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fluid machines. The book is an outcome of our teaching experience at the Indian

Institute of Technology, Kharagpur, and Indian Institute of Technology, Kanpur.

In the wake of modernisation of the industrial scenario in India, a need has

been felt to modernise the engineering curriculum of the country at the

undergraduate level. It has been observed that many of our graduates are being

drawn into a high level of computational and experimental work in fluid

mechanics without the benefit of a well-balanced basic course in fluids. In a basic

(core level) course, a host of topics are covered, and almost everyday a new

concept is introduced to the students. It is the instructor�s job to redistribute the

emphasis of any topic that he feels the students must focus with more priority. The

merit of a basic course lies in its well-balanced coverage of physical concepts,

mathematical operations and practical demonstrations within the scope of the
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a useful foundation of fluid mechanics to all engineering graduates of the country
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emphatic to make the material lucid and easy to understand.
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through demonstration. The problems assigned for practice and homework are

also aimed at enhancing the dormant creative capability to the students. We hope

that on completion of the course, the students will be able to apply the basic

principles in engineering design in an appropriate manner.

We are grateful to a number of academics for many useful discussions during

several stages of the preparation of this book. They are Prof. R Natarajan, Prof. P

A Aswatha Narayan and Prof. T Sundararajan of IIT Madras, Prof. A S Gupta,
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1.1 DEFINITION OF STRESS

dFn = normal force, dFt = tangential force

Let us consider a small area dA on the surface of a body (Fig. 1.1). The force

acting on this area is dF. This force can be resolved into two components, namely,

dFn along the normal to the area dA and dFt along the plane of dA. dFn and dFt

are called the normal and tengential forces respectively. When they are expressed

as force per unit area they are called as normal stress and tangential or shear

stress.

The normal stress s = lim
d Afi0

 (dFn /dA)

and shear stress t = lim
d Afi0

 (dFt/dA)

d A d F

d Ft

t

n

dFn

Fig. 1.1 Normal and tangential forces on a surface

Introduction and
Fundamental Concepts
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2 Introduction to Fluid Mechanics and Fluid Machines

1.2 DEFINITION OF FLUID

A fluid is a substance that deforms continuously when subjected to a tangential or

shear stress, however small the shear stress may be.

As such, this continuous deformation under the application of shear stress

constitutes a flow. For example (Fig. 1.2), if a shear stress t is applied at any

location in a fluid, the element 011¢ which is initially at rest, will move to 022¢,

then to 033¢ and to 044¢ and so on. In other words, the tangential stress in a fluid

body depends on velocity of deformation and vanishes as this velocity approaches

zero.

Fig. 1.2 Shear stress on a fluid body

1.3 DISTINCTION BETWEEN A SOLID AND A FLUID

The molecules of a solid are more closely packed as compared to that of a fluid.

Attractive forces between the molecules of a solid are much larger than those of a

fluid.

A solid body undergoes either a definite (say a) deformation (Fig. 1.3) or

breaks completely when shear stress is applied on it. The amount of deformation

(a) is proportional to the magnitude of applied stress up to some limiting

condition.

a a

t

Solid

Fig. 1.3 Deformation of a solid body

If this were an element of fluid, there

would have been no fixed a even for an

infinitesimally small shear stress.

Instead a continuous deformation

would have persisted as long as the

shear stress was applied. It can be

simply said, in other words, that while

solids can resist tangential stress under static conditions, fluids can do it only

under dynamic situation. Moreover, when the tangential stress disappears, solids

regain either fully or partly their original shape, whereas a fluid can never regain

its original shape.

1.3.1 Concept of Continuum

The concept of continuum is a kind of idealization of the continuous description

of matter where the properties of the matter are considered as continuous

functions of space variables. Although any matter is composed of several
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molecules, the concept of continuum assumes a continuous distribution of mass

within the matter or system with no empty space, instead of the actual

conglomeration of separate molecules.

The most fundamental form of description of motion of a fluid is the behaviour

of discrete molecules which constitute the fluid. But in liquids, molecular

description is not required in order to analyse the fluid motion because the strong

intermolecular cohesive forces make the entire liquid mass to behave as a con-

tinuous mass of substance. In gases, when the quantity of molecules in a given

volume is large, it is good enough to consider the average effect of all molecular

within the gas. It may be mentioned here that most gases have the molecules

density of 2.7 ¥ 1025 molecules per m3. In continuum approach, fluid properties

such as density, viscosity, thermal conductivity, temperature, etc. can be

expressed as continuous functions of space and time.

There are factors which are to be considered with great importance in

determining the validity of continuum model. One such factor is the distance

between molecules which is a function of molecular density. The distance

between the molecules is characterised by mean free path (l) which is a statistical

average distance the molecules travel between two successive collisions. If the

mean free path is very small as compared with some characteristic length in the

flow domain (i.e., the molecular density is very high) then the gas can be treated

as a continuous medium. If the mean free path is large in comparison to some

characteristic length, the gas cannot be considered continuous and it should be

analysed by the molecular theory. A dimensionless parameter known as Knudsen

number, Kn = l/L, where l is the mean free path and L is the characteristic length,

aptly describes the degree of departure from continuum. Usually when Kn > 0.01,

the concept of continuum does not hold good. Beyond this critical range of

Knudsen number, the flows are known as slip flow (0.01 < Kn < 0.1), transition

flow (0.1 < Kn < 10) and free-molecule flow (Kn > 10). However, for the flow

regimes described in this book, Kn is always less than 0.01 and it is usual to say

that the fluid is a continuum. Apart from this �distance between the molecules�

factor, the other factor which checks the validity of continuum is the elapsed time

between collisions. The time should be small enough so that the random statistical

description of molecular activity holds good.

1.4 FLUID PROPERTIES

Certain characteristics of a continuous fluid are independent of the motion of the

fluid. These characteristics are called basic properties of the fluid. We shall

discuss a few such basic properties here.

1.4.1 Density (r)

The density r of a fluid is its mass per unit volume. Density has the unit of kg/m3.

If a fluid element enclosing a point P has a volume DV  and mass Dm (Fig. 1.4),

then density (r) at point P is written as

r = lim
D

D

DV P

m
V

m
VÆ

=
0

d
d
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1.4.2 Specific Weight (�g)

d x
d y

P

D =V x y zd d d

d z

Fig. 1.4 A fluid element

enclosing point P

The specific weight is the weight of fluid

per unit volume. The specific weight is

given by

�g  = rg

where g is the gravitational acceleration.

Just as weight must be clearly distinguished

from mass, so must the specific weight be

distinguished from density. In SI units, �g
will be expressed in N/m3.

1.4.3 Specific Volume (v )

The specific volume of a fluid is the volume occupied by unit mass of fluid. Thus

v  = 1/r

Specific volume has the unit of m3/kg.

1.4.4 Specific Gravity (s)

For liquids, it is the ratio of density of a liquid at actual conditions to the density

of pure water at 101 kN/m2, and at 4 °C. The specific gravity of a gas is the ratio

of its density to that of either hydrogen or air at some specified temperature or

pressure. However, there is no general standard; so the conditions must be stated

while referring to the specific gravity of a gas.

1.4.5 Viscosity (m)

Though viscosity is a fluid property but the effect of this property is understood

when the fluid is in motion. In a flow of fluid, when the fluid elements move with

different velocities, each element will feel some resistance due to fluid friction

within the elements. Therefore, shear stresses can be identified between the fluid

elements with different velocities. The relationship between the shear stress and

O x

y

u = u y( )

y

Fig. 1.5 Parallel flow of a fluid

the velocity field was given by Sir

Isaac Newton. Consider a flow (Fig.

1.5) in which all fluid particles are

moving in the same direction in such a

way that the fluid layers move parallel

with different velocities.

Figure 1.6 represents two adjacent

layers of fluid at a distance y measured

from a reference axis of Fig. 1.5, and

they are shown slightly separated in

Fig. 1.6 for the sake of clarity. The

upper layer, which is moving faster,

tries to draw the lower slowly moving

layer along with it by means of a force
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F along the direction of flow on this

layer. Similarly, the lower layer tries to

retard the upper one, according to

Newton�s third law, with an equal and

opposite force F on it. Thus, the

dragging effect of one layer on the

other is experienced by a tangential

force F on the respective layers. If F

acts over an area of contact A, then the

shear stress t is defined as t = F/A.

y

F
F

Fig. 1.6 Two adjacent layers of a

moving fluid

Newton postulated that t is proportional to the quantity Du/Dy, where Dy is the

distance of separation of the two layes and Du is the difference in their velocities.

In the limiting case of Dy fi 0, Du/Dy equals to du/dy, the velocity gradient at a

point in a direction perpendicular to the direction of the motion of the layer.

According to Newton, t and du/dy bears the relation

t = m
d

d

u

y
(1.1)

where, the constant of proportionality m is known as the viscosity coefficient or

simply the viscosity which is a property of the fluid and depends on its state. Sign

of t depends upon the sign of du/dy. For the profile shown in Fig. 1.5, du/dy is

positive everywhere and hence, t is positive. Both the velocity and stress are

considered positive in the positive direction of the coordinate parallel to them.

Equation (1.1), defining the viscosity of a fluid, is known as Newton�s law of

viscosity. Common fluids, viz. water, air, mercury obey Newton�s law of

viscosity and are known as Newtonian fluids. Other classes of fluids, viz. paints,

different polymer solution, blood do not obey the typical linear relationship of t
and du/dy and are known as non-Newtonian fluids.

Dimensional Formula and Units of Viscosity Dimensional formula of viscosity

is determined from Eq. (1.1) as,

m =
t

d du y/
 = 

[F/L ]

[1/T]

2

 = 
[ML T

T

1- -2

1

]

[ / ]
 = [ML�1 T�1]

The dimension of m can be expressed either as FTL�2 with F, L, T as basic

dimensions, or as ML�1T�1 with M, L, T as basic dimensions; corresponding

symbols in SI unit are Ns/m
2
 and kg/ms respectively.

For Newtonian fluids, the coefficient of viscosity depends strongly on

temperature but varies very little with pressure. For liquids, the viscosity

decreases with increase in temperature, whereas for gases viscosity increases with

the increase in temperature. Figure 1.7 shows the typical variation of viscosity

with temperature for some commonly used liquids and gases.

Causes of Viscosity The causes of viscosity in a fluid are possibly attributed to

two factors: (i) intermolecular force of cohesion (ii) molecular momentum

exchange.
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(i) Due to strong cohesive forces between the molecules, any layer in a

moving fluid tries to drag the adjacent layer to move with an equal speed

and thus produces the effect of viscosity as discussed earlier.

(ii) The individual molecules of a fluid are continuously in motion and this

motion makes a possible process of a exchange of momentum between

different moving layers of the fluid. Suppose in a straight and parallel

flow, a layer aa (Fig. 1.8) is moving more rapidly than the layer bb. Some

molecules from the layer aa, in course of their continuous thermal

agitation, migrate into the layer bb, taking together with them the

momentum they have as a result of their stay at aa. By �collisions� with

other molecules already prevailing in the layer bb, this momentum is

shared among the occupants of bb, and thus layer bb as a whole is speeded

up. Similarly molecules from the lower layer bb arrive at aa and tend to

retard the layer aa. Every such migration of molecules, causes forces of

acceleration or deceleration to drag the layers so as to oppose the

differences in velocity between the layers and produces the effect of

viscosity.

a

b

a

b

Molecules

Fig. 1.8 Movement of fluid molecules between two adjacent moving layers

Although the process of molecular momentum exchange occurs in liquids,

intermolecular cohesion is the predominant cause of viscosity in a liquid. Since

cohesion decreases with temperature, the liquid viscosity does likewise. In gases

the intermolecular cohesive forces are very small and the viscosity is dictated by

molecular momentum exchange. As the random molecular motion increases with

a rise in temperature, the viscosity also increases accordingly. Except for very

special cases (e.g., at very high pressure) the viscosity of both liquids and gases

ceases to be a function of pressure.

Ideal Fluid It has been found that considerable simplification can be achieved in

the theoretical analysis of fluid motion by using the concept of an hypothetical

fluid having a zero viscosity (m = 0). Such a fluid is called an ideal fluid and the

resulting motion is called as ideal or inviscid flow. In an ideal flow, there is no

existence of shear force because of vanishing viscosity. All the fluids in reality

have viscosity (m > 0) and hence they are termed as real fluid and their motion is

known as viscous flow. Under certain situations of very high velocity flow of

viscous fluids, an accurate analysis of flow field away from a solid surface can be

made from the ideal flow theory.
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Non-Newtonian Fluids There are certain fluids where the linear relationship

between the shear stress and the deformation rate (velocity gradient in parallel

flow) as expressed by the Eq. (1.1) is not valid. Figure 1.9 shows that for a class

of fluids this relationship is nonlinear. As such, for these fluids the viscosity varies

with rate of deformation. Due to the deviation from Newton�s law of viscosity

they are commonly termed as non-Newtonian fluids. The abscissa in Fig. 1.9

represents the behaviour of ideal fluids since for the ideal fluids the resistance to

shearing deformation rate is always zero, and hence they exhibit zero shear stress

under any condition of flow. The ordinate represents the ideal solid for there is no

deformation rate under any loading condition. The Newtonian fluids behave

according to the law that shear stress is linearly proportional to velocity gradient

or rate of shear strain (Eq. 1.1). Thus for these fluids, the plot of shear stress

against velocity gradient is a straight line through the origin. The slope of the line

determines the viscosity. As such, many mathematical models are available to

describe the nonlinear �shear-stress vs deformation-rate� relationship of non-

Newtonian fluids. But no general model can describe the constitutive equation

(�shear stress vs rate of deformation� relationship) of all kinds of non-Newtonian

fluids. However, the mathematical model for describing the mechanistic be-

haviour of a variety of commonly used non-Newtonian fluids is the Power-Law

model which is also known as Ostwald-de Waele model (the name is after the

scientist who proposed it). According to Ostwald-de Waele model

t = m
u

y

u

y

n
d

d

d

d

-1

(1.2)

where m is known as the flow consistency index and n is the flow behaviour

index. Viscosity of any fluid is always defined by the ratio of shear stress to the

deformation rate. Hence viscosity for the Power-law fluids, obeying the above

model, can be described as:
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Fig. 1.9 Shear stress and deformation rate relationship of different fluids
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u

y

n -1

It is readily observed that the viscosities of non-Newtonian fluids are function

of deformation rate and are often termed as apparent or effective viscosity.

When n = 1, m equals to m, the model identically satisfies Newtonian model as

a special case.

When n < 1, the model is valid for pseudoplastic fluids, such as gelatine, blood,

milk etc.

When n > 1, the model is valid for dilatant fluids, such as sugar in water,

aqueous suspension of rice starch etc.

There are some substances which require a yield stress for the deformation

rate (i.e. the flow) to be established, and hence their constitutive equations do not

pass through the origin thus violating the basic definition of a fluid. They are

termed as Bingham plastic. For an ideal Bingham plastic, the shear stress-

deformation rate relationship is linear.

1.4.6 Kinematic Viscosity

The coefficient of viscosity m which has been discussed so far is known as the

coefficient of dynamic viscosity or simply the dynamic viscosity. Another

coefficient of viscosity known as kinematic viscosity is defined as

n =
m

r

Its dimensional formula is L2T�1 and is expressed as m2/s in SI units. The

importance of kinematic viscosity in practice is realised due to the fact that while

the viscous force on a fluid element is proportional to m, the inertia force is

proportional to r and this ratio of m and r appears in several dimensionless

similarity parameters like Reynolds number VL/n, Prandtl number n/a etc. in

describing various physical problems.

1.4.7 No-slip Condition of Viscous Fluids

When a viscous fluid flows over a solid surface, the fluid elements adjacent to the

surface attain the velocity of the surface; in other words, the relative velocity

between the solid surface and the adjacent fluid particles is zero. This

phenomenon has been established through experimental observations and is

known as the �no-slip� condition. Thus the fluid elements in contact with a

stationary surface have zero velocity. This behaviour of no-slip at the solid

surface should not be confused with the wetting of surfaces by the fluids. For

example, mercury flowing in a stationary glass tube will not wet the surface, but

will have zero velocity at the wall of the tube. The wetting property results from

surface tension, whereas the no-slip condition is a consequence of fluid viscosity.
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1.4.8 Compressibility

Compressibility of any substance is the measure of its change in volume under the

action of external forces, namely, the normal compressive forces (the force d Fn

as shown in Fig. 1.1, but in the opposite direction). The normal compressive stress

on any fluid element at rest is known as hydrostatic pressure p and arises as a

result of innumerable molecular collisions in the entire fluid. The degree of

compressibility of a substance is characterised by the bulk modulus of elasticity

E defined as

E = lim
/D

D

D-fi

-

V

p

V V0
(1.3)

where D" and Dp are the changes in the volume and pressure respectively, and V

is the initial volume. The negative sign in Eq. (1.3) indicates that an increase in

pressure is associated with a decrease in volume. For a given mass of a substance,

the change in its volume and density satisfies the relation

D-

-

V

V
 = -

Dr

r
(1.4)

with the help of Eq. (1.4), E can be expressed as,

E = lim
( / )D

D

Dr r rfi0

p
 = r

r

d

d

p
(1.5)

Values of E for liquids are very high as compared with those of gases (except at

very high pressures). Therefore, liquids are usually termed as incompressible

fluids though, in fact, no substance is theoretically incompressible with a value of

E as µ. For example, the bulk modulus of elasticity for water and air at

atmospheric pressure are approximately 2 ¥ 106 kN/m2 and 101 kN/m2

respectively. It indicates that air is about 20,000 times more compressible than

water. Hence water can be treated as incompressible. Another characteristic

parameter, known as compressibility K, is usually defined for gases. It is the

reciprocal of E as

K =
1

r

rd

d p
 = � 

1

n

nd

d p

F
HG

I
KJ

(1.6)

K is often expressed in terms of specific volume n . For any gaseous substance, a

change in pressure is generally associated with a change in volume and a change

in temperature simultaneously. A functional relationship between the pressure,

volume and temperature at any equilibrium state is known as thermodynamic

equation of state for the gas. For an ideal gas, the thermodynamic equation of

state is given by

p = rRT (1.7)

where T is the temperature in absolute thermodynamic or gas temperature scale

(which are, in fact, identical), and R is known as the characteristic gas constant,

the value of which depends upon a particular gas. However, this equation is also

valid for the real gases which are thermodynamically far from their liquid phase.
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For air, the value of R is 287 J/kg K. The relationship between the pressure p and

the volume V  for any process undergone by a gas depends upon the nature of the

process. A general relationship is usually expressed in the form of

pV
x
 = constant (1.8)

For a constant temperature (isothermal) process of an ideal gas,  x = 1. If there is

no heat transfer to or from the gas, the process is known as adiabatic. A

frictionless adiabatic process is called an isentropic process and x equals to the

ratio of specific heat at constant pressure to that at constant volume. The Eq. (1.8)

can be written in a differential form as

d

d

V

p
 = -

V

x p
(1.9)

Using the relation (1.9), Eqs (1.5) and (1.6) yield

E = xp (1.10a)

or K =
1

x p
(1.10b)

Therefore, the compressibility K, or bulk modulus of elasticity E for gases

depends on the nature of the process through which the pressure and volume

change. For an isothermal process of an ideal gas (x = 1), E = p or K = 1/p. The

value of E for air quoted earlier is the isothermal bulk modulus of elasticity at

normal atmospheric pressure and hence the value equals to the normal

atmospheric pressure.

1.4.9 Distinction between an Incompressible and a

Compressible Flow

In order to know whether it is necessary to take into account the compressibility

of gases in fluid flow problems, we have to consider whether the change in

pressure brought about by the fluid motion causes large change in volume or

density.

From Bernoulli�s equation (to be discussed in a subsequent chapter), p + 
1

2

rV2 = constant (V being the velocity of flow), and therefore the change in

pressure, Dp, in a flow field, is of the order of 
1

2
 rV2 (dynamic head). Invoking

this relationship into Eq. (1.5) we get,

Dr

r
 ª

1

2

2r V

E
(1.11)

Now, we can say that if (Dr/r) is very small, the flow of gases can be treated

as incompressible with a good degree of approximation. According to Laplace�s

equation, the velocity of sound is given by a = E /r . Hence
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Dr

r
 ª

1

2

1

2

2

2

V

a
ª  Ma2 (1.12)

where Ma is the ratio of the velocity of flow to the acoustic velocity in the flowing

medium at the condition and is known as Mach number.

From the aforesaid argument, it is concluded that the compressibility of gas in

a flow can be neglected if Dr/r is considerably smaller than unity, i.e., 
1

2
 Ma2

<< 1.

In other words, if the flow velocity is small as compared to the local acoustic

velocity, compressibility of gases can be neglected. Considering a maximum

relative change in density of 5 per cent as the criterion of an incompressible flow,

the upper limit of Mach number becomes approximately 0.33. In case of air at

standard pressure and temperature, the acoustic velocity is about 335.28 m/sec.

Hence a Mach number of 0.33 corresponds to a velocity of about 110 m/sec.

Therefore flow of air up to a velocity of 110 m/sec under standard condition can

be considered as incompressible flow.

1.4.10 Surface Tension of Liquids

The phenomenon of surface tension arises due to the two kinds of intermolecular

forces (i) cohesion and (ii) adhesion.

The force of attraction between the molecules of a liquid by virtue of which

they are bound to each other to remain as one assemblage of particles is known as

the force of cohesion. This property enables the liquid to resist tensile stress. On

the other hand, the force of attraction between unlike molecules, i.e. between the

molecules of different liquids or between the molecules of a liquid and those of a

solid body when they are in contact with each other, is known as the force of

adhesion. This force enables two different liquids to adhere to each other or a

liquid to adhere to a solid body or surface.

Consider a bulk of liquid with a free surface (Fig. 1.10) that separates the bulk

of liquid from air. A molecule at a point A or B is attracted equally in all directions

by the neighbouring molecules. Due to the random motion of the molecules, the

forces of cohesion, on an average over a period of time can be considered equal in

all directions. Moreover, this force is effective over a minute distance in the order

of three to four times the average distance between the adjacent molecules.

Therefore, one can imagine a sphere of influence around those points. A molecule

at C, very near to the free surface has a smaller force of attraction acting on it

from the direction of the surface because there are fewer molecules within the

upper part of its sphere of influence. In other words, a net force acts on the

molecule towards the interior of the liquid. This force has its maximum value

when the molecule is actually at the surface, as at D. This net inward force at D

depends not only on the attraction of the molecules inside the liquid, but also on

the attraction by the molecules of air on the other side of the surface. The

substance on the other side may be in general, any gas, immiscible liquid or solid.

Hence, work is done on each molecule arriving at the surface against the action of
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an inward force. Thus mechanical work is performed in creating a free surface or

in increasing the area of the surface. Therefore, a surface requires mechanical

energy for its formation and the existence of a free surface implies the presence of

stored mechanical energy known as free surface energy. Any system tries to

attend the condition of stable equilibrium with its potential energy as minimum.

Thus a quantity of liquid will adjust its shape until its surface area and

consequently its free surface energy is a minimum. For example, a drop of liquid

free from all other forces, takes a permanent spherical shape, since for a given

volume, the sphere is the geometrical shape having the minimum surface area.

Free surface energy necessarily implies the existence of a tensile force in the

surface and the surface, in fact, is in a stretched condition due to this force. If an

imaginary line is drawn on the surface, the liquid molecules on both sides will

pull the linear element in both the directions and this line will be subjected to a

state of tensile force. The magnitude of surface tension is defined as the tensile

force acting across such short and straight elemental line divided by the length of

the line. The dimensional formula is F/L or MT�2. It is usually expressed in N/m

in SI units. Surface tension is a binary property of the liquid and gas or two

liquids which are in contact with each other and define the interface. It decreases

slightly with increasing temperature. The surface tension of water in contact with

air at 20 °C is about 0.073 N/m.

It is due to surface tension that a curved liquid interface in equilibrium results

in a greater pressure at the concave side of the surface than that at its convex side.

Consider an elemental curved liquid surface (Fig. 1.11) separating the bulk of

liquid in its concave side and a gaseous substance or another immiscible liquid on

the convex side. The surface is assumed to be curved on both the sides with radii

of curvature as r1 and r2 and with the length of the surfaces subtending angles of

dq1 and dq2 respectively at the centre of curvature as shown in Fig. 1.11. Let the

surface be subjected to the uniform pressure pi and po at its concave and convex

sides respectively acting perpendicular to the elemental surface. The surface

tension forces across the boundary lines of the surface appear to be the external

Free surface

Liquid

Air

A

B

C

D

Fig. 1.10 The intermolecular cohesive force field in a bulk of liquid

with a free surface
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forces acting on the surface. Considering the equilibrium of this small elemental

surface, a force balance in the direction perpendicular to the surface results.

s q1 1r d

s
q

1
1

r
d

s
q

1
1

r
d

r1

r1
r2

s
q1
1

r d

s q2 2r d

s q2 2r d

dq1/2 dq1/2 dq2/2 dq2/2

s q2 2r d

2r

dq2
dq1

s q2 2r d

dq1

dq2

Fig. 1.11 State of stress and force balance on a curved liquid interface

in equilibrium with surrounding due to surface tension

2 s r2 dq2 sin 
dq1

2

F
H

I
K

 + 2 s r1 dq1 sin 
dq2

2

F
H

I
K

 = (pi � po) r1r2 dq1 dq2

For small angles

sin 
d dq q1 1

2 2

F
H

I
K
ª , sin 

d dq q2 2

2 2

F
H

I
K
ª

Hence, from the above equation of force balance we can write

s s

r r1 2

+  = (pi � po)

or Dp =
s s

r r1 2

+ (1.13)

where Dp = pi � po

and s is the surface tension of the liquid in contact with the specified fluid at its

convex side. If the liquid surface coexists with another immiscible fluid, usually

gas, on both the sides, the surface tension force appears on both the concave and

convex interfaces and the net surface tension force on the surface will be twice as

that described by Eq. (1.13). Hence the equation for pressure difference in this

case becomes

Dp = 2
1 2

s s

r r
+

F

HG
I

KJ
(1.14)

Special Cases For a spherical liquid drop, the Eq. (1.13) is applicable with r1

= r2 = r (the radius of the drop) to determine the difference between the pressure

inside and outside the drop as

Dp = 2s/r (1.15)

The excess pressure in a cylindrical liquid jet over the pressure of the

surrounding atmosphere can be found from Eq. (1.13) with r1 fi µ and r2 = r

(the radius of the jet) as
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Dp = s/r (1.16)

In case of the spherical bubble, the Eq. (1.14) is applicable with r1 = r2 = r

(radius of the bubble), which gives

Dp = 4s/r (1.17)

1.4.11 Capillarity

The interplay of the forces of cohesion and adhesion explains the phenomenon of

capillarity. When a liquid is in contact with a solid, if the forces of adhesion

between the molecules of the liquid and the solid are greater than the forces of

cohesion among the liquid molecules themselves, the liquid molecules crowd

towards the solid surface. The area of contact between the liquid and solid

increases and the liquid thus wets the solid surface. The reverse phenomenon

takes place when the force of cohesion is greater than the force of adhesion. These

adhesion and cohesion properties result in the phenomenon of capillarity by which

a liquid either rises or falls in a tube dipped into the liquid depending upon

whether the force of adhesion is more than that of cohesion or not (Fig. 1.12). The

angle q, as shown in Fig. 1.12, is the area wetting contact angle made by the

interface with the solid surface.

h

h

D

Capillary rise

Adhesion > cohesion
liquid wets the surface

Adhesion < cohesion
liquid stays away from
the surface

Capillary depression

q

q

sp D

D

sp D

t t

Fig. 1.12 Phenomenon of capillarity

Equating the weight of the column of liquid h with the vertical component of the

surface tension force, we have,

p D2

4
 h r g = s p D cos q

h =
4s q

r

cos

g D
(1.18)
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For pure water in contact with air in a clean glass tube, the capillary rise takes

place with q = 0. The value of q may be different from zero in practice where

cleanliness of a high order is seldom found. Mercury causes capillary depression

with an angle of contact of about 130° in a clean glass in contact with air. Since h

varies inversely with D as found from Eq. (1.18), an appreciable capillary rise or

depression is observed in tubes of small diameter only.

1.4.12 Vapour Pressure

All liquids have a tendency to evaporate when exposed to a gaseous atmosphere.

The rate of evaporation depends upon the molecular energy of the liquid which in

turn depends upon the type of liquid and its temperature. The vapour molecules

exert a partial pressure in the space above the liquid, known as vapour pressure.

If the space above the liquid is confined (Fig. 1.13) and the liquid is maintained at

constant temperature, after  sufficient time, the confined space above the liquid

will contain vapour molecules to the extent that some of them will be forced to

enter the liquid. Eventually an equilibrium condition will evolve when the rate at

which the number of vapour molecules striking back the liquid surface and

condensing is just equal to the rate at which they leave from the surface. The

space above the liquid then becomes saturated with vapour. The vapour pressure

of a given liquid is a function of temperature only and is equal to the saturation

pressure for boiling corresponding to that temperature. Hence, the vapour

pressure increases with the increase in temperature. Therefore the phenomenon of

boiling of a liquid is closely related to the vapour pressure. In fact, when the

vapour pressure of a liquid becomes equal to the total pressure impressed on its

surface, the liquid starts boiling. This concludes that boiling can be achieved

either by raising the temperature of the liquid, so that its vapour pressure is elevat-

ed to the ambient pressure, or by lowering the pressure of the ambience

(surrounding gas) to the liquid�s vapour pressure at the existing temperature.

Liquid

Saturated vapour

Fig. 1.13 To and fro movement of liquid molecules from an interface in a

confined space as a closed surrounding

Summary

∑ A fluid is a substance that deforms continuously when subjected to even

an infinitesimal shear stress. Solids can resist tangential stress at static
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conditions undergoing a definite deformation while a fluid can do it only at

dynamic conditions undergoing a continuous deformation as long as the

shear stress is applied.

∑ The concept of continuum assumes a continuous distribution of mass

within the matter or system with no empty space. In the continuum

approach, properties of a system can be expressed as continuous functions

of space and time. A dimensionless parameter known as Knudsen number

Kn = l/L, where l is the mean free path and L is the characteristic length,

aptly describes the degree of departure from continuum. The concept of

continuum usually holds good when Kn < 0.01.

∑ Viscosity is a property of a fluid by virtue of which it offers resistance to

flow. The shear stress at a point in a moving fluid is directly proportional

to the rate of shear strain. For a one dimensional flow, t = m(du/dy). The

constant of proportionality m is known as coefficient of viscosity or simply

the viscosity. The relationship is known as the Newton�s law of viscosity

and the fluids which obey this law are known as Newtonian fluids.

∑ The relationship between the shear stress and the rate of shear strain is

known as the constitutive equation. The fluids whose constitutive

equations are not linear through origin (do not obey the Newton�s law of

viscosity) are known as non-Newtonanian fluids. For a Newtonian fluid,

viscosity is a function of temperature only. With an increase in

temperature, the viscosity of a liquid decreases, while that of a gas

increases. For a non-Newtonian fluid, the viscosity depends not only on

temperature but also on the deformation rate of the fluid. Kinematic

viscosity n is defined as m/r.

∑ Compressibility of a substance is the measure of its change in volume or

density under the action of external forces. It is usually characterised by

the bulk modulus of elasticity

E = lim
/D

D

DV

P

V VÆ

-

0

∑ A flow is said to be incompressible when the change in its density due to

the change in pressure brought about by the fluid motion is negligibly

small. When the flow velocity is equal to or less than 0.33 times of the

local acoustic speed, the relative change in density of the fluid, due to

flow, becomes equal to or less than 5 per cent respectively, and hence the

flow is considered to be incompressible.

∑ The force of attraction between the molecules of a fluid is known as

cohesion, while that between the molecules of a fluid and of a solid is

known as adhesion. The interplay of these two intermolecular forces

explains the phenomena of surface tension and capillary rise or depression.

A free surface of the liquid is always under stretched condition implying

the existence of a tensile force on the surface.The magnitude of this force

per unit length of an imaginary line drawn along the liquid surface is

known as the surface tension coefficient or simply the surface tension.
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Surface tension is a binary property of liquid and gas and bears an inverse

relationship with temperature. It is due to the surface tension that a curved

liquid interface, in equilibrium, results in a greater pressure at the concave

side than that at its convex side. The pressure difference DP is given by DP

= s 
1 1

1 2r r
+

F
HG

I
KJ

. A liquid wets a solid surface and results in a capillary rise

when the forces of cohesion between the liquid molecules are lower than

the forces of adhesion between the molecules of liquid and solid in contact.

Non-wettability of solid surfaces and capillary depression are exhibited

by the liquids for which forces of cohesion are more than the forces of

adhesion.

Solved Examples

Example 1.1 A fluid has an solute viscosity of 0.048 Pas and a specific gravity of

0.913. For the flow of such a fluid over a flat solid surface, the velocity at a point 75 mm

away from the surface is 1.125 m/s. Calculate the shear stresses at the solid boundary, at

points 25 mm, 50 mm, and 75 mm away from the boundary surface. Assume (i) a linear

velocity distribution and (ii) a parabolic velocity distribution with the vertex at the point

75 mm away from the surface where the velocity is 1.125 m/s.

Solution Consider a two dimensional cartesian coordinate system with the velocity of

fluid V as abscisa and the normal distance Y from the surface as the ordinate with the

origin O at the solid surface (Fig. 1.14)

5
0
m
m

7
5
m
m

2
5
m
m

y

O V

a

(i
i)
=
30

20
0

y

y
-

2

V(i)
=
15

V

y

Fig. 1.14 Velocity distribution in the flow of lucid as described in example

According to the no-slip condition at the solid surface.

V = 0 at y = 0

again V = 1.125 m/s at y = 0.075 m (given in the problem)

(i) For a linear velocity distribution, the relation between V and y is V = 
1125

0 075

.

.
y = 15y

Hence
d

d

V

y
 = 15 s

�1
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According to Eq. (1.1), shear stress t = m dV/dy

= 0.048 ¥ 15

= 0.72 Pa (N/m
2
)

In this case, shear stress is uniform throughout.

(ii) The equation of the parabolic velocity distribution is considered to be given by

V = A + By + Cy
2

where the constants A, B and C are to be determined from the boundary conditions given

in the problem as

V = 0 at y = 0 (No-slip at the plate surface)

V = 1.125 at y = 0.075

d

d

V

y
 = 0 at y = 0.075 (the condition for the vertex of the parabola)

Substitution of the boundary conditions in the expression of velocity profile we get

A = 0

1.125 = 0.075 B + (0.075)
2
 C

O = B + 0.15 C

which give B = 30, C = � 200

Therefore the expression of velocity profile becomes

V =
30y � 200y2

Hence,
d

d

V

y
 = 30 � 400y (1.19)

Tabulation of results with the help of Eq. (1.19) is shown below:

y V dV/dy t = 0.048 (dV/dy)

m m/s (S�1) (Pa)

0 0 30 1.44

0.025 0.625 20 0.96

0.050 0.880 10 0.48

0.075 1.125 0 0

It is observed that the shear stress decreases as the velocity gradient decreases with

the distance y from the plate and becomes zero where the velocity gradient is zero.

Example 1.2 A cylinder of 0.12 m radius rotates concentrically inside a fixed

hollow cylinder of 0.13 m radius. Both the cylinders are 0.3 m long. Determine the

viscosity of the liquid which fills the space between the cylinders if a torque of 0.88 Nm

is required to maintain an angular velocity of 2p rad/s.

Solution The torque applied = The resisting torque by the fluid

= (shear stress) ¥ (surface area) ¥ (Torque arm)

Hence, at any radial location r from the axis of rotation.

0.88 = t (2 p r ¥ 0.3) r

t =
0 467

2

.

r
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Now according to Eq. (1.1),

d

d

V

y
 =

t

m
 = 

0 467
2

.

m r

Rearranging the above expression and substituting � dr for dy (the minus sign indicates

that r, the radial distance, decreases as V increases), we obtain

d

outer

inner

V

V

V

z  =
0 467

2

0 13

12
.

.

.

m
-z d

0
r

r

Hence Vinner � Vouter =
0 467 1

0 13

0 12
.

.

.

m r

L
NM

O
QP

The velocity of the inner cylinder,

Vinner = 2 p ¥ 0.12 = 0.754 m/s

Hence, (0.754 � 0) =
0 467 1

0 12

1

0 13

.

. .m
-

F
HG

I
KJ

From which m = 0.397 Pa s

Example 1.3 The velocity profile in laminar flow through a round pipe is expressed

as

u = 2U (1 � r2/r2
0)

where U is the average velocity, r is the radial distance from the centre line of the pipe,

and r0 is the pipe radius. Draw the dimensionless shear stress profile t/t0 against r/r0,

where t0 is the wall shear stress. Find the value of t0, when fuel oil having an absolute

viscosity m = 4 ¥ 10
�2

 N
�s

/m
2
 flows with an average velocity of 4 m/s in a pipe of diameter

150 mm.

Solution The given velocity profile is

u = 2U(1 � r2/r2
0)

d

d

u

r
 = -

4

0
2

Ur

r

Shear stress at any radial location r can be written

as

t = � m 
d

d

u

r

Hence,
t

t 0

 =
d d

d d

u r

u r r r

/

( / ) = 0

 = 
r

r0

Figure 1.15 shows the shear stress distribution
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Fig. 1.15 Shear stress distribution

in the pipe flow problem

of Example 1.3
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= (4 ¥ 10
�2

) 
4 4

0 075

¥F
HG

I
KJ.

= 8.533 N/m
2

Example 1.4 If we neglect the temperature effect, an empirical pressure-density

relation for water is p/pa = 3001 ¥ (r/ra)
7
 � 3000, where subscript �a� refers to

atmospheric conditions. Determine the isothermal bulk modulus of elasticity and

compressibility of water at 1, 10 and 100 atmospheric pressure.

Solution Pressure-density relationship is given as

p

pa

 = 3001 ¥ 
r

ra

F

HG
I

KJ

7

 � 3000 (1.20)

1

p

p

a

d

dr
 = 7 ¥ 3001 

r

r

6

7
a

Hence
d

d

p

r
 = 7 ¥ 3001 pa 

r

r

6

7
a

r
r

d

d

p
 = 7 ¥ 3001 pa 

r

ra

F

HG
I

KJ

7

According to Eq. (1.5),

E = r
r

d

d

p
 = 7 ¥ 3001 pa 

r

ra

F

HG
I

KJ

7

(1.21)

Substituting the value of 
r

ra

F

HG
I

KJ

7

 from Eq. (1.20) to Eq. (1.21), we get

E =
7 3001

3001
3000

¥
+

L

N
M

O

Q
P◊ p

p

p
a

a

= 7pa 
p

pa

+
L

N
M

O

Q
P3000

Therefore

(E)1 atm pressure = 7 ¥ 3001 pa

= 2.128 ¥ 10
6
 kN/m

2

(The atmospheric pressure pa is taken as that at the sea level and equals to 1.0132 ¥ 10
5

N/m2)

(E)10 atm pressure = 7 ¥ 3010 pa

= 2.135 ¥ 10
6
 kN/m

2

(E)100 atm pressure = 7 ¥ 3100 pa

= 2.198 ¥ 10
6
 kN/m

2

Respective compressibilities are

(K)1 atm pressure =
1

1 atm pres( )E sure

 = 0.47 ¥ 10�6 m3/kN
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(K)10 atm pressure =
1

10( )E  atm pressure

 = 0.468 ¥ 10�6 m2/kN

(K)100 atm pressure =
1

100( )E  atm pressure

 = 0.455 ¥ 10�6 m3/kN

It is found from the above example that the bulk modulus of elasticity or

compressibility of water is almost independent of pressure.

Example 1.5 A cylinder contains 0.35 m3 of air at 50 °C and 276 kN/m2 absolute.

The air is compressed to 0.071 m3
. (a) Assuming isothermal conditions, what is the

pressure at the new volume and what is the isothermal bulk modulus of elasticity at the

new state. (b) Assuming isentropic conditions, what is the pressure and what is the

isentropic bulk modulus of elasticity? (Take the ratio of specific heats of air g = 1.4)

Solution (a) For isothermal conditions,

p1V1 = p2V2

Then (2.76 ¥ 10
5
)0.35 = (p2).071

which gives,

p2 = 13.6 ¥ 105 N/m2

= 1.36 MN/m
2

The isothermal bulk modulus of elasticity at any state of an ideal gas equals to its

pressure at that state. Hence E = p2 = 1.36 MN/m2.

(b) For isentropic conditions

P1 V1
1.4

 = P2 V2
1.4

Then (2.76 ¥ 105) (0.35)1.4 = (p2) (.071)1.4

From which, p2 = 25.8 ¥ 10
5
 N/m

2

= 2.58 MN/m2

The isentropic bulk modulus of elasticity

E = g p = 1.40 ¥ 25.8 ¥ 105 N/m2

= 3.61 MN/m
2

Example 1.6 Make an analysis of the shape of the water-air interface near a plane

wall, as shown in Fig. 1.16, assuming that slope is small, 1/R ª d2 h/dx2 (where R is the

radius of curvature of the interface) and the pressure difference across the interface is

balanced by the product of specific weight and interface height as Dp = rgh. Boundary

conditions: area wetting contact angle q = q0 at x = 0, and q = 90° as x Æ •. What is the

height h at the wall?

Solution The curved interface is plane in other direction. Hence the pressure difference

across the interface can be written according to Eq. (1.13) as

Dp = p1 � p2 = s
1

R

F
H

I
K

(1.22)
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x = 0

h( )x

x

p1

q0

p2

Fig. 1.16 Water air interface near a plane wall

From given data

1

R
 =

d

d

2h

x
2

and Dp = r g h

Substituting the values of 1/R and Dp in Eq. (1.22), we get

d

d

2h

x
2

 � 
r

s
h

g
 = 0 (1.23)

The solution of h from the above Eq. (1.23) is,

h = Ae Be

g
-

+

r

s

r

s

g
x x

(1.24)

where A and B are parametric constants. The value of A and B are found out using he

boundary conditions as follows:

at x = 0,
d

d

h

x
 = � cot q0

and at x Æ •
d

d

h

x
 = 0

which give,

A =
s

rg
 cot q0

B = 0

Hence Eq. (1.24) becomes

h =
s

rg
 cot q0 e

-
s

r g
x

which defines the shape of the interface

(h)x = 0 =
s

rg
 cot q0
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h

To To
Ti Ti

ro

ri

Fig. 1.17 Capillary rise of water

in the annulus of two

coaxial glass tubes

W = Ti + To (1.25)

Again, Ti = s (2p ri)

To = s (2p ro)

and W = p(r2
o � r2

i)hrg

Substitution of these values of Ti, To and W
in Eq. (1.25) gives,

p (r2
o � r2

i)hrg = 2ps (ro + ri)

from which

h =
2s

r g r ro i( )-

Example 1.8 What is the pressure with-

in a 1 mm diameter spherical droplet of water

relative to the atmospheric pressure outside?

Assume s for pure water to be 0.073 N/m.

Solution Equation (1.15) is used to

determine the pressure difference Dp (= p2 �

p1; refer to Fig. 1.18) as

Dp = 2s/R

Example 1.7 Two coaxial glass tubes forming an annulus with small gap are

immersed in water in a trough. The inner and outer radii of the annulus are ri and r0

respectively. What is the capillary rise of water in the annulus if s is the surface tension

of water in contact with air?

Solution The area wetting contact angle for air-water interface in a glass tube is 0°

(Fig. 1.17). Therefore, equating the weight of water column in the annulus with the total

surface tension force, we get,

p1 p2

s

Fig. 1.18 Surface tension force on

a spherical water droplet

or Dp = 2 ¥ 7.3 ¥ 10
�2

/(0.5 ¥ 10
�3

) = 292 N/m
2

Example 1.9 A spherical water drop of 1 mm in diameter splits up in air into 64

smaller drops of equal size. Find the work required in splitting up the drop. The surface

tension coefficient of water in air = 0.073 N/m.

Solution An increase in the surface area out of a given mass takes place when a bigger

drop splits up into a number of smaller drops, and the work required is given by the

product of surface tension coefficient and the increase in surface area.

Let d be the diameter of the smaller drops.

From conservation of mass

64 ¥ p ¥ 
d3

6
 = p ¥ 

( . )0 001

6

3

which gives d =
0 001

4

.
 = 0.25 ¥ 10�3 m

Initial surface area (due to the single drop)

= p ¥ (0.001)2
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= p ¥ 10
�6

 m
2

Final surface area (due to 64 smaller drops)

= 64 ¥ p (0.25 ¥ 10�3)2

= 4p ¥ 10
�6

 m
2

Hence, the increase in surface area

= (4 � 1)p ¥ 10�6

= 3 p ¥ 10�6 m2

Therefore, the required work

= 0.073 ¥ 3p ¥ 10
�6

 J

= 0.69 ¥ 10�6 J

Exercises

1.1 Choose the correct answer

(i) A fluid is a substance that

(a) always expands until it fills any container.

(b) is practically incompressible.

(c) cannot withstand any shear force.

(d) cannot remain at rest under the action of any shear force.

(e) obeys the Newton�s law of viscosity.

(f) none of the above.

(ii) Newton�s law of viscosity relates

(a) pressure, velocity and viscosity.

(b) shear stress and rate of angular deformation in a fluid.

(c) shear stress, temperature, viscosity and velocity.

(d) pressure, viscosity and rate of angular deformation.

(e) none of the above.

(iii) The bulk modulus of elasticity

(a) is independent of temperature.

(b) increases with the pressure.

(c) has the dimensions of 1/P.

(d) is larger when the fluid is more compressible.

(e) is independent of pressure and viscosity.

(iv) The phenomenon of capillary rise or depression

(a) is observed only in vertical tubes.

(b) depends solely upon the surface tension of the liquid.

(c) depends upon the surface tension of the liquid, material of the tube and

the surrounding gas in contact of the liquid.

(d) depends upon the pressure difference between the liquid and the

environment.

(e) is influenced by the viscosity of the liquid.

1.2 One measure as to a gas is in continuum, is the size of its mean free path.

According to the kinetic theory of gas, the mean free path is given by

l = 1.26 m/r (RT)1/2
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What will be the density of air when its mean free path is 10 mm. The temperature

is 20 °C, m = 1.8 ¥ 10�5 kg/ms, R = 287 J/kg K. Ans. (0.782 ¥ 10�5 kg/m3)

1.3 A shaft 80 mm in diameter is being pushed through a bearing sleeve 80.2 mm in

diameter and 0.3 m long. The clearance, assumed uniform is flooded with

lubricating oil of viscosity 0.1 kg/ms and specific gravity 0.9, (a) If the shaft

moves axially at 0.8 ms/, estimate the resistance force exerted by the oil on the

shaft, (b) If the shaft is axially fixed and rotated at 1800 rpm, estimate the

resisting torque exerted by the oil and the power required to rotate the shaft.

Ans. (60.32N, 22.74 Nm, 4.29 kW)

1.4 A body weighing 1000 N slides down at a uniform speed of 1 ms/ along a

lubricated inclined plane making 30° angle with the horizontal. The viscosity of

lubricant is 0.1 kg/ms and contact area of the body is 0.25 m2. Determine the

lubricant thickness assuming linear velocity distribution. Ans. (0.05 mm)

1.5 A uniform film of oil 0.13 mm thick separates two discs, each of 200 mm

diameter, mounted co-axially. Ignoring the edge effects, calculate the torque

necessary to rotate one disc relative to other at a speed of 7 rev/s, if the oil has a

viscosity of 0.14 Pas. Ans. (7.43 Nm)

1.6 A piston 79.6 mm diameter and 210 mm long works in a cylinder 80 mm

diameter. If the annular space is filled with a lubricating oil having a viscosity of

0.065 kg/ms, calculate the speed with which the piston will move through the

cylinder when an axial load of 85.6 N is applied. Neglect the inertia of the piston.

Ans. (5.01 m/s)

1.7 (a) Find the change in volume of 1.00 m
3
 of water at 26.7 °C when subjected to a

pressure increase of 2 MN/m2 (The bulk modulus of elasticity of water at

26.7 °C is 2.24 ¥ 109 N/m2). Ans. (0.89 ¥ 10�3 m3)

(b) From the following test data, determine the bulk modulus of elasticity of

water: at 3.5 MN/m2, the volume was 1.000 m3 and at 24 MN/m2, the volume

was 0.990 m3. Ans. (2.05 ¥ 109 N/m2)

1.8 A pressure vessel has an internal volume of 0.5 m3 at atmospheric pressure. It is

desired to test the vessel at 300 bar by pumping water into it. The estimated

variation in the change of the empty volume of the container due to pressurisation

to 300 bar is 6 per cent. Calculate the mass of water to be pumped into the vessel

to attain the desired pressure level. Given the bulk modulus of elasticity of water

as 2 ¥ 10
9
 N/m

2
. Ans. (538 kg)

1.9 Find an expression of the isothermal bulk modulus of elasticity for a gas which

obeys van der Waals law of state according to the equation

P = r RT 
1

1-
-

F
HG

I
KJb

a

RTr

r
,

where a and b are constants.

1.10 An atomizer forms water droplets with a diameter of 5 ¥ 10
�5

 m. What is the

pressure within the droplets at 20 °C, if the pressure outside the droplets is 101

kN/m
2
? Assume the surface tension of water at 20 °C is 0.0718 N/m.

Ans. (106.74 kN/m2)

1.11 A spherical soap bubble of diameter d1 coalesces with another bubble of diameter

d2 to form a single bubble of diameter d3 containing the same amount of air.

Assuming an isothermal process, derive an analytical expression for d3 as a
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function of d1, d2, the ambient pressure p0 and the surface tension of soap solution

s. If d1 = 20 mm, d2 = 40 mm p0 = 101 kN/m2 and s = 0.09 N/m, determine d3.

Ans. (P0 + 8s/d3)d3
3 = (P0 + 8s/d1)d

3
1 + (P0 + 8s/d2)d

3
2 ; d3 = 41.60 mm)

1.12 By how much does the pressure in a cylindrical jet of water 4 mm in diameter

exceed the pressure of the surrounding atmosphere if the surface tension of water

is 0.0718 N/m? Ans. (35.9 N/m
2
)

1.13 Calculate the capillary depression of mercury at 20 °C (contact angle q = 140°) to

be expected in a 2.5 mm diameter tube. The surface tension of mercury at 20 °C

is 0.4541 N/m. Ans. (4.2 mm)



2.1 FORCES ON FLUID ELEMENTS

An infinitesimal region of the fluid continuum can be defined as a fluid element.
A fluid element, in isolation from its surroundings, is experienced by two types of
external forces (a) Body force and (b) Surface force.
Body Forces These forces act throughout the body of the fluid element and are
distributed over the entire mass or volume of the element. These forces are

generally caused by external agencies such as gravitation, electromagnetic force
fields, etc. Body forces are usually expressed per unit mass of the element or
medium upon which the forces act.
Surface Forces They include all forces exerted on the fluid element by its
surroundings through direct contact at the surface. Therefore these forces appear
only at the surface of a fluid element. It has been discussed in Section 1.1 of

Chapter 1, that such a surface force can be resolved into two components, one
along the normal to an elemental area and the other along the plane of the
elemental area. The component along the normal to the area is called the normal
force, while that along the plane of the area is the shear force.  The ratios of these
forces and the elemental area in the limit of the area tending to zero are called the
normal or shear stresses respectively. Though surface forces are considered as

external forces acting on the free body of a fluid element (a fluid element in
isolation from its neighbouring fluid), they appear as internal forces and cause
internal stresses in a continuous fluid medium either in rest or in motion.

The shear force is zero for any fluid element at rest and hence the only surface
force to a fluid element, under this situation, is the normal force.

2.2 NORMAL STRESSES IN A STATIONARY FLUID

A stationary fluid element of a tetrahedronal shape with three of its faces

coinciding with the coordinate planes is shown in Fig. 2.1. Since a fluid at rest

Fluid Statics

2



Fluid Statics 29

can develop neither shear stress nor tensile stress, the normal stresses acting on

different faces are compressive in nature. Considering gravity as the only source

of external body force, the equations of static equlibrium for the tetrahedronal

fluid element can be written as,

SFx = sx 2

y zD DÊ ˆ
Á ˜Ë ¯  � sn D A cos a = 0 (2.1)

SFy = sy 
D Dx z

2

F
H

I
K  � sn D A cos b = 0 (2.2)

SFz = sz 
2

x yD DÊ ˆ
Á ˜Ë ¯

 � sn D A cos g � 
rg

6
(Dx Dy Dz) = 0 (2.3)

where SFx, SFy, and SFz are the net forces acting on the fluid element in positive

x, y and z directions respectively, and cos a, cos b, cos g are the direction cosines

of the normal to the inclined plane of of area DA.

Therefore,
DA cos a = (Dy D z)/2 (2.4)

DA cos b = (Dx D z)/2 (2.5)

DA cos g = (Dx Dy)/2 (2.6)

Since Dx, D y, D z are infinitesimal, the third term in the Eq. (2.3) can be

neglected in comparison with the other terms. Substituting the values of DA cos

a, DA cos b and DA cos g from Eqs (2.4), (2.5) and (2.6) into Eqs (2.1), (2.2) and

(2.3), we have
sx = sy = sz = sn (2.7)

The state of normal stress at any point in a stationary fluid is thus defined by

Eq. (2.7). It concludes that the normal stresses at any point in a fluid at rest are

directed towards the point from all directions and are of equal magnitude. These

stresses are denoted by a scalar quantity p (Fig. 2.1a) defined as the hydrostatic

or thermodynamic pressure. This is known as Pascal�s law of hydrostatics. With

conventional notation of the positive sign for the tensile stress, the above

statement can be expressed analytically as

sx = sy = sz = �p (2.8)

Fig. 2.1 State of stress in a Fig. 2.1a State of normal stress at

fluid element at rest  a point in a fluid at rest
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2.3 FUNDAMENTAL EQUATION OF FLUID STATICS

It is established from the above discussion that a pressure field defined by

Eq. (2.8) exists in a fluid mass at rest. The fundamental equation of fluid statics,

that describes the spatial variation of hydrostatic pressure p in the continuous

mass of a fluid, is derived as follows.

Consider a fluid element of given mass at rest which ocupies a volume 

bounded by the surface S (Fig. 2.2).

Fig. 2.2 External forces on a fluid element at rest

The fluid element is in equilibrium under the action of the following forces:

(i) The resultant body force
r

FB =
r

X V

V

r dzzz (2.9)

where d  is an element of volume whose mass is r d , and 
r

X  is the body force

per unit mass acting on the elementary volume dV

(ii) The resultant surface force
r

FS = -zz
r

n p A

S

d (2.10)

where, dA is the area of an element of surface and 
r

n  is the unit vector normal to

the elemental surface, taken positive when directed outwards. In accordance with

Gauss divergence theorem, Eq. (2.10) can be written as
r

FS = - zz
r

n p A

S

d = - —zzz p V

V

d (2.11)

For equilibrium of the fluid element, we have
r

FB + 
r

FS = ( )
r

X p V

V

r - —zzz d  = 0 (2.12)

Equation (2.12) is valid for all , (the volume of the fluid element), no matter

how small, and hence,
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r

Xr  � —p = 0

or, —p =
r

Xr (2.13)

Equation (2.13) is the fundamental equation of fluid statics. If gravity is con-

sidered to be the only external body force acting on the fluid, the vector form of

the Eq. (2.13) can be expressed in its scalar components with respect to a

cartesian coordinate system (Fig. 2.2) as

∂

∂

p

x
 = 0 (2.13a)

∂

∂

p

y
 = 0 (2.13b)

∂

∂

p

z
 = Xz r = �g r (2.13c)

where Xz, the external body force per unit mass in the positive direction of z

(vertically upward), equals to the negative value of g, the acceleration due to

gravity. From Eqs (2.13a) to (2.13c), it can be concluded that the pressure p is a

function of z only. Therefore, Eq. (2.13c) can be written as,

d

d

p

z
 = � r g (2.14)

The explicit functional realationship of hydrostatic pressure p with z can be

obtained by integrating the Eq. (2.14). However, this integration is not possible

unless the variation of r with p and z is known.

Constant Density Solution (Incompressible Fluid) For an incompressible fluid,

the density r is constant throughout. Hence the Eq. (2.14) can be integrated as

p = � r g z + C (2.15)

where C is the integration constant.

If we consider an expanse of fluid with a free surface, where the pressure is

defined as p = p0 (Fig. 2.3), Eq. (2.15) can be written as,

p � p0 = r g (z0 � z1) = r g h (2.16)

Therefore, Eq. (2.16) gives the expression of hydrostatic pressure p at a point

whose vertical depression from the free surface is h. Thus, the difference in

pressure between two points in an incompressible fluid at rest can be expressed in

terms of the vertical distance between the points. This result is known as

Toricelli�s principle which is the basis for differential pressure measuring

devices. The pressure p0 at free surface is the local atmospheric pressure.

Therefore, it can be stated from Eq. (2.16), that the pressure at any point in an

expanse of stagnant fluid with a free surface exceeds that of the local atmosphere

by an amount rgh, where h is the vertical depth of the point from the free surface.
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x

y

z

z1

zo

Free surface p = po

p = p + gho r

pgh

p p =- o 0

h

Fig. 2.3 Pressure variation in an incompressible fluid at rest with a free surface

Variable Density Solution (Pressure Variation in a Compressible Fluid) The pres-

sure variation in a compressible fluid at rest depends on how the fluid density

changes with height z and pressure p.

Constant Temperature Solution (Isothermal Fluid) The equation of state for a

compressible system generally relates its density to its pressure and temperature.

If the fluid is a perfect gas at rest at constant temperature, it can be written from

Eq. (1.7)

p

r
 =

p0

0r
(2.17)

where p0 and r0 are the pressure and density at some reference horizontal plane.

With the help of Eq. (2.17), Eq. (2.14) becomes,

dp

p
 = � 

r0

0p
g dz (2.18)

p = p0 exp - -
L

N
M

O

Q
P

r0

0

0

g

p
z z( ) (2.19)

where z and z0 are the vertical coordinates of the plane concerned for pressure p

and the reference plane respectively from any fixed datum.

Non-isothermal Fluid The temperature of the atmosphere up to a certain altitude

is frequently assumed to decrease linearly with the altitude z as given by

T = T0 � a  z (2.20)

where T0 is the absolute temperature at sea level and the constant a is known as

lapse rate. For the standard atmosphere, a = 6.5 K/km and T0 = 288 K. With the

help of Eq. (1.7) and (2.20), the Eq. (2.14) can be written as,
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d p

p
 =

-
-

g

R

z

T z

d

0 ab g
(2.21)

Integration of Eq. (2.21) yields

ln 
p

p0

 =
g

R

T z

Ta

a
ln 0

0

-

Hence,
p

p0

 = 1
0

-
F

HG
I

KJ
a

a
z

T

g R/

(2.22)

The altitude z in Eq. (2.22) is measured from the sea level where the pressure

is p0. Experimental evidence of the temperature variation with altitude in differ-

ent layers of the atmosphere is shown in Fig. 2.4.
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Fig. 2.4 Temperature variation in atmosphere

2.4 UNITS AND SCALES OF PRESSURE
MEASUREMENT

The unit of pressure is N/m2 and is known as Pascal. Pressure is usually ex-

pressed with reference to either absolute zero pressure (a complete vacuum) or

local atmospheric pressure. The absolute pressure is the pressure expressed as a

difference between its value and the absolute zero pressure. When a pressure is

expressed as a diference between its value and the local atmospheric pressure, it

is known as gauge pressure (Fig. 2.5). Therefore,

pabs = p � 0 = p (2.23a)

pgauge = p � patm (2.23b)
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If the pressure p is less than the local atmospheric pressure, the gauge pressure

pgauge, defined by the Eq. (2.23b), becomes negative and is called vacuum

presure.

Gauge pressure

Vacuum pressure

Absolute pressure

Absolute zero 

(complete vacuum)

Absolute 

pressure

Local 

atmospheric  

pressure

Fig. 2.5 The scale of pressure

At sea-level, the international standard atmosphere has been chosen as

patm = 101.32 kN/m2

2.5 THE BAROMETER

It is already established that there is a simple relation (Eq. 2.16) between the

height of a column of liquid and the pressure at its base. The direct proportional-

ity between gauge pressure and the height h for a fluid of constant density enables

the pressure to be simply visualized in terms of the vertical height, h = p/rg. The

height h is termed as pressure head corresponding to pressure p. For a liquid

without a free surface in a closed pipe, the pressure head p/rg at a point

corresponds to the vertical height

above the point to which a free surface

would rise, if a small tube of sufficient

length and open to atmosphere is

connected to the pipe (Fig. 2.6).

Such a tube is called a piezometer

tube, and the height h is the measure of

the gauge pressure of the fluid in the

pipe. If such a piezometer tube of suffi-

cient length were closed at the top and

the space above the liquid surface were

a perfect vacuum, the height of the

column would then correspond to the

absolute pressure of the liquid at the Fig. 2.6 A piezometer tube

h = p/ g
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base. This principle is used in the well-

known mercury barometer to determine

the local atmospheric pressure.

Mercury is employed because its

density is sufficiently high for a

relative short column to be obtained,

and also because it has very small

vapour pressure at normal temperature.

A perfect vacuum at the top of the tube

(Fig. 2.7) is never possible; even if no

air is present, the space would be

occupied by the mercury vapour and

the pressure would equal to the vapour

pressure of mercury at its existing

p
v

hA

B

Torricellian 

vacuum

temperature. This almost vacuum condition above the mercury in the barometer is

known as Torricellian vacuum. The pressure at A equal to that at B (Fig. 2.7)

which is the atmospheric pressure patm since A and B lie on the same horizontal

plane. Therefore, we can write

pB = patm = p
v
 + r g h (2.24)

The vapour pressure of mercury p
v
, can normally be neglected in comparison

to patm. At 20 °C, p
v
 is only 0.16 patm, where patm = 1.0132 ¥ 10

5
 Pa at sea level.

Then we get from Eq. (2.24)

h = patm/rg =
1 0132 10

13560 9 81

5.

( ) ( .

¥ N/m

kg/m N/kg)

2

3
 = 0.752 m of Hg

For accurate work, small corrections are necessary to allow for the variation of

r with temperature, the thermal expansion of the scale (usually made of brass),

and surface tension effects. If water was used instead of mercury, the

corresponding height of the column would be about 10.4 m provided that a perfect

vacuum could be achieved above the water. However, the vapour pressure of

water at ordinary temperature is appreciable and so the actual height at, say,

15 °C would be about 180 mm less than this value. Moreover, with a tube smaller

in diameter than about 15 mm, surface tension effects become significant.

