noted that the number 80, the largest among the items, has been moved to the bottom at the end of

the first trip. This means that the element 80 (the last item in the new list) need not be considered any

further. Therefore, trip-2 requires only two pairs to be compared. This time, the number 65 (the second

largest value) has been moved down the list. Notice that each trip brings the smallest value 10 up by

one level.

The number of steps required in a trip is reduced by one for each trip made. The entire process will

be over when a trip contains only one step. If the list contains n elements, then the number of compari-

sons involved would be n(n�1)/2.

302 Introduction to Computing

Program

#define N 10
main()
{

int i,j,n;
float median,a[N],t;
printf(“Enter the number of items\n”);
scanf(“%d”, &n);

/* Reading items into array a */
printf(“Input %d values \n”,n);
for (i = 1; i <= n ; i++)

scanf(“%f”, &a[i]);
/* Sorting begins */

for (i = 1 ; i <= n–1 ; i++)
{ /* Trip-i begins */

for (j = 1 ; j <= n–i ; j++)
{

if (a[j] <= a[j+1])
{ /* Interchanging values */

t = a[j];
a[j] = a[j+1];
a[j+1] = t;

}
else

continue ;

}
} /* sorting ends */

/* calculation of median */
if (n % 2 == 0)

 median = (a[n/2] + a[n/2+1])/2.0 ;
else

 median = a[n/2 + 1];
/* Printing */

for (i = 1 ; i <= n ; i++)
printf(“%f “, a[i]);

printf(“\n\nMedian is %f\n”, median);
}

Output

Enter the number of items
5
Input 5 values
1.111 2.222 3.333 4.444 5.555
5.555000 4.444000 3.333000 2.222000 1.111000

Median is 3.333000

Arrays 303

Enter the number of items
6
Input 6 values
3 5 8 9 4 6
9.000000 8.000000 6.000000 5.000000 4.000000 3.000000

Median is 5.500000

Fig. 10.7 Program to sort a list of numbers and to determine median

2. Calculation of Standard Deviation

In statistics, standard deviation is used to measure deviation of data from its mean. The formula for

calculating standard deviation of n items is

s = variance

where

variance = ()
n

2

i

i 1

1
x m

n =

-Â

and

m = mean =
n

i 1

1

n =
Â x i

The algorithm for calculating the standard deviation is as follows:

1. Read n items.

2. Calculate sum and mean of the items.

3. Calculate variance.

4. Calculate standard deviation.

Complete program with sample output is shown in Fig. 10.8.

Program

#include <math.h>
#define MAXSIZE 100
main()
{

int i,n;
float value [MAXSIZE], deviation,

sum,sumsqr,mean,variance,stddeviation;
sum = sumsqr = n = 0 ;
printf(“Input values: input –1 to end \n”);
for (i=1; i< MAXSIZE ; i++)
{

scanf(“%f”, &value[i]);
if (value[i] == -1)

304 Introduction to Computing

break;
sum += value[i];
n += 1;

}
mean = sum/(float)n;
for (i = 1 ; i<= n; i++)
{

deviation = value[i] – mean;
sumsqr += deviation * deviation;

}
variance = sumsqr/(float)n ;
stddeviation = sqrt(variance) ;
printf(“\nNumber of items : %d\n”,n);
printf(“Mean : %f\n”, mean);
printf(“Standard deviation : %f\n”, stddeviation);

}
Output

Input values: input -1 to end
65 9 27 78 12 20 33 49 -1

Number of items : 8

Mean : 36.625000
Standard deviation : 23.510303

Fig. 10.8 Program to calculate standard deviation

3. Evaluating a Test

A test consisting of 25 multiple-choice items is administered to a batch of 3 students. Correct answers

and student responses are tabulated as shown below:

1

Student 1

Correct
answers

Student 2

Student 3

0 1 22 33 44 5

Items

5 66 77 88 99 0 1 2 3 4 5

The algorithm for evaluating the answers of students is as follows:

1. Read correct answers into an array.

2. Read the responses of a student and count the correct ones.

3. Repeat step-2 for each student.

4. Print the results.

Arrays 305

A program to implement this algorithm is given in Fig. 10.9. The program uses the following arrays:

key[i] - To store correct answers of items

response[i] - To store responses of students

correct[i] - To identify items that are answered correctly.

Program

#define STUDENTS 3
#define ITEMS 25
main()
{

char key[ITEMS+1],response[ITEMS+1];
int count, i, student,n,

correct[ITEMS+1];
/* Reading of Correct answers */

printf(“Input key to the items\n”);
for(i=0; i < ITEMS; i++)

scanf(“%c”,&key[i]);
scanf(“%c”,&key[i]);
key[i] = ‘\0’;

/* Evaluation begins */
for(student = 1; student <= STUDENTS ; student++)
{

/*Reading student responses and counting correct ones*/
count = 0;
printf(“\n”);
printf(“Input responses of student-%d\n”,student);
for(i=0; i < ITEMS ; i++)

scanf(“%c”,&response[i]);
scanf(“%c”,&response[i]);
response[i] = ‘\0’;
for(i=0; i < ITEMS; i++)

correct[i] = 0;
for(i=0; i < ITEMS ; i++)

if(response[i] == key[i])
{

count = count +1 ;
correct[i] = 1 ;

}
/* printing of results */
printf(“\n”);
printf(“Student-%d\n”, student);
printf(“Score is %d out of %d\n”,count, ITEMS);
printf(“Response to the items below are wrong\n”);
n = 0;
for(i=0; i < ITEMS ; i++)

if(correct[i] == 0)

306 Introduction to Computing

{
printf(“%d “,i+1);
n = n+1;

}
if(n == 0)

printf(“NIL\n”);
printf(“\n”);
} /* Go to next student */

/* Evaluation and printing ends */
}

Output

Input key to the items
abcdabcdabcdabcdabcdabcda

Input responses of student-1
abcdabcdabcdabcdabcdabcda

Student-1
Score is 25 out of 25
Response to the following items are wrong
NIL

Input responses of student-2
abcddcbaabcdabcdddddddddd

Student-2
Score is 14 out of 25
Response to the following items are wrong
5 6 7 8 17 18 19 21 22 23 25

Input responses of student-3
aaaaaaaaaaaaaaaaaaaaaaaaa

Student-3
Score is 7 out of 25
Response to the following items are wrong
2 3 4 6 7 8 10 11 12 14 15 16 18 19 20 22 23 24

Fig. 10.9 Program to evaluate responses to a multiple-choice test

4. Production and Sales Analysis

A company manufactures five categories of products and the number of items manufactured and sold
are recorded product-wise every week in a month. The company reviews its production schedule at
every month-end. The review may require one or more of the following information:

(a) Value of weekly production and sales.

(b) Total value of all the products manufactured.

(c) Total value of all the products sold.

(d) Total value of each product, manufactured and sold.

Arrays 307

Let us represent the products manufactured and sold by two two-dimensional arrays M and S respec-
tively. Then,

M11 M12 M13 M14 M15

 M = M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

M41 M42 M43 M44 M45

S11 S12 S13 S14 S15

 S = S21 S22 S23 S24 S25

S31 S32 S33 S34 S35

S41 S42 S43 S44 S45

where Mij represents the number of jth type product manufactured in ith week and Sij the number of
jth product sold in ith week. We may also represent the cost of each product by a single dimensional
array C as follows:

C = C1 C2 C3 C4 C5

where Cj is the cost of jth type product.

We shall represent the value of products manufactured and sold by two value arrays, namely,

Mvalue and Svalue. Then,

Mvalue[i][j] = Mij x Cj

Svalue[i][j] = Sij x Cj

A program to generate the required outputs for the review meeting is shown in Fig. 10.10. The follow-

ing additional variables are used:

Mweek[i] = Value of all the products manufactured in week i

=
5

J 1=
Â Mvalue[i][j]

Sweek[i] = Value of all the products in week i

=
5

J 1=
Â Svalue[i][j]

Mproduct[j] = Value of jth type product manufactured during the month

=
4

i 1=
Â Mvalue[i][j]

Sproduct[j] = Value of jth type product sold during the month

=
4

i 1=
Â Svalue[i][j]

308 Introduction to Computing

Mtotal = Total value of all the products manufactured during the month

=
4

i 1=
Â Mweek[i] =

5

j 1=
Â Mproduct[j]

Stotal = Total value of all the products sold during the month

=
4

i 1=
Â Sweek[i] =

5

j 1=
Â Sproduct[j]

Program

main()
{

int M[5][6],S[5][6],C[6],
Mvalue[5][6],Svalue[5][6],
Mweek[5], Sweek[5],
Mproduct[6], Sproduct[6],
Mtotal, Stotal, i,j,number;

/* Input data */
printf (“ Enter products manufactured week_wise \n”);
printf (“ M11,M12,——, M21,M22,—— etc\n”);
for(i=1; i<=4; i++)

for(j=1;j<=5; j++)
scanf(“%d”,&M[i][j]);

printf (“ Enter products sold week_wise\n”);
printf (“ S11,S12,——, S21,S22,—— etc\n”);
for(i=1; i<=4; i++)

for(j=1; j<=5; j++)
scanf(“%d”, &S[i][j]);

printf(“ Enter cost of each product\n”);
for(j=1; j <=5; j++)

scanf(“%d”,&C[j]);
/* Value matrices of production and sales */

for(i=1; i<=4; i++)
for(j=1; j<=5; j++)
{

Mvalue[i][j] = M[i][j] * C[j];
Svalue[i][j] = S[i][j] * C[j];

}
/* Total value of weekly production and sales */

for(i=1; i<=4; i++)
{

Mweek[i] = 0 ;
Sweek[i] = 0 ;
for(j=1; j<=5; j++)
{

Arrays 309

Mweek[i] += Mvalue[i][j];
Sweek[i] += Svalue[i][j];

}
}

/* Monthly value of product_wise production and sales */
for(j=1; j<=5; j++)
{

Mproduct[j] = 0 ;
Sproduct[j] = 0 ;
for(i=1; i<=4; i++)
{

Mproduct[j] += Mvalue[i][j];
Sproduct[j] += Svalue[i][j];

}
}

/* Grand total of production and sales values */
Mtotal = Stotal = 0;
for(i=1; i<=4; i++)
{

Mtotal += Mweek[i];
Stotal += Sweek[i];

}
/***

Selection and printing of information required
***/
printf(“\n\n”);
printf(“ Following is the list of things you can\n”);
printf(“ request for. Enter appropriate item number\n”);
printf(“ and press RETURN Key\n\n”);
printf(“ 1.Value matrices of production & sales\n”);
printf(“ 2.Total value of weekly production & sales\n”);
printf(“ 3.Product_wise monthly value of production &”);
printf(“ sales\n”);
printf(“ 4.Grand total value of production & sales\n”);
printf(“ 5.Exit\n”);
number = 0;
while(1)
{ /* Beginning of while loop */

printf(“\n\n ENTER YOUR CHOICE:”);
scanf(“%d”,&number);
printf(“\n”);
if(number == 5)
{

printf(“ G O O D B Y E\n\n”);
break;

}

310 Introduction to Computing

switch(number)
{ /* Beginning of switch */

/* V A L U E M A T R I C E S */
case 1:

printf(“ VALUE MATRIX OF PRODUCTION\n\n”);
for(i=1; i<=4; i++)
{

printf(“ Week(%d)\t”,i);
for(j=1; j <=5; j++)

printf(“%7d”, Mvalue[i][j]);
printf(“\n”);

}
printf(“\n VALUE MATRIX OF SALES\n\n”);
for(i=1; i <=4; i++)
{

printf(“ Week(%d)\t”,i);
for(j=1; j <=5; j++)

printf(“%7d”, Svalue[i][j]);
printf(“\n”);

}
break;

/* W E E K L Y A N A L Y S I S */
case 2:

printf(“ TOTAL WEEKLY PRODUCTION & SALES\n\n”);
printf(“ PRODUCTION SALES\n”);
printf(“ — — — — — — — \n”);
for(i=1; i <=4; i++)
{

printf(“ Week(%d)\t”, i);
printf(“%7d\t%7d\n”, Mweek[i], Sweek[i]);

}
break;

/* P R O D U C T W I S E A N A L Y S I S */
case 3:

printf(“ PRODUCT_WISE TOTAL PRODUCTION &”);
printf(“ SALES\n\n”);
printf(“ PRODUCTION SALES\n”);
printf(“ — — — — — — — \n”);
for(j=1; j <=5; j++)
{

printf(“ Product(%d)\t”, j);
printf(“%7d\t%7d\n”,Mproduct[j],Sproduct[j]);

}
break;

Arrays 311

/* G R A N D T O T A L S */
case 4:

printf(“ GRAND TOTAL OF PRODUCTION & SALES\n”);
printf(“\n Total production = %d\n”, Mtotal);
printf(“ Total sales = %d\n”, Stotal);
break;

/* D E F A U L T */
default :

printf(“ Wrong choice, select again\n\n”);
break;

} /* End of switch */
} /* End of while loop */
printf(“ Exit from the program\n\n”);

} /* End of main */
Output

Enter products manufactured week_wise
M11, M12, — — – –, M21, M22, — — – – etc
11 15 12 14 13
13 13 14 15 12
12 16 10 15 14
14 11 15 13 12

Enter products sold week_wise
S11,S12,— — – –, S21,S22,— — – – etc
10 13 9 12 11
12 10 12 14 10
11 14 10 14 12
12 10 13 11 10
Enter cost of each product
10 20 30 15 25

Following is the list of things you can
request for. Enter appropriate item number
and press RETURN key
1.Value matrices of production & sales
2.Total value of weekly production & sales
3.Product_wise monthly value of production & sales
4.Grand total value of production & sales
5.Exit
ENTER YOUR CHOICE:1
VALUE MATRIX OF PRODUCTION

Week(1) 110 300 360 210 325
Week(2) 130 260 420 225 300
Week(3) 120 320 300 225 350
Week(4) 140 220 450 185 300

312 Introduction to Computing

VALUE MATRIX OF SALES
Week(1) 100 260 270 180 275
Week(2) 120 200 360 210 250
Week(3) 110 280 300 210 300
Week(4) 120 200 390 165 250

ENTER YOUR CHOICE:2
TOTAL WEEKLY PRODUCTION & SALES

PRODUCTION SALES

Week(1) 1305 1085
Week(2) 1335 1140
Week(3) 1315 1200
Week(4) 1305 1125

ENTER YOUR CHOICE:3
PRODUCT_WISE TOTAL PRODUCTION & SALES

PRODUCTION SALES

Product(1) 500 450
Product(2) 1100 940
Product(3) 1530 1320
Product(4) 855 765
Product(5) 1275 1075

ENTER YOUR CHOICE:4

GRAND TOTAL OF PRODUCTION & SALES

Total production = 5260
Total sales = 4550
ENTER YOUR CHOICE:5
G O O D B Y E
Exit from the program

Fig. 10.10 Program for production and sales analysis

Review Questions

10.1 State whether the following statements are true or false.

(a) The type of all elements in an array must be the same.

(b) When an array is declared, C automatically initializes its elements to zero.

(c) An expression that evaluates to an integral value may be used as a subscript.

(d) Accessing an array outside its range is a compile time error.

(e) A char type variable cannot be used as a subscript in an array.

(f) An unsigned long int type can be used as a subscript in an array.

Arrays 313

(g) In C, by default, the first subscript is zero.

(h) When initializing a multidimensional array, not specifying all its dimensions is an error.

(i) When we use expressions as a subscript, its result should be always greater than zero.

(j) In C, we can use a maximum of 4 dimensions for an array.

(k) In declaring an array, the array size can be a constant or variable or an expression.

(l) The declaration int x[2] = {1,2,3}; is illegal.

10.2 Fill in the blanks in the following statements.

(a) The variable used as a subscript in an array is popularly known as variable.

(b) An array can be initialized either at compile time or at .

(c) An array created using malloc function at run time is referred to as array.

(d) An array that uses more than two subscript is referred to as array.

(e) is the process of arranging the elements of an array in order.

10.3 Identify errors, if any, in each of the following array declaration statements, assuming that ROW

and COLUMN are declared as symbolic constants:

(a) int score (100);

(b) float values [10,15];

(c) float average[ROW],[COLUMN];

(d) char name[15];

(e) int sum[];

(f) double salary [i + ROW]

(g) long int number [ROW]

(h) int array x[COLUMN];

10.4 Identify errors, if any, in each of the following initialization statements.

(a) int number[] = {0,0,0,0,0};

(b) float item[3][2] = {0,1,2,3,4,5};

(c) char word[] = {�A�,�R�, �R�, �A�, �Y�};

(d) int m[2,4] = {(0,0,0,0)(1,1,1,1)};

(e) float result[10] = 0;

10.5 Assume that the arrays A and B are declared as follows:

int A[5][4];

float B[4];

Find the errors (if any) in the following program segments.

(a) for (i=1; i<=5; i++)

for(j=1; j<=4; j++)

A[i][j] = 0;

(b) for (i=1; i<4; i++)

scanf(�%f�, B[i]);

(c) for (i=0; i<=4; i++)

B[i] = B[i]+i;

(d) for (i=4; i>=0; i��)

for (j=0; j<4; j++)

A[i][j] = B[j] + 1.0;

10.6 Write a for loop statement that initializes all the diagonal elements of an array to one and others to

zero as shown below. Assume 5 rows and 5 columns.

314 Introduction to Computing

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

.

.

.

.

.

0 0 0 0 0 1

10.7 We want to declare a two-dimensional integer type array called matrix for 3 rows and 5 columns.

Which of the following declarations are correct?

(a) int maxtrix [3],[5];

(b) int matrix [5] [3];

(c) int matrix [1+2] [2+3];

(d) int matrix [3,5];

(e) int matrix [3] [5];

10.8 Which of the following initialization statements are correct?

(a) char str1[4] = �GOOD�;

(b) char str2[] = �C�;

(c) char str3[5] = �Moon�;

(d) char str4[] = {�S�, �U�, �N�};

(e) char str5[10] = �Sun�;

10.9 What is a data structure? Why is an array called a data structure?

10.10 What is a dynamic array? How is it created? Give a typical example of use of a dynamic array.

10.11 What is the error in the following program?

main ()
{

int x ;
float y [] ;
......

}
10.12 What happens when an array with a specified size is assigned

(a) with values fewer than the specified size; and

(b) with values more than the specified size.

10.13 Discuss how initial values can be assigned to a multidimensional array.

10.14 What is the output of the following program?

main ()
{

int m [] = { 1,2,3,4,5 }
int x, y = 0;
for (x = 0; x < 5; x++)

y = y + m [x];
printf(“%d”, y) ;

}

Arrays 315

10.15 What is the output of the following program?

main ()
{

chart string [] = “HELLO WORLD” ;
int m;
for (m = 0; string [m] != ‘\0’; m++)

if ((m%2) == 0)
printf(“%c”, string [m]);

}

Programming Exercises

10.1 Write a program for fitting a straight line through a set of points (xi,yi), i = 1,....,n.

The straight line equation is

y = mx + c

and the values of m and c are given by

m =
() ()()
() ()

1 i 1 i

22
i i

n x y x y

n x x

S - S S

S - S

c =
1

n
 (S yi - m S xi)

All summations are from 1 to n.

10.2 The daily maximum temperatures recorded in 10 cities during the month of January (for all 31 days)

have been tabulated as follows:

City

Day 1 2 3- - - - - - - - - - - - - -- - - - - - - - - - 10

1 - - - - - - - - - - - - - -- - - - - - - - - -

2

3

-

-

-

-

31

Write a program to read the table elements into a two-dimensional array temperature, and to find

the city and day corresponding to

(a) the highest temperature and

(b) the lowest temperature.

10.3 An election is contested by 5 candidates. The candidates are numbered 1 to 5 and the voting is done

by marking the candidate number on the ballot paper. Write a program to read the ballots and count

the votes cast for each candidate using an array variable count. In case, a number read is outside the

range 1 to 5, the ballot should be considered as a �spoilt ballot� and the program should also count

the number of spoilt ballots.

316 Introduction to Computing

10.4 The following set of numbers is popularly known as Pascal�s triangle.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

- - - - - - -

- - - - - - - -

If we denote rows by i and columns by j, then any element (except the boundary elements) in the

triangle is given by

pij = p i�1, j�1 + p i�1,j
Write a program to calculate the elements of the Pascal triangle for 10 rows and print the results.

10.5 The annual examination results of 100 students are tabulated as follows:

Roll No. Subject 1 Subject 2 Subject 3

.

.

.

Write a program to read the data and determine the following:

(a) Total marks obtained by each student.

(b) The highest marks in each subject and the Roll No. of the student who secured it.

(c) The student who obtained the highest total marks.

10.6 Given are two one-dimensional arrays A and B which are sorted in ascending order.Write a program

to merge them into a single sorted array C that contains every item from arrays A and B, in

ascending order.

10.7 Two matrices that have the same number of rows and columns can be multiplied to produce a third

matrix. Consider the following two matrices.

A =

11 12 1n

12 22 2n

n1 nn

a aa

a aa

. .

. .

. .

a a

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

B =

11 12 1n

12 22 2n

n1 nn

b bb

b bb

. .

. .

. .

b b

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

Arrays 317

The product of A and B is a third matrix C of size n ¥ n where each element of C is given by the

following equation.

Cij =
n

k 1=
Â aikbkj

Write a program that will read the values of elements of A and B and produce the product matrix C.

10.8 Write a program that fills a five-by-five matrix as follows:

∑ Upper left triangle with +1s

∑ Lower right triangle with �1s

∑ Right to left diagonal with zeros

Display the contents of the matrix using not more than two printf statements

10.9 Selection sort is based on the following idea:

Selecting the largest array element and swapping it with the last array element leaves an unsorted

list whose size is 1 less than the size of the original list. If we repeat this step again on the unsorted

list we will have an ordered list of size 2 and an unordered list size n�2 . When we repeat this until

the size of the unsorted list becomes one, the result will be a sorted list.

Write a program to implement this algorithm.

10.10 Develop a program to implement the binary search algorithm. This technique compares the search

key value with the value of the element that is midway in a �sorted� list. Then;

(a) If they match, the search is over.

(b) If the search key value is less than the middle value, then the first half of the list contains the

key value.

(c) If the search key value is greater than the middle value, then the second half contains the key

value.

Repeat this �divide-and-conquer� strategy until we have a match. If the list is reduced to one non-

matching element, then the list does not contain the key value.

Use the sorted list created in Exercise 10.9 or use any other sorted list.

10.11 Write a program that will compute the length of a given character string.

10.12 Write a program that will count the number occurrences of a specified character in a given line of

text. Test your program.

10.13 Write a program to read a matrix of size m ¥ n and print its transpose.

10.14 Every book published by international publishers should carry an International Standard Book

Number (ISBN). It is a 10 character 4 part number as shown below.

0-07-041183-2

The first part denotes the region, the second represents publisher, the third identifies the book and

the fourth is the check digit. The check digit is computed as follows:

Sum = (1 ¥ first digit) + (2 ¥ second digit) + (3 ¥ third digit) + - - - - + (9 ¥ ninth digit).

Check digit is the remainder when sum is divided by 11. Write a program that reads a given ISBN

number and checks whether it represents a valid ISBN.

10.15 Write a program to read two matrices A and B and print the following:

(a) A + B; and

(b) A � B.

Character Arrays
and Strings

11.1 INTRODUCTION

A string is a sequence of characters that is treated as a single data item. We have used strings in a

number of examples in the past. Any group of characters (except double quote sign) defined between

double quotation marks is a string constant. Example:

�Man is obviously made to think.�

If we want to include a double quote in the string to be printed, then we may use it with a back slash

as shown below.

�\� Man is obviously made to think,\� said Pascal.�

For example,

printf (“\” Well Done !”\”);

will output the string

� Well Done !�

while the statement

printf(“ Well Done !”);

will output the string

Well Done !

Character strings are often used to build meaningful and readable programs. The common operations

performed on character strings include:

∑ Reading and writing strings.

∑ Combining strings together.

∑ Copying one string to another.

∑ Comparing strings for equality.

∑ Extracting a portion of a string.

CHAPTER

11

Character Arrays and Strings 319

In this chapter we shall discuss these operations in detail and examine library functions that imple-

ment them.

11.2 DECLARING AND INITIALIZING STRING VARIABLES

C does not support strings as a data type. However, it allows us to represent strings as character arrays.

In C, therefore, a string variable is any valid C variable name and is always declared as an array of

characters. The general form of declaration of a string variable is:

char string_name[size];

The size determines the number of characters in the string_name. Some examples are:

char city[10];

char name[30];

When the compiler assigns a character string to a character array, it automatically supplies a null

character (�\0 �) at the end of the string. Therefore, the size should be equal to the maximum number of

characters in the string plus one.

Like numeric arrays, character arrays may be initialized when they are declared. C permits a charac-

ter array to be initialized in either of the following two forms:

char city [9] = “ NEW YORK “;

char city [9]={‘N’,‘E’,‘W’,‘ ‘,‘Y’,‘O’,‘R’,‘K’,‘\0’};

The reason that city had to be 9 elements long is that the string NEW YORK contains 8 characters

and one element space is provided for the null terminator. Note that when we initialize a character array

by listing its elements, we must supply explicitly the null terminator.

C also permits us to initialize a character array without specifying the number of elements. In such

cases, the size of the array will be determined automatically, based on the number of elements initial-

ized. For example, the statement

char string [] = {‘G’,‘O’,‘O’,‘D’,‘\0’};

defines the array string as a five element array.

We can also declare the size much larger than the string size in the initializer. That is, the statement.

char str[10] = “GOOD”;

is permitted. In this case, the computer creates a character array of size 10, places the value �GOOD� in

it, terminates with the null character, and initializes all other elements to NULL. The storage will look

like:

G O O D 0 0 0 0 0 0\ \ \ \ \ \

However, the following declaration is illegal.

char str2[3] = “GOOD”;

This will result in a compile time error. Also note that we cannot separate the initialization from

declaration. That is,

320 Introduction to Computing

char str3[5];

str3 = “GOOD”;

is not allowed. Similarly,

char s1[4] = “abc”;

char s2[4];

s2 = s1; /* Error */

is not allowed. An array name cannot be used as the left operand of an assignment operator.

Terminating Null Character

You must be wondering, �why do we need a terminating null character?� As we know,

a string is not a data type in C, but it is considered a data structure stored in an array.

The string is a variable-length structure and is stored in a fixed-length array. The array

size is not always the size of the string and most often it is much larger than the string

stored in it. Therefore, the last element of the array need not represent the end of the

string. We need some way to determine the end of the string data and the null character

serves as the �end-of-string� marker.

11.3 READING STRINGS FROM TERMINAL

Using scanf Function

The familiar input function scanf can be used with %s format specification to read in a string of charac-

ters. Example:

char address[10]

scanf(“%s”, address);

The problem with the scanf function is that it terminates its input on the first white space it finds. A

white space includes blanks, tabs, carriage returns, form feeds, and new lines. Therefore, if the follow-

ing line of text is typed in at the terminal,

NEW YORK

then only the string �NEW� will be read into the array address, since the blank space after the word

�NEW� will terminate the reading of string.

The scanf function automatically terminates the string that is read with a null character and therefore
the character array should be large enough to hold the input string plus the null character. Note that

unlike previous scanf calls, in the case of character arrays, the ampersand (&) is not required before the
variable name.

Character Arrays and Strings 321

The address array is created in the memory as shown below:

N

0 1 2 3 4 5 6 7 8 9

E W 0 ?? ? ? ? ?\

Note that the unused locations are filled with garbage.

If we want to read the entire line �NEW YORK�, then we may use two character arrays of appropri-

ate sizes. That is,

char adr1[5], adr2[5];

scanf(“%s %s”, adr1, adr2);

with the line of text

NEW YORK

will assign the string �NEW� to adr1 and �YORK� to adr2.

Example 11.1 Write a program to read a series of words from a terminal using scanf

function.

The program shown in Fig. 11.1 reads four words and displays them on the screen. Note that the string

�Oxford Road� is treated as two words while the string �Oxford-Road� as one word.

Program
main()
{

char word1[40], word2[40], word3[40], word4[40];

printf(“Enter text : \n”);
scanf(“%s %s”, word1, word2);
scanf(“%s”, word3);
scanf(“%s”, word4);

printf(“\n”);
printf(“word1 = %s\nword2 = %s\n”, word1, word2);

printf(“word3 = %s\nword4 = %s\n”, word3, word4);
}

Output

Enter text :
Oxford Road, London M17ED

word1 = Oxford
word2 = Road,
word3 = London
word4 = M17ED

322 Introduction to Computing

Enter text :
Oxford-Road, London-M17ED United Kingdom
word1 = Oxford-Road
word2 = London-M17ED
word3 = United
word4 = Kingdom

Fig. 11.1 Reading a series of words using scanf function

We can also specify the field width using the form %ws in the scanf statement for reading a specified

number of characters from the input string . Example:

scanf(“%ws”, name);

Here, two things may happen.

1. The width w is equal to or greater than the number of characters typed in. The entire s t r i n g

will be stored in the string variable.

2. The width w is less than the number of characters in the string. The excess characters will be

truncated and left unread.

Consider the following statements:

char name[10];

scanf(“%5s”, name);

The input string RAM will be stored as:

R

0 1 2 3 4 5 6 7 8 9

A M 0 ?? ? ? ? ?\

The input string KRISHNA will be stored as:

K

0 1 2 3 4 5 6 7 8 9

R I 0H ? ? ? ?\S

Reading a Line of Text

We have seen just now that scanf with %s or %ws can read only strings without whitespaces. That is,

they cannot be used for reading a text containing more than one word. However, C supports a format

specification known as the edit set conversion code %[. .] that can be used to read a line containing a

variety of characters, including whitespaces. Recall that we have used this conversion code in Chapter

4. For example,

the program segment

char line [80];
scanf(”%[^\n]”, line);
printf(“%s”, line);

Character Arrays and Strings 323

will read a line of input from the keyboard and display the same on the screen. We would very rarely use

this method, as C supports an intrinsic string function to do this job. This is discussed in the next section.

Using getchar and gets Functions

We have discussed in Chapter 4 as to how to read a single character from the terminal, using the function

getchar. We can use this function repeatedly to read successive single characters from the input and

place them into a character array. Thus, an entire line of text can be read and stored in an array. The

reading is terminated when the newline character (�\n�) is entered and the null character is then inserted

at the end of the string. The getchar function call takes the form:

char ch;
ch = getchar();

Note that the getchar function has no parameters.

Example 11.2 Write a program to read a line of text containing a series of words from
the terminal.

The program shown in Fig. 11.2 can read a line of text (up to a maximum of 80 characters) into the string

line using getchar function. Every time a character is read, it is assigned to its location in the string line

and then tested for newline character. When the newline character is read (signalling the end of line),

the reading loop is terminated and the newline character is replaced by the null character to indicate the

end of character string.

When the loop is exited, the value of the index c is one number higher than the last character position

in the string (since it has been incremented after assigning the new character to the string). Therefore the

index value c-1 gives the position where the null character is to be stored.

Program
#include <stdio.h>
main()
{

char line[81], character;
int c;
c = 0;
printf(“Enter text. Press <Return> at end\n”);
do
{

character = getchar();
line[c] = character;
c++;

}
while(character != ‘\n’);
c = c - 1;
line[c] = ‘\0’;

324 Introduction to Computing

printf(“\n%s\n”, line);
}

Output
Enter text. Press <Return> at end
Programming in C is interesting.
Programming in C is interesting.
Enter text. Press <Return> at end
National Centre for Expert Systems, Hyderabad.
National Centre for Expert Systems, Hyderabad.

Fig. 11.2 Program to read a line of text from terminal

Another and more convenient method of reading a string of text containing whitespaces is to use the

library function gets available in the <stdio.h> header file. This is a simple function with one string

parameter and called as under:

gets (str);

str is a string variable declared properly. It reads characters into str from the keyboard until a new-line

character is encountered and then appends a null character to the string. Unlike scanf, it does not skip

whitespaces. For example the code segment

char line [80];

gets (line);

printf (“%s”, line);

reads a line of text from the keyboard and displays it on the screen. The last two statements may be

combined as follows:

printf(“%s”, gets(line));

(Be careful not to input more character that can be stored in the string variable used. Since C does

not check array-bounds, it may cause problems.)

C does not provide operators that work on strings directly. For instance we cannot assign one string to

another directly. For example, the assignment statements.

string = “ABC”;

string1 = string2;

are not valid. If we really want to copy the characters in string2 into string1, we may do so on a

character-by-character basis.

Example 11.3 Write a program to copy one string into another and count the number
of characters copied.

The program is shown in Fig. 11.3. We use a for loop to copy the characters contained inside string2

into the string1. The loop is terminated when the null character is reached. Note that we are again

assigning a null character to the string1.

Character Arrays and Strings 325

Program
main()
{

char string1[80], string2[80];
int i;

printf(“Enter a string \n”);
printf(“?”);

scanf(“%s”, string2);
for(i=0 ; string2[i] != ‘\0’; i++)

string1[i] = string2[i];

string1[i] = ‘\0’;

printf(“\n”);
printf(“%s\n”, string1);
printf(“Number of characters = %d\n”, i);

}

Output
Enter a string
?Manchester

Manchester
Number of characters = 10

Enter a string
?Westminster

Westminster
Number of characters = 11

Fig. 11.3 Copying one string into another

11.4 WRITING STRINGS TO SCREEN

Using printf Function

We have used extensively the printf function with %s format to print strings to the screen. The format

%s can be used to display an array of characters that is terminated by the null character. For example,

the statement

printf(“%s”, name);

can be used to display the entire contents of the array name.

We can also specify the precision with which the array is displayed. For instance, the specification

%10.4

indicates that the first four characters are to be printed in a field width of 10 columns.

326 Introduction to Computing

However, if we include the minus sign in the specification (e.g., %-10.4s), the string will be printed

left-justified. The Example 11.4 illustrates the effect of various %s specifications.

Example 11.4 Write a program to store the string “United Kingdom” in the array coun-

try and display the string under various format specifications.

The program and its output are shown in Fig. 11.4. The output illustrates the following features of the

%s specifications.

1. When the field width is less than the length of the string, the entire string is printed.

2. The integer value on the right side of the decimal point specifies the number of char-

acters to be printed.

3. When the number of characters to be printed is specified as zero, nothing is printed.

4. The minus sign in the specification causes the string to be printed left-justified.

5. The specification % .ns prints the first n characters of the string.

Program
main()
{

char country[15] = “United Kingdom”;
printf(“\n\n”);
printf(“*123456789012345*\n”);
printf(“ — — – – – \n”);
printf(“%15s\n”, country);
printf(“%5s\n”, country);
printf(“%15.6s\n”, country);
printf(“%-15.6s\n”, country);
printf(“%15.0s\n”, country);
printf(“%.3s\n”, country);
printf(“%s\n”, country);
printf(“— — – – – \n”);

}
Output

123456789012345
— — – – –
United Kingdom
United Kingdom

United
United

Uni
United Kingdom
— — – – –

Fig. 11.4 Writing strings using %s format

Character Arrays and Strings 327

The printf on UNIX supports another nice feature that allows for variable field width or precision. For

instance

printf(“%*.*s\n”, w, d, string);

prints the first d characters of the string in the field width of w.

This feature comes in handy for printing a sequence of characters. Example 11.5 illustrates this.

Example 11.5 Write a program using for loop to print the following output:

C
CP
CPr
CPro
.....
.....
CProgramming

CProgramming
.....
.....
CPro
CPr
CP
C

The outputs of the program in Fig. 11.5, for variable specifications %12.*s, %.*s, and %*.1s are

shown in Fig. 11.6, which further illustrates the variable field width and the precision specifications.

Program
main()
{

int c, d;
char string[] = “CProgramming”;
printf(“\n\n”);
printf(“— — — — — — — — — — — — \n”);
for(c = 0 ; c <= 11 ; c++)
{

d = c + 1;
printf(“|%-12.*s|\n”, d, string);

}
printf(“|— — — — — — — — — — — — |\n”);
for(c = 11 ; c >= 0 ; c— —)
{

d = c + 1;

328 Introduction to Computing

printf(“|%-12.*s|\n”, d, string);
}
printf(“— — — — — — — — — — — — \n”);

}
Output

C
CP
CPr
CPro
CProg
CProgr
CProgra
CProgram
CProgramm
CProgrammi
CProgrammin
CProgramming
CProgramming

CProgrammin
CProgrammi
CProgramm
CProgram
CProgra
CProgr
CProg
CPro
CPr
CP
C

Fig. 11.5 Illustration of variable field specifications by printing sequences of characters

 C
 CP
 CPr
 CPro
 CProg
 CProgr
 CProgra
 CProgram
 CProgramm
 CProgrammi
 CProgrammin

C|
CP|
CPr|
CPro|
CProg|
CProgr|
CProgra|
CProgram|
CProgramm|
CProgrammi|
CProgrammin|

 C|
 C|
 C|
 C|
 C|
 C|
 C|
 C|
 C|

C|
C|

Character Arrays and Strings 329

CProgramming

CProgramming
 CProgrammin
 CProgrammi
 CProgramm
 CProgram
 CProgra
 CProgr
 CProg
 CPro
 CPr
 CP
 C

(a) %12.*s (b) %.*s (c) %*.1s

Fig. 11.6 Further illustrations of variable specifications

Using putchar and puts Functions

Like getchar, C supports another character handling function putchar to output the values of character

variables. It takes the following form:

char ch = ‘A’;

putchar (ch);

The function putchar requires one parameter. This statement is equivalent to:

printf(“%c”, ch);

We have used putchar function in Chapter 5 to write characters to the screen. We can use this function

repeatedly to output a string of characters stored in an array using a loop. Example:

char name[6] = “PARIS”
for (i=0, i<5; i++)

putchar(name[i];
putchar(‘\n’);

Another and more convenient way of printing string values is to use the function puts declared in the

header file <stdio.h>. This is a one parameter function and invoked as under:

puts (str);

where str is a string variable containing a string value. This prints the value of the string variable str

and then moves the cursor to the beginning of the next line on the screen. For example, the program

segment

char line [80];
gets (line);
puts (line);

reads a line of text from the keyboard and displays it on the screen. Note that the syntax is very simple

compared to using the scanf and printf statements.

CProgramming|

CProgramming|
CProgrammin|
CProgrammi|
CProgramm|
CProgram|
CProgra|
CProgr|
CProg|
CPro|
CPr|
CP|
C|

 C|

 C|
 C|
 C|
 C|
 C|
 C|
 C|
 C|
 C|
 C|
 C|
C|

330 Introduction to Computing

11.5 ARITHMETIC OPERATIONS ON CHARACTERS

C allows us to manipulate characters the same way we do with numbers. Whenever a character constant

or character variable is used in an expression, it is automatically converted into an integer value by the

system. The integer value depends on the local character set of the system.

To write a character in its integer representation, we may write it as an integer. For example, if the

machine uses the ASCII representation, then,

x = ‘a’;
printf(“%d\n”,x);

will display the number 97 on the screen.

It is also possible to perform arithmetic operations on the character constants and variables. For example,

x = ‘z’–1;

is a valid statement. In ASCII, the value of �z� is 122 and therefore, the statement will assign the value

121 to the variable x.

We may also use character constants in relational expressions. For example, the expression

ch >= ‘A’ && ch <= ‘Z’

would test whether the character contained in the variable ch is an upper-case letter.

We can convert a character digit to its equivalent integer value using the following relationship:

x = character - ‘0’;

where x is defined as an integer variable and character contains the character digit. For example, let us

assume that the character contains the digit �7�,

Then,

x = ASCII value of �7� � ASCII value of �0�

= 55 � 48

= 7

The C library supports a function that converts a string of digits into their integer values. The function

takes the form

x = atoi(string);

x is an integer variable and string is a character array containing a string of digits. Consider the follow-

ing segment of a program:

number = “1988”;
year = atoi(number);

number is a string variable which is assigned the string constant �1988�. The function atoi converts the

string �1988� (contained in number) to its numeric equivalent 1988 and assigns it to the integer vari-

able year. String conversion functions are stored in the header file <std.lib.h>.

Example 11.6 Write a program which would print the alphabet set a to z and A to Z in
decimal and character form.

The program is shown in Fig. 11.7. In ASCII character set, the decimal numbers 65 to 90 represent

upper case alphabets and 97 to 122 represent lower case alphabets. The values from 91 to 96 are ex-

cluded using an if statement in the for loop.

Character Arrays and Strings 331

Program
main()
{

char c;
printf(“\n\n”);
for(c = 65 ; c <= 122 ; c = c + 1)
{

if(c > 90 && c < 97)
continue;

printf(“|%4d - %c “, c, c);
}
printf(“|\n”);

}

Output
| 65 - A | 66 - B | 67 - C | 68 - D | 69 - E | 70 - F
| 71 - G | 72 - H | 73 - I | 74 - J | 75 - K | 76 - L
| 77 - M| 78 - N| 79 - O| 80 - P| 81 - Q| 82 - R
| 83 - S| 84 - T| 85 - U| 86 - V| 87 - W| 88 - X
| 89 - Y| 90 - Z| 97 - a| 98 - b| 99 - c| 100 - d
|101 - e| 102 - f| 103 - g| 104 - h| 105 - i| 106 - j
|107 - k| 108 - l| 109 - m| 110 - n| 111 - o| 112 - p
|113 - q| 114 - r| 115 - s| 116 - t| 117 - u| 118 - v
|119 - w| 120 - x| 121 - y| 122 - z|

Fig. 11.7 Printing of the alphabet set in decimal and character form

11.6 PUTTING STRINGS TOGETHER

Just as we cannot assign one string to another directly, we cannot join two strings together by the simple

arithmetic addition. That is, the statements such as

string3 = string1 + string2;
string2 = string1 + “hello”;

are not valid. The characters from string1 and string2 should be copied into the string3 one after the

other. The size of the array string3 should be large enough to hold the total characters.

The process of combining two strings together is called concatenation. Example 11.7 illustrates the

concatenation of three strings.

Example 11.7 The names of employees of an organization are stored in three arrays,
namely first_name, second_name, and last_name. Write a program to
concatenate the three parts into one string to be called name.

The program is given in Fig. 11.8. Three for loops are used to copy the three strings. In the first loop, the

characters contained in the first_name are copied into the variable name until the null character is

reached. The null character is not copied; instead it is replaced by a space by the assignment statement

332 Introduction to Computing

name[i] = ‘ ’ ;

Similarly, the second_name is copied into name, starting from the column just after the space created

by the above statement. This is achieved by the assignment statement

name[i+j+1] = second_name[j];

If first_name contains 4 characters, then the value of i at this point will be 4 and therefore the first

character from second_name will be placed in the fifth cell of name. Note that we have stored a space

in the fourth cell.

In the same way, the statement

name[i+j+k+2] = last_name[k];

is used to copy the characters from last_name into the proper locations of name.

At the end, we place a null character to terminate the concatenated string name. In this example, it is

important to note the use of the expressions i+j+1 and i+j+k+2.

