
INTRODUCTION TO COMPUTING AND PROBLEM

SOLVING USING PYTHON

ABOUT THE AUTHOR

E Balagurusamy is presently the Chairman of EBG Foundation, Coimbatore. In the past he has also held the

positions of member, Union Public Service Commission, New Delhi and Vice-Chancellor, Anna University,

Chennai, Tamil Nadu. He is a teacher, trainer and consultant in the fields of Information Technology and

Management. He holds an ME (Hons) in Electrical Engineering and PhD in Systems Engineering from the

Indian Institute of Technology, Roorkee, Uttarakhand. His areas of interest include Object-Oriented Software

Engineering, E-Governance: Technology Management, Business Process Re-engineering and Total Quality

Management.

A prolific writer, he has authored a large number of research papers and several books. His best-selling

books, among others include:

 ● Programming in ANSIC, 7/e
 ● Fundamentals of Computers
 ● Computing Fundamentals and C Programming
 ● Programming in C#, 3/e
 ● Programming in Java, 5/e
 ● Object-Oriented Programming with C++, 5/e
 ● Programming in BASIC, 3/e
 ● Numerical Methods
 ● Reliability Engineering

A recipient of numerous honors and awards, he has been listed in the Directory of Who’s Who of

Intellectuals and in the Directory of Distinguished Leaders in Education.

INTRODUCTION TO COMPUTING AND PROBLEM

SOLVING USING PYTHON

E Balagurusamy

Chairman

EBG Foundation

Coimbatore

New Delhi

McGraw Hill Education (India) Private Limited
NEW DELHI

McGraw Hill Education Offices

New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

McGraw Hill Education (India) Private Limited

Published by McGraw Hill Education (India) Private Limited

P-24, Green Park Extension, New Delhi 110 016

Introduction to Computing & Problem Solving using Python, 1e

Copyright © 2016 by McGraw Hill Education (India) Private Limited. No part of this publication may be reproduced or distributed in

any form or by any means, electronic, mechanical, photocopying, recording, or otherwise or stored in a database or retrieval system

without the prior written permission of the publishers. The program listings (if any) may be entered, stored and executed in a computer

system, but they may not be reproduced for publication.

This edition can be exported from India only by the publishers,

McGraw Hill Education (India) Private Limited

Print Edition:

ISBN-13: 978-93-5260-258-2

ISBN-10: 93-5260-258-7

Managing Director: Kaushik Bellani

Director—Products, Higher Education and Professional: Vibha Mahajan

Specialist-Product Development: Piyush Priyadarshi

Head—Production (Higher Education and Professional): Satinder S Baveja

Senior Copy Editor: Kritika Lakhera

Assistant Manager: Anjali Razdan

Assistant General Manager—Product Management: Shalini Jha

Manager—Product Management: Kartik Arora

General Manager—Production: Rajender P Ghansela

Manager—Production: Reji Kumar

Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to be reliable. However,

neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness of any information published herein,

and neither McGraw Hill Education (India) nor its authors shall be responsible for any errors, omissions, or damages arising out

of use of this information. This work is published with the understanding that McGraw Hill Education (India) and its authors are

supplying information but are not attempting to render engineering or other professional services. If such services are required, the

assistance of an appropriate professional should be sought.

Typeset at The Composers, 260, C.A. Apt., Paschim Vihar, New Delhi 110 063 and printed at

Cover Printer:

Visit us at: www.mheducation.co.in

CONTENTS

Preface ix

Acknowledgements xiii

Chapter 1 Introduction to Digital Computer 1

1.1 Introduction 1

1.2 Von Neumann Concept 3

1.3 Storage 6

1.4 Programming Languages 10

1.5 Translators 12

1.6 Hardware and Software 13

1.7 Operating Systems 15

Always Remember 16

Key Terms 16

Review Exercises 17

Multiple Choice Questions 17

Short Questions 19

Answers to Multiple Choice Questions 20

Chapter 2 Problem Solving Strategies 21

2.1 Problem Analysis 21

2.2 Algorithms 22

2.3 Flow Charts 24

2.4 Examples of Algorithms and Flow Charts 28

Always Remember 33

Key Terms 33

Review Exercises 34

Multiple Choice Questions 34

Short Questions 35

Answers to Multiple Choice Questions 35

vi Contents

Chapter 3 Introduction to Python 36

3.1 Introduction 36

3.2 Python Overview 36

3.3 Getting Started with Python 37

3.4 Comments 42

3.5 Python Identifiers 42

3.6 Reserved Keywords 43

3.7 Variables 43

3.8 Standard Data Types 45

3.9 Operators 51

3.10 Statement and Expression 61

3.11 String Operations 62

3.12 Boolean Expressions 64

3.13 Control Statements 65

3.14 Iteration – while Statement 71

3.15 Input from Keyboard 73

Always Remember 75

Key Terms 76

Review Exercises 76

Multiple Choice Questions 80

Short Questions 81

Answers to Multiple Choice Questions 81

Chapter 4 Functions 82

4.1 Introduction 82

4.2 Built-in Functions 82

4.3 Composition of Functions 88

4.4 User Defined Functions 89

4.5 Parameters and Arguments 92

4.6 Function Calls 96

4.7 The return Statement 97

4.8 Python Recursive Function 98

4.9 The Anonymous Functions 98

4.10 Writing Python Scripts 100

Always Remember 102

Key Terms 103

Review Exercises 104

Multiple Choice Questions 109

Short Questions 110

Answers to Multiple Choice Questions 111

Contents vii

Chapter 5 Strings and Lists 112

5.1 Strings 112

5.2 Lists 124

Always Remember 132

Key Terms 133

Review Exercises 134

Multiple Choice Questions 141

Short Questions 144

Answers to Multiple Choice Questions 147

Chapter 6 Tuples and Dictionaries 148

6.1 Tuples 148

6.2 Dictionaries 159

Always Remember 166

Key Terms 167

Review Exercises 168

Multiple Choice Questions 174

Short Questions 177

Answers to Multiple Choice Questions 179

Chapter 7 Files and Exceptions 180

7.1 Text Files 180

7.2 Directories 190

7.3 Exceptions 192

7.4 Exception with Arguments 198

7.5 User-Defined Exceptions 199

Always Remember 201

Key Terms 202

Review Exercises 203

Multiple Choice Questions 208

Short Questions 210

Answers to Multiple Choice Questions 211

Chapter 8 Classes and Objects 212

8.1 Overview of OOP (Object-Oriented Programming) 212

8.2 Class Definition 213

8.3 Creating Objects 215

8.4 Objects as Arguments 218

8.5 Objects as Return Values 219

8.6 Built-in Class Attributes 220

8.7 Inheritance 221

8.8 Method Overriding 225

8.9 Data Encapsulation 225

viii Contents

8.10 Data Hiding 227

Always Remember 228

Key Terms 229

Review Exercises 230

Multiple Choice Questions 236

Short Questions 238

Answers to Multiple Choice Questions 239

Appendix A: Practice Exercises with Algorithm and Flow Chart 240

Appendix B: Problem Solving Exercises—With Algorithm and Pseudocode 293

Appendix C: Fundamental Standard Library Modules 317

PREFACE

Developments in the field of digital electronics and the huge amount of data generated during the last

few decades ushered in the second Industrial Revolution which is popularly referred to as the Information

Revolution. Information technology played an ever-increasing role in this new revolution. A sound knowledge

of how computers work, process and analyze data has, therefore, become indispensable for everyone who

seeks employment not only in the area of IT, but also in any other fields. Rightly so, many institutions and

universities in India have introduced a subject covering the fundamentals of computation and problem solving

with Python for their undergraduate students. This book caters to those needs of the undergraduate students.

Why learn Python?

Python is a high-level, interpreted, reflective, dynamically typed, open-source, multi-paradigm, and general-

purpose programming language. It is quite powerful and easy. It offers no special tools or features that let

you do things that you cannot do with other languages, but its elegant design and combination of certain

features make Python a pleasure to use.

What’s Special in this Book?

The book ensures a smooth and successful transition to a skilled expert in Python. This book uses a simple-

to-complex and easy-to-learn approach throughout the book. The concept of ‘learning by-solving’ has been

stressed in all the chapters of the book. Each feature of Python is treated in-depth followed by a complete

program example to illustrate its use. Wherever necessary, concepts are explained pictorially to facilitate

better understanding. It presents a contemporary approach to programming, offering a combination of theory

and practice.

Each of the 8 chapters follow a common structure with a range of learning and assessment tools for

instructors and students.

SALIENT FEATURES of the Book

The salient features of the book include the following:

 ● Bottom-up approach of explaining concepts has been adopted in the book.

x Preface

 ● Algorithms and flowcharts have been discussed extensively in an appendix.

 ● Codes with Comments have been provided throughout the book to illustrate the use of various features

of Python.

 ● Supplementary Information and important notes that complement, but stand apart from the text, have

been included in special boxes under the head Notes.

 ● Always Remember consists of important summary points at the end of every chapter to help the readers

recollect the topics covered with ease.

 ● Check Your Understanding helps the readers evaluate their learning after every section within the

chapters of the book.

 ● Important Key Terms within the chapter have been listed at the end.

Review Exercises comprising Multiple choice questions along with answer keys, short questions and

programming exercises are provided at the chapter end to help readers test their conceptual understanding.

Organization of the Book

The book spans across eight chapters. The first two chapters introduces the learner to digital computers–the

basic structure, programming languages, operating systems, problem solving strategies and conventional

introduction to programming. The next six chapters present a more-or-less the conventional introduction to

programming. The readers learn about variables, types, statements, conditionals, loops, functions, recursion,

classes and inheritance. In all the chapters, first the basic ideas are explained, and then the reader is led

through a process of experimentation that helps them find and test the limits of their understanding.

Web Supplements

The web supplements can be accessed at <http://highered.mheducation.com/sites/9352602587> which

contains the following:

 ● Solution Manual

 ● Lecture PPTs covering

1. Important standard library

(a) argparse

(b) csv

(c) math

(d) os

(e) pickle

(f) random

(g) subprocess

2. How to install third party libraries

(a) Using pip

(i) Installing pip under Windows and Linux

(ii) Using pip to install a package

(b) Installing packages from source.

Preface xi

3. Some important third party libraries

(a) Requests

(b) BeautifulSoup

4. Debugging the code

(a) Understanding exception

(i) List of exception and possible reasons

(b) Python debugger-pdb.

Publisher’s Note

Remember to write to us. We look forward to receiving your feedback, comments, and ideas to enhance

the quality of this book. You can reach us at info.india@mheducation.com. Please mention the title and

authors’ name as the subject. In case you spot piracy of this book, please do let us know.

ACKNOWLEDGEMENTS

A note of acknowledgement is due to the following reviewers of the book for their valuable suggestions:

Sujith Kumar

Sree Narayana Gurukulam College of Engineering, Kolenchery, Kerala

Jini Raju

Thangal Kunju Musaliar College of Engineering, Kollam, Kerala

Sanjiv Singh

Impetus Technologies, Noida, Uttar Pradesh

Aswathy Ravikumar

Mar Baselios College of Engineering and Technology, Thiruvananthapuram, Kerala

Pawan Kumar

Mphasis, Noida, Uttar Pradesh

A token of special appreciation to Mr. Jayarajan J N (Rajagiri School of Engineering and Technology,

Cochin) for his valuable contribution in development of this book.

INTRODUCTION TO

DIGITAL COMPUTER1

1.1 INTRODUCTION

In earlier days, the term “digital computer” was used to refer a person who drew mathematical tables and

solved complex calculations. In less than a human lifetime, computers have changed from massive, expensive

and unreliable calculators to the dependable and versatile machines that are now omnipresent in society.

Computers were once the size of rooms and used to take a day to change the program and now, it is just a

double click away. Computers help the impossible become possible. They have become a necessary tool in

today’s society. Without computers, it is hard to do pretty much anything. Computers process information in

1’s and 0’s (usually referred to as On and Off respectively). This operation identifies instructions in Binary

Code. This is the language understood by the computer to complete a command. By 1953, it was estimated

that there were almost 100 computers in the world.

It is believed that the first computer was invented in Berlin, Germany, in 1936.

 ● The Z1 was invented in 1936 by Konrad Zuse in Germany. This was a programmable machine that

was able to remember numbers. This process is now referred to as memory.
 ● IBM followed suit and introduced the Harvard Mark 1 which was completed at Harvard University in

1944. It was a large calculator. This computer was able to calculate many different types of numbers.
 ● With the advancement of technology and research, major companies like IBM, Apple, and Intel have

contributed to the explosion of the personal computers as we know today. For example, Apple 1 was

released in 1976 which was having memory of 4 KB expandable to 8 KB. The Macintosh was released

in 1984 which was having memory of 64 KB expandable to 256 KB.
 ● CSIRAC was the first computer to play digital music in 1949.
 ● UNIVAC 1 was used by CBS to predict the results of the 1952 presidential elections in USA.
 ● On December 2, 1954 IBM’s NORC calculated PI 3089 digits.
 ● In 1958, Jack Kilby invented the Integrated Circuit.
 ● COBOL (Common Business Oriented Language), one of the oldest programming languages, was

developed by Grace Murray Hopper in 1959,
 ● In 1962 Space War, the first computer game was written by MIT student Steve Russell.
 ● In 1975, the first personal computer Altair 8800 was invented.
 ● In 1976, Intel & Zilog introduced new microprocessors

2 Introduction to Computing & Problem Solving using Python

 ● Single - board computer known as apple -1 was designed by Steve Wozniak some more important

developments and was marketed by his friend Steve Jobs.
 ● In 1980 IBM introduced its Personal Computers (PC). The first IBM PC was known as IBM Model

5150, was based on a 4.77 MHz Intel 8088 microprocessor
 ● In 19993, Pentium microprocessor was released by Pentium followed by the release of Microsoft

window's NT
 ● In 1994 Sony entred the home gaming market with release of play station console.
 ● In 2006, Amazon web services launched cloud-based services.

A Personal Computer (PC) is a digital computer designed for the usage by one person at a time. PCs

can be classified into desktop computers, workstations and laptop computers. Today, PCs have five major

applications which are as follows:

1. Internet Browser: Internet browser is a software application used to access the Internet. For example,

Internet Explorer, Firefox, Opera, etc., are all Internet browsers.

2. Data Compression Software: Data compression software is used to reduce file size. ZIP is widely used

as the data compression software on personal computers.

3. Windows Media Player: Windows Media Player is used to create music libraries for listening music.

4. Image Editing Software: Image editing software is used to develop good quality pictures. Examples of

such software include Photoshop, Microsoft Publisher and Picasa.

5. Audio Editing Software: Audio editing software is used to edit audio files and also to add audio effects.

 1. What is a computer?

 Ans. A computer is an electronic device capable of executing programs written in different languages.

 2. What is the use of data compression software?

 Ans. Data compression software is used to reduce file size.

Check Your Understanding

Note The first personal computer was Altair 8800. Later IBM introduced IBM PC.

Computers have become an integral part of the society because of the following characteristics they

possess:

 ● A computer can perform millions of calculations in a second.
 ● A computer works with precision every time.
 ● A computer can store billions of bytes of information. For example, the capacity of a terabyte =

2,00,000 songs.
 ● A computer can work continuously without getting tired.
 ● A computer can be used to perform various tasks simultaneously.
 ● A computer will remember the information stored for as long as required.

Introduction to Digital Computer 3

1.2 VON NEUMANN CONCEPT

In early computers, the data and instructions were not stored in the same memory. However, such storage

became possible in the Von Neumann architecture, also known as “stored program” architecture because

it could store the program and instruction data in the same memory. In the Von Neumann architecture,

computers can perform complex operations within less time. Besides performing calculations, they can

manage to do a sequence of calculations as well. The basic structure of Von Neumann architecture consists

of the memory, processing unit and the control unit.

The characteristics of Von Neumann architecture are as follows:

 1. The hardware system comprises the following:

 ● Memory: In Von Neumann architecture, there is a main memory system – Random Access

Memory (RAM) which holds the data or program.

 ● Arithmetic Logic Unit (ALU): As the name suggests, this is useful in arithmetic and logical

calculations such as addition, subtraction, division and comparisons.

 ● Control Unit: In the central processing unit (CPU), there is a control unit (CU) managing

the process of data or program. The execution of the program is done by the Control Unit. For

example, the fetch-decode-execution.

 ● Input-Output System: Using this system, an input is given and output is generated after

execution. The information can be stored by using compact disk (CD), floppy, etc.

 2. Data or programs are stored into the main memory.

 3. Processing of instructions is sequential.

Note A process describes how the processor takes the data or program, decodes it and
finally executes it. The fetch-decode-execute cycle is also known as the Von Neumann
execution cycle.

 1. Who developed the basic architecture of computers?

 Ans. John Von Neumann

 2. What do the following terms stand for?

 CPU, ALU, CU, RAM

 Ans. CPU: Control Processing Unit

 ALU: Arithmetic Logic Unit

 CU: Control Unit

 RAM: Random Access Memory

Check Your Understanding

1.2.1 A Simple Model of the Computer

A Computer system has three basic components which are as follows:

4 Introduction to Computing & Problem Solving using Python

1. Processor: It is also known as the Central Processing Unit (CPU). The processor is the brain of the

computer. It takes data in the form of input and processes this input using arithmetic or logical operations in

the ALU, thereby transforming it into the output.

2. Memory (Storage): Memory refers to the data storage, permanent or temporary. Computer memory

understands only two bits, 0 and 1. The temporary memory is called RAM and the permanent memory is

called Read Only Memory (ROM).

3. Input/Output: It refers to the communication mechanism. Input and output devices are significant portions

of the computer accessories. Input devices provide data to the computer as input from the external source

while output devices generate information for the user after processing the input.

Input Process Output

Storage

Figure 1.1 Model of Computer

Before buying a computer, one should check the processor speed. To determine the processing
speed of the CPU, the clock speed is checked. The CPU can perform a certain number of
clock cycles per second. The computer’s clock speed is measured in gigahertz (GHz). One
GHz equals to one billion cycles per second. A higher clock speed indicates that the CPU
can execute more operations per second.

TIP

Note The very first commercially produced and sold computer in 1951 was UNIVAC.

1.2.2 Components of the Digital Computer

A digital computer performs calculations and solves complex problems. Thus, it must be equipped with the

following components:

1. Input Devices: These are the devices through which the information is provided to the computer. There

are different types of input devices, such as keyboard, mouse, scanner, touch pad, etc.

2. Output Devices: These are the devices through which the output is being provided to the user. There are

different types of output devices, such as printer, speakers, screen, etc.

3. Processing Unit: CPU is the brain of the computer. It takes data in the form of input and processes it,

thereby transforming the data into output. A CPU basically consists of the following:

Introduction to Digital Computer 5

 ● Arithmetic Logic Unit (ALU): The ALU performs both arithmetic and logical operations including

addition, subtraction, division and bits manipulation.

 ● Registers: Registers hold values in the CPU. Each register has a unique name and is capable of

holding a byte or word of data.

 ● Control Unit: The Control Unit controls the operation of the CPU, the Memory and the input-output

components based on a sequence of instructions in the Memory.

4. External Memory: The External Memory is a physical device used to store programs (set of instructions)

or data temporarily or permanently for use in a computer or some other digital electronic device. It is

classified into two categories which are as follows:

 ● Primary Memory: The primary memory is also known as main memory. The program is loaded in

the main memory before it can be executed. The information within the Primary Memory can be lost

when power to the computer is turned off. Thus, the Primary Memory is volatile by nature.

 ● Secondary Memory: The secondary memory is a non-volatile, low-speed memory. The information

within this memory will not be lost even if the computer is turned off due to power failure. Examples

of secondary storage include hard disk, DVD, floppy drive, etc.

5. Bus: In a computer, all the components described above are connected by cables and each cable can only

send one bit at a time. These cables are called bus and are responsible for the movement of data from input

devices to output devices.

Keyboard

Control Unit

ALU

Registers

Central Processing Unit
(CPU)

Main
Memory

Secondary
Memory

Storage

Bus

Mouse

Input
Devices

Display

Printer

Output
Devices

Figure 1.2 Components of Computer

Computers have become a huge part of our life nowadays. We use them every day to complete different

tasks. They are basically composed of two main things-the software and the hardware. The software has all

the instructions and information needed for the computer to run. This includes the operating system and the

programs or applications. The hardware consists of all the physical elements that make the computer work.

This includes the CPU, RAM, ROM, Cache etc.

6 Introduction to Computing & Problem Solving using Python

Let us imagine a restaurant. Every day a keeper comes to open the restaurant and makes sure everything is

ready and working well. Here, the keeper and the computer is called read-only memory or ROM which can

be modified. To keep everything running properly in a restaurant we need an administrator, this is the central

processing unit or CPU. It is called a microprocessor in cell phones and it contains the arithmetic logic unit

or ALU and the control unit or CU. The ALU in a computer is the manager who takes care of the numbers

and logical part. The control unit is the head chef who organises the incoming information and gets everyone

task. Let us see a customer making an order. The order acts as the input data. The waiter or data bus then

carries this information to the kitchen, and then goes to the head chef who decides where it should go further.

The kitchen represents the mother board inside, where there is a fridge and you keep everything that is used

frequently for easy access. This is called random access memory or RAM in a computer. Cache will be like

a small recipe book in which the computer keeps the frequently used instructions. There is also a warehouse

for rest of the information stored and this works as a hard disk. We can also get the things delivered through

the back door which acts as an optical disc in the computer. These are called the secondary storage devices.

Let us imagine, we also have a timer in the kitchen. Every time the timer starts, everyone starts preparing

a dish and has to get it done by the time gets over, so this keeps everything synchronised. In a computer, it

is called the internal clock.

We get an order, the buses carry it and it goes through the control unit in the CPU which supervises that

it reaches the right destination. If we need something that has been recently used, we can easily get it from

RAM, and if not, then the computer has to look for it in the secondary storage devices. The data is processed

now, and it is time for the chefs to turn into some delicious food that we can eat. This is the task of the video

card converting data into images. This is how our computer works.

 1. In which form does CD-ROM store information?

 Ans. Digital form

 2. What is the main difference between primary and secondary storage?

 Ans. Primary memory is volatile while secondary memory is non-volatile in nature.

 3. What is the working of Bus?

 Ans. The Bus is responsible for movement of data from input devices to output devices.

Check Your Understanding

1.3 STORAGE

The term Storage refers to memory that retains computer programs and data. There are basically two

categories of storage: primary and secondary.

1.3.1 Primary Storage

It is also known as the temporary storage since it is a short-term memory. There are three types of primary

storage:

1. RAM (Random Access Memory): The RAM is a very important part of the computer. It stores the data

accessed by the CPU. The RAM is the place where the programs or data in current use can be kept. This

memory is volatile in nature as the information within it is lost when power to the computer is turned off.

RAM is also known as working memory or main memory.

Introduction to Digital Computer 7

Figure 1.3 Random Access Memory

2. ROM (Read Only Memory): The Read Only Memory gets its name from the fact that the computer can

only read information from it but cannot write any information on it. A part of the operating system is

stored in ROM. When the computer system is turned on, the CPU executes instructions stored in ROM.

The information stored in ROM cannot be changed and will not be lost even if the computer is turned off.

Figure 1.4 Read Only Memory

3. Cache Memory: Cache memory stores the data recently processed by the CPU. The size of cache is very

small and execution is very fast. In order to process an application, processor first searches the cache memory

and then, the RAM.

Figure 1.5 Cache Memory

8 Introduction to Computing & Problem Solving using Python

1.3.2 Secondary Storage

Secondary storage is also known as the permanent storage. It is not constantly accessible to a computer

system. When required, secondary storage devices and media can be accessed by plugging or inserting them

into a computer. Examples of secondary storage include the hard drive, DVD, memory card etc. Secondary

storage is like long-term memory since the data remains stored in the secondary storage device even after

the computer is shut down.

The various types of secondary storage are:

1. Hard disks: Hard Disk or Hard Disk Drive (HDD) stores and provide relatively quick access to large

amounts of data on an electromagnetically charged surface or set of surfaces.

2. Floppy Disc: A floppy disc consists of a plastic case inside which there is a very thin piece of plastic coated

with microscopic iron particles. Floppy discs store very less data—a maximum of 1.44 MB.

Figure 1.6 Floppy Disc

3. Flash Drive: A flash drive can be inserted into a USB port for data retrieval and data storage. It is small

in size and portable. Nowadays, flash drive comes in many shapes.

Figure 1.7 Flash Drive

Introduction to Digital Computer 9

4. Memory Card: A memory card is a very small data storage medium. It is portable and can be used in

remote computing devices.

Figure 1.8 Memory Card

5. Compact Disc: A compact disc is a kind of optical disc used to store digital data. Data can be accessed

faster here compared to the floppy discs, but it is still slower than the hard discs. A compact disc stores the

same data as a floppy disc does.

Figure 1.9 Compact Disc

10 Introduction to Computing & Problem Solving using Python

Note An early method used to store data or information in the computer was the Punch
card. The machine Analytical Engine invented by Charles Babbage had a punched card
system to store and retrieve information.

1.3.3 Register

It contains the address of the memory location where data resides. Register is highly accessible by the CPU.

Speed of the CPU is determined by the number of registers it has.

Memory hierarchy is the arrangement of the storage in a computer. Each level of memory hierarchy is

distinguished by the response time. It is illustrated in Figure 1.10.

Regs

Cache

Main Memory

Disk/Virtual Memory

Tape, Remote Access, etc.

Small, fast, expensive

Large, slow, cheap

Figure 1.10 Memory Hierarchy

 1. How can memory be measured?

 Ans. A byte is the unit of memory of a computer. The smallest unit of memory is bit.

 1 byte = 8 bits

 1 kilobyte = 1,024 bytes

 1 megabyte = 1,024 kilobytes

 1 gigabyte = 1,024 megabytes

 1 terabyte = 1,024 gigabytes

Check Your Understanding

1.4 PROGRAMMING LANGUAGES

A computer language is used to make a computer understand what the user wants to say. When a user writes

a program, he/she uses the computer language.

A program, written in a programming language, is a set of instructions by which the computer comes

to know what is to be done. It is a coding language used by programmers to write the instructions that a

computer can understand.

Introduction to Digital Computer 11

There are three types of computer languages as illustrated in Figure 1.11.

 ● High-level Language

 ● Assembly Language

 ● Machine Language

1.4.1 High-level Language

Symbolic languages are very tedious to work with because each machine instruction needs to be coded

individually. High-level languages on the other hand uses English-like languages allowing the programmer

to focus on application problems instead of focusing on the intricacies of the particular computer. High-

level languages are converted into machine level language using a converting software called compiler. It

is a computer programming language that does not requires great efforts from the programmer. It is called

high-level language because it is close to the user. The first high-level language used was FORTRAN, which

was followed by COBOL.

1.4.2 Assembly Language

Assembly language is a low-level programming language. It is more machine friendly and requires more

efforts from the programmer. Assembly (or symbolic) language closely resembles machine language.

Symbols and mnemonics are used in this language to represent various machine language instructions.

Assembly language is directly converted into binary language and is machine-dependent.

This language is known as symbolic language because of the symbols it employs. Since the computer

does not understand symbolic language, a program called assembler is used to translate the symbolic code

into machine language, and is the reason why it is called assembly language.

1.4.3 Machine Language

Machine language consisting of 0s and 1s, was the earliest mode of programming language. The computer

understands only 0’s and 1’s because it is made of switches, transistors, and other electronic devices which

can only be in the state of either on or off. The off state is represented by 0 and on state by 1. A machine

language is a low-level computer programming language and is more machine friendly. This language is

known as machine language because it is close to the machine.

Low-Level Languages High-Level Languages

Machine
Language

Assembly
Language

Programming Languages

Figure 1.11 Programming Languages

12 Introduction to Computing & Problem Solving using Python

 1. What do you mean by a programming language?

 Ans. A programming language is a coding language used by the programmers to write instructions

that a computer can understand and act on.

Check Your Understanding

If you want to learn programming languages, first choose a language that you want to
learn. After that, you need to learn the core concepts of that language. Install the software
that is required to compile the program. Now, create your first program.

TIP

1.5 TRANSLATORS

A translator is a computer program that can instantly translate between any languages. It converts program

language to machine level language for the debugging and execution of the programs. While the computer

understands only binary code i.e. 1’s and 0’s, it is not easy for humans to read and write in such code. So,

the translators are used to translate a computer program into binary code. There are three types of translator

programs, namely Compiler, Assembler, and Interpreter.

1.5.1 Compiler

A compiler is very important in giving the application a performance boost. The compiler of a language is

a computer program that converts the source code of an application written in the computer programming

language to the target language with its binary form.

The compiler checks for syntax errors in a source code of a program. If no error is found, the program

is declared to be successfully compiled. If the program does not contain any syntax error, the compiler

translates the source code of the program into the machine language of the computer, so that the computer

is able to understand the instructions given to it.

Source files are the program files created by a programmer. They contain information and instructions

written by the programmer, which are checked by the compiler during the process of compilation. These

source files are compiled by a compiler and run with an executable file.

1.5.2 Assembler

To translate the assembly language into machine language, a translator is needed. This translator is also

called an assembler. Each assembly language is unique to the particular computer architecture. In assembly

language, we use some mnemonic such as ‘add’, ‘sub’, ‘mul’ etc. for all the operations.

For example, if we want to add 4 and 3, then in assembly language, we will write Add 4 3 where Add

is a mnemonic and both 4 and 3 are the arguments of the operand. Now, the assembler will map this to the

binary code.

Introduction to Digital Computer 13

1.5.3 Interpreter

Like a compiler, an interpreter also translates high-level language into low-level machine language. An

interpreter reads the statement and first converts it into an intermediate code and executes it, before reading

the next statement. It translates each instruction immediately one by one. This is a rather slow process

because the interpreter has to wait while each instruction is being translated.

The interpreter stops execution at the time of error occurrence and reports it, whereas a compiler reads

the whole program even if it encounters several errors.

 1. What is the difference between a compiler and an interpreter?

 Ans: An interpreter translates each instruction one by one, while a compiler reads the whole program

first and then translates it into the machine language.

Check Your Understanding

1.6 HARDWARE AND SOFTWARE

Computer systems have become an essential part of our life. Most of our work is done with the help of

computer system in a fast and efficient manner. Hardware refers to the tangible objects that can be run

using software. Software refers to a set of instructions to the computer. Without hardware, software cannot

work and vice versa. For example, a car without a driver is like hardware without software. Software tells

hardware what to do and how to do it. To reiterate, the computer system is made up of two major components:

Hardware and Software that are essential for functioning of the system.

1.6.1 Hardware

Hardware are the physical components of the computer system. The hardware components consist of several

parts like input devices, Central Processing Unit (CPU), primary storage, output devices and auxiliary

storage devices.

1. Input Devices: These are the devices such as keyboards that are used to enter the program and data. Mouse

and audio input also fall in the category of input devices.

2. CPU: It processes all the instructions given to the computer and is also used for doing arithmetic

calculations and comparisons, and for controlling the movement of data.

3. Primary Storage: It is the main memory of the computer system. In primary storage, programs and data

are stored temporarily for processing. The data in the primary device is erased when the computer is turned

off.

4. Output Devices: Devices such as monitor or printer are used to get the output.

5. Auxiliary Storage: Programs and data are stored permanently in auxiliary storage. It is also known as

secondary storage and used for both input and output. This storage is very useful as the data remains stored

even when the computer is turned off.

14 Introduction to Computing & Problem Solving using Python

1.6.2 Software

Computer software is a collection of programs used to manage the entire file system of the computer. It is

also necessary for the running of computer hardware. The working of the computer hardware depends on

the computer software. Computer software is classified into two categories, namely, System software and

Application software.

1. System Software: The system software provides interface between the user and the hardware (components

of the computer). It also manages the system resources, enabling the working of all hardware components

(hard disk, RAM, CD drive, etc.) of the computer. Computer hardware resources are managed through this

system software with the help of programs.

These programs fall into following three types:

 ● Operating System: It provides the interface between the user and computer hardware, managing

all files and folders, and providing ease of access to the database. The operating system makes the

computer perform efficiently.

 ● System Support Software: It provides all the services of the operating system and system utilities.

For example, disk format program is the system utility made to do the formatting of the storage. Other

services include data encryption and bit lock for locking storage devices.

 ● System Development Software: It works as a language translator that converts program language to

machine level language for debugging and execution of the programs.

2. Application Software: The application software runs under the system software. It helps the user to solve

problems. It can be further classified into general-purpose software and application-specific software.

 ● General-Purpose Software: It refers to software meant to be used for more than one application.

For example, Word Processor.

 ● Application-Specific Software: As the name suggests, it refers to software generally used for

a specific, intended purpose. For example: a general account ledger used by the accountants for

managing accounts.

The examples of application software are as follows:

 a) Microsoft Internet Explorer

 b) VLC Media Player

 c) Adobe Reader X

Note Auxiliary storage is very useful since when the computer is turned off, the data
remains in the secondary storage, ready for the next time we need it.

 1. What is System Software?

 Ans: System software is a part of software. It helps the computer function properly. It also controls

the computer hardware operations.

 2. What is Hardware?

 Ans: Computer hardware is the collection of all the parts that can be physically touched. For example:

motherboard, CPU, RAM, etc.

Check Your Understanding

Introduction to Digital Computer 15

1.7 OPERATING SYSTEMS

An operating system is a software environment in which the program runs. Most of the operating systems

are described as a combination of the software and the underlying hardware. The operating system works as

an interface between hardware and user. It controls file and database access besides providing the interface

to communication systems such as internet protocol. The working together of the various hardware and

software can only be achieved by the operating system. It is the mother of the computer without which

computer is nothing more than blank box. The functioning of every component of the computer depends on

the operating system.

Some commonly used operating systems are Windows 98, Windows server 2000, Windows XP, Windows

Vista, Linux, Ubuntu, UNIX, Macintosh (for apple computer), Windows 7, and Windows 8.

The main functions of an operating system includes:

 1. The main objective of the operating system is to ensure the efficient working of the computer system

and to stimulate various hardwares.

 2. The operating system performs basic tasks, such as taking input from the keyboard, displaying output

on the screen, managing files and operation on files on disk drives, and managing other devices

including keyboard, mouse and printers.

 3. The operating system can enable users to do multitasking. Multitasking refers to the situation where

two or more than two programs can run simultaneously on a single operating system.

 4. The operating system also allows users to do multithreading. Multithreading refers to the situation

where two or more parts of the single program can run concurrently on single operating Systems.

 5. The users can interact with the operating system with the help of commands.

Figure 1.4 shows the operating system and the range of tasks it performs. Without an operating system,

the computer system becomes useless.

Operating System

Drives
(C:, D:, E: etc.) Monitor

Mouse Application or Program

Keyboard Printers

Figure 1.12 Operating Systems and Related Task

16 Introduction to Computing & Problem Solving using Python

 ● The Von Neumann architecture is also known as “stored-program” architecture because in this architecture,

the program data and instruction data are stored in the same memory.

 ● The basic structure of Von Neumann architecture consists of the memory, the processing unit and the

control unit.

 ● In the central processing unit (CPU) there is a control unit that manages the process of data or program.

 ● Input devices are used to give data to the computer as input from the external source.

 ● Output devices are used to convey the information after processing to the user.

 ● Primary storage is also known as temporary storage and is used for storing data and programs temporarily.

 ● Secondary storage is also known as permanent storage. Examples of secondary storage include the hard

drive, DVD and memory card.

 ● The computer understands only machine language. All instructions are written in 1s and 0s form.

 ● When a high-level language is translated into machine language, there are two ways to translate it:

compiled or interpreted.

 ● Hardware is the physical component of the computer system. It consists of several parts including input

devices, CPU, primary storage, output devices and auxiliary storage devices.

 ● Computer software is used to manage the entire file system of the computer and is necessary for the

running of computer hardware.

 ● The operating system can allow users to do multitasking, by allowing two or more than two programs to

be run simultaneously on a single operating system.

 ● The compiler checks for syntax error in a source code of a program.

 ● The interpreter stops execution when an error occurs and reports it, whereas a compiler reads the whole

program even if it encounters several errors.

 ✓ ARITHMETIC LOGIC UNIT (ALU): It is useful in arithmetic and logical calculations, such as addi-

tion, subtraction, division and comparisons.

 ✓ ASSEMBLER: It translates the assembly language to machine language.

 ✓ BIT: Bit is the smallest storing space in the computer. In a computer, bit represents two states: either

“on” or “off”. It represents two numerical digits “0” and “1”.

 ✓ BYTE: A group of 8 bits form a byte. A computer’s capacity is measured in terms of bytes.

 ✓ BROWSER: A browser is a software used to access the Internet. For example, Internet Explorer, Mozilla,

Opera, etc.

 ✓ CENTRAL PROCESSING UNIT (CPU): It takes data in the form of input and processes the input by

some arithmetic or logical operations using ALU, transforming the data into output.

 ✓ COMPUTER: A computer is an electronic device that is able to execute programs written in different

languages.

Introduction to Digital Computer 17

 ✓ COMPILER: A compiler is a software program that converts high-level language into low-level lan-

guage understood by the processor.

 ✓ INTERPRETER: Just like a compiler, an interpreter also translates high-level language into low-level

machine language. It translates each instruction immediately one by one.

 ✓ OPERATING SYSTEM: Operating system works as an interface between the hardware and the user.

 ✓ PROGRAM: A program, written in programming language, is a set of instructions by which computer

comes to know what is to be done.

 ✓ STORAGE DEVICE: Storage devices are used to store the digital data and programs which can be ac-

cessed by the computer system.

 ✓ PRIMARY STORAGE: Primary storage is also known as temporary storage. It is used for storing data

and programs temporarily.

 ✓ SECONDARY STORAGE: Secondary storage is not constantly accessible by a computer system.

When required, secondary storage devices and media can be accessed by plugged or inserting them into

a computer.

 ✓ SOFTWARE: A software is a collection of programs. Computer software is used to manage the entire

file system of the computer and is also necessary for the running of computer hardware.

 ✓ HARDWARE: Hardware is the physical component of the computer system.

Multiple Choice Questions

 1. Which was the first microcomputer?

 a. Altair 8800 b. Altair 8600

 c. Altair 8400 d. Altair 8000

 2. Which of the following comprises Von Neumann architecture?

 a. Arithmetic logic unit, control unit b. Memory, processing unit, control unit

 c. Integrated Circuits, Monitor, Mouse d. Processing unit, control unit

 3. Which of the following are the components of the Central Processing Unit (CPU)?

 a. Control Unit, Monitor b. Arithmetic logic unit, Memory

 c. Control Unit, Memory d. Arithmetic logic unit, Control Unit

 4. Which storage device is permanent?

 a. Tertiary b. Primary

 c. Secondary d. None of the above

 5. Which of the following languages is Assembly language?

 a. Machine language b. Medium-level programming language

 c. Low-level programming language d. High-level programming language

 6. Which of the following programs can be used to convert high-level language into machine-level

language?

 a. Assembler b. Compiler

 c. Translator d. Interpreter

18 Introduction to Computing & Problem Solving using Python

 7. What works as an interface between the hardware and the user?

 a. Operating System b. Software

 c. Computer d. Memory

 8. Where are the saved files stored in the computer?

 a. Cache b. RAM

 c. Hard disk d. ALU

 9. Which component of computer is considered as its Brain?

 a. Microprocessor b. Monitor

 c. Keyboard d. CPU

 10. Which type of software is system software?

 a. General purpose software b. Operating System

 c. Application software d. All of the above

 11. If two or more parts of the single program can run concurrently on single operating systems, what will

it be known as?

 a. Multithreading b. Multitasking

 c. Multiprocessing d. Multiprogramming

 12. Which of the following types of software is application software?

 a. Compiler b. Assembler

 c. Word processor d. All of the above

 13. RAM stands for?

 a. Read Access Memory b. Random Access Memory

 c. Read Arithmetic Memory d. Random Arithmetic Memory

 14. What is a register?

 a. Set of paper tapes b. Set of capacitor

 c. Part of auxiliary memory d. Temporary storage unit within the CPU

 15. An error in computer data is called?

 a. CPU b. Chip

 c. Bug d. Storage device

 16. The secondary storage devices can only store data but they cannot perform?

 a. Logic operation b. Arithmetic operation

 c. Fetch operation d. Either of the above

 17. Which of the following is not a computer language?

 a. Low level language b. Medium level language

 c. High level language d. Machine language

 18. From where the term ‘computer’ is derived?

 a. English b. Greek

 c. Latin d. Sanskrit

 19. Main storage is also known as?

 a. Memory b. Mother board

 c. CPU d. Register

 20. Which American computer company is called Big Blue?

 a. Apple b. Microsoft

 c. Lenovo d. IBM

Introduction to Digital Computer 19

 21. Memory is made up of?

 a. Set of registers b. Large number of cells

 c. Set of circuits d. None of the above

 22. Which of the following is the most powerful computers?

 a. Mini computers b. Micro computers

 c. Super computers d. Mainframe computers

 23. What is responsible for movement of data from input devices to output devices?

 a. Bus b. Circuit

 c. Memory d. Register

 24. Which one of the following is the correct statement?

 a. 1KB = 1000GB b. 1GB = 1,024KB

 c. 1MB = 1,024TB d. 1GB = 1,024MB

 25. A CD-ROM basically is used to store up to….. data?

 a. 680 bytes b. 680 MB

 c. 680 KB d. 680 GB

 26. Which of the following storage devices can store the largest amount of data?

 a. Flash Disks b. CD-ROM

 c. Hard Disks d. Floppy Disks

 27. A program which interprets each line of high level program at time of execution is called?

 a. Interpreter b. Compiler

 c. Translator d. Instructor

 28. Process of reading data from permanent storage and writing it to computer’s main storage is known

as?

 a. Linking data b. Reading data

 c. Relocate data d. Loading data

 29. Which one of the following is the most quickly accessible storage?

 a. RAM b. Registers

 c. CD-ROM d. ROM

 30. What was the very first commercially produced and sold computer?

 a. ABC b. ENIAC

 c. UNIVAC d. Vacuum tubes

Short Questions

 1. What is a digital computer? What are the components of digital computer?

 2. What are the characteristics of Von Neumann architecture?

 3. What is the difference between primary storage and secondary storage?

 4. Explain the terms hardware and software.

 5. What do you mean by programming languages? What is the difference between machine language,

assembly language and high-level language?

 6. What is compiler? How is compiler different from interpreter?

 7. What is assembler? What are the differences between compiler and assembler?

 8. What is the difference between RAM and ROM?

 9. What is an operating system?

20 Introduction to Computing & Problem Solving using Python

 10. What do you mean by system software and application software?

 11. What are memory card and hard disk?

 12. What are peripheral devices? List different types of peripheral devices.

Answers to Multiple Choice Questions

 1. a 2. b 3. d 4. c 5. c 6. b 7. a 8. c 9. d 10. b

 11. a 12. c 13. b 14. d 15. c 16. d 17. b 18. c 19. a 20. d

 21. b 22. c 23. a 24. d 25. b 26. c 27. a 28. d 29. b 30. c

PROBLEM SOLVING

STRATEGIES2

2.1 PROBLEM ANALYSIS

Before applying a particular method or technique to solve a problem, we need to analyse the problem first.

There are few dimensions basis on which a problem is analysed before any particular method is applied to

it. In case of complex problems, it is important to identify the best or most appropriate technique that can

solve the problem.

Following are the key dimensions basis on which an appropriate method is applied.

 1. Decomposable/Non-decomposable: Analyse whether a problem is decomposable, i.e., whether

it can be broken down into sub-problems. Please note that if it cannot be decomposed, then such a

problem is non-decomposable.

 2. Solution steps–Can/Cannot be Ignored: It is important to determine if we can/cannot ignore a few

steps while solving a problem. On the basis of this key dimension, a problem can be categorised into

the following:
 ● Ignorable: In case of ignorable problems, a few steps can be ignored since they are not extremely

important to follow for solving the problem.
 ● Recoverable: As the name suggests, recoverable problems are those in which previously executed

steps can be easily backtracked.
 ● Irrecoverable: In case of irrecoverable problems, we cannot backtrack previously executed steps;

hence it is important to carefully solve the problem.

 3. Predictable/Unpredictable: This dimension determines the certainty/uncertainty factor attached to a

problem. It is important to know whether there will be an expected/unexpected output after applying

a particular input.

 4. Good solution: Absolute/Relative: It is important to determine whether we are trying to achieve

an optimum solution or idea to identify the best solution. On the basis of this decision, appropriate

techniques can be applied to achieve the best solution.

2.1.1 Formal Definition of Problem

A problem can be defined as a gap between the actual and desired conditions. It is an unfulfilled customer

need. For example, there will be a problem when a standard is not achieved or customer’s requirements are

22 Introduction to Computing & Problem Solving using Python

not fulfilled. If your goal was to achieve 100% growth but you end up attaining only 70%, this implies that

you have not met the actual standard.

While solving a problem it is acceptable to skip a few steps if these steps are not really important. On

the basis of this key dimension, a problem can be categorised as ignorable, recoverable and irrecoverable.

Note The very first step of writing a program is to understand the problem. In order to
understand the problem, it must be thoroughly analysed.

 1. What do you mean by a problem?

 Ans. A problem can be defined as a gap between the actual and desired conditions.

Check Your Understanding

2.1.2 Methodology of Problem Solving

After carefully understanding a problem, an appropriate solution is developed. The process of developing

a solution consists of development of a structure chart, a pseudo code and a flow chart. A structure chart is

used to develop the whole program and a flow chart or a pseudo code is used to develop individual parts of

a program. These parts are also known as modules.

1. Structure chart A structure chart is a hierarchy that shows the functional flow of a program. Large

programs are complex structures comprising interrelated parts. Hence, they must be very carefully laid out. A

structure chart shows a logical breakdown of a program into different steps. Each step has separate modules

that are related to different modules. Before writing any program, it is important to design a structure in line

with the structure chart.

2. Pseudo code A pseudo code is used by almost all the professional programmers. Pseudo codes are easy

to understand. These are used to depict the design of an algorithm.

For example: The pseudo code for a sum of two numbers can be written as:

 a) Read a, b

 b) Add two numbers

 Sum = a + b;

 c) Result sum “the sum is”;

 d) End

3. Flow chart A flow chart is a graphical representation of the logical flow of data. It uses the standard

graphical symbols to narrate the sequential process of a specific module. These steps must be followed while

designing the whole program.

2.2 ALGORITHMS

In computer science and mathematics, an algorithm is a set of instructions used for solving problems in a

step-by-step manner. This step-by-step explanation of doing something is known as an algorithm.

Problem Solving Strategies 23

 a) Algorithm is a finite and ordered sequence of steps.

 b) It is a description of a process independent of any programming language.

 c) It can be implemented in many different languages by using different methods and programs.

Following example illustrates a simple algorithm to put a book in the box.

 1. Open the box.

 2. Pick up the book.

 3. Put the book inside the box.

 4. Close the box.

For example: An algorithm for sum of two numbers can be written as:

 1. Start

 2. Read number n1 and n2;

 3. Sum = n1 + n2;

 4. Write sum “the sum is”;

 5. Stop;

Typically, algorithms are executed by computers. However, humans follow algorithms too. How would

you count people in a room? You will probably point at each person, one at a time, and assign a number to it,

starting from 0: 1, 2, 3, 4 and so forth. This is also an algorithm. In fact, algorithms can be formally described

in pseudo codes that have English-like syntax and resemble programming language.

An algorithm can be written in following two ways:

 1. Pseudo code

 2. Flow chart

A pseudo code for counting people in a room:

 1. Let P = 0 (A variable called P will initialise its value to zero.)

 2. For each person in a room, set P = P + 1 (This is a sequence of steps that will repeat a few

number of times.)

Step 2 will be repeated until every person in the room has been counted. If there is no person in the room,

then only step 1 will be executed and there will no step 2.

 1. What is algorithm?

 Ans. An algorithm is a set of instructions used for solving a problem in a step-by-step manner.

 2. What is pseudo code?

 Ans. A pseudo code is used to state an algorithm in an English-like syntax.

Check Your Understanding

If an algorithm is correctly written, there are very low chances of generating a bad program.

TIP

24 Introduction to Computing & Problem Solving using Python

2.3 FLOW CHARTS

A flow chart is a simple diagram that illustrates a sequence of operations to be performed for obtaining a

solution. It allows you to identify the actual sequence of events in a process that any product or service

follows. Flow charts are very effective in understanding how a process works. Even a quick glance at a flow

chart can offer a clear idea of how a process or a series of processes works. In a flow chart, the flow of data

is represented by arrows. It is a graphical representation of the algorithmic solution of a problem.

Flow charts are also known as process maps that can be used to identify:

 a) Flow of information

 b) Number of steps in a process

 c) Branches in a process

 d) Inter-dependent operations

2.3.1 Flow Charts Symbols

There are six basic symbols that are used to draw a simple flow chart which are as follows:

1. Start/Stop: Every flow chart has a starting point and a terminating point. The symbol that is used for

both the starting and terminating points is a rounded rectangle, a rectangle with round corners. It is called

a ‘terminal’ (Fig. 2.1).

Figure 2.1

2. Input/Output: Every time you take an input from a user and return an output to the user, an input/

output symbol is used in the flow chart. The symbol that is used for both input/output-related actions is a

parallelogram as shown in Fig. 2.2.

Figure 2.2

3. Process: If you are running a processing instruction, you need to use a rectangular box in the flow chart.

This rectangular box, as shown in Fig. 2.3, is used for processing needs.

Figure 2.3

Problem Solving Strategies 25

4. Decision Symbol: In a flow chart, a decision symbol, as shown in Fig. 2.4, is used for answering questions

in the form of either true/false or yes/no. Please note that each answer can lead you to a different path in

the flow chart. A ‘yes’ to a question can take you to one path and a ‘No’ to the same question can generate

a completely new path.

Figure 2.4

5. Flow Lines: Flow lines depict the direction of a flow in a flow chart. There are four types of flow lines.

Flow lines, as shown in Fig. 2.5, can depict a left, right, top or bottom direction.

Figure 2.5

6. Connector: As the name suggests, a connector connects. It connects different steps in a flow chart that are

on different pages and gives a sense of continuation. Generally, it is used in extremely complex flow charts

and it is denoted by a small circle as shown in Fig. 2.6.

Figure 2.6

 1. What is flow chart?

 Ans. A flow chart is a simple diagram that illustrates a sequence of operations to be performed for

obtaining solution to a problem.

 2. What is a terminal in a flow chart?

 Ans. A rounded rectangle symbol that is used for both the starting and terminating points in a flow

chart is a terminal.

Check Your Understanding

To draw a correct flow chart, it is imperative to know the function of each flow chart
symbol.

TIP

26 Introduction to Computing & Problem Solving using Python

Flow Chart Convention

 ● Selection Structure (Fig. 2.7)

Start

Yes NoIs it
raining?

Wipers offWipers on

Stop

Figure 2.7

 ● Repetition Structure (Fig. 2.8)

Start

Is the

statement

true?

No

Yes

Statement will be repeated

Stop

Figure 2.8

Problem Solving Strategies 27

 ● Sequential Structure (Fig. 2.9)

Start

Perform step 1

Perform step 2

Perform step 3

Stop

Figure 2.9

An example is shown in Fig. 2.10.

Yes

No

Start

Count your money

Do you have
more than 100

Rs?

Stay at home

Go to movie

Stop

Figure 2.10

Guidelines for Drawing Flow Charts

 ● Firstly, describe the process to be charted.
 ● Start with a trigger event. For example, in Fig. 2.10, ‘count your money’ is the trigger event for starting

the process of counting.
 ● Usually, direction of flow of a process is from left to right or top to bottom.
 ● Please note that only one flow line should come out from a process symbol.

28 Introduction to Computing & Problem Solving using Python

 ● Also, only one flow line should enter a decision symbol. However, two or three flow lines can leave

the same decision symbol. For example, in Fig. 2.10, decision after the question ‘do you have more

than 100 rupees?’ led to two flow lines, each representing a ‘yes’ and a ‘no’, respectively.
 ● Only one flow line, as shown in Fig. 2.10, is used in conjunction with a terminal symbol.
 ● It is important to ensure that a flow chart has a logical start and end. A flow chart can have only one

start terminal. However, it can sometimes lead to more than one terminal symbols.
 ● It is also important to stop a flow chart at a logical conclusion.