2.6 MANOMETERS

Manometers are devices in which columns of a suitable liquid are used to mea-

sure the difference in pressure between two points or between a certain point and

the atmosphere. For measuring very small gauge pressures of liquids, simple pi-

ezometer tube (Fig. 2.6) may be adequate, but for larger gauge pressures, some

modifications of the tube are necessary and this modified tube is known as ma-

nometer. A common type manometer is like a transparent �u-tube� as shown in

Fig. 2.8a.

One of its ends is connected to a pipe or a container having a fluid (A) whose

pressure is to be measured while the other end is open to atmosphere. The lower

Fig. 2.7 A barometer
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part of the u-tube contains a liquid immiscible with the fluid A and is of greater

density than that of A. This fluid is called the manometric fluid. The pressures at

two points P and Q (Fig. 2.8a) in a horizontal plane within the continuous ex-

panse of same fluid (the liquid B in this case) must be equal. Then equating the

pressures at P and Q in terms of the heights of the fluids above those points, with

the aid of the fundamental equation of hydrostatics (Eq. 2.16), we have

p1 + rA g (y + x) = patm + rB g x

Hence, p1 � patm = (rB � rA) g x � rA g y (2.25)

where p1 is the absolute pressure of the fluid A in the pipe or container at its

centre line, and patm is the local atmospheric pressure. When the pressure of the

fluid in the container is lower than the atmospheric pressure, the liquid levels in

the manometer would be adjusted as shown in Fig. 2.8b. Hence it becomes,

p1

p1 > patm

patm

P Q

B

y

A

x

Fig. 2.8a A simple manometer to measure gauge pressure

p1+

p1 < patm

patm

P Q

B

y

A

x

Fig. 2.8b A simple manometer measuring vacuum pressure
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p1 + rA g y + rB g x = patm

patm � p1 = (rA y + rB x)g (2.26)

In the similar fashion, a manometer is frequently used to measure the pressure

difference, in course of flow, across a restriction in a horizontal pipe (Fig. 2.9).

p1 > p2

P

y

x

Q

p1

m

p2

A B

Fig. 2.9 A manometer measuring pressure differential

It is very important that the axis of each connecting tube at A and B to be

perpendicular to the direction of flow and also for the edges of the connections to

be smooth. Applying the principle of hydrostatics at P and Q we have,

p1 + (y + x)rwg = p2 + y rwg + x rmg

p1 � p2 = (rm � rw)gx (2.27)

where, rm
 is the density of manometric fluid and rw is the density of the working

fluid flowing through the pipe. Sometimes it is desired to express this difference

of pressure in terms of the difference of heads (height of the working fluid at

equilibrium).

Thus, h1 � h2 =
p p

g
x

w

m

w

1 2 1
-

=
F

HG
I

KJr

r

r
� (2.28)

2.6.1 Inclined Tube Manometer

To obtain a reasonable value of x [Eqn. (2.28)] for accurate measurement of

small pressure differences by a ordinary U-tube manometer, it is essential that the

ratio rm/rw should be close to unity. If the working fluid is a gas, this is not

possible. Moreover, it may not be always possible to have a manometric liquid of

density very close to that of the working liquid and giving at the same time a well

defined meniscus at the interface. For this purpose, an inclined tube manometer is

used. For example, if the transparent tube of a manometer instead of being verti-

cal is set at an angle q to the horizontal (Fig. 2.10), then a pressure difference

corresponding to a vertical difference of levels x gives a movement of the menis-

cus s = x/sin q along the slope (Fig. 2.10).
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s
x

Fig. 2.10 An inclined tube manometer

If q is small, a considerable mangnification of the movement of the meniscus

may be achieved. Angles less than 5°, however, are not usually satisfactory,

because it becomes difficult to determine the exact position of the meniscus. One

limb is usually made very much greater in cross-section than the other. When a

pressure difference is applied across the manometer, the movement of the liquid

surface in the wider limb is practically negligible compared to that occurring in

the narrower limb. If the level of the surface in the wider limb is assumed

constant, the displacement of the meniscus in the narrower limb needs only to be

measured, and therefore only this limb is required to be transparent.

2.6.2 Inverted Tube Manometer

For the measurement of small pressure differences in liquids, an inverted U-tube

manometer as shown in Fig. 2.11 is often used.

Here rm < rw, and the line PQ is taken at the level of the higher meniscus to

equate the pressures at P and Q from the principle of hydrostatics. If may be

written that

p1
* � p2

* = (rw � rm) g x (2.29)

Fig. 2.11 An inverted tube

manometer

P

p1

z1
z2

p2

x
Q

V rm

rw

where p* represents the piezometric

pressure p + rgz (z being the vertical

height of the point concerned from any

reference datum). In case of a

horizontal pipe (z1 = z2), the difference

in piezometric pressure becomes equal

to the difference in the static pressure.

If (rw � rm) is sufficiently small, a

large value of x may be obtained for a

small value of p1
* � p2

*. Air is used as

the manometric fluid. Therefore, rm is

negligible compared with rw and

hence,
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p1
* � p2

* ª rw g x (2.30)

Air may be pumped through a value V at the top of the manometer until the

liquid menisci are at a suitable level.

2.6.3 Micromanometer

When an additional gauge liquid is used in a U-tube manometer, a large difference

in meniscus levels may be obtained for a very small pressure difference. The

typical arrangement is shown in Fig. 2.12.

Cross-sectional

area A

Initial level of

gauge liquid

Gauge liquid

of density
Initial level of

manometric liquid

Cross

sectional area

a

Manometric liquid of

density rm

Working fluid

of density rw

h

p1 p2

p p1 2>

Dz
Dz

r r > rm G> w

rG

z

y

y

QP

2

2

Fig. 2.12 A micromanometer

The equation of hydrostatic equilibrium at PQ can be written as

p1 + rw g(h + D z) + rG g �
2

y
z z

Ê ˆD +Á ˜Ë ¯
 = p2 + rw g(h � D z)

+ rG g
2

y
z z

Ê ˆ+ D -Á ˜Ë ¯
 + rm g y (2.31)

where rw, rG and rm are the densities of working fluid, gauge liquid and

manometric liquid respectively.

From continuity of gauge liquid,

A D z = a
y

2
(2.32)

Substituting for D z from Eq. (2.32) in Eq. (2.31), we have
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p1 � p2 = gy r r rm G w

a

A

a

A
- -F

H
I
K -R

S
T

U
V
W

1 (2.33)

If a is very small compared to A,

p1 � p2 ª (rm � rG) gy (2.34)

With a suitable choice for the manometric and gauge liquids so that their

densities are close (rm ª rG), a reasonable value of y may be achieved for a small

pressure difference.

2.7 HYDROSTATIC THRUSTS ON SUBMERGED

SURFACES

Due to the existence of hydrostatic pressure in a fluid mass, a normal force is

exerted on any part of a solid surface which is in contact with a fluid. The

individual forces distributed over an area give rise to a resultant force. The

determination of the magnitude and the line of action of the resultant force is of

practical interest to engineers.

2.7.1 Plane Surfaces

Figure 2.13a shows a plane surface of arbitrary shape wholly submerged in a

liquid so that the plane of the surface makes an angle q with the free surface of the

liquid. In fact, any elemental area of the surface under this situation would be

subjected to normal forces in the opposite directions from the two sides of the

surface due to hydrostatic pressure; therefore no resultant force would act on the

surface. But we consider the case as if the surface A shown in Fig. 2.13a to be

subjected to hydrostatic pressure on one side and atmospheric pressure on the

other side. Let p denote the gauge pressure on an elemental area dA. The resultant

force F on the area A is therefore

Free surface

(a) Inclined surface (b) Horizontal surface

F

Free surface

hc
hc
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p
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h
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y

c
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y
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p

(
,
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c
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(

,
)

c
cx

c

Fig. 2.13 Hydrostatic thrust on submerged plane surface
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F =
A

ÚÚ p dA (2.35)

According to Eq. (2.16), Eq. (2.35) reduces to

F = rg ÚÚ h dA = r g sin q ÚÚ y dA (2.36)

where h is the vertical depth of the elemental area dA from the free surface and the

distance y is measured from the x-axis, the line of intersection between the

extension of the inclined plane and the free surface (Fig. 2.13a). The ordinate of

the centre of area of the plane surface A is defined as

yc =
1

A ÚÚ y dA (2.37)

Hence from Eqs (2.36) and (2.37), we get

F = r g yc sin q A = r g hc A (2.38)

where hc (= yc sin q) is the vertical depth (from free surface) of centre of area c.

Equation (2.38) implies that the hydrostatic thrust on an inclined plane is equal

to the pressure at its centroid times the total area of the surface, i.e. the force that

would have been experienced by the surface if placed horizontally at a depth hc

from the free surface (Fig. 2.13b).

The point of action of the resultant force on the plane surface is called the

centre of pressure cp. Let xp and yp be the distances of the centre of pressure from

the y and x axes respectively. Equating the moment of the resultant force about

the x axis to the summation of the moments of the component forces, we have

yp F = Ú y dF = rg sin q ÚÚ y2 dA (2.39)

Solving for yp from Eq. (2.39) and replacing F from Eq. (2.36), we can write

yp =

2 d

d

A

A

y A

y A

ÚÚ

ÚÚ
(2.40)

In the same manner, the x coordinate of the centre of pressure can be obtained

by taking moment about the y-axis. Therefore,

xp F = Ú x dF = rg sin q ÚÚ xy dA

from which,

xp =

d

d

A

A

xy A

y A

ÚÚ

ÚÚ
(2.41)

The two double integrals in the numerators of Eqs (2.40) and (2.41) are the

moment of inertia about the x-axis Ixx and the product of inertia Ixy about x and y

axis of the plane area respectively. By applying the theorem of parallel axis,
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Ixx = ÚÚ y2 dA = Ix¢x¢ + A y2
c (2.42)

Ixy = ÚÚ xy dA = Ix¢y¢ + A xc yc (2.43)

where, Ix¢x¢ and Ix¢y¢ are the moment of inertia and the product of inertia of the

surface about the centroidal axes (x¢ � y¢), xc and yc are the coordinates of the

centre of area c with respect to x � y axes.

With the help of Eqs (2.42), (2.43) and (2.37), Eqs (2.40) and (2.41) can be

written as

yp =
I

A y
yx x

c
c

¢ ¢ + (2.44a)

xp =
I

A y
x

x y

c
c

¢ ¢ + (2.44b)

The first term on the right hand side of the Eq. (2.44a) is always positive.

Hence, the centre of pressure is always at a higher depth from the free surface

than that at which the centre of area lies. This is obvious because of the typical

variation of hydrostatic pressure with the depth from the free surface. When the

plane area is symmetrical about the y¢ axis, Ix¢y¢ = 0, and xp = xc.

2.7.2 Curved Surfaces

On a curved surface, the direction of the normal changes from point to point, and

hence the pressure forces on individual elemental surfaces differ in their

directions. Therefore, a scalar summation of them cannot be made. Instead, the

resultant thrusts in certain directions are to be determined and these forces may

then be combined vectorially.

An arbitrary submerged curved surface is shown in Fig. 2.14. A rectangular

Cartesian coordinate system is introduced whose xy plane coincides with the free

Fig. 2.14 Hydrostatic thrust on a submerged curved surface
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surface of the liquid and z-axis is directed downward below the x � y plane.

Consider an elemental area dA at a depth z from the surface of the liquid. The

hydrostatic force on the elemental area dA is

dF = r g z dA (2.45)

and the force acts in a direction normal to the area dA. The components of the

force dF in x, y and z directions are

dFx = l dF = l rgz dA (2.46a)

dFy = m dF = m rgz dA (2.46b)

dFz = n dF = n rgz dA (2.46c)

Where l, m and n are the direction cosines of the normal to dA. The components

of the surface element dA projected on yz, xz and xy planes are, respectively

dAx = l dA (2.47a)

dAy = m dA (2.47b)

dAz = n dA (2.47c)

Substituting Eqs (2.47a�2.47c) into (2.46) we can write

dFx = rg z dAx (2.48a)

dFy = rg z dAy (2.48b)

dFz = rg z dAz (2.48c)

Therefore, the components of the total hydrostatic force along the coordinate

axes are

Fx =

A

ÚÚ rg z d Ax = rg zc Ax (2.49a)

Fy =

A

ÚÚ rg z d Ay = rg zc Ay (2.49b)

Fz =

A

ÚÚ rg z dAz (2.49c)

where zc is the z coordinate of the centroid of area Ax and Ay (the projected areas

of curved surface on yz and xz plane respectively). If zp and yp are taken to be the

coordinates of the point of action of Fx on the projected area Ax on yz plane,

following the method discussed in 2.7.1, we can write

zp =
21

d
yy

x
x c x c

I
z A

A z A z
=ÚÚ (2.50a)

yp =
1

d
yz

x
x c x c

I
yz A

A z A z
=ÚÚ  (2.50b)

where Iyy is the moment of inertia of area Ax about y-axis and Iyz is the product of

inertia of Ax with respect to axes y and z. In the similar fashion, z¢p and x¢p, the

coordinates of the point of action of the force Fy on area Ay, can be written as

z¢p =
21

d xx
y

y c y c

I
z A

A z A z
=ÚÚ (2.51a)
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x¢p =
1

d xz
y

y c y c

I
xz A

A z A z
=ÚÚ (2.51b)

where Ixx is the moment of inertia of area Ay about x axis and Ixz is the product of

inertia of Ay about the axes x and z.

We can conclude from Eqs (2.49), (2.50) and (2.51) that for a curved surface,

the component of hydrostatic force in a horizontal direction is equal to the

hydrostatic force on the projected plane surface perpendicular to that direction

and acts through the centre of pressure of the projected area. From Eq. (2.49c), the

vertical component of the hyrostatic force on the curved surface can be written as

Fz = d zg z A gVr r=ÚÚ (2.52)

where V is the volume of the body of liquid within the region extending vertically

above the submerged surface to the free surface of the liquid. Therefore, the vertical

component of hydrostatic force on a submerged curved surface is equal to the

weight of the liquid volume vertically above the solid surface to the free surface of

the liquid and acts through the centre of gravity of the liquid in that volume.

In some instances (Fig. 2.15), it is only the underside of a curved surface which

is subjected to hydrostatic pressure. The vertical component of the hydrostatic

thrust on the surface in this case acts upward and is equal, in magnitude, to the

weight of an imaginary volume of liquid extending from the surface up to the

level of the free surface. If a free surface does not exist in practice, an imaginary

free surface may be considered

(Fig. 2.16a, 2.16b) at a height p/rg

above any point where the pressure p is

known. The hydrostatic forces on the

surface can then be calculated by

considering the surface as a submerged

one in the same fluid with an imaginary

free surface as shown.

Fig. 2.15 Hydrostatic thrust on the

underside of a curved

surface

Fig. 2.16 Hydrostatic force exerted on a curved surface by a fluid

without a free surface

Imaginary 

volume of

liquid

Fz
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2.8 BUOYANCY

When a body is either wholly or partially immersed in a fluid, the hydrostatic lift

due to the net vertical component of hydrostatic pressure forces experienced by

the body is called the buoyant force and the phenomenon is called buoyancy.

Consider a solid body of arbitrary shape completely submerged in a homogene-

ous liquid as shown in Fig. 2.17. Hydrostatic pressure forces act on the entire

surface of the body.

x

z2

z1

p1

p2
x

xB

dF1

dF2

dAz

FB

B

z

o Free surface patm

Fig. 2.17 Buoyant force on a submerged body

It is evident according to the earlier discussion in Section 2.7, that the resultant

horizontal force in any direction for such a closed surface is always zero. To

calculate the vertical component of the resultant hydrostatic force, the body is

considered to be divided into a number of elementary vertical prisms. The vertical

forces acting on the two ends of such a prism of cross-section dAz (Fig. 2.17) are

respectively

dF1 = (patm + p1) dAz = (patm + rgz1)dAz (2.53a)

dF2 = (patm + p2) dAz = (patm + rgz2) dAz (2.53b)

Therefore, the buoyant force (the net vertically upward force) acting on the

elemental prism is

dFB = dF2 � dF1 = rg (z2 � z1) dAz = rgd (2.54)

where d  is the volume of the prism.

Hence the buoyant force FB on the entire submerged body is obtained as

FB = d

V

g VrÚÚÚ  = rgV (2.55)

where  is the total volume of the submerged body. The line of action of the force

FB can be found by taking moment of the force with respect to z-axis. Thus
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xB FB = Ú x dFB (2.56)

Substituting for dFB and FB from Eqs (2.54) and (2.55) respectively into

Eq. (2.56), the x coordinate of the centre of buoyancy is obtained as

xB =
1

d

V

x V
V

ÚÚÚ (2.57)

which is the centroid of the displaced volume. It is found from Eq. (2.55) that the

buoyant force FB equals to the weight of liquid displaced by the submerged body

of volume V. This phenomenon was discovered by Archimedes and is known as

the Archimedes principle. This principle states that the buoyant force on a

submerged body is equal to the weight of liquid displaced by the body, and acts

vertically upward through the centroid of the displaced volume. Thus the net

weight of the submerged body, (the net vertical downward force experienced by

it) is reduced from its actual weight by an amount that equals to the buoyant

force. The buoyant force of a partially immersed body, according to Archimedes

principle, is also equal to the weight of the displaced liquid. Therefore the buoyant

force depends upon the density of the fluid and the submerged volume of the body.

For a floating body in static equilibrium and in the absence of any other external

force, the buoyant force must balance the weight of the body.

2.9 STABILITY OF UNCONSTRAINED BODIES IN FLUID

2.9.1 Submerged Bodies

For a body not otherwise restrained, it is important to know whether it will rise or

fall in a fluid, and also whether an orginally vertical axis in the body will remain

vertical. When a body is submerged in a liquid, the equilibrium requires that the

weight of the body acting through its cetre of gravity should be colinear with an

equal hydrostatic lift acting through the centre of buoyancy. In general, if the

body is not homogeneous in its distribution of mass over the entire volume, the

location of centre of gravity G does not coincide with the centre of volume, i.e.,

the centre of buoyancy B. Depending upon the relative locations of G and B, a

floating or submerged body attains different states of equilibrium, namely, (i)

stable equilibrium (ii) unstable equilibrium and (iii) neutral equilibrium.

A body is said to be in stable equilibrium, if it, being given  a small angular

displacement and hence released, returns to its original position by retaining the

originally vertical axis as vertical. If, on the other hand, the body does not return

to its original position but moves further from it, the equilibrium is unstable. In

neutral equilibrium, the body having been given a small displacement and then

released will neither return to its original position nor increase its displacement

further, it will simply adopt its new position. Consider a submerged body in

equilibrium whose centre of gravity is located below the centre of buoyancy

(Fig. 2.18a). If the body is tilted slightly in any direction, the buoyant force and

the weight always produce a restoring couple trying to return the body to its

original position (Fig. 2.18b, 2.18c). On the other hand, if point G is above point
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B (Fig. 2.19a), any disturbance from the equilibrium position will create a

destroying couple which will turn the body away from its original position

(Figs 2.19b, 2.19c). When the centre of gravity G and centre of buoyancy B

coincides, the body will always assume the same position in which it is placed

(Fig. 2.20) and hence it is in neutral equilibrium. Therefore, it can be concluded

from the above discussion that a submerged body will be in stable, unstable or

neutral equilibrium if its centre of gravity is below, above or coincident with the

centre of buoyancy respectively (Fig. 2.21).
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Fig. 2.18 A submerged body in stable equilibrium
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Fig. 2.19 A submerged body in unstable equilibrium
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Fig. 2.20 A submerged body in neutral equilibrium
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Fig. 2.21 States of equilibrium of a submerged body

2.9.2 Floating Bodies

The condition for angular stability of a floating body is a little more complicated.

This is because, when the body undergoes an angular displacement about a

horizontal axis, the shape of the immersed volume changes and so the centre of

buoyancy moves relative to the body. As a result, stable equlibrium can be

achieved, under certain condition, even when G is above B. Figure 2.22a

illustrates a floating body�a boat, for example, in its equilibrium position. The

force of buoyancy FB is equal to the weight of the body W with the centre of

gravity G being above the centre of buoyancy in the same vertical line.

Figure 2.22b shows the situation after the body has undergone a small angular

displacement q with respect to the vertical axis. The centre of gravity G remains
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unchanged relative to the body (This is not always true for ships where some of
the cargo may shift during an angular displacement). During the movement, the
volume immersed on the right hand side increases while that on the left hand side
decreases. Therefore the centre of buoyancy (i.e., the centroid of immersed vol-
ume) moves towards the right to its new position B¢. Let the new line of action of
the buoyant force (which is always vertical) through B¢ intersects the axis BG
(the old vertical line containing the centre of gravity G and the old centre of
buoyancy B) at M. For small values of q, the point M is practically constant in
position and is known as metacentre. For the body shown in Fig. 2.22, M is above
G, and the couple acting on the body in its displaced position is a restoring couple
which tends to turn the body to its original position. If M were below G, the
couple would be an overturning couple and the original equilibrium would have
been unstable. When M coincides with G, the body will assume its new position
without any further movement and thus will be in neutral equilibrium. Therefore,
for a floating body, the stability is determined not simply by the relative position
of B and G, rather by the relative position of M and G. The distance of metacentre
above G along the line BG is known as metacentric height GM which can be

written as
GM = BM � BG

Hence the condition of stable equilibrium for a floating body can be expressed

in terms of metacentric height as follows:

GM > 0 (M is above G) Stable equilibrium

GM = 0 (M coinciding with G) Neutral equilibrium

GM < 0 (M is below G) Unstable equilibrium

The angular displacement of a boat or ship about its longitudinal axis is known

as �rolling� while that about its transverse axis is known as �pitching�.

2.9.3 Experimental Determination of
Metacentric Height

A simple experiment is usually conducted to determine the metacentric height.

Suppose that for the boat, shown in Fig. 2.23, the metacentric height

W
W

M

W = FB

Equilibrium position Tilted position

B

(a) (b)

B B
FB

FB

G G

Fig. 2.22 A floating body in stable equilibrium
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corresponding to �roll� about the longitudinal axis (the axis perpendicular to the

plane of the figure) is required. Let a weight P be moved transversely across the

deck (which was initially horizontal) so that the boat heels through a small angle

q and comes to rest at this new position of equilibrium. The new centres of gravity

and buoyancy are therefore again vertically in line. The movement of the weight

P through a distance x in fact causes a parallel shift of the centre of gravity (centre

of gravity of the boat including P) from G to G¢.

W

P

M

P

X

B

(a) (b)

B B

G

FB

G G

Fig. 2.23 Experimental determination of metacentric height

Hence, P ◊ x = W GG¢
Again, GG¢ = GM tan q

Therefore, GM =
P x

W

◊
cot q (2.58)

The angle of heel q can be measured by the movement of a plumb line over a

scale. Since the point M corresponds to the metacentre for small angles of heel

only, the true metacentric height is the limiting value of GM as q Æ 0. This may

be determined from a graph of nominal values of GM calculated from Eq. (2.58)

for various values of q (positive and negative).

It is well understood that the metacentric height serves as the criterion of

stability for a floating body. Therefore it is desirable to establish a relation

between the metacentric height and the geometrical shape and dimensions of a

body so that one can determine the position of metacentre beforehand and then

construct the boat or the ship accordingly. This may be done simply by

considering the shape of the hull. Figure 2.24a shows the cross-section,

perpendicular to the axis of rotation, in which the centre of buoyancy B lies at the

initial equilibrium position. The position of the body after a small angular

displacement is shown in Fig. 2.24b. The section on the left, indicated by cross-

hatching, has emerged from the liquid, whereas the cross-hatched section on the

right has moved down into the liquid. It is assumed that there is no overall vertical

movement; thus the vertical equilibrium is undisturbed. As the total weight of

the body remains unaltered so does the volume immersed, and therefore the

volumes corresponding to the cross-hatched sections are equal. This is so if

the planes of flotation for the equilibrium and displaced positions intersect along
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the centroidal axes of the planes. The coordinate axes are chosen through O as

origin. OY is perpendicular to the plane of Fig 2.24a and 2.24b, OY lies in the

original plane of flotation (Fig. 2.24c) and OZ is vertically downwards in the

original equilibrium position. The total immersed volume is considered to be

made up of elements each underneath an area dA in the plane of flotation as shown

in Figs 2.24a and 2.24c. The centre of buoyancy by definition is the centroid of

the immersed volume (the liquid being assumed homogeneous). The x coordinate

xB of the centre of buoyancy may therefore be determined by taking moments of

elemental volumes about the yz plane as,

xB = ( d )z A xÚ (2.59)

Fig. 2.24 Analysis of metacentric height

After displacement, the depth of each elemental volume immersed is z + x tan q
and hence the new centre of buoyancy x¢B can be written as

x¢B = Ú (z + x tan q ) dA x (2.60)

Subtracting Eq. (2.59) from Eq. (2.60), we get

(x¢B � xB) = Ú x2 tan q dA = tan q Ú x2 dA (2.61)
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The second moment of area of the plane of flotation about the axis-Oy is

defined as

Iyy = Ú x2 dA (2.62)

Again, for small angular displacements,

x¢B � xB = BM tan q (2.63)

With the help of Eqs (2.62) and (2.63), Eq. (2.61) can be written as

BM =
I

V

yy

=

Second moment of area of the plane of flotation about
the centroidal axis perpendicular to plane of rotation

Immersed volume
(2.64)

Hence, GM =
I

V

yy
 � BG (2.65)

The length BM is sometimes known as metacentric radius; it must not be

confused with the metacentric height GM. For rolling movement of a ship, the

centroidal axis about which the second moment is taken is the longitudinal one,

while for pitching movements, the appropriate axis is the transverse one. For

typical sections of the boat, the second moment of area about the transverse axis

is much greater than that about the longitudinal axis. Hence, the stability of a boat

or ship with respect to its rolling is much more important compared to that with

respect to pitching. The value of BM for a ship is always affected by a change of

loading whereby the immersed volume alters. If the sides are not vertical at the

water-line, the value of Iyy may also change as the vessel rises or falls in the

water. Therefore, floating vessels must be designed in a way so that they are

stable under all conditions of loading and movement.

2.9.4 Floating Bodies Containing Liquid

If a floating body carrying liquid with a free surface undergoes an angular

displacement, the liquid will also move to keep its free surface horizontal. Thus

not only does the centre of buoyancy B move, but also the centre of gravity G of

the floating body  and its contents move in the same direction as the movement of

B. Hence the stability of the body is reduced. For this reason, liquid which has to

be carried in a ship is put into a number of separate compartments so as to

minimize its movement within the ship.

2.9.5 Period of Oscillation

It is observed from the foregoing discussion that the restoring couple caused by

the buoyant force and gravity force acting on a floating body displaced from its

equilibrium position is W ◊ GM sin q (Fig. 2.22). Since the torque equals to mass

moment of inertia (i.e., second moment of mass) multiplied by angular

acceleration, it can be written

W(GM) sin q = � IM (d2q/dt2) (2.66)
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where IM represents the mass moment of inertia of the body about its axis of

rotation. The minus sign in the RHS of Eq. (2.66) arises since the torque is a

retarding one and decreases the angular acceleration. If q is small, sin q ª q and

hence Eq. (2.66) can be written as

d

d

2q
q

t

W GM

IM
2

+
◊

 = 0 (2.67)

Equation (2.67) represents a simple harmonic motion. The time period (i.e.,

the time of a complete  oscillation from one side to the other and back again)

equals to 2p(IM /W ◊ GM)1/2. The oscillation of the body results in a flow of the

liquid around it and this flow has been disregarded here. In practice, of course,

viscosity in the liquid introduces a damping action which quickly suppresses the

oscillation unless further disturbances such as waves cause new angular

displacements.

The metacentric height of ocean-going vessel is usually of the order of 0.3 m to

1.2 m. An increase in the metacentric height results in a better stability but

reduces the period of roll, and so the vessel is less comfortable for passengers. In

cargo vessels the metacentric height and the period of roll are adjusted by

changing the position of the cargo. If the cargo is placed further from the centre-

line, the moment of inertia of the vessel and consequently the period may be

increased with little sacrifice of stability. On the other hand, in warships and

racing yachts, stability is more important than comfort, and such vessels have

larger metacentric heights.

Summary

∑ Forces acting on a fluid element in isolation are of two types; (a) Body force and

(b) Surface force. Body forces act over the entire volume of the fluid element and

are caused by external agencies, while surface forces, resulting from the action of

surrounding mass on the fluid element, appear on its surfaces.

∑ Normal stresses at any point in a fluid at rest, being directed towards the point

from all directions, are of equal magnitude. The scalar magnitude of the stress is

known as hydrostatic or thermodynamic pressure.

∑ The fundamental equations of fluid statics are written as ∂ p/∂ x = 0, ∂ p/∂ y = 0

and ∂ p/∂ z = � rg with respect to a cartesian frame of reference with x � y plane

as horizontal and axis z being directed vertically upwards. For an incompressible

fluid, pressure p at a depth h below the free surface can be written as p = p0 + rgh,

where p0 is the local atmospheric pressure.

∑ At sea-level, the international standard atmospheric pressure has been chosen as

patm = 101.32 kN/m2. The pressure expressed as the difference between its value

and the local atmospheric pressure is known as gauge pressure.

∑ Piezometer tube measures the gauge pressure of a flowing liquid in terms of the

height of liquid column. Manometers are devices in which columns of a suitable

liquid are used to measure the difference in pressure between two points or

between a certain point and the atmosphere. A simple U-tube manometer is

modified as inclined tube manometer, inverted tube manometer and micro
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manometer to measure a small difference in pressure through a relatively large

deflection of liquid columns.

∑ The hydrostatic force on any one side of a submerged plane surface is equal to the

product of the area and the pressure at the centre of area. The force acts in a

direction perpendicular to the surface and its point of action, known as pressure

centre, is always at a higher depth than that at which the centre of area lies. The

distance of centre of pressure from the centre of area along the axis of symmetry

is given by yp � yC = Ix¢x¢/Ayc.

∑ For a curved surface, the component of hydrostatic force in any horizontal

direction is equal to the hydrostatic force on the projected plane surface on a

vertical plane perpendicular to that direction and acts through the centre of

pressure for the projected plane area. The vertical component of hydrostatic force

on a submerged curved surface is equal to the weight of the liquid volume

vertically above the submerged surface to the level of the free surface of liquid

and acts through the centre of gravity of the liquid in that volume.

∑ When a solid body is either wholly or partially immersed in a fluid, the

hydrostatic lift due to net vertical component of the hydrostatic pressure forces

experienced by the body is called the buoyant force. The buoyant force on a

submerged or floating body is equal to the weight of liquid displaced by the body

and acts vertically upward through the centroid of displaced volume known as

centre of buoyancy.

∑ The equilibrium of floating or submerged bodies requires that the weight of the

body acting through its centre of gravity has to be colinear with an equal buoyant

force acting through the centre of buoyancy. A submerged body will be in stable,

unstable or neutral equilibrium if its centre of gravity is below, above or coincid-

ent with the centre of buoyancy respectively. Metacentre of a floating body is

defined as the point of intersection of the centre line of cross-section containing

the centre of gravity and centre of buoyancy with the vertical line through new

centre of buoyancy due to any small angular displacement of the body. For stable

equilibrium of floating bodies, metacentre M has to be above the centre of gravity

G. M coinciding with G or lying below G refers to the situation of neutral and

unstable equilibrium respectively. The distance of metacentre from centre of

gravity along the centre line of cross-section is known as metacentric height and

is given by MG = (Iyy / ) � BG.

Solved Examples

Example 2.1 What is the intensity of pressure in the ocean at a depth of 1500 m,

assuming (a) salt water is incompressible with a specific weight of 10050 N/m3 and

(b) salt water is compressible and weighs 10050 N/m3 at the free surface? E (bulk

modulus of elasticity of salt water) = 2070 MN/m2 (constant).

Solution (a) For an incompressible f luid, the intensity of pressure at a depth, according

to Eq. (2.16), is

p (pressure in gauge) = rgh = 10050 (1500) N/m
2
 = 15.08 MN/m

2
 gauge

(b) The change in pressure with the depth of liquid h from free surface can be written

according to Eq. (2.14) as
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d

d

p

h
 = rg (2.68)

Again from the definition of bulk modulus of elasticity E (Eq. (1.5)),

dp = E 
dr

r
(2.69)

Integrating equation (2.69), for a constant value of E, we get

p = E ln r + C (2.70)

The integration constant C can be found out by considering p = p0 and r = r0 at the

free surface.

Therefore Eq. (2.70) becomes

p � p0 = E ln 
r

r 0

F

HG
I

KJ
(2.71)

Substitution of dp from Eq. (2.68) into Eq. (2.69) yields

dh =
E d

g

r

r2

After integration

h = - +
E

g
C

r
1

The constant C1 is found out from the condition that, r = r0 at h = 0 (free surface)

Hence, h =
E

g

1 1

0r r
-

F

HG
I

KJ

from which
r

r 0

 =
E

E h g- r0

Substituting this value of r/r0 in Eq. (2.71), we have

p � p0 = E ln 
E

E h g� r0

F

HG
I

KJ

Therefore,

p (in gauge) = 2.07 ¥ 10
9
 ln 

2 07 10

2 07 10 10050 1500

9

9

.

. � ( )( )

¥
¥

L

N
M

O

Q
P  N/m

2
 gauge

= 15.13 MN/m2
 gauge

Example 2.2 For a gauge reading at A of � 17200 Pa (Fig. 2.25), determine (a) the

elevation of the liquids in the open piezometer columns E, F, G, and (b) the deflection of

mercury in the U-tube gauge. The elevations EL of the interfaces, as shown in Fig. 2.25,

are measured from a fixed reference datum.
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D
h1

C

El.6.0

El. 4.0

Spgr: 1.600

Sp gr: 13.57

El.8.0

Water

Spgr = 0.700 

Liquid I

Liquid II

Air

El.11.6

E1.15.0

El.20.0 A E

L

N

M

Q

R

F G

h
K

H

Fig. 2.25 Piezometer tubes connected to a tank containing different liquids

Solution (a) Since the specific weight of air (= 12 N/m3) is very small compared to that

of the liquids, the pressure at elevation 15.0 may be considered to be �17200 Pa gauge by

neglecting the weight of air above it without introducing any significant error in the

calculations.

For column E: Since the pressure at H is below the atmospheric pressure, the elevation

of liquid in the piezometer E will be below H, and assume this elevation is L as shown in

Fig. 2.25.

From the principle of hydrostatics, pK = pL

Then patm � 17200 + (0.700 ¥ 9.81 ¥ 10
3
)h = patm

(where patm is the atmospheric pressure)

or h = 2.5 m

Hence the elevation at L is 15 � 2.5 = 12.5 m

For column F: Pressure at EL11.6 = Pressure at EL15.0 + Pressure of the liquid I

= � 17200 + (0.7 ¥ 9.81 ¥ 103) (15 � 11.6)

= 6148 Pa gauge

which must equal the pressure at M.

The height of water column corresponding to this pressure is 
6148

9810
 = 0.63 m, and

therefore the water column in the piezometer F will rise 0.63 m above M.

Hence the elevation at N is (11.6 + 0.63) = 12.23 m

For column G : Pressure at

EL8.0 = Pressure at EL11.6 + pressure of 3.6 m of water

= 6148 + 9.81 ¥ 3.6 ¥ 10
3
 = 41464 Pa
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which must be the pressure at R and equals to a column of

41464

1 6 9810. ¥
 = 2.64 m of liquid II

Therefore, the liquid column in piezometer G will rise 2.64 m above R and elevation

at Q is (8.0 + 2.64) = 10.64 m.

(b) For the U-tube gauge,

Pressure at D = Pressure at C

9810 ¥ 13.57 h1 = Pressure at EL11.6 + Pressure of 7.6 m of water

or, 13.57 h1 = 0.63 + 7.6

from which h1 = 0.61 m

Example 2.3 A typical differential manometer is attached to two sections A and B

in a horizontal pipe through which water is flowing at a steady rate (Fig. 2.26). The

deflection of mercury in the manometer is 0.6 m with the level nearer A being the lower

one as shown in the figure. Calculate the difference in pressure between Sections A and

B. Take the densities of water and mercury as 1000 kg/m
3
 and 13570 kg/m

3
 respectively.

Water
Mercury

0.6 m
G C

A B

D

E F

z

Fig. 2.26 A differential manometer measuring pressure drop between

two sections in the flow of water through a pipe

Solution

pC (Pressure at C) = pD (Pressure at D) (2.72)

Again pC = pG (Pressure at G) = pA � rw g z (2.73)

and pD = pE (Pressure at E) + Pressure of the column ED of mercury

= pF (Pressure at F) + rm g (0.6)

= pB � (z + 0.6) rw  g + 0.6 rm g (2.74)

With the help of equations (2.73) and (2.74), the equation (2.72) can be written as,

pA � rw gz = pB � (z + 0.6) rw g + 0.6 rmg

or pA � pB = 0.6g (rm � rw) = 0.6 ¥ 9.81 (13.57 � 1) ¥ 103 Pa

= 74 kPa

Example 2.4 An inclined tube manometer measures the gauge pressure ps of a

system S (Fig. 2.27). The reservoir and tube diameters of the manometer are 50 mm and

5 mm respectively. The inclination angle of the tube is 30°. What will be the percentage

error in measuring pS if the reservoir deflection is neglected.
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R

S

ps

psb
c D

R sin 

= 30°
ch

b

Fig. 2.27 An inclined tube manometer measuring gauge pressure of a system

Solution Let, with the application of pressure pS, the level of gauge fluid in the reservoir

lowers down from bb to cc

Now, pressure at c = Pressure at D

or pS = rg ◊ g (R sin q + h) (2.75)

where rg is the density of the gauge fluid. From continuity of the fluid in both the limbs,

A ◊ h = a ◊ R

or h =
a R

A
(2.76)

where A and a are the cross-sectional areas of the reservoir and the tube respectively.

Substituting for h from Eq. (2.76) in Eq. (2.75)

pS = rgg R sin q 
1

1
sin

a

A q

Ê ˆ
+Á ˜Ë ¯

(2.77)

Let the pressure pS be measured as pS¢ from the gauge reading R only (neglecting the

reservoir deflection h).

Then pS¢ = rg g R sin q (2.78)

The percentage error  in measuring pS as pS¢ can now be calculated with the help of

Eqs (2.77) and (2.78) as

e =
( � ) 100 1

100

1 sin

S S

S

p p

Ap

a
q

¥¢
= ¥

Ê ˆ+Á ˜Ë ¯

=
2

1
100 1.96%

50 1
1

5 2

¥ =
È ˘Ê ˆ+Í ˙Á ˜Ë ¯Í ˙Î ˚

Example 2.5 Oil of specific gravity 0.800 acts on a vertical triangular area whose

apex is in the oil surface. The triangle is isosceles of 3 m high and 4 m wide. A vertical

rectangular area of 2 m high is attached to the 4 m base of the triangle and is acted upon

by water. Find the magnitude and point of action of the resultant hydrostatic force on the

entire area.

Solution The submerged area under oil and water is shown in Fig. 2.28.
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O x O

3 mdz

z

2 m

P P Oil spgr = 0.8

Water

F F F= +1 2

F2

F1

H

R R

Q Q

y
4 m

Fig. 2.28 The submerged surface under oil and water as described in Example 2.5

The hydrostatic force F1 on the triangular area

= 9.81 ¥ 0.8 ¥ 10
3
 ¥ 

2 1
3 3 4

3 2

Ê ˆ Ê ˆ¥ ¥ ¥ ¥Á ˜ Á ˜Ë ¯ Ë ¯ N = 94.18 kN

The hydrostatic force F2 on the rectangular area

= 9.81 ¥ 103 (3 ¥ 0.8 + 1) ¥ (2 ¥ 4) N = 266.83 kN

Therefore the resultant force on the entire area

F = F1 + F2 = 94.18 + 266.83 = 361 kN

Since the vertical line through the apex 0 is the axis of symmetry of the entire area, the

hydrostatic forces will always act through this line. To find the points of action of the

forces F1 and F2 on this line, the axes Ox and Oy are taken as shown in Fig. 2.28.

For the triangular area, moments of forces on the elemental strips of thickness dz

about Ox give

F1 ◊ OP =

3

0

Ú 9.81 ¥ 103 (0.8z) (Hdz.z)

Again from geometry, H =
4

3
 z

Hence, OP =

3
3 3

0
3

4
9.81 10 0.8 d

3

94.18 10

z z
Ê ˆ¥ ¥ Á ˜Ë ¯

¥

Ú
 = 2.25 m

In a similar way, the point of action of the force F2 on the rectangular area is found out as

OQ =

5
3

3
3

9.81 10 {(3 0.8) ( 3)} (4 d )

266.83 10

z z z¥ ¥ + -

¥

Ú
 = 4.1 m

Finally the point of action R (Fig. 2.28) of the resultant force F is found out by taking

moments of the forces F1 and F2 about O as
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OR =
94 18 2 25 266 83 4 1

361

. . . .¥ + ¥
 = 3.62 m

Example 2.6 Figure 2.29 shows a flash board. Find the depth of water h at the

instant when the water is just ready to tip the flash board.

h

y p

y c

h/2

60 

60 

G

1
m

e

Hinge
O

B

Fig. 2.29 A flash board in water

Solution The flash board will tip if the hydrostatic force on the board acts at a point

away from the hinge towards the free surface. Therefore, the depth of water h for which

the hydrostatic force Fp passes through the hinge point O is the required depth when

water is just ready to tip the board. Let G be the centre of gravity of the submerged part of

the board (Fig. 2.29).

Then, BG =
h h/

sin

2

60 3∞
=

If yp and yc are the distances of the pressure centre (point of application of the

hydrostatic force Fp) and the centre of gravity respectively from the free surface along the

board, then from Eq. (2.44a)

e = yp � yc = 

3
(2 / 3)

2
12

3 3

h

h hÊ ˆ
Á ˜Ë ¯

 = h/ ( )3 3 (2.79)

(considering unit length of the board)

Again from the geometry,

e = BG � BO = ( )/ 3h  � 1 (2.80)

Equating the two expressions of e from Eqs (2.79) and (2.80), we have

h/ ( )3 3  = h/ 3  � 1

from which h =
3 3

2
 = 2.6 m

Example 2.7 The plane gate (Fig. 2.30) weighs 2000 N/m length normal to the

plane of the figure, with its centre of gravity 2 m from the hinge O. Find h as a function of

q for equilibrium of the gate.
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Water

G

h

F
P

O

W = 2000 N/m

4 m

y
p

2 m
Fig. 2.30 A plain gate in equilibrium under hydrostatic force due to water

Solution Let F be the hydrostatic force acting on the gate at point P

Then F = Pressure at the centroid of the submerged portion of gate
¥ submerged area of the gate

=
h h h

2
9 81 10 1

49053
2

¥ ¥ ¥ ¥ =.
sin sinq q

(2.81)

The distance of the pressure centre P from the free surface along the gate is found out,

according to Eq. (2.44), as

yp =
31 ( /sin ) 1 1 2

2 sin sin 2 6 3 sin
12 1

sin 2 sin

h h h h

h h

q

q q q

q q

¥ Ê ˆ+ = + =Á ˜Ë ¯Ê ˆ
¥ ¥ Á ˜Ë ¯

Now OP =
h h h

sin sin sinq q q
- =

2

3

1

3

For equilibrium of the gate, moment of all the forces about the hinge O will be zero.

Hence,
1

3 sin

h
F

q

Ê ˆ
Á ˜Ë ¯

 � 2000 (2 cos q) = 0

Substituting F from Eq. (2.81),

2
4905 1

sin 3 sin

h h

q q

Ê ˆ
Á ˜Ë ¯

 � 4000 cos q = 0

from which h = 1.347 (sin2 q cos q)1/3

Example 2.8 A circular cylinder of 1.8 m diameter and 2.0 m long is acted upon by

water in a tank as shown in Fig. 2.31a. Determine the horizontal and vertical components

of hydrostatic force on the cylinder.

Solution Let us consider, at a depth z from the free surface, an elemental surface on the

cylinder that subtends an angle dq at the centre. The horizontal and vertical components

of hydrostatic force on the elemental area can be written as

dFH = 9.81 ¥ 103 {0.9 (1 + cos q)} (0.9 dq ¥ 2) sin q

and dFV = 9.81 ¥ 10
3
 {0.9 (1 + cos q)} (0.9 dq ¥ 2) cos q
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Therefore, the horizontal and vertical components of the net force on the entire

cylindrical surface in contact with water are given by

FH =

0

p

Ú 9.81 ¥ 103 {0.9(1 + cos q)} 1.8 sin q dq N = 31.78 kN

FV =

0

p

Ú 9.81 ¥ 10
3
 {0.9(1 + cos q)} 1.8 cos q dq N

= 9.81 ¥ 10
3
 ¥ 0.9 ¥ 1.8 

2

0 0

cos d cos d

p p

q q q q
È ˘

+Í ˙
Í ˙Î ˚
Ú Ú

= 9.81 ¥ 103 ¥ 0.9 ¥ 1.8 0 N
2

pÈ ˘+Í ˙Î ˚
= 24.96 kN

Alternative method:

The horizontal component of the hydrostatic force on surface ACB (Fig. 2.31b) is equal to

the hydrostatic force on a projected plane area of 1.8 m high and 2 m long.

Therefore, FH = 9.81 ¥ 10
3
 ¥ 0.9 ¥ (1.8 ¥ 2) N = 31.78 kN

dA

dF

OO

B

C

D A

0.9 m

d
z

1
.8

 m

1
.8

 m

Fig. 2.31a A circular cylinder in a Fig. 2.31b A circular cylinder in a

tank of water tank of water

The downward vertical force acting on surface AC is equal to the weight of water

contained in the volume CDAC. The upward vertical force acting on surface CB is equal

to the weight of water corresponding to a volume BCDAB.

Therefore the net upward vertical force on surface ACB

= Weight of water corresponding to volume of BCDAB
� Weight of water in volume CDAC

= Weight of water corresponding to a volume of BCAB
(half of the cylinder volume)

Hence, FV = 9.81 ¥ 10
3
 ¥ 

1

2
 {3.14 ¥ (0.9)

2
 ¥ 2}N = 24.96 kN

Example 2.9 A parabolic gate AB is hinged at A and latched at B as shown in

Fig. 2.32. The gate is 3 m wide. Determine the components of net hydrostatic force on the

gate exerted by water.
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Fig. 2.32 A parabolic gate under hydrostatic pressure

Solution The hydrostatic force on an elemental portion of the gate of length ds

(Fig. 2.32) can be written as

dF = 9.81 ¥ 103 ¥ (1.5 � z) ds ¥ 3

The horizontal and vertical components of the force dF are

dFH = 9.81 ¥ 103 ¥ 3(1.5 � z) ¥ ds cos q

= 9.81 ¥ 3 ¥ (1.5 � z) ¥ 103 dz

and

dFV = 9.81 ¥ 103 ¥ 3(1.5 � z) ¥ ds sin q

= 9.81 ¥ 3 ¥ (1.5 � z) ¥ 10
3
 dx

Therefore, the horizontal component of hydrostatic force on the entire gate

FH =

1.5

0

Ú 9.81 ¥ 3 ¥ (1.5 � z) ¥ 103 dz

= 9.81 ¥ 10
3
 ¥ 

1 5 1 5

2
3

. .¥
¥  N = 33.11 kN

The vertical component of force on the entire gate

FV =

1.5

0

Ú 9.81 ¥ 3 ¥ (1.5 � z) ¥ 10
3
 

2

3
z

Ê ˆ
Á ˜Ë ¯  dz

F
HG
Since x =

1

3

2z  for the gate profile, dx = 
2

3
z  dz

I
KJ

=
2

3
9 81 10

1 5

6
3 11 04

3
3

¥ ¥ ¥ ¥ =.
( . )

.N kN

Example 2.10 A sector gate, of radius 4 m and length 5 m, controls the flow of

water in a horizontal channel. For the equilibrium condition shown in Fig. 2.33,

determine the total thrust on the gate.
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30º

4
m

A

E

F
v

dF
v

dFH

FH

zp

F

dF

C

D O

dA

a

B

h

1 m

dq

q

Fig. 2.33 A sector gate controlling the flow of water in a channel

Solution The horizontal component of the hydrostatic force is the thrust which would

be exerted by the water on a projected plane surface in a vertical plane. The height of this

projected surface is 4 sin 30° m = 2 m and its centroid is (1 + 2/2) m = 2 m below the free

surface.

Therefore, the horizontal component of hydrostatic thrust

FH = r gh A = 1000 ¥ 9.81 ¥ 2 ¥ (5 ¥ 2) N = 196.2 kN

The line of action of FH passes through the centre of �pressure which is at a distance zp

below the free surface, given by (see Eq. 2.44a)

zP = 2 + 
5 2

12 5 2 2

3( )

( )¥ ¥ ¥
 = 2.167 m

The vertical component of the hydrostatic thrust FV

= Weight of imaginary water contained in the volume ABDCEA

Now, Volume ABDCEA = Volume ABDEA + Volume OECO � Volume ODCO

Volume ABDEA = 5 ¥ AB ¥ BD = 5 ¥ (4 � 4 cos 30°) ¥ 1

= 5 ¥ 0.536

Volume OECO = 5 ¥ p ¥ (OC)2 ¥ 30/360

= 5 ¥ p ¥ (4)2 ¥ (30/360)

Volume ODCO = 5 ¥ 1

2
 ¥ 4 sin 30° ¥ 4 cos 30°

= 5 ¥ 1

2
 ¥ 2 ¥ 4 cos 30°

Therefore,

FV = 1000 ¥ 9.81 ¥ 5 
È
Í
Î
(0.536 ¥ 1) + 

2 30
4

360
p

Ê ˆ¥ ¥Á ˜Ë ¯

� 
1

2 4 cos 30
2

˘Ê ˆ¥ ¥ ∞Á ˜˙Ë ¯ ˚
 N = 61.8 kN

The centre of gravity of the imaginary fluid volume ABDCEA is found by taking

moments of the weights of all the elementary fluid volumes about BC. It is 0.237 m to the
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left of BC. The horizontal and vertical components, being co-planar, combine to give a

single resultant force of magnitude F as

F = (FH
2 + FV

2)1/2 = {(196.2)2 + (61.8)2}1/2 = 205.7 kN

at an angle a = tan�1 (61.8/196.2) ª 17.5° to the horizontal.

Alternative method:

Consider an elemental area dA of the gate subtending a small angle dq at 0 (Fig. 2.33).

Then the hydrostatic thrust dF on the area dA becomes dF = r gh dA.

The horizontal and vertical components of dF are

dFH = r gh d A cos q

dFy = r gh d A sin q

where h is the vertical depth of area dA below the free surface.

Now h = (1 + 4 sin q)

and dA = (4 dq ¥ 5) = 20 dq

Therefore the total horizontal and vertical components are,

FH =

/ 6

0

d 1000 9.81 20 (1 4 sin ) cos d NHF

p

q q q= ¥ ¥ +Ú Ú  = 196.2 kN

FV = 1000 ¥ 9.81 ¥ 20 

/ 6

0

p

Ú (1 + 4 sin q ) sin q dq N = 61.8 kN

Since all the elemental thrusts are perpendicular to the surface, their lines of action

pass through O and that of the resultant force therefore also passes through O.

Example 2.11 A block of steel (sp. gr. 7.85) floats at a mercury water interface as

in Fig. 2.34. What is the ratio of a and b for this condition? (sp. gr. of mercury is 13.57).

Steel block

Mercury

Water

a

b

Fig. 2.34 A steel block floating at mercury water interface

Solution Let the block have a uniform cross-sectional area A.

Under the condition of floating equilibrium as shown in Fig. 2.34,

Weight of the body = Total Buoyancy force acting on it

A ¥ (a + b) (7850) ¥ g = (b ¥ 13.57 + a) ¥ A ¥ g ¥ 10
3

Hence 7.85 (a + b) = 13.57b + a

or,
a

b
 =

5 72

6 85

.

.
 = 0.835

Example 2.12 An aluminium cube 150 mm on a side is suspended by a string in

oil and water as shown in Fig. 2.35. The cube is submerged with half of it being in oil and
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the other half in water. Find the tension in the string if the specific gravity of oil is 0.8 and

the specific weight of aluminium is 25.93 kN/m3.

T

T

75mm

150 mm

Oil

Water

Fig. 2.35 An aluminium cube suspended in an oil and water system

Solution Tension T in the string can be written in consideration of the equilibrium of

the cube as

T = W � FB

= 25.93 ¥ 103 ¥ (.15)3 � 9.81 ¥ 103 [(.153 ¥ 0.5 ¥ 0.8

+ (.15)3 ¥ 0.5 ¥ 1] N

= 57.71 N

(W = weight of the cube and FB = total buoyancy force on the cube)

Example 2.13 A cube of side a floats with one of its axes vertical in a liquid of

specific gravity SL. If the specific gravity of the cube material is Sc, find the values of

SL/Sc for the metacentric height to be zero.

Solution Let the cube float with h as the submerged depth as shown in Fig. 2.36.

For equilibrium of the cube,

Spgr. Spgr.

SL

SC

G

M

a

B
h

Fig. 2.36 A solid cube floating in a liquid

Weight = Buoyant force

a3Sc ¥ 103 ¥ 9.81 = h a2 ¥ SL ¥ 103 ¥ 9.81

or, h = a (Sc/SL) = a/x
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where SL/Sc = x

The distance between the centre of buoyancy B and centre of gravity G becomes

BG =
a h a

x2 2 2
1

1
- = -F

H
I
K

Let M be the metacentre, then

BM =
I

V

a
a

a h

a

a
a

x

ax
=

F
HG

I
KJ

=
F
H

I
K

=

3

2

4

2

12

12 12

The metacentric height MG = BM � BG = 
ax a

x12 2
1

1
- -F

H
I
K

According to the given condition

MG =
ax a

x12 2
1

1
- -F

H
I
K

 = 0

or, x2
 � 6x + 6 = 0

which gives x =
6 12

2

±
 = 4.732, 1.268

Hence SL/Sc = 4.732 or 1.268

Example 2.14 A rectangular barge of width b and a submerged depth of H has its

centre of gravity at the waterline. Find the metacentric height in terms of b/H, and hence

show that for stable equilibrium of the burge b/H ≥ 6 .

Solution Let B, G and M be the centre of buoyancy, centre of gravity and metacentre of

the burge (Fig. 2.37) respectively.

M

b

G

B
H

O

Fig. 2.37 A rectangular barge in water

Now, OB = H/2

and, OG = H (as given in the problem)

Hence BG = OG � OB = H � 
H H

2 2
=
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Again BM =
I

V

L b

L b H

b

H
=

× × ×
=

3 2

12 12

where L is the length of the barge in a direction perpendicular to the plane of the

Fig. 2.37.

Therefore, MG = BM � BG = 
b

H

H H b

H

2 2

12 2 2

1

6
1- = F

H
I
K -R

S
T

U
V
W

For stable equilibrium of the burge, MG ≥ 0

Hence,
H b

H2

1

6
1

2
F
H

I
K -R

S
T

U
V
W

 ≥ 0

which gives b/H ≥ 6

Example 2.15 A solid hemisphere of density r and radius r floats with its plane

base immersed in a liquid of density rl (rl > r). Show that the equilibrium is stable and

the metacentric height is

3

8
1r lr

r
-F

HG
I
KJ

Solution The hemisphere in its floating condition is shown in Fig. 2.38. Let  be the

submerged volume. Then from equilibrium under floating condition,

2

3

3p rr ¥  =  ¥ rl

or,  =
2

3

3p
r

r
r

l

¥

The centre of gravity G will lie on the axis of symmetry of the hemisphere. The

distance of G along this line from the base of the hemisphere can be found by taking

moments of elemental circular strips (Fig. 2.38) about the base as

M

B

G
H

z
dz

O

Fig. 2.38 A solid hemisphere floating in a liquid

OG =

p

p

( � )r z z z

r
r

r

2 2

0

32

3

3

8

dz
=
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In a similar way, the location of centre of buoyancy which is the centre of immersed

volume  is found as

OB =

p

p
r

r

r

r

( � )r z z z

r

r
H

r

H

r

H

l

l

2 2

0

3

2

2

2

22

3

3

8
2

dz
= -F

HG
I
KJ

(2.82)

where H is the depth of immersed volume as shown in Fig. 2.38.

If rh is the radius of cross-section of the hemisphere at water line, then we can write

H2
 = r

2
 � r

2
h

Substituting the value of H in Eq. (2.82), we have

OB =
3

8
1

4

4

r

r
l hr

r

r
-

F
HG

I
KJ

The height of the metacentre M above the centre of buoyancy B is given by

BM =
I

V

r

r

r
r

r

h

l

l h=
F
H

I
K

R
S
T

U
V
W

=
p

p
r

r

r

r

4

3

4

4

4
2

3

3

8

Therefore, the metacentric height MG becomes

MG = MB � BG = MB � (OG � OB)

=
3

8

3

8

3

8
1

4

4

4

4

r

r

r

r
l h l hr

r

r
r r

r

r
- + -

F
HG

I
KJ

L

N
M

O

Q
P

=
3

8
1r lr

r
-F

HG
I
KJ

Since rl > r, MG > 0, and hence, the equilibrium is stable.

Example 2.16 A cone floats in water with its apex downward (Fig. 2.39) and has a

base diameter D and a vertical height H. If the specific gravity of the cone is S, prove that

for stable equilibrium,

H2 <
1

4 1

2 1 3

1 3

D S

S

/

/-
F
HG

I
KJ

Solution Let the submerged height of the cone under floating condition be h, and the

diameter of the cross-section at the plane of flotation be d (Fig. 2.39).

For the equilibrium,

Weight of the cone = Total buoyancy force

2
1

3 4

D
H Sp

Ê ˆ
◊Á ˜Ë ¯

 =
2

1

3 4

d
hp

Ê ˆ
◊Á ˜Ë ¯

(2.83)

Again from geometry,
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d = D 
h

H
(2.84)

Using the value of d from Eq. (2.84) in Eq. (2.83), we get

h = H S1/3 (2.85)

The centre of gravity G of the cone is found out by considering the mass of cylindrical

element of height dz and diameter Dz/H, and its moment about the apex 0 in the following

way:

OG =

2 2

2

0
2

d
4 3

41

3 4

H
D z

z z
H

H
D

H

p

p

=
Ú

The centre of buoyancy B is the centre of volume of the submerged conical part and

hence OB = 
3

4
 h.

Therefore BG = OG � OB = 
3

4
 (H � h)

Substituting h from Eq. (2.85) we can write

BG =
3

4
 H (1 � S

1/3
) (2.86)

D

H
h

G

O

z

dz

B

M

d

Fig. 2.39 A solid cone

floating in water

If M is the metacentre, the metacentric radius

BM can be written according to Eq. (2.64) as

BM  = 
1

64
1

3
4

3

16

4

2

2

V

d

d h

d

h
=

¥
=

p

p ( / )

Substituting d from Eq. (2.84) and h from

Eq. (2.85), we can write

BM =
3

16

2
1 3D

H
S

/

The metacentric height

MG = BM � BG

=
3

16

3

4
1

2
1 3 1 3D

H
S H S

/ /
( )- -

For stable equilibrium, MG > 0

Hence
3

16

3

4
1 0

2
1 3 1 3D

H
S H S

/ /
( )- - >

or,
D

H
S S

2

2

1 3 1 3
4 1 0

/ /
( )- - >

or,
D

H
S S

2

2

1 3 1 3
4 1

/ /
( )> -
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or,
H

D S S

2

2 1 3 1 3

1

4 1
/ /

( )
<

-

Hence, H
D S

S

2
2 1 3

1 3
4 1

<
-

/

/
( )

Example 2.17 An 80 mm diameter composite solid cylinder consists of an 80 mm

diameter 20 mm thick metallic plate having sp. gr. 4.0 attached at the lower end of an

80 mm diameter wooden cylinder of specific gravity 0.8. Find the limits of the length of

the wooden portion so that the composite cylinder can float in stable equilibrium in water

with its axis vertical.

Solution Let l be the length of the wooden piece. For floating equilibrium of the

composite cylinder,

Weight of the cylinder  £ Weight of the liquid of the same volume as that
of the cylinder

Hence,
p p( . )

{ . . }
( . )

{ . }
0 08

4
0 02 4 0 8

0 08

4
0 02

2 2

× + ≤ +l l

From which l ≥ 0.3 m

Hence, the minimum length of the wooden portion lminimum = 0.3 m = 300 mm.

The minimum length corresponds to the situation when the cylinder will just float

with its top edge at the free surface (Fig. 2.40a). For any length l greater than 300 mm,

the cylinder will always float in equilibrium with a part of its length submerged as shown

in (Fig. 2.40b). The upper limit of l would be decided from the consideration of stable

equilibrium (angular stability) of the cylinder.

l min h

l

20 mm

20 mm

80 mm

(a) (b)

80 mm

M

G

B

O

Fig. 2.40 A composite cylinder floating in water

For stable equilibrium,

Metacentric Height > 0 (2.87)

The location of centre of gravity G of the composite cylinder can be found as
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OG =

p

p

(. )
[. . . ( . . )]

(. )
(. . )

08

4
02 4 01 8 0 5 0 02

08

4
08 8

2

2

× × + × +

+

l l

l

=
5 0 2 0 01

10 1

2l l

l

+ +
+

. .

The submerged length h of the wooden cylinder is found from the consideration of

floating equilibrium as

Weight of the cylinder = Buoyancy force

p (. )
(. . }

08

4
02 4 8

2

¥ + l  =
p (. )08

4

2

¥ h

or h = 0.08 (10 l + 1) (2.88)

The location of the centre of buoyancy B can therefore be expressed as OB = h/2 = 0.04

(10 l + 1)

Now BG = OG � OB = 
5 0 2 0 01

10 1
0 04 10 1

2l l

l
l

+ +
+

- +
. .

. ( )

=
l l

l

2 0 6 03

10 1

� . � .

+
(2.89)

The location of the metacentre M above buoyancy B can be found out according to

Eq. (2.64) as

BM =
I

V h
= ¥

¥ ¥
p

p

(. )

(. )

08 4

64 08

4

2
(2.90)

Substituting h from Eq. (2.88) to Eq. (2.90), we get

BM =
.005

10 1l +

Therefore, MG = BM � BG = 
.005

10 1l +
 � 

l l

l

2 0 6 03

10 1

- -
+

. .

=
� ( � . � . )l l

l

2
0 6 035

10 1+

Using the criterion for stable equilibrium as MG > 0 we have,

� ( � . � . )l l

l

2
0 6 035

10 1+
 > 0

or l2
 � 0.6 l � .035 < 0

or (l � 0.653) (l + 0.053) < 0

The length l can never be negative. Hence, the physically possible condition is

l � 0.653 < 0

or, l < 0.653
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Exercises

2.1 Choose the correct answer

(i) The normal stress is the same in all directions at a point in a fluid:

(a) only when the fluid is frictionless

(b) only when the fluid is frictionless and incompressible

(c) in a liquid at rest

(d) when the fluid is at rest, regardless of its nature.