Program
main()
{

int i, j, k ;
char first_name[10] = {“VISWANATH”} ;
char second_name[10] = {“PRATAP”} ;
char last_name[10] = {“SINGH”} ;
char name[30] ;

/* Copy first_name into name */
for(i = 0 ; first_name[i] != ‘\0’ ; i++)

name[i] = first_name[i] ;
/* End first_name with a space */

name[i] = ‘ ‘ ;
/* Copy second_name into name */

for(j = 0 ; second_name[j] != ‘\0’ ; j++)
name[i+j+1] = second_name[j] ;

/* End second_name with a space */
name[i+j+1] = ‘ ‘ ;

/* Copy last_name into name */
for(k = 0 ; last_name[k] != ‘\0’; k++)

name[i+j+k+2] = last_name[k] ;
/* End name with a null character */

name[i+j+k+2] = ‘\0’ ;
printf(“\n\n”) ;
printf(“%s\n”, name) ;

}
Output

VISWANATH PRATAP SINGH

Fig. 11.8 Concatenation of strings

Character Arrays and Strings 333

11.7 COMPARISON OF TWO STRINGS

Once again, C does not permit the comparison of two strings directly. That is, the statements such as

if(name1 == name2)
if(name == “ABC”)

are not permitted. It is therefore necessary to compare the two strings to be tested, character by charac-

ter. The comparison is done until there is a mismatch or one of the strings terminates into a null charac-

ter, whichever occurs first. The following segment of a program illustrates this.

i=0;
while(str1[i] == str2[i] && str1[i] != ‘\0’

&& str2[i] != ‘\0’)
i = i+1;

if (str1[i] == ‘\0’ && str2[i] == ‘\0’)
printf(“strings are equal\n”);

else
printf(“strings are not equal\n”);

11.8 STRING-HANDLING FUNCTIONS

Fortunately, the C library supports a large number of string-handling functions that can be used to carry

out many of the string manipulations discussed so far. Following are the most commonly used string-

handling functions.

Function Action

strcat() concatenates two strings

strcmp() compares two strings

strcpy() copies one string over another

strlen() finds the length of a string

We shall discuss briefly how each of these functions can be used in the processing of strings.

strcat() Function

The strcat function joins two strings together. It takes the following form:

strcat(string1, string2);

string1 and string2 are character arrays. When the function strcat is executed, string2 is appended to

string1. It does so by removing the null character at the end of string1 and placing string2 from there.

The string at string2 remains unchanged. For example, consider the following three strings:

334 Introduction to Computing

0

0

0

Part1 =

Part2 =

Part3 =

Execution of the statement

01

1

1

12

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7 8 9

0\V E R Y

0

0

\

\

G

B

O

A

O

D

D

strcat(part1, part2);
will result in:

0

0

Part1 =

Part2 =

while the statement

01

1

1 22

2

3

3

4

4

5

5

6

6

7 8 9

0\G O O D

0\GV E R Y O O D

0

Part1 =

will result in:

01 1 22 3 4 5 6 7 8 9

0\BV E R Y A D

0

Part3 =

1 2 3 4 5 6

0\B A D

We must make sure that the size of string1 (to which string2 is appended) is large enough to accommo-

date the final string.

strcat function may also append a string constant to a string variable. The following is valid:

strcat(part1,”GOOD”);

C permits nesting of strcat functions. For example, the statement

strcat(strcat(string1,string2), string3);

is allowed and concatenates all the three strings together. The resultant string is stored in string1.

strcmp() Function

The strcmp function compares two strings identified by the arguments and has a value 0 if they are

equal. If they are not, it has the numeric difference between the first nonmatching characters in the

strings. It takes the form:

Character Arrays and Strings 335

strcmp(string1, string2);

string1 and string2 may be string variables or string constants. Examples are:

strcmp(name1, name2);
strcmp(name1, “John”);
strcmp(“Rom”, “Ram”);

Our major concern is to determine whether the strings are equal; if not, which is alphabetically above.

The value of the mismatch is rarely important. For example, the statement

strcmp(“their”, “there”);

will return a value of �9 which is the numeric difference between ASCII �i� and ASCII �r�. That is, �i�

minus �r� in ASCII code is �9. If the value is negative, string1 is alphabetically above string2.

strcpy() Function

The strcpy function works almost like a string-assignment operator. It takes the form:

strcpy(string1, string2);

and assigns the contents of string2 to string1. string2 may be a character array variable or a string

constant. For example, the statement

strcpy(city, “DELHI”);

will assign the string �DELHI� to the string variable city. Similarly, the statement

strcpy(city1, city2);

will assign the contents of the string variable city2 to the string variable city1. The size of the array

city1 should be large enough to receive the contents of city2.

strlen() Function

This function counts and returns the number of characters in a string. It takes the form

n = strlen(string);

Where n is an integer variable, which receives the value of the length of the string. The argument may

be a string constant. The counting ends at the first null character.

Example 11.8 s1, s2, and s3 are three string variables. Write a program to read two
string constants into s1 and s2 and compare whether they are equal or
not. If they are not, join them together. Then copy the contents of s1 to
the variable s3. At the end, the program should print the contents of all
the three variables and their lengths.

The program is shown in Fig. 11.9. During the first run, the input strings are �New� and �York�. These

strings are compared by the statement

x = strcmp(s1, s2);

Since they are not equal, they are joined together and copied into s3 using the statement

strcpy(s3, s1);

The program outputs all the three strings with their lengths.

336 Introduction to Computing

During the second run, the two strings s1 and s2 are equal, and therefore, they are not joined together.

In this case all the three strings contain the same string constant �London�.

Program
#include <string.h>
main()
{ char s1[20], s2[20], s3[20];

int x, l1, l2, l3;
printf(“\n\nEnter two string constants \n”);
printf(“?”);
scanf(“%s %s”, s1, s2);

/*comparing s1 and s2 */
x = strcmp(s1, s2);
if(x != 0)
{ printf(“\n\nStrings are not equal \n”);

strcat(s1, s2); /* joining s1 and s2 */
}
else

printf(“\n\nStrings are equal \n”);
/*copying s1 to s3

strcpy(s3, s1);
/*Finding length of strings */

l1 = strlen(s1);
l2 = strlen(s2);
l3 = strlen(s3);

/*output */
printf(“\ns1 = %s\t length = %d characters\n”, s1, l1);
printf(“s2 = %s\t length = %d characters\n”, s2, l2);
printf(“s3 = %s\t length = %d characters\n”, s3, l3);

}
Output

Enter two string constants
? New York

Strings are not equal
s1 = NewYork length = 7 characters
s2 = York length = 4 characters
s3 = NewYork length = 7 characters

Enter two string constants
? London London

Strings are equal

s1 = London length = 6 characters
s2 = London length = 6 characters
s3 = London length = 6 characters

Fig. 11.9 Illustration of string handling functions

Character Arrays and Strings 337

Other String Functions

The header file <string.h> contains many more string manipulation functions. They might be useful in

certain situations.

strncpy

In addition to the function strcpy that copies one string to another, we have another function strncpy

that copies only the left-most n characters of the source string to the target string variable. This is a

three-parameter function and is invoked as follows:

strncpy(s1, s2, 5);

This statement copies the first 5 characters of the source string s2 into the target string s1. Since the first

5 characters may not include the terminating null character, we have to place it explicitly in the 6th

position of s2 as shown below:

s1[6] =’\0’;

Now, the string s1 contains a proper string.

strncmp

A variation of the function strcmp is the function strncmp. This function has three parameters as

illustrated in the function call below:

strncmp (s1, s2, n);

this compares the left-most n characters of s1 to s2 and returns.

(a) 0 if they are equal;

(b) negative number, if s1 sub-string is less than s2; and

(c) positive number, otherwise.

strncat

This is another concatenation function that takes three parameters as shown below:

strncat (s1, s2, n);

This call will concatenate the left-most n characters of s2 to the end of s1. Example:

S1 :

S2 :

S :1

After (s1, s2, 4); execution:strncat

0

0

\

\

G

B

U

A

U

A

S

G

M

R

R

L

A

U

Y

U

0\B A L A

strstr

It is a two-parameter function that can be used to locate a sub-string in a string. This takes the forms:

strstr (s1, s2);

338 Introduction to Computing

strstr (s1, “ABC”);

The function strstr searches the string s1 to see whether the string s2 is contained in s1. If yes, the

function returns the position of the first occurrence of the sub-string. Otherwise, it returns a NULL

pointer. Example.

if (strstr (s1, s2) == NULL)
printf(“substring is not found”);

else
printf(“s2 is a substring of s1”);

We also have functions to determine the existence of a character in a string. The function call

strchr(s1, ‘m’);

will locate the first occurrence of the character �m� and the call

strrchr(s1, ‘m’);

will locate the last occurrence of the character �m� in the string s1.

Warnings

∑∑∑∑∑ When allocating space for a string during declaration, remember to count the ter-

minating null character.

∑∑∑∑∑ When creating an array to hold a copy of a string variable of unknown size, we can

compute the size required using the expression

strlen (stringname) +1.

∑∑∑∑∑ When copying or concatenating one string to another, we must ensure that the

target (destination) string has enough space to hold the incoming characters. Re-

member that no error message will be available even if this condition is not satis-

fied. The copying may overwrite the memory and the program may fail in an un-

predictable way.

∑∑∑∑∑ When we use strncpy to copy a specific number of characters from a source string,

we must ensure to append the null character to the target string, in case the number

of characters is less than or equal to the source string.

11.9 TABLE OF STRINGS

We often use lists of character strings, such as a list of the names of students in a class, list of the names

of employees in an organization, list of places, etc. A list of names can be treated as a table of strings and

a two-dimensional character array can be used to store the entire list. For example, a character array

student[30][15] may be used to store a list of 30 names, each of length not more than 15 characters.

Shown below is a table of five cities:

Character Arrays and Strings 339

C

A

H

M

B

h

h

y

a

o

a

m

d

d

m

n

e

e

r

b

d

d

r

a

a

i

a

a

s

y

g

b

b

a

a

a

r

d

d

h

This table can be conveniently stored in a character array city by using the following declaration:

char city[] []
{
“Chandigarh”,
“Madras”,
“Ahmedabad”,
“Hyderabad”,
“Bombay”

} ;
To access the name of the ith city in the list, we write

city[i-1]

and therefore city[0] denotes �Chandigarh�, city[1] denotes �Madras� and so on. This shows that once

an array is declared as two-dimensional, it can be used like a one-dimensional array in further manipu-

lations. That is, the table can be treated as a column of strings.

Example 11.9 Write a program that would sort a list of names in alphabetical order.

A program to sort the list of strings in alphabetical order is given in Fig. 11.10. It employs the method of

bubble sorting described in Case Study 1 in the previous chapter.

Program
#define ITEMS 5
#define MAXCHAR 20
main()
{

char string[ITEMS][MAXCHAR], dummy[MAXCHAR];
int i = 0, j = 0;
/* Reading the list */
printf (“Enter names of %d items \n “,ITEMS);
while (i < ITEMS)

scanf (“%s”, string[i++]);
/* Sorting begins */
for (i=1; i < ITEMS; i++) /* Outer loop begins */
{

for (j=1; j <= ITEMS-i ; j++) /*Inner loop begins*/
{

340 Introduction to Computing

if (strcmp (string[j-1], string[j]) > 0)
{ /* Exchange of contents */

strcpy (dummy, string[j-1]);
strcpy (string[j-1], string[j]);
strcpy (string[j], dummy);

}
} /* Inner loop ends */

} /* Outer loop ends */
/* Sorting completed */
printf (“\nAlphabetical list \n\n”);
for (i=0; i < ITEMS ; i++)

printf (“%s”, string[i]);
}

Output
Enter names of 5 items
London Manchester Delhi Paris Moscow

Alphabetical list

Delhi
London
Manchester
Moscow
Paris

Fig. 11.10 Sorting of strings in alphabetical order

Note that a two-dimensional array is used to store the list of strings. Each string is read using a scanf

function with %s format. Remember, if any string contains a white space, then the part of the string after

the white space will be treated as another item in the list by the scanf. In such cases, we should read the

entire line as a string using a suitable algorithm. For example, we can use gets function to read a line of

text containing a series of words. We may also use puts function in place of scanf for output.

11.10 OTHER FEATURES OF STRINGS

Other aspects of strings we have not discussed in this chapter include:

∑ Manipulating strings using pointers.

∑ Using string as function parameters.

∑ Declaring and defining strings as members of structures.

These topics will be dealt with later when we discuss functions, structures and pointers.

Character Arrays and Strings 341

Just Remember

Character constants are enclosed in single quotes and string constants are

enclosed in double quotes.

Allocate sufficient space in a character array to hold the null character at the

end.

Avoid processing single characters as strings.

Using the address operator & with a string variable in the scanf function call

is an error.

It is a compile time error to assign a string to a character variable.

Using a string variable name on the left of the assignment operator is illegal.

When accessing individual characters in a string variable, it is logical error to

access outside the array bounds.

Strings cannot be manipulated with operators. Use string functions.

Do not use string functions on an array char type that is not terminated with

the null character.

Do not forget to append the null character to the target string when the number

of characters copied is less than or equal to the source string.

Be aware the return values when using the functions strcmp and strncmp for

comparing strings.

When using string functions for copying and concatenating strings, make sure

that the target string has enough space to store the resulting string. Otherwise

memory overwriting may occur.

The header file <stdio.h> is required when using standard I/O functions.

The header file <ctype.h> is required when using character handling functions.

The header file <stdlib.h> is required when using general utility functions.

The header file <string.h> is required when using string manipulation func-

tions.

Case Studies

1. Counting Words in a Text

One of the practical applications of string manipulations is counting the words in a text. We assume that

a word is a sequence of any characters, except escape characters and blanks, and that two words are

separated by one blank character. The algorithm for counting words is as follows:

1. Read a line of text.

2. Beginning from the first character in the line, look for a blank. If a blank is found, increment words

by 1.

3. Continue steps 1 and 2 until the last line is completed.

The implementation of this algorithm is shown in Fig. 11.11. The first while loop will be executed

once for each line of text. The end of text is indicated by pressing the �Return� key an extra time after the

entire text has been entered. The extra �Return� key causes a newline character as input to the last line

and as a result, the last line contains only the null character.

342 Introduction to Computing

The program checks for this special line using the test

if (line[0] == �\0�)

and if the first (and only the first) character in the line is a null character, then counting is terminated.

Note the difference between a null character and a blank character.

Program
#include <stdio.h>
main()
{

char line[81], ctr;
int i,c,

end = 0,
characters = 0,
words = 0,
lines = 0;

printf(“KEY IN THE TEXT.\n”);
printf(“GIVE ONE SPACE AFTER EACH WORD.\n”);
printf(“WHEN COMPLETED, PRESS ‘RETURN’.\n\n”);
while(end == 0)
{

/* Reading a line of text */
c = 0;
while((ctr=getchar()) != ‘\n’)

line[c++] = ctr;
line[c] = ‘\0’;
/* counting the words in a line */
if(line[0] == ‘\0’)

break ;
else
{

words++;
for(i=0; line[i] != ‘\0’;i++)

if(line[i] == ‘ ‘ || line[i] == ‘\t’)
words++;

}
/* counting lines and characters */
lines = lines +1;
characters = characters + strlen(line);

}
printf (“\n”);
printf(“Number of lines = %d\n”, lines);
printf(“Number of words = %d\n”, words);
printf(“Number of characters = %d\n”, characters);

}

Character Arrays and Strings 343

Output
KEY IN THE TEXT.
GIVE ONE SPACE AFTER EACH WORD.
WHEN COMPLETED, PRESS ‘RETURN’.

Admiration is a very short-lived passion.
Admiration involves a glorious obliquity of vision.
Always we like those who admire us but we do not
like those whom we admire.
Fools admire, but men of sense approve.

Number of lines = 5
Number of words = 36
Number of characters = 205

Fig. 11.11 Counting of characters, words and lines in a text

The program also counts the number of lines read and the total number of characters in the text.

Remember, the last line containing the null string is not counted.

After the first while loop is exited, the program prints the results of counting.

2. Processing of a Customer List

Telephone numbers of important customers are recorded as follows:

Full name Telephone number

Joseph Louis Lagrange 869245

Jean Robert Argand 900823

Carl Freidrich Gauss 806788

� � �� � � � � � �

� � �� � � � � � �

It is desired to prepare a revised alphabetical list with surname (last name) first, followed by a comma

and the initials of the first and middle names. For example,

Argand,J.R

We create a table of strings, each row representing the details of one person, such as first_name,

middle_name, last_name, and telephone_number. The columns are interchanged as required and the list

is sorted on the last_name. Figure 11.12 shows a program to achieve this.

Program

#define CUSTOMERS 10

main()
{

char first_name[20][10], second_name[20][10],
surname[20][10], name[20][20],
telephone[20][10], dummy[20];

344 Introduction to Computing

int i,j;

printf(“Input names and telephone numbers \n”);
printf(“?”);
for(i=0; i < CUSTOMERS ; i++)
{

scanf(“%s %s %s %s”, first_name[i],
second_name[i], surname[i], telephone[i]);

/* converting full name to surname with initials */

strcpy(name[i], surname[i]);
strcat(name[i], “,”);
dummy[0] = first_name[i][0];
dummy[1] = ‘\0’;
strcat(name[i], dummy);
strcat(name[i], “.”);
dummy[0] = second_name[i][0];
dummy[1] = ‘\0’;
strcat(name[i], dummy);

}
 /* Alphabetical ordering of surnames */

 for(i=1; i <= CUSTOMERS-1; i++)
 for(j=1; j <= CUSTOMERS-i; j++)
 if(strcmp (name[j-1], name[j]) > 0)
 {
 /* Swaping names */
 strcpy(dummy, name[j-1]);
 strcpy(name[j-1], name[j]);
 strcpy(name[j], dummy);

 /* Swaping telephone numbers */
 strcpy(dummy, telephone[j-1]);
 strcpy(telephone[j-1],telephone[j]);
 strcpy(telephone[j], dummy);
 }

 /* printing alphabetical list */

printf(“\nCUSTOMERS LIST IN ALPHABETICAL ORDER \n\n”);
for(i=0; i < CUSTOMERS ; i++)

 printf(“ %-20s\t %-10s\n”, name[i], telephone[i]);
 }

Character Arrays and Strings 345

Output

 Input names and telephone numbers
 ?Gottfried Wilhelm Leibniz 711518
 Joseph Louis Lagrange 869245

 Jean Robert Argand 900823
 Carl Freidrich Gauss 806788
 Simon Denis Poisson 853240
 Friedrich Wilhelm Bessel 719731
 Charles Francois Sturm 222031
 George Gabriel Stokes 545454
 Mohandas Karamchand Gandhi 362718
 Josian Willard Gibbs 123145

 CUSTOMERS LIST IN ALPHABETICAL ORDER

 Argand,J.R 900823
 Bessel,F.W 719731
 Gandhi,M.K 362718
 Gauss,C.F 806788
 Gibbs,J.W 123145
 Lagrange,J.L 869245
 Leibniz,G.W 711518
 Poisson,S.D 853240
 Stokes,G.G 545454

 Sturm,C.F 222031

Fig. 11.12 Program to alphabetize a customer list

Review Questions

11.1 State whether the following statements are true or false

(a) When initializing a string variable during its declaration, we must include the null character

as part of the string constant, like �GOOD\0�.

(b) The gets function automatically appends the null character at the end of the string read from

the keyboard.

(c) When reading a string with scanf, it automatically inserts the terminating null character.

(d) String variables cannot be used with the assignment operator.

(e) We cannot perform arithmetic operations on character variables.

(f) We can assign a character constant or a character variable to an int type variable.

(g) The function scanf cannot be used in any way to read a line of text with the white-spaces.

(h) The ASCII character set consists of 128 distinct characters.

(i) In the ASCII collating sequence, the uppercase letters precede lowercase letters.

(j) In C, it is illegal to mix character data with numeric data in arithmetic operations.

(k) The function getchar skips white-space during input.

346 Introduction to Computing

(l) In C, strings cannot be initialized at run time.

(m) The input function gets has one string parameter.

(n) The function call strcpy(s2, s1); copies string s2 into string s1.

(o) The function call strcmp(�abc�, �ABC�); returns a positive number.

11.2 Fill in the blanks in the following statements.

(a) We can use the conversion specification _______in scanf to read a line of text.

(b) We can initialize a string using the string manipulation function_______.

(c) The function strncat has _______ parameters.

(d) To use the function atoi in a program, we must include the header file _______.

(e) The function _______does not require any conversion specification to read a string from the

keyboard.

(f) The function _______ is used to determine the length of a string.

(g) The _______string manipulation function determines if a character is contained in a string.

(h) The function _______is used to sort the strings in alphabetical order.

(i) The function call strcat (s2, s1); appends _______ to _______.

(j) The printf may be replaced by _______function for printing strings.

11.3 Describe the limitations of using getchar and scanf functions for reading strings.

11.4 Character strings in C are automatically terminated by the null character. Explain how this fea-

ture helps in string manipulations.

11.5 Strings can be assigned values as follows:

(a) During type declaration char string[] = {�.......�};

(b) Using strcpy function strcpy(string, �.......�);

(c) Reading using scanf function scanf(�%s�, string);

(d) Reading using gets function gets(string);

Compare them critically and describe situations where one is superior to the others.

11.6 Assuming the variable string contains the value �The sky is the limit.�, determine what output of

the following program segments will be.

(a) printf(�%s�, string);

(b) printf(�%25.10s�, string);

(c) printf(�%s�, string[0]);

(d) for (i=0; string[i] != �.�; i++)

printf(�%c�, string[i]);

(e) for (i=0; string[i] != �\0�; i++;)

printf(�%d\n�, string[i]);

(f) for (i=0; i <= strlen[string]; ;)

{

string[i++] = i;

printf(�%s\n�, string[i]);

}

(g) printf(�%c\n�, string[10] + 5);

(h) printf(�%c\n�, string[10] + 5')

11.7 Which of the following statements will correctly store the concatenation of strings s1 and s2 in

string s3?

(a) s3 = strcat (s1, s2);

(b) strcat (s1, s2, s3);

Character Arrays and Strings 347

(c) strcat (s3, s2, s1);

(d) strcpy (s3, strcat (s1, s2));

(e) strcmp (s3, strcat (s1, s2));

(f) strcpy (strcat (s1, s2), s3);

11.8 What will be the output of the following statement?

printf (“%d”, strcmp (“push”, “pull”));

11.9 Assume that s1, s2 and s3 are declared as follows:

char s1[10] = “he”, s2[20] = “she”, s3[30], s4[30];

What will be the output of the following statements executed in sequence?

printf(“%s”, strcpy(s3, s1));
printf(“%s”, strcat(strcat(strcpy(s4, s1), “or”), s2));
printf(“%d %d”, strlen(s2)+strlen(s3), strlen(s4));

11.10 Find errors, if any, in the following code segments;

(a) char str[10]

strncpy(str, �GOD�, 3);

printf(�%s�, str);

(b) char str[10];

strcpy(str, �Balagurusamy�);

(c) if strstr(�Balagurusamy�, �guru�) = = 0);

printf(�Substring is found�);

(d) char s1[5], s2[10],

gets(s1, s2);

11.11 What will be the output of the following segment?

char s1[] = �Kolkotta� ;

char s2[] = �Pune� ;

strcpy (s1, s2) ;

printf(�%s�, s1) ;

11.12 What will be the output of the following segment?

char s1[] = �NEW DELHI� ;

char s2[] = �BANGALORE� ;

strncpy (s1, s2, 3) ;

printf(�%s�, s1) ;

11.13 What will be the output of the following code?

char s1[] = �Jabalpur� ;

char s2[] = �Jaipur� ;

printf(strncmp(s1, s2, 2));

11.14 What will be the output of the following code?

char s1[] = "ANIL KUMAR GUPTA";

char s2[] = "KUMAR";

printf (strstr (s1, s2));

11.15 Compare the working of the following functions:

(a) strcpy and strncpy;

(b) strcat and strncat; and

(c) strcmp and strncmp.

348 Introduction to Computing

Programming Exercises

11.1 Write a program, which reads your name from the keyboard and outputs a list of ASCII codes,

which represent your name.

11.2 Write a program to do the following:

(a) To output the question �Who is the inventor of C ?�

(b) To accept an answer.

(c) To print out �Good� and then stop, if the answer is correct.

(d) To output the message �try again�, if the answer is wrong.

(e) To display the correct answer when the answer is wrong even at the third attempt and stop.

11.3 Write a program to extract a portion of a character string and print the extracted string. Assume

that m characters are extracted, starting with the nth character.

11.4 Write a program which will read a text and count all occurrences of a particular word.

11.5 Write a program which will read a string and rewrite it in the alphabetical order. For example,

the word STRING should be written as GINRST.

11.6 Write a program to replace a particular word by another word in a given string. For example, the

word �PASCAL� should be replaced by �C� in the text �It is good to program in PASCAL

language.�

11.7 A Maruti car dealer maintains a record of sales of various vehicles in the following form:

Vehicle type Month of sales Price

MARUTI-800 02/01 210000

MARUTI-DX 07/01 265000

GYPSY 04/02 315750

MARUTI-VAN 08/02 240000

Write a program to read this data into a table of strings and output the details of a particular

vehicle sold during a specified period. The program should request the user to input the vehicle

type and the period (starting month, ending month).

11.8 Write a program that reads a string from the keyboard and determines whether the string is a

palindrome or not. (A string is a palindrome if it can be read from left and right with the same

meaning. For example, Madam and Anna are palindrome strings. Ignore capitalization).

11.9 Write program that reads the cost of an item in the form RRRR.PP (Where RRRR denotes Rupees

and PP denotes Paise) and converts the value to a string of words that expresses the numeric

value in words. For example, if we input 125.75, the output should be �ONE HUNDRED

TWENTY FIVE AND PAISE SEVENTY FIVE�.

11.10 Develop a program that will read and store the details of a list of students in the format

Roll No. Name Marks obtained

. .

.

.

and produce the following output lits:

(a) Alphabetical list of names, roll numbers and marks obtained.

(b) List sorted on roll numbers.

(c) List sorted on marks (rank-wise list)

11.11 Write a program to read two strings and compare them using the function strncmp() and print

a message that the first string is equal, less, or greater than the second one.

Character Arrays and Strings 349

11.12 Write a program to read a line of text from the keyboard and print out the number of occurrences

of a given substring using the function strstr ().

11.13 Write a program that will copy m consecutive characters from a string s1 beginning at position n

into another string s2.

11.14 Write a program to create a directory of students with roll numbers. The program should display

the roll number for a specified name and vice-versa.

11.15 Given a string

char str [] = �123456789� ;

Write a program that displays the following:

1

2 3 2

3 4 5 4 3

4 5 6 7 6 5 4

5 6 7 8 9 8 7 6 5

Pointers

12.1 INTRODUCTION

A pointer is a derived data type in C. It is built from one of the fundamental data types available in C.

Pointers contain memory addresses as their values. Since these memory addresses are the locations in

the computer memory where program instructions and data are stored, pointers can be used to access and

manipulate data stored in the memory.

Pointers are undoubtedly one of the most distinct and exciting features of C language. It has added

power and flexibility to the language. Although they appear little confusing and difficult to understand

for a beginner, they are a powerful tool and handy to use once they are mastered.

Pointers are used frequently in C, as they offer a number of benefits to the programmers. They include:

1. Pointers are more efficient in handling arrays and data tables.

2. Pointers can be used to return multiple values from a function via function arguments.

3. Pointers permit references to functions and thereby facilitating passing of functions as

arguments to other functions.

4. The use of pointer arrays to character strings results in saving of data storage space in memory.

5. Pointers allow C to support dynamic memory management.

6. Pointers provide an efficient tool for manipulating dynamic data structures such as structures,

linked lists, queues, stacks and trees.

7. Pointers reduce length and complexity of programs.

8. They increase the execution speed and thus reduce the program execution time.

Of course, the real power of C lies in the proper use of pointers. In this chapter, we will examine the

pointers in detail and illustrate how to use them in program development.

12.2 UNDERSTANDING POINTERS

The computer�s memory is a sequential collection of storage cells as shown in Fig. 12.1. Each cell,

commonly known as a byte, has a number called address associated with it. Typically, the addresses

CHAPTER

12

Pointers 351

are numbered consecutively, starting from zero. The last address depends on the memory size. A

computer system having 64 K memory will have its last address as 65,535.

0

Memory Cell Address

1

2

3

4

5

6

7

65,535

Fig. 12.1 Memory organisation

Whenever we declare a variable, the system allocates, somewhere in the memory, an appropriate

location to hold the value of the variable. Since, every byte has a unique address number, this location

will have its own address number. Consider the following statement

int quantity = 179;

This statement instructs the system to find a location for the integer variable quantity and puts the

value 179 in that location. Let us assume that the system has chosen the address location 5000 for

quantity. We may represent this as shown in Fig. 12.2. (Note that the address of a variable is the

address of the first byte occupied by that variable.)

Variable

Address

Value

Quantity

5000

179

Fig. 12.2 Representation of a variable

352 Introduction to Computing

During execution of the program, the system always associates the name quantity with the address

5000. (This is something similar to having a house number as well as a house name.) We may have

access to the value 179 by using either the name quantity or the address 5000. Since memory ad-

dresses are simply numbers, they can be assigned to some variables, that can be stored in memory,

like any other variable. Such variables that hold memory addresses are called pointer variables. A

pointer variable is, therefore, nothing but a variable that contains an address, which is a location of

another variable in memory.

Remember, since a pointer is a variable, its value is also stored in the memory in another location.

Suppose, we assign the address of quantity to a variable p. The link between the variables p and

quantity can be visualized as shown in Fig.12.3. The address of p is 5048.

quantity

P

Variable Value Address

179 5000

5000 5048

Fig. 12.3 Pointer variable

Since the value of the variable p is the address of the variable quantity, we may access the value of

quantity by using the value of p and therefore, we say that the variable p �points� to the variable

quantity. Thus, p gets the name �pointer�. (We are not really concerned about the actual values of

pointer variables. They may be different everytime we run the program. What we are concerned about is

the relationship between the variables p and quantity.)

Underlying Concepts of Pointers

Pointers are built on the three underlying concepts as illustrated below:

Pointers

Pointer

constants

Pointer

values

Pointer

variables

Pointers 353

Memory addresses within a computer are referred to as pointer constants. We cannot

change them; we can only use them to store data values. They are like house

numbers.

We cannot save the value of a memory address directly. We can only obtain the

value through the variable stored there using the address operator (&). The value

thus obtained is known as pointer value. The pointer value (i.e. the address of a

variable) may change from one run of the program to another.

Once we have a pointer value, it can be stored into another variable. The variable

that contains a pointer value is called a pointer variable.

12.3 ACCESSING THE ADDRESS OF A VARIABLE

The actual location of a variable in the memory is system dependent and therefore, the address of a

variable is not known to us immediately. How can we then determine the address of a variable? This can

be done with the help of the operator & available in C. We have already seen the use of this address

operator in the scanf function. The operator & immediately preceding a variable returns the address of

the variable associated with it. For example, the statement

p = &quantity;

would assign the address 5000 (the location of quantity) to the variable p. The & operator can be

remembered as �address of �.

The & operator can be used only with a simple variable or an array element. The following are illegal

uses of address operator:

1. &125 (pointing at constants).

2. int x[10];

&x (pointing at array names).

3. &(x+y) (pointing at expressions).

If x is an array, then expressions such as

&x[0] and &x[i+3]

are valid and represent the addresses of 0th and (i+3)th elements of x.

Example 12.1 Write a program to print the address of a variable along with its value.

The program shown in Fig. 12.4, declares and initializes four variables and then prints out these values

with their respective storage locations. Note that we have used %u format for printing address values.

Memory addresses are unsigned integers.

 Program

 main()
 {
 char a;
 int x;

354 Introduction to Computing

 float p, q;

 a = 'A';
 x = 125;
 p = 10.25, q = 18.76;
 printf("%c is stored at addr %u.\n", a, &a);
 printf("%d is stored at addr %u.\n", x, &x);
 printf("%f is stored at addr %u.\n", p, &p);
 printf("%f is stored at addr %u.\n", q, &q);

 }

Output

 A is stored at addr 4436.
 125 is stored at addr 4434.
 10.250000 is stored at addr 4442.
 18.760000 is stored at addr 4438.

Fig. 12.4 Accessing the address of a variable

12.4 DECLARING POINTER VARIABLES

In C, every variable must be declared for its type. Since pointer variables contain addresses that

belong to a separate data type, they must be declared as pointers before we use them. The declaration

of a pointer variable takes the following form:

data_type *pt_name;

This tells the compiler three things about the variable pt_name.

1. The asterisk (*) tells that the variable pt_name is a pointer variable.

2. pt_name needs a memory location.

3. pt_name points to a variable of type data_type.

For example,

int *p; /* integer pointer */

declares the variable p as a pointer variable that points to an integer data type. Remember that the

type int refers to the data type of the variable being pointed to by p and not the type of the value of the

pointer. Similarly, the statement

float *x; / * float pointer */

declares x as a pointer to a floating-point variable.

The declarations cause the compiler to allocate memory locations for the pointer variables p and

x. Since the memory locations have not been assigned any values, these locations may contain some

unknown values in them and therefore they point to unknown locations as shown:

Pointers 355

int *p; p

contains
garbage

points to
unknown location

? ?

Pointer Declaration Style

Pointer variables are declared similarly as normal variables except for the addition of

the unary * operator. This symbol can appear anywhere between the type name and the

printer variable name. Programmers use the following styles:

int* p; /* style 1 */

int *p; /* style 2 */

int * p; /* style 3 */

However, the style2 is becoming increasingly popular due to the following reasons:

1. This style is convenient to have multiple declarations in the same statement.

Example:

int *p, x, *q;

2. This style matches with the format used for accessing the target values. Exam-

ple:

int x, *p, y;

x = 10;

p = & x;

y = *p; /* accessing x through p */

p = 20; / assigning 20 to x */

We use in this book the style 2, namely,

int *p;

12.5 INITIALIZATION OF POINTER VARIABLES

The process of assigning the address of a variable to a pointer variable is known as initialization. As

pointed out earlier, all uninitialized pointers will have some unknown values that will be interpreted

as memory addresses. They may not be valid addresses or they may point to some values that are

wrong. Since the compilers do not detect these errors, the programs with uninitialized pointers will

produce erroneous results. It is therefore important to initialize pointer variables carefully before

they are used in the program.

Once a pointer variable has been declared we can use the assignment operator to initialize the

variable. Example:

int quantity;

356 Introduction to Computing

int *p; /* declaration */
p = &quantity; /* initialization */

We can also combine the initialization with the declaration. That is,

int *p = &quantity;

is allowed. The only requirement here is that the variable quantity must be declared before the

initialization takes place. Remember, this is an initialization of p and not *p.

We must ensure that the pointer variables always point to the corresponding type of data. For

example,

float a, b;
int x, *p;
p = &a; /* wrong */
b = *p;

will result in erroneous output because we are trying to assign the address of a float variable to an

integer pointer. When we declare a pointer to be of int type, the system assumes that any address

that the pointer will hold will point to an integer variable. Since the compiler will not detect such

errors, care should be taken to avoid wrong pointer assignments.

It is also possible to combine the declaration of data variable, the declaration of pointer variable

and the initialization of the pointer variable in one step. For example,

int x, *p = &x; /* three in one */

is perfectly valid. It declares x as an integer variable and p as a pointer variable and then initializes p

to the address of x. And also remember that the target variable x is declared first. The statement

int *p = &x, x;

is not valid.

We could also define a pointer variable with an initial value of NULL or 0 (zero). That is, the

following statements are valued

int *p = NULL;

int *p = 0;

Pointer Flexibility

Pointers are flexible. We can make the same pointer to point to different data variables

in different statements. Example;

int x, y, z, *p;

.

p = &x;

.

p = &y;

.

p = &z;

.

x y

p

z

Pointers 357

We can also use different pointers to point to the same data variable. Example.

int x;

int *p1 = &x;

int *p2 = &x;

int *p3 = &x;

.

.

With the exception of NULL and 0, no other constant value can be assigned to a pointer variable. For

example, the following is wrong:

int *p = 5360; / *absolute address */

12.6 ACCESSING A VARIABLE THROUGH ITS POINTER

Once a pointer has been assigned the address of a variable, the question remains as to how to access the

value of the variable using the pointer? This is done by using another unary operator * (asterisk), usually

known as the indirection operator. Another name for the indirection operator is the dereferencing

operator. Consider the following statements:

int quantity, *p, n;

quantity = 179;

p = &quantity;

n = *p;

The first line declares quantity and n as integer variables and p as a pointer variable pointing to an

integer. The second line assigns the value 179 to quantity and the third line assigns the address of

quantity to the pointer variable p. The fourth line contains the indirection operator *. When the

operator * is placed before a pointer variable in an expression (on the right-hand side of the equal

sign), the pointer returns the value of the variable of which the pointer value is the address. In this

case, *p returns the value of the variable quantity, because p is the address of quantity. The * can be

remembered as �value at address�. Thus the value of n would be 179. The two statements

p = &quantity;

n = *p;

are equivalent to

n = *&quantity;

which in turn is equivalent to

n = quantity;

In C, the assignment of pointers and addresses is always done symbolically, by means of symbolic

names. You cannot access the value stored at the address 5368 by writing *5368. It will not work.

Example 12.2 illustrates the distinction between pointer value and the value it points to.

Example 12.2 Write a program to illustrate the use of indirection operator ‘*’ to access
the value pointed to by a printer.

x

p1 p2 p3

358 Introduction to Computing

The program and output are shown in Fig.12.5. The program clearly shows how we can access the value

of a variable using a pointer. You may notice that the value of the pointer ptr is 4104 and the value it

points to is 10. Further, you may also note the following equivalences:

x = *(&x) = *ptr = y

&x = &*ptr

Program

 main()
 {
 int x, y;
 int *ptr;

 x = 10;
 ptr = &x;
 y = *ptr;

 printf("Value of x is %d\n\n",x);
 printf("%d is stored at addr %u\n", x, &x);
 printf("%d is stored at addr %u\n", *&x, &x);
 printf("%d is stored at addr %u\n", *ptr, ptr);
 printf("%d is stored at addr %u\n", ptr, &ptr);
 printf("%d is stored at addr %u\n", y, &y);
 *ptr = 25;
 printf("\nNow x = %d\n",x);

 }

Output

 Value of x is 10
 10 is stored at addr 4104

 10 is stored at addr 4104
 10 is stored at addr 4104
 4104 is stored at addr 4106
 10 is stored at addr 4108
 Now x = 25

Fig. 12.5 Accessing a variable through its pointer

The actions performed by the program are illustrated in Fig. 12.6. The statement ptr = &x assigns

the address of x to ptr and y = *ptr assigns the value pointed to by the pointer ptr to y.

Note the use of the assignment statement

*ptr = 25;

Pointers 359

This statement puts the value of 25 at the memory location whose address is the value of ptr. We

know that the value of ptr is the address of x and therefore, the old value of x is replaced by 25. This,
in effect, is equivalent to assigning 25 to x. This shows how we can change the value of a variable

indirectly using a pointer and the indirection operator.

x

4104

Values in the storage cells and their addressesStage

Declaration

x = 10

ptr = &x

y = *ptr

*ptr = 25

4104

4104

4104

4104

y

4108

4108

4108

4108

pointer to x

4106

4108

ptr

4106
address

address

address

address

4106

4106

4106

25

1010

10

10

10

4104

4104

4104

Fig. 12.6 Illustration of pointer assignments

12.7 CHAIN OF POINTERS

It is possible to make a pointer to point to another pointer, thus creating a chain of pointers as shown.

p2 p1 variable

address 2 address 1 value

Here, the pointer variable p2 contains the address of the pointer variable p1, which points to the

location that contains the desired value. This is known as multiple indirections.

A variable that is a pointer to a pointer must be declared using additional indirection operator

symbols in front of the name. Example:

int **p2;

360 Introduction to Computing

This declaration tells the compiler that p2 is a pointer to a pointer of int type. Remember, the pointer

p2 is not a pointer to an integer, but rather a pointer to an integer pointer.

We can access the target value indirectly pointed to by pointer to a pointer by applying the indirec-

tion operator twice. Consider the following code:

main ()
{

int x, *p1, **p2;
x = 100;
p1 = &x; /* address of x */
p2 = &p1 /* address of p1 */
printf (“%d”, **p2);

}

This code will display the value 100. Here, p1 is declared as a pointer to an integer and p2 as a

pointer to a pointer to an integer.

12.8 POINTER EXPRESSIONS

Like other variables, pointer variables can be used in expressions. For example, if p1 and p2 are

properly declared and initialized pointers, then the following statements are valid.

y = *p1 * *p2; same as (*p1) * (*p2)
sum = sum + *p1;
z = 5* – *p2/ *p1; same as (5 * (– (*p2)))/(*p1)
*p2 = *p2 + 10;

Note that there is a blank space between / and * in the item3 above. The following is wrong.
z = 5* – *p2 /*p1;

The symbol /* is considered as the beginning of a comment and therefore the statement fails.

C allows us to add integers to or subtract integers from pointers, as well as to subtract one pointer

from another. p1 + 4, p2�2 and p1 � p2 are all allowed. If p1 and p2 are both pointers to the same

array, then p2 � p1 gives the number of elements between p1 and p2.

We may also use short-hand operators with the pointers.

p1++;
—p2;
sum += *p2;

In addition to arithmetic operations discussed above, pointers can also be compared using the

relational operators. The expressions such as p1 > p2, p1 = = p2, and p1 != p2 are allowed. How-

ever, any comparison of pointers that refer to separate and unrelated variables makes no sense. Com-

parisons can be used meaningfully in handling arrays and strings.

We may not use pointers in division or multiplication. For example, expressions such as

p1 / p2 or p1 * p2 or p1 / 3

are not allowed. Similarly, two pointers cannot be added. That is, p1 + p2 is illegal.

Example 12.3 Write a program to illustrate the use of pointers in arithmetic operations.

The program in Fig.12.7 shows how the pointer variables can be directly used in expressions. It also

illustrates the order of evaluation of expressions. For example, the expression

Pointers 361

4* � *p2 / *p1 + 10

is evaluated as follows:

((4 * (�(*p2))) / (*p1)) + 10

When *p1 = 12 and *p2 = 4, this expression evaluates to 9. Remember, since all the variables are of

type int, the entire evaluation is carried out using the integer arithmetic.

Program
 main()
 {
 int a, b, *p1, *p2, x, y, z;
 a = 12;
 b = 4;
 p1 = &a;
 p2 = &b;
 x = *p1 * *p2 – 6;
 y = 4* – *p2 / *p1 + 10;
 printf("Address of a = %u\n", p1);
 printf("Address of b = %u\n", p2);
 printf("\n");
 printf("a = %d, b = %d\n", a, b);
 printf("x = %d, y = %d\n", x, y);
 *p2 = *p2 + 3;
 *p1 = *p2 – 5;
 z = *p1 * *p2 – 6;
 printf("\na = %d, b = %d,", a, b);

 printf(" z = %d\n", z);
 }

Output
 Address of a = 4020
 Address of b = 4016
 a = 12, b = 4
 x = 42, y = 9
 a = 2, b = 7, z = 8

Fig. 12.7 Evaluation of pointer expressions

12.9 POINTER INCREMENTS AND SCALE FACTOR

We have seen that the pointers can be incremented like

p1 = p2 + 2;
p1 = p1 + 1;

362 Introduction to Computing

and so on. Remember, however, an expression like

p1++;

will cause the pointer p1 to point to the next value of its type. For example, if p1 is an integer pointer

with an initial value, say 2800, then after the operation p1 = p1 + 1, the value of p1 will be 2802, and

not 2801. That is, when we increment a pointer, its value is increased by the �length� of the data type

that it points to. This length called the scale factor.

For an IBM PC, the length of various data types are as follows:

characters 1 byte

integers 2 bytes

floats 4 bytes

long integers 4 bytes

doubles 8 bytes

The number of bytes used to store various data types depends on the system and can be found by

making use of the sizeof operator. For example, if x is a variable, then sizeof(x) returns the number

of bytes needed for the variable. (Systems like Pentium use 4 bytes for storing integers and 2 bytes for

short integers.)

Rules of Pointer Operations

The following rules apply when performing operations on pointer variables.

1. A pointer variable can be assigned the address of another variable.

2. A pointer variable can be assigned the values of another pointer variable.

3. A pointer variable can be initialized with NULL or zero value.

4. A pointer variable can be pre-fixed or post-fixed with increment or decrement

operators.