2.4 EXAMPLES OF ALGORITHMS AND FLOW CHARTS

Examples of Algorithms

 A. Write an algorithm to log in to your Gmail account.

 1. Go to www.gmail.com.

 2. Enter your email id and password.

 3. Click the Sign in button.

 B. Write an algorithm to multiply two numbers 5 and 6.

 1. Start.

 2. Read two numbers 5 and 6.

 3. Multiply two numbers, Mul = 5 * 6.

 4. Write “the multiplication is”: mul.

 5. Stop.

 C. Write an algorithm to find out the largest of three numbers.

 1. Start.

 2. Read three number p, q, r.

 3. If p > q, go to step 5.

 4. If q > r then

 write q is the largest number.

 else

 write r is the largest number.

 5. If p > r then

 write p is the largest number.

 else

 write r is the largest number.

 6. Stop.

 D. Write an algorithm to find the sum of 4 numbers.

 1. Start.

 2. Sum = 0 and count = 0.

 3. Read the number n.

 4. Now, sum = sum + n and then the counter will be incremented by 1 as count = count + 1.

 5. Now check whether the count is less than 4 or not. If count < 4 then go to step 3 otherwise write

sum “the sum is”.

 6. Stop.

 E. Write an algorithm to calculate the total marks of a student and also check whether the student is pass

or fail. The total mark is calculated as the average of five subjects’ marks.

 1. Start.

Problem Solving Strategies 29

 2. Read five subjects’ marks a1, a2, a3, a4, a5.

 3. Now, total mark = (a1 + a2 + a3 + a4 + a5) / 5.

 4. If (total mark < 170) then

 write “student is fail”.

 else

 write “student is pass”.

 5. Stop.

 F. Write an algorithm to calculate the result when a number is given, if that number is greater than 50

then number must be increased 5 times otherwise the number is decreased by the 10.

 1. Start.

 2. Read number P.

 3. If (P > 50) then

 write P = P * 5.

 else

 write P = P – 10.

 4. Write P.

 5. Stop.

Examples of Flow Charts

 A. Draw a flow chart to find the sum of four numbers.

Start

Sum = 0, count = 0

Read n

Is
< 4?
count

No

Write sum

Stop

Yes

Sum = sum + n
count = count + 1

Figure 2.11

30 Introduction to Computing & Problem Solving using Python

 B. Draw a flow chart to multiply two numbers 5 and 6.

Stop

Start

Read 5, 6

Mul = 5 * 6

Write mul

Figure 2.12

 C. Draw a flow chart to find the largest of three numbers.

Write r

Stop

No No

Yes Yes

No

Start

Read p q r, ,

Is > ?p q
Yes

Is > ?p r Is > ?q r

Write p Write q

Figure 2.13

Problem Solving Strategies 31

 D. Draw a flow chart to write the word ‘Symbol’ 7 times.

Start

Write
Symbol

Count = count + 1

Is
< 7?
count

No

Stop

Yes

Count = 0

Figure 2.14

 E. Draw a flow chart to log in to your Gmail account.

Start

Write
www.gmail.com

Gmail Home page

Write Email Id
and password

Email Id and

password you

entered is

correct?

Yes

Stop

No

Error in log in

Figure 2.15

32 Introduction to Computing & Problem Solving using Python

 F. Draw a flow chart to find the area of rectangle.

Start

Read ,P Q

Area = *P Q

Write Area

Stop

Figure 2.16

 G. Draw a flow chart to find the sum of integers 1 to 50.

Start

Sum = 0
= 1c

Sum = Sum + c

c c= + 1

Is
> 50?c

Yes

Write sum

Stop

No

Figure 2.17

Problem Solving Strategies 33

 ● To analyse a problem, first identify whether the problem is decomposable or not, i.e., it can/cannot be

decomposed into sub-problems.

 ● A problem can be defined as a gap between the actual and desired conditions.

 ● The process of developing a solution consists of development of a structure chart, a pseudo code and a

flow chart.

 ● A structure chart shows a logical breakdown of a program into different steps. Each step has separate

modules that are related to different modules.

 ● A pseudo code is used to state an algorithm in an English-like syntax.

 ● An algorithm is a set of instructions used for solving a problem in a step-by-step manner.

 ● A flow chart is a graphical representation of the logical flow of data.

 ● A flow chart gives a sequential order of steps that must be followed while designing the whole program.

 ● A flow chart uses the standard graphical symbols to narrate the sequential processes of a specific module.

 ● The basic symbols that are used to draw a simple flow chart are as follows:

 1. Terminal symbol

 2. Process

 3. Input/output

 4. Decision

 5. Flow lines

 6. Connector

 ✓ ALGORITHM: An algorithm is a finite and ordered sequence of steps.

 ✓ DECISION Symbol: In a flow chart, decision symbol is used to give answers for the questions in the

form of either true / false or yes / no.

 ✓ FLOW CHART: A flow chart is a simple diagram which illustrates the sequence of operations to be

performed to get to the solution of a problem.

 ✓ FLOW LINES: Flow lines indicate the direction of flow in a flow chart.

 ✓ INPUT/OUTPUT: For input or output in a flow chart, a slanted rectangular symbol called parallelogram

is used.

 ✓ PROBLEM: A problem can be defined as a gap between the actual and desired conditions.

 ✓ PSEUDO CODE: A pseudo code is used to state an algorithm in an English-like syntax.

 ✓ STRUCTURE CHART: A structure chart shows a logical breakdown of a program into different steps.

Each step has separate modules that are related to different modules.

 ✓ TERMINAL: The rounded rectangle symbol in a flow chart is called a terminal.

34 Introduction to Computing & Problem Solving using Python

Multiple Choice Questions

 1. Which procedure is used to solve a problem in a sequence?

 a. Sequence b. Flow chart

 c. Algorithm d. Procedure

 2. Which symbol is used for a condition statement in a flow chart?

 a. b.

 c. d.

 3. When a part of an algorithm is repeated a fixed number of times, what is it called?

 a. Iteration b. Sequence

 c. Structural d. Selection

 4. What does the symbol represent in a flow chart?

 a. Terminal b. Input / output

 c. Connector d. Process

 5. What is used to break the program into logical steps?

 a. Structure chart b. Flow chart

 c. Pseudo code d. Algorithm

 6. What is the other name of a process map?

 a. Algorithm b. Flow chart

 c. Problem d. Structure chart

 7. What does a terminal symbol in a flow chart represent?

 a. Input / output b. Process

 c. Flow lines d. Condition

 8. What are algorithms and flow charts used for?

 a. Better programming b. Easy testing

 c. Efficient Coding d. All

 9. What is the direction of the flow of process in a flow chart?

 a. Left to top b. Left to bottom

 c. Left to Right d. Left to Left

 10. How many lines can come out from a process symbol?

 a. One b. Two

 c. Three d. None

 11. What does a Pseudo code also called?

 a. Structure chart b. Flow chart

 c. Software language d. Program design language

 12. What should be done first when writing a correct program?

 a. Write Algorithm b. Write pseudo code

 c. Logic planning d. Draw flow chart

Problem Solving Strategies 35

Short Questions

 1. Differentiate between an algorithm and a program?

 2. Define a flow chart and list its uses.

 3. What are the rules to draw a flow chart?

 4. Write an algorithm to make tea.

 5. Differentiate between an algorithm and a flow chart?

 6. Draw a flow chart to find whether a given number is odd or even.

 7. Draw a flow chart to calculate the average of three numbers.

 8. What do you mean by problem analysis?

 9. What are the methodologies to solve a problem?

 10. Briefly describe the basic symbols used to draw a flow chart.

 11. Write an algorithm and draw a flow chart to change the temperature from Celsius to Fahrenheit.

 12. Write an algorithm to find the area of a circle.

Answers to Multiple Choice Questions

 1. c 2. b 3. a 4. d 5. a 6. b 7. a 8. d 9. c 10. a

 11. d 12. c

INTRODUCTION

TO PYTHON3

3.1 INTRODUCTION

In the previous chapters, we learnt how programming languages and flow charts work. In this chapter, we

will learn about the basics of Python, including the declaration of variables and the different data types.

We will also learn about the different types of operators supported by Python and the execution of control

statements in this language.

Python is a high-level, interpreted, general-purpose, dynamic programming language. Python was

conceived in the late 1980s and its usage began from December 1989. It is a widely used programming

language. Python possesses a property of code termed reusability. The syntax of Python programs can

express concepts in fewer lines as compared to programs in C, C++ and JAVA.

Python can be used in multiple programming styles, including Object-Oriented, Functional programming

Procedural Programming and Imperative styles. It also supports automatic memory management and has

a large standard library and innumerous set of third party libraries. Python can be used on almost every

operating system because its interpreter is available for many operating systems.

Python is free and open-source software. Open-source software is a kind of computer software in which

the source code of the software is made public, i.e., the copyright holder gives rights to everyone to read,

change and distribute the code for any purpose. It generally has a community-based development.

3.2 PYTHON OVERVIEW

Python is a high-level general-purpose programming language. Some of its key features are as follows:
 ● The code written in Python is automatically compiled to byte code and executed.
 ● Python can be used as a scripting language, as a language for implementing web applications, etc.
 ● Extending Python with C or C++ can help in the performance of intensive tasks where speed of

execution is a key criterion.
 ● Python supports many features such as nested code blocks, functions, classes, modules and packages.
 ● Python makes use of an object-oriented programming approach.

Python has several additional features which are as follows:
 ● It has many built-in data types: strings, lists, tuples, dictionaries, etc.

Introduction to Python 37

 ● It supports many control statements such as if, if-else, if-elif-else, while, iterative

for, etc.

 ● It allows for easier programming with the use of functions, classes, modules and packages.

3.3 GETTING STARTED WITH PYTHON

There are three different ways of starting Python:

1. Running a script written in Python

2. Using a Graphical user interface (GUI) from an Integrated Development Environment (IDE)

3. Employing an interactive approach

The first approach will require a text editor. We will have to create our scripts and then execute them

using the text editor. The second approach will require a GUI application, one that comes with the Python

installer itself. The third interactive approach is the one we will be using in this book. Python provides us a

command line interpreter that we will utilise for this approach.

3.3.1 Installing Python Interpreter

First of all you need to download the Python Installer from the link:

https://www.Python.org/downloads/

Note Python 2.7.x version of python interpreter is being discussed throughout this book.
Install Python 2.7.x for better results. Many Examples listed in this book may or may not
work under Python 3.x.

3.3.1.1 Installing on Linux OS

Following steps need to be followed in order to install the Python interpreter in the Linux Machine.

1. Download the .tgz file of Python from the above provided download link.

 http://www.python.org/ftp/python/2.7.11/Python-2.7.11.tgz

2. Unzip the downloaded file.

 tar xvfz Python-2.7.11.tgz

3. Go into the directory.

 cd Python-2.7.11

4. ./configure

5. Build it.

6. make

7. su or sudo su if there is no root user

8. make altinstall

3.3.1.2 Installing on Windows OS

First of all, you need to download the Python Installer from the link: https://www.Python.org/downloads/

Next, double click on the installed file. As the installer begins, you will be asked to select the users for

whom you want the program to be installed. Choose Install for all users and click Next > as shown in

Fig. 3.1. Please note installing for all users option is recommended.

38 Introduction to Computing & Problem Solving using Python

Figure 3.1

Now, choose the directory where you want to install Python and click Next> as shown in Fig. 3.2. It is

best to use the default given location.

Figure 3.2

Introduction to Python 39

You will then be asked to select the package. Click Next> as shown in Fig. 3.3.

Figure 3.3

Please note that installation takes some time to complete as indicated in Fig. 3.4.

Figure 3.4

40 Introduction to Computing & Problem Solving using Python

Once the installation process is complete, click on Finish to exit the installer (Fig. 3.5).

Figure 3.5

Python is now installed in your computer’s directory. You need to run Python by following the given steps:

 1. Click START button.

 2. Go to All Programs.

 3. Search for Python 2.7 folder.

 4. Click Python (Command line).

This will start the Python Command line.

Once Python starts, you will see the interpreter startup message, indicating version and platform. You

will also be given the python interpreter prompt, i.e., “>>>” which is also known as python chevron

prompt. The “>>>”indicates that Python interpreter is waiting for an expression or command. The interactive

environment where we are interacting with the Python interpreter is called the console or command shell as

shown in Fig. 3.6.

Figure 3.6

Introduction to Python 41

Now, try to interact with the interpreter by entering a simple expression, 8 + 9, on the console. After

entering the expression, press the Enter key to get the result.

>>> 8+9

17 # Output

>>>

The given example shows how Python can also work as a simple calculator.

Now, type the following text at the Python prompts and press Enter.

>>> print “Hello, Python!”

This produces the following result:

Hello, Python! # Output

Now, let us try some more examples.

>>> Hello

After writing Hello, when you hit the Enter key, an error message will be displayed. This is because

Python does not have any Hello command and its interpreter is unable to identify the command.

>>> Hello

Traceback (most recent call last): # Output

File “<pyshell#0>”, line 1, in <module>

Hello

NameError: name ‘hello’ is not defined

However, if you want to display a message on the console, you will need to keep your message within

quotes. This tells the interpreter that the text entered is not a command. Therefore, the interpreter simply

echoes the text.

>>> ‘Hello’

‘Hello’ # Output

Note The print statement is used to display output to the screen. Those of you who are
familiar with C know that the printf() function produces screen output. Many shell script
languages use the echo command for program output.

The print statement, paired with the string format operator (%), behaves even more like
C’s printf() function.

TIP

1. What is Python?

Ans. Python is a high-level, interpreted, interactive and object-oriented scripting language. It is a

highly readable language. Unlike other programming languages, Python provides an interactive

mode similar to that of a calculator.

Check Your Understanding

42 Introduction to Computing & Problem Solving using Python

3.4 COMMENTS

Just like other programming languages, Python allows you to add comments in the code. Comments are used

by the programmer to explain the piece of code to others as well as to himself in a simple language. Every

programming language makes use of some special character for commenting, so does Python.

Python uses the hash character (#) for comments. Putting # before a text ensures that the text will not

be parsed by the interpreter. Comments do not affect the programming part and the Python interpreter does

not display any error message for comments. Comments show up as it is in the programming. It is a good

practice to use comments for program documentation in your program so that it becomes easier for other

programmers to maintain or enhance the program when required.

Now, take a look at some examples of comments used in Python.

Commenting without the use of Hash mark (#)

>>> 8+9 addition

SyntaxError: invalid syntax # Output

>>>

In the above example, ‘addition’ is written without the Hash mark. As a result, the interpreter accepts the

word ‘addition’ as part of programming. Since ‘addition’ is not a command in Python, an error message is

displayed.

Commenting using Hash mark (#)

>>> 8+9 #addition

17 # Output

>>>

Now, in this example, ‘addition’ is written with a Hash mark. Hence, the interpreter understands it as a

comment and does not display any error message.

1. What are comments?

Ans. Comments are annotations made by the programmer. These help other programmers in

understanding the code.

2. Which character is used for commenting in Python?

Ans. Hash mark (#) is used for commenting in Python.

Check Your Understanding

3.5 PYTHON IDENTIFIERS

A Python identifier is the name given to a variable, function, class, module or other object. An identifier can

begin with an alphabet (A – Z or a – z), or an underscore (_) and can include any number of letters, digits,

or underscores. Spaces are not allowed.

Python will not accept @, $ and % as identifiers. Furthermore, Python is a case-sensitive language. Thus,

Hello and hello both are different identifiers. In Python, a class name will always start with a capital letter.

Table 3.1 provides examples of valid and invalid names for creating identifiers.

Introduction to Python 43

TABLE 3.1 Examples of Valid and Invalid Names for Creating Identifiers

Examples of Identifiers

Valid Invalid

MyName My Name (Space is not allowed)

My_Name 3dfig (cannot start with a digit)

Your_Name Your#Name (Only alphabetic character, Underscore (_) and numeric are allowed

3.6 RESERVED KEYWORDS

Just like other programming languages, Python has a list of reserved words known as keywords. Every

keyword has a specific purpose and use. In the upcoming chapters, we will look into the use of these

keywords in programming.

A list of reserved keywords in Python:

and del from None True

as elif global nonlocal try

assert else if not while

break except import or with

class False in pass yield

continue finally is raise

def for lambda return

3.7 VARIABLES

3.7.1 Declaring a Variable

A variable holds a value that may change. The process of writing the variable name is called Declaring the

variable. In Python, variables do not need to be declared explicitly in order to reserve memory spaces as in

other programming languages like C, Java, etc. When we initialize the variable in Python, Python Interpreter

automatically does the declaration process.

3.7.2 Initializing a Variable

The general format of assignment statement is as follows:

 Variable = expression

The equal sign (=) is known as Assignment operator. An expression is any value, text or arithmetic

expression, whereas variable is the name of the variable. The value of the expression will be stored in

the variable.

Let us now look at an example of initialising a variable:

>>>year=2016

>>> name=’Albert’

The two given statements reserve two memory spaces with variable names year and name.2016 and

Albert, are stored respectively, in these memory spaces as shown in Fig. 3.7.

44 Introduction to Computing & Problem Solving using Python

Memory

Year

2016

name

Albert

Figure 3.7

Whenever you want to display the value of the variables, simply type these variable names
on console.

TIP

Let us now look at an example of a variable displaying its value:

>>> year

2016 # Output

>>> name

‘Albert’ # Output

>>>

Note You can also assign one variable value into another variable. Assign the value of
name1 variable into name2 variable.

Let us now look at an example of assigning one variable value into another:

>>> name1=’Albert’

>>> name2=name1

>>> name2

‘Albert’ # Output

>>>

Whenever two values are successively assigned to a variable, the interpreter will forget the previous value

assigned to it and store the latest value in the variable memory space.

>>> year=2016

>>> year=2017

>>> year

2017 # Output

>>>

In the given example, we first assigned 2016 to the variable year and then assigned 2017 to the same

variable. The interpreter will forget the value 2016 and will display 2017 as the value of year.

We can also assign different types of values to the same variable. For example, we can assign a text value

where there previously was a numeric value. Even in such a case however, only the last assigned value

remains.

Let us now look at an example of assigning different types of values to the same variable:

Introduction to Python 45

>>> amount=50

>>> amount

50 # Output

>>> amount=’Fifty’

>>> amount

‘Fifty’ # Output

>>>

3.8 STANDARD DATA TYPES

The data stored in the memory can be of many types. For example, a person’s name is stored as an alphabetic

value and his address is stored as an alphanumeric value. Sometimes, we also need to store answer in terms

of only ‘yes’ or ‘no’, i.e., true or false. This type of data is known as Boolean data.

Python has six basic data types which are as follows:

1. Numeric

2. String

3. List

4. Tuple

5. Dictionary

6. Boolean

3.8.1 Numeric

Numeric data can be broadly divided into integers and real numbers (i.e., fractional numbers). Integers can

themselves be positive or negative. Unlike many other programming languages, Python does not have any

upper bound on the size of integers. The real numbers or fractional numbers are called floating point numbers

in programming languages. Such floating point numbers contain a decimal and a fractional part.

Let us now look at an example that has an integer as well as a real number:

>>> num1=2 # integer number

>>>num2=2.5 # real number (float)

>>>num1

2 # Output

>>>num2

2.5 # Output

>>>

Note In all the earlier versions of Python 3, slash (/) operator worked differently. When
both numerator and denominator are integers, then the result will be an integer. The slash
operator removes the fraction part.

Let us look at an example of the division operator in all the earlier versions of Python 3:

>>> 5/2

2 # Output

>>>

46 Introduction to Computing & Problem Solving using Python

The result becomes a floating number when either the numerator or the denominator is a floating number.

When both the numerator and the denominator are floating numbers, the result is again a floating number.

Let us look at an example of the division operator in all the earlier versions of Python 3:

>>> 5.0/2

2.5 # Output

>>>

This operator has been modified in Python 3 and in all the versions after Python 3. The division operator

provides accurate results even when both the numerator and the denominator are integers.

Here is an example of the division operator that is used in all the versions after Python 3:

>>> 5/2

2.5 # Output

>>>

1. What are data types?

Ans. The data you have to manipulate can be in different forms. For example, the name of a person

is in string form while his age is in numeric form.

Check Your Understanding

3.8.2 String

Besides numbers, strings are another important data type. Single quotes or double quotes are used to represent

strings. A string in Python can be a series or a sequence of alphabets, numerals and special characters. Similar

to C, the first character of a string has an index 0.

There are many operations that can be performed on a string. There are several operators such as slice

operator ([]) and [:]), concatenation operator (+), repetition operator (*), etc. Slicing is used to take out a

subset of the string, concatenation is used to combine two or more than two strings and repetition is used to

repeat the same string several times.

Here is an example of string data:

>>> sample_string =”Hello” # store string value

>>> sample_string # display string value

‘Hello’ # Output

>>> sample_string + “World” # use of + operator

‘HelloWorld’ # Output

>>> sample_string * 3 # use of * operator

‘HelloHelloHello’ # Output

Python also provides slice operators ([] and [:]) to extract substring from the string. In Python, the

indexing of the characters starts from 0; therefore, the index value of the first character is 0.

Syntax

>>> sample_string[start : end <:step>] #step is optional

Introduction to Python 47

Example

>>>sample_string=”Hello”

>>>sample_string[1] # display 1st index element.

‘e’ # Output

>>>sample_string[0:2] # display 0 to 1st index elements

‘He’ # Output

Example

>>> sample_string = "HelloWorld"

>>> sample_string[1:8:2] # display all the alternate charactors be-

tween index 1 to 8. ie, 1,3,5,7

'elWr' # Output

3.8.3 List

List is the most used data type in Python. A list can contain the same type of items. Alternatively, a list

can also contain different types of items. A list is an ordered and indexable sequence. To declare a list in

Python, we need to separate the items using commas and enclose them within square brackets([]). The list

is somewhat similar to the array in C language. However, an array can contain only the same type of items

while a list can contain different types of items.

Similar to the string data type, the list also has plus (+), asterisk (*) and slicing [:] operators for

concatenation, repetition and sub-list, respectively.

Let us look at an example of the List data type:

>>>first=[1,”two”,3.0,”four”] # 1st list

>>>second=[“five”, 6] # 2nd list

>>>first # display 1st list

[1, ‘two’, 3.0, ‘four’] # Output

>>>first+second # concatenate 1st and 2nd list

[1, ‘two’, 3.0, ‘four’, ‘five’, 6]# Output

>>>second * 3 # repeat 2nd list

[‘five’, 6, ‘five’, 6, ‘five’, 6] # Output

>>>first[0:2] # display sublist

[1, ‘two’] # Output

>>>

3.8.4 Tuple

Similar to a list, a tuple is also used to store sequence of items. Like a list, a tuple consists of items separated

by commas. However, tuples are enclosed within parentheses rather than within square brackets.

Let us look at an example of the tuple data type:

>>>third=(7, “eight”,9, 10.0)

>>>third

(7, ‘eight’, 9, 10.0) # Output

48 Introduction to Computing & Problem Solving using Python

Lists and tuples have the following differences:
 ● In lists, items are enclosed within square brackets [], whereas in tuples, items are enclosed within

parentheses ().
 ● Lists are mutable whereas Tuples are immutable. Tuples are read only lists. Once the items are stored,

the tuple cannot be modified.

Let us look at an example of list and tuple data type:

>>>first[0]=”one”

>>>third[0]=”seven”

Traceback (most recent call last): # Output

 File “<pyshell#15>”, line 1, in <module>

third[0]=”seven”

TypeError: ‘tuple’ object does not support item assignment

The items cannot be modified in a tuple but the same is not the case with a list.

TIP

3.8.5 Dictionary

It is the same as the hash table type. The order of elements in a dictionary is undefined. But, we can iterate

over the following:

1. The keys

2. The values

3. The items (key-value pairs) in a dictionary

A Python dictionary is an unordered collection of key-value pairs. When we have the large amount of

data, the dictionary data type is used. Keys and values can be of any type in a dictionary. Items in dictionary

are enclosed in the curly-braces{} and separated by the comma (,). A colon (:) is used to separate key from

value. A key inside the square bracket [] is used for accessing the dictionary items.

Example of dictionary:

>>> dict1 = {1:"first line", "second":2} # declare dictionary

>>> dict1[3] = "third line" # add new item

>>> dict1 # display dictionary

{1: 'first line', 'second': 2, 3: 'third line'} #Output

>>> dict1.keys() # display dictionary keys

[1, 'second', 3] # Output

>>> dict1.values() # display dictionary values

['first line', 2, 'third line'] # Output

3.8.6 Boolean

In a programming language, mostly data is stored in the form of alphanumeric but sometimes we need to

store the data in the form of ‘Yes’ or ‘No’. In terms of programming language, Yes is similar to True and

No is similar to False.

This True and False data is known as Boolean Data and the data types which stores this Boolean data are

known as Boolean Data Types.

Introduction to Python 49

Example

>>> a = True

>>> type(a)

<type ‘bool’>

>>> x = False

>>> type(x)

<type ‘bool’>

3.8.7 Sets

The lists and dictionaries in Python are known as sequence or order collection of data. However, in Python

we also have one data type which is an unordered collection of data known as Set. A Set does not contain

any duplicate values or elements.

Union, Intersection, Difference and Symmetric Difference are some operations which are performed on

sets.

Union: Union operation performed on two sets returns all the elements from both the sets. It is performed

by using & operator.

Intersection: Intersection operation performed on two sets returns all the element which are common or in

both the sets. It is performed by using | operator.

Difference: Difference operation performed on two sets set1 and set2 returns the elements which are present

on set1 but not in set2. It is performed by using – operator.

Symmetric Difference: Symmetric Difference operation performed on two sets returns the element which

are present in either set1 or set2 but not in both. It is performed by using ^ operator.

Example

Defining sets

>>> set1 = set([1, 2, 4, 1, 2, 8, 5, 4])

>>> set2 = set([1, 9, 3, 2, 5])

>>> print set1 #Printing set

set([8, 1, 2, 4, 5]) #Output

>>> print set2

set([1, 2, 3, 5, 9]) #Output

>>> intersection = set1 & set2 #intersection of set1 and set2

>>> print intersection

set([1, 2, 5]) #Output

>>> union = set1 | set2 # Union of set1 and set2

50 Introduction to Computing & Problem Solving using Python

type() Function

type() function in Python programming language is a built-in function which returns the datatype of any

arbitrary object. The object is passed as an argument to the type() function. Type() function can take anything

as an argument and returns its datatype, such as integers, strings, dictionaries, lists, classes, modules, tuples,

functions, etc.

Example

>>> x = 10

>>> type(x)

<type ‘int’> #Output

>>> type(‘hello’)

<type ‘str’> #Output

>>> import os

>>> type (os)

<type ‘module’> #Output

>>> tup = (1,2,3)

>>> type(tup)

<type ‘tuple’> #Output

>>> li = [1,2,3]

>>> type(li)

<type ‘list’> #Output

>>> print union

set([1, 2, 3, 4, 5, 8, 9]) #Output

>>> difference = set1 - set2 # Difference of set1 and set2

>>> print difference

set([8, 4]) #Output

>>> symm_diff = set1 ^ set2 # Symmetric difference of set1 and

 set2

>>> print symm_diff

set([3, 4, 8, 9]) #Output

Introduction to Python 51

Note Items separated by ‘comma’ is the signature of tuple not parenthesis

3.9 OPERATORS

Operators are constructs used to modify the values of operands. Consider the following expression:

3 + 4 = 7

In the above expression, 3 and 4 are the operands whereas + is operator.

Based on functionality, operators are categories into following seven types:

1. Arithmetic operator

2. Comparison operator

3. Assignment operator

4. Logical operator

5. Bitwise operator

6. Membership operator

7. Identity operator

3.9.1 Arithmetic Operators

These operators are used to perform arithmetic operations such as addition, subtraction, multiplication and

division (Table 3.2).

TABLE 3.2 List of Arithmetic Operators

Operator Description Example

+ Addition operator to add two operands. 10+20=30

– Subtraction operator to subtract two operands. 10–20=–10

* Multiplication operator to multiply two operands. 10*20=200

/ Division operator to divide left hand operator by right hand Operator. 5/2=2.5

** Exponential operator to calculate power. 5**2=25

% Modulus operator to find remainder. 5%2=1

// Floor division operator to find the quotient and remove the fractional part. 5//2=2

1. What is a list?

Ans. A list is a dynamic array or sequence that is ordered, indexable and mutable. It is one of the

most versatile compound data types of Python. A list is used to store multiple items separated

by commas within square brackets [].

2. What is the output of print list[2] when list = [‘abcd’, 2.23, ‘john’]?

Ans. john

3. What is the main difference between a list and a tuple?

Ans. In a list, items are enclosed within square brackets; tuple is a sequence of items separated by

comma and enclosed in parentheses.

Check Your Understanding

52 Introduction to Computing & Problem Solving using Python

Example

>>> x = 10
>>> y = 12
>>> z = 0

>>> z = x + y
>>> print z
22 #Ouput

>>> z = x - y
>>> print z
-2 #Ouput

>>> z = x * y
>>> print z
120 #Ouput

>>> z = x / y
>>> print z
0 #Ouput

>>> z = x % y
>>> print z
10 #Ouput

>>> z = x ** y
>>> print z
1000000000000 #Ouput

>>> z = x // y
>>> print z
0 #Ouput

3.9.2 Comparison Operators

These operators are used to compare values. Comparison operators are also called relational operators. The

result of these operators is always a Boolean value, that is, either true or false. Table 3.3 provides a list of

comparison operators.

TABLE 3.3 List of Comparison Operators

Operator Description Example

== Operator to check whether two operands are equal. 10 == 20, false

!= or <> Operator to check whether two operands are not equal. 10 !=20, true

> Operator to check whether first operand is greater than second operand. 10 > 20, false

< Operator to check whether first operand is smaller than second operand. 10 < 20, true

>= Operator to check whether first operand is greater than or equal to second operand. 10 >= 20, false

<= Operator to check whether first operand is smaller than or equal to second operand. 10 <= 20, true

Introduction to Python 53

Example

>>> x = 10

>>> y = 12

>>> z = 0

>>> if (x == y):

 print “x is equal to y”

 else:

 print “x is not equal to y”

x is not equal to y #Output

>>> if (x != y):

 print “x is not equal to y”

 else:

 print “x is equal to y”

x is not equal to y #Output

>>> if (x <> y):

 print “x is not equal to y”

 else:

 print “x is equal to y”

x is not equal to y #Output

>>> if (x < y):

 print “x is less than y”

 else:

 print “x is not less than y”

x is less than y #Output

>>> if (x > y):

 print “x is greater than y”

 else:

 print “x is not greater than y”

x is not greater than y #Output

>>> if (x <= y):

 print “x is either equal to or less than y”

 else:

 print “x is neither equal to nor less than y”

x is either equal to or less than y #Output

>>> if (x >= y):

54 Introduction to Computing & Problem Solving using Python

3.9.3 Assignment Operators

This operator is used to store right side operand in the left side operand. Table 3.4 provides a list of

assignment operators.

TABLE 3.4 List of Assignment Operators

Operator Description Example

= Store right side operand in left side operand. a=b+c

+= Add right side operand to left side operand and store the result in left side operand. a+=b or

a=a+b

– = Subtract right side operand from left side operand and store the result in left side

operand.

a–=b or

a=a–b

* = Multiply right side operand with left side operand and store the result in left side

operand.

a*=b or

a=a*b

/ = Divide left side operand by right side operand and store the result in left side operand. a/b or a=a/b

% = Find the modulus and store the remainder in left side operand. a%=b or

a=a%b

** = Find the exponential and store the result in left side operand. a**=b or

a=a**b

// = Find the floor division and store the result in left side operand. a//=b or

a=a// b

 print “x is either equal to or greater than y”

 else:

 print “x is neither equal to nor greater than y”

x is neither equal to nor greater than y #Output

Example

>>> x = 10

>>> y = 12

>>> y += x

>>> print y

22 #Output

>>> y *= x

>>> print y

220 #Output

>>> y /= x

>>> print y

22 #Output

Introduction to Python 55

3.9.4 Bitwise Operators

These operators perform bit level operation on operands. Let us take two operands x = 10 and y = 12. In

binary format this can be written as x = 1010 and y = 1100. Table 3.5 presents a list of bitwise operators.

TABLE 3.5 List of Bitwise Operators

Operator Description Example

& Bitwise AND This operator performs AND operation between operands. Operator

copies bit if it exists in both operands.

x & y results 1000

| Bitwise OR This operator performs OR operation between operands. Operator copies

bit if it exists in either operand.

x | y results 1110

^ Bitwise XOR This operator performs XOR operation between operands. Operator

copies bit if it exists only in one operand.

x ^ y results 0110

~ bitwise inverse This operator is a unary operator used to opposite the bits of operand. ~ x results 0101

<< left shift This operator is used to shift the bits towards left x << 2 results 101000

<< right shift This operator is used to shift the bits towards right x >> 2 results 0010

>>> y %= x

>>> print y

2 #Output

>>> y **= x

>>> print y

1024 #Output

>>> y //= x

>>> print y

102 #Output

Example

>>> x = 10 # 10 = 0000 1010

>>> y = 12 # 12 = 0000 1100

>>> z = 0

Bitwise AND

>>> z = x & y

>>> print z

8 # 8 = 0000 1000

Bitwise OR

56 Introduction to Computing & Problem Solving using Python

3.9.5 Logical Operators

These operators are used to check two or more conditions. The resultant of this operator is always a Boolean

value. Here, x and y are two operands that store either true or false Boolean values. Table 3.6 presents a list

of logical operators. Assume x is true and y is false.

TABLE 3.6 List of Logical Operators

Operator Description Example

and logical AND This operator performs AND operation between operands. When both

operands are true, the resultant become true.

x and y results false

or logical OR This operator performs OR operation between operands. When any

operand is true, the resultant becomes true.

x or y results true

not logical NOT This operator is used to reverse the operand state. not x results false

>>> z = x | y

>>> print z

14 # 14 = 0000 1110

Bitwise XOR

>>> z = x ^ y

>>> print z

6 # 6 = 0000 0110

Bitwise inverse

>>> z = ~x

>>> print z

-11 # -11 = 1111 0101

Left shift

>>> z = x << 2

>>> print z

40 # 40 = 0010 1000

Right shift

>>> z = x >> 2

>>> print z

2 # 2 = 0000 0010

Example

>>> x = True

>>> y = False

>>> print (x and y)

Introduction to Python 57

3.9.6 Membership Operators

These operators are used to check an item or an element that is part of a string, a list or a tuple. A membership

operator reduces the effort of searching an element in the list. Suppose, x stores a value 20 and y is the list

containing items 10, 20, 30, and 40. Then, x is a part of the list y because the value 20 is in the list y. Table 3.7

gives a list of membership operators.

TABLE 3.7 List of Membership Operators

Operator Description Example

in Return true, if item is in list or in sequence. Return false, if item is not in list

or in sequence.

x in y, results true

not in Return false, if item is in list or in sequence. Return true, if item is not in list

or in sequence.

x not in y, results false

Example

>>> x = 10

>>> y = 12

>>> list = [21, 13, 10, 17]

>>> if (x in list):

print “x is present in the list”

else:

print “x is not present in the list”

x is present in the list #Output

>>> if (y not in list):

print “y is not present in the list”

else:

print “y is present in the list”

y is not present in the list #Output

False #Output

>>> print (x or y)

True #Output

>>> print (not x)

False #Output

>>> print (not y)

True #Output

58 Introduction to Computing & Problem Solving using Python

3.9.7 Identity Operators

These operators are used to check whether both operands are same or not. Suppose, x stores a value 20 and

y stores a value 40. Then x is y returns false and x not is y returns true. Table 3.8 provides a list

of identity operators

TABLE 3.8 List of Identity Operators

Operator Description Example

is Return true, if the operands are same. Return false, if the operands are not

same.

x is y, results false

not is Return false, if theoperands are same. Return true, if the operands are not same. x not is y, results true

Example

>>> x = 12

>>> y = 12

>>> if (x is y):

 print “x is same as y”

 else:

 print “x is not same as y”

x is same as y #Output

>>> y = 10

>>> if (x is not y):

 print “x is not same as y”

 else:

 print “x is same as y”

x is not same as y #Output

3.9.8 Precedence of Operators

When an expression has two or more operators, we need to identify the correct sequence to evaluate these

operators. This is because the final answer changes depending on the sequence thus chosen.

Let us look at an example of a mathematical expression:

10 + 5 / 5

When the given expression is evaluated left to right, the final answer becomes 3. However, if the above

expression is evaluated right to left, the final answer becomes 11. This shows that changing the sequence

in which the operators are evaluated in the given expression also changes the solution. Therefore, in order

to remove this problem, a level of precedence is associated with the operators. Precedence is the condition

that specifies the importance of each operator relative to the others.

Table 3.9 to display operator precedence from lower precedence to higher:

Introduction to Python 59

TABLE 3.9 Operator Precedence

Operator Description

NOT, OR AND Logical operators

in , not in Membership operator

is, not is Identity operator

=, %=, /=, //=, -=, +=, *=, **== Assignment operators.

<>, ==, != Equality comparison operator

<=, <, >, >= Comparison operators

^, | Bitwise XOR and OR operator

& Bitwise AND operator

<<, >> Bitwise left shift and right shift

+, - Addition and subtraction

*, /, %, // Multiplication, Division, Modulus and floor division

** Exponential operator

It may happen that an expression has two operators having same precedence. In that case, we use

Associativity to evaluate the expression. Associativity is nothing but the direction in which we evaluate the

operators if they have same precedence.

3.9.9 Associativity

In Table 3.9 (precedence of operators) we can see that many operators are having the same precedence.

Hence, associativity decides the order in which the operators with same precedence are executed.

There are two types of associativity. One is left-to-right and other is right-to-left. In left-to-right

associativity, the operator of same precedence are executed from the left side first and in right-to-left

associativity, the operator of same precedence are executed from the right side first. Most of the operators

in Python have left-to-right associativity. Examples for left-to-right associative operators are multiplication,

floor division, etc and ** operator is right-to-left associative.

Example

>>> 3 * 4 // 6

2 #Output

>>> 3 * (4 // 6)

0 #Output

>>> 3 ** 4 ** 2 # 3^16

43046721 #Output

>>> (3 ** 4) ** 2 # 81^2

6561 #Output

Note The order in which operators are evaluated can be controlled using parentheses, as
illustrated in the example. Parentheses have the highest precedence.

60 Introduction to Computing & Problem Solving using Python

Note When two operators have the same precedence, then operators are evaluated from
left to right direction.

Let us now look at an example of a mathematical expression with operators having the same precedence:

10 * 5 / 5

In the above expression, the multiplication operator is evaluated before the division operator is evaluated.

Based on the number of operands, operators are classified into following two types:

1. Unary Operator

2. Binary Operator

Unary Operator

Unary operators are operators with only one operand. These operators are basically used to provide sign to

the operand.

The format of the unary operator is:

Operator operand

Some unary operators are as follows:

 ● +
 ● -
 ● ~

Example

>>> x = 12
>>> +x
12 #Output

>>> -x
-12 #Output

>>> ~x
-13 #Output

Note The invert(~) operator returns the bit-wise inversion of long integer arguments.
The bit-wise inversion of y can be computed as –(y+1). Hence, in the above example, we
get the ~(12) as -13.

Binary Operator

Binary operators are operators with two operands that are manipulated to get the result. They are also used

to compare numeric values and string values.

The format of binary operator is:

Operand1 Operator Operand2

Some binary operators are as follows:

**, *, /, %, +, -, <<,>>, &, | ,^,<,>,<= ,>=, == ,!= ,<>

We saw many examples of binary operators in the section above.

Introduction to Python 61

1. What are the different types of operators in Python?

Ans.
 ● Arithmetic Operator
 ● Comparison Operator
 ● Assignment Operator
 ● Logical Operator
 ● Bitwise Operator
 ● Membership Operator
 ● Identity operator

Check Your Understanding

3.10 STATEMENT AND EXPRESSION

3.10.1 Statement

A statement can be thought as an instruction that can be interpreted by the Python interpreter. In Section

3.9, we came across print and assignment statements. A statement is interpreted by the interpreter and after

execution displays some result (if there is a need for displaying it). For e.g., print statement produces some

result to display but it does not happen in case of assignment statement.

A program can contain many statements in sequence. If there are multiple statements, the result is

displayed after every statement.

As we move ahead in the chapter, we will study more statements such as while statement, for statement,

if statement, print statement, etc.

Let us look at an example of the assignment statement:

>>> message=”Hello world”

Due to the assignment operator (=), the message variable stores the Hello world string.

Let us look at an example of the print statement:

>>> print 1

 1 #simply prints 1

>>> x=2

>>>print x

 2 #prints the value of x

3.10.2 Expression

An expression is a combination of variables, operators, values and a reserve keyword.

Whenever you type an expression in the command line, the interpreter evaluates it and produces the

result.

Example

>>> 1+1

2 # Output

62 Introduction to Computing & Problem Solving using Python

Evaluation of Expression

The evaluation of an expression produces a value. In an assignment statement, an expression is always there

on the right side.

Let us look at an example of an expression:

>>> 2+3

5 # Output

>>>program=”Hello Python”

>>>program

‘Hello Python’ # Output

>>>print program

Hello Python # Output

An expression is not always a mathematical expression in Python. A value by itself is an expression. In

above example, the “Hello Python” is an expression. The interpreter reads the expression and displays

the string written in quotes as it is.

Note In the given example, we assigned a value “Hello Python” to the variable program.
Now, when we type only program, we get the output ‘Hello Python.’ This is the term we
typed when we assigned a value to the variable. When we use a print statement with
program it gives the value of the variable, i.e., the value after removing quotes.

3.11 STRING OPERATIONS

The contiguous set of characters kept within quotation marks in Python is termed string. Either single quotes or

double quotes can be used to represent strings. A string in Python can be a combination of alphabets, numerals

and symbols. Mathematical operations cannot be performed on the string even if we have numeral values in it.

There are many operations which can be performed on a string such as slice operator ([]) and [:]),

concatenation operator (+) and repetition operator (*). Slicing is used to take out a subset of the string,

concatenation is used to combine two or more than two strings and repetition is used when we want to repeat

same string several times.

Let us look at an example of how a string is declared in Python.

>>>test=”Test string”

As mentioned earler, a string supports various types of operations:

3.11.1 Concatenation

The concatenation operation is done with the + operator in Python. Concatenation means joining the strings

by linking the last end of the first string with the first end of the second string and so on. Two separate strings

transform into one single string after concatenation.

Let us look at an example of concatenation:

>>>test=”Test string”

>>> “Hello” + test

‘HelloTest string’ # Output

>>>

Introduction to Python 63

3.11.2 Repetition

The repetition operation is performed on the strings in order to repeat the string several times. It is done

with * operator.

Let us look at an example of repetition:

>>> ‘Spam’*3

SpamSpamSpam # Output

>>>

3.11.3 Get Particular Character

To access a single item of the string square brackets[] are used. To access the third element of the string, the

string name is typed followed by the [2]. Remember, the index of the string starts with 0 and not 1.

>>>test=”Test string”

>>>test[3]

‘t’ # Output

>>>

3.11.4 Slicing

In Python, you can extract a substring by using a colon inside the square bracket [:]. The resultant substring

is a part of the long string.

>>>test=”Test string”

>>>test[1:7]# substring between index 1 to 7 (excludes 7)

‘est st’ # Output

>>>test[:3] # substring from index 0 to 3(excludes 3)

‘Tes’ # Output

>>>test[2:] # substring from index 2 to last

‘st string’ # Output

>>>

Python also provides various in-built commands or methods for string operation (Table 3.10). These

methods are used to convert the lower case letter to upper case, to determine the length of string, etc.

TABLE 3.10 List of in-built commands

Method Description

.lower() Convert all upper case letters into lower case.

.upper() Convert all lower case letters into upper case.

.isalpha() Return true if string contain only alphabetical characters.

.isdigit() Return true if string contain only digits characters.

.isspace() Return true if string contain space.

.find(“string”) Return the first index of search string.

.replace(“ old”,”new”) Replace the string with other string.

.count(“character”) Return the occurrence of particular character in string.

len(“string”) Return the length of string.

64 Introduction to Computing & Problem Solving using Python

Example

>>> s = “Hello Python” #Defining a string
>>> print s.lower()
hello python #Converts the string in lower case
>>> print s.upper()
HELLO PYTHON #Converts the string in upper case
>>> print s.find(“l”)
2 #returns the index of first ‘l’
>>> print s.replace(“l”,”p”)
Heppo Python #Replace each “l” to “p”
>>> print s.count(“o”)
2 #count the number of “o”
>>> print len(s)
12 #Length of the string

>>> s = “Hello”
>>> print s.isalpha()
True #String contains only alphabets
>>> print s.isdigit()
False #String doesn’t contain digits

1. What is slicing?

Ans. In Python, you can extract a substring by using a colon inside the square bracket [:]. The

resultant substring is a part of the long string.

2. What are statement and expression in Python?

Ans. A statement is the instruction that can be interpreted by the Python interpreter. An expression

is a combination of variables, operators, values and reserve keyword.

Check Your Understanding

3.12 BOOLEAN EXPRESSIONS

A Boolean expression may have only one of two values: TRUE or FALSE.

The simplest Boolean expressions in Python are True and False. The following example uses the operator

==, which compares two operands and prints true if they are equal otherwise print false:

>>> 5 == 5

True # Output

>>> 5 == 6

False # Output

>>> True

True # Output

>>> False

False # Output

Introduction to Python 65

Note We can see in the following example that bool is the name of the class representing
Python’s Boolean expressions.

>>>type(True)

<type ‘bool’>

>>>type(False)

<type ‘bool’>

3.13 CONTROL STATEMENTS

3.13.1 The for Loop

The Python for loop is an iterator-based for loop. It goes through the elements in any ordered sequence

list, i.e., string, lists, tuples, the keys of dictionary and other iterables. In each iteration step, a loop variable

is set to a value. The for loop in Python is a bit different from the for loop in any other programming

language you have gone through.

Syntax

>>>for x in y :

 Block 1

 else: # Optional

 Block 2 # excuted only when the loop exits normally

In the above section, we have seen the syntax of for loop. The for loop is used to iterate over a

sequence. Here, x is used to iterate over y and when the loop exits normally then the else part of the for

loop executes otherwise not.

Example

>>>for letter in ‘Python’ :

print ‘Current Letter :’, letter

Output:

Current Letter : P

Current Letter : y

Current Letter : t

Current Letter : h

Current Letter : o

Current Letter : n

Example

>>> subjects = [“Maths”, “English”, “Physics”, “Chemistry”, “Computer”]

>>> for x in subjects:

print(x)

66 Introduction to Computing & Problem Solving using Python

Maths #Output

English

Physics

Chemistry

Computer

Example

>>> for x in range(7):
print(x)

else:
print(‘Else Part’)

0

1

2

3

4

5

6

Else Part

In the above example, we have printed the value from 0 to 6 by using the for loop and an else part

having a print statement is also been used. In this case, the for loop is ended normally then the

else part also executed but when the loop stops because of break statement then the else part

doesn’t execute.

range() Function

The range() function is a built-in function in Python that helps us to iterate over a sequence of numbers.

It produces an iterator that follows arithmetic progression.

Example

>>> range(8)

[0, 1, 2, 3, 4, 5, 6, 7]

range(8) provides a sequence of numbers 0-7. That is to say, range(n) generates a sequence of numbers

that starts with 0 and ends with (n-1).

range() function can also be passed with two arguments: begin and end.

Example

>>> range(3,9)

[3, 4, 5, 6, 7, 8]

Introduction to Python 67

We provided the begin index with 3 and the end index with 9. Hence, the range function generates a

sequence iterator of numbers that starts from 3 and ends at 8.

Till now, we have seen that all the numbers in the sequence have a difference of 1. We can also change

this difference if we want to. For this purpose, we have to use another parameter, step, along with begin

and end.

Example

>>> range(3,40, 5)

[3, 8, 13, 18, 23, 28, 33, 38]

This range() function gives us a sequence that starts from 3 and ends at 38; every number in the list has

a difference of 5.

Example

>>> subjects = [‘maths’, ‘physics’, ‘chemistry’, ‘computer’]

>>> for index in range(len(subjects)):

print ‘Current Subject : ‘, subjects[index]

Current Subject : maths #Output

Current Subject : physics

Current Subject : chemistry

Current Subject : computer

In the above example, a list subjects is defined which has 4 elements or items in it. Now, it is required

to print all the elements in list subjects one by one with the for loop and taking help of range()

function. Now, we initialized a for loop in next statement which will iterate over the sequence of number

given by the range() function. In our example, we have used range(len(subjects)) which means

range(4) that is because the length of the list subjects is 4 which is computed by the function len.

3.13.2 While Statement

The while statement is used when you have a piece of code and you want to repeat it ‘n’ number of times

or forever. With while loop, we have to give a conditional statement that tells the interpreter when the loop

will halt.

Syntax

>>> while condition :

 block

 else: #Optional

 statement

68 Introduction to Computing & Problem Solving using Python

Here, condition is a statement by which interpreter decides when to halt the loop and block is the

piece of code that we want to repeat.

Example

Write a while statement that prints integers from zero to 5.

>>> count = 0

>>> while count < 6:

 print count

 count += 1

0 # Output

1

2

3

4

5

break and continue Statements

The break and continue statements are often useful in a while loop as well as in a for loop. The break

statement exits from the loop and transfers the execution from the loop to the statement that is immediately

following the loop. The continue statement causes execution to immediately continue at the start of the

loop, it skips the execution of the remaining body part of the loop.

Example

Print first five even numbers.

>>> count = 2

>>> while True:

print count

count = count + 2

if count >= 12:

 break # breaks the loop

2 # Output

4

6

8

10

Example

Print first four even numbers.

>>> for i in range(1,10):

Introduction to Python 69

Note If the break statement in a for loop is executed then the else part of that for loop
is skipped.

Note The break and continue statements are often useful in a while statement. The
break statement exits from the loop. The continue statement causes execution to
immediately continue at the start of the loop.

3.13.3 if elif else Statement

The if statement is known as the decision-making statement in programming languages. With an if clause,

a condition is provided; if the condition is True then the block of statement written in the if clause will be

executed, otherwise not.

Example

>>>var = 100

if (var ==100) : print “Value of expression is 100”

Output:
Value of expression is 100

An else statement can be combined with an if statement. It contains the block of code that executes

if the conditional expression in the if statement resolves to 0 or FALSE value. It is an optional statement.

Please note there can be at the most one else statement following if.

Syntax

>>>if expression :

 statement1

 else :

 statement2

if i % 2 != 0:

 continue # if condition becomes true, it skips the print

 part

print i

2 # Output

4

6

8

70 Introduction to Computing & Problem Solving using Python

We can check multiple expressions for TRUE with the help of elif statement and execute a block of code

written just below the elif statement whose condition is TRUE.

Similar to else, the elif statement is optional. However, there can be more than one elif statement

following an if.

Syntax

>>>if expression1 :

 statement1

 elif expression2 :

 statement2

 elif expression3 :

 statement3

 else expression4 :

 statement4

1. What is a for statement?

Ans. The for statement in Python differs a bit from what you may be used to in C. In C, for loop

gives the user the ability to define both the iteration step and the halting condition, but in

Python, the for statement iterates over the items any ordered sequence (a list or a string), in

the order that they appear in the sequence.

Check Your Understanding

3.13.4 Alternative Executions

The alternative execution provides two possibilities. The condition determines which possibility is executed.

If the condition is TRUE, the first block is executed but if condition is FALSE, another block of code is

executed.

This is the second form of the if statement. The syntax looks like:

>>>if x % 2 == 0 : print ‘x is even’

else

print ‘x is odd’

The condition can be either true or false. So, only one alternative will be executed. The alternatives are

called branches, because they are branches in the flow of execution.

3.13.5 Conditional Execution

In programming languages, conditional statements or conditional constructs are the statements that are

generally used with some conditions. The actions performed by these conditional statements are entirely

dependent on the value of the condition, on whether the value is TRUE or FALSE. The condition usually

uses comparisons and arithmetic expressions with variables. These expressions are evaluated to the Boolean

values True or False. The statements for the decision-making are called conditional statements or conditional

expressions.