(ii) The magnitude of hydrostatic force on one side of a circular surface of unit

area, with the centroid 10 m below a free water (density r) surface is:

(a) less than 10 rg

(b) equals to 10 rg

(c) greater than 10 rg

(d) the product of rg and the vertical distance from the free surface to

pressure centre

(e) none of the above.

(iii) The line of action of the buoyancy force acts through the

(a) centre of gravity of any submerged body

(b) centroid of the volume of any floating body

(c) centroid of the displaced volume of fluid

(d) centroid of the volume of fluid vertically above the body

(e) centroid of the horizontal projection of the body.

(iv) For stable equilibrium of floating bodies, the centre of gravity has to:

(a) be always below the centre of buoyancy

(b) be always above the centre of buoyancy

(c) be always above the metacentre

(d) be always below the metacentre

(e) coincide with metacentre

2.2 In construction, a barometer is a graduated inverted tube with its open end dipped

in the measuring liquid contained in a trough opened to atmosphere.

Estimate the height of liquid column in the barometer where the atmospheric

pressure is 100 kN/m2. (a) when the liquid is mercury and (b) when the liquid is

water. The measuring temperature is 50 °C, the vapour pressures of mercury and

water at this temperature are respectively 0.015 ¥ 104 N/m2 and 1.23 ¥ 104 N/m2,

and the densities are 13500 and 980 kg/m3 respectively. What would be the

percentage error if the effect of vapour pressure is neglected.

Ans. (0.754 m, 9.12 m, 0.14%, 14.05%)

2.3 The density of a fluid mixture r (in kg/m3) in a chemical reactor varies with the

vertical distance z (in metre) above the bottom of the reactor according to the

relation

r = 10.1 

2

1 �
500 1000

z zÈ ˘Ê ˆ+Í ˙Á ˜Ë ¯Í ˙Î ˚
Assuming the mixture to be stationary, determine the pressure difference between

the bottom and top of a 60 m tall reactor.

Ans. (5.59 kN/m2)
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2.4 Find the atmospheric pressure just at the end of troposphere which extends upto

a height of 11.02 km from sea level. Consider a temperature variation in the

troposphere as T = 288.16 � 6.49 ¥ 10�3 z, where z is in metres and T in Kelvin.

The atmospheric pressure at sea level is 101.32 kN/m2.

Ans. (22.55 kN/m2)

2.5 Find the pressure at an elevation of 3000 m above the sea level by assuming (a)

an isothermal condition of air and (b) an isentropic condition of air. Pressure and

temperature at sea level are 101.32 kN/m2 and 293.15 K. Consider air to be an

ideal gas with R (characteristic gas constant) = 287 J/kg K, and g (ratio of

specific heats) = 1.4.

Ans. (71.41 kN/m
2
, 70.08 kN/m

2
)

Fig. 2.41 Pipes with water and

carbon tetrachloride

+ A
1

. 8
 m

z

+ B

2.6 Two pipes A and B (Fig. 2.41) are

in the same elevation. Water is

contained in A and rises to a level

of 1.8 m above it. Carbon

tetrachloride (Sp. gr. = 1.59) is

contained in B. The inverted

U-tube is filled with compressed

air at 300 kN/m2 and 30 °C.

Barometer reads 760 mm of

mercury. Determine:

(a) The pressure difference in

kN/m2 between A and B if z =

0.45 m.

(b) The absolute pressure in B in

mm of mercury.

Ans. (PB � PA = 3.4 kN/m2, 2408.26 mm)

2.7 A multi-tube manometer using water and mercury is used to measure the pressure

of air in a vessel, as shown in Fig. 2.42. For the given values of heights, calculate

the gauge pressure in the vessel. h1 = 0.4 m, h2 = 0.5 m, h3 = 0.3 m, h4 = 0.7 m

h5 =  0.1 m and h6 = 0.5 m.

Ans. (190.31 kN/m2 gauge)

Water

Mercury

Air

h1 h2 h4

h5

h3 h6
Air

O O

Fig. 2.42 A multi-tube manometer measuring air pressure in a vessel
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2.8 Gate AB in Fig. 2.43 is 1.2 m wide (in a direction perpendicular to the plane of

the figure) and is hinged at A. Gauge G reads � 0.147 bar and oil in the right hand

tank is having a relative density 0.75. What horizontal force must be applied at B

for equilibrium of gate AB?

Ans. (3.66 kN)

Air

Water

B

A
5.5 m

1.8 mOil

Fig. 2.43 A plane gate with water on one side and oil on the other side

2.9 Show that the centre of pressure for a vertical semicircular plane submerged in a

homogeneous liquid and with its diameter d at the free surface lies on the centre

line at a depth of 3pd/32 from the free surface.

2.10 A spherical viewing port exists 1.5 m below the static water surface of a tank as

shown in Fig. 2.44. Calculate the magnitude, direction and location of the thrust

on the viewing port.

1.5 m

1m
O

Fig. 2.44 A spherical viewing port in a water tank

Ans. (79.74 kN, 75° in a direction 75° clockwise

from a vertically upward line and passes through the centre O)



76 Introduction to Fluid Mechanics and Fluid Machines

2.11 Find the weight of the cylinder (dia = 2 m) per metre length if it supports water

and oil (Sp. gr. 0.82) as shown in Fig. 2.45. Assume contact with wall as

frictionless.

Ans. (14.02 kN)

A

E

O C

Water

Oil
R = 1m

B

Fig. 2.45 A cylinder supporting oil and water

2.12 Calculate the force F required to hold the gate in a closed position (Fig. 2.46), if

R = 0.6 m. Ans. (46.02 kN)

Fig. 2.46 A gate in closed position supporting oil and water in a tank

2.13 A cylindrical log of specific gravity 0.425 is 5 m long and 2 m in diameter. To

what depth the log will sink in fresh water with its axis being horizontal?

Ans. (0.882 m)

2.14 A sphere of 1219 mm diameter floats half submerged in salt water (r =

1025 kg/m
3
). What minimum mass of concrete (r = 2403 kg/m

3
) has to be used

as an anchor to submerge the sphere completely? Ans. (848.47 kg)
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Fig. 2.47 A typical drain plug

Patm

String

Plug

50 mm

Water

2 m

2.15 The drain plug shown in Fig. 2.47

is closed initially. As the water fills

up and the level reaches 2 m, the

buoyancy force on the float opens

the plug. Find the volume of the

spherical weight if the total mass of

the plug and the weight is 5 kg. As

soon as the plug opens it is observed

that the plug-float assembly jumps

upward and attains a floating

position. Explain why. Determine

the level in the reservoir when the

plug closes again. Can the plug

diameter be larger than the float

diameter? Find out the maximum

possible plug diameter.

Ans. (0.018 m3, 1.95 m, No, 87.5 mm)

2.16 A long prism, the cross-section of which is an equilateral triangle of side a, floats

in water with one side horizontal and submerged to a depth h. Find

(a) h/a as a function of the specific gravity S of the prism.

1
5
 m

1
5
 m

6
 m

6 m

(b) The metacentric height in terms of side a for

small angle of rotation if specific gravity, S =

0.8.

Ans. ( 3 2s , 0.11a)

2.17 A uniform wooden cylinder has a specific gravity

of 0.6. Find the ratio of diameter to length of the

cylinder so that it will just float upright in a state

of neutral equilibrium in water.

Ans. (1.386)

2.18 Find the minimum apex angle of a solid cone of

specific gravity 0.8 so that it can float in stable

equilbrium in fresh water with its axis vertical

and vertex downward.

Ans. (31.12°)

2.19 A ship weighing 25 MN floats in sea water with

its axis vertical. A pendulum 2 m long is

observed to have a horizontal displacement of

20 mm when a weight of 40 kN is moved 5 m

across the deck. Find the metacentric height of

the ship. Ans. (0.8 m)

2.20 A ship of mass 2 ¥ 106 kg has a cross-section at

the waterline as shown in Fig. 2.48. The centre

of buoyancy is 1.5 m below the free surface, and

the centre of gravity is 0.6 m above the free

surface. Calculate the metacentric height for

rolling and pitching of the ship with a small

angle of tilt. Ans. (0.42 m, 25.41 m)

Fig. 2.48 Cross-section of

a ship at the

waterline



3.1 INTRODUCTION

Kinematics is the geometry of motion. Therefore the kinematics of fluid is that

branch of fluid mechanics which describes the fluid motion and its consequences

without consideration of the nature of forces causing the motion. The basic

understanding of the fluid kinematics forms the ground work for the studies on

dynamical behaviour of fluid in consideration of the forces accompanying the

motion. The  subject has three main aspects:

(a) The development of methods and techniques for describing and specifying

the motions of fluids.

(b) Characterization of different types of motion and associated deformation

rates of any fluid element.

(c) The determination of the conditions for the kinematic possibility of fluid

motions, i.e., the exploration of the consequences of continuity in the

motion.

3.2 SCALAR AND VECTOR FIELDS

Scalar A quantity which has only magnitude is defined to be a scalar. A scalar

quantity can be completely specified by a single number representing its

magnitude. Typical scalar quantities are mass, density and temperature. The

magnitude of a scalar (a real number) will change when the units expressing the

scalar are changed, but the physical entity remains the same.

Vector A quantity which is specified by both magnitude and direction is known

to be a vector. Force, velocity and displacement are typical vector quantities. The

magnitude of a vector is a scalar.

Kinematics of Fluid

3
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Scalar Field If at every point in a region, a scalar function has a defined value,

the region is called a scalar field. The temperature distribution in a rod is an

example of a scalar field.

Vector Field If at every point in a region, a vector function has a defined value,

the region is called a vector field. Force and velocity fields are the typical

examples of vector fields.

3.3 FLOW FIELD AND DESCRIPTION OF FLUID MOTION

A flow field is a region in which the flow is defined at each and every point at any

instant of time. Usually, velocity describes the flow. In other words, a flow field

is specified by the velocities at different points in the region at different times. A

fluid mass can be conceived of consisting of a number of fluid particles. Hence

the instantaneous velocity at any point in a fluid region is actually the velocity of

a particle that exists at that point at that instant. In order to obtain a complete

picture of the flow, the fluid motion is described by two methods discussed as

follows:

A. Lagrangian Method In this method, the fluid motion is described by tracing

the kinematic behaviour of each and every individual particle constituting the

flow. Identities of the particles are made by specifying their initial position

(spatial location) at a given time. The position of a particle at any other instant of

time then becomes a function of its identity and time. This statement can be

analytically expressed as
r

S  = S(
r

S 0, t) (3.1)

where 
r

S  is the position vector of a particle (with respect to a fixed  point of

reference) at a time t. 
r

S 0 is its initial position at a given time t = t0, and thus

specifies the identity of the particle. The Eq. (3.1) can be written into scalar

components with respect to a rectangular cartesian frame of coordinates as

x = x(x0, y0, z0, t) (3.1a)

y = y(x0, y0, z0, t) (3.1b)

z = z(x0, y0, z0, t) (3.1c)

where x0, y0, z0 are the initial coordinates and x, y, z are the coordinates at a time

t of the particle. Hence 
r

S  in Eq. (3.1) can be expressed as
r

S  =
r r r

i x j y k z+ +

where 
r
i , 

r
j  and 

r

k  are the unit vectors along x, y and z axes respectively. The

velocity 
r

V  and acceleration 
r
a  of the fluid particle can be obtained from the

material derivatives of the position of the particle with respect to time.

Therefore,

r
V  =

0

d

d
S

S

t

È ˘
Í ˙
Î ˚

r

(3.2a)
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or, in terms of scalar components,

u =

0 0 0,

d

d x y z

x

t

È ˘
Í ˙Î ˚

(3.2b)

v =

0 0 0,

d

d x y z

y

t

È ˘
Í ˙Î ˚

(3.2c)

w =

0 0, 0,

d

d x y z

z

t

È ˘
Í ˙Î ˚

(3.2d)

u, v, w are the components of velocity in x, y and z directions respectively. For the

acceleration,

r
a  =

0

2

2

d

d
S

S

t

È ˘
Í ˙
Î ˚

r

(3.3a)

and hence, ax =

0 0 0

2

2

, ,

d

d
x y z

x

t

È ˘
Í ˙
Î ˚

(3.3b)

ay =

0 0 0

2

2

, ,

d

d
x y z

y

t

È ˘
Í ˙
Î ˚

(3.3c)

az =

0 0 0

2

2

, ,

d

d
x y z

z

t

È ˘
Í ˙
Î ˚

(3.3d)

The subscripts in Eqs (3.2) and (3.3) represent the initial (at t = t0) position of

the particle and thus specify the particle identity. The favourable aspect of the

method lies in the information about the motion and trajectory of each and every

particle of the fluid so that at any time it is possible to trace the history of each

fluid particle. In addition, by virtue of the fact that particles are initially identified

and traced through their motion, conservation of mass is inherent. However, the

serious drawback of this method is that the solution of the equations (Eqs (3.2)

and (3.3)) presents appreciable mathematical difficulties except certain special

cases and therefore, the method is rarely suitable for practical applications.

B. Eulerian Method The method due to Leonhard Euler is of greater advantage

since it avoids the determination of the movement of each individual fluid particle

in all details. Instead it seeks the velocity 
r
V  and its variation with time t at each

and every location (
r

S ) in the flow field. While in the Lagrangian view, all

hydrodynamic parameters are tied to the particles or elements, in Eulerian view,

they are functions of location and time. Mathematically, the flow field in Eulerian

method is described as
r

V  = V( 
r

S , t) (3.4)

where,
r

V  =
r r r

i u j k w+ +v

and,
r

S  =
r r r

i x j y k z+ +
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therefore, u = u(x, y, z, t) (3.4a)

v = v(x, y, z, t) (3.4b)

w = w(x, y, z, t) (3.4c)

The relationship between the Eulerian and Lagrangian method can  now be

shown. The Eq. (3.4) of Eulerian description can be written as,

d

d

r

S

t
 = V(

r

S , t) (3.5)

or,
d

d

x

t
 = u(x, y, z, t) (3.5a)

d

d

y

t
 = v(x, y, z, t) (3.5b)

d

d

z

t
 = w(x, y, z, t) (3.5c)

The integration of Eq. (3.5) yields the constants of integration which are to be

found from the initial coordinates of the fluid particles. Hence, the solution of

Eq. (3.5) gives the equations of Lagrange as,
r

S  = S(
r

S 0 , t)

or, x = x(x0, y0, z0, t)

y = y(x0, y0, z0, t)

z = z(x0, y0, z0, t)

Therefore, it is evident that, in principle, the Lagrangian method of description

can always be derived from the Eulerian method. But the solution of the set of

three simultaneous differential equations is generally very difficult.

3.3.1 Variation of Flow Parameters in Time and Space

In general, the flow velocity and other hydrodynamic parameters like pressure

and density may vary from one point to another at any instant, and also from one

instant to another at a fixed point. According to the type of variations, different

categories of flow are described as follows:

Steady and Unsteady Flows A steady flow is defined as a flow in which the

various hydrodynamic parameters and fluid properties at any point do not change

with time. Flow in which any of these parameters changes with time is termed as

unsteady flow. In Eulerian approach, a steady flow is described as,
r

V  = V(
r

S )

and
r
a  = a(

r

S )

which means that velocity and acceleration are functions of space coordinates

only. This implies that, in a steady flow, the hydrodynamic and other parameters

may vary with location, but the spatial distribution of any such parameter

essentially remains invarient with time.

In the Lagrangian approach, time is inherent in describing the trajectory of any

particle (Eq. (3.1)). But in steady flow, the velocities of all particles passing
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through any fixed point at different times will be same. In other words, the

description of velocity as a function of time for a given particle will simply show

the velocities at different points through which the particle has passed and thus

furnish the information of velocity as a function of spatial location as described

by Eulerian method. Therefore, the Eulerian and Lagrangian approaches of

describing fluid motion become identical under this situation.

In practice, absolute steady flow is the exception rather than the rule, but many

problems may be studied effectively by assuming that the flow is steady. Though

minor fluctuations of velocity and other quantities with time occur in reality, the

average value of any quantity over a reasonable interval of time remains

unchanged. Moreover, a particular flow may appear steady to one observer but

unsteady to another. This is because all movement is relative. The motion of a

body or a fluid element is described with respect to a set of coordinates axes.

Therefore, flow may appear steady or unsteady depending upon the choice of

coordinate axes. For example, the movement of water past the sides of a motor-

boat travelling at constant velocity would (apart from small fluctuations) appear

steady to an observer in the boat. He would compare the water flow with an

imaginary set of reference axes in the boat. To an observer on a bridge, however,

the same flow would appear to change with time as the boat passes underneath

him. He would be comparing the flow with reference axes fixed to the bridge.

Since the examination of steady flow is usually much simpler than that of

unsteady flow, reference axes are chosen, where possible, so that flow with

respect to the reference frame becomes steady.

Uniform and Non-uniform Flow When velocity and other hydrodynamic

parameters, at any instant of time do not change from point to point in a flow

field, the flow is said to be uniform. If, however, changes do occur from one point

to another, the flow is non-uniform. Hence, for a uniform flow, the velocity is a

function of time only, which can be expressed in Eulerian description as
r

V  = V(t)

This implies that for a uniform flow, there will be no spatial distribution of

hydrodynamic and other parameters. Any such parameter will have a unique value

in the entire field, which of course, may change with time if the flow is unsteady.

For a non-uniform flow, the changes with position may be found either in the

direction of flow or in directions perpendicular to it. The latter kind of non-

uniformity is always encountered near solid boundaries past which the fluid

flows. This is because all fluids possess viscosity which reduces the relative

velocity to zero at a solid boundary (no-slip condition as described in Chapter-1).

For a steady and uniform flow, velocity is neither a function of time nor of

space coordinates, and hence it assumes a constant value throughout the region of

flow at all times. Steadiness of flow and uniformity of flow do not necessarily go

together. Any of the four combinations as shown in Table 3.1 is possible:
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Table 3.1

Type Example

1. Steady uniform flow Flow at constant rate through a duct of uniform

cross-section. (The region close to the walls of

the duct is however disregarded.)

2. Steady non-uniform Flow at constant rate through a duct of non-

flow uniform cross-section (tapering pipe.)

3. Unsteady uniform flow Flow at varying rates through a long straight

pipe of uniform cross-section. (Again the

region close to the walls is ignored.)

4. Unsteady non-uniform Flow at varying rates through a duct

flow of non-uniform cross-section.

3.3.2 Material Derivative and Acceleration

Let the position of a particle at any instant t in a flow field be given by the space

coordinates (x, y, z) with respect to a rectangular cartesian frame of reference.

The velocity components u, v, w of the particle along x, y and z directions respec-

tively can then be written in Eulerian form as

u = u (x, y, z, t)

v = v (x, y, z, t)

w = w (x, y, z, t)

At an infinitesimal time interval D t later, let the particle move to a new position

given by the coordinates (x + D x, y + Dy, z + D z), and its velocity components at

this new position be u + Du, v + Dv and w + Dw. Therefore, we can write

u + Du = u (x + Dx, y + Dy, z + Dz, t + Dt) (3.6a)

v + Dv = v (x + Dx, y + Dy, z + Dz, t + Dt) (3.6b)

w + Dw = w (x + Dx, y + Dy, z + Dz, t + Dt) (3.6c)

The expansion of the right hand side of the Eqs (3.6a) to (3.6c) in the form of

Taylor�s series gives

u + Du = u x y z t
u

x
x

u

y
y

u

z
z

u

t
t( , , , ) + + + +

∂

∂

∂

∂

∂

∂

∂

∂
D D D D

+ higher order terms in Dx, Dy, Dz and Dt (3.7a)

v + Dv = v
v v v v

( , , , )x y z t
x

x
y

y
z

z
t

t+ + + +
∂

∂

∂

∂

∂

∂

∂

∂
D D D D

+ higher order terms in Dx, Dy, Dz and Dt (3.7b)

w + Dw = w x y z t
w

x
x

w

y
y

w

z
z

w

t
t( , , , ) + + + +

∂

∂

∂

∂

∂

∂

∂

∂
D D D D

+ higher order terms in Dx, Dy, Dz and Dt (3.7c)
The increment in space coordinates can be written as

Dx = u Dt, Dy = v Dt, Dz = w Dt
Substituting the values of Dx, Dy and Dz in Eqs (3.7a) to (3.7c), we have

D
D

u

t
 = u

u

x

u

y
w

u

z

u

t

∂

∂

∂

∂

∂

∂

∂

∂
+ + +v

+ terms containing Dt and its higher orders
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D
D
v

t
 = u

x y
w

z t

∂

∂

∂

∂

∂

∂

∂

∂

v
v

v v v
+ + +

+ terms containing Dt and its higher orders

D
D
w

t
 = u

w

x

w

y
w

w

z

w

t

∂

∂

∂

∂

∂

∂

∂

∂
+ + +v

+ terms containing Dt and its higher orders

The limiting forms of the equations as Dt Æ 0 become

D

D

u

t
 =

∂

∂

∂

∂

∂

∂

∂

∂

u

t
u

u

x

u

y
w

u

z
+ + +v (3.8a)

D

D

v

t
 =

∂

∂

∂

∂

∂

∂

∂

∂

v v
v

v v

t
u

x y
w

z
+ + + (3.8b)

D

D

w

t
 =

∂

∂

∂

∂

∂

∂

∂

∂

w

t
u

w

x

w

y
w

w

z
+ + +v (3.8c)

L
NM
Since lim , lim , lim

D D D

D
D

D
D

D
Dt t t

u

t

u

t t t

w

t

w

tÆ Æ Æ
= = =

0 0 0

D

D

D

D

D

D

v v
,

lim
DtÆ0

 (terms containing Dt and its higher orders) = 0
O
QP

It is evident from the above equations that the operator for total differential

with respect to time, D/Dt in a convective field is related to the partial differential

∂/∂t as

D

Dt
 =

∂

∂

∂

∂

∂

∂

∂

∂t
u

x y
w

z
+ + +v (3.9)

The total differential D/Dt is known as the material or substantial derivative

with respect to time. The first term ∂/∂t in the right hand side of Eq. (3.9) is

known as temporal or local derivative which expresses the rate of change with

time, at a fixed position. The last three terms in the right hand side of Eq. (3.9) are

together known as convective derivative which represents the time rate of change

due to change in position in the field. Therefore the terms in the left hand sides

of Eqs (3.8a) to (3.8c) are defined as x, y and z components of substantial or

material acceleration. The first terms in the right hand sides of Eqs (3.8a) to

(3.8c) represent the respective local or temporal accelerations, while the other

terms are convective accelerations. Thus we can write,

ax =
D

D

u

t

u

t
u

u

x

u

y
w

u

z
= + + +

∂

∂

∂

∂

∂

∂

∂

∂
v (3.9a)

ay =
D

D

v v v
v

v v

t t
u

x y
w

z
= + + +

∂

∂

∂

∂

∂

∂

∂

∂
(3.9b)

az =
D

D

w

t

w

t
u

w

x

w

y
w

w

z
= + + +

∂

∂

∂

∂

∂

∂

∂

∂
v (3.9c)

(Material or substantial acceleration) = (temporal or local acceleration) +

(convective acceleration)
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In a steady flow, the temporal acceleration is zero, since the velocity at any

point is invarient with time. In a uniform flow, on the other hand, the convective

acceleration is zero, since the velocity components are not the functions of space

coordinates. In a steady and uniform flow, both the temporal and convective

acceleration vanish and hence there exists no material acceleration. Existence of

the components of acceleration for different types of flow, as described in

Table 3.1, is shown in Table 3.2.

Table 3.2

Type of flow Material Acceleration

Temporal Convective

Steady and uniform 0 0

Steady and non-uniform 0 exists

Unsteady and uniform exists 0

Unsteady and non-uniform exists exists

Components of Acceleration in Other Coordinate Systems In a cylindrical polar

coordinate system (Fig. 3.1a), the components of acceleration in r, q and z

directions can be written as

ar =
D

D

V

t

V

r

V

t
V

V

r

V

r

V
V

V

z

V

r

r r
r

r r
z

r- = + + +q q q∂

∂

∂

∂

∂

∂q

∂

∂

2 2

� (3.10a)

aq =
D

D

V

t

V V

r

V

t
V

V

r

V

r

V
V

V

z

V V

r

r
r z

rq q q q q q q q∂

∂

∂

∂

∂

∂q

∂

∂
+ = + + + + (3.10b)

az =
D

D

V

t

V

t
V

V

r

V

r

V
V

V

z

z z
r

z z
z

z= + + +
∂

∂

∂

∂

∂

∂q

∂

∂
q (3.10c)

The term � V2
q /r in the Eq. (3.10a) appears due to an inward radial acceleration

arising from a change in the direction of Vq (velocity component in the azimuthal

direction q ) with q as shown in Fig. 3.1a. This is typically known as centripetal

acceleration. In a similar fashion, the term Vr Vq /r represents a component of

acceleration in azimuthal direction caused by a change in the direction of Vr with

q (Fig. 3.1a).

The acceleration components in a spherical polar coordinate system (Fig. 3.1b)

can be expressed as

aR =
∂

∂

∂

∂

∂

∂ f f

∂

∂ q

f q f qV

t
V

V

R

V

R

V V

R

V V V

R

R
R

R R R+ + + -
+

sin

2 2

(3.11a)

af =
∂

∂

∂

∂

∂

∂ f

∂

∂ q

f f f f

f

q fV

t
V

V

R

V

R

V V

R

V
R+ + +

sin

- -
V V

R

V

R

R f q f2 cot
(3.11b)

aq =
∂

∂

∂

∂

∂

∂ f f

∂

∂ q
q q f q q qV

t
V

V

R

V

R

V V

R

V
R+ + +

sin

+ 
V V

R

V V

R

Rq q f f
+

cot
(3.11c)
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Fig. 3.1a Velocity components in a cylindrical polar coordinate system

Fig. 3.1b Velocity components in a spherical polar coordinate system

3.3.3 Streamlines, Path Lines and Streak Lines

Streamlines The analytical description of flow velocities by the Eulerian

approach is geometrically depicted through the concept of streamlines. In the

Eulerian method, the velocity vector is defined as a function of time and space

coordinates. If for a fixed instant of time, a space curve is drawn so that it is

tangent everywhere to the velocity vector, then this curve is called a streamline.
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Therefore, the Eulerian method gives a series of instantaneous streamlines of the

state of motion (Fig. 3.2a). In other words, a streamline at any instant can be

defined as an imaginary curve or line in the flow field so that the tangent to the

curve at any point represents the direction of the instantaneous velocity at that

point. In an unsteady flow where the velocity vector changes with time, the pattern

of streamlines also changes from instant to instant. In a steady flow, the

orientation or the pattern of streamlines will be fixed. From the above definition

of streamline, it can be written
r

V  ¥ d
r

S  = 0 (3.12)

(a)
VV

V

(b)

Fig. 3.2a Streamlines Fig. 3.2b Stream tube

d
r

S  is the length of an infinitesimal line segment along a streamline at a point

where 
r

V  is the instantaneous velocity vector. The above expression therefore

represents the differential equation of a streamline. In a cartesian coordinate

system, the vectors 
r

V  and d
r

S  can be written in terms of their components along

the coordinate axes as 
r

V  = 
r r r

i u j kw+ +v  and  
r

S  = 
r r r

i x y k zd d d+ +j . Then

Eq. (3.12) gives

dx

u
 =

d dy z

wv
= (3.13)

and thus describes the differential equation of streamlines in a cartesian frame of

reference.

A bundle of neighbouring streamlines may be imagined to form a passage

through which the fluid flows (Fig. 3.2b). This passage (not necessarily circular

in cross-section) is known as a stream-tube. A stream-tube with a cross-section

small enough for the variation of velocity over it to be negligible is sometimes

termed as a stream filament. Since the stream-tube is bounded on all sides by

streamlines and, by definition, velocity does not exist across a streamline, no

fluid may enter or leave a stream-tube except through its ends. The entire flow in

a flow field may be imagined to be composed of flows through stream-tubes

arranged in some arbitrary positions.

Path Lines Path lines are the outcome of the Lagrangian method in  describing

fluid flow and show the paths of different fluid particles as a function of time. In

other words, a path line is the trajectory of a fluid particle of fixed identity as
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defined by Eq. (3.1). Therefore a family of path lines represents the trajectories of

different particles, say, P1, P2, P3, etc. (Fig. 3.3). It can be mentioned in this

context that while stream lines are referred to a particular instant of time, the

description of path lines inherently involves the variation of time, since a fluid

particle takes time to move from one point to another. Two path lines can intersect

with one another or a single path line itself can form a loop. This is quite possible

in a sense that, under certain conditions of flow, different particles or even a same

particle can arrive at same location at different instants of time. The two stream

lines, on the other hand, can never intersect each other since the instantaneous

velocity vector at a given location is always unique. It is evident that path lines

are identical to streamlines in a steady flow as the Eulerian and Lagrangian

versions become the same.

P1

P1

P2

P2

P3
P3

Fig. 3.3 Path lines

Streak Lines A streak line at any instant of time is the locus of the temporary

locations of all particles that have passed though a fixed point in the flow field.

While a path line refers to the identity of a fluid particle, a streak line is specified

by a fixed point in the flow field. This line is of particular interest in experi-

mental flow visualization. If dye is injected into a liquid at a fixed point in the

flow field, then at a later time t, the dye will indicate the end points of the path

lines of particles which have passed through the injection point. The equation of a

streak line at time t can be derived by the Lagrangian method. If a fluid particle

(
r

S 0) passes through a fixed point (
r

S 1) in a course of time t, then the Lagrangian

method of description gives the equation

S(
r

S0 , t) =
r

S 1 (3.14)

or solving for 
r

S 0 ,
r

S0  = F(
r

S 1, t) (3.15)

If the positions (
r

S ) of the particles which have passed through the fixed point

(
r

S 1) are determined, then a streak line can be drawn through these points. The

equation of the streak line at a time t is given by
r

S  = f(
r

S 0, t) (3.16)

Upon substitution of Eq. (3.15) into Eq. (3.16) we obtain,
r

S  = f [F(
r

S 1, t), t] (3.17)
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This is the final form of the equation of a streak line referred to a fixed point

S1. Figure 3.4 describe the difference between streak lines and path lines. Let P

be a fixed point in space through which particles of different identities pass at

different times. In an unsteady flow, the velocity vector at P will change with time

and hence the particles arriving at P at different times will traverse different paths

like PAQ, PBR and PCS which represent the path lines of the particles. Let at any

instant t1, these particles arrive at points Q, R and S. Thus, Q, R and S represent

the end points of the trajectories of these three particles at the instant t1.

Therefore, the curve joining the points S, R, Q and the fixed point P will define

the streak line at that instant t1. The fixed point P will also lie on the line, since at

any instant, there will be always a particle of some identity at that point. For a

steady flow, the velocity vector at any point is invariant with time and hence the

path lines of the particles with different identities passing through P at different

times will not differ, rather would coincide with one another in a single curve

which will indicate the streak line too. Therefore, in a steady flow, the path lines,

streak lines and streamlines are identical.

P

A
B

C

Q

R

S

Fig. 3.4 Description of a streakline

3.3.4 One-, Two- and Three-Dimensional Flows

In general, fluid flow is three-dimensional. This means that the flow parameters

like velocity, pressure and so on vary in all the three coordinate directions.

Sometimes simplification is made in the analysis of different fluid flow problems

by selecting the coordinate directions so that appreciable variation of the hydro-

dynamic parameters take place in only two directions or even in only one.

So one-dimensional flow is that in which all the flow parameters may be

expressed as functions of time and one space coordinate only. This single space
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coordinate is usually the distance measured along the centre-line (not necessarily

straight) of some conduit in which the fluid is flowing. For instance, the flow in a

pipe is considered one-dimensional when variations of pressure and velocity

occur along the length of the pipe, but any variation over the cross-section is

assumed negligible. In reality flow is never one-dimensional because viscosity

causes the velocity to decrease to zero at the solid boundaries. If however, the non

uniformity of the actual flow is not too great, valuable results may often be

obtained from a �one dimensional analysis�. Under this situation, the average

values of the flow parameters at any given section (perpendicular to the flow) are

assumed to be applied to the entire flow at that section. In a two-dimensional

flow, the flow parameters are functions of time and two space coordinates (say x

and y). There is no variation in z direction, and therefore the same streamline

pattern could, at any instant, be found in all planes perpendicular to z direction.

In a three dimensional flow, the hydrodynamic parameters are functions of three

space coordinates and time.

3.3.5 Translation, Rate of Deformation and Rotation

The movement of a fluid element in space has three distinct features, namely:

translation, rate of deformation and rotation. A fluid motion, in general, consists

of these three features simultaneously. Translation and rotation without

deformation represent rigid-body displacements which do not induce any strain in

the body. Figure 3.5 shows the picture of a pure translation in absence of rotation

and deformation of a fluid element in a two-dimensional flow described by a

rectangular cartesian coordinate system. In absence of deformation and rotation,

y

y

y

x

x

x

v

u

u = constant

v = constant

y

x

Fig. 3.5 Fluid element in pure translation
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there will be no change in the length of the sides or in the included angles made by

the sides of the fluid element. The sides are displaced parallely. This is possible

when the flow velocities u (the x component velocity) and v (the y component

velocity) are neither a function of x nor of y, in other words, the flow field is

totally uniform.

Now consider a situation where a component of flow velocity becomes the

function of only one space coordinate along which that velocity component is

defined. For example, if u = u(x) and v = v(y), the fluid element ABCD in course

of its translation suffers a change in its linear dimensions without any change in

the included angle by the sides as shown in Fig. 3.6.

∂u

uDt

∂v

∂v

Dx

x

Dy Dt

Dt

Dt

Dt

Dy

y

A

A

B

BD

D

C

C

Dy

Dy

Dx

Dx

∂x

∂y

∂y
v +

∂u
Dx

∂x
u+

u = u x( )
v v= y( )

v

Dt

Fig. 3.6 Fluid element in translation with continuous linear deformation

The relative displacement of point B with respect to point A per unit time in x

direction is 
∂

∂

u

x
xD . Similarly, the relative displacement of D with respect to A

per unit time in y direction is 
∂

∂

v

y
yD . Since u is not a function of y, and v is not

a function of x, all points on the linear element AD move with same velocity in the

x direction and all points on the linear element AB move with the same velocity in

y direction. Hence the sides move parallely from their initial position without

changing the included angle. This situation is referred to as translation with linear

deformations. The changes in lengths along the coordinate axes per unit time per

unit original lengths are defined as the components of linear deformation or strain

rate in the respective directions. Therefore, linear strain rate component in the

x direction

 &e x x  =
∂

∂

u

x
(3.18a)

linear strain rate component in y direction

&e y y  =
∂

∂

v

y
(3.18b)
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Let us consider another situation, which is more general in nature and where

both the velocities u and v become functions of x and y, i.e.

u = u(x, y)

v = v(x, y)

In this case (Fig. 3.7),  the point B has a relative displacement in y direction with

respect to the point A and similarly the point D has a relative displacement in x

direction with respect to point A. Hence the included angle between AB and AD

changes, and the fluid element suffers a continuous angular deformation along

with the linear deformations in course of its motion. The rate of angular

deformation &gxy is defined as the rate of change of angle between the linear

segments AB and AD which were initially perpendicular to each other.

Fig. 3.7 Fluid element in translation with simultaneous linear and

angular deformation rates

From Fig. 3.7,

&g xy  =
d

d

d

d

a b

t t
+

F
HG

I
KJ

Again from the geometry

da = lim tan
D tÆ

-

0

1  

∂

∂

∂

∂

∂

∂

v

vx
x t

x
u

x
t

x
t

D D

D D1 +
F
HG

I
KJ

F

H

G
G
G
G

I

K

J
J
J
J

= d

db = lim tan
D tÆ

-

0

1  

∂

∂

∂

∂

∂

∂

u

y
y t

y
y

t

u

y
t

D D

D D1 +
F
HG

I
KJ

F

H

G
G
G
G

I

K

J
J
J
J

=
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d
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Hence,
d

d

d

d

a b

t t
+  =

∂

∂

∂

∂

v

x

u

y
+

F
HG

I
KJ

Finally, we can write

&g xy  =
∂

∂

∂

∂

v

x

u

y
+ (3.19)

The transverse displacement of B with respect to A and the lateral displacement

of D with respect to A (Fig. 3.7) can be considered as the rotations of the linear

segments AB and AD about  A and brings the concept of rotation in a flow field.

The rotation at a point is defined as the arithmetic mean of the angular velocities

of two perpendicular linear segments meeting at that point. The angular velocities

of AB and AD about A are 
d

d

a

t
 and 

d

d

b

t
 respectively, but in the opposite sense.

Considering the anticlockwise direction as positive, the rotation at A can be

written as,

wz =
1

2

d

d

d

d

a b

t t
-

F
HG

I
KJ

or, wz =
1

2

∂

∂

∂

∂

v

x

u

y
�

F
HG

I
KJ (3.20)

The suffix z in w represents the rotation about z-axis.

Therefore, it is observed that when u = u(x, y) and v = v(x, y) the rotation and

angular deformation of a fluid element exist simultaneously.

In a special case, when

∂

∂

v

x
 = � 

∂

∂

u

y
,

&g xy  = 0 (from Eq. 3.19) (3.21a)

and wz =
∂

∂

v

x
 = � 

∂

∂

u

y
(from Eq. (3.20)) (3.21b)

This implies that the linear segments AB and AD move with the same angular

velocity (both in magnitude and direction) and hence the included angle between

them remains the same and no angular deformation takes place. This situation is

known as pure rotation (Fig. 3.8a). In another special case,

when
∂

∂

v

x
 =

∂

∂

u

y

&g xy  = 2 2
∂

∂

∂

∂

v

x

u

y
=  (from Eq. (3.19)) (3.22a)

and wz = 0 (from Eq. (3.20)) (3.22b)
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This implies that the fluid element has an angular deformation rate but no

rotation about the z-axis (Fig. 3.8b)

      
A A

da b= - d

da da

db db

da b= d
B B

B

C

C

C

B

D
D

D

90º

C

D

Fig. 3.8a Fluid element in pure Fig. 3.8b Fluid element with angular

rotation deformation in absence of rotation

In a three dimensional flow, the components of rotation are defined as

wx =
1

2

∂

∂

∂

∂

w

y z
-

F
HG

I
KJ

v
(3.23a)

wy =
1

2

∂

∂

∂

∂

u

z

w

x
-

F
HG

I
KJ

(3.23b)

and wz =
1

2

∂

∂

∂

∂

v

x

u

y
-

F
HG

I
KJ

(3.23c)

Following Eqs (3.23a) to (3.23c), rotation in a flow field can be expressed in a

vector form as

r
w  =

1

2
( )— ¥

r
V

When the components of rotation at all points in a flow field become zero, the

flow is said to be irrotational. Therefore, the necessary and sufficient condition

for a flow field to be irrotational is

— ¥
r
V  = 0 (3.24)

3.3.6 Vorticity

The vorticity W in its simplest form is defined as a vector which is equal to two

times the rotation vector
r

W  = 2
r r
w = — ¥ V (3.25a)

Therefore, for an irrotational flow, vorticity components are also zero. If an

imaginary line is drawn in the fluid so that the tangent to it at each point is in the

direction of the vorticity vector 
r

W  at that point, the line is called a vortex line.

Therefore, the general equation of the vortex line can be written as,
r r
W ¥ ds  = 0 (3.25b)
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In a rectangular cartesian coordinate system, it becomes

dx

xW
 =

d dy z

y zW W
= (3.25c)

where, Wx = 2wx (3.26a)

Wy = 2wy (3.26b)

Wz = 2wz (3.26c)

The vorticity is actually an antisymmetric tensor and its three distinct elements

transform like the components of a vector in cartesian coordinates. This is the

reason for which the vorticity components can be treated as vectors.

Vorticity in Polar Coordinates In a two dimensional polar coordinate

system (Fig. 3.9), the angular velocity of segment D r can be written as

lim
( ( / ) )

D

D D
D Dt

V V r r V t

r tÆ

+ -L
NM

O
QP0

q q q∂ ∂
= 

∂

∂
qV

r

Also, the angular velocity of segment rDq  becomes

lim
( ( / ) )

D

D D
D Dt

r r r rV V V t

r t r

V

Æ
-

+ -L
NM

O
QP

= -
0

1∂ ∂q q

q

∂

∂q

Fig. 3.9 Definition of rotation in a polar coordinate system

The additional term arising from the angular velocity about the centre O is

Vq /r.

Hence, the vorticity component Wz in polar coordinates is

Wz = 2
1

w
∂

∂

∂

∂q
q q

z
rV

r r

V V

r
= - +

Therefore, in a three dimensional cylindrical polar coordinate system, the

vorticity components can be written as
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Wz =
∂

∂

∂

∂q
q qV

r r

V V

r

r- +
1

(3.27a)

Wr =
1

r

V V

z

z∂

∂q

∂

∂
q

− (3.27b)

Wq =
∂

∂

∂

∂

V

z

V

r

r z
− (3.27c)

In a spherical polar coordinate system (Fig. 3.1b), the vorticity components

are defined as

WR =
1 1

R

V

R

V V

R

∂

∂f f

∂

∂q
fq f q- +

sin
cot (3.28a)

Wf =
1

R

V V

R

V

R

R

sin f

∂

∂q

∂

∂
q q- - (3.28b)

Wq =
∂

∂

∂

∂f

f fV

R

V

R R

VR+ -
1

(3.28c)

3.3.7 Generalized Expression of the Movement of a
Fluid Element

Fig. 3.10 General representation of

fluid motion

P

S

O

dV

ds

V 1
=
 V

+
 d
V

VV
S

+
 d
s

P1

An analytical expression to represent

the most general form of the movement

of a fluid element consisting of

translation, rotation and deformation

can be developed as follows.

Consider the movement of a fluid

element in a fluid continuum as shown

in Fig. 3.10.

The velocity at a point P(x, y, z) is 
r

V

and at point P1(x1, y1, z1), a small

distance d
r

S  from P, is 
r
V 1.

The velocity vector 
r

V 1 can be

written as
r
V 1 =

r r r r r
i u j k w V dV1 1 1+ + = +v

=
r r r

r r r

i u j k w
V

x
x

V

y
y

V

z
z+ + + + +v

∂

∂

∂

∂

∂

∂
d d d

= d d d
u u u

i u x y z
x y z

∂ ∂ ∂

∂ ∂ ∂

È ˘
+ + +Í ˙

Î ˚

r

+ d d dj x y z
x y z

∂ ∂ ∂

∂ ∂ ∂

È ˘
+ + +Í ˙

Î ˚

r v v v

v
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+ d d d
w w w

k w x y z
x y z

∂ ∂ ∂

∂ ∂ ∂

È ˘
+ + +Í ˙

Î ˚

r
(3.29)

where u1, v1, w1 are the respective x, y and z components of 
r

V 1 and u, v, w are

those of 
r

V .

Eq. (3.29) can be rearranged as

r
V 1 =

1 v 1
d d d

2 2

u u u w
i u x y z

x x y z x

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

È Ï ¸Ê ˆ Ê ˆÔ Ô+ + + + +Í Ì ˝Á ˜ Á ˜Ë ¯ Ë ¯Ô ÔÍ Ó ˛Î

r
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1

2

∂

∂

∂

∂

∂

∂

∂

∂
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x

u

y
y-F

HG
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HG
I
KJ

RST
UVW
O
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d d
v

+ 
1 1

d d d
2 2

u w
j y x z

y x y y z

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
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r v v v

v
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1

2

∂

∂

∂

∂

∂

∂

∂

∂

v v

x
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y
x

w

y z
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HG
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RST
UVW
O
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d d
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r
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z
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z

w

x
x

w

y z
y+ + +F

HG
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UVW

L
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∂

∂

∂

∂

∂

∂

∂

∂

∂

∂
d d d

1

2

1
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1
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∂
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∂

∂
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y z
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UVW
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d d

=
r r r r

V s D+ ¥ +1

2
W d (3.30)

where, d
r

S  =
r r r

i x j y k zd d d+ + ,
r

W  is the vorticity vector as defined by Eq. (3.25a)

and
r
D  =

1 1
d d d

2 2

u u u w
i x y z

x x y z x

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

È ˘Ê ˆ Ê ˆ
+ + + +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

r v

+ 
1 1

d d d
2 2

u w
j x y z

x y y y z

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

È ˘Ê ˆ Ê ˆ
+ + + +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

r v v v

+ 
1 1

d dy + d
2 2

u w w w
k x z

z x y z z

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

È ˘Ê ˆ Ê ˆ
+ + +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

r v

(3.31)

Equation (3.31) represents the most general form of the movement of a fluid

element. The first term represents the translational velocity which indicates linear

motion without any change of shape of the fluid body. The second term represents

a rigid body rotation of the fluid element, while the third term 
r
D  represents the

rate of deformation.

3.4 EXISTENCE OF FLOW

A fluid being a material body, must obey the law of conservation of mass in

course of its flow. In other words, if a velocity field, 
r r r r

V i u j kw= + +v  has to
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exist in a fluid continuum, the velocity components must obey the mass

conservation principle. Velocity components in accordance with the mass

conservation principle are said to constitute a possible fluid flow, whereas in

violation of this principle, are said to describe an impossible flow. Therefore, the

existence of a physically possible flow field is verified from the principle of

conservation of mass. The detailed discussion on this is deferred to the next

chapter along with the discussion on principles of conservation of momentum and

energy.

Summary

∑ Kinematics of fluid deals with the geometry of fluid motion. It

characterizes the different types of motion and associated deformation

rates of fluid element.

∑ The fluid motion is described by two methods, namely, Lagrangian

method and Eulerian method. In the Lagrangian view, the velocity and

other hydrodynamic parameters are specified for particles or elements of

given identities, while, in the Eulerian view, these parameters are

expressed as functions of location and time. The Lagrangian version of a

flow field can be obtained from the integration of the set of equations

describing the flow in the Eulerian version.

∑ A flow is defined to be steady when the hydrodynamic parameters and

fluid properties at any point do not change with time. Flow in which any of

these parameters changes with time is termed as unsteady. A flow may

appear steady or unsteady depending upon the choice of coordinate axes.

A flow is said to be uniform when no hydrodynamic parameter changes

from point to point at any instant of time, or else the flow is non-uniform.

∑ The total derivative of velocity with respect to time is known as material

or substantial acceleration, while the partial derivative of velocity with

respect to time for a fixed location is known as temporal acceleration.

Material acceleration = temporal acceleration + convective acceleration.

∑ A streamline at any instant of time is an imaginary curve or line in the

flow field so that the tangent to the curve at any point represents the

direction of the instantaneous velocity at that point. A path line is the

trajectory of a fluid particle of a given identity. A streak line at any instant

of time is the locus of temporary locations of all particles that have passed

through a fixed point in the flow. In a steady flow, the streamlines, path

lines and streak lines are identical.

∑ Flow parameters, in general, become functions of time and space

coordinates. A one dimensional flow is that in which the flow parameters

are functions of time and one space coordinate only.

∑ A fluid motion consists of translation, rotation and continuous

deformation. In an uniform flow, the fluid elements are simply translated

without any deformation or rotation. The deformation and rotation of fluid
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elements are caused by the variations in velocity components with the

space coordinates. The linear deformation or strain rate is defined as the

rate of change of length of a linear fluid element per unit original length.

The rate of angular deformation at a point is defined as the rate of change

of angle between two linear elements at that point which were initially

perpendicular to each other. The rotation at a point is defined as the

arithmetic mean of the angular velocities of two perpendicular linear

segments meeting at that point. The rotation of a fluid element in absence

of any deformation is known as pure or rigid body rotation. When the

components of rotation at all points in a flow become zero, the flow is said

to be irrotational.

∑ The vorticity is actually an antisymmetric tensor but it is defined as a

vector that equals to two times the rotation vector. Vorticity is zero for an

irrotational flow.

∑ The existence of a physically possible flow field is verified from the

principle of conservation of mass.

Solved Examples

Example 3.1 In a 1�D flow field, the velocity at a point may be given in the

Eulerian system by u = x + t. Determine the displacement of a fluid particle whose initial

position is x0 at initial time t0 in the Lagrangian system.

Solution u = x + t

or, dx/dt = x + t (3.32)

Using D as the operator d/dt, the Eq. (3.32) can be written as

(D � 1)x = t (3.33)

The solution of Eq. (3.33) is

x = Aet � t � 1 (3.34)

The constant A is found from the initial condition as follows:

x0 = Aet0 � t0 � 1

Hence, A =
x t

e
t

0 0 1

0

+ +

Substituting the value of A into Eq. (3.34), we get

x = (x0 + t0 + 1) e
(t � t0)

 � t � 1

This equation is the required Lagrangian version of the fluid particle having the

identity x = x0 at t = t0.

Example 3.2 A two dimensional flow is described in the Lagrangian system as

x = x0e
�kt + y0 (1 � e�2kt)

and y = y0 e
kt

Find (a) the equation of path line of the particle and (b) the velocity components in

Eulerian system.
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Solution (a) Path line of the particle is found by eliminating t from the equaions

describing its motion as follows:

e
kt

 = y/y0

Hence, x = x0(y0/y) + y0(1 � y2
0/y2)

which finally gives after some rearrangement

(x � y0)y
2
 � x0 y0 y + y

3
0 = 0

This is the required equation of path line.

(b) u (the x component of velocity)

=
d

d

x

t

= � 2
0 0

d
(1 )

d

kt ktx e y e
t

-È ˘+ -Î ˚
= � k x0 e

�kt + 2 ky0 e
�2kt

= � k [x � y0(1 � e
�2kt

)] + 2 k y0 e
�2kt

= � kx + ky0 (1 + e
�2kt

)

= � kx + ky (e� kt + e�3kt)

v (the y component of velocity)

 =
d

d

y

t
 = ( )0

d

d

kty e
t

= y0 k ekt = ky

Example 3.3 Given a velocity field 
r

V  = (4 + xy + 2t) 
r

i  + 6x3 
r

j  + (3xt2 + z) 
r

k . Find

the acceleration of a fluid particle at (2, 4, � 4) and time t = 3.

Solution
r
a  =

D

D

r r
r rV

t

V

t
V V= + ◊—

∂

∂
( ) (3.35a)

∂

∂

r

V

t
 = 2

r

i  + 6x t
r

k (3.35b)

(
r

V .—)
r

V  =
3 2[(4 2 ) 6 (3 ) ]u w xy t i x j xt z k

x y z

∂ ∂ ∂

∂ ∂ ∂

Ê ˆ
+ + + + + + +Á ˜Ë ¯

rr r
v

= u i y x j t k xi w k( ) ( ) ( )
r r r r r

+ + + +18 32 2
v

= (4 + xy + 2t) ( ) ( ) ( )
r r r r r

i y x j t k x xi xt z k+ + + + +18 3 6 32 2 3 2

= (4y + xy
2
 + 2ty + 6x

4
) 

r

i  + (72x
2
 + 18x

3
y + 36tx

2
) 

r

j  + (12t
2

+ 3xyt
2
 + 6t

3
 + 3xt

2
 + z)

r

k (3.35c)

with the help of Eqs (3.35a) to (3.35c), the acceleration field can be expressed as

r
a  = (2 + 4y + xy2 + 2ty + 6x4)

r

i  + (72x2 + 18x3y + 36tx2)
r

j

+ (6xt + 12t2 + 3xyt2 + 6t3 + z + 3xt2)
r

k (3.36)

The acceleration vector at the point (2, 4, �4) and at time t = 3 can be found out by

substituting the values of x, y, z and t in the Eq. (3.36) as

r
a  = 170

r

i  + 1296
r

j  + 572
r

k
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Hence, x component of acceleration ax = 170 units

y component of acceleration ay = 1296 units

z component of acceleration az = 572 units

Magnitude of resultant acceleration

| |
r
a  = [(170)

2
 + (1296)

2
 + (572)

2
]
1/2

= 1375.39 units

Example 3.4 The velocity and density fields in a diffuser are given by

u = u0 e
�2x/L

and r = r0 e
 �x/L

Find the rate of change of density at x = L.

Solution The rate of change of density in this case can be written as,

D

D

ρ

t
 =

∂ r

∂

∂ r

∂t
u

x
+

= 0 + u0 e
�2x/L

 
∂

∂
r

x
e

x L
0

- /e j

= u e
L

ex L x L
0

2 0- -F
H

I
K

/ /�
r

= - -r0 0 3u

L
e

x L/

at x = L, Dr/Dt = - -r0 0 3u

L
e

Example 3.5 The velocity field in a fluid medium is given by

r

V  = 3 2 2 32xy i xy j zy t k
r r r

+ + +( )

Find the magnitudes and directions of (i) translational velocity, (ii) rotational velocity

and (iii) the vorticity of a fluid element at (1, 2, 1) and at time t = 3.

Solution (i) Translational velocity vector at (1, 2, 1) and at t = 3 can be written as,

r

V  = 3(1)(4) 
r

i  + 2(1)(2) 
r

j  + (2.1.2 + 3.3) 
r

k  = 12 
r

i  + 4 
r

j  + 13 
r

k

Hence x component of translational velocity u = 12 units

y component of translational velocity v = 4 units

z component of translational velocity w = 13 units

(ii) Rotational velocity vector is found as

&
r

w  =
1

2

1

2
( )— ¥ =

r

r r r

V

i j k

x y z
w

∂

∂

∂

∂

∂

∂
u v

= � � �
2 2 2

i w j u w k u

y z z x x y

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

Ï ¸ Ï ¸ Ï ¸
+ +Ì ˝ Ì ˝ Ì ˝

Ó ˛ Ó ˛ Ó ˛

rr r
v v

= ( )1
(2 3 ) � 2

2
i zy t xy

y z

∂ ∂

∂ ∂

È ˘
+Í ˙

Î ˚

r
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+ 
r

j
z

xy
x

zy t
1

2
3 2 32∂

∂

∂

∂
( ) - +

L
NM

O
QP

b g

+ 
r

k
x

xy
y

xy
1

2
2 3 2∂

∂

∂

∂
( ) -

L
NM

O
QP

e j

= z
r

i  + (y � 3xy) 
r

k
at (1, 2, 1) and t = 3,

&
r

w  =
r

i  � 4 
r

k

Therefore the rotational velocity about x axis wx = 1 unit

the rotational velocity about y axis wy = 0 unit

the rotational velocity about z axis wz = �4 units

(iii) The vorticity
r

W  = 2 &
r

w

Hence
r

W  = 2 
r

i  � 8 
r

k

Example 3.6 Find the acceleration and vorticity components at a point (1, 1, 1) for

the following flow field:

u = 2x2 + 3y, v = � 2xy + 3y2 + 3zy, w = � 
3

2
2 92 2z xz y z+ -

Solution Acceleration components:

x component of acceleration

ax =
∂

∂

∂

∂

∂

∂

∂

∂

u

t
u

u

x

u

y
w

u

z
+ + +v

= 0 + (2x
2
 + 3y) 4x + (�2xy + 3y

2
 + 3zy)3 + 0

Therefore, (ax) at (1, 1, 1) = 0 + 5 ¥ 4 + 4 ¥ 3 + 0 = 32 units

y component of acceleration

ay =
∂

∂

∂

∂

∂

∂

∂

∂

v v
v

v v

t
u

x y
w

z
+ + +

= 0 + (2x
2
 + 3y) (�2y) + (�2xy + 3y

2
 + 3zy) (�2x + 6y + 3z)

+ 
2 23

� 2 � 9 3
2

z xz y z y
Ê ˆ+Á ˜Ë ¯

Therefore, (ay)at (1, 1, 1) = 5 ¥ (�2) + 4 ¥ 7 + (�8.5) ¥ 3 = � 7.5 units

z component of acceleration

az =
∂

∂

∂

∂

∂

∂

∂

∂

w

t
u

w

x

w

y
w

w

z
+ + +v

= 0 + (2x
2
 + 3y) 2z + (�2xy + 3y

2
 + 3zy) (�18yz)

+ 
2 2 23

� 2 � 9 (�3 2 � 9 )
2

z xz y z z x y
Ê ˆ+ +Á ˜Ë ¯

Therefore (az) at (1, 1, 1) = 0 + (2 + 3) ¥ 2 � (� 2 + 3 + 3)18

+ 
3

2

Ê-ÁË  + 2 � 9) (�3 + 2 � 9)

= 23 units
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Wx =
∂

∂

∂

∂

w

y z
�

v
 = �18yz �3y = � (18yz + 3y)

Wy =
∂

∂

∂

∂

u

z

w

x
�  = 0 � 2z = � 2z

Wz =
∂

∂

∂

∂

v

x

u

y
�  = � 2y � 3 = � (2y + 3)

at the point (1, 1, 1)

Wx = � (18 + 3) = � 21 units

Wy = � 2 units

Wz = � (2 + 3) = � 5 units

Example 3.7 Find the acceleration of a fluid particle at the point r = 2a, q = p/2 for

a 2-dimensional flow given by

Vr = -
F
HG

I
KJ

u
a

r
1

2

2
� cos q , Vq = 

2

2
1 sin

a
u

r
q

Ê ˆ
+Á ˜Ë ¯

Solution
∂

∂q

Vr  = u
a

r

V
u

a

r
sin � , cosq

∂

∂q
qq1 1

2

2

2

2

F
HG

I
KJ = +

F
HG

I
KJ

∂

∂

V

r

r  =
-

=
-2 2

2

3

2

3

ua

r

V

r

ua

r
cos , sin ,q

∂

∂
qq

Acceleration in the radial direction

ar = V
V

r

V

r

V V

r
r

r r∂

∂

∂

∂q
q q+ -

2

=
2

1 1 1
2 2

3

2

2
2

2 4

4
2

2 2

2

2

2u a

r

a

r

u

r

a

r

u

r

a

r
-

F
HG

I
KJ

+ -
F
HG

I
KJ

- +
F
HG

I
KJ

cos sin sinq q q

Hence, (ar) at r = 2a, q = p/2

= 0
2

1
1

16 2
1

1

4

2 2 2

+ -F
H

I
K - +F

H
I
K

u

a

u

a

= -
5

16

2
u

a

Acceleration in the azimuthal direction

aq = V
V

r

V

r

V V V

r
r

r∂

∂

∂

∂q
q q q q
+ +

=

2
2 2 2 2 2

3 2 2

2
1 � sin cos 1 sin cos

u a a u a

rr r r
q q q q

Ê ˆ Ê ˆ
+ +Á ˜ Á ˜Ë ¯ Ë ¯

� 
2 4

4
1 � sin cos

u a

r r
q q

Ê ˆ
Á ˜Ë ¯
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Hence, (aq) (at r = 2a, q = p/2) = 0 + 0 + 0 = 0

Therefore, at r = 2a, q = p/2

ar = � 5u2/16, aq = 0

Example 3.8 A fluid is flowing at a constant volume flow rate of Q through a

divergent pipe having inlet and outlet diameters of D1 and D2 respectively and a length of

L. Assuming the velocity to be axial and uniform at any section, show that the

accelerations at the inlet and outlet of the pipe are given by �
( � )32 2

2 1
2

1
5

Q D D

L Dp
 and

�
( � )32 2

2 1
2

2
5

Q D D

L Dp
 respectively.

Direction 

of flow

D1
D2

x

L

Dx

Fig. 3.11 Flow through a divergent duct

Solution The diameter of the duct at an axial distance x from the inlet plane (Fig. 3.11)

is given by

Dx = D1 + 
x

L
(D2 � D1)

Therefore, the velocity at this section can be written as

u =
4

1 2 1

2

Q

D
x

L
D Dp +L

NM
O
QP

( � )

Acceleration at this section can be written as

a = u 
∂

∂

u

x

=
4 8

1 2 1

2

1 2 1

3
2 1Q

D
x

L
D D

Q

D
x

L
D D

D D

L
p p+L

NM
O
QP

¥
+L

NM
O
QP

( � )

�

( � )

( � )

=
� ( � )

( � )

32 2
2 1

2
1 2 1

5

Q D D

L D
x

L
D Dp +L

NM
O
QP

(3.37)

This is the general expression of acceleration at any section at a distance x from the

inlet of the pipe. Substituting the values of x = 0 (for inlet) and x = L (for outlet) in

Eq. (3.37) we have,
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Acceleration at the inlet =
� ( � )32 2

2 1

2
1
5

Q D D

L Dp

and, acceleration at the outlet =
� ( � )32 2

2 1

2
2
5

Q D D

L Dp

Example 3.9 A two-dimensional flow field is defined as 
r

V  = 
r

i x � 
r

j y. Derive the

equation of stream line passing through the point (1, 1).

Solution The equation of stream line is
r

V  ¥ d
r
s  = 0

or, u dy � v dx = 0

Hence, dy/dx = v/u = �y/x

or, dy/y + dx/x = 0 (3.38)

Integration of Eq. (3.38) gives xy = C, where C is a constant.

For the stream line passing through (1,1), the value of the constant C is 1.

Hence the required equation of stream line passing through (1,1) is xy � 1 = 0.

Exercises

3.1 Choose the correct answer

(i) A flow is said to be steady when

(a) conditions change steadily with time

(b) conditions do not change with time at any point

(c) conditions do not change steadily with time at any point

(d) the velocity does not change at all with time at any point

(e) only when the velocity vector at any point remains constant with space

and time.

(ii) A streamline is a line

(a) drawn normal to the velocity vector at any point

(b) such that the streamlines divide the passage into equal number of parts

(c) which is along the path of a particle

(d) tangent to which is in the direction of velocity vector at every point.

(iii) Streamline, pathline and streakline are identical when

(a) the flow is uniform

(b) the flow is steady

(c) the flow velocities do not change steadily with time

(e) the flow is neither steady nor uniform.

(iv) The material acceleration is zero for a

(a) steady flow

(b) steady and uniform flow

(c) unsteady and uniform flow

(d) unsteady and non-uniform flow.

3.2 Given the velocity field
r r r r

V x y i xy j t xy k= + +10 15 25 32 ( � )
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Find the acceleration of a fluid particle at a point (1, 2, � 1) at time, t = 0.5.

Ans. (1531.90 units)

3.3 Given an unsteady temperature field T = (xy + z + 3t)K and unsteady velocity

field 
r r r r

V xy i z j t k= + + 5 , what will be the rate of change of temperature of a

particle at a point (2, � 2, 1) at time t = 2s?

Ans. (23 K/s)

3.4 A two-dimensional pressure field p = 4x
3
 � 2y

2
 is associated with a velocity field

given by 
r r r
V x y x i x y y j= - + - +( ) ( )2 2 2 . Determine the rate of change of

pressure at a point (2, 1).