5. An integer value may be added or subtracted from a pointer variable.

6. When two pointers point to the same array, one pointer variable can be sub-

tracted from another.

7. When two pointers point to the objects of the same data types, they can be

compared using relational operators.

8. A pointer variable cannot be multiplied by a constant.

9. Two pointer variables cannot be added.

10. A value cannot be assigned to an arbitrary address (i.e &x = 10; is illegal).

Pointers 363

12.10 POINTERS AND ARRAYS

When an array is declared, the compiler allocates a base address and sufficient amount of storage to

contain all the elements of the array in contiguous memory locations. The base address is the location

of the first element (index 0) of the array. The compiler also defines the array name as a constant

pointer to the first element. Suppose we declare an array x as follows:

int x[5] = {1, 2, 3, 4, 5};

Suppose the base address of x is 1000 and assuming that each integer requires two bytes, the five

elements will be stored as follows:

1

1000 1008100610041002

Base address

x[0]Elements

Address

Value

x[1] x[2] x[3] x[4]

2 3 4 5

The name x is defined as a constant pointer pointing to the first element, x[0] and therefore the

value of x is 1000, the location where x[0] is stored. That is,

x = &x[0] = 1000

If we declare p as an integer pointer, then we can make the pointer p to point to the array x by the

following assignment:

p = x;

This is equivalent to

p = &x[0];

Now, we can access every value of x using p++ to move from one element to another. The rela-

tionship between p and x is shown as:

p = &x[0] (= 1000)

p+1 = &x[1] (= 1002)

p+2 = &x[2] (= 1004)

p+3 = &x[3] (= 1006)

p+4 = &x[4] (= 1008)

You may notice that the address of an element is calculated using its index and the scale factor of

the data type. For instance,

address of x[3] = base address + (3 x scale factor of int)

= 1000 + (3 x 2) = 1006

When handling arrays, instead of using array indexing, we can use pointers to access array ele-

ments. Note that *(p+3) gives the value of x[3]. The pointer accessing method is much faster than

array indexing.

Example 12.4 illustrates the use of pointer accessing method.

364 Introduction to Computing

Example 12.4 Write a program using pointers to compute the sum of all elements
stored in an array.

The program shown in Fig. 12.8 illustrates how a pointer can be used to traverse an array element. Since

incrementing an array pointer causes it to point to the next element, we need only to add one to p each

time we go through the loop.

Program
 main()
 {
 int *p, sum, i;
 int x[5] = {5,9,6,3,7};
 i = 0;
 p = x; /* initializing with base address of x */
 printf("Element Value Address\n\n");
 while(i < 5)
 {
 printf(" x[%d] %d %u\n", i, *p, p);
 sum = sum + *p; /* accessing array element */
 i++, p++; /* incrementing pointer */
 }
 printf("\n Sum = %d\n", sum);
 printf("\n &x[0] = %u\n", &x[0]);

 printf("\n p = %u\n", p);
 }

Output
Element Value Address
x[0] 5 166
x[1] 9 168
x[2] 6 170
x[3] 3 172
x[4] 7 174
Sum = 55
&x[0] = 166
p = 176

Fig. 12.8 Accessing one-dimensional array elements using the pointer

It is possible to avoid the loop control variable i as shown:

.....
p = x;
while(p <= &x[4])
{

Pointers 365

sum += *p;
p++;
}
.....

Here, we compare the pointer p with the address of the last element to determine when the array has

been traversed.

Pointers can be used to manipulate two-dimensional arrays as well. We know that in a one-dimen-

sional array x, the expression

*(x+i) or *(p+i)
represents the element x[i]. Similarly, an element in a two-dimensional array can be represented by

the pointer expression as follows:

((a+i)+j) or *(*(p+i)+j)

1

1

0

0

p + 4

Rows

2

Columns

2

3

3

4

4

5

5

6

4,0 4,3

p

p + 1

p + 4

p + 6

(p + 4) + 3(p + 4)

p pointer to first row

pointer to ith row

pointer to first element in the ith row

pointer to jth element in the ith row

value stored in the cell (i,j)
(ith row and jth column)

p + i

*(p + i)

*(p + i) + j

((p + i) + j)

Fig. 12.9 Pointers to two-dimensional arrays

Figure 12.9 illustrates how this expression represents the element a[i][j]. The base address of the

array a is &a[0][0] and starting at this address, the compiler allocates contiguous space for all the

elements row-wise. That is, the first element of the second row is placed immediately after the last

element of the first row, and so on. Suppose we declare an array a as follows:

int a[3][4] = { {15,27,11,35},
{22,19,31,17},
{31,23,14,36}
};

The elements of a will be stored as:

366 Introduction to Computing

15

address = &a[0] [0]

27 11

row 0 row 1 row 2

35 22 19 31 17 31 23 14 36

If we declare p as an int pointer with the initial address of &a[0][0], then

a[i][j] is equivalent to *(p+4 ¥ i+j)

You may notice that, if we increment i by 1, the p is incremented by 4, the size of each row. Then the

element a[2][3] is given by *(p+2 ××××× 4+3) = *(p+11).

This is the reason why, when a two-dimensional array is declared, we must specify the size of each

row so that the compiler can determine the correct storage mapping.

12.11 POINTERS AND CHARACTER STRINGS

Strings are treated like character arrays and therefore, they are declared and initialized as follows:

char str [5] = “good”;
The compiler automatically inserts the null character �\0� at the end of the string. C supports an

alternative method to create strings using pointer variables of type char. Example:

char *str = “good”;
This creates a string for the literal and then stores its address in the pointer variable str.

The pointer str now points to the first character of the string �good� as:

g

str

o o d 0\

We can also use the run-time assignment for giving values to a string pointer. Example

char * string1;
string1 = “good”;

Note that the assignment

string1 = “good”;

is not a string copy, because the variable string1 is a pointer, not a string.

C does not support copying one string to another through the assignment operation.)

We can print the content of the string string1 using either printf or puts functions as follows:

printf(“%s”, string1);
puts (string1);

Remember, although string1 is a pointer to the string, it is also the name of the string. Therefore, we

do not need to use indirection operator * here.

Pointers 367

Like in one-dimensional arrays, we can use a pointer to access the individual characters in a string.

This is illustrated by Example 12.5.

Example 12.5 Write a program using pointers to determine the length of a character
string.

A program to count the length of a string is shown in Fig.12.10. The statement

char *cptr = name;
declares cptr as a pointer to a character and assigns the address of the first character of name as the

initial value. Since a string is always terminated by the null character, the statement

while(*cptr != ‘\0’)

is true until the end of the string is reached.

When the while loop is terminated, the pointer cptr holds the address of the null character. Therefore,

the statement

length = cptr – name;

gives the length of the string name.

D

name
(5 4)

cptr
(5 9)

E L H I 0\

The output also shows the address location of each character. Note that each character occupies

one memory cell (byte).

Program
 main()
 {
 char *name;
 int length;
 char *cptr = name;
 name = "DELHI";
 printf ("%s\n", name);
 while(*cptr != '\0')
 {
 printf("%c is stored at address %u\n", *cptr, cptr);
 cptr++;
 }
 length = cptr - name;
 printf("\nLength of the string = %d\n", length);
 }

368 Introduction to Computing

Output
 DELHI
 D is stored at address 54
 E is stored at address 55
 L is stored at address 56
 H is stored at address 57
 I is stored at address 58

 Length of the string = 5

Fig. 12.10 String handling by pointers

In C, a constant character string always represents a pointer to that string. And therefore the follow-

ing statements are valid:

char *name;
name = “Delhi”;

These statements will declare name as a pointer to character and assign to name the constant

character string �Delhi�. You might remember that this type of assignment does not apply to character

arrays. The statements like

char name[20];
name = “Delhi”;

do not work.

12.12 ARRAY OF POINTERS

One important use of pointers is in handling of a table of strings. Consider the following array of strings:

char name [3][25];
This says that the name is a table containing three names, each with a maximum length of 25

characters (including null character). The total storage requirements for the name table are 75 bytes.

We know that rarely the individual strings will be of equal lengths. Therefore, instead of making

each row a fixed number of characters, we can make it a pointer to a string of varying length. For

example,

char *name[3] = {
“New Zealand”,
“Australia”,
“India”

};

Pointers 369

declares name to be an array of three pointers to characters, each pointer pointing to a particular name as:

name [0]

name [1]

name [2]

New Zealand

Australia

India

This declaration allocates only 28 bytes, sufficient to hold all the characters as shown

N

A

I

e

u

n

e

a

a

l

l

i

a

a

n d 0

0

0

\

\

\

w

s

d

t

i

Z

r

a

The following statement would print out all the three names:

for(i = 0; i <= 2; i++)
printf(“%s\n”, name[i]);

To access the jth character in the ith name, we may write as

*(name[i]+j)

The character arrays with the rows of varying length are called �ragged arrays� and are better

handled by pointers.

Remember the difference between the notations *p[3] and (*p)[3]. Since * has a lower precedence than

[], *p[3] declares p as an array of 3 pointers while (*p)[3] declares p as a pointer to an array of three elements.

12.13 POINTERS AS FUNCTION ARGUMENTS

We have seen earlier that when an array is passed to a function as an argument, only the address of
the first element of the array is passed, but not the actual values of the array elements. If x is an array,
when we call sort(x), the address of x[0] is passed to the function sort. The function uses this address
for manipulating the array elements. Similarly, we can pass the address of a variable as an argument
to a function in the normal fashion. We used this method when discussing functions that return mul-
tiple values.

When we pass addresses to a function, the parameters receiving the addresses should be pointers.
The process of calling a function using pointers to pass the addresses of variables is known as �call by
reference�. (You know, the process of passing the actual value of variables is known as �call by
value�.) The function which is called by �reference� can change the value of the variable used in the
call.

Consider the following code:

main()
{

int x;
x = 20;
change(&x); /* call by reference or address */
printf(“%d\n”,x);

}
change(int *p)

370 Introduction to Computing

{
*p = *p + 10;

}

When the function change() is called, the address of the variable x, not its value, is passed into the
function change(). Inside change(), the variable p is declared as a pointer and therefore p is the
address of the variable x. The statement,

*p = *p + 10;

means �add 10 to the value stored at the address p�. Since p represents the address of x, the value of
x is changed from 20 to 30. Therefore, the output of the program will be 30, not 20.

Thus, call by reference provides a mechanism by which the function can change the stored values in
the calling function. Note that this mechanism is also known as �call by address� or �pass by pointers�

NOTE: C99 adds a new qualifier restrict to the pointers passed as function parameters.

Example 12.6 Write a function using pointers to exchange the values stored in two
locations in the memory.

The program in Fig. 12.11 shows how the contents of two locations can be exchanged using their address
locations. The function exchange() receives the addresses of the variables x and y and exchanges their
contents.

Program
 void exchange (int *, int *); /* prototype */
 main()
 {
 int x, y;
 x = 100;
 y = 200;
 printf("Before exchange : x = %d y = %d\n\n", x, y);
 exchange(&x,&y);/* call */
 printf("After exchange : x = %d y = %d\n\n", x, y);
 }
 exchange (int *a, int *b)
 {
 int t;
 t = *a; /* Assign the value at address a to t */
 *a = *b; /* put b into a */
 b = t; / put t into b */
 }

Output

 Before exchange : x = 100 y = 200
 After exchange : x = 200 y = 100

Fig. 12.11 Passing of pointers as function parameters

Pointers 371

You may note the following points:

1. The function parameters are declared as pointers.

2. The dereferenced pointers are used in the function body.

3. When the function is called, the addresses are passed as actual arguments.

The use of pointers to access array elements is very common in C. We have used a pointer to traverse

array elements in Example 12.4. We can also use this technique in designing user-defined functions

discussed in Chapter 8. Let us consider the problem sorting an array of integers discussed in

Example 8.6.

The function sort may be written using pointers (instead of array indexing) as shown:

void sort (int m, int *x)
{ int i j, temp;

for (i=1; i<= m–1; i++)
for (j=1; j<= m–1; j++)
if (*(x+j–1) >= *(x+j))
{

temp = *(x+j– 1);
*(x+j–1) = *(x+j);
*(x+j) = temp;
}

}

Note that we have used the pointer x (instead of array x[]) to receive the address of array passed

and therefore the pointer x can be used to access the array elements (as pointed out in Section 12.10).

This function can be used to sort an array of integers as follows:

.

int score[4] = {45, 90, 71, 83};

.

sort(4, score); /* Function call */

.

The calling function must use the following prototype declaration.

void sort (int, int *);

This tells the compiler that the formal argument that receives the array is a pointer, not array variable.

Pointer parameters are commonly employed in string functions. Consider the function copy which

copies one string to another.

copy(char *s1, char *s2)
{

while((*s1++ = *s2++) != ‘\0’)
;

}

This copies the contents of s2 into the string s1. Parameters s1 and s2 are the pointers to character

strings, whose initial values are passed from the calling function. For example, the calling statement

copy(name1, name2);

will assign the address of the first element of name1 to s1 and the address of the first element of

name2 to s2.

372 Introduction to Computing

Note that the value of *s2++ is the character that s2 pointed to before s2 was incremented. Due to the

postfix ++, s2 is incremented only after the current value has been fetched. Similarly, s1 is incremented

only after the assignment has been completed.

Each character, after it has been copied, is compared with �\0� and therefore copying is terminated as

soon as the �\0� is copied.

12.14 FUNCTIONS RETURNING POINTERS

We have seen so far that a function can return a single value by its name or return multiple values

through pointer parameters. Since pointers are a data type in C, we can also force a function to return

a pointer to the calling function. Consider the following code:

int *larger (int *, int *); /* prototype */
main ()
{

int a = 10;
int b = 20;
int *p;
p = larger(&a, &b); /Function call */
printf (“%d”, *p);

}
int *larger (int *x, int *y)
{

if (*x>*y)
return (x); / *address of a */

else
return (y); /* address of b */

}

The function larger receives the addresses of the variables a and b, decides which one is larger

using the pointers x and y and then returns the address of its location. The returned value is then

assigned to the pointer variable p in the calling function. In this case, the address of b is returned

and assigned to p and therefore the output will be the value of b, namely, 20.

Note that the address returned must be the address of a variable in the calling function. It is an error

to return a pointer to a local variable in the called function.

12.15 POINTERS TO FUNCTIONS

A function, like a variable, has a type and an address location in the memory. It is therefore, possible

to declare a pointer to a function, which can then be used as an argument in another function. A

pointer to a function is declared as follows:

type (*fptr) ();

This tells the compiler that fptr is a pointer to a function, which returns type value. The parenthe-

ses around *fptr are necessary. Remember that a statement like

type *gptr();

would declare gptr as a function returning a pointer to type.

Pointers 373

We can make a function pointer to point to a specific function by simply assigning the name of the

function to the pointer. For example, the statements

double mul(int, int);
double (*p1)();
p1 = mul;

declare p1 as a pointer to a function and mul as a function and then make p1 to point to the

function mul. To call the function mul, we may now use the pointer p1 with the list of

parameters. That is,

(*p1)(x,y) /* Function call */

is equivalent to

mul(x,y)

Note the parentheses around *p1.

Example 12.7 Write a program that uses a function pointer as a function argument.

A program to print the function values over a given range of values is shown in Fig. 12.12. The printing

is done by the function table by evaluating the function passed to it by the main.

With table, we declare the parameter f as a pointer to a function as follows:

double (*f)();

The value returned by the function is of type double. When table is called in the statement

table (y, 0.0, 2, 0.5);

we pass a pointer to the function y as the first parameter of table. Note that y is not followed by a

parameter list.

During the execution of table, the statement

value = (*f)(a);

calls the function y which is pointed to by f, passing it the parameter a. Thus the function y is evalu-

ated over the range 0.0 to 2.0 at the intervals of 0.5.

Similarly, the call

table (cos, 0.0, PI, 0.5);

passes a pointer to cos as its first parameter and therefore, the function table evaluates the value of

cos over the range 0.0 to PI at the intervals of 0.5.

Program
 #include <math.h>
 #define PI 3.1415926
 double y(double);
 double cos(double);
 double table (double(*f)(), double, double, double);

 main()
 { printf("Table of y(x) = 2*x*x–x+1\n\n");

374 Introduction to Computing

 table(y, 0.0, 2.0, 0.5);
 printf("\nTable of cos(x)\n\n");
 table(cos, 0.0, PI, 0.5);
 }
 double table(double(*f)(),double min, double max, double step)
 { double a, value;
 for(a = min; a <= max; a += step)
 {
 value = (*f)(a);
 printf("%5.2f %10.4f\n", a, value);
 }
 }
 double y(double x)
 {
 return(2*x*x-x+1);
 }

Output
Table of y(x) = 2*x*x-x+1

0.00 1.0000
0.50 1.0000
1.00 2.0000
1.50 4.0000
2.00 7.0000

Table of cos(x)
0.00 1.0000
0.50 0.8776
1.00 0.5403
1.50 0.0707
2.00 -0.4161
2.50 -0.8011
3.00 -0.9900

Fig. 12.12 Use of pointers to functions

Compatibility and Casting

A variable declared as a pointer is not just a pointer type variable. It is also a pointer

to a specific fundamental data type, such as a character. A pointer therefore always

has a type associated with it. We cannot assign a pointer of one type to a pointer of

another type, although both of them have memory addresses as their values. This is

known as incompatibility of pointers.

Pointers 375

All the pointer variables store memory addresses, which are compatible, but what is

not compatible is the underlying data type to which they point to. We cannot use the

assignment operator with the pointers of different types. We can however make

explicit assignment between incompatible pointer types by using cast operator, as

we do with the fundamental types. Example:

int x;
char *p;
p = (char *) & x;

In such cases, we must ensure that all operations that use the pointer p must apply

casting properly.

We have an exception. The exception is the void pointer (void *). The void pointer is

a generic pointer that can represent any pointer type. All pointer types can be

assigned to a void pointer and a void pointer can be assigned to any pointer without

casting. A void pointer is created as follows:

void *vp;

Remember that since a void pointer has no object type, it cannot be de-referenced.

12.16 POINTERS AND STRUCTURES

We know that the name of an array stands for the address of its zeroth element. The same thing is

true of the names of arrays of structure variables. Suppose product is an array variable of struct

type. The name product represents the address of its zeroth element. Consider the following

declaration:

struct inventory
{

char name[30];
int number;
float price;

} product[2], *ptr;

This statement declares product as an array of two elements, each of the type struct inventory and

ptr as a pointer to data objects of the type struct inventory. The assignment

ptr = product;
would assign the address of the zeroth element of product to ptr. That is, the pointer ptr will now

point to product[0]. Its members can be accessed using the following notation.

ptr –> name
ptr –> number
ptr –> price

The symbol �> is called the arrow operator (also known as member selection operator) and is

made up of a minus sign and a greater than sign. Note that ptr�> is simply another way of writing

product[0].

376 Introduction to Computing

When the pointer ptr is incremented by one, it is made to point to the next record, i.e., product[1].

The following for statement will print the values of members of all the elements of product array.

for(ptr = product; ptr < product+2; ptr++)

printf (“%s %d %f\n”, ptr–>name, ptr–>number, ptr–>price);
We could also use the notation

(*ptr).number
to access the member number. The parentheses around *ptr are necessary because the member

operator �.� has a higher precedence than the operator *.

Example 12.8 Write a program to illustrate the use of structure pointers.

A program to illustrate the use of a structure pointer to manipulate the elements of an array of

structures is shown in Fig. 12.13. The program highlights all the features discussed above.

Note that the pointer ptr (of type struct invent) is also used as the loop control index in for

loops.

Program
 struct invent
 {
 char *name[20];
 int number;
 float price;
 };
 main()
 {
 struct invent product[3], *ptr;
 printf("INPUT\n\n");
 for(ptr = product; ptr < product+3; ptr++)
 scanf("%s %d %f", ptr–>name, &ptr–>number, &ptr–>price);
 printf("\nOUTPUT\n\n");
 ptr = product;
 while(ptr < product + 3)
 {

 printf("%–20s %5d %10.2f\n",
 ptr–>name,
 ptr–>number,
 ptr–>price);
 ptr++;
 }
 }

Output

 INPUT
 Washing_machine 5 7500

Pointers 377

 Electric_iron 12 350
 Two_in_one 7 1250

 OUTPUT
 Washing machine 5 7500.00
 Electric_iron 12 350.00
 Two_in_one 7 1250.00

Fig. 12.13 Pointer to structure variables

While using structure pointers, we should take care of the precedence of operators.
The operators ��>� and �.�, and () and [] enjoy the highest priority among the operators. They bind

very tightly with their operands. For example, given the definition

struct
{

int count;
float *p; /* pointer inside the struct */

} ptr; /* struct type pointer */

then the statement

++ptr–>count;

increments count, not ptr. However,

(++ptr)–>count;

increments ptr first, and then links count. The statement

ptr++ –> count;

is legal and increments ptr after accessing count.
The following statements also behave in the similar fashion.

*ptr�>p Fetches whatever p points to.

*ptr�>p++ Increments p after accessing whatever it points to.

(*ptr�>p)++ Increments whatever p points to.

*ptr++�>p Increments ptr after accessing whatever it points to.

In the previous chapter, we discussed about passing of a structure as an argument to a function. We
also saw an example where a function receives a copy of an entire structure and returns it after working
on it. As we mentioned earlier, this method is inefficient in terms of both, the execution speed and
memory. We can overcome this drawback by passing a pointer to the structure and then using this
pointer to work on the structure members. Consider the following function:

print_invent(struct invent *item)
{

printf(“Name: %s\n”, item->name);
printf(“Price: %f\n”, item->price);

}

This function can be called by

print_invent(&product);

378 Introduction to Computing

The formal argument item receives the address of the structure product and therefore it must be

declared as a pointer of type struct invent, which represents the structure of product.

Just Remember

Only an address of a variable can be stored in a pointer variable.

Do not store the address of a variable of one type into a pointer variable of

another type.

The value of a variable cannot be assigned to a pointer variable.

A pointer variable contains garbage until it is initialized. Therefore we must not

use a pointer variable before it is assigned, the address of a variable.

Remember that the definition for a pointer variable allocates memory only for

the pointer variable, not for the variable to which it is pointing.

If we want a called function to change the value of a variable in the calling

function, we must pass the address of that variable to the called function.

When we pass a parameter by address, the corresponding formal parameter

must be a pointer variable.

It is an error to assign a numeric constant to a pointer variable.

It is an error to assign the address of a variable to a variable of any basic data

types.

It is an error to assign a pointer of one type to a pointer of another type without

a cast (with an exception of void pointer).

A proper understanding of a precedence and associativity rules is very impor-

tant in pointer applications. For example, expressions like *p++, *p[], (*p)[],

(p).member should be carefully used.

When an array is passed as an argument to a function, a pointer is actually

passed. In the header function, we must declare such arrays with proper size,

except the first, which is optional.

A very common error is to use (or not to use) the address operator (&) and the

indirection operator (*) in certain places. Be careful. The compiler may not

warn such mistakes.

Case Studies

1. Processing of Examination Marks

Marks obtained by a batch of students in the Annual Examination are tabulated as follows:

Student name Marks obtained

S. Laxmi 45 67 38 55

V.S. Rao 77 89 56 69

- - - - -

It is required to compute the total marks obtained by each student and print the rank list based on

the total marks.

Pointers 379

The program in Fig. 12.14 stores the student names in the array name and the marks in the array

marks. After computing the total marks obtained by all the students, the program prepares and prints the

rank list. The declaration

int marks[STUDENTS][SUBJECTS+1];

defines marks as a pointer to the array�s first row. We use rowptr as the pointer to the row of marks.

The rowptr is initialized as follows:

int (*rowptr)[SUBJECTS+1] = array;

Note that array is the formal argument whose values are replaced by the values of the actual

argument marks. The parentheses around *rowptr makes the rowptr as a pointer to an array of

SUBJECTS+1 integers. Remember, the statement

int *rowptr[SUBJECTS+1];

would declare rowptr as an array of SUBJECTS+1 elements.

When we increment the rowptr (by rowptr+1), the incrementing is done in units of the size of each

row of array, making rowptr point to the next row. Since rowptr points to a particular row,

(*rowptr)[x] points to the xth element in the row.

Program
 #define STUDENTS 5
 #define SUBJECTS 4
 #include <string.h>

 main()
 {
 char name[STUDENTS][20];
 int marks[STUDENTS][SUBJECTS+1];

 printf("Input students names & their marks in four subjects\n");
 get_list(name, marks, STUDENTS, SUBJECTS);
 get_sum(marks, STUDENTS, SUBJECTS+1);
 printf("\n");
 print_list(name,marks,STUDENTS,SUBJECTS+1);
 get_rank_list(name, marks, STUDENTS, SUBJECTS+1);

 printf("\nRanked List\n\n");
 print_list(name,marks,STUDENTS,SUBJECTS+1);
 }

/* Input student name and marks */
 get_list(char *string[],
 int array [] [SUBJECTS +1], int m, int n)
 {
 int i, j, (*rowptr)[SUBJECTS+1] = array;
 for(i = 0; i < m; i++)
 {
 scanf("%s", string[i]);

380 Introduction to Computing

 for(j = 0; j < SUBJECTS; j++)
 scanf("%d", &(*(rowptr + i))[j]);
 }
 }
 /* Compute total marks obtained by each student */
 get_sum(int array [] [SUBJECTS +1], int m, int n)
 {
 int i, j, (*rowptr)[SUBJECTS+1] = array;
 for(i = 0; i < m; i++)
 {
 (*(rowptr + i))[n-1] = 0;
 for(j =0; j < n-1; j++)
 (*(rowptr + i))[n-1] += (*(rowptr + i))[j];
 }
 }

 /* Prepare rank list based on total marks */

 get_rank_list(char *string [],
 int array [] [SUBJECTS + 1]
 int m,
 int n)
 {
 int i, j, k, (*rowptr)[SUBJECTS+1] = array;
 char *temp;

 for(i = 1; i <= m–1; i++)
 for(j = 1; j <= m–i; j++)
 if((*(rowptr + j–1))[n–1] < (*(rowptr + j))[n–1])
 {
 swap_string(string[j-1], string[j]);

 for(k = 0; k < n; k++)
 swap_int(&(*(rowptr + j–1))[k],&(*(rowptr+j))[k]);
 }

 }
 /* Print out the ranked list */
 print_list(char *string[],
 int array [] [SUBJECTS + 1],
 int m,
 int n)
 {
 int i, j, (*rowptr)[SUBJECTS+1] = array;
 for(i = 0; i < m; i++)
 {

Pointers 381

 printf("%–20s", string[i]);
 for(j = 0; j < n; j++)
 printf("%5d", (*(rowptr + i))[j]);
 printf("\n");
 }
 }
 /* Exchange of integer values */
 swap_int(int *p, int *q)
 {
 int temp;
 temp = *p;
 *p = *q;
 *q = temp;
 }

 /* Exchange of strings */
 swap_string(char s1[], char s2[])
 {
 char swaparea[256];
 int i;
 for(i = 0; i < 256; i++)
 swaparea[i] = '\0';
 i = 0;
 while(s1[i] != '\0' && i < 256)
 {
 swaparea[i] = s1[i];
 i++;
 }
 i = 0;
 while(s2[i] != '\0' && i < 256)
 {
 s1[i] = s2[i];
 s1[++i] = '\0';
 }
 i = 0;
 while(swaparea[i] != '\0')

 {
 s2[i] = swaparea[i];
 s2[++i] = '\0';
 }
 }

Output

 Input students names & their marks in four subjects
 S.Laxmi 45 67 38 55

382 Introduction to Computing

 V.S.Rao 77 89 56 69
 A.Gupta 66 78 98 45
 S.Mani 86 72 0 25
 R.Daniel 44 55 66 77

 S.Laxmi 45 67 38 55 205
 V.S.Rao 77 89 56 69 291
 A.Gupta 66 78 98 45 287
 S.Mani 86 72 0 25 183
 R.Daniel 44 55 66 77 242

 Ranked List
 V.S.Rao 77 89 56 69 291
 A.Gupta 66 78 98 45 287
 R.Daniel 44 55 66 77 242
 S.Laxmi 45 67 38 55 205
 S.Mani 86 72 0 25 183

Fig. 12.14 Preparation of the rank list of a class of students

2. Inventory Updating

The price and quantity of items stocked in a store changes every day. They may either increase or

decrease. The program in Fig. 12.15 reads the incremental values of price and quantity and computes the

total value of the items in stock.

The program illustrates the use of structure pointers as function parameters. &item, the address of

the structure item, is passed to the functions update() and mul(). The formal arguments product and

stock, which receive the value of &item, are declared as pointers of type struct stores.

Program
 struct stores
 {
 char name[20];
 float price;
 int quantity;

 };
 main()
 {
 void update(struct stores *, float, int);
 float p_increment, value;
 int q_increment;

 struct stores item = {"XYZ", 25.75, 12};
 struct stores *ptr = &item;

 printf("\nInput increment values:");

Pointers 383

 printf(" price increment and quantity increment\n");
 scanf("%f %d", &p_increment, &q_increment);

 /* - */
 update(&item, p_increment, q_increment);
 /* - */
 printf("Updated values of item\n\n");
 printf("Name : %s\n",ptr–>name);
 printf("Price : %f\n",ptr–>price);
 printf("Quantity : %d\n",ptr–>quantity);

 /* - */
 value = mul(&item);
 /* - */
 printf("\nValue of the item = %f\n", value);
 }

 void update(struct stores *product, float p, int q)
 {
 product–>price += p;
 product–>quantity += q;
 }
 float mul(struct stores *stock)
 {
 return(stock–>price * stock–>quantity);
 }

Output

 Input increment values: price increment and quantity increment
 10 12
 Updated values of item

 Name : XYZ
 Price : 35.750000
 Quantity : 24

 Value of the item = 858.000000

Fig. 12.15 Use of structure pointers as function parameters

Review Questions

12.1 State whether the following statements are true or false.

(a) Pointer constants are the addresses of memory locations.

(b) Pointer variables are declared using the address operator.

(c) The underlying type of a pointer variable is void.

(d) Pointers to pointers is a term used to describe pointers whose contents are the address of

another pointer.

(e) It is possible to cast a pointer to float as a pointer to integer.

384 Introduction to Computing

(f) An integer can be added to a pointer.

(g) A pointer can never be subtracted from another pointer.

(h) When an array is passed as an argument to a function, a pointer is passed.

(i) Pointers cannot be used as formal parameters in headers to function definitions.

(j) Value of a local variable in a function can be changed by another function.

12.2 Fill in the blanks in the following statements:

(a) A pointer variable contains as its value the of another variable.

(b) The operator is used with a pointer to de-reference the address contained in

the pointer.

(c) The operator returns the value of the variable to which its operand points.

(d) The only integer that can be assigned to a pointer variable is .

(e) The pointer that is declared as cannot be de-referenced.

12.3 What is a pointer?

12.4 How is a pointer initialized?

12.5 Explain the effects of the following statements:

(a) int a, *b = &a;

(b) int p, *p;

(c) char *s;

(d) a = (float *) &x);

(e) double(*f)();

12.6 If m and n have been declared as integers and p1 and p2 as pointers to integers, then state

errors, if any, in the following statements.

(a) p1 = &m;

(b) p2 = n;

(c) *p1 = &n;

(d) p2 = &*&m;

(e) m = p2�p1;

(f) p1 = &p2;

(g) m = *p1 + *p2++;

12.7 Distinguish between (*m)[5] and *m[5].

12.8 Find the error, if any, in each of the following statements:

(a) int x = 10;

(b) int *y = 10;

(c) int a, *b = &a;

(d) int m;

int **x = &m;

12.9 Given the following declarations:

int x = 10, y = 10;

int *p1 = &x, *p2 = &y;

What is the value of each of the following expressions?

(a) (*p1) ++

(b) �� (*p2)

(c) *p1 + (*p2) ��

(d) + + (*p2) � *p1

12.10 Describe typical applications of pointers in developing programs.

12.11 What are the arithmetic operators that are permitted on pointers?

Pointers 385

12.12 What is printed by the following program?

int m = 100';

int * p1 = &m;

int **p2 = &p1;

printf(�%d�, **p2);

12.13 What is wrong with the following code?

int **p1, *p2;

p2 = &p1;

12.14 Assuming name as an array of 15 character length, what is the difference between the following

two expressions?

(a) name + 10; and

(b) *(name + 10).

12.15 What is the output of the following segment?

int m[2];

*(m+1) = 100;

*m = *(m+1);

printf(�%d�, m [0]);

12.16 What is the output of the following code?

int m [2];

int *p = m;

m [0] = 100 ;

m [1] = 200 ;

printf(�%d %d�, ++*p, *p);

12.17 What is the output of the following program?

int f(char *p);
main ()
{

char str[] = “ANSI”;
printf(“%d”, f(str));

}
int f(char *p)
{

char *q = p;
while (*++p)

;
return (p-q);

}

12.18 Given below are two different definitions of the function search()

a) void search (int* m[], int x)

{

}

b) void search (int ** m, int x)

{

}

Are they equivalent? Explain.

386 Introduction to Computing

12.19 Do the declarations

char s [5] ;
char *s;
represent the same? Explain.

12.20 Which one of the following is the correct way of declaring a pointer to a function? Why?

(a) int (*p) (void) ;

(b) int *p (void);

Programming Exercises

12.1 Write a program using pointers to read in an array of integers and print its elements in reverse

order.

12.2 We know that the roots of a quadratic equation of the form

ax2 + bx + c = 0

are given by the following equations:

x1 =
- -b + square - root (b 4ac)

2a

2

x2 =
- - - b square - root (b 4ac)

a

2

2

Write a function to calculate the roots. The function must use two pointer parameters, one to

receive the coefficients a, b, and c, and the other to send the roots to the calling function.

12.3 Write a function that receives a sorted array of integers and an integer value, and inserts the

value in its correct place.

12.4 Write a function using pointers to add two matrices and to return the resultant matrix to the

calling function.

12.5 Using pointers, write a function that receives a character string and a character as argument

and deletes all occurrences of this character in the string. The function should return the

corrected string with no holes.

12.6 Write a function day_name that receives a number n and returns a pointer to a character string

containing the name of the corresponding day. The day names should be kept in a static table

of character strings local to the function.

12.7 Write a program to read in an array of names and to sort them in alphabetical order. Use sort

function that receives pointers to the functions strcmp and swap.sort in turn should call these

functions via the pointers.

12.8 Given an array of sorted list of integer numbers, write a function to search for a particular item,

using the method of binary search. And also show how this function may be used in a program.

Use pointers and pointer arithmetic.

(Hint: In binary search, the target value is compared with the array�s middle element. Since the

table is sorted, if the required value is smaller, we know that all values greater than the middle

element can be ignored. That is, in one attempt, we eliminate one half the list. This search can

be applied recursively till the target value is found.)

12.9 Write a function (using a pointer parameter) that reverses the elements of a given array.

12.10 Write a function (using pointer parameters) that compares two integer arrays to see whether

they are identical. The function returns 1 if they are identical, 0 otherwise.

Structures and Unions

13.1 HISTORY OF COMPUTERS

We have seen that arrays can be used to represent a group of data items that belong to the same type,

such as int or float. However, we cannot use an array if we want to represent a collection of data items

of different types using a single name. Fortunately, C supports a constructed data type known as

structures, a mechanism for packing data of different types. A structure is a convenient tool for handling

a group of logically related data items. For example, it can be used to represent a set of attributes, such

as student_name, roll_number and marks. The concept of a structure is analogous to that of a �record� in

many other languages. More examples of such structures are:

time : seconds, minutes, hours

date : day, month, year

book : author, title, price, year

city : name, country, population

address : name, door-number, street, city

inventory : item, stock, value

customer : name, telephone, city, category

Structures help to organize complex data in a more meaningful way. It is a powerful concept that we

may often need to use in our program design. This chapter is devoted to the study of structures and their

applications in program development. Another related concept known as unions is also discussed.

13.2 DEFINING A STRUCTURE

Unlike arrays, structures must be defined first for their format that may be used later to declare structure

variables. Let us use an example to illustrate the process of structure definition and the creation of

CHAPTER

13

388 Introduction to Computing

structure variables. Consider a book database consisting of book name, author, number of pages, and

price. We can define a structure to hold this information as follows:

struct book_bank
{

char title[20];
char author[15];
int pages;
float price;

};

The keyword struct declares a structure to hold the details of four data fields, namely title, author,

pages, and price. These fields are called structure elements or members. Each member may belong to

a different type of data. book_bank is the name of the structure and is called the structure tag. The tag

name may be used subsequently to declare variables that have the tag�s structure.

Note that the above definition has not declared any variables. It simply describes a format called

template to represent information as shown below:

array of 20 characterstitle

author

pages

price

array of 15 characters

integer

float

The general format of a structure definition is as follows:

struct tag_name
{

data_type member1;
data_type member2;

– – – – – – – –
– – – – – – – –

};

In defining a structure you may note the following syntax:

1. The template is terminated with a semicolon.

2. While the entire definition is considered as a statement, each member is declared

independently for its name and type in a separate statement inside the template.

3. The tag name such as book_bank can be used to declare structure variables of its type, later in the

program.

Structures and Unions 389

Arrays vs Structures

Both the arrays and structures are classified as structured data types as they provide a

mechanism that enable us to access and manipulate data in a relatively easy manner.

But they differ in a number of ways.

1. An array is a collection of related data elements of same type. Structure can have

elements of different types.

2. An array is derived data type whereas a structure is a programmer-defined one.

3. Any array behaves like a built-in data type. All we have to do is to declare an array

variable and use it. But in the case of a structure, first we have to design and

declare a data structure before the variables of that type are declared and used.

13.3 DECLARING STRUCTURE VARIABLES

After defining a structure format we can declare variables of that type. A structure variable declaration

is similar to the declaration of variables of any other data types. It includes the following elements:

1. The keyword struct.

2. The structure tag name.

3. List of variable names separated by commas.

4. A terminating semicolon.

For example, the statement

struct book_bank, book1, book2, book3;

declares book1, book2, and book3 as variables of type struct book_bank.

Each one of these variables has four members as specified by the template. The complete declaration

might look like this:

struct book_bank
{

char title[20];
char author[15];
int pages;
float price;

};
struct book_bank book1, book2, book3;

Remember that the members of a structure themselves are not variables. They do not occupy any

memory until they are associated with the structure variables such as book1. When the compiler comes

across a declaration statement, it reserves memory space for the structure variables. It is also allowed to

combine both the structure definition and variables declaration in one statement.

390 Introduction to Computing

The declaration

struct book_bank

{

char title[20];

char author[15];

int pages;

flat price;

} book1, book2, book3;

is valid. The use of tag name is optional here. For example:

struct

{

........

........

} book1, book2, book3;

declares book1, book2, and book3 as structure variables representing three books, but does not include

a tag name. However, this approach is not recommended for two reasons.

1. Without a tag name, we cannot use it for future declarations:

2. Normally, structure definitions appear at the beginning of the program file, before any variables or

functions are defined. They may also appear before the main, along with macro definitions, such

as #define. In such cases, the definition is global and can be used by other functions as well.

Type-Defined Structures

We can use the keyword typedef to define a structure as follows:

typedef struct
{

type member1;
type member2;
.
.

} type_name;

The type_name represents structure definition associated with it and therefore can be

used to declare structure variables as shown below:

type_name variable1, variable2, ;
Remember that (1) the name type_name is the type definition name, not a variable and

(2) we cannot define a variable with typedef declaration.

Structures and Unions 391

13.4 ACCESSING STRUCTURE MEMBERS

We can access and assign values to the members of a structure in a number of ways. As mentioned

earlier, the members themselves are not variables. They should be linked to the structure variables in

order to make them meaningful members. For example, the word title, has no meaning whereas the

phrase �title of book3� has a meaning. The link between a member and a variable is established using the

member operator �.� which is also known as �dot operator� or �period operator�. For example,

book1.price
is the variable representing the price of book1 and can be treated like any other ordinary variable. Here

is how we would assign values to the members of book1:

strcpy(book1.title, “BASIC”);
strcpy(book1.author, “Balagurusamy”);
book1.pages = 250;
book1.price = 120.50;

We can also use scanf to give the values through the keyboard.

scanf(“%s\n”, book1.title);
scanf(“%d\n”, &book1.pages);

are valid input statements.

Example 13.1 Defisne a structure type, struct personal that would contain person
name, date of joining and salary. Using this structure, write a program to
read this information for one person from the keyboard and print the
same on the screen.

Structure definition along with the program is shown in Fig. 13.1. The scanf and printf functions

illustrate how the member operator �.� is used to link the structure members to the structure variables.

The variable name with a period and the member name is used like an ordinary variable.

Program
struct personal

 {
 char name[20];
 int day;
 char month[10];
 int year;
 float salary;
 };
 main()
 {
 struct personal person;

 printf("Input Values\n");

392 Introduction to Computing

 scanf("%s %d %s %d %f",
 person.name,
 &person.day,
 person.month,
 &person.year,
 &person.salary);

 printf("%s %d %s %d %f\n",
 person.name,
 person.day,
 person.month,
 person.year,
 person.salary);
 }

Output
 Input Values
 M.L.Goel 10 January 1945 4500
 M.L.Goel 10 January 1945 4500.00

Fig. 13.1 Defining and accessing structure members

13.5 STRUCTURE INITIALIZATION

Like any other data type, a structure variable can be initialized at compile time.

main()
 {

struct
{

int weight;
float height;

}
student = {60, 180.75};
.....
.....

 }

This assigns the value 60 to student. weight and 180.75 to student. height. There is a one-to-one

correspondence between the members and their initializing values.

A lot of variation is possible in initializing a structure. The following statements initialize two struc-

ture variables. Here, it is essential to use a tag name.

main()
{

struct st_record
{

Structures and Unions 393

int weight;
float height;

};
struct st_record student1 = { 60, 180.75 };
struct st_record student2 = { 53, 170.60 };
.....
.....

}

Another method is to initialize a structure variable outside the function as shown below:

struct st_record
{

int weight;
float height;

} student1 = {60, 180.75};
main()
{

struct st_record student2 = {53, 170.60};
.....
.....

}

C language does not permit the initialization of individual structure members within the template.
The initialization must be done only in the declaration of the actual variables.

Note that the compile-time initialization of a structure variable must have the following elements:

1. The keyword struct.

2. The structure tag name.

3. The name of the variable to be declared.

4. The assignment operator =.

5. A set of values for the members of the structure variable, separated by commas and enclosed in

braces.

6. A terminating semicolon.

Rules for Initializing Structures

There are a few rules to keep in mind while initializing structure variables at compile-

time.

1. We cannot initialize individual members inside the structure template.

2. The order of values enclosed in braces must match the order of members in the

structure definition.

3. It is permitted to have a partial initialization. We can initialize only the first few

members and leave the remaining blank. The uninitialized members should be

only at the end of the list.

394 Introduction to Computing

4. The uninitialized members will be assigned default values as follows:

∑ Zero for integer and floating point numbers.

∑ �\0� for characters and strings.

13.6 COPYING AND COMPARING STRUCTURE VARIABLES

Two variables of the same structure type can be copied the same way as ordinary variables. If person1

and person2 belong to the same structure, then the following statements are valid:

person1 = person2;
person2 = person1;

However, the statements such as

person1 == person2
person1 != person2

are not permitted. C does not permit any logical operations on structure variables. In case, we need to

compare them, we may do so by comparing members individually.

Example 13.2 Write a program to illustrate the comparison of structure variables.