Introduction to Python 71

The simplest form is the if statement:

>>>if x > 0 :

print “x is positive”

The Boolean expression after the if statement is called the condition. If the condition is
true, then the intended statement is executed. If the condition is not true, the statement is
not executed.

TIP

Here’s an example of the syntax for an if statement:

>>>if BOOLEAN EXPRESSION:

STATEMENTS

Note The set of intended statements that follow a conditional statement or a loop
statement is called block. Indentation can be done by 'tabs' or 'spaces'. Using 4 spaces for
indentation of a block is standard. A statement block inside a compound statement is called
the body of the statement.
The intended statements that follow the conditional statements are called block. The first
unintended statement marks the end of the block. A statement block inside the compound
statement is called the body of the statement.

There are no bounds on the number of statements that can appear in the body of an if statement, but there

has to be at least one statement. Occasionally, it is useful to have a body with no statements. In that case,

you can use the pass statement, which does nothing.

>>>if True : # This is always true

 pass # so this is always executed, but it does nothing

3.14 ITERATION – while STATEMENT

A while loop statement in Python programming language is the command that repeats a piece of code up

to several times. The number of times the piece of code is executed depends on the condition expression

written with the while statement.

Syntax

The syntax of a while loop in Python programming language is as follows:

>>> while expression :

 statement(s)

 else: # Optional

 statement # executes only when while condition becomes false

Here, statement(s) may be a single statement or a block of statements. The condition may be any

expression, and whenever the expression resembles a non-zero value, it will be treated as TRUE, otherwise

it will be treated as FALSE. The loop iterates while the condition is TRUE.

72 Introduction to Computing & Problem Solving using Python

Unlike other programming languages, while loop in Python makes use of an optional else clause which

is executed when the condition of while statement fails.

When the condition becomes false, program control passes to the line immediately following the loop.

Flow Diagram

Figure 3.8 represents a flow diagram.

while expression:
statements(s)

condition

conditional code If condition
is false

If condition
is ture

While has an optional
‘else’ block

Figure 3.8 Working of a While Loop

Example

>>>count = 0

while (count < 9) :

 print ‘The count is :’, count

 count = count + 1

Output:
The count is : 0

The count is : 1

The count is : 2

The count is : 3

The count is : 4

The count is : 5

The count is : 6

The count is : 7

The count is : 8

The block here, consisting of the print and increment statements, is executed repeatedly until count is no

longer less than 9. With each iteration, the current value of the index count is displayed and then increased

by 1.

Introduction to Python 73

Note If there is a continue statement inside a while loop or a for loop then also the else
part of that loop is executed.

3.15 INPUT FROM KEYBOARD

In a programming language, the input from keyboard by user plays the most important role in executing a

program. There is hardly any program which executes without some input. The input in many programs is

prompted by the user and the user uses the keyboard in order to provide input for the program to execute.

Python programming language also provides the facility to user to provide input from keyboard. That is

done by two ways in Python.

3.15.1 input() Function

The first function for prompting the input from user in Python is through input() function. input()

function has an optional parameter, which is the prompt string. When the input() function is called, in

order to take input from the user then the execution of program halts and waits for the user to provide an

input. The input is given by the user through keyboard and it is ended by the return key.

input() function interprets the input provided by the user, i.e. if user provides an integer value as input

then the input function will return this integer value. On the other hand, if the user has input a String, then

the function will return a string.

Example

>>> name = input(“What is your Name?”)

>>> print (“Hello “ + name + “!”)

What is your Name? ‘John’ #Output

Hello John!

>>> age = input(“Enter your age? “)

>>> print age

Enter your age? 32 #Output

32

>>> hobbies = input(“What are your hobbies? “)

>>> print hobby

What are your hobbies? [‘playing’, ‘travelling’] #Output

[‘playing’, ‘travelling’]

>>> type(name)

<type ‘str’>

>>> type(age)

74 Introduction to Computing & Problem Solving using Python

3.15.2 raw_input() Function

raw_input() is somewhat different from the input() function provided by Python programming

language. raw_input() also takes the input from the user but it does not interpret the input and also it

returns the input of the user without doing any changes, i.e. raw. Afterwards, we can change this raw input

into any data type which is needed for our program. In order to take input from the user in desired data type,

we can use the casting function with raw_input().

This is the reason, why raw_input() is most preferred over the input() function.

Example

No casting

>>> age = raw_input(“What is Your Age? “)

What is Your Age? 46

>>> type(age)

<type ‘str’> #Input is stored as string

#Using casting function to convert input to integer

>>> age = int(raw_input(“What is your age? “))

What is your age? 46

>>> type(age)

<type ‘int’> #Input is stored as integer

1. What is Alternative Execution?

Ans. The alternative execution provides two possibilities and the condition determines which one is

to be executed. This is the second form of the if statement.

2. What is the syntax for ifelse and elif statements?

Ans. >>> if expression1 :

 statement(s)

 elif expression2 :

 statement(s)

 elif expression3 :

 statement(s)

 else expression4 :

 statement(s)

Check Your Understanding

<type ‘int’>

>>> type(hobbies)

<type ‘list’>

Introduction to Python 75

 ● Python is a high-level general-purpose programming language. The code written in Python is automatically

compiled to byte code and executed.

 ● The print statement is used to display the output screen.

 ● In Python, the Hash character (#) is used for commenting. Codes or texts that come after the hash character

are not considered as a part of the program.

 ● In Python, an identifier (name) must begin with a letter or underscore and can include any number of

letters, digits, or underscore.

 ● Writing the name of a variable is called declaring a variable whereas assigning a value to a variable is

called initialising a variable.

 ● Python supports six data types which are as follows:

 1. Numeric

 2. String

 3. List

 4. Tuple

 5. Dictionary

 6. Boolean

 ● The main differences between lists and tuples are that lists are enclosed in brackets ([]) and their elements

and size can be changed, while tuples are enclosed in parentheses(()) and cannot be updated. Tuples can

be thought of as read-only lists.

 ● The items cannot be modified in tuple, but can be modified in the list.

 ● A Python dictionary works on the basis of key-value pairs. Key used in dictionary can be an integer value

or a string value.

 ● On the basis of functionality, operators in Python are categorised into following seven types:

 1. Arithmetic operator

 2. Comparison operator

 3. Assignment operator

 4. Logical operator

 5. Bitwise operator

 6. Membership operator

 7. Identity operator

 ● A statement is a unit of code that the Python interpreter can execute.

 ● An expression is a combination of variables, operators, values and reserve keyword.

 ● A string is a combination of characters (alphabets, digits and symbols). A string value is always enclosed

within double or single quotes.

 ● The concatenation operation is done with the + operator. Concatenation means joining the strings together

by linking them end to end.

 ● The repetition operation is performed on the strings in order to repeat the string several times.

 ● In Python, you can extract substring by using the colon inside the square bracket [:]. The resultant

substring is a part of the long string.

76 Introduction to Computing & Problem Solving using Python

 ● In Python, for statement iterates over the items in a sequence (a list or a string) in the order in which

they appear in the sequence.

 ● Syntax for while statement in Python is:
 >>> while condition :

 Block

✓ COMMENT: The part of the program not executed by the interpreter. It is used by other persons to

understand the program thoroughly.

✓ CONCATENATION: The process of joining strings end-to-end.

✓ DICTIONARY: A mapping of keys to their corresponding values.

✓ FLOATING POINT: A type of numeral that has a fractional part.

✓ HIGH-LEVEL LANGUAGE: A programming language such as Python that is designed to be easy for

humans to read and write.

✓ INDEX: An integer value that represents an element in a sequence.

✓ INTEGER: A type of numeral that represents whole numbers including negative numbers.

✓ INTERACTIVE MODE: A way of using Python language where we type command and expressions.

✓ INTERPRET: To execute a program in a high-level language by executing it one line at a time.

✓ ITEM: An element or a value in a series.

✓ ITERATION: The repetition of a set of statements or a piece of code.

✓ KEYWORD: A word that is reserved in a programming language for a specific purpose. We cannot use

keywords such as if and else as variable names.

✓ OPERAND: The value on which an operator operates.

✓ SLICE: A subset or a part of a string.

PROGRAMS

1. Write a Program to find the square root of a number.

Solution.
>>> x = int(input(‘Enter an integer number: ‘))

>>> sqrt_x = x ** 0.5

>>> print (sqrt_x)

Enter an integer number: 64

8.0 #Output

PROGRAMSPROGRAMS

Introduction to Python 77

2. Write a program to find the area of a Rectangle.

Solution.
>>> l = float(input(‘Enter the length of the Rectangle: ‘))

>>> b = float(input(‘Enter the breadth of the Rectangle: ‘))

>>> area = l * b

>>> print (area)

Enter the length of the Rectangle: 14

Enter the breadth of the Rectangle: 7

98.0 #Output

3. Write a program to swap the values of two variables.

Solution.
>>> num1 = input(‘Enter the value of num1: ‘)

>>> num2 = input(‘Enter the value of num2: ‘)

>>> temp = num1

>>> num1 = num2

>>> num2 = temp

>>> print “num1 = “, num1

>>> print “num2 = “, num2

Enter the value of num1: 4

Enter the value of num2: 7

num1 = 7 #Output

num2 = 4

4. Write a program to convert kilogram into pound.

Solution.
>>> kg = float(input(‘Enter the value in kilogram: ‘))

>>> kg_to_pound = 2.20462

>>> pound = kg * kg_to_pound

>>> print “%0.3f kg = %0.3f pounds” %(kg,pound)

Enter the value in kilogram: 60

60.000 kg = 132.277 pounds #Output

5. Write a program to find whether a number is even or odd.

Solution.
>>> number = int(input(“Enter an integer number: “))

>>> if (number % 2) == 0:

print “Number is even”

else:

print “Number is odd”

Enter an integer number: 6

Number is even #Output

6. Write a program to check the largest among the given three numbers.

Solution.
>>> x = int(input(“Enter the first number: “))

Enter the first number: 14

>>> y = int(input(“Enter the second number: “))

78 Introduction to Computing & Problem Solving using Python

Enter the second number: 21

>>> z = int(input(“Enter the third number: “))

Enter the third number: 10

>>> if (x > y) and (x > z):

l = x

elif (y > x) and (y > z):

l = y

else:

l = z

>>> print “The largest among the three is “,l

The largest among the three is 21 #Output

7. Write a Python program to check if the input year is a leap year or not.

Solution.
Python program to check if the input year is a leap year or not

>>> year = int(input(“Enter year: “))

>>> if(year % 4)==0:

if(year%100)==0:

 if(year%400)==0:

 print (year, ‘ is leap year’)

 else:

 print (year, ‘ is not leap year’)

else:

 print (year, ‘ is leap year’)

else:

print (year, ‘ is leap year’)

Output:

Enter a year: 2016

2016 is leap year

Output:

Enter a year: 1985

1985 not leap year

8. Write a Python program to display the Fibonacci sequence for n terms.

Solution.
Program to display the Fibonacci sequence for n terms here n is provided by

the user

take input from the user

>>> numbers = int(input(“Enter the value for x (where x>2) ? “))

first two terms

>>> x1 = 0

>>> x2 = 1

>>> count = 2

Introduction to Python 79

check if the number of terms is valid

>>> if numbers <= 0:

 print(“Please enter positive integer”)

elif numbers == 1:

 print(“Fibonacci sequence is: “)

 print(x1)

else:

 print(“Fibonacci sequence is: “)

 print(x1,”,”,x2)

 while count < numbers:

 xth = x1 + x2

 print(xth)

 # update values

 x1 = x2

 x2 = xth

 count += 1

Output:

Enter the value for n (where n>2)? 10

Fibonacci sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34,

9. Write a program to demonstrate While loop with else.

Solution.
Python program to demonstrate

the while loop and

else statement

>>> count = 0

>>> while count < 3:

 print(“Inside the while loop”)

 print (count)

 counter = count + 1

 else:

 print(“Inside the else statement”)

Output:

Inside the while loop

0

Inside the while loop

1

Inside the while loop

2

Inside the else

10. Write a Python program to print the prime numbers for a user provided range.

Solution.
Python program to print the prime numbers for a user provided range

input range is provided from the user

>>> low = int(input(“Enter Lower range: “))

80 Introduction to Computing & Problem Solving using Python

>>> up = int(input(“Enter upper range: “))

>>> for n in range(low, up+1):

if n > 1:

 for i in range(2, n):

 if(n % i) == 0:

 break

 else:

 print(n)

Output:

Enter lower range: 100

Enter upper range: 173

103

107

109

113

127

131

137

139

149

151

157

163

167

173

Multiple Choice Questions

1. Which of the following is not a data type?

a. String b. Numeric

c. Array d. Tuples

2. Which character is used for commenting in Python?

a. # b. !

c. @ d. *

3. What is the output of [‘name!’] * 2?

a. [‘name!’] * 2 b. [‘name’!, ‘name’!]

c. [‘name!’, ‘name!’] d. [‘name’!] * 2

4. Which is not a reserved keyword in Python?

a. Insert b. Pass

c. Class d. Lambda

5. What is the output of >>> 4+?

a. 4+ b. 4

c. 5 d. Invalid syntax

6. What will be the output of str[0:4] if str=”Hello”?

a. ‘Hello’ b. ‘H’

c. ‘Hel’ d. ‘Hell’

7. Which of the following is the floor division operator?

a. / b. %

c. // d. \\

Introduction to Python 81

8. Which of the following is used to find the first index of search string?

a. .find(“string”) b. .search(“string”)

c. (“string”).find d. (“string”).search

9. Which of the following is used to access single character of string?

a. [:] b. ()

c. [.] d. []

10. What is the order of precedence in Python?

i. Addition ii. Multiplication

iii. Division iv. Subtraction

v. Exponential vi. Parenthesis

a. ii, i, iii, iv, vi, v b. vi, v, iii, ii, i, iv

c. vi, v, ii, i, iii, iv d. ii, vi, iii, i, iv, v

11. Which of the following will be printed?

 x =4.5

 y =2

 print x//y

a. 2.0 b. 2.25

c. .25 d. 0.5

12. What gets printed?

 Nums=set([1,1,2,3,3,3,4])

 Print len(nums)

a. 2 b. 4

c. 5 d. 7

Short Questions

1. What is Python? What is Python good for?

2. How can we distinguish between tuples and lists?

3. How can a string be converted to a number?

4. What are comments in Python?

5. What will be the output of the given code?

 list = [‘p’, ‘r’, ‘s’, ‘t’,]

 print list[8:]

6. Briefly describe the data types in Python.

7. What will be the output of the code str + “Python” if str = ‘Programming!’?

8. What will be the output of the code test*5 if test = (000, ‘computer’)?

9. Describe operators in Python.

10. How will you create a dictionary in Python?

11. How will you convert a string to an integer in Python?

12. What are the uses of //, **, *= operators in Python?

Answers to Multiple Choice Questions

1. c 2. a 3. c 4. a 5. d 6. a 7. c 8. a 9. d 10. b

11. a 12. b

FUNCTIONS4

4.1 INTRODUCTION

Functions are self-contained programs that perform some particular tasks. Once a function is created by the

programmer for a specific task, this function can be called anytime to perform that task.

Suppose, we want to perform a task several times, in such a scenario, rather than writing code for that

particular task repeatedly, we create a function for that task and call it when we want to perform the task.

Each function is given a name, using which we call it. A function may or may not return a value.

There are many built-in functions provided by Python such as dir(), len(), abs(), etc. Users can

also build their own functions, which are called user-defined functions.

There are many advantages of using functions:

a) They reduce duplication of code in a program.

b) They break the large complex problems into small parts.

c) They help in improving the clarity of code (i.e., make the code easy to understand).

d) A piece of code can be reused as many times as we want with the help of functions.

4.2 BUILT-IN FUNCTIONS

Built-in functions are the functions already defined in the Python programming language; we can directly

call them to perform a specific task. Every built-in function in Python performs some particular task.

For example, the Math module has some mathematical built-in functions that perform tasks related to

mathematics.

In this section, we will see some built-in functions provided in the Python programming language.

4.2.1 Type Conversion

There are some built-in functions in the Python programming language that can convert one type of data

into another type. For example, the int function can take any number value and convert it into an integer.

Functions 83

Example

>>>int(5.5)

5 # Output

>>>int(‘Python’)

Traceback (most recent call last): # Output

 File “<pyshell#21>”, line 1, in <module>

int(‘Python’)

ValueError: invalid literal for int() with base 10: ‘Python’

>>>int(‘5’)

5 # Output

In the above examples, you can see that in the first case, we took a floating-point number 5.5 that was

converted to an integer number 5 by the int function. In the second case, we took a string that was not a

number and applied int function to it, but got an error. This means that a string that is not a number cannot

be converted to an integer. However, in the third case, we took a number in string form and converted it to

an integer 5 using int function.

Similarly, we have a function float, which can convert integers and string into floating-point numbers.

Example

>>>float(45)

45.0 # Output

>>> float (‘5’)

5.0 # Output

Finally, Python has a str function that converts the types into strings.

Example

>>>str(67)

‘67’ # Output

>>>print(‘Python version’ + 2.7)

TypeError: cannot concatenate ‘str’ and ‘float’ objects # Output

>>>print(‘Python version’ + str(2.7))

Python version2.7 # Output

In the example given above, you can see that when we try to concatenate a string and a float object, the

interpreter gives an error saying, “cannot concatenate ‘str’ and ‘float’ objects.” Hence, we

convert the float object, i.e., 2.7 to a string using the str function and then successfully concatenate it with

another string.

4.2.2 Type Coercion

Type conversion discussed above is known as explicit conversion.

There is also another kind of type conversion in the Python language, known as implicit conversion.

Implicit conversion is also known as type coercion and is automatically done by the interpreter.

84 Introduction to Computing & Problem Solving using Python

Type coercion is a process through which the Python interpreter automatically converts a value of one

type into a value of another type according to the requirement.

Example

Suppose we want to calculate an elapsed fraction of an hour. The expression minutes/60 does integer

arithmetic and gives result, even 59 minutes past hour.

One solution is that we convert the minutes to a floating-point number using type conversion and

do floating-point division:

>>>minute=59

>>>float(minute)/60

0.98333333333 # Output

Alternatively, we can take advantage of type coercion process in Python. For the mathematical

operators, if either operand is a float, the other is automatically converted to float:

>>>minute=59

>>>minute/60.0

0.98333333333 # Output

Hence, in the example given above, we make the denominator a float number. The Python interpreter

automatically converts the numerator into float and does the calculation.

1. What is a function?

Ans. Functions are self-contained programs that perform some particular tasks. Once a function is

created by the programmer, this function can be called anytime to perform the specific task.

2. What is Type conversion?

Ans. These are some built-in functions in the Python programming language that can convert one

type of data into another type. For example, the int function can take any number value and

convert it into an integer.

3. Give the syntax required to convert an integer number into string and a float to an integer.

Ans. #integer to string

 >>>str(5)
 ‘5’ # Output

 # float to integer

 >>>float(5.50)

 5 # Output

Check Your Understanding

Note that when a float number is converted to integer, the tractional part is truncated.

4.2.3 Mathematical Functions

In mathematics, we have functions such as sin and log and we have to evaluate some expressions like

sin(pi/4) and log(1/x). We follow a process to solve this type of expressions; first, we solve the

innermost part of the parenthesis, and then move on to the outer functions.

Functions 85

Python provides us a Math module that contains most of the familiar and important mathematical

functions. A module is a file that contains some predefined Python codes. A module can define functions,

classes and variables. It is a collection of related functions grouped together.

Before using a module in Python, we have to import it.

For example, to import the math module, we use:

>>> import math

This statement creates an object of module named math. Now, if we try to print this object, the interpreter

will give some information about it:

>>>print math

<module ‘math’ (built-in)>

There are many predefined functions and variables that reside under the module object. To access these

functions, we have to write the name of the module followed by a dot (.) (this dot is also known as a period)

followed by the function name.

Example

>>>decibel = 10 * math.log10(18.0)

>>>angle = 2.5

>>>height = math.sin(angle)

In the given example, we use two math module functions, log and sin. In the first statement, the variable

decibel is set to the log of 18 base 10. If you want to perform log 18.0 with base e, then simply

write log(18.0).

The third statement calculates the sine of the variable angle. Sin and other trigonometric functions

(i.e., cos, tan, cosec, etc.) take the value of angles in radians as arguments. In order to convert degrees

to radians, we divide the value in degree by 360 and multiply by 2*pi.

Example

Find the cos of 45degrees.
>>>degree = 45

>>>angle = degree * 2 * math.pi/360.0

>>>math.cos(angle)

0.7071067811865476 # Output

In the given example, we use a math.pi function in order to get the variable pi from the math module.

4.2.4 Date and Time

Python provides the built-in modules time and calendar through which we can handle date and time in

several ways. For example, we can use these modules to get the current time and date. In order to use the

time module, we need to import it into our program first. Similarly, for working with dates, we have to import

the calendar module first.

86 Introduction to Computing & Problem Solving using Python

Examples

Getting current date and time:

>>> import time;

>>>

>>> localtime = time.localtime(time.time())

>>> print “Local current time : “, localtime

#Output

Local current time : time.struct_time(tm_year=2016, tm_mon=5, tm_mday=31,

tm_hour=19, tm_min=21, tm_sec=50, tm_wday=1, tm_yday=152, tm_isdst=0)

This example gives us the current time and date. This function returns a time-tuple with nine items.

If we want, we can change the format in which the time and date is given.

Getting formatted date and time:

Though we can format time and date according to our interest, the most common method used to get

time in readable format is asctime().

>>> import time;

>>>

>>> localtime = time.asctime(time.localtime(time.time()))

>>> print “Local current time : “, localtime

Local current time : Tue May 31 19:28:05 2016 #Output

Here, we make use of the asctime() function to get a readable format of date and time.

Getting calendar for a month:

Python provides us a calendar module through which we can use yearly and monthly calendars

>>> import calendar

>>> c = calendar.month(2015,10)

>>> print “Calender for October, 2015: \n”, c

Calender for October, 2015: #Output

 October 2015

Mo Tu We Th Fr Sa Su

 1 2 3 4

 5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31

In the examples discussed above, localtime(), asctime() and month() are built-in functions

contained in the modules time and calendar.

Functions 87

4.2.5 dir() Function

dir() takes an object as an argument. It returns a list of strings which are names of members of that object.

If object is a module, it will list sub-modules, functions provided by, variables, constants, etc. It’s a good

tool to learn and understand about a module or an object.

Example

>>> import math
>>> list = dir(math)
>>> print list
#Output

[‘__doc__’, ‘__name__’, ‘__package__’, ‘acos’, ‘acosh’, ‘asin’, ‘asinh’,

‘atan’, ‘atan2’, ‘atanh’, ‘ceil’, ‘copysign’, ‘cos’, ‘cosh’, ‘degrees’,

‘e’, ‘erf’, ‘erfc’, ‘exp’, ‘expm1’, ‘fabs’, ‘factorial’, ‘floor’, ‘fmod’,

‘frexp’, ‘fsum’, ‘gamma’, ‘hypot’, ‘isinf’, ‘isnan’, ‘ldexp’, ‘lgamma’,

‘log’, ‘log10’, ‘log1p’, ‘modf’, ‘pi’, ‘pow’, ‘radians’, ‘sin’, ‘sinh’,

‘sqrt’, ‘tan’, ‘tanh’, ‘trunc’]

In the given example, we give the math module as an argument to the dir() function and it gives the

list of all the functions, modules and variables present in the math module.

Note The module that is passed in the dir() function must be imported first.

4.2.6 help() FUNCTION

help() function is a built-in function in Python Programming Language which is used to invoke the help

system. It takes an object as an argument. It gives all the detailed information about that object like if it’s a

module, then it will tell you about the sub-modules, functions, variables and constants in details.

Example

import math module

>>> import math

>>> help(math.sin) #give detailed info about sin function in math module

Help on built-in function sin in module math:

sin(...)

 sin(x)

 Return the sine of x (measured in radians).

>>> help(math.cos) #give detailed info about cos function in math module

Help on built-in function cos in module math:

cos(...)

 cos(x)

 Return the cosine of x (measured in radians).

88 Introduction to Computing & Problem Solving using Python

4.3 COMPOSITION OF FUNCTIONS

Composition is a concept that you might have come across in algebra pre-calculus. The syntax of composition

in mathematics is as follows:

f(g(x)) = f o g(x),

where, f and g are functions. This means the return value of function g is passed into the function f as

parameters/arguments.

Just as with the mathematical functions, Python functions can also be composed. We can use any kind of

expression including arithmetic operators as an argument to a function.

Example

>>> x = math.sin(angle + math.pi/4)

In the given example, we have used an expression angle + math.pi/4 as an argument to the function

math.sin. First, the value of the innermost expression is computed, and then the resulting value is used as

the argument for the function math.sin.

Similarly, we can also take a function as an argument to another function.

Example

>>> x = math.exp(math.log(10.0))

Here, the value of the function math.log(10.0)is calculated first and then used as the argument for

the function math.exp.

1. What are mathematical functions? How are they used in Python?

Ans. Python provides us a math module containing most of the familiar and important mathematical

functions. A module is a file that contains some predefined Python codes. A module can define

functions, classes and variables. It is a collection of related functions grouped together.

 Before using a module in Python, we have to import it.

 For example, to import the math module, we use:

 >>> import math

2. Write a program to print the calendar for the month of March, 1991.

Ans.

 >>> import calendar

 >>> c = calendar.month(1991, 3)

 >>> print c

 March 1991

Check Your Understanding

Functions 89

4.4 USER DEFINED FUNCTIONS

Until now, we have seen only the built-in functions of Python, but as with many other languages, Python

also allows users to define their own functions. To use their own functions in Python, users have to define

the function first; this is known as Function Definition. In a function definition, users have to define a

name for the new function and also the list of the statements that will execute when the function will be

called.

The block of the function starts with a keyword def after which the function name is written followed

by parentheses. We can also give some input parameters or arguments to a function by placing them within

these parentheses. The parameters can also be defined within these parentheses. The block of statements

always starts with a colon (:). After writing the code statements, the block is ended with a return statement

whose syntax is return [expression]. As we have stated earlier, a function may or may not return

a value. If you want to return more than one value, separate the values using commas. The default return

value is NONE.

Syntax

def functionname(parameters):

“function_docstring”

statement(s)

return [expression]

In any type of programming language, a docstring is a string literal which is used to document a specific

part of the code. It is used just like the comments in the programming language. It does not affect the program

execution but it is considered to be a good practice to use docstrings.

Example

>>>def print_lines():

... print “Hello Python!!”

... print “Welcome to Python Programming!!”

 Mo Tu We Th Fr Sa Su

 1 2 3

 4 5 6 7 8 9 10

 11 12 13 14 15 16 17

 18 19 20 21 22 23 24

 25 26 27 28 29 30 31

90 Introduction to Computing & Problem Solving using Python

The function definition is always preceded by the keyword def. In the given example, print_lines is

the name of the function.

The rules for defining a function name are same as those for variable names: alphabets, numerals and

some special characters are allowed. The name of the function cannot start with a number. No keyword can

be used as the name of the function. Giving the same name to a variable and a function should be avoided.

The parentheses after the function name contain the parameters or arguments. They are optional.

The first line in the definition of function is known as header and the rest is abbreviated as body. The

header line will always end with a colon. All the statements meant to execute at the time of function calling

are defined in the body part only. We can define any number of statements in the body of the function

definition but they have to be ordered from the left margin.

When we type a function definition in interactive mode (command line), the ellipses (...) are

automatically displayed by the interpreter in the next line to tell us that the definition is not complete yet

Figure 4.1

In order to end the function definition, we need to enter an empty line.

Example

>>>defprint_lines():

... print “Hello Python!!”

... print “Welcome to Python Programming!!”

...

Functions 91

When we define a function, Python interpreter also creates a variable with the same name.

>>> print print_lines

<functionprint_lines at 0x0294D970>

>>>type (print_line)

<type ‘function’>

As you can see above, the type of print_lines is ‘function’ and value is a function object.

In the previous sections, we have seen the calling of the built in function. The calling of the user-defined

functions happens in a similar way.

>>> print print_lines()

Hello Python!! # Output

Welcome to Python Programming!! # Output

A function can also be called by another function.

Example

>>>defnew_print():

print_lines()

print_lines()

>>>new_print()

Output:

Hello Python!!

Welcome to Python Programming!!

Hello Python!!

Welcome to Python Programming!!

In the given example, we created a new function new_print() and inside the body of this function,

we called the print_lines() function twice. Now, when we call new_print(), the print_lines()

function is executed twice. This is how we call a function within another function.

Hence, we can call a function repeatedly when we want to do so and can also call the function from

another function. In the example given above, we call print_lines()twice inside new_print() in order

to repeatedly call print_lines().

Now, we combine the code fragments from the above section into a single program:

>>> def print_lines():

 print “Hello Python!!”

 print “Welcome to Python Programming!!”

>>> def new_print():

print_lines()

print_lines()

>>> new_print()

Hello Python!! # Output

Welcome to Python Programming!!

Hello Python!!

Welcome to Python Programming!!

92 Introduction to Computing & Problem Solving using Python

As you can see, this whole program has two function definitions: print_lines()and new_print().

When a function definition is executed, a function object is created. The statements residing inside a function

get executed only when the function is called. Outputs are generated only by the function calls and not by

the function definitions.

4.5 PARAMETERS AND ARGUMENTS

Parameters and arguments are the values or expressions passed to the functions between parentheses. As

we have seen in earlier sections, many of the built in functions need arguments to be passed with them: the

math.cos() function takes a number, i.e., the value of the angle as an argument. Many functions require

two or more arguments to be passed such as the power function in math module math.pow(), where we

have to pass two arguments, the base and the exponent.

The value of the argument is always assigned to a variable known as parameter. At the time of function

definition, we have to define some parameters if that function requires some arguments to be passed at the

time of calling.

Example

>>>defprint_lines(line):

... print line

... print line

In this function we have defined a variable line which is a parameter. Now, when the function is called,

it prints the value of the parameter line twice.

>>>print_lines(‘Hello’)

Hello # Output

Hello # Output

>>>print_lines(17)

17 # Output

17 # Output

>>>print_lines(math.pi)

3.14159265359 # Output

3.14159265359 # Output

We can see that this function works with any type of value that can be displayed.

There can be four types of formal arguments using which a function can be called which are as follows:

2. Keyword arguments

3. Default arguments

4. Variable-length arguments

1. Required arguments When we assign the parameters to a function at the time of function definition, at

the time of calling, the arguments should be passed to a function in correct positional order; furthermore,

the number of arguments should match the defined number of parameters.

Functions 93

Example

>>>defprint_lines(str)

... print str

... return;

We have defined one parameter str to the function print_lines. Hence, at the time of calling, we have

to pass exactly one argument to the function, otherwise it will produce an error.

function calling here

>>>print_lines();

Traceback (most recent call last): # Output

 File “<pyshell#18>”, line 1, in <module>

print_lines()

TypeError: print_lines() takes exactly 1 argument (0 given)

There is an error because we did not pass any argument to the function print_lines, while according

to the function definition, the function print_lines must take exactly one argument.

2. Keyword arguments In keyword arguments, the caller recognises the arguments by the parameter’s

names. This type of argument can also be skipped or can also be out of order.

Example 1

>>>defprint_lines():

... print str

... return

...

function calling here

>>>print_lines(str = “Hello Python”);

Hello Python # Output

Example 2

Function Definition

>>>defprint_info(name, age):

... print “Name: “, name

... print “Age: “, age

... return

...

function calling

>>>print_info(age=15, name=’john’);

Name: john # Output

Age: 15 # Output

94 Introduction to Computing & Problem Solving using Python

3. Default arguments In default arguments, we can assign a value to a parameter at the time of function

definition. This value is considered the default value to that parameter. If we do not provide a value to the

parameter at the time of calling, it will not produce an error. Instead it will pick the default value and use it.

Example

Function definition

>>>defprint_info(name, age=35):

... print “Name: “,name

... print “Age: “, age

... return

...

function calling

>>>print_info(age=20, name=’john’);

Name: john # Output

Age: 20 # Output

>>>

>>>print_info(name=’john’);

Name: john # Output

Age: 35 # Output

In the given example, we have given a value 35 to the parameter age. It is the default value for age.

Now, in the first function call, we provide the value of age as 20. Hence, the Python interpreter takes the

value provided by us and does not use the default value.

However, in the second function call, we do not provide the value for age. Hence, the Python interpreter

is how default arguments are used in function calling.

4. Variable-length arguments There are many cases where we are required to process a function with more

number of arguments than we specified in the function definition. These types of arguments are known

as variable-length arguments. The names for these arguments are not specified in the function definition.

Instead we use an asterisk (*) before the name of the variable which holds the value for all non-keyword

variable arguments.

Syntax

def function_name([formal_args] *var_args_tuple):

“function_docstring”

function_body

return[expression]

Functions 95

Example

function definition here

>>>defprint_info(arg1,*vartuple):

... print “Result is: “

... print arg1

... for var in vartuple:

... print var

... return

function call

>>>print_info(10);

10 # Output

>>>print_info(90,60,40);

90 # Output

60 # Output

40 # Output

1. What are user-defined functions? Give the syntax.

Ans. Python also allows users to define their own functions. To use their own functions in Python,

users have to define the function first; this is known as Function Definition. In a function

definition, users have to define a name for the new function and also the list of the statements

that will execute when the function will be called.

Syntax

def functionname(parameters):

“function_docstring”

statement(s)

return [expression]

2. Write a function that takes exactly two arguments. One argument is the name of the

student, the other argument is fees and a default fee is 25000. Display at least two outputs

in support of your answer.
Ans. # Function definition

 >>>defprint_info(name, fees=25000):

 ... print “Name: “,name

 ... print “fees: “, fees

 ... return

 ...

 # function calling

 >>>print_info(fees=20000, name=’Jack’);

Check Your Understanding

96 Introduction to Computing & Problem Solving using Python

4.6 FUNCTION CALLS

We define a function by giving it a name with some parameters (optional) and then a sequence of statements.

Later, we can call the function when we need it. A function is called using the name with which it was defined

earlier, followed by a pair of parentheses (()). Any input parameters or arguments are to be placed within

these calling parentheses.

All parameters (arguments) which are passed in functions are always passed by reference in Python. This

means that if the values of the parameters are changed in the function, it will also reflect the change in the

calling function.

 Name: jack # Output

 Age: 20000 # Output

 >>>

 >>>print_info(name=’john’);

 Name: john # Output

 Age: 25000 # Output

Example 1

Function definition here

>>>defprintstring(str):

...“This prints the passed string into this function”#Docstring

... print str;

... return;

Now we can call printstring function here

>>>printstring(“First String”);

>>>printstring(“Second String”);

The code given above will produce the following result on execution.

Output:
First String

Second String

Example 2

Multiplication of two numbers using function.

>>>defmult(a,b):

... multiplication = a*b

... return multiplication

Now calling the function here

>>> a = 4

>>> b = 3

>>> m = mult(a,b)# calling the mult function

>>>print(m)

Functions 97

1. Write the syntax for defining a function.

Ans. deffunctionname(parameters):

 “function_docstring”

 statement(s)

 return [expression]

2. Write a function which accepts two numbers and returns their sum.

Ans. >>>def sum(arg1,arg2):

 ... sum = arg1 + arg2

 ... return sum

 # Now calling the function here

 >>> a = 4

 >>> b = 3

 >>>total = sum(a,b) # calling the mult function

 >>>print(total)

Check Your Understanding

The given code will produce the following result on execution.

12 # Output

4.7 THE return STATEMENT

The return statement is used to exit a function. A function may or may not return a value. If a function returns

a value, it is passed back by the return statement as argument to the caller. If it does not return a value, we

simply write return with no arguments.

Syntax

return [expression]

Example

function definition here

>>>def div(arg1, arg2):

... division = arg1/arg2

... return division

...

function call here

>>> arg3 = div(20,10)

>>> print “division: “, arg3

division: 2 # Output

98 Introduction to Computing & Problem Solving using Python

In the given example, we define a function div that divides one argument by another and stores the

result in the variable division; then the value of division variable is returned by the function to the

caller variable arg3.

4.8 PYTHON RECURSIVE FUNCTION

example, if an object is placed between two mirrors facing each other, the object will be reflected recursively.

In the programming context, the meaning of recursion remains the same. Here, if a function, procedure

or method calls itself, it is called recursive. In Python, we know that a function can call another function,

but it is also possible that a function calls itself.

Let us look at an example of a recursive function by computing the factorial of a number. The factorial

of 5 is 1*2*3*4*5 = 120.

Example

>>> def fact_rec(x):

‘Recursive function to find the factorial of an integer’

... if x == 1:

... return 1

... else:

... return(x * fact_rec(x-1))

>>> fact_rec(4)

24 # Output

>>> fact_rec(10)

3628800 # Output

4.9 THE ANONYMOUS FUNCTIONS

The anonymous functions are the functions created using a lambda keyword. They are not defined by using

def keyword. For this reason, they are called anonymous functions.

We can pass any number of arguments to a lambda form functions, but still they return only one value in

the form of expression. An anonymous function cannot directly call print command as the lambda needs

an expression. It cannot access the parameters that are not defined in its own namespace. An anonymous

function is a single line statement function.

Syntax

lambda [arg1[,arg2,......argn]]:expression

The syntax of the lambda function is a single statement.

Functions 99

Example

function definition here

>>>mult = lambda val1, val2: val1*val2;

function call here

>>> print “value: “, mult(20,40)

Value: 800 # Output

In the given example, the lambda function is defined with two arguments val1 and val2. The expression

val1*val2 does the multiplication of the two values. Now, in function call, we can directly call the mult

function with two valid values as arguments and produce the output as above.

1. Define the return statement in a function. Give the syntax.

Ans. The return statement is used to exit a function. A function may or may not return a value. If a

function returns a value, it is passed back by the return statement as argument to the caller. If it

does not return a value, we simply write return with no arguments.

Syntax

return [expression]

2. What is an anonymous function? Give the syntax.

Ans. The anonymous functions are the functions created using a lambda keyword. They are not

defined as all other functions are, i.e., by using def keyword. For this reason, they are called

anonymous functions.

Syntax

lambda [arg1[,arg2,......argn]]:expression

The syntax of the lambda function is a single statement.

3. Write a function called ninelines that uses a function threelines to print nine blank

lines. Print twenty seven new lines using this.

Ans. # function definition here

 >>>defthreelines():

 ... print # prints one newline

 ... print

 ... print

Check Your Understanding

100 Introduction to Computing & Problem Solving using Python

 >>>defninelines():

 ... threelines() # prints three new lines

 ... threelines()

 ... threelines()

 # function call here to print 27 lines

 >>>ninelines() # prints nine new lines

 >>>ninelines()

 >>>ninelines()

4.10 WRITING PYTHON SCRIPTS

As discussed in Chapter 3, the first and most common way to use python is to write code into a file and run

the file as a script using python interpreter. Any text editor can be used to create the script file, in which any

valid python statements can be written. Python script is usually saved with extension ‘.py’. Python code in

a file is also called a module. Just placing loose python statements into text file and executing it will work,

but the good structure of a python file looks like as follows:

Filename : example.py

#! /usr/bin/python

Comment section.

“””

 Docstring section

“””

import section

Import os

Import sys

from import section

from math import sin

def main():

 “ docstring for main function “

 # the code for solving the problem goes here.

This section is the standard way to invoke the main function. It makes

the code reusable.

if __name__ == ‘__main__’:

 main()

Functions 101

The first line starts with #! Is known as ‘interpreter descriptor’ or ‘shebang’ as short form of ‘sharp bang’.

It is added to have compatibility with linux or unix based systems. In unix based systems, this line identifies

which interpreter to be used to execute this script. But in windows the file is identified as a python script

by extension ‘.py’

Comment section starts with a ‘#’ which is optional. This is where you can put details about script. You

can add any number of lines which starts with ‘#’ here.

Docstring is the section where you document your script. In this section you can write documentation for

the script, such as how to use your script or any other information that users should know to use your script.

It can span into multiple lines. Documentation tools picks docstrings automatically to create documentation

for the module.

Import section and from import section is the right place for adding import statements for importing

needed other modules or functions into this script.

main() is a good place to put all the high level code for solving the problem. The last section will be

common in all script. It invokes the main function only if the module is executed as a script. It prevents the

execution of main function when the module is imported in other scripts.

For example, a script to find the logarithm of a number may look like as follows. Let’s call it logme.py

#! /usr/bin/python

Program for finding out Logarithm of a given number

“””

 Program for finding Logarithm of a number.

 Usage:

 $ python logme.py

 Welcome, this script allows you to find log of a number!

 Enter a number: 100

 Log of 100 is 2.0

 Thank you!

“””

from math import log10

def main():

 “reads a number from user and finds log of it”

 print “Welcome, this script allows you to find log of a number!”

 try:

 number = int(raw_input(“Enter a number: “))

 except ValueError:

 print “Error: given input is not valid, please enter a number.”

 return

 result = log10(number)

 print “Log of {num} is {res}”.format(num=number, res=result)

102 Introduction to Computing & Problem Solving using Python

 ● Functions are self-contained programs that perform some particular tasks.

 ● There are many built-in functions provided by Python such as dir(), len(), abs(), etc., and users

can also make their own functions which are known as user-defined functions.

 ● The block of the function starts with a keyword def after which we write our function name followed by

parentheses.

Syntax

deffunctionname(parameters):

 “function_docstring”

 statement(s)

 return [expression]

 ● A function is called using the name with which it was defined earlier, followed by a pair of parentheses

(()).

 print “Thank you!”

if __name__== ‘__main__’:

 main()

#The End!

To execute the file,

For windows:

1. Open cmd

2. Change directory to python folder. (Usually with in C drive)

 C:\> cd C:\Python27\

3. Run python script example.py

 C:\Python27\> python path\to\logme.py

For linux or unix:

1. Open terminal

2. Run python script example.py

 $ python path/to/logme.py

Functions 103

 ● Type coercion is a process through which Python interpreter automatically converts a value of one type

into a value of another type according to the requirement.

 ● Python provides a Math module that contains most of the familiar and important mathematical functions.

 ● A module is a file that contains some predefined Python codes. A module can define functions, classes

and variables. It is a collection of related functions grouped together.

 ● For importing the math module, we use:

>>> import math

 ● To use their own functions in Python, users have to define the functions first; this is known as Function

Definition.

 ● The anonymous functions are the functions that are created using a lambda keyword. They are not defined

as other functions are, i.e., by using def keyword.

 ● Parameters and arguments are the values or expressions that are passed to the functions between the

parentheses.

 ● There are four types of formal arguments using which a function can be called.

 ■

 ■ Keyword arguments

 ■ Default arguments

 ■ Variable-length arguments

 ● In keyword arguments, the caller recognises the arguments by the parameter’s names. This type of

argument can also be skipped or can also be out of order.

 ● In default arguments, we can assign a value to a parameter at the time of function definition that will be

considered the default value to that parameter.

✓ FUNCTION: Functions are self-contained programs that perform some particular tasks.

✓ FUNCTION OBJECT: A value created by the definition of a function. A variable which is the name of

the function refers to the function object.

✓ HEADER: The very first line of the function definition.

✓ BODY: The block of statements inside the function definition.

✓ PARAMETER: The variables used to pass some values to a function, defined between parentheses.

✓ FUNCTION CALL: It is a statement which executes the function.

✓ ARGUMENT: It is a value which is provided at the time of function calling. It is specified within

parentheses.

✓ RETURN VALUE: The value returned by the function as output to the caller.

✓ MODULE: A file that contains a collection of related functions and definitions.

✓ IMPORT STATEMENT: It is a type of statement used to import various modules in Python.

104 Introduction to Computing & Problem Solving using Python

PROGRAMS

1. Write a function to find the HCF of some given numbers.

Solution.
>>> def hcf(a, b):

 if a > b:

 small = b

 else:

 small = a

 for i in range (1, small + 1):

 if((a % i == 0) and (b % i == 0)):

 hcf = i

 return hcf

>>> hcf(20,40)

20 #Output

>>> hcf(529,456)

1 #Output

2. Write a function to display the factors of a given number.

Solution.
>>> def factors(a):

 for i in range (1, a + 1):

 if a % i == 0:

 print(i)

>>> factors(70)

1 #Output

2

5

7

10

14

35

70

3. Write a function to find the ASCII value of the character.

Solution.
>>> def ascii_val_of(a):

 print (“The ASCII value of ‘” + a + “’ is”, ord(a))

>>> ascii_val_of(‘A’)

(“The ASCII value of ‘A’ is”, 65) #Output

>>> ascii_val_of(‘ ‘) #Finding Ascii value of space

(“The ASCII value of ‘ ‘ is”, 32) #Output

PROGRAMSPROGRAMS

Functions 105

4. Write a function to convert a decimal number to its binary, octal and hexadecimal equivalents.

Solution.
>>> def bin_oct_hex(a):

print(bin(a), “binary equivalent”)

print(oct(a), “octal equivalent”)

print(hex(a), “hexadecimal equivalent”)

>>> bin_oct_hex(10) #Finding binary, octal, hex value of 10

(‘0b1010’, ‘binary equivalent’) #Output

(‘012’, ‘octal equivalent’)

(‘0xa’, ‘hexadecimal equivalent’)

5. Write a function to display Fibonacci sequence using recursion.

Solution.
>>> def fib_rec(x):

if x <= 1:

 return x

else:

 return(fib_rec(x-1) + fib_rec(x-2))

Take input for number of terms from user

>>> num_terms = int(input(“How many terms? “))

>>> for i in range(num_terms):

print(fib_rec(i))

How many terms? 12 #Fibonacci Sequence up to 12 terms

0 #Output

1

1

2

3

5

8

13

21

34

55

89

6. Write a function to find the sum of several natural numbers using recursion.

Solution.
>>> def sum_rec(n):

if n <= 1:

 return n

else:

 return n + sum_rec(n-1)

>>> sum_rec(3) #Sum of first 3 natural numbers

6 #Output

>>> sum_rec(25) #Sum of first 25 natural numbers

325 #Output

106 Introduction to Computing & Problem Solving using Python

7. A Python Program that demonstrates the built-in functions

Solution.
Python program to demonstrate built in functions

#We consider this variable to be the controller of the loop.

value 1 denotes the loop.

other than 1 means do not loop.

lp = 1

#the choice variable is used to read the menu choices:

ch = 0

while lp == 1:

 #print what options you have

 print “Welcome to Chap4.py”

 print “your options are:”

 print “ “

 print “1) Demonstrate conversion”

 print “2) Integer to float conversion”

 print “3) Mathematical Functions “

 print “4) Date and time”

 print “5) Quit Chap4.py”

 print “ “

 ch = input(“Enter the option (1-5): “)

 if ch == 1:

 # Read the decimal number from the user

 decnum = int(input(“Enter the value of an integer: “))

 print “The decimal value of”,decnum,”is:”

 print bin(decnum),”in binarynumber.”

 print oct(decnum),”in octalnumber.”

 print hex(decnum),”in hexadecimalnumber.”

 elif ch == 2:

 decnum2 = int(input(“Enter the value of an integer: “))

 fltnum2 = float(decnum2)

 print “float value is”, fltnum2

 elif ch == 3:

 import math

 num3 = float(input(“enter n in float:”))

 print “Floor value is:”,math.floor(num3)

 print “Round value is :”,round(num3)

 print “Ceil value is :”,math.ceil(num3)

 decnum3 = int(input(“Enter the value of an integer: “))

 print “Absolute value is”,abs(decnum3)

 print “Square root is”,math.sqrt(decnum3)

 elif ch == 4:

 import datetime

 today = datetime.date.today()

 print today

 print ‘ctime:’, today.ctime()

 print ‘tuple:’, today.timetuple()

 print ‘ordinal:’, today.toordinal()

 print ‘Year:’, today.year

Functions 107

 print ‘Mon :’, today.month

 print ‘Day :’, today.day

 elif ch == 5:

 lp = 0

print “Thankyou for using Chap4.py!”

Output:

Welcome to Chap4.py

your options are:

1) Demonstrate conversion

2) Integer to float conversion

3) Mathematical Functions

4) Date and time

5) Quit Chap4.py

Enter the option (1-5): 1

‘0b10000’, ‘in binarynumber.’

‘020’, ‘in octalnumber.’

‘0x10’, ‘in hexadecimalnumber.’

Welcome to Chap4.py

your options are:

1) Demonstrate conversion

2) Integer to float conversion

3) Mathematical Functions

4) Date and time

5) Quit Chap4.py

Enter the option (1-5): 2

Enter the option (1-5): 2

Enter the value of an integer: 15

float value is 15.0

Welcome to Chap4.py

your options are:

1) Demonstrate conversion

2) Integer to float conversion

3) Mathematical Functions

4) Date and time

5) Quit Chap4.py

Enter the option (1-5): 3

enter n in float:115.369369

Floor value is: 115.0

Round value is : 115.0

Ceil value is : 116.0

Enter the value of an integer: 15

Absolute value is 15

Square root is 3.87298334621

108 Introduction to Computing & Problem Solving using Python

Welcome to Chap4.py

your options are:

1) Demonstrate conversion

2) Integer to float conversion

3) Mathematical Functions

4) Date and time

5) Quit Chap4.py

Enter the option (1-5):4

2016-07-03

ctime: Sun Jul 3 00:00:00 2016

tuple: time.struct_time(tm_year=2016, tm_mon=7, tm_mday=3, tm_hour=0,

tm_min=0, tm_sec=0, tm_wday=6, tm_yday=185, tm_isdst=-1)

ordinal: 736148

Year: 2016

Mon : 7

Day : 3

Welcome to Chap4.py

your options are:

1) Demonstrate conversion

2) Integer to float conversion

3) Mathematical Functions

4) Date and time

5) Quit Chap4.py

Enter the option (1-5): 5

Thankyou for using Chap4.py!

8. A python program to print the current directory

Solution.
import os

import sys

provide the current directory path

addr = “/var/python/sample/”

dirs = os.listdir(addr)

We use the for loop to print the files and assuming multiple

for file in dirs:

 print file

Output:

Chapter3.doc

Examples-chapter3.py

Chapter4.py

Sample.py

Functions 109

9. A Python program to implement recursion for factorial of a number that demonstrates the user

defined function and return statement.

Solution.
Python program to find the factorial of a number using recursion

>>> def fact(n):

if n == 1:

 return n

else:

 return n * fact(n-1)

>>> num = int(input(“Enter a number: “))

Enter a number: 9

>>> if num < 0:

print “Factorial for negative values not exist”

elif num == 0:

print “Factorial is 1”

else:

print “Factorial of “,num,” is “,fact(num)

Output:

Enter a number: 6

Factorial of 6 is 720

Enter a number: -21

Factorial for negative values not exist

Enter a number: 1

Factorial of 1 is 1

Multiple Choice Questions

1. What are the advantages of using functions?

a. b. Clarity of code

c. d. All

2. Which keyword is used to define the block of statement in the function?

a. Function b. def

c. func d. pi

3. What does the block of statement always starts with?

a. (:) b. (;)

c. [:] d. [;]

4. Which file contains the predefined Python codes?

a. Function b. Pi

c. module d. lambda

5. A function is called using the name with which it was defined earlier, followed by:

a. { } b. ()

c. <> d. []

110 Introduction to Computing & Problem Solving using Python

6. What is the use of the return statement?

a. exit a function b. null value

c. initiate a function d. none

7. Which keyword is used to create an anonymous function?

a. Def b. lambda

c. func d. pi

8. What does the following code do?

 def p(q, r, s): pass

a. defines a function, which does nothing b. defines an empty list

c. defines a function with parameter d. defines an empty string

9. Which command cannot be called directly by an anonymous function?

a. Scan b. Def

c. exit d. print

10. What will be the output of the following code?

 definputDevice():

 print(‘Keyboard’)

 inputDevice()

 inputDevice()

a. ‘Keyboard’ ‘Keyboard’ b. ‘Keyboard’

c. Keyboard Keyboard d. Keyboard

11. What will be the output of the following code?

 defsqr(a):

 return a * a

a = sqr(4)

a. 4 b.

c. 8 d. none

Short Questions

1. What is a function in Python? What are the advantages of using a function?

2. What is the difference between user-defined function and built-in function?

3. Write a function which accepts three numbers and returns their multiplication.

4. Write a function which can take any number value and convert it into an integer, float and string.

5. What will be the output of the code given below?

a. str(54.0)

b. print(‘Python version’ + 7)

6. What do you mean by mathematical functions and how can they be used in Python? Explain with the

help of examples.