Ans. (260 units)

3.5 The velocity field in a steady flow is given in a rectangular Cartesian coordinate

system as 
r
V  = 6 xi

r

 + (4y + 10)
r

j  + 2t
r

k . What is the path line of a particle which

is at (2, 6, 4) at time t = 2s?

Ans. [{ln x + ln(4y + 10) + 15.77}
2
 � 100 z = 0]

3.6 The velocity field in the neighbourhood of a stagnation point is given by

u = U0 x/L, v = � U0 y/L, w = 0

(a) show that the acceleration vector is purely radial

(b) if L = 0.5 m, what is the magnitude of U0 if the total acceleration at

(x, y) = (L, L) is 10 m/s2.

Ans. (1.88 m/s)

3.7 For a steady two-dimensional incompressible flow through a nozzle, the velocity

field is given by 
r

V  = u0(1 + 2x/L)
r

i , where x is the distance along the axis of the

nozzle from its inlet plane and L is the length of the nozzle. Find

(i) an expression of the acceleration of a particle flowing through the nozzle and

(ii) the time required for a fluid particle to travel from the inlet to the exit of the

nozzle.

Ans. 
L

u2
3

0

ln
F
HG

I
KJ

3.8 For a steady flow through a conical nozzle the axial velocity is approximately

given by u = U0 (1 � x/L)
�2

, where U0 is the entry velocity and L is the distance

from inlet plane to the apparent vertex of the cone. (i) derive a general expression

for the axial acceleration and (ii) determine the acceleration at x = 0 and x = 1.0 m

if U0 = 5 m/s and L = 2m.

Ans. (25 m/s2, 800 m/s2)

3.9 Two Large circular plates contain an incompressible fluid in between. The

bottom plate is fixed and the top plate is moved downwards with a velocity V0

causing the fluid to flow out in radial direction and azimuthal symmetry. Derive

an expression of radial velocity and acceleration at a radial location r when the

height between the plates is h. Consider the radial velocity across the plates to be

uniform.

Ans. 
V r

h

V r

h

0 0
2

22 4
,

F
HG

I
KJ
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3.10 A fluid flows through a horizontal conical pipe having an inlet diameter of

200 mm and an outlet diameter of 400 mm and a length of 2 m. The velocity over

any cross-section may be considered to be uniform. Determine the convective

and local acceleration at a section where the diameter is 300 mm for the following

cases:

(a) Constant inlet discharge of 0.3 m
3
/s

(b) Inlet discharge varying linearly from 0.3 m
3
/s to 0.6 m

3
/s over two seconds. The

time of interest is when t = 1 second.

Ans. ((a) 0, � 12.01 m/s
2
; (b) 2.12 m/s

2
, � 27.02 m/s

2
)

3.11 The velocity components in a two-dimensional flow field for an incompressible

fluid are given by

u = e
x
 cos h(y) and v = � e

x
 sin h(x)

Determine the equation of streamline for this flow.

Ans. (cos hx + sin hy = constant)

3.12 A three-dimensional velocity field is given by u = � x, v = 2y and w = 5 � z. Find

the equation of streamline through (2, 2, 1).

Ans. (x2 y = 8, y(5 � z)2 = 32)

3.13 A three-dimensional velocity field is given by

u(x, y, z) = cx + 2w0 y + u0

v(x, y, z) = cy + v0

w(x, y, z) = � 2cz + w0:

where c, w0, u0, and v0 are constants. Find the components of (i) rotational

velocity, (ii) vorticity and (iii) the strain rates for the above flow field.

Ans. 
& & , & ; ,

& , & , & ; & , & &

w w w

e e e g g g
x y z x y z

xx yy zz x y yz x z

w w

c c c w

= = = - = = = -
= = = - = = =

R
S
T

U
V
W

0 0 2

2 2 0

0 0

0

W W W

3.14 Verify whether the following flow fields are rotational. If so, determine the

component of rotation about various axes.

(i) u = xyz (ii) u = xy (iii) Vr = A/r (iv) Vr = A/r

v = zx v = 
1

2
 (x

2
 � y

2
) V0 = Br V0 = B/r

w = yz � xy
2

w = 0 Vz = 0 Vz = 0

Ans. 
(i) rotational,  

(ii) irrotational,  (iii) rotational,  iv) irrotational

w w w

w w wq

x y z

r z

z x y x y x y z x

B

= - - = - = -

= = =

L

N
M
M

O

Q
P
P

1

2
2

1

2

1

2
1

0

( ), ( ), ( );

, , (

3.15 Show that the velocity field given by 
r

V  = (a + by � cz)
r

i  + (d � bx + ez)
r

j  +

( f + cx � ey)
r

k  of a fluid represents a rigid body motion.



4.1 SYSTEM

Boundary

System

Surroundings

Fig. 4.1 System and surroundings

System A system is defined as a

quantity of matter in space upon which

attention is paid in the analysis of a

problem. Everything external to the

system is called the surroundings. The

system is separated from the

surroundings by the system boundary

(Fig. 4.1) which may be a real solid

boundary or an imaginary one, may be

fixed or moving depending upon the

investigator�s choice based on the need

of the problem concerned. There are three types of systems as follows:

System

Control mass system
(Closed system)

Control volume system
(Open system)

Isolated system

Conservation Equations
and Analysis of Finite

Control Volumes

4
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Control mass system This is a system

(Fig. 4.2) of fixed mass with fixed

identity. This means that there is no

mass transfer across the system

boundary. There may be energy

transfer into or out of the system. The

type of system is usually referred to as

�closed system�.

Control volume system This is a

system (Fig. 4.3) in which matter

crosses the system boundary which

remains fixed without any change in

the volume of the system. The type of

system is usually referred to as an

�open system� or more popularly a

�control volume�. In other words, a

control volume may be defined as a

fixed region in space upon which the

attention is paid. Identification of the

region depends much on the need of the

Boundary

Energy out

Surroundings
Energy in
No mass transfer

Control Mass
System

Fig. 4.2 A control mass system or

closed system

problem. The boundary of a control volume is called the control surface across

which the transfer of both mass and energy takes place. The mass of a control

volume (open system) may or may not be fixed depending upon whether the net

efflux (or influx) of mass across the control surface (the system boundary) equals

to zero or not. However, the identity of mass in a control volume always changes

unlike the case for a control mass system (closed system).

Energy in

Energy outMass in

Boundary

Mass out

Surroundings

Control Volume
System

Fig. 4.3 A control volume system or

open system

Isolated 
system

Surroundings

No mass or energy transfer

Fig. 4.4 An isolated system

Most of the engineering devices, in general,

represent an open system or control volume. A

heat exchanger is an example of an open system

where fluid enters and leaves the system

continuously with the transfer of heat across the

system boundary. Another example is a pump

where a continuous flow of fluid takes place

through the system with a transfer of mechanical

energy from the surroundings to the system.

Isolated system An isolated system is one (Fig. 4.4) in which there is neither

interaction of mass nor energy between the system and the surroundings.

Therefore it is of fixed mass with same identity and fixed energy.

4.2 CONSERVATION OF MASS�THE CONTINUITY
EQUATION

The law of conservation of mass states that mass can neither be created nor be

destroyed. Conservation of mass is inherent to the definition of a closed system

and can be written mathematically as
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Dm/Dt = 0

where m is the mass of the system.

For a control volume (Fig. 4.5), the principle of conservation of mass can be

stated as

Rate at which mass enters = Rate at which mass leaves the region +

the region Rate of accumulation of mass in the region

or,

Rate of accumulation of mass in the control volume +

Net rate of mass efflux from the control volume = 0 (4.1)

The above statement can be expressed analytically in terms of velocity and

density field of a flow and the resulting expression is known as the equation of

continuity or the continuity equation.

Fixed
region as
control
volume

Mass of fluid
entering the

region

Mass of fluid
leaving the
region

Co
ntr

ol

su
rfa

ce

Fig. 4.5 A control volume in a flow field

4.2.1 Continuity Equation-Differential Form

In order to derive the continuity equation at a point in a fluid, the point is enclosed

by an elementary control volume appropriate to the coordinate frame of reference

and the influx and efflux of mass across each surface as well as the rate of mass

accumulation within the control volume is considered. A rectangular parallelo-

piped (Fig. 4.6) is considered as the control volume in a rectangular cartesian

frame of coordinate axes. Net efflux of mass along x-axis must be the excess
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r +
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w +

dx
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rw x yd d

ru y zd d
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HD
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Fig. 4.6 A control volume appropriate to a rectangular cartesian

coordinate system
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outflow over inflow across faces normal to x-axis. Let the fluid enter across one

of such faces ABCD with a velocity u and a density r. The velocity and density

with which the fluid will leave the face EFGH will be u + 
∂

∂

u

x
 dx and r + 

∂

∂

r

x
 dx

respectively (neglecting the higher order terms in dx).

Therefore, the rate of mass entering the control volume through face ABCD =

ru dy dz and, the rate of mass leaving the control volume through face EFGH

= r
r

+
F
HG

I
KJ

+
F
HG

I
KJ

∂

∂

∂

∂x
x u

u

x
xd d  dy dz

= r ru
x

u x+
L

N
M

O

Q
P

∂

∂
( ) d  dy dz

(neglecting the higher order terms in dx)

Hence, the net rate of mass efflux from the control volume in the x direction

= r ru
x

u x+
L

N
M

O

Q
P

∂

∂
( ) d  dy dz � ru dy dz

=
∂

∂ x
 (ru) dx dy dz

=
∂

∂ x
 (ru) dV

where dV  is the elemental volume dx dy dz.

In a similar fashion, the net rate of mass efflux in the y direction

= r
r

+
F
HG

I
KJ

+
F
HG

I
KJ

∂

∂

∂

∂y
y

y
yd dv

v

 dx dz � rv dx dz

=
∂

∂ y
 (rv) dV

and, the net rate of mass efflux in the z direction

= r
r

+
F
HG

I
KJ

+
F
HG

I
KJ

∂

∂
∂

∂

∂
∂

z
z w

w

z
z  dx dy � rw dx dy

=
∂

∂ z
 (rw) dV

The rate of accumulation of mass within the control volume is 
∂

∂ t
 (r dV ) =

∂

∂

r

t
 dV  (by the definition of control volume, dV  is invariant with time).

Therefore, according to the statement of conservation of mass for a control

volume (Eq. 4.1), it can be written that

∂

∂

∂

∂

∂

∂

∂

∂

r
r r r

t x
u

y z
w V+ + +

R
S
T

U
V
W

( ) ( ) ( )v d  = 0
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Since the equation is valid irrespective of the size dV  of the control volume,

we can write

∂

∂

∂

∂

∂

∂

∂

∂

r
r r r

t x
u

y z
w+ + +( ) ( ) ( )v  = 0 (4.2)

This is the well known equation of continuity of a compressible fluid in a

rectangular cartesian coordinate system. The equation can be written in a vector

form as

∂

∂

r
r

t
V+ —◊( )
r

 = 0 (4.3)

where 
r

V  represents the velocity vector.

In case of a steady flow,

∂

∂

r

t
 = 0

Hence Eq. (4.3) becomes

— ◊ (r 
r

V ) = 0 (4.4)

or in a rectangular cartesian coordinate system

∂

∂ x
 (ru) + 

∂

∂ y
 (rv) + 

∂

∂ z
 (rw) = 0 (4.5)

Equation (4.4) or (4.5) represents the continuity equation for a steady flow. In

case of an incompressible flow,

r = constant

Hence ∂r/∂t = 0 and moreover —◊ (r 
r
V ) = r—◊ (

r
V )

Therefore, the continuity equation for an incompressible flow becomes

—◊ (
r
V ) = 0 (4.6)

or,
∂

∂

∂

∂

∂

∂

u

x y

w

z
+ +

v

 = 0 (4.7)

It can be recalled in this contex that the first, second and third terms of

Eq. (4.7) are the linear strain rates in x, y, and z directions respectively of a fluid

element in motion as discussed in Chapter 3. Therefore, Eq. (4.7) can also be

written in terms of the strain rate components as

& & &e e exx yy zz+ +  = 0 (4.8)

Considering a fluid element of original lengths dx, dy and dz along the coordinate

axes x, y and z respectively, the rate of volumetric dilatation per unit original

volume of the element can be written as

lim
[( & ) ( & ) ( & ) ]

.D

D D D

Dt

xx yy zzx y z t t t

x y z tÆ

+ + + -
0

1 1 1 1d d d

d d d

e e e Dt is a 
small interval
of time

L

N
M
M

O

Q
P
P
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= & & &e e exx yy zz+ +

Hence the left hand side of the Eq. (4.7) or (4.8) can be physically identified as

the rate of volumetric dilatation per unit volume of a fluid element in motion

which is obviously zero for an incompressible flow.

The continuity equation for both the steady and unsteady incompressible flows

is described by the same equation (Eq. 4.6). This is because the temporal

derivative of no other hydrodynamic parameter, except density, appears in the

continuity equation (Eq. 4.3). Therefore, it is difficult to judge from the continuity

equation (equation 4.6) only whether an incompressible flow is steady or

unsteady.

Continuity Equation in a Cylindrical
Polar
Coordinate System

The continuity equation in any

coordinate system can be derived in

two ways, (i) either by expanding the

vectorial form of general Eq. (4.3) with

respect to the particular coordinate

system, or (ii) by considering an

elemental control volume appropriate

to the reference frame of coordinates

Fig. 4.7 A cylindrical polar coordinate

system

z

y

r

x

and then by applying the fundamental principle of conservation of mass as given

by the Eq. (4.1). The term —◊( )r
r
V  in a cylindrical polar coordinate system

(Fig. 4.7) can be written as

—◊( )r
r
V  =

∂

∂
r

r ∂ r

∂q

∂

∂
rq

r
V

V

r r

V

z
Vr

r
z( )

( )
( )+ + +1

(4.9)

Therefore, the equation of continuity in a cylindrical polar coordinate system

can be written as

∂ r

∂

∂

∂
r

r ∂ r

∂q

∂

∂
rq

t r
V

V

r r

V

z
Vr

r
z+ + + +( )

( )
( )

1
 = 0 (4.10)

The above equation can also be derived by considering the mass fluxes in the

control volume shown in Fig. 4.8.

Rate of mass entering the control volume through face ABCD

= r Vr r dq dz

Rate of mass leaving the control volume through the face EFGH

= r Vr r dq dz + 
∂

∂
r q

r
V r z rr( )d d d

Hence, the net rate of mass efflux in the r direction = 
1

r r
V r Vr

∂

∂
r( )d

where, d  = r dr dq dz (the elemental volume)
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Fig. 4.8 A control volume appropriate to a cylindrical polar coordinate system

The net rate of mass efflux from the control volume, in q direction, is the

difference of mass leaving through face ADHE and the mass entering through

face BCGF and can be written as 
1

r
V V

∂

∂q
r q( )d .

The net rate of mass efflux in z direction can be written in a similar fashion as

∂

∂
r

z
V Vz( )d

The rate of increase of mass within the control volume becomes

∂

∂
r

t
V( )d  =

∂ r

∂ t
V( )d

Hence, following the Eq. (4.1), the final form of continuity equation in a

cylindrical polar coordinate system becomes

∂ r

∂

∂

∂
r

∂

∂q
r

∂

∂
rq

t r r
V r

r
V

z
Vr z+ + +1 1

( ) ( ) ( )  = 0

or,
∂ r

∂

∂

∂
r

r ∂

∂q
r

∂

∂
rq

t r
V

V

r r
V

z
Vr

r
z+ + + +( ) ( ) ( )

1
 = 0

In case of an incompressible flow,

∂

∂

∂

∂q

∂

∂
qV

r

V

r r

V

z

r r z+ + +1 V
 = 0 (4.11)

The equation of continuity in a spherical polar coordinate system (Fig. 3.1)

can be written by expanding the term —◊( )r
r

V  of Eq. (4.3) as
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∂ r

∂

∂

∂
r

f

∂ r

∂q f

∂ r f

∂f
q f

t R R
R V

R

V

R

V
R+ + +1 1 1

2

2( )
sin

( )

sin

( sin )
 = 0

(4.12)

For an incompressible flow, Eq. (4.12) reduces to

1 1 12

R R
R V

V V
R

∂

∂ f

∂

∂q f

∂ f f

∂f
q( )

sin sin

( sin )
+ +  = 0 (4.13)

The derivation of Eq. (4.12) by considering an elemental control volume

appropriate to a spherical polar coordinate system is left as an exercise to the

readers.

Continuity Equation from a Closed System Approach We know that the

conservation of mass is inherent to the definition of a closed system as Dm/Dt =

0, m being the mass of the closed system. However, the general form of continuity,

as expressed by Eq. (4.3), can also be derived from the basic equation of mass

conservation of a closed system as follows:

Let us consider an elemental closed system of volume D   and density r.

Therefore, we can write

D

Dt
V( )r D  = 0

or,
D

D

D

D

r
r

t V t
V+ 1

D
D( )  = 0

The first term of the equation is the material derivative of density with time

which can be split up into its temporal and convective components, and hence we

get,

∂ r

∂
r r

t
V

V t
V+ — +

r
. ( )

1

D
DD

D
 = 0

The term 
1

D
D

V t
V

D

D
( ) is the rate of volumetric dilatation per unit volume of

the elemental system and equals to the divergence of the velocity vector at the

location enclosed by the system.

Therefore, we have

∂ r

∂
r r

t
V V+ ◊— + —◊
r r

 = 0

or
∂ r

∂
r

t
V+ —◊( )
r

 = 0

This is the typical form of continuity equation as derived earlier from a control

volume approach and expressed by Eq. (4.3). It should be made clear, in this

context, that —◊
r
V  = 0, which is the equation of continuity for an incompressible

flow, physically signifies that the volume of a fluid element remains same in

course of its flow.
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4.2.2 Stream Function

The concept of stream function is a direct consequence of the principle of

continuity. Let us consider a two-dimensional incompressible flow parallel to the

x � y plane in a rectangular cartesian coordinate system. The flow field in this

case is defined by

u = u(x, y, t)

v = v(x, y, t)

w = 0

The equation of continuity is

∂

∂

∂

∂

u

x y
+

v
 = 0 (4.14)

If a function y (x, y, t) is defined in the manner

u =
∂y

∂ y
(4.15a)

and v = � 
∂y

∂ x
(4.15b)

so that it automatically satisfies the equation of continuity (Eq. (4.14)), then the

function y is known as stream function. For a steady flow, y is a function of two

variables x and y only. In case of a two-dimensional irrotational flow,

∂

∂

∂

∂

v

x

u

y
-  = 0

so that

�
x x y y

∂ ∂y ∂ ∂y

∂ ∂ ∂ ∂

Ê ˆ Ê ˆ
-Á ˜ Á ˜Ë ¯ Ë ¯

 = 0

or, — = +2
2

2

2

2
y

∂ y

∂

∂ y

∂x y
 = 0 (4.16)

Thus, for an irrotational flow, stream function satisfies the Laplace�s

equation.

Constancy of yyyyy on a Streamline Since y is a point function, it has a value at

every point in the flow field. Hence, a change in the stream function y can be

written as

dy =
∂y

∂

∂y

∂x
x

y
yd d+  = � v dx + u dy

Further, the equation of a streamline is given by

u

xd
 =

v

dy
or u dy � v dx = 0

It follows that dy = 0 on a streamline, i.e. the value of y is constant along a

streamline. Therefore, the equation of a streamline can be expressed in terms of

stream function as
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y (x, y) = constant (4.17)

Once the function y is known, streamline can be drawn by joining the same

values of y in the flow field.

Physical Significance of Stream Function y Figure 4.9a illustrates a two

dimensional flow. Let A be a fixed point, but P be any point in the plane of the

flow. The points A and P are joined by the arbitrary lines ABP and ACP. For an

incompressible steady flow, the volume flow rate across ABP into the space

ABPCA (considering a unit width in a direction perpendicular to the plane of the

flow) must be equal to that across ACP. A number of different paths connecting A

and P (ADP, AEP, . . .) may be imagined but the volume flow rate across all the

paths would be the same. This implies that the rate of flow across any curve

between A and P depends only on the end points A and P.

Since A is fixed, the rate of flow across ABP, ACP, ADP, AEP (any path

connecting A and P) is a function only of the position P. This function is known as

the stream function y. The value of y at P therefore represents the volume flow

rate across any line joining P to A. The value of y at A is made arbitrarily zero.

The fixed point A may be the origin of coordinates, but this is not necessary. If a

point P¢ is considered (Fig. 4.9b), PP¢ being along a streamline, then the rate of

flow across the curve joining A to P¢ must be the same as across AP, since, by the

definition of a streamline, there is no flow across PP¢. The value of y thus remains

same at P¢ and P. Since P¢ was taken as any point on the streamline through P, it

follows that y is constant along a streamline. Thus the flow may be represented

by a series of streamlines at equal increments of y. If another point P¢¢ is

considered (Fig. 4.9b) in the plane, such that PP¢¢ is a small distance dn

perpendicular to the streamline through P with AP¢¢ > AP, then the volume flow

rate across the curve AP¢¢ is greater than that across AP by the increment dy of

the stream function from point P to P¢¢. Let the average velocity perpendicular to

PP¢¢ (i.e. in the direction of streamline at P) be V, then,

dy = V ◊ d n

or, V = dy/d n

Therefore, the velocity at a point can be expressed in terms of the stream function

y as

V = lim
d

dy

d

∂y

∂n n nÆ
=

0

This gives the mathematical definition of the stream function at the point P.

The above concept can be visualized more easily by considering the flow between

two adjacent streamlines in a rectangular cartesian coordinate system (Fig. 4.9c).

Let the values of the stream functions for the two streamlines be denoted by y and

y + dy. The volume flow rate dQ for an incompressible flow across any line, say

AB, of unit width, joining any two points A and B on two streamlines, can be

written as

dQ = dy
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Fig. 4.9 Physical interpretation of stream function

As y is a function of space coordinates, x and y,

dy =
∂y

∂

∂y

∂x
x

y
yd d+

Hence, dQ =
∂y

∂

∂y

∂x
x

y
yd d+ (4.18)

Again, the volume of fluid crossing the surface AB must be flowing out from

surfaces AP and BP of unit width. Hence,

dQ = u dy � v dx (4.19)

Comparing the equation (4.18) and (4.19), we get

u =
∂y

∂ y
and v = � 

∂y

∂ x
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The stream function, in a polar coordinate system is defined as

Vr =
1

r

∂y

∂q
and Vq = � 

∂y

∂ r

The expressions for Vr and Vq in terms of the stream function automatically

satisfy the equation of continuity given by

∂

∂

∂

∂q
q

r
V r Vr( ) ( )+  = 0

Stream Function in Three-Dimensional Flow It is not possible to draw a

streamline with a single stream function in case of  a three dimensional flow. An

axially symmetric three dimensional flow is similar to the two-dimensional case

in a sense that the flow field is the same in every plane containing the axis of

symmetry. The equation of continuity in the cylindrical polar coordinate system

for an incompressible flow is given by equation (4.11). For an axially symmetric

flow (the axis r = 0 being the axis of symmetry), the simplified form of the

equation (4.11) without the term 
1

r

V∂

∂q
q  is satisfied by a function defined as

r Vr = � 
∂y

∂ z
, r Vz = 

∂y

∂ r
(4.20)

The function y, defined by the Eq. (4.20) in case of a three dimensional flow

with an axial symmetry, is called the stokes stream function.

Stream Function in Compressible Flow Definition of the stream function y for a

two-dimensional compressible flow offers no difficulty. Instead of relating it to

the volume flow rate, one can relate it to the mass flow rate. The continuity

equation for a steady two-dimensional compressible flow is given by

∂

∂
r

∂

∂
r

x
u

y
( ) ( )+ v  = 0

Hence a stream function y can be defined which will satisfy the above equation

of continuity as

r u = r
∂y

∂
0

y

r v = � r
∂y

∂
0

x
(4.21)

where r0 is a reference density and is used in the manner as shown in Eq. (4.21),

to retain the unit of y same as that in the case of an incompressible flow.

Therefore, from a physical point of view, the difference in stream function

between any two streamlines multiplied by the reference density r0 will give the

mass flow rate through the passage of unit width formed by the streamlines.

4.2.3 Continuity Equation: Integral Form

The continuity equation can be expressed in an integral form by an application of

the statement of conservation of mass (Eq. 4.1) to a finite control volume of any
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shape and size. Let a control volume V, as shown in Fig. 4.10, be bounded by the

control surface S. The efflux of mass across the control surface S is given by

V

Control volume V

S
Control surfaces

dA

Fig. 4.10 A control volume for the derivation of continuity equation (integral form)

d

S

V Ar ◊ÚÚ
rr

where 
r
V  is the velocity vector at an elemental area d

r

A  which is treated as a

vector by considering its positive direction along the normal drawn outward from

the surface.

The rate of mass accumulation within the control volume becomes

d

V

V
t

∂
r

∂
◊ÚÚÚ

where dV  is an elemental volume, r is the density and V  is the total volume

bounded by the control surface S. Hence, the continuity equation becomes

(according to the statement given by Eq. (4.1))

d d

V S

V V A
t

∂
r r

∂
◊ + ◊ÚÚÚ ÚÚ

rr
 = 0 (4.22)

The integral form of the continuity equation (Eq. (4.22)) can be shown to be

equivalent to the differential form as given by Eq. (4.3). The second term of the

Eq. (4.22) can be converted into a volume integral by the use of the Gauss

divergence theorem as

d ( )d

S V

V A V Vr r◊ = —◊Ú ÚÚÚ
rr r

Since the volume  does not change with time, the sequence of differentiation and

integration in the first term of Eq. (4.22) can be interchanged.

Therefore Eq. (4.22) can be written as

( ) d

V

V V
t

∂ r
r

∂

È ˘
+ —◊Í ˙

Î ˚
ÚÚÚ

r
 = 0 (4.23)
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Equation (4.23) is valid for any arbitrary control volume irrespective of its

shape and size. So we can write

∂ r

∂
r

t
V+ —◊( )
r

 = 0.

4.3 CONSERVATION OF MOMENTUM:
MOMENTUM THEOREM

In Newtonian mechanics, the conservation of momentum is defined by Newton�s

second law of motion as follows:

Newton�s Second Law of Motion The rate of change of momentum of a body is

proportional to the impressed action and takes place in the direction of the

impressed action. The momentum implied may be linear or angular and the

corresponding actions are force and moment respectively. In case of fluid flow,

the word �body� in the above statement may be substituted by the word �particle�

or �control mass system�.

4.3.1 Reynolds Transport Theorem

It is important to note that the laws of physics are basically stated for a particle or

a control mass system. Therefore the classical statements for the conservation of

mass, momentum and energy are all referred to a control mass or closed system.

On the other hand, a study of fluid flow by the Eulerian approach requires a

mathematical modeling for a control volume either in differential or in integral

form. Therefore the physical statements of the principle of conservation of mass,

momentum and energy with reference to a control volume become necessary. This

is done by invoking a theorem known as the Reynolds transport theorem which

relates the control volume concept with that of a control mass system in terms of

a general property of the system. The derivation of the theorem is as follows:

Derivation of Reynolds Transport Theorem To formulate the relation between

the equations applied to a control mass system and those applied to a control

volume, a general flow situation is considered in Fig. 4.11 where the velocity of a

fluid is given relative to coordinate axes ox, oy, oz. At any time t, a control mass

system consisting of a certain mass of fluid is considered to have the dotted-line

boundaries as indicated. A control volume (stationary relative to the coordinate

axes) is considered that exactly coincides with the control mass system at time t

(Fig. 4.11a). At time t + dt, the control mass system has moved somewhat, since

each particle constituting the control mass system moves with the velocity

associated with its location.

Let N be the total amount of some property (mass, momentum, energy) within

the control mass system at time t, and let h be the amount of this property per unit

mass throughout the fluid. The time rate of increase in N for the control mass

system is now formulated in terms of the change in N for the control volume. Let

the volume of the control mass system and that of the control volume be V I at time
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t with both of them coinciding with each other (Fig. 4.11a). At time t + dt, the

volume of the control mass system changes and comprises volumes V III and V IV

(Fig. 4.11b). Volumes V II and V IV are the intercepted regions between the control

mass system and control volume at time t + dt. The increase in property N of the

control mass system in time dt is given by
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Fig. 4.11 Relationship between system and control volume concepts in

the analysis of a flow field, after Streeter et al. [1].
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In which dV  represents an element of volume. After adding and subtracting

h r
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 to the right hand side of the equation and then dividing

throughout by d t, we have
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The left hand side of Eq. (4.24) is the average time rate of increase in N within

the control mass system during the time dt. In the limit as dt approaches zero, it

becomes dN/dt (the rate of change of N within the control mass system at time t).

In the first term of the right hand side of Eq. (4.24), the first two integrals are the

amount of N in the control volume at time t + d t, while the third integral is the

amount N in the control volume at time t. In the limit, as d t approaches zero, this

term represents the time rate of increase of the property N within the control

volume and can be written as 
∂

∂ t
Vh r d

CV

zzz . The next term, which is the time

rate of flow of N out of the control volume may be written, in the limit d t Æ 0, as

lim
d

d

hr

dt

V
t t

V

tÆ

+

zzz
L

N

M
M

O

Q

P
P

0

d

IV

 = hr
r r

V A◊d
outflow area

zz
In which 

r
V  is the velocity vector and d

r

A  is an elemental area vector on the

control surface. The sign of vector d
r

A  is positive if its direction is outward normal

(Fig. 4.11c). Similarly, the last term of the Eq. (4.24) which is the rate of flow of

N into the control volume is, in the limit dt Æ 0

lim
d

d

h r

dt

V
t t

V

tÆ

+

zzz
L

N

M
M

O

Q

P
P

0

d

II

 = 
-zzhr

r r
V A◊d

inflow area

The minus sign is needed as 
r r

V A◊d  is negative for inflow. The last two terms of

Eq. (4.24) may be combined into a single one which is an integral over the entire

surface of the control volume and is written as hr
r r

V A

CS

◊dzz . This term indicates

the net rate of outflow N from the control volume. Hence, Eq. (4.24) can be

written as

d

d
CMS

N

t

F
HG

I
KJ

 = d d

CV CS

V V A
t

∂
hr hr

∂
+ ◊ÚÚÚ ÚÚ

rr
(4.25)

The Eq. (4.25) is known as Reynolds Transport Theorem which is stated as

�the time rate of increase of property N within a control mass system is equal to

the time rate of increase of property N within the control volume plus the net rate

of efflux of the property N across the control surface. This theorem in its

analytical form, given by the Eq. (4.25), is used in converting the statement of

basic laws of physics as referred to a control mass system to a statement with

reference to a control volume. The subscript CMS refers to control mass system.
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It is important to mention in this context that in the derivation of Reynolds

transport theorem (Eq. 4.25), the velocity field was described relative to a

reference frame xyz (Fig. 4.11) in which the control volume was kept fixed, and

no restriction was placed on the motion of the reference frame xyz. This makes it

clear that the fluid velocity in Eq. (4.25) is measured relative to the control

volume. To emphasize this point, the Eq. (4.25) can be written as

d

d
CMS

N

t

F
HG

I
KJ

 =
∂

∂ t
V V A

CV

r

CS

hr hrd dzzz zz+ ( )◊
r

(4.26)

where the fluid velocity 
r
Vr  is defined relative to the control volume as

r
Vr  =

r r
V Vc- (4.27)

r
V  and 

r
Vc  are now the velocities of fluid and the control volume respectively as

observed in a fixed frame of reference. The velocity 
r

Vc  of the control volume may

be constant or any arbitrary function of time.

Application of Reynolds Transport Theorem to Conservation
of Mass and Momentum

Conservation of mass The constancy of mass is inherent in the definition of a

control mass system and therefore we can write

d

d
CMS

m

t

F
HG

I
KJ

 = 0 (4.28a)

To develop the analytical statement for the conservation of mass of a control

volume, the Eq. (4.26) is used with N = m (mass) and h = 1 along with the

Eq. (4.28a).

This gives

∂

∂ t
V V A

CV

r

CS

r rd dzzz zz+ ( )
r r

◊  = 0 (4.28b)

The Eq. (4.28b) is identical to Eq. (4.22) which is the integral form of the

continuity equation derived earlier in Sec. 4.2.3. At steady state, the first term on

the left hand side of Eq. (4.28b) is zero. Hence, it becomes

r ( )
r r
V Ar

CS

◊dzz  = 0 (4.28c)

Conservation of momentum or momentum theorem The principle of conserva-

tion of momentum as applied to a control volume is usually referred to as the

momentum theorem.

Linear momentum The first step in deriving the analytical statement of linear

momentum theorem is to write the Eq. (4.26) for the property N as the linear

momentum ( )mV
r

 and accordingly h as the velocity ( )
r
V . Then it becomes
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d

dt
(m

r
V )CMS =

∂

∂ t
V V V V A

CV

r

CS

r r r r

r rd dzzz zz+ ( )◊ (4.29)

The velocity 
r

V  defining the linear momentum in Eq. (4.29) is described in an

inertial frame of reference. Therefore we can substitute the left hand side of

Eq. (4.29) by the external forces S
r
F  on the control mass system or on the

coinciding control volume by the direct application of Newton�s law of motion.

This gives

S
r
F  =

∂

∂ t
V V V V A

CV

r

CS

r r r r

r rd dzzz zz+ ( )◊ (4.30)

The Eq. (4.30) is the analytical statement of linear momentum theorem.

In the analysis of finite control volumes pertaining to practical problems, it is

convenient to describe all fluid velocities in a frame of coordinates attached to the

control volume. Therefore, an equivalent form of Eq. (4.29) can be obtained,

under the situation, by substituting N as m
r
Vr  and accordingly h as 

r
Vr  in

Eq. (4.26) as

d

d
CMS

t
mVr( )

r
 =

∂

∂ t
V V V V Ar

CV

r r

CS

r r r r

r rd dzzz zz+ ( )◊ (4.31)

The left hand side of Eq. (4.31) can be written with the help of Eq. (4.27) as

d

d
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V
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F
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= m
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where 
r

r
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V

t
c

c=
F

HG
I

KJ
d

d
 is the rectilinear acceleration of the control volume (observed

in a fixed coordinate system) which may or may not be a function of time. From

Newton�s law of motion

m
V

t

d

d
CMS

r
F

HG
I

KJ
 = S

r
F

Therefore,

m
V

t

rd

d
CMS

r
F

HG
I

KJ
 = S

r r
F mac- (4.32)
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The Eq. (4.31) can be written in consideration of Eq. (4.32) as

S
r r
F mac-  =

∂

∂ t
V V V V Ar

CV

r r

CS

r r r r

r rd + dzzz zz ( )◊ (4.33a)

At steady state, it becomes

S
r r
F mac-  =

r r r
V V Ar r

CS

r ( )◊dzz (4.33b)

It can be mentioned, in this context, that Eq. (4.33a) is an equivalent form of

Eq. (4.30) and can also be derived by substituting 
r

V  by ( )
r r
V Vr c+  in Eq. (4.30).

In case of an inertial control volume (which is either fixed or moving with a

constant rectilinear velocity), 
r
ac  = 0 and hence Eqs (4.33a) and (4.33b) becomes

respectively

S
r
F  =

∂

∂ t
V V V V Ar

CV

r r

CS

r r r r

r rd dzzz zz+ ( )◊ (4.33c)

and

S
r
F  =

r r r

V V Ar r

CS

r ( )◊dzz (4.33d)

The Eqs (4.33c) and (4.33d) are the useful forms of the linear momentum

theorem as applied to an inertial control volume at unsteady and steady state

respectively, while the Eqs (4.33a) and (4.33b) are the same for a non-inertial

control volume having any arbitrary rectilinear acceleration.

The external forces S
r
F  in Eqs (4.30, 4.33a to 4.33c) have, in general, two

components,�the body force and the surface force. Therefore one can write

S
r
F  =

r r
F V FB

CV

Sdzzz + (4.33e)

where 
r
FB  is the body force per unit volume and 

r
FS  is the area weighted surface

force.

Angular momentum The angular momentum or moment of momentum theorem

is also derived from Eq. (4.25) in consideration of the property N as the angular

momentum and accordingly h as the angular momentum per unit mass. Thus one

can write

d

d
)CMS

t
A(  =

∂

∂ t
r V V r V V A

CV

r

CS

r r( ) ( ) ( )
r r r r r r

¥ + ¥zzz zzd d◊ (4.34)

where ACMS is the angular momentum of the control mass system. It has to be

noted that the origin for the angular momentum is the origin of the position vector
r
r . The term on the left hand side of Eq. (4.34) is the time rate of change of
angular momentum of a control mass system, while the first and second terms on

the right hand side of the equation are the time rate of increase of angular
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momentum within a control volume and rate of net efflux of angular momentum

across the control surface.

The velocity 
r
V  defining the angular momentum in Eq. (4.34) is described in an

inertial frame of reference. Therefore, the term 
d

d
)CMS

t
A(  can be substituted by

the net moment SM applied to the system or to the coinciding control volume.

Hence one can write Eq. (4.34) as

SM =
∂

∂ t
r V V r V V A

CV CS

rr r( ) ( ) ( )
r r r r r r

¥ + ¥zzz zzd d◊ (4.35a)

At steady state,

∂

∂ t
r V V

CV

r ( )
r r

¥zzz d  = 0

and then it becomes

SM = ( ) ( )
r r r r
r V V Ar

CS

¥zz r ◊d (4.35b)

The Eqs (4.35a) and (4.35b) are the analytical statements of angular momentum

theorem applied to a control volume at unsteady and steady state respectively.

4.4 ANALYSIS OF FINITE CONTROL VOLUMES

The momentum theorm for a control volume has been discussed in the previous

section. In the present section we shall discuss the application of momentum

theorem to some practical cases of inertial and non-inertial control volumes.

4.4.1 Inertial Control Volumes

Applications of momentum theorem for an inertial control volume are described

with reference to three distinct types of practical problems, namely

(i) Forces acting due to internal flows through expanding or reducing pipe

bends.

(ii) Forces on stationary and moving vanes due to impingement of fluid

jets.

(iii) Jet propulsion of ship and aircraft moving with uniform velocity.

4.4.2 Forces due to Flow Through Expanding or Reducing
Pipe Bends

Let a fluid flow through an expander as shown in Fig. 4.12a. The expander is held

in a vertical plane. The inlet and outlet velocities are given by V1 and V2 as shown

in the figure. The inlet and outlet pressures are also prescribed as p1 and p2. The

velocity and pressure at inlet and at outlet sections are assumed to be uniform.
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The problem is usually posed for the estimation of the force required at the

expander support to hold it in position.

q

p2

p1

V2

V1

3

C.V
.

2

1

4

Fig. 4.12a Flow of a fluid through an expander

For the solution of this type of problem, a control volume is chosen to coincide

with the interior of the expander as shown in Fig. 4.12a. The control volume

being constituted by areas 1-2, 2-3, 3-4, and 4-1 is shown separately in

Fig. 4.12b.

The external forces on the fluid over areas 2-3 and 1-4 arise due to net efflux

of linear momentum through the interior surface of the expander. Let these forces

be FX and FY. Since the control volume 12341 is stationary and at a steady state,

we apply Eq. (4.33d) and have for x and y components

&m V2 cos q � &m V1 = p1A1 � p2A2 cos q + Fx (4.36a)

and, &m V2 sin q � 0 = �p2 A2 sin q + Fy � Mg (4.36b)

or, Fx = &m  (V2 cos q � V1) + p2A2 cos q � p1A1 (4.37a)

and Fy = &m  V2 sin q + p2 A2 sin q + Mg (4.37b)

&m  is the mass flow rate through the expander which can be written as

&m  = rA1V1 = rA2V2 (4.38)

where A1 and A2 are the cross-sectional areas at inlet and outlet of the expander

and the flow is considered to be incompressible.

M represents the mass of fluid contained in the expander at any instant and can

be expressed as

M = r V

where  is the internal volume of the expander.

Thus, the forces Fx and Fy acting on the control volume (Fig. 4.12b) are exerted

by the expander. Therefore, according to Newton�s third law, the expander will

experience the forces Rx (= �Fx) and Ry (= � Fy) in the x and y directions

respectively as shown in the free body diagram of the expander in Fig. 4.12c.
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o

Mg
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Fx
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V2

p1

p2
3

4

1

x x

y y

Fatmx

Fatmy

Rx = Fx

Ry = Fy

Fig. 4.12b Control volume comprising Fig. 4.12c Free body diagram of

the fluid contained in the  the expander
expander at any instant

The expander will also experience the atmospheric pressure force on its outer

surface. This is shown separately in Fig. 4.13.

From Fig. 4.13 the net x and y components of the atmospheric pressure force

on the expander can be written as

Fatmx
 = patm ◊ A2 cos q � patm  ◊ A1

Fatmy
 = patm . A2 sin &q

The net force on the expander is therefore,

Ex = Rx + Fatmx
 = � Fx + Fatmx

Ey = Ry + Fatmy
 = � Fy + Fatmy

or, Ex = � &m (V2 cos q � V1) � (p2 � patm)A2cos q
+ (p1 � patm)A1 (4.39a)

Ey = � &mV2sin q � ( p2 � patm) A2sin q � Mg (4.39b)

p atm

p atm
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4

1

4
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1 2
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Fig. 4.13 Effect of atmospheric pressure on the expander
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It is interesting to note at this stage that if Fx and Fy are calculated from the

Eqs (4.37a) and (4.37b) with p1 and p2 as the gauge pressures instead of the

absolute ones, the net forces on the expander Ex and Ey will respectively be equal

to �Fx and �Fy.

Dynamic Forces on Plane and Curved Surfaces due to
the Impingement of Liquid Jets

Force on a stationary surface Consider a stationary flat plate and a liquid jet of

cross sectional area �a� striking with a velocity V at an angle q to the plate as

shown in Fig. 4.14a.

To calculate the force required to keep the plate stationary, a control volume

ABCDEFA (Fig. 4.14a) is chosen so that the control surface DE coincides with

the surface of the plate. The control volume is shown separately as a free body in

Fig. 4.14b. Let the volume flow rate of the incoming jet be Q and be divided into

Q1 and Q2 gliding along the surface (Fig. 4.14a) with the same velocity V since

the pressure throughout is same as the atmospheric pressure, the plate is

considered to be frictionless and the influence of a gravity is neglected (i.e. the

elevation between sections CD and EF is negligible).

Fig. 4.14 Impingement of liquid jets on a stationary flat plate

Coordinate axes are chosen as Os and On along and perpendicular to the plate

respectively. Neglecting the viscous forces, (the force along the plate to be zero),

the momentum conservation of the control volume ABCDEFA in terms of s and n

components can be written from Eq. (4.33d) as

Fs = 0 = rQ2 V + rQ1(�V) � rQV cos q (4.40a)

and Fn = 0 � r Q (V sin q) (4.40b)

where Fs and Fn are the forces acting on the control volume along Os and On

respectively,

From continuity,

Q = Q1 + Q2 (4.41)
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With the help of Eqs (4.40a) and (4.41), we can write

Q1 =
Q

2
 (1 � cos q) (4.42a)

Q2 =
Q

2
 (1 + cos q) (4.42b)

The net force acting on the control volume due to the change in momentum of

the jet by the plate is Fn along the direction �On� and is given by the Eq. (4.40b)

as
Fn = � r Q V sin q

Hence, according to Newton�s third law, the force acting on the plate is

Fp = �Fn = r Q V sin q (4.43)

If the cross-sectional area of the jet is �a�, then the volume flow rate Q striking

the plate can be written as

Q = aV

Equation (4.43) then becomes

Fp = r a V2 sin q (4.44)

Force on a moving surface If the plate in the above problem moves with a

uniform velocity u in the direction of jet velocity V (Fig. 4.15). The volume of the

liquid striking the plate per unit time will be

Q = a(V � u) (4.45)

Physically, when the plate recedes away from the jet it receives a less quantity of

liquid per unit time than the actual mass flow rate of liquid delivered, say by any

nozzle. When u = V, Q = 0 and when u > V, Q becomes negative. This implies

physically that when the plate moves away from the jet with a velocity being

equal to or greater than that of the jet, the jet can never strike the plate.

Q

O

Fn
n

F
E s

u

u

u

B

A

CV

q

q

q

D

C

V

V V uR1= -

Vo1
V V uR0 = -

(absolute velocity)

V
o
2 (absolute velocity)

V

V
u

R
0 =

-

Fig. 4.15 Impingement of liquid jets on a moving flat plate
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The control volume ABCDEFA in the case has to move with the velocity u of

the plate. Therefore we have to apply Eq. (4.33d) to calculate the forces acting on

the control volume. Hence the velocities relative to the control volume will come

into picture. The velocity of jet relative to the control volume at its inlet becomes

VR1
 = V � u

Since the pressure remains same throughout, the magnitudes of the relative

velocities of liquid at outlets become equal to that at inlet, provided the friction

between the plate and the liquid is neglected. Moreover, for a smooth shockless

flow, the liquid has to glide along the plate and hence the direction of VR0
, the

relative velocity of the liquid at the outlets, will be along the plate. The absolute

velocities of the liquid at the outlets can be found out by adding vectorially the

plate velocity u and the relative velocity of the jet V � u with respect to the plate.

This is shown by the velocity triangles at the outlets (Fig. 4.15). Coordinate axes

fixed to the control volume ABCDEFA are chosen as �Os� and �On� along and

perpendicular to the plate respectively.

The force acting on the control volume along the direction �Os� will be zero

for a frictionless flow. The net force acting on the control volume will be along

�On� only. To calculate this force Fn, the momentum theorem with respect to the

control volume ABCDEFA can be written as

Fn = 0 � rQ [(V � u) sin q]

Substituting Q from Eq. (4.45),

Fn = �ra (V � u)2 sin q

Hence the force acting on the plate becomes

Fp = � Fn = ra (V � u)2 sin q (4.46)

If the plate moves with a velocity u in a direction opposite to that of V (plate

moving towards the jet), the volume of liquid striking the plate per unit time will

be

Q = a(V + u)

and, finally, the force acting on the plate would be

Fp = � Fn = ra (V + u)2 sin q (4.47)

Therefore, it is found from the comparison of the Eq. (4.44) with Eqs (4.46)

and (4.47), that for a given value of jet velocity V, the force exerted on a moving

plate by the jet is either greater or lower than that exerted on a stationary plate

depending upon whether the plate moves towards the jet or away from it respec-

tively.

The power developed due to the motion of the plate can be written (in case of

the plate moving in the same direction as that of the jet) as

P = Fp sin q | u | = ra (V � u)2 u sin2 q (4.48)

Curved Vanes The principle of fluid machines is based on the utilization of

useful work due to the force exerted by a fluid jet striking and moving over a

series of curved vanes in the periphery of a wheel rotating about its axis. The

force analysis on a moving curved vane is understood clearly from the study of
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the inlet and outlet velocity triangles as

shown in Fig. 4.16. The fluid jet with an

absolute velocity V1 strikes the blade at the

inlet. The relative velocity of the jet Vr1
 at

the inlet is obtained by subtracting

vectorially the velocity u of the vane from

V1. The jet strikes the blade without shock

if b1 (Fig. 4.16) coincides with the inlet

angle at the tip of the blade. If friction is

neglected and pressure remains constant,

then the relative velocity at the outlet is

equal to that at the inlet (Vr2
 = Vr1

).

The control volume as shown in Fig. 4.16

is moving with a uniform velocity u of the

vane. Therefore we have to use Eq. (4.33d)

as the momentum theorem of the control

volume at its steady state.

Let FC be the force applied on the control volume by the vane. Therefore we

can write

FC = � &mVr2 cos b2 � &mVr1 cos (180° � b1)

= � &m (Vw2 + u + Vw1 � u)

= � &m (Vw1 + Vw2)

To keep the vane translating at uniform velocity, u in the direction as shown, the

force F has to act opposite to FC. Therefore,

F = � FC = &m(Vw1 + Vw2) (4.49)

From the outlet velocity triangle, one can write

(Vw2 + u)
2
 = V

2
r2 � V

2
f 2

or, V2
w2 + u2 + 2V w2 u = V2

r2 � V2
f 2

or, V2
2 � V2

f 2 + u2 + 2Vw2 u = V2
r2 � V2

f 2

or, Vw2 u =
1

2
 [V2

r2 � V2
2 � u2] (4.50a)

Similarly from the inlet velocity triangle, it is possible to write

Vw1 u =
1

2
 [� V2

r1 + V2
1 + u2] (4.50b)

Addition of Eqs (4.50a) and (4.50b) gives

(Vw1 + Vw2)u =
1

2
 (V2

1 � V2
2)

Power developed is given by

P = &m  (Vw1 + Vw2) u = 
&m

2
 (V

2
1 � V

2
2) (4.51)

Inlet velocity
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Vf2

Vr1

Vr2

Vw2

V2

u

V1

CV
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u

u

a1

b1

b2

Outlet velocity

Fig. 4.16 Flow of fluid along a

moving curved vane
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The efficiency of the vane in developing power is given by

h =
& ( )

&

m V V u

m
V

w w1 2

1
2

2

+
 = 1 2

2

1
2

-
V

V
(4.52)

Propulsion of a Ship Jet propulsion of ship is found to be less efficient than

propulsion by screw propeller due to the large amount of frictional losses in the

pipeline and the pump, and therefore, it is used rarely. Jet propulsion may be of

some advantage in propelling a ship in a very shallow water to avoid damage of a

propeller.

Consider a jet propelled ship, moving with a velocity V, scoops water at the

bow and discharges astern as a jet having a velocity Vr relative to the ship. The

control volume is taken fixed to the ship as shown in Fig. 4.17. Following the

momentum theorem (described by Eq. (4.33d)) as applied to the control volume

shown, we can write

Control volume

V = ship velocity

Vr

FC
V = Velocity of
incoming water
(relative to the ship)

Fig. 4.17 A control volume for a moving ship

FC = &m  [� Vr � (�V)]

= &m  (V � Vr)

Where Fc is the external force on the control volume in the direction of the ship�s

motion. The forward propulsive thrust F on the ship is given by

F = � Fc = &m  (Vr � V) (4.53)

Propulsive power is given by P = &m  (Vr � V)V (4.54)

Jet Engine A jet engine is a mechanism in which air is scooped from the front of

the engine and is then compressed and used in burning of the fuel carried by the

engine to produce a jet for propulsion. The usual types of jet engines are turbojet,

ramjet and pulsejet.

A turbojet engine consists essentially (Fig. 4.18) of a compressor, a

combustion chamber, a gas turbine and a nozzle. A portion of the thermal energy

of the product of combustion is used to run the gas turbine to drive the compressor.

The remaining part of thermal energy is converted into kinetic energy of the jet by

a nozzle. At high speed flight, jet engines are advantageous since a propeller has

to rotate at high speed to create a large thrust. This will result in excessive blade

stress and a decrease in the efficiency for blade tip speeds near and above sonic

level. In a jet propelled aircraft, the spent gases are ejected to the surroundings at

high velocity usually equal to or greater than the velocity of sound in the fluid at

that state. In many cases, depending upon the range of flight speeds, the jet is

discharged with a velocity equal to sonic velocity in the medium and the pressure
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at discharge does not fall immediately to the ambient pressure. In these cases, the

discharge pressure p2 at the nozzle exit becomes higher than the ambient pressure

patm. Under the situation of uniform velocity of the aircraft, we have to use

Eq. (4.33d) as the momentum theorem for the control volume as shown in

Fig. 4.19 and can write

( & & ) &m m u m Va f a+ -  = Fx � (p2 � patm) A2

or, Fx = (p2 � patm) A2 + ( & & ) &m m u m Va f a+ -

where, Fx is the force acting on the control volume along the direction of the

coordinate axis �ox� fixed to the control volume, V is the velocity of the aircraft

and u the relative velocity of the exit jet with respect to the aircraft. &m a and &m f

are the mass flow rate of air, and mass burning rate of fuel respectively. Usually

&m f is very less compared to &m a ( &m f / &m a usually varies from 0.01 to 0.02 in
practice).

The propulsive thrust on the aircraft can be written as

FT = � Fx = �[ &m a(u � V) + (p2 � patm) A2] (4.55)

(since, &m f << &m a)

Fuel

FT

A2

p = p1 atm

p2

u

r1

V

V

Combustion
chamber

Gas
turbine

Nozzle

Compressor

Fig. 4.18 A turbojet engine

V

patm

patm

patm
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y

o x

Fy
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patm

ma
( + )m ma f

p2

u

Fig. 4.19

An appropriate control volume comprising  the stream of

fluid flowing through the engine

The terms in the bracket are always positive. Hence, the negative sign in FT

represents that it acts in a direction opposite to ox, i.e. in the direction of the

motion of the jet engine. The propulsive power is given by

P = [ &ma(u � V) + ( p2 � patm)A2]V (4.56)
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4.4.2 Non-Inertial Control Volume

A good example of a non-inertial control volume is a rocket engine which also

works on the principle of jet propulsion. The gases constituting the jet are

produced by the combustion of a fuel and appropriate oxidant carried by the

engine. Therefore, no air is required from outside and a rocket can operate

satisfactorily in a vacuum. A large quantity of oxidant has to be carried by the

rocket for its operation to be independent of the atmosphere. At the start of

journey, the fuel and oxidant together form a large portion of the total load carried

by the rocket. Work done in raising the fuel and oxidant to a great height before

they are burnt is wasted. Therefore, to achieve the efficient use of the materials,

the rocket is accelerated to a high velocity in a short distance at the start. This

period of rocket acceleration is of practical interest.

Let &m  be the rate at which spent gases are discharged from the rocket with a

velocity u relative to the rocket (Fig. 4.20). Both &m  and u are assumed to be

constant.

mu

patm

patm

M
dV

dt

patm pe

patm

Mg

D

Fig. 4.20 A control volume for a rocket engine

Let M and V be the instantaneous mass and velocity (in the upward direction)

of the rocket. The control volume as shown in Fig. 4.20 is an accelerating one.

Therefore we have to apply Eq. (4.33b) as the momentum theorem of the control

volume. This gives

SF � M 
d

d

V

t
 = &m [(� u) � 0]

SF = M 
d

d

V

t
 � &mu (4.57)
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where SF is the sum of the external forces on the control volume in a direction

vertically upward. If pe and pa be the nozzle exhaust plane gas pressure and

ambient pressure respectively and D is the drag force to the motion of the rocket,

then one can write

SF = (pe � pa) Ae � Mg � D

Where, Ae is outlet area of the propelling nozzle.

Then Eq. (4.57) can be written as

M
V

t

d

d
 = &mu  + (pe � pa) Ae � Mg � D (4.58)

In absence of gravity and drag, Eq. (4.58) becomes

M
V

t

d

d
 = &mu  + (pe � pa) Ae (4.59)

4.4.3 Application of Moment of Momentum Theorem

Let us take an example of a sprinkler like turbine as shown in Fig. 4.21. The

turbine rotates in a horizontal plane with angular velocity w. The radius of the

turbine is r. Water enters the turbine from a vertical pipe that is coaxial with the

axis of rotation and exits through the nozzles of cross sectional area �a� with a

velocity Ve relative to the nozzle.

A control volume with its surface around the turbine is also shown in Fig. 4.21.

r

CS

w

Fig. 4.21 A sprinkler like turbine

Application of Momentum of Momentum Theorem (Eq. 4.35b) gives

Mzc = & ( )m r V
r r

¥

Where Mzc is the moment applied to the control volume. The mass flow rate of

water through the turbine is given by

&m  = (2Vea) r
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The velocity 
r
V  must be referenced to an inertial frame so that

r r
r V¥  = - ¥rir

r
 (Ve � wr) 

r
iq  = �r (Ve � wr)

r
iz

Mzc = - &mr  (Ve � wr)

The moment Mz acting on the turbine can be written as

Mz = � Mzc
 = &mr  (Ve � wr) (4.60)

The power produced by the turbine is given by

P = Mz w (4.61)

4.5 EULER�S EQUATION: THE EQUATION OF
MOTION FOR AN IDEAL FLOW

The relationship between the velocity and pressure field for a flow of an inviscid

fluid is found out by making use of the Newton�s second law of motion. The

resulting equation, in its differential form, is known as Euler�s Equation after the

name of the scientist Euler who first derived it. To derive Euler�s equation, let us

consider an elementary parallelopiped of fluid element as a control mass system

in a frame of rectangular cartesian coordinate axes as shown in Fig. 4.22. It has

already been mentioned in Sec. 2.1 of Chapter 2, that the external forces acting on

a fluid element are the body forces and the surface forces.

Let Xx, Xy, Xz be the components of body forces acting per unit mass of the

fluid element along the coordinate axes x, y and z respectively. The body forces

arise due to external force fields like gravity, electromagnetic field, etc., and

therefore, the detailed descriptions of Xx, Xy and Xz are provided by the laws of

physics describing the force fields. The surface forces for an inviscid fluid will be

the pressure forces acting on different surfaces as shown in Fig. 4.22. Therefore,

the net forces acting on the fluid element along x, y and z directions can be written

as

Fx = r Xx dx dy dz + p ◊ dy dz � d d d
p

p x y z
x

∂

∂

Ê ˆ
+Á ˜Ë ¯

= � d d dx

p
X x y z

x

∂
r

∂

Ê ˆ
Á ˜Ë ¯

Fy = r Xy dx dy dz + p ◊ dx dz � d d d
p

p y x z
y

∂

∂

Ê ˆ
+Á ˜Ë ¯

= � d d dy

p
X x y z

y

∂
r

∂

Ê ˆ
Á ˜Ë ¯

Fz = r Xz dx dy dz + p ◊ dx dy � d d d
p

p z x y
z

∂

∂

Ê ˆ
+Á ˜Ë ¯

= � d d dz

p
X x y z

z

∂
r

∂

Ê ˆ
Á ˜Ë ¯
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y

Fig. 4.22 A fluid element appropriate to a Cartesian coordinate system

used for the derivation of Euler¢s equation

Equating these forces with the rate of change of momentum in the respective

directions, we have

D

D
d d d

t
x y z ur( )  = � d d dx

p
X x y z

x

∂
r

∂

Ê ˆ
Á ˜Ë ¯

(4.62a)

D

D
d d d

t
x y zr v( ) = � d d dy

p
X x y z

y

∂
r

∂

Ê ˆ
Á ˜Ë ¯

(4.62b)

D

D
d d d

t
x y z wr( ) = � d d dz

p
X x y z

z

∂
r

∂

Ê ˆ
Á ˜Ë ¯

(4.62c)

Since the fluid element is a control mass system, its mass �rdxdydz� is invariant

with time. Therefore we can write Eqs (4.62a to 4.62c) as

D

D

u

t
 = X

p

x
x �

1

r

∂

∂
(4.63a)

D

D

v

t
 = X

p

y
y �

1

r

∂

∂
(4.63b)

D

D

w

t
 = X

p

z
z �

1

r

∂

∂
(4.63c)
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Expanding the material accelerations in Eqs (4.63a) to (4.63c) in terms of

their respective temporal and convective components, we get

∂

∂

∂

∂

∂

∂

∂

∂ r

∂

∂

u

t
u

u

x

u

y
w

u

z
X

p

x
x+ + + = -v

1
(4.64a)

∂
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∂
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∂

∂

∂

∂ r

∂

∂

v v
v

v v

t
u

x y
w

z
X

p

y
y+ + + = - 1

(4.64b)

∂

∂

∂

∂

∂

∂

∂

∂ r

∂

∂

w

t
u

w

x

w

y
w

w

z
X

p

z
z+ + + = -v

1
(4.64c)

The Eqs (4.64a, 4.64b, 4.64c) are valid for both incompressible and compressible

flow. By putting u = v = w = 0, as a special case, one can obtain the equation of

hydrostatics derived in Sec. 2.2 of Chapter 2. Equations (4.64a), (4.64b), (4.64c)

can be put into a single vector form as

D

D

r
rV

t
X

p
= -

—
r

(4.64d)

or
∂

∂ r

r
r r rV

t
V V X

p
+ ◊— = -

—
( ) (4.64e)

where the velocity vector 
r

V  and the body force vector per unit volume r
r
X  are

defined as
r

V  =
r r r

i u j k w+ +v

r
r
X  =

r r r

i X j X k Xx y zr r r+ +

Equation (4.64d) or (4.64e) is the well known Euler�s equation in vector form,

while Eqs (4.64a) to (4.64c) describe the Euler�s equations in a rectangular

Cartesian coordinate system.

4.5.1 Euler�s Equation along a Streamline

Euler�s equation along a streamline is derived by applying Newton�s second law

of motion to a fluid element moving along a streamline. Considering gravity as

the only body force component acting vertically downward (Fig. 4.23), the net

external force acting on the fluid element along the direction s can be written as

Fs = � 
∂

∂

p

s
 Ds DA � r Ds DA g cos a (4.65)

where DA is the cross-sectional area of the fluid element. By the application of

Newton�s second law of motion in s direction, we get

r D Ds A
V

t

D

D
 = � 

∂

∂

p

s
 Ds DA � r g Ds DA cos a (4.66)

again from geometry,
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cos a = lim
D

D
Ds

z

s

z

sÆ
=

0

d

d

Hence, the final form of Eq. (4.66) becomes

r
∂

∂
r

D

D

d

d

V

t

p

s
g

z

s
= - -

or
∂

∂

∂

∂ r

∂

∂

V

t
V

V

s

p

s
g

z

s
+ = - -1 d

d
(4.67)

Equation (4.67) is the Euler�s equation along a streamline.
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Fig. 4.23 Froce balance on a moving element along a streamline

Equation (4.67) can also be derived by modification of Eqs (4.64a), (4.64b)

and (4.64c) for the streamline coordinate 
r
s . Let us consider d

r
s  along the

streamline so that

d
r
s  =

r r r

i x j y k zd d d+ +
Again, we can write (Fig. 4.23),

d

d

x

s
 =

u

V

y

s

z

s

w
,

d

d
and

d

d
= =v

V V

We know that the equation of a streamline is given by
r r

V s¥ d  = 0

or

i j k

u w

y z

v

xd d d

 = 0, which finally leads to

u dy = v dx; u dz = w dx; and v dz = w dy

Multiplying Eqs (4.64a), (4.64b) and (4.64c) by dx, dy and dz respectively and

then substituting the above mentioned equalities, we get

d
d d d

u s u u u
u u x u y u z

t V x y z

∂ ∂ ∂ ∂
r

∂ ∂ ∂ ∂

Ê ˆ
◊ + + +Á ˜Ë ¯

 = - +
∂

∂

p

x
x X xxd d
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d
d d d

s
x y z

t V x y z

∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂

Ê ˆ
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v v v v

v v v v  = - +
∂

∂

p

y
y X yyd d

d
d d d

w s w w w
w w x w y w z

t V x y z

∂ ∂ ∂ ∂
r

∂ ∂ ∂ ∂

Ê ˆ
◊ + + +Á ˜Ë ¯

 = - +
∂

∂
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z X zzd d

From addition of these three equations, we can write
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(It is assumed that gravity is the only body force field)
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This form of Euler�s equation is more popular because the velocity vector in a

flow field is always directed along the streamline.