The program shown in Fig. 13.2 illustrates how a structure variable can be copied into another of the

same type. It also performs member-wise comparison to decide whether two structure variables are

identical.

program
 struct class
 {
 int number;
 char name[20];
 float marks;
 };

 main()
 {
 int x;
 struct class student1 = {111,"Rao",72.50};
 struct class student2 = {222,"Reddy", 67.00};
 struct class student3;

 student3 = student2;

 x = ((student3.number == student2.number) &&
 (student3.marks == student2.marks)) ? 1 : 0;

 if(x == 1)
 {

printf("\nstudent2 and student3 are same\n\n");

Structures and Unions 395

printf("%d %s %f\n", student3.number,
student3.name,
student3.marks);

 }
 else
 printf("\nstudent2 and student3 are different\n\n");

 }

Output

 student2 and student3 are same

 222 Reddy 67.000000

Fig. 13.2 Comparing and copying structure variables

Word Boundaries and Slack Bytes

Computer stores structures using the concept of �word boundary�. The size of a word

boundary is machine dependent. In a computer with two bytes word boundary, the

members of a structure are stored left_aligned on the word boundary, as shown below.

A character data takes one byte and an integer takes two bytes. One byte between them

is left unoccupied. This unoccupied byte is known as the slack byte.

0 1 2 3

char

slack byte

int

When we declare structure variables, each one of them may contain slack bytes and the

values stored in such slack bytes are undefined. Due to this, even if the members of two

variables are equal, their structures do not necessarily compare equal. C, therefore,

does not permit comparison of structures. However, we can design our own function

that could compare individual members to decide whether the structures are equal or

not.

396 Introduction to Computing

13.7 OPERATIONS ON INDIVIDUAL MEMBERS

As pointed out earlier, the individual members are identified using the member operator, the dot. A

member with the dot operator along with its structure variable can be treated like any other variable

name and therefore can be manipulated using expressions and operators. Consider the program in Fig.

13.2. We can perform the following operations:

if (student1.number == 111)

student1.marks += 10.00;

float sum = student1.marks + student2.marks;
student2.marks * = 0.5;

We can also apply increment and decrement operators to numeric type members. For example, the

following statements are valid:

student1.number ++;

++ student1.number;

The precedence of the member operator is higher than all arithmetic and relational operators and

therefore no parentheses are required.

Three Ways to Access Members

We have used the dot operator to access the members of structure variables. In fact,

there are two other ways. Consider the following structure:

typedef struct
{

int x;
int y;

} VECTOR;

VECTOR v, *ptr;
ptr = & n;

The identifier ptr is known as pointer that has been assigned the address of the

structure variable n. Now, the members can be accessed in three ways:

∑ using dot notation : n.x

∑ using indirection notation : (*ptr).x

∑ using selection notation : ptr �> x

The second and third methods will be considered in Chapter 12.

Structures and Unions 397

13.8 ARRAYS OF STRUCTURES

We use structures to describe the format of a number of related variables. For example, in analyzing the

marks obtained by a class of students, we may use a template to describe student name and marks
obtained in various subjects and then declare all the students as structure variables. In such cases, we

may declare an array of structures, each element of the array representing a structure variable. For
example:

struct class student[100];

defines an array called student, that consists of 100 elements. Each element is defined to be of the type

struct class. Consider the following declaration:

struct marks
{

int subject1;
int subject2;
int subject3;

};
main()
{

struct marks student[3] =
{{45,68,81}, {75,53,69}, {57,36,71}};

This declares the student as an array of three elements student[0], student[1], and student[2] and

initializes their members as follows:

student[0].subject1 = 45;
student[0].subject2 = 65;

....

....
student[2].subject3 = 71;

Note that the array is declared just as it would have been with any other array. Since student is an

array, we use the usual array-accessing methods to access individual elements and then the member

operator to access members. Remember, each element of student array is a structure variable with three

members.

An array of structures is stored inside the memory in the same way as a multi-dimensional array. The

array student actually looks as shown in Fig. 13.3.

Example 13.3 For the student array discussed above, write a program to calculate the
subject-wise and student-wise totals and store them as a part of the
structure.

The program is shown in Fig. 13.4. We have declared a four-member structure, the fourth one for

keeping the student-totals. We have also declared an array total to keep the subject-totals and the

grand-total. The grand-total is given by total.total. Note that a member name can be any valid C name

and can be the same as an existing structure variable name. The linked name total.total represents the

total member of the structure variable total.

398 Introduction to Computing

45student [0].subject 1

.subject 2

.subject 3

student [1].subject 1

.subject 2

.subject 3

student [2].subject 1

.subject 2

.subject 3

68

81

75

53

69

57

36

71

Fig. 13.3 The array student inside memory

Program
 struct marks
 {
 int sub1;
 int sub2;
 int sub3;
 int total;
 };

 main()
 {
 int i;
 struct marks student[3] = {{45,67,81,0},
 {75,53,69,0},
 {57,36,71,0}};
 struct marks total;
 for(i = 0; i <= 2; i++)
 {
 student[i].total = student[i].sub1 +
 student[i].sub2 +
 student[i].sub3;
 total.sub1 = total.sub1 + student[i].sub1;
 total.sub2 = total.sub2 + student[i].sub2;
 total.sub3 = total.sub3 + student[i].sub3;
 total.total = total.total + student[i].total;
 }
 printf(" STUDENT TOTAL\n\n");
 for(i = 0; i <= 2; i++)
 printf("Student[%d] %d\n", i+1,student[i].total);
 printf("\n SUBJECT TOTAL\n\n");
 printf("%s %d\n%s %d\n%s %d\n",

Structures and Unions 399

 "Subject 1 ", total.sub1,
 "Subject 2 ", total.sub2,
 "Subject 3 ", total.sub3);

 printf("\nGrand Total = %d\n", total.total);
 }

Output

 STUDENT TOTAL
 Student[1] 193
 Student[2] 197

 Student[3] 164

 SUBJECT TOTAL
 Subject 1 177
 Subject 2 156
 Subject 3 221

 Grand Total = 554

Fig. 13.4 Arrays of structures: Illustration of subscripted structure variables

13.9 ARRAYS WITHIN STRUCTURES

C permits the use of arrays as structure members. We have already used arrays of characters inside a

structure. Similarly, we can use single-dimensional or multi-dimensional arrays of type int or float. For

example, the following structure declaration is valid:

struct marks
{

int number;
float subject[3];

} student[2];

Here, the member subject contains three elements, subject[0], subject[1] and subject[2]. These

elements can be accessed using appropriate subscripts. For example, the name

student[1].subject[2];

would refer to the marks obtained in the third subject by the second student.

Example 13.4 Rewrite the program of Example 13.3 using an array member to repre-
sent the three subjects.

The modified program is shown in Fig. 13.5. You may notice that the use of array name for subjects has

simplified in code.

400 Introduction to Computing

Program
 main()
 {
 struct marks
 {
 int sub[3];
 int total;
 };
 struct marks student[3] =
 {45,67,81,0,75,53,69,0,57,36,71,0};

 struct marks total;
 int i,j;

 for(i = 0; i <= 2; i++)
 {
 for(j = 0; j <= 2; j++)
 {
 student[i].total += student[i].sub[j];
 total.sub[j] += student[i].sub[j];
 }
 total.total += student[i].total;
 }
 printf("STUDENT TOTAL\n\n");
 for(i = 0; i <= 2; i++)
 printf("Student[%d] %d\n", i+1, student[i].total);

 printf("\nSUBJECT TOTAL\n\n");
 for(j = 0; j <= 2; j++)
 printf("Subject-%d %d\n", j+1, total.sub[j]);

 printf("\nGrand Total = %d\n", total.total);

 }

Output

 STUDENT TOTAL
 Student[1] 193
 Student[2] 197
 Student[3] 164

 STUDENT TOTAL
 Student-1 177
 Student-2 156
 Student-3 221

 Grand Total = 554

Fig. 13.5 Use of subscripted members arrays in structures

Structures and Unions 401

13.10 STRUCTURES WITHIN STRUCTURES

Structures within a structure means nesting of structures. Nesting of structures is permitted in C. Let us

consider the following structure defined to store information about the salary of employees.

struct salary
{

char name;
char department;
int basic_pay;
int dearness_allowance;
int house_rent_allowance;
int city_allowance;

}
employee;

This structure defines name, department, basic pay and three kinds of allowances. We can group all the

items related to allowance together and declare them under a substructure as shown below:

struct salary
{

char name;
char department;
struct
{

int dearness;
int house_rent;
int city;

}
allowance;

}
employee;

The salary structure contains a member named allowance, which itself is a structure with three mem-

bers. The members contained in the inner structure namely dearness, house_rent, and city can be

referred to as:

employee.allowance.dearness

employee.allowance.house_rent

employee.allowance.city

An inner-most member in a nested structure can be accessed by chaining all the concerned structure

variables (from outer-most to inner-most) with the member using dot operator. The following are invalid:

employee.allowance (actual member is missing)

employee.house_rent (inner structure variable is missing)

An inner structure can have more than one variable. The following form of declaration is legal:

struct salary
{

.....

402 Introduction to Computing

struct
{

int dearness;
.....

}
allowance,
arrears;

}
employee[100];

The inner structure has two variables, allowance and arrears. This implies that both of them have

the same structure template. Note the comma after the name allowance. A base member can be accessed

as follows:

employee[1].allowance.dearness

employee[1].arrears.dearness

We can also use tag names to define inner structures. Example:

struct pay
{

int dearness;
int house_rent;
int city;

};
struct salary
{

char name;
char department;
struct pay allowance;
struct pay arrears;

};
struct salary employee[100];

pay template is defined outside the salary template and is used to define the structure of allowance and

arrears inside the salary structure.

It is also permissible to nest more than one type of structures.

struct personal_record
{

struct name_part name;
struct addr_part address;
struct date date_of_birth;
.....
.....

};
struct personal_record person1;

The first member of this structure is name, which is of the type struct name_part. Similarly, other

members have their structure types.

NOTE: C permits nesting up to 15 levels. However, C99 allows 63 levels of nesting.

Structures and Unions 403

13.11 STRUCTURES AND FUNCTIONS

We know that the main philosophy of C language is the use of functions. And therefore, it is natural that

C supports the passing of structure values as arguments to functions. There are three methods by which

the values of a structure can be transferred from one function to another.

1. The first method is to pass each member of the structure as an actual argument of the function call.

The actual arguments are then treated independently like ordinary variables. This is the most

elementary method and becomes unmanageable and inefficient when the structure size is large.

2. The second method involves passing of a copy of the entire structure to the called function. Since

the function is working on a copy of the structure, any changes to structure members within the

function are not reflected in the original structure (in the calling function). It is, therefore,

necessary for the function to return the entire structure back to the calling function. All compilers

may not support this method of passing the entire structure as a parameter.

3. The third approach employs a concept called pointers to pass the structure as an argument. In this

case, the address location of the structure is passed to the called function. The function can access

indirectly the entire structure and work on it. This is similar to the way arrays are passed to

function. This method is more efficient as compared to the second one.

In this section, we discuss in detail the second method, while the third approach using pointers is

discussed in the next chapter, where pointers are dealt in detail.

The general format of sending a copy of a structure to the called function is:

function_name (structure_variable_name);

The called function takes the following form:

data_type function_name(struct_type st_name)
{

......

......
return(expression);

}

The following points are important to note:

1. The called function must be declared for its type, appropriate to the data type it is expected to

return. For example, if it is returning a copy of the entire structure, then it must be declared as

struct with an appropriate tag name.

2. The structure variable used as the actual argument and the corresponding formal argument in the

called function must be of the same struct type.

3. The return statement is necessary only when the function is returning some data back to the

calling function. The expression may be any simple variable or structure variable or an expression

using simple variables.

404 Introduction to Computing

4. When a function returns a structure, it must be assigned to a structure of identical type in the

calling function.

5. The called functions must be declared in the calling function appropriately.

Example 13.5 Write a simple program to illustrate the method of sending an entire
structure as a parameter to a function.

A program to update an item is shown in Fig. 13.6. The function update receives a copy of the

structure variable item as one of its parameters. Note that both the function update and the formal

parameter product are declared as type struct stores. It is done so because the function uses the

parameter product to receive the structure variable item and also to return the updated values of

item.

The function mul is of type float because it returns the product of price and quantity. However,

the parameter stock, which receives the structure variable item is declared as type struct stores.

The entire structure returned by update can be copied into a structure of identical type. The state-

ment

item = update(item,p_increment,q_increment);

replaces the old values of item by the new ones.

Program
 /* Passing a copy of the entire structure */
 struct stores
 {
 char name[20];
 float price;
 int quantity;
 };
 struct stores update (struct stores product, float p, int q);
 float mul (struct stores stock);
 main()
 {
 float p_increment, value;
 int q_increment;

 struct stores item = {"XYZ", 25.75, 12};

 printf("\nInput increment values:");
 printf(" price increment and quantity increment\n");
 scanf("%f %d", &p_increment, &q_increment);

 /* - */
 item = update(item, p_increment, q_increment);
 /* - */
 printf("Updated values of item\n\n");

Structures and Unions 405

 printf("Name : %s\n",item.name);
 printf("Price : %f\n",item.price);
 printf("Quantity : %d\n",item.quantity);

 /* - */
 value = mul(item);
 /* - */

 printf("\nValue of the item = %f\n", value);
 }
 struct stores update(struct stores product, float p, int q)
 {

 product.price += p;
 product.quantity += q;
 return(product);
 }
 float mul(struct stores stock)
 {
 return(stock.price * stock.quantity);
 }

Output
Input increment values: price increment and quantity increment
10 12
Updated values of item
Name : XYZ
Price : 35.750000
Quantity : 24
Value of the item = 858.000000

Fig. 13.6 Using structure as a function parameter

You may notice that the template of stores is defined before main(). This has made the data type

struct stores as global and has enabled the functions update and mul to make use of this definition.

13.12 UNIONS

Unions are a concept borrowed from structures and therefore follow the same syntax as structures.

However, there is major distinction between them in terms of storage. In structures, each member has its

own storage location, whereas all the members of a union use the same location. This implies that,

although a union may contain many members of different types, it can handle only one member at a time.

Like structures, a union can be declared using the keyword union as follows:

406 Introduction to Computing

union item
{

int m;
float x;
char c;

} code;

This declares a variable code of type union item. The union contains three members, each with a

different data type. However, we can use only one of them at a time. This is due to the fact that only one

location is allocated for a union variable, irrespective of its size.

1000 1001

Storage of 4 bytes

1002 1004

c

m

x

Fig. 13.7 Sharing of a storage locating by union members

The compiler allocates a piece of storage that is large enough to hold the largest variable type in the

union. In the declaration above, the member x requires 4 bytes which is the largest among the members.

Figure 13.7 shows how all the three variables share the same address. This assumes that a float variable

requires 4 bytes of storage.

To access a union member, we can use the same syntax that we use for structure members. That is,

code.m

code.x

code.c

are all valid member variables. During accessing, we should make sure that we are accessing the

member whose value is currently stored. For example, the statements such as

code.m = 379;
code.x = 7859.36;
printf(“%d”, code.m);

would produce erroneous output (which is machine dependent).

In effect, a union creates a storage location that can be used by any one of its members at a time.

When a different member is assigned a new value, the new value supersedes the previous member�s

value.

Unions may be used in all places where a structure is allowed. The notation for accessing a union

member which is nested inside a structure remains the same as for the nested structures.

Unions may be initialized when the variable is declared. But, unlike structures, it can be initialized

only with a value of the same type as the first union member. For example, with the preceding, the

declaration

union item abc = {100};

Structures and Unions 407

is valid but the declaration

union item abc = {10.75};

is invalid. This is because the type of the first member is int. Other members can be initialized by either
assigning values or reading from the keyboard.

13.13 SIZE OF STRUCTURES

We normally use structures, unions, and arrays to create variables of large sizes. The actual size of these
variables in terms of bytes may change from machine to machine. We may use the unary operator sizeof

to tell us the size of a structure (or any variable). The expression

sizeof(struct x)

will evaluate the number of bytes required to hold all the members of the structure x. If y is a simple
structure variable of type struct x, then the expression

sizeof(y)

would also give the same answer. However, if y is an array variable of type struct x, then

sizeof(y)
would give the total number of bytes the array y requires.

This kind of information would be useful to determine the number of records in a database. For
example, the expression

sizeof(y)/sizeof(x)

would give the number of elements in the array y.

13.14 BIT FIELDS

So far, we have been using integer fields of size 16 bits to store data. There are occasions where data
items require much less than 16 bits space. In such cases, we waste memory space. Fortunately, C
permits us to use small bit fields to hold data items and thereby to pack several data items in a word of
memory. Bit fields allow direct manipulation of string of a string of preselected bits as if it represented
an integral quantity.

A bit field is a set of adjacent bits whose size can be from 1 to 16 bits in length. A word can therefore

be divided into a number of bit fields. The name and size of bit fields are defined using a structure. The
general form of bit field definition is:

struct tag-name
{

data-type name1: bit–length;
data-type name2: bit–length;
.
.
data-type nameN: bit-length;

}

408 Introduction to Computing

The data-type is either int or unsigned int or signed int and the bit-length is the number of bits

used for the specified name. Remember that a signed bit field should have at least 2 bits (one bit for

sign). Note that the field name is followed by a colon. The bit-length is decided by the range of value

to be stored. The largest value that can be stored is 2n�1, where n is bit-length.

The internal representation of bit fields is machine dependent. That is, it depends on the size of int

and the ordering of bits. Some machines store bits from left to right and others from right to left. The

sketch below illustrates the layout of bit fields, assuming a 16-bit word that is ordered from right to

left.

15 14

name N name 2 name 1

13 12 11 10 9 8 7 6 5 4 3 2 1 0

There are several specific points to observe:

1. The first field always starts with the first bit of the word.

2. A bit field cannot overlap integer boundaries. That is, the sum of lengths of all the fields in a

structure should not be more than the size of a word. In case, it is more, the overlapping field is

automatically forced to the beginning of the next word.

3. There can be unnamed fields declared with size. Example:

Unsigned : bit-length

Such fields provide padding within the word.

4. There can be unused bits in a word.

5. We cannot take the address of a bit field variable. This means we cannot use scanf to read

values into bit fields. We can neither use pointer to access the bit fields.

6. Bit fields cannot be arrayed.

7. Bit fields should be assigned values that are within the range of their size. If we try to assign

larger values, behavior would be unpredicted.

Suppose, we want to store and use personal information of employees in compressed form, this can

be done as follows:

struct personal

{

unsigned sex : 1

unsigned age : 7

unsigned m_status : 1

unsigned children : 3

unsigned : 4

} emp;

This defines a variable name emp with four bit fields. The range of values each field could have is

follows:

Bit field Bit length Range of value

sex 1 0 or 1
age 7 0 or 127 (27 � 1)

m_status 1 0 or 1
children 3 0 to 7 (23�1)

Structures and Unions 409

Once bit fields are defined, they can be referenced just as any other structure-type data item would be

referenced. The following assignment statements are valid.

emp.sex = 1;
emp.age = 50;

Remember, we cannot use scanf to read values into a bit field. We may have to read into a temporary

variable and then assign its value to the bit field. For example:

scanf(%d %d”, &AGE,&CHILDREN);
emp.age = AGE;
emp.children = CHILDREN;

One restriction in accessing bit fields is that a pointer cannot be used. However, they can be used in

normal expressions like any other variable. For example:

sum = sum + emp.age;
if(emp.m_status).;
printf(“%d\n”, emp.age);

are valid statements.

It is possible to combine normal structure elements with bit field elements. For example:

struct personal
{

char name[20]; /* normal variable */
struct addr address; /* structure variable */
unsigned sex : 1;
unsigned age : 7;
.
.

}
emp[100];

This declares emp as a 100 element array of type struct personal. This combines normal variable

name and structure type variable address with bit fields.

Bit fields are packed into words as they appear in the definition. Consider the following definition.

struct pack
{

unsigned a:2;
int count;
unsigned b : 3;

};

Here, the bit field a will be in one word, the variable count will be in the second word and the bit field

b will be in the third word. The fields a and b would not get packed into the same word.

410 Introduction to Computing

Just Remember

Remember to place a semicolon at the end of definition of structures and

unions.

We can declare a structure variable at the time of definition of a structure by

placing it after the closing brace but before the semicolon.

Do not place the structure tag name after the closing brace in the definition.

That will be treated as a structure variable. The tag name must be placed

before the opening brace but after the keyword struct.

When we use typedef definition, the type_name comes after the closing brace

but before the semicolon.

We cannot declare a variable at the time of creating a typedef definition. We

must use the type_name to declare a variable in an independent statement.

It is an error to use a structure variable as a member of its own struct type

structure.

Assigning a structure of one type to a structure of another type is an error.

Declaring a variable using the tag name only (without the keyword struct) is an

error.

It is an error to compare two structure variables.

It is illegal to refer to a structure member using only the member name.

When structures are nested, a member must be qualified with all levels of

structures nesting it.

When accessing a member with a pointer and dot notation, parentheses are

required around the pointer, like (*ptr).number.

The selection operator (�>) is a single token. Any space between the symbols

� and > is an error.

When using scanf for reading values for members, we must use address

operator & with non-string members.

Forgetting to include the array subscript when referring to individual structures

of an array of structures is an error.

A union can store only one of its members at a time. We must exercise care in

accessing the correct member. Accessing a wrong data is a logic error.

It is an error to initialize a union with data that does not match the type of the

first member.

Always provide a structure tag name when creating a structure. It is conven-

ient to use tag name to declare new structure variables later in the program.

Use short and meaningful structure tag names.

Avoid using same names for members of different structures (although it is not

illegal).

Passing structures to functions by pointers is more efficient than passing by

value. (Passing by pointers are discussed in Chapter 12.)

We cannot take the address of a bit field. Therefore, we cannot use scanf to

read values in bit fields. We can neither use pointer to access the bit fields.

Bit fields cannot be arrayed.

Structures and Unions 411

Case Studies

Book Shop Inventory

A book shop uses a personal computer to maintain the inventory of books that are being sold at the shop.

The list includes details such as author, title, price, publisher, stock position, etc. Whenever a customer

wants a book, the shopkeeper inputs the title and author of the book and the system replies whether it is

in the list or not. If it is not, an appropriate message is displayed. If book is in the list, then the system

displays the book details and asks for number of copies. If the requested copies are available, the total

cost of the books is displayed; otherwise the message �Required copies not in stock� is displayed.

A program to accomplish this is shown in Fig. 13.8. The program uses a template to define the

structure of the book. Note that the date of publication, a member of record structure, is also defined as

a structure.

When the title and author of a book are specified, the program searches for the book in the list using

the function

look_up(table, s1, s2, m)

The parameter table which receives the structure variable book is declared as type struct record.

The parameters s1 and s2 receive the string values of title and author while m receives the total number

of books in the list. Total number of books is given by the expression

sizeof(book)/sizeof(struct record)

The search ends when the book is found in the list and the function returns the serial number of the

book. The function returns �1 when the book is not found. Remember that the serial number of the first

book in the list is zero. The program terminates when we respond �NO� to the question

Do you want any other book?

Note that we use the function

get(string)

to get title, author, etc. from the terminal. This enables us to input strings with spaces such as �C

Language�. We cannot use scanf to read this string since it contains two words.

Since we are reading the quantity as a string using the get(string) function, we have to convert it to

an integer before using it in any expressions. This is done using the atoi() function.

Programs
 #include <stdio.h>
 #include <string.h>
 struct record
 {
 char author[20];
 char title[30];
 float price;
 struct

412 Introduction to Computing

 {
 char month[10];
 int year;
 }
 date;
 char publisher[10];
 int quantity;
 };
 int look_up(struct record table[],char s1[],char s2[],int m);
 void get (char string []);
 main()
 {
 char title[30], author[20];
 int index, no_of_records;
 char response[10], quantity[10];
 struct record book[] = {
 {"Ritche","C Language",45.00,"May",1977,"PHI",10},
 {"Kochan","Programming in C",75.50,"July",1983,"Hayden",5},
 {"Balagurusamy","BASIC",30.00,"January",1984,"TMH",0},
 {"Balagurusamy","COBOL",60.00,"December",1988,"Macmillan",25}
 };

 no_of_records = sizeof(book)/ sizeof(struct record);
 do
 {
 printf("Enter title and author name as per the list\n");
 printf("\nTitle: ");
 get(title);
 printf("Author: ");
 get(author);
 index = look_up(book, title, author, no_of_records);
 if(index != -1) /* Book found */
 {
 printf("\n%s %s %.2f %s %d %s\n\n",
 book[index].author,
 book[index].title,
 book[index].price,
 book[index].date.month,
 book[index].date.year,
 book[index].publisher);

 printf("Enter number of copies:");
 get(quantity);
 if(atoi(quantity) < book[index].quantity)

Structures and Unions 413

 printf("Cost of %d copies = %.2f\n",atoi(quantity),
 book[index].price * atoi(quantity));
 else
 printf("\nRequired copies not in stock\n\n");
 }
 else
 printf("\nBook not in list\n\n");

 printf("\nDo you want any other book? (YES / NO):");
 get(response);
 }
 while(response[0] == 'Y' || response[0] == 'y');
 printf("\n\nThank you. Good bye!\n");
 }
 void get(char string [])
 {
 char c;
 int i = 0;
 do
 {
 c = getchar();
 string[i++] = c;
 }
 while(c != '\n');
 string[i-1] = '\0';
 }

 int look_up(struct record table[],char s1[],char s2[],int m)
 {
 int i;
 for(i = 0; i < m; i++)
 if(strcmp(s1, table[i].title) == 0 &&
 strcmp(s2, table[i].author) == 0)
 return(i); /* book found */
 return(-1); /* book not found */
 }

Output

 Enter title and author name as per the list
 Title: BASIC
 Author: Balagurusamy
 Balagurusamy BASIC 30.00 January 1984 TMH

 Enter number of copies:5
 Required copies not in stock

414 Introduction to Computing

 Do you want any other book? (YES / NO):y
 Enter title and author name as per the list
 Title: COBOL
 Author: Balagurusamy
 Balagurusamy COBOL 60.00 December 1988 Macmillan

 Enter number of copies:7
 Cost of 7 copies = 420.00

 Do you want any other book? (YES / NO):y
 Enter title and author name as per the list
 Title: C Programming
 Author: Ritche

 Book not in list

 Do you want any other book? (YES / NO):n

 Thank you. Good bye!

Fig. 13.8 Program of bookshop inventory

Review Questions

13.1 State whether the following statements are true or false.

(a) A struct type in C is a built-in data type.

(b) The tag name of a structure is optional.

(c) Structures may contain members of only one data type.

(d) A structure variable is used to declare a data type containing multiple fields.

(e) It is legal to copy a content of a structure variable to another structure variable of the same

type.

(f) Structures are always passed to functions by printers.

(g) Pointers can be used to access the members of structure variables.

(h) We can perform mathematical operations on structure variables that contain only numeric

type members.

(i) The keyword typedef is used to define a new data type.

(j) In accessing a member of a structure using a pointer p, the following two are equivalent:

(*p).member_name and p �> member_name

(k) A union may be initialized in the same way a structure is initialized.

(l) A union can have another union as one of the members.

(m) A structure cannot have a union as one of its members.

(n) An array cannot be used as a member of a structure.

(o) A member in a structure can itself be a structure.

Structures and Unions 415

13.2 Fill in the blanks in the following statements:

(a) The can be used to create a synonym for a previously defined data type.

(b) A is a collection of data items under one name in which the items share the same

storage.

(c) The name of a structure is referred to as .

(d) The selection operator �> requires the use of a to access the members of a

structure.

(e) The variables declared in a structure definition are called its .

13.3 A structure tag name abc is used to declare and initialize the structure variables of type struct

abc in the following statements. Which of them are incorrect? Why? Assume that the structure

abc has three members, int, float and char in that order.

(a) struct a,b,c;
(b) struct abc a,b,c
(c) abc x,y,z;
(d) struct abc a[];
(e) struct abc a = { };
(f) struct abc = b, { 1+2, 3.0, “xyz”}
(g) struct abc c = {4,5,6};
(h) struct abc a = 4, 5.0, “xyz”;

13.4 Given the declaration

struct abc a,b,c;

which of the following statements are legal?

(a) scanf (“%d, &a);
(b) printf (“%d”, b);
(c) a = b;
(d) a = b + c;
(e) if (a>b)

.
13.5 Given the declaration

struct item_bank
{

int number;
double cost;

};

which of the following are correct statements for declaring one dimensional array of structures of

type struct item_bank?

(a) int item_bank items[10];
(b) struct items[10] item_bank;
(c) struct item_bank items (10);
(d) struct item_bank items [10];
(e) struct items item_bank [10];

13.6 Given the following declaration

typedef struct abc
{

416 Introduction to Computing

char x;
int y;
float z[10];

} ABC;

State which of the following declarations are invalid? Why?

(a) struct abc n1;
(b) struct abc n2[10];
(c) struct ABC n3;
(d) ABC a,b,c;
(e) ABC a[10];

13.7 How does a structure differ from an array?

13.8 Explain the meaning and purpose of the following:

(a) Template

(b) struct keyword

(c) typedef keyword

(d) sizeof operator

(e) Tag name

13.9 Explain what is wrong in the following structure declaration:

struct
{

int number;
float price;

}
main()
{

.

.
}

13.10 When do we use the following?

(a) Unions

(b) Bit fields

(c) The sizeof operator

13.11 What is meant by the following terms?

(a) Nested structures

(b) Array of structures

Give a typical example of use of each of them.

13.12 Given the structure definitions and declarations

 struct abc
 {

int a;
float b;

};
struct xyz
{

int x;

Structures and Unions 417

float y;
};

abc a1, a2;
xyz x1, x2;

find errors, if any, in the following statements:

(a) a1 = x1;

(b) abc.a1 = 10.75;

(c) int m = a + x;

(d) int n = x1.x + 10;

(e) a1 = a2;

(f) if (a.a1 > x.x1) . . .

(g) if (a1.a < x1.x) . . .

(h) if (x1 != x2) . . .

13.13 Describe with examples, the different ways of assigning values to structure members.

13.14 State the rules for initializing structures.

13.15 What is a �slack byte�? How does it affect the implementation of structures?

13.16 Describe three different approaches that can be used to pass structures as function arguments.

13.17 What are the important points to be considered when implementing bit-fields in structures?

13.18 Define a structure called complex consisting of two floating-point numbers x and y and declare

a variable p of type complex. Assign initial values 0.0 and 1.1 to the members.

13.19 What is the error in the following program?

typedef struct product
{

char name [10];
float price ;

} PRODUCT products [10];

13.20 What will be the output of the following program?

main ()
{

union x
{

int a;
float b;
double c ;

};

printf(“%d\n”, sizeof(x));
a.x = 10;

printf(“%d%f%f\n”, a.x, b.x, c.x);
c.x = 1.23;

printf(“%d%f%f\n”, a.x, b.x, c.x);
}

418 Introduction to Computing

Programming Exercises

13.1 Define a structure data type called time_struct containing three members integer hour, integer

minute and integer second. Develop a program that would assign values to the individual

members and display the time in the following form:

16:40:51

13.2 Modify the above program such that a function is used to input values to the members and

another function to display the time.

13.3 Design a function update that would accept the data structure designed in Exercise 13.1 and

increments time by one second and returns the new time. (If the increment results in 60

seconds, then the second member is set to zero and the minute member is incremented by one.

Then, if the result is 60 minutes, the minute member is set to zero and the hour member is

incremented by one. Finally when the hour becomes 24, it is set to zero.)

13.4 Define a structure data type named date containing three integer members day, month and

year. Develop an interactive modular program to perform the following tasks;

∑ To read data into structure members by a function

∑ To validate the date entered by another function

∑ To print the date in the format

April 29, 2002

by a third function.

The input data should be three integers like 29, 4, and 2002 corresponding to day, month

and year. Examples of invalid data:

31, 4, 2002 � April has only 30 days

29, 2, 2002 � 2002 is not a leap year

13.5 Design a function update that accepts the date structure designed in Exercise 13.4 to

increment the date by one day and return the new date. The following rules are applicable:

∑ If the date is the last day in a month, month should be incremented

∑ If it is the last day in December, the year should be incremented

∑ There are 29 days in February of a leap year

13.6 Modify the input function used in Exercise 13.4 such that it reads a value that represents the

date in the form of a long integer, like 19450815 for the date 15-8-1945 (August 15, 1945) and

assigns suitable values to the members day, month and year.

Use suitable algorithm to convert the long integer 19450815 into year, month and day.

13.7 Add a function called nextdate to the program designed in Exercise 13.4 to perform the

following task;

∑ Accepts two arguments, one of the structure data containing the present date and the

second an integer that represents the number of days to be added to the present date.

∑ Adds the days to the present date and returns the structure containing the next date

correctly.

Note that the next date may be in the next month or even the next year.

13.8 Use the date structure defined in Exercise 13.4 to store two dates. Develop a function that will

take these two dates as input and compares them.

∑ It returns 1, if the date1 is earlier than date2

∑ It returns 0, if date1 is later date

Structures and Unions 419

13.9 Define a structure to represent a vector (a series of integer values) and write a modular program

to perform the following tasks:

∑ To create a vector

∑ To modify the value of a given element

∑ To multiply by a scalar value

∑ To display the vector in the form

(10, 20, 30,)

13.10 Add a function to the program of Exercise 13.9 that accepts two vectors as input parameters and

return the addition of two vectors.

13.11 Create two structures named metric and British which store the values of distances. The metric

structure stores the values in meters and centimeters and the British structure stores the values

in feet and inches. Write a program that reads values for the structure variables and adds values

contained in one variable of metric to the contents of another variable of British. The program

should display the result in the format of feet and inches or metres and centimetres as required.

13.12 Define a structure named census with the following three members:

∑ A character array city [] to store names

∑ A long integer to store population of the city

∑ A float member to store the literacy level

Write a program to do the following:

∑ To read details for 5 cities randomly using an array variable

∑ To sort the list alphabetically

∑ To sort the list based on literacy level

∑ To sort the list based on population

∑ To display sorted lists

13.13 Define a structure that can describe an hotel. It should have members that include the name,

address, grade, average room charge, and number of rooms.

Write functions to perform the following operations:

∑ To print out hotels of a given grade in order of charges

∑ To print out hotels with room charges less than a given value

13.14 Define a structure called cricket that will describe the following information:

player name

team name

batting average

Using cricket, declare an array player with 50 elements and write a program to read the

information about all the 50 players and print a team-wise list containing names of players with

their batting average.

13.15 Design a structure student_record to contain name, date of birth and total marks obtained. Use

the date structure designed in Exercise 13.4 to represent the date of birth.

Develop a program to read data for 10 students in a class and list them rank-wise.

File Management in C

14.1 INTRODUCTION

Until now we have been using the functions such as scanf and printf to read and write data. These

are console oriented I/O functions, which always use the terminal (keyboard and screen) as the

target place. This works fine as long as the data is small. However, many real-life problems involve

large volumes of data and in such situations, the console oriented I/O operations pose two major

problems.

1. It becomes cumbersome and time consuming to handle large volumes of data through

terminals.

2. The entire data is lost when either the program is terminated or the computer is turned

off.

It is therefore necessary to have a more flexible approach where data can be stored on the disks

and read whenever necessary, without destroying the data. This method employs the concept of files

to store data. A file is a place on the disk where a group of related data is stored. Like most other

languages, C supports a number of functions that have the ability to perform basic file operations,

which include:

∑ naming a file,

∑ opening a file,

∑ reading data from a file,

∑ writing data to a file, and

∑ closing a file.

There are two distinct ways to perform file operations in C. The first one is known as the low-level

I/O and uses UNIX system calls. The second method is referred to as the high-level I/O operation and

uses functions in C�s standard I/O library. We shall discuss in this chapter, the important file handling

functions that are available in the C library. They are listed in Table 14.1.

CHAPTER

14

File Management in C 421

Table 14.1 High Level I/O Functions

Function name Operation

fopen() * Creates a new file for use.

* Opens an existing file for use.

fclose() * Closes a file which has been opened for use.

getc() * Reads a character from a file.

putc() * Writes a character to a file.

fprintf() * Writes a set of data values to a file.

fscanf() * Reads a set of data values from a file.

getw() * Reads an integer from a file.

putw() * Writes an integer to a file.

fseek() * Sets the position to a desired point in the file.

ftell() * Gives the current position in the file (in terms of bytes from the start).

rewind() * Sets the position to the beginning of the file.

There are many other functions. Not all of them are supported by all compilers. You should check

your C library before using a particular I/O function.

14.2 DEFINING AND OPENING A FILE

If we want to store data in a file in the secondary memory, we must specify certain things about the

file, to the operating system. They include:

1. Filename.

2. Data structure.

3. Purpose.

Filename is a string of characters that make up a valid filename for the operating system. It may

contain two parts, a primary name and an optional period with the extension. Examples:

Input.data

store

PROG.C

Student.c

Text.out

Data structure of a file is defined as FILE in the library of standard I/O function definitions.

Therefore, all files should be declared as type FILE before they are used. FILE is a defined data type.

When we open a file, we must specify what we want to do with the file. For example, we may write

data to the file or read the already existing data.

Following is the general format for declaring and opening a file:

FILE *fp;

fp = fopen(“filename”, “mode”);

The first statement declares the variable fp as a �pointer to the data type FILE�. As stated earlier,

FILE is a structure that is defined in the I/O library. The second statement opens the file named filename

422 Introduction to Computing

and assigns an identifier to the FILE type pointer fp. This pointer, which contains all the information about

the file is subsequently used as a communication link between the system and the program.

The second statement also specifies the purpose of opening this file. The mode does this job. Mode

can be one of the following:

r open the file for reading only.

w open the file for writing only.

a open the file for appending (or adding) data to it.

Note that both the filename and mode are specified as strings. They should be enclosed in double

quotation marks.

When trying to open a file, one of the following things may happen:

1. When the mode is �writing�, a file with the specified name is created if the file does not exist.

The contents are deleted, if the file already exists.

2. When the purpose is �appending�, the file is opened with the current contents safe. A file with

the specified name is created if the file does not exist.

3. If the purpose is �reading�, and if it exists, then the file is opened with the current contents safe

otherwise an error occurs.

Consider the following statements:

FILE *p1, *p2;

p1 = fopen(“data”, “r”);

p2 = fopen(“results”, “w”);

The file data is opened for reading and results is opened for writing. In case, the results file

already exists, its contents are deleted and the file is opened as a new file. If data file does not exist,

an error will occur.

Many recent compilers include additional modes of operation. They include:

r+ The existing file is opened to the beginning for both reading and writing.

w+ Same as w except both for reading and writing.

a+ Same as a except both for reading and writing.

We can open and use a number of files at a time. This number however depends on the system we

use.

14.3 CLOSING A FILE

A file must be closed as soon as all operations on it have been completed. This ensures that all

outstanding information associated with the file is flushed out from the buffers and all links to the file

are broken. It also prevents any accidental misuse of the file. In case, there is a limit to the number of

files that can be kept open simultaneously, closing of unwanted files might help open the required

files. Another instance where we have to close a file is when we want to reopen the same file in a

different mode. The I/O library supports a function to do this for us. It takes the following form:

fclose(file_pointer);

File Management in C 423

This would close the file associated with the FILE pointer file_pointer. Look at the following seg-

ment of a program.

.....

.....

FILE *p
1
, *p

2
;

p1 = fopen(“INPUT”, “w”);

p2 = fopen(“OUTPUT”, “r”);

.....

.....

fclose(p1);

fclose(p2);

.....

This program opens two files and closes them after all operations on them are completed. Once a

file is closed, its file pointer can be reused for another file.

As a matter of fact all files are closed automatically whenever a program terminates. However,

closing a file as soon as you are done with it is a good programming habit.

14.4 INPUT/OUTPUT OPERATIONS ON FILES

Once a file is opened, reading out of or writing to it is accomplished using the standard I/O routines

that are listed in Table 14.1.

The getc and putc Functions

The simplest file I/O functions are getc and putc. These are analogous to getchar and putchar functions

and handle one character at a time. Assume that a file is opened with mode w and file pointer fp1. Then,

the statement

putc(c, fp1);

writes the character contained in the character variable c to the file associated with FILE pointer fp1.

Similarly, getc is used to read a character from a file that has been opened in read mode. For example,

the statement

c = getc(fp2);

would read a character from the file whose file pointer is fp2.

The file pointer moves by one character position for every operation of getc or putc. The getc will

return an end-of-file marker EOF, when end of the file has been reached. Therefore, the reading

should be terminated when EOF is encountered.

Example 14.1 Write a program to read data from the keyboard, write it to a file called
INPUT, again read the same data from the INPUT file, and display it on
the screen.

A program and the related input and output data are shown in Fig.14.1. We enter the input data via the

keyboard and the program writes it, character by character, to the file INPUT. The end of the data is

indicated by entering an EOF character, which is control-Z in the reference system. (This may be

control-D in other systems.) The file INPUT is closed at this signal.

424 Introduction to Computing

Program
 #include <stdio.h>

 main()
 {
 FILE *f1;
 char c;
 printf("Data Input\n\n");
 /* Open the file INPUT */
 f1 = fopen("INPUT", "w");

 /* Get a character from keyboard */
 while((c=getchar()) != EOF)

 /* Write a character to INPUT */
 putc(c,f1);

 /* Close the file INPUT */

 fclose(f1);
 printf("\nData Output\n\n");

 /* Reopen the file INPUT */
 f1 = fopen("INPUT","r");

 /* Read a character from INPUT*/
 while((c=getc(f1)) != EOF)

 /* Display a character on screen */
 printf("%c",c);

 /* Close the file INPUT */
 fclose(f1);
 }

Output

 Data Input
 This is a program to test the file handling
 features on this system^Z

 Data Output
 This is a program to test the file handling
 features on this system

Fig. 14.1 Character oriented read/write operations on a file

File Management in C 425

The file INPUT is again reopened for reading. The program then reads its content character by char-

acter, and displays it on the screen. Reading is terminated when getc encounters the end-of-file mark

EOF.

Testing for the end-of-file condition is important. Any attempt to read past the end of file might

either cause the program to terminate with an error or result in an infinite loop situation.

The getw and putw Functions

The getw and putw are integer-oriented functions. They are similar to the getc and putc functions

and are used to read and write integer values. These functions would be useful when we deal with

only integer data. The general forms of getw and putw are:

putw(integer, fp);
getw(fp);

Example 14.2 illustrates the use of putw and getw functions.

Example 14.2 A file named DATA contains a series of integer numbers. Code a pro-
gram to read these numbers and then write all ‘odd’ numbers to a file
to be called ODD and all ‘even’ numbers to a file to be called EVEN.

The program is shown in Fig. 14.2. It uses three files simultaneously and therefore, we need to define

three-file pointers f1, f2 and f3.

First, the file DATA containing integer values is created. The integer values are read from the

terminal and are written to the file DATA with the help of the statement

putw(number, f1);

Notice that when we type �1, the reading is terminated and the file is closed. The next step is to

open all the three files, DATA for reading, ODD and EVEN for writing. The contents of DATA file

are read, integer by integer, by the function getw(f1) and written to ODD or EVEN file after an

appropriate test. Note that the statement

(number = getw(f1)) != EOF

reads a value, assigns the same to number, and then tests for the end-of-file mark.

Finally, the program displays the contents of ODD and EVEN files. It is important to note that the

files ODD and EVEN opened for writing are closed before they are reopened for reading.