7. Briefly explain the types of formal arguments using which a function can be called.

8. Write a function that takes exactly two arguments. One argument is the name of the employee, and

the other argument is the PF. The default PF is 30000. Display at least two outputs in support of your

answer.

9. How are parameters passed in Python? By value or by reference.

10. What are anonymous functions in Python?

Functions 111

11. What is type coercion in Python? Explain with the help of an example.

12. Write a function called sixteenlines that uses fourlines to print sixteen blank lines. Print sixty

four new lines using this.

Answers to Multiple Choice Questions

1. d 2. b 3. a 4. c 5. b 6. a 7. b 8. a 9. d 10. c

11. b

STRINGS AND LISTS5

5.1 STRINGS

Strings are one of the most popular data types in Python. Strings are created by enclosing various characters

within quotes. Python does not distinguish between single quotes and double quotes. Creating strings is very

simple in Python.

Example

>>> var1 = ‘Hello Python!’

>>> var2 = ”Welcome to Python Programming!”

>>> var3 = ”””This is triple quoted string”””

>>> print var1

Hello Python # Output

>>> print var2

Welcome to Python Programming # Output

>>> print var3

This is triple quoted string # Output

Strings are of literal or scalar type. The Python interpreter treats them as a single value.

Note Strings are immutable. If you want to change an element of a string, you have to
create a new string.

Triple quoted strings can span to multiple lines.

TIP

Strings and Lists 113

Example

>>> var = “““Welcome # String written in multiple lines

to

Python

Programming”””

>>> print var

Welcome # Output

to

Python

Programming

5.1.1 Compound Data Type

Until now, we have mostly looked at two kinds of data types: int and float. Strings are very different from

these since strings are made up of smaller pieces/characters. The data types that are made up of smaller pieces

are known as compound data types.

Strings, in Python, can be used as a single data type, or, alternatively, can be accessed in parts. This makes

strings really useful and easier to handle in Python.

In order to access a part of the string, a square bracket operator ([]) must be used.

TIP

Example

>>> string = "hello"

>>> letter = var[4]

>>> print letter

o # Output

In the given example, hello is stored in a variable string. Then the element of the string variable

with index number 4 is stored in the letter variable. As we know, in programming, every index starts

with 0. Hence, index 4 means the 5th letter of the string. The 5th letter of the string hello is o. Hence,

o is displayed in output.

Example

Let us now look at an example of how to get the first letter of the string:
>>> letter = string[0]

>>> print letter

h # Output

The first letter of the string, i.e., ‘h’ is displayed by the interpreter.

114 Introduction to Computing & Problem Solving using Python

5.1.2 len Function

len is a built-in function in Python. When used with a string, len returns the length or the number of

characters in the string.

Example

>>> var = “Hello Python!”

>>> len(var)

13 # Output

Here, we took a string ‘Hello Python!’ and used the len function with it. The len function returned

the value 13 because not only characters, but also special characters and blank spaces are considered in

the string. Therefore, the blank space and exclamation mark in our string will also be counted as elements.

Example

Access the last letter of our string with the help of length.

>>>length = len(var)

>>> last = [length - 1]

>>> print last

! # Output

In this example, we store the length of the string in a variable length to access the last element of our

string. To access the last element, we need the index of last element which is 12 and not 13 because the

index of the string starts with 0 not 1, as we discussed earlier. This is the reason we subtracted 1 from the

length of the string in order to get the last element index.

Alternatively, we can also use negative indices for accessing the string from last. So, the expression

var [-1] yields the last letter of the string and var [-2] yields the second last letter and so on.

Example

>>> var = “Hello world”

>>> last = var[-1]

>>> second_last = var[-2]

>>> print last

d # Output

>>> print second_last

l # Output

Strings and Lists 115

 1. What is a String in Python?

 Ans. Strings are one of the most popular data types in Python. Strings are created by enclosing

various characters within quotes. Python does not distinguish between single quotes and double

quotes.

 2. What is the work of len function? Give one example.

 Ans. len is a built-in function in Python programming language. When used with a string, len

returns the length or the number of characters in the string.

 >>> x = ‘My name is Anil’

 >>> len(x)

 15

Check Your Understanding

5.1.3 String Slices

A piece or subset of a string is known as slice. Slice operator is applied to a string with the use of square

braces ([]). Operator [n:m] will give a substring which consists of letters between n and m indices,

including letter at index n but excluding that at m, i.e. letter from nth index to (m-1)th index.

Similarly, operator [n:m:s] will give a substring which consists of letters from nth index to (m-1)th

index, where s is called the step value, i.e. after letter at n, that at n+s will be included, then n+2s, n+3s,

etc…

Example

>>> var = ‘Hello Python’

>>> print var[0:4]

Hell # Output

>>> print var[6:12]

Python # Output

In the above example, you can see that in the first case the slice is [0:4], which means that it will take

the 0th element and will extend to the 3rd element, while excluding the 4th element. Similarly, in the second

case where slice is [6:12], it will consider the 6th element and extend to the 11th element.

Example

>>> alphabet = “abcdefghij”

>>> print alphabet[1:8:3]

beh # Output

>>> print alphabet[1:8:2]

bdfh # Output

In the above example, you can see that in the first case the slice is [1:8:3], which means that it will

take the element at 1st index which is b and will extend till the 7th element. Since step is 3, it will print 1st

element, then 4th element and then 7th element. i.e. beh. Similarly, in second case where slice is [1:8:2],

it will print 1st , 3rd, 5th, 7th elements, i.e. bdfh.

116 Introduction to Computing & Problem Solving using Python

Now, if we do not give any value for the index before the colon, i.e., n, then the slice will start from the

first element of the string. Similarly, if we do not give any value for the index, i.e., m after the colon, the

slice will extend to the end of the string.

Example

>>> var = ‘banana’

>>> var[:4]

‘bana’ # Output

>>> var[4:0]

‘na’ # Output

Similarly, if we don’t give any value at both the sides of the colon, i.e., values for n and m are not given

then it will print the whole string.

>>> var[:]

'banana' # Output

Now, if the second index, i.e., m, is smaller than the first index, i.e., n, then output will be an empty string

represented by two single quotes:

>>> var = ‘banana’

>>> var[4:3]

‘’ # Output

Now, if we give the value of step as -1 and no value for n and m, then it will print the string in reverse

order. For example,

>>> var = 'banana'

>>> var[: : -1]

'ananab' # Output

Note An empty string has length 0. Though it does not contain any character, it is still a
string.

5.1.4 Strings are Immutable

Strings are immutable which means that we cannot change any element of a string. If we want to change an

element of a string, we have to create a new string.

Example

>>> var = ‘hello python’

>>> var[0] = ‘p’

Output:
TypeError: ‘str’ object does not support item assignment

Here, we try to change the 0th index of the string to a character p, but the Python interpreter generates

an error.

Strings and Lists 117

Now, the solution to this problem is to generate a new string rather than change the old string.

Example

>>> var = 'hello python'

>>> new_var = 'p' + var[1:]

>>> print new_var

pello python # Output

Note that we cut the slice from the original string and concatenate it with the character we want to insert

in the string. It does not have any effect on the original string.

5.1.5 String Traversal

Traversal is a process in which we access all the elements of the string one by one using some conditional

statements such as for loop, while loop, etc. String traversal is an important pattern since there will be many

situations in different programs where we need to visit each element of the string and do some operations,

continuing till the end of the string.

Example

Let us try the traversal of string using while loop

>>> i=0

>>> while i < len(var): # string was assigned In the example given above

... letter = var[i]

... print letter

... i = i + 1

Output:
h

e

l

l

o

p

y

t

h

o

n

In the given example, we take a variable i and initialise it to 0. Then, we begin a while loop with the

condition i < len(var). At one point of time, the index becomes equal to the length of the string. As a

result, the condition of while loop becomes false and it halts. The last character is displayed with the index

len(var)-1, which will be the last character of the string. Thus, our whole string is traversed and displayed.

118 Introduction to Computing & Problem Solving using Python

Now, let us try the same thing with a for loop,

>>> for char in var:

... print char

h

e

l

l

o

p

y

t

h

o

n

Each time in the -for loop, the next character in the string will be assigned to the variable
char. The loop halts when the last character is processed.

TIP

 1. You have been given a string ‘I live in Cochin. I love pets.’ Divide this string in such a way

that the two sentences in it are separated and stored in different variables. Print them.

 Ans. >>> var = ‘I live in Cochin. I love pets.’
 >>> var1 = var[:17]
 >>> var2 = var[18:30]

 >>> print var1

 I live in Cochin. # Output

 >>> print var2

 I love pets. # Output

 2. Define Traversing of strings. Give one example.

 Ans. Traversal is a process in which we access all the elements of the string one by one using some

conditional statements such as for loop, while loop, etc.
 >>> var = ‘jack john’

 >>> i=0

 >>> while i < len(var):

 ... x = var[i]

 ... print x

 ... i=i+1

Check Your Understanding

Strings and Lists 119

Searching within Strings Let us take an example of searching a character in a string.

>>> def find(string, char)

... index = 0

... while index < len(string):

... if string[index] == char:

... return index

... index = index + 1

... return -1

Here, we define a function find that takes a string and a character as input (string and char respectively

in the example). A while loop traverses the string until the end and compares every element of the string

with the character passed by the user. If it matches any element of the string then the index of that element

is returned by the function. Otherwise, it returns -1.

Note The return statement in a while loop works in the same way as the break function
does. If the result is found, then it will break the loop and return the result back to the
function.

5.1.6 Escape Characters

The backslash character (\) is used to escape characters. It converts difficult-to-type characters into a

string. Let us understand the concept of escaping characters with an example. Suppose, we want to print a

string with double quotes or single quotes. Usually, when we use single or double quotes with the string,

Python neglects them and prints only the string. What should we do if we want the quotation marks in the

output? Then we will need to make use of the escaping character concept.

Example

>>>print “I am 6’2\” tall.” # escape double quotes inside string

I am 6’2” tall. # Output

 Output:

 j

 a

 c

 k

 j

 o

 h

 n

120 Introduction to Computing & Problem Solving using Python

Note that we use a backslash operator before the 2nd double quotation marks. As a result, the Python

interpreter understands that the quotation marks are a part of the string and should be displayed in output.

Table 5.1 shows various common escape characters.

TABLE 5.1 List of Escape Characters

Escape Sequence Meaning

\newline Ignored

\\ Backslash (\)

\’ Single quote (‘)

\” Double quote (“)

\a ASCII Bell (BELL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\r ASCII Carriage return (CR)

\t ASCII Horizontal tab (TAB)

\v ASCII Vertical tab (VT)

\ooo ASCII Character with octal value ooo

\xhhh… ASCII Character with hex value hh…

5.1.7 String Formatting Operator

The strings in Python have a unique built-in operation: the %operator (modulo). This is also called the String

Formatting operator and is similar to the formatting operator used in C language.

Example

>>> print “My name is %s and age is %d years.” %(‘John’, 26)

My name is John and age is 26. # Output

Table gives the list of symbols that can be used with %.

TABLE 5.2 List of Symbols Used with % Operator

Format Symbol Conversion

%c Character

%s String conversion via str() prior to formatting

%i Signed decimal integer

%d Signed decimal integer

%u Unsigned decimal integer

Strings and Lists 121

%o Octal integer

%x Hexadecimal integer (lowercase letters)

%X Hexadecimal integer (uppercase letters)

%e Exponential notation (with lowercase ‘e’)

%E Exponential notation (with uppercase ‘E’)

%f Floating point real number

%g The shorter of %f and %e

%G The shorter of %f and %E

The following example elaborates the usage of different string formatting operators

>>>print (“the first letter of %s is %c” %(‘python’,’p’))

>>>print(“The sum = %d” %(-15))

>>>print(“The sum = %i” %(-15))

>>>print(“The sum = %u” %(15))

>>>print(“%o is the octal equivalent of %d” %(9,9))

>>>print(“%x is the hexadecimal equivalent of %d” %(12,12))

>>>print(“%X is the hexadecimal equivalent of %d” %(12,12))

>>>print(“%e is the exponential equivalent of %f” %(8.98354,8.98354))

>>>print(“%E is the exponential equivalent of %f” %(8.98354,8.98354))

The output of the above program will be:

the first letter of python is p

The sum = -15

The sum = -15

The sum = 15

11 is the octal equivalent of 9

c is the hexadecimal equivalent of 12

C is the hexadecimal equivalent of 12

8.983540e+00 is the exponential equivalent of 8.983540

8.983540E+00 is the exponential equivalent of 8.983540

5.1.8 String Formatting Functions

Python includes many built-in functions for strings as shown in Table 5.3.

TABLE 5.3 Built-in functions for strings

Sr. No. Functions with description

1. capitalize()

Makes the first letter of the string capital.

2. center(width,fillchar)

Returns a space-padded string with the original string centered to a total width columns.

3. count(str,beg=0,end=len(string))

Counts the number of times str occurs in the string or in a substring provided that starting index is beg

and ending index is end.

122 Introduction to Computing & Problem Solving using Python

4. decode(encoding=’UTF-8’,errors=’strict’)

Decodes the string using the codec registered for encoding.

5. encode(encoding=’UTF-8’,errors=’strict’)

Returns encoded string version of string; on error, default is to raise a ValueError unless errors are given

with ‘ignore’ or ‘replace’.

6. endswith(suffix,beg=0,end=len(string))

Determines whether string or a substring of string ends with suffix, returning True if so and False

otherwise.

7. expandstab(tabsize=8)

Expands tab in string to multiple spaces.

8. find(str,beg=0,end=len(string))

Determine whether the str occurs in the string or in a substring of string provided that the starting index is

beg and the ending index is end. If the string is found, it returns the index otherwise returns -1.

9. index(str,beg=0,end=len(string))

Acts in the same way as find(); if str is not found, it raises an exception.

10. isalnum()

If string has at least one character and all characters are alphanumeric, then it returns True and False

otherwise.

11. isalpha()

If string has at least one character and all characters are alphabetic, it returns True and False otherwise.

12. isdigit()

If string contains only numbers, then it returns True and False otherwise.

13. islower()

If string has at least one cased character and all cased characters are in lower case, then it returns True

and False otherwise.

14. isnumeric()

If a Unicode string contains only numeric characters, then it returns True and False otherwise.

15. isspace()

If string contains only whitespace characters, then it returns True and False otherwise.

16. istitle()

If string is properly “titlecased”, then it returns True and False otherwise.

17. isupper()

If string has at least one cased character and all cased characters are in upper case, then it returns True and

False otherwise.

18. join(seq)

Concatenates the string representations of elements in sequence seq into a string with separator string.

19. len(string)

It returns the length of the string.

20. ljust(width[,fillchar])

It returns the padded string with spaces with the original string left-justified to a total of width columns.

21. lower()

It converts all the uppercase letters into lowercase in a string.

22. lstrip()

It removes all the leading whitespaces in a string.

23. maketrans()

It returns a translation table that is to be used in translate function.

Strings and Lists 123

24. max(str)

It returns the maximum alphabetic characters in a string str.

25. min(str)

It returns the minimum alphabetic characters in a string str.

26. replace(old,new[,max])

Replaces all occurrences of old in string with new or at most max occurrences if max provided.

27. rfind(str,beg=0,end=len(string))

It works same as find()but it searches backward in a string.

28. rindex(str,beg=0,end=len(string))

It works same as index()but it searches backward in a string.

29. rjust(width,[,fillchar])

It returns a space-padded string with the original string right-justified to a total of width columns.

30. rstrip()

It removes all trailing whitespaces in a string.

31. split(str=””,num=string.count(str))

It splits string according to delimiter str and returns list of substrings; split into at most num substrings

if provided.

32. splitlines(num=string.count(‘\n’))

It splits string at all NEWLINEs and returns a list of each line with NEWLINEs removed.

33. startswith(str,beg=0,end=len(string))

It determines whether a string or a substring of string begins with substring str; returning True if so

and False otherwise.

34. strip([chars])

It performs both lstrip() and rstrip() on string.

35. swapcase()

It inverts case for all characters in the string.

36. title()

It returns “titlecased” version of string, that is, all words start with uppercase and the rest are in lowercase.

37. translate(table,deletechars=””)

It translates string according to translation table str which is of 256 chars, removing those in the del string.

38. upper()

Converts all lowercase characters into uppercase.

39. zfill(width)

It returns the string left padded with zeros to a total of width characters; intended for numbers, zfill()

retains any sign given (less one zero).

40. isdecimal()

If a Unicode string contains only decimal characters, then it returns True if so and False otherwise.

 1. What are escape characters?

 Ans. The backslash character (\) is used to escape characters. It converts difficult-to-type characters

into a string. For example, we need the escaping character concept when we want to print a

string with double quotes or single quotes. When single or double quotes are used with the

string, Python normally neglects them and prints only the string.

Check Your Understanding

124 Introduction to Computing & Problem Solving using Python

5.2 LISTS

5.2.1 Values and Accessing Elements

Like strings, lists are also a series of values in Python. In a string, all the values are of character type but in

a list, values can be of any type. The values in a list are called elements or items.

A list is a collection of items or elements; the sequence of data in a list is ordered. The elements or items in

a list can be accessed by their positions, i.e., indices. We have already studied the index in the strings section.

Like all other variables, lists are also defined before they are used. There are several ways of defining or

creating a list. The most convenient way is using square brackets ([]).

Example

>>> list1 = [2,-1,0,-2,8]

>>> list2 = [‘crunchy chocolate’, ‘hello’, ‘python programming’]

The first line list contains only the numerals that are integers. The second line list contains strings.

However, it is not necessary that the lists have homogenous data type elements.

There can be elements of different data types in the list:

>>> list3 = [‘python’, 5.5, 8]

The list given above contains three different types of elements: string, float and integer. A list-type data

item can also be defined inside a list:

>>> list4 = [‘python’, 5.6, [20,40]]

Here, a list is contained in another list. Alternatively, we can say that a list is nested within another list.

Copying the List

We can make a duplicate or copy of an existing list. The general syntax in the beginner’s mind can come

like using the assignment operator; we can copy a list into another. For example,

>>> list_original = [1,2,3,4]

>>> list_copy = list_original

Although, this statement doesn’t have any syntax error and also it works, but this is not the correct way

to copy of a list. Let’s understand why this is not a correct way and what is the correct way then?

Basically, what the statement list_original = [1,2,3,4] does is that it makes a variable named

list_original and it points to the list [1,2,3,4] and by the statement list_copy = list_original,

 2. What do %s, %d, %x and %e stand for?

 Ans. %s = String conversion via str() prior to formatting

 %d = Signed decimal integer

 %x = Hexadecimal integer (lowercase letters)

 %e = Exponential notation (with lowercase ‘e’)

Strings and Lists 125

we are not copying the list but we are just making another variable named list_copy and attach it to the list

pointed by list_original. Hence, logically both variables are pointing to the same list. But by making

a duplicate of a list, we mean that two different lists but they contain same elements. This is illustrated in

Fig. 5.1.

list_original

List

[1, 2, 3, 4]

list_copy

Figure 5.1

In the figure, we can see that both variables are pointing to the same list.

If we modify list_original, then the modification will also take place in list_copy and vice versa.

For Example,

>>> list_original.append(10)

>>> print list_original

[1, 2, 3, 4, 10]

>>> print list_copy

[1, 2, 3, 4, 10]

Now, after understanding the concept of how the list is stored in Python, we will understand the correct

way of making copy of an existing list.

There are two ways to make copy of a list.

 1. Using [:] operator

 2. Using built-in copy function

Using [:] operator

>>> list_original = [1,2,3,4]

>>> list_copy = list_original[:] # Using [:] operator

>>> print list_copy

[1, 2, 3, 4]

Now, let us make changes in original list and we will see whether the changes take place in copied list

also or not.

>>> list_original.append(10) # Adding element to original

>>> print list_original

[1, 2, 3, 4, 10] # original list changed

>>> print list_copy

[1, 2, 3, 4] # copied list is unaffected

Hence, when we make changes in the original list, the copied list was unaffected by the changes.

Using built-in function

Python has a built-in copy function which can be used to make copy of an existing list. In order to use the

copy function, first we have to import it.

126 Introduction to Computing & Problem Solving using Python

Example

>>> from copy import copy #Import library

>>> list_original = [1,2,3,4]

>>> list_copy = copy(list_original) #Copying list

>>> print list_copy

[1, 2, 3, 4]

An empty list can also be created using enclosing brackets with no elements inside them.

>>> a = []

TIP

The above statement assigns an empty list to a variable a.

We can print a list by assigning it to a variable:
>>> list = [10,20,30,’hello’] # assign the list

>>> print list # printing a list

[10, 20, 30, ‘hello’] # Output

5.2.2 Lists are Mutable

Lists are mutable. The value of any element inside the list can be changed at any point of time. The elements

of the list are accessible with their index value. The index always starts with 0 and ends with n-1, if the list

contains n elements. The syntax for accessing the elements of a list is the same as in the case of a string.

We use square brackets around the variable and index number.

Example

>>> list = [10,20,30,40]

>>> list[1]

20 # Output

In the given example, we access the 2nd element of the list that has 1 as index number and the interpreter

prints 20.

Now, if we want to change a value in the list given above:

>>> list[3] = 50

>>> print list

[10,20,30,50] # Output

Note that the value of the 4th element is changed to 50.

The index number written within the square brackets indicates the distance from the beginning of the

list. Hence, the expression list[0] indicates the starting element (a distance zero from the beginning) and

list[1] indicates the second element (a distance of one from the beginning). This concept is illustrated

in Fig. 5.2.

Strings and Lists 127

8 –2 –3 –6

0 1 2 3

list

Figure 5.2 A View of a List

In Fig. 5.2, the numbers below each list element indicate the index of that element.

Indices in a list work in the same way as in strings:
 ● Any integer expression can be used as an index number.
 ● If any element that does not exist in the list is accessed, there will be an IndexError.
 ● If the indices are given in negative, then counting happens from the end of the list. (backward)

Note Every element or item inside a list always has an index number through which it is
accessed.

 1. What is a list? How are the values of a list accessed?

 Ans. Just like a string, a list is also a series of values in Python. In a string, all the values are of

character type, but in lists, values can be of any type. The values in a list are called elements

or items. A list is a collection of items or elements; the sequence of data in a list is ordered and

can be accessed by their positions, i.e., indices.

Example

>>> list = [1,2,3,4]

>>> list[1]

2 # Output

>>> list[3]

4 # Output

 2. What do you mean by “Lists are mutable”?

 Ans. Lists are mutable means that we can change the value of any element inside the list at any point

of time. The elements inside the list are accessible with their index value. The index will always

start with 0 and end with n-1, if the list contains n elements.

Example

>>> list = [1,2,3,4]

>>> list[2] = 6

>>> print list

[1,2,6,4] # Output

Check Your Understanding

128 Introduction to Computing & Problem Solving using Python

5.2.3 Traversing a List

Traversing a list means accessing all the elements or items of the list. Traversing can be done by using any

conditional statement of Python, but it is preferable to use for loop. Traversing in list is done in the same

way as in string.

Example

>>> list = [‘a’,’b’,’c’,’d’]

>>> for x in list:

... print x

Output:
a

b

c

d

In the example, we define a list of some elements. Using for loop, the list is traversed and all the elements

of the list are printed.

The for loop is used mostly when we want to read the elements of the list. However, in order to write

to a list, we need to access the indices of the elements in a list. The following example traverses the list and

also adds 4 to every element of the list.

>>> list = [10,20,30,40]

>>> for i in range(len(list)):

... list[i] = list[i] + 4

>>> print list

[14,24,34,44] # Output

Here, we make use of the range and len functions on a list, where len returns the length of the list

and range returns the list of indices. Hence, for each iteration of the loop, the variable i gets the index of

the next element and the statement defined in the body of for loop reads the old value at the index i and

assigns it a new value.

5.2.4 Deleting Elements from List

Python provides many ways in which the elements in a list can be deleted. In this section, we will learn the

methods of deleting elements from a list.

1. pop Operator If we know the index of the element that we want to delete, then we can use the pop

operator.

>>> list = [10,20,30,40]

>>> a = list.pop(2)

>>> print list

[10,20,40] # Output

>>> print a

30 # Output

Strings and Lists 129

The pop operator deletes the element on the provided index and stores that element in a variable for

further use.

2. del Operator The del operator deletes the value on the provided index, but it does not store the value

for further use.

>>> list = [‘w’,‘x’,’y’,’z’]

>>> del list(1)

>>> print list

[‘w’, ‘y’, ‘z’] # Output

3. remove Operator We use the remove operator if we know the item that we want to remove or delete

from the list (but not the index).

>>> list = [10,20,30,40]

>>> list.remove(10)

>>> print list

[20,30,40] # Output

Note In order to delete more than one value from a list, del operator with slicing is used.

>>> list = [1,2,3,4,5,6,7,8]

>>> del list[1:3]

>>> print list

[1,4,5,6,7,8] # Output

 1. What do you understand by traversing a list? Give an example.

 Ans. Traversing of the list refers to accessing all the elements or items of the list. Traversing can be

done using any conditional statement of Python, but it is preferable to use for loop.

Example

>>> list = [1,2,3]

>>> for x in list:

 ... print x

Output:
 1

 2

 3

 2. What is the pop operator?

 Ans. If the index of the element we want to delete is known, we can use the pop operator. The pop

operator deletes the element on the provided index and stores that element in a variable for

further use.

Check Your Understanding

130 Introduction to Computing & Problem Solving using Python

5.2.5 Built-in List Operators

1. Concatenation The concatenation operator works in lists in the same way it does in a string. This operator

concatenates two strings. This is done by the + operator in Python.

Example

>>> list1 = [10,20,30,40]

>>> list2 = [50,60,70]

>>> list3 = list1 + list2

>>> print list3

[10,20,30,40,50,60,70] # Output

In the given example, there are two lists, list1 and list2. Here, list1 and list2 are concatenated

using + operator between them and the resulting list is stored in the variable list3. Now, when we print

list3, it gives the concatenation of list1 and list2.

2. Repetition The repetition operator works as suggested by its name; it repeats the list for a given number

of times. Repetition is performed by the * operator.

Example

>>> list1 = [1,2,3]

>>> list1 * 4

[1,2,3,1,2,3,1,2,3,1,2,3] # Output

>>> [2] * 6

[2,2,2,2,2,2] # Output

In the given example, the list[1,2,3] was repeated 4 times and the list[2] was repeated 6 times.

3. In Operator The In operator tells the user whether the given string exists in the list or not. It gives

a Boolean output, i.e., True or False. If the given input exists in the string, it gives True as output,

otherwise, False.

Example 1

>>> list = [‘Hello’, ‘Python’, ‘Program’]

>>> ‘Hello’ in list

True # Output

>>> ‘World’ in list

False # Output

Example 2

>>> list = [10,20,30,40]

>>> 10 in list

True # Output

>>> 50 in list

False # Output

Strings and Lists 131

5.2.6 Built-in List Methods

Python includes many built-in methods for use with list as shown in Table 5.4.

TABLE 5.4 List of built-in list methods

Sr. No. Method Description

1. cmp(list1,list2) It compares the elements of both the lists, list1 and list2.

2. len(list) It returns the length of the string, i.e., the distance from starting element

to last element.

3. max(list) It returns the item that has the maximum value in a list.

4. min(list) It returns the item that has the minimum value in a list.

5. list(seq) It converts a tuple into a list.

6. list.append(item) It adds the item to the end of the list.

7. list.count(item) It returns number of times the item occurs in the list.

8. list.extend(seq) It adds the elements of the sequence at the end of the list.

9. list.index(item) It returns the index number of the item. If item appears more than one

time, it returns the lowest index number.

10. list.insert(index,item) It inserts the given item onto the given index number while the elements

in the list take one right shift.

11. list.pop(item=list[-1]) It deletes and returns the last element of the list.

12. list.remove(item) It deletes the given item from the list.

13. list.reverse() It reverses the position (index number) of the items in the list.

14. list.sort([func]) It sorts the elements inside the list and uses compare function if

provided.

1. append Method This method can add a new element or item to an existing list.

Example

>>> list = [1,2,3,4,]

>>> list.append(0)

>>> print list

[1,2,3,4,0] # Output

2. extend Method This method works like concatenation. It takes a list as an argument and adds it to the

end of another list.

Example

>>> list1 = [‘x’,’y’,’z’]

>>> list2 = [1,2,3]

>>> list1.extend(list2)

>>> print list1

[‘x’, ‘y’, ‘z’, 1, 2, 3] # Output

132 Introduction to Computing & Problem Solving using Python

In this example, list1 is modified by adding list2 at the end of it while list2 is left as it is.

3. sort Method This method arranges the list in ascending order.

Example

>>> list=[4,2,5,8,1,9]

>>> list.sort()

>>> print list

[1, 2, 4, 5, 8, 9] # Output

Note Not all the list methods return anything.

 1. What are concatenation operator and in operator?

 Ans. Concatenation Operator:

 The concatenation operator works in the same way in lists as it does in strings. This operator

concatenates two strings. Concatenation is done by the + operator in Python.

 in Operator:

 The in operator works on lists. It tells the user whether the given string exists in the list or not.

It gives a Boolean output, i.e., True or False. If the given input exists in the string, it gives

True as output, otherwise, False.

 2. Give examples for len, max and min methods.

 Ans. >>> list = [789, ‘abcd’,’jinnie’,1234]

 >>> len(list)

 4 # Output

 >>> max(list)

 ‘jinnie’ # Output

 >>> min(list)

 789 # Output

Check Your Understanding

 ● Strings are created by enclosing various characters within quotes.

 ● Strings are immutable. This means that if you want to change an element of the string, you have to create

new string.

 ● To access a part of the string, we use a square bracket operator ([]).

Strings and Lists 133

 ● len is a built-in function in Python, which when used with a string, returns the length or the number of

characters in the string.

 ● Traversal is a process in which we access all the elements of the string one by one using some conditional

statements such as for loop, while loop, etc.

 ● The return statement in a while loop works in the same way as the break function does. If the result is

found then it will break the loop and return the result back to the function.

 ● The backslash character (\) is used to escape characters. It converts difficult-to-type characters into a

string.

 ● The strings in Python have one unique built-in operation: the %operator (modulo).

 ● A list is a collection of items or elements; the sequence of data in a list is ordered.

 ● The elements or items in a list can be accessed by their positions, i.e., indices.

 ● An empty list can also be created by enclosing brackets with no elements inside them.

 ● Lists are mutable which means that we can change the value of any element inside the list at any point

of time.

 ● If we know the index of the element that we want to delete then we can use the pop operator.

 ● If we know the item that we want to remove or delete from the list (but not the index) then we use remove

operator.

 ● The repetition operator works in the way its name suggests; it repeats the list a given number of times.

Repetition is performed by the * operator.

 ● extend method works in a way similar to concatenation. It takes a list as an argument and adds this list

to the end of another list.

 ● sort method arranges the list in ascending order.

 ● append method can add a new element or item to an existing list.

 ✓ SEQUENCE: It is an ordered set or series, where each value has an index.

 ✓ ITEM: An item is a value in the sequence.

 ✓ SLICE: A slice is a part of the string determined by range of indices.

 ✓ EMPTY STRING: A string with no character having 0 length is empty string.

 ✓ IMMUTABLE: It is the property by which the value in a sequence cannot be changed.

 ✓ SEARCH: It is a pattern of traversal where an item is found in the sequence.

 ✓ LIST: It is a series or a sequence of different data items.

 ✓ ELEMENT: An element is a value in the list, also called item.

 ✓ INDEX: It is an integer value that indicates the position of an element in a list.

 ✓ LIST TRAVERSAL: Accessing all the items in a list.

 ✓ OBJECT: It is something a variable can refer to. An object has a type and value.

 ✓ EQUIVALENT: It means having equal values.

 ✓ IDENTICAL: It means same objects (which implies equivalence).

134 Introduction to Computing & Problem Solving using Python

 ✓ REFERENCE: The mapping between a variable and its value is called reference.

 ✓ DELIMITER: It is a character or string used to specify where a string must be split.

PROGRAMS

1. Write a program to find duplicate characters in a given string.

Solution.
>>> str = ‘java’

>>> first_time = []

>>> dup = []

>>> for i in str:

 if i not in first_time:

 first_time.append(i)

 else:

 if i not in dup:

 dup.append(i)

 print “”.join(dup)

a #Output

2. Write a program to check whether a string is a palindrome or not.

Solution.

>>> str1 = raw_input("Enter a String: ")

>>> reversed_str = str(reversed(str1))

>>> if str1 == reversed_str:

 print "String is Palindrome"

else:

 print "String is not a Palindrome"

3. Write a program to remove punctuations from a string.

Solution.
>>> punc = ‘’’!()-[]{};:’”\.,<>/@?$#^&*%_~’’’

>>> str = input(“Enter a String: “)

>>> no_punc = “”

>>> for char in str:

 if char not in punc:

 no_punc = no_punc + char

 print(no_punc)

Enter a String: ‘~~(#)[Hey!: how}^ are#*$ y*@o#u’

Hey how are you #Output

PROGRAMSPROGRAMS

Strings and Lists 135

4. Write a program to transpose a matrix.

Solution.
>>> a = [[4, 8],

 [3, 19],

 [15, 6]]

>>>

>>> trans = [[0, 0, 0],

 [0, 0, 0]]

>>>

>>> for i in range(len(a)):

 for j in range(len(a[0])):

 trans[j][i] = a[i][j]

>>> for k in trans:

 print(k)

[4, 3, 15] #Output

[8, 19, 6]

5. Write a program to add two metrices.

Solution.
>>> a = [[4, 8, 18],

 [3, 19, 12],

 [15, 6, 9]]

>>>

>>> b = [[8, 32, 23],

 [12, 1, 15],

 [5, 12, 3]]

>>>

>>> sum_of_mat = [[0, 0, 0],

 [0, 0, 0],

 [0, 0, 0]]

>>>

>>> for i in range(len(a)):

 for j in range(len(a[0])):

 sum_of_mat[i][j] = a[i][j] + b[i][j]

>>> for k in sum_of_mat:

 print(k)

[12, 40, 41] #Output

[15, 20, 27]

[20, 18, 12]

6. Write a python program to demonstrate various strings functions and operations

Solution.
Python program to demonstrate various string functions and operations

>>> str = “python program”

136 Introduction to Computing & Problem Solving using Python

>>> str2 = ‘string operations’

>>> print “In this line we display the single quotes ‘ ‘”

>>> print “length of the strings: str and str2”

>>> print len(str)

>>> print len(str2)

>>> print “First occurrences of o in str and r in str2 is”

>>> print str.index(“o”)

>>> print str2.index(“r”)

>>> print “number of occurrences in str and str2 are”

>>> print str.count(“o”)

>>> print str2.count(“i”)

>>> print “str string slice operations”

>>> print str[2:9]

>>> print str[2:9:2]

>>> print str[2:7]

>>> print str[2:9:1]

>>> print str[::-1]

>>> print “str2 string slice operations”

>>> print str2[1:6]

>>> print str2[2:8:2]

>>> print str2[2:8]

>>> print str2[2:8:1]

>>> print str2[::-1]

>>> print “strings str and str2 in upper case”

>>> print str.upper()

>>> print str2.upper()

>>> print “strings str and str2 in lower case”

>>> print str.lower()

>>> print str2.lower()

>>> print “str and str2 string functions starts with”

>>> print str.startswith(“python”)

>>> print str2.startswith(“Hello”)

>>> print “str and str2 ends with”

>>> print str.endswith(“asdfasdfasdf”)

>>> print str2.endswith(“operations”)

>>> print “str and str2 split operations”

>>> strsplit = str.split(“ “)

>>> print strsplit

>>> strsplit2 = str2.split(“ “)

>>> print strsplit2

>>> print “string concatenation”

>>> print str + str2

Output:

In this line we display the single quotes ‘ ‘

Length of the strings: str and str2

14

17

First occurrences of o in str and r in str2 is

4

Strings and Lists 137

2

number of occurrences in str and str2 are

2

2

str string slice operations

thon pr

to r

thon

thon pr

margorp nohtyp

str2 string slice operations

tring

rn

ring o

ring o

snoitarepo gnirts

strings str and str2 in upper case

PYTHON PROGRAM

STRING OPERATIONS

strings str and str2 in lower case

python program

string operations

str and str2 string functions starts with

True

False

str and str2 ends with

False

True

str and str2 split operations

[‘python’, ‘program’]

[‘string’, ‘operations’]

string concatenation

python programstring operations

7. Write a Python Program to demonstrate List functions and operations

Solution.
Python program to demonstrate list functions and operations

>>> lst1 = [‘java’, ‘cloud’, 1995, 2010];

>>> lst2 = [3, 6, 9, 12, 15];

>>> lst3 = [“p”, “q”, “r”, “s”]

>>> print “various list operations”

>>> print “lst1[0]: “, lst1[0]

>>> print “list split operations”

>>> print “lst2[1:5]: “, lst2[1:5]

>>> print”value available at index 2 :”

>>> print lst1[2]

>>> print “Insert elements into the list”

>>> lst1[2] = 2001;

>>> print “New value in lst1 at index 2 is”

>>> print lst1[2]

138 Introduction to Computing & Problem Solving using Python

>>> print “Modified lst1”

>>> print lst1

>>> print “delete from lst1”

>>> del lst1[2];

>>> print “After deletion at index:2 is”

>>> print lst1

>>> print “len() on lst”

>>> print len(lst1)

>>> print “Max() and Min() on lst for numeric”

>>> print max(lst1)

>>> print min(lst1)

>>> print “sum() on numeric lsts”

>>> print sum(lst2)

>>> print “Avg() on numeric lsts”

>>> print sum(lst2)/len(lst2)

>>> print “del() for multiple elements in the lst”

>>> del lst1[1:4]

>>> print “modified lst1”

>>> print lst1

>>> print “remove() on lst3”

>>> lst3.remove(‘p’)

>>> print “sort() on lst2”

>>> print lst2

>>> lst2.sort()

>>> print “After sort()”

>>> print lst2

>>> print “Append() on lst2”

>>> lst2.append(‘18’)

>>> print “lst2 after append”, lst2

>>> print “split operations”

>>> lst1[2:4]

>>> lst2[1:5]

>>> lst3[2:]

>>> print “lst1 split”

>>> print lst1

>>> print “lst2 split”

>>> print lst2

>>> print “lst3 split”

>>> print lst3

>>> print “ for loop on lsts”

>>> for i in range(len(lst2)):

 lst2[i] = lst2[i] * 3

>>> print lst2

>>> print “Creating list in another way”

>>> a = ‘python’

>>> b = list(a)

>>> print a

>>> print b

>>> c = ‘welcome to python programming’

>>> print c

Strings and Lists 139

>>> d = c.split()

>>> print d

>>> print “slice of d”

>>> print d[1:3]

>>> print d[:2]

>>> h = ‘python-program-is-easy’

>>> print h

>>> delim = ‘-’

>>> h.split(delim)

>>> print “After split and delim”

>>> print h

>>> delim = ‘***’

>>> delim.join(h)

>>> print “join () on lsts”

>>> print h

>>> print “cmp () on lsts”

>>> print cmp(lst1, lst2)

>>> print cmp(lst2, lst1)

>>> lst4 = lst3 + [786];

>>> print cmp(lst3, lst4)

>>> print “Max values”

>>> print “Max value element : “, max(lst1)

>>> print “Max value element : “, max(lst2)

>>> print “Max value element : “, max(lst3)

>>> print “Min() values of lsts”

>>> print “min value element : “, min(lst1)

>>> print “min value element : “, min(lst2)

>>> print “min value element : “, min(lst3)

>>> print “new lst5 from existing lst2”

>>> lst5 = list(lst2)

>>> print “pop on lst”

>>> print”list elements”, lst5

>>> print “lst2”, lst2.pop()

>>> print “lst2:”, lst2.pop(2)

>>> print “reverse() on lst”

>>> lst2.reverse()

>>> print “sort() on lst”

>>> print lst2

>>> lst2.sort()

>>> print “After sort”, lst2

>>> print “end of chap5”

Output:

various list operations

lst1[0]: java

list split operations

lst2[1:5]: [6, 9, 12, 15]

value aviliable at index 2 :

1995

Insert elements into the list

140 Introduction to Computing & Problem Solving using Python

New value in lst1 at index 2 is

2001

Modified lst1

[‘java’, ‘cloud’, 2001, 2010]

delete from lst1

After deletion at index:2 is

[‘java’, ‘cloud’, 2010]

len() on lst

3

Max() and Min() on lst for numeric

java

2010

sum() on numeric lsts

45

Avg() on numeric lsts

9

del() for multiple elements in the lst

modified lst1

[‘java’]

remove() on lst3

sort() on lst2

[3, 6, 9, 12, 15]

After sort()

[3, 6, 9, 12, 15]

Append() on lst2

lst2 after append [3, 6, 9, 12, 15, ‘18’]

split operations

lst1 split

[‘java’]

lst2 split

[3, 6, 9, 12, 15, ‘18’]

lst3 split

[‘q’, ‘r’, ‘s’]

 for loop on lsts

[9, 18, 27, 36, 45, ‘181818’]

Creating list in another way

python

[‘p’, ‘y’, ‘t’, ‘h’, ‘o’, ‘n’]

welcome to python programming

[‘welcome’, ‘to’, ‘python’, ‘programming’]

slice of d

[‘to’, ‘python’]

[‘welcome’, ‘to’]

python-program-is-easy

After split and delim

python-program-is-easy

join () on lsts

python-program-is-easy

cmp () on lsts

1

Strings and Lists 141

-1

-1

Max values

Max value element : java

Max value element : 181818

Max value element : s

Min() values of lsts

min value element : java

min value element : 9

min value element : q

new lst5 from exisiting lst2

pop on lst

list elements [9, 18, 27, 36, 45, ‘181818’]

lst2 181818

lst2: 27

reverse() on lst

sort() on lst

[45, 36, 18, 9]

After sort [9, 18, 36, 45]

end of chap5

Multiple Choice Questions

 1. Which type of operator will we use to access a part of the string?

 a. { } b. []

 c. <> d. ()

 2. What will be the output of the given code?

 >>>”h”+”lm”

 a. h b. “hlm”

 c. lm d. hlm

 3. What will be the output of the given code?

 >>>str1 = ‘hello world’

 >>>str2 = ‘computer’

 >>>str1 [-2]

 a. e b. ld

 c. l d. er

 4. Which operator is used to represent escape character?

 a. \ b. \\

 c. \’ d. /

 5. What will be the output of the given code?

 >>> string = “Hello COMPUTER!”

 >>> len(string)

 a. 14 b. 15

 c. 13 d. 16

 6. What will be the output of len([4, 5, 7, 9]).

 a. 1 b. 9

 c. 4 d. 3

142 Introduction to Computing & Problem Solving using Python

 7. What will be the output of the given code?

 >>>”python!”[3:]

 a. hon! b. hon

 c. “hon” d. “hon!”

 8. Which of the following functions checks whether all the characters in a string are whitespaces?

 a. isnumeric() b. swapcase

 c. istitle() d. isspace()

 9. Which operator is known as String Formatting operator in Python?

 a. \\ b. \

 c. % d. **

 10. Which one of the following functions replaces all occurrences of old substring in string with new

string?

 a. replace(new, old[,max]) b. replace(old, new[,max])

 c. replace(old, new[max]) d. replace(new, old[max])

 11. If we do not give any value for the index before the colon, which element of the string will the slice

start from?

 a. First b. Zero

 c. Second d. Last

 12. If we do not give any value for the index after the colon, which element of the string will the slice go

up to?

 a. Third b. First

 c. Fourth d. Last

 13. If the second index is smaller than the first index, what will be the output?

 a. String itself b. Null

 c. Empty string d. First Character

 14. What will be the output of the given code?

 >>>str = “*”

 >>>seq = (“hello”,”world”)

 >>>print (str.join(seq))

 a. “hello”*”world” b. hello*world

 c. hello world d. error

 15. What will be the output of the given code?

 >>>str = “John is good student”

 >>>print (str.split(‘ ‘,2))

 a. [‘John’, ’is’, ’good student’]

 b. [‘John’, ’is’, ’good’, ‘student’]

 c. [‘John is’, ’good student’]

 d. [‘John is’, ’good’, ‘student’]

 16. What will be the output of the given code?

 >>>print(‘wxyZ!56’.swapcase())

 a. WXYZ! b. WXYz56@

 c. Wxyz d. WXYz!56

Strings and Lists 143

 17. What will be the output of the given code?

 >>>print (‘john’ boy, good’ .title())

 a. John boy good b. John Boy good

 c. John Boy Good d. none

 18. Which of the following will separate all the items in list?

 a. * b. ,

 c. ; d. &

 19. What is the repetition operator in lists?

 a. * b. ,

 c. ; d. &

 20. Which of the following functions will sort a list?

 a. list.sort b. list.sort([func])

 c. list.sort[func] d. list.sort(func)

 21. What will be the output of the given code?

 list = [‘john’, ‘book’, 123, 3.45, 105, ‘good’]

 >>>print (list[4:])

 a. [3.45, 105, ‘good’] b. [‘john’, ‘book’, 123, 3.45]

 c. [105, ‘good’] d. [123, 3.45]

 22. What will be the output of the given code?

 list = [‘john’, ‘book’, 123, 3.45, 105, ‘good’]

 >>>print (list[2:5])

 a. [123, 3.45, 105] b. [‘book’, 123, 3.45, 105, ‘good’]

 c. [‘john’, ‘book’, ‘good’] d. [123, 3.45, 105, ‘good’]

 23. Which of the following functions will give the total length of a list?

 a. Len b. len(list)

 c. max(len) d. max len(list)

 24. What will be the output of the given code?

 list = [2356, 325.8, 3450, 1897]

 >>>print(“minimum value in:”, list, “is”, min(list))

 a. 3450 b. 1897

 c. 2356 d. 325.8

 25. What will be the output of the given code?

 list(“hi”)

 a. [‘hi’] b. [“hi”]

 c. [‘h’, ‘i’] d. hi

 26. Which of the following functions will be used to shuffle a list?

 a. random.shufle(list) b. list.shuffle()

 c. shuffle(list) d. shuffle.list()

 27. What will be the output of the given code?

 list=[1, 2, 3, 4, 10]

 >>>print (list[-1])

 a. 1 b. 10

 c. 4 d. Error

144 Introduction to Computing & Problem Solving using Python

 28. What will be the output of the given code?

 list=[1, 2, 3, 4, 10]

 >>>print (list[:-1])

 a. [4, 3, 2, 1] b. 10

 c. [1, 2, 3, 4] d. error

 29. Which of the following functions will be used to add a new element to a list?

 a. list.append(obj) b. list.add(obj)

 c. list.append() d. list.add()

 30. Which of the following functions will be used to insert 8 to the forth position in the list?

 a. list.insert(8, 4) b. list.add(4, 8)

 c. list.add(8, 4) d. list.insert(4, 8)

 31. What will be the output of the given code?

 list=[1, 2, 3, 4, 10]

 >>>del list[3]

 >>>print(list)

 a. [1, 2, 4, 10] b. [1, 2, 3, 10]

 c. [1, 2, 4] d. error

 32. Which of the following functions is used to remove string “python” from the list?

 a. list.remove(python) b. list.delete(“python”)

 c. list.remove(“python”) d. list.del

 33. Which of the following functions is used to return a tuple to a list?

 a. list(seq) b. seq(list)

 c. list(tuple) d. tuple(list)

Short Questions

 1. What is string in Python? Why is len function used in string?

 2. How we can access the last letter of the string with the help of length? Explain with an example.

 3. What is the_slice operator? Explain with an example.

 4. Write a program to search a character in a string.

 5. What will be the output of the given code?

 >>> string = “computer”

 >>> letter = string[6]

 >>> print letter

 6. What will be the output of the given code? Give the reason.

 >>> string = ‘keyboard’

 >>> string[6:4]

 7. Write a Python program to get a single string from two given strings separated by a space, and swap

the first two characters of each string.

 8. What will be the output of the given code?

 >>>str1 = “Hello World!”

 >>>str2 = ‘Welcome to Programming’

Strings and Lists 145

 >>>print (str1 [4])

 >>>print (str1 * 5)

 >>>print (str2 * 3)

 >>>print (str1 [6:])

 >>>print (str2 [14:])

 >>>print (str1 [5:10])

 >>>print (str2 + “Python”)

 9. What will be the output of the given code?

 >>> print(“%o is the octal equivalent of %d” %(6,6))

 >>> print (“the fourth letter of %s is %c” %(‘programming’,’i’))

 >>> print(“The sum = %d” %(-5))

 >>> print(“%X is the hexadecimal equivalent of %d” %(14,14))

 >>> print(“%x is the hexadecimal equivalent of %d” %(13,13))

 10. What will be the output of the given codes?

 a) >>>str = “This is my first python program. My first Python program is

simple.

 >>>print (str.replace(‘first’, ‘second’)

 >>>print (str.replace(‘first’, ‘second’, 2)

 b) >>>s = “I am learning Python and it is simple to learn.

 >>>print (‘Maximum character is:’ max(s))

 >>>print (‘Minimum character is:’ min (s))

 c) >>>str = “This is my first python program. My first Python program is

simple.

 >>>print (str.count(‘o’,0,28))

 >>>print(str.count(‘o’,0,60))

 d) >>>str = “Welcome to programming in python”

 >>>print (str.find(‘gramm’,0,31))

 >>>print (str.find(‘thing’))

 e) >>>str = “Welcome to programming in python”

 >>>print (str.index(‘gramm’,0,31))

 >>>print (str.index(‘thing’))

 f) >>>str = “Welcome to programming in python”

 >>>print (str.startswith(‘in’,8,25))

 >>>str = “Welcome to programming in python”

 >>>print (str.startswith(‘in’,23,31))

 g) >>>str = “Welcome to programming in python”

 >>>print (str.endswith(‘in’,8,25))

 >>>str = “Welcome to programming in python”

 >>>print (str.endswith(‘in’,0,31))

 11. What is a list? Explain with an example.

 12. How can we add an element in the list? Write a program to insert 32 to the fourth position in the given

list [1, 4, 23, 56, 90].

146 Introduction to Computing & Problem Solving using Python

 13. What will be the output of the given codes?

 a) >>>list = [‘hey’, 234, 1.32, ‘book’, 100]

 >>>print(“item at position 3=”, list[3])

 >>>list[3]=432

 >>>print(“item at position 3=”, list[3])

 >>>print(“item at position 1 and 2 is”, list[1], list[2])

 >>>list [1] = ‘hi’; list[2] = 340

 >>>print(“item at position 1 and 2 is”, list[1], list[2])

 b) >>>list = [‘hey’, 234, 1.32, ‘book’, 100]

 >>>print(list)

 >>>del list[4]

 >>>print(“list after deletion:”, list)

 >>>print(list * 3)

 >>>print(list + list)

 c) >>>tuple = [‘hey’, 234, 1.32, ‘book’, 100]

 >>>print(“list:”, list(tuple))

 d) >>>list = [‘hey’, 234, 1.32, ‘book’, 100]

 >>>print(“old list before append:”, list)

 >>>list.append(387)

 >>>print(“new list after append:”, list)

 e) >>>list = [‘hey’, 234, 1.32, ‘book’, 234, 100, 234]

 >>>print(“the number of times”, 234, “appears in”, list, “=”, list.

count(234))

 f) >>>list = [‘hey’, 234, 1.32, ‘book’]

 >>>list.remove(‘hey’)

 >>>print(list)

 g) >>>list = [‘hey’, 234, 1.32, ‘book’, 100]

 >>>print(list.index(100))

 >>>list = [‘hey’, 234, 1.32, ‘book’, 100]

 >>>print(list.index(‘john’))

 14. Write a program to reverse a list.

 15. What will be the output of the given code?

 >>>list=input(“Enter a list(space separated):”)

 >>>list = list(map(int,list.split()))

 >>>print(“maximum element in a list:”, max(list))

 16. Write a Python program that accepts numbers separated by commas. Produce a list with those numbers.

 17. Suppose there is a list containing the names of animals. Write a Python program that will display only

the first and last animal names from the given list.