Euler¢¢¢¢¢s Equations in Different Conventional Coordinate Systems

Coordinate System Euler�s Equation (Equation of motion for an inviscid flow)
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Cylindrical polar r direction
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Euler�s equation in different coordinate systems can be derived either by

expanding the acceleration and pressure gradient terms of Eq. (4.64d), or by the

application of Newton�s second law to a fluid element appropriate to the

coordinate system.

4.5.2 A Control Volume Approach for the Derivation
of Euler�s Equation

It can be mentioned in this context that Euler�s equations of motion (Eqs 4.64a to

4.64c)) which were derived in Sec. 4.5 by the use of Newton�s second law for a

control mass system can also be derived by the use of the momentum theorem for

a control volume as follows:

In a fixed x, y, z axes (the rectangular cartesian coordinate system), the

parallelopiped which was taken earlier as a control mass system is now

considered as a control volume (Fig. 4.24).

The velocity vector 
r

V  and the body force vector per unit volume r
r
X  are

defined as
r

V  =
r r r

i u j k w+ +v

r
r
X  =

r r r

i X j X k Xx y zr r r+ +

The rate of x momentum influx to the control volume through the face ABCD is

equal to ru
2
 dy dz. The rate of x momentum efflux from the control volume

through the face EFGH equals to
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ru2 dy dz + 
∂

∂
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Therefore the rate of net efflux of x momentum from the control volume due to

the faces perpendicular to the x direction (faces ABCD and EFGH) =
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∂
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u V( )2 d .

where, d , the elemental volume = dx dy dz.
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Fig. 4.24 A control volume used for the derivation of Euler�s equation

and the rate of net efflux of x momentum due to the faces perpendicular to the z

direction (faces DCGH and ABFE) = 
∂

∂ z
 (r uw) d .
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Hence, the net rate of x momentum efflux from the control volume becomes,

2( ) ( v) ( ) du u uw V
y y z

∂ ∂ ∂
r r r
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È ˘
+ +Í ˙

Î ˚
The time rate of increase in x momentum in the control volume can be written

as

∂

∂
r

t
u V( )d  =

∂

∂
r

t
u V( ) d (since d , by the definition of control

volume, is invariant with time)

Applying the principle of momentum conservation to a control volume

we get
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The equations in other directions y and z can be obtained in a similar way by

considering the y momentum and z momentum fluxes through the control volume

as

∂

∂
r

∂

∂
r

∂

∂
r

∂

∂
r r

∂

∂t x
u

y z
w X

p

y
y( ) ( ) ( ) ( ) �v v v v+ + + =2 (4.68b)

∂

∂
r

∂

∂
r

∂

∂
r

∂

∂
r r

∂

∂t
w

x
u w

y
w

z
w X

p

z
z( ) ( ) ( ) ( ) �+ + + =v

2 (4.68c)

The typical form of Euler�s equations given by Eqs (4.68a), (4.68b) and (4.68c)

is known as the conservative form. It can be shown, with the help of the continuity

equation (Eq. 4.2), that the Eqs (4.68a), (4.68b) and (4.68c) are identical to the

Eqs (4.64a), (4.64b) and (4.64c) respectively.

4.6 CONSERVATION OF ENERGY

The principle of conservation of energy for a control mass system is described by

the first law of thermodynamics which state that the heat Q added to a control

mass system, minus the work done W by the control mass system, equals to the

change in its internal energy �E� that depends only upon the initial and final states

of the system. The first law in the form of an equation is written as

Q � W = DE = E2 � E1 (4.69a)

Equation (4.69a) can be expressed on the time rate basis as

d

d

d

d

Q

t

W

t
-  =

d

d

E

t
(4.69b)

Where dQ and dW are the amount of heat added and work done respectively

during a time interval of dt.

To develop the analytical statement for the conservation of energy of a control

volume, the Eq. (4.25) is used with N = E (the internal energy) and h = e (the

internal energy per unit mass) along with the Eq. (4.69b). This gives
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d

d

d

d

Q

t

W

t
-  =

∂

∂ t
e V eV A

CV CS

d dzzz zzz+r r

r r

◊ (4.70)

The Eq. (4.70) is known as the general energy equation for a control volume.

The first term on the right hand side of the equation is the time rate of increase in

the internal energy within a control volume and the second term is the net rate of

energy efflux from the control volume. Now we will describe the different forms

of energy associated with moving fluid elements comprising a control volume.

Potential energy The concept of potential energy in a fluid is essentially the

same as that of a solid mass. The potential energy of a fluid element arises from

its existence in a conservative body force field. This field may be a magnetic,

electrical, etc. In the absence of any of such external force field, the earth�s

gravitational effect is the only cause of potential energy. If a fluid mass m is

stored in a reservoir and its C.G. is at a vertical distance z from an arbitrary

horizontal datum plane, then the potential energy is mgz and the potential energy

per unit mass is gz. The arbitrary datum does not play a vital role since the

difference in potential energy, instead of its absolute value, is encountered in

different practical purposes.

Kinetic energy If a quantity of a fluid of mass m flows with a velocity V, being

the same throughout its mass, then the total kinetic energy is mV2/2 and the kinetic

energy per unit mass is V2/2. For a stream of real fluid, the velocities at different

points will not be the same. If V is the local component of velocity along the

direction of flow for a fluid flowing through an open channel or closed conduit of

cross-sectional area A, the total kinetic energy at any section is evaluated by

summing up the kinetic energy flowing through differential areas as

K.E. =
3

d
2

A

V
A

r
Ú

The average velocity at a cross-section in a flowing stream is defined on the

basis of volumetric flow rate as,

Vav =

d

A

V A

A

Ú

The kinetic energy per unit mass of the fluid is usually expressed as a (V2
av /2)

where a is known as the kinetic energy correction factor. Therefore, we can

write

a r
V

Va
a

v

v

2

2
 A =

3

d
2

A

V
A

r
Ú

Hence, a =

2 3

3

d

d

A

A

A V A

V A

r

r
È ˘
Í ˙
Í ˙Î ˚

Ú

Ú
(4.71a)

For an incompressible flow,
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a =

2 3

3

d

d

A

A

A V A

V A
È ˘
Í ˙
Í ˙Î ˚

Ú

Ú
(4.71b)

In case of a laminar fully developed incompressible flow through a pipe, the

value of a becomes 2. For a turbulent flow through a pipe, the value of a usually

varies from 1.01 to 1.15. In the absence of a prior knowledge about the velocity

distribution, the value of a, in most of the practical analyses, is taken as unity.

Intermolecular energy The intermolecular energy of a substance comprises the

potential energy and kinetic energy of the molecules. The potential energy arises

from intermolecular forces. For an ideal gas, the potential energy is zero and the

intermolecular energy is, therefore, due to only the kinetic energy of molecules.

The kinetic energy of the molecules of a substance depends on its temperature.

Flow work This is the work done by a fluid to move against pressure. For a

flowing stream, a layer of fluid at any cross-section has to push the adjacent

neighbouring layer at its downstream in the direction of flow to make its way

through and thus does work on it. The amount of work done can be calculated by

considering a small amount of fluid mass A1 r1 dx to cross the surface AB from

left to right (Fig. 4.25). The work done by this mass of fluid then becomes equal

to p1 A1 dx and thus the flow work per unit mass can be expressed as

p1A1dx/A1 r1dx = p1/r1

where p1 is the pressure at section AB (Fig. 4.25)

Control volume

C

dx
x

A1

A

B

D

p1 p2

A2

r2r1

Fig. 4.25 Work done by a fluid to flow against a pressure

Therefore the flow work done per unit mass by a fluid element entering the

control volume ABCDA (Fig. 4.25) is p1/r1. Similarly, the flow work done per

unit mass by a fluid element leaving the control volume across the surface CD

is p2/r2. In introducing an amount of fluid inside the control volume, the work

done against the frictional force at the wall can be shown to be small as compared

to the work done against the pressure force, and hence it is not included in the

flow work.
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Although �flow work� is not an intrinsic form of energy, it is sometimes

referred to as �pressure energy� from a view point that by virtue of this energy a

mass of fluid having a pressure p at any location is capable of doing work on its

neighbouring fluid mass to push its way through.

Steady flow energy equation The energy equation for a control volume is given

by Eq. (4.70). At steady state, the first term on the right hand side of the equation

becomes zero and it becomes

d

d

d

d

Q

t

w

t
-  = r eV A

r r
◊d

CS

zzz (4.72)

In consideration of all the energy components including the flow work (or

pressure energy) associated with a moving fluid element, one can substitute �e� in

Eq. (4.72) as

e = u + 
p V

r
+

2

2
 + gz

and finally we get

d

d

d

d

Q

t

w

t
-  = u

p V
gz V A+ + +

F

HG
I

KJzzz
r

r

2

2
CS

d
r r

◊ (4.73)

The Eq. (4.73) is known as steady flow energy equation.

4.6.1 Bernoulli�s Equation: Energy Equation of an Ideal Flow
along a Streamline

Euler�s equation (the equation of motion of an inviscid fluid) along a stream line

for a steady flow with gravity as the only body force can be written according to

Eq. (4.67) as

V
V

s

d

d
 = � �

1

r

d

d

d

d

p

s
g

z

s
(4.74)

Application of a force through a distance ds along the streamline would

physically imply work interaction. Therefore an equation for conservation of

energy along a streamline can be obtained by integrating the Eq. (4.74) with

respect to ds as

d
d

d

V
V s

sÚ  =
1 d d

� d � d
d d

p z
s g s

s srÚ Ú

or,
2 d

2

V p
gz

r
+ +Ú  = C (4.75)

Where C is a constant along a streamline. In case of an incompressible flow,

Eq. (4.75) can be written as

p V
gz

r
+ +

2

2
 = C (4.76)
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The Eqs (4.75) and (4.76) are based on the assumption that no work or heat

interaction between a fluid element and the surrounding takes place. The first

term of the Eq. (4.76) represents the flow work per unit mass, the second term

represents the kinetic energy per unit mass and the third term represents the

potential energy per unit mass. Therefore the sum of three terms in the left hand

side of Eq. (4.76) can be considered as the total mechanical energy per unit mass

which remains constant along a streamline for a steady inviscid and

incompressible flow of fluid. Hence the Eq. (4.76) is also known as Mechanical

energy equation. This equation was developed first by Daniel Bernoulli in 1738

and is therefore referred to as Bernoulli�s equation. Each term in the Eq. (4.76)

has the dimension of energy per unit mass. The equation can also be expressed in

terms of energy per unit weight as

p

g

V

gr
+

2

2
 + z = C1 (constant) (4.77)

In a fluid flow, the energy per unit weight is termed as head. Accordingly, the

three terms in the left hand side of the Eq. (4.77), in their order from left to right,

are interpreted as pressure head (pressure energy or flow work per unit weight),

velocity head (kinetic energy per unit weight) and potential head (potential energy

per unit weight). The sum of these three terms is known as total head (total energy

per unit weight).

4.6.2 Bernoulli�s Equation with Head Loss

The derivation of mechanical energy equation for a real fluid depends much on

the information about the frictional work done by a moving fluid element and is

excluded from the scope of the book. However, in many practical situations,

problems related to real fluids can be analysed with the help of a modified form of

Bernoulli�s equation as

p

g

V

g
z

p

g

V

g
z h f

1 1
2

1
2 2

2

2
2 2r r

+ + = + + + (4.78)

where, hf represents the frictional work done (the work done against the fluid

friction) per unit weight of a fluid element while moving from a station 1 to 2

along a streamline in the direction of flow. The term hf is usually referred to as

head loss between 1 and 2, since it amounts to the loss in total mechanical energy

per unit weight between points 1 and 2 on a streamline due to the effect of fluid

friction or viscosity. It physically signifies that the difference in the total

mechanical energy between stations 1 and 2 is dissipated into intermolecular or

thermal energy and is expressed as loss of head hf in Eq. (4.78). The term head

loss, is conventionally symbolized as hL instead of hf in dealing with practical

problems. For an inviscid flow hL = 0, and the total mechanical energy is constant

along a streamline.
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Summary

∑ A control mass or closed system is characterised by a fixed quantity of

mass of a given identity, while in an open system or control volume

mass may change continuously due to the flow of mass across the

system boundary.

∑ Continuity equation is the equation of conservation of mass in a fluid

flow. The general form of the continuity equation for an unsteady

compressible flow is given by

∂ r

∂
r

t
V+ —◊( )
r

 = 0

where, 
r

V  is the velocity vector.

∑ The concept of stream function is a consequence of continuity. In a two

dimensional incompressible flow, the difference in stream functions

between two points gives the volume flow rate (per unit width in a

direction perpendicular to the plane of flow) across any line joining the

points. The value of stream function is constant along a streamline.

∑ Reynolds transport theorem states the relation between equations

applied to a system and those applied to a control volume. The

statement of the law of conservation of momentum as applied to a

control volume is known as momentum theorem. This theorem states

that the resultant force (or torque) acting on a control volume is equal

to the time rate of increase in linear momentum (or angular

momentum) within the control volume plus the rate of net efflux of

linear momentum (or angular momentum) from the control volume.

∑ The equation of motion (conservation of momentum) of an inviscid

flow is known as Euler�s equation. The general form of Euler�s

equation is given by r D
r
V /Dt = r

r
X  � —p, where 

r
X  is the body force

vector per unit mass and 
r
V  is the velocity vector. Euler�s equation

along a streamline, with gravity as the only body force, can be written

as

r
D

D

V

t
 = � 

∂

∂
r

p

s
g

z

s
�

d

d

where s represents the coordinate along the streamline.

∑ A fluid element in motion possesses intermolecular energy, kinetic

energy and potential energy. The work required by a fluid element to

move against pressure is known as flow work. It is loosely termed as

pressure energy. The shaft work is the work interaction between the

control volume and the surrounding that takes place by the action of

shear force such as the torque exerted on a rotating shaft. The equation

for conservation of energy of a steady, inviscid and incompressible

flow in a conservative body force field is known as Bernoulli�s



Conservation Equations and Analysis of Finite Control Volumes 151

equation. Bernoulli�s equation in the case of gravity as the only body

force field is given by

p

g

V

g
z

r
+ +

2

2
 = C

The value of C remains constant along a streamline.

∑ The loss of mechanical energy due to friction in a real fluid is

considered in Bernoulli�s equation as

p

g

V

g
z

p

g

V

g
z hf

1 1
2

1
2 2

2

2
2 2r r

+ + = + + +

where, hf is the frictional work done or loss of mechanical energy due

to friction per unit weight of a fluid element while moving from station

1 to 2 along a streamline. The term hf is usually referred to as head

loss.
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Solved Examples

Example 4.1 Does a velocity field given by

r

V  = 5 153 2x i x y j t k
r r r

� +

represent a possible incompressible flow of fluid?

Solution In order to check for a physically possible incompressible fluid flow, one has

to look for its compliance with the equation of continuity.

The continuity equation (in differential form) for a three dimensional incompressible

flow can be written as

— ◊ 
r

V  =
∂

∂

∂

∂

∂

∂

u

x y

w

z
+ +

v
 = 0

Here, u = 5x3, v = �15x2y and w = t,

Hence,
∂

∂

u

x
 = 15x2, 

∂

∂

v

y
 = �15x2 and

∂

∂

w

z
 = 0

which, on substitution in the continuity equation satisfies it for all x, y, z and t values.

This shows that the above velocity field represents a physically possible incompressible

flow.

Example 4.2 Which of the following sets of equations represent possible two-

dimensional incompressible flows?

(a) u = x + y; v = x � y
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(b) u = x + 2y; v = x2 � y2

(c) u = 4x + y; v = x � y2

(d) u = xt + 2y; v = x2 � yt2

(e) u = xt2; v = xyt + y2

Solution The continuity equation (in differential form) for a two dimensional

incompressible flow is 
∂

∂

∂

∂

u

x y
+

v
 = 0

(a) u = x + y v = x � y;
∂

∂

∂

∂

u

x y
+

v
 = 1 + (�1) = 0

two-dimensional incompressible flow is possible.

(b) u = x + 2y, v = x2 � y2;
∂

∂

∂

∂

u

x y
+

v
 = 1 � 2y

not possible

(c) u = 4x + y, v = x � y2;
∂

∂

∂

∂

u

x y
+

v
 = 4 � 2y

not possible

(d) u = xt + 2y, v = x2 � yt2;
∂

∂

∂

∂

u

x y
+

v
 = t � t2

not possible

(e) u = xt2, v = xyt + y2; 
∂

∂

∂

∂

u

x y
+

v
 = t 2 + xt + 2y

not possible

Example 4.3 For a flow in the xy plane, the y component of velocity is given by

v = y2 � 2x + 2y

Determine a possible x component for a steady, incompressible flow. How many

possible x components are there?

Solution The flow field is steady and incompressible. Therefore, from continuity

∂

∂

∂

∂

u

x y
+

v
 = 0

or,
∂

∂

u

x
 = � 

∂

∂

v

y

now, � 
∂

∂

v

y
 = � 

∂

∂ y
y x y y y( � ) ( )2 2 2 2 2 2 2+ = - + = - -

Hence, u =
v

d d (2 2) d
u

x x y x
x y

∂ ∂

∂ ∂
= - = - +Ú Ú Ú

= � 2yx � 2x + f (y)

There are infinite number of possible x components, since f (y) is arbitrary. The

simplest one would be found by setting f (y) = 0.

Example 4.4 A stream function is given by

Y = 2x2y + (3 + t)y2

Find the flow rates across the faces of the triangular prism OAB, shown in Fig. 4.26,

having a thickness of 1 unit in the z direction at time t = 1.
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B

dA
A
B

dAOA

dAOB

dx
dy

3

2 n

O A

y

x

Fig. 4.26 The faces of a triangular prism

Solution The velocity field corresponding to the given stream function can be written

according to Eqs (4.15a) and (4.15b) as

u =
∂y

∂ y
x t y= + +2 2 32 ( )

v = � 
∂y

∂ x
 = � 4xy

where u and v are the velocity components along the x and y directions respectively.

At t = 1

(u)t = 1 = 2x
2
 + 8y

(v)t = 1 = � 4xy

The volume flow rate across the face perpendicular to the x direction and with the

edge OB as seen in the x-y plane is found as

QOB = ( )u A y yt
x

A

OB

OB

=
=

z z= ◊1
0

0

2

8d d  = 16 units

Similarly, the flow rate across the face with edge OA (as seen in x-y plane) and

perpendicular to the y direction becomes

QOA = ( )v t
y

A

OA

OA

A=
=

z 1
0

d

= 0

Since the z component of velocity is zero, the volume flow rates across the faces

perpendicular to the z direction (i.e. face OAB and the face parallel to it and separated by

a unit distance) become zero.

Volume flow rate across the inclined face with AB as the edge seen on the x-y plane

can be written as

QAB = d ABn A V◊Ú
rr

(4.79)
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where 
r
n  is the unit vector along the normal to the element of surface dAAB, taken positive

when directed outwards as shown in Fig. 4.26. Hence, we can write Eq. (4.79) as

QAB =
2

[ d d ] [ (2 8 ) (�4 )]

ABA

i y j x i x y j xy+ ◊ + +Ú
r r r r

(where, 
r

i  and 
r

j  are the unit vectors along x and y direction respectively)

=
2[2 8 ]d ( 4 )d

AB ABA A

x y y xy x+ + -Ú Ú (4.80)

Again from the geometry,

y

x3 -
 =

2

3

along the surface AB.

Using the relation in Eq. (4.80), we get

QAB =

22 3

0 0

3 2
2 3 8 d 4 2 d

2 3
y y y x x x

È ˘Ê ˆ Ê ˆ- + - -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
Ú Ú  = 16 units

Example 4.5 An incompressible flow around a circular cylinder of radius a, is

represented by the stream function

y = � U r sin q + 
U a

r

2 sin q

where U represents the free stream velocity. Show that Vr (the radial component of

velocity) = 0 along the circle, r = a. Find the values of q at r = a, where | |
r

V  = U.

Solution In a polar coordinate system,

Vr =
1

r

∂y

∂q
, Vq = -

∂y

∂ r

So, Vr =
2 2

2

1
cos cos cos 1

Ua a
U r U

r r r
q q q

È ˘ Ê ˆ
- + = - -Í ˙ Á ˜Ë ¯Í ˙Î ˚

and Vq =
2 2

2 2
sin sin sin 1

Ua a
U U

r r
q q q

È ˘ Ê ˆ
+ = +Í ˙ Á ˜Ë ¯Í ˙Î ˚

at r = a, Vr = 0 for all values of q and Vq = 2U sin q

Therefore, along the circle r = a, | |
r

V  = |Vq | = |2U sin q |

Putting | |
r

V  = U, we get sin q = ± 1

2
, i.e., when q = + 30°, 150°, 210° and 330°.

Example 4.6 The velocity potential function for a flow is given by f = x
2
 � y

2
.

Verify that the flow is incompressible and then determine the stream function for the

flow.

Solution f = x2
 � y

2
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From the definition of velocity potential (to be discussed later on in Ch. 7, Sec 7.1),

r

V  = —f = 
∂f

∂

∂f

∂x
i

y
j

r r

+

Therefore
r

V  = 2x
r

i  � 2y
r

j , u = 2x, v = � 2y

Check for incompressible flow: 
∂

∂

∂

∂

u

x y
+

v
 = 2 � 2 = 0

From the definition of stream function y,

u =
∂y

∂ y
, y = Ú udy = 2xy + f (x) + C1

v = � 
∂y

∂ x
, y = � Ú v dx = 2xy + g(y) + C2

comparing the two expressions for y, we find

f (x) = g(y) = 0

Hence, y = 2xy + C

where, C is a constant.

Example 4.7 The two plates separated by a distance b form a channel (Fig. 4.27).

One of the plates is porus and the other one is impermeable. A flow takes place within the

channel so that the x component velocity u is a function of x only and its value at the inlet

is u0. There is a uniform inflow v0 through the porus wall to the channel so that the

velocity component v in the y direction within the channel is a function of y only.

Considering the flow to be incompressible, find the expression of u as a function of x, and

v as a function of y.

u0

v0

y

x

b

Fig. 4.27 Flow through a channel formed by two plates

Solution The equation of continuity at any point within the channel can be written as

∂

∂

∂

∂

u

x y
+

v
 = 0

or,
∂

∂

u

x
 = � 

∂

∂

v

y
(4.81)
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Since u is a function of x only and v is a function of y only, the equality of their

derivatives, as expressed by the Eq. (4.81), would be valid provided both of them are

equal to a constant. Hence, we can write

d

d

u

x
 = � 

d

d

v

y
  = K (a constant)

which give du/dx = K (4.82a)

dv/dy = �K (4.82b)

Integration of Eqs  (4.82a) and (4.82b) gives

u = Kx + C1 (4.83a)

v = �Ky + C2 (4.83b)

Using the boundary conditions

at x = 0 u = u0

at y = 0 v = v0

and at y = b v = 0

in Eqs (4.83a) and  (4.83b), we have

C1 = u0, C2 = v0, K = v0 /b

Substituting the values of K, C1 and C2 in Eqs (4.83a) and (4.83b), the final expressions

for u and v are obtained as

u = u0 + 
v0

b
x and v = v0 � 

v0

b
y

Example 4.8 What force components Fx and Fy are required to hold the black box

of Fig. 4.28 stationary? Assume no mass to be accumulated inside the black box and all

pressures are zero gauge.

Water

C.V.

y

o

o

x

x
Fx

Fy

W
ater

Q 4
= 2

8 
lit

re
s/

s

Q
3 =

 3
1 litres/s

V 4
= 2

0 
m

/s

V
3 =

 3
0 m

/s

W
at

er

Q1 = 20 litres/s

Q 2
water

V1 = 50 m/s

V 2
= 40 m

/s
60º

60º

45º

Fig. 4.28 A black box with inflows and outflows of water
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Solution A control volume inscribing the black box is chosen for the analysis as shown

in the figure. Since no mass is accumulated within the control volume, we can write

Q2 + Q4 � Q1 � Q3 = 0

or, Q2 + (28 � 20 � 31) = 0

which gives Q2 = 23 litres/s = 23 ¥ 10
�3

 m
3
/s

Applying momentum theorem for the control volume, we have

Fx = rQ2 (40 cos 30°) + rQ4 (20 cos 135°)

� rQ3(30 cos 120°) � rQ1(0)

= 103 ¥ 23 ¥ 10�3 
3

40
2

Ê ˆ
¥Á ˜Ë ¯

 + 103 ¥ 28 ¥ 10�3 
1

20
2

Ê ˆ- ¥Á ˜Ë ¯

�10
3
 ¥ 31 ¥ 10

�3
 

1
30

2

Ê ˆ- ¥Á ˜Ë ¯

= 865.76 N

and Fy = rQ2 (40 cos 60°) + rQ4 (20 cos 135°) � rQ3 (30 cos 30°)

� rQ1(�50)

= 10
3
 ¥ 23 ¥ 10

�3
 

1
40

2

Ê ˆ¥Á ˜Ë ¯  + 10
3
 ¥ 28 ¥ 10

�3
 

1
20

2

Ê ˆ- ¥Á ˜Ë ¯

� 103 ¥ 31 ¥ 10�3 
3

30
2

Ê ˆ
¥Á ˜Ë ¯

 � 103 ¥ 20 ¥ 10�3 (�50)

= 258.62 N

Here Fx and Fy represent the force components along the positive directions of x- and

y-axes (Fig. 4.28) acting on the fluid in the control volume. According to Newton�s third

law, the force components acting on the black box, as a reaction, will be �Fx and �Fy.

Therefore, the forces components required to hold the box stationary will be Fx and Fy.

Example 4.9 A tank and a trough are placed on a trolley as shown in Fig. 4.29.

Water issues from the tank through a 50 mm diameter nozzle at 5 m/s and strikes the

trough which turns it by 45° as shown. Determine the compression of the spring of

stiffness 2 kN/m.

45º

Rx
x

B

A
D

C

Fig. 4.29 A tank and a trough on a trolley with ejection of water jet from the tank
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Solution Let the control volume be ABCDA as shown in Fig. 4.29. The only external

force acting on it is the spring reaction Rx. The control surface CD is chosen in a way that

mass and momentum leave normal to CD.

The mass flow rate &m  = 1000 ¥ 
p

4
 ¥ (0.05)2 ¥ 5 = 9.82 kg/s

Applying the momentum theorem to the control volume, we get

Rx = 9.82 ¥ 5 cos 45° � 0 = 34.72 N

Hence the force acting on the spring = � Rx = � 34.72 N which tends to compress it.

Therefore, the compression of the spring = 34.72/2000 = .01736 m = 17.36 mm.

Example 4.10 Water flows in a circular pipe. At one section, the diameter is 0.3 m,

the static pressure is 260 kPa gauge, the velocity is 3 m/s and the elevation is 10 m above

ground level. The elevation at a section downstream is 0 m, and the pipe diameter is

0.15 m. Find the gauge pressure at the downstream section. Frictional effects may be

neglected. Assume density of water to be 999 kg/m
3
.

Solution From the continuity equation (integral form)

d d

V S

V V A
t

∂
r r

∂
+ ◊Ú Ú

rr
 = 0

For a steady flow, dV Ar ◊Ú
rr

 = 0

which gives for the present case, A1V1 = A2V2.

where, A1 and A2 are the cross-sectional areas at the upstream and downstream sections,

and V1, V2 are the corresponding velocities at those sections.

Hence, V2 =

2

1
1

2

0.3
3

0.15

A
V

A

Ê ˆ
= ¥Á ˜Ë ¯

 = 12 m/s

Applying the Bernoulli�s equation between upstream and downstream sections, we have

p V
gz1 1

2

1
2r

+ +  =
p V

gz2 2
2

2
2r

+ +

p1 (the pressure at upstream section) = 260 kN/m2 gauge (given).

Therefore p2 (the pressure at the downstream section)

= p1 + ( )2 2
1 2 1 2( )

2
V V g z z

r
r- + -

= 260 ¥ 103 + 
999

2
3 12 999 9 81 102 2[( ) ( ) ] .- + ¥ ¥

= 290.57 ¥ 10
3
 Pa gauge

= 290.57 kPa gauge

Example 4.11 Show that (i) the average velocity V in a circular pipe of radius r0

equals to 2vmax 
1

( 1)( 2)k k

È ˘
Í ˙+ +Î ˚

 and (ii) the kinetic energy correction factor a =

( ) ( )

( ) ( )

k k

k k

+ +
+ +
1 2

4 3 1 3 2

3 3

, for a velocity distribution given by v = vmax (1 � r/r0)
k
.
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Solution (i) Average velocity V is given by

V =

v

v

( )

( / )max

2
2

10

0
2

0
2 0

0

0

0
p

p

r r

r r
r r r r

r

k

rd

d

z
z= -

Let 1 � r/r0 = z

hence, r = r0 (1 � z) and dr = �r0 dz

Substituting the variable r in terms of z in the above integral, we have,

V =

1
2max

0 max2
0 0

2 1 1
(1 ) d 2

( 1) ( 2)

k
r z z z

k kr

È ˘
- = -Í ˙+ +Î ˚

Ú
v

v

= 2 vmax 
1

( 1)( 2)k k

È ˘
Í ˙+ +Î ˚

(ii) Considering the flow to be incompressible, the kinetic energy correction factor can

be written, following Eq. (4.71b), as

a =

0

0

2 2 3
0 max 0

0
3

max 0

0

( ) [ (1 / ) ] (2 ) d

(1 / ) (2 ) d

r

k

r

k

r r r r r

r r r r

p p

p

-

È ˘
Í ˙-
Í ˙Î ˚

Ú

Ú

v

v

Substituting r in terms of z using the transformation (1 � r/r0) = z, we get

a =

1

4 3 2 3
0 max 0

0
3 3

1
3 2
max 0

0

1 1
2 (1 )d

(3 1) (3 2)1

4 1 1
8 (1 )d

( 1) ( 2)

k

k

r r z z z
k k

r z z z
k k

È ˘- -Í ˙+ +Î ˚=
È ˘ È ˘

--Í ˙ Í ˙+ +Î ˚Í ˙Î ˚

Ú

Ú

v

v

=
1

4

1 2

3 1 3 2

3 3
( ) ( )

( ) ( )

k k

k k

+ +
+ +

Example 4.12 A 45° reducing pipe-bend in a horizontal plane, (Fig. 4.30) tapers

from 600 mm diameter at the inlet to 300 mm diameter at the outlet. The pressure at the

inlet is 140 kPa gauge and the rate of flow of water through the bend is 0.425 m
3
/s.

Neglecting friction, calculate the net resultant horizontal force exerted by the water on the

bend. Assume uniform conditions with straight and parallel streamlines at inlet and outlet

and the fluid to be frictionless.

Solution The inlet velocity V1 =
0 425

4
0 6 2

.

( . )

m /s

m

3

p
 = 1.503 m/s

The outlet velocity V2 =
0 425

4
0 3 2

.

( . )

m /s

m

3

p
 = 6.01 m/s
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A control volume 12341 as shown is considered for the analysis.

From the Bernoulli�s equation applied between sections 1 (inlet) and 2 (outlet)

p2 = p1 + 
1

2
1
2

2
2r ( )V V-

= 1.4 ¥ 10
5
 + 

1000

2
 [1.503)

2
 � (6.01)

2
]

= 1.231 ¥ 105 Pa = 123 kPa

Fy

FB

y

x

Fx

F

4

1

p A1 1

p
A

2
2

V
2

V1

3

2
q = 13.86º

45º

Fig. 4.30 A reducing pipe bend in a horizontal plane

Applying the momentum theorem to the control volume 12341 (Fig. 4.30), we have

p1A1 � p2A2 cos 45° + Fx = rQ (V2 cos 45° � V1)

and �p2A2 sin45° + Fy = rQ (V2 sin 45° � 0)

where Fx and Fy are the forces in the x and y directions exerted by the bend on water in the

control volume.

Hence,

1.4 ¥ 10
5
 

2
(0.6)

4

pÊ ˆ
Á ˜Ë ¯  � 1.231 ¥ 10

5
 

2
(0.3)

4

pÊ ˆ
Á ˜Ë ¯  cos 45° + Fx

= 1000 (0.425) (6.01 cos 45° � 1.503)

and � 1.231 ¥ 10
5
 

2
(0.3)

4

pÊ ˆ
Á ˜Ë ¯  sin 45° + Fy

= 1000 ¥ (0.425) (6.01 sin 45°)

which give, Fx = �32.26 kN

Fy = 7.96 kN

Therefore the resultant force on the water

F = [(32.26)2
 + (7.96)

2
]
1/2

 = 33.23 kN

The resultant force F acts in a direction, as shown in Fig. 4.30, making an angle of

tan�1 [7.96/32.26] = 13.86° with the negative direction of x-axis. According to Newton�s

third law, the force FB exerted on the bend is equal and opposite to the force F as shown

in the figure.
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Example 4.13 An ejector pump shown in Fig. 4.31 uses a high speed water jet

issuing from a pipe of area Aj to drag along the surrounding water such that the device

works as a pump. If the velocity and pressure profiles are assumed uniform at any sec-

tion, and the shear stress at the pipe wall is neglected, then show using the momentum

theorem,
p2 � p1 = r (Aj /Ap) (1 � Aj /Ap) (Vl � Vj)

2

where, p1 and p2 are the uniform pressures at the inlet and outlet sections respectively as

shown in the figure, Vj is the velocity of the jet, V1 is the velocity of water being draged by

the jet at the inlet and V2 is the velocity of flow at the outlet.

Water

a

b

d

c

p2

p1

V2

V1

V1

Vj

Area
Ap

CV

Area Aj

Fig. 4.31 An ejector pump

Solution A control volume abcda is chosen for the analysis as shown in Fig. 4.31.

From the conservation of mass for the control volume at steady state, we get

Aj Vj + (Ap � Aj)V1 = ApV2

or, V2 = xVj + (1 � x)V1 (4.84)

where x = Aj /Ap

Applying momentum theorem to the control volume we have

(p1 � p2)Ap = rApV2(V2) � rAj Vj (Vj ) � r(Ap � Aj)V1(V1)

or, p1 � p2 = r [V
2
2 � xV

2
j � (1 � x)V

2
1] (4.85)

Substitution of the value of V2 from Eq. (4.84) in the Eq. (4.85) finally results in

p p1 2-
r

 = [xVj + (1 � x)V1]
2
 � xV

2
j � (1 � x)V

2
1

= � x(1 � x)V
2
1 + 2x(1 � x)V1Vj � x(1 � x)V

2
j

= � x(1 � x)(V1 � Vj)
2

Hence, p2 � p1 = ( )2

11
j j

j
p p

A A
V V

A A
r

Ê ˆ Ê ˆ
- -Á ˜ Á ˜

Ë ¯ Ë ¯

Example 4.14 When it is raining and you have your new clothes on and no

umbrella, some people say it is better to run and some say you should walk to keep drier.

Suppose that it is raining straight down at a volume flux of 10�5 m3/s per square metre of

ground area, and you have to go 100 m in this rain. Assume an average droplet size of
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1 mm3 for which the velocity of rain fall equals to 5 m/s. If a human adult is

approximately 2 m high by 1 m wide by 0.5 m deep, analyse the situation to decide

whether you should walk at 1 m/s or run at 4 m/s to stay drier.

Solution A control volume enveloping the moving person is considered as shown in

Fig. 4.32. The analysis is made with respect to a reference frame attached to the control

2
m

0.5 m

Person moving
with a velocity

CV

Vrain

V0

V0

Vrain

A2

A1

Fig. 4.32 A control volume enveloping

the moving person as

described in Example 4.14

volume. Therefore, rain appears to enter the

control volume from both the top and the

front side with velocities Vrain and V0 res-

pectively as shown in Fig. 4.32, where Vrain

and V0 are the velocities of the rain and the

person respectively.

Hence the rate of flow received by the

control volume becomes

Q = z A1 Vrain + z A2V0

where z = area of concentration of the rain

(square metre of rain per square metre of the

total area).

Total rain water received is Q Dt.

where Dt = L/V0, L = distance to run.

Again, z = qrain (the volume flow rate of

rain per unit area of the ground)/Vrain.

Therefore, the volume of rain water

received is

 = Q Dt = L qrain (A1/V0 + A2/Vrain)

atV0 = 1 m/s (walk)  = 100 (10
�5

) (0.5/1 + 2.0/5)

= 0.0009 m3

at V0 = 4 m/s (run)  = 100 (10�5) (0.5/4 + 2.0/5)

= 0.000525 m
3

So you get about 40% less �wet� if you run.

Example 4.15 A lawn sprinkler with two nozzles 5 mm in diameter each at 0.2 m

and 0.15 m radii is connected across a tap capable of a discharge of 6 litres/minute. The

nozzles discharge water upwards and outwards from the plane of rotation (Fig. 4.33).

What torque will the sprinkler exert on the hand if held stationary, and at what angular

velocity will it rotate free?

0.15 m45º

30º

0.20 m

AB

Fig. 4.33 A lawn sprinkler

Solution Assuming the discharge to be equally divided between the two nozzles,

QA = QB = 3 ¥ 10
�3

/60 = 50 ¥ 10
�6

 m
3
/s
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VA = VB = 50 ¥ 10
�6

/(p/4)(0.005)
2
 = 2.54 m/s

where, VA and VB are the flow velocities of water coming out from the nozzles.

Velocities in the circumferential directions (in the direction of rotation) are

VAw
 = 2.54 cos 30° = 2.2 m/s

VBw
 = 2.54 cos 45° = 1.8 m/s

(a) When stationary, the torque due to the nozzle action can be found out from the

principle of conservation of angular momentum as follows:

for nozzle A, the torque = 1000 ¥ 50 ¥ 10�6
 ¥ 2.2 ¥ 0.20 = 0.022 Nm

for nozzle B, the torque = 1000 ¥ 50 ¥ 10
�6

 ¥ 1.8 ¥ 0.15 = 0.013 Nm

Total torque due to nozzles A and B = 0.035 Nm

(b) When rotating free, let the angular velocity be w. Now the absolute velocities of

the nozzle discharge in the circumferential direction are

for nozzle A, VOA = (2.2 � 0.2w) m/s

for nozzle B, VOB = (1.8 � 0.15w) m/s

There being no external moment, the angular momentum should be conserved, and hence,

rQA (2.2 � 0.2w) ¥ 0.20 � rQB (1.8 � 0.15w) ¥ 0.15 = 0

Cancelling r and using QA = QB, w = 9.72 rad/s

Example 4.16 A tank, shown in Fig. 4.34, has a nozzle of exit diameter D1 at a

depth H1 below the free surface. At the side opposite to this nozzle, another nozzle of

diameter D2 is attached to the tank at a depth of 2H1 from the free surface. Find the

diameter D2 in terms of D1 if the net horizontal force on the tank is zero. (Neglect the

frictional effect.)

Solution The velocity of discharge from the nozzles can be found out by the application

of Bernoulli�s equation between the free surface and the exit planes of the nozzles.

For the nozzle 1,

z

CV

2H1

H1

D2

D1

2

1

Fx

x

Fig. 4.34 A tank with exit nozzles on opposite sides

p
gHatm

r
+ +0 1 =

p Vatm

r
+ +1

2

2
0 [patm = atmospheric pressure]

or, V1 = (2gH1 )
1/2
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mass flow rate &m1 = r
p r p

V
D D

gH1
1
2

1
2

1
1 2

4 4
2= ( ) /

Similarly for the nozzle 2, V2 = [2g(2H1)]
1/2 = 2[gH1]

1/2

and &m2 =
r p D

gH2
2

1
1 2

4
2( ) /

Let Fx be the horizontal force in the positive direction of x acting on the fluid mass in

the control volume inscribing the tank as shown in Fig. 4.34. Applying the momentum

theorem for the control volume

Fx = &m1(�V1) + &m2V2

=
2 2

1/ 2 1/ 2 1/2 1/ 21 2
1 1 1 1(2 ) (2 ) 2( ) 2( )

4 4

D D
gH gH gH gH

rp rpÈ ˘ È ˘
- +Í ˙ Í ˙

Í ˙ Í ˙Î ˚ Î ˚

=
rp g H

D D1
1
2

2
2

4
2 4( )- +

The net horizontal force acting on the tank, according to the problem, is zero, and

therefore, we can write

rp g H
D D1

1
2

2
2

4
2 4( )- +  = 0

from which we get

2D2
1 � 4D2

2 = 0

or, D1 = 2 D2

Example 4.17 Find the net vertical force acting on the circular plate shown in

Fig. 4.35a, if the water spreads radially on it. Neglect the weight of water on the plate.

Assume the height of free water surface from the discharge plane to remain constant.

Control
volume

Pressure 500
kN/m gauge2

z1

z2

2

6.2 m

(a) (b)

300 mm dia

1

F

Fig. 4.35a Impingement of water FIg. 4.35b An appropriate control
jet and its radial spreading volume enveloping the

on a circular plate incoming water jet and

the plate
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Solution The control volume for the analysis is shown in Fig. 4.35b. Applying

Bernoulli�s equation between Secs 1 and 2 (Fig. 4.35b), we get

p2/rg + V2
2/2g + z2 = patm/rg + V2

1/2g + z1

Here, p2 � patm = 5 ¥ 10
5
 Pa

V2 ª 0, z2 � z1 = 6.2 m

Hence, V1
2
 =

5 10

10

5

3

¥
 ¥ 2 + 6.2 ¥ 2 ¥ 9.81

from which V1 = 33.49 m/s

Applying the momentum equation in the control volume shown, we have

F = 0 � &m  (�V1) = &m V1

Where F is the force acting on the control volume in a direction vertically upward.

Mass flow rate of water &m  = rA1V1

Therefore, F = rA1V1
2 = 10

0 3

4
33 49

3
2

2¥ ¥
p ( . )

( . )

= 79.3 ¥ 10
3
 N = 79.3 kN

Therefore, by Newton�s third law, a force of 79.3 kN will act on the plate in a direction

vertically downward.

Example 4.18 An impulse water turbine has a number of similar vanes one of

which is shown in Fig. 4.36. Water strikes each vane as shown in the figure with a

velocity of 31.4 m/s and at the rate of 0.05 m3
/s. The mean vane speed is 10 m/s and the

deflection angle by the vane for shockless discharge is 150° as shown. Calculate the

output power for each vane. Consider atmospheric pressure throughout and the friction of

vane reduces the relative velocity of water by 10%. (Take density of water r = 1000 kg/

m
3
)

V2

V2

u

u

150º

150º

Control volume

V1 = 31.4 m/su = 10 m/s

Vr
2

Vr
2

Fig. 4.36 Flow of water past a typical vane of an impulse water turbine

Solution Consider a control volume fixed to the vane as shown in the Fig. 4.36.
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Velocity of water relative to the vane at its inlet is given by (Fig. 4.36)

Vr1
 = 31.4 � 10 = 21.4 m/s

The velocity triangles at the outlets are also shown in Fig. 4.36.

Due to friction, as mentioned in the problem, the magnitude of the relative velocity at

outlet is

|
r
V r2

| = 0.9 ¥ 21.4 = 19.26 m/s

Applying the momentum theorem Eq. (4.33d) to the control volume as shown in

Fig. 4.36.

Fx = 2 ¥ 
1000 0 05

2

¥ .
 (�19.26 cos 30°) � 1000 ¥ 0.05 ¥ 21.4

= � 1.904 ¥ 103 N = � 1.9 kN

where Fx is the force exerted on the control volume by the vane in its direction of motion.

Minus sign indicates that the force Fx is in the opposite direction to that of vane�s motion.

Therefore, the force Fp exerted by the fluid on the vane is in the direction of motion and is

equal in magnitude to that of Fx

Fp = � Fx = 1.9 kN

Hence, the output power P = 1.9 kN ¥ 10 m/s = 19 kW.

Example 4.19 A jet propelled boat with an absolute velocity of 8.7 m/s is moving

upstream in a river. The stream is flowing with a velocity of 2.3 m/s. A jet of water is

ejected astern at a relative velocity of 18 m/s. If the flow in jet is 1.4 m3/s, what thrust is

developed on the boat? Find also the power to drive the boat and the efficiency of the

propulsion device.

Solution The velocity of scooped water relative to the boat

v = (8.7 + 2.3) = 11 m/s

Using Eq. (4.33d) we have, for the thrust on the boat,

F = 1.4 ¥ 10
3
 (18 � 11) N = 9.8 kN

The power required to drive the boat is

P = 9.8 ¥ 8.7 = 85.26 kW

The kinetic energy of the jet per second is

E = 0.5 ¥ 1.4 ¥ 103 (18 � 8.7)2 W = 60.54 kW

Therefore the efficiency of propulsion is

P

P E( )+
 =

85 26

85 26 60 54

.

. .+
 = 0.585 = 58.5%

Exercises

4.1 Choose the correct answer

(i) A flow field satisfying —.
r

V  = 0 as the continuity equation represents always a

(a) steady and uniform flow

(b) unsteady and non uniform flow
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(c) steady and incompressible flow

(d) unsteady and incompressible flow

(e) incompressible flow

(ii) From the following statements, choose the correct one related to Bernoulli�s

equation

V2/2 + p/r + gz = constant

(a) The equation is valid for the steady flow of an incompressible ideal or

real fluid along a stream tube.

(b) The energy equation for the flow of a frictionless fluid of constant density

along a streamline with gravity as the only body force.

(c) The equation is derived from dynamic consideration involving gravity,

viscous and inertia forces.

(d) The constant in the equation varies across streamlines if the flow is

irrotational.

(iii) A control volume implies

(a) an isolated system

(b) a closed system

(c) a specific mass in a fluid flow

(d) a fixed region in space

(iv) The Euler�s equation of motion

(a) is a statement of energy balance

(b) is a preliminary step to derive the Bernoulli�s equation

(c) statement of conservation of momentum for a real fluid

(d) statement of conservation of momentum for an incompressible flow

(e) statement of conservation of momentum for the flow of an inviscid fluid.

4.2 Do the flowing velocity components represent physically possible incompressible

flow?

(a)
r

V  = 5 xi
r

 (3y + y2) 
r

j

(b) Vr = m/4pr, Vq = 0, Vz = 0

[Ans. (a) No, (b) Yes]

4.3 For the flows represented by the following stream functions, determine the

velocity components and check for the irrotationality,

(a) y = xy,

(b) y = ln(x
2
 + y

2
).

[Ans. (a) u = x, v = � y; irrotational flow

(b) u = 
2

2 2

y

x y+
, v = 

-

+

2

2 2

x

x y
; irrotational flow

O

Q
P

4.4 In a two-dimensional incompressible flow over a solid plate, the velocity

component perpendicular to the plate is v = 2x
2
 y

2
 + 3y

3
 x, where x is the

coordinate along the plate and y is perpendicular to the plate. Hence find out

(i) the velocity component along the plate

(ii) an expression for stream function and then verify whether the flow is

irrotational or not.

Ans u x y x y x y x y. , ;= - - = - -L
NM

O
QP

4

3

9

2

2

3

3

2

3 2 2 3 2 2 3y rotational
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4.5  Water flows downward in a pipe of 600 mm diameter at the rate of 2 m3/s. It then

enters a conical duct (Fig. 4.37) with porous walls such that there is a radial

outflow with flow velocity varying linearly from zero at A to 1.5 m/s at B. What is

the rate of flow at B coming out from the conical duct.

(Ans. 0.587 m3/s)

300 mm

600 mm

1.5 m/s

B

A

1.5 m

Q = 2m /s3

Fig. 4.37 Flow in a conical duct with porous wall

4.6 Consider a cube with 2 m edges parallel to the coordinate axes located in the first

quardrant with one corner at the origin. By making use of the velocity distribution
r

V  = 5 5 10xi y j zk
r r r

+ - , find out the flow through each face and show that no

mass is being accumulated within the cube if the fluid is of constant density.

[Ans. x faces (faces ^ to ox): Q(at x = 0) = 0,

Q (at x = 2) = 40 m3
/s outflow

y faces (faces ^ to oy): Q(at y = 0) = 0

Q (at y = 2) = 40 m3/s outflow

z faces (faces ^ to oz): Q(at z = 0) = 0

Q (at z = 2) = � 80 m
3
/s inflow]

4.7 In a steady flow through a straight nozzle, the center line velocity changes from

1 m/s to 10 m/s in 0.3 m length. Determine the change in magnitude of

convecting acceleration.

(Ans. 270 m/s
2
)

4.8 A conical nozzle 0.5 m long converging from 0.4 m to 0.2 m diameter linearly is

subjected to an outlet flow varying linearly from 0 to 1 m3/s in 10 seconds.

Determine the total acceleration at the mid-length of the nozzle at the mid-time of

variation. Assume uniform flow over each cross-section.

(Ans. 135.20 m/s2
)

4.9 A 0.3 m diameter pipe contains a short section in which the diameter is gradually

reduced to 0.15 m and then enlarged again to 0.3 m. The 0.15 m section is 0.6 m

below section A in the 0.3 m pipe where the pressure is 517 kN/m2. If a

differential manometer containing mercury is attached to the 0.3 m and 0.15 m

section, what is the deflection of the manometer when the flow of water is

0.12 m3
/s downward? Assume the flow to be inviscid.

(Ans. 175 mm)
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4.10 At point A in a pipe line carrying water, the diameter is 1 m, the pressure is

98 kPa and the velocity is 1 m/s. At point B, 2 m higher than A, the diameter is

0.5 m and the pressure is 20 kPa. Determine the direction of flow.

(Ans. from A to B)

4.11 Prandtl has suggested that the velocity distribution for turbulent flow in conduits

may be approximated by the equation n = nmax (y/r0)
1/7, where r0 is the pipe

radius and y is the distance from the pipe wall. Determine (a) the expression of

average velocity in terms of center line velocity in the conduits, and (b) the kinetic

energy correction factor.

(Ans. Vav = 0.817 nmax, a = 1.06)

4.12 A tornado may be modeled as a combination of vortices with nr = nz = o and nq =

nq (r) such that: nq = w r r £ R

nq =
w R

r

2

r ≥ R

Determine whether the flow pattern is irrotational in either the inner or outer

region. Using the r-momentum equation, determine the pressure distribution p(r)

in the tornado. Assume p = p• at r Æ •. Find the location and magnitude of the

lowest pressure.

[Ans. rotational for r £ R, irrotational for r ≥ R

p = p• � rw2
 R

2
 1

2

2

2
-

F

HG
I

KJ
r

R
 r £ R

p = p
R R

r
• - F

H
I
K

rw 2 2 2

2
 r ≥ R

pmin is at r = 0, p = p• � rw2
 R

2
]

4.13 A tank with an inside cross sectional area 0.1 m2 has a mass of 0.4 kg when

empty. The tank is placed on a scale and water flows in through an opening of

0.01 m2 area in the top with a velocity of 2 m/s and comes out horizontally

through the two equal area openings in the sides as shown in Fig. 4.38. Under

steady flow conditions, the height of water in the tank is 0.6 m. Determine the

reading of the scale.

(Ans. 5.93 kN)

V = 2 m/s

Fig. 4.38 Flow of water in a tank

4.14 An oil of specific gravity 0.85 flows through a vertical reducing bend (Fig. 4.39)

at a rate of 0.5 m
3
/s and with a pressure of 118 kN/m

2
 while entering the bend at

A. The diameter at A is 0.4 m and that at B is 0.3 m, and the volume between A

and B is 0.1 m
3
. Neglecting friction, find the force on the bend in magnitude and

direction. (Ans. 20.29 kN, 12.47° with vertical)
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45∞

90∞

mg

0.4 m

0.3 mA

B

45∞

Fig. 4.39 A vertical reducing bend

4.15 An oil of specific gravity 0.8 flows through a 90° expanding pipe bend from

400 mm to 600 mm diameter. The pressure at the entrance to the bend is 130 kPa

and the losses in the bend equals to 0.6 V2
1/2g, where V1 is the approach velocity.

For a volumetric flow rate of oil of 1.0 m3/s, determine the force components

(parallel and normal to the approach velocity) necessary to support the bend.

Assume the plane of the bend to be horizontal.

(Ans. 9.96 kN, 41.03 kN)

4.16 Water is flowing through a tee in a horizontal plane, as shown in Fig. 4.40.

Neglecting losses, determine the x and y components of force needed to hold the

tee in place.

(Ans. Fx = � 9.10N, Fy = � 5.48 N)

45∞

30∞ Y

X3

300 mm diameter

150 mm diameter

100 kPa

450 mm. Dia
Water

1

0.6 m /s3

0.36 m /s3

0.24 m /s32

Fig. 4.40 A horizontal tee

4.17 Consider the flow of water past a (4 m ¥ 2 m) plate as shown in Fig. 4.41. The

velocity of water at the leading edge of the plate is uniform and has a value of

2 m/s. At the trailing edge of the plate, the velocity increases linearly from zero at

the plate to 2 m/s at a distance of 80 mm from it and then becomes uniform as

shown in the figure. Using the linear momentum theorem, calculate the drag

force on the plate. Assume that the pressure is the same everywhere in the flow

field.

 (Ans. 106.66 N)

U = 2 m/s 2 m/s

X

80 mm

4 m

Fig. 4.41 Flow past a flat plate
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4.18 Two different miscible liquids are mixed in a device as shown in Fig. 4.42. The

device consists of a pipe of diameter 150 mm with a bend at one end. A smaller

pipe of diameter 50 mm and negligible wall thickness is introduced into it as

shown in the figure and a liquid of density 800 kg/m3 is pumped through it at a

constant rate so that it comes out at Sec. 1 with a uniform velocity of 8 m/s. The

other liquid of density 900 kg/m
3
 is pumped through the larger pipe and is having

a uniform velocity of 4 m/s at Sec. 1. The pressure is the same in both the fluid

streams at Sec. 1. At Sec. 2, the mixed stream has the same density, velocity and

pressure at every location. The net resistive force acting along the pipe wall

between the Secs 1 and 2 is estimated to be 50 N. Determine the pressure drop

between the Secs 1 and 2. The density of mixed stream at Sec. 2 can be taken as

the volume-average of the densities of two separate streams.

(Ans. 1.71 kPa)

Fig. 4.42 A coaxial mixing device

4.19 What force F is required to hold the plate for a flow of oil of specific gravity 0.8

with a velocity V0 = 30 m/s (Fig. 4.43)

(Ans. 904.61 N)

40 mm
Diameter

V0
F

Fig. 4.43 Jet impingement on a flat plate

4.20 Water flowing at the rate of 0.034 m
3
/s strikes a flat plate held normal to its path.

If the force exerted on the plate in the direction of incoming water jet is 720 N,

calculate the diameter of the stream of water.

(Ans. 45 mm)

4.21 A vertical jet is issuing upward from a nozzle with a velocity of 10 m/s. The fluid

is an oil of density 800 kg/m3 and the nozzle exit diameter is 60 mm. A flat

horizontal plate bearing a total load of 200 N is supported only by the impact of

the jet (Fig. 4.44). Determine the equilibrium height h of the plate above the

nozzle exit. Neglect all losses.

(Ans. 1.12 m)
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h

Fig. 4.44 A horizontal plate supported by a vertical jet

4.22 A square plate weighing 122 N, and of uniform thickness and 0.3 m edge, is

hung such that it can swing freely about the upper horizontal edge. A 0.02 m

diameter horizontal jet of water having a velocity of 15 m/s impinges on the

plate. The centre line of the jet is 0.15 m below the upper edge of the plate, and,

when the plate, is vertical, the jet strikes the plate normally at its centre. Find the

force that must be applied at the lower edge of the plate in order to keep it vertical.

Find also the inclination of the plate to the vertical when the plate is allowed to

swing freely.

(Ans. 35.34 N, 35.4°)

4.23 A jet of water flows smoothly onto a stationary curved vane which turns it

through 60°. The diameter of the jet at the entrance is 50 mm and the velocity is

36 m/s. The outlet velocity is reduced to 30 m/s due to the friction. Neglecting

gravity effects, and considering that the jet is exposed fully to atmospheric

pressure, estimate the magnitude and direction of the force exerted on the vane.

(Ans. 2361 N, 51° with the direction of the jet at inlet)

4.24 A jet of water with a velocity of 30 m/s impinges on a vane moving with a velocity

of 12 m/s at 30° to the direction of motion. The vane angle at the outlet is 18°.

Find (i) the vane angle at inlet so that the water enters without shock, and the

(ii) efficiency of power transmission.

(Ans. 47°, 89.3%)

4.25 At what speed u should the cart of Fig. 4.45 move away from the jet in order to

produce maximum power from the jet.

(Ans. 10 m/s)

V = 30 m/s

u

Fig. 4.45 A moving cart with impinging jet

4.26 It is intended to move a mass M on wheels by impinging a jet of water on a vane

mounted on the mass as shown in Fig. 4.46. The total mass of M and the wheel is

350 kg, and the coefficient of rolling friction is 0.05. The vane angle at the top is

horizontal, while at the bottom it is 30°. The jet velocity is 15 m/s and is

discharged from a stationary nozzle of diameter 40 mm. Estimate the starting
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acceleration of the mass in the horizontal direction when (a) the water jet enters

the vane at the top and (b) the water jet enters through the bottom of the vane.

(Ans. 1.037 m/s2, 1.037 m/s2)

M

Fig. 4.46 A mass on a wheel with a vane mounted on it

4.27 In a river flowing at 1.5 m/s, a motor boat travels upstream at 9 m/s (relative to

the land). The boat is powered by a jet propulsion unit which takes in water at the

bow and discharges it (beneath the water surface) at the stern. The discharge

velocity is 18 m/s relative to the boat. The flow through the unit is 0.15 m
3
/s and

the engine produces 21 kW. Estimate the propulsive force and the overall

propulsive efficiency.

(Ans. 1125 N, 48.2%)

4.28 A boat travelling at 60 km/hr. has a 0.5 m diameter propeller that discharges

5 m3/s through its blades. Determine the thrust on the boat, the theoretical

efficiency of the propulsion system, and the power input to the propeller.

(Ans. 88 kN, 65.45%, 2.24 MW)

4.29 A boat requires 20 kN thrust to keep it moving at 30 km/hr. The water for the

propulsion system is taken from a tank inside the boat and is ejected from the

stern through a pipe of 500 mm diameter. Find the required rate of discharge.

(Ans. 1.98 m
3
/s)

4.30 Air enters the intake duct of a jet engine at atmospheric pressure and at 152 m/s.

Fuel air ratio of the engine is 1/50 by mass. The intake duct area is 0.042 m2 and

the density of air is 1.24 kg/m3. If the velocity of the exhaust gases relative to the

aircraft is 1525 m/s and the exit pressure is atmospheric, what thrust is

developed?

(Ans. 11.11 kN)

4.31 A 50 mm diameter nozzle is attached to a tank and discharges a stream of oil of

specific gravity 0.80 horizontal under a head of 11 m. What horizontal force is

exerted on the tank?

(Ans. 338.97 N)

4.32 A toy balloon of mass 0.086 kg is filled with air of density 1.29 kg/m
3
. The small

filling tube of 6 mm bore is pointed vertically downwards and the balloon is

released. Neglecting frictional effects, calculate the rate at which the air escapes

if the initial acceleration of the balloon is 15 m/s2.

(Ans. 0.009 kg/s)

4.33 A jet propelled airplane travels at 1000 km/hour. It takes 100 kg/s of air, burns

2 kg/s of fuel and developes 40 kN of thrust. What is the velocity of the exhaust

gas (relative to air plane)?

(Ans. 664.51 m/s)

4.34 A fighter plane is climbing at an angle of q of 60° to the horizontal at constant

speed of 950 km/hour. The plane takes in air at a rate of 450 kg/s. The fuel to air

ratio by mass is 1 to 40. The exit velocity of combustion products is 1825 m/s
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relative to the plane. If the plane changes to an inclination q of 20°, what will be

the speed of the plane when it reaches again an uniform speed? The new engine

settings are such that the same amount of air is taken in, the fuel air ratio is the

same and the exhaust jet speed is the same relative to the plane. The plane weighs

130 kN. The drag force is proportional to the square of the speed of the plane, and

the exhaust jet is at ambient pressure.

(Ans. 280.61 m/s)

4.35 Explain with reasons:

(a) Can a jet engine travel faster than the velocity of the ejected gas relative to it?

(b) Can a rocket do the same?

(Ans. a: No, b: Yes)



5.1 INTRODUCTION

In Chapter 4, we have derived the conservation equations. While the continuity

equation (equation of conservation of mass) has been discussed in general, the

equation of motion has been derived only for an ideal fluid. However, in

Chapter 8, the equation of motion for a viscous flow will be discussed. The

mechanical energy equation of an ideal fluid has been derived in Chapter 4 by

integrating the equation of motion along a streamline, and few applications of the

conservation equations applied to a control volume have also been shown with

reference to practical problems. In fact, design and analysis of a large number of

practical problems are made through the application of conservation equations of

ideal fluids. The frictional effects are usually considered by making use of certain

empirical factors in the conservation equations of ideal fluids.

This chapter discusses the applications of conservation equations, namely, the

equations of continuity, motion and mechanical energy to different classes of fluid

flow problems of engineering interest. At the outset of this discussion, the

Bernoulli�s equation which has already been derived in Chapter 4, needs further

description in relation to its implications in different situations of fluid flow.

Applications of
Equations of Motion and

Mechanical Energy

5
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5.2 BERNOULLI�S EQUATION IN IRROTATIONAL
FLOW

Bernoulli�s equation (Eq. (4.76)) was obtained in Chapter 4 by integrating the

Euler�s equation (the equation of motion) with respect to a displacement ds along

a streamline. Therefore, the value of C in Eq. (4.76) is constant only along a

streamline and should essentially vary from streamline to streamline. Under some

special condition, the constant C becomes invariant from streamline to streamline

and the Bernoulli�s equation is applicable with same value of C to the entire flow

field. The typical condition is the irrotationality of flow field.

The proof will be made in a simple way by considering a steady two-

dimensional flow of an ideal fluid in a rectangular cartesian coordinate system.