Program

 #include <stdio.h>
 main()
 {
 FILE *f1, *f2, *f3;
 int number, i;

 printf("Contents of DATA file\n\n");

426 Introduction to Computing

 f1 = fopen("DATA", "w"); /* Create DATA file */
 for(i = 1; i <= 30; i++)
 {
 scanf("%d", &number);
 if(number == -1) break;
 putw(number,f1);
 }
 fclose(f1);

 f1 = fopen("DATA", "r");
 f2 = fopen("ODD", "w");
 f3 = fopen("EVEN", "w");

 /* Read from DATA file */
 while((number = getw(f1)) != EOF)
 {
 if(number %2 == 0)
 putw(number, f3); /* Write to EVEN file */
 else
 putw(number, f2); /* Write to ODD file */
 }
 fclose(f1);
 fclose(f2);
 fclose(f3);

 f2 = fopen("ODD","r");
 f3 = fopen("EVEN", "r");

 printf("\n\nContents of ODD file\n\n");
 while((number = getw(f2)) != EOF)
 printf("%4d", number);

 printf("\n\nContents of EVEN file\n\n");
 while((number = getw(f3)) != EOF)
 printf("%4d", number);

 fclose(f2);
 fclose(f3);

 }

 Output

 Contents of DATA file
 111 222 333 444 555 666 777 888 999 000 121 232 343 454 565 –1

File Management in C 427

 Contents of ODD file
 111 333 555 777 999 121 343 565

 Contents of EVEN file
 222 444 666 888 0 232 454

Fig. 14.2 Operations on integer data

The fprintf and fscanf Functions

So far, we have seen functions, that can handle only one character or integer at a time. Most compilers

support two other functions, namely fprintf and fscanf, that can handle a group of mixed data simul-

taneously.

The functions fprintf and fscanf perform I/O operations that are identical to the familar printf and

scanf functions, except of course that they work on files. The first argument of these functions is a

file pointer which specifies the file to be used. The general form of fprintf is

fprintf(fp, “control string”, list);

where fp is a file pointer associated with a file that has been opened for writing. The control string

contains output specifications for the items in the list. The list may include variables, constants and

strings. Example:

fprintf(f1, “%s %d %f”, name, age, 7.5);

Here, name is an array variable of type char and age is an int variable.

The general format of fscanf is

fprintf(fp, “control string”, list);

This statement would cause the reading of the items in the list from the file specified by fp, according

to the specifications contained in the control string. Example:

fscanf(f2, “%s %d”, item, &quantity);

Like scanf, fscanf also returns the number of items that are successfully read. When the end of file

is reached, it returns the value EOF.

Example 14.3 Write a program to open a file named INVENTORY and store in it the
following data:

Item name Number Price Quantity
AAA-1 111 17.50 115
BBB-2 125 36.00 75
C-3 247 31.75 104
Extend the program to read this data from the file INVENTORY and
display the inventory table with the value of each item.

428 Introduction to Computing

The program is given in Fig. 14.3. The filename INVENTORY is supplied through the keyboard. Data

is read using the function fscanf from the file stdin, which refers to the terminal and it is then written to

the file that is being pointed to by the file pointer fp. Remember that the file pointer fp points to the file

INVENTORY.

After closing the file INVENTORY, it is again reopened for reading. The data from the file, along

with the item values are written to the file stdout, which refers to the screen. While reading from a

file, care should be taken to use the same format specifications with which the contents have been

written to the file.�é

Program

 #include <stdio.h>

 main()
 {
 FILE *fp;
 int number, quantity, i;
 float price, value;
 char item[10], filename[10];

 printf("Input file name\n");
 scanf("%s", filename);
 fp = fopen(filename, "w");
 printf("Input inventory data\n\n");
 printf("Item name Number Price Quantity\n");
 for(i = 1; i <= 3; i++)
 {
 fscanf(stdin, "%s %d %f %d",
 item, &number, &price, &quantity);
 fprintf(fp, "%s %d %.2f %d",
 item, number, price, quantity);
 }
 fclose(fp);
 fprintf(stdout, "\n\n");

 fp = fopen(filename, "r");

 printf("Item name Number Price Quantity Value\n");
 for(i = 1; i <= 3; i++)
 {
 fscanf(fp, "%s %d %f d",item,&number,&price,&quantity);
 value = price * quantity;
 fprintf(stdout, "%-8s %7d %8.2f %8d %11.2f\n",
 item, number, price, quantity, value);
 }
 fclose(fp);
 }

File Management in C 429

Output

 Input file name
 INVENTORY
 Input inventory data

 Item name Number Price Quantity
 AAA-1 111 17.50 115
 BBB-2 125 36.00 75
 C-3 247 31.75 104

 Item name Number Price Quantity Value
 AAA-1 111 17.50 115 2012.50
 BBB-2 125 36.00 75 2700.00
 C-3 247 31.75 104 3302.00

Fig. 14.3 Operations on mixed data types

14.5 ERROR HANDLING DURING I/O OPERATIONS

It is possible that an error may occur during I/O operations on a file. Typical error situations include:

1. Trying to read beyond the end-of-file mark.

2. Device overflow.

3. Trying to use a file that has not been opened.

4. Trying to perform an operation on a file, when the file is opened for another type of

operation.

5. Opening a file with an invalid filename.

6. Attempting to write to a write-protected file.

If we fail to check such read and write errors, a program may behave abnormally when an error
occurs. An unchecked error may result in a premature termination of the program or incorrect output.
Fortunately, we have two status-inquiry library functions; feof and ferror that can help us detect I/O
errors in the files.

The feof function can be used to test for an end of file condition. It takes a FILE pointer as its only
argument and returns a nonzero integer value if all of the data from the specified file has been read,
and returns zero otherwise. If fp is a pointer to file that has just been opened for reading, then the
statement

if(feof(fp))

printf(“End of data.\n”);

would display the message �End of data.� on reaching the end of file condition.
The ferror function reports the status of the file indicated. It also takes a FILE pointer as its

argument and returns a nonzero integer if an error has been detected up to that point, during process-
ing. It returns zero otherwise. The statement

430 Introduction to Computing

if(ferror(fp) != 0)

printf(“An error has occurred.\n”);

would print the error message, if the reading is not successful.

We know that whenever a file is opened using fopen function, a file pointer is returned. If the file

cannot be opened for some reason, then the function returns a NULL pointer. This facility can be

used to test whether a file has been opened or not. Example:

if(fp == NULL)

printf(“File could not be opened.\n”);

Example 14.4 Write a program to illustrate error handling in file operations.

The program shown in Fig. 13.4 illustrates the use of the NULL pointer test and feof function. When we

input filename as TETS, the function call

fopen(“TETS”, “r”);

returns a NULL pointer because the file TETS does not exist and therefore the message �Cannot open

the file� is printed out.

Similarly, the call feof(fp2) returns a non-zero integer when the entire data has been read, and

hence the program prints the message �Ran out of data� and terminates further reading.

Program
 #include <stdio.h>

 main()
 {
 char *filename;
 FILE *fp1, *fp2;
 int i, number;

 fp1 = fopen("TEST", "w");
 for(i = 10; i <= 100; i += 10)
 putw(i, fp1);

 fclose(fp1);

 printf("\nInput filename\n");

 open_file:
 scanf("%s", filename);

 if((fp2 = fopen(filename,"r")) == NULL)
 {
 printf("Cannot open the file.\n");
 printf("Type filename again.\n\n");
 goto open_file;
 }

File Management in C 431

 else

 for(i = 1; i <= 20; i++)
 { number = getw(fp2);
 if(feof(fp2))
 {
 printf("\nRan out of data.\n");
 break;
 }
 else
 printf("%d\n", number);
 }

 fclose(fp2);
 }

Output

 Input filename
 TETS
 Cannot open the file.
 Type filename again.

 TEST
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 Ran out of data.

Fig. 14.4 Illustration of error handling in file operations

14.6 RANDOM ACCESS TO FILES

So far we have discussed file functions that are useful for reading and writing data sequentially.

There are occasions, however, when we are interested in accessing only a particular part of a file and

not in reading the other parts. This can be achieved with the help of the functions fseek, ftell, and

rewind available in the I/O library.

432 Introduction to Computing

ftell takes a file pointer and return a number of type long, that corresponds to the current position.

This function is useful in saving the current position of a file, which can be used later in the program.

It takes the following form:

n = ftell(fp);

n would give the relative offset (in bytes) of the current position. This means that n bytes have already

been read (or written).

rewind takes a file pointer and resets the position to the start of the file. For example, the statement

rewind(fp);

n = ftell(fp);

would assign 0 to n because the file position has been set to the start of the file by rewind. Remember,

the first byte in the file is numbered as 0, second as 1, and so on. This function helps us in reading a

file more than once, without having to close and open the file. Remember that whenever a file is

opened for reading or writing, a rewind is done implicitly.

fseek function is used to move the file position to a desired location within the file. It takes the

following form:

fseek(file_ptr, offset, position);

file_ptr is a pointer to the file concerned, offset is a number or variable of type long, and position is an

integer number. The offset specifies the number of positions (bytes) to be moved from the location

specified by position. The position can take one of the following three values:

Value Meaning

0 Beginning of file

1 Current position

2 End of file

The offset may be positive, meaning move forwards, or negative, meaning move backwards.

Examples in Table 13.2 illustrate the operations of the fseek function:

Table 14.2 Operations of fseek Function

Statement Meaning

fseek(fp,0L,0); Go to the beginning.

(Similar to rewind)

fseek(fp,0L,1); Stay at the current position.

(Rarely used)

fseek(fp,0L,2); Go to the end of the file, past the last character of the file.

fseek(fp,m,0); Move to (m+1)th byte in the file.

fseek(fp,m,1); Go forward by m bytes.

fseek(fp,-m,1); Go backward by m bytes from the current position.

fseek(fp,-m,2); Go backward by m bytes from the end. (Positions the file to the mth

character from the end.)

File Management in C 433

When the operation is successful, fseek returns a zero. If we attempt to move the file pointer beyond

the file boundaries, an error occurs and fseek returns �1 (minus one). It is good practice to check whether

an error has occurred or not, before proceeding further.

Example 14.5 Write a program that uses the functions ftell and fseek.

A program employing ftell and fseek functions is shown in Fig. 14.5. We have created a file

RANDOM with the following contents:

Position � � � �> 0 1 2 . . . 25

Character

stored � � � �> A B C . . . Z

We are reading the file twice. First, we are reading the content of every fifth position and printing

its value along with its position on the screen. The second time, we are reading the contents of the file

from the end and printing the same on the screen.

During the first reading, the file pointer crosses the end-of-file mark when the parameter n of

fseek(fp,n,0) becomes 30. Therefore, after printing the content of position 30, the loop is terminated.

For reading the file from the end, we use the statement

fseek(fp,–1L,2);

to position the file pointer to the last character. Since every read causes the position to move forward

by one position, we have to move it back by two positions to read the next character. This is achieved

by the function

fseek(fp, –2L, 1);

in the while statement. This statement also tests whether the file pointer has crossed the file boundary

or not. The loop is terminated as soon as it crosses it.

Program

 #include <stdio.h>
 main()
 {
 FILE *fp;
 long n;
 char c;
 fp = fopen("RANDOM", "w");
 while((c = getchar()) != EOF)
 putc(c,fp);

 printf("No. of characters entered = %ld\n", ftell(fp));
 fclose(fp);
 fp = fopen("RANDOM","r");
 n = 0L;

 while(feof(fp) == 0)

434 Introduction to Computing

 {
 fseek(fp, n, 0); /* Position to (n+1)th character */
 printf("Position of %c is %ld\n", getc(fp),ftell(fp));
 n = n+5L;
 }
 putchar('\n');

 fseek(fp,–1L,2); /* Position to the last character */
 do
 {
 putchar(getc(fp));
 }
 while(!fseek(fp,–2L,1));
 fclose(fp);
 }
Output

 ABCDEFGHIJKLMNOPQRSTUVWXYZ^Z
 No. of characters entered = 26
 Position of A is 0
 Position of F is 5
 Position of K is 10
 Position of P is 15
 Position of U is 20
 Position of Z is 25
 Position of is 30

 ZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 14.5 Illustration of fseek and ftell functions

Example 14.6 Write a program to append additional items to the file INVENTORY cre-
ated in Example 14.3 and print the total contents of the file.

The program is shown in Fig. 14.6. It uses a structure definition to describe each item and a function

append() to add an item to the file.

On execution, the program requests for the filename to which data is to be appended. After ap-

pending the items, the position of the last character in the file is assigned to n and then the file is

closed.

The file is reopened for reading and its contents are displayed. Note that reading and displaying are

done under the control of a while loop. The loop tests the current file position against n and is termi-

nated when they become equal.

File Management in C 435

Program
 #include <stdio.h>

 struct invent_record
 {
 char name[10];
 int number;
 float price;
 int quantity;
 };
 main()
 {
 struct invent_record item;
 char filename[10];
 int response;
 FILE *fp;
 long n;
 void append (struct invent_record *x, file *y);
 printf("Type filename:");
 scanf("%s", filename);

 fp = fopen(filename, "a+");
 do
 {
 append(&item, fp);
 printf("\nItem %s appended.\n",item.name);
 printf("\nDo you want to add another item\

(1 for YES /0 for NO)?");
 scanf("%d", &response);
 } while (response == 1);

 n = ftell(fp); /* Position of last character */
 fclose(fp);

 fp = fopen(filename, "r");

 while(ftell(fp) < n)
 {

fscanf(fp,"%s %d %f %d",
item.name, &item.number, &item.price, &item.quantity);
fprintf(stdout,"%-8s %7d %8.2f %8d\n",
item.name, item.number, item.price, item.quantity);

 }
 fclose(fp);
 }
 void append(struct invent_record *product, File *ptr)
 {

436 Introduction to Computing

 printf("Item name:");
 scanf("%s", product–>name);
 printf("Item number:");
 scanf("%d", &product–>number);
 printf("Item price:");
 scanf("%f", &product–>price);
 printf("Quantity:");
 scanf("%d", &product–>quantity);
 fprintf(ptr, "%s %d %.2f %d",
 product–>name,
 product–>number,
 product–>price,
 product–>quantity);
 }

Output
 Type filename:INVENTORY
 Item name:XXX
 Item number:444
 Item price:40.50
 Quantity:34

 Item XXX appended.

 Do you want to add another item(1 for YES /0 for NO)?1

 Item name:YYY
 Item number:555
 Item price:50.50
 Quantity:45

 Item YYY appended.

 Do you want to add another item(1 for YES /0 for NO)?0
 AAA-1 111 17.50 115
 BBB-2 125 36.00 75
 C-3 247 31.75 104
 XXX 444 40.50 34
 YYY 555 50.50 45

Fig. 14.6 Adding items to an existing file

14.7 COMMAND LINE ARGUMENTS

What is a command line argument? It is a parameter supplied to a program when the program is

invoked. This parameter may represent a filename the program should process. For example, if we

want to execute a program to copy the contents of a file named X_FILE to another one named

Y_FILE, then we may use a command line like

File Management in C 437

C > PROGRAM X_FILE Y_FILE

where PROGRAM is the filename where the executable code of the program is stored. This eliminates
the need for the program to request the user to enter the filenames during execution. How do these
parameters get into the program?

We know that every C program should have one main function and that it marks the beginning of the
program. But what we have not mentioned so far is that it can also take arguments like other functions.
In fact main can take two arguments called argc and argv and the information contained in the com-
mand line is passed on to the program through these arguments, when main is called up by the system.

The variable argc is an argument counter that counts the number of arguments on the command line.
The argv is an argument vector and represents an array of character pointers that point to the command
line arguments. The size of this array will be equal to the value of argc. For instance, for the command
line given above, argc is three and argv is an array of three pointers to strings as shown below:

argv[0] �> PROGRAM

argv[1] �> X_FILE

argv[2] �> Y_FILE

In order to access the command line arguments, we must declare the main function and its param-
eters as follows:

main(int arge, char *argv[])

{

.....

.....

}

The first parameter in the command line is always the program name and therefore argv[0] always
represents the program name.

Example 14.7 Write a program that will receive a filename and a line of text as com-
mand line arguments and write the text to the file.

Figure 14.7 shows the use of command line arguments. The command line is

F13_7 TEXT AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGGG

Each word in the command line is an argument to the main and therefore the total number of argu-

ments is 9.

The argument vector argv[1] points to the string TEXT and therefore the statement

fp = fopen(argv[1], “w”);

opens a file with the name TEXT. The for loop that follows immediately writes the remaining 7

arguments to the file TEXT.

Program
 #include <stdio.h>

 main(int arge, char *argv[])
 {
 FILE *fp;
 int i;
 char word[15];

438 Introduction to Computing

 fp = fopen(argv[1], "w"); /* open file with name argv[1] */
 printf("\nNo. of arguments in Command line = %d\n\n",argc);
 for(i = 2; i < argc; i++)
 fprintf(fp,"%s ", argv[i]); /* write to file argv[1] */
 fclose(fp);

 /* Writing content of the file to screen */

 printf("Contents of %s file\n\n", argv[1]);
 fp = fopen(argv[1], "r");
 for(i = 2; i < argc; i++)
 {
 fscanf(fp,"%s", word);
 printf("%s ", word);
 }

 fclose(fp);
 printf("\n\n");

 /* Writing the arguments from memory */

 for(i = 0; i < argc; i++)
 printf("%*s \n", i*5,argv[i]);
 }

Output

 C>F12_7 TEXT AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGG

 No. of arguments in Command line = 9

 Contents of TEXT file

 AAAAAA BBBBBB CCCCCC DDDDDD EEEEEE FFFFFF GGGGGG

 C:\C\F12_7.EXE
 TEXT
 AAAAAA
 BBBBBB
 CCCCCC
 DDDDDD
 EEEEEE
 FFFFFF
 GGGGGG

Fig. 14.7 Use of command line arguments

File Management in C 439

Just Remember

Do not try to use a file before opening it.

Remember, when an existing file is open using �w� mode, the contents of file

are deleted.

When a file is used for both reading and writing, we must open it in �w+�

mode.

EOF is integer type with a value �1. Therefore, we must use an integer

variable to test EOF.

It is an error to omit the file pointer when using a file function.

It is an error to open a file for reading when it does not exist.

It is an error to try to read from a file that is in write mode and vice versa.

It is an error to attempt to place the file marker before the first byte of a

file.

It is an error to access a file with its name rather than its file pointer.

It is a good practice to close all files before terminating a program.

Review Questions

14.1 State whether the following statements are true or false.

(a) A file must be opened before it can be used.

(b) All files must be explicitly closed.

(c) Files are always referred to by name in C programs.

(d) Using fseek to position a file beyond the end of the file is an error.

(e) Function fseek may be used to seek from the beginning of the file only.

14.2 Fill in the blanks in the following statements.

(a) The mode is used for opening a file for updating.

(b) The function may be used to position a file at the beginning.

(c) The function gives the current position in the file.

(d) The function is used to write data to randomly accessed file.

14.3 Describe the use and limitations of the functions getc and putc.

14.4 What is the significance of EOF?

14.5 When a program is terminated, all the files used by it are automatically closed. Why is it then

necessary to close a file during execution of the program?

14.6 Distinguish between the following functions:

(a) getc and getchar

(b) printf and fprintf

(c) feof and ferror

14.7 How does an append mode differ from a write mode?

14.8 What are the common uses of rewind and ftell functions?

14.9 Explain the general format of fseek function?

14.10 What is the difference between the statements rewind(fp); and fseek(fp,0L,0);?

440 Introduction to Computing

14.11 Find error, if any, in the following statements:

FILE fptr;

fptr = fopen (“data”, “a+”);

14.12 What does the following statement mean?

FILE(*p) (void)

14.13 What does the following statement do?

While ((c = getchar() != EOF)

putc(c, fl);

14.14 What does the following statement do?

While ((m = getw(fl)) != EOF)

printf(“%5d”, m);

14.15 What does the following segment do?

. . . .

for (i = 1; i <= 5; i++)

{

fscanf(stdin, “%s”, name);

fprintf(fp, “%s”, name);

}

. . . .

14.16 What is the purpose of the following functions?

(a) feof ()

(b) ferror ()

14.17 Give examples of using feof and ferror in a program.

14.18 Can we read from a file and write to the same file without resetting the file pointer? If not,

why?

14.19 When do we use the following functions ?

(a) free ()

(b) rewind ()

14.20 Describe an algorithm that will append the contents of one file to the end of another file.

Programming Exercises

14.1 Write a program to copy the contents of one file into another.

14.2 Two files DATA1 and DATA2 contain sorted lists of integers. Write a program to produce a

third file DATA which holds a single sorted, merged list of these two lists. Use command line

arguments to specify the file names.

14.3 Write a program that compares two files and returns 0 if they are equal and 1 is they are not.

14.4 Write a program that appends one file at the end of another.

14.5 Write a program that reads a file containing integers and appends at its end the sum of all the

integers.

File Management in C 441

14.6 Write a program that prompts the user for two files, one containing a line of text known as

source file and other, an empty file known as target file and then copies the contents of source

file into target file.

Modify the program so that a specified character is deleted from the source file as it is copied to

the target file.

14.7 Write a program that requests for a file name and an integer, known as offset value. The program

then reads the file starting from the location specified by the offset value and prints the contents

on the screen.

Note: If the offset value is a positive integer, then printing skips that many lines. If it is a

negative number, it prints that many lines from the end of the file. An appropriate error

message should be printed, if anything goes wrong.

14.8 Write a program to create a sequential file that could store details about five products. Details

include product code, cost and number of items available and are provided through keyboard.

14.9 Write a program to read the file created in Exercise 14.8 and compute and print the total value

of all the five products.

14.10 Rewrite the program developed in Exercise 14.8 to store the details in a random access file and

print the details of alternate products from the file. Modify the program so that it can output the

details of a product when its code is specified interactively.

Developing a C Program:
Some Guidelines

15.1 INTRODUCTION

We have discussed so far various features of C language and are ready to write and execute programs of

modest complexity. However, before attempting to develop complex programs, it is worthwhile to con-

sider some programming techniques that would help design efficient and error-free programs.

The program development process includes three important stages, namely, program design, program

coding and program testing. All the three stages contribute to the production of high-quality programs.

In this chapter we shall discuss some of the techniques used for program design, coding and testing.

15.2 PROGRAM DESIGN

Program design is the foundation for a good program and is therefore an important part of the program

development cycle. Before coding a program, the program should be well conceived and all aspects of

the program design should be considered in detail.

Program design is basically concerned with the development of a strategy to be used in writing the

program, in order to achieve the solution of a problem. This includes mapping out a solution procedure

and the form the program would take. The program design involves the following four stages:

1. Problem analysis.

2. Outlining the program structure.

3. Algorithm development.

4. Selection of control structures.

Problem Analysis

Before we think of a solution procedure to the problem, we must fully understand the nature of the

problem and what we want the program to do. Without the comprehension and definition of the prob-

CHAPTER

15

Developing a C Program: Some Guidelines 443

lem at hand, program design might turn into a hit-or-miss approach. We must carefully decide the fol-

lowing at this stage;

What kind of data will go in?;

What kind of outputs are needed?; and

What are the constraints and conditions under which the program has to operate?

Outlining the Program Structure

Once we have decided what we want and what we have, then the next step is to decide how to do it. C as

a structured language lends itself to a top-down approach. Top-down means decomposing of the solution

procedure into tasks that form a hierarchical structure, as shown in Fig. 15.1. The essence of the top-

down design is to cut the whole problem into a number of independent constituent tasks, and then to cut

the tasks into smaller subtasks, and so on, until they are small enough to be grasped mentally and to be

coded easily. These tasks and subtasks can form the basis of functions in the program.

Problem

Task 1 Task 3Task 2

T11 T21 T31T12 T22 T32

Fig. 15.1 Hierarchical structure

An important feature of this approach is that at each level, the details of the design of lower levels are

hidden. The higher-level functions are designed first, assuming certain broad tasks of the immediately

lower-level functions. The actual details of the lower-level functions are not considered until that level

is reached. Thus the design of functions proceeds from top to bottom, introducing progressively more

and more refinements.

This approach will produce a readable and modular code that can be easily understood and main-

tained. It also helps us classify the overall functioning of the program in terms of lower-level functions.

Algorithm Development

After we have decided a solution procedure and an overall outline of the program, the next step is to

work out a detailed definite, step-by-step procedure, known as algorithm for each function. The most

common method of describing an algorithm is through the use of flow charts. The other method is to write

what is known as pseudocode. The flow chart presents the algorithm pictorially, while the pseudocode

describes the solution steps in a logical order. Either method involves concepts of logic and creativity.

444 Introduction to Computing

Since algorithm is the key factor for developing an efficient program, we should devote enough atten-

tion to this step. A problem might have many different approaches to its solution. For example, there are

many sorting techniques available to sort a list. Similarly, there are many methods of finding the area

under a curve. We must consider all possible approaches and select the one, which is simple to follow,

takes less execution time, and produces results with the required accuracy.

Control Structures

A complex solution procedure may involve a large number of control statements to direct the flow of

execution. In such situations, indiscriminate use of control statements such as goto may lead to unread-

able and uncomprehensible programs. It has been demonstrated that any algorithm can be structured,

using the three basic control structure, namely, sequence structure, selection structure, and looping struc-

ture.

Sequence structure denotes the execution of statements sequentially one after another. Selection struc-

ture involves a decision, based on a condition and may have two or more branches, which usually join

again at a later point. ifelse and switch statements in C can be used to implement a selection

structure. Looping structure is used when a set of instructions is evaluated repeatedly. This structure can

be implemented using do, while, or for statements.

A well-designed program would provide the following benefits:

1. Coding is easy and error-free.

2. Testing is simple.

3. Maintenance is easy.

4. Good documentation is possible.

5. Cost estimates can be made more accurately.

6. Progress of coding may be controlled more precisely.

15.3 PROGRAM CODING

The algorithm developed in the previous section must be translated into a set of instructions that a

computer can understand. The major emphasis in coding should be simplicity and clarity. A program

written by one may have to be read by others later. Therefore, it should be readable and simple to

understand. Complex logic and tricky coding should be avoided. The elements of coding style include:

∑ Internal documentation.

∑ Construction of statements.

∑ Generality of the program.

∑ Input/output formats.

Internal Documentation

Documentation refers to the details that describe a program. Some details may be built-in as an integral

part of the program. These are known as internal documentation.

Two important aspects of internal documentation are, selection of meaningful variable names and the

use of comments. Selection of meaningful names is crucial for understanding the program. For example,

Developing a C Program: Some Guidelines 445

area = breadth * length

is more meaningful than

a = b * l;

Names that are likely to be confused must be avoided. The use of meaningful function names also

aids in understanding and maintenance of programs.

Descriptive comments should be embedded within the body of source code to describe processing

steps.

The following guidelines might help the use of comments judiciously:

1. Describe blocks of statements, rather than commenting on every line.

2. Use blank lines or indentation, so that comments are easily readable.

3. Use appropriate comments; an incorrect comment is worse than no comment at all.

Statement Construction

Although the flow of logic is decided during design, the construction of individual statements is done at

the coding stage. Each statement should be simple and direct. While multiple statements per line are

allowed, try to use only one statement per line with necessary indentation. Consider the following code:

if(quantity>0){code = 0; quantity = rate;}
else { code = 1; sales = 0:}

Although it is perfectly valid, it could be reorganized as follows:

if(quantity>0)

{
code = 0;
quantity = rate;

}
else

{
code = 1;
sales = 0:

}

The general guidelines for construction of statements are:

1. Use one statement per line.

2. Use proper indentation when selection and looping structures are implemented.

3. Avoid heavy nesting of loops, preferably not more than three levels.

4. Use simple conditional tests; if necessary break complicated conditions into simple conditions.

5. Use parentheses to clarify logical and arithmetic expressions.

6. Use spaces, wherever possible, to improve readability.

Input/Output Formats

Input/output formats should be simple and acceptable to users. A number of guidelines should be consid-

ered during coding.

446 Introduction to Computing

1. Keep formats simple.

2. Use end-of-file indicators, rather than the user requiring to specify the number of items.

3. Label all interactive input requests.

4. Label all output reports.

5. Use output messages when the output contains some peculiar results.

Generality of Programs

Care should be taken to minimize the dependence of a program on a particular set of data, or on a

particular value of a parameter. Example:

for(sum = 0, i=1; i <= 10; i++)

sum = sum + i;

This loop adds numbers 1,2, �..10. This can be made more general as follows;

sum =0;
for(i =m; i <=n; i = i+ step);

sum = sum + i;

The initial value m, the final value n, and the increment size step can be specified interactively
during program execution. When m=2, n=100, and step =2, the loop adds all even numbers up to, and
including 100.

15.4 COMMON PROGRAMMING ERRORS

By now you must be aware that C has certain features that are easily amenable to bugs. Added to this, it
does not check and report all kinds of run-time errors. It is therefore, advisable to keep track of such
errors and to see that these known errors are not present in the program. This section examines some of
the more common mistakes that a less experienced C programmer could make.

Missing Semicolons

Every C statement must end with a semicolon. A missing semicolon may cause considerable confusion
to the compiler and result in �misleading� error messages. Consider the following statements:

a = x+y

b = m/n;

The compiler will treat the second line as a part of the first one and treat b as a variable name. You
may therefore get an �undefined name� error message in the second line. Note that both the message and

location are incorrect. In such situations where there are no errors in a reported line, we should check the
preceding line for a missing semicolon.

There may be an instance when a missing semicolon might cause the compiler to go �crazy� and to
produce a series of error messages. If they are found to be dubious errors, check for a missing semicolon
in the beginning of the error list.

Misuse of Semicolon

Another common mistake is to put a semicolon in a wrong place. Consider the following code:

Developing a C Program: Some Guidelines 447

for(i = 1; i<=10; i++);

sum = sum + i;

This code is supposed to sum all the integers from 1 to 10. But what actually happens is that only the

�exit� value of i is added to the sum. Other examples of such mistake are:

1. while (x < Max);

{

}
2. if(T>= 200);

grade = ‘A’;

A simple semicolon represents a null statement and therefore it is syntactically valid. The compiler
does not produce any error message. Remember, these kinds of errors are worse than syntax errors.

Use of = Instead of = =

It is quite possible to forget the use of double equal sings when we perform a relational test. Example:

if(code = 1)

count ++;

It is a syntactically valid statement. The variable code is assigned 1 and then, because code = 1 is
true, the count is incremented. In fact, the above statement does not perform any relational test on code.
Irrespective of the previous value of code, count ++; is always executed.

Similar mistakes can occur in other control statements, such as for and while. Such a mistake in the
loop control statements might cause infinite loops.

Missing Braces

It is common to forget a closing brace when coding a deeply nested loop. It will be usually detected by
the compiler because the number of opening braces should match with the closing ones. However, if we

put a matching brace in a wrong place, the compiler won�t notice the mistake and the program will
produce unexpected results.

Another serious problem with the braces is, not using them when multiple statements are to be
grouped together. For instance, consider the following statements:

for(i=1; i <= 10; i++)

sum1 = sum 1 +i;
sum2 = sum2 + i*i;

printf(“%d %d\n”, sum1,sum2);

This code is intended to compute sum1, sum2 for i varying from 1 to 10, in steps of 1 and then to print
their values. But, actually the for loop treats only the first statement, namely,

sum = sum1 + i;

as its body and therefore the statement

sum2 = sum2 + i*i;

is evaluated only once when the loop is exited. The correct way to code this segment is to place braces as

follows:

448 Introduction to Computing

for(i=1; i<=10; i++)

{
sum1 = sum1 + i;
sum2 = sum2 +i*i;

}
printf(“%d %d\n”, sum1 sum2);

In case, only one brace is supplied, the behaviour of the compiler becomes unpredictable.

Missing Quotes

Every string must be enclosed in double quotes, while a single character constant in single quotes. If we

miss them out, the string (or the character) will be interpreted as a variable name. Examples:

if(response ==YES) /* YES is a string */
Grade = A; /* A is a character constant */

Here YES and A are treated as variables and therefore, a message �undefined names� may occur.

Misusing Quotes

It is likely that we use single quotes whenever we handle single characters. Care should be exercised to

see that the associated variables are declared properly. For example, the statement

city = ‘M’;

would be invalid if city has been declared as a char variable with dimension (i.e., pointer to char).

Improper Comment Characters

Every comment should start with a /* and end with a */. Anything between them is ignored by the

compiler. If we miss out the closing */, then the compiler searches for a closing */ further down in the

program, treating all the lines as comments. In case, it fails to find a closing */, we may get an error

message. Consider the following lines:

.
/* comment line 1

statement1;
statement2;
/* comment line 2 */

statement 3;
.

Since the closing */ is missing in the comment line 1, all the statements that follow, until the closing

comment */ in comment line 2 are ignored.

We should remember that C does not support nested comments. Assume that we want to comment out

the following segment:

.
x = a–b;
Y = c–d;

Developing a C Program: Some Guidelines 449

/* compute ratio */
ratio = x/y;
.
.

we may be tempted to add comment characters as follows:

/* x = a�b;

y = c�d;

/* Compute ratio */

ratio = x/y; */

This is incorrect. The first opening comment matches with the first closing comment and therefore the

lines between these two are ignored. The statement

ratio = x/y;

is not commented out. The correct way to comment out this segment is shown as:

/* x = a�b;

y = c�d; */

/* compute ratio */

/* ratio = x/y; */

Undeclared Variables

C requires every variable to be declared for its type, before it is used. During the development of a large

program, it is quite possible to use a variable to hold intermediate results and to forget to declare it.

Forgetting the Precedence of Operators

Expressions are evaluated according to the precedence of operators. It is common among beginners to

forget this. Consider the statement

if (value = product () >= 100)

tax = 0.05 * value;

The call product () returns the product of two numbers, which is compared to 100. If it is equal to or

greater than 100, the relational test is true, and a 1 is assigned to value, otherwise a 0 is assigned. In

either case, the only values value can take on are 1 or 0. This certainly is not what the programmer

wanted.

The statement was actually expected to assign the value returned by product() to value and then

compare value with 100. If value was equal to or greater than 100, tax should have been computed,

using the statement

tax = 0.05 * value;

The error is due to the higher precedence of the relational operator compared to the assignment

operator. We can force the assignment to occur first by using parentheses as follows:

if(value = product()) >=100)

tax = 0.05 * value;

450 Introduction to Computing

Similarly, the logical operators && and || have lower precedence than arithmetic and relational

operators and among these two, && has higher precedence than ||. Try, if there is any difference be-

tween the following statements:

1. if(p > 50|| c > 50 && m > 60 && T > 180)

x = 1;

2. if((p > 50|| c > 50) && m > 60 && T > 180)

x = 1;

3. if((p > 50|| c > 50 && m > 60) && T > 180)

x = 1;

Ignoring the Order of Evaluation of Increment/Decrement Operators

We often use increment or decrement operators in loops. Example

... ...
i = 0;
while ((c = getchar()) != ‘\n’;
{

string[i++] = c;

}
string[i–1] = ‘\n’;

The statement string[i++] = c; is equivalent to :

string[i] = c;
i = i+1;

This is not the same as the statement string[++i] = c; which is equivalent to

i =i+1;
string[i] = c;

Forgetting to Declare Function Parameters

Remember to declare all function parameters in the function header.

Mismatching of Actual and Formal Parameter Types in Function Calls

When a function with parameters is called, we should ensure that the type of values passed, match with

the type expected by the called function. Otherwise, erroneous results may occur. If necessary, we may

use the type cast operator to change the type locally. Example:

y = cos((double)x);

Nondeclaration of Functions

Every function that is called should be declared in the calling function for the types of value it returns.

Consider the following program:

Developing a C Program: Some Guidelines 451

main()

{
float a =12.75;
float b = 7.36;
printf(“%f\n”, division(a,b));

}
double division(float x, float y)

{
return(x/y);

}

The function returns a double type value but this fact is not known to the calling function and there-

fore it expects to receive an int type value. The program produces either meaningless results or error

message such as �redefinition�.

The function division is like any other variable for the main and therefore it should be declared as

double in the main.

Now, let us assume that the function division is coded as follows:

division(float x, float y)

{
return(x/y);

}

Although the values x and y are floats and the result of x/y is also float, the function returns only

integer value because no type specifier is given in the function definition. This is wrong too. The func-

tion header should include the type specifier to force the function to return a particular type of value.

Missing & Operator in scanf Parameters

All non-pointer variables in a scanf call should be preceded by an & operator. If the variable code is

declared as an integer, then the statement

scanf(“%d”, code);

is wrong. The correct one is scanf(�%d�, &code);

Remember, the compiler will not detect this error and you may get a crazy output.

Crossing the Bounds of an Array

All C indices start from zero. A common mistake is to start the index from 1. For example, the segment

int x[10], sum i;
Sum = 0;
for (i = 1; i < = 10; i++)

sum = sum + x[i];

would not find the correct sum of the elements of array x. The for loop expressions should be corrected

as follows:

for(i=0;i<10;i++)

452 Introduction to Computing

Forgetting a Space for Null Character in a String

All character arrays are terminated with a null character and therefore their size should be declared to

hold one character more than the actual string size.

Using Uninitialized Pointers

An uninitialized pointer points to garbage. The following program is wrong:

main()
{

int a, *ptr;
a = 25;
*ptr = a+5;

}

The pointer ptr has not been initialized.

Missing Indirection and Address Operators

Another common error is to forget to use the operators * and & in certain places. Consider the following

program:

main()
{

int m, *p1;
m = 5;
p1 = m;
printf(“%d\n”, *p1);

}

This will print some unknown value because the pointer assignment

p1 =m;

is wrong. It should be:

p1 = &m;

Consider the following expression:

y = p1 + 10;

Perhaps, y was expected to be assigned the value at location p1 plus 10. But it does not happen. y will

contain some unknown address value. The above expression should be rewritten as:

y = *p1 + 10;

Missing Parentheses in Pointer Expressions

The following two statements are not the same:

x = *p1 + 1;

x = *(p1 + 1);

Developing a C Program: Some Guidelines 453

The first statement would assign the value at location p1 plus 1 to x, while the second would assign

the value at location p1 + 1.

Omitting Parentheses around Arguments in Macro Definitions

This would cause incorrect evaluation of expression when the macro definition is substituted.

Example: # define f(x) x * x + 1

The call y = f(a+b);

will be evaluated as y = a+b * a+b+1; which is wrong.

Some other mistakes that we commonly make are:

∑ Wrong indexing of loops.

∑ Wrong termination of loops.

∑ Unending loops.

∑ Use of incorrect relational test.

∑ Failure to consider all possible conditions of a variable.

∑ Trying to divide by zero.

∑ Mismatching of data specifications and variables in scanf and printf statements.

∑ Forgetting truncation and rounding off errors.

15.5 PROGRAM TESTING AND DEBUGGING

Testing and debugging refer to the tasks of detecting and removing errors in a program, so that the

program produces the desired results on all occasions. Every programmer should be aware of the fact

that rarely does a program run perfectly the first time. No matter how thoroughly the design is carried

out, and no matter how much care is taken in coding, one can never say that the program would be 100

per cent error-free. It is therefore necessary to make efforts to detect, isolate and correct any errors that

are likely to be present in the program.

Types of Errors

We have discussed a number of common errors. There might be many other errors, some obvious and

others not so obvious. All these errors can be classified under four types, namely, syntax errors, run-

time errors, logical errors, and latent errors.

Syntax errors: Any violation of rules of the language results in syntax errors. The compiler can detect

and isolate such errors. When syntax errors are present, the compilation fails and is terminated after

listing the errors and the line numbers in the source program, where the errors have occurred. Remem-

ber, in some cases, the line number may not exactly indicate the place of the error. In other cases, one

syntax error may result in a long list of errors. Correction of one or two errors at the beginning of the

program may eliminate the entire list.

Run-time errors: Errors such as a mismatch of data types or referencing an out-of-range array element

go undetected by the compiler. A program with these mistakes will run, but produce erroneous results

and therefore, the name run-time errors is given to such errors. Isolating a run-time error is usually a

difficult task.

454 Introduction to Computing

Logical errors: As the name implies, these errors are related to the logic of the program execution. Such

actions as taking a wrong path, failure to consider a particular condition, and incorrect order of evalua-

tion of statements belong to this category. Logical errors do not show up as compiler-generated error

messages. Rather, they cause incorrect results. These errors are primarily due to a poor understanding of

the problem, incorrect translation of the algorithm into the program and a lack of clarity of hierarchy of

operators. Consider the following statement:

if(x ==y)

printf(“They are equal\n”);

when x and y are float types values, they rarely become equal, due to truncation errors. The printf call

may not be executed at all. A test like while(x != y) might create an infinite loop.

Latent errors: It is a �hidden� error that shows up only when a particular set of data is used. For

example, consider the following statement:

ratio = (x+y)/(p–q);

An error occurs only when p and q are equal. An error of this kind can be detected only by using all

possible combinations of test data.

Program Testing

Testing is the process of reviewing and executing a program with the intent of detecting errors, which

may belong to any of the four kinds discussed above. We know that while the compiler can detect

syntactic and semantic errors, it cannot detect run-time and logical errors that show up during the execu-

tion of the program. Testing, therefore, should include necessary steps to detect all possible errors in the

program. It is, however, important to remember that it is impractical to find all errors. Testing process

may include the following two stages:

1. Human testing.

2. Computer-based testing.

Human testing is an effective error-detection process and is done before the computer-based testing

begins. Human testing methods include code inspection by the programmer, code inspection by a test

group, and a review by a peer group. The test is carried out statement by statement and is analyzed with

respect to a checklist of common programming errors. In addition to finding the errors, the programming

style and choice of algorithm are also reviewed.

Computer-based testing involves two stages, namely compiler testing and run-time testing. Com-

piler testing is the simplest of the two and detects yet undiscovered syntax errors. The program executes

when the compiler detects no more errors. Should it mean that the program is correct? Will it produce the

expected results? The answer is negative. The program may still contain run-time and logic errors.

Run-time errors may produce run-time error messages such as �null pointer assignment� and �stack

overflow�. When the program is free from all such errors, it produces output ,which might or might not

be correct. Now comes the crucial test, the test for the expected output. The goal is to ensure that the

program produces expected results under all conditions of input data.

Test for correct output is done using test data with known results for the purpose of comparison. The

most important consideration here is the design or invention of effective test data. A useful criteria for

test data is that all the various conditions and paths that the processing may take during execution must

be tested.

Developing a C Program: Some Guidelines 455

Program testing can be done either at module (function) level or at program level. Module level test,

often known as unit test, is conducted on each of the modules to uncover errors within the boundary of

the module. Unit testing becomes simple when a module is designed to perform only one function.

Once all modules are unit tested, they should be integrated together to perform the desired

function(s). There are likely to be interfacing problems, such as data mismatch between the modules. An

integration test is performed to discover errors associated with interfacing.

Program Debugging

Debugging is the process of isolating and correcting the errors. One simple method of debugging is to

place print statements throughout the program to display the values of variables. It displays the dynam-

ics of a program and allows us to examine and compare the information at various points. Once the

location of an error is identified and the error corrected, the debugging statements may be removed. We

can use the conditional compilation statements, discussed in Chapter 15, to switch on or off the debug-

ging statements.

Another approach is to use the process of deduction. The location of an error is arrived at using the

process of elimination and refinement. This is done using a list of possible causes of the error.

The third error-locating method is to backtrack the incorrect results through the logic of the program

until the mistake is located. That is, beginning at the place where the symptom has been uncovered, the

program is traced backward until the error is located.

15.6 PROGRAM EFFICIENCY

Two critical resources of a computer system are execution time and memory. The efficiency of a pro-

gram is measured in terms of these two resources. Efficiency can be improved with good design and

coding practices.

Execution Time

The execution time is directly tied to the efficiency of the algorithm selected. However, certain coding

techniques can considerably improve the execution efficiency. The following are some of the tech-

niques, which could be applied while coding the program.

1. Select the fastest algorithm possible.

2. Simplify arithmetic and logical expressions.

3. Use fast arithmetic operations, whenever possible.

4. Carefully evaluate loops to avoid any unnecessary calculations within the loops.

5. If possible, avoid the use of multi-dimensional arrays.

6. Use pointers for handling arrays and strings.

However, remember the following, while attempting to improve efficiency.