 18. Write a Python program that displays the smallest number from the list.

 19. What will be the output of the given code?

 >>>values = input(“input some comma separated numbers:”)

 >>>list = values.split(“,”)

 >>>print (‘list”:’,list)

Strings and Lists 147

 20. What will be the output of the given code?

 >>>list = [‘hey’, 234, 1.32, ‘book’, 100]

 >>>print (‘list before poping:”,list)

 >>>list.pop(-1)

 >>>print(“list after poping:”, list)

Answers to Multiple Choice Questions

 1. b 2. d 3. c 4. a 5. b 6. c 7. a 8. d 9. c 10. b

 11. a 12. d 13. c 14. b 15. a 16. d 17. c 18. b 19. a 20. b

 21. c 22. a 23. b 24. d 25. c 26. a 27. b 28. c 29. a 30. d

 31. b 32. c 33. a

TUPLES AND

DICTIONARIES6

6.1 TUPLES

In Python Programming, tuples are just like the lists we have seen in earlier chapters. Tuples are the sequence

or series values of different types separated by commas (,). Just like strings and lists, values in tuples can

also be accesed by their index values, which are integers starting from 0. The main difference between lists

and tuples is that in case of a list, a value in the list can be replaced with another anytime after its creation.

Whereas in tuples, the values in it cannot be replaced with another, once tuples are created. List allows us to

add new items to it. But tuple does not allow us to add new items, once it is created.

Example

The names of the months in a year can be defined in a tuple:

>>> months = (‘January’, ‘February’, ‘March’, ‘April’, ‘May’, ‘June’,

‘July’, ‘August’, ‘September’, ‘October’, ‘November’, ‘December’)

6.1.1 Creating Tuples

Creating tuples is easy in Python. In order to create a tuple, all the items or elements are placed inside

parentheses separated by commas and assigned to a variable. The parentheses, at the time of creating a tuple,

is not necessary, but it is a good practice to use parentheses. Tuples can have any number of different data

items (that is, integer, float, string, list, etc.).

Examples

1. A tuple with integer data items

>>> tuple = (4,2,9,1)

>>> print tuple

(4,2,9,1) # Output

Tuples and Dictionaries 149

Note Creating a tuple with one element is somewhat different. When we are creating a
tuple with one element, we need to add a final comma after the item or element in order to
complete the assignment of the tuple.

Example

>>>tuple = (“home”)

>>>type(tuple)

<type ‘str’> # Output

In the above assignment statement, we are trying to create a tuple with only one item, but when we print

its type in Python interpreter, the type is not tuple but str.

Now, consider the following code:

>>>tuple = (“home”,)

>>>type(tuple)

<type ‘tuple’> # Output

Here, we added a final comma after the element “home” and the python interpreter takes the tuple as

the type tuple.

This can also be done without parentheses:

>>>tuple = “home”,

>>>type(tuple)

<type ‘tuple’> # Output

6.1.2 Accessing Values in Tuples

In order to access the values in a tuple, it is necessary to use the index number enclosed in square brackets

along with the name of the tuple.

2. A tuple with items of different data types

>>>tuple_mix = (2,30,”Python”,5.8,”Program”)

>>>print tuple_mix

(2, 30, ‘Python’, 5.8, ‘Program’) # Output

3. Nested tuple

>>>nested_tuple = (“Python”, [1,4,2],[“john”,3.9])

>>> print nested_tuple

(‘Python’, [1, 4, 2], [‘john’, 3.9]) # Output

4. Tuple can also be created without parenthesis

>>>tuple =4.9,6,’house’

>>>print tuple

(4.9, 6, ‘house’) # Output

150 Introduction to Computing & Problem Solving using Python

Example 1: Using square brackets

>>>tup1 = (‘Physics’,’chemistry’,’mathematics’)

>>>tup2 = (10,20,30,40,50)

>>>print tup1[1]

Chemistry # Output

>>>print tup2[4]

50 # Output

>>>print tup1[0]

Physics # Output

>>> print tup2[0]

10 # Output

Note We can also use slicing in order to print the continuous values in a tuple.

Example 2: Using slicing

>>>tup1 = (‘Physics’,’chemistry’,’mathematics’)

>>>tup2 = (10,20,30,40,50)

>>>tup2[1:4]

(20, 30, 40) # Output

>>>tup1[:1]

(‘Physics’,) # Output

>>>tup1[:2]

(‘Physics’, ‘chemistry’) # Output

In the Example 1, we can see that the output does not comprise any braces, that is, because a single element

or item is being retrieved from the tuple whereas in the Example 2 above, tuples are cutting into parts i.e.

slicing. The output is also a tuple which we get after slicing and the tuples in Python programming language

are written in parentheses.

As with the lists and strings, we can access the elements of the tuple. However, unlike
strings and lists, we cannot update or delete the values in the tuple—tuples are immutable.

TIP

 1. What is a tuple and how is it created in Python?

 Ans. In Python programming, tuples are just like the lists we have seen in earlier chapters. Tuples

are the sequence or series of different types of values separated by commas. Creating tuples

is pretty easy in Python. In order to create a tuple, all the items or elements are placed inside

parentheses separated by commas and assigned to a variable. Tuples can have any number of

different data items (i.e., integer, float, string, list, etc.).

Check Your Understanding

Tuples and Dictionaries 151

6.1.3 Tuples are Immutable

Tuples are immutable. The values or items in the tuple cannot be changed once it is declared. If we want to

change the values, we have to create a new tuple.

Example

declaring a tuple

>>>tup = (12, 15, “Python”, 2.3)

change the 3rd element “Python” to “Hello”

>>>tup[2] = “Hello”

TypeError: ‘tuple’ object does not support item assignment

In the given example, a tuple tup is declared with some items. Now, if we try changing the 3rd element

“Python” to “Hello” using the assignment operator, the Python interpreter generates an error. From this

example, it is clear that the values of tuple elements cannot be changed afterwards.

6.1.4 Tuple Assignment

Tuple assignment is a very attractive and powerful feature in Python. It allows the assignment of values

to a tuple of variables on the left side of the assignment from the tuple of values on the right side of the

assignment.

The number of variables in the tuple on the left of the assignment must match the number of elements/

items in the tuple on the right of the assignment.

Example

creating a tuple

>>>Anil = (‘221’,’Anil’,’Rahul’,’Delhi’,1971,’Jaipur Gwalior’)

tuple assignment

>>>(id,fst_name,lst_name,city,year_of_birth,birth_place) = Anil

 2. How are the values in a tuple accessed?

 Ans. In order to access the values in a tuple, we need to use the index number enclosed in square

brackets along with the name of the tuple.

Example

>>>tuple = (10,20,30,40)

>>>tuple[1]

20 # Output

>>>tuple[3]

40 # Output

152 Introduction to Computing & Problem Solving using Python

Here, we created a tuple named john, with 7 elements inside it. Now, in the next statement, the value of

each element of this tuple is assigned to the respective variables. It can be seen that the number of variables

to the left of assignment is seven and the number of items in the tuple is also seven; hence, the number of

values are matching and the assignment is successful.

Now,

>>>print id

221 # Output

>>>print fst_name

John # Output

>>>print year_of_birth

1971 # Output

>>>print birth_place

atlanta Georgia # Output

In the assignment statement, each variable is assigned with a value that was inside the tuple and can be

accessed individually. If we had used the traditional assignment procedure, it would have been done in 7

lines of statement. With the help of tuple assignment, it is done in a one-line statement.

Similarly, sometimes we need to swap the values of two variables in the program. With the traditional

approach, this can be done by using a temporary variable for swapping the values of two variables.

Example

>>>temp = x

>>> x = y

>>> y = temp

In order to swap the values of variables x and y, we need a temporary variable temp. However, this

problem can be solved much more conveniently with tuple assignment.

>>>x = 3

>>>y = 4

>>>x , y = y , x # Using tuple assignment

>>>print x

4 # Output

>>>print y

3 # Output

Hence, with the use of tuple assignment approach, there is no need to use any temporary variable to swap

values of two variables. All it takes is one simple statement.

Note The number of variables on the left side of the assignment must match the number
of values on the right side of the assignment.

>>>x,y = 1,2,3,4

Traceback (most recent call last): # Output

 File “<pyshell#62>”, line 1, in <module>

x,y = 1,2,3,4

ValueError: too many values to unpack

Tuples and Dictionaries 153

6.1.5 Tuples as Return Values

Tuples can also be returned by the function as return values. Generally, the function returns only one value

but by returning tuple, a function can return more than one value.

For example, if we want to compute a division with two integers and want to know the quotient and

the remainder, both the quotient and the remainder can be computed at the same time. Two values will be

returned, i.e., quotient and remainder, by using the tuple as the return value of the function.

Example

>>>defdiv_mod(a,b): # defining function

... quotient = a/b

... remainder = a%b

... return quotient,remainder # function returning two values

function calling

>>>x = 10

>>>y = 3

>>>t = div_mod(x,y)

>>>print t

(3, 1) # Output

>>>type(t)

<type ‘tuple’> # Output

In the given example, we have defined the function div_mod, which calculates the quotient and remainder.

It returns two values, the quotient and the remainder respectively. Now, at the time of calling the function, a

tuple needs to store the values returned by the function. Hence, we have taken a variable that calls the function

div_mod and stores the values (3,1), which, in our example, are quotient and remainder respectively.

When we tried to see the type of the variable t, it was tuple.

We can also use the tuple assignment approach in order to print the quotient and the remainder separately.

>>>quot, rem = div_mod(10,3)

>>> print quot

3 # Output

>>> print rem

1 # Output

Here, we have taken two variables at the left side which are quot and rem. Now, when the function div_

mod returns the values of quotient and remainder, the values will be stored in quot and rem respectively.

Now, we will see an example of a function that returns tuple as return value.

Example

>>>defmax_min(t):

... return max(t),min(t)

154 Introduction to Computing & Problem Solving using Python

6.1.6 Variable-length Argument Tuples

Variable number of arguments can also be passed to a function. A variable name that is preceded by an

asterisk (*) collects the arguments into a tuple.

Example

>>>def traverse(*t):

... i=0

... while i<len(t):

... print t[i]

... i=i+1

>>>traverse(1,2,3,4,5)

Output:
1

2

3

4

5

In the given example, we have defined a function traverse with argument *t, which means it can take

any number of arguments and will print each of them one by one.

Similarly, we know that the opposite of collect is scatter. In order to pass a series of arguments to a

function, we need to simply use * before the arguments.

For example, the function div_mod that was discussed in earlier section takes exactly two arguments;

but it does not work when we pass a tuple to it.

>>>t = (10,3)

>>>div_mod(t)

Traceback (most recent call last): # Output

 File “<pyshell#142>”, line 1, in <module>

div_mod(t)

TypeError: div_mod() takes exactly 2 arguments (1 given)

To make it work with a tuple, it is necessary to scatter the values of the tuple.

>>>div_mod(*t)

(3, 1) # Output

We use * before t while passing an argument to the function div_mod. It scatters the values (10, 3)

in two values; the function accepts these arguments and gives the result.

max and min are the built-in functions in Python which return the maximum and minimum elements

from a sequence. We have defined a function max_min that returns both the values.

>>>a = (10,3,2,100,72,67)

>>>max_min(a)

(100, 2) # Output

Tuples and Dictionaries 155

When the asterisk (*) is used before the arguments at the time of function definition, it
collects all the calling function arguments in a tuple and when it is used at the time of
calling, it scatters the values of the tuple.

TIP

 1. An email address is provided: hello@python.org . Using tuple assignment, split the

username and domain from the email address. (Hint : use split method)

 Ans. >>>addr = ‘hello@python.org’
 >>>usrname, domain = addr.split(‘@’)

 >>>print usrname

 Hello # Output

 >>>print domain

 python.org # Output

 2. Write a function called sumall that takes any number of arguments and returns their

sum.

 Ans. >>> def sumall(*t):
 ... i=0

 ... sum=0

 ... whilei<len(t):

 ... sum = sum + t[i]

 ... i = i + 1

 ... return sum

 >>>sumall(1,2,3,4,5,6,7)

 28 # Output

 3. Write a function called circleinfo which takes the radius of circle as argument and

returns the area and circumference of the circle.

 Ans. >>>defcircleinfo(r):

 ... c=2 * 3.14159 * r

 ... a=3.14159 * r * r

 ... return (c,a)

 >>>circleinfo(10)

 (62.8318, 314.159) # Output

Check Your Understanding

6.1.7 Basic Tuples Operations

1. Concatenation The concatenation operator works in tuples in the same way as it does in lists. This

operator concatenates two tuples. This is done by the + operator in Python.

156 Introduction to Computing & Problem Solving using Python

Example

>>>t1 = (1,2,3,4)

>>>t2 = (5,6,7,8)

>>>t3 = t1 + t2

>>>print t3

(1, 2, 3, 4, 5, 6, 7, 8) # Output

In this example, there are two tuples, t1 and t2. Tuples t1 and t2 are concatenated using + operator

between them and the resulting tuple is stored in the variable t3. Now, when we print t3, it gives the

concatenation of t1 and t2.

2. Repetition The repetition operator works as its name suggests; it repeats the tuples a given number of

times. Repetition is performed by the* operator in Python.

Example

>>>tuple = (‘ok’,)

>>>tuple * 5

(‘ok’, ‘ok’, ‘ok’, ‘ok’, ‘ok’) # Output

>>>(‘Hello’,) * 3

(‘Hello’, ‘Hello’, ‘Hello’) # Output

Note that, the tuple (‘ok’,) was repeated 5 times and the tuple (‘Hello’,) was repeated 3 times.

3. in Operator The in operator also works on tuples. It tells user that the given element exists in the tuple

or not. It gives a Boolean output, that is, TRUE or FALSE. If the given input exists in the tuple, it gives the

TRUE as output, otherwise FALSE.

Example 1

>>>tuple = (10,20,30,40)

>>>20 in tuple

True # Output

>>>50 in tuple

False # Output

Example 2

>>>tuple = (‘anil’, ‘rahul’, ‘rohan’)

>>> ‘james’ in tuple

False # Output

>>> ‘rohan’ in tuple

True # Output

4. Iteration Iteration can be done in tuples using for loop. It helps in traversing the tuple.

Tuples and Dictionaries 157

Example

>>>tuple = (1,2,3,4,5,6)
>>>for x in tuple:
... print x

Output:
1
2
3
4
5
6

6.1.8 Built-In Tuple Functions
Python includes many built-in functions that can be executed on tuples. Some of them are described in Table

6.1.

TABLE 6.1 Built-in Functions

S.No. Function Description

1. cmp(tuple1, tuple2) It compares the items of two tuples.

2. len(tuple) It returns the length of a tuple.

3. zip(tuple1, tuple2) It ‘zips’ elements from two tuples into a list of tuples.

4. max(tuple) It returns the largest value among the elements in a tuple.

5. min(tuple) It returns the smallest value among the elements in a tuple

6. tuple(seq) It converts a list into a tuple.

Example

>>> tuple1 = (‘physics’,’chemistry’,’mathematics’)
>>> tuple2 = (10,20,30,40,50)
>>>cmp(tuple1,tuple2)
1 # Output
>>>cmp(tuple2,tuple1)
-1 # Output
>>>len(tuple1)
3 # Output
>>>len(tuple2)
5 # Output
>>>zip(tuple1,tuple2)
[(‘physics’, 10), (‘chemistry’, 20), (‘mathematics’, 30)] # Output
>>>max(tuple1)
‘physics’ # Output
>>>max(tuple2)
50 # Output
>>>min(tuple1)
‘chemistry’ # Output
>>>min(tuple2)
10 # Output

158 Introduction to Computing & Problem Solving using Python

In the above example, physics is max element of tuple1 because if we compare the first letter of all

the words in the tuple then p is greater than c and m. Hence, the comparison stops here and physics is

declared as the max element of the tuple. Similarly, chemistry is the min element of this tuple.

Note Zip is a built-in function that takes two or more sequences and “zips” them into a
list of tuples where each tuple contains one element from each sequence.

When there are different numbers of elements in the tuples i.e. if the length of the tuples
are not same then the resulting tuple after applying the zip function will have the length
of shorter tuple.

TIP

Example

>>> s = (‘Hello’) # Length is 5

>>> t = (‘Python’) # Length is 6

>>> zip(s,t)

[(‘H’, ‘P’), (‘e’, ‘y’), (‘l’, ‘t’), (‘l’, ‘h’), (‘o’, ‘o’)]

 # Resulting tuple has length 5 equal to s

 1. What are concatenation and iteration? Give one example of concatenation.

 Ans. Concatenation:

 The concatenation operator works in tuples in the same way as in lists. This operator concatenates

two tuples. Concatenation is done by the + operator in Python.

Example

>>>t1 = (10,20,30)

>>>t2 = (50,60)

>>>t3 = t1 + t2

>>>print t3

(10, 20, 30, 50, 60) # Output

 Iteration:

 Iteration is done in tuples using for loop. It helps in traversing the tuple.

 2. Give one-one example for zip, max and min methods.
 Ans. >>>tuple1 = (‘a’,’b’,’c’)
 >>>tuple2 = (1,2,3)

 >>>max(tuple2)

Check Your Understanding

Tuples and Dictionaries 159

6.2 DICTIONARIES

The Python dictionary is an unordered collection of items or elements. All other compound data types in

Python have only values as their elements or items whereas the dictionary has a key: value pair. Each value is

associated with a key. In the list and the tuple, there are indices that are only of integer type but in dictionary,

we have keys and they can be of any type.

Dictionary is said to be a mapping between some set of keys and values. Each key is associated to a value.

The mapping of a key and value is called as a key-value pair and together they are called one item or element.

A key and its value are separated by a colon (:) between them. The items or elements in a dictionary are

separated by commas and all the elements must be enclosed in curly braces. A pair of curly braces with no

values in between is known as an empty dictionary.

The values in a dictionary can be duplicated, but the keys in the dictionary are unique.

6.2.1 Creating a Dictionary

Creating a dictionary is simple in Python. The values in a dictionary can be of any data type, but the keys

must be of immutable data types (such as string, number or tuple).

Example

Empty Dictionary
>>> dict1 = {}

>>>print dict1

{} # Output

Dictionary with integer keys
>>> dict1 = {1:’red’,2:’yellow’,3:’green’}

>>>print dict1

{1: ‘red’, 2: ‘yellow’, 3: ‘green’} # Output

Dictionary with mixed keys
>>> dict1 = {‘name’ : ‘jinnie’, 3:[‘Hello’,2,3]}

>>>print dict1

{3: [‘Hello’, 2, 3], ‘name’: ‘jinnie’} # Output

In the above examples, we have seen many types of ways for creating a dictionary in Python programming

language. One thing to be noticed in initialization of dictionary is that the values of keys can be given in any

order but on printing the dictionary, it prints the sorted order of keys. This is because the dictionary has an

internal mechanism to sort the keys and then print them.

 3 # Output

 >>>min(tuple1)

 ‘a’ # Output

 >>>zip(tuple1,tuple2)

 [(‘a’, 1), (‘b’, 2), (‘c’, 3)] # Output

160 Introduction to Computing & Problem Solving using Python

Note Python also provides a built-in function dict()for creating a dictionary:

Example

>>> d1 = dict({1:’red’, 2:’yellow’, 3:’green’})

>>> d2 = dict([(1,’red’), (2,’yellow’),(3,’green’)])

>>> d3 = dict(one=1, two=2, three=3)

>>> print d3

{‘three’: 3, ‘two’: 2, ‘one’: 1}

In the above example, three dictionaries d1, d2 and d3 are initialized using the built-in dict function

in the Python programming language.

6.2.2 Accessing Values in a Dictionary

In order to access the elements from a dictionary, we can use the value of the key enclosed in square

brackets. Python also provides a get() method that is used with the key in order to access the value. There

is a difference in both the accessing methods. When the key is not found in the dictionary, it returns none

instead of KeyError.

>>> dict1 = {‘name’ : ‘John’, ‘age’ : 27}
>>> dict1[‘name’]
‘John’ # Output
>>> print dict1[‘name’]
John # Output
>>> print dict1[‘age’]
27 # Output
>>> dict1.get(‘name’)
‘John’ # Output
>>> print dict1.get(‘name’)
John # Output
>>> dict1.get(‘age’)
27 # Output

When we try to access a key that does not exist in the dictionary, an error occurs.

>>> print dict1[‘address’]

Traceback (most recent call last): # Output

 File “<pyshell#19>”, line 1, in <module>

 print dict1[‘address’]

KeyError: ‘address’

>>> dict1.get(‘address’)

TIP

get() method returns None, which means nothing, when there is no value in the dictionary stored against

the given key. get() also allows us to specify custom default value.

Tuples and Dictionaries 161

Example

>>> dict1 = {‘name’ : ‘John’, ‘age’ : 27}

>>> dict1.get(“address”,0) # Default value is 0

0

Here, we have searched for a key ‘address’ which is not present in the dictionary. get() function

therefore gives the default value which is 0.

 1. What is a Dictionary in Python?

 Ans. Python dictionary is an unordered collection of items or elements. All other compound data

types in Python have only values as their elements or items whereas the dictionary has a key:

value pair, i.e., each value is associated with a key. In the list and the tuple, there are indices

that are only of integer type, but in the dictionary, we can have keys of any type.

 2. Give one example of accessing the value in dictionary.

 Ans. >>> dict1 = {1:’a’,2:’b’,3:’c’}
 >>> dict1[1]
 ‘a’ # Output
 >>> dict1[2]
 ‘b’ # Output
 >>> dict1[3]
 ‘c’ # Output

Check Your Understanding

6.2.3 Updating Dictionary

Dictionaries in Python are mutable. Unlike those in tuple and string, the values in a dictionary can be

changed, added or deleted. If the key is present in the dictionary, then the associated value with that key is

updated or changed; otherwise a new key: value pair is added.

Example

>>> dict1 = {‘name’ : ‘John’, ‘age’ : 27}

>>> dict1[‘age’] = 30 # updating a value

>>> print dict

{‘age’: 30, ‘name’: ‘John’} # Output

>>> dict1[‘address’] = ‘Alaska’ # adding a key: value

>>>print dict1

{‘age’: 30, ‘name’: ‘John’, ‘address’: ‘Alaska’} # Output

Note that we tried to reassign the value ‘30’ to the key ‘age’, Python interpreter first searches the key in

the dictionary. In our example, the key ‘age’ exists. Hence, the value of ‘age’ is updated to 30. However,

in the next statement, it does not find the key ‘address’; hence, the key: value ‘address’: ‘Alaska’

is added to the dictionary.

162 Introduction to Computing & Problem Solving using Python

We have seen many examples of deleting items from a dictionary. When the clear() method was used,

all the items were removed and an empty dictionary was left. When the del method was used, the dictionary

was deleted from the memory.

6.2.5 Properties of Dictionary Keys

The values in the dictionary do not have any restrictions; any data type can be used here, including string,

integer, any user-defined object, python object, etc. However, such is not the case with the keys.

Example

>>>dict_cubes = {1:1, 2:8, 3:9, 4:64, 5:125, 6:216}

>>>dict_cubes.pop(3) # remove a particular item
9 # Output
>>>dict_cubes
{1: 1, 2: 8, 4: 64, 5: 125, 6: 216} # Output

>>>dict_cubes.popitem() # remove an arbitrary item
(1, 1) # Output
>>>dict_cubes.popitem()
(2, 8) # Output
>>>dict_cubes
{4: 64, 5: 125, 6: 216} # Output

>>>deldict_cubes[6] # delete a particular item
>>>dict_cubes
{4: 64, 5: 125} # Output

>>>dict_cubes.clear() # remove all items
>>>dict_cubes
{} # Output

>>>deldict_cubes # delete the dictionary itself
>>> print dict_cubes
Traceback (most recent call last): # Output
 File “<pyshell#40>”, line 1, in <module>

printdict_cubes

NameError: name ‘dict_cubes’ is not defined

6.2.4 Deleting Elements from Dictionary

The items or elements from a dictionary can be removed or deleted by using pop()method. pop()method

removes that item from the dictionary for which the key is provided. It also returns the value of the item.

Furthermore, there is a popitem()method in Python. popitem()method is used to remove or delete

and return an arbitrary item from the dictionary.

The clear() method removes all the items or elements from a dictionary at once. When this operation

is performed, the dictionary becomes an empty dictionary.

Python also provides a del keyword, which deletes the dictionary itself. When this operation is performed,

the dictionary is deleted from the memory and it ceases to exist.

Tuples and Dictionaries 163

Keys have some restrictions while defining them. There are two important points to be kept in mind about

keys which are as follows:

 1. One key in a dictionary cannot have two values, i.e., duplicate keys are not allowed in the dictionary;

they must be unique. Whenever duplicate keys are assigned values in a dictionary, the latest value is

considered and stored whereas the previous one is lost.

Example

>>> dict1 = {‘Name’:’John’,’Age’:30,’Name’:’Jinnie’}

>>> print dict1[‘Name’]

Jinnie # Output

 In the above example, two values have been assigned to the same key ‘Name’. However, when we

print the dictionary, only the latest one, i.e.,‘Jinnie’ is stored whereas ‘John’ is lost.

 2. Keys are immutable, i.e., we can use string, integers or tuples for dictionary keys, but something like

[‘key’] is not valid.

Example

>>> dict1 = {[‘Name’]:’John’,’Age’:30}

Traceback (most recent call last):

 File “<pyshell#46>”, line 1, in <module>

 Dict1 = {[‘Name’]:’John’,’Age’:30}

TypeError: unhashable type: ‘list’

Note that when we tried to input a key [‘Name’], Python interpreter gives an error message.

 1. What are the different methods used in deleting elements from dictionary?

 Ans. pop()method removes that item from the dictionary for which the key is provided. It also

returns the value of the item.

 popitem()method is used to remove or delete and return an arbitrary item from the dictionary.

 clear() method removes all the items or elements from a dictionary at the same time.

 Python also provides a del keyword that deletes the dictionary itself.

 2. What are the two properties of key in the dictionary?

 Ans. 1. One key in a dictionary cannot have two values, i.e., duplicate keys are not allowed in the

dictionary; they must be unique.

 2. Keys are immutable, i.e., we can use string, integers or tuples for dictionary keys, but cannot

use something like [‘key’].

Check Your Understanding

164 Introduction to Computing & Problem Solving using Python

6.2.6 Operations in Dictionary

1. Traversing We have learnt about traversing strings, lists and tuples in the previous sections. Now, we will

learn traversing in a dictionary. Traversing in dictionary is done on the basis of keys. For this, for loop is

used, which iterates over the keys in the dictionary and prints the corresponding values using keys.

Example

We will define a function print_dict. Whenever a dictionary is passed as an argument to this

function, it will print the keys and values of the dictionary.

>>>defprint_dict(d):

... for c in d:

... print c,d[c]

>>> dict1 = {1:’a’,2:’b’,3:’c’,4:’d’,5:’e’,6:’f’,7:’g’,8:’h’}

>>> print_dict(dict1)

Output:
1 a

2 b

3 c

4 d

5 e

6 f

7 g

8 h

This example prints the key: value pairs in the dictionary dict.

Note Traversing in the dictionary is done on the basis of keys because they are unique.

2. Membership Using the membership operator (in and not in), we can test whether a key is in the

dictionary or not. We have seen the in operator earlier as well in the list and the tuple. It takes an input key

and finds the key in the dictionary. If the key is found, then it returns True, otherwise, False.

Example

>>>cubes = {1:1, 2:8, 3:27, 4:64, 5:125, 6:216}

>>>3 in cubes

True # Output

>>>7 not in cubes

True # Output

>>>10 in cubes

False # Output

Tuples and Dictionaries 165

6.2.7 Built-In Dictionary Methods

There are some built-in methods which are included in Python given in Table 6.2.

TABLE 6.2 Built-In Dictionary Methods

Sr.No. Function Description

1. all(dict) It is a Boolean type function, which returns True if all keys of

dictionary are true (or the dictionary is empty).

2. any(dict) It is also a Boolean type function, which returns True if any key

of the dictionary is true. It returns false if the dictionary is empty.

3. len(dict) It returns the number of items (length) in the dictionary.

4. cmp(dict1,dict2) It compares the items of two dictionaries.

5. sorted(dict) It returns the sorted list of keys.

6. str(dict) It produces a printable string representation of the dictionary.

7. dict.clear() It deletes all the items in a dictionary at once.

8. dict.copy() It returns a copy of the dictionary.

9. dict.fromkeys() It creates a new dictionary with keys from sequence and values

set to value.

10. dict.get(key, default=None) For key key, returns value or default if key not in dictionary.

11. dict.has_key(key) It finds the key in dictionary; returns True if found and false

otherwise.

12. dict.items() It returns a list of entire key: value pair of dictionary.

13. dict.keys() It returns the list of all the keys in dictionary.

14. dict.setdefault

(key, default=None)
Similar to get(), but will set dict[key]=default if key

is not already in dict.

15. dict.update(dict2) It adds the items from dict2 to dict.

16. dict.values() It returns all the values in the dictionary.

Example

>>>cubes = {1:1, 2:8, 3:27, 4:64, 5:125, 6:216}

>>>all(cubes)

True # Output

>>>any(cubes)

True # Output

>>>len(cubes)

6 # Output

>>>sorted(cubes)

[1, 2, 3, 4, 5, 6] # Output

>>>str(cubes)

‘{1: 1, 2: 8, 3: 27, 4: 64, 5: 125, 6: 216}’ # Output

166 Introduction to Computing & Problem Solving using Python

 1. What are the different operations performed on the dictionary?

 Ans. (i) Traversing:

 Traversing in dictionary is done on the basis of keys. We use for loop which iterates over

the keys in the dictionary and prints the corresponding values using keys.

 (ii) Membership:

 Using the membership operator (in and not in), we can test whether a key is in the

dictionary or not. It takes an input key and finds the key in the dictionary. If the key is found,

then it returns True, otherwise False.

 2. Give examples for all, any, len and sorted methods in dictionary.

 Ans. >>> dict1 = {8:’a’,3:’b’,5:’c’,7:’d’}
 >>> all(dict1)

 True # Output

 >>> any(dict1)

 True # Output

 >>> len(dict1)

 4 # Output

 >>> sorted(dict1)

 [3, 5, 7, 8] # Output

Check Your Understanding

 ● Tuples are the sequences of different types of values.

 ● Elements are separated by commas inside the parentheses and are assigned to a variable to create a tuple.

 ● Tuples can be created with or without parentheses.

 ● Nested tuples can be created.

 ● To complete the assignment of the tuple, a final comma must be added after the element.

 ● In order to access the values in a tuple, it is necessary to use the index number enclosed in square brackets

along with the name of the tuple.

 ● Slicing can be used to print the continuous values in a tuple.

 ● Tuples are immutable and thus the elements or values cannot be modified.

 ● Assignment of values to a tuple of variables on the left side of assignment from the tuple of values on the

right side of the assignment is allowed.

 ● A function returns only one value, but by returning tuple, a function can return more than one value.

 ● Asterisk (*) is used before the arguments at the time of function definition. This means that it collects

all the calling function arguments in a tuple. When it is used at the time of calling, it scatters the values

of the tuple.

 ● A dictionary is a mapping between some set of keys and values. Each key is associated with a value. The

mapping of a key and value is called a key-value pair and together they form one item or element.

Tuples and Dictionaries 167

 ● The values in a dictionary are not unique and can be duplicated, but the keys in the dictionary are unique.

 ● The value of the key enclosed within square brackets is used to access the elements from a dictionary. An

alternative method of accessing the elements is the get() method, which is used with the key.

 ● The difference between the accessing methods of dictionary is that when the key is not found in dictionary,

it returns none instead of KeyError.

 ● Dictionaries are mutable and thus the elements or values can be modified.

 ● Four methods are used to delete the elements from the dictionary:

 1. pop()

 2. popitem()

 3. clear()

 4. del

 ✓ TUPLE: Tuples, just like lists, are the sequence or series of different types of values that are separated

by commas (,).

 ✓ TUPLE ASSIGNMENT: It allows assignment of values to a tuple of variables on the left side of

assignment from the tuple of values on the right side of the assignment.

 ✓ VARIABLE-LENGTH ARGUMENT TUPLES: A variable number of arguments can also be passed

to a function. A variable name which is preceded by an asterisk (*) collects the arguments into a tuple.

 ✓ CONCATENATION: This operator works in tuples in the same way as in lists. This operator concatenates

two tuples. This is done by the + operator in Python.

 ✓ REPETITION: This operator repeats the tuples a given number of times. Repetition is performed by *

operator.

 ✓ in OPERATOR: This operator tells the user whether the given element exists in the tuple or not. It gives

a Boolean output, i.e., TRUE or FALSE.

 ✓ ITERATION: Iteration can be done in tuples using for loop. It helps in traversing the tuple.

 ✓ len(tuple): It returns the length of the tuple.

 ✓ cmp(tuple1, tuple2): It compares the items of two tuples.

 ✓ max(tuple): It returns the largest value among the elements in a tuple.

 ✓ min(tuple): It returns the smallest value among the elements in a tuple.

 ✓ tuple(seq): It converts a list into a tuple.

 ✓ zip(tuple1, tuple2): It ‘zips’ elements from two tuples into a list of tuples.

 ✓ DICTIONARY: The Python dictionary is an unordered collection of items or elements. The dictionary

has a key: value pair.

 ✓ KEY: It is used to get the value in the dictionary.

 ✓ KEY-VALUE: This pair represents the items in the dictionary.

1. dict():This function is used to create a dictionary.

168 Introduction to Computing & Problem Solving using Python

2. get(): This method is used with the key to access the value in a dictionary.

3. pop(): This method removes the item from the dictionary and returns the value of the item.

4. popitem(): This method is used to delete and return an arbitrary item from the dictionary.

5. clear(): This method removes all the items from the dictionary.

6. del: It is used to delete the dictionary itself.

 ✓ IMMUTABLE: It is the type in which elements cannot be modified. Tuples are immutable.

 ✓ MUTABLE: It is the type in which elements are modified. Dictionaries are mutable.

1. len(dict): It returns the number of items (length) in the dictionary.

2. cmp(dict1,dict2): It compares the items of two dictionaries.

3. sorted(dict): It returns the sorted list of keys.

4. str(dict): It produces a printable string representation of dictionary.

PROGRAMS

1. Given an integral number n, write a program to generate a dictionary that contains (i, i*i) such that

i is an integral number between 1 and n (both included). The program should then print the dictionary.

Suppose the following input is supplied to the program:

7

Then, the output should be:

{1:1, 2:4, 3:9, 4:16, 5:25, 6:36, 7:49}

Solution:
>>>n = int(raw_input())

>>>d = dict()

>>>for i in range(1,n+1):

d[i] = i*i

print d

2. Define a function that prints a dictionary where the keys are numbers between 1 and 4 (both

included) and the values are cubes of the keys.

Solution:

>>>def dictionary():

n=dict()

n[1]=1**3

n[2]=2**3

n[3]=3**3

n[4]=4**3

print n

>>>dictionary()

{1: 1, 2: 8, 3: 27, 4: 64} #Output

PROGRAMSPROGRAMS

Tuples and Dictionaries 169

3. Consider the tuple (1,3,5,7,9,2,4,6,8,10). Write a program to print half its values in one line and the

other half in the next line.

Solution:
>>>tup = (1,3,5,7,9,2,4,6,8,10)

>>>tup1 = tup[:5]

>>>tup2 = tup[5:]

>>>print tup1

(1,3,5,7,9) #Output

>>> print tup2

(2,4,6,8,10) #Output

4. Consider the tuple (12, 7, 38, 56, 78). Write a program to print another tuple whose values are even

numbers in the given tuple.

Solution:
>>> tup = (12,7,38,56,78)

>>> even_list = list()

>>> for i in tup:

 if i % 2 == 0:

 even_list.append(i)

 print tuple(even_list)

(12, 38, 56, 78) # Output

5. Define a function that prints a tuple whose values are the cube of a number between 1 and 15 (both

included).

Solution:
>>> def printTup():

 l = list()

 for i in range(1,16):

 l.append(i**3)

 print tuple(l)

>>> printTup()

(1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744,

3375) # Output

6. Write a python program to demonstrate tuples functions and operations

Solution:
python program to demonstrate tuples and their basic operations

zero element tuple

tpl = ();

print “tpl is empty”, tpl

tpl1 = (1, 2, 3, 5, 7, 11);

tpl2 = (‘aaa’,’pqr’, ‘uvw’, ‘zzz’);

print “displaying the elements in tuple1”, tpl1

print “displaying the elements in tuple2”, tpl2

create a new tuple from the exisitng

print “creating tpl3 from tpl1 and tpl2”

170 Introduction to Computing & Problem Solving using Python

tpl3 = tpl1 + tpl2;

print “displaying the elements in tuple3”

print tpl3

print “Display the lengths of the tuple”

print (len(tpl1))

print (len(tpl2))

print “Max and Min functions on tuple”

print (max(tpl1))

print (max(tpl2))

print (min(tpl1))

print (min(tpl2))

Search for a value using in.

print “using in for tpl3 and tpl2”

if “uvw” in tpl3:

 print(“uvw found”)

Search for a value not present.

if “9” not in tpl2:

 print(“9 not found”)

print “Using the index on the tuples”

Print all the tuple elements from the index 1 or more.

print(tpl3[1:])

print only one element for the index 1.

print(tpl2[:1])

prin the values from index 3 to 9.

print(tpl3[3:9])

Get index of element with value “python” in tuple4.

tpl4 = (“aaa”, “sss”, “www”, “python”, “program”)

print “prin the index value of 3 in tpl1”

index = tpl4.index(“python”)

print(index, tpl4[index])

#print “unsucessful index of a tuple tpl3”

#inx1 = tpl3.inx1(“python”) generates AttributeError: ‘tuple’ object has no

attribute ‘inx’

#print(inx1, tpl3[inx1])

print “count function on tuple”

print(tpl2.count(1))

print(tpl3.count(3))

print “when there are not same elements”

print (tpl3.count(30))

print “Using compare over tupless tpl1 tpl2 and tpl3”

print cmp(tpl1, tpl2)

print cmp(tpl2, tpl1)

print cmp(tpl1, tpl3)

print cmp(tpl3, tpl2)

print “Implementing tuple() method”

lst = tuple(tpl3)

print “lst elements : “, lst

print “Deleting the elements in a tuple”

del tpl3;

Tuples and Dictionaries 171

when the tuple is deleted we get an error when displaying

print “After deleting tuple3 : “

print tpl3

Output:

tpl is empty ()

displaying the elements in tuple1 (1, 2, 3, 5, 7, 11)

displaying the elements in tuple2 (‘aaa’, ‘pqr’, ‘uvw’, ‘zzz’)

creating tpl3 from tpl1 and tpl2

displaying the elements in tuple3

(1, 2, 3, 5, 7, 11, ‘aaa’, ‘pqr’, ‘uvw’, ‘zzz’)

Display the lengths of the tuple

6

4

Max and Min functions on tuple

11

zzz

1

aaa

using in for tpl3 and tpl2

uvw found

9 not found

Using the index on the tuples

(2, 3, 5, 7, 11, ‘aaa’, ‘pqr’, ‘uvw’, ‘zzz’)

(‘aaa’,)

(5, 7, 11, ‘aaa’, ‘pqr’, ‘uvw’)

print the index value of python in tpl4

prin the index value of 3 in tpl1

(3, ‘python’)

when there are not same elements

0

Using compare over tupless tpl1 tpl2 and tpl3

-1

1

-1

-1

Implementing tuple() method

lst elements : (1, 2, 3, 5, 7, 11, ‘aaa’, ‘pqr’, ‘uvw’, ‘zzz’)

Deleting the elements in a tuple

After deleting tuple3 :

Traceback (most recent call last):

 File “main.py”, line 33, in <module>

 print tpl3

NameError: name ‘tpl3’ is not defined

Note When a tuple does not exist we get a name error and when an element does not exist
inside a tuple with an index method an error is generated. We need to be more conscious in
using the index method over tuples.

172 Introduction to Computing & Problem Solving using Python

7. Write a Python Program to demonstrate the Dictionaries functions and operations

Solution:
python program to demonstrate the Dictionaries functions and operations

dicti = {‘Lang’: ‘Python’, ‘Chap’: 6, ‘Topic’: ‘Program’}

print “dicti[‘Lang’]: “, dicti[‘Lang’]

print “dicti[‘Chap’]: “, dicti[‘Chap’]

dicti = {‘Lang’: ‘Python’, ‘Chap’: 6, ‘Topic’: ‘Program’}

updating the existing entry of a dictionary

dicti[‘Chap’] = 8;

Adding a new element into a dictionary

dicti[‘Topic’] = “Dictionary topic”;

print “dicti[‘Chap’]: “, dicti[‘Chap’]

print “dicti[‘Topic’]: “, dicti[‘Topic’]

deleting the element with the key ‘Lang’

del dicti[‘Lang’];

print dicti

removing the dictionary elements

dicti.clear();

delete entire dictionary

del dicti ;

dicti1 = {‘Lang’: ‘Python’, ‘Chap’: 11};

dicti2 = {‘Lang’: ‘c’, ‘Chap’: 15};

dicti3 = {‘Lang’: ‘java’, ‘Chap’: 35};

dicti4 = {‘Lang’: ‘perl’, ‘Chap’: 25};

print “dicti1[‘Chap’]: “, dicti1[‘Chap’]

Uisng the dictionary keys

print “dicti2[‘Lang’]: “, dicti2[‘Lang’]

print “compare() on dictionaries”

print “Return Value : %d” % cmp (dicti1, dicti2)

print “Return Value : %d” % cmp (dicti2, dicti3)

print “Return Value : %d” % cmp (dicti1, dicti4)

print “len() on dictionaries ”

print “Length : %d” % len (dicti1)

print “str() on dictionaries”

print “Equivalent String : %s” % str (dicti1)

print “type() on dictionaries”

print “Variable Type : %s” % type (dicti1)

print “Start Len : %d” % len(dicti1)

print “clear() on dictionaries”

dicti1.clear()

print “End Len : %d” % len(dicti1)

print “copy () on dictionaries”

dicti5 = dicti1.copy()

print “seq on dictionaries”

seq = (‘lang’, ‘chap’, ‘program’)

dicti6 = dicti6.fromkeys(seq)

print “New Dictiionary : %s”

print str(dicti6)

dicti7 = dicti6.fromkeys(seq, 10)

Tuples and Dictionaries 173

print “New Dictiionary : %s”

print str(dicti7)

print “New Dictiinary : %s”

print str(dicti7)

seq = (‘lang’, ‘chap’, ‘program’)

dicti8 = dicti7.fromkeys(seq)

print “New Dictiionary : %s” % str(dicti8)

dicti9 = dicti8.fromkeys(seq, 10)

print “New Dictiionary : %s” % str(dicti9)

print “Value : %s” % dicti9.get(‘Chap’)

print “Value : %s” % dicti9.get(‘Education’, “Never”)

print “Value : %s” % dicti9.has_key(‘Chap’)

print “Value : %s” % dicti9.has_key(‘Program’)

print “Value : %s” % dicti9.items()

print “Value : %s” % dicti9.keys()

print “Value : %s” % dicti9.setdefault(‘Chap’, None)

print “Value : %s” % dicti9.setdefault(‘Program’, None)

dicti5.update(dicti2)

print “Value : %s” % dicti5

print “Value : %s” % dicti5.values()

Output:

dicti[‘Lang’]:

Python

dicti[‘Chap’]:

6

dicti[‘Dictionary’]:

Traceback (most recent call last):

 dicti[‘Chap’]:

8

dicti[‘Topic’]:

Dictionary topic

{‘Topic’: ‘Dictionary topic’, ‘Chap’: 8}

dicti1[‘Chap’]: 11

dicti1[‘Topic’]:

Traceback (most recent call last):

 Line 27, in <module>

 print “dicti1[‘Topic’]: “, dicti1[‘Topic’]

KeyError: ‘Topic’

dicti2[‘Lang’]: c

cmp () on dictionaries

Return Value : -1

Return Value : -1

Return Value : -1

len() on dictionaries

Length : 2

str() on dictionaries

Equivalent String : {‘Lang’: ‘Python’, ‘Chap’: 11}

type() on dictionaries

Variable Type : <type ‘dict’>

174 Introduction to Computing & Problem Solving using Python

Start Len : 2

clear() on dictionaries

End Len : 0

copy () on dictionaries

seq on dictionaries

New dictionaries : % s

{‘lang’: None, ‘chap’: None, ‘program’: None}

New Dictiionary : %s

{‘lang’: 10, ‘chap’: 10, ‘program’: 10}

New Dictiinary : %s

{‘lang’: 10, ‘chap’: 10, ‘program’: 10}

New Dictiionary : {‘lang’: None, ‘chap’: None, ‘program’: None}

New Dictiionary : {‘lang’: 10, ‘chap’: 10, ‘program’: 10}

Value : None

Value : Never

Value : False

Value : False

Value : [(‘lang’, 10), (‘chap’, 10), (‘program’, 10)]

Value : [‘lang’, ‘chap’, ‘program’]

Value : None

Value : None

Value : {‘Lang’: ‘c’, ‘Chap’: 15}

Value : [‘c’, 15]

Note When we execute the following lines of code in the program
print “dicti[‘Dictionary’]: “, dicti[‘Dictionary’]

the following errors are occurred
Line 9, in <module>

 print dicti[‘Dictionary’]

KeyError: ‘Dictionary’ those lines can be edited for hassle free program.

When we add this line to the program
print “dicti1[‘Topic’]: “, dicti1[‘Topic’]

The following errors are occurred
line 25, in <module>

 print “dicti1[‘Topic’]: “, dicti1[‘Topic’]

KeyError: ‘Topic’

These errors are provided to the user only for implementation purpose.

Multiple Choice Questions

 1. Which of the following sequence data type is similar to the tuple?

 a. Dictionaries b. List

 c. String d. function

 2. In which operator are tuples enclosed?

 a. { } b. []

 c. <> d. ()

Tuples and Dictionaries 175

 3. Which of the following is a Python tuple?

 a. [7, 8, 9] b. {7, 8, 9}

 c. (7, 8, 9) d. <7, 8, 9>

 4. What will be the output of the following code?

 >>>tuple = (‘john’, 100, 345, 1.67, ‘book’)

 >>>print(tuple[0])

 a. John b. 0

 c. Book d. error

 5. What will be the output of the following code?

 >>>tuple = (‘john’, 100, 345, 1.67, ‘book’)

 >>>print(tuple[2:4])

 a. (345, 1.67, ‘book’) b. (100, 345, 1.67)

 c. (345, 1.67) d. (100, 345)

 6. Which of the following will not be correct if tuple = (10, 12, 14, 16, 18)?

 a. print(min(tuple)) b. print(max(tuple))

 c. tuple[4] = 20 d. print(len(tuple))

 7. What will be the output of the following code?

 >>>tuple = (‘john’, 100, 345, 1.67, ‘book’)

 >>>print(tuple[3:])

 a. (1.67, ‘book’) b. (345, 1.67)

 c. (‘john’, 100, 345) d. (345, 1.67, ‘book’)

 8. What will be the output of the following code?

 >>>tuple = (1, 5, 8, 9)

 >>>print(tuple[1:-1])

 a. (1, 5, 8) b. (1, 5)

 c. (5, 8, 9) d. (5, 8)

 9. Which of the following statements is used to delete an entire tuple?

 a. Remove b. exit

 c. del d. backspace

 10. What will be the output of the following code?

 >>>tuple1 = (3, 5, 7, 9)

 >>>tuple2 = (3, 5, 9, 7)

 >>>tuple1 < tuple2

 a. Error b. False

 c. True d. Null

 11. Which of the following functions in Python is used to convert a string into a tuple?

 a. tuple(str) b. str(tuple)

 c. repr(tuple) d. list(tuple)

 12. Which of the following data types does not belong to Python?

 a. String b. Tuple

 c. Dictionary d. Structure

 13. Which of the following functions will return a list into a tuple?

 a. tuple(list) b. len(tuple)

 c. tuple(seq) d. append(tuple)

176 Introduction to Computing & Problem Solving using Python

 14. Which core data type in Python is an unordered collection of key-value pairs?

 a. Tuple b. dictionary

 c. function d. list

 15. In which of the following operators are dictionaries enclosed?

 a. { } b. ()

 c. [] d. <>

 16. Which of the following represent keys in the dictionary?

 a. function or list b. numbers or list

 c. strings or functions d. numbers or strings

 17. Which operator is used to access the values in dictionary?

 a. { } b. ()

 c. [] d. <>

 18. Which of the following statements will not create a dictionary?

 a. {245:”book”, 1234:code} b. (“book”:245, “code”:1234)

 c. { } d. {“book”:245, “code”:1234}

 19. Which of the following forms do dictionaries appear in?

 a. keys and values b. only keys

 c. list and keys d. only values

 20. What are the keys in the following code?

 dictionary = {“book”:245, “code”:1234}

 a. 245 and 1234 b. “book” and “code”

 c. “book”, 245, “code” and 1234 d. (“book”:245, “code”:1234)

 21. Which of the following methods is used to remove entire elements of a dictionary?

 a. remove() b. remove{}

 c. clear() d. clear{}

 22. What will be the output of the following code?

 dict = {‘name’: ‘ravi’, ‘age’:35}

 “ravi” in dict

 a. True b. false

 c. error d. none

 23. Which of the following functions of the dictionary gets all the keys from the dictionary?

 a. dict.key() b. dict.keys()

 c. allkeys() d. getkeys()

 24. What will be the output of the following code?

 dict = {‘name’,‘ravi’,‘age’:35}

 >>>print dic[‘age’]

 a. Age b. 35

 c. Ravi d. error

 25. What will be the output of the following code?

 dict = {‘name’:’ravi’, ‘age’:35}

 >>>print dict[‘age’]

 a. Age b. [age]

 c. 35 d. error

Tuples and Dictionaries 177

 26. Which of the following functions will be used to get the number of entries in dictionary?

 a. len(dict) b. dict.len

 c. size(dict) d. dict.size

 27. What will be the output of the following code?

 dict1 = {’john’:25,’Salary’:18,000}

 dict2 = {’kathy’:35,’Salary’:28,000}

 >>>print dict1 > dict2

 a. True b. error

 c. false d. none

 28. What will be the output of the following code?

 dict = {’john’:25,’Salary’:18,000,‘Age’:45}

 >>>print (len(dict))

 a. 6 b. 5

 c. 3 d. none

 29. Which of the following functions of the dictionary gets all the values from the dictionary?

 a. dict.values() b. dict.value()

 c. getvalues() d. getvalue()

 30. Which of the following functions returns a list of the dictionary?

 a. list.items() b. dict.list()

 c. list.dict() d. dict.items()

 31. What value is returned by the method dict.has_key(key), when the key is in the dictionary?

 a. False b. True

 c. Error d. None

Short Questions

 1. What is tuple in Python? Compare tuple and list.

 2. What will be the output of the given code?

 >>>tuple = (4, 6, 8, 10)

 >>>tuple.append((12, 14, 20, 24))

 >>> print len(tuple)

 3. What will be the output of the given code? Justify your answer.

 >>>tuple = (’computer’, 456, ‘book’)

 >>>print(tuple * 2)

 4. What will be the output of the given code? Justify your answer.

 >>>tuple = (’computer’, 456, ‘book’)

 >>>print(list)

 5. What are the built-in tuple functions in Python?

 6. What will be the output of the given codes?

 a) >>> tuple = (’computer’, 456, ‘book’)

 >>>print(len(tuple))

 b) >>> tuple1 = (2400, 456, 33.7, 500)

 >>> tuple2 = (33400, 4569, 6687, 4008)

 >>>print (‘Maximum value in:”,tuple2,”is” max(tuple2))

 >>>print (‘Minimum value in:”,tuple1,”is” min(tuple1))

178 Introduction to Computing & Problem Solving using Python

 c) >>> list = [’computer’, 456, ‘book’]

 >>>print (“tuple:”, tuple(list))

 7. What is dictionary? Explain with example.

 8. What are the properties of dictionary keys?

 9. What will be the output of the following code?

 >>>dict = {‘Name’:’john’,’Age’:25,’Salary’:28,000}

 >>>print(dict)

 >>>del dict{‘Salary’}

 >>>print(“dictionary after deletion:”,dict)

 >>>dict.clear()

 >>>print(dict)

 10. What will be the output of the following code?

 >>>dict = {‘Name’:’john’,’Age’:25,’Salary’:28,000}

 >>>print(list(dict.keys()))

 11. What will be the output of the following code?

 >>>dict = {‘Name’:’john’,’Age’:25,’Salary’:28,000}

 >>>print(dict)

 >>>dict[‘age’] = 30

 >>>print(“dictionary after update:”, dict)

 >>>dict[‘height’] = 120

 >>>print(“dictionary after update:”, dict)

 12. What will be the output of the following code?

 a) >>>dict = {‘Name’:’john’,’Age’:25,’Salary’:28,000}

 >>>print(dict)

 >>>print(“dict.has_key(key):”,dict.has_key(‘salary’))

 >>>print(“dict.has_key(key):”,dict.has_key(‘employee code’))

 b) >>>dict = {‘Name’:’john’,’Age’:25,’Salary’:28,000}

 >>>print(dict)

 >>>print(“representation of dictionary=”,str(dict))

 c) >>>dict = {‘Name’:’john’,’Age’:25,’Salary’:28,000}

 >>>print(dict)

 >>>print(“type(variable)=”,type(dict))

 >>>str=”wxyz”

 >>>print(“type(variable)=”,type(str))

 >>>list = [5, ‘w’,34, ‘ravi’]

 >>>print(“type(variable)=”,type(list))

 13. What are the built-in dictionary functions?

 14. What will be the output of the following code?

 a) >>>dict = {‘Name’:’john’,’Age’:25,’Salary’:28,000}

 >>>print(dict)

 >>>dict.clear()

 >>>print dict

 b) >>>dict1 = {‘Name’:’john’,’Age’:25,’Salary’:28,000}

 >>>print(dict)

 >>>dict2=dict1.copy()

 >>>print(dict2)

Tuples and Dictionaries 179

 c) >>>dict = {‘Name’:’john’,’Age’:25,’Salary’:28,000}

 >>>print(dict)

 >>>print(“keys in dictionary:”,dict.keys())

 d) >>>dict = {‘Name’:’john’,’Age’:25,’Salary’:28,000}

 >>>print(dict)

 >>>print(“values in dictionary:”,dict.values())

 e) >>>dict = {‘Name’:’john’,’Age’:25,’Salary’:28,000}

 >>>print(dict)

 >>>print(“items in dictionary:”,dict.items())

 15. What are the built-in dictionary methods? Explain some of the built-in methods.

 16. Write a program to update the dictionary key-value pair.

 17. What will be the output of the following code?

 a) >>>dict = {‘Name’:’john’,’Age’:25,’Salary’:28,000}

 >>>print(dict)

 >>>print(“dict.get(‘Age’):”,dict.get(‘Age’))

 >>>print(“dict.get(‘Code’):”,dict.get(‘Code’,0))

 b) >>>dict1 = {‘Name’:’john’,’Age’:25,’Salary’:28,000}

 >>>print(dict)

 >>>print(“dict.setdefault(‘Age’):”,dict.setdefault(‘Age’))

 >>>print(“dict.setdefault(‘Code’):”,dict.setdefault(‘Code’))

 c) >>>list = [‘Name’,’Age’Salary’]

 >>>dict=dict.fromkeys(list)

 >>>print(“new dictionary:”,dict)

Answers to Multiple Choice Questions

 1. b 2. d 3. c 4. a 5. b 6. c 7. a 8. d 9. c 10. b

 11. a 12. d 13. c 14. b 15. a 16. d 17. c 18. b 19. a 20. b

 21. c 22. a 23. b 24. d 25. c 26. a 27. b 28. c 29. a 30. d

 31. b

FILES AND EXCEPTIONS7

7.1 TEXT FILES

A file in a computer is a location for storing some related data. It holds a specific name for itself. The files

are used to store data permanently on a non-volatile memory, such as hard disks. RAM is a volatile memory

type because the data it holds is lost, when we turn off the computer. Hence, files are used for storing useful

information or data for future reference.