The velocity field is given by
r
V  =

r r
i u j+ v

and hence the condition of irrotationality is

— ¥
r
V  =

∂

∂

∂
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u
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-
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W

 = 0
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∂
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x
(5.1)

The steady state Euler�s equation can be written as

r u
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∂
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Here we consider the y-axis to be vertical and directed positive upward. From

the condition of irrotationality given by the Eq. (5.1), we substitute 
∂

∂

v

x
 in place

of 
∂

∂

u

y
 in the Eq. (5.2a) and 

∂

∂

u

y
 in place of 

∂

∂

v

x
 in the Eq. (5.2b). This results in
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(5.3a)

and, u
u

y y
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Now multiplying Eq. (5.3a) by �dx� and Eq. (5.3b) by �dy� and then adding these

two equations we have
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= - +
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W
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p

y
yd d  � g dy (5.4)

The Eq. (5.4) can be physically interpreted as the equation of conservation of

energy for an arbitrary displacement d
r
r  = 

r
i dx + 

r
j  dy. Since, u, v and p are

functions of x and y, we can write

du =
∂

∂

u

x
 dx + 

∂

∂

u

y
 dy (5.5a)

dv =
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x
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y
 dy (5.5b)

and dp =
∂

∂

p

x
 dx + 

∂

∂

p

y
 dy (5.5c)

With the help of Eqs (5.5a), (5.5b), and (5.5c), the Eq. (5.4) can be written as
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The integration of Eq. (5.6) results in

d p V

rz +

2

2
 + gy = C (5.7a)

For an incompressible flow,

p V

r
+

2

2
 + gy = C (5.7b)

The constant C in Eqs (5.7a) and (5.7b) has the same value in the entire flow

field, since no restriction was made in the choice of d
r
r  which was considered as

an arbitrary displacement in evaluating the work. Note that, in deriving

Eq. (4.76), the displacement ds was considered along a streamline. Therefore, the

total mechanical energy remains constant everywhere in an inviscid and

irrotational flow, while it is constant only along a streamline for an inviscid but

rotational flow. The derivation of the mechanical energy equation for a steady

irrotational flow can also be done in an alternative way with vector representation

as follows:

The equation of motion for the flow of an inviscid fluid can be written in a

vector form as
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D
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where 
r
X  is the body force vector per unit mass.

The substantial derivative 
D
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 can be split in terms of its temporal and

convective components as
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Therefore, Eq. (5.8), for a steady flow, becomes
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From elementary vector analysis, we know that
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where, vorticity 
r
W  = — ¥

r
V

Using the relation (5.10), the Eq. (5.9) can be written as
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r r
V ¥ W (5.11a)

If the body force field is conservative in nature, we can define a body force

potential function ff so that
r
X  = � — ff
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Upon substitution of 
r
X  in terms of ff, the Eq. (5.11a) becomes
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For an irrotational flow, 
r
W  = 0, and for an incompressible flow 
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Hence the Eq. (5.11b) becomes
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where C is a constant having the same value in the entire flow field. When gravity

is the only body force field, ff equals to gz, with z as the coordinate along a

vertical axis directed upwards. Hence Eq. (5.12) becomes

V p2

2
+

r
 + gz = C (5.13)

5.3 STEADY FLOW ALONG CURVED STREAMLINES

The equation of motion along a streamline was derived in Sec. 4.5.1 of

Chapter 4. Here we shall derive the equation of motion of an ideal flow in a

direction normal to a curved streamline. We consider a two-dimensional motion

of an inviscid and incompressible fluid on a vertical plane (Fig. 5.1). The accel-

eration normal to the streamline at any point 1 is given by

an =
d

d

V

t

n

where, dVn represents the component of the change in velocity vector along the

normal direction to the streamline. Since,

dVn = Vdq (Fig. 5.1),
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d
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V

t
V

t

V

r

n
= =

q 2

where, r is the radius of curvature at the point 1. Acceleration an acts inward

along the normal and is usually known as centripetal acceleration. The equation

of motion normal to the streamline can be written for a steady flow as
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Fig. 5.1 Flow along a curved streamline

where 
∂

∂

p

n
 is the pressure gradient along the outer normal at a point on the

streamline. If we denote H as the total head (total energy per unit weight), then,

H =
V
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p

g
z

2

2
+ +

r
(5.15)

where z is the vertical elevation of the point from any reference datum. According

to Bernoulli�s theorem, H remains constant along a streamline for an ideal flow

whether irrotational or rotational. Hence,

∂
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 = 0

Differentiating Eq. (5.15) with respect to n we have
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Substituting 
∂
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n
 from Eq. (5.14) into Eq. (5.16) we have,
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it becomes

∂

∂

H

n
 =

V

g

V

n

V

r

∂

∂
+

F
HG

I
KJ (5.17)

The Eq. (5.17) physically implies the variation of total mechanical energy in a

direction normal to the streamline for an inviscid fluid.

5.3.1 Plane Circular Vortex Flows

Plane circular vortex flows are defined as flows where streamlines are concentric

circles. Therefore, with respect to a polar coordinate system with the centre of the

circles as the origin or pole, the velocity field can be described as

Vq π 0 Vr = 0

where Vq and Vr are the tangential and radial component of velocity respectively.

The equation of continuity for a two dimensional incompressible flow in a polar

coordinate system is
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q
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which for a plane circular vortex flow gives 
∂

∂

Vq

q
 = 0, i.e. Vq is not a function of

q. Hence, Vq is a function of r only.

Equation (5.17) can be written for the variation of total mechanical energy

with radius as
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Free Vortex Flows Free vortex flows are the plane circular vortex flows where

the total mechanical energy remains constant in the entire flow field. There is

neither any addition nor any destruction of mechanical energy in the flow field.

Therefore, the total mechanical energy does not vary from streamline to

streamline. Hence from Eq. (5.18), we have,
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Integration of Eq. (5.19) gives

Vq =
C

r
(5.20)

The Eq. (5.20) describes the velocity field in a free vortex flow, where C is a

constant in the entire flow field. The vorticity in a polar coordinate system is

defined by Eq. (3.27a) as
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W =
∂

∂

∂

∂

V

r r

V V

r

rq q

q
- +

1

In case of vortex flows, it can be written as

W =
d

d

V

r

V

r

q q+

For a free vortex flow, described by Eq. (5.20), W becomes zero. Therefore we

conclude that a free vortex flow is irrotational, and hence, it is also referred to as

irrotational vortex. It has been shown in Sec. 5.2 that the total mechanical energy

remains same throughout in an irrotational flow field. Therefore, irrotationality is

a direct consequence of the constancy of total mechanical energy in the entire

flow field and vice versa. The interesting feature in a free vortex flow is that as r

Æ 0, Vq Æ µ, [Eq. (5.20)]. It mathematically signifies a point of singularity at r

= 0 which, in practice, is impossible. In fact, the definition of a free vortex flow

cannot be extended as r = 0 is approached. In a real fluid, friction becomes

dominant as r Æ 0 and so a fluid in this central region tends to rotate as a solid

body. Therefore, the singularity at r = 0 does not render the theory of irrotational

vortex useless, since, in practical problems, our concern is with conditions away

from the central core.

Pressure Distribution in a Free Vortex Flow Pressure distribution in a vortex

flow is usually found out by integrating the equation of motion in the r direction.

The equation of motion in the radial direction for a vortex flow can be written

with the help of Eq. (5.14) as

1

r

d

d

p

r
 =

V

r
q
2

 � g cos q (5.21)

or
1

r

d

d

p

r
 =

V

r
g

z

r

q
2

-
d

d
(5.22)

Integrating Eq. (5.22) with respect to dr, and considering the flow to be

incompressible we have,

p

r
 =  

V

r
q
2

z dr � gz + A (5.23)

where A is a constant to be found out from a suitable boundary condition.

For a free vortex flow,

Vq =
C

r

Hence Eq. (5.23) becomes

p

r
 = -

C

r

2

22
 � gz + A (5.24)

If the pressure at some radius r = ra, is known to be the atmospheric pressure

patm, then equation (5.24) can be written as
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p p- atm
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r ra
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1 1
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 � g(z � za)

=
( )V r raq =

2

2
 � 

Vq
2

2
 � g(z � za) (5.25)

where z and za are the vertical elevations (measured from any arbitrary datum) at

r and ra. Equation (5.25) can also be derived by a straight forward application of

Bernoulli�s equation between any two points at r = ra and r = r. In a free vortex

flow, the total mechanical energy remains constant. There is neither any energy

interaction between an outside source and the flow, nor is there any dissipation of

mechanical energy within the flow. The fluid rotates by virtue of some rotation

previously imparted to it or because of some internal action. Some examples are a

whirlpool in a river, the rotatory flow that often arises in a shallow vessel when

liquid flows out through a hole in the bottom (as is often seen when water flows

out from a bathtub or a wash basin), and flow in a centrifugal pump case just

outside the impeller.

Cylindrical Free Vortex A cylindrical free vortex motion is conceived in a

cylindrical coordinate system with axis z directing vertically upwards (Fig. 5.2),

where at each horizontal cross-section, there exists a planar free vortex motion

with tangenital velocity given by Eq. (5.20). The total energy at any point remains

constant and can be written as

p C

rr
+

2

22
 + gz = H (constant) (5.26)

The pressure distribution along the radius can be found from Eq. (5.26) by

considering z as constant; again, for any constant pressure p, values of z,

determining a surface of equal pressure, can also be found from Eq. (5.26). If p is

measured in gauge pressure, then the value of z, where p = 0 determines the free

surface (Fig. 5.2), if one exists.

Free surface

Constant
pressure lines

Datum

V2 C2

V2p
2g 2gr2

2grg

=

H z= +

z

+

Fig. 5.2 Cylindrical free vortex
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Spiral Free Vortex A plane spiral free vortex flow in a two-dimensional frame

of reference is described in a sense so that the tangential and radial velocity

components at any point with respect to a polar coordinate system is inversely

proportional to the radial coordinate of the point. Therefore the flow field

(Fig. 5.3) can be mathematically defined as

Vq =
c

r

1 (5.27a)

and Vr =
c

r

2 (5.27b)

Therefore we can say that the supe-

rimposition of a radial flow described

by Eq. (5.27b) with a free vortex flow

gives rise to a spiral free vortex flow. If

a becomes the angle between the

velocity vector 
r

V , which is tangential

to a streamline (Fig. 5.3), and the

tangential component of velocity Vq at

any point, then the equation of

streamline can be expressed as

1

r

rd

dq
 = tan a (5.28)

Again we can write

tan a =
V

V

c

c

r

q

= 2

1

It follows therefore that the angle a is constant, i.e., independent of radius r.

Hence Eq. (5.28) can be integrated, treating tan a as constant, to obtain the

equation of streamlines as

r = r0 eq tan a = r0 e

c

c

2

1

F
HG

I
KJ

q

(5.29)

where r0 is the radius at q = 0 (Fig. 5.3). Equation (5.29) shows that the pattern of

streamlines are logarithmic spiral. Vorticity 
r
W  as defined by Eq. (3.27a) becomes

zero for the flow field described by Eqs (5.27a) and (5.27b). Therefore, the spiral

free vortex flow is also irrotational like a circular free vortex flow and hence the

total energy remains constant in the entire flow field. The outflow through a

circular hole in the bottom of a shallow vessel resembles closely to a spiral free

vortex flow.

Forced Vortex Flows Flows where streamlines are concentric circles and the

tangential velocity is directly proportional to the radius of curvature are known as

Fig. 5.3 Geometry of spiral flow
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plane circular forced vortex flows. The flow field is described in a polar

coordinate system as,

Vq = w r (5.30a)

and Vr = 0 (5.30b)

All fluid particles rotate with the same angular velocity w like a solid body.

Hence a forced vortex flow is termed as a solid body rotation. The vorticity W for

the flow field can be calculated as

W =
∂

∂

∂

∂

V

r r

V V

r

rq q

q
- +

1

= w � 0 + w = 2w

Therefore, a forced vortex motion is not irrotational; rather it is a rotational flow

with a constant vorticity 2w. Equation (5.17) is used to determine the distribution

of mechanical energy across the radius as
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Integrating the equation between the two radii on the same horizontal plane, we

have,

H2 � H1 =
w 2

g
 (r2

2 � r2
1) (5.31)

Thus, we see from Eq. (5.31) that the total head (total energy per unit weight)

increases with an increase in radius. The total mechanical energy at any point is

the sum of kinetic energy, flow work or pressure energy, and the potential energy.

Therefore the difference in total head between any two points in the same hori-

zontal plane can be written as,
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p
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Substituting this expression of H2 � H1 in Eq. (5.31), we get

p p2 1-

r
 =  

w 2

2
 [r2

2 � r2
1] (5.32)

The same equation can also be obtained by integrating the equation of motion in

a radial direction as
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To maintain a forced vortex flow, mechanical energy has to be spent from

outside and thus an external torque is always necessary to be applied

continuously. Forced vortex can be generated by rotating a vessel containing a

fluid so that the angular velocity is the same at all points. A paddle rotating in a

large mass of fluid creates a forced vortex flow near its diameter. Another

common example is the motion of liquid within a centrifugal pump or of gas in a

centrifugal compressor.

Cylindrical Forced Vortex A cylindrical forced vortex motion is realized in a

three dimensional space. It can be generated by rotating a cylindrical vessel

containing a fluid (Fig. 5.4a). At any horizontal plane, the tangential velocity

satisfies the Eq. (5.30a). The pressure head p/rg at any point in the fluid is equal

to z, the depth of the point below the free surface, if one exists (Fig. 5.4a). By

writing the Eq. (5.32) between the points a and �o� at the same horizontal plane

(Fig. 5.4a) we have,

z � z0 =
w 2 2

2

r

g
(5.33)

Equation (5.33) represents the equation of free surface which, if r is perpendicular

to z (i.e., the axis of rotation is vertical), is a paraboloid of revolution. If the liquid

is confined within a vessel (Fig. 5.4b), the free surface may not exist, but the

pressure along any radius will vary in the same way as if there were a free surface.

Hence the two are equivalent.

r
r

pr

po

0 a Datum

(a) (b)

z0
rg

rgz

Fig. 5.4 Cylindrical forced vortex (a) open vessel (b) closed vessel

Spiral Forced Vortex Superimposition of purely radial flow (inwards or

outwards) with a plane circular forced vortex results in a spiral forced vortex

flow.
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5.4 FLUIDS IN RELATIVE EQUILIBRIUM

In certain instances of fluid flow, the behaviour of fluids in motion can be found

from the principles of hydrostatics. Fluids in such motions are said to be in

relative equilibrium or in relative rest. These situations arise when a fluid flows

with uniform velocity without any acceleration or with uniform acceleration.

5.4.1 Flow with Constant Acceleration

When fluid moves uniformly in a straight line without any acceleration, there is

neither shear force nor inertia force acting on the fluid particle which maintains

its motion simply due to inertia. The weight of a fluid particle is balanced by the

pressure-force as it happens in case of a fluid mass at absolute rest, and therefore

the hydrostatic equations can be applied without change. If all the fluid concerned

now undergo a uniform acceleration in a straight line without any layer moving

relative to another, there are still no shear forces, but an additional force acts to

cause the acceleration. Nevertheless, provided that due allowance is made for the

additional force, the system may be studied by the methods of hydrostatics.

Let us consider a rectangular fluid element in a three dimensional rectangular

cartesion coordinate system as shown in Fig. 5.5. The pressure in the centre of the

element is p. The fluid element is moving with a constant acceleration whose

components along the coordinate axes x, y, and z are ax, ay and az respectively.

The force acting on the fluid element in the x direction is

p
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∂y

Fig. 5.5 Equilibrium of fluid element moving with constant acceleration

Therefore the equation of motion in the x direction can be written as
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r dx dy dz ax = -
∂

∂

p

x
 dx dy dz

or
∂

∂

p

x
 = � r ax (5.34a)

where r is the density of the fluid. In a similar fashion, the equation of motion in

the y-direction can be written as

∂

∂

p

y
 = � r ay (5.34b)

The net force on the fluid element in z direction is the difference of pressure

force and the weight. Therefore the equation of motion in the z direction is written

as

- -
F
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I
KJ

∂
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p

z
gr  dx dy dz = r az dx dy dz

or
∂

∂

p

z
 = � r (g + az) (5.34c)

It is observed that the governing equations of pressure distribution

[Eqs (5.34a), (5.34b) and (5.34c)] are similar to the pressure distribution

equation of hydrostatics.

If we consider, for simplicity, a two dimensional case where the y component

of the acceleration ay is zero, then a surface of constant pressure in the fluid will

be one along which

dp =
∂

∂

p

x
 dx + 

∂
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p

z
 dz = 0

or
d

d
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∂

∂
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 = -
+

a

g a

x

z

(5.35)

Since ax and az are constants, a surface of constant pressure has a constant

slope. One such surface is a free surface, if exists, where p = patm; other constant

pressure planes are parallel to it. As a practical example, we consider an open

tank containing a liquid that is subjected to a uniform acceleration ax in horizon-

tal direction (Fig. 5.6a). Here ay = az = 0, and the slope of constant pressure

surfaces is given by

tan q = dz /dx = � ax/g

If the tank is uniformly accelerated only in the vertical direction, then from the

Eq. (5.35), dz/dx = 0 and planes of constant pressure are horizontal. Therefore,

when a container with a liquid in it is allowed to fall freely under gravity, then the

free surface remains horizontal. Moreover, from the Eq. (5.34c), dp/dz = � r
(g � g) = 0. This implies that a point in the liquid under this situation experiences
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no hydrostatic pressure due to the column of liquid above it. Therefore pressure is

throughout atmospheric, provided a free surface exists, for example, if the

container is open. From the above discussion, an interesting fact can be

concluded, that if there is a hole on the base of a container with an open top, liquid

will not leak through it during the free fall of the container.

For a two dimensional system in a vertical plane, pressure at a point in the

fluid may be determined from Eq. (5.34a) and (5.34c) as

p = z dp = 
∂

∂

p

xz dx + 
∂

∂

p

xz dz

= � r ax x � r (g + az) z + constant (5.36)

The flow is considered to be incompressible and the integration constant is

determined by any given condition of the problem. An alternative expression for

pressure distribution can be obtained with respect to a frame of coordinates with

z and h axes (Fig. 5.6b), parallel and perpendicular to the constant-pressure

planes respectively. Then dp/dz = 0 and

∂

∂

p

h
 =

∂

∂

∂

∂

p

x x

h
 = 

- r

q

ax

sin
(5.37)

Again from Eq. (5.35),

d

d

z

x
 = tan q = 

-

+

a
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z

which gives sin q =
a

a g a

x

x z( ( ) ) /2 2 1 2
+ +

(5.38)

Since p is a function of h only, ∂p/∂h can be written as dp/dh. Hence the

Eq. (5.37) can be written with the help of the Eq. (5.38) as

Original liquid
surface

(a) (b)

Constant-pressure
planes

z

ax

h
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z

q

z

x

q = tan { /( + )}-1 -a g ax x

Fig. 5.6 (a) Liquid subjected to uniform acceleration (b) constant

pressure planes
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d

d

p

h
 = � r (a2

x + (g + az)
2)1/2 (5.39)

A comparison of the Eq. (5.39) with the pressure distribution equation in

hydrostatics [Eq. (2.14)] shows that pressure in case of fluid motions with

uniform acceleration may be calculated by the hydrostatic principle provided that

{a2
x + (g + az)

2}1/2 takes the place of g, and h the place of vertical coordinate.

5.5 PRINCIPLES OF A HYDRAULIC SIPHON

Fluid flows always from a higher energy level to a lower energy level. Here, by

energy, we mean the total mechanical energy. Consider a container T containing

some liquid (Fig. 5.7). If one end of a pipe S, completely filled in with the same

liquid, is dipped into the container as shown in Fig. 5.7 with other end being open

and vertically below the free surface of the liquid in the container T, then liquid

will continuously flow from the container T through the pipe S and will get

discharged at the end B. This is known as siphonic action by which the tank T

containing the liquid can be made empty. The pipe S, under the situation, is known

as a hydraulic siphon or simply a siphon. The justification of flow through the

pipe S can be made in the following way:

If we write the Bernoulli�s equation, neglecting the frictional effects, at the

two points A and B as shown in Fig. 5.7, we have

p

g

A

r
 + 0 + zA =

p

g

V

g

B B

r
+

2

2
 + zB (5.40a)
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Fig. 5.7 Hydraulic siphon
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The pressures at A and B are same and equal to the atmospheric pressure.

Velocity at A is negligible compared to that at B, since the area of the tank T is

very large compared to that of the tube S. Hence we get from Eq. (5.40a)

VB = 2 2g z z g zA B( )- = D (5.40b)

Equation (5.40b) shows that a velocity head at B is created at the expense of

the difference in potential head between A and B and thus justifies the flow from

tank T through the pipe S.

The frictional effect due to viscosity of the fluid is taken care of by writing the

Eq. (5.40a) in a modified from as

p

g

A

r
 + 0 + zA =

p

g

V

g

B B

r
+

2

2
 + zB + hL

which gives, VB = 2g z hL( )D - (5.40c)

since, pA = pB = patm (atmospheric pressure)

Here hL is the loss of total head due to fluid friction in the flow from A to B.

Hence, the velocity VB expressed by the Eq. (5.40c) becomes less than that

predicted by the Eq. (5.40b) in the absence of friction. Let us consider a point C

in the pipe (Fig. 5.7), and apply the Bernoulli�s equation between A and C. Then

we have, neglecting frictional losses,

p

g

A

r
 + 0 + zA =

p

g

V

g

C C

r
+

2

2
 + zC (5.41a)

Considering the cross-sectional area of the pipe to be uniform, we have, from

continuity, VB = VC, and the Eq. (5.41a) can be written as

p

g

C

r
 =

p

g

V

g

Batm

r
-

2

2
 � h (5.41b)

(Since, pA = patm, the atmospheric pressure and zC � zA = h)

With the consideration of frictional losses, Eq. (5.41b) becomes

p

g

C

r
 =

p

g

V

g

Batm

r
-

2

2
 � h � h¢L (5.41c)

where h¢L is the loss of head due to friction in the flow from A to C. Therefore, it

is found that the pressure at C is below the atmospheric pressure by the amount

(V2
B/2g + h + h¢L). This implies physically that a part of the pressure head at A is

responsible for the gain in the velocity and potential head of the fluid at C plus the

head which is utilized to overcome the friction in the path of flow. Usually the

frictional loss h¢L is small due to the low velocity of flow and one can neglect it

with respect to the change in potential head. Now it is obvious that the minimum

pressure in the flow would be attained at the top most part of the siphon, for

example, point D where the potential head is maximum. From the application of

Bernoulli�s equation between A and D, we have neglecting losses,
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p
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(Since the pipe is uniform, velocity at D equals to that at B)

From the Eq. (5.40b)
V
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B
2

2
 = Dz

Therefore, it becomes,
p

g

D

r
 =

p

g

atm

r
 � (D z + H) (5.42)

The Eq. (5.42) can also be obtained by the application of Bernoulli�s equation

between D and B.

If the pressure of a liquid becomes equal to its vapour pressure at the existing

temperature, then the liquid starts boiling and pockets of vapour are formed which

create vapour locks to the flow and the flow is stopped. The vapour pockets are

formed where the pressure is sufficiently low. These pockets are suddenly

collapsed�either because they are carried along by the liquid until they arrive at

a region of higher pressure or because the pressure increases again at the point in

question. It results in cavities and surrounding liquid rushes in to fill it creating a

very high pressure which can lead to a serious damage to the solid surface. This

phenomenon is known as cavitation. In ordinary circumstances, liquids contain

some dissolved air. This air is released as the pressure is reduced, and it too may

form pockets in the liquid as air locks. Therefore to avoid this, the absolute

pressure in a flow of liquid should never be allowed to fall to a pressure below

which the air locking problem starts in practice. For water, this minimum pressure

is about 20 kpa (2 m of water). Therefore, the phenomenon of cavitation puts a

constraint in the design of any hydraulic circuit where there is a chance for the

liquid to attain a pressure below that of the atmosphere. For a siphon, this

condition has to be checked at point D, so that pD > pmin where pmin is the pressure

for air locking or vapour locking to start.

5.6 LOSSES DUE TO GEOMETRIC CHANGES

In case of flow of a real fluid, the major source for the loss of its total mechanical

energy is the viscosity of fluid which causes friction between layers of fluid and

between the solid surface and adjacent fluid layer. It is the role of friction, as an

agent, to convert a part of the mechanical energy into intermolecular energy. This

part of the mechanical energy converted into the intermolecular energy is termed

as the loss of energy, since our attention is focussed only on the mechanical

energy of the fluid.

Apart from the losses due to friction between solid surface and fluid layer past

it, the loss of mechanical energy is also incurred when the path of the fluid is

suddenly changed in course of its flow through a closed duct due to any abrupt

change in the geometry of the duct. In long ducts, these losses are very small

compared to the frictional loss, and hence they are often termed as minor losses.
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But minor losses may, however, outweigh the frictional loss in short pipes or

ducts. The source of these losses is usually confined to a very short length of the

duct, but the turbulence produced may persist for a considerable distance

downstream. A few such minor losses are discussed below.

5.6.1 Losses Due to Sudden Enlargement

If the cross-section of a pipe with fluid flowing through it, is abruptly enlarged

(Fig. 5.8a) at certain place, fluid emerging from the smaller pipe is unable to

follow the abrupt deviation of the boundary. The streamline takes a typical

diverging pattern as shown in Fig. 5.8a. This creates pockets of turbulent eddies

in the corners resulting in the dissipation of mechanical energy into intermolecular

energy.

The basic mechanism of this type of loss is similar to that of losses due to

separation, in case of flow of fluid against an adverse pressure gradient. Here the

fluid flows against an adverse pressure gradient. The upstream pressure p1 at

section a�b is lower than the downstream pressure p2 at section e�f since the

upstream velocity V1 is higher than the downstream velocity V2 as a consequence

of continuity. The fluid particles near the wall due to their low kinetic energy

cannot overcome the adverse pressure hill in the direction of flow and hence

follow up the reverse path under the favourable pressure gradient (from p2 to p1).

This creates a zone of recirculating flow with turbulent eddies near the wall of the

larger tube at the abrupt change of cross-section, as shown in Fig. 5.8a, resulting

in a loss of total mechanical energy. For high values of Reynolds number, usually

found in practice, the velocity in the smaller pipe may be assumed sensibly

uniform over the cross-section. Due to the vigorous mixing caused by the

turbulence, the velocity becomes again uniform at a far downstream section e�f

from the enlargement (approximately 8 times the larger diameter). A control

volume abcdefgha is considered (Fig. 5.8a) for which the momentum theorem

can be written as

p1

A1 A2
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V2

a

b

d

(a) (b)

h
g f
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Fig. 5.8 (a) Flow through abrupt but finite enlargement

(b) Flow at infinite enlargement (Exit Loss)

p1A1 + p¢ (A2 � A1) � p2A2 = rQ (V2 � V1) (5.43)

where A1, A2 are the cross-sectional areas of the smaller and larger parts of the

pipe respectively, Q is the volumetric flow rate and p¢ is the mean pressure of the

eddying fluid over the annular face, gd. It is known from experimental evidence,

the p¢ = p1
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Hence the Eq. (5.43) becomes

(p2 � p1)A2 = rQ (V1 � V2) (5.44)

From the equation of continuity,

Q = V2 A2 (5.45)

With the help of Eq. (5.45), Eq. (5.44) becomes

p2 � p1 = rV2 (V1 � V2) (5.46)

Applying Bernoulli�s equation between sections ab and ef in consideration of the

flow to be incompressible and the axis of the pipe to be horizontal, we can write

p V1 1
2

2r
+  =

p V2 2
2

2r
+  + ghL

or
p p2 1-

r
 =

V V1
2

2
2

2

-
 � ghL (5.47)

where hL is the loss of head. Substituting (p2 � p1) from Eq. (5.46) into Eq. (5.47),

we obtain

hL =
( )V V

g

1 2
2

2

-
 = 

V

g

1
2

2
 [1 � (A1/A2)]

2 (5.48)

In view of the assumptions made, Eq. (5.48) is subjected to some inaccuracies,

but experiments show that for coaxial pipes they are within only a few per cent of

the actual values.

5.6.2 Exit Loss

If, in Eq. (5.48), A2 Æ •, then the head loss at an abrupt enlargement tends to

V2
1/2g. The physical resembleness of this situation is the submerged outlet of a

pipe discharging into a large reservoir as shown in Fig. 5.8b. Since the fluid

velocities are arrested in the large reservoir, the entire kinetic energy at the outlet

of the pipe is dissipated into intermolecular energy of the reservoir through the

creation of turbulent eddies. In such circumstances, the loss is usually termed as

the exit loss for the pipe and equals to the velocity head at the discharge end of the

pipe.

5.6.3 Losses Due to Sudden Contraction

An abrupt contraction is geometrically the reverse of an abrupt enlargement

(Fig. 5.9). Here also the streamlines cannot follow the abrupt change of geometry

and hence gradually converge from an upstream section of the larger tube.

However, immediately downstream of the junction of area contraction, the cross-

sectional area of the stream tube becomes the minimum and less than that of the

smaller pipe. This section of the stream tube is known as vena contracta, after

which the stream widens again to fill the pipe. The velocity of flow in the

converging part of the stream tube from Sec. 1�1 to Sec. c�c (vena contracta)

increases due to continuity and the pressure decreases in the direction of flow

accordingly in compliance with the Bernoulli�s theorem. In an accelerating flow,
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under a favourable pressure gradient, losses due to separation cannot take place.

But in the decelerating part of the flow from Sec. c�c to Sec. 2�2, where the

stream tube expands to fill the pipe, losses take place in the similar fashion as

occur in case of a sudden geometrical enlargement. Hence eddies are formed

between the vena contracta c�c and the downstream Sec. 2�2. The flow pattern

after the vena contracta is similar to that after an abrupt enlargement, and the loss

of head is thus confined between Sec. c�c to Sec. 2�2. Therefore, we can say that

the losses due to contraction is not for the contraction itself, but due to the

expansion followed by the contraction. Following Eq. (5.48), the loss of head in

this case can be written as

hL =
V

g

2
2

2
 [(A2/Ac) � 1]2 = 

V

g

2
2

2
 [(1/Cc) � 1]2 (5.49)

(1)

(2)c

c (2)

Area Ac

Area A2

Area A1

V2

(1)

Fig. 5.9 Flow through a sudden contraction

where Ac represents the cross-sectional area of the vena contracta, and Cc is the

coefficient of contraction defined by

Cc = Ac/A2 (5.50)

Equation (5.49) is usually expressed as

hL = K(V
2
2/2g) (5.51)

where K = [(1/Cc) � 1]2 (5.52)

Although the area A1 is not explicitly involved in the Eq. (5.49), the value of

Cc depends on the ratio A2/A1. For coaxial circular pipes and at fairly high

Reynolds numbers, Table 5.1 gives representative values of the coefficient K.

Table 5.1

A2/A1 0 0.04 0.16 0.36 0.64 1.0

K 0.5 0.45 0.38 0.28 0.14 0

5.6.4 Entry Loss

As A1 Æ •, the value of K in the Eq. (5.51) tends to 0.5 as shown in Table 5.1.

This limiting situation corresponds to the flow from a large reservoir into a sharp-

edged pipe, provided the end of the pipe does not protrude into the reservoir

(Fig. 5.10a). The loss of head at the entrance to the pipe is therefore given by 0.5
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(V2
2/2g) and is known as entry loss. A protruding pipe (Fig. 5.10b) causes a

greater loss of head, while on the other hand, if the inlet of the pipe is well rounded

(Fig. 5.10c), the fluid can follow the boundary without separating from it, and the

entry loss is much reduced and even may be zero depending upon the rounded

geometry of the pipe at its inlet. Losses due to other types of geometric changes

like bends and fittings in pipes, have been discussed in Chapter 10.

(a) (b) (c)

> /2d

d d

Radius

Usually accepted
values of K

1.00.5 0

> 0.14d

Fig. 5.10 Flow from a reservoir to a sharp edged pipe

5.7 MEASUREMENT OF FLOW RATE THROUGH PIPE

Flow rate through a pipe is usually measured by providing a coaxial area

contraction within the pipe and by recording the pressure drop across the

contraction. Therefore the determination of the flow rate from the measurement of

pressure drop depends on the straight forward application of Bernoulli�s equation.

Three different flow meters operate on this principle. They are (i) Venturimeter,

(ii) Orificemeter and (iii) Flow nozzle.

5.7.1 Venturimeter

A venturimeter is essentially a short pipe (Fig. 5.11) consisting of two conical

parts with a short portion of uniform cross-section in between. This short portion

has the minimum area and is known as the throat. The two conical portions have

the same base diameter, but one is having a shorter length with a larger cone

angle while the other is having a larger length with a smaller cone angle.

Direction of flow

Fig. 5.11 A venturimeter

The venturimeter is always used in a way that the upstream part of the flow

takes place through the short conical portion while the downstream part of the

flow through the long one. This ensures a rapid converging passage and a gradual
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diverging passage in the direction of flow to avoid the loss of energy due to

separation. In course of a flow through the converging part, the velocity increases

in the direction of flow according to the principle of continuity, while the pressure

decreases according to Bernoulli�s theorem. The velocity reaches its maximum

value and pressure reaches its minimum value at the throat. Subsequently, a

decrease in the velocity and an increase in the pressure take place in course of

flow through the divergent part. This typical variation of fluid velocity and

pressure by allowing it to flow through such a constricted convergent-divergent

passage was first demonstrated by an Italian scientist Giovanni Battista Venturi

in 1797.

Figure 5.12 shows that a venturimeter is inserted in an inclined pipe line in a

vertical plane to measure the flow rate through the pipe. Let us consider a steady,

ideal and one dimensional (along the axis of the venturimeter) flow of fluid. Under

this situation, the velocity and pressure at any section will be uniform. Let the

velocity and pressure at the inlet (Sec. 1) are V1 and p1 respectively, while those

at the throat (Sec. 2) are V2 and p2. Now, applying Bernoulli�s equation between

Secs 1 and 2, we get

p

g

V

g

1 1
2

2r
+  + z1 =
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g

V

g

2 2
2

2r
+  + z2 (5.53)

or
V V

g

2
2

1
2

2

-
 =

p p

g

1 2-

r
 + z1 � z2 (5.54)

where r is the density of fluid flowing through the venturimeter. From continuity,

V2 A2 = V1A1 (5.55)

Fig. 5.12 Measurement of flow by a venturimeter

where A2 and A1 are the cross-sectional areas of the venturimeter at its throat and

inlet respectively. With the help of Eq. (5.55), Eq. (5.54) can be written as
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or V2 =
1

1

2

2
2

1
2

1 2

-

-

A

A

g h h( )* * (5.56)

where h*
1 and h*

2 are the piezometric pressure heads at Sec. 1 and Sec. 2

respectively, and are defined as

h*
1 =

p

g

1

r
 + z1 (5.57a)

h*
2 =

p

g

2

r
 + z2 (5.57b)

Hence, the volume flow rate through the pipe is given by

Q = A2V2 = 
A

A

A

g h h2

2
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1
2

1 2

1

2

-

-( )* * (5.58)

If the pressure difference between Secs 1 and 2 is measured by a manometer as

shown in Fig. 5.12, we can write

p1 + rg (z1 � h0) = p2 + rg (z2 � h0 � Dh) + Dh rmg

or (p1 + rg z1) � (p2 + rg z2) = (rm � r)g Dh

or
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F
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I
KJ

1  Dh (5.59)

where rm is the density of the manometric liquid. Equation (5.59) shows that a

manometer always registers a direct reading of the difference in piezometric

pressures. Now, substitution of h*
1 � h*

2 from Eq. (5.59) in Eq. (5.58) gives

Q =
A A

A A
g hm

1 2

1
2

2
2

2 1
-

-( / )r r D (5.60)

If the pipe along with the venturimeter is horizontal, then z1 = z2; and hence

h*
1 � h*

2 becomes h1 � h2, where h1 and h2 are the static pressure heads h
p

g
1

1=
F
HG r

,

h
p

g
2

2=
I
KJr

. The manometric equation [Eq. (5.59)] then becomes

h1 � h2 =
r

r
m -

L
NM

O
QP

1  Dh

Therefore, it is interesting to note that the final expression of flow rate, given

by Eq. (5.60), in terms of manometer deflection Dh, remains the same irrespective

of whether the pipe-line along with the venturimeter connection is horizontal or
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not. Measured values of Dh, the difference in piezometric pressures between

Secs 1 and 2, for a real fluid will always be greater than that assumed in case of

an ideal fluid because of frictional losses in addition to the change in momentum.

Therefore, Eq. (5.60) always overestimates the actual flow rate. In order to take

this into account, a multiplying factor Cd, called the coefficient of discharge, is

incorporated in the Eq. (5.60) as

Qactual = Cd 
A A

A A
g hm

1 2

1
2

2
2

2 1
-

-( / )r r D (5.61)

The coefficient of discharge Cd is always less than unity and is defined as

Cd =
Actual rate of discharge

Theoretical rate of discharge

where, the theoretical discharge rate is predicted by the Eq. (5.60) with the

measured value of Dh, and the actual rate of discharge is the discharge rate

measured in practice. Value of Cd for a venturimeter usually lies between 0.95 to

0.98.

5.7.2 Orificemeter

An orificemeter provides a simpler and cheaper arrangement for the measurement

of flow through a pipe. An orificemeter is essentially a thin circular plate with a

sharp edged concentric circular hole in it. The orifice plate, being fixed at a

section of the pipe, (Fig. 5.13) creates an obstruction to the flow by providing an

opening in the form of an orifice to the flow passage. The area A0 of the orifice is

much smaller than the cross-sectional area of the pipe. The flow from an upstream

section, where it is uniform, adjusts itself in such a way that it contracts until a

section downstream the orifice plate is reached, where the vena contracta is

formed, and then expands to fill the passage of the pipe. One of the pressure

Fig. 5.13 Flow through an orificemeter
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tapings is usually provided at a distance of one diameter upstream the orifice

plate where the flow is almost uniform (Sec. 1�1) and the other at a distance of

half a diameter downstream the orifice plate. Considering the fluid to be ideal and

the downstream pressure taping to be at the vena contracta (Sec. c�c), we can

write, by applying Bernoulli�s theorem between Sec. 1�1 and Sec. c�c,

p

g

V

g
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2

2
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g
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g
c c
*

r
+

2

2
(5.62)

where p*
1 and p*

c are the piezometric pressures at Sec. 1�1 and c�c respectively.

From the equation of continuity,

V1 A1 = Vc Ac (5.63)

where Ac is the area of the vena contracta. With the help of Eq. (5.63), Eq. (5.62)

can be written as,

Vc =
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2
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-

-
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( / )r
(5.64)

Recalling the fact that the measured value of the piezometric pressure drop for a

real fluid is always more due to friction than that assumed in case of an inviscid

flow, a coefficient of velocity C
v
 (always less than 1) has to be introduced to

determine the actual velocity Vc when the pressure drop p*
1 � p*

c in Eq. (5.64) is

substituted by its measured value in terms of the manometer deflection Dh

Hence, Vc = C
v
 

2 1

1 2
1
2

g h

A A

m

c

( / )

( / )

r r -

-

D
(5.65)

where Dh is the difference in liquid levels in the manometer and rm is the density

of the manometric liquid.

Volumetric flow rate Q = Ac Vc (5.66)

If a coefficient of contraction Cc is defined as, Cc = Ac/A0, where A0 is the area of

the orifice, then Eq.(5.66) can be written, with the help of Eq. (5.65), as,

Q = Cc A0 Cv
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with, C = Cd A0 
2

1 2
0
2

1
2

g

C A Ac( / )-
, where (Cd = C

v
 Cc)

The value of C depends upon the ratio of orifice to duct area, and the Reynolds

number of flow. The main job in measuring the flow rate with the help of an

orificemeter, is to find out accurately the value of C at the operating condition.

The downstream manometer connection should strictly be made to the section
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where the vena contracta occurs, but this is not feasible as the vena contracta is

somewhat variable in position and is difficult to realize. In practice, various

positions are used for the manometer connections and C is thereby affected.

Determination of accurate values of C of an orificemeter at different operating

conditions is known as calibration of the orificemeter.

5.7.3 Flow Nozzle

The flow nozzle as shown in Fig. 5.14 is essentially a venturimeter with the

divergent part omitted. Therefore the basic equations for calculation of flow rate

are the same as those for a venturimeter. The dissipation of energy downstream of

the throat due to flow separation is greater than that for a venturimeter. But this

disadvantage is often offset by the lower cost of the nozzle. The downstream

connection of the manometer may not necessarily be at the throat of the nozzle or

at a point sufficiently for from the nozzle. The deviations however are taken care

of in the values of Cd. The coefficient Cd depends on the shape of the nozzle, the

ratio of pipe to nozzle diameter and the Reynolds number of flow.

1 2

Fig. 5.14 A flow nozzle

A comparative picture of the typical values of Cd, accuracy, and the cost of

three flowmeters (venturimeter, orificemeter and flow nozzle) is given below:

Type of Flowmeter Accuracy Cost Loss of Typical Values

Total Head of Cd

Venturimeter High High Low 0.95 to 0.98

Orificemeter Low Low High 0.60 to 0.65

Flow nozzle Intermediate between a 0.70 to 0.80

venturimeter and an

orificemeter

5.7.4 Concept of Static and Stagnation Pressures and
Application of Pitot Tube in Flow Measurements

Static Pressure The thermodynamic or hydrostatic pressure caused by

molecular collisions is known as static pressure in a fluid flow and is usually

referred to as the pressure p. When the fluid is at rest, this pressure p is the same

in all directions and is categorically known as the hydrostatic pressure. For the

flow of a real and Stoksian fluid (the fluid which obeys Stoke�s law as explained
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in Sec. 8.2) the static or thermodynamic pressure becomes equal to the arithmetic

average of the normal stresses at a point. The static pressure is a parameter to

describe the state of a flowing fluid. Let us consider the flow of a fluid through a

closed passage as shown in Fig. 5.15a. If a hole is made at the wall and is

connected to any pressure measuring device, it will then sense the static pressure

at the wall. This type of hole at the wall is known as a wall tap. The fact that a

wall tap actually senses the static pressure can be appreciated by noticing that

there is no component of velocity along the axis of the hole. In most

circumstances, for example, in case of parallel flows, the static pressure at a

cross-section remains the same. The wall tap under this situation registers the

static pressure at that cross-section. In practice, instead of a single wall tap, a

number of taps along the periphery of the wall are made and are mutually

connected by flexible tubes (Fig. 5.15b) in order to register the static pressure

more accurately.

Static probe

Wall tap

(a)

(b)

3
2

1

p

Fig. 5.15 Measurement of static pressure (a) single wall tap

(b) multiple wall tap

Stagnation Pressure The stagnation pressure at a point in a fluid flow is the

pressure which could result if the fluid were brought to rest isentropically. The

word isentropically implies the sense that the entire kinetic energy of a fluid

particle is utilized to increase its pressure only. This is possible only in a

reversible adiabatic process known as isentropic process. Let us consider the

flow of fluid through a closed passage (Fig. 5.16). At Sec. 1�1 let the velocity and
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static pressure of the fluid be uniform. Consider a point A on that section just in

front of which a right angled tube with one end facing the flow and the other end

closed is placed. When equilibrium is attained, the fluid in the tube will be at rest,

and the pressure at any point in the tube including the point B will be more than

that at A where the flow velocity exists. By the application of Bernoulli�s equation

between the points B and A, in consideration of the flow to be inviscid and

incompressible, we have,

p0 = p + 
rV 2

2
(5.68)

Pressure
measuring
device

p < p¢0 0

B
AV

1

1

Fig. 5.16 Measurement of stagnation pressure

where p and V are the pressure and velocity respectively at the point A at

Sec. 1�1, and p0 is the pressure at B which, according to the definition, refers to

the stagnation pressure at point A. It is found from Eq. (5.68) that the stagnation

pressure p0 consists of two terms, the static pressure p and the term rV2/2 which

is known as dynamic pressure. Therefore Eq. (5.68) can be written for a better

understanding as

p0 = p + 1
2

 rV2 (5.69)

Stagnation Static Dynamic
pressure pressure pressure

or V = 2 0( )/p p- r (5.70)

Therefore, it appears from Eq. (5.70), that from a measurement of both static and

stagnation pressure in a flowing fluid, the velocity of flow can be determined. But

it is difficult to measure the stagnation pressure in practice for a real fluid due to

friction. The pressure p¢0 in the stagnation tube indicated by any pressure

measuring device (Fig. 5.16) will always be less than p0, since a part of the kinetic

energy will be converted into intermolecular energy due to fluid friction. This is
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taken care of by an empirical factor C in determining the velocity from Eq. (5.70)

as

V = C 2 0( )/p p- r (5.71)

Pitot Tube for Flow Measurement The principle of flow measurement by Pitot

tube was adopted first by a French Scientist Henri Pitot in 1732 for measuring

velocities in the river. A right angled glass tube, large enough for capillary effects

to be negligible, is used for the purpose. One end of the tube faces the flow while

the other end is open to the atmosphere as shown in Fig. 5.17a. The liquid flows

up the tube and when equilibrium is attained, the liquid reaches a height above the

free surface of the water stream. Since the static pressure, under this situation, is

equal to the hydrostatic pressure due to its depth below the free surface, the

difference in level between the liquid in the glass tube and the free surface

becomes the measure of dynamic pressure. Therefore, we can write, neglecting

friction,

p0 � p =
1
2

 rV
2
 = h r g

V

A
V

h

(a) (b)

p g V g/ + /2r 2

p g/r

V g2/2

Fig. 5.17 Simple pitot tube (a) for measuring the stagnation pressure

(b) with static and stagnation tubes

where p0, p and V are the stagnation pressure, static pressure and velocity

respectively at point A (Fig. 5.17a).

or V = 2gh

Such a tube is known as Pitot tube and provides one of the most accurate means of

measuring the fluid velocity. For an open stream of liquid with a free surface, this

single tube is sufficient to determine the velocity. But for a fluid flowing through

a closed duct, the Pitot tube measures only the stagnation pressure and so the

static pressure must be measured separately. Measurement of static pressure in

this case is made at the boundary of the wall (Fig. 5.17b). The axis of the tube

measuring the static pressure must be perpendicular to the boundary and free

from burrs, so that the boundary is smooth and hence the streamlines adjacent to

it are not curved. This is done to sense the static pressure only without any part of
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the dynamic pressure. A Pitot tube is also inserted as shown (Fig. 5.17b) to sense

the stagnation pressure. The ends of the Pitot tube, measuring the stagnation

pressure, and the piezometric tube, measuring the static pressure, may be

connected to a suitable differential manometer for the determination of flow

velocity and hence the flow rate.

Pitot Static Tube The tubes recording static pressure and the stagnation pressure

(Fig. 5.17b) are usually combined into one instrument known as Pitot static tube

(Fig. 5.18). The tube for sensing the static pressure is known as static tube which

surrounds the pitot tube that measures the stagnation pressure. Two or more holes

are drilled radially through the outer wall of the static tube into annular space.

The position of these static holes is important. Downstream of the nose N, the

flow is accelerated somewhat with consequent reduction in static pressure. But in

front of the supporting stem, there is a reduction in velocity and increase in

pressure. The static holes should therefore be at the position where the two

opposing effects are counterbalanced and the reading corresponds to the

undisturbed static pressure. Finally the flow velocity is given by

V = C 2D p /r (5.72)

where Dp is the difference between stagnation and static pressures. The factor C

takes care of the non-idealities, due to friction, in converting the dynamic head

into pressure head and depends, to a large extent, on the geometry of the pitot

tube. The value of C is usually determined from calibration test of the pitot tube.

Fig. 5.18 Pitot static tube

5.8 FLOW THROUGH ORIFICES AND MOUTHPIECES

An orifice is a small aperture through which the fluid passes. The thickness of an

orifice in the direction of flow is very small in comparison to its other dimensions.

If a tank containing a liquid has a hole made on the side or base through which

liquid flows, them such a hole may be termed as an orifice. The rate of flow of the

liquid through such an orifice at a given time will depend partly on the shape, size

and form of the orifice. An orifice usually has a sharp edge so that there is

minimum contact with the fluid and consequently minimum frictional resistance

at the sides of the orifice. If a sharp edge is not provided, the flow depends on the

thickness of the orifice and the roughness of its boundary surface too.
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5.8.1 Flow from an Orifice at the Side of a Tank under a
Constant Head

Let us consider a tank containing a liquid and with an orifice at its side wall as

shown in Fig. 5.19. The orifice has a sharp edge with the bevelled side facing

downstream. Let the height of the free surface of liquid above the centre line of

the orifice be kept fixed by some adjustable arrangements of inflow to the tank.

The liquid issues from the orifice as a free jet under the influence of gravity only.

The streamlines approaching the orifice converge towards it. Since an

instantaneous change of direction is not possible, the streamlines continue to

converge beyond the orifice until they become parallel at the Sec. c�c

(Fig. 5.19). For an ideal fluid, streamlines will strictly be parallel at an infinite

distance, but however fluid friction in practice produce parallel flow at only a

short distance from the orifice. The area of the jet at the Sec. c�c is lower than the

area of the orifice. The Sec. c�c is known as the vena contracta. The contraction

of the jet can be attributed to the action of a lateral force on the jet due to a change

h

z1 c
(2)

(1)

c

Fig. 5.19 Flow from a sharp

edged orifice

in the direction of flow velocity when

the fluid approaches the orifice. Since

the streamlines become parallel at vena

contracta, the pressure at this section is

assumed to be uniform. If the pressure

difference due to surface tension is

neglected, the pressure in the jet at vena

contracta becomes equal to that of the

ambience surrounding the jet. Con-

sidering the flow to be steady and

frictional effects to be negligible, we

can write by the application of

Bernoulli�s equation between two

points 1 and 2 on a particular stream-

line with point 2 being at vena

contracta (Fig 5.19).

p1/rg + V
2
1/2g + z1 = patm/rg + V

2
2/2g + 0 (5.73)

The horizontal plane through the centre of the orifice has been taken as datum

level for determining the potential head. If the area of the tank is large enough as

compared to that of the orifice, the velocity at point 1 becomes negligibly small

and pressure p1 equals to the hydrostatic pressure at that point as p1 = patm +

rg (h � z1).

Therefore, Eq. (5.73) becomes

patm/rg + (h � z1) + 0 + z1 = patm/rg + V2
2/2g (5.74)

or V2 = 2 gh (5.75)

If the orifice is small in comparison to h, the velocity of the jet is constant across

the vena contracta. The Eq. (5.75) states that the velocity with which a jet of

liquid escapes from a small orifice is proportional to the square root of the head
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above the orifice, and is known as Torricelli�s formula. The velocity V2 in

Eq. (5.75) represents the ideal velocity since the frictional effects were neglected

in the derivation. Therefore, a multiplying factor C
v
, known as coefficient of

velocity is introduced to determine the actual velocity as

V2 actual = C
v
 2 gh

Since the role of friction is to reduce the velocity, C
v
 is always less than unity.

The rate of discharge through the orifice can then be written as,

Q = ac Cv
 2 gh (5.76)

where ac is the cross-sectional area of the jet at vena contracta. Defining a

coefficient of contraction Cc as the ratio of the area of vena contracta to the area

of orifice, Eq. (5.76) can be written as

Q = Cc Cv
 a0 2 gh (5.77)

where, a0 is the cross-sectional area of the orifice. The product of Cc and C
v
 is

written as Cd and is termed as coefficient of discharge. Therefore,

Q = Cd a0 2 gh

or Cd =
Q

a gh0 2

=
Actual discharge
Ideal discharge

5.8.2 Determination of Coefficient of Velocity Cv, Coefficient
of Contraction Cc and Coefficient of Discharge Cd

All the coefficients C
v
, Cc and Cd of an orifice depend on the shape and size of the

orifice. The values of C
v
, Cc and Cd are determined experimentally as described

below:

Consider the tank in Fig. 5.20. Let H be the height of the liquid, maintained

constant, above the centre line of the orifice. The Sec. c�c is at vena contracta.

The jet of liquid coming out of the orifice is acted upon by gravity only with a

downward acceleration of g. Therefore, the horizontal component of velocity u of

the jet remains constant. Let P be a point on the jet such that x and z are the

horizontal and vertical coordinates respectively of P from the vena contracta c�c

as shown in Fig. 5.20. Considering the flow of a fluid particle from c�c to P along

the jet, we can write,

x = ut

and z = gt2/2

(where t is the time taken by the fluid particle to move from c�c to P).

Eliminating t from the two equations, we have

x

u

2

2  =
2z
g
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H

c x

z
P

c

Fig. 5.20 Trajectory of a liquid jet discharged from a sharp edged orifice

or u
2
 =

gx
z

2

2
(5.78)

But C
v
 =

u

gH2

Substituting for u from Eq. (5.78)

C
v
 =

x

zH4
(5.79)

Therefore, the coefficient of velocity C
v
 of an orifice under a given value of H

can be found from Eq. (5.79) with the measured values of x and z. The coefficient

of discharge is determined by measuring the actual quantity of liquid discharged

through the orifice in a given time under a constant head, and then dividing this

quantity by the theoretical discharge. The theoretical discharge rate is calculated

from known values of liquid head H and orifice area a0, as Qtheo = a0 2gH . The

coefficient of contraction Cc is usually found out by dividing the value of Cd by

the measured value of C
v
. The coefficient of discharge varies with the head �H�

and the type of orifice. For a sharp edged orifice, typical values of Cd lie between

0.60 to 0.65, while the values of C
v
 vary between 0.97 to 0.99.

5.8.3 Large Vertical Orifices

H1 h

b

dh
H2

Fig. 5.21 Large vertical orifice

If a vertical orifice is large so that its

height is comparable to the height of

the liquid in the tank, then the

variation in liquid head at different

heights of the orifice will be consi-

derable. To take this into account in

calculating the discharge rate, the

geometrical shape of the orifice has to

be known.

Consider a large orifice with a

rectangular cross-section as shown in

Fig. 5.21. Let the heights of the liquid
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level be H1 and H2 above the top and the lower edges of the orifice respectively.

Let b be the breadth of the orifice. Consider, at a depth h from the liquid level, a

horizontal strip of the orifice of thickness dh. The velocity of liquid coming out

from this strip will be equal to 2gH . Hence, the rate of discharge through the

elemental strip

= Cd ¥ area ¥ velocity = Cd ¥ b dh ¥ 2gh

Therefore, the rate of discharge through the entire orifice

=

H

H

1

2

z Cd ¥ b dh ¥ 2gh

= Cd b 2

1

2

g

H

H

z h1/2 dh

= 2
3

 Cdb 2g  (H2
3/2 � H1

3/2)

Here Cd is assumed to be constant throughout the orifice.

5.8.4 Drowned or Submerged Orifice

A drowned or submerged orifice is one which does not discharge into open

atmosphere, but discharges into liquid of the same kind. The orifice illustrated in

h2

h1

z1

(1)

(2)

Fig. 5.22 Drowned orifice

Fig. 5.22 is an example of a submerged

orifice. It discharges liquid from one side of a

tank to another side, where, the heights of the

liquid are maintained constant on both the

sides. The formation of vena contracta takes

place but the pressure there corresponds to the

head h2 (Fig. 5.22). Application of Ber-

noulli�s equation between point 1 and 2 on a

streamline (Fig. 5.22) gives,

p1/rg + z1 + V
2
1/2g = p2/rg + 0 + V

2
2/2g

or (h1 � z1) + z1 + 0 = h2 + V2
2/2g

(since V1 << V2)

or V2 = 2 1 2g h h( )- (5.80)

In other words, Torricelli�s formula as expressed by equation (5.75) is still

applicable provided that h refers to the difference of head across the orifice. For a

large submerged orifice, the head causing flow through it at any height remains

same as (h1 � h2), and hence the Eq. (5.80) is valid. This is because the variations

in head with the orifice height from both the sides cancel each other.
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5.8.5 Time of Emptying Tank

Let us consider a tank of uniform cross-sectional area A (Fig. 5.23) to contain a

liquid of height H1 from the base. Let the liquid be discharged through an orifice

H1

A

dh

h

a

v

H2

Fig. 5.23 Discharge from a tank of

uniform area

of area a in the base of the tank and the height

of the liquid in the tank fall accordingly. If at

any instant, h is the height of the liquid level

which falls by an amount dh during an

infinitesimal time interval dt, then from

continuity, (the volume displaced by liquid

level in the tank equals to volumetric flow

through the orifice), we can write,

� A dh = Cd a 2gh  dt

The minus sign is introduced because the

height h decreases with time.

Therefore, dt =
- A h

C a ghd

d

2
(5.81)

If T is the time taken for the liquid level to fall from a height H1 to a height H2,

then,

0

T

z dt =
- zA

C a gd H

H

2
1

2

h�1/2 dh

From which,

T =
2

2

A

C a gd

 (H1
1/2

 � H2
1/2

) (5.82)

If the tank is completely emptied, H2 = 0. Then,

T =
2

2

A

C a gd

H1
1/2 (5.83)

Time of Emptying Tank with Nonuniform Cross-section In the foregoing

problem, we have considered the cross-sectional area A of the tank to be uniform

and therefore while integrating the right hand side of Eq. (5.81) with respect to h,

the area A was considered to be constant. For a tank where A varies with height,

a functional relationship between A and h has to be found out from the geometry

of the tank so that the relationship can be introduced in the Eq. (5.81) for its

H1

H2

dh h

x

a

v

R

Fig. 5.24 Discharge from a

hemispherical vessel

integration to determine the time of em-

ptying. An example to determine the time

of emptying a hemispherical vessel is

given below:

Let R be the radius of a hemispherical

vessel as shown in Fig. 5.24, and let the

liquid level fall from H1 to H2 in time T

due to the discharge from an orifice at the
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bottom of the vessel. Consider the instant when the liquid level is at a height h

from the bottom of the vessel, and the radius of the vessel�s cross-section at this

level be x. If dh is the decrease in the liquid level in time dt, then from continuity,

� Ah dh = Cd a 2gh  dt

or dt =
- A h

C a gh

h

d

d

2
(5.84)

where, Ah is the cross-sectional area of the vessel at height h

Here, Ah = p x2

From the geometry of the vessel,

x
2
 = R

2
 � (R � h)

2

= 2Rh � h2

Therefore, Eq. (5.84) becomes

dt =
- -p ( )2

2

2Rh h

C a ghd

 dh

or

0

T

z dt =
- zp

C a gd H

H

2
1

2

(2Rh
1/2

 � h
3/2

) dh

or T =
-

- - -
2

2

2
3

1 51
3 2

2
3 2

1
5 2

2
5 2p

C a g
R H H H H

d

/ / / //d i d i (5.85)

If the vessel is initially full and is completely emptied afterwards, then, H1 = R

and H2 = 0. Equation (5.85) then becomes

T =
2

2

2
3

1
5

5 2 5 2p

C a g
R R

d

/ /
-e j

=
14

15 2

5 2p R

C a gd

/

(5.86)

Here, T is the time of emptying the vessel.

5.8.6 Time of Flow from One Tank to Another

Let us consider a liquid flowing from a tank of area A1 to another tank of area A2

through an orifice between the tanks as shown in the Fig. 5.25. Under this

situation, the liquid level falls in one tank while it rises in the other one. The

orifice will be drowned. The head causing flow at any instant of time will be

equal to the difference between the instantaneous liquid levels in the tanks. At a

certain instant, let this difference in liquid levels between the tanks be h, and in

time dt, the small quantity of fluid that passes through orifice causes the liquid

level in tank A1 to fall by an amount dH. The liquid level in tank A2 will then rise

by an amount dH (A1/A2).
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A1

A1

A2

A2

hdH

dH

a
v

Fig. 5.25 Flow of liquid from one tank to another

Hence, the difference in levels after a time dt becomes

h � dH (1 + A1/A2)

Therefore, the change in head causing flow

dh = h � [h � dH (1 + A1/A2)]

= dH (1 + A1/A2) (5.87)

From principle of continuity in tank A1, we can write

� A1dH = Cd a 2gh  dt

Therefore, dt =
- A H

C a ghd

1

2

d
(5.88)

Substituting for dH from Eq. (5.87) in Eq. (5.88), we have

dt =
-

+

A h

C a A A ghd

1

1 21 2

d

( / )
(5.89)

If T is the time taken to bring the difference in levels between the tanks from H1 to

H2, then,

0

T

z dt =
-

+ zA

C a A A gd H

H

1

1 21 2
1

2

( / )
h�1/2 dh

or T =
2

1 2

1 1
1 2

2
1 2

1 2

A H H

C a A A gd

( )

( / )

/ /
-

+
(5.90)

The flow of liquid from one tank to the other will stop automatically when the

head causing the flow, i.e. the difference in liquid levels between the tanks will

become zero. If T1 is the time taken to make this equalization of the liquid levels,

then from Eq. (5.90),

T1 =
2

1 2

1 1
1 2

1 2

A H

C a A A gd

/

( / )+
(5.91)

where H1 represents the initial value of the difference in the liquid levels.
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5.8.7 External Mouthpieces

The discharge through an orifice may be increased by fitting a short length of pipe

to the outside. This is because, the vena contracta gets the opportunity to expand

and fill the pipe. Therefore, the coefficient of contraction becomes unity. The

increase in the value of Cc thus increases the discharge rate despite a little

decrease in the value of C
v
 due to frictional losses in the pipe.

H

z1

1

21 3

c

Vc
V

c

Fig. 5.26 Flow through an

external mouthpiece

Consider the tank in Fig. 5.26. A

cylindrical piece of pipe is attached to

the orifice towards the outside of the

tank. This pipe is known as cylind-

rical mouthpiece.

Let a = cross-sectional area of the
mouthpiece

ac = cross-sectional area of flow
at vena contracta

V = velocity at outlet of pipe

Vc = velocity at vena contracta

Applying Bernoulli�s equation bet-

ween the points 1 and 3 (point 3 being

at the plane of discharge) on a

streamline, we get

patm/rg + (H � z1) + 0 + z1 = patm/rg + V2/2g + 0 + hL (5.92)

(where patm is the atmospheric pressure. Velocity in the tank is considered to be

negligible as compared to that in the pipe) hL is the loss of head. If friction is

neglected because of the short length of the pipe, hL represents only the loss of

head due to contraction. Hence,

hL =
( )V V

g
c -

2

2

Again from continuity,

ac Vc = aV

or V = Cc Vc

where, Cc (the coefficient of contraction) = ac/a

Therefore, hL = V
g

2

2
 (1/Cc � 1)2

Hence Eq. (5.92) becomes,

H = V
g

2

2
 [1 + (1/Cc � 1)2] = K V

g

2

2

where K = [1 + (1/Cc � 1)2]

The coefficient of velocity C
v
 can be written as,

C
v
 = V

gH2
 = 

2

2

gH K

gH

/
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or C
v
 = 1/ K

Since there is no contraction of flow area at discharge, the coefficient of discharge

Cd = C
v
 = 1/ K .

On the other hand, an orifice of area a, in absence of friction, will give Cd = Cc.

It can be proved that for all values of Cc less than unity, 1/ K  is always greater

than Cc, and hence, the coefficient of discharge of an external mouthpiece is

greater than that of an orifice. Assuming a typical value of Cc = 0.62.