1. Analyze the algorithm and various parts of the program before attempting any efficiency changes.

2. Make it work before making it faster.

3. Keep it right while trying to make it faster.

4. Do not sacrifice clarity for efficiency.

456 Introduction to Computing

Memory Requirement

Memory restrictions in the micro-computer environment is a real concern to the programmer. It is there-

fore, desirable to take all necessary steps to compress memory requirements.

1. Keep the program simple. This is the key to memory efficiency.

2. Use an algorithm that is simple and requires less steps.

3. Declare arrays and strings with correct sizes.

4. When possible, limit the use of multi-dimensional arrays.

5. Try to evaluate and incorporate memory compression features available with the language.

Review Questions

15.1 Discuss the various aspects of program design.

15.2 How does program design relate to program efficiency?

15.3 Readability is more important than efficiency, Comment.

15.4 Distinguish between the following:

a. Syntactic errors and semantic errors.

b. Run-time errors and logical errors.

c. Run-time errors and latent errors.

d. Debugging and testing.

e. Compiler testing and run-time testing.

15.5 A program has been compiled and linked successfully. When you run this program you face one

or more of the following situations.

a. Program is executed but no output.

b. It produces incorrect answers.

c. It does not stop running.

15.6 List five common programming mistakes. Write a small program containing these errors and try

to locate them with the help of computer.

15.7 In a program, two values are compared for convergence, using the statement

if((x–y) < 0.00001) …

Does the statement contain any error? If yes, explain the error.

15.8 A program contains the following if statements:

... ..

... ..
if(x>1&&y == 0)p = p/x;
if(x == 5|| p > 2) p = p+2;
... ..
... ..

Draw a flow chart to illustrate various logic paths for this segment of the program and list test

data cases that could be used to test the execution of every path shown.

15.9 Given below is a function to compute the yth power of an integer x.

Developing a C Program: Some Guidelines 457

power(int x, int y)

{
int p;
p = y;
while(y > 0)

x *= y — —;
return(x);

}

This function contains some bugs. Write a test procedure to locate the errors with the help of a

computer.

15.10 A program reads three values from the terminal, representing the lengths of three sides of a box

namely length, width and height and prints a message stating whether the box is a cube, rectan-

gle, or semi-rectangle. Prepare sets of data that you feel would adequately test this program.

CS-201

B.Tech 1st Yr 2nd Semester Year � 2003

1. (a) State the ranges of signed integers numbers that can be represented in 8 bits in signed magnitude

representation, 1�s complement and 2�s complement representation of integer numbers.

Ans. The range of signed integer numbers that can be represented in 7 bits is �127 to +127.
The 8th bit is considered to be the sign bit.

If it is 1 then the number is �ve,

if it is 0 then the number is +ve.

1. (b) (i) 23.812510 to binary

(23.8125)10 = ?2

(23)10 = (10111)2

(0.8125)2 = ?

Fraction 2 ¥ Fraction Remainder New Fraction Integer

0.8125 2 ¥ 0.8125 = 1.625 0.625 1 (MSB)

0.625 2 ¥ 0.625 = 1.25 0.25 1

0.25 2 ¥ 0.25 = 0.50 0.50 0

0.50 2 ¥ 0.50 = 1.00 0.00 1 (MSB)
0.00 2 ¥ 0.00 = 0.00 0.00

(0.8125)10 = (0.1101)2

(23.8125)10 = (10111.1101)2

1. (b) (ii) 3610 to octal

(36)10 = ?8 = (44)8

= (44)8

1. (b) (iii) 4181910 to hexadecimal

4181910 = ?16

= (A35B)16

=
16

103 511

3 5

Ê ˆ
Á ˜Ë ¯A B

1. (c) Perform the following operations. The most significant bit represents the sign bit and the negative

numbers are in 2�s complement form.

(i) 0 0 0 1 1 0 1 1 (ii) 0 0 0 1 1 1 1 1
+ 0 0 0 0 1 1 0 1 � 1 1 0 0 1 1 1 1

0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0

Ans. 00101000 Ans. 01010000

2. (a) Briefly describe the function of different components of a conventional digital com-

puter with a suitable block diagram.

Ans. Same as 2005 3(a)

2. (b) Briefly state the role of operating system in a computer system.

Ans . Same as 2005 9(f)

2. (c) Differentiate between a compiler and interpreter.

Ans. Same as 2005 3(b)

3. (a) State the basic features of an algorithm.

Ans. Same as 2005 2(a)

8 36

8 4 � 4

0 � 4
4181916

2613 � 1116

163 � 516

10 � 316

0 � 10

Solved Question Paper 2003 459

3. (b) Draw a flow chart to determine the greatest of three integer numbers.

Ans.Same as 2005 2(b)

3. (c) Give the Unix and Dos Commands for the following operations.

Ans.DOS commands

(i) to rename a file
C:\>ren b a1.txt b a2.txt. ø

(ii) to delete a file
C:\>del b a3.txt ø

(iii) to copy one file to another file

C:\> copy b a4.txt b a5.txt ø
(iv) to display a file

C:\> type b a6.txt ø

UNIX Commands

(i) To rename a file

The mv command renames (moves) files.

$ mn chap01 chap02 ø
(ii) To delete a file

The rm (remove) commands delete one or more files.

$ rm chap01 chap02 ø
(iii) To copy one file to another file

$ cp chap01 chap02 ø
The cp (copy) command copies a file or a group of files.

(iv) To display a file

$ cat dept.1st ø
Cat is mainly used to display the contents of a small file on the terminal.

4. (a) What do you understand by the precedence and the associativity of operators?

Ans. Same as 2005 (10c)

4. (b) What is recursion, and how is it implemented?

Ans. Same as 2005 (5a)

4. (c) Write a recursive function to find the summation of 1st n natural numbers and test the function by

calling from a main function.

Ans.

#include<stdio.h>
#include<conio.h>

int rec_sum(int); /* function prototype */
void main()

{
int i, r = 0, n;
clrscr();
printf(“In flow how many natural no:”);
scanf(“%d”, &n);
r = rec_sum(n); /* function call */

printf(“In sum of 1st n natural numbers: %d”, r);
getch();
}

/* function definition */
int rec_sum (int x)

{
printf(“X = %d”, x);
if(x == 1)

460 Introduction to Computing

return 1;
else

return (x + rec_sum (x – 1));
}

5. (a) Write C program to find the biggest and smallest of n numbers.

Ans.
#include<stdio.h>
#include<conio.h>
#define S 10
void main()

{
float a[s], big, small;
int i, n;

printf(“\n Enter the no of elements in the array”);
scanf(“%d”, &n);

printf(“Enter the elements”);
for(i = 0, i < n; i++)
}

scanf (“%f”, & a[i]);
}

big = small = a[0];
for (i = 1; i < n; i++)

{
if(a[i] > big)

big = a[i];
if(a[i] < small)

small = a[i];
}

printf(“Biggest number = %0.2f”, big);
printf(“Smallest number = %0.2f”, small);
getch();

}

5. (b) Write a C program to find the frequency of digits in a set of n numbers.

Ans.
#include<stdio.h>
#include<conio.h>
void main()

{
long int x ;

int z1 = 0, z2 = 0, z3 = 0, z4 = 0, z5 = 0, z6 = 0, z7 = 0,
z8 = 0, z9 = 0, z0 = 0; y;

clrscr();
printf(“\n Enter the number:”);
scanf(“% *d”, &x);
while (x ! = 0)

{
y = x%10;

switch (y)
{

case 0: z0++;
break;

case 1: z1++;
break;

case 2: z2++;
break;

Solved Question Paper 2003 461

case 3: z3++;
break;

case 4: z4++;
break;

case 5: z5++;
break;

case 6: z6++;
break;

case 7: z7++;
break;

case 8: z8++;
break;

case 9: z9++;
break;

}
x = x/10;

}
printf(“\n the no of 0’s are fi % d”, z0);
printf(“\n the no of 1’s are fi % d”, z1);
printf(“\n the no of 2’s are fi % d”, z2);
printf(“\n the no of 3’s are fi % d”, z3);
printf(“\n the no of 4’s are fi % d”, z4);
printf(“\n the no of 5’s are fi % d”, z5);
printf(“\n the no of 6’s are fi % d”, z6);
printf(“\n the no of 7’s are fi % d”, z7);
printf(“\n the no of 8’s are fi % d”; z8);
printf(“\n the no. of 9’s are fi % d”; z9);
getch();

}
6. (a) State the language features provided by the C preprocessor.

Ans. See chapter 9.

6. (b) State the output of the following sequence.

Ans.

(i) Sum = 0;
for (i = 0; i <= 10; i++)

{
if(i%2)

continue;
Sum = Sum + i;

}
printf(“Sum = %d”, Sum);

Output fi Sum = 30
(ii)

main()
}

int a_Function(), rValue;
rValue = a_Function();
rValue = a_Function();
printf(“rValue = %d”, rValue);

}
int a_Function()

{
Static int i = 0;
i++;

}

462 Introduction to Computing

Output
ø garbage value.

(iii)
{

int i = 5; j = 6; sum = 0;
sum = ++i + j++;
printf(“Sum = %d, i = %d, j = %d”, sum, i, j);

}
Output Sum = 12, i = 6, j = 7

6. (c) Give the macro definition to find the maximum of two numbers.

Ans.
#include<stdio.h>
#include<conio.h>
#define MAX(x, y) ((x > y) ? (x) : (y))

void main()
{

float a = 10.2, b = 45.77, big;
int i = 20; j = 100, large;
clrscr();
big = MAX(a, b);
printf(“Maximum of two numbers: %0.2f %0.2f is %0.2f”, a, b, big);
Large = MAX(i, j);
printf(“Maximum of two numbers %d %d is %d”, i, j, Large);
getch();

}
7. (a) Write a C program to arrange a set of n numbers in ascending order.

Ans.
#include<stdio.h>
#include<conio.h>
void main()

{
int a[100], i, j, t, n;
printf(“\n Enter no of terms:”);
scanf(“%d”, &n);
printf(“\n Enter the no: “);

for(i = 0; i < n; i++)
scanf(“%d”, & a[i]);

for(i = 0; i < n - 1; i++)
{

for(j = 0; j < n - i - 1; j++)
{

if(a[j] > a[j + 1])
{

t = a[j];
a[j] = a[j + 1];

 a[j + 1] = t; } } }
printf(“\n the sorted array, S”);

for(i = 0; i < n; i++)
printf(“\n%d”, a[i]);

getch();
}

7. (b) Consider a two-dimensional array A[1 : 5, 1 : 5]. If each starting element address of the array is 100

and to store each element it takes 1 byte then find the memory address of the byte corresponding to the

element A[2, 3] in both row major and column major order.

Solved Question Paper 2003 463

Ans. Row-major order representation

1st Row 2nd Row 3rd Row

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

A11 A12 A13 A14 A15 A21 A22 A23 A24 A25 A31 A32 A33 A34 A35

So, in row major order the address of

A[2, 3] = 107 A[2, 2] = 106

A[1, 3] = 102

Column major Representation

1st Col 2nd Col 3rd Col

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

A11 A21 A31 A41 A51 A12 A22 A32 A42 A52 A13 A23 A33 A43 A53

In column major order, the address A[2, 2] = 106

A[1, 3] = 110 A[2, 3] = 111

7. (c) Write a short note on good programming practices.

Ans.The efficiency of a program is measured in terms of a good design and coding practices.

The following are some of the techniques which could be applied while coding the program.

(i) Select the fastest algorithm possible.

(ii) Simplify arithmetic and logical expressions.

(iii) Use fast arithmetic operations, whenever possible.

(iv) If possible, avoid the multidimensional array.

(v) Use pointers for handling arrays and strings.

(vi) Carefully evaluate loops to avoid unnecessary calculations within the loops.

To improve efficiency

(i) Analyse the algorithm and various parts of the programs before attempting any efficiency changes.

(ii) Make it work before making it faster.

(iii) Keep it right while trying to make it faster.

8. (a)) Explain �call by value� and �call by reference� mechanism of passing data from one function to another

function. In C which one is used for passing data from one function to another?

Ans. Same as 2005 10(a)

8. (b) Write a C function to swap two integer data and call the function from the main() function. Don�t use

any third variable.

Ans.

#include<stdio.h>
#include<conio.h>
void swap(int, int); /* function prototype */

void main()
{

int x, y;
clrscr();
printf(“\n Enter the value of x and y:”);
scanf(“%d %d”, &x, &y);
swap(x, y); /* function call */
getch();

}

464 Introduction to Computing

/* function definition */
void swap (int a, int b)

{
b = a + b;
a = b - a;
b = b - a;

printf(“\n After swapping values of x = %d”, a);
printf(“\n After swapping values of y = %d; b);

}

8. (c) Using ternary operator write a macro to find out the absolute value of a number.

Ans.

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#define ABS(p) (((p) > 0) ? (p) : (-(p)))

void main()
{

int p, r;
clrscr();
printf(“Enter the value of no:”);
scanf(“%d”, &p);
r = ABS(p);
printf(“\n the absolute number is n %d”, r);
getch();

}
9. (a) Write a C program to copy a disk file into another disk file using command line arguments.

Ans. Same as 2005 6(a)

(b) Write a C program to count the number of lines, words and characters in a given file.

Ans. #include<stdio.h>
#include<conio.h>
void main()
{

int c=0, w=0, 1=0;
char ch;
FILE *fp;
clrscr();
fp=fopen("test.text", "r");
do
{

ch=getch (fp);
switch (ch)
{

case '\n':l++;
 break;

case ' ':w++;
break;

default : c++;
}

}while(ch!=EOF);
printf("line %d word %d char &d", l+1,w+1,c+1);
getch();

}

Solved Question Paper 2003 465

10. (a) Write a C program to display the frequency of character in a given disk file.

Ans. Same as 2005 6(b)

10. (b) Write a C program to count the number of 1�s in a character byte and if it�s even then set the most

significant bit �0� else set, the most significant bit to 1.

Ans. Ambiguous question
11. (a) Write a C program to copy a string to another string.

Ans.

#include<stdio.h>
#include<conio.h>
#include<string.h>

void main()
{

char String1[100], String2[100];
int i = 0;
clrscr();
printf(“\n Enter the string”);
gets(String1);

while(String1[i]! = ‘\0’)
{

String2[i] = String 1[i];
i++;

}
String 2[i] = ‘\0’;
printf(“\n copied String is: % S”, String2);
getch();

}
11. (b) Write a C program to insert data in a linked list in a sorted manner.

Ans. #include<stdio.h>

#include<conio.h>

#include<process.h>

void insert(struct node **);
void display(struct node **);

struct node
{
 int info;
 struct node *next;
};

void main()
{

struct node *head;
int ch;
clrscr();
head=NULL;
while(1)
{

printf(“\n1.INSERT”);
printf(“\n2.DISPLAY”);

printf(“\n3.EXIRT”);
 printf(“\nEnter choice”);
 scanf(“%d”,&ch);

466 Introduction to Computing

 switch(ch)
 {
 case 1: insert(&head);
 break;
 case 2: display(&head);
 break;

 case 3: exit(0);
}
getch();

 }
}

void display(struct node **hp)
{

struct node *tmp;
 tmp=*hp;

while(tmp!=NULL)
 {
 printf(“->%d”,tmp->info);

tmp=tmp->next;
 }

}

void insert(struct node **hp)
{

struct node *tmp,*t,*r;
int d;
printf(“\nEnter Data:”);
scanf(“%d”,&d);
r=(struct node *)malloc(sizeof(struct node));
r->info=d;

 r->next=NULL;
if(*hp==NULL)

 {
 *hp=r;
 }

 else if(d<(*hp)->info)

 {
 r->next=*hp;
 *hp=r;
 }
 else
 {
 t=*hp;
 tmp=(*hp)->next;
 while(tmp!=NULL)
 {
 if(t->info<d && tmp->info>=d)
 {
 t->next=r;
 r->next=tmp;
 break;

Solved Question Paper 2003 467

 }
 tmp=tmp->next;
 t=t->next;

 }
 if(tmp==NULL)
 {
 t->next=r;
 }

}

}

12. (i) Pointer Arithmetic

Ans. Same as 2005 9(c)

12. (ii) Bitwise Operations

Ans. Same as 2005 9(b)

12. (iii) Escape Sequence in C

Ans. C supports some special backslash character constants that are used in output functions. A list of such backslash
character constants is given below. Each one of them represents one character, although they consist of two

characters. These character combinations are known as escape sequence.

Backslash character constants

Constant Meaning

�\a� Æ audiable altert
�\b� Æ backspace

�\f� Æ form feed

�\n� Æ new line

�\t� Æ horizontal tab
�\v� Æ vertical tab

�\0� Æ null

�\\� Æ backslash

�\� Æ single quote

12. (iv) Character Representation in a computer Everything represented by a computer is represented by binary

sequence. A common non-integer needs to be represented in characters. We use standard encoding (binary

sequence) to represent characters.

A standard code ASCII (American Standard Code for Information Interchange) defines what character is represented

by each sequence.

ASCII code is used extensively in small computers, peripherals, instruments and communication devices.

It is a 7-bit code. Microcomputers using 8-bit word length use 7 bits to represent the basic code.

The 8th bit is used for parity or it may be permanently 1 or 0. With 7 bits, up to 128 characters can be coded.

12. (v) String Handling in C A string is just a character array, with the convention that it is terminated by the null

character. A character array can be initialized in the same way as a numeric array.

A string is a collection of characters enclosed within quotes. The individual characters of the string are accessed

using a subscript. The null character is used to mark the end of the string.

char b name of the string [string size];

e.g. char b name1[6];

char b name1[6] = �AMIT�;

gets() Æ It can read the entire string until terminated by a return key.

getchar() Æ It reads only a single character from the keyboard.
puts() Æ This function is used to display the entire string.

468 Introduction to Computing

It is an extension of printf() function. It is a combination of printf() with a new line character.

putchar() Æ This function (putchar()) will display the single character.

String-handling function

Header file <string.h> must include to use all the string function.

(a) strlen(st1) Æ returns the length of st1

(b) strcpy(st2, st1) Æ copies st1 into st2

(c) strcat(st1, st2) Æ concat st2 onto the end of st1
(d) strcmp(st1, st2) Æ returns 0 if both st1 and st2 are same

�ve if st1 < st2

+ve if st1 > st2

(vi) Cache Memory Generally the processor is very high speed and the main

memory is slow. To synchronise/co-ordinate between main memory and

processor, the user uses a very high-capacity memory called Cache Memory.

The processor will search the instruction and data first in the cache memory. But if the

data and the instructions are not found in cache memory, one copy of the instruction will

be kept in cache memory for further reference and another copy will be handled by

processor itself.

Main Memory

Processor

Cache
Memory

Cache Memory

CS-201
B.Tech 1st Yr 2nd Semester Year � 2004

1. (a) Convert

(i) (� 359)10 to octal (ii) (2AB)16 to decimal

(iii) (17.75)10 to binary (iv) (10110)2 to hexadecimal

Ans (i) (� 359)10 = ?8

(ii) (2AB)16 = ?10

fi (2AB)16

= (B ¥ 160) + (A ¥ 161) + (2 ¥ 162)

= (11 ¥ 160) + (10 ¥ 161) + (2 ¥ 162)

= 11 + 160 + 512

= (683)10

(iii) (17.75)10 = ?2

(17)10 = (10001)2

(0.75)10 = ?

Fraction 2 ¥ Fraction Remainder New fraction Integer

0.75 0.75 ¥ 2 = 1.50 0.50 1 (MSB)

0.50 0.50 ¥ 2 = 1.00 0.00 1 (LSB) Ø

(0.75)10 = (11)2

(17.75)10 = (10001.11)2

(iv) 2(10110)
suuu

 = ?16

= (1) (0110) = (0001) (0110)

(0110)2 = (0 ¥ 20) + (1 ¥ 21) + (1 ¥ 22) + (0 ¥ 23)

= 0 + 2 + 4 + 0

= 6 = (6)16

(0001)2 = (1 ¥ 20) + (0 ¥ 21) + (0 ¥ 22) + (0 ¥ 23)

= 1 + 0 + 0 + 0

= 1 = (1)16

(10110)2 = (16)16

1. (b)What are 2�s complement numbers? How do you use this system to perform 5110 � 2710 in binary?

Ans. 2's Complement Numbers

The 2�S complement in the binary number system is similar to the 10�s complement in the decimal number

system. The 2�s complement of a binary number is equal to the (1�s complement of the number + one)

The 2�s complement of a binary number = It�s is complement + 1

e.g. The 2�s complement of the binary number 101100 is

010011 + 1 = 010100

(51)10 = (110011)2

(27)10 = (011011)2

1�s complement of (011011)2 is 100100

470 Introduction to Computing

2�s complement of (011011)2 is (100100 + 1) = 100101

(51)10 = (110011)2

(27)10 = (100101)2

0110002

Ans. (011000)2

2. (a) Algorithm

Ans. Same as 2005 (2a)

2. (b) Relational operator

Ans. Same as 2005 (9a)

2. (c) MS-DOS

Ans (i) MS-DOS is a single user operating system.

(ii) It was introduced in 1981.

(iii) The IBM version of this operating system (DOS) is known as PC-DOS.

(iv) MS-DOS is a text oriented user interface.

(v) MS-DOS does not provide graphics facility, but some application programs which run under MS-DOS may

provide graphics facilities.

(vi) MS-DOS can use only up to 640 KB of memory.

(vii) The file names under MS-DOS must not be more than 11 characters long, with 8 characters in the primary

file name and a 3-character file extension.

Some disk and file maintenance commands of MS-DOS

DIR æÆ Directory

TYPE æÆ The contents of a data file can be displayed on the screen using this command

REN æÆ Rename a file

DEL æÆ It is used to erase files from a disk

COPY æÆ It is used to copy files from one disk to another.

TREE æÆ This command displays all disk subdirectories and their subdirectories.

2. (d) While Control

Ans. Same as 2005 (8a)

2. (e) One-dimensional Array

Ans. See array (except two-dimensional and multi-demensional)

2. (f) fscanf()

The fscanf() performs I/O operations that are identical to the scanf() function.

The general form of fscanf() is

fscanf (fp, “Control String”, (list);

This statement would cause the reading of the items in the list from the file specified by fp, according to the

specification contained in the control string.

fscanf() also returns the number of items that are successfully read.

When the end of file is reached, it returns the value of EOF.

3. (a) Explain the rules of character type in C. Is w = u + n valid if all are char?

Ans. If a variable is declared as a character variable, 1 byte of memory space will be allotted for that variable.

The value of the character in stored in the form of all the ASCII value.

In C language, during any arithmetic operation, lower type to higher type conversion is possible.

Yes, w = u + v is invalid, if all the variables are character variables.

In this case the ASCII value of u and v are added and the result ASCII value will be stored in w.

Solved Question Paper 2004 471

3. (b) Give a numerical example of using modulus operation % and an example of arithmetic operations in

int, float, mixed type.

Ans. Example 1

#include<stdio.h>
#include<conio.h>
void main()
{

int yr;
clrscr();

printf(“\n Enter the year:”);
scanf(“%d”, &yr);
if(yr % 100 == 0)
if(yr % 400 == 0)

{
printf(“%d is a leap year”, yr);

}
else

printf(“%d is not a leap year”, yr);
else

if(yr %4 == 0)
{
printf(“%d is a leap year”, yr);
}
else
printf(“%d is not a leap year”, yr);

getch();
}

Example 2

#include<stdio.h>

#include<conio.h>

void main()

{

int a, c; float b;

printf (“\n Enter the value of a & b”);

scanf(“%d %f”, &a, &b);

c = a/b;

printf(“The result is: Æ %d”, c);

getch();

}

4. (a) bit byte

Ans. See Chapter 2

4. (b) i++ ++i

Ans. (i) Post increment performs (i) Pre increment performs

(ii) Before assignment (ii) Post assignment value

value to the variable

(iii) For int x = 1, y = 4, z; (iii) e.g.: int x = 3, y = 5, z;

z = x + (y++); z = x + (++y);

z = 1 + 4; z = 3 + 6;

z = 5 z = 9

5. (a) Draw a flow chart to determine the largest of two positive decimal numbers.

472 Introduction to Computing

Start

I/P ,A B

Biggest = A

Is

> Biggestb Biggest = b
Yes

Write Biggest

No

Stop

Flow chart to determine largest of two positive decimal numbers

.
5. (b) Write a program to compute average of three floating numbers, which may be positive or negative.

Ans.

#include<stdio.h>

#include<conio.h>

void main()

{

float x, y, z, u;

printf(“\n Enter three numbers:”)

scanf(“%f %f %f”, &x, &y, &z);

u = (x + y + z)/3;

printf(“the result is Æ %f”, u);

getch();

}

6. (a) How can you evaluate
Ê ˆ+ -
Á ˜
Á ˜Ë ¯

2
4

2

b b ac

a

-
 in the C language?

Ans. (i) Take input, a, b, c (Let us define a, b, c as floating point variables).

(ii) Define x as a float type variable.

(iii) Include <math.h> header file.

(iv) x = (� b + (sqrt (b * b � 4 * a * c))) (2.0 * a)

(v) Print the value of x

6. (b) Find the errors

main();
{

float a = 3, b = 5.
if (a = b) then
printf(“\n % d”, a);

else

Solved Question Paper 2004 473

printf(“\n % f”), b;
}

After the main() function semicolon should not be there.

After the declaration and initialisation of a, no (.) dot should not be after 3, only a = 3,

After the declaration and initialization of b, (.) dot should not be after 5, one semicolon must be there after

5.

Only float a = 3, b = 5;

There are no uses of keyword then in the C language.

if (a == b) should be instead of if (a = b) then

Æprintf (“\n % f”, a) should be instead of
printf (“\n % d”, a) because a is a float type variable
printf (“\n % f”, b); should be instead of printf(“\n % f”), b.

6. (c) void main()

{
int S = 0. j
for (j = 1; j <= 3; j++)
{
S = S + j * j
printf(“\n % d”, S)
}
}

Ans. After compile the program, there must be some errors.

In the declaration and initialization of S by 0, there should not be (.) dot after 0,

After j Æ there must be semicolon.

Inside the body of the for loop there must be a semicolon at the end of the two statements.

S = S + j * j;
printf(“\n % d”, S);

7. (a) What are header files? How are they used in programs?

Ans.The file name with (.h) extension is known as header file.

e.g.: <stdio.h>

We include these types of header file in our C program

#include<stdio.h>
#include<conio.h>

Header file contains the definition of system defined function

<conio.h> header file contains the, system defined function�

getch();

<ctype.h> Æ character testing and conversion functions

<math.h> Æ this header file contains mathematical functions

<stdio.h> Æ standard I/O library functions

<stdlib.h> Æ utility functions such as memory allocation routines, random number generations, etc.

<string.h> Æ string manipulation function.

<time.h> Æ time manipulation function.

(b) Write a function to find the cube a number and use this to main to evaluate x
3
 + y

3
 + z

3
, where x, y, z are

read through the keyboard.

Ans. #include<stdio.h>
#include<conio.h>
int cube(int); /* function prototype */
void main()
{

int x, y, z, p;
printf(“\n Enter the values of x, y, z”);

474 Introduction to Computing

scanf(“%d %d %d”, &x, &y, &z);
p = cube (x) + cube (y) + cube (z); /* function call */
printf (“The result is Æ %d”, p);
getch();

}
/* function definition */
int cube (int a)
{

return (a * a * a);
}

8. (a) How do you read elements of a 3 ¥¥¥¥¥ 3 matrix in a program? Show also the statements to output the

diagonal values.

Ans.
#include<stdio.h>
#include<conio.h>
void main()
{

int a[3] [3], i, j;
printf(“\n Enter the elements of matrix:“);
for(i = 0; i < 3; i++)
{
for(j = 0; j < 3; j++)
{

scanf(“%d”, & a[i] [j]);
}

}
printf(“The element of the matrix are:”);
for(i = 0; i < 3; i++)
{

for(j = 0; j < 3; j++)
{

printf(“%d”, a[i] [j]);
} Printf(“\n”);

}
getch(); }

 To print the diagonal values

#include<stdio.h>
#include<conio.h>
void main()
}

int a[3] [3], i, j;

printf (“\n Enter the elements”);
for (i = 0; i<3; i++)
{

for (j = 0; j < 3; j++)
{
scanf(“%d”, & a[i] [j]);

}
}

printf(“\n the diagonals elements are”);
for(i = 0; i < 3; i++)
{

for(j = 0; j < 3; j++)
{

Solved Question Paper 2004 475

if(i = = j)
{
printf(“%d”, a[i] [j]);
}

}
}

getch();
}

8. (b) What is String in C-Language?

Ans. Same as 2003 [12(v)]

9. (a) Pointer Arithmetic in C.

Ans. Same as 2005 (9c).

9. (b) Basics of structures.

Ans.Same as 2006 (8a).

9. (c) Break and Continue.

Ans. Same as 2005 (8b).

10. (a) Arranging some integers in descending order.

Ans.

#include<stdio.h>
#include<conio.h>
void main()
}
int a[100], i, j, t, n;
printf(“\n Enter no of terms:”);
scanf(“%d”, &n);
printf(“\n Enter the no”);
for(i = 0; i < n; i++)
scanf(“%d”, & a[i]);
for(i = 0; i < n - 1; i++)

{
for(j = 0; j < n - 1 - i; j++)

{
if(a[j] < a[j + 1])
{

t = a[j];
a[j] = a[j + i];
a[j + 1] = t;

}
}

}
printf(“\n the sorted array is:”);

for(i = 0; i < n; i++)
printf(“%d”, a[i]);

getch();
}

10. (b) Copying a disk file to another disk file.

Ans. Same as 2005 (6a).

10. (c) Counting letter �E� in a ten-letter word.

Ans. #include<stdio.h>
#include<conio.h>
#include<string.h>
void main()
}

476 Introduction to Computing

char name1[10];
int i = 0, count = 0;

printf(“\n Enter a word (ten-letter) Æ”);
scanf(“%S”, name1);
while (name1[i]! = ‘\0’)

{
if(name1[i] == ‘E’)
count++;
i++;

{
printf(“\n the no of E in the word %d”, count);
getch();

}
11. Short Notes:

CPU The control unit and the arithmetic logic unit of a computer system are jointly known as the Central

Processing Unit. The CPU is the brain of any computer system. In a computer system, all major calculations and
comparisons are made inside the CPU and the CPU is also responsible for activating and controlling the
operations of other units of a computer system.

(i) It performs all calculations.
(ii) It takes all decisions.

(iii) It controls all units of the computer.

e.g. 802 86, 803 86, P-I, P-II, etc.

AUTO A variable is declared automatic

auto type variable-name;

By default, all the variables are auto unless are specifying some other storage specifier.

(i) Storage Space�Memory

(ii) Default initial value�Garbage value

(iii) Scope�Local to the function

(iv) Lifetime�Till the parent function is executing

The variables generally declared in any function are called automatic variables. Even if the storage class is

not specified, they become auto by default.

The scope of these variables is that they are active only within the function in which they are declared. That is,

these variables are created upon entry into their function concerned and are destroyed by losing their lines upon

exit from that function.

GOTO A goto statement can transfer the control to any place in the program, it is useful to provide travelling

within a loop.

Another important use of goto is to exit from deeply nested loops when an error occurs.

Avoiding goto

When goto is used, many compilers generate a less efficient code. In addition, using many of them, makes a

program logic complicated, and renders the program unreachable.

(a) While Loop for-Loop

While (= = =)

{
if (error)

goto stop

if (condition)
goto abc;

abc >

{
stop;

exit
from
loop

for (=, =, =)

{
for (=, =, =)
{

error; = 2

goto error >
if (error)

{

{

exit
from
loops

Solved Question Paper 2004 477

getch

∑ getch() function reads a single character from the keyboard.

∑ It is an unbuffered function.

∑ It is not required to press the enter key after typing a character.

∑ The character of any one type is not echoed to the screen.

∑ <conio.h> header file contains the definition of getch() Æ system defined function.

Include

∑ A header file contains information on functions that are not contained in the program.

∑ These functions are defined either in another program file or within a library.

∑ Header file in C have .h extension.

∑ The # include is used in programs to include a header file.

∑ This include statements merely indicates that a function prototype exists.

∑ Any functions declared within the header file, that are called in the source code, will need to be linked in order to

run the program.

&

∑ A pointer variable is a special type of variable that stores a memory address rather than a data value.

∑ Usually the address stored in the pointer is the address of some other variable.

�&� Æ is address of operator

 is called direction operator

e.g. 1. int t, b, * a;

2. t = 5;

3. a = & t;

4. b = * a

1. t and b as integer variable. �*a� as a pointer variable pointing to an integer.

2. Assign the value of 5 to the variable of t.

3. Assigns the address of variable t, to the pointer variable a.

4. The content of the pointer variable �a� is assigned to �b�, hence the value of b is 5.

e.g. int *iptr; /* declaration of an integer pointer */

int x = 547;

iptr = &x; /* iptr stores the address of x */

Macro Macro substitution is a process where an identifier in a program is replaced by predefined stray composed

of one or more tokens. The preprocessor accomplishes this task under the direction of the # define statement. This

statement, usually known as a macro definition/macro.

define identifier string

If this statement is included in the program at the beginning, then the preprocessor replaces every occurrence of

the identifier in the source code by the string. The string may be any text, while the identifier must be a valid C

name. The keyword # define is written just as shown, followed by the identifier and a string, with at least one

blank space between them. The definition is not terminated by a semicolon.

There are different forms of macro substitution.

1. Simple macro substitution

2. Argumented Macro substitution

3. Nested Macro Substitution

e.g. # define Area 5.1246
define Two-PI 2.0 * 3.1415926
define M 50

ASCII

∑ ASCII stands for American Standard Code for Information Interchange.

∑ ASCII is used extensively in small computers, peripherals, instruments and communication devices.

478 Introduction to Computing

∑ It is a 7 bit code. Microcomputers using 8-bit word lengths use 7-bits to represent the basic code.

∑ The 8th bit is used for parity or it may be permanently 1 or 0.

∑ With 7 bits, up to 128 characters can be coded.

∑ In ASCII each character is represented by a unique integer value. The values 0 to 31 are used for non-printing

control codes, and the range from 32 to 127 are used to represent the alphabet and common punctuation symbols.

∑ A new version of ASCII is known as ASCII-8

∑ It is an 8-bit code.

∑ With 8-bits code capacity is extended to 256 characters.

Compile

∑ To execute any program, it must be compiled before execution.

∑ The process compilation consist of two steps:

(a) At first, the compiler will check whether the program is syntactically correct or not.

If there are some errors, it will report all these errors.

(b) Otherwise, it will generate the low-level language code which can be executed by the machine.

UNIX

∑ UNIX is a multitasking and multiuser operating system, developed by Bell Telephone Research Laboratories in

1969.

∑ It was developed for large machine.

∑ It is also used with powerful 32 bit personal computers, mainframe, server and supercomputers.

∑ UNIX requires 8�10 MB of memory.

∑ In this system, a user is identified with a user ID.

∑ It permits many users to share a CPU on time-slice basis.

∑ Each user program is known as a process.

The part of the operating system, which performs the task of scheduling is called scheduler, dispatcher or super-

visor.

The major functions of the UNIX Kernel are;

(i) to schedule and to service the needs of each process.

(ii) to maintain the system file structure.

(iii) to provide a means of communication between processes.

The major features of the UNIX shell are:

(i) A feature of the UNIX shell is the pipe command.

(ii) The UNIX shell permits a user to execute two commands simultaneously.

(iii) A simple method is provided by the UNIX shell to execute a series of commands over and over again.

(iv) The shell and kernel provide spooling facility.

CS-201
B.Tech 1st Yr 2nd Semester Year � 2005

1. (a) Perform the following conversions.

(i) (36)10 to octal

Ans. (i) (44)8

8 36

8 4 � 4

0 � 4

= (44)8

(ii) (36.625)10 to binary.

Ans. (36)10 fi (100100)2

(0.625)10 = ?

362

18 � 02

9 � 02

4 � 12

2 � 02

1 � 02

0 � 1

= (100100)2

Fraction 2¥ Fraction Remainder New Fraction Integer

0.625 0.625 ¥ 2 = 1.25 0.25 1 (MSB)

0.25 0.25 ¥ 2 = 0.50 0.50 0

0.50 0.50 ¥ 2 = 1.00 0.00 1 (LSB)

(0.625)10 = (0.101)2

(36.625)2 = (100100.101)2 Ans.

(iii) (2AB)16 to decimal.

= (2AB)16

= (B ¥ 16°) + (A ¥ 161) + (2 ¥ 162)

= (11 ¥ 16°) + (10 ¥ 161) + (2 ¥ 162)

= (11 ¥ 1) + (10 ¥ 16) + (2 ¥ 256)

= 11 + 160 + 512 = 683

= (683)10 Ans.

(iv) (10110.0011)2 to octal.

()
2

10110.0011
suu uuur

rsuuu

æ
æ

æÆ
æ

æ
æ

æ
æ

æÆ

480 Introduction to Computing

= (10) (110) . (001) (1)

= (010) (110) . (001) (100)

= 26.14

= (26.14)8 Ans.

In the Integral part of the binary numbers the group of 3 bits is formed from right to left.

In the binary fraction the group of 3 bits is formed from left to right.

1. (b) What are 2�s complement numbers? How do you use this system to perform 3110 - 1710 in binary?

2�s Complement Numbers

The 2�s complement in the binary number system is similar to 10�s complement in the decimal number system. The 2�s

complement of a binary number is equal to the 1�s complement of the number + 1.

The 2�s complement of the binary number = (It�s 1�s complement + 1)

e.g:- The 2�s complement of the binary no. 1001100 is 1�s complement of 101100 Æ 0 1 1 0 0 1 1

+ 1

0 1 1 0 1 0 0

3110 � 1710

(31)10 = (11111)2

(17)10 = (10001)2

1�s complement of (10001)2 is 01110

2�s complement of (01110)2 is 01110 + 1 = 01111

(31)10 = (11111)2

� (17)10 = (01111)2

 +

01110

The carry over of the last stage is to be neglected if we are using 2�s complement technique.

Ans. (01110)2

2. (a) State the basic features of an algorithm.

Ans � An algorithm is the set of sequential instructions to execute a program. The main characteristics of an

algorithm is that�

(i) Input: There are 0 or more quantities which are externally supplied.

(ii) Output: At least one quantity is produced.

(iii) Definiteness: Each instruction must be clearly understood.

(iv) Finiteness: If we trace out the instruction of an algorithm, then for all cases, the algorithm will terminate

after a finite number of steps.

(v) Effectiveness: Every instruction must be sufficiently basic, that it can in principle be carried out by revision

using only pencil and paper.

2. (b) Draw a flow chart to find the largest of three given integers.

Solved Question Paper 2005 481

Start

Input
, ,A B C

Biggest = A

Is
> Biggest
?

B Biggest = B
Yes

Is
> Biggest
?

C Biggest = C
Yes

No

Write
Biggest

Stop

No

The above figure depicts the flow chart to find out the biggest of three numbers.

An

2. (c) Write a complete C program to convert a given temperature in Fahrenheit scale to its equivalent

Centigrade scale.

Ans.
#include<stdio.h>
#include<conio.h>

void main()
{

float c,f;
printf(“\n Enter temperature in Fahrenheit scale:”);

scanf(“%f”, & f);
c = ((f - 32)/9)*5;

printf(“\n Equivalent Temperature in Centigrade scale is : % f “ , c);
getch();

}
3. (a) Briefly describe the functions of different components of a conventional digital computer with a suitable

block diagram.

Ans. Basic Anatomy of computer System

According to the various functions or tasks a computer can perform on the basis of the various input, output storage,

various processing devices attached to a computer system.

(i) Input Unit Data and instructions must enter the computer system, before any computation can be performed on

the supplied data. This task is performed by the input unit that links the external environment with the computer system.

All input devices must provide a computer with data that are transformed into the binary codes that the primary memory

of a computer is designed to accept.

�This transformation is accomplished by units called input interfaces.

�The i/p unit consists of one or more input devices. It may be a keyboard which is a character input device or a

mouse which is pointer input device. Regardless of the type of input device they all perform a few basic functions:

482 Introduction to Computing

(a) Accept data on instructions from the outside world.

(b) Convert it to a form the computer can understand.

(c) Supply the converted data to the computer system for processing.

Other input devices

Mouse

Light Pen

Optical Mark Reader

(ii) Output Unit The job of an output unit is just the reverse of that of an input unit. It supplies information and

results of computation to the outside world. Thus it links the computer with the external environment. As computer

work with binary code, the results produced are also in the binary form. Before supplying the results to the outside

world, it must be converted to a human acceptable form. This task is accomplished by units called output interfaces.

(iii) Arithmetic Logic Unit The arithmetic logic

unit (ALU) of a computer system is the place where the

actual execution of the instruction takes place during

the processing operation. All calculations are

performed and all comparisons are made by ALU. The

data and instructions, stored in the primary storage prior

to processing, are transferred as and when needed to the

ALU where processing takes place. No processing is

done in the primary storage unit. Intermediate results

generated in the ALU are temporarily transferred back

to the primary storage until needed at a later time.

ALUs are designed to perform the four basic

arithmetic operations�add, subtract, multiply, divide,

and logic operations on comparisons such as less than,

equal to or greater than.

(iv) Control Unit

(i) Control unit, controls the whole system by co-ordinating and organizing all the operations of the computer.

(ii) It controls the flow of instruction by itself with other two components of CPU.

(iii) It fetches the instruction that is stored in primary memory, interprets and gives the command necessary to carry

out instruction.

The control unit acts as a central nervous system for the other components of the computer. It manages and co-

ordinates the entire computer system. It obtains instructions from the program stored in the main memory, interprets the

instructions, and issues signals that cause other units of the system to execute them.

CENTRAL PROCESSING UNIT (CPU)

The control unit and the arithmetic logic unit of a computer system are jointly known as the Central Processing Unit

(CPU). The CPU is the brain of any computer system. In a computer system, all major calculations and comparisons are

made inside the CPU and the CPU is also responsible for activating and controlling the operations of other units of a

computer system.

(i) It performs all calculations.

(ii) It takes all decisions.

(iii) It controls all units of the computer.

(v) Storage Unit The data and instructions that are entered into the computer system through input units have to

be stored inside the computer before the actual processing starts. The results produced by the computer after processing

must also be kept somewhere inside the computer system before being passed on to the output units. It stores

Control
Unit

Storage
Unit

Input
Unit

Output
Unit O/P

ALU

CR

Block Diagram of a Computer System

Solved Question Paper 2005 483

(i) all the data to be processed and the instructions required for processing (received from input devices)

(ii) intermediate results of processing

(iii) final results of processing before these results are released to an output device

Various storage systems used in computer system are classified into two categories.

A. Primary Storage The primary storage, also called the primary memory, is generally a semiconductor memory.

We usually call it as RAM [Random Access Memory].

The current program being executed is stored in this memory, the intermediate results, data received from input

devices, data to be processed by CPU is stored in this memory.

Generally, this type of memory is very costly and is used in small quantities in a computer system. This type of

memory can also be called temporary memory, as they lose all the data or information stored in then once the computer

is switched off.

RAM It is also called Read/Write memory, because a user can read instructions from the main memory and can also

write the instruction into the main memory. RAM may be static or dynamic.

ROM It is a permanent and non-volatile memory, which means when the power is off, the instructions will be

retained in the memory, e.g., CDROM.

The user can read the instructions from ROM but is unable to write instructions into it. There are different types of

ROM, e.g., PROM, EPROM, UPROM. The most basic computer functions are carried out by electronic circuits. There

are several higher-level operations that are used, but will require very complicated circuits for their implementations.