Handling files in Python is quite easy. Generally, files are divided into two categories, text files and binary

files. Text files are simple texts in human readable format whereas binary files have binary data which is

understood by the computer.

Programs maintain their data by simply reading and writing the text files. In this chapter, we will learn

about the programs that read from and write to a text file.

When there is a need to read from or write to a file, we have to open it first. Once reading or writing is

done, we have to close it in order to release the resources. The order of the file operations in Python is as

follows:

 1. Opening a file

 2. Perform operations (Read or write)

 3. Close the file

7.1.1 Opening a File

Until now, we have been reading from or writing to the standard input and output. Now, we will learn how

to manipulate actual data files. Python provides some basic functions and methods that are necessary to

manipulate files. Python introduces the file object in order to perform some file operations.

Python has a built-in open() function to open files from the directory. Two arguments that are mainly

needed by the open() function are: file name or file path and mode in which the file is opened.

The syntax for opening a file is:

Syntax

file_object = open(file_name [, access_mode])

Files and Exceptions 181

 ● file_name: File name contains a string type value containing the name of the file which we want

to access.
 ● access_mode: The value of access_mode specifies the mode in which we want to open the file,

i.e., read, write, append, etc. A list of different access_mode is given in Table 7.1. The default

access_mode is r(reading).

Example

>>>f = open(“test.txt”) # opening file in current directory

>>>f = open(“C:/Python27/README.txt”) # specifying full path # Output

>>>f

<open file ‘C:/Python27/README.txt’, mode ‘r’ at 0x02BC5128> # Output

In the given example, we have looked at how to open a file with default access_mode r. When we type

the name of the file object, Python interpreter gives us the information about the opened file.

TABLE 7.1 List of the different modes of opening the file

Modes Description

r It opens a file in reading mode. The file pointer is placed at the starting of the file. It is the default mode.

rb It opens a file in reading only mode in binary format. The file pointer is placed at the starting of the file.

r+ It opens the file in both reading and writing mode. The file pointer is placed at the starting of the file.

rb+ It opens the file in both reading and writing mode in binary format. The file pointer is placed at the starting

of the file.

W It opens the file in writing only mode. If a file exists, it overwrites the existing file; otherwise, it creates a

new file.

Wb It opens the file in writing only mode in binary format. If a file exists, it overwrites the existing file;

otherwise, it creates a new file.

w+ It opens the file in booth reading and writing mode. If a file exists, it overwrites the existing file; otherwise,

it creates a new file.

wb+ It opens the file in booth reading and writing mode in binary format. If a file exists, it overwrites the existing

file; otherwise, it creates a new file.

a It opens a file for appending. The file pointer is placed at the end of the file. If the file does not exist in the

directory, it creates a new file for writing.

ab It opens a file for appending in binary format. The file pointer is placed at the end of the file. If the file does

not exist in the directory, it creates a new file for writing.

a+ It opens a file for appending and reading. The file pointer is placed at the end of the file. If the file does not

exist in the directory, it creates a new file for writing.

ab+ It opens a file for appending and reading in binary format. The file pointer is placed at the end of the file. If

the file does not exist in the directory, it creates a new file for writing.

We can always specify the access mode in which a file should be opened for us. The different access

modes available in Python are given in Table 7.1. We can also specify whether a file should be opened in

the text mode or the binary mode. The default is reading in text mode. The binary mode deals with bytes

182 Introduction to Computing & Problem Solving using Python

while we get strings when reading from a text file. The binary mode is used when we deal with non-text

files, such as image files, etc.

Examples

>>>f = open(“test.txt”) # opens in r mode(reading only)

>>>f = open(“test.txt”,’w’) # opens in w mode(writing only)

>>>f = open(“image.bmp”,’rb+’) # read and write in binary mode

There is an access mode x in Python which opens a file for exclusive creation. If the file
already exists, then this operation fails rather than overwriting it.

TIP

 1. What are text files? How are they useful?

 Ans. A file in a computer is a location for storing some related data. It has a specific name. The files

are used to store data permanently on to a non-volatile memory (such as hard disks). As we

know, the Random Access Memory (RAM) is a volatile memory type because the data in it is

lost when we turn off the computer. Hence, we use files for storing of useful information or data

for future reference.

 2. What is the syntax for opening a file in Python?

 Ans. Syntax

 file object = open(file_name [, access_mode])

 ■ file_name: File name contains a string type value containing the name of the file which

we want to access.
 ■ access_mode: The value of access_mode specifies that in which mode we want to open

the file, that is, read, write, append, etc. The default access_mode is r(read only).

Check Your Understanding

7.1.2 Closing a File

When the operations that are to be performed on an opened file are finished, we have to close the file in order

to release the resources. Although Python comes with a garbage collector responsible for cleaning up the

unreferenced objects from the memory, we must not rely on it to close a file. Proper closing of a file frees

up the resources held with the file. The closing of file is done with a built-in function close().

Syntax

fileObject.close()

Files and Exceptions 183

Example

open a file

>>>f = open(“test.txt”,”wb”)

perform file operations

>>>f.close() # close the file

Most recommended way of using file is along with ‘with’ keyword. Because, once the ‘with’ block

exits, file is automatically closed and file_object is destroyed.

Example

>>> with open("test.txt") as f:

 print f.read()

Hello Python---This is in File. # Output

Note Although the closing method will close the file instantly, it is not safe. When we are
performing some operations on a file and an exception occurs, the code exits without closing
the file. Hence, we should use try…finally block. We will learn about the exceptions in
more detail later in this chapter.

Example

>>>try:

... f = open(“test.txt”)

 # perform operations

... finally:

... f.close()

7.1.3 The File Object Attributes

Once a file is opened and a file object created, various pieces of information about that file can be gathered

by using some predefined attributes.

There are basically four types of attributes as shown in Table 7.2.

TABLE 7.2 Types of Attributes

Attribute Description

file.closed It will return True if the file is closed; it will otherwise return False.

file.mode It will return the access mode with which the file is opened.

file.name It will return the name of the file.

file.softspace It will return False if space explicitly required with print; otherwise it will return True.

184 Introduction to Computing & Problem Solving using Python

Example

open a file

>>>f = open(“C:/Python27/test.txt”,”wb”)

>>>print f.name

C:/Python27/test.txt # Output

>>> print f.closed

False # Output

>>>print f.mode

Wb # Output

>>>print f.softspace

0 # Output

>>>f.close() # Close the opened file

>>> print f.closed

True # Output

7.1.4 Writing to a File

After opening a file, we have to perform some operations on the file. Here, we will perform the write

operation. In order to write into a file, we have to open it with w mode, or a mode, or any writing-enabling

mode. We should be careful when using the w mode because in this mode overwriting persists in case the

file already exists.

Note The write() method enables us to write any string to an opened file.

Syntax

fileobject.write(string)

The content that we want to write to a file is passed as parameter to the above syntax.

Example

open the file with w mode

>>>f = open(“C:/Python27/test.txt”,”w”)

perform write operation

>>>f.write(‘writing to the file line 1\n’)

>>>f.write(‘writing to the file line 2\n’)

>>>f.write(‘writing to the file line 3\n’)

>>>f.write(‘writing to the file line 4’)

close the file after writing

>>>f.close()

Files and Exceptions 185

The given example creates a file named test.txt if it does not exist, and overwrites into it if it exists.

If you open the file, you will find the following content in it.

Output:
Writing to the file line 1

Writing to the file line 2

Writing to the file line 3

Writing to the file line 4

Note Python strings can have binary data, not just text.

7.1.5 Reading from a File

In order to read from a file, we must open the file in the reading mode (r mode). There are a number of

methods available for reading. We can use read(size)method to read the data specified by size. If no

size is provided, it will end up reading to the end of the file.

Reading from any file is done with the method read(). The read() method enables us to read the

strings from an opened file.

Syntax

fileobject.read([size])

The count parameter gives the number of bytes to be read from an opened file. It starts reading from the

beginning of the file until the size given. If no size is provided, it ends up reading until the end of the file.

Example

open the file

>>>f = open(“C:/Python27/test.txt”, “r”)

>>>f.read(7) # read from starting 7 bytes of data

‘writing’ # Output

>>>f.read(6) # read next 6 bytes of data

‘to the’ # Output

>>>f.read() # read rest of the file

‘ file line 1\nwriting to the file line 2\nwriting to the file line 3\

nwriting to the file line 4\n’ # Output

>>>f.read()

‘’ # Output

Here we are using the file ‘test.txt’ created earlier for reading. f.read(7)reads the first 7 bytes of

data. After this, f.read(6) reads the next 6 bytes and then f.read() reads the rest of the file._When we

try to read the file after fully reading it, we get an empty string. This is because we have ended up reading

the whole file and no string is left to read in the file.

186 Introduction to Computing & Problem Solving using Python

readline() is a method of reading a file line by line. Whenever we write fileobject.
readline(), it prints one line from that file and continues in this way until the end of the
file.

TIP

Example

#open a file

>>> f=open(“C:/Python27/test.txt”, “r”)

>>>f.readline() # reading 1st line

‘writing to the file line 1\n’ # Output

>>>f.readline() # reading 2nd line

‘writing to the file line 2\n’ # Output

>>>f.readline() # reading 3rd line

‘writing to the file line 3\n’ # Output

>>>f.readline() # reading 4th line

‘writing to the file line 4\n’ # Output

>>>f.readline() # no line to read

‘’ # Output

close the file

>>>f.close()

 1. What is the syntax for closing a file? Give one example.

 Ans. Syntax

 fileObject.close()

Example

open a file

>>> f = open(“example.txt”,”r”)

perform reading operation

>>>f.close() # close the file

 2. Give the syntax for reading from a file. What is the work of the readline() function?

 Ans. Syntax

 fileobject.read([size])

 The count parameter size gives the number of bytes to be read from an opened file. It starts

reading from the beginning of the file until the size given. If no size is provided, it ends up

reading until the end of the file.

Check Your Understanding

Files and Exceptions 187

File Positions

We have seen in the previous section that when we read a line or some data from a file, the pointer points to

the next line or data, and that when we end up reading whole file, it returns the empty string. In this section,

we will learn to check the current position of the pointer and to change the position of the pointer.

In Python, the tell() method tells us about the current position of the pointer. The current position tells

us where reading will start from at present.

We can also change the position of the pointer with the help of seek() method. A number of bytes are

passed to be moved by the pointer as arguments to the seek() method.

Note The value 0 indicates that the position of pointer should be set to the beginning of
the file; the value 1 indicates that it should be set to the current position; the value 2 indicates
that it should be set to the end of the file.

Example

open the file

>>>f=open(“C:/Python27/test.txt”, “r”)

read 28 bytes of data

>>>f.read(28)

‘writing to the file line 1’ # Output

check the current position

>>>f.tell()

28L # Output

change the position to beginning

>>>f.seek(0)

again read 28 bytes

>>>f.read(28)

‘writing to the file line 1’ # Output

7.1.6 Renaming a File

Renaming a file in Python is done with the help of the rename() method. The rename() method is passed

with two arguments, the current filename and the new filename.

Syntax

os.rename(current_filename, new_filename)

readline()

 readline() is a method of reading a file line by line. Whenever we write fileobject.

readline(), it prints one line from that file and continues in this way until the end of the file.

188 Introduction to Computing & Problem Solving using Python

Example

import os

>>>import os

renaming the file

>>>os.rename(“C:/Python27/test.txt”,”C:/Python27/test1.txt”)

Here, the test.txt file in C:/Python27 directory is renamed test1.txt.

7.1.7 Deleting a File

Deleting a file in Python is done with the help of the remove() method. It takes the filename as an argument

to be deleted.

Syntax

os.remove(filename)

Example

import os

>>>import os

deleting the file

>>>os.remove(“C:/Python27/test1.txt”)

7.1.8 Files Related Methods

The file object in Python provides various methods to manipulate files which are listed in the Table 7.3.

TABLE 7.3 Methods to Manipulate Files

Sr. No. Methods with Description

1. file.close()

After performing operation, it closes the file.

2. file.flush()

It flushes the internal buffer memory.

3. file.fileno()

It returns the integer file descriptor.

4. file.isatty()

It returns True if file is connected with tty(-like) device, False otherwise.

5. file.next()

It returns the next line from the file.

Files and Exceptions 189

6. file.read([size])

Reads the size bytes from a file.

7. file.readline([size])

It reads the entire one line from a file.

8. file.readlines([sizehint])

It reads until the end of the file using readline. It returns the list of lines read.

9. file.seek([offset])

It changes the current position.

10. file.tell()

It returns the file’s current position.

11. file.truncate([size])

It truncates the file.

12. file.write(str)

It writes the str string to the file.

13. file.writelines(sequence)

It writes the sequence of strings into a file. If each string in the sequence should go into separate lines in file,

the string should end with a new line character, ‘\n’.

 1. What are the various file positions methods?

 Ans. In Python, the tell() method tells us about the current position of the pointer. The current

position tells us where reading will start from at present.

 We can also change the position of the pointer with the help of the seek() method. We pass

the number of bytes to be moved by the pointer as arguments to the seek() method.

 2. How are renaming and deleting performed on a file? Give the syntax for each.

 Ans. Renaming a file

 Renaming a file in Python is done with the help of the rename() method. The rename()

method is passed with two arguments, the current filename and the new filename.

Syntax

os.rename(current_filename, new_filename)

 Deleting a File

 Deleting a file in Python is done with the help of the remove() method. The remove() method

takes the filename as an argument to be deleted.

Syntax

os.remove(filename)

Check Your Understanding

190 Introduction to Computing & Problem Solving using Python

7.2 DIRECTORIES

Directories help us make things more manageable. If there is a large number of files, then related files are

placed in different directories. Hence, a directory can be said to be a collection of files and sub directories.

The module os in Python enables us to use various methods to work with directories.

7.2.1 mkdir() Method

The mkdir() method in Python is used to make new directories in the current directory. It takes the name

of the new directory to be created as an argument.

Syntax

os.mkdir(“newdir”)

Example

importos

>>>import os

create a new directorytestdir

>>>os.makedir(“testdir”)

7.2.2 chdir() Method

The chdir() method in Python’s os module is used to change the current directory. It takes the name of

the directory that you want to make the current directory as an argument.

Syntax

os.chdir(“dir_name”)

Example

importos

>>>import os

change the current directory to “/home/testdir”

>>>os.chdir(“/home/testdir”)

7.2.3 getcwd() Method

The getcwd() method displays the current directory in which we are working.

Files and Exceptions 191

Syntax

os.getcwd()

Example

importos

>>>import os

>>>os.getcwd() # This will give the address of the current directory

‘C:\\Python27’ # Output

7.2.4 rmdir() Method

The rmdir() method in Python is used to remove directories in the current directory. It takes the name of

the directory to be deleted as an argument.

It is required to provide the full location of the directory; otherwise, the directory will be
searched in the current directory.

TIP

Syntax

os.rmdir(‘directory_name’)

Example

importos

>>>import os

>>>os.rmdir(“/tmp/test”)

it will remove the “/tmp/test” directory # Output

Note All the contents in a directory should be deleted before removing that directory.

 1. What are directories? What are the basic methods performed on Directories?

 Ans. Directories help us make things more manageable. If there is a large number of files, then related

files are placed in different directories. Hence, a directory can be said to be a collection of files

Check Your Understanding

192 Introduction to Computing & Problem Solving using Python

7.3 EXCEPTIONS

While writing a program, we often end up making some errors. There are many types of errors that can occur

in a program. The error caused by writing an improper syntax is termed syntax error or parsing error; these

are also called compile time errors.

Errors can also occur at runtime and these runtime errors are known as exceptions. There are various types

of runtime errors in Python. Let us look at a few examples. When a file we try to open does not exist, we

get a FileNotFoundError. When a division by zero happens, we get a ZeroDivisionError. When the module

we are trying to import does not exist, we get an ImportError. Python creates an exception object for every

and sub directories. The module os in Python enables us to use various methods to work with

directories.

 Following are the four basic methods that are performed on directories:
 ■ mkdir() method (Creating a directory)
 ■ chdir() method (Changing the current directory)
 ■ getcwd() method (Displaying the current directory)
 ■ rmdir() method (Deleting the directory)

 2. Give the syntax for each of basic directory methods.

 Ans. mkdir() method:

Syntax

os.mkdir(“newdir”)

 chdir() method:

Syntax

os.chdir(“dir_name”)

 getcwd() method:

Syntax

os.getcwd()

 rmdir() method:

Syntax

os.rmdir(‘directory_name’)

Files and Exceptions 193

occurrence of these run-time errors. The user must write a piece of code that can handle the error. If it is not

capable of handling the error, the program prints a trace back to that error along with the details of why the

error has occurred.

Example

Compile time error (Syntax error)

>>>a = 3

>>>if (a < 4) # Semicolon is not included

SyntaxError: invalid syntax # Output

The error shown above is a syntax error because there is a problem with the syntax; the if statement

starts with semicolon.

ZeroDivisionError

>>>5/0

Output:

Traceback (most recent call last):

 File “<pyshell#71>”, line 1, in <module>

 5/0

ZeroDivisionError: integer division or modulo by zero

Here, we tried to divide 5 by 0. As a result, the interpreter prints ZeroDivisionError.

Note Python provides a very important feature (Exception Handling) for handling any
unexpected error in our Python programs, and it also adds debug capabilities to them.

7.3.1 Built-in Exceptions

Any error prone statement can raise exception. There are various built-in exceptions in Python that can be

raised when the corresponding errors occur.

Table 7.4 gives the full list of built-in exceptions in Python.

TABLE 7.4 List of Built-in Exceptions in Python

Exception Cause of Error

AssertionError Raised when assert statement fails.

AttributeError Raised when attribute assignment or reference fails.

EOFError Raised when the input() functions hit end-of-file condition.

FloatingPointError Raised when a floating point operation fails.

GeneratorExit Raised when a generator’s close() method is called.

ImportError Raised when the imported module does not exist.

IndexError Raised when an index of a sequence is out of range or not found.

KeyError Raised when a key does not exist in a dictionary.

194 Introduction to Computing & Problem Solving using Python

KeyboardInterrupt Raised when a user hits interrupt key (ctrl+c).

MemoryError Raised when an operation runs out of memory.

NameError Raised when a variable is not found in local or global space.

NotImplementedError Raised by abstract method.

OSError Raised when system operation causes system related error.

ReferenceError Raised when a weak reference proxy is used to access a garbage-collected referent.

RuntimeError Raised when an error doesn’t fall in any other category.

StopIteration Raised when there is no next item to be iterated by iterator.

SyntaxError Raised by parser on a syntax error.

IndentationError Raised when there is an incorrect indentation.

TabError Raised when indentation is composed of inconsistent tabs and spaces.

SystemError Raised when an internal error occurred.

SystemExit Raised by sys.exit() function.

TypeError Raised when a function or operation is applied to an object of incorrect type.

UnboundLocalError Raised when a reference is made to a local variable in a function or method, but no

value has been bound to that function.

UnicodeError Raised when a Unicode related encoding or decoding occurs.

UnicodeEncodeError Raised when a Unicode related error occurs during encoding.

UnicodeTranslateError Raised when a Unicode related error occurs during translating.

ValueError Raised when a function is passed with an argument of correct type but improper

value.

ZeroDivisionError Raised when a number is divided by zero.

7.3.2 Handling Exceptions

Whenever an exception occurs in Python, it stops the current process and passes it to the calling process until

it is handled. If there is no piece of code in your program that can handle the exception, then the program

will crash.

For example, assume that a function X calls the function Y, which in turn calls the function Z, and an excep-

tion occurs in Z. If this exception is not handled in Z itself, then the exception is passed to Y and then to X.

If this exception is not handled, then an error message will be displayed and our program will suddenly halt.

1. try…except Python provides a try statement for handling exceptions. An operation in the program

that can cause the exception is placed in the try clause while the block of code that handles the exception

is placed in the except clause. The block of code for handling the exception is written by the user and it is

for him to decide which operation he wants to perform after the exception has been identified.

Syntax

try:

the operation which can cause exception here,

.........................

Files and Exceptions 195

Note A try block can have multiple except clauses associated with it. It can be useful to
have the try block include statements that can cause different types of exceptions.

After except clause, we can add an else statement. The statements in the else block will
execute only when the statements in try block do not raise any exception.

TIP

Example

>>>try:

... file = open(“C:/Python27/test.txt”,”w”)

... file.write(“hello python”)

... exceptIOError:

... print “Error: cannot find file or read data”

... else:

... print “content written successfully”

>>>file.close()

In the given example, we are trying to open a file test.txt with write access mode, and want to write

to that file. We have added try and except blocks.

If the required file is not found or we do not have the permission to write to the file, an exception is raised.

The exception is handled by the except block and the following statement printed:

Error: cannot find file or read data

On the other hand, if the data is written to the file then the else block will be executed and it will print

the following.

Output:
content written successfully

2. except with No Exception We can also write our try-except clause with no exception. All types of

exceptions that occur are caught by the try-except statement. However, because it catches all exceptions,

the programmer cannot identify the root cause of a problem that may occur. Hence, this type of programming

approach is not considered good.

except Exception1:

if there is exception1, execute this.

except Exception2:

if there is exception2, execute this.

.........................

else:

if no exception occurs, execute this.

196 Introduction to Computing & Problem Solving using Python

Syntax

try:

 The statements that can cause exceptions

 ..

except:

 If Exception occurs, execute this

 ..

else:

 If no exception occurs, execute this

Example

>>>while True:

... try:

... a = int(raw_input(“Enter an integer: “))

... div = 10/a

... break

... except:

... print “Error Occured”

... print “Please Enter Valid Value”

... print()

... print “Division is”,div

The output of the program in different scenarios will be:

Enter an integer: c

Error Occurred

Please Enter Valid Value

Enter an integer: 0

Error Occurred

Please Enter Valid Value

Enter an integer: 10.2

Error Occurred

Please Enter Valid Value

Enter an integer: 5

Division is 2

In the above example, break statement is used instead of else statement because the else statement only

executes when there is no exception.

3. except with Multiple Exceptions In Python, we can also use the same except statement for handling

multiple exceptions in one statement.

Files and Exceptions 197

Syntax

try:

the operation which can cause exception here,

except (Exception1 [,Exception2 [,...ExceptionN]]]):

if any of the exception occurs from the above list

execute this,

 ..

else:

if no exception occurs, execute this.

Example Pseudo Code

try:

 # The exception raising block here

 PASS

except (TypeError, ZeroDivisionError, ValueError):

 # Handle multiple exceptions

 #TypeError, ZeroDivisionError, ValueError

 PASS

else:

 # if no exception, then excute this.

4. try….finally The try statement in Python has an optional finally clause that can be associated

with it. The statements written in finally clause will always be executed by the interpreter, whether the

try statement raises an exception or not.

Note With the try clause, we can use either except or finally, but not both.

We cannot use the else clause along with a finally clause.

TIP

Syntax

try:

the operation which can cause exception here,

 This may be skipped due to exception

finally ():

 This will always execute, no matter what

198 Introduction to Computing & Problem Solving using Python

Example

>>> try:

... file = open(“testfile”,”w”)

... try:

... file.write(“Write this to the file”)

... finally:

... print “Closing file”

... file.close()

... exceptIOError:

... print “Error Occurred”

In the given example, when an exception is raised by the statements of try block, the execution is

immediately passed to the finally block. After all the statements inside the finally block are executed,

the exception is raised again and is handled by the except block that is associated with the next higher

layer try block.

In the above example, a nested try block is used, which means a try block inside another try block. The

nested try blocks are allowed in python programming language. Although it is not considered as good

programming practice but it may be useful sometimes.

7.4 EXCEPTION WITH ARGUMENTS

The except clause in Python can also have an argument. Arguments give additional information about the

problem due to which the exception has occurred. We can accept the exception’s argument by passing a

variable in the except clause. The contents of arguments may vary from exception to exception.

Syntax

try:

 the operation which can cause exception here,

.........................

exceptExceptionType, Argument:

Print the argument value here.

If we are writing a code to handle the exceptions, we can define a variable after the name of exception

in the except statement. If we are defining multiple exceptions, we can define a variable after the tuple of

exceptions.

Example

Define a function
>>>def integer(a):
... try:

Files and Exceptions 199

7.5 USER-DEFINED EXCEPTIONS

Python allows users to define their own exceptions by creating a new class. The exception class is to be

derived, directly or indirectly from Exception class.

Defining of exceptions is pretty easy in Python.

Example

>>>class CustomError(Exception)
... pass
...

Here, we have created a class with CustomError that is derived from the Exception class. Now, we

can simply call the CustomError by using the raise keyword.

Example

>>>raise CustomError

Output:
Traceback (most recent call last):

 File “<pyshell#144>”, line 1, in <module>

raiseCustomError

CustomError

>>>raise CustomError(“An error occurred”)

Output:
Traceback (most recent call last):

 File “<pyshell#145>”, line 1, in <module>

raiseCustomError(“An error occurred”)

CustomError: An error occurred

... returnint(a)

... exceptValueError, Argument:

... print “The Value does not contain Numbers\n”, Argument

calling the function
>>>integer(“hello”)
The Value does not contain Numbers. # Output
invalid literal for int() with base 10: ‘hello’ # Output
>>>integer(10)
10 # Output

200 Introduction to Computing & Problem Solving using Python

 1. What are exceptions?

 Ans. While writing a program, we often end up making some errors. There are many types of errors

that can occur in a program. The error caused by writing an improper syntax is termed syntax

error or parsing error; these are also called compile time errors.

 Errors can also be runtime and these runtime errors are known as exceptions. There are

various types of runtime errors in Python. Let us look at a few examples. When a file we try

to open does not exist, we get a FileNotFoundError. When a division by zero happens, we

get a ZeroDivisionError. When the module we are trying to import does not exist, we get an

ImportError.

 2. Give syntax for try…except and try…finally.

 Ans. try…except:

Syntax

try:

the operation which can cause exception here,

.........................

except Exception1:

if there is exception1, execute this.

except Exception2:

if there is exception2, execute this.

.........................

else:

if no exception occurs, execute this.

 try….finally:

Syntax

try:

 the operation which can cause exception here,

 This may be skipped due to exception

finally ():

 This will always execute, no matter what

 3. What are User-defined Exceptions? Give one example.

 Ans. User-defined Exceptions

 Python allows users to define their own exceptions by creating a new class. The exception class

is to be derived, directly or indirectly from exception class.

 Defining of exceptions is pretty easy in Python.

Check Your Understanding

Files and Exceptions 201

Example

>>>class Error(Exception)

... pass

...

We have created a class with Error that is derived from the exception class.

 ● Tuples are the sequence of different types of values.

 ● To create a tuple, elements are separated by commas inside the parentheses and assigned to a variable.

 ● Tuples can be created with or without parentheses.

 ● Nested tuples can also be created.

 ● A final comma must be added after the element in order to complete the assignment of the tuple.

 ● In order to access the values in a tuple, it is necessary to use the index number enclosed within square

brackets along with the name of the tuple.

 ● Slicing can be used in order to print the continuous values in a tuple.

 ● Tuples are immutable and thus the elements or values cannot be modified.

 ● Tuple assignment allows assignment of values to a tuple of variables on the left side of assignment from

the tuple of values on the right side of the assignment.

 ● A function returns only one value but by returning tuple, a function can return more than one value.

 ● Asterisk (*) is used before the arguments at the time of function definition, which means it collects all

the calling function arguments into a tuple and when it is used at the time of calling, it scatters the values

of the tuple.

 ● A dictionary is said to be a mapping between some set of keys and values. Each key is associated to a

value. The mapping of a key and value is called as a key-value pair and together they are called one item

or element.

 ● The values in a dictionary can be duplicated, i.e., it is not unique, but the keys in the dictionary are unique.

 ● The value of the key enclosed within square brackets is used to access the elements from a dictionary. The

get() method is an alternative method of accessing the elements used with the key.

 ● The difference between both the accessing methods of dictionary is that when the key is not found in

dictionary, it returns none instead of KeyError.

 ● Dictionaries are mutable and thus the elements or values can be modified.

 ● Four methods are used to delete the elements from the dictionary:

 1. pop()

 2. popitem()

 3. clear()

 4. del

202 Introduction to Computing & Problem Solving using Python

 ✓ CONCATENATION: This operator works in tuples in the same way as it does in lists. This operator

concatenates two tuples. This is done by the + operator in Python.

 ✓ DICTIONARY: A Python dictionary is an unordered collection of items or elements. The dictionary has

a key: value pair.

 ✓ IMMUTABLE: It is the type in which elements cannot be modified. Tuples are immutable.

 ✓ in OPERATOR: This operator tells the user whether a given element exists in the tuple or not. It gives

a Boolean output, that is, True or False.

 ✓ ITERATION: Iteration can be done in tuples using for loop. It helps in traversing through the tuple.

 1. len(tuple):It returns the length of the tuple.

 2. cmp(tuple1, tuple2): It compares the items of two tuples.

 3. max(tuple): It returns the largest value among the elements in a tuple.

 4. min(tuple): It returns the smallest value among the elements in a tuple.

 5. tuple(seq): It converts a list into a tuple.

 6. zip(tuple1, tuple2): It ‘zips’ elements from two tuples into a list of tuples.

 ✓ KEY: It is used to get the value in the dictionary.

 ✓ KEY-VALUE: This pair represents the items in the dictionary.

 1. dict(): Python provides this function to create a dictionary.

 2. get(): This method is used with the key to access the value in a dictionary.

 3. pop(): This method removes the item from the dictionary and returns the value of the item.

 4. popitem(): This method is used to delete and return an arbitrary item from the dictionary.

 5. clear(): This method removes all the items from the dictionary.

 6. del: It is used to delete the dictionary itself.

 ✓ MUTABLE: It is the type in which elements are modified. Dictionaries are mutable.

 1. len(dict): It returns the number of items (length) in the dictionary.

 2. cmp(dict1,dict2): It compares the items of two dictionaries.

 3. sorted(dict): It returns the sorted list of keys.

 4. str(dict): It produces a printable string representation of dictionary.

 ✓ REPETITION: This operator repeats the tuples for a given number of times. Repetition is performed

by the * operator.

 ✓ TUPLE: Tuples, just like lists, are the sequence or series of different types of values separated by commas

(,).

 ✓ TUPLE ASSIGNMENT: It allows the assignment of values to a tuple of variables on the left side of

assignment from the tuple of values on the right side of the assignment.

 ✓ VARIABLE-LENGTH ARGUMENT TUPLES: Variable number of arguments can also be passed to

a function. A variable name which is preceded by an asterisk (*) collects the arguments into a tuple.

Files and Exceptions 203

PROGRAMS

1. Write a function to print the resolution of an image file in Python.

Solution.

def imgres(file_name):

 with open(file_name, ‘r’) as img:

 img.seek(163)

 x = img.read(2)

 h = (x[0] << 8) + x[1]

 x = img.read(2)

 w = (x[0] << 8) + x[1]

 print(“Resolution = “,w,”x”,h)

>>>imgres(“C:\Python27\1.jpg”)

Resolution= 320 X 280 #Output

2. Write a function to print the hash of any given file in python. (Hint: Use SHA-1 algorithm).

Solution.
>>>def hash_of_file(file_name):

 o = hashlib.sha1()

 with open(file_name,’rb’) as hash_file:

 pointer = 0

 while pointer != b’’:

 pointer = file.read(1024)

 o.update(pointer)

 return o.hexdigest()

>>>code = hash_of_file(“C:\Python27\1.mp3”)

>>>print(code)

799d7356947cca543c50b76a1852f92427f4csa8 #Output

3. Write a program to catch on Divide by zero Exception. Add a finally block too.

Solution.
>>>try:

 9/0

 except ZeroDivisionError:

 print “Divide by Zero”

 except Exception, e:

 print “Error Occurred”

 finally:

 print “This always executes”

Divide by Zero #Output

This always executes

PROGRAMSPROGRAMS

204 Introduction to Computing & Problem Solving using Python

4. Write a program to write data in a file for both write and append modes.

Solution.
In write mode

>>>fi = open(‘note.txt’, ‘w’)

>>>fi.write(‘123\n456’)

>>>fi.close()

In append mode

>>>fi = open(‘note.txt’, ‘a’)

>>>fi.write(‘789\n101112’)

>>>fi.close()

5. Write a custom exception that could be raised when the text entered by a user consists of less than

6 characters.

Solution.
>>>class CustExcp(Exception):

 pass

>>>try:

 i = input(“Enter the text: “)

 if len(i) < 6:

 raise CustExcp()

 except CustExcp as ce:

 print(“CustomException: Expected length at least 6”)

Enter the text: ‘abc’

CustomException: Expected length at least 6 #Output

6. Write a python program to demonstrate the file and file I/O operations

Solution.
python program to demonstrate files and file I/O operations

reading the input from the user using raw_input

import os

str = raw_input(“Enter your input: “);

print “Received input is : “, str

To open or create a file

print “opening a new file in writing in binary format mode”

newfl = open(“sample1.txt”, “wb”)

print “File name: “, newfl.name

print “Is the file closed : “, newfl.closed

print “Mode of the file opening : “, newfl.mode

print “ File Softspace flag for expicit : “, newfl.softspace

print “closing the file”

Closing the file

newfl.close()

print “Is the file closed : “, newfl.closed

print “writing into the file”

newf2 = open(“sample2.txt”, “wb”)

newf2.write(“This is my first file to enter data in the python.\nIt is simple

and easy\n”);

Files and Exceptions 205

print “reading the file sample1.txt”

newf2= open(“sample2.txt”, “r+”)

str1 = newf2.read(18);

print “Read String is : “, str1

Check current position

position = newf2.tell();

print “Current file position : “, position

Reposition the pointer in a file

print “seek function on a file”

pos = newf2.seek(0, 0);

str2 = newf2.read(18);

print “reread the same file the output is : “, str2

print “rename the existing file”

os.rename(“sample2.txt”, “sample3.txt”)

print “remove the file”

os.remove(“sample3.txt”)

print “create a new directory”

os.mkdir(“FIRST”)

print “change the directory”

os.chdir(“/home/bin/first”)

print “get the current working directory”

os.getcwd()

print “remove directory”

os.rmdir(“/bin/first”)

print “flush operation on file”

newf2.flush()

print “fileno () and isatty()”

newf2 = open(“sample2.txt”, “wb”)

print “file name is: “, newf2.name

fileid = newf2.fileno()

print “Descriptor of the file: “, fileid

rtrn = newf2.isatty()

print “Return value is: “, rtrn

print “next function on file”

newf3 = open(“sample2.txt”, “rw+”)

for inx in range(3):

 ln = newf3.next()

 print “Line Number %d - %s” % (inx, ln)

print “current position of the file”

posi = newf3.tell()

print “present Position: %d” % (posi)

print “truncate the file”

ln = newf3.readline()

print “Read-Line: %s” % (ln)

newf3.truncate()

print “After truncate”

print “readline() on files”

lne = newf3.readline()

print “Read-Line: %s” % (lne)

sequ = [“This is another way to embed the file \n”, “This is last line”]

print” sequence of lines”

206 Introduction to Computing & Problem Solving using Python

newf3.seek(0, 2)

lin = newf3.writelines(sequ)

newf3.seek(0,0)

for indx in range(7):

 ln = newf3.next()

 print “Line Number %d - %s” % (indx, ln)

Output:

Enter your input: Welcome to python

Received input is : Welcome to python

opening a new file in writing in binary format mode

File name: sample1.txt

Is the file closed : False

Mode of the file opening : wb

 File Softspace flag for expicit : 0

closing the file

Is the file closed : True

writing into the file

reading the file sample1.txt

Read String is : This is my first f

Current file position : 18

seek function on a file

reread the same file the output is : This is my first f

rename the existing file

remove the file

create a new directory

change the directory

/home/sample

Opening a new file in writing in binary format mode

reading the file sample1.txt

flush operation on file

fileno () and isatty()

file name is: sample2.txt

Descriptor of the file: 5

Return value is: False

next function on file

Traceback (most recent call last):

StopIteration

Note There are prone to be errors when we use the directory functions and the next() using
the files.

7. Write a python program to demonstrate exception handling

Solution.
#python program to demonstrate exception handling

Defining a function.

print”functions that handle exception”

Files and Exceptions 207

def tmp_ftoc(var):

 try:

 return int(var)

 except ValueError, Arg:

 print “The argument does not contain numbers\n”, Arg

Function call.

tmp_ftoc(“abc”);

print “exception on files”

try:

 fs = open(“sample1”, “r”)

 fs.write(“I am using this program for exception handling!”)

except IOError:

 print “Error: File not found or file not read sucessfully”

else:

 print “File read operation on the file sucessfull”

print “file I/O operation exception”

try:

 fs1 = open(“sample2”, “w”)

 fs1.write(“this is my second file for exception handling!”)

finally:

 print “Error: File not found or file not read”

print “file exception in closing the file”

try:

 fs2 = open(“sample3”, “w”)

 try:

 fs2.write(“Here I am using this file for exception handling!”)

 finally:

 print “the file is being closed”

 fs2.close()

except IOError:

 print “Error: File not found or file not read I/O exception”

fs2.close()

print “user defined exception”

class Ntwrkerr(RuntimeError):

 def __innt1__(self1, arg1):

 self1.args = arg1

try:

 raise Ntwrkerr(“Hostname is bad”)

except Ntwrkerr,e1:

 print e1.args

Output:

functions that handle exception

The argument does not contain numbers

invalid literal for int() with base 10: ‘abc’

exception on files

Error: File not found or file not read sucessfully

file I/O operation exception

Error: File not found or file not read

file exception in closing the file

208 Introduction to Computing & Problem Solving using Python

the file is being closed

user defined exception

(‘Hostname is bad’,)

Multiple Choice Questions

 1. Which of the following functions is used to open a file in Python?

 a. open{} b. open()

 c. open[] d. Open()

 2. What is a file object also known as?

 a. Object source b. File

 c. Object file d. Handle

 3. Which of the following is the default mode while opening a file?

 a. Binary b. Number

 c. Text d. None

 4. What are the two modes that are used to open a file?

 a. Text or Binary b. Number or Text

 c. Number or Binary d. Text or Number

 5. Which of the following is incorrect when we use the binary mode?

 a. Image Files b. Text Files

 c. exe Files d. Non-Text Files

 6. What is the default file access mode?

 a. write (w) b. append

 c. read (r) d. None

 7. What is the syntax for opening a file in current directory?

 a. f = open(“xyz.txt”,’r’) b. f = open(“xyz.txt,’w’)

 c. f = open(“xyz.txt,’a’) d. f = open(“xyz.txt”)

 8. What will be used to open a file C:/xyz.txt for reading?

 a. f = open(“C:/xyz.txt”) b. f = open(“C:\xyz.txt”,’r’)

 c. f = open(“C://xyz.txt”,’r’) d. f = open(“C:/xyz.txt”,’r’)

 9. Which of the following statements is correct while using r+ mode for opening a file?

 a. Opens a file for reading only

 b. Opens a file for reading in binary format

 c. Opens a file for both reading and writing

 d. Opens a file for writing only

 10. At what position will the file pointer be placed whenever we open a file for reading or writing?

 a. Middle b. Beginning

 c. Second line d. End

 11. Which of the following statements is not correct?

 a. When a file is opened for reading, if the file does not exist, an empty file will be opened.

 b. When a file is opened for writing, overwrites the file if the file exists.

 c. When a file is opened for writing, if the file does not exist, creates a new file for writing.

 d. When a file is opened for reading, if the file does not exist, an error occurs.

 12. Whenever we open a file for appending, at what position will the file pointer be placed?

 a. Middle b. Beginning

 c. Second line d. End

Files and Exceptions 209

 13. Which of the following statements is correct while using ‘a+’ mode for opening a file?

 a. Opens a file for appending only

 b. Opens a file for writing only

 c. Opens a file for both appending and reading

 d. Opens a file for both appending and writing

 14. Which of the following statements is correct while using ‘x’ mode?

 a. Open a file for reading b. Open a file for exclusive creation

 c. Open a file for appending d. Does not open a file

 15. In disk, the files are stored in?

 a. Bytes b. Bit

 c. Kilobits d. Gigabytes

 16. What is the syntax to close a file?

 a. file.close() b. close()

 c. close(); d. fileObject.close()

 17. The write() method does not add a newline character (‘\n’) at which position of the string?

 a. Beginning b. Middle

 c. End d. None of the above

 18. What is the syntax of the write() method?

 a. FileObject.write() b. fileObject.write(string)

 c. file.object.write() d. file.write()

 19. What is the syntax for reading from a file?

 a. fileObject.read([size]) b. fileObject.read(size)

 c. file.read() d. file.read(size)

 20. Which module does Python provide to perform operations like renaming and deleting files?

 a. Is b. os

 c. op d. ip

 21. Which of the following methods is used to create directories in the current directory?

 a. chdir() b. rmdir()

 c. mkdir() d. mcdir()

 22. Which of the following methods is used to change the current directory?

 a. chdir() b. rmdir()

 c. mkdir() d. mcdir()

 23. Which of the following methods is used to display the current working directory?

 a. mkcwd() b. getcwd()

 c. chcwd() d. setcwd()

 24. Which of the following methods is used to delete the directory?

 a. chdir() b. mkdir()

 c. mrdir() d. rmdir()

 25. Which of the following is not an attribute of a file in Python?

 a. Mode b. Name

 c. Delete d. Closed

 26. Which of the following is a condition that is caused by a runtime error in the program?

 a. Exception b. Assertion

 c. Attribute d. Error

210 Introduction to Computing & Problem Solving using Python

 27. How many except statements can a try-except block have?

 a. One b. More than zero

 c. Zero d. None

 28. Which keyword is used to prepare a block of code that throws an exception?

 a. except b. import

 c. try d. None

 29. Which of the following is defined to catch the exception thrown by the try block?

 a. except b. import

 c. index d. None

 30. Which block will the statements be executed in after the try block if no exception is raised inside a try

block?

 a. Try b. Except

 c. Finally d. else

 31. Check whether the following code is correct or not.
 try:

 # Do something

 except:

 # Do something

 finally:

 #Do something

 a. Yes

 b. No, finally cannot be used with except

 c. No, finally can be used after try block

 d. None of the above

 32. Check whether the following code is correct or not?

 try:

 # Do something

 except:

 # Do something

 else:

 #Do something

 a. Yes

 b. No, else cannot be used with except

 c. No, else can be used after try block

 d. None of the above

Short Questions

 1. What is a file in Python and why is it used?

 2. How to open a file? What are the modes for opening a file?

 3. What are the various attributes of the file object?

 4. What will be the output of the code below? Justify your answer.

 >>>fileObject = open(“xyz.txt”, “w”)

 >>>print(“name of the file:”, fo.name)

 >>>print(“closed or not:”, fo.closed)

 >>>print(“opening mode:”, fo.mode)

 >>>print(“softspace flag:”, fo.softspace)

Files and Exceptions 211

 5. What will be the output of the given code?

 >>>fileObject = open(“xyz.txt”, “wb”)

 >>>print(“name of the file:”, fileObject.name)

 >>>fileObject.close()

 >>>print(“file closed”)

 6. How will you rename a file in Python?

 7. How will you delete a file in Python?

 8. What are the various directories in Python? Explain with examples.

 9. What is an exception? Explain with examples.

 10. What is exception handling?

 11. What will be the output of the given code?

 >>>try:

 x=int(input(“first number:”)

 y=int(input(“second number:”)

 result=x/y

 print”result=”,result

 exceptZeroDivisionError:

 print “division by zero”

 else:

 print “successful division”

 12. What is finally block? What is the syntax for try…finally block?

Answers to Multiple Choice Questions

 1. b 2. d 3. c 4. a 5. b 6. c 7. a 8. d 9. c 10. b

 11. a 12. d 13. c 14. b 15. a 16. d 17. c 18. b 19. a 20. b

 21. c 22. a 23. b 24. d 25. c 26. a 27. b 28. c 29. a 30. d

 31. b 32. a

CLASSES AND OBJECTS8

8.1 OVERVIEW OF OOP (OBJECT-ORIENTED PROGRAMMING)

As we know, Python is an object-oriented programming (OOP) language and provides all the features

required to support object-oriented programming. OOP mainly focuses on the objects and classes while

procedural programming focuses on the functions and methods.

OOP is based on the implementation of real world objects in programming. Such a concept of programming

contains objects that contain the data in the form of attributes and classes that contains methods. In this

approach, a problem is considered in terms of objects that can be involved in finding the solution to the

problem instead of procedures. Hence, through this approach, a person can relate a problem to the real world

objects and can work towards its solution with relative ease.

Object is an instance of a class. A class is a collection of data (variables) and methods (functions). A class

is the basic structure of an object and is a set of attributes, which can be data members and method members.

Let us understand the concept with an example. We can relate class to a sketch or model of a building.

That sketch contains all the information about the structure of the building, such as floors, doorways, exits,

rooms, etc. Now, according to our example, the building is an object. Just as various buildings can be based

on one model, so too can a class have many objects associated with it.

Some important terms in OOP are as follows:
 ● Class: Classes are defined by the user; the class provides the basic structure for an object. It consists

of data members and method members that are used by the instances (objects) of the class.
 ● Data Member: A variable defined in either a class or an object; it holds the data associated with the

class or object.
 ● Instance Variable: A variable that is defined in a method; its scope is only within the object that

defines it.
 ● Class Variable: A variable that is defined in the class and can be used by all the instances of that class.
 ● Instance: An object is an instance of the class.
 ● Instantiation: The process of creation of an object of a class.
 ● Method: Methods are the functions that are defined in the definition of class and are used by various

instances of the class.
 ● Function Overloading: A function defined more than one time with different behaviours is known as

function overloading. The operations performed by these functions are different.

Classes and Objects 213

 ● Inheritance: A class ‘A’ that can use the characteristics of another class ‘B’ is said to be a derived

class, i.e., a class inherited from ‘B’. The process is called inheritance.

8.1.1 Data Encapsulation

In OOP, restrictions can be imposed on the access to methods and variables. Such restrictions can be used

to avoid accidental modification in the data and are known as Encapsulation. Encapsulation is an important

feature in OOP.

In fact, we can say that OOP relies strictly on Data Encapsulation.

Most of us are already familiar with the term abstraction. Abstraction means data-hiding. Encapsulation

and abstraction can be used as synonyms since both of them relate to the data-hiding concept.

Generally, in the context of programming, we can restrict the access to some of the object’s components,

ensuring that these components cannot be accessed from outside the object but from inside the object only.

For accessing these types of data, some special methods are used.

These methods are known as getters() and setters().

8.1.2 Polymorphism

The word ‘Poly’ means ‘many’. Therefore, the term ‘polymorphism’ means that the object of a class can

have many different forms to respond in different ways to any message or action.

In other words, polymorphism is the capability for a message or data to be processed in one or more ways.

Let us look at an example:

If a base class is mammals, then horse, human, and cat are its subclasses. All the mammals can see in the

daytime. Therefore, if the message ‘see in the daytime’ is passed to mammals, all the mammals including the

human, the horse and the cat will respond to it. Whereas, if the message ‘see during the night time’ is passed

to the mammals, then only the cat will respond to the message as it can see during the night as well as in the

daytime. Hence, the cat, which is a mammal, can behave differently from the other mammals.

This is called polymorphism and is illustrated in Fig. 8.1.

Class Triangle

Draw()

Class Circle

Draw()

Class Square

Draw()

Class Shape

Draw()

Figure 8.1 Polymorphism

8.2 CLASS DEFINITION

A class can be defined as a blue print or a previously defined structure from which objects are made. It can

also be defined as a group of objects that share similar attributes and relationships with each other.

214 Introduction to Computing & Problem Solving using Python

For example:

 ● Fruit is a class, and apple, mango and banana are its objects. The attributes of these objects can be

color, taste, etc.
 ● Vehicle is a class and car, scooter, bus, truck, etc., can be its objects. The attributes of these objects

can be speed, brake, power of engine, etc.

In Python, a class is defined by using a keyword class. After that, the first statement can be a docstring

(optional) that contains the information about the class. Now, in the body of class, the attributes are defined.

These attributes can be data members or method members.

In Python, as soon as we define a class, the interpreter instantly creates an object that has the same name

as the class name. Although, we can create more objects of the same class. With the help of objects, we can

access the attributes defined in the class.

Syntax

class class_name:

 ‘This is docstring which is optional’

 class_suite

A new local new space is created by a Class, where all its attributes (data or function) are defined. Special

attributes with double underscores (_)are also present, for example- _doc_ gives the docstring of that class.