K = [1 + (1/0.62 � 1)
2
] = 1.375

Hence (Cd)mouthpiece = 1/ 1 375.  = 0.855

while (Cd)orifice = Cc = 0.62

In order to find the pressure at vena contracta, we apply the Bernoulli�s equation

between points 1 and 2 (point 2 being at vena contracta, Fig. 5.26) on a streamline

as,

patm/rg + (H � z1) + 0 + z1 = pc/rg + V2
c/2g + 0 (5.93)

or pc/rg = patm/rg + H � V2
c/2g

but, H = KV2/2g

and Vc = V/Cc

Therefore, pc/rg = patm/rg + KV
2
/2g � (1/C

2
c)V

2
/2g

= patm/rg � (1/C2
c � K) V2/2g

It was stated earlier that 1/C2
c is always greater than K for all values of Cc < 1.

Hence, the pressure at vena contracta is always lower than the atmospheric

pressure. When Cc = 0.62,

K = (1/0.62 � 1)2 + 1 = 1.375

Then, pc/rg = patm/rg � [1/(0.62)
2
 � 1.375] V

2
/2g

= patm/rg � 1.225 V2/2g

H

c

Vc
V

c

1

3
2

z1

Fig. 5.27 Flow through a convergent

divergent mouthpiece

Therefore, the influence of the mouth-

piece on the rate of discharge can also

be looked at from an angle of decrease

in pressure at the vena contracta in

increasing the effective head causing

flow.

Convergent Divergent Mouthpiece

The losses due to contraction in a

mouthpiece may be considerably red-

uced if the mouthpiece is convergent up

to the vena contracta and becomes

divergent afterwards. In this case, the

geometry of mouthpiece is made almost

to the shape of the jet. If frictional

losses are neglected, the coefficient of
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discharge for this type of mouthpiece becomes unity. Such a mouthpiece is shown

in Fig. 5.27. Applying the Bernoulli�s equation between points 1 and 2 (point 2

being at vena contracta cc, Fig. 5.27), we have,

patm/rg + (H � z1) + 0 + z1

= pc/rg + V2
c/2g + 0

Hence, V2
c/2g = patm/rg + H � pc/rg (5.94)

Again, application of Bernoulli�s equation between points 1 and 3 (point 3 being

on the plane of discharge, Fig. 5.27) gives,

patm/rg + (H � z1) + 0 + z1 = patm/rg + V2/2g + 0

or V2/2g = H (5.95)

The loss of head due to contraction does not take place under this situation. From

Eqs (5.94) and (5.95),

V

V
c  = 1 +

-H H

H
a c (5.96)

where, Ha = pa tm/rg (the atmospheric pressure head)

Hc = pc /rg (the pressure head at vena contracta cc)

From continuity, Vc ac = Va

Therefore, Eq. (5.96) becomes,

a
ac

 = 1 +
-H H

H
a c (5.97)

The maximum ratio of a and ac to avoid separation is given by

(a/ac)max = 1 +
-H H

H
a c minimum

(5.98)

where, Hc minimum is the minimum head at cc to avoid cavitation.

Summary

∑ The total mechanical energy of a fluid element in an inviscid and

irrotational flow remains the same everywhere in the flow field, while it

does so only along a streamline in an inviscid but rotational flow.

∑ Flows having only tangential velocities with streamlines as concentric

circles are known as plane circular vortex flows. A free vortex flow is an

irrotational vortex flow where the total mechanical energy of the fluid

elements remains same in the entire flow field and the tangential velocity

is inversely proportional to the radius of curvature. A forced vortex flow is

a rotational vortex flow where the tangential velocity is directly

proportional to the radius of curvature. Pressure in vortex flows increases

with an increase in the radius of curvature. Spiral vortex flows are
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obtained as a result of superimposition of a plane circular vortex flow with

a purely radial flow.

∑ Fluids moving with a uniform velocity or uniform acceleration develop no

shear stress in the flow field. The weight of the fluid particle is balanced

by the pressure force and a constant inertia force (zero in the case of

uniform velocity). The pressure distribution equations under the situations

are similar to those in hydrostatics in a sense that the pressure gradients in

space coordinates are constants. The fluids in such motions are said to be

in relative equilibrium.

∑ The flow through a siphon takes place because of a difference in potential

head between the entrance and exit of the tube. The maximum height of a

siphon tube above the liquid level at atmospheric pressure is limited by the

minimum pressure inside the tube which is never allowed to fall below the

vapour pressure of the working liquid at the existing temperature, to avoid

vapour locking in the flow.

∑ Apart from losses due to friction, the loss of mechanical energy is incurred,

in course of flow through a closed duct, when the path of the fluid stream

is suddenly changed due to any abrupt change in the geometry of the duct.

In long ducts, these losses are very small as compared to the friction loss

and hence they are termed as minor losses. These include (i) losses due to

an abrupt enlargement of the cross-section of a duct, (ii) losses due to an

abrupt contraction of the cross-section of a duct, (iii) losses due to the exit

from a small pipe or duct to a large reservoir, and (iv) losses due to the

entrance from a large reservoir to a small pipe or duct.

∑ Venturimeter, Orificemeter and Flow nozzle are the typical flow meters

which measure the rate of flow of a fluid through a pipe by providing a

coaxial area contraction within the pipe and thus creating a pressure drop

across the contraction. The flow rate is measured by determining the

velocity of flow at the constricted section in terms of the pressure drop by

the application of Bernoulli�s equation. The pressure drop is recorded

experimentally. A venturimeter is a short pipe consisting of two conical

parts with a sort uniform cross-section, in between, known as throat. An

orificementer is a thin circular plate with a sharp edged concentric circular

hole in it. A flow nozzle is a short conical tube providing only a convergent

passage to the flow. In a comparison between the three flow meters, a

venturimeter is the most accurate but the most expensive, while the

orificemeter is the least expensive but the least accurate. Flow nozzle falls

in between these two.

∑ The static pressure in a fluid is the thermodynamic pressure defining the

state of fluid and becomes equal to the arithmetic average of the normal

stresses at a point in case of a real and Stoksian fluid. The stagnation

pressure at a point in a fluid flow is the pressure which could result if the

fluid were brought to rest isentropically. The difference between the

stagnation and static, pressure is the pressure equivalence of the velocity

head ( )1
2

2rV  and is known as dynamic pressure. An instrument which
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contains tubes to record the stagnation and static pressures in a flow to

finally determine the flow velocity and flow rate is known as a Pitot static

tube.

∑ An orifice is a small aperture through which the fluid passes. The liquid

from a tank is usually discharged through a small orifice at its side. A

drowned or submerged orifice is one which does not discharge into open

atmosphere, but discharges into liquid of the same kind. The discharge

through an orifice is increased by fitting a short length of pipe to the

outside known as external mouthpiece. The discharge rate is increased due

to a decrease in the pressure at vena contracta within the mouthpiece

resulting in an increase in the effective head causing the flow.

Solved Examples

Example 5.1 Determine the equ-

ation of free surface of water in a tank

4 m long, moving with a constant ac-

celeration of 0.5 g along the x-axis as

shown in Fig. 5.28.

Solution Let us consider the pressure

p at a point to be a function of x and z.

Hence, dp =
∂
∂

p

x
dx + 

∂
∂

p

z
dz (5.99)

From Eqs (5.34a) and (5.34c),

∂p/∂x = � r ax

∂p/∂z = � r (g + az)

where ax and az are the accelerations in

x and z directions respectively

4 m

ax = 0.5 g

z

x

Fig. 5.28 Liquid in a tank under

uniform acceleration

Here, ax = 0.5 g

and az = 0

Therefore, Eq. (5.99) becomes,

dp = � r (0.5g dx + g dz)

Integrating the equation, we obtain

p = � rg (0.5x + z) + c (5.100)

where, c is a constant. Considering the origin of the coordinate axes at free surface, we

have

p = patm (atmospheric pressure), at x = 0 and z = 0

Therefore, Eq. (5.100) becomes

� rg (0.5x + z) = p � patm (5.101)

The equation of free surface can be obtained by putting p = patm in Eq. (5.101) as,

� rg (0.5x + z) = 0

or z + 0.5x = 0
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Example 5.2 Water flows through a right-angled bend (Fig. 5.29) formed by two

concentric circular arcs in a horizontal plane with the inner and outer radii of 0.15 m and

0.45 m, respectively. The centre-line velocity is 3 m/s. Assuming a two-dimensional free

vortex flow, determine (a) the tangential and normal accelerations at the inner and outer

walls of the bend (b) the pressure gradients normal to the streamline at the inner and

outer walls of the bend, and (c) the pressure difference between the inner and outer walls

of the bend.

r
1 =

0.15
m

r2 = 0.45 m

Fig. 5.29 Flow of water through a right-angled bend

Solution Here the streamlines are concentric circular arcs, and hence the velocity of

fluid is in the tangential direction only. Moreover, the velocity field satisfies the equation

of free vortex as

Vq = c/r

where, c is a constant.

We have Vq = 3 m/s at r = 
0 15 0 45

2
. .+

 = 0.3 m

Hence, c = 3 ¥ 0.3 = 0.9 m2/s

Therefore, velocities at the inner and outer radii are

(Vq)at r = r1
 =

0 9
0 15

.
.

 = 6 m/s

(Vq)at r = r2
 =

0 9
0 45

.
.

 = 2 m/s

(a) The accelerations along the streamline and normal to it can be written as as

(acceleration along the streamline) = Vq 
∂
∂
V

r
q

q
 = 0

an (acceleration normal to streamline) = 
-V

r
q
2

Therefore, (an)r = r1
 =

- ¥6 6
0 15.

 = � 240 m/s2

(an)r = r2
 =

- ¥2 2
0 45.

 = � 8.89 m/s
2
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Minus sign indicates that the accelerations are radially inwards. (b) The pressure gradient

normal to the streamline is given by Eq. (5.22) as

d
d

p
r

 = r qV

r

2

Therefore,
d
d

at 

p
r

r r

F
H

I
K

= 1

 = 1000 ¥ 
6 6
0 15

¥

◊
 = 240 ¥ 103 N/m2 = 240 kN/m2

and
d
d

at 

p
r

r r

F
H

I
K

= 2

 = 1000 ¥ 
2 2
0 45

¥

.
 = 8.89 ¥ 10

3
 N/m

2
 = 8.89 kN/m

2

(c) At any radius r,

d
d

p
r

 = r qV

r

2

Hence,
d
d

p
r

r

r

1

2

z  dr = r
c

r
r

r
2

3

1

2

z  dr

or p2 � p1 =
r
2

 (c
2
/r

2
1 � c

2
/r

2
2) = 

r
2

 (V
2
q1

 � V
2
q2

)

= 1000
2

 ¥ (36 � 4) N/m
2
 = 16 kN/m

2

where p1 and p2 are the pressures at inner and outer walls of the bend respectively.

Example 5.3 A hollow cylinder of 0.6 m diameter, open at the top, contains some

liquid and spins about its vertical axis, producing a forced vortex motion.

(a) Calculate the height of the vessel so that the liquid just reaches the top of the vessel

and begins to uncover the base at 100 rpm.

(b) If the speed is now increased to 130 rpm, what area of the base will be uncovered?

Solution (a) The situation when the liquid just reaches the top of the vessel and begins

to uncover the base is shown in Fig. 5.30a. Let H be the height of the cylinder. The

difference in pressure between the point 1 (at the centre), and 2 (at the outer wall), at the

bottom surface of the vessel can be found from Eq. (5.22) as,

d
d

p
r

1

2

z  dr = r qV

r

R 2

1

z  dr

=
r
2

 (w2 r2)R
0

or p2 � p1 = r
w2 2

2

R
(5.102)

where R is the radius and w is the angular velocity of the vessel.

Since point 1 is on the free surface (Fig. 5.30a) and point 2 is at a depth H below the free

surface,

p1 = patm (atmospheric pressure)

p2 = patm + rgH

Substituting the values of p1 and p2 in Eq. (5.102), we get,
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H =
w 2 2

2

R
g

=
2 100

60
0 3

2 9 81

2 2p ¥F
H

I
K ¥

( . )
.

 = 0.503 m

H

R1

w = 100
rpm

w = 130
rpm

1 2 2 1

The situation when liquid
begins to uncover the base

The situation when liquid
uncovers the base

(a) (b)

Fig. 5.30 Liquid under uniform rotation in an open vessel

(b) When the speed is increased beyond 100 rpm, the maximum centrifugal head

w2R2/2g will be more than the maximum static pressure head rgH, and hence the liquid

being detached from the centre will uncover the base as shown in Fig. 5.30b. Let R1 be

the radius where the free surface meets the base; then the pressure difference between

points 1 and 2 (Fig. 5.30b) can be written as

p2 � p1 =
rw2

2
 (R2 � R2

1)

but, p2 � p1 = rgH

Hence, rgH =
rw2

2
 (R2 � R2

1)

or R2
1 = R2 � 

2
2

gH

w

= (0.3)2 � 
2 9 81 0 503

2 130 60
2

¥ ¥

¥

. .

( / )p
 = 0.037 m2

Therefore, uncovered area at the base = p R2
1 = p (0.037) = 0.116 m2.

Example 5.4 A closed cylinder 0.4 m in diameter and 0.4 m in height is filled with

oil of specific gravity 0.80. If the cylinder is rotated about its vertical axis at a speed of

200 rpm, calculate the thrust of oil on top and bottom covers of the cylinder.
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A B
O

200 rpm

H = 0.4 m

R = 0.2 m

dr

r

Fig. 5.31 A rotating closed cylinder filled with oil

Solution In the top plane AB of the cylinder (Fig. 5.31), pressure head at any radial

distance r is given by

p/rg = w2
r

2
/2g

where, w is the angular velocity of the cylinder.

Considering a thin annular ring of radius r and thickness dr (Fig. 5.31), and summing

up the forces on all such elemental rings, we have

The thrust on top plane

FT =

0

R

z p2p r dr

= pr w2 

0

R

z r3 dr

=
p rw 2 4

4
R

Here,

w =
2 200

60
p ¥

 = 20.94 rad/sec

R (the radius of the cylinder) = 0.2 m

Therefore, FT =
p ¥ ¥ ¥0 8 10 20 94 0 2

4

3 2 4. ( . ) ( . )

= 440.81 N
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The radial distribution of pressure due to rotation will remain same for both the top and

bottom covers. But the bottom cover experiences an additional hydrostatic thrust due to

the weight of liquid above it.

Hence, the thrust at the bottom cover

F = FT + rg H ¥ p R2

= 440.81 + 0.8 ¥ 10
3
 ¥ 9.81 ¥ 0.4 ¥ p ¥ (0.2)

2

= 835.29 N

Example 5.5 At a radial location r1 in a horizontal plane, the velocity of a free

vortex becomes the same as that of a forced vortex. If the pressure difference between r1

and r2 (r2 being another radial location in the same horizontal plane with r2 > r1) in the

forced vortex becomes twice that in the free vortex, determine r2 in terms of r1.

Solution At any radius r, the tangential velocities for the two vortices are defined as

Vq free vortex = c/r (where c is a constant throughout the flow)

Vq forced vortex = w r (where w is the angular velocity)

From the equality of two velocities at r = r1,

c/r1 = w r1

or c/w = r
2
1 (5.103)

Pressure difference between the points r = r1 and r = r2 for the two vortices can be written

as

(p2 � p1)free vortex = r c
2

2
 (1/r

2
1 � 1/r

2
2)

(p2 � p1)forced vortex = r w2

2
 (r2

2 � r2
1)

From the condition given in the problem,

r w2

2
 (r2

2 � r2
1) = 2

2

2

r c  (1/r2
1 � 1/r2

2)

or r
2
1 r

2
2 = 2c

2
/w2

(5.104)

Finally, from Eq. (5.103) and (5.104), we have

r
2
2/r

2
1 = 2

or r2 = 2  r1

Example 5.6 The velocity of air at the outer edge of a tornado, where the pressure is

750 mm of Hg and diameter 30 metres, is 12 m/s. Calculate the velocity and pressure of

air at a radius of 2 metres from its axis. Consider the density of air to be constant and

equals to 1.2 kg/m3
 (specific gravity of mercury = 13.6).

Solution The flow field in a tornado (except near the centre) is simulated by a free

vortex motion. Therefore, the velocity at a radius of 2 m is given by

(Vq)at r = 2m = (Vq)at r = 15 m ¥ 15/2 = 12 ¥ 15/2 = 90 m/s

Let p0 and p are the absolute pressures at the outer edge of the tornado and at a radius of

2 m from its axis respectively. Then, for a free vortex,

p

g
p
g

0

r r
-  =

( ) ( )90 12
2

2 2
-

g
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= 405.50 m of air

where r is the density of air

It is given that

p

g
0

r
 =

750 10 13 6 10
1 2

3 3
¥ ¥ ¥

- .
.

= 8500 m of air

Hence, p/rg = 8500 � 405.50

= 8094.5 m of air

= 714.22 mm of Hg

Example 5.7 A tube is used as a siphon to discharge an oil of specific gravity 0.8

from a large open vessel into a drain at atmospheric pressure as shown in Fig. 5.32.

Calculate

(a) the velocity of oil through the siphon

(b) the pressure at points A and B

(c) the pressure at the highest point C

(d) the maximum height of C that can be accommodated above the level in the vessel

(e) the maximum vertical depth of the right limb of the siphon

(Take the vapour pressure of liquid at the working temperature to be 29.5 kPa and the

atmospheric pressure as 101 kPa. Neglect friction)

D

C

1.5 m

1.5 m

4 m

h

H

1

A

B

Fig. 5.32 A siphon discharging oil from a vessel to atmosphere

Solution (a) Applying the Bernoulli�s equation between points 1 and D we get,

p

g

V

g
atm

r
+ 1

2

2
 + 5.5 =

p

g

V

g
D D

r
+

2

2
 + 0 (5.105)

The horizontal plane through D is taken as datum. Since the siphon discharges into

atmosphere, the pressure at the exit is atmospheric.



224 Introduction to Fluid Mechanics and Fluid Machines

Hence, pD = patm

Again, V1 << VD, since the area of tank is much larger compared to that of the tube.

Therefore, Eq. (5.105) can be written as,

p

g
atm

r
 + 0 + 5.5 =

p
g

V
g
Datm

r
+

2

2

or VD = 2 9 81 5 5¥ ¥. .  = 10.39 m/s

If the cross-sectional area of the siphon tube is uniform, the velocity of oil through the

siphon will be uniform and equals to 10.39 m/s.

(b) The points A and B are on the same horizontal plane, while point A is outside the tube,

B is inside it.

The pressure at A is pA = patm + 1.5 ¥ 0.8 ¥ 103 ¥ 9.81 Pa

= (101 + 11.77) ¥ 10
3
 Pa

= 112.77 kPa

Applying Bernoulli�s equation between A and B

p

g
A

r
 + 0 + 4.0 =

p

g

V

g
B B

r
+

2

2
 + 4.0

or pB = pA � r
VB

2

2

We have, VB = VD = 10.39 m/s and pA = 112.77 kPa

Hence, pB = 112.77 � 0.8 ¥ 103 ¥ 
( . )10 39

2 10

2

3
¥

 = 69.59 kPa

(c) Applying Bernoulli�s equation between 1 and C,

p
g

atm

r
 + 0 + 5.5 =

p

g g
c

r
+

( . )10 39
2

2

 + 7

or
p

g
C

r
 =

p

g
atm

r
 � 7

or pC = 101 � 
7 0 8 10 9 81

10

3

3

¥ ¥ ¥. .
 = 46.06 kPa

(d) For a maximum height of c above the liquid level, the pressure at C will be the vapour

pressure of the liquid at working temperature. Let h be this height. Then applying

Bernoulli�s equation between 1 and c.

p

g
atm

r
 + 0 + 5.5 =

29 5 10 10 39
2

3 2. ( . )¥
+

rg g
 + 5.5 + h

or h =
101 10

0 8 10 9 81

29 5 10

0 8 10 9 81

3

3

3

3

¥

¥ ¥
-

¥

¥ ¥. .

.

. .
 � 5.5

=  3.61 m

(The velocity of oil in the siphon will remain same at 10.39 m/s so long the vertical height

between the liquid level and the siphon exit remains same at 5.5 m.)

(e) More is the depth of the right limb of the siphon below the liquid level in the tank,

more will be the velocity of flow in the siphon and less will be the pressure at C. Let H be
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the maximum value of this depth which renders the pressure at C to be the vapour

pressure. Then from Bernoulli�s equation between 1 and D.

VD = 2gH

Again from Bernoulli�s equation between 1 and C.

p

g
atm

r
 + 0 + H =

29 5 10

0 8 10 9 81 2

3

3

2
.

. .

¥

¥ ¥
+

V

g

D  + H + 1.5 [Since VC = VD]

or H =
p

g

atm

r
-

¥

¥ ¥

29 5 10

0 8 10 9 81

3

3

.

. .
 � 1.5

=
101 10

0 8 10 9 81

29 5 10

0 8 10 9 81

3

3

3

3

¥

¥ ¥
-

¥

¥ ¥. .

.

. .
 � 1.5

= 7.61 m

Example 5.8 Water flows through a 300 mm ¥ 150 mm venturimeter at the rate of

0.037 m3/s and the differential gauge is deflected 1 m, as shown in Fig. 5.33. Specific

gravity of the gauge liquid is 1.25. Determine the coefficient of discharge of the meter.

C¢

300 mm D z
300 mm D

C

D1 m

150 mm D

21

BA

Fig. 5.33 A venturimeter measuring the flow of water through a pipe

Solution Applying Bernoulli�s equation between A and B, and considering the fluid to

be inviscid, we get

p

g

V

g
A A

r
+

2

2
 + 0 =

p

g

V

g

B B

r
+

2

2
 + 0 (5.106)

(the axis of the venturimeter is considered to be horizontal)

Again from continuity,

V2
A = (AB/AA)2V2

B (5.107)

Solving for VB from Eq. (5.106) with the help of Eq. (5.107), we have

VB =
2

1
2

( )/

( / )

p p

A A

A B

B A

-

-

r

The actual rate of discharge Q can be written as

Q = CD AB VB

= CD AB 
2

1
2

( )/

( / )

p p

A A

A B

B A

-

-

r
(5.108)
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where CD is the coefficient of discharge.

From the principle of hydrostatics applied to the differential gauge, we get

(pA/rg � z) = pB/rg � (z + 1) + 1.25 ¥ 1

or
p p

g
A B-

r
 = 0.25 m

Hence, from Eq. (5.108), we can write

0.037 = CD p
4

 (0.15)2 2 9 81 0 25 1 1 16¥ -. ( . )/( / )

which gives CD = 0.976

Example 5.9 A necked-down, or venturi section of a pipe flow develops a low

pressure which can be used to aspirate liquid upward from a reservoir as shown in

Fig. 5.34. Derive an expression for the exit velocity V2 which is just sufficient to cause

the reservoir liquid to rise in the tube up to section 1 (Fig. 5.34).

Consider the liquids originally flowing through the pipe and that to be pumped from

the reservoir are same (neglect frictional losses).

Water

D1

1

D2

h

V2

V1Water

patm

p = p2 atm

Fig. 5.34 A venturi section used for pumping water from a reservoir

Solution If p1 is the pressure at section 1 (throat of venturi tube), then for the liquid

from the reservoir to rise through the tube,

patm � p1 ≥ rgh

where patm is the atmospheric pressure acting on the free surface of the liquid in the

reservoir.

From continuity, V1 = V2 (D2/D1)
2

Applying the Bernoulli�s equation in consideration of the pipe axis to be horizontal, and

without any loss of head in the flow, we have

p1 + 1
2

rV2
1 = p2 + 1

2
 rV2

2

Here, p2 = patm as given in the problem.

Hence, patm � p1 =
1
2

 r[V
2
1 � V

2
2]

= 1
2

12

1

4

2
2r

D

D
V

F
H

I
K -

L
N
M
M

O
Q
P
P
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For the liquid to rise through the tube,

patm � p1 ≥ rgh

or (1/2) r
D

D
2

1

4

1
F
H

I
K -

L
N
M
M

O
Q
P
P

 V
2
2 ≥ rgh

Therefore, V2 ≥
2

12

1

4 2

gh

D
D

F
H

I
K -

L
N
M

O
Q
P
1/

The exist velocity V2 which is just sufficient to cause the reservoir liquid to rise through

the tube is given by the above expression with the equality sign.

Example 5.10 Water flows at the rate of 0.015 m3/s through a 100 mm diameter

orifice used in a 200 mm pipe. What is the difference in pressure head between the

upstream section and the vena contracta section? (Take coefficient of contraction

Cc = 0.60 and C
v
 = 1.0).

Solution We know from Eq. (5.67)

Q = C
p
g

D

r

where, C = C
v
 Cc A0 

2

1 2
0
2

1
2

g

C A Ac( /-

For the present problem,

C = 1.0 ¥ 0.60 ¥ p
4

 (0.1)2 
2 9 81

1 0 60 1 2
2 4

¥

-

.

[( ( . ) ( / ) )]

= 0.0211

Hence, 0.015 = 0.0211 D p g/ r

or Dp/rg = 0.505 m of water

Example 5.11 Air flows through a duct, and the Pitot-static tube measuring the

velocity is attached to a differential manometer containing water. If the deflection of the

manometer is 100 mm, calculate the air velocity, assuming the density of air is constant

and equals to 1.22 kg/m
3
, and that the coefficient of the tube is 0.98.

Solution From the differential manometer,

D p
gr

 =
( . ) ( . )

. .
0 1 9 81 10

1 22 9 81

3
¥ ¥

¥

= 81.97 m of air

where, Dp is the difference in stagnation and static pressures as measured by the

differential manometer. Velocity of air is calculated using Eq. (5.72) as

V = 0.98 2 9 81 81 97)¥ ¥. ( .

= 39.3 m/s
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Example 5.12 Water flows at a velocity of 1.417 m/s. A differential gauge which

contains a liquid of specific gravity 1.25 is attached to a Pitot-static tube. What is the

deflection of the gauge fluid? (Assume the coefficient of the tube to be 1).

Solution We know from Eq. (5.72)

V = C 2g p g( / )D r

Therefore, for the present case,

1.417 = 1.00 2 9 81¥ . ( / )D p gr

Hence, Dp/rg = 0.1023 m of water

From the manometric equation of the differential gauge,

0.1023 = (1.25 � 1) h

which gives the deflection of the gauge h = 0.409 m = 409 mm

Example 5.13 For the configuration shown, (Fig. 5.35) calculate the minimum or

just sufficient head H in the vessel and the corresponding discharge which can pass over

the plate. (Take C
v
 = 1, Cd = 0.8)

P
la
te

1 m

o
0.5 m

H

c

z

x

a = 200 mm2

Fig. 5.35 Trajectory of a liquid jet discharged from a vessel and passing over a plate

Solution For a point  �O� on the trajectory,

x = u1t

and z = 1
2

 gt
2

where t is the time taken for any liquid particle to reach the point �O� after being ejected

from the orifice with a velocity u1. Eliminating t from the two equations, we get,

z =
g x

u2

2

1
2

which shows that the trajectory must be parabolic.

Again, for C
v
 = 1,

u1 = 2gH

Therefore, z =
x
H

2

4
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or H = x
z

2

4

Hence, the minimum head H to pass over c

= (1)
2
/4 ¥ (0.5) = 0.5 m

The corresponding minimum discharge

Q = 2 9 81 0 5¥ ¥. .  ¥ (2 ¥ 10
�4

) ¥ 0.8 m
3
/s

= 0.0005 m
3
/s

Example 5.14 Two identical orifices are mounted on one side of a vertical tank

(Fig. 5.36). The height of water above the upper orifice is 3 m. If the jets of water from the

two orifices intersect at a horizontal distance of 8 m from the tank, estimate the vertical

distance between the two orifices. Calculate the vertical distance of the point of

intersection of the jets from the water level in the tank. Assume C
v
 = 1 for the orifices.

3 m

8 m

P

H

h

Fig. 5.36 Trajectory of water jets discharged from two orifices at the side

of a tank

Solution Let, P be the point of intersection of two jets as shown in Fig. 5.36. If t is the

time taken for any liquid particle flowing in the jet from the upper orifice to reach the

point P from the plane of the orifice, then,

8 = u1t (5.108a)

and (H � 3) = 1
2

gt
2

(5.108b)

where, u1 is the velocity of discharge at the plane of the upper orifice and H is the vertical

distance of P from the water level in the tank. Eliminating t from Eqs (5.108a) and

(5.108b),

(H � 3) =
1
2

64

1
2

g
u

or
u

g
1
2

 (H � 3) = 32 (5.109)

again, applying the Bernoulli�s equation between the top water level and the discharge

plane of the upper orifice,
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u
2
1 = 2g ¥ 3 = 6g

Substituting this value of u2
1 in Eq. (5.109), we have

3(H � 3) = 16

or H = 8.33 m

Similarly, for the jet from the lower orifice,

8 = u2 t

and, (H � 3 � h) = 1
2

gt2

Eliminating t from the above two,

u

g
2
2

 (H � 3 � h) = 32

again, u
2
2 = 2g(3 + h)

Hence, (3 + h) (H � 3 � h) = 16

or 3(H � 3) � 3h + h(H � 3) � h
2
 = 16

Substituting H = 8.33 in the above expression we get

h
2
 � 2.33h = 0

or h(h � 2.33) = 0

which gives h = 0 and h = 2.33 m.

Therefore the distance between the orifices is 2.33 m.

Example 5.15 A fireman must reach a window 40 m above the ground (Fig. 5.37)

with a water jet, from a nozzle of 30 mm diameter discharging 30 kg/s. Assuming the

nozzle discharge to be at a height of 2 m from the ground, determine the greatest distance
from the building where the fireman can stand so that the jet can reach the window.

Solution Let u1 be the velocity of discharge from the nozzle,

then, u1 =
&m
Ar

 = 
30

1000 4 0 03 2
¥ ¥( / ) ( . )p

 = 42.44 m/s

(Note that u2
1/2g should be more than the height of the window for the jet to reach at all.

In this case u2
1/2g = 91.80 m which is greater than 40 m).

Let a be the angle of the nozzle with horizontal. Considering the time taken by a fluid

particle in the jet to reach the window at point 2 from the discharge point 1 as t, we can

write

Fig. 5.37 Trajectory of a water jet issued from a nozzle to reach a
window above the ground
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x = 42.44 cos a t (5.110a)

and 38 = 42.44 sin a t � 1/2 gt2 (5.110b)

where, x is the horizontal distance between the nozzle and window. Eliminating t from

Eqs (5.110a)and (5.110b), we have

38 = x tan a � 
9 81

2 42 44 2

2

2

.

( . ) cos¥

x

a
(5.111)

The value of x depends upon the value of a. For maximum value of x we require an

optimization with a.

Differentiating each term of Eq. (5.111) with respect to a, we get

0 = x sec2 a + tan a
d
d

x
a

 � 0.0027 x2 (2 sec2 a tan a)

� 
0 0027

22

.

cos a a
x

xd
d

F
H

I
K

For maximum x, 
d
d

x
a

 = 0

Hence, x sec2 a � 2 ¥ 0.0027 x2 sec2 a tan a = 0

x tan a = 1
2 0 0027¥ .

 = 185.2 m (5.112)

Solving for x and a from Eq. (5.111) and (5.112), we get,

38 = 185.2 � 0.0027 x
2
/cos

2
 a

which gives x/cos a = 233.5 m
Again, x tan a = 185.2 m

sin a =
185 2
233 5

.
.

 = 0.793

or a = 52.5°
and x = 142 m

Example 5.16 A tank has the form of a frustum of a cone, with a diameter of

2.44 m at the top and 1.22 m at the bottom as shown in Fig. 5.38. The bottom contains a

circular orifice whose coefficient of discharge is 0.60. What diameter of the orifice will

empty the tank in 6 minutes if the full depth is 3.05 m?

2.44 m

1.22 m

a

3.05 m

h

Fig. 5.38 A tank in the form of a frustum of a cone
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Solution Let the diameter of orifice be d0, and at any instant t, the height of the liquid

level above the orifice be h. Then during an infinitesimal time dt, discharge through the

orifice is

q = Cd 
p d

gh0
2

4
2  dt

= 0.60 ¥ 1
4

 pd
2
0 2gh  dt

If the liquid level in the tank falls by an amount dh during this time, then from continuity,

� Ah dh = 0.60 
p d

gh0
2

4
2  dt (5.113)

where Ah is the area of the tank at height h.

From the geometry of the tank (Fig. 5.38),

tan a =
( . . )

.
2 44 1 22

2 3 05
-

¥
 = 0.2

Therefore the diameter of the tank at height h = 1.22 + 2 ¥ 0.2 h
Hence, Ah = (p/4) (1.22 + 0.4h)

2

Substituting the value of Ah in Eq. (5.113), we have

0.60 ¥ (1/4) pd2
0 2 9 81¥ . h  dt = � p/4 (1.22 + 0.4h)2 dh

or d2
0 z dt = 1

0 60 2 9 81. .¥ ¥
 

3 05

0

.

z (1.22 + 0.4 h)
2
 h

�1/2
 dh

Since, the time of emptying z dt = 360 seconds

d2
0 =

1

0 60 2 9 81 360
3 05

0

. .
.

¥ ¥ ¥ z (1.22 + 0.4h2) h�1/2 dh

Integrating and solving for d0, we get
d2

0 = 0.010 m2

or d0 = 0.1 m = 100 mm

Example 5.17 A concrete tank is 10 m long and 6 m wide, and its sides are vertical.

Water enters the tank at the rate of 0.1 m3
/s and is discharged from an orifice of area

0.05 m
2
 at its bottom (Fig. 5.39). Initial level of water in the tank from the bottom is 5 m.

Find whether the liquid level will start rising, or falling or will remain the same. If the

liquid level changes (either rise or fall) then find the value of steady state level to which

the liquid will reach. Find also the time taken for the change in the liquid level to be the

60% of its total change. (Take Cd = 0.60).

Q = 0.1 m /s3

q

dh

h

Fig. 5.39 A tank, with an inflow, discharging water from an orifice at the bottom
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Solution The rise or fall of liquid level at any instant will depend upon the relative

magnitudes of instantaneous rate of inflow to and outflow from, the tank. Here, the rate of

inflow Q is constant and equals to 0.1 m3/s. Initially, the discharge rate from the orifice

q = 0.6 ¥ 0.05 2 9 81 5¥ ¥.

= 0.297 m3/s

Since q > Q, the liquid level will start falling. As the liquid level falls, the discharge rate

through the orifice decreases, and when it equals to the rate of inflow, the liquid level will

neither rise nor fall further. Let Hs be this height of steady liquid level from the bottom of

the tank.

Then 0.6 ¥ 0.05 ¥ 2 9 81¥ ¥. Hs  = 0.1

or Hs =
( . )

. ( . ) ( . )

0 1

2 9 81 0 6 0 05

2

2 2
¥ ¥ ¥

 = 0.57 m

Total change in the liquid level = (5 � 0.57) = 4.43 m. The liquid will attain a level of

2.34 m (= 5 � 0.6 ¥ 4.43) when the change in the level will be 60% of its final value 4.43.

Consider at any instant t, the height of liquid level in the tank to be h, and let this

height fall by dh in a small interval of time dt

The amount of inflow during this time = Q dt = 0.1 dt

and the amount of discharge = 0.6 ¥ 0.05 2gh  dt

= 0.133 h  dt

From continuity,

� A dh = 0.133 h  dt � 0.1 dt

where A is the area of the tank = 6 ¥ 10 = 60 m2

Hence, dt =
60

0 1 0 133

dh

h( . . )-
(5.114)

Let H = 0.1 � 0.133 h

Then, h =
( . )

.
0 1
0 0177

2
- H

dh = �
2 0 1

0 0177
( . )

.
- H

 dH

Substituting the value of dh in Eq. (5.114) and writing H for the denominator, we get,

dt =
- -120 0 1

0 0177
( . )
.

H H
H

d

= � 6780 
0 1

1
.

H
-

F
H

I
K  dH

If T is the time taken for the liquid level to fall from 5 m to 2.34 m, then

0

T

z dt = � 6780 [0.1 ln (0.1 � 0.133 h ) � (0.1 � 0.133 h )]5
2.34

= � 6780 0 1
0 1 0 133 2 34

0 1 0 133 5
0 133 2 34 5. ln

. . .

. .
. ( . )

-

-
+ -

L
N
M
M

O
Q
P
P

= 5080 s

= 1.41 hours
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Example 5.18 For the 100 mm diameter short tube acting as a mouthpiece in a

tanks as shown in Fig. 5.40, (a) what flow of water at 24 °C will occur under a head of

9.2 m? (b) What is the pressure head at vena contracta section c? (c) What maximum

head can be used if the tube is to flow full at exit? (Take Cd = 0.82 and C
v
 = 1.0 Vapour

pressure for water at 24 °C is 3 kPa absolute, atmospheric pressure is 101 kPa).

bc

h

z

a

Fig. 5.40 A tank with a short tube as a mouthpiece

Solution Applying Bernoulli�s equation between the points a and b (the point b being

at the exist plane) on a streamline (Fig. 5.40), with the horizontal plane through b as

datum, we can write

p

g
atm

r
 + (h � z) + 0 + z =

p

g

V

g

V

g C
b b

c

atm

r
+ + + -

F
H

I
K

2 2 2

2
0

2
1

1 (5.115)

where Cc is the coefficient of contraction (= Cd /C
v
 = 0.82/1 = 0.82). With the values

given,

9.2 =
V

g
b
2 2

2
1 1

0 82
1+ -

F
H

I
K

L
N
M

O
Q
P.

which gives Vb = 13.12 m/s

Then Q = Cd ¥ A ¥ Vb = 0.82 ¥ (p/4) (0.1)
2
 ¥ (13.12) = 0.084 m

3
/s

(b) Applying Bernoulli�s equation between the points a and c on a streamline (the

point c being at the vena contracta section), we get

p

g
atm

r
 + (h � z) + 0 + z =

p

g

V

g
c c

r
+

2

2
 + 0 (5.116)

Again from continuity,

Ab ¥ Vb = Ac ¥ Vc

where Ab and Ac are the areas at exist and vena contracta respectively

Hence, Vc =
V

A A
b

c b/
 = 

V

C
b

c
 = 

13 12
0 82

.
.

 = 16 m/s

Substituting Vc in Eq. (5.116), we have

p

g
atm

r
 + 9.2 =

p

g g
c

r
+

( )16
2

2
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which gives Pc/rg = 
p

g
atm

r
-

F
H

I
K3 85.  m of water

Therefore the pressure at vena contracta = 3.85 m of water vacuum.

(c) As the head causing flow through the short tube is increased, the velocity of flow at

any section will increase and the pressure head at c will be reduced. For a steady flow

with the tube full at exit, the pressure at c must not be less than the vapour pressure of the

liquid at the working temperature. For any head h (the height of the liquid level in the

tank above the centre line of the tube), we get from Eq. (5.116)

p

g
atm

r
 + h =

p

g

V

g
c c

r
+

2

2
(5.117)

again Vc = Ab Vb /Ac = Vb /Cc

Again, from Eq. (5.115),

V2
b =

2

1 1 1

gh

Cc
-

F
H

I
K +

Therefore,
V

g
c
2

2
 = h

C
Cc

c

2
2

1 1 1-
F
H

I
K +

L
N
MM

O
Q
PP

= h

( . )
.

0 82 1
0 82

1 12
2

-
F
H

I
K +

L
N
M

O
Q
P

 = 1.42 h

Substituting this value of Vc in Eq. (5.117), we get

p

g
atm

r
 + h =

p

g
c

r
 + 1.42 h

or 0.42 h =
p

g
atm

r
 � 

p

g
c

r

For the maximum head h, pc = p
v
, the vapour pressure of water at the working

temperature.

For the present case,
p

g
v

r
 =

3 10

10 9 81

3

3

¥

¥ .
 = 0.306 m

while,
p

g
atm

r
 =  

101 10

10 9 81

3

3

¥

¥ .
 = 10.296 m

Hence, hmax =
10 296 0 306

0 42
. .

.
-

 = 23.78 m

Example 5.19 An external mouthpiece converges from the inlet up to the vena

contracta to the shape of the jet and then it diverges gradually. The diameter at the vena

contracta is 20 mm and the total head over the centre of the mouthpiece is 1.44 m of water

above the atmospheric pressure. The head loss in flow through the converging passage

and through the diverging passage may be taken as one per cent and five per cent

respectively of the total head at the inlet to the mouthpiece. What is the maximum

discharge that can be drawn through the outlet and what should be the corresponding
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diameter at the outlet. Assume that the pressure in the system may be permitted to fall to

8 m of water below the atmospheric pressure head, and the liquid conveyed is water.

Solution In terms of meters of water, Total head available at the inlet to the mouthpiece

h1 = 1.44 m above the atmospheric pressure

Loss of head in the converging passage = 0.01 ¥ 1.44

= 0.0144 m

Loss of head in the divergent part = 0.05 ¥ 1.44

= 0.0720 m

Total head available at the vena contracta

= 1.44 � 0.0144 = 1.4256 m above the atmospheric pressure

At vena contracta, we can write

p
g

V
g

c c

r
+

2

2
 = 1.4256 + 

p

g
atm

r

For a maximum velocity Vc, the pressure pc will attain its lower limit which is 8 m below

the atmospheric pressure. Therefore,

p

g
atm

r
 � 8 + 

V

g
c
2

2
 = 1.4256 + 

p

g
atm

r

which gives Vc = 13.6 m/s

Therefore, the maximum possible discharge becomes

Qmax = 13.6 ¥ p(0.02)
2
/4 = 0.0043 m

3
/s

Pressure at the exit is atmospheric. Application of Bernoulli�s equation between the

vena contracta section and the exit section gives

p

g
atm

r
 + 1.4256 =

p

g
atm

r
 + 

V

g
2
2

2
 + 0.0720

Hence, V2, the exit velocity = 5.15 m/s

Therefore, the diameter d2 at the exit is given by

(p d2
2/4) ¥ 5.15 = 0.0043

or d2 = 0.0326 m = 32.60 mm

Exercises

5.1 An open rectangular tank of 5 m ¥ 4 m is 3 m high and contains water up to a

height of 2 m. The tank is accelerated at 3 m/s2

(a) horizontally along the longer side

(b) vertically upwards

(c) vertically downwards and

(d) in a direction inclined at 30° upwards to the horizontal along the longer side.

Draw in each case, the shape of the free surface and calculate the total force

on the base of the tank as well as on the vertical faces of the container. At

what acceleration will the force on each face be zero?

Ans. [(a) base: 392.40 kN, leading face: 29.97 kN, trailing face: 149.89 kN, other two

faces: 102.74 kN
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(b) base: 512.40 kN, faces with longer side: 128.10 kN, other two faces:

102.48 kN

(c) base: 272.40 kN, faces with longer side: 68.10 kN, other two faces: 54.48 kN

(d) base: 452.40 kN, leading face: 45.93 kN, trailing face: 149.98 kN, other two

faces: 116.22 kN; downward acceleration of 9.81 m/s
2
].

5.2 An open-topped tank in the form of a cube of 900 mm side, has a mass of 340 kg.

It contains 0.405 m
3
 of oil of specific gravity 0.85 and is accelerated uniformly up

along a slope at tan
�1

 (1/3) to the horizontal, the base of the tank remains parallel

to the slope, and the side faces are parallel to the direction of motion. Neglecting

the thickness of the walls of the tank, estimate the net force (parallel to the slope)

accelerating the tank if the oil is just on the point of spilling.

Ans. (3538 N)

5.3 An open rectangular tank of 5 m ¥ 4 m is 3 m high. It contains water up to a

height of 2 m and is accelerated horizontally along the longer side. Determine the

maximum acceleration that can be given without spilling the water and also

calculate the percentage of water spilt over, if this acceleration is increased by

20%. Ans. (3.92 m/s
2
, 10%)

5.4 A horizontal cylinder of internal diameter 100 mm is filled with water and rotated

about its axis with an angular velocity of 3000 rpm. Calculate the pressure at the

ends of the horizontal and vertical diameter.

Ans. (Ends of horizontal diameter: 124.1 kN/m
2
; Vertical diameter:

Top end: 123.6 kN/m2; Bottom end: 124.6 kN/m2)

5.5 A hollow cone filled with a liquid, with its apex downwards, has a base diameter

d and a vertical height h. At what speed should it spin about its vertical axis so

that the kinetic energy of the rotating liquid is maximum? What per cent of the

total volume of the cone is then occupied by the liquid?

Ans. (w = 12 5 2gh d/ , 55%)

5.6 A vessel with a fluid moves vertically upward with an acceleration of g/2, and

simultaneously rotates about the vertical axis of symmetry with an angular

velocity of w. Derive an equation for the free surface of the liquid in a cartesian

coordinate system.

Ans. ((z = w2
(x

2
 + y

2
)/3g))

5.7 A paddle wheel of 100 mm diameter rotates at 150 rpm inside a closed concentric

vertical cylinder of 300 mm diameter completely filled with water. (a) Assuming

a two-dimensional flow in a horizontal plane, find the difference in pressure

between the cylinder surface and the centre of the wheel. (b) If provision is made

for an outward radial flow which has a velocity of 1m/s at the periphery of the

wheel, what is the resultant velocity at a radius of 100 mm and its inclination to

the radial direction?

Ans. [(a) 0.582 kN/m2 (b) 0.636 m/s, 38.13°]

5.8 The velocity of water at the outer edge of a whirlpool where the water level is

horizontal and in the same plane as the bulk of the liquid, is 2 m/s and the

diameter is 500 mm. Calculate the depth of free surface at a diameter of 100 mm

from the eye of the whirlpool.

Ans. (4.89 m)
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5.9 In a flapper valve, air enters at the centre of the lower disk through a 10 mm pipe

with a velocity of 10 m/s. It then moves radially to the outer circumference.The

two disks forming the valve are of 150 mm diameter and 5 mm apart. The air

pressure at inlet is 1.5 kN/m
2
 gauge. Assuming the air density to be constant at

1.2 kg/m
3
, estimate the net force acting on the upper plate.

Ans. (27.443 N)

5.10 Water flows upward through a vertical 300 mm ¥ 150 mm Venturimeter whose

coefficient is 0.98. The deflection of a differential gauge is 1.18 m of liquid of

specific gravity 1.25, as shown in Fig. 5.41. Determine the flow rate in m
3
/s.

Ans. (0.044 m3/s)

DC

457 mm

1.18 m

B

A

300
mm

Fig. 5.41 A vertical venturimeter

5.11 A vertical venturimeter carries a liquid of specific gravity 0.8 and has inlet and

throat diameter of 150 mm and 75 mm respectively. The pressure connection at

the throat is 150 mm above that at the inlet. If the actual rate of flow is 40 liters/s

and the coefficient of discharge is 0.96, calculate (a) the pressure difference

between inlet and throat, and (b) the difference in levels of mercury in a vertical

U-tube manometer connected between these points.

Ans. (34.53 kN/m
2
, 0.275 m)

5.12 The loss of head from the entrance to the throat of a 254 mm ¥ 127 mm

venturimeter is 1/6 times the throat velocity head. If the mercury in the differential

gauge attached to the meter deflects 101.6 mm, what is the flow of water through

the venturimeter?

Ans. (0.06 m3/s)

5.13 The air supply to an oil-engine is measured by inducting air directly from the

atmosphere into a large reservoir through a sharp-edged orifice of 50 mm

diameter. The pressure difference across the orifice is measured by an alcohol

manometer set at a slope of sin
�1

 0.1 to the horizontal. Calculate the volume flow
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rate of air if the manometer reading is 271 mm. Specific gravity of alcohol is

0.80, the coefficient of discharge for the orifice is 0.62 and atmospheric pressure

and temperature are 775 mm of Hg and 15.8 °C respectively. (Take Cc, the

coefficient of contraction = 0.6).

Ans. (0.022 m3
/s)

5.14 Flow of air at 49°C is measured by a pitot-static tube. If the velocity of air is

18.29 m/s and the coefficient of the tube is 0.95, what differential reading will

be shown in a water manometer? Assume the density of air to be constant at

1.2 kg/m3.

Ans. (22.70 mm)

5.15 What is the size of an orifice required to discharge 0.016 m3
/s of water under a

head of 8.69 m? (Consider the coefficient of discharge to be unity).

Ans. (area: 1225 mm2)

5.16 A sharpe-edged orifice has a diameter of 25.4 mm and coefficients of velocity

and contraction of 0.98 and 0.62 respectively. If the jet drops 939 mm in a

horizontal distance of 2496 mm, determine the flow in m3
/s and the head on the

orifice.

Ans. (0.0018 m3
/s, 1727 mm)

5.17 A vertical triangular orifice in the wall of a reservoir has a base 0.9 m long which

is 0.6 m below its vertex and 1.2 m below the water surface. Determine the rate of

theoretical discharge.

Ans. (1.19 m3
/s)

5.18 An orifice in the side of a large tank is rectangular in shape, 1.2 m broad and

0.6 m deep. The water level on one side of the orifice is 1.2 m above the top edge;

the water level on the other side of the orifice is 0.3 m below the top edge. Find

the discharge per second if the coefficient of discharge of the orifice is 0.62.

Ans. (2.36 m3/s)

5.19 Two orifices in the side of a tank are one above the other and are vertically

1.829 m apart. The total depth of water in the tank is 4.267 m and the height of

water surface from the upper orifice is 1.219 m. For the same values of C
v
, show

that the jets will strike the horizontal plane, on which the tank rests, at the same

point.

5.20 Water issues out of a conical tank whose radius of cross-section varies linearly

with height from 0.1 m at the bottom of the tank. The slope of the tank wall with

the vertical is 30°. Calculate the time taken for the tank to be emptied from an

initial water level of 0.7 m through a circular orifice of 20 mm diameter at the

base. Take Cd of the orifice to be 0.6.

Ans. (437.97s)

5.21 A tank 3 m long and 1.5 m wide is divided into two parts by a partition so that the

area of one part is three times the area of the other. The partition contains a square

orifice of 75 mm sides through which the water may flow from one part to the

other. If water level in the smaller division is 3 m above that of the larger, find the

time taken to reduce the difference of water level to 0.6 m. Cd of the orifice is 0.6.

Ans. (108s)

5.22 A cylindrical tank is placed with its axis vertical and is provided with a circular

orifice, 80 mm in diameter, at the bottom. Water flows into the tank at a uniform
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rate, and is discharged through the orifice. It is found that it takes 107 s for the

water height in the tank to rise from 0.6 m to 0.75 m and 120 s for it to rise from

1.2 m to 1.28 m. Find the rate of inflow and the cross-sectional area of the tank.

Assume a coefficient of discharge of 0.62 for the orifice.

Ans. (0.019 m
3
/s, 5.48 m

2
)

5.23 Calculate the coefficient of discharge from a projecting mouthpiece in the side of

a water tank assuming that the only loss is that due to the sudden enlargement of

water stream in the mouthpiece. Take a coefficient of contraction 0.64.

Ans. (0.871)

5.24 The velocity of water in a flow field is given by

r
V  = Ayi Ax j$ $+

where A = 4 sec
�1

 and the coordinates are in meters. Is it possible to calculate the

pressure change between the points (1, 1) and (2, 2)? Calculate, if it is posible.

Ans. (48 kN/m2)

5.25 The velocity of water in a flow field is given by

r
V  = Ax y i Bx y j2 2 3$ $-

where A and B are constants and having appropriate dimensions. The coordinates

are in meters.

(a) Determine the stream function for this flow

(b) Determine the vorticity in the flow field

(c) Neglect the gravity. Is it possible to calculate the pressure difference between

the points (1, 1) and (2, 2)? Calculate, if it is possible

Ans. ((a) y = A
3

 x
2
y

3
 + C, (b) Not possible)



6.1 INTRODUCTION

Solutions to engineering problems, due to their complex nature, are determined

mostly from experiments. Due to economic advantages, saving of time and ease

of investigations, it is not possible, in a number of instances, to perform

experiments in the laboratory under identical conditions, in relation to the operat-

ing parameters, prevailing in practice. Therefore, laboratory tests are usually

carried out under altered conditions of the operating variables from the actual

ones in practice. These variables in case of problems relating to fluid flow, are

pressure, velocity, geometrical dimensions of the working systems and the

physical properties of the working fluid. The pertinent questions arising out of

this situation are:

(i) How can we apply the test results from laboratory experiments to the

actual problems for another set of conditions in practice?

(ii) When the performance of a system is governed by a large number of

operating parameters as the input variables, a large number of

experiments are required to be carried out accordingly to determine

the influences of each and every operating parameter on the

performance of the system. Is it possible, by any way, to reduce the

large number of experiments, involving huge labour, time, and cost, to

a lesser one in achieving the same objective?

Principles of
Physical Similarity and
Dimensional Analysis

6



242 Introduction to Fluid Mechanics and Fluid Machines

A positive clue in answering the above two questions lies in the principle of

physical similarity. This principle makes it possible and justifiable (i) to apply

the results taken from tests under one set of conditions to another set of conditions

and (ii) to predict the influences of a large number of independent operating

variables on the performance of a system from an experiment with a limited

number of operating variables. Therefore, a large part of the progress made in the

study of mechanics of fluids and in the engineering applications of the subject has

come from experiments conducted on scale models. No aircraft is now built

before exhaustive tests are carried out on small models in a wind tunnel. The

behaviour and power requirements of a ship are calculated in advance from the

results of tests in which a small model of the ship is towed through water. Flood

control of rivers, spillways of dams, harbour works, performances of fluid

machines like turbines, pumps and propellers, and similar large scale projects are

studied in details with models in the laboratory. In a number of situations, tests

are conducted with one fluid and the results are applied to situations in which

another fluid is used.

6.2 CONCEPT AND TYPES OF PHYSICAL SIMILARITY

The primary and fundamental requirement for the physical similarity between

two problems is that the physics of the problems must be the same. For an

example, a fully developed flow through a closed conduit can never be made,

under any situation, physically similar with a flow in an open channel, since the

flow in the earlier case is governed by viscous and pressure forces while the

gravity force is dominant in latter case to maintain the flow. Therefore, the laws

of similarity have to be sought between problems described by the same physics.

We shall first define physical similarity as a general proposition. Two systems,

described by the same physics, but operating under different sets of conditions are

said to be physically similar in respect of certain specified physical quantities

when the ratio of corresponding magnitudes of these quantities between the two

systems is the same everywhere. If the specified physical quantities are

geometrical dimensions, the similarity is called geometric similarity, if the

quantities are related to motions, the similarity is called kinematic similarity and

if the quantities refer to forces, then the similarity is termed as dynamic similarity.

In the field of mechanics, these three similarities together constitute the complete

similarity between problems of same kind.

Geometric Similarity Geometric similarity is the similarity of shape. This is

probably the type of similarity most commonly encountered and, most easily

understood. In geometrically similar systems, the ratio of any length in one system

to the corresponding length in other system is the same everywhere. This ratio is

usually known as scale factor. Therefore, geometrically similar objects are similar

in their shapes, i.e., proportionate in their physical dimensions, but differ in size.

In investigations of physical similarity, the full size or actual scale systems are
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known as prototypes while the laboratory scale systems are referred to as models.

As already indicated, use of the same fluid with both the prototype and the model

is not necessary, nor is the model necessarily smaller than the prototype. The flow

of fluid through an injection nozzle or a curburettor, for example, would be more

easily studied by using a model much larger than the prototype. The model and

prototype may be of identical size, although the two may then differ in regard to

other factors such as velocity, and properties of the fluid. If l1 and l2 are the two

characteristic physical dimensions of any object, then the requirment of

geometrical similarity is

l

l

m

p

1

1

 =
l

l

m

p

2

2

 = lr

(The second suffices m and p refer to model and prototype respectively) where

lr is the scale factor or sometimes known as the model ratio. Figure 6.1 shows

three pairs of geometrically similar objects, namely, a right circular cylinder, a

parallolepiped, and a triangular prism.

Right circular cylinders

D

D/2

a

a/2

a/2

h/2

b/2b

c/2

b/2

Triangular prisms

Parallelopipeds

h

b

h/2

h

a

c

Fig. 6.1 Geometrically similar objects
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It can be mentioned in this context that roughness of the surface should also be

geometrically similar. Geometric similarity is perhaps the most obvious

requirement in a model system designed to correspond to a given prototype

system. A perfect geometric similarity is not always easy to attain. For a small

model, the surface roughness might not be reduced according to the scale factor

unless the model surfaces can be made very much smoother than those of the

prototype. If for any reason the scale factor is not the same throughout, a distorted

model results.

Sometimes it may so happen that to have a perfect geometric similarity within

the available laboratory space, physics of the problem changes. For example, in

case of large prototypes, such as rivers, the size of the model is limited by the

available floor space of the laboratory; but if a very low scale factor is used in

reducing both the horizontal and vertical lengths, this may result in a stream so

shallow that surface tension has a considerable effect and, moreover, the flow

may be laminar instead of turbulent. In this situation, a distorted model may be

unavoidable (a lower scale factor for horizontal lengths while a relatively higher

scale factor for vertical lenghts). The extent to which perfect geometric similarity

should be sought therefore depends on the problem being investigated, and the

accuracy required from the solution.

Kinematic Similarity Kinematic similarity is similarity of motion. Since motions

are described by distance and time, the kinematic similarity implies similarity of

lengths (i.e., geometrical similarity) and, in addition, similarity of time intervals.

If the corresponding lengths in the two systems are in a fixed ratio, the velocities

of corresponding particles must be in a fixed ratio of magnitude of corresponding

time intervals. If the ratio of corresponding lengths, known as the scale factor, is

lr and the ratio of corresponding time intervals is tr, then the magnitudes of

corresponding velocities are in the ratio lr/tr  and the magnitudes of corresponding

accelerations are in the ratio lr/tr
2
.

A well-known example of kinematic similarity is found in a planetarium. Here

the galaxies of stars and planets in space are reproduced in accordance with a

certain length scale and in simulating the motions of the planets, a fixed ratio of

time intervals (and hence velocities and accelerations) is used.

When fluid motions are kinematically similar, the patterns formed by

streamlines are geometrically similar at corresponding times. Since the

impermeable boundaries also represent streamlines, kinematically similar flows

are possible only past geometrically similar boundaries. Therefore, geometric

similarity is a necessary condition for the kinematic similarity to be achieved, but

not the sufficient one. For example, geometrically similar boundaries may ensure

geometrically similar streamlines in the near vicinity of the boundary but not at a

distance from the boundary.

Dynamic Similarity Dynamic similarity is the similarity of forces. In dynamically

similar systems, the magnitudes of forces at similar points in each system are in a
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fixed ratio. In other words, the ratio of magnitudes of any two forces in one system

must be the same as the magnitude ratio of the corresponding forces in other

systems. In a system involving flow of fluid, different forces due to different

causes may act on a fluid element. These forces are as follows:

Viscous force (due to viscosity)
r

F
v

Pressure force (due to difference in pressure)
r

F p

Gravity force (due to gravitational attraction)
r

F g

Capillary force (due to surface tension)
r

F c

Compressibility force (due to elasticity)
r

F e

According to Newton�s law, the resultant FR of all these forces, will cause the

acceleration of a fluid element. Hence,
r

F R =
r

F
v
 + 
r

F p + 
r

F g + 
r

F c + 
r

F e (6.1)

Moreover, the inertia force 
r

F i is defined as equal and opposite to the resultant

accelerating force 
r

F R. Therefore, Eq. (6.1) may also be expressed as
r

F v + 
r

F p + 
r

F g + 
r

F c + 
r

F e + 
r

F i = 0

For dynamic similarity, the magnitude ratios of these forces have to be same

for both the prototype and the model. The inertia force 
r

F i is usually taken as the

common one to describe the ratios as
r

r

r

r

r

r

r

r

r

r

F

F

F

F

F

F

F

F

F

Fi

p

i

g

i

c

i

e

i

v

, , , ,

A fluid motion, under all such forces is characterised by the (i) hydrodynamic

parameters like pressure, velocity and acceleration due to gravity, (ii) rheological

and other physical properties of the fluid involved, and (iii) geometrical dimensions

of the system. Now it becomes important to express the magnitudes of different

forces in terms of these parameters, so as to know the extent of their influences on

the different forces acting on a fluid element in the course of its flow.

Inertia Force 
r

Fi The inertia force acting on a fluid element is equal in magnitude

to the mass of the element multiplied by its acceleration. The mass of a fluid

element is proportional to rl3 where, r is the density of fluid and l is the

characteristic geometrical dimension of the system. The acceleration of a fluid

element in any direction is the rate at which its velocity in that direction changes

with time and is therefore proportional in magnitude to some characteristic

velocity V divided by some specified interval of time t. The time interval t is

proportional to the characteristic length l divided by the characteristic velocity V,

so that the acceleration becomes proportional to V2/l. The magnitude of inertia

force is thus proportional to rl3V2/l = rl2V2. This can be written as
r

Fi  µ rl2V2 (6.2a)
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Viscous Force 
r

Fv The viscous force arises from shear stress in a flow of fluid.

Therefore, we can write

Magnitude of viscous force
r

F
v
 = shear stress ¥ surface area over which the

shear stress acts

again, shear stress = m (viscosity) ¥ rate of shear strain

where, rate of shear strain µ velocity gradient µ 
V

l
 and surface are µ l2

Hence
r

F
v

 µ m
V

l
l2

µ m Vl (6.2b)

Pressure Force 
r

Fp The pressure force arises due to the difference of pressure in

a flow field. Hence it can be written as
r

Fp  µ D p ◊ l
2

(6.2c)

where D p is some characteristic pressure difference in the flow.

Gravity Force 

r

Fg The gravity force on a fluid element is its weight.

Hence,
r

Fg  µ rl3g (6.2d)

where g is the acceleration due to gravity or weight per unit mass.

Capillary or Surface Tension Force 
r

Fc The capillary force arises due to the

existence of an interface between two fluids. The surface tension force acts

tangential to a surface and is equal to the coefficient of surface tension s
multiplied by the length of a linear element on the surface perpendicular to which

the force acts. Therefore,
r

Fc  µ s l (6.2e)

Compressibility or Elastic Force 
r

Fe Elastic force comes into consideration due to

the compressibility of the fluid in course of its flow. It has been shown in Eq.

(1.3) that for a given compression (a decrease in volume), the increase in pressure

is proportional to the bulk modulus of elasticity E and gives rise to a force known

as the elastic force.

Hence,
r

Fe  µ El2 (6.2f)

The flow of a fluid in practice does not involve all the forces simultaneously.