Hence, instead of building these circuits, some special instructions/programs are written to perform these operations.

These programs are called microprograms. They deal with low level machine functions.

(B) Secondary Storage The secondary storage is like an archive. It may store programs, documents, data.

Secondary storage are slow cheap but their size is huge, e.g., floppy disk, hard disk, magnetic tapes.

Peripheral Device The word peripheral device means all i/p and output devices connected to the CPU. The Oxford

dictionary defines a peripheral devices as Any device including i/op-o-p device and backing storage connected to a

computer. They are called peripheral because they help the computer to communicate with the outside world, e.g. RAM,

ROM, PROM, EPROM, EEPROM.

3. (b) What is difference between a compiler and a interpreter?

Ans.

Compiler Interpreter

(i) It executes the whole source code into object (i) It interprets each line of instructions and converts to object

code. code.

(ii) It is faster than an interpreter. (ii) As it executes line by line instruction, it is comparatively

slower than compiler.

(iii) Large memory storage is required. (iii) Less memory storage is required

E.g. javac compiler, C++ compiler E.g. java interpreter

3. (c) What do you mean by system software?

Ans. System Software

(i) It is a set of one or more programs designed to control the operation of a computer system.

(ii) System software are general programs written to assist humans in the use of the computer system by performing

tasks, such as controlling all the operations required to move data into and out of a computer and all steps in

executing an application program.

(iii) In general a system package supports the running of the software to communicate the development of other types

of software and monitor the various h/w resources.

(iv) System software makes the operation of the computer system more efficient and effective.

484 Introduction to Computing

3. (d) Distinguish between i++ and ++i with suitable examples.

Ans.
Ï
Ô
ÔÔ
Ì
Ô
Ô
ÔÓ

i++ Æ post increment, pre assignment.

++i Æ pre increment, post assignment.

i++ Æ a postfix operator first assigns the value to the variable on the left and then increments the operand.

i++ fi i = i + 1.

The increment (++) operator increments the operands by 1.

For example,

i++ ++i

#include<stdio,h> #include<stdio,h>
#include<conio,h> #include<conio,h>

void main() void main()
{ {

int x = 4, y = 6, z; int i, j;
z = (x + y ++);] i = 25;
printf(“%d”, x); xj = ++i;
printf(“%d”, y); printf (“%d”, i);
printf(“%d”, z); printf (“%d”, j);
getch(); getch();

} }

3. (e) What is the range of signed integers of an integer stored in 2 bytes of memory?

Ans. � 32768 to + 32767

4. (a) Explain the difference between structure and union in a C program. State with suitable examples.

Ans. Structure A structure is a collection of data items or variables of different data types that are referenced under

the same name. It provides convenient means of keeping related information together.

struct tag-name
{
data type members;
};

The keyword struct tells the compiler that a struct template is being defined, that may be used to create structure

variables. The tag-name identifies the particular structure and its type specifier. The fields that comprise the structure

are called structure elements. All elements in a structure are logically related to one another.

e.g.

struct Stdru
{

char name[15];
char examno [10];
int maths, phys, chem;

} Std;

Individual structure elements can be referenced by using the . (dot) operator and the name of the structure variable in

combination.

<Struct variable name>.<element name>.

Union

In C, union is a memory location that is used by several variables of different data types.

Solved Question Paper 2005 485

union mean1
{

int a;
float x;
char b;

}
union mean1 mean2;

The main features of a union is, we can use only one variable storage available them at a time. This is because only

one location is allocated for a union variable, irrespective of its size.

All the members of a union share the same storage area within the memory of a computer, whereas each member with

a structure is assigned its own unique storage area. We can conserve memory by using unions.

Members of the unions may be arrays, structures, or unions.

Fields of union may be bit fields.

Space allocated for a union is for the largest number.

Members of the union may be accessed either using the (·) dot operation or the (Æ) right arrow operator.

Example:

#include<stdio.h>
#include<conio.h>
typedef union

{
int val1;
float val2;

} U_def;
void main()
{
U_def U; /* Union Variable declared */
U_def func (U_def U); /* function definition */
clnscr();
U.val1 = 50;
U.val2 = 0.5;
U = func(U); /* function call */
printf(“%d %0.2f”, U.val1, U.val2);
getch();

}
/* function definition */
U_def func (U_def U)
{
U.val2 = - 0.4;
printf(“%d %0.2f”, U.val1, U.val2);
return(U);

}

Example of structure

#include<stdio.h>
#include<conio.h>
struct employee

{
int emptno;
char name[30];
char desg[30];
char dept[30];

} emp;

486 Introduction to Computing

void main()
{
clrscr();
printf(“Enter the employee number”);
Scanf(“%d”, & emp.empt no);
fflush (stdin); printf(“Employee Name”);
gets(emp.name);
printf(“Employee Designation”);
gets(emp.desg);
printf(“Employee Department”);
gets(emp.dept);
clrscr();
printf(“Employee Number; %d”, emp.empt no);
printf(“Name: %s”, emp.name);
printf(“Destination: %s”, emp.desg);
printf(“Department: %s”, emp.dept);
getch();

}

4. (b) State the output of the following program codes with your justification about how the output is

obtained.

Ans. (i) void main()
{

int i, sum;
sum =0; for (i = 0; i <= 12, i++)
{

if (i%2)
continue;

sum = sum + i;
}

printf(“Sum = %d”, sum);
} Ans. Sum = 42

(ii) void main()
{

int n = 8;
n = n >> 2;
printf(“n = %d”, n);

}
Ans. n = 2

(iii) void main()
{

int i=5, j = 6, sum = 0;]
sum = ++i +j ++’;]

printf(“Sum = %d, i = %d, j = %d”, sum, i, j);
}

Ans. Sum = 12 i = 6, j = 7

Before performing the addition operation, there is a pre increment operation performed in i, i.e., the value of i

changes to 6 (++5).

Then performing the addition operation.

sum = (++5) + (6++)

sum = 6+6++

sum = 12

 Then post increment operation performed upon j, i.e. j++ = 6++ = 7.

Solved Question Paper 2005 487

(iv)
#define CUBE (x) x * x * x
void main()

{
int i = 5, j;
j = CUBE (i + 2);

printf(“j = %d”, j);
}

Ans. the output is 27

But the output should be 125.

There is no compilation error, but j = CUBE (i + 2). This syntax is not correct, the syntax should be j = CUBE (i)

5. (a) What is recursion?

Ans. In C, a function call itself, this is called recursion. A function is said to be recursive if there exists a statement in

its body for the function call itself.

e.g.: The recursive definition of this sequence is

Ï
Ô
Ì
Ô
Ó

0 if n = 1

fib (n) = 1 if n = 2

fib (n � 1) + fib (n � 2) if n > 2

While coding recursively, we must take care that there exists a reachable termination condition, inside the function,

so that the function may not be invoked endlessly.

Advantages

(i) Often easier to translate recursive definition to recursive function.

(ii) Algorithms more easily understood.

(iii) Avoids a lot of the book-keeping that an iterative solution requires.

(iv) Codes are shorter in recursive function.

Disadvantages

(i) The computer may run out of memory if the recursive calls are not checked.

(ii) If proper precautions are not taken, recursion may result in non-terminating iterations.

(iii) It is not more efficient in terms of speed and execution time.

5. (b) Write a recursive C function to return the greatest common divisor (gcd) of two positive integers that

are received as arguments to the function.

Ans.
#include<stdio.h>
#include<conio.h>
int rec_gcd (int, int); /* function prototype */
void main()

{
int a, b, gcd;
printf(“\n Enter two numbers:”);
scanf(“%d %d”, & a, & b);
gcd = rec_gcd (a, b); /* function call */

printf (“\n GCD of %d & %d is %d”, a, b, gcd);
getch();

}
/* function definition rec-gcd() */
int rec_gcd (int x, int y)

{ int r;
if (y = = 0)

return (x);

488 Introduction to Computing

else
{

r = x%y;
return (rec_gcd (y, r));

}
}

5. (c) Write a C function to swap two integer data and call the function from the main() function. Do not use

ANY THIRD variable.

Ans.
#include<stdio.h>
#include<conio.h>
void swap (int, int); /* function prototype */

void main()
{

int x, y;
clrscr();
printf("\n Enter two numbers:”);

scanf(“%d %d”, &x, &y);
printf(“\n value of x before interchange: %d”, x);
printf(“\n value of y before Interchange: %d”, y);
swap(x, y); /* function call */
getch();

}
/* function definition of swap() */
void swap (int a, int b)

{
a = a + b;
b = a – b;
a = a – b;

printf(“\n value of x after Interchange: %d”, a);
printf(“\n value of y after Interchange: %d”, b);

}

6. (a) Write a C program to copy a disk file into another disk file using command line arguments.

Ans.

#include<stdio.h>
#include<conio.h>
int main(int argc, char *argv[])

{
FILE *fptrl, * fptr2;
int i, num, numarr[50];
char ch;
clrscr();
if (argc! = 3)

{
printf(“\n Wrong Arguments”);

}
else

{
fptr1 = fopen(argv[1], “r”);

if(!fptr1)
{

printf(“\n unable to open source file”);
}

È
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

È
Í
Í
Í
Í
Í
Í

È
Í
Î

È
Í
Î

Solved Question Paper 2005 489

else
{

fptr2 = fopen(argv[2], “w”);
if (!fptr2)

{
printf(“\n unable to open destination file”);

}
else

{
while ((ch = fgetc(fptr1))! = EOF)

{
fputc(ch, fptr2);

}
printf(“In File is copy now”);
fclose (fptr2);

}
fclose(fptr1);

}
getch();
}

return(0);
}

6. (b) Write a C program to display the frequency of each alphabetic character in a given disk file.

Ans.

#include<stdio.h>
#include<conio.h>
void main()

{
int arr[256]; i;
char ch,;
FILE *fptr;
clrscr();
for (i = 0; i<256; i++)

{
arr[i] = 0;

}
fptr = fopen(“a1.txt”, “r”);
if(!fptr)

{
printf(“\n Error”);

}
else

{
while (ch = fgetc(fptr))! = EOF)

{
arr[ch] = arr[ch]+1;

}
fclose(fptr);

}
for(i=48; i<123; i++)

{
if (arr[i]! = 0)
printf(“\n %c is %d”, i, arr[i]);

}

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Î

È
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
ÍÎ

È
Í
Í
Í
Í
Í
Í
Í
ÍÎ

È
Í
Î

È
Í
Î

È
Í
Î

È
Í
Î

È
Í
Í
Í
Í
Í
Í
Í
ÍÎ

490 Introduction to Computing

getch();
}

7. (a) Write a C function to find the length of a string and call the function from the main() function. Do not

use �strlen' function in your program.

Ans.
#include<stdio.h>
#include<conio.h>

int St_len (char name1[100]); /* function prototype */
void main()

{
char name[100];
int i = 0;
printf(“\n Enter string:”);
gets(name);

i = St_len(name): /* function call */
printf(“\n length of the string is: Æ *%d”, i);
getch();

}
/* function definition */
int St_len (char name1 [100])

{
int c;
l = 0;

while (name1[c]! = ‘\0’)
c++
return (c);

}

7. (b) Write a C function to find the square of a number and use this function in the main to evaluate xn + yn

+ zn where x, y, z are read through a standard input device.

Ans.
#include<stdio.h>
#include<conio.h>

void main()
{

int sq_no (int x); /* function prototype */
int x, y, z, p;
clrscr();
printf(“\n Enter values of x, y, z:”);
scanf(“%d %d %d”, &x, &y, &z);
p = sq_no (x) + sq_no (y) + sq_no (z); /* function call */

printf(“The result is %d”, p);
getch();

}
/* function definition of sq-no (int x) */

int sq_no (int x)
{

return (x*x);
}

8. (a) Differentiate between do-while and while statements with suitable examples.

Solved Question Paper 2005 491

Ans.

While Loop Do-while Loop

(i) It may or may not be executed at least (i) It should be executed at least one time.

one time.

(ii) The test condition is evaluated and if the (ii) On reaching the do statement, the program proceeds to

condition is true, then the body of the loop evaluate the body of the loop first, at the end of the loop the

is executed. test condition in the while statement is evaluated.

(iii) It is an entry-controlled loop statement. (iii) It is an exit controlled loop statement.

Condition Statements

F

T

F

T
Condition

Statements

(v) e.g., (v) e.g.,

int i = 100; int i = 100;
while (i<100) do
{ {
i = i+1; i = i+1;
printf(“%d”, i), printf(“%d”, i);
} } while (i<100);
o/p = no o/p o/p = 101

8. (b) Differentiate between break and continue statements with examples.

Ans. Continue Unlike the break statement, which causes the loop to be terminated, the continue causes the loop to be

continued with the next iteration after skipping the statement in between, thus bypassing the rest of the loop. The

general form�

for (expression1; expression2; expression3)

{
if something continue;

}

Normal
Return

Start of
Loop

Continue

F

Flow chart

Condition
inside the
Loop

492 Introduction to Computing

e.g.:
#include<stdio.h>
#include<conio.h>

void main()
{
int i, no, sum = 0;
printf(“Enter 5 No:”);
for (i = 0; i < 5; i++)

{
scanf(“%d”,&no);
if(no < 0) continue;
else
sum+ = no;

}
printf(“Sum of +ve no is: %d”, sum);
getch();

}

Break

(i) When the break statement is encountered inside a loop, the loop is immediately exited and the program

continues with the statement immediately following the loop.

(ii) When the loops are nested, the break would only exit from the loop containing it, and the break will exit only

a single loop.

End of loop

Start of
loop

Break;

F

Flow chart

Condition
inside the
Loop

T

e.g.:
#include<stdio.h>
#include<conio.h>

void main()
{
int num1, num2;
do

{
clrscr();
printf(“\n Enter 2 No”);
scanf(“%d %d”, &num1, &num2);
if(num2 == 0)
break;
else

Solved Question Paper 2005 493

printf(“%d can be divided by %d”, num1, num2);
printf(“Any key to continue”);
fflush (stdin);
getch();
} while (num2! = 0);

}

8. (c) Write a C program to find the sum of all integers greater than 100 and less than 200 that are divisible

by 7.

Ans.

#include<stdio.h>
#include<conio.h>

void main()
{

int num, sum = 0;
clrscr();
printf(“Numbers divisible by 7 between 100 & 200”);
for (num = 100; num < = 200; num++)

{
if (num %7 = = 0)

{
printf(“%4d”, num);
sum + = num;

}
}

printf(“sum of all integers divisible by”);
printf(“7 between 100 & 200 is %d”, sum);
getch();

}

9. (a) Short Notes:

Relational Operators The C Language supports six relational operations in all.

Operator Meaning

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

!= is not equal to

= = is equal to

a < b or 1 < 20 Æ this expression containing a relational operator is termed a relational expression.

The value of a relational expression is either one or zero. It is one if the specified relation is true and zero if the

relation is false.

When arithmetic expressions are used on either side of a relational operator, the arithmetic expressions will be

evaluated first and then the results compared, that is, arithmetic operators have a higher priority over relational

operators.

Relational expressions are used in decision statements such as if and while to decide the course of action of a running

program.

Among the six relational operators, each one is a complement of another operator.

> is complement of < =

< is complement of > =

= = is complement of ! =

9. (b) Bitwise Operators C has a distinction of supporting special operators known as bitwise operators for

manipulation of data at bit level.

494 Introduction to Computing

These operators are used for testing the bits, on shifting them right or left.

Bitwise operators may not be applied to float or double.

Operator Meaning

& bitwise AND

| bitwise OR

^ bitwise exclusive OR

<< shift left

>> Shift right

Example Æ
#include<stdio.h>
#include<conio.h>
void main()
{
int i, j, k, m;
clrscr();
printf(“\n Enter two numbers:”);
scanf(“%d %d”, &i, &j);

k = i >> 2;
m = j << 1;

printf(“%d %d”, k, m);
k = i & 4;
m = i | j;
printf(“%d %d”, k, m);
getch();
}

9. (c) Pointer arithmetic in C There are only four arithmetic operators that can be used with pointers +, -, ++,

� �

A pointer when incremented or decremented is always relative to its base type, i.e., its value is increased or decreased

by the length of the data type, which is known as scale factor.

The scale factor of the various data types are

char -1 byte

integer -2 byte Æ The no. of bytes required

Float -4 byte to store various data types

Long -4 byte could also be found

Double -8 byte using sizeof operator.

Example Æ

#include<stdio.h>
#include<conio.h>
void main()

{
int a[5];
clrscr();

printf(“Size of int datatype is %d”, sizeof(int));
printf(“Size of char datatype is %d”, sizeof(char));
printf(“Size of float datatype is %d”, sizeof(float));
printf(“Size of array is %d”, sizeof(a));
getch();

}

9. (d) Array of pointers Instead of making each row a fixed number of characters, we can make it a pointer to a

string of varying length.

e.g. Char * name[] = {�India�, �Pakistan�, �Sri Lanka�};

Solved Question Paper 2005 495

declares name to be an array of three pointers, each pointer, pointing to a particular name as

name[0] Æ India

name[1] Æ Pakistan

name[2] Æ Sri Lanka

The following statement could print out all the three names�
for (i = 0; i< = 2; i++)
printf(“%s\n”, name[i]);

To access the jth character of the ith name, we may write�

*(name[i] + j)

The character arrays with the rows of varying length are called ragged arrays and are better handled by pointers.

9. (e) Dynamic Memory Allocation C Language requires the number of elements in an array to be specified at

compile time. The process of allocating memory at run time is known as dynamic Memory Allocation.

Although C does not inherently have this facility, there are four library routines known as �memory

management functions� that can be used for allocating and freeing memory during program execution.

These functions help us build complex application programs that use the available memory intelligently.

Memory Allocation Function

1. malloc() Æ Allocates request size of bytes and returns a pointer to the first byte of the

allocated space.

2. calloc() Æ Allocates space for an array of elements, initializes them to zero and then returns

a pointer to the memory.

3. free() Æ Frees previously allocated space.

4. realloc() Æ Modifies the size of previously allocated space.

(a) Malloc() function

A block of memory may be allocated using the function malloc(). The malloc() function reserves a block of

memory of specified size and returns a pointer to type void. This means we can assign it to any type of

pointer.

ptr = (cast-type *) malloc (byte-size);
e.g. x = (int) malloc (100 * size of (int));

(b) Calloc() function

Calloc() is another memory allocation function that is normally used for requesting memory space at run

time for storing derived data types such as arrays and structures. Calloc() allocates multiple blocks of

storage, each of the same size and then sets all bytes to zero.

ptr = (cast-type*) calloc (n, elem-size);

The above statements allocate continuous space for n blocks, each of element-size bytes. All bytes are

initialized to zero and a pointer to the first byte of the allocated region is returned. If there is not enough

space, a NULL pointer is returned.

9. (f) Operating system Operating system is an integrated set of programs that drives the hardware effectively.

The main objective of an operating system is to create an environment for application program. The main

function of an operating system is to control the hardware and supervise the system resources. It is designed

to support the activities of a computer installation. Its prime objective is to improve the performance and

efficiency of a computer system and increase facility. OS is an integrated collection of programs that

controls, monitors and checks hardware and allocates hardware resources to other software.

Operating System performs following systems:

(i) Processor Management, i.e., assignment of processors to different tasks being performed by the

computer system.

496 Introduction to Computing

(ii) Memory Management, i.e., allocation of main memory and

other storage areas to the system

programs, as well as user programs and

data.

(iii) Input/Output Management, i.e., coordination and assignment of the

different input and output devices while

one or more programs are being

executed.

(iv) File Management i.e., the storage of files on various

storage devices and the transfer of these

files from one storage device to another.

(v) Establishment and enforcement of a job priority system

(vi) Automatic to transition from job to job as directed by special control

statements

(vii) Interpretation of commands and instructions

(viii) Establishment of data security and integrity

(ix) Facilitates easy communication between the computer system and the computer operator

The efficiency of an operating system and the overall performance of a computer installation is judged by a

combination of two main factors�

(a) Throughput It is the total volume of work performed by the system over a given period of time.

(b) Turnaround Time It is also known as response time and is defined as the interval between the time a user submits

his job to the system for processing and the time in which he/she receives results.

10. (a) Explain �Call by Value� and �Call by Reference� mechanisms for passing arguments into a function

call in general. In your option, specify which of these is followed in case of a function. Give reasons of

your answer.

Ans. Call by Value In this mode of communication, only the values of actual arguments of the function call are

transferred to the formal arguments of function declaration. C makes a copy of the function argument and passes the

copy of the function, i.e., it passes the value of the argument to the function. So changes taking place inside the function

will not affect the corresponding arguments in the function call.

For example,

include<stdio.h>
include<conio.h>

void main()
{

void max (int x , int y , int z); /* function proto type */

int a, b, c;
clrscr();
printf(“Enter three no”);
scanf(“%d%d%d”, &a, &b, &c);

max(a, b, c); /* function call */ /*a, b, c are actual parameters */
getch();

}
/* function definition */

void max(int x, int y, int z)
{
int big; /* local variable */
printf(“x = %4d, y = %4d, z = %4d”, x, y, z);

big = x;
if (y > big)

big = y;

Hard-
Ware

User

Application programs

Operating system

Solved Question Paper 2005 497

if (z > big)
big = z;

printf(“Largest of three no. is %d”, big);
}

Call By Reference In this method, not only the value of the actual arguments of the function call is passed to the

formal arguments of function declaration, but also the variable reference. This is required, when we want the function to

have access to the original arguments in the calling function, instead of its copy. If any change takes place inside the

function it will automatically influence the corresponding arguments to the function call.

When we pass the arguments by reference, we pass the address of the arguments as a parameter for the function,

since the function has the address of the actual arguments. Any changes that take place inside the function, changes the

corresponding arguments of the function call.

#include<stdio.h>
#include<conio.h>

void main()
}

int a, b, c;
void swap(int *, int *);
printf(“Enter 2 No”);
scanf(“%d %d”, &a, &b);
Printf (“The values of a & b before entering fun”);

printf(“%d %d”, &a, &b);
swap (&a, &b); /* function call */

printf (“The values of a & b after executing fun”);
printf(“%d %d”, a, b);
getch();

}
/* function definition */

void swap (int *x, int *y)
{

int t,
t = * x;
* x = *y;
* y = t;

printf(“The value of a & b
inside the fun”);
printf(“%d %d”, *x, *y);

}

C directly supports Call by Value mechanism.

10. (b) What are the basic data types used in C?

Ans.The variety of data types available allow the

programmer to select the type appropriate to the

needs of the application as well as the machine.

ANSI C supports three classes of data types:

1. Primary (or fundamental) data types

2. Derived data types

3. User-defined data types

All C compilers supports five fundamental data types,

namely integer (int), character (char), floating point

(float), double precision floating point (double) and void.

Data types

Built in

Derived

Array

String
int

float

double

long

byte

char

User defined

Structure

Union

Class

Enumerated
data type

498 Introduction to Computing

Size and Range of Data types on a 16 bit machine.

Type Size (bits) Range

char 8 � 128 to + 127

int 16 � 32768 to 32767

float 32 3.4E � 38 to3.4E + 38

double 64 1.7E � 308 to 1.7E + 308

long int 32 � 2, 141, 483, 648 to 2, 147, 483, 647

10. (c) Explain precedence and associativity of operators with suitable examples.

Ans.C Language has associated with operation.

This precedence is used to determine how an expression involving more than one operator is evaluated.

The operators at the higher level of precedence are evaluated first.

The operators of the same precedence are evaluated either from left to right or from right to left depending on the

level. This is known as associativity property of an operator.

Example If (x = K10 + 15 &&y < 10)

The precedence rules say that the addition operator has a higher priority than the logical operator (&&) and the

relational operators (= = and <). Therefore, the addition of 10 and 15 is executed first. This is equivalent to

if (x = = 25 && y <10)

The next step is to determine whether x is equal to 25 and y is less than 10. If we assume a value of 20 for x and 5 for

y then,

x = 25 is False (0)

y < 10 is True (1).

Operator Associativity Rank

(), [] Left to right 1

++, � �, &, ! Right to left 2

*, /, % Left to right 3

+, � Left to right 4

10. (d) Using ternary (conditional) operator, write a C program to find the absolute value of a number.

Ans.
#include<stdio.h>
#include<conio.h>

void main()
{

int x = – 5, z;
clrscr();
z = (x > 0) ?(x) : (- x);
printf(“%d”, z);
getch();

}

CS-201
B.Tech 1st Yr 2nd Semester Year � 2006

1. (a) The function ftell ()

(i) reads a character from a file (ii) reads an integer from a file

(iii) gives the current position in a file (iv) none of these

Ans. (iii) gives the current position in a file

1. (b) Members of a union use

(i) different storage locations (ii) same storage locations

(iii) no storage locations (iv) none of these

Ans. (ii) Same storage locations

1. (c) main()

{
int x = 7, y = 5;
x = y++ + x++;
y = ++y + ++x;
printf (“% d % d”, x, y);

{
o/p

(i) 12 14 (ii) 12 20 (iii) 14 21 (iv) 12 19

Ans. The output should be 14 21 (ii)

1. (d) main()

{
int sum, i; sum = 0;
for(i = 0; i < = 10; i++)
{
if(i%2) continue;
sum = sum + i;

}
printf(“%d”, sum);

}
Output

(i) 55 (ii) 30 (iii) 23 (iv) 42

Ans. (ii) Wrong output 884 (say). Correct output will be 30 if sum = 0 will initialize in the Program.

1. (e) # define SQR(A) A * A

main()

{
int x = 5, y;
y = 4 * SQR(x – 3);
printf(“%d”, y);

}
Output

(i) 8 (ii) 64 (iii) 16 (iv) - 2

Ans. (Wrong output) is iv (2)

500 Introduction to Computing

1. (f) ALU is a part of a

(i) memory (ii) CPU (iii) output device (iv) input device

Ans. (ii) CPU

1. (g) ASCII value of �A� is

(i) 97 (ii) 65 (iii) 48 (iv) 67

Ans. (ii) 65

1. (h) main()

{
int i = 2;
switch(i)
{
case1: printf(“One”);
case2: printf(“Two”);
case3: printf(“Three”);
default: printf(“Error”);
}

}
Output

(i) One Two Three Error (ii) Two (iii) Two Three Error (iv) Two Three

Ans. (iii) Two Three Error

(i) main ()

{
int i, j;
for(i = 0, j = 5; i < j; i++, j++)
printf(“%d %d”, i, j);

}
Output

(i) 32 (ii) 0 5 1 4 2 3 (iii) Error (iv) Infinite loop

Ans. (iv) Infinite Loop

1. (j) A 32-bit microprocessor has a word length equal to

(i) 2 bytes (ii) 1 byte (iii) 4 bytes (iv) 8 bytes

Ans. (iii) 4 bytes

2. (a) Write a C program to generate a Fibonacci Series.

Ans.

#include<stdio.h>
#include<conio.h>

void main()
{
int a = 0, b = 1, c;
int i, n;
printf(“\n How Many numbers of”);
scanf(“%d”, &n);
printf(“%4d %4d", a, b);
for (i = 1; i < = n - 2; i++)

{

Solved Question Paper 2006 501

c = a + b;
printf(“%4d”, c);
a = b;
b = c;

}
getch();

}

2. (b) Write a C program to find the sum of 2 matrices.

Ans. # include <stdio.h>
include <conio.h>
void main ()
{
int a[10] [10], b[10] [10], c[10] [10], i, j, k, n, row, col;
clrscr();

printf(“\n Enter the order of two matrix: row then col”);
scanf(“%d %d”, &row, &col);
printf(“\n Enter the 1st matrix of order %d * %d”, row, col);
for(i = 0; i < row; i++)
{
for(j = 0, j < col; j++)
scanf(“%d”, &a[i] [j]);

}
printf(“\n Enter the 2nd matrix of order %d * %d”, row, col);
for(i = 0; i < row; i++)

{
for(j = 0; j < col; j++)
scanf(“%d”, & b[i] [j]);

}
for(i = 0; i < row; i++)

{
for(j = 0; j < col; j++)
c[i] [j] = a[i] [j] + b[i] [j];

}
printf(“The resultant matrix is: “\n”);
for(i = 0; i < row; i++)

}
for(j = 0; j < col; j++)

}
printf(“%4d\t”, c[i] [j]);

}
printf(“\n”);

}
getch();

}

2. (c) Write a C program to convert Centigrade to Fahrenheit and vice versa.

Ans.

#include<stdio.h>

#include<conio.h>
void main()
{
int c, f, ch

502 Introduction to Computing

clrscr();
printf(“\n 1. Centigrade to Fahrenheit”);
printf(“\n 2. Fahrenheit to Centigrade”);
printf(“\n Enter your choice”);
scanf(“%d”, &ch);
switch(ch)
{

case 1:
printf(“\n Enter the temperature in Centigrade (scale): “);
scanf(“%d”, &c);
f = ((9*c)/5) + 32;
printf(“\n the input temperature in Fahrenheit scale %d”, f);
break;

case 2:
printf(“\n Enter the temperature in Fahrenheit (scale):”);
scanf(“%d”, &f);
c = ((f - 32)/9)*5;
printf(“\n the i/p temperature in centigrade scales: %d”, c);
break;
default: printf(“wrong choice”);

break;
}
getch();
}

2. (d) Using ternary (conditional) operation, write a C program to find the largest of three numbers.

Ans.

#include<stdio.h>
#include<conio.h>
void main()
{
int a, b, c, temp, r;
printf”("\n Enter three numbers”);
scanf(“%d %d %d”, &a, &b, &c);
temp = (a > b) ? a : b;
r = (temp > c)? temp : c;
printf(“The Largest no, among the three no is %d”, r);
getch();

}

2. (e) Differentiate between do-while and while statements with suitable example.

Ans. Same as 2005 (8a)

2. (f) Differentiate between break and continue statements with examples.

Ans. Same as 2005 (8b)

2. (g) What is dynamic memory allocation? Write about malloc() and calloc() functions.

Ans. Same as 2005 (9e)

3. (a) Write a suitable block diagram and briefly explain the major components and their functions of any

conventional computer.

Ans. Same as 2005 (3a)

3. (b) State the basic features of any structured programming language.

Solved Question Paper 2006 503

Ans. Long and complex programs may be well

understood by the programmers who developed

them but not by persons who have to maintain

them. To overcome this difficulty, a technique

known as structured programming was

developed to write a program.

The basic idea behind this technique is that any part

of the program can be represented by elements from the

basic logic structures. Each structure has a single entry

and single exit. The three basic logic structures are as

follows:

(i) Simple Sequence Structure It is a linear structure in which instructions

or statements are execu- ted consecutively in sequence.

(ii) Conditional Structure In this structure a condition is tested. The con-

dition is followed by two alternative programs control paths. The selection of a

path depends on the result of the test.

If the condition is satisfied a particular program (PROGRAM 1) is executed.

If the condition is not satisfied then other program (PROGRAM 2) is executed.

It is also called If-Then-Else structure.

(iii) Loop-Structure If the given condition (C) is true, the given program

(P) is executed. The program (P) is not executed when (C) is false. This is a Do-

While structure.

In this structure, a program is executed once or more while the condition is

true. When the condition becomes false the looping process ends.

In DO-Untill structure, the condition is tested at the end whereas in Do-While structure, the condition is tested at the

beginning.

In DO-Untill structure, the looping process is repeated until a condition becomes true.

4. (a) What is type casting? What is automatic type conversion?

Ans. C permits mixing of constants and variables of different types in an expression. C automatically converts any

intermediate values to the proper type so that the expression can be evaluated without losing any significance.

This automatic type conversion is known as implicit type conversion.

4. (b) Explain unary operator with examples.

Ans. The unary operators available in the C language are *, &, +, �, ++, � �, sizeof().

These type of operators have associativity of right to left.

The unary minus operator has the effect of multiplying its operand by (- 1).

Example:

void main ()
{
int m, y, p, q; m = sizeof (int);
p = 10; k = sizeof (long int);
q = ++p;
m = 5;
y = m++;
printf(“%d”, p);
printf(“%d”, q);
printf(“%d”, p);
printf(“%d”, m);
printf(“%d”, y);
printf(“%d”, m);

}

Condition
Check

TrueFalse

Pgm 2

Then

Pgm 1

Control Structure

Condition
Test

Prog P

True

False

Do-While Loop Structure

Ï
Ì
Ó

Ï
Ì
Ó

504 Introduction to Computing

4. (c) Write a C program to check whether a given number is prime or not.

Ans.

#include<stdio.h>
#include<conio.h>
void main()
{
int i, n, k = 0;
clrscr();
printf(“\n Enter the number:”);
scanf(“%d”, &n);
if(n == 1||n == 2)
{
printf(“\n%d is prime no:”; n);
k = 1;

}
else
for(i = 2; i < n: i++)
{
if (n % i == 0)
{
printf(“\n%d is not a prime number”, n);
k = 1;
break;

}
}
if(k == 0)

{
printf(“\n%d is prime no”, n);

}
getch();

}
5. (a) Write a recursive C function to find the factorial of a positive integer that is received as an argument

to the function.

Ans.

#include<stdio.h>
#include<conio.h>
int fact(int); /* function prototype */
void main()
{

int n;
int result;
clrscr();

printf(“\n Enter the no:”);
scanf(“%d”, &n);
result = fact(n); /* fun call */
printf(“\n the factorial of %d is % d”, n, result);
getch();

}
/* function definition */

int fact (int x)
{

if (x == 1)
return(x);

else
return(x * fact (x - 1));

}

Solved Question Paper 2006 505

5. (b) What is recursion?

Ans. Same as 2005 (5a)

6. Explain call by value and call by reference mechanism for passing arguments into a function call in general.

Develop a function in C that will swap the value of two integer variables passed as arguments. Also write the

main program.

Ans. Same as 2005(10a) and 2005(5c).

7. (a) What is a file? Write the instruction in C for creating a file.

Ans. A file is a branch of bytes stored on some storage device like a magnetic disk or tape, etc. Most of the application

programs process a large volume of data which are permanently stored in files.

We can write programs that can read data from file(s) and write data to file(s). Compilers read source code files and

provide executable files.

Database programs and word processors also work with files.

Data transfer is generally one or both of the two types given below:

(a) Transfer between console unit and the program

(b) Transfer between the program and a file on disk or tape

Function Purpose

(i) fopen() Create a new file or open

an existing file for use

(ii) fclose() Close a file which was in use

(iii) getc() Read a character from file

(iv) putc() Writes a character to file

(v) fgetc() Reads a character from a file

returns EOF if end of file.

Ans #include<stdio.h>
#include<conio.h>

void main()
{
FILE * fptr;
char ch;
fptr = fopen (“TEXT.DAT”, “w”);
clrscr();
if(! fptr)
{
printf(“\n cannot open file for writing);

}
else
{
printf(“\n Enter the text:”);
while((ch = getchar())! = EOF)
}
fputc(ch, fptr);

}
fclose (fptr);
}
fptr = fopen(“TEXT.DAT”, “r”);

if(!fptr)
{
printf(“\n Cannot open file for reading”);

}

506 Introduction to Computing

else
{
printf(“The text stored in the file is:”).
while((ch = fgetcl fptr))! = EOF)
{
printf(“%c”, ch);

}
fclose(fptr);

}
}
getch();

7. (b) Write a C program to copy file f1.dat as f2.dat. assuming f1.dat is available in your current working

directory.

Ans.
#include<stdio.h>
#include<conio.h>
#include<dos.h>

void main()
{

FILE * fptr1, *fptr2;
char source [20]; target [20];
char a[100];
clrscr();
printf(“\n Enter the source file name to be copied”);
gets(source);
fptr1 = fopen(source, “r”);
if(!fptr1)
{

printf(“\n Can’t open the source file for reading”);
}
else
{
printf(“\n Enter the target file name to transfer content";
fptr2 = fopen(target, “w”);
}

if (fptr2)
printf (“\n can’t open target file for writing”);

else
{ while ((ch = fgetc (fptr1))!= EOF))

{
fputc(Ch, fptr2)
}
printf(“\n source file has been copied to target file”)
fclose(fptr2);

}
fclose(fptr1);
getch();

}
8. (a) What is structure in C? How is it declared?

Ans.as same as 2005 (4a)

8. (b) Declare a structure template having members of appropriate type.

branch

name

roll no.

marks in 8 subjects

Solved Question Paper 2006 507

Write a C program to create an array of 30 structure variables and read all the members of each

variable.

Ans.

#include<stdio.h>
#include<conio.h>
#define S 30
struct Student
{
int roll_no;
char branch[30];
char name[30];
int marks[28];

}
Std[S];

void main()
{

int i, n, j;
clrscr();

printf(“\n Enter the total student < (= %d”, S);
scanf (“%d”, &n);
for(i = 0, i < n; i++)
{
clrscr();
printf(“\n Enter the Student details Æ %d”, i+1);
printf(“\n Student roll:”);
scanf(“%d”, & Std[i].roll_no);
fflush(stdin);
printf(“\n Student name:”)
gets(Std[i].name);
printf(“\n Branch”);
gets(Std[i].branch);
printf(“In Enter the subject marks”);
for(j = 1; j <= 8; j++)

{
scanf (“%d”, & Std[i].marks[j]);

}
}

/* display the data */
for(i = 0; i < n; i++)
{
clrscr();
printf(“\n Student details % d”, i + 1);
printf(“\n Student Rollno: %d”, Std[i].roll_no);
printf(“\n Student Name: %S”, Std[i].name);
printf(“\n Student Branch: %S”, Std[i].branch);
printf(“\n Individual Subject Marks”);
for (j = 1; j < = 8; j++)

{
printf(“%d”, std[i].marks[j]);

}
}

getch();
}

È
Í
Î

508 Introduction to Computing

9. (a) Distinguish between recursion and iteration.

Ans.

Recursion Iteration

(i) Recursion is the technique of defining any (i) It is a process of executing a statement or a set

term in terms of itself. of statements repeatedly, until some specific

condition is specified.

(ii) Not all problems have recursive solutions. (ii) Any recursive problem can be solved iteratively.

(iii) There must be an exclusively if-statement inside the (iii) Iteration involves clear cut-steps initialization,

recursive function, specifying stopping condition. condition, execution, updation.

(iv) Recursion is generally a worse option to go for (iv) Iterative counterpart of a problem is more

simple problems, or problems not reversive in nature. efficient in terms of memory utilization

and execution speed.

9. (b) Write a recursive program to compute factorial of a number read from the keyboard.

Ans.

#include<stdio.h>
#include<conio.h>

#include<stdio.h>
#include<conio.h>
void main()
 {
 long fact=1,n;
 int i;
 clrscr();
 printf(“Enter the No:”);
 scanf(“%ld”,&n);
 if(n<0)
 printf(“%ld factorial not defined”,n);
 else
 {
 for(i=1;i<=n;i++)
 {
 fact=fact*i;
 }
 printf(“\nFactorial is->%ld”,fact);
 }
 getch();
 }

10. (a) What is a pointer in C?

Ans. A pointer is a variable which holds a memory address, which is the location of some other variable in memory. As

a pointer is a variable, its value is also stored in another memory location.

If one variable contains the address of another then the first variable is said to point to the second variable.

 int x = 547

location name Æ x

value of the location Æ 547

location number or address Æ 4000

(a) Reserve the space in memory for storing the value.

(b) Associating the name x with this memory location.

(c) Storing the value 547 at this location.

Solved Question Paper 2006 509

Why do we use pointers?

(i) For referencing functions and passing of functions as arguments to other functions

(ii) For efficient handling of data tables

(iii) For fast execution of programs

(iv) For reducing the size and complexity of programs

type * xptr_name;

type specifies the type of the variable that is to be pointed to by the pointer ptr_name.

* represents the variable ptr_name as a pointer variable and it needs a memory location too.

e.g:

int *ptr; /* declaration of integer pointer */
int x = 547;

ptr = &x; /* ptr stores the address of x */

& Æ is address of operator

ø is called direction operator.
* Æ is called content of operator

ø is called indirection operator

Example:

#include<stdio.h>
#include<conio.h>
void main()
{
char ch, *cptr;
int x; *iptr;
float y, *fptr;
x = 350;
y = 20.52;
ch = ‘J’;
cptr = &ch;
iptr = &x;
fptr = &y;
clrscr();
printf(“\n value of ch = %c”, ch);
printf(“\n Address of ch is %u,” &ch);
printf(“\n value of ch = %c”, *cptr);
printf(“\n value of ch = %x”, cptr);
printf(“\n value of x = %d”, x);
printf(“\n Address of x = %x”, &x);
printf("\n value of x = %d," *iptr);
printf(“\n Address of x = %x”, iptr);
printf(“\n value of y = %f; *fptr);
printf(“\n Address of y = %x”, fptr);
getch();

}

10. (b) Bitwise Operators

Ans. Same as 2005 (9b)

10. (c) Operating System

Ans. Same as 2005 (9f)

CS-201
B.Tech 1st Yr 2nd Semester Year � 2007

1. (i) In hexadecimal number system, F is equivalent to the number in decimal.

(a) 10 (b) 12 (c) 16 (d) 15

Ans. (d) 15

(ii) Which one of the following is a conditional operator?

(a) ?: (b) if (c) < (d) &&

Ans. (a) ?:

(iii) What will be the value of i and m after executing the following code?

int i = 5, m;

m = i ++;

(a) 5 and 6 (b) 5 and 5 (c) 6 and 5 (d) 6 and 6

Ans. (c) 6 and 5

(iv) During storing of numbers in computer memory, the positive sign is denoted by

(a) 0 (b) 1 (c) + (d) �

Ans. (a) 0

(v) Number of bytes required for double is �

(a) 8 (b) 4 (c) 2 (d) 6

Ans. (a) 8

(vi) What will be the output of the following code?

int i, f = 1;
for (i = 1; i < = 5; i++)
f = f * i;
printf(“%d";f);

(a) (b) 1 (c) 120 (d) 5

Ans. (c) 120

(vii) Which of the following is not used as secondary storage?

(a) Semiconductor memory (b) Magnetic disk (c) Magnetic drums (d) Magnetic tapes

Ans. (a) Semiconductor memory

(viii) The ALU of a computer normally contains a number of high speed storage elements called

(a) Semiconductor memory (b) registers (c) hard disk (d) magnetic disk

Ans. (b) Instruction register

(ix) The register which contains the instructions that are to execute is known as

(a) index register (b) instruction register

(c) memory address register (d) memory data register

Ans. (b) instruction register

(x) A 32-bit microprocessor has the word length equal to

(a) 2 bytes (b) 1 byte (c) 4 bytes (d) 8 bytes

Ans. (c) 4 bytes

(xi) The union holds

(a) one object at a time (b) multiple objects (c) both (a) and (b) (d) none of these

Ans. (a) one object at a time

(xii) The function used to detect the end of file is

(a) feof () (b) ferror (c) fputs (d) fgetch ()

Ans. (a) feof ()

Solved Question Paper 2007 511

GROUP�B

2. Write a C Program for checking whether a number is prime or not.

Ans. #include<stdio.h>
#include<conio.h>

void main ()
{

int n, i, k = 0;
clrscr();
printf(“\n Enter the no:”);
scanf(“%d”, &n);
if(n = = 2)

{
printf(“%d is a prime no”, n);
k = 1;

}
for (i = 2; i < n; i++)

{
if(n%i = = 0)

{
printf("d is not prime”, n);
k = 1;

break;
}

}
if (k = = 0)

{
printf(“%d is prime no”, n);

}
getch ();

}
3. (a) Write down the difference between compilier and interpreter.

Ans. Same as 2005 (3b)

3. (b) Briefly describe the functions of memory unit and discuss its various parts.

Ans. Same as 2005 (3av)

3. (c) Write down the generation wise development of the computer hardware.