As soon as the class is defined, a new class object is created with same name, which allows access to the

different attributes, also to instantiate new object of that class.

Example

>>>class Student:

... ‘student details’

... def fill_details(self,name,branch,year):

... self.name = name

... self.branch = branch

... self.year = year

... print(“A Student detail object is created”)

... def print_details(self):

... print(‘Name: ‘, self.name)

... print(‘Branch: ‘,self.branch)

... print(‘Year: ‘,self.year)

In the given example, we have created a class Student that contains two methods: fill_details and

print_details. The first method fill_details takes four arguments: self, name, branch and year.

The second method print_details takes exactly one argument: self.

In the next section, we will find out how these class and methods are used.

Note The methods in the classes are defined in the same way as the functions are defined
in the preceding sections. The only difference is that the every method will have self as its
first argument.

Classes and Objects 215

At the time of calling the method, we do not need to add self as an argument. The Python
interpreter does it for us.

TIP

 1. What is Object-Oriented Programming?

 Ans. The Object-Oriented programming approach mainly focuses on the objects and classes while

procedural programming focuses on the functions and methods.

 The object is an instance of class. It is a collection of data (variables) and methods (functions).

A class can also be called the basic structure of object. Class is a set of attributes, which can be

data members and method members.

 2. Define class, method, instance and function overloading.

 Ans. Class: Classes are defined by the user; the class provides the basic structure for an object. It

consists of data members and method members that are used by the instances (objects) of the

class.

 Method: Methods are the functions defined in the definition of class and are used by various

instances of the class.

 Instance: An object is an instance of the class.

 Function Overloading: A function that can be defined more than one time with different

behaviours is known as function overloading. The operations performed by these functions are

different.

 3. Give the syntax for class definition.

 Ans. Syntax

class class_name:

 ‘This is docstring which is optional’

 class_suite

Check Your Understanding

8.3 CREATING OBJECTS

An object is an instance of a class that has some attributes and behaviour. The object behaves according to

the class of which it is an object.

Objects can be used to access the attributes of the class. The syntax of creating an object in Python is

similar to that for calling a function.

Syntax

obj_name = class_name()

216 Introduction to Computing & Problem Solving using Python

Example

s1 = Student()

The above statement creates an object s1 of the class Student which we defined earlier.

Now, we can access the methods (attributes) which are defined in the class Student. We can use a method

from the class Student with the object name followed by a dot, which is then followed by the method

name with valid arguments.

Example

creating an object of Student class

>>> s1 = Student()

creating another object of Student class

>>>s2 = Student()

using the method fill_details with proper attributes

>>> s1.fill_details(‘John’,’CSE’,’2002’)

A Student detail object is created

>>>s2.fill_details(‘Jack’,’ECE’,’2004’)

A Student detail object is created

using the print_detail method with proper attributes

>>>s1.print_details()

Name: John # Output

Branch: CSE # Output

Year: 2002 # Output

>>>s2.print_details()

Name: Jack # Output

Branch: ECE # Output

Year: 2004 # Output

In this example, we create two objects (instances) s1 and s2 of class Student. Then afterwards, we use

the fill_details method of class with the object names as prefix and passed the valid arguments. The

details of the students are stored in the objects. Now, the second method print_details is called with the

same convention. The method print_details prints the details of all stored students.

8.3.1 Objects are Mutable

Objects are mutable— this statement tells us that the state of an object can be changed at any point of time

by making changes to its attributes.

For example, consider the class Student which was defined earlier. We created an object s1 and filled

the details of the student using fill_details method. If, at any point of time, it is required to change the

value of branch from ECE to CSE, it can be done in the same object by reassigning it a new value.

Classes and Objects 217

Example

Create an instance of class Student

>>>s1 = Student()

Fill details in that object

>>>s1.fill_details(‘John’,’ECE’,2004)

A Student detail object is created

Printing details of the object s1

>>>s1.print_details()

Output:
Name: John

Branch: ECE

Year: 2004

Now, what if it is required to change the value of branch of object s1 to CSE? Will we create a new

object? Definitely not. We can change the value in the same object by simply reassigning the value to it.

#Change the value of branch from ECE to CSE

>>>s1.fill_details(‘John’,’CSE’,2004)

A Student detail object is created

The branch is changed from ECE to CSE

>>>s1.print_details()

Output:
Name: John

Branch: CSE

Year: 2004

Now, the state of object s1 has been permanently changed.

Note Objects can be passed as an argument to a function and a function can also return
an object.

 1. How are the objects created in Python? Give an example.

 Ans. Creating Objects

 Objects can be used to access the attributes of the class. The syntax for creating an object in

Python is similar to that for calling a function.

Syntax

obj_name = class_name()

Check Your Understanding

218 Introduction to Computing & Problem Solving using Python

8.4 OBJECTS AS ARGUMENTS

The instance of a class can be passed as an argument to a function in Python.

Let us say, we have a class Triangle. We make an instance of this class and define the attributes that are

sides of this triangle. Then, that object or instance of Triangle can be passed to a function which calculates

the perimeter of the triangle.

Example

First of all, we will create a class Triangle with no statements.

>>>class Triangle:

 pass

Now, we create an object t1 of the class Triangle and assign the value of sides a, b, c of the

triangles here.

>>>t1 = Triangle()

>>>t1.a = 10

>>>t1.b = 18

>>>t1.c = 23

Now, we define a function perimeter, which calculates the perimeter of a triangle. This function takes

an object or instance of a class as an argument.

>>>def perimeter(obj):

 per = t1.a + t1.b + t1.c

 print(“Perimeter of triangle: “, per)

Example

define a class

>>>class A:

 def print_det(self):

 print ‘This is a class’

create object of class A

>>> object = A()

>>>object.print_det()

This is a class # Output

 2. What do you understand by “Objects are mutable”?

 Ans. Objects are mutable means that the state of an object can be changed at any point in time by

making changes to its attributes.

Classes and Objects 219

Now, we pass the object t1 to the function perimeter, which calculates the perimeter of the triangle

that is in this object.

>>>perimeter(t1) # Passing object as argument

Perimeter of triangle: 51 # Output

8.5 OBJECTS AS RETURN VALUES

The instances of a class can also be returned by a function, i.e., a function can return instances or objects.

Let us say, we are creating an object of Triangle class and a function size_double that doubles the

size of the triangle. Now, when the object of Triangle class is passed to this function, it doubles the size

of the triangle in that object and returns the Double sized triangle that is in the form of object.

Example

 Create a class triangle and define two methods: one is create_triangle, which will create

the triangle, and the other is print_sides, which will print the sides of the triangle.

>>>class Triangle:

 defcreate_triangle(self,a,b,c):

 self.a = a

 self.b = b

 self.c = c

 print(“The triangle is created”)

 defprint_sides(self):

 print(‘Side a: ‘, self.a)

 print(‘Side b: ‘, self.b)

 print(‘Side c: ‘, self.c)

Create an object t1 of the Triangle class and create a triangle in it.

>>>t1 = Triangle()

>>>t1.create_triangle(10,20,30)

The triangle is created # Output

 Define a function size_double that will take an object as an argument and return a triangle in the

form of an object that is double in size.

>>>defsize_double(obj):

 t2 = Triangle()

 t2.a = t1.a *2

 t2.b = t1.b *2

 t2.c = t1.c *2

 return t2 # Returning object

>>>t2 = size_double(t1) # Passing object as argument

>>>t2.print_sides()

Output:
Side a: 20

Side b: 40

Side c: 60

Hence, we got a triangle that is double in size with the triangle that was passed as an argument.

220 Introduction to Computing & Problem Solving using Python

Note The purpose of the dot notation is to identify the variable you are referring to
unambiguously.

Class definitions can appear anywhere in the program, but they usually appear near the
beginning.

TIP

8.6 BUILT-IN CLASS ATTRIBUTES

In Python, every class contains various built-in attributes. They can be accessed with a dot operator just as

in the case of user-defined attributes we have come across earlier.

The built-in class attributes in Python are as follows:

 1. __dict__: It displays the dictionary in which the class’s namespace is stored.

 2. __name__: It displays the name of the class.

 3. __bases__: It displays the tuple that contains the base classes, possibly empty. It displays them in

the order in which they occur in the base class list.

 4. __doc__: It displays the documentation string of the class. It displays none if the docstring isn’t given.

 5. __module__: It displays the name of the module in which the class is defined. Generally, the value

of this attribute is “__main__” in interactive mode.

Example

Create the class Student

>>>class Student:

 ‘student details’

 # Add method member fill_details

 deffill_details(self,name,branch,year):

 self.name = name

 self.branch = branch

 self.year = year

 print(“A Student detail object is created”)

 # Add method member print_details

 defprint_details(self):

 print(‘Name: ‘, self.name)

 print(‘Branch: ‘,self.branch)

 print(‘Year: ‘,self.year)

>>>print “Student.__doc__: “,Student.__doc__

Student.__doc__: student details

>>>print “Student.__name__: “,Student.__name__

Classes and Objects 221

Student.__name__: Student

>>>print “Student.__module__: “,Student.__module__

Student.__module__: __main__

>>>print “Student.__bases__: “,Student.__bases__

Student.__bases__: ()

>>>print “Student.__dict__: “, Student.__dict__

Student.__dict__: {‘__module__’: ‘__main__’, ‘fill_details’: <function

fill_details at 0x02CDAC30>, ‘__doc__’: ‘student details’, ‘print_details’:

<function print_details at 0x02CDACB0>}

 1. What do you understand by arguments “Instances as return values”?

 Ans. Instances as return values

 The instances of a class can also be returned by a function i.e. a function can return the instances

or objects.

 2. Define __dict__, __bases__, __name__ built-in class attributes. Give Example.

 Ans. __dict__: It displays the dictionary in which the class’s namespace is stored.

 __name__: It displays the name of the class.

 __bases__: It displays the tuple that contains the base classes, possibly empty. It displays them

in the order in which they occur in the base class list.

Example

>>>print “__name__: “,PrintStatement.__name__
__name__: PrintStatement

>>>print “__bases__: “,PrintStatement.__bases__
__bases__: ()

>>>print “PrintStatement.__dict__: “,PrintStatement.__dict__
PrintStatement.__dict__: {‘__module__’: ‘__main__’, ‘__doc__’:
None, ‘print_method’: <function print_method at 0x02CE3130>}

Check Your Understanding

8.7 INHERITANCE

Inheritance is a very important concept in OOP. Inheritance, generally, means to acquire the features of

something. In OOP, it means the reusability of code. It is the capability of a class to derive the properties of

another class that has already been created.

Let us look at an example illustrated in Fig. 8.2.

222 Introduction to Computing & Problem Solving using Python

 ● Vehicle is a class that is further divided into two subclasses, automobiles (driven by motors) and pulled

vehicles (driven by men). Therefore, vehicle is the base class and automobiles and pulled vehicles are

its subclasses. These subclasses inherit some of the properties of the base class vehicle.
 ● Truck and car are the subclasses of the class automobile that is the base class for them. They inherit

some of the properties of base class automobiles. Similarly, the rickshaw and bullock cart are the

subclasses of pulled vehicles that serves as the base class for them.

The main advantage of inheritance in the context of programming is that the code can be written once in

the base class and then reused repeatedly in the subclasses.

Vehicles

Automobiles Pulled Vehicles

Bullock

Cart
RickshawScooterTruck

Figure 8.2 Example of Inheritance

Inheritance generally involves acquiring the features of a predecessor. With the help of inheritance, we

can inherit a class from another class. If a class A is inherited from another class B, then class A can use all

the features (like variables and methods) of class B.

The class which inherits the features of another class is known as subclass. If we want to inherit a class,

we use the class name with the name of the class that is to be inherited in the parentheses.

Syntax

class sub_classname(Parent_classname):

 ‘Optional Docstring’

 Class_suite

Example

Define a parent class Person

>>>class Person(object):

 ‘returns a Person object with given name’

 defget_name(self,name):

 self.name = name

 defget_details(self):

 ‘returns a string containing name of person’

 return self.name

Define a subclass Student

>>>class Student(Person):

 ‘return a Student object, takes 3 arguments’

Classes and Objects 223

 deffill_details(self, name, branch, year):

 Person.get_name(self,name)

 self.branch = branch

 self.year = year

 defget_details(self):

 ‘returns student details’

 print(“Name: “, self.name)

 print(“Branch: “, self.branch)

 print(“Year: “, self.year)

Define a subclass Teacher
>>>class Teacher(Person):

 ‘returns a Teacher object, takes 2 arguments’

 deffill_details(self, name, branch):

 Person.get_name(self,name)

 self.branch = branch

 defget_details(self):

 print(“Name: “, self.name)

 print(“Branch: “, self.branch)

Define one object for each class
>>>person1 = Person()

>>>student1 = Student()

>>>teacher1 = Teacher()

Fill details in the objects
>>> person1.get_name(‘John’)

>>> student1.fill_details(‘Jinnie’, ‘CSE’, 2005)

>>> teacher1.fill_details(‘Jack’, ‘ECE’)

Print the details using parent class function
>>>print(person1.get_details())

John # Output

>>>print(student1.get_details())

Name: Jinnie # Output

Branch: CSE # Output

Year: 2005 # Output

>>>print(teacher1.get_details())

Name: Jack # Output

Branch: ECE # Output

In the example illustrated above, we have defined a parent class Person that has two methods: get_

name() and get_details().

Now, we have defined two subclasses: the student class, which has two methods: fill_details()

and get_details(), and teacher class, which also has two methods: fill_details() and get_

details().

We have used the parent class method get_details() in the subclasses student and teacher to

get the names of students and teachers respectively. This is called inheritance.

224 Introduction to Computing & Problem Solving using Python

8.7.1 Multiple Inheritance

In multiple inheritance, a subclass is derived from more than one base

classes. The subclass inherits the properties of all the base classes. In

Fig. 8.3, subclass C inherits the properties of two base classes A and B.

Let us look at an example:

There are three classes, Water animal (fish, octopus, etc.), Land

animal (Tigers, lions, etc.) and Amphibian (frog, crocodiles, etc.).

Here, Amphibian is the subclass that derives the properties of the base

classes, water animal and land animal. Therefore, its animals (objects) frog and crocodile live both on land

and water.

We can also define multiple inheritance in Python. When a class inherits the features of more than one

class this is known as multiple inheritance. It is defined in the same way as inheritance.

Syntax

Define your first parent class
class A
........class_suite..........

Define your second parent class
class B
.......Class_suite..........

Define the subclass inheriting both A and B
class C(A,B)
.........class_suite...........

Example

>>> class A: #Defining class A
 def x(self):
 print(“method of A”)

>>> class B: #Defining Class B
 def x(self):
 print(“method of B”)

>>> class C(A,B): #Defining class C
 pass

>>> y = C()
>>> B.x(y)
method of B #Output

>>> A.x(y)
method of A #Output

In the above example, two classes A and B are defined and then another class C is defined which inherits

the two classes A and B. Now, an object of class C is created, through which the methods of classes A and

B are accessed.

A B

C

Multiple Inheritance

Figure 8.3 Multiple Inheritance

Classes and Objects 225

8.8 METHOD OVERRIDING

Method overriding is allowed in Python. Method overriding means that the method of parent class can be

used in the subclass with different or special functionality.

Example

>>>class Parent:
 defovr_method(self):
 print ‘This is in Parent Class’

>>>class Child(Parent):
 defovr_method(self):
 print ‘This is in Child Class’

>>>c = Child()
>>>c.ovr_method()
This is in Child Class # Output

Note The pass statement has no effect; it is only necessary because a compound statement
must have something in its body.

The initialization method(__init__) is a special method that is invoked when an object is
created. It is also known as the constructor method for a class.

TIP

8.9 DATA ENCAPSULATION

In Python Programming Language, encapsulation is a process to restrict the access of data members. This

means that the internal details of an object may not be visible from outside of the object definition. But

Python provides some methods which assist in accessing these sorts of data.

The members in a class can be assigned in three ways i.e., public, protected and private. If the name of

a member is preceded by single underscore, it is assigned as a protected member, whereas if the name of a

member is preceded by double underscore, it is assigned as a private member and if the name is not preceded

by anything then it is a public member.

Let us summarise this concept in the given table below:

Name Notation Behaviour

varname Public Can be accessed from anywhere

_varname Protected They are like the public members but they cannot be directly accessed from outside

__varname Private They cannot be seen and accessed from outside the class

Let us understand this concept with the help of an example:

226 Introduction to Computing & Problem Solving using Python

Example

>>> class MyClass(object): # Defining class
 def __init__(self, x, y, z):
 self.var1 = x # public data member
 self._var2 = y # protected data member
 self.__var3 = z # private data member

>>> obj = MyClass(3,4,5)
>>> obj.var1
3 # Output

>>> obj.var1 = 10
>>> obj.var1
10 # Output

>>> obj._var2
4 # Output

>>> obj._var2 = 12
>>> obj._var2
12 # Output

>>> obj.__var3 # Private member is not accessible

Traceback (most recent call last):

 File “<pyshell#71>”, line 1, in <module>

 obj.__var3

AttributeError: ‘MyClass’ object has no attribute ‘__var3’

Note The value of a private variable can be set by a Python method called setter method.

Example (Getters and Setters)

>>> class A:

 def __init__(self,p):

 self.__p = p #Defining private member

 def getP(self): #Defining getters

 return self.__p

 def setP(self, p): #Defining Setters

 self.__p = p

>>> a1 = A(22)

>>> a1.getP() #Getting value through get function

22

>>> a1.setP(43) #Setting value through set function

>>> a1.getP()

43

Classes and Objects 227

8.10 DATA HIDING

In Python programming, there might be some cases when you intend to hide the attributes of objects outside

the class definition. To accomplish this, use double score (__) before the name of the attributes and these

attributes will not be visible directly outside the class definition. Let us understand the Python data hiding

by a simple example given below:

Example

>>> class MyClass: # defining class
 __a = 0;
 def sum(self, increment):
 self.__a += increment
 print self.__a

>>> b = MyClass() # creating instance of class
>>> b.sum(2)
2
>>> b.sum(5)
7
>>> print b.__a

Traceback (most recent call last):
 File “<pyshell#24>”, line 1, in <module>
 print b.__a
AttributeError: MyClass instance has no attribute ‘__a’

As seen in the above example that the variable __a is not accessible as we tried to access it; the Python

interpreter generates an error immediately. In such a case, the Python secures the members by internally

changing the names to incorporate the name of the class. If you intend to access these attributes then the

syntax for accessing the variable is:

objectName.__className__attributeName

In the above code, if we use the aforementioned syntax to access the attributes, then the following changes

are seen in the output:

>>> class MyClass: # Defining class
 __a = 0;
 def sum(self, increment):
 self.__a += increment
 print self.__a

>>> b = MyClass() # creating instance of class
>>> b.sum(2)
2
>>> b.sum(5)
7
>>> print b._MyClass__a # Accessing the hidden variable
7

228 Introduction to Computing & Problem Solving using Python

 1. Define Inheritance and multiple inheritance. Give syntax for both.

 Ans. Inheritance

 Inheritance generally means to acquire the features of something. The same is the meaning in the

context of the classes. With the help of inheritance, we can inherit a class from another class. If

a class A is inherited from another class B, then class A can use all the features (like variables

and methods) of class B.

Syntax

class sub_classname(Parent_classname):

 ‘Optional Docstring’

 Class_suite

 Multiple Inheritance

 We can also define multiple inheritance in Python. When a class inherits the features of more

than one class it is known as multiple inheritance. It is defined in the same way as inheritance.

Syntax

Define your first parent class

class A

........class_suite..........

Define your second parent class

class B

.......Class_suite..........

Define the subclass inheriting both A and B

class C(A,B)

.........class_suite...........

Check Your Understanding

 ● Python provides all the features required to support OOP.

 ● OOP approach mainly focuses on the objects and classes whereas procedural programming focuses on

the functions and methods.

 ● An object is a collection of data and methods.

 ● An object is an instance of a class.

Classes and Objects 229

 ● Class is a set of objects that share the same attributes, which can be data member and method member.

 ● Data member is a variable that is defined either in class or in object and that holds the data associated

with the class or object.

 ● Methods are the functions defined in the definition of class, and are used by various instances of the class.

 ● When a function is defined more than once with different behaviours, this is known as function overloading.

 ● In method overloading, the operations performed by the methods are different.

 ● When a class uses the characteristics of another class, it is said to be a derived class or inherited class and

the process is called inheritance.

 ● When a class inherits the features of more than one class, this is called multiple inheritance.

 ● Method overriding means that the method of parent class can be used in the subclass with different or

special functionality.

 ● The first argument of every method is self.

 ● Objects can be used to access the attributes of the class.

 ● The state of an object can be changed at any point of time by making changes to its attributes. Thus, it

can be said that the objects are mutable.

 ● The instance of a class can be passed as an argument to a function in Python.

 ● The instances of a class can also be returned by a function, i.e., a function can return the instances or

objects.

 ● There are various built-in attributes that can be accessed with a dot operator.

 ✓ OBJECT: Object is a real time entity.

 ✓ CLASS: Classes provide the basic structure for an object. It consists of data members and method

members that are used by the objects of the class.

 ✓ DATA MEMBER: A variable defined either in a class or in an object, which holds the data that is

associated with the class or object.

 ✓ INSTANCE VARIABLE: A variable which is defined in a method and whose scope is only within the

object it is defined.

 ✓ CLASS VARIABLE: A variable which is defined in the class and can be used by all the instances of

that class.

 ✓ INSTANCE: An object is an instance of the class.

 ✓ INSTANTIATION: The process of creation of an object of a class.

 ✓ METHOD: Methods are the functions which are defined in the definition of class and are used by various

instances of the class.

 ✓ METHOD OVERLOADING: A function can be defined more than one time with different behaviours.

This is known as function overloading or method overloading. The operations performed by these

functions are different.

230 Introduction to Computing & Problem Solving using Python

 ✓ INHERITANCE: A class ‘A’ that can use the characteristics of another class ‘B’ is said to be a derived

class or inherited from ‘B’. The process is called inheritance.

 ✓ METHOD OVERRIDING: When the method of the parent class can be used in a subclass with different

or special functionality, it is known as method overriding.

1. class: This is the keyword used to define a class.

2. self: It is the first argument of every method.

3. __dict__: A class attribute that displays the dictionary in which the class’s namespace is stored.

4. __name__: A class attribute that displays the name of the class.

5. __bases__: A class attribute that displays the tuple containing the base classes, possibly empty.

6. __doc__: A class attribute which displays the documentation string of the class

7. __module__: A class attribute which displays the name of the module in which the class is defined.

PROGRAMS

1. Write a program that defines a class with two methods: inputStr() that will get the string using

console input and printStr() that will print the string in upper case. Also, test the class methods

with a function.

Solution.

>>> class UpperString(object):

 def __init__(self):

 self.o = “”

 def inputStr(self):

 self.o = raw_input()

 def printStr(self):

 print self.o.upper()

>>> a = UpperString()

>>> a.inputStr()

‘python’ #Input from user

>>> a.printStr()

‘PYTHON’ #Output

2. Write a program that defines a class named Rectangle that takes the parameters length and breadth.

The class Rectangle should also contain a method for computing its perimeter.

Solution.
>>> class Rectangle(object):

 def __init__(self,l,b):

 self.length = l

 self.breadth = b

PROGRAMSPROGRAMS

Classes and Objects 231

 def perimeter(self):

 return

 self.length+self.breadth

>>> a = Rectangle(10,15)

>>> print a.perimeter()

25 #Output

3. Write a function that has a class Animal with a method legs. Create two subclasses Tiger and

Dog. Now, access the method leg explicitly with the class Dog and implicitly with the class Tiger.

Solution.
#for explicitly access, we need to override the method in Dog class.

>>> class Animal(object):

 def legs(self):

 print “legs Animal() method”

>>> class Dog(Animal):

 def legs(self):

 print “legs Dog() method”

>>> class Tiger(Animal):

 pass

>>> a = Animal()

>>> d = Dog()

>>> t = Tiger()

>>> a.legs()

legs Animal() method #Output

>>> d.legs() #Accessing method explicitly (override)

legs Dog() method #Output

>>> t.legs() #Accessing method implicitly

legs Animal() method #Output

4. Write a program that defines a class named Employee. Define two subclasses: Engineer and

Manager. Every class should have a method named printDesignation() that prints Engineer for

Engineer class and Manager for Manager class.

Solution.
>>> class Employee(object):

 def printDesignation(self):

 return “Not Known”

>>> class Engineer(Employee):

 def printDesignation(self):

 return “Engineer”

>>> class Manager(Employee):

 def printDesignation(self):

 return “Manager”

232 Introduction to Computing & Problem Solving using Python

>>> e = Engineer()

>>> m = Manager()

>>> print e.printDesignation()

Engineer #Output

>>> print m.printDesignation()

Manager #Output

5. Write a Python program to demonstrate classes and their attributes.

Solution.
python program to demonstrate class and their attributes

class Person:

 print “Inside the class”

 pcount = 0

 def __init__(self, name, age, salary):

 self.name = name

 self.age = age

 self.salary = salary

 Person.pcount += 1

 def dispcount(self):

 print “Total number of persons”, Person.pcount

 def dispperson(self):

 print “Person Name : “, self.name, “, age:”, self.age, “Salary: “,

self.salary

print “creating objects to the class”

per1 = Person(“ruby”, 24, 2000)

per2 = Person(“Perl”, 27, 5000)

per1.dispperson()

per2.dispperson()

print “Total number of person %d” % Person.pcount

print “details of the person class and class attributes”

print “Person.__doc__:”, Person.__doc__

print “Person.__name__:”, Person.__name__

print “Person.__module__:”, Person.__module__

print “Person.__bases__:”, Person.__bases__

print “Person.__dict__:”, Person.__dict__

Returns true if ‘sex’ attribute exists

print hasattr(Person, ‘sex’)

Set attribute ‘sal’ to 3000

setattr(Person, ‘salary’, 3000)

print Person.salary

Delete attribute ‘salary’

delattr(Person, ‘salary’)

print “After deleting the atribute salary”, Person.salary

Classes and Objects 233

Output:

Total number of person 2

details of the person class and class attributes

Person.__doc__: None

Person.__name__: Person

Person.__module__: __main__

Person.__bases__: ()

Person.__dict__: {‘__module__’: ‘__main__’, ‘pcount’: 2, ‘dispcount’: <func-

tion dispcount at 0x7fc0ba6e27d0>, ‘dispperson’: <function dispperson at

0x7fc0ba6e2848>, ‘__d

oc__’: None, ‘__init__’: <function __init__ at 0x7fc0ba6e2758>}

False

3000

After deleting the atribute salary

Traceback (most recent call last):

 File “Person.py”, line 37, in <module>

 print “After deleting the atribute salary”, Person.salary

AttributeError: class Person has no attribute ‘salary’

Note: Save the file name as Person.py. The user can try the “getattr(Person,

age)” which is can be added to the code and check the functionality.

6. Write a Python program to demonstrate Inheritance and method overriding

Solution.
class Person: # define Person class

 PersonAttr = 150

 def __init__(self):

 print “Calling Person constructor”

 def PersonMethod(self):

 print ‘Calling Person method’

 def setAttr(self, attr):

 Person.PersonAttr = attr

 def getAttr(self):

 print “Person attribute :”, Person.PersonAttr

 def myMethod(self):

 print ‘Calling Person method’

class Subperson(Person): # define Subperson class

 def __init__(self):

 print “Calling Subperson constructor”

 def SubpersonMethod(self):

 print ‘Calling Subperson method’

 def myMethod(self):

 print ‘Calling Subperson method’

234 Introduction to Computing & Problem Solving using Python

c = Subperson() # instance of Subperson

c.SubpersonMethod() # Subperson calls its method

c.PersonMethod() # calls Person’s method

c.setAttr(300) # again call Person’s method

c.getAttr() # again call Person’s method

c = Subperson() # instance of Subperson

c.myMethod() # Subperson calls overridden method

Output:

Calling Subperson constructor

Calling Subperson method

Calling Subperson constructor

Calling Subperson method

Calling Person method

Person attribute : 300

Calling Subperson constructor

Calling Subperson method

Calling Person method

Person attribute : 300

Calling Subperson constructor

Calling Subperson method

7. Write a Python program to demonstrate multiple inheritances

Solution.
#Python program to demonstrate multiple inheritance

base class 1

class trans(object):

 def higher(this,that):

 if this.getcapc() > that.getcapc():

 return this

 return that

 @staticmethod

 def maximumm(collect):

 uptonow = collect[0]

 for tryme in collect:

 uptonow = uptonow.higher(tryme)

 return uptonow

base class-2

class label(object):

 def nameset(this,name):

 this.name = name

 def nameget(this):

 return this.name.upper()

Two classes which both use multiple inheritance

class mulchildclass(trans,label):

 def __init__(current,dest,time,length,pereach):

Classes and Objects 235

 current.time = time

 current.leng = length

 current.pe = pereach

 current.nameset(dest)

 def getcapc(current):

 return current.leng * current.pe

class secmulchild(trans,label):

 def __init__(current,dest,pereach):

 current.pe = pereach

 current.nameset(dest)

 def getcapc(current):

 return current.pe -1

perl = mulchildclass(“perl”,”07:17”,2,75)

ruby = mulchildclass(“ruby”,”07:24”,1,61)

rhino= secmulchild(“rhino”,5)

Mystore = mulchildclass(“Mystore sales”,”07:45”,7,65)

sara = secmulchild(“sara jane”,8)

flows = [rhino,perl,sara,Mystore,ruby]

for flow in flows:

 commuters = flow.getcapc()

 destiny = flow.nameget()

 print “To”,destiny,”carrying”,commuters

print “\nLet’s see is perl or ruby has the higher capacity”

toby = perl.higher(sara)

print toby.nameget(),”:”,toby.getcapc()

print “\nLet’s see which has the maximumm capacity of all”

toby = trans.maximumm(flows)

print toby.nameget(),”:”,toby.getcapc()

Output:

o RHINO carrying 4

To PERL carrying 150

To SARA JANE carrying 7

To MYSTORE SALES carrying 455

To RUBY carrying 61

Let’s see is perl or ruby has the higher capacity

PERL : 150

Let’s see which has the maximumm capacity of all

MYSTORE SALES : 455

Note This program is demonstration for multiple inheritance and transfer of funds which
is a simple application to find who has made the highest transfer. There are 2 base classes
and 2 child classes.

236 Introduction to Computing & Problem Solving using Python

Multiple Choice Questions

 1. Which of the following represents real world entity?

 a. Class b. Object

 c. Method d. Data Field

 2. Suppose p is python. What is p.upper()?

 a. PYTHON b. Python

 c. PyThOn d. python

 3. Which keyword is required to define a class?

 a. Def b. class

 c. create d. return

 4. Analyse the following code:
class A:

 def__init__(self):

 self.p=1

 self._q=1

 defgetq(xyz):

 returnself._q

a=A()

a.p=20

print(a.p)

 a. The program has an error because p is private

 b. The program has an error because q is private

 c. The program prints 1

 d. The program prints 20

 5. Analyse the following code:
class A:

 def__init__(self,p):

 self.p=p

 def print(self):

 print(p)

a=A(“Python”)

a.print()

 a. The program has an error because class A does not have a constructor.

 b. The program has an error because class A should have a print(self,p) method.

 c. The program has an error because class A should have a print(p) method.

 d. The program will execute fine if print(p) is replaced by print(self.p).

 6. Analyse the following code:
class A:

 def__init__(self,p=“Python”):

 self.p=p

 def print(self):

 print(self.p)

a=A()

a.print()

Classes and Objects 237

 a. The program has an error because class A does not have a constructor.

 b. The program has an error because class A should have a print(self,p) method.

 c. The program executes fine and prints nothing.

 d. The program executes fine and prints Python.

 7. Which of the following is used to create an object?

 a. Constructor b. Class

 c. Method d. Data field

 8. Which of the following statements is not correct?

 a. Each object must have unique id.

 b. Same kind objects must have same type.

 c. Same type objects must have same id.

 d. A variable that holds a value is the reference to an object of that value.

 9. What is the output of the following code?

 Print(type((‘US’,‘India’,’Africa’)))

 a. <class,’set’> b. <class,’list’>

 c. <class,’dict’> d. <class,’tuple’>

 10. What is the output of the following code?

 Print(type(1J))

 a. <class,’int’> b. <class,’list’>

 c. <class,’float’> d. <class,’command’>

 11. defMyFunction():

“Python is an interesting language”

return 1

print(MyFunction.__doc__[10:12])

 What will be the output?

 a. Is b. an

 c. te d. er

 12. What is the output of the following code?
Class Employee:

 def__init__(self):

 pass

 defgetEmpId(self):

 print(__name__)

s=Employee()

s.getEmpId()

 a. __name__ b. __main__

 c. Employee d. Error

 13. What is the output of the following code?

 Print(type(1/5))

 a. <class,’int’> b. <class,’list’>

 c. <class,’float’> d. <class,’command’>

 14. Which of the following is known as an instance of class?

 a. Object b. Program

 c. Data d. Method

238 Introduction to Computing & Problem Solving using Python

 15. Which of the following is a blueprint that defines objects of the same type?

 a. A class b. An object

 c. A method d. A program

 16. Which of the following is most accurate for the given declaration:

 x=Square()

 a. x contains an int value. b. x contains an object of square type.

 c. An int value can be assigned to x. d. x contains a reference to a square object.

 17. Which of the following is the description of a set of objects that share the same attributes, operations,

and semantics?

 a. Class b. Constructor

 c. Function d. Method

 18. Which of the following is responsible for initialising the objects of its class?

 a. Constructor b. Destructor

 c. Iterator d. None of the above

Short Questions

 1. What is the OOP concept? Define classes and objects in Python.

 2. Explain the OOP principle inheritance in Python.

 3. What is docstring in Python?

 4. Differentiate between method overloading and method overriding.

 5. What is the use of pass in Python?

 6. What is __init__.py? Give an example.

 7. How can we count the number of instances in a program?

 8. How can we copy an object in Python?

 9. What will be the output of the given code? Explain your answer.

classParent (object):

 a=1

class Child1(Parent):

 pass

class Child2(Parent):

 pass

print Parent.a,Child1.a,Child2.a

Child2.a=5

print Parent.a,Child1.a,Child2.a

Parent.a=4

print Parent.a,Child1.a,Child2.a

 10. Consider the code of dictionary:

classSubDict(dict):

 def __missing__(self, key):

 return[]

Classes and Objects 239

 Will the code that follows work? Give reasons.
d=SubDict()

d[‘florp’]=127

Answers to Multiple Choice Questions

 1. d 2. a 3. b 4. d 5. d 6. d 7. a 8. c 9. d 10. d

 11. b 12. b 13. c 14. a 15. a 16. d 17. a 18. a

PRACTICE EXERCISES

WITH ALGORITHM AND

FLOW CHART

A

SOLUTIONS AVAILABLE ON OLC

Practice Problem 1 Write a program to determine the Greatest Common Divisor (GCD) of two numbers.

Algorithm

Step 1 - Start

Step 2 – Accept the two numbers whose GCD is to be found (num1, num2)

Step 3 – Call function GCD(num1,num2)

Step 4 – Display the value returned by the function call GCD(num1,num2)

Step 5 – Stop

GCD(a,b)

Step 1 – Start

Step 2 – If b > a goto Step 3 else goto Step 4

Step 3 – Return the result of the function call GCD(b,a) to the calling

function

Step 4 – If b = 0 goto Step 5 else goto Step 6

Step 5 – Return the value a to the calling function

Step 6 – Return the result of the function call GCD(b,a mod b) to the calling

function

Appendix

Practice Exercises with Algorithm and Flow Chart 241

Flow Chart

Start

Read num1, num2

Call GCD (num1, num2)

Display the return value of
GCD (num1, num2)

Stop

GCD (num1, num2)

Is b > a?
Yes Return

GCD (b, a)

No

Is b = a? Return a
Yes

No

Return
GCD (b, a%b)

Output

Enter the two numbers whose GCD is to be found: 18 12

GCD of 18 and 12 is 6

Practice Problem 2 Write a program to accept two complex numbers and find their sum.

Algorithm

Step 1 - Start

Step 2 – Define a structure to represent a complex number

 STRUCTURE complex

 REAL real

 REAL img

 END STRUCTURE

 STRUCTURE complex c1, c2

Step 3 – Read the real and imaginary parts of the first complex number

(c1.real, c1.img)

Step 4 – Read the real and imaginary parts of the second complex number

(c2.real, c2.img)

Step 5 – Calculate c3.real=c1.real+c2.real

Step 6 – Calculate c3.img=c1.img+c2.img

Step 7 – Display c3

Step 8 - Stop

242 Introduction to Computing & Problem Solving using Python

Flow Chart

Start

Stop

Read c1.real,c1.img
Read c2.real,c2.img

c3.real=c1.real+c2.real
c3.img=c1.img+c2.img

Display c3

Output

Enter two Complex Numbers (x+iy):

Real Part of First Number: 22

Imaginary Part of First Number: 4

Real Part of Second Number: 5

Imaginary Part of Second Number: 3

22.00+(4.00)i + 5.00+(3.00)i = 27.00+(7.00)i

Practice Problem 3 Write a program to simulate a simple calculator for performing basic arithmetic

operations.

Algorithm

Step 1 - Start

Step 2 – Display a list of operations for the user to choose from

 1. Addition

 2. Subtraction

 3. Multiplication

 4. Division

Step 3 – Read the choice entered by the user (choice)

Step 4 – Read the two operands (num1, num2)

Step 5 – If choice = 1 goto Step 6 else goto Step 7

Step 6 – Calculate num1 + num2, display the result and goto Step 14

Step 7 – If choice = 2 goto Step 8 else goto Step 9

Step 8 – Calculate num1 - num2, display the result and goto Step 14

Step 9 - If choice = 3 goto Step 10 else goto Step 11

Step 10 - Calculate num1 X num2, display the result and goto Step 14

Step 11 - If choice = 4 goto Step 12 else goto Step 13

Step 12 - Calculate num1 / num2, display the result and goto Step 14

Step 13 – Display the message “Invalid Choice”

Step 14 - Stop

Practice Exercises with Algorithm and Flow Chart 243

Flow Chart

Start

Display the list of operations
1. Addition
2. Subtraction
3. Multiplication
4. Division

Read choice, num1, num2

Is
choice
=1?

Is
choice
=2?

Result = num1 + num2
Yes

Display result

Result = num1 – num2
Yes

Display result

Is
choice
=3?

Result = num1 * num2
Yes

Display result

Is
choice
=4?

Result = num1/num2
Yes

Display result

No

No

No

No

Display Invalid Choice”“

Stop

Output

**********Simple Calc***********

Choose a type of operation from the following:

 1. Addition

 2. Subtraction

 3. Multiplication

 4. Division

3

Enter the two operands: 18.25 2.23

18.25 * 2.23 = 40.70

244 Introduction to Computing & Problem Solving using Python

Practice Problem 4 Write a program to generate random numbers.

Algorithm

Step 1 - Start

Step 2 – Pass the system generated time value as a seed to the srand function,

srand(time(NULL))

Step 3 – Call the rand function to generate a random number, rand()

Step 4 – Display the generated random number value

Step 5 – Stop

Flow Chart

Start

srand(time(NULL))

rand()

Display the return value of
rand()

Stop

Output

The system generated random number is: 23176

Practice Problem 5 Write a program to display the Pascal’s triangle.

Algorithm

Step 1 - Start

Step 2 – Set b = 1 and y = 0

Step 3 – Read the number of rows for the Pascal’s triangle (row)

Step 4 – Repeat Steps 5-17 while y < row

Step 5 – Initialise the looping counter x = 40-3*y

Step 6 – Repeat Steps 7-8 while x > 0

Step 7 – Print a blank space on the output screen

Step 8 – x = x - 1

Step 9 – Initialize the looping counter z = 0

Step 10 – Repeat Steps 11-15 while z <= y

Step 11 – If z = 0 OR y = 0 goto Step 12 else goto Step 13

Step 12 – b = 1

Practice Exercises with Algorithm and Flow Chart 245

Step 13 – b=(b*(y-z+1))/z

Step 14 – Display the value of b in a field width of 6 characters

Step 15 – z = z + 1

Step 16 – Print a new line character

Step 17 - y = y + 1

Step 18 - Stop

Flow Chart

Start

b = 1
y = 0

Read row

Is
y<row?

Yes

x = 40 – 3*y

Is x>0?
No

z = 0

Yes

Print one blank space

x = x – 1

Stop
No

Is z<=y?

Display b

No
Print new line

y = y + 1Yes

Is z = 0
& y = 0?

Yes

b = 1

b=(b*(y–z+1))/zNo

246 Introduction to Computing & Problem Solving using Python

Output

Enter the number of rows for the Pascal’s triangle:6

******Pascal’s Triangle******

 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1

Practice Problem 6 Write a program to display a pyramid.

Algorithm

Step 1 - Start

Step 2 – Read a value for generating the pyramid (num)

Step 3 – Set x = 40

Step 4 – Initialize the looping counter y=0

Step 5 – Repeat Steps 6-12 while y <= num

Step 6 – Move to the coordinate position (x,y+1)

Step 7 – Initialise the looping counter i=0-y

Step 8 – Repeat Steps 9-10 while i <= y

Step 9 – Display the absolute value of i, abs(i)

Step 10 – i = i + 1

Step 11 – x = x – 3

Step 12 - y = y + 1

Step 13 - Stop

Practice Exercises with Algorithm and Flow Chart 247

Flow Chart

Start

Read num

x = 40
y = 0

Is
y<=num?

Yes

goto xy (x, y + 1)
i = 0 – y

Is i<=y?

Yes

Display absolute(i)

i = i + 1

x= x – 3

No

No

Stop

248 Introduction to Computing & Problem Solving using Python

Output

 0

Enter a number for 1 0 1

generating the pyramid: 2 1 0 1 2

7 3 2 1 0 1 2 3

 4 3 2 1 0 1 2 3 4

 5 4 3 2 1 0 1 2 3 4 5

 6 5 4 3 2 1 0 1 2 3 4 5 6

 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

Practice Problem 7 Write a program to find the one’s compliment of a binary number.

Algorithm

Step 1 - Start

Step 2 – Read a binary number string (a[])

Step 3 – Initialise the looping counter i=0

Step 4 – Repeat Steps 5-9 while a[i] != ‘\0’

Step 5 – If a[i]!= 0 AND a[i]!= 1 goto Step 6 else goto Step 7

Step 6 – Display error “Incorrect binary number format” and terminate the

program

Step 7 – If a[i] = 0 goto Step 8 else goto Step 9

Step 8 – b[i]=’1’

Step 9 – b[i]=’0’

Step 10 – b[i] = ‘\0’

Step 11 – Display b[] as the one’s compliment of the binary number a[]

Step 12 - Stop

Practice Exercises with Algorithm and Flow Chart 249

Flow Chart

Start

Read binary number a[]

i = 0

Is
a[i]!=‘\0 ?’

No

Yes

Is a[i]!=0

&

a[i]!=1?

Yes

No

Display “Incorrect
Binary Number

Format”

No
Is a[i]=0?

Yes

b[i] = 1 b[i] = 0

b[i] = ‘\0’

Display b[] as

the one s

compliment

’

Stop

250 Introduction to Computing & Problem Solving using Python

Output

Enter a binary number: 11001210

Incorrect binary number format...the program will quit

Enter a binary number: 1101101

The 1’s compliment of 1101101 is 0010010

Practice Problem 8 Write a program to find the two’s compliment of a binary number.

Algorithm

Step 1 - Start

Step 2 – Read a binary number string (a[])

Step 3 - Calculate the length of string str (len)

Step 4 – Initialise the looping counter k=0

Step 5 – Repeat Steps 6-8 while a[k] != ‘\0’

Step 6 – If a[k]!= 0 AND a[k]!= 1 goto Step 7 else goto Step 8

Step 7 – Display error “Incorrect binary number format” and terminate the

program

Step 8 – k = k + 1

Step 9 – Initialise the looping counter i = len - 1

Step 10 – Repeat Step 11 while a[i]!=’1’

Step 11 – i = i - 1

Step 12 – Initialise the looping counter j = i - 1

Step 13 – Repeat Step 14-17 while j >= 0

Step 14 – If a[j]=1 goto Step 15 else goto Step 16

Step 15 – a[j]=’0’

Step 16 – a[j]=’1’

Step 17 – j = j - 1

Step 18 – Display a[] as the two’s compliment

Step 19 - Stop

Practice Exercises with Algorithm and Flow Chart 251

Flow Chart

Start

Read binary number a[]

len = strlen(a)
k = 0

Is

a[k]!= \0

?

‘ ’

Yes

Is a[k]!=0

&

a[k]!=1?

No

k = k + 1

Yes

Display “Incorrect
Binary Number

Format”

Display a[]

as the two s

compliment

’

No i = len –1

Is a[i]!=1?
No

i = i – 1

Yes

j = i – 1

Is j>=0?
No

j = j 1–

Yes

Is a[j]=1?

Yes

a[j] = 0 a[j] = 1

No

Stop

252 Introduction to Computing & Problem Solving using Python

Output

Enter a binary number: 01011001001

2’s compliment = 10100110111

Practice Problem 9 Write a program to find the number of instances of different digits in a given number.

Algorithm

Step 1 - Start

Step 2 – Read an integer number (num)

Step 3 – Repeat steps 4-25 while (num!=0)

Step 4 – Calculate temp = num % 10

Step 5 – If temp = 0 goto Step 6 else goto Step 7

Step 6 – Increment the 0-digit counter by 1 (d0=d0+1)

Step 7 – If temp = 1 goto Step 8 else goto Step 9

Step 8 – Increment the 1-digit counter by 1 (d1=d1+1)

Step 9 – If temp = 2 goto Step 10 else goto Step 11

Step 10 – Increment the 2-digit counter by 1 (d2=d2+1)

Step 11 – If temp = 3 goto Step 12 else goto Step 13

Step 12 – Increment the 3-digit counter by 1 (d3=d3+1)

Step 13 – If temp = 4 goto Step 14 else goto Step 15

Step 14 – Increment the 4-digit counter by 1 (d4=d4+1)

Step 15 – If temp = 5 goto Step 16 else goto Step 17

Step 16 – Increment the 5-digit counter by 1 (d5=d5+1)

Step 17 – If temp = 6 goto Step 18 else goto Step 19

Step 18 – Increment the 6-digit counter by 6 (d6=d6+1)

Step 19 – If temp = 7 goto Step 20 else goto Step 21

Step 20 – Increment the 7-digit counter by 1 (d7=d7+1)

Step 21 – If temp = 8 goto Step 22 else goto Step 23

Step 22 – Increment the 8-digit counter by 1 (d8=d8+1)

Step 23 – If temp = 9 goto Step 24 else goto Step 25

Step 24 – Increment the 9-digit counter by 1 (d9=d9+1)

Step 25 – Set num = num / 10

Step 26 – Display the number of instances of digits (0-9) present in the

number num (d0, d1, d2, d3, d4, d5, d6, d7, d8, d9)

Step 27 - Stop

Practice Exercises with Algorithm and Flow Chart 253

Flow Chart

Start

Read num

Is
num!=0?

R
No

Yes

temp=num%10

Is
temp =0?

Yes

Is
temp =1?

No

Is
temp =2?

No

num = num / 10

Yes
d0 = d0 + 1

Yes
d1 = d1 + 1

Yes
d2 = d2 + 1

Is
temp =3?

No

Yes
d3 = d3 + 1

Is
temp =4?

No

Yes
d4 = d4 + 1

R

Display d0, d1, d2, d3, d4, d5, d6, d7, d8, d9

Stop

d5 =
d5 + 1

YesIs
temp =5?

No

Is
temp =6?

No

Is
temp =7?

No

Is
temp =8?

No

Is
temp =9?

No

Yes

d9 =
d9 + 1

Yes

d8 =
d8 + 1

Yes

d7 =
d7 + 1

Yes

d6 =
d6 + 1

254 Introduction to Computing & Problem Solving using Python

Output

Enter the number:28544401

The no of 0s in 28544401 are 1

The no of 1s in 28544401 are 1

The no of 2s in 28544401 are 1

The no of 3s in 28544401 are 0

The no of 4s in 28544401 are 3

The no of 5s in 28544401 are 1

The no of 6s in 28544401 are 0

The no of 7s in 28544401 are 0

The no of 8s in 28544401 are 1

The no of 9s in 28544401 are 0

Practice Problem 10 Write a program to find the number of vowels and consonants in a text string.

Algorithm

Step 1 - Start

Step 2 – Read a text string (str)

Step 3 – Set vow = 0, cons = 0, i = 0

Step 4 – Repeat steps 5-8 while (str[i]!=’\0’)

Step 5 – if str[i] = ‘a’ OR str[i] = ‘A’ OR str[i] = ‘e’ OR str[i] = ‘E’ OR

str[i] = ‘i’ OR str[i] = ‘I’ OR str[i] = ‘o’ OR str[i] = ‘O’ OR str[i] = ‘u’

OR str[i] = ‘U’ goto Step 6 else goto Step 7

Step 6 – Increment the vowels counter by 1 (vow=vow+1)

Step 7 – Increment the consonants counter by 1 (cons=cons+1)

Step 8 – i = i + 1

Step 9 – Display the number of vowels and consonants (vow, cons)

Step 10 – Stop

Practice Exercises with Algorithm and Flow Chart 255

Flow Chart

Start

Read text string str

vow = 0
cons = 0

i = 0

Is str[i]
= 0 ?‘\ ’

i = i + 1

Yes

No

Display vow
Display cons

Stop

Is str[i] = a‘ ’ OR str[i] =

‘A’ OR str[i] = ‘e’ OR

str[i] = ‘E’ OR str[i] = ‘i’

OR str[i] = ‘I’ OR str[i] =

‘o’ OR str[i] = ‘O’ OR

str[i] = ‘u’ OR str[i] = ‘U’?

No

Yes

vow = vow + 1 cons = cons + 1

Output

Enter a string: Chennai

Number of Vowels = 3

Number of Consonants = 4

256 Introduction to Computing & Problem Solving using Python

Practice Problem 11 Write a program that uses a simple structure for storing different students’ details.

Algorithm

Step 1 - Start

Step 2 – Define a simple structure to store student details

 STRUCTURE student

 STRING name

 INTEGER rollno

 INTEGER t_marks

 END STRUCTURE

 STRUCTURE student std[]

Step 3 – Read the number of students for which details are to be entered (num)

Step 4 – Initialise looping counter i = 0

Step 5 – Repeat Steps 6=8 while i < num

Step 6 – Read student’s name, roll no and total marks (std[i].name,

std[i].rollno, std[i].t_marks)

Step 7 – i = i + 1

Step 8 – Display the different students’ details stored in structure array

std[]

Step 9 - Stop

Flow Chart

Start

Read num

i = 0

No

Display
std[]

Stop

Is i <
num?

Yes

Read std[i].name

std[i].rollno

std[i].t_marks
i = i + 1

Practice Exercises with Algorithm and Flow Chart 257

Output

Enter the number of students: 3

Enter the details for 1 student

 Name Arjun

 Roll No. 1

 Total Marks 399

Enter the details for 2 student

 Name Binoy

 Roll No. 2

 Total Marks 432

Enter the details for 3 student

 Name Chitra

 Roll No. 3

 Total Marks 402

 Press any key to display the student details!

student 1

 Name Arjun

 Roll No. 1

 Total Marks 399

student 2

 Name Binoy

 Roll No. 2

 Total Marks 432

student 3

 Name Chitra

 Roll No. 3

 Total Marks 402

Practice Problem 12 Write a program to find the sum of the following series:

1 + x + x2 + x3 + …… + xn

258 Introduction to Computing & Problem Solving using Python

Algorithm

Step 1 - Start

Step 2 – Read the values of x and n

Step 3 – If n <= 0 OR x <=0 goto Step 4 else goto Step 5

Step 4 – Display error “Invalid values” and terminate the program

Step 5 – Set sum = 1

Step 6 – Initialise the looping counter i = 1

Step 7 – Repeat Steps 8-9 while i<=n

Step 8 – sum = sum + POWER(x,i)

Step 9 – i = i + 1

Step 10 – Display sum as the resultant sum of the series

Step 11 – Stop

Flow Chart

Read x, n

Start

Yes
Is x <=0

OR

n<=0?

No

sum = 1
i = 1

Is i<=n?

Yes

sum = sum + POWER(x,y)
i = i + 1

Display sum of

series (sum)
No

Stop

Display

“Invalid Values”

Practice Exercises with Algorithm and Flow Chart 259

Output

Enter the values of x and n:2

5

Sum of series=63

Practice Problem 13 Write a program to find the sum of the following series:

1 + 2 + 3 + …+ n

Algorithm

Step 1 - Start

Step 2 – Read n

Step 3 – Set sum = 0

Step 4 – Initialise the looping counter i = 1

Step 5 – Repeat Steps 6-8 while i<=n

Step 6 – sum = sum + i

Step 7 – i = i + 1

Step 8 – Display sum as the resultant sum of the series

Step 9 – Stop

Flow Chart

Read n

Start

sum = 0
i = 1

Is i <= n?
No Display sum

Stop

i = i + 1

sum = sum + i

Yes

260 Introduction to Computing & Problem Solving using Python

Output

Enter the value of n 6

The Sum of the series 1 + 2 + + n (for n = 6) is 21

Practice Problem 14 Write a program to print the value and address of variables.

Algorithm

Step 1 - Start

Step 2 – Read the values of x and y

Step 3 – Determine the addresses of x and y using ampersand (&) operator (&x, &y)

Step 4 – Print the address and value of x (&x, *&x)

Step 5 – Print the address and value of y (&y, *&y)

Step 6 – Stop

Flow Chart

Read x, y

Start

Determine the address of x and y
(&x, &y)

Display &x, *&x
Display &y, *&y

Stop

Practice Exercises with Algorithm and Flow Chart 261

Output

Enter the values of x and y 22

44

Address of x is 65524

Value of x is 22

Address of y is 65522

Value of y is 44

Practice Problem 15 Write a program to copy the contents of one file into another.

Algorithm

Step 1 - Start

Step 2 – Read the command line arguments (argc, argv)

Step 3 – If argc !=3 goto Step 4 else goto Step 5

Step 4 – Display “Invalid number of arguments” and terminate the program

Step 5 – Open the source file specified by argv[1] in read mode and assign

its starting location to file pointer fs (fs = fopen(argv[1],”r”))

Step 6 – If fs=NULL goto Step 7 else goto Step 8

Step 7 – Display “Source file cannot be opened” and terminate the program

Step 8 – Open the target file specified by argv[2] in write mode and assign

its starting location to file pointer ft (ft = fopen(argv[2],”w”))

Step 9 – If ft=NULL goto Step 10 else goto Step 11

Step 10 – Display “Target file cannot be opened” and terminate the program

Step 11 – Repeat Steps 12-14 indefinitely

Step 12 – Read the first character of the source file (ch)

Step 13 – If ch = EOF goto Step 15 else goto Step 14

Step 14 – Copy character ch into the target file

Step 15 – Close the file pointers fs and ft

Step 16 – Display “Files copied successfully”

Step 17 - Stop

262 Introduction to Computing & Problem Solving using Python

Flow Chart

Read arc, argv

Start

Is argc
!=3?

No

fs = fopen(argv[1], "r")

Is fs
=NULL?

Yes Display Invalid

number of arguments

“

”

StopYes Display Source file

cannot be opened

“

”

No

ft = fopen(argv[2], "w")

Is ft
=NULL?

Yes Display Target file

cannot be opened

“

”

No

ch=fgetc(fs)

Is ch
=EOF?

Yes

No

fputc(ch,ft)

fclose(fs)
fclose(ft)

Display File
copy operation
performed
successfully

“

”

Practice Exercises with Algorithm and Flow Chart 263

Output

D:\TC\BIN>15.exe s1.txt t1.txt

File copy operation performed successfully

Practice Problem 16 Write a program to count the number of characters in a file.

Algorithm

Step 1 - Start

Step 2 – Read the command line arguments (argc, argv)

Step 3 – Initialise count = 0

Step 4 – If argc !=2 goto Step 5 else goto Step 6

Step 5 – Display “Invalid number of arguments” and terminate the program

Step 6 - Open the source file specified by argv[1] in read mode and assign

its starting location to file pointer fs (fs = fopen(argv[1],”r”))

Step 7 – If fs=NULL goto Step 8 else goto Step 9

Step 8 – Display “Source file cannot be opened” and terminate the program

Step 9 – Repeat Steps 10-12 indefinitely

Step 10 – Read the first character of the source file (ch)

Step 11 – If ch = EOF goto Step 13 else goto Step 12

Step 12 – count = count + 1

Step 13 – Close the file pointer fs

Step 14 – Display count as the number characters contained in the source file

Step 15 - Stop

264 Introduction to Computing & Problem Solving using Python

Flow Chart

Read arc, argv

Start

count = 0

Is argc
!=2?

Yes

No

fs = fopen(argv[1], "r")

Is fs
=NULL?

Display Invalid
number of arguments

“
”

Yes Display Source file
cannot be opened

“
”

ch=fgetc(fs)

No

Is ch
=EOF?

No

count = count + 1

Stop

Yes fclose(fs) Display count

Output

D:\TC\BIN>16.exe s1.txt

The number of characters in s1.txt is 15

Practice Exercises with Algorithm and Flow Chart 265

Practice Problem 17 Write a program to find the transpose of a matrix.

Algorithm

Step 1 - Start

Step 2 – Read a 3 X 3 matrix (a[3][3])

Step 3 – Initialise the looping counter i = 0

Step 4 – Repeat Steps 5-9 while i<3

Step 5 – Initialize the looping counter j = 0

Step 6 - Repeat Steps 7-8 while j<3

Step 7 – b[i][j]=a[j][i]

Step 8 – j = j + 1

Step 9 – i = i + 1

Step 10 – Display b[][] as the transpose of the matrix a[][]

Step 11 – Stop

Flow Chart

Read a[3][3]

Start

i = 0

No

Yes

j = 0

Is j < 3?

Is j < 3?
Display b[][] as the
transpose of a[][]

b[i][j] = a[j][i]

Yes

Stop

i = i + 1

No

j = j + 1

266 Introduction to Computing & Problem Solving using Python

Output

Enter a 3 X 3 matrix:

a[0][0] = 1

a[0][1] = 2

a[0][2] = 3

a[1][0] = 4

a[1][1] = 5

a[1][2] = 6

a[2][0] = 7

a[2][1] = 8

a[2][2] = 9

The entered matrix is:

1 2 3

4 5 6

7 8 9

The transpose of the matrix is:

1 4 7

2 5 8

3 6 9

Practice Problem 18 Write a program to add two matrices.

Algorithm

Step 1 - Start

Step 2 – Read two 3 X 3 matrices (a[3][3], b[3][3])

Step 3 – Initialize the looping counter i = 0

Step 4 – Repeat Steps 5-9 while i<3

Step 5 – Initialise the looping counter j = 0

Step 6 - Repeat Steps 7-8 while j<3

Step 7 – c[i][j] = a[i][j] + b[i][j]

Step 8 – j = j + 1

Step 9 – i = i + 1

Step 10 - Display c[][] as the resultant sum of the two matrices

Step 11 - Stop

Practice Exercises with Algorithm and Flow Chart 267

Flow Chart

Read a[3][3] & b[3][3]

Start

i = 0

Is i < 3?
No

Yes

j = 0

Is j < 3?

Display c[][] as the
sum of a[][] & b[][]

c[i][j] = a[i][j] + b[i][j]

Yes

Stop

i = i + 1

No

j = j + 1

Output

Enter the first 3 X 3 matrix:

a[0][0] = 1

a[0][1] = 1

a[0][2] = 1

a[1][0] = 1

a[1][1] = 1

a[1][2] = 1

a[2][0] = 1

a[2][1] = 1

a[2][2] = 1

268 Introduction to Computing & Problem Solving using Python

Enter the second 3 X 3 matrix:

b[0][0] = 2

b[0][1] = 2

b[0][2] = 2

b[1][0] = 2

b[1][1] = 2

b[1][2] = 2

b[2][0] = 2

b[2][1] = 2

b[2][2] = 2

The entered matrices are:

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

The sum of the two matrices is shown below:

 3 3 3

 3 3 3

 3 3 3

Practice Problem 19 Write a program to multiply two matrices.

Algorithm

Step 1 - Start

Step 2 – Read two 3 X 3 matrices (a[3][3], b[3][3])

Step 3 – Initialise the looping counter i = 0

Step 4 – Repeat Steps 5-13 while i<3

Step 5 – Initialise the looping counter j = 0

Step 6 - Repeat Steps 7-12 while j<3

Step 7 – c[i][j]=0

Step 8 - Initialise the looping counter k = 0

Step 9 - Repeat Steps 10-11 while k<3

Step 10 - c[i][j]=c[i][j]+a[i][k]*b[k][j]

Step 11 – k = k + 1

Step 12 – j = j + 1

Step 13 – i = i + 1

Step 14 - Display c[][] as the resultant product of the two matrices

Step 15 - Stop

Practice Exercises with Algorithm and Flow Chart 269

Flow Chart

Read a[3][3] & b[3][3]

Start

i = 0

Is i < 3?
No

Yes

j = 0

Is j < 3?

Display c[][] as the
product of a[][] & b[][]

c[i][j] = 0
k = 0

Yes

Stop

j = j + 1

No

k = k + 1

Is k < 3?

c[i][j] = c[i][j] + a[i][k]*b[k][j]

Yes

No

i = i + 1

Output

Enter the first 3 X 3 matrix:

a[0][0] = 1

a[0][1] = 2

a[0][2] = 3

a[1][0] = 4

a[1][1] = 5

a[1][2] = 6

a[2][0] = 7

a[2][1] = 8

a[2][2] = 9

270 Introduction to Computing & Problem Solving using Python

Enter the second 3 X 3 matrix:

b[0][0] = 1

b[0][1] = 1

b[0][2] = 1

b[1][0] = 2

b[1][1] = 2

b[1][2] = 2

b[2][0] = 3

b[2][1] = 3

b[2][2] = 3

The entered matrices are:

1 2 3 1 1 1

4 5 6 2 2 2

7 8 9 3 3 3

The product of the two matrices is shown below:

 14 14 14

 32 32 32

 50 50 50

Practice Problem 20 Write a program that uses insertion sort technique to sort an array of ten elements.

Algorithm

Step 1 - Start

Step 2 – Accept a ten element array which needs to be sorted (num[])

Step 3 – Call function i_sort(num)

Step 4 – Display the sorted array num[]

Step 5 – Stop

i_sort(num[])

Step 1 – Start

Step 2 – Initialise the looping counter j = 1

Step 3 – Repeat Steps 4–10 while j<10

Step 4 – Set temp = num[j]

Step 5 – Initialise the looping counter i = j-1

Step 6 – Repeat Steps 7–8 while i>=0 AND temp<num[i]

Step 7 – num[i+1]=num[i]

Step 8 – i = i - 1

Step 9 – num[i+1]=temp

Step 10 – j = j + 1

Step 11 - Stop

Practice Exercises with Algorithm and Flow Chart 271

Flow Chart

Read num[10]

Start

Call i_sort(num)

Display the sorted array num[]

Stop

i_sort(num)

j = 1

Is
j<10?

No
Stop

Yes

temp=num[j], i = j–1

Is i>=0

AND

temp<num[i]

No
num[i+1]=temp

j = j + 1

Yes

num[i+1]=num[i]

i = i – 1

Output

Enter the ten elements to sort:

22

33

1

2

65

272 Introduction to Computing & Problem Solving using Python

18

7

54

78

5

The sorted elements are:

1

2

5

7

18

22

33

54

65

78

Practice Problem 21 Write a program that uses bubble sort technique to sort an array of ten elements.

Algorithm

Step 1 - Start

Step 2 – Accept a ten element array which needs to be sorted (num[])

Step 3 – Call function bubblesort(num)

Step 4 – Display the sorted array num[]

Step 5 – Stop

bubblesort(num[])

Step 1 – Start

Step 2 – Initialise the looping counter i = 0

Step 3 – Repeat Steps 4–9 while i<9

Step 4 – Initialise the looping counter j = i

Step 5 – Repeat Steps 6–8 while j<10

Step 6 – If num[i] > num[j] goto Step 7 else goto Step 8

Step 7 – Swap the values of num[i] and num[j]

Step 8 – j = j + 1

Step 9 – i = i + 1

Step 10 - Stop

Practice Exercises with Algorithm and Flow Chart 273

Flow Chart

Read num[10]

Start

Call bubblesort(num)

Display the sorted array num[]

Stop

bubblesort(num)

i = 0

Is i<9?
No

Stop

Yes

j = i

Is j<10
No

i = i + 1

j = j + 1

Yes

Is
num[i]>num[j]

No

Yes

temp = num[i]
num[i] = num[j]
num[j] = temp

274 Introduction to Computing & Problem Solving using Python

Output

Enter the 10 elements to be sorted:

Enter element 1: 1

Enter element 2: 99

Enter element 3: 3

Enter element 4: 85

Enter element 5: 19

Enter element 6: 74

Enter element 7: 5

Enter element 8: 59

Enter element 9: 18

Enter element 10: 33

The array elements before sorting are:

[1], [99], [3], [85], [19], [74], [5], [59], [18], [33],

The array elements after sorting are:

[1], [3], [5], [18], [19], [33], [59], [74], [85], [99],

Practice Problem 22 Write a program to implement stack using arrays.

Algorithm

Step 1 - Start

Step 2 – Reserve a 100 element array in the memory stack[100] and set its

top pointer to -1 (top = -1)

Step 3 – Repeat Steps 4-15 indefinitely

Step 4 – Display a list of stack operations for the user to choose from

 1. Push an element into the stack

 2. Pop out an element from the stack

 3. Display the stack elements

 4. Exit

Practice Exercises with Algorithm and Flow Chart 275

Step 5 – Read the choice entered by the user (choice)

Step 6 – If choice = 1 goto Step 7 else goto Step 9

Step 7 – Read the element to be pushed (num1)

Step 8 - Call the push function, push(num1) and goto Step 3

Step 9 – If choice = 2 goto Step 10 else goto Step 12

Step 10 – Call the pop function, pop()

Step 11 - Display the popped element and goto Step 3

Step 12 - If choice = 3 goto Step 13 else goto Step 14

Step 13 - Call the display function, display() and goto Step 3

Step 14 - If choice = 4 goto Step 16 else goto Step 15

Step 15 – Display message “Invalid Choice” and goto Step 3

Step 16 – Stop

push(element)

Step 1 – Start

Step 2 – If top = 99 goto Step 3 else goto Step 4

Step 3 – Display message ”Stack Full” and exit

Step 4 – top = top + 1

Step 5 – Stack[top] = element

Step 6 – Stop

pop()

Step 1 – Start

Step 2 – If top = -1 goto Step 3 else goto Step 4

Step 3 – Display message ”Stack Empty” and exit

Step 4 – Return stack[top] and set top = top - 1

Step 5 – Stop

display()

Step 1 – Start

Step 2 – Set i = 0

Step 3 – Repeat steps 4-5 while i<=top

Step 4 – Display stack[i]

Step 5 – i = i + 1

Step 6 – Stop

276 Introduction to Computing & Problem Solving using Python

Flow Chart

Start

Display the list of operations
1. Push an element into the stack
2. Pop out an element from stack
3. Display the stack elements
4. Exit

Read choice

Is
choice
=1?

Is
choice
=2?

Read num 1
Yes

push(num1)

num2 = pop()
Yes

Display num2

Is
choice
=3?

display()
Yes

Is
choice
=4?

Yes

No

No

No

No

Display Invalid Choice“ ”

Stop

top = –1

Practice Exercises with Algorithm and Flow Chart 277

push (element)

Is top=

99?
Yes Display

Stack is Full“ ”

No

top = top + 1
stack[top] = element

Stop

pop ()

Is top=

–1?
Yes Display

Stack is Empty“ ”

No

Return
stack[top] and set

top = top –1

Stop

display ()

i = 0

Is i<=
top?

Yes

No

Stop

i = i + 1

Display
stack[i]

Output

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 1

278 Introduction to Computing & Problem Solving using Python

 Enter the element to be pushed into the stack: 42

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 1

 Enter the element to be pushed into the stack: 2

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 3

 The various stack elements are:

 42 2

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 2

 2 element popped out of the stack

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 4

Practice Exercises with Algorithm and Flow Chart 279

Practice Problem 23 Write a program to implement stack using pointers.

Algorithm

Step 1 - Start

Step 2 - Define a structure to represent a stack

 STRUCTURE stack

 INTEGER element

 STRUCTURE stack *stptr

 END STRUCTURE

 STRUCTURE stack *top

Step 3 – Repeat Steps 4-X indefinitely

Step 4 – Display a list of stack operations for the user to choose from

 1. Push an element into the stack

 2. Pop out an element from the stack

 3. Display the stack elements

 4. Exit

Step 5 – Read the choice entered by the user (choice)

Step 6 – If choice = 1 goto Step 7 else goto Step 9

Step 7 – Read the element to be pushed (num1)

Step 8 - Call the push function, push(num1) and goto Step 3

Step 9 – If choice = 2 goto Step 10 else goto Step 12

Step 10 – Call the pop function, pop()

Step 11 - Display the popped element and goto Step 3

Step 12 - If choice = 3 goto Step 13 else goto Step 14

Step 13 - Call the display function, display() and goto Step 3

Step 14 - If choice = 4 goto Step 16 else goto Step 15

Step 15 – Display message “Invalid Choice” and goto Step 3

Step 16 – Stop

push(value)

Step 1 – Start

Step 2 – Reserve a block of memory of size stack and assign its address to

pointer ptr, (ptr=(struct stack*)malloc(sizeof(struct stack)))

Step 3 – Set ptr->element = value

Step 4 – Set ptr->stptr=top

Step 5 – top = ptr

Step 6 – Return

pop()

Step 1 – Start

Step 2 – If top = NULL goto Step 3 else goto Step 4

Step 3 – Display message ”Stack Empty” and exit

Step 4 – Set temp=top->element

Step 5 – Set top=top->stptr

Step 6 - return (temp)

display()

Step 1 – Start

280 Introduction to Computing & Problem Solving using Python

Step 2 – Create a pointer (ptr1) of type stack and assign it the value

contained in top, (struct stack *ptr1=top)

Step 3 – Repeat steps 4-5 while ptr1!=NULL

Step 4 – Display ptr1->element

Step 5 – ptr1=ptr1->stptr

Step 6 – Stop

Flow Chart

Start

Display the list of operations
1. Push an element into the stack
2. Pop out an element from stack
3. Display the stack elements
4. Exit

Read choice

Is
choice
=1?

Is
choice
=2?

Read num 1
Yes

push(num1)

num2 = pop()
Yes

Display num2

Is
choice
=3?

display()
Yes

Is
choice
=4?

Yes

No

No

No

No

Display Invalid Choice“ ”

Stop

Practice Exercises with Algorithm and Flow Chart 281

push (value)

ptr->element = value
ptr->stptr=top

top = ptr

pop ()

Is top=

NULL

?

Yes Display
Stack is Empty“ ”

No

temp=top->element
top=top->stptr

Stop

display ()

ptr1 = new (stack)
ptr1 = top

Is
ptr1!=
NULL?

Yes

No

Stop

ptr1=ptr1->stptr

Display
ptr1->element

ptr = new (stack)

Return

Return
(temp)

Output

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 1

 Enter the element to be pushed into the stack: 66

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

282 Introduction to Computing & Problem Solving using Python

[3] Display the stack elements

[4] Exit

 Your choice: 1

 Enter the element to be pushed into the stack: 33

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 3

The various stack elements are:

33 66

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 2

 33 element popped out of the stack

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 4

Practice Problem 24 Write a program that uses linear search technique to search an element in an array.

Algorithm

Step 1 - Start

Step 2 – Read a 10 element array (array[])

Step 3 – Read the element that needs to be searched (element)

Step 4 – Set flag = 0

Step 5 – Initialise the looping counter j = 0

Step 6 – Repeat Steps 7-9 while j<10

Step 7 – If array[j] = element goto Step 8 else goto Step 9

Practice Exercises with Algorithm and Flow Chart 283

Step 8 – Display j as the location where element has been found, set flag =

1 and goto Step 10

Step 9 – Set j = j + 1

Step 10 – If flag = 0 goto Step 11 else goto Step 12

Step 11 – Display message “element not found in the array”

Step 12 - Stop

Flow Chart

Start

Read array[10]

Read element

flag = 0
j = 0

No

Yes
j = j + 1

No

Is j <10?

Is array[j]
=element?

Yes
Display j as the

location of element in
array

flag = 1

Is flag=0?

Yes

Display
Element Not Found“ ”

Stop

No

284 Introduction to Computing & Problem Solving using Python

Output

Enter the 10 elements of the list:

1

2

3

9

8

7

4

5

6

22

Enter the element that you want to search: 8

The element 8 is present at 5 position in the list

Practice Problem 25 Write a program that uses binary search technique to search an element in an array.

Algorithm

Step 1 - Start

Step 2 – Read a 10 element array (array[])

Step 3 – Read the element that needs to be searched (element)

Step 4 – Set flag = 0

Step 5 – Set i = o, j = 10

Step 6 – Repeat Steps 7-12 while i<=j

Step 7 – k = (i+j)/2

Step 8 – If array[k] = element goto Step 9 else goto Step 10

Step 9 – Display k+1 as the location where element has been found, set flag

= 1 and goto Step 13

Step 10 – If array[k] < element goto Step 11 else goto Step 12

Step 11 – i = k + 1

Step 12 – j = k-1

Step 13 – If flag = 0 goto Step 14 else goto Step 15

Step 14 – Display message “Element not found”

Step 15 = Stop

Practice Exercises with Algorithm and Flow Chart 285

Flow Chart

Start

Read array[10]

Read element

flag = 0
i = 0, j = 10

No

Yes

j = k – 1

Is i <=j?

Is array[k]
=element?

Yes Display k as the
location of element in

array

flag = 1

Is flag=0?

Yes

Display
Element Not Found“ ”

Stop

No

k = (i+j)/2

No

Is array[k]
=element?

Yes

No

i = k + 1

286 Introduction to Computing & Problem Solving using Python

Output

Enter the 10 elements of the list in ascending order:

1

3

5

6

13

19

27

33

99

102

Enter the element that you want to search: 27

The element 27 is present at 7 position in the list

Practice Problem 26 Write a program to solve the following series:

1 + 1/2 + 1/3 + 1/4 + … + 1/n

Algorithm

Step 1 - Start

Step 2 – Read n

Step 3 – Set sum = 1.0

Step 4 – Set i = 2.0

Step 5 – Repeat Steps 6-7 while i<=n

Step 6 – sum = sum + 1.0/i

Step 7 – i = i + 1

Step 8 – Display sum as the resultant sum of the series

Step 9 – Stop

Practice Exercises with Algorithm and Flow Chart 287

Flow Chart

Start

Read n

sum = 1.0
i = 2.0

No

Yes

Is i <=n?

sum = sum + 1.0/i

Display sum

Stop

i = i + 1

Output

Enter the value of n: 11

The sum of the series 1 + 1/2 + 1/3 +....+1/n = 3.01987734

Practice Problem 27 Write a program to draw a circle.

Algorithm

Step 1 - Start

Step 2 – Set gd = DETECT

Step 3 – Call in-build function, initgraph(&gd, &gm, “..\\bgi”)

Step 4 – Call in-built function, circle(320, 225, 50)

Step 5 – closegraph()

Step 6 – Stop

288 Introduction to Computing & Problem Solving using Python

Flow Chart

Start

gd = DETECT

initgraph(&gd, &gm, ..\\bgi)“ ”

circle(320, 225, 50)

close graph()

Stop

Output

Practice Exercises with Algorithm and Flow Chart 289

Practice Problem 28 Write a program to draw a rectangle.

Algorithm

Step 1 - Start

Step 2 – Set gd = DETECT

Step 3 – Call in-build function, initgraph(&gd, &gm, “..\\bgi”)

Step 4 – Call in-built function, rectangle(320, 225, 50,100)

Step 5 – closegraph()

Step 6 – Stop

Flow Chart

Start

gd = DETECT

initgraph(&gd, &gm, ..\\bgi)“ ”

rectangle(320, 225, 50, 100)

close graph()

Stop

290 Introduction to Computing & Problem Solving using Python

Output

Practice Problem 29 Write a program to draw a 3D-bar.

Algorithm

Step 1 - Start

Step 2 – Set gd = DETECT

Step 3 – Call in-build function, initgraph(&gd, &gm, “..\\bgi”)

Step 4 – Call in-built function, bar3d(150, 50, 250,150, 10, 1)

Step 5 – closegraph()

Step 6 – Stop

Flow Chart

Start

gd = DETECT

initgraph(&gd, &gm, ..\\bgi)“ ”

bar3d(150, 50, 250, 150, 10, 1)

closegraph()

Stop

Practice Exercises with Algorithm and Flow Chart 291

Output

Practice Problem 30 Write a program to draw a shape and fill it with color.

Algorithm

Step 1 - Start

Step 2 – Set gd = DETECT

Step 3 – Call in-build function, initgraph(&gd, &gm, “..\\bgi”)

Step 4 - Call in-build function, setfillstyle(SOLID_FILL,RED)

Step 4 – Call in-built function, bar3d(150, 50, 250,150, 10, 1)

Step 5 – closegraph()

Step 6 – Stop

Flow Chart

Start

gd = DETECT

initgraph(&gd, &gm, ..\\bgi)“ ”

bar3d(150, 50, 250, 150, 10, 1)

closegraph()

Stop

setfillstyle(SOLID_FILL,RED)

292 Introduction to Computing & Problem Solving using Python

Output

PROBLEM SOLVING

EXERCISES—WITH ALGO-

RITHM AND PSEUDOCODE

B

SOLUTIONS AVAILABLE ON OLC

Practice Problem 1 Write a program to display the Fibonacci series.

Algorithm

Step 1 - Start

Step 2 – Accept the length of the Fibonacci series from the user (len)

Step 3 – Initialise variables num1 = 0, num2 = 1

Step 4 – Display the values of num1 and num2

Step 5 – Initialise looping counter i = 1

Step 6 – Repeat Steps 7-11 while i <= len-2

Step 7 – Set fab = num1 + num2

Step 8 – Display the value of fab

Step 9 – Set num1 = num2

Step 10 – Set num2 = fab

Step 11 – Increment the value of i by 1

Step 12 - Stop

Appendix

294 Introduction to Computing & Problem Solving using Python

Flow Chart

Start

Read len

num1 = 0
num2 = 1
i = 1

Display num1, num2

No
Is i <= len-2?

Yes

fab = num1 + num2

Display fab

num1 = num2
num2 = fab
i = i + 1

Stop

Pseudocode

BEGIN

DEFINE: Integer num1, num2, len, i, fab

SET: num1=0, num2=1

DISPLAY: “Enter Length of the Fibonacci Series: “

READ: len

DISPLAY: num1, num2

FOR: i = 1 to len-2

 COMPUTE: fab = num1 + num2

 DISPLAY: fab

Problem Solving Exercises—With Algorithm and Pseudocode 295

 SET: num1 = num2

 SET: num2 = fab

END FOR

END

Practice Problem 2 Write a program to find out whether the given number is even or odd.

Algorithm

Step 1 - Start

Step 2 – Accept a number from the user (num)

Step 3 – If remainder of num divided by 2 (num/2) is Zero then goto Step 4

else goto Step 5

Step 4 – Display “num is an even number” and goto Step 6

Step 5 – Display “num is an odd number”

Step 6 - Stop

Flow Chart

Start

Read num

Is
(num%2)=0?

Display “Even Number”

Stop

Display “Odd Number”

Yes

No

296 Introduction to Computing & Problem Solving using Python

Pseudocode

BEGIN

DEFINE: Integer num

DISPLAY: “Enter a number: “

READ: num

IF: num%2=0

 DISPLAY: “’num’ is an even number”

ELSE

 DISPLAY: “’num’ is an odd number”

END IF

END

Practice Problem 3 Write a program to find out whether the given number is a prime number.

Algorithm

Step 1 - Start

Step 2 – Accept a number from the user (num)

Step 3 – Initialise looping counter i = 2

Step 4 – Repeat Step 5 while i < num

Step 5 – If remainder of num divided by i (num%i) is Zero then goto Step 6

else goto Step 4

Step 6 - Display “num is not a prime number” and break from the loop

Step 7 – If i = num then goto Step 8 Else goto Step 9

Step 8 – Display “num is a prime number”

Step 9 - Stop

Problem Solving Exercises—With Algorithm and Pseudocode 297

Flow Chart

Start

Read num

i = 2

No Is i <=
num-1?

Yes

Is num%i=0?

Yes

Display “Not a Prime
Number”

Is i=num?
Yes Display “Prime

Number”

Stop

No

No
i = i + 1

Pseudocode

BEGIN

DEFINE: Integer num, i

DISPLAY: “Enter a number: “

READ: num

FOR: i = 2 to num-1

 IF: num%i=0

 DISPLAY: “’num’ is not a prime number”

 BREAK

 END IF

298 Introduction to Computing & Problem Solving using Python

END FOR

IF: i=num

 DISPLAY: “’num’ is a prime number”

END IF

END

Practice Problem 4 Write a program to display the result of one number raised to the power of another.

Algorithm

Step 1 - Start

Step 2 – Accept two numbers from the user (x,y)

Step 3 – Calculate x raise to the power of y, POWER(x,y)

Step 4 – Display the computed result

Step 5 - Stop

Flow Chart

Start

Read x, y

result = POW (x, y)

Display ‘x’ raised to
the power of ‘y’ is
equal to ‘result’

Stop

Problem Solving Exercises—With Algorithm and Pseudocode 299

Pseudocode

BEGIN

DEFINE: Integer x, y

DEFINE: Long Integer result

DISPLAY: “Enter the values of x and y: “

READ: x, y

COMPUTE: result = POW(x,y)

DISPLAY: “’x’ raised to the power of ‘y’ is equal to ‘result’”

END

Practice Problem 5 Write a program to display the square root of a number.

Algorithm

Step 1 - Start

Step 2 – Accept a number from the user (num)

Step 3 – Calculate square root of num, Sqrt(num)

Step 4 – Display the computed result

Step 5 - Stop

Flow Chart

Start

Read num

result = SQRT (num)

Display “The square
root of ‘num’ is

‘result’ ”

Stop

300 Introduction to Computing & Problem Solving using Python

Pseudocode

BEGIN

DEFINE: Integer num

DEFINE: Real result

DISPLAY: “Enter the value whose square root is to be computed: “

READ: num

COMPUTE: result = SQRT(num)

DISPLAY: “The square root of ‘num’ is ‘result’”

END

Practice Problem 6 Write a program to determine whether a given string is a palindrome or not.

Algorithm

Step 1 - Start

Step 2 – Accept a string from the user (str)

Step 3 – Calculate the length of string str (len)

Step 4 – Initialise looping counters left=0, right=len-1 and chk = ‘t’

Step 5 – Repeat Steps 6-8 while left < right and chk = ‘t’

Step 6 – If str(left) = str(right) goto Step 8 else goto step 7

Step 7 – Set chk = ‘f’

Step 8 – Set left = left + 1 and right = right + 1

Step 9 - If chk=’t’ goto Step 10 else goto Step 11

Step 10 – Display “The string is a palindrome” and goto Step 12

Step 11 – Display “The string is not a palindrome”

Step 12 - Stop

Problem Solving Exercises—With Algorithm and Pseudocode 301

Flow Chart

Start

Read str

len = strlen(str)
left = 0

right = len-1
chk = ‘t’

Is left < right
AND

chk = ‘t’?

Is str(left) =
str(right)?

No

chk = ‘f’

left = left + 1
right = right – 1

Is chk = ‘t’?
No

Display “Palindrome
String”

Display “Not a
Palindrome String”

Stop

Yes

Yes

No

Yes

Pseudocode

BEGIN

DEFINE: String str

DEFINE: Character chk

DEFINE: Integer left, right, len

SET: chk = ‘t’

DISPLAY: “Enter a string: “

READ: str

COMPUTE: len = strlen(str)

302 Introduction to Computing & Problem Solving using Python

SET: left = 0

SET: right = len-1

REPEAT

 IF: str(left)=str(right)

 CONTINUE

 ELSE

 SET: chk = ‘f’

 END IF

 COMPUTE: left = left + 1

 COMPUTE: right = right - 1

UNTIL: left<right AND chk=’t’

IF: chk=’t’

 DISPLAY: “’str’ is a palindrome string”

ELSE

 DISPLAY: “’str’ is not a palindrome string”

END IF

END

Practice Problem 7 Write a program to find the roots of the quadratic equation.

Algorithm

Step 1 - Start

Step 2 – Accept three numbers (a, b, c) from the user for the quadratic

equation ax
2
 + bx + c

Step 3 – Calculate root1=((-1)*b+sqrt(b*b-4*a*c))/2*a

Step 4 – Calculate root2=((-1)*b-sqrt(b*b-4*a*c))/2*a

Step 5 – Display the computed roots of the quadratic equation

Step 6 - Stop

Flow Chart

Start

Read a, b, c

root1=((–1)*b+sqrt(b*b-4*a*c))/2*a
root2=((–1)*b-sqrt(b*b-4*a*c))/2*a

Display root1, root2

Stop

Problem Solving Exercises—With Algorithm and Pseudocode 303

Pseudocode

BEGIN

DEFINE: Integer a, b, c

DEFINE: Real root1, root2

DISPLAY: “Enter the values of a, b and c for the quadratic equation ax
2
 + bx

+ c: “

READ: a, b, c

COMPUTE: root1=((-1)*b+sqrt(b*b-4*a*c))/2*a

COMPUTE: root2=((-1)*b-sqrt(b*b-4*a*c))/2*a

DISPLAY: “The roots of the quadratic equation are ‘root1’ and ‘root2’

END

Practice Problem 8 Write a program to find the area of a circle.

Algorithm

Step 1 - Start

Step 2 – Accept the radius of the circle from the user (radius)

Step 3 – Calculate area of the circle using formula area = 3.14 * radius *

radius

Step 4 – Display the computed area of the circle

Step 5 - Stop

Flow Chart

Start

Read radius

area = 3.14*radius*radius

Display area

Stop

304 Introduction to Computing & Problem Solving using Python

Pseudocode

BEGIN

DEFINE: Real radius, area

DISPLAY: “Enter the radius of the circle: “

READ: radius

COMPUTE: area = 3.14*radius*radius

DISPLAY: “The area of the circle is ‘area’”

END

Practice Problem 9 Write a program to find the average of marks obtained by a student in three subjects.

Algorithm

Step 1 - Start

Step 2 – Accept the marks in three subjects from the user (marks1, marks2,

marks3)

Step 3 – Calculate average marks using formula, average = (marks1 + marks2

+ marks3)/3

Step 4 – Display the computed average of three subject marks

Step 5 - Stop

Flow Chart

Start

Read marks1, marks2,
marks3

average = (marks1 + marks2
+ marks3)/3

Display average

Stop

Problem Solving Exercises—With Algorithm and Pseudocode 305

Pseudocode

BEGIN

DEFINE: Integer marks1, marks2, marks3

DEFINE: Real average

DISPLAY: “Enter the marks in three subjects: “

READ: marks1, marks2, marks3

COMPUTE: average = (marks1 + marks2 + marks3)/3

DISPLAY: “The average value of marks is ‘average’”

END

Practice Problem 10 Write a program to determine whether the given year is a leap year or not.

Algorithm

Step 1 - Start

Step 2 – Accept an year value from the user (year)

Step 3 – If remainder of year value divided by 4 (year%4) is 0 then goto Step

4 else goto Step 5

Step 4 – Display “’year’ is a leap year” and goto Step 6

Step 5 – Display “’year’ is not a leap year”

Step 6 - Stop

Flow Chart

Start

Read year

Is
(year%4) = 0?

No

Yes

Display “Leap Year” Display “Not a Leap Year”

Stop

Pseudocode

BEGIN

DEFINE: Integer year

DISPLAY: “Enter the year value: “

READ: year

306 Introduction to Computing & Problem Solving using Python

IF: year%4=0

 DISPLAY: “’year’ is a leap year”

ELSE

 DISPLAY: “’year’ is not a leap year”

END IF

END

Practice Problem 11 Write a program to find the sum of digits of an integer.

Algorithm

Step 1 - Start

Step 2 – Accept an integer value from the user (num)

Step 3 – Define a variable Sum to store the sum of digits and initialise it

to 0

Step 4 – Assign the value of num to a temporary variable (temp=num)

Step 5 – Repeat Steps 6-7 while temp is not equal to 0 (temp!=0)

Step 6 – Calculate Sum = Sum+(temp%10)

Step 7 – Calculate temp=temp/10

Step 8 – Display Sum as the result containing sum of digits of num

Step 9 - Stop

Flow Chart

Start

Read num

sum = 0
temp = num

Is temp ! = 0?
No

Yes

Display sum

sum = sum+temp%10
temp=temp/10 Stop

Pseudocode

BEGIN

DEFINE: Long Integer num, temp

Problem Solving Exercises—With Algorithm and Pseudocode 307

DEFINE: Integer sum

SET: sum=0

DISPLAY: “Enter an integer value: “

READ: num

SET: temp=num

REPEAT

 COMPUTE: sum = sum+temp%10

 COMPUTE: temp=temp/10

UNTIL: temp!=0

DISPLAY: “The sum of digits of ‘num’ is ‘sum’”

END

Practice Problem 12 Write a program to find the length of a string.

Algorithm

Step 1 - Start

Step 2 – Accept a string from the user, str

Step 3 – Calculate the length of the string, strlen(str)

Step 4 – Display the computed result

Step 5 - Stop

Flow Chart

Start

Read str

len = strlen(str)

Display len

Stop

Pseudocode

BEGIN

DEFINE: String str

DEFINE: Integer len

DISPLAY: “Enter a string: “

READ: str

308 Introduction to Computing & Problem Solving using Python

COMPUTE: len = strlen(str)

DISPLAY: “The length of string ‘str’ is ‘len’”

END

Practice Problem 13 Write a program to display the reverse of a string.

Algorithm

Step 1 - Start

Step 2 – Accept a string from the user (str)

Step 3 – Calculate the length of string str (len)

Step 4 – Initialise looping counter i=0

Step 5 – Repeat Step 6-7 while i < len

Step 6 – Set revstr[len-i-1]=str[i]

Step 7 – Set i = i+ 1

Step 8 – Set revstr[len]=’\0’

Step 9 – Display revstr as the reverse of the original string str

Step 10 - Stop

Flow Chart

Start

Read str

len = strlen(str)
i = 0

Is i <= len-1?
No

revstr[len]= ‘\0’

Yes

revstr[len-i-1]=str[i]
Display revstr

Stop

Pseudocode

BEGIN

DEFINE: String str, revstr

DEFINE: Integer i, len

DISPLAY: “Enter a string: “

Problem Solving Exercises—With Algorithm and Pseudocode 309

READ: str

COMPUTE: len = strlen(str)

FOR: i = 0 to len-1

 COMPUTE: revstr[len-i-1]=str[i]

END FOR

SET: revstr[len]=’\0’

DISPLAY: “The reverse of string ‘str’ is ‘revstr’”

END

Practice Problem 14 Write a program to determine whether there is a profit or a loss during the selling of

an item.

Algorithm

Step 1 - Start

Step 2 – Accept the cost price and selling price of an item from the user

(cp, sp)

Step 3 – If sp>cp then goto step 4 else goto step 5

Step 4 – Display “There is a profit of (sp-cp)” and goto Step 8

Step 5 – If cp>sp then goto step 6 else goto step 7

Step 6 - Display “There is a loss of (cp-sp)”

Step 7 - Display “No profit no loss!”

Step 8 - Stop

Flow Chart

Start

Read cp, sp

Is sp > cp?
No

Yes
Is cp > sp?

No

Display “No Profit
No Loss”

Display loss = cp-sp

Stop

Display profit = sp-cp

Yes

310 Introduction to Computing & Problem Solving using Python

Pseudocode

BEGIN

DEFINE: Long Integer cp, sp

DISPLAY: “Enter the cost price and selling price of an item: “

READ: cp, sp

IF: sp>cp

 DISPLAY: “There is a profit of ‘sp-cp’”

ELSE

 IF: cp>sp

 DISPLAY: “There is a loss of ‘cp-sp’”

 ELSE

 DISPLAY: “No profit no loss!”

 END IF

END IF

END

Practice Problem 15 Write a program to print the ASCII value of a given character.

Algorithm

Step 1 - Start

Step 2 – Accept a character from the user (ch)

Step 3 – Determine the ASCII value of ch

Step 4 – Display the computed ASCII value

Step 5 - Stop

Flow Chart

Start

Read ch

asc = ASCII(ch)

Display asc

Stop

Problem Solving Exercises—With Algorithm and Pseudocode 311

Pseudocode

BEGIN

DEFINE: Character ch

DEFINE: Integer asc

DISPLAY: “Enter a character: “

READ: ch

COMPUTE: asc = ASCII(ch)

DISPLAY: “The ASCII value of ‘ch’ is ‘asc’”

END

Practice Problem 16 Write a program to find out whether a given number is positive or negative.

Algorithm

Step 1 - Start

Step 2 – Accept a number from the user (num)

Step 3 – If num is greater than 0 (num>0) then goto Step 4 else goto Step 5

Step 4 – Display “num is a positive number” and goto Step 6

Step 5 – Display “num is a negative number”

Step 6 - Stop

Flow Chart

Start

Read num

Is num > 0?
No

Yes

Display “Positive Number” Display “Negative Number”

Stop

312 Introduction to Computing & Problem Solving using Python

Pseudocode

BEGIN

DEFINE: Integer num

DISPLAY: “Enter a number: “

READ: num

IF: num>0

 DISPLAY: “’num’ is a positive number”

ELSE

 DISPLAY: “’num’ is a negative number”

END IF

END

Practice Problem 17 Write a program to compare two strings.

Algorithm

Step 1 - Start

Step 2 – Accept two strings from the user (str1, str2)

Step 3 – Compare the two strings str1 and str2 using a string comparison

function. If str1 and str2 are same goto Step 4 else goto Step 5

Step 4 – Display “The two strings are equal” and goto Step 6

Step 5 – Display “The two strings are not equal”

Step 6 - Stop

Flow Chart

Start

Read str1, str2

Is strcmp (str1,
str2) = 0?

No

Yes

Display “Strings Match” Display “Strings do not Match”

Stop

Problem Solving Exercises—With Algorithm and Pseudocode 313

Pseudocode

BEGIN

DEFINE: String str1, str2

DISPLAY: “Enter the 1
st
 string: “

READ: str1

DISPLAY: “Enter the 2
nd
 string: “

READ: str2

IF: strcmp(str1, str2)=0

 DISPLAY: “The strings str1 and str2 are equal!”

ELSE

 DISPLAY: “The strings str1 and str2 are not equal!”

END IF

END

Practice Problem 18 Write a program to calculate speed.

Algorithm

Step 1 - Start

Step 2 – Accept the value of distance traveled in KMs (d)

Step 3 – Accept the value of travel time in hours (t)

Step 4 – Calculate speed using formula, speed = d/t

Step 5 – Display the computed value of speed

Step 6 - Stop

Flow Chart

Start

Read d, t, s

s = d/t

Display s

Stop

314 Introduction to Computing & Problem Solving using Python

Pseudocode

BEGIN

DEFINE: Real d, t, s

DISPLAY: “Enter the distance traveled in Kms: “

READ: d

DISPLAY: “Enter the travel time in hours: “

READ: t

COMPUTE: s = d/t

DISPLAY: “Speed = ‘s’ Km/h”

END

Practice Problem 19 Write a program to find the sine and cosine of a given value.

Algorithm

Step 1 - Start

Step 2 – Accept the degree value, the sine and cosine of which is to be

calculated (x):

Step 3 – Calculate Sin(x) = sin(x*3.14/180)

Step 4 – Calculate Cos(x) = cos(x*3.14/180)

Step 5 – Display the computed Sin(x) and Cos(x) values

Step 6 - Stop

Flow Chart

Start

Read x

sinx = sin(x*3.14/180)
cosx = cos(x*3.14/180)

Display sinx, cosx

Stop

Pseudocode

BEGIN

DEFINE: Real x, sinx, cosx

DISPLAY: “Enter the degree value, the sine and cosine of which is to be

calculated: “

READ: x

Problem Solving Exercises—With Algorithm and Pseudocode 315

Compute: sinx = sin(x*3.14/180)

Compute: cosx = cos(x*3.14/180)

DISPLAY: “Sin(‘x’)=’sinx’”

DISPLAY: “Cos(‘x’)=’cosx’”

END

Practice Problem 20 Write a program to determine whether a given number is Armstrong or not.

Algorithm

Step 1 - Start

Step 2 – Accept a number from the user (num)

Step 3 – Store the value of num in a temporary variable temp, temp=num

Step 4 – Define a variable sum and initialise it to 0

Step 5 – Repeat Steps 6-8 while temp > 0

Step 6 – Calculate i=temp%10;

Step 7 – Calculate sum=sum+i*i*i;

Step 8 – Calculate temp=temp/10;

Step 9 – if num is equal to sum then goto Step 10 else goto Step 11

Step 10 – Display ”num is an Armstrong number” and goto Step 12

Step 11 – Display ”num is not an Armstrong number”

Step 12 - Stop

Flow Chart

Start

Read num

sum = 0
temp = num

Is temp > 0?
No

Yes NoIs
sum = num?

Display “Not an
Armstrong Number”Yes

Display “Armstrong
Number”

Stop

i=temp%10
sum=sum+i*i*i
temp=temp/10

316 Introduction to Computing & Problem Solving using Python

Pseudocode

BEGIN

DEFINE: Integer num, temp, sum, i

SET: sum = 0

DISPLAY: “Enter a number: “

READ: num

SET: temp=num

REPEAT

 COMPUTE: i=temp%10

 COMPUTE: sum=sum+i*i*i

 COMPUTE: temp=temp/10

UNTIL: temp>0

IF: sum=num

 DISPLAY: “’num’ is an Armstrong number”

ELSE

 DISPLAY: “’num’ is not an Armstrong number”

END IF

END

FUNDAMENTAL

STANDARD LIBRARY

MODULES
C

There is a wide range of methods in Python’s standard library. In this section, some fundamental standard

library modules are discussed. Any Python program uses these modules either directly or indirectly.

1. BUILT-IN FUNCTIONS AND EXCEPTIONS

The __built-in__ module comprises built-in functions or methods, such as len, int, max and range.

The Exceptions module comprises all the built-in exceptions. Python automatically imports both the modules

at the time of start-up, and makes the content of all these modules available to all the programs.

2. OPERATING SYSTEM INTERFACE MODULES

The modules in this group are imported by os. It provides file manipulation and process operations. os.path

offers a platform-independent way to put file names and time together that allows functions or methods

working with date and time.

Some networking and thread support modules also belong to this group.

3. TYPE SUPPORT MODULES

There are many built-in types that support modules in the standard library. The string module allows

the use of string operations and manipulations. The math module is responsible for performing many math

operations and calculations and the cmath module allows the same for complex numbers.

4. REGULAR EXPRESSIONS

The regular expressions support for Python is provided by re module. Regular expressions are used to match

strings and slice the substrings. They are nothing but the patterns of strings that are written in special syntax.

Appendix

318 Introduction to Computing & Problem Solving using Python

re Module

re module is a built in module in Python programming language which provides support for regular

expressions. A regular expression consists of some special sequence of characters that helps us in finding

another strings or matching set of strings using some predefined syntax which are kept in a pattern.

When any error occurs while handling the regular expressions, python interpreter throws a re.error

exception.

There are two very important functions in re module which are listed below:

1. match() function

2. search() function

1. match() function

It matches the RE pattern to the string.

Syntax

re.match(pattern, string)

where,

pattern – pattern stands for the regular expression which is to be matched in the string.

string – it is the string in which the searching will be done to match the pattern at the starting of the string.

On successful match, match() function will return a match object, None otherwise.

2. search() function

It searches the first occurrence of the Regular Expression within the given string.

Syntax

re.search(pattern, string)

where,

pattern – pattern stands for the regular expression which is to be matched.

string – it is the string in which the searching will be done to match the pattern anywhere within the string.

On successful search, search() function will return a match object, None otherwise.

5. LANGUAGE SUPPORT MODULE

There are various modules in this group, such as sys that helps in accessing various interpreter variables like

module search path and interpreter version. Operator provides many built-in operators. For copying objects,

it provides copy and gc in garbage collection facilities.

Fundamental Standard Library Modules 319

sys Module

sys helps in accessing various interpreter variables, such as module search path and interpreter version.

argv List of command-line options passed to the program

maxint Largest integer supported by IntType

modules Dictionary for mapping module names to loaded modules

platform String describing current platform

ps1 String containing text for primary prompt, normally >>>

ps2 String for second prompt, normally ...

stdin File object for standard input

stdout File object for standard output

stderr File object for error output

exit(n) Exits function by raising SystemExit exception

random Module

This module helps in generating random numbers or select a random item from a series or sequence.

choice(s) Randomly select an element from s

randint(a,b) Return a random integer number greater than or equal to a and less than or equal to b

random() Return a random number between 0 and 1

randrange(a,b) Return a random value from a range

time Module

This module measures the number of seconds since ‘epoch’. The standard value of epoch in Unix and

Windows OS is January 1, 1970 and it is January 1, 1900 in Macintosh.

time() Return seconds since the epoch

gmtime(seconds) Converts time into a tuple representing year, month, day, hour, minute, second,

weekday, day and dst.

localtime(seconds) Same format as gmtime(), but for a local time zone

mktime(tuple) Takes a tuple in the format of gmtime()and returns a number representing seconds

in the time()format

asctime(tuple) Takes a tuple in the format of gmtime() and converts to string in ‘Mon June 10

10:12:12 2006’ form

clock() Returns the current CPU time in seconds as a floating point number

strftime(format,

tuple)
Produces a string representation of time as a tuple and produces it in gmtime()

format, which is as per the format described in the first argument.

strptime(string,

format)
Reads a string representing time in a described format and returns a tuple similar to

gmtime()

320 Introduction to Computing & Problem Solving using Python

The commands used in strptime() and strftime()for formatting are as follows:

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Appropriate date and time representation

%d Day of the month as a decimal number

%H Hour (24 hour clock) as a number

%I Hour (12 hour clock) as a number

%j Day of the year as a number

%m Month as a decimal number

%M Minute as a decimal number

%p AM or PM

%S Seconds as a decimal number

%U Week number (0–53) of a year

%w Weekday as a decimal number

%x Appropriate date representation

%X Locals appropriate time representation

%y Year without century as a decimal number (0–99)

%Y Year with century as a decimal number

%Z Time zone name

%% The % character

re Module

This is a module that is required for regular expressions. Regular expressions are used to match strings and

slice substrings. These are patterns of strings that are written in special syntax.

Common patterns that are used for forming regular expression are as follows:

Text Matches literals

& Start of the string

$ End of the string

(...)* Zero or more occurrences

(...)+ One or more occurrences

(...)? Optional (0 or 1)

[chars] One character from range

[^chars] One character not from range

Pat | pat Alternative (one or another)

(...) Group

. Any character except new line

Fundamental Standard Library Modules 321

os Module

This module provides file manipulation and process operations. Os.path offers a platform-independent

way to put together file names and time that allows functions or methods working with date and time.

environ A mapping object representing the current environment variables

name Name of the current operating system

mkdir(path) Make a directory

unlike(path) Delete a file

rename(src, dst) Rename a file

tempfile Module

This module is used to create temporary files at the time of execution of a program.

mktemp() Returns a temporary distinct file name

mktemp(suffix) Returns a distinct temporary file name with a given suffix

temporaryFile(mode) Creates a temporary file with the given node

	Title
	CONTENTS
	1 INTRODUCTION TO DIGITAL COMPUTER
	2 PROBLEM SOLVING STRATEGIES
	3 INTRODUCTION TO PYTHON
	4 FUNCTIONS
	5 STRINGS AND LISTS
	6 TUPLES AND DICTIONARIES
	7 FILES AND EXCEPTIONS
	8 CLASSES AND OBJECTS
	Appedix A
	Appendix B
	Appendix C