Ans. See Chapter 1

4. (a) void main()
{
int i, j;
for(i = 1; i < = 2; i++)

{
for(j = 1; j < = 2; j++)

{
if(i = = j)

continue;
printf(“\n %d %d \n”, i, j);

}
}

}
output 1 2

2 1

512 Introduction to Computing

4. (b) void main()
{

int n = 8;
n = n < < 2;
printf(“\n n = %d”, n);

}
Output

n = 32
5 (a) Write an algorithm to find the sum of the first n even numbers, where n should be read from the user.

Ans. Given an array A of n elements. This algorithm finds the sum of the first n even numbers. I denotes the array

index.

1. EVENSUM ¨ 0

2. Repeat for I = 1, 2,, N

Begin
IF(A[I] % 2 = = 0) THEN
EVENSUM ¨ EVENSUM + A[I]

END
3. Write EVENSUM

4. END

5. (b) Draw a flow chart to display the first n terms of the Fibonacci series. The first two terms of the series are

respectively 1 and 1. The nth term of the series F
n
 is defined as

Fn = Fn � 1 + Fn � 2

Ans.

A = B
B = NEXT

Count = Count + 1

Write Next

Next = A + B

Yes

Count = 2

Write A, B

Start

Input N

A = 1
B = 1

Is
count < N

?
Stop

No

Solved Question Paper 2007 513

6. (a) What is recursion? Explain with an example

Ans. Same as 2005 (5a)

6. (b) What is ternary operator?

Ans. Same as 2005 (10d)

GROUP � C

7. (a) How can you represent a string using the C program Language?

Ans. Same as 2003 (12v)

7. (b) Name any five string functions whose prototype is defined in the string h header file.

Explain the work of any two of them.

Ans. String functions

(1) strlen(s + 1) = returns the length of s + 1.

(2) strrev(s + 1) = reverse the string s + 1.

(3) strcpy(s + 2, s + 1) = s + 2 is the target string which stores the contents of the source string s + 1.

(4) strcmp(s + 1, s + 2) = compare s + 1 and s + 2 returns of both s + 1 and s + 2 are same.

(5) strcat(s + 1, s + 2) = concate the s + 2 on to the end of s + 1.

strlen(string) function*/
#include<stdio.h>
#include<conio.h>
#include<string.h>
void main()

{
char string[100];
int i, len;
clrscr();
puts(“Enter the string”);

gets(string);
len = strlen(string);

printf(“\n Length of the string is %d”, len);
getch();

}
Strcat(n1,n2)function/

#include<stdio.h>
#include<conio.h>
#include<sting.h>
void main()

{
char s1[100], s2[100];
puts(“Enter the 1st string:”);

gets(s1 + 1);
puts(“Enter the 2nd string:”);
gets(s2 + 2);
strcat(s1 + 1, s2 + 2);

printf(“Resultant string is: %s”, s1 + 1);
getch();

}
7. (c) Write a C program to find the number of vowels and consonants in a line of text.

Ans.

#include<stdio.h>
#include<conio.h>
#include<string.h>

514 Introduction to Computing

#define s1 100
void main()

{
char string [s1], ch;
int i, vow_count, const_count;
vow_count = const_count = 0;
clrscr();
printf(“\n Enter the text”);

while (‘)
{

i = 0;
ch = getchar ();
while(ch! = ‘\n’)

}
string[i] = ch;

i++;
ch = getchar ();

}
string[i] = ‘10’;
if(string[0] = = ‘10’)

break;
else

{
i = 0;
while (string[i]! = ‘10’)

{
if(string[i] = = ‘a’ "string[i] = = ‘A’"

string [i] = = ‘e’ "string[i] = = ‘E’"
string[i] = = ‘i’ "string[i] = = ‘I’"
string[i] = = ‘O’ "string[i] = = ‘O’"
string[i] = = ‘u’ "string[i] = = ‘U’)
vow_count++;

else if((string[i] > = ‘a’ && string[i] < = ‘Z’)*
(string[i] > = ‘A’ && string [i] < = ‘Z’))
cons_count ++;

i++;
}

}
}
printf(“No of vowels in text: %d" vow_count);
printf(“No of constant in text: %d" const_count);
getch();
}

7. (d) Write a C program to convert all lower-case alphabets to upper-case alphabets in a line of text.

Ans.

#include<stdio.h>
#include<conio.h>
#include<string.h>

void main()
}

int i = 0;
char s1 + 1[100],
puts(“\n Enter the string”);

Solved Question Paper 2007 515

gets(s1 + 1);
while(s1 + 1[i]! = '\0’)

}
if(s1 + 1[i] >= ‘a’ && s1 + 1[i] < = ‘z’)

{
s1 + 1[i] = s1 + 1[i] – 32;

}
i++;

}
printf(“Modified string is: %s”, s1 + 1);
getch();

}

8. (a) Write a C program to create a copy the content of a textfile �file1.txt� into another �file2.txt�.

Ans. #include<stdio.h>
#include<conio.h>
void main()

{
FILE *fptr1, *fptr2;
char source[15], target[15];
char ch;
clrscr();
printf(“Enter the source file name to be copied:”);
gets(source);
fptr1 = fopen(Source, “r”);

if(!fptr1)
printf(“\n Can’t open source file for reading”);

else
{
printf \ “Enter the target file name to transfer contents:”);

gets(target);
fptr2 = fopen(target, “w”);
if(! fptr2)

printf(“Cannot open target file for writing”);
else

{
while((ch = fgetc(fptr1))!=EOF)

{
fputc(ch, fptr2);

}
printf(“\n source file has been changed to target file”);
fclose(fptr2);

}
fclose(fptr1);

}
}

8. (b) What is the difference in opening a file in r + and w+ modes?

Ans. r + fi The existing file is opened to the beginning for both reading and writing

w + fi open the file for reading and writing. The file is created if it does not exist, otherwise

the file is truncated. The stream of reading is positioned at the beginning of the file.

8. (c) What do the fprintf() and fread() functions do?

Ans. fprintf() fi writes a set of data values to a file.

fread() fi read from block by block from a file.

516 Introduction to Computing

9. (a) Write a C Program to print the following pattern. (fill n rows, where n is an input)

Ans.

#include<stdio.h>
#include<conio.h>
void main()
{

int i, j, n, k;
clrscr();
printf(“Enter no of rows:”);
scanf(“%d”, & n);
for (i = 1; i < = n; i++)

{
for(j = 1; j < = n – i; j++)

{
printf(“”);

}
for (K = 1; (K < = n); K++)

{
prinf(“*”);

}
prinf(“\n”);

}
getch();

}

9. (b) Write a C Program to accept a string as a command line argument hence find its length.

Ans.

#include<stdio.h>
#include<conio.h>

void main(int argc, char *argv[])
{
 int i,j, c=0;
 for(i=1; i<argc; i++)
 {
 for(j=0; argv[i][j]!=NULL; j++)
 c++;
 }
 printf(“length= %d”,c);
 getch();
}

10. (a) What are structure and structure variable? What are array and subscripted variable? Compare array

and structure data type with suitable examples.

Ans. A structure is a collection of data items or variables of different data types that are referred under the same

name. It provides convenient means of keeping related information together.

Struct b tag name

{

data type b members;

};

The key struct tells the computer that a structure template is being defined that may be used to create structure

variables. The tagname identifies the particular structure and its type specifier. The fields that comprise the structure

are called structure elements. All elements in a structure are logically related to one another.

Solved Question Paper 2007 517

A structure variable, like an array can be initialized only if its storage class is external, i.e. global structure or

static and the initialization must be performed only with the declaration of the actual variables and not within the

template.

Individual structure elements can be referenced by using the .(dot) operator and the name of the structure

variable in combination.

· structure variable name Ò . · element name Ò

For Example
struct

{
char name [50];

}
student;
student stred;

stud.name;
#

Array Structure

(1) An array is a group of related data items that (1) A structure is a collection of data items or variables of

share a common name. different data types that are referenced under the same name.

(2) It is a collection of same homogenous data type. (2) It is a collection of heterogeneous data type.

(3) Array may be onedimensional, Two-dimensional (3) No such type of classifications are present here.

or multidimensional

(4) eg:- int abc[10] (4) eg:-

char abc[5]; struct stdree
{

char name[15];
char exam no[10];
int math, phy, chem.;

}
std;

10. (b) What are the functions of a CPU? How does the CPU perform them?

Ans. Same as 2006 3(a)

10. (c) A magnetic disk pack has 12 surfaces out of which 10 are readable. Each surface has 50 tracks and

each track is divided into a number of sectors. If the total capacity of the disk pack is 50000 K bytes,

adn the capacity of each sector is 512 bytes then.

(i) How many cylinders are present in the disk pack? 3

(ii) How many sectors are present on each track? 2

Ans.

(i) No of Cylinders = No of Tracks / Per Surface = 50 Cylinders (ANS-)

(ii) To calculate Sectors/ Track, Total Byte/ Track must be known.

Total Byte on the Disk pack (on 10 surfaces = 50000 KB

Total Byte Per Surfaces = (50000/10) = 5000 KB/Surface

Total Byte Per Track =
Bytes/Surfaces

Track/Surfaces

= (5000/50) = 100 KB = (100*1024) Byte

518 Introduction to Computing

No of Sectors/Tracks =
Total Bytes/Track

Sector Size

=
100 *1024

512
 = 200 Sectors

11 (a) Enumerated Data Types

enum identifier { val1, val2, . . . valn};
The identifier is a user defined enumerated data type which can be used to declare variables that can have one of

the values enclosed within the braces (known as enumeration constant). After this definition, we can declare

variables to be of this new type as below:

enum identifier v1, v2, . . . vn;

The enumerated variables v1, v2 . . . vn can only have one of the values val1, val2, . . . valn. The assignments of

the following types are valid:

v1 = val3;

v5 = val1;

eg:

enum day{Monday, Tuesday, . . . Sunday};
enum day week s+, week-end;
week-s+ = Monday;
week-end = Friday;
if(week-s+ = = Tuesday)
week-end = Saturday;

The compiler automatically assigns integer digits beginning with 0 to all the enumeration constants, that is, the

enumeration constant val1 is assigned 0, val2 is assigned 1, and so on. The automatic assignments can be

overridden by assigning values explicitly to the enumeration constants.

eg:

enum day {Monday = 1, Tuesday, . . . Sunday};
Here the constant Monday is assigned the value of 1. The remaining constants are assigned values that increase

successively by 1.

11. (b) Dynamic Memory Allocation

Ans. Same as 2005 9(e)

11. (c) Array of pointers

Ans. Same as 2005 9(d)

11. (d) Multiprogramming operating system

Ans. Same as 2005 9(f)

Model Question Paper�I
 GROUP�A

(MULTIPLE CHOICE QUESTIONS)

1. Choose the correct alternative in each of the following. 1 ¥¥¥¥¥ 10 = 10

(a) #include<stdio.h>

#include<conio.h>

main()
{

{
{

printf(“one\n”);
}

printf(“two\n”);
}

printf(“three”);
}

(i) One (ii) One\n (iii) \n One (iv) None of the

Two Two\n \n Two above

Three Three\n \n Three

Ans. (i) One

Two

Three

1. (b) main()
{

int n1 = 30, n2 = 40;
n2 = n1;

n2?(n1, n2)? n1:n2:n2;
printf(“%d %d”, n1, n2);

}
(i) 30 30 (ii) 30 60 (iii) 60 20 (iv) None of the above

Ans. (i) 30 30

1. (c) main ()
{

int arr[6] = {20, 25};
printf(“\n %2d %2d %2d”,; arr[2], arr[3], arr[4]);

 getch();
}

(i) 20 25 0 (ii) 25 20 0 (iii) 0 0 0 (iv) 0 20 25

Ans.(iii) 0 0 0

1. (d) What is the range of unsigned short int?

(i) 0 to 65535 (ii) 0 to 255 (iii) � 128 to + 127 (iv) none of these

Ans. (ii) 0 to 255

1. (e) Operating System is

(i) application software (ii) system software (iii) firmware

È
Í
Î

È
Í
Í
Í
Í
Í
Í
Í
ÍÎ

520 Introduction to Computing

Ans. (ii) system software

1. (f) What is the associativity of the operation [+ +]?

(i) Right to Left (ii) Left to Right (iii) Both

Ans. (i) Right to Left

1. (g) The getw() Rs function is

(i) integer oriented (ii) pointer oriented (iii) file oriented

Ans. (i) integer oriented

1. (h) What is the purpose of the mode r+?

(i) Open for both reading and writing (ii) Open for only reading

(iii) Open for only writing (iv) None of these

Ans. (i) Open for both reading and writing

1. (i) Which one is faster than the other?

(i) Interpreter (ii) Compiler

Ans. (ii) Compiler

1. (j) What is the output of the following code?

int i=100;
while(i<100)
{
i = i + 1;
printf(“%d”, i);
}

(i) 100 (ii) no output (iii) 101 (iv) 99

Ans. (ii) No output

 GROUP�B

 (SHORT ANSWER QUESTIONS)

Answer any three. 3 ¥¥¥¥¥ 5 = 15

2. (a) What is the difference between while loop and do-while loop (with example)? 2 + 1

(b) What is the necessities of user-defined functions? 2

3. What is call by value? What is call by reference? Discuss with examples. 5

4. (a) What are the differences between recursion and iteration. 2

(b) Write a C-progam to find the factorial of a given number. (we can take input of 3

any positive number).

5. (a) What are the differences between Calloc() and Malloc() functions? 3

(b) What is void pointer? Give one example. 2

6. (a) Why does a computer use binary digits? 2

(b) What are the differences between compiler and interpreter? 2

(c) What is pointer Arithmetic? 1

GROUP�C

(LONG-ANSWER QUESTIONS)

Answer any three. 3 ¥¥¥¥¥ 15 = 45

7. (a) Write down the basic anatomy of a computer System with a proper block diagram. 7

(b) Perform the following operations. 2 ¥¥¥¥¥ 4 = 8

Model Question Paper�I 521

(i) (100110101)2 to octal (ii) (0.635)10 to binary

(iii) (3AB)15 = ?11 (iv) A1 A)12

8. (a) Write a complete C program to copy a text file to another text file. 5

(b) What are Arrays of structure? Discuss with a proper example. 3 + 5 = 8

(c) What are the main characteristics of a union? 2

9. (a) What are the differences between printf() and puts () functions ? 2

(b) Write a complete C program to check whether a given string is a palmdrome or not. 5

(c) Write a complete C program to perform the multiplication operation of two matrices. 6

(d) What is an array in C language? Give one example. 2

10. Write short notes on the following (any three): 3 ¥¥¥¥¥ 5 = 15

(i) Operators in C language (ii) String functions (iii) Nested for loop

(iv) Macro (v) Algorithm

 GROUP�B

Answers
2 (a)

While Loop Do-while Loop

(i) While loop may or may not be executed at least (i) Do-while Loop executes at least one time.

one time.

(ii) While loop is an entry-controlled loop statement. (ii) Do-while is an exit-controlled loop statement.

(iii) The test condition is evaluated and if this condition (iii) On reaching the do statement the program proceeds to

is true then the body of the loop will be excuted. evaluate the body of the loop first. At the end of the

loop the test condition in while statement is evaluated.

Flow chart Flow chart(iv)

Condition

F

Statement
T

(iv)

Condition

F

Statements

T

(v) Syntax (v) Syntax

while(condn) do

{ {

body of the loop' body of the loop;

} } while (condn);

(vi) eg:- (vi) eg:-

int i = 100; int i = 100;
while(i<100) do
{ {

i=i+1; i = i + 1;
printf("%d”,i); printf(“%d”, i);

} }while (i<100);
o/p Æ no output o/pÆ 101

522 Introduction to Computing

2. (b)

Necessity of User Defined Functions

øA function has a clearly defined objective and a clearly defined interface with other functions in the program.

It is also called a sub-program and it is easy to understand, debug and test.

Reduction in the program size is another reason.

Any sequence of statements that is repeated in a program, can be combined together to form of function.

The function code is stored in only one place in the memory, even though it may be executed as many times as a

user needs thus saving both time and space.

3. Same as 2005 (10a)

4. (a)

Recursion Iteration

(i) Recursion is the technique of defining any (i) It is a process of executing a statement or a set

thing in terms of itself. of statement repeatedly,

until some specific condition is specified.

(ii) Not all problems have recursive solutions. (ii) Any recursive problem can be solved iteratively.

(iii) There must be an exclusive if statement, (iii) Iteration involve four clear-cut steps�

inside the recursive function, specifying initialization, condition, execution, updation

stopping condition.

(iv) Recursion is generally a worse option to go (iv) Iterative counterpart of a problem is more efficient

for simple problems, or problems not recursive in terms of memory utilization and execution speed.

in nature.

4. (b) Same as 2005 5(a)

5. (a) Same as 2005 10(a)

(b) Void Pointer A general purpose pointer that can point to any data type is known as void pointer.

void * vptr; /*pointer to void*/

In C, pointers to void cannot be directly dereferenced like other pointer variables by using *, indirection operator.

A suitable type cast is a must prior to dereferencing a pointer to void as given.

* ((type *)vptr)

æ
æ
æÆ

æ
æ
æÆ

dereferencing type cast
operator

Example

#include · stdio.h Ò

#include · conio.h Ò
void main()
{

int x = 100;
float y = 20.32;
int * iptr;
float * fptr;
void * vptr;
clrscr().
iptr = &x;
fptr = &y;
printf(“x = % d", *iptr);

Model Question Paper�I 523

printf(“y = % 0.2f”, *fptr);
vptr = &x;
printf(“x = % d”, * ((int *) vptr));
vptr = &y;
printf(“y = % d”, * ((float *) vptr));
getch();

}

6 (a) A computer uses binary digits for the following reasons:

(i) All the electronics components of a computer have only two states, either 0 or 1.

(ii) It is very comfortable to convert the decimal, hexadecimal or octal systems into the corresponding binary

number system.

(iii) The computer circuits have to handle two binary digits, rather than 10 decimal digits. The result, internal

circuit design of computer is simplified to great extent.

This ultimately results in less expensive and more reliable circuits for computer.

6. (b)

Compiler Interpreter

(i) It executes the whole source code into object (i) It interpretes each line of instructions and connects

code. to object code.

(ii) It is faster than an interpreter. (ii) As it executes line by line instructions, it is compositively

solwer the compiler.

(iii) Large memory space is required. (iii) Less memory space is required.

6. (c) There are only four arithmetic operators that can be used with pointers.

(+, �, ++, � �)

A pointer when incremented or decremented is always relative to its base type. i.e., its value is increased

or decreased by the length of the data type which is known as scale factor.

The scale factor of the various data types are

Ï
Ì
Ó

char – 1 byte Ï
Ì
Ó

Float – 4 byte Ï
Ì
Ó
Double-8 byte

Integer – 2 byte Long – 4 byte

GROUP�C

Answers

7. (a) Same as 2005 3(a)

7. (b) (i) (100110101)2 = ?8

Step-1

3 2 1 2

100 101
110

L L L

æ̈æ

æ̈æ æ̈æ

Ê ˆ
Á ˜
Á ˜Ë ¯

Step-2

L1 = 1012 = 1 ¥ 2° + 0 ¥ 21 + 1 ¥ 22

L1 = 1 + 0 + 4 = 58

L2 = 1102 = 0 ¥ 2° + 1 ¥ 21 + 1 ¥ 22

L2 = 0 + 2 + 4 = 68

L3 Æ 1002

= 0 ¥ 2° + 0 ¥ 21 + 1 ¥ 22

= 0 + 0 + 4 = 48

(L3 L2 L1)2 = (465)8

524 Introduction to Computing

7. (b) (ii) (0.635)10 = ?2

Fraction Fraction ¥ 2 Remainder New fraction Integer

0.635 1.27 0.27 1 (MSB)

0.27 0.54 0.54 0

0.54 1.08 0.08 1

0.08 0.16 0.16 0

0.16 0.32 0.32 0

0.32 0.64 0.64 0

0.64 1.28 0.28 1 (LSB)

It is seen that the fraction has not become zero, and the process will continue further. We may take the result up to 6

binary digits, after the binary point (0.635)10 = (0.1010001)2 Ans.

7. (b) (iii) 3AB15 = ?11

Step-1 3AB15 = 3 ¥ 152 + A ¥ 151 + B ¥ 150

3AB15 = 3 ¥ 152 + A ¥ 151 + B ¥ 150

= 3 ¥ 225 + 10 ¥ 15 + 11 ¥ 1

= 675 + 150 + 11

3AB15 = (836)10

Step-2 83610 = ?11

83610 = (6A0)11

\ 3AB15 = 83610 = 6A011 Ans.

7. (b) (iv) (A1/A)12 = ?10

(A1/A)12 = (A ¥ 122) + (1 ¥ 121) + (A ¥ 120)

= (10 ¥ 144) + (1 ¥ 12) + (10 ¥ 1) = (1462)10

8. (a) Same as 2005 (6a)

8. (b) Array is a collection of similar elements. An array having structures as its element is called an array of

structures. First a structure is declared and then an array of structures can be declared for storage-type.

eg:- Struct employee
{

int empl-no;
char rare[30];
char dsg[20];
char dept[20];

/ * array of structure declared */
}

emp[20];

øFor accesing any structure index is used.

E.g., to read the employee number of structure 3,

we can write

scanf(“%d”, & emp[2]. empl-no);
Most of the c compilers provide an error when a reference to address of a float occurs inside an array of

structures. When passing the source code file, the compiler sets a flag to have the linker link in the floating

point manipilation floating to int values in builtin function.

Example

#include · stdio.h Ò
#include · conio.h Ò

83611

76 � 011

6 � 1011

0 � 6 (A)≠

Model Question Paper�I 525

#define s 10
Struct employee

{
int empl no
char name[30];
char dsg[30];
char dept[20];

}
emp[s]; [/array of structure defined */

void main()
{

int i, n;
printf(“\n Enter the total employee”);
scanf(“%d”, &n).
for (i = 0; i<n; i + +)

{
printf(“Employee number:”);
scanf(“%d”, & emp[i]. empl-no);
f flush(stdin);

printf(“Name”);
gets(emp[i]. name);
printf(“Designation”);
gets(emp[i]. desg);
printf(“Department”);
gets(emp[i].dept);

{
for (i = 0; i<n; i ++)

}
printf(“Record of employee no: % d”, i + 1);
printf(“Employee no: % d”, empL[i].empl_no);
printf(“Name: % s”, emp[i].name);
printf[“Designation: % s”, emp[i]. desg);
printf(“Department: % s”, emp[i].dept);
getch();

}
}

8. (c) Main characteristics of union

(i) Space allocated for a union is for the largest number. The compiler always allocates enough memory to store

the largest number and all the members being at the same location or address.

(ii) The data stored in a union depends on which member is used.

(iii) Fields of union may be bit fields.

(iv) Members of the union may be accessed either using the (.) dot operation on the (Æ) right arrow operator.

(v) Members of unions may be arrays, structures or unions.

(vi) Members of the union may be used at places where variables, defined conventionally are allowed.

9. (a) printf() Æ is a system defined function. To print any message in output screen, printf () function is always

used.

eg:- printf(“welcome to C-language”);

When �\n� is used within the printf() method, i.e. the message will display in the output screen in a next new line.

eg:- printf(\n welcome to C-language);

puts() Æ This is an extension of printf() function.

Æ It is a combination of printf() with a new line character.

526 Introduction to Computing

eg:- puts(“ The given string is :”);

9. (b)#include · stdio.h Ò

#include · conio.h Ò
void main ()
{

char str1[100];
int Len, mid, i = 0;
clrscr();

printf(“Enter the string:”);
gets(str1);
Len = strlen(str1);
mid = Len/2;
while (i<mid)
{
if(str1[i]! = str1[Len_])
break;
i++;
}
if (i = = mid)
{
printf(“\n string is palindrome:”);

}
else

{
printf(“\n string is not palindrome:”);

}
getch();

}
9. (c)

#include · stdio.h Ò
#include · conio.h Ò
#define s 4

void main ()
{

int a[s][s], b[s][s], c[s][s], i, j, k, row1, col1, row2,
col2; clrscr();
printf(“\n Enter the order of 1st matrix:”);
scanf(“%d%d”, & row1, & col 1);
printf(\n Enter the order of 2nd matrix:”);
scanf(“%d%d”, & row2, & col2);
if(col1 = = row2)

{
printf(“\n Enter the elements of 1st matrix:”);
for (i = 0; i · row1; i++)
{

for (j = 0; j < col1; j++)
scanf(“%d”, & a[i][j]);

}
printf(“\n Enter the elements of 2nd matrix:”);
for (i = 0; i · row2 ; i ++)

{
for (j = 0l; j · col1; j++)
scanf("%d”, & b[i][j]);

}

Model Question Paper�I 527

printf(“Resultant Matrix”);
for (i = 0; i · row1; i++)

{
for {J = 0, j < col 1; j++)

{
c[i][j] = 0;
for (k = 0; k · row2; k++)

{
c[i][j] = c[i][j] + a[i][k] * b[k][j];

}
printf(“% 6d", c[i][j]);

}
printf(“\n”);

}
}

else
{

printf(“\n Matrix Multiplication is not possible”);
getch();

}

9. (d) An array is a collection of the homogenous elements that are referred by a common name. It is also called a

subscripted variable as the elements of an array are used by the name of an array and an index on subscript.

Arrays are two types Æ (i) One dimensional Arrays

(ii) Multiplication Arrays (2D Array, 3D Array)

An array must be explicitly defined so that the compiler can allocate memory for it

type b variable-name [size];

type defines the base type of the array, i.e., type of each element. The type can be int, float, char, etc.

Size defines the number of the elements the array can store.

int abc[5];

abc is the array name of the array and size is 5 and it is of int type.

abc abc[0] abc[1] abc[2] abc [3] abc[4]

≠ 70 3 40 2 10

Name of the array 0 1 2 3 4

≠
array index

(i) Array elements contain garbage value, if no values are given.

(ii) The array cannot be initialized with only selected elements.

(iii) No shortest method is available for initialization for an array having a large number of elements

(iv) When all the elements are listed, when declaring an array, the size is optional

10 (i) Operations in C Language

ø See chapter 3, also earlier discussion in semester questions

(ii) Same as 2003 [12(v)]

(iii) Nested for Loop

ø One for statement belongs within another

for statement.

(iv) Same as 2004 12(ii)

(v) Same as 2005 2(a)

for (i = 1; i < 10; i++

{

for (j = 1; j < 5; j++)
}

{

Inner
loop

Outer
loop

}

Model Question Paper�II
GROUP�A

(MULTIPLE CHOICE QUESTIONS)

1. Choose the correct alternative in each of the following. 1 ¥¥¥¥¥ 10 = 10

(a) void main()

{
int n = 40
int f(n);
printf(“%4d”, n);
getch();

{
int f(int n)
{

return ++n;
{

(i) 12 (ii) 11 (iii) 10 (iv) None of the above

Ans. (iv) None of the above

1. (b) #include · stdio.h Ò
#include · conio.h Ò
void main()
{

int a = 10;
clrscr ();
for(;a >=1; printf(“%2d”, a--));
getch();

}
(i) 10 9 8 7 6 5 4 3 2 1

(ii) 10 8 6 4 2 1 9 7 5 3

(iii) 1 2 3 4 5 6 7 8 9 10

(iv) Error

Ans. (i) 10 987654321

1. (c) #include · stdio.h Ò
#include · conio.h Ò
void main()
{

char S1[] = “Sachin”;
char S2[] = “Sachin”;
if(S1 = = S2)

{
printf(“Tendulkar”);

}
else

{
printf(“\n No Tendulkar”);

}
getch();

}

Model Question Paper�II 529

(i) Tendulkar (ii) Sachin Tendulkar (iii) No Tendulkar (iv) Error

Ans. (iii) No Tendulkar

1. (d)What is the output of the following code?

main()
{

int no, *q;
no = 5;
q = & no;
printf(“%d”, q);

{
(i) 5 (ii) 00 ¥ A5 (iii) 105 (iv) None of the above

Ans. (iv) None of the above

1. (e) #include<stdio.h>
#include<conio.h>
void main()

{
int a = 10;
a << = 1;
printf(“%d\n” a);

}
(i) 10\n (ii) 20 (iii) 11 (iv) None

Ans. (i) 10/n

1. (f) #include<stdio.h>
#include<conio.h>
#include<string.h>
void main()
{

char S1[] = “HELLO\n”;
char *S2 = {“HELLO\t”};
clrscr();
printf(“%d\n”, strcmp(S1, S2) && strcmp(S1, S2));

getch();
}

(i) 1 (ii) HELLO (iii) 1 && HELLO (iv) None

Ans. (i) 1

1. (g) ALU is a part of a

(i) Memory (ii) CPU (iii) Output device (iv) Input device

Ans. (ii) CPU

1. (h) RAM stands for

(i) Random Access Memory (ii) Read Access Memory

(iii) Readwrite Access Memory (iv) None of these

Ans. Random Access Memory

1. (i) Which of the string function returns the integer value (0, �1 or 1)?

(i) strlen(); (ii) strcat(); (iii) strcmp(); (iv) strcpy();

Ans. (iii) Strcmp();

1. (j) Which one is the special operator?

(i) << (ii) ++ (iii) ?: (iv) sizeof()

Ans. (iv) sizeof()

530 Introduction to Computing

GROUP�B

(SHORT ANSWER QUESTIONS)

Answer any three. 3 ¥¥¥¥¥ 5 = 15

2. (a) What is an operating system? 5

(b) Write down the basic features and operation of operating system.

3. (a) What is a nested function? 5

(b) Write a C program to give an example of the nested function.

4. (a) Write a program to find the roots of the quadratic equation. 4

(b) What is the utility of the break statement? 1

5. Write a C program to search a given data from a set of data values. 5

6. (a) What is a string?

(b) Write a C program to find the ASCII value of a given character. 5

GROUP�C

(LONG ANSWER QUESTIONS)

Answer any three. 3 ¥¥¥¥¥ 15 = 45

7. (a) Perform the following operations. 5 ¥¥¥¥¥ 2 = 10

(i) Add (� 9) and (+ 4) in signed 2�s complement method.

(ii) Subtract 2 from 6 in binary subtraction using 2�s complement.

(iii) Convert (567.13)9 to decimal.

(iv) (5B.3A)16 to ?8

(v) (536)8 = ?16

7. (b) What is machine language? 2½

7. (c) What is cache memory? 2½

8. (a) Write a complete C program to find the maximum and minimum number from a given set of numbers.

5

8. (b) Write a C program to print the following pattern. 5

1

2 2

3 3 3

4 4 4 4

5 5 5 5 5

8. (c) Write a C program that displays a character changing its case. 5

9. (a) What is file? Write a C program to create and display a file. 5

9. (b) Write C program to find the GCD of two numbers. 5

9. (c) What is ternary operator?

 When will it be used?

 Write a C program to give example of the ternary operator. 5

10. (a) Write a C program to give example of the function returning non-integer values. 5

10. (b) Short Notes (any two) 2 ¥¥¥¥¥ 5 = 10

(i) Dynamic Memory Allocation

(ii) Firmware

(iii) Number system

(iv) Pointer arithmetic

Model Question Paper�II 531

GROUP�B

Answers

2. (a) and (b) Same as 2005(9f)

3. (a) It does not mean that a function can be defined inside another function but by nesting of functions, we mean

calling of a function by another function which in turn can call another function, and so on. There is no

limitations on nesting function in C-Language.

3. (b)

#include<stdio.h>
#include<conio.h>
void main()

{
void func1(); /* function prototype */
printf("I am in Main”);
func1(); /* function call (func1()) */
printf("Again I am in Main”);
getch();

}
/* func1() definition */

void func1()
{

void func2(); /* func2() prototype */
printf(“I am in function 1”);
func2(); /* func2() call */

}
void func2() /* func2() definition */

{
printf(“I am in function 2”);

}

4. (a)

#include<stdio.h>
#include<conio.h>
#include<math.h>
void main()

{
float a, b, c, dis;
float root1, root2;

printf(“Input values of a, b, c”);
scanf(“%f %f %f”, &a, &b, &c);
dis = b * b – 4 * a * c;
if(dis < 0)

{
printf(“Roots are imaginary”);

}
else

{
root1 = (- b + sqrt(dis))/(2.0*a);

532 Introduction to Computing

root2 = (- b – sqrt(dis))/(2.0*a);
printf(“In Root1 = %5.2f Root2 = %5.2f”, root1, root2);

}
getch();

{

4. (b) Same as 2005(8b)

5. (a) #include<stdio.h>
#include<conio.h>
void main()
{

int a[100], i, t, n, flag = 0;
clrscr();
printf(“Enter how many elements”);
scanf(“%d”, &n);
for(i = 0; i < n; i++)

}
printf(“\n Enter the %d elements”, i);
scanf(“%d”, & a[i]);

}
printf(“Enter the element to be searched”);

scanf(“%d”, &t);
for(i = 0, i < n; i++)

{
if(t = = a[i])

{
flag = 1;

 break;
}

}
if(flag ! = 0)

{
printf(“%d found at the position %d”, t, i++);

}
else

{
printf(“element not found”);

}
getch();

}

6. (a) A string is just a character array with the convention that it is terminated by the null character. A character

array can be initialized in the same way as numeric array.

A string is a collection of characters enclosed with quotes. The individual characters of the string are accessed

using a subscript. The null character is not a part of the string, it is merely used to mark the end of the string.

Char b name of the string [string size];

number, of characters

e.g. Char name[7] = �SOURAV�.

6. (b)

#include<stdio.h>
#include<conio.h>

Model Question Paper�II 533

#include<cytpe.h>
void main()
{

char ch;
int k;
clrscr();
puts(“Enter a character”);
scanf(“%c”, &ch);
k = to ascii(ch);
printf(“ASCII of %c is %d”, ch, k);
getch();

}

GROUP�C

7. (a) (i)

The 1�s complement of 9(1001) is 0110.

The 2�s complement of (1001) is 0110 + 1 = 0111

The sum is negative as indicated by the sign bits. It is 2�s complement. Take 1�s complement of the result and add

1 and put a (� ve) sign before it.

The 1�s complement of 1011 is (0100 + 1) = - 0101 (� 5 decimal)

(ii)

Simple Binary

0110 (6) Subtract using 2's Complement

0010 (2) 1' Complement of (2) (0010) is1101

0100 (4) 2'sComplement of (0010) is (110 1+1) = 1110.

s

Ï
Ô ÆÌ
ÔÓ

6 (decimal) = 0 1 1 0

+ 2�s complement of 2 = 1 1 1 0

 0 1 0 0

The carry of the last stage is to be neglected if we are using 2�s complement technique.

(iii) (567.13)9 to decimal.

(5 ¥ 92) + (6 ¥ 91) + (7 ¥ 90) + (1 ¥ 9-1) + (3 ¥ 9-2)

= (5 ¥ 81) + (6 ¥ 9) + (7 ¥ 90) +
1 3

9 81

Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯
= 405 + 54 + 7 + 0.111 + 0.0370

= (466.148)10

(iv) (5B.3A)16 = ?8

(5B.3A) = (0101) (1011) . (0011) (1010)

= (01011011 . 00111010)2

= (01) (011) (011) . (001) (110) (10)

= (001) (011) (011) . (001) (110) (100)

= (133.164)8

(v) (536)8 = ?16

Octal to Binary

(536)8 = (101) (011) (110)

= (101011110)2

9 1 0111

4 0 0100

5 1 1011

-
+
-

534 Introduction to Computing

Binary to Hexadecimal

()
2

101011110

= (1) (0101) (1110)

= (0001) (0101) (1110)

= (1) (5) (E)

= (15E)16

7. (b) What is Machine Language?

Machine language is the only language the computer understands. However each computer program can be

written in different languages, but ultimately it is converted into machine languages because this is the only

language the computer understands.

Thus machine language is the fundamental language of any computer. In machine language instructions

are written in the form of binary strings, that is, they consist of only 0 and 1.

Advantages

(i) This language is directly related to the CPU of the computer, hence program execution is very fast.

(ii) As the programs are written in machine language, there is no need to convert these programs by using any

compiler, assembler or interpreter.

Disadvantages

(i) It is machine dependent language. It depends mainly on CPU and other h/w.

(ii) Finding error and debugging is very tough.

(iii) Programs are not portable, as they are machine dependent.

7. (c) Same as 2003(12vi)

8. (a) #include<stdio.h>
#include<conio.h>

void main()
{

int x, i, n, max = – 32768, min = 32767;
printf(“\n Enter how many no:”);
scanf(“%d”, &n);
for(i = 0; i < n; i++)

{
printf(“Enter the %d no”, i);
scanf(“%d”, &x);
if(x > max)

{
max = x;

}
if(x < min)

{
min = x;

}
}

printf(“\n Max = “%d”, max);
printf(“\n Min = “%d”, min);

getch();
}

8. (b)

1

2 2

#include<stdio.h>

Model Question Paper�II 535

#include<conio.h>
void main()

{
int i, n, j,

clrscr();
printf(“\n Enter no of rows: ”);
scanf(“%d”, &n);
for(i = 1; i < = n; i++)

{
for(j = 1; j < = i; j++)

printf(“%d”, i);
printf(“\n”);

}
getch();

}

8. (c)

#include<stdio.h>
#include<conio.h>
#include<ctype.h>

void main()
{

char ch;
int i, j, k;
printf(“\n Enter a character: ”);

scanf(“%c” &ch);
k = to ascii (C);
if(k >= 65 && k <= 91)

printf(“%c”, K+32);
else

{
printf(“%c”, k-32);

}
getch();

}
9. (a) Same as 2006 7(a)

9. (b)

#include <stdio.h>
#include<conio.h>
int rec_gcd (int, int);

void main()
{

int a, b, c, gcd;
clrscr();
printf(“\n Enter two number: ”);
scanf(“%d %d”, &a, &b);
gcd = rec_gcd (a, b);
printf(“GCD of %d & %d is %d”, a, b, gcd);
getch();

{
int rec_gcd (int x, int y)

536 Introduction to Computing

{
int r;

if(y = = 0)
{

return(x);
}

else
{

r = x%y;
} return (rec_gcd(y, r));

}
9. (c)

 A ternary operator pair �?:�, is available in C to construct expression of the form

exp1 ? exp2 : exp3
where exp1, exp2, exp3 are the expressions.

The operator �?:� works as follows:

exp1 is evaluated first.

If it is non-zero (true) then the expression exp2 is evaluated and becomes the value of the expression. If exp1 is

false, exp3 is evaluated and its value becomes the value of the expression.

Only one of the expression (either exp2 or exp3) is evaluated.

e.g. a = 10;

b = 15;

x = (a > b)? a : b;

Ternary operator may be usd instead of if-else statement.

Example

#include<stdio.h>
#include<conio.h>

void main()
{

int a, b, c, d;
a = 10;
b = 5;
c = ++a –b;
d = b++ +a;
printf(“a = %d b = %d d = %d”, a, b, d)
printf(“%d”, (c > d)? 1 : 0);
printf(“%d”, (c < d)? 1 : 0);

getch();
}

10. (a)

#include<stdio.h>
#include<conio.h>
float area (float, float); /* function prototype */

void main()
{

float, x, y, z;
clrscr();
printf(“\n Enter Base & height”);
scanf(“%f %f”, &x, &y);
z = area (x, y); /* function call */

Model Question Paper�II 537

printf(“The area is %0.2f”, z);
getch();

}
/* function definition area() */

float area (float b, float h)
}

return (0.5 * b * h);
{

10. (b) (i) Same as 2005 9(e)

(ii) Firmware

Computer software is conventional system and is supplied on storage media like floppy, tape, disk etc. Today

softwate is also being made available by many computer manufacturers on read only memory (ROM) chips.

These ROM chips can be easily plugged into the computer system and they form a part of the hardware. Such

programs made available on handware are known as firmware.

Firmware often refers to a sequence of instructions that is substituted for hardware. This software will be

stored in a ROM chip of the Computer System and will be executed whenever the computer has to multiply two

numbers. This software will be known as Firmware. Firmware is software, substituted for hardware and stored

read only memory.

Initially only systems software was supplied in the form of firmware. But today even application programs are

being supplied in firmware form. Dedicated applications are also programmed in this fashion and are available in

firmware. Because of the rapid improvements in memory technology, firmware is frequently a cost-effective

alternative to wired electronic circuits, and use in computer design will increase.

(iii) Number System

(i) Non-Positional Number System This system uses an additive approach on the non-positional number

system, such as Roman number system, Unary number system.

As it is non-positional system, each symbol represents the same value regardless of its position in the

number and the symbols are simply added to find out the value of particular number.

(ii) Positional Number System These systems have only a few symbols called digits. Digit represents different

values depending in the position they have in the number.

(a) Decimal Number System It is the most commonly used number system. This system allows use of ten

symbols on digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), because its base is equal to 10. Each position represents a

specific power the 10.

e.g. 327110

(b) Binary Number System It has base 2 so only two symbols or digits (0 and 1) can be used in it. The

largest digits is 1. Each position in a binary number represents a power of the base (2).

e.g. 110012

(c) Octal Number System The octal number system has the base (8). So in only eight symbols on digits:

0, 1, 2, 3, 4, 5, 6, 7 are used. The largest digit is 7. Each position in an octal number represents a power

of the base (8).

e.g:- (4131)8

(d) Hexadecimal Number System It has a base of 16 and it allows choices of 16 single character digits or

symbols. The first 10 digits are the digits of a decimal system (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) and the

remaining six digits are denoted by (A, B, C, D, E, F) respectively.

e.g. 2BD16

(iv) Pointer Arithmetic

Same as 2005 (9c)

Bibliography

Barkakati, N., Microsoft C Bible, SAMS, 1990.

Barker, L., C Tools for Scientists and Engineers, McGraw-Hill,1989.

Berry, R. E. and Meekings; B.A.E., A Book on C, Macmillan, 1987.

Hancock, L. and Krieger, M., The C Primer, McGraw-Hill, 1987.

Hunt, W.J., The C Toolbox, Addison-Wesley, 1985.

Hunter, B. H., Understanding C, Sybex, 1985.

Kernighan, B. W. and Ritchie, D. M., The C Programming Language, Prentice-Hall, 1977.

Kochan, S. G., Programming in C, Hyden, 1983.

Miller, L. H. and Quilici, E. A., C Programming Language: An Applied Perspective, John Wiley &

Sons, 1987.

Purdum, J. J., C Programming Guide, Que Corporation,1985.

Radcliffe, R. A., Encyclopaedia C, Sybex 1990.

Schildt, H., C Made Easy, Osborne McGraw-Hill, 1987.

Schildt, H., Advanced C, Osborne McGraw-Hill, 1988.

Schildt, H., C: The Complete Reference, McGraw-Hill, 2000.

Tim Grady, M., Turbo C! Programming Principles and Practices, McGraw-Hill 1989.

WIS Staff, C User's Handbook, Addison-Wesley, 1984.

Wortman, L. A., and Sidebottom, T.O., The C Programming Tutor, Prentice-Hall, 1984.

	Title
	Contents
	1 Fundamental of Computers
	2 Computing Concepts
	3 Constants, Variables and Data Types
	4 Operators and Expressions
	5 Managing Input and Output Operations
	6 Decision Making and Branching
	7 Decision Making and Looping
	8 User-Defined Functions
	9 The Preprocessor
	10 Arrays
	11 Character Arrays and Strings
	12 Pointers
	13 Structures and Unions
	14 File Management in C
	15 Developing a C Program:Some Guidelines
	Solved Question Paper-I 2003
	Solved Question Paper-II 2004
	Solved Question Paper-III 2005
	Solved Question Paper-IV 2006
	Solved Question Paper-IV 2007
	Model Question Paper-I
	Model Question Paper-II
	Bibliography