Therefore, the pertinent dimensionless parameters for dynamic similarity are

derived from the ratios of dominant forces causing the flow.
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Dynamic Similarity of Flows governed by Viscous, Pressure and Inertia Forces The

criteria of dynamic similarity for the flows controlled by viscous, pressure and

inertia forces are derived from the ratios of the representative magnitudes of these

forces with the help of Eq. (6.2a) to (6.2c) as follows:

Viscous force

Inertia force
 =

r

r

F

F

Vl

V l lVi

v

∝ =

m

r

m

r2 2
(6.3a)

Pressure force

Inertia force
 =

r

r

F

F

pl

l V

p

V

p

i

µ =
D D2

2 2 2r r
(6.3b)

The term r lV/m is known as Reynolds number, Re after the name of the

scientist who first developed it and is thus proportional to the magnitude ratio of

inertia force to viscous force. The term Dp/rV2 in the RHS of Eq. (6.3b) is known

as Euler number, Eu after the name of the scientist who first derived it. Therefore,

the dimensionless terms Re and Eu represent the critieria of dynamic similarity

for the flows which are affected only by viscous, pressure and inertia forces. Such

instances, for example, are (i) the full flow of fluid in a completely closed conduit,

(ii) flow of air past a low-speed aircraft and (iii) the flow of water past a

submarine deeply submerged to produce no waves on the surface. Hence, for a

complete dynamic similarity to exist between the prototype and the model for this

class of flows, the Reynolds number, Re and Euler number, Eu have to be same

for the two (prototype and model). Thus

r

m

p p p

p

l V
 =

r

m
m m m

m

l V
(6.3c)

D p

V

p

p pr 2
 =

D p

V

m

m mr 2
(6.3d)

where, the suffix p and suffix m refer to the parameters for prototype and model

respectively. In practice, the pressure drop is the dependent variable, and hence it

is compared for the two systems with the help of Eq. (6.3d), while the equality of

Reynolds number (Eq. (6.3c)) along with the equalities of other parameters in

relation to kinematic and geometric similarities are maintained.

The characteristic geometrical dimension l and the reference velocity V in the

expression of the Reynolds number may be any geometrical dimension and any

velocity which are significant in determining the pattern of flow. For internal

flows through a closed duct, the hydraulic diameter of the duct Dh and the average

flow velocity at a section are invariably used for l and V respectively. The

hydraulic diameter Dh is defined as Dh = 4A/P where A and P are the cross-

sectional area and wetted perimeter respectively.
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Dynamic Similarity of Flows with Gravity, Pressure and Inertia Forces A flow of

the type, where significant forces are gravity force, pressure force and inertia

force, is found when a free surface is present. One example is the flow of a liquid

in an open channel; another is the wave motion caused by the passage of a ship

through water. Other instances are the flows over weirs and spillways. The

condition for dynamic similarity of such flows requires the equality of the Euler

number Eu (the magnitude ratio of pressure to inertia force), and the equality in

the magnitude ratio of gravity to inertia force at corresponding points in the

systems being compared.

From Eqs (6.2a) and (6.2d)

Gravity force

Inertia force
 =

r

r

F

F

l g

l V

lg

V

g

i

µ =
r

r

3

2 2 2
(6.3e)

In practice, it is often convenient to use the square root of this ratio to have the

first power of the velocity. From a physical point of view, equality of (lg)1/2/V

implies equality of lg/V2 as regard to the concept of dynamic similarity. The recip-

rocal of the term (lg)1/2 /V is known as Froude number after William Froude who

first suggested the use of this number in the study of naval architecture. Hence

Froude number, Fr = V/(lg)1/2. Therefore, the primary requirement for dynamic

similarity between the prototype and the model involving flow of fluid with

gravity as the dominant force, is the equality of Froude number, Fr, i.e.,

( ) /l g

V

p p

p

1 2

 =
( ) /l g

V

m m

m

1 2

(6.3f)

Dynamic Similarity of Flows with Surface Tension as the Dominant Force Surface

tension forces are important in certain classes of practical problems such as (i)

flows in which capillary waves appear, (ii) flows of small jets and thin sheets of

liquid injected by a nozzle in air (iii) flow of a thin sheet of liquid over a solid

surface. Here the significant parameter for dynamic similarity is the magnitude

ratio of the surface tension force to the inertia force, and can be written with the

help of Eqs (6.2a) and (6.2e) as

r

r

F

F

c

i

 µ s

r

s

r

l

l V V l2 2 2
= (6.3g)

The term s/rV2l is usually known as Weber number, Wb after the German

naval architect Moritz Weber who first suggested the use of this term as a relevant

parameter.
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Dynamic Similarity of Flows with Elastic Force When the compressibility of fluid

in the course of its flow becomes important, the elastic force along with the

pressure and inertia forces has to be considered. Therefore, the magnitude ratio of

inertia to elastic force becomes a relevant parameter for dynamic similarity under

this situation. With the help of Eqs (6.2a) and (6.2f)

Inertia force

Elastic force
 =

r

r

F

F

l V

El

V

E

i

e

µ =
r r2 2

2

2

(6.3h)

The parameter rV2/E is known as Cauchy number, after the French

mathematician A.L. Cauchy. If we consider the flow to be isentropic, then it can

be written
r

r

F

F

i

e

 µ
rV

Es

2

(6.3i)

where Es is the isentropic bulk modulus of elasticity. It is shown  in Chapter 14

that the velocity with which a sound wave propagates through a fluid medium

equals to Es /r . Hence, the term rV
2
/Es can be written as V

2
/ a

2
 where a is the

acoustic velocity in the fluid medium. The ratio V/a is known as Mach number,

Ma after an Austrian physicist Earnst Mach. It has been shown in Chapter 1

[Eq. (1.12)] that the effects of compressibility become important when the Mach

number exceeds 0.33. The situation arises in the flow of air past high-speed

aircraft, missiles, propellers and rotory compressors. In these cases equality of

Mach number is a condition for dynamic similarity.

Therefore, Vp/ap = Vm /am (6.3j)

It is appropriate at this point to summarize the ratios of forces arising in the

context of dynamic similarity for different situations of flow as discussed above.

This is shown in Table 6.1.

Table 6.1

Pertinent dimensionless Representative Name Recommended

term as the criterion of magnitude symbol

dynamic similarity in ratio of the

different situations forces

of fluid flow

rlV/m
Inertia force

Viscous force
Reynolds number Re

D p/rV2 Pressure force

Inertia force
Euler number Eu

(Contd.)
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Pertinent dimensionless Representative Name Recommended

term as the criterion of magnitude symbol

dynamic similarity in ratio of the

different situations forces

of fluid flow

V/(lg)1/2 Inertia force

Gravity force
Froude number Fr

s/rV2l
Surface tension force

Inertia force
Weber number Wb

V/ Es /r
Inertia force

Elastic force
Mach number Ma

6.3 THE APPLICATION OF DYNAMIC SIMILARITY�
DIMENSIONAL ANALYSIS

we have already seen that a number of dimensionless parameters, representing

the magnitude ratios of certain physical variables, namely, geometrical

dimension, velocity and force become the criteria of complete physical similarity

between systems governed by the same physical phenomenon. Therefore, a

physical problem may be characterised by a group of dimensionless similarity

parameters or variables rather than by the original dimensional variables. This

gives a clue to the reduction in the number of parameters requiring separate

consideration in an experimental investigation. For an example, if the Reynolds

number Re = rVDh/m is considered as the independent variable, in case of a flow

of fluid through a closed duct of hydraulic diameter Dh, then a change in Re may

be caused through a change in flow velocity V only. Thus a range of Re can be

covered simply by the variation in V without varying other independent

dimensional variables r, Dh and m. In fact, the variation in the Reynolds number

physically implies the variation in any of the dimensional parameters defining it,

though the change in Re, may be obtained through the variation in any one

parameter, say the velocity V. A number of such dimensionless parameters in

relation to dynamic similarity are shown in Table 6.1. Sometimes it becomes

difficult to derive these parameters straight forward from an estimation of the

representative order of magnitudes of the forces involved. An alternative method

of determining these dimensionless parameters by a mathematical technique is

known as dimensional analysis. The requirement of dimensional homogeneity

imposes conditions on the quantities involved in a physical problem, and these

restrictions, placed in the form of an algebraic function by the requirement of

dimensional homogeneity, play the central role in dimensional analysis. There are

two existing approaches; one due to Buckingham and the other due to Rayleigh.

Before going to the description of these two methods, a few examples of the

dimensions of physical quantities are given as follows.
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6.3.1 Dimensions of Physical Quantities

All physical quantities are expressed by magnitudes and units. For example, the

velocity and acceleration of a fluid particle are 8 m/s and 10 m/s2 respectively.

Here the dimensions of velocity and acceleration are ms�1 and ms�2 respectively.

In SI (System International) units, the primary physical quantities which are

assigned base dimensions are the mass, length, time, temperature, current and

luminous intensity. Of these, the first four are used in fluid mechanics and they

are symbolized as M (mass), L (length), T (time), and q (temperature).

Any physical quantity can be expressed in terms of these primary quantities by

using the basic mathematical definition of the quantity. The resulting expression

is known as the dimension of the quantity. For an example, shear stress t is

defined as force/area. Again, force = mass ¥ acceleration

Dimensions of acceleration = Dimensions of velocity/Dimension of time.

=
Dimension of distance

(Dimension of time)2

=
L

T 2

Dimension of area = (Length)
2
 = L

2

Hence, dimensions of shear stress t = ML/T2L2 = ML�1T �2 (6.4)

To find out the dimension of viscosity, as another example, one has to consider

Newton�s law (Eq. 1.1) for the definition of viscosity as

t = m du/dy

or m = t
( /d d )u y

The dimension of velocity gradient du/dy can be written as

dimension of du/dy = dimension of u/dimension of y = L/TL = T
�1

The dimenison of shear stress t is given in Eq. (6.4).

Hence dimension of m =
dimension of

dimension of d /d

t

u y
 = 

ML T

T

�1 � 2

�1

= ML�1T�1

Dimensions of various physical quantities commonly encountered in problems

on fluid flow are given in Table 6.2.

Table  6.2 Dimensions of Physical Quantities

Physical Quantity Dimension

Mass M

Length L

Time T

Temperature q

(Contd.)
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Physical Quantity Dimension

Velocity LT �1

Angular velocity T �1

Acceleration LT �2

Angular acceleration T �2

Force, thrust, weight MLT �2

Stress, pressure ML�1T �2

Momentum MLT �1

Angular momentum ML2T �1

Moment, torque ML2T �2

Work, energy ML2T �2

Power ML2T �3

Stream function L2T �1

Vorticity, shear rate T �1

Velocity potential L2T �1

Density ML�3

Coefficient of dynamic viscosity ML�1T �1

Coefficient of kinematic viscosity L2T �1

Surface tension MT �2

Bulk modulus of elasticity ML�1T �2

6.3.2 Buckingham�s Pi-Theorem

When a physical phenomenon is described by m number of independent variables

like x1, x2, x3, ... xm, we may express the phenomenon analytically by an implicit

functional relationship of the controlling variables as

f (x1, x2, x3, .., xm) = 0 (6.5)

Now if n be the number of fundamental dimensions like mass, length, time,

temperature etc., involved in these m variables, then according to Buckingham�s

p theorem, the phenomenon can be described in terms of (m � n) independent

dimensionless groups like p1, p2, ... pm�n, where p terms, representing the dimen-

sionless parameters consist of different combinations of a number of dimensional

variables out of the m independent variables defining the problem. Therefore, the

analytical version of the phenomenon given by Eq. (6.5) can be reduced to

F(p1, p2, ... pm�n) = 0 (6.6)

This physically implies that the phenomenon which is basically described by

m independent dimensional variables, is ultimately controlled by (m�n)

independent dimensionless parameters known as p terms.

Alternative Mathematical Description of (ppppp) Pi Theorem A physical problem

described by m number of variables involving n number of fundamental

dimensions (n < m) leads to a system of n linear algebraic equations with m

variables of the form
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a11x1 + a12 x2 + . . . a1m xm = b1

a21x1 + a22 x2 + . . . a2mxm = b2

....................................................
an1x1 + an2x2 + . . . anmxm = bn (6.7)

or in a matrix form,
Ax = b (6.8)

where A =

11 12 1

21 22 2

1 2

m

m

n n nm

a a a

a a a

a a a

È ˘
Í ˙
Í ˙
Í ˙Î ˚

L

L

L

X =

1

2

.

m

x

x

x

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

and b = 

1

2

.

m

b

b

b

È ˘
Í ˙
Í ˙
Í ˙
Í ˙
Î ˚

A is referred to as the coefficient matrix of order n ¥ m. The matrix A in

Eq. (6.8) is rectangular and the largest determinant that can be formed will have

the order n (n < m). If any matrix C has at least one determinant of order r which

is different from zero and no nonzero determinant of order greater than r, then the

matrix C is said to be of rank r which is expressed as

R(C) = r

To seek the condition for the solution of the system of linear equations as

described above, it is required to define the augmented matrix B as

B =

11 12 1 1

21 22 2 2

1 2

m

m

n n nm m

a a a b

a a a b

a a a b

È ˘
Í ˙
Í ˙
Í ˙
Î ˚

L

L

L

Three possible cases arise in relation to the solution of the system of linear

Eq. (6.8)

(i) R(A) < R(B) : In this case no solution exists.

(ii) R(A) = R(B) = r = m: In this case a unique solution exists.

(iii) R(A) = R(B) = r < m: In this case an infinite number of solutions with

m � r arbitrary unknowns exist

From the above mathematical reasoning, Pi theorem can be stated in the

following fashion: If a physical problem is defined by m variables involving n

fundamental dimensions, then the Eq. (6.5) defining the relation amongst the

variables is equivalent to

F(p1 p2 ... pm�r) = 0

where p1, p2 ... pm � r are the dimensionless numbers formed by the different

combinations out of the variables x1 x2 ... xm, and r is the rank of the augmented

matrix B as defined above. For a physical system, r usually becomes equal to n.
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Determination of ppppp terms The number of independent p terms is fixed by the Pi

theorem. The next step is the determination of p terms as follows:

Any group of n (n = number of fundamental dimensions) variables out of

m (m = total number of independent variables defining the problem) is first

chosen. These n variables are referred to as repeating variables. Then the p terms

are formed by the product of these repeating variables raised to arbitrary unknown

integer exponents and any one of the excluded (m � n) variables. For example, x1

x2 ... xn are taken as the repeating variables. Then,

p1 = x
a
1

1  x
a
2

2  . . . xn
an  xn+1

p2 = x
a
1

1  x2
a2 . . . xn

an  xn+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p m� n = x
a
1

1
 x 2

a 2 .. . xn
an  xm

The sets of integer exponents a1 a2 ... an are different for each p term. Since p
terms are dimensionless, it requires that if all the variables in any p term are

expressed in terms of their fundamental dimensions, the exponent of all the basic

dimensions must be zero. This leads to a system of n linear equations in a1 a2 ... an

which gives a unique solution for the exponents. Thus the values of a1 a2 ... an for

each p term are known and hence the p terms are uniquely defined. In selecting

the repeating variables, the following points have to be considered:

(i) The repeating variables must include among them all the n

fundamental dimensions, not necessarily in each one but collectively.

(ii) The dependent variable or the output parameter of the physical

phenomenon should not be included in the repeating variables.

It has already been recognised that when m < n, there is no solution which

means no physical phenomenon is described under this situation. Moreover, when

m = n, there is a unique solution of the variables involved and hence all the

parameters have fixed values. This situation also does not represent a physical

phenomenon or process. Therefore all feasible phenomena in paractice are

defined with m > n. When m = n + 1, then, according to the Pi theorem, the

number of p term is one and the phenomenon can be expressed as

f(p1) = 0

where, the non-dimensional term p1 is some specific combination of n+1

variables involved in the problem.

When m > n+1, the number of p terms are more than one. The most important

point to discuss is that a number of choices regarding the repeating variables arise

in this case. Again, it is true that if one of the repeating variables is changed, it

results in a different set of p terms. Therefore the interesting question is which set

of repeating variables is to be chosen, to arrive at the correct set of p terms to

describe the problem. The answer to this question lies in the fact that different

sets of p terms resulting from the use of different sets of repeating variables are
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not independent. Thus, any one of such interdependent sets is meaningful in

describing the same physical phenomenon.

From any set of such p terms, one can obtain the other meaningful sets from

some combination of the p terms of the existing set without altering their total

numbers (m�n) as fixed by the Pi theorem. The following two examples will

make the understanding of Buckingham�s Pi theorem clear.

Example 1 The vertical displacement h of a freely falling body from its point

of projection at any time t is determined by the acceleration due to gravity g. Find

the relationship of h with t and g by the use of Buckingham�s Pi theorem.

Solution The above phenomenon can be described by the functional relation as

F(h, t, g) = 0 (6.9)

Here the number of variables m = 3 (h, t, and g) and they can be expressed in

terms of two fundamental dimensions L and T. Hence, the number of p terms

= m � n = 3 � 2 = 1. In determining this p term, the number of repeating variables

to be taken is 2. Since h is the dependent variable, the only choice left for the

repeating variables is with t and g.

Therefore,
p1 = t a gbh (6.10)

By substituting the fundamental dimensions of the variables in the left and right

hand sides of Eq. (6.10) we get

L
0
T

0
 = T

a
 (LT

�2
)
b
L

Equating the exponents of T and L on both the sides of the above equation we

have

a � 2b = 0

and b + 1 = 0

which give,
a = �2

b = �1
Hence, p1 = h/gt2

Therefore the functional relationship (Eq. (6.9)) of the variables describing

the phenomenon of free fall of a body under gravity can be written in terms of the

dimensionless parameter (p1) as

f 
2

h

gt

Ê ˆ
Á ˜Ë ¯

 = 0 (6.11)

From elementary classical mechanics we know that 
h

gt
2

1

2
= . One should know,

in this context, that the Pi theorem can only determine the pertinent dimensionless

groups describing the problem but not the exact functional relationship between

them.
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Example 2 For a steady, fully developed laminar flow through a duct, the

pressure drop per unit length of the duct D p/l is constant in the direction of flow

and depends on the average flow velocity V, the hydraulic diameter of the duct

Dh, the density r and the viscosity m of the fluid. Find out the pertinent

dimensionless groups governing the problem by the use of Buckingham�s p
theorem.

Solution The variables involved in the problem are

D p

l
, V, Dh, r, m

Hence, m = 5.

The fundamental dimensions in which these five variables can be expressed are

M (mass), L (length) and Time (T). Therefore, n = 3. According to Pi theorem, the

number of independent p terms is (5�3) = 2, and the problem can be expressed as,

f (p1 p2) = 0 (6.12)

In determining p1 and p2, the number of repeating variables that can be taken is 3.

The term D p/l being the dependent variable should not be taken as the repeating

one. Therefore, choices are left with V, Dh, r and m. Incidentally any combination

of three out of these four quantities involves all the fundamental dimensions M,

L and T. Hence any one of the following four possible sets of repeating variables

can be used:

V, Dh, r
V, Dh, m
Dh, r, m
V, r, m

Let us first use the set V, Dh and r. Then the p terms can be written as

p1 = V a Dh
b rc Dp/ l (6.13)

p2 = V a Dh
b rc m (6.14)

Expressing the Eqs. (6.13) and (6.14) in terms of the fundamental dimensions

of the variables, we get

M0L0T0 = (LT�1)a (L)b (ML�3)c ML�2T�2 (6.15)

M0L0T0 = (LT�1)a (L)b (ML�3)c ML�1T�1 (6.16)

Equating the exponents of M, L and T on both sides of Eq. (6.15) we have,

c + 1 = 0

a + b � 3c � 2 = 0

� a � 2 = 0

which give a = �2, b = 1 and c = �1

Therefore p1 =
D p D

l V

h

r 2

Similarly from Eq. (6.16)

c + 1 = 0
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a + b � 3c � 1 = 0

� a � 1 = 0

which give a = �1, b = �1, and c = �1

Therefore p2 =
m

rVDh

Hence, Eq. (6.12) can be written as

F 
2

,h

h

pD

VDl V

m

rr

Ê ˆD
Á ˜Ë ¯

 = 0 (6.17)

The term p2 is the reciprocal of Reynolds number, Re as defined earlier.Equation

(6.17) can also be expressed as

f 2
,h hpD VD

l V

r

mr

Ê ˆD
Á ˜Ë ¯  = 0 (6.18)

or
D pD

l V

h

r 2
 = f (Re) (6.19)

The term p1, i.e. 
D pD

l V

h

r 2
 is known as the friction factor in relation to a fully

developed flow through a closed duct.

Let us now choose V, Dh and m as the repeating variables.

Then

p1 = V a Dh
b mc (Dp/l) (6.20)

p2 = V a Dh
b mc r (6.21)

Expressing the right hand side of Eq. (6.20) in terms of fundamental

dimensions, we have

M0L0T0 = (LT�1)aLb (ML�1T�1)c ML�2T�2

Equating the exponents of M, L and T from above

c + 1 = 0

a + b � c � 2 = 0

� a � c � 2 = 0

Finally, a = �1, b = 2, c = �1

Therefore, p1 =
D p

l

D

V

h
2

m

Similarly, equating the exponents of fundamental dimensions of the variables on

both sides of Eq. (6.21) we get

a = 1, b = 1, c = �1

Therefore, p2 =
r

m

VDh

Hence the same problem which was defined by Eq. (6.17) can also be defined

by the equation
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f

2

,h hD VDp

l V

r

m m

Ê ˆD
Á ˜Ë ¯

 = 0 (6.22)

Though the Eqs (6.17) and (6.22) are not identical, but they are interdependent.

Now if we write the two sets of p terms obtained straight forward from the

application of p theorem as

p1 p2

Set 1
DpD

l V

h

r 2
,

m

r VDh

Set 2
D p D

l V

h
2

m
,

r

m

VDh

We observe that

(1/p2) of set 2 = (p2) of set 1

and (p1/p2) of set 2 = (p1) of set 1

Therefore, it can be concluded that, from one set of p terms, one can obtain the

other set by some combination of the p terms of the existing set. It is justified both

mathematically and physically that the functional relationship of p terms

representing a problem in the form

f (p1, p2, ... pr) = 0

is equivalent to any implicit functional relationship between other p terms

obtained from any arbitrary mathematical combination of p terms of the existing

set, provided the total number of independent p terms remains the same. For

exampe, Eq. (6.22) and Eq. (6.17) can be defined in terms of p parameters of the

set 2 as

f (p1, p2) = 0

and F(p1/p2, 1/p2) = 0 respectively

Table 6.3 shows different mutually interdependent sets of p terms obtained

from all possible combinations of the repeating variables of Example 2. Though

the different sets of p terms as shown in column 2 of Table 6.3 are mathematically

meaningful, many of them lack physical significance. The physically meaningful

parameters of the problem are Dp Dh/l rV2 are rVDh/m and are known as friction

factor and Reynolds number respectively. Therefore while selecting the repeating

variables, for a fluid flow problem, it is desirable to choose one variable with

geometric characteristics, another variable with flow characteristics and yet

another variable with fluid properties. This ensures that the dimensionless

parameters obtained will be the meaningful ones with respect to their physical

interpretations.
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Table 6.3 Different Sets of p Terms Resulting from Different Combinations of

Repeating Variables of a Pipe Flow Problem

Repeating Set of p Terms Functional Relation

Variables p1 p2

V, Dh, r
D p D

l V

h

r 2

m

r VDh

F
2

,h

h

p D

VDl V

m

rr

Ê ˆD
Á ˜Ë ¯

 = 0

V, Dh, m
D p D

lV

h
2

m

r

m

VDh f
2

,h hp D VD

lV

r

m m

Ê ˆD
Á ˜Ë ¯

 = 0

Dh, r, m
D p D

l

h
3

2

r

m

r

m

VDh f
3

2
,h hp D VD

l

r r

mm

Ê ˆD
Á ˜Ë ¯

 = 0

V, r, m
D p

lV

m

r3 2

r

m

VDh y
3 2

, hVDp

lV

rm

mr

Ê ˆD
Á ˜Ë ¯

 = 0

The above discussion on Buckingham�s p theorem can be summarized as

follows:

(i) List the m physical quantities involved in a particular problem. Note

the number n, of the fundamental dimensions to express the m

quantities. There will be (m�n) p terms.

(ii) Select n of the m quantities, excluding any dependent variable, none

dimensionless and no two having the same dimensions. All

fundamental dimensions must be included collectively in thequantities

chosen.

(iii) The first p term can be expressed as the product of the chosen

quantities each raised to an unknown exponent and one other quantity.

(iv) Retain the quantities chosen in (ii) as repeating variables and then

choose one of the remaining variables to establish the next p term in a

similar manner as described in (iii). Repeat this procedure for the

successive p terms.

(v) For each p term, solve for the unknown exponents by dimensional

analysis.

(vi) If a  quantity out of m physical variables is dimensionless, it is a p
term.

(vii) If any two physical quantities have the same dimensions, their ratio

will be one of the p terms.

(viii) Any p term may be replaced by the term, raised to an exponent. For

example, p3 may be replaced by p3
2 or p2 by p 2 .

(ix) Any p term may be replaced by multiplying it by a numerical constant.

For example p1 may be replaced by 3 p1.
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6.3.3 Rayleigh�s Indicial Method

This alternative method is also based on the fundamental principle ofdimensional

homogeneity of physical variables involved in a problem. Here the dependent

variable is expressed as a product of all the independent variables raised to an

unknown integer exponent. Equating the indices of n fundamental dimensions of

the variables involved, n independent equations are obtained which are solved

for the purpose of obtaining the dimensionless groups. Let us illustrate this method

by solving the pipe flow problem in Example 2. Here, the dependent variable

Dp/l can be written as

D p

l
 = A V a Dh

b rc md (6.23)

where, A is a dimensionless constant.

Inserting the dimensions of each variable in the above equation, we obtain,

M L�2 T�2 = A (LT�1)a (L)b (ML�3)c (ML�1T�1)d

Equating the indices of M, L, and T on both sides, we get,

c + d = 1

a + b � 3c � d = � 2

� a � d = � 2 (6.24)

There are three equations and four unknowns. Solving these equations in terms

of the unknown d, we have

a = 2 � d

b = � d � 1

c = 1 � d

Hence, Eq. (6.23) can be written as

D p

l
 = A V 2� d Dh

�d�1 r1�d md

or
D p

l
 =

2 d

h h

AV

D VD

r m

r

Ê ˆ
Á ˜Ë ¯

or
D pD

l V

h

r 2
 = A

d

hVD

m

r

Ê ˆ
Á ˜Ë ¯

(6.25)

Therefore we see that there are two independent dimensionless terms of the

problem, namely,

D pD

l V VD

h

hr

m

r2
and

It should be mentioned in this context that both Buckingham�s method and

Rayleigh�s method of dimensional analysis determine only the relevant

independent dimensionless parameters of a problem, but not the exact relationship

between them. For example, the numerical values of A and d in the Eq. (6.25) can

never be known from dimensional analysis. They are found out from experiments.

If the system of Eq. (6.24) is solved for the unknown c, it results,
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D p

l

D

V

h
2

m
 = A 

r
m

VDh
cF

H
I
K

Therefore different interdependent sets of dimensionless terms are obtainedwith

the change of unknown indices in terms of which the set of indicial equations are

solved. This is similar to the situations arising with different possible choices of

repeating variables in Buckingham�s Pi theorem.

Summary

∑ Physical similarities are always sought between the problems of same

physics. The complete physical similarity requires geometric

similarity, kinematic similarity and dynamic similarity to exist

simultaneously.

∑ In geometric similarity, the ratios of the corresponding geometrical

dimensions between the systems remain the same. In kinematic

similarity, the ratios of corresponding motions and in dynamic

similarity, the ratios of corresponding forces between the systems

remain the same.

∑ For prediction of the performance characteristics of actual systems in

practice from the results of model scale experiments in laboratories,

complete physical similarity has to be achieved between the prototype

and the model.

∑ Dimensional homogeneity of physical quantities implies that the

number of dimensionless independent variables are smaller as

compared to the number of their dimensional counterparts to describe

a physical phenomenon. The dimensionless variables represent the

criteria of similarity. Buckingham�s p theorem states that if a physical

problem is described by m dimensional variables which can be

expressed by n fundamental dimensions, then the number of

independent dimensionless variables defining the problem will be m �

n. These dimensionless variables are known as p terms. The

independent p terms of a physical problem are determined either by

Buckingham�s p theorem or by Rayleigh�s indicial method.

Solved Examples

Example 6.1 Drag force F on a high speed air craft depends on the velocity of flight

V, the characteristic geometrical dimension of the air craft l, the density r, viscosity m and

isentropic bulk modulus of elasticity Es of ambient air. Using Buckingham�s p theorem,

find out the independent dimensionless quantities which describe the phenomenon of

drag on the aircraft.
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Solution The physical variables involved in the problem are F, V, l, r, m and Es. and

they are 6 in number. The fundamental dimensions involved with these variables are 3 in

number and they are, namely, M, L, T. Therefore, according to the p theorem, the number

of independent p terms are (6 � 3) = 3.

Now to determine these p terms, V, l and r are chosen as the repeating variables. Then

the p terms can be written as

p1 = Va lb rc F

p2 = V a lb rc m

p3 = V
a
 l

b
 rc

 Es

The variables of the above equations can be expressed in terms of their fundamental

dimensions as

M
0
L

0
T

0
 = (LT

�1
)

a
 L

b
 (ML

�3
)
c
 MLT

�2
(6.26)

M
0
L

0
T

0
 = (LT

�1
)

a
 L

b
 (ML

�3
)

c
 ML

�1
T

�1
(6.27)

M0L0T0 = (LT�1)aLb (ML�3)c ML�1T�2 (6.28)

Equating the exponents of M, L and T on both sides of the equations we have,

from Eq. (6.26),

c + 1 = 0

a + b � 3c + 1 = 0

� a � 2 = 0

which, give, a = � 2, b = � 2, and c = � 1

Therefore, p1 =
F

V lr 2 2

From Eq. (6.27), c + 1 = 0

a + b �3c �1 = 0

� a � 1 = 0

which give, a = �1, b = �1 and c = �1

Therefore, p2 =
m

rVl

From Eq. (6.28), c + 1 = 0

a + b �3c � 1 = 0

� a � 2 = 0

which give a = � 2, b = 0 and c = � 1

Therefore p3 =
E

V

s
2r

=
E

V

s /r
2

Hence, the independent dimensionless parameters describing the problem are

p1 =
F

V lr 2 2 p2 = 
m

rVl
and p3 = 

E

V

s /r
2
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Now we see that 1

2p
 =

r
m
Vl

 = Re (Reynolds number)

and 1

3p
 = V

E

V
a

s /r
=  = Ma (Mach number)

where a is the local speed of sound.

Therefore the problem of drag on an aircraft can be expressed by an implicit functional

relationship of the pertinent dimensionless parameters as

f 
F

V l

Vl V
ar

r
m2 2

, ,
F
HG

I
KJ

 = 0

or
F

V lr 2 2  = f
r
m
Vl V

a
,

F
H

I
K  (6.29)

The term F/rV
2
l
2
 is known as drag coefficient CD. Hence Eq. (6.29) can be written as

CD = f (Re, Ma)

Example 6.2 An aircraft is to fly at a height of 9 km (where the temperature and

pressure are � 45°C and 30.2 kPa respectively) at 400 m/s. A 1/20th scale model is tested

in a pressurized wind-tunnel in which the air is at 15 °C. For complete dynamic simi-

larity what pressure and velocity should be used in the wind-tunnel? (For air, m µ T 3/2
/(T

+ 117), Es = g p, p = rRT where the temperature T is in kelvin, g is the ratio of specific

heats).

Solution We find from Eq. (6.29) that for complete dynamic similarity the Reynolds

number, Re and Mach number, Ma for the model must be the same with those of the

prototype.

From the equality of Mach number Ma,

V

a
m

m
 =

V

a
p

p

or Vm = V
a
ap

m

p

= V
E

Ep
s m

s p

m

p

r

r

(subscripts m and p refer to the model and prototype respectively.)

= V
p

pp
m

p

p

m

g
g

r

r
◊

(since a = Es r , and E = g p)

again from the equation of state,

p

p
m

m

p

pr

r
 =

T
T

m

p
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Hence, Vm = V
T

Tp
m

p

= 400 m/s 
( . )
( . )
273 15 15
273 15 45

+
-

= 450 m/s

From the equality of Reynolds number,

r

m
m m m

m

V l
 =

r

m

p p p

p

V l

or
r

r
m

p

 =
V

V

l

l

p

m

p

m

m

p

◊ ◊
m

m

or
p

p

m

p

 =
V

V

l

l

T

T

p

m

p

m

m

p

m

p

◊ ◊ ,
m

m

=
V

V

l

l

T

T

T

T
p

m

p

m

m

p

p

m
◊

L
NM

O
QP

+
+

L
NM

O
QP

5 2
117

117

/

[since m µ T
3/2

 / (T + 117)]

Therefore pm = 30.2 kPa 
400
450

20
273 15 15
273 15 45

273 15 45 117
273 15 15 117

5 2

e j ( )
.
.

.

.

/+
-

F
H

I
K

- +
+ +

F
H

I
K

= 821 kPa

Example 6.3 An agitator of diameter D requires power P to rotate at a constant

speed N in a liquid of density r and viscosity m (i) show with the help of Pi theorem that

P = r N3 D5 F(r N D2/m)

(ii) An agitator of 225 mm diameter rotating at 23 rev/s in water requires a driving torque

of 1.1 Nm. Calculate the corresponding speed and the torque required to drive a similar

agitator of 675 mm diameter rotating in air (Viscosities: air 1.86 ¥ 10
�5

 Pa s, water 1.01

¥ 10
�3

 Pa s. Densities: air 1.20 kg/m
3
, water 1000 kg/m

3
).

Solution (i) The problem is described by 5 variables as

F (P, N, D, r, m) = 0

These variables are expressed by 3 fundamental dimensions M, L, and T. Therefore,

the number of p terms = (5 � 3) = 2. N, D, and r are taken as the repeating variables in

determining the p terms.

Then, p1 = Na Db rc P (6.30)

p2 = Na Db rc m (6.31)

Substituting the variables of Eq. (6.30) and (6.31) in terms of their fundamental

dimensions M, L and T we get,

M0 L0 T0 = (T�1)a (L)b (ML�3)c ML2 T�3 (6.32)

M0 L0 T0 = (T�1)a (L)b (ML�3)c ML�1 T�1 (6.33)
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Equating the exponents of M, L and T from Eq. (6.32), we get
c + 1 = 0

b � 3c + 2 = 0

� a � 3 = 0

which give a = � 3, b = � 5, c = � 1

and hence p1 =
P

N Dr 3 5

Similarly from equation (6.33)

c + 1 = 0

b � 3c � 1 = 0

� a � 1 = 0

which give a = � 1 , b = � 2, c = � 1

and hence p2 =
m

rND
2

Therefore, the problem can be expressed in terms of independent dimensionless

parameters as

f P

N D NDr

m

r3 5 2
,

F
HG

I
KJ

 = 0

which is equivalent to

y
r

r
m

P

N D

ND
3 5

2

,
F
HG

I
KJ

 = 0

or
P

N Dr 3 5
 = F

NDr
m

2F
HG

I
KJ

or P = rN3D5 F
NDr
m

2F
HG

I
KJ

(ii) D1 = 225 mm D2 = 675 mm

N1 = 23 rev/s N2 = ?

r1 = 1000 kg/m3 r2 = 1.20 kg/m3

m1 = 1.01 ¥ 10�3 Pas m2 = 1.86 ¥ 10�5 Pas

P1 = 2p ¥ 23 ¥ 1.1 W P2 = ?

From the condition of similarity as established above,

r
m

2 2 2
2

2

N D
 =

r
m

1 1 1
2

1

N D

N2 = N
D

D1
1

2

2
1

2

2

1

F
H

I
K

r
r

m
m

= 23 rev/s 
225
675

1000
1 20

1 86 10

1 01 10

2 5

3e j .
.

.

¥
¥

-

-

= 39.22 rev/s
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again,
P

N D

2

2 2
3

2
5r

 =
P

N D

1

1 1
3

1
5r

or
P

P
2

1
 =

D
D

N
N

2

1

5
2

1

3
2

1

F
H

I
K

F
H

I
K

r
r

or
T

T
2

1
 =

D
D

N
N

2

1

5
2

1

2
2

1

F
H

I
K

F
H

I
K

r
r

where, T represents the torque and satisfies the relation P = 2 pNT

Hence T2 = T
D

D

N

N1
2

1

5
2

1

2
2

1

F
H

I
K

F
H

I
K

r
r

= 1.1 Nm 
675
225

39 22
23

1 20
1000

5 2

e j . .F
H

I
K

= 0.933 Nm

Example 6.4 A torpedo-shaped object 900 mm diameter is to move in air at

60 m/s and its drag is to be estimated from tests in water on a half scale model. Determine

the necessary speed of the model and the drag of the full scale object if that of the model

is 1140 N. (fluid properties are same as in Example 6.3 (ii)).

Solution The dimensionless parameters representing the criteria of similarity, have to

be determined first.

The drag force F on the object depends upon its velocity V, diameter D, the density r and

viscosity m of air. Now we use Buckhingham�s p theorem to find the dimensionless

parameters. The five variables F, V, D, r and m are expressed by three fundamental

dimensions M, L and T. Therefore the number of p terms is (5 � 3) = 2

We choose V, D and r as the repeating variables

Then, p1 = V
a
 D

b
 rc

 F

p2 = V
a
 D

b
 rc

 m

Expressing the variables in the equations above in terms of  their fundamental dimensions,

we have

M
0
 L

0
 T

0
 = (LT

�1
)

a
 L

b
 (ML

�3
)
c
 MLT

�2
(6.34)

M
0
 L

0
 T

0
 = (LT

�1
)

a
 L

b
 (ML

�3
)
c
 ML

�1
 T

�1
(6.35)

Equating the exponents of M, L and  T on both the sides of the above equations, we get a

= �2, b = �2, c = �1 from Eq. (6.34), and a = � 1, b = � 1, c = � 1 from Eq. (6.35)

Hence, p1 =
F

V Dr 2 2
and p2 = 

m
rV D

The problem can now be expressed mathematically as

f F

V D

V D

r

r
m2 2

,
F
HG

I
KJ

 = 0
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or F

V D

V D

r
f

r
m2 2

= F
H

I
K (6.36)

For dynamic similarity, the Reynolds numbers (rVD/m) of both the model and prototype

have to be same so that drag force F of the model and prototype can be compared from the

p1 term which is known as the drag coefficient. Therefore, we can write

r
m

m m m

m

V D
 =

r

m
p p p

p

V D

(subscripts m and p refer to the model and prototype respectively)

or Vm = Vp 
D

D
p

m

p

m

m

p

F
HG

I
KJ

F
HG

I
KJ

F
HG

I
KJ

r

r
m
m

Here
D
D

m

p
 = 1

2

Hence Vm = 60 ¥ (2) ¥ 
1 20
1000

1 01 10

1 86 10

3

5

. .

.

F
H

I
K

¥
¥

F
HG

I
KJ

-

-

= 7.82 m/s

At the same value of Re, we can write from Eq. (6.36)

F

V D

p

p p pr 2 2
 =

F

V D

m

m m mr 2 2

or Fp = Fm 
D

D

V

V
p

m

p

m

p

m

F
HG

I
KJ

F
HG

I
KJ

F
HG

I
KJ

2 2
r

r

= 1140 (4) 
60

7 82
1 20
1000

2

.
.F

H
I
K

F
H

I
K N

= 322 N

Example 6.5 A fully developed laminar incompressible flow between two flat

plates with one plate moving with a uniform velocity U with respect to other is known as

Couette flow. In a Couette flow, the velocity u at a point depends on its location y (meas-

ured perpendicularly from one of the plates), the distance of separation h between the

plates, the relative velocity U between the plates, the pressures gradient dp/dx imposed

on the flow, and the viscosity m of the fluid. Find a relation in dimensionless form to

express u in terms of the independent variables as described above.

Solution The Buckingham�s p theorem is used for this purpose. The variables

describing a Couette flow are u, U, y h, dp/dx and m. Therefore, m (the total no. of

variables) = 6.

n (the number of fundamental dimensions in which the six variables are expressed) =

3 (M, L and T)

Hence no. of independent p terms is 6 � 3 = 3

To determine these p terms, U, h and m are taken as repeating variables. Then

p1 = U
a
 h

b
 mc

 u
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p2 = U
a
 h

b
 mc

 y

p3 = Ua hb mc dp/dx

The above three equations can be expressed in terms of the fundamental dimensions

of each variable as

M0L0T0 = (LT�1)a (L)b (ML�1T�1)c LT�1 (6.37)

M
0
L

0
T

0
 = (LT

�1
)

a
 (L)

b
 (ML

�1
T

�1
)

c
L (6.38)

M
0
L

0
T

0
 = (LT

�1
)

a
 (L)

b
 (ML

�1
T

�1
)
c
 ML

�2
T

�2
(6.39)

Equating the exponents of M, L and T on both sides of the above equations we get

the following:

From Eq. (6.37): c = 0

a + b � c + 1 = 0

� a � c �1 = 0

which give a = �1, b = 0 and c = 0

Therefore p1 =
u
U

From equation (6.38): c = 0

a + b � c +1 = 0

� c � a = 0

which give a = 0, b = �1 and c = 0

Therefore p2 =
y
h

It is known from one of the corolaries of the p theorem, as discussed earlier, that if any

two physical quantities defining a problem have the same dimensions, the ratio of the

quantities is a p term. Therefore, there is no need of evaluating the terms p1 and p2

through a routine application of p theorem as done here; instead they can be written

straight forward as p1 = u/U and p2 = y/h.

From Eq. (6.39)

c + 1 = 0

a + b � c � 2 = 0

� a � c � 2 = 0

which give a = �1, b = 2 and c = �1

Therefore p3 =
h
U

p
x

2

m
d
d

Hence, the governing relation amongst the different variables of a couette flow in

dimensionless form is

f u
U

y
h

h
U

p
x

, ,
2

m
d
d

F
HG

I
KJ  = 0

or u
U

 = F
y
h

h
U

p
x

,
2

m
d
d

F
HG

I
KJ (6.40)

It is interesting to note, in this context, that from the exact solution of Navier Stokes

equation, the expression of velocity profile in case of a couette f low has been derived in

Chapter 8 (Sec. 8.4.2) and is given by Eq. (8.39) as
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u
U

 = y/h � h
U

p
x

y
h

y
h

2

2
1

m
d
d

F
HG

I
KJ -F

H
I
K

However, p theorem can never determine this explicit functional form of the relation

between the variables.

Example 6.6 A 1/30 model of a ship with 900 m
2
 wetted area, towed in water at 2

m/s, experiences a resistance of 20 N. Calculate,

(a) the corresponding speed of the ship,

(b) the wave making drag on the ship,

(c) the skin-friction drag if the skin-drag coefficient for the model is 0.004 and

for the prototype 0.015,

(d) the total drag on the ship, and

(e) the power to propel the ship.

Solution First of all we should identify the pertinent dimensionless parameters that

describe the ship resistance problem. For this we have to physically define the problem

as follows:

The total drag force F on a ship depends on ship velocity V, its characteristic

geometrical length l, acceleration due to gravity g, and density r and viscosity m of the

fluid. Therefore, the total number of variables which describe the problem = 6 and the

number of fundamental dimensions involved with the variables = 3.

Hence, according to the p theorem, number of independent

p terms = 6 � 3 = 3

V, l and r are chosen as the repeating variables.

Then p1 = Va lb rc F

p2 = V
a
 l

b
 rc

 g

p3 = V
a
 l

b
 rc

 m

Expressing the p terms by the dimensional formula of the variables involved we can

write

M0 L0 T0 = (LT�1)a (L)b (ML�3)c (MLT�2) (6.41)

M0 L0 T0 = (LT�1)a (L)b (ML�3)c (LT�2) (6.42)

M
0
L

0
T

0
 = (LT

�1
)

a
 (L)

b
 (ML

�3
)
c
 (ML

�1
T

�1
) (6.43)

Equating the exponents of the fundamental dimensions on both sides of the above

equations we have

From Eq. (6.41):

c + 1 = 0

a + b � 3c + 1 = 0

� a � 2 = 0

which give a = �2, b = �2 and c = �1

Therefore p1 =
F

V lr 2 2

From Eq. (6.42)

c = 0

a + b � 3c + 1 = 0
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� a � 2 = 0

which give a = � 2, b = 1 and c = 0

Therefore p2 =
lg

V 2

p2 is the reciprocal of the square of the Froude number Fr.

From Eq. (6.43)

c + 1 = 0

a + b � 3c � 1 = 0

� a � 1 = 0

which give, a = �1, b = �1 and c = �1.

Hence

p3 =
m

rV l

which is the reciprocal of the Reynolds number Re. Hence the problem of ship resistance

can be expressed as

f 
F

V l

V
lg

V l

r

r
m2 2

2

, ,
F
HG

I
KJ

 = 0

or F = r f
r

m
V l V

lg
V l2 2

2

,
F
HG

I
KJ (6.44)

Therefore, it is found from Eq. (6.44) that the total resistance depends on both the

Reynolds number and the Froude number. For complete similarity between a prototype

and its model, the Reynolds number must be the same, that is

V lp p p

p

r

m
 =

V lm m m

m

r
m

 (6.45)

and also the Froude number must be the same, that is

V

l g

p

p p( ) /1 2
 =

V

l g

m

m m( )
/1 2

(6.46)

Equation (6.45) gives Vm/Vp = (lp/lm) (nm/np) where, n (kinematic viscosity) = m/r. On the

other hand, Eq. (6.46) gives Vm/Vp = (lm/lp)
1/2  since, in practice, gm cannot be different

from gp. For testing small models these conditions are incompatible. The two conditions

together require (lm/lp)3/2 = nm/np and since both the model and prototype usually operate

in water, this condition for the scale factor cannot be satisfied. There is, in fact, no

practicable liquid which would enable nm to be less than np. Therefore, it concludes that

the similarity of viscous forces (represented by the Reynolds number) and similarity of

gravity forces (represented by the Froude number) cannot be achieved simultaneously

between the model and the prototype.

The way out of the difficulty was suggested by Froude. The assumption is made that

the total resistance is the sum of three distinct parts: (a) the wave-making resistance;

(b) skin friction; and (c) the eddy-making resistance. The part (a) is usually uninfluenced

by viscosity but depends on gravity and is therefore independent of Reynolds number Re.

Part (c), in most cases, is a small portion of the total resistance and varies little with

Reynolds number. Part (b) depends only on the Reynolds number. Therefore it is usual to
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lump (c) together with (a). These assumptions allow us to express the function of Re and

Fr in Eq. (6.44) as the sum of two separate functions, f1 (Re) + f2 (Fr). Now the skin

friction part may be estimated by assuming that it has the same value as that for a flat

plate, with the same length and wetted surface area, which moves end on through the

water at same velocity. Hence, the function f1 (Re) is provided by the empirical

information of drag resistance on such surfaces. Since the part of the resistance which

depends on Reynolds number is separately determined, the test on the model is conducted

at the corresponding velocity which gives equality of Froude number between the model

and the prototype; thus dynamic similarity for the wave-making resistance is obtained.

Therefore, the solution of present problem (Example 6.6) is made as follows:

From the equality of Froude number,

V

l g

m

m

 =
V

l g

p

p

(a) The corresponding speed of the ship Vp = 
l

l
V

p

m
m◊

= 30  ¥ 2 m/s

= 10.95 m/s

Area ratio =
A

A
m

p
= =1

30
1

900

2

e j

Therefore Am (area of the model) = 
900

900
m2

 = 1 m2

(b) If Fw and Fs represent the wave making resistance and skin friction resistance

of the ship respectively, then from the definition of the drag coefficient CD ,

we can write

Fsm
 = 1

2
 rm ¥ V 2

m ¥ Am ¥ CD

= 1
2

 ¥ 1000 ¥ 22 ¥ .004

= 8N

Now the total resistance on the model Fm = Fsm
 + Fwm

Hence Fwm
 = Fm � Fsm

 = 20 � 8 = 12 N

Now from dynamic similarity for wave making resistance

F

V l

w

p p p

p

r 2 2
 =

F

V l

w

m m m

m

r 2 2

or Fwp
 = Fwm

r

r
p

m

p

m

p

m

V

V

l

l

F
HG

I
KJ

F
HG

I
KJ

2 2

= 12 ¥ 1 ¥ 30 ¥ 900 N = 324 kN

(c) Fsp
 (skin friction of the prototype)

= 1
2

 ¥ 1000 ¥ (10.95)2 ¥ 900 ¥ 0.015 N
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= 809.34 kN

(d) Therefore Fp (total drag resistance of the prototype)

= 324 + 809.34 = 1133.34 kN

(e) Propulsive power required = 1133.34 ¥ 10.95 = 12410 kW

= 12.41 MW

Example 6.7 The time period t of a simple pendulum depends on its effective

length l and the local acceleration due to gravity g. Using both Buckingham�s p theorem

and Rayleigh�s indicial method, find the functional relationship between the variables

involved.

Solution Application of Buckingham�s p theorem:

The variables of the problem are t, l and g and the fundamental dimensions involved in

these variables are L (length) and T (time). Therefore the no. of independent p term = (3 �

2) = 1, since t is the dependent variable, the only choice left for the repeating variables to

be l and g.

Hence, p1 = la gb t

Expressing the equation in terms of the fundamental dimensions of the variables we

get L
0
T

0
 = L

a
 (LT

�2
)

b
T. Equating the exponents of L and T on both sides of the equation

we have,
a + b = 0, and �2b + 1 = 0

which give a = � 1
2

, b = 1
2

; and hence p1 = t
g
l

Therefore the required functional relationship between the variables of the problem is

f  t
g
l

F
HG

I
KJ  = 0 (6.47)

Application of Rayleigh�s indicial method:

Since t is the dependent variable, it can be expressed as

t = A la gb (6.48)

where A is a non-dimensional constant. The Eq. (6.48) can be written in terms of the

fundamental dimensions of the variables as

T = ALa (LT�2)b

Equating the exponent of L and T on both sides of the equation, we get, a + b = 0 and

�2b = 1 which give a = 1
2

and b = � 1
2

.

Hence Eq. (6.48) becomes t = A
l
g

or t
g
l

 = A

Therefore it is concluded that the dimensionless governing parameter of the problem

is t
g
l

. From elementary physics, we know that A = 2p.
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Example 6.8 In the study of vortex shedding phenomenon due to the presence

of a bluff body in a flow through a closed duct, the following parameters are found to be

important: velocity of flow V, density of liquid r, coefficient of dynamic viscosity of

liquid m, hydraulic diameter of the duct Dh, the width of the body B and the frequency of

vortex shedding n. Obtain the dimensionless parameters governing the phenomenon.

Solution The problem is described by 6 variables V, r, m, Dh, B, n. The number of

fundamental dimensions in which the variables can be expressed = 3. Therefore, the

number of independent p terms is (6�3) = 3. We use the Buckingham�s p theorem to find

the p terms and choose r, V, Dh as the repeating variables.

Hence, p1 = ra V b Dh
c m

p2 = ra V b Dh
c B

p3 = ra V b Dh
c n

Expressing the equations in terms of the fundamental dimensions of the variables we

have
M

0
L

0
T

0
 = (ML

�3
)

a
 (LT

�1
)
b
 (L)

c
 (ML

�1
T

�1
) (6.49)

M
0
L

0
T

0
 = (ML

�3
)

a
 (LT

�1
)

b
 (L)

c
 L (6.50)

M0L0T0 = (ML�3)a (LT�1)b (L)c T�1 (6.51)

Equating the exponents of M, L and T in the above equations we get, From Eq. (6.49),

a + 1 = 0

�3a + b + c � 1 = 0, � b �1 = 0

which give a = �1, b = �1 and c = �1

Hence, p1 = m/rV Dh

From Eq. (6.50),

a = 0

�3a + b + c + 1 = 0

�b = 0

which give a = b = 0, c = �1

Hence, p2 = B/Dh

From Eq. (6.51),

a = 0

�3a + b + c = 0

�b � 1 = 0

which give a = 0, b = �1, c = 1

Hence p3 = (n Dh)/V

Therefore the governing dimensionless parameters are

r
m

V DhF
H

I
K (= 1/p1) the Reynolds number

B
Dh

(= p2) ratio of the width of the body to hydraulic

diameter of the duct.

n D

V
h (= p3) the Strouhal number

Example 6.9 The capillary rise h of a fluid of density r and surface tension s in a

tube of diameter D depends upon the contact angle f and acceleration due to gravity g.
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Find an expression for h in terms of dimensionless variables by Rayleigh�s indicial

method.

Solution Capillary rise h is the dependent variable of the problem and can be expressed

in terms of the independent variables as,

h = A ra
 s b

 D
c
 g

d f (6.52)

where A is a dimensionless constant.

(f is not raised to any exponent, since it is a dimensionless variable and hence an

independent p term).

Expressing the variables in terms of their fundamental dimensions in above equation

we get,

L = A (ML�3)a (MT�2)b Lc (LT�2)d

Equating the exponents of M, L and T in LHS and RHS of the equation, we have

a + b = 0

�3a + c + d = 1

�2b � 2d = 0

Solving these three equations in terms of a, we get

b = � a

c = 1 + 2a

d = a

Substituting these values in Eq. (6.52), we get

h = A D 
r

s
g D

a
2F

HG
I
KJ

 f

or h
D

 = A 
r

s
g D

a2F
HG

I
KJ

 f

This is the required expression.

Exercises

6.1 Choose the correct answer

(i) The repeating variables in a dimensional analysis should

(a) be equal in number to that of the fundamental dimensions involved in

the problem variables

(b) include the dependent variable

(c) have at least one variable containing all the fundamental dimensions

(d) collectively contain all the fundamental dimensions

(ii) A dimensionless group formed with the variables r (density), w (angular

velocity), m (dynamic viscosity), and D (Characteristic diameter) is

(a) r w m /D
2

(b) r w D
2
/m

(c) m D
2
 r w

(d) r w m D
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(iii) In similitude with gravity force, where equality of Froude number exists,

the acceleration ratio ar becomes

(a) Lr
2

(b) 1.0

(c) 1/Lr

(d) Lr
5/2

(where Lr is the geometrical scale factor)

6.2 Show that, for a flow governed by gravity, inertia and pressure forces, the ratio of

volume flow rates in two dynamically similar systems equals to the 5/2 power of

the length ratio.

6.3 Using the Buckingham�s p theorem, show that the velocity U through a circular

orifice is given by

U = (2gH)
0.5

 f (D/H, rUH/m)

where H is the head causing flow, D is the diameter of the orifice, m is the

coefficient of dynamic viscosity, r is the density of fluid flowing through the

orifice and g is the acceleration due to gravity.

6.4 For rotodynamic fluid machines of a given shape, and handling an

incompressible fluid, the relevant variables involved are D (the rotor diameter),

Q (the volume flow rate through the machine), N (the rotational speed of the

machine), gH (the difference of head across the machine, i.e., energy per unit

mass), r (the density of fluid), m (the dynamic viscosity of the fluid) and P (the

power transferred between fluid and rotor). Show with the help of Buckingham�s

p theorem that the relationship between the variables can be expressed by a

functional form of the pertinent dimensionless parameters as

f (Q/N D
3
, gH/N

2
 D

2
, r N D

2
/m, P/r N

3
 D

5
) = 0

6.5 In a two dimensional motion of a projectile, the range R depends upon the x

component of velocity Vx, the y component of velocity Vy and the acceleration

due to gravity g. Show with the help of Rayleigh�s indicial method of dimensional

analysis that

R =
2

yx

x

VV
f

g V

Ê ˆ
Á ˜Ë ¯

6.6 The boundary layer thickness d at any section for a flow past a flat plate depends

upon the distance x measured along the plate from leading edge to the section,

free stream velocity U and the kinematic viscosity n of the fluid. Show with the

help of Rayleigh�s indicial method of dimensional analysis that

d

x
 µ (Ux/n)

6.7 A high speed liquid sheet in ambient air is disintegrated into drops of liquid due

to hydrodynamic instability. The drop diameter d depends upon the velocity V of

liquid sheet, the thickness h of the liquid sheet, the surface tension coefficient s
of the liquid and density r of ambient air. Show, with the help of both (i)

Buckingham�s p theorem and (ii) Rayleigh�s indicial method, that the functional

relationship amongst the above variables can be expressed as d/h = f (s /r V2 h).

6.8 A model of a reservoir is drained in 4 minutes by opening a sluice gate. The

model scale is 1 : 225. How long should it take to empty the prototype?

Ans. (60 minutes)
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6.9 Evaluate the model scale when both viscous and gravity forces are necessary to

secure similitude. What should be the model scale if oil of kinematic viscosity

92.9 ¥ 10�6
 m

2
/s is used in the model tests and if the prototype liquid has a

kinematic viscosity of 743.2 ¥ 10�6
 m

2
/s?

Ans. (lm/lp = (nm/np)
2/3; lm = 0.25 lp)

6.10 A sphere advancing at 1.5 m/s in a stationary mass of water experiences a drag

of 4.5 N. Find the flow velocity required for dynamic similarity of another sphere

twice the diameter, placed in a wind tunnel. Calculate the drag at this speed if the

kinematic viscosity of air is 13 times that of water and its density is 1.25 kg/m3
.

Ans. (9.75 m/s, 0.951 N)

6.11 Calculate the thrust required to run a motor-boat 5 m long at 100 m/s in a lake if

the force required to tow a 1 : 30 model in a reservoir is 5 N. Neglect the viscous

resistance due to water in comparison to the wave making resistance.

Ans. (135 kN)

6.12 The flow rate over a spillway is 120 m3/s. What is the length scale for a

dynamically similar model if a flow rate of 0.75 m
3
/s is available in the

laboratory? On part of such model, a force of 2.8 N is measured. What is the

corresponding force on the prototype spillway? (viscosity and surface tension

effects are negligible.)

Ans. (lm = 0.13 lp, 1.27 kN)

6.13 The flow through a closed, circular-sectioned pipe may be metered by measuring

the speed of rotation of a propeller having its axis along the pipe centre line.

Derive a relation between the volume flow rate and the rotational speed of the

propeller, in terms of the diameters of the pipe and the propeller and the density

and viscosity of the fluid. A propeller of 75 mm diameter, installed in a 150 mm

pipe carrying water at 42.5 litres/s, was found to rotate at 20.7 rev/s. In a similar

physical situation, a propeller rotates in air flow through a pipe of 750 mm

diameter. Estimate the diameter and rotational speed of the propeller and the

volume flow rate of air. The density of air is 1.25 kg/m3 and its viscosity

1.93 ¥ 10
�5

 Pas. The viscosity of water is 1.145 ¥ 10
�3

 Pas.

Ans. (375 mm, 11.16 rev/s, 2.86 m3/s)

Fig. 6.2 Vortex shedding past a cylinder (after Feynman R.P. et al., Lectures
on Physics, Volume II, Addison Wesley, USA, 1964)

6.14 The vortices are shed from the rear of a cylinder placed in a cross flow. The

vortices alternately leave the top and bottom of the cylinder, as shown in Fig.

6.2. The vortex shedding frequency, f , is thought to depend on r, V, D and m.

(a) Use dimensional analysis to develop a functional relationship for f.

(b) The vortex shedding occurs in standard air on two different cylinders with

a diameter ratio of 2. Determine the velocity ratio for dynamic similarity,

and ratio of the vortex shedding frequencies.

Ans. 
f D
V

V D= F
H

I
K

L
NM

O
QP

f
r

m



7.1 INTRODUCTION

Flows at high Reynolds number reveal that the viscous effects are confined within

the boundary layers. Far away from the solid surface, the flow is nearly inviscid

and in many cases it is incompressible. We now aim at developing techniques for

analyses of inviscid incompressible flows.

Incompressible flow is a constant density flow, and we assume r to be

constant. We visualize a fluid element of defined mass moving along a streamline

in an incompressible flow. Because the density is constant, we can write

—◊
r
V  = 0 (7.1)

Over and above, if the fluid element does not rotate as it moves along the

streamline, or to be precise, if its motion is translational (and deformation with no

rotation) only, the flow is termed as irrotational flow. It has already been shown

in Sec. 3.3.5 that the motion of a fluid element can in general have translation,

deformation and rotation. The rate of rotation of the fluid element can be

measured by the average rate of rotation of two perpendicular line segments. The

average rate of rotation wz about z-axis is expressed in terms of the gradients of

velocity components (refer to Chapter 3) as

wz =
1

2

u

x y

∂ ∂

∂ ∂

È ˘
-Í ˙

Î ˚

v

Similarly, the other two components of rotation are

wx =
1

2

w

y z

∂ ∂

∂ ∂

È ˘
-Í ˙

Î ˚

v

and wy = 
1

2

u w

z x

∂ ∂

∂ ∂

È ˘
-Í ˙

Î ˚
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As such, they are components of 
r
w  which is given by

r
w  = ( )1

V
2

— ¥
r

In a two-dimensional flow, wz is the only non-trivial component of the rate of

rotation. Imagine a pathline of a fluid particle shown in Fig. 7.1. Rate of spin of

the particle is wz. The flow in which this spin is zero throughout is known as

irrotational flow. A generalized statement is more appropriate: For irrotational

flows, — ¥ 
r
V  = 0 in the flow field.

t = tf

t = ti

Fig.  7.1 Pathline of a fluid particle

Therefore for an irrotational flow, the velocity 
r
V  can be expressed as the gradient

of a scalar function called the velocity potential, denoted by f
r
V  = —f (7.2)

Combination of Eqs (7.1) and (7.2) yields

—2 f = 0 (7.3)

From Eq. (7.3) we see that an inviscid, incompressible, irrotational flow is

governed by Laplace�s equation.

Laplace�s equation is linear, hence any number of particular solutions of

Eq. (7.3) added together will yield another solution. This concept forms the

building-block of the solution of inviscid, incompressible, irrotational flows. A

complicated flow pattern for an inviscid, incompressible, irrotational flow can be

synthesized by adding together a number of elementary flows which are also

inviscid, incompressible and irrotational.

The analysis of Laplace�s Eq. (7.3) and finding out the potential functions are

known as potential flow theory and the inviscid, incompressible, irrotational

flow is often called as potential flow. However, the following elementary flows

can constitute several complex potential-flow problems

1. Uniform flow

2. Source or sink

3. Vortex
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7.2 ELEMENTARY FLOWS IN A
TWO-DIMENSIONAL PLANE

7.2.1 Uniform Flow

In this flow, velocity is uniform along y-axis and there exists only one component

of velocity which is in the x direction. Magnitude of the velocity is U0.

From Eq. (7.2) we can write

$iU0 + $j0 = $ $i j
∂f

∂

∂f

∂x y
+

or
∂f

∂ x
 = U0

∂f

∂ y
 = 0

whence f = U0 x + C1 (7.4)

Recall from Sec. 4.2.2 that in a two dimensional flow field, flow can also be

described by stream function y. In the case of uniform flow

∂y

∂ y
 = U0 and � 

∂y

∂ x
 = 0

so that Y = U0y + K1 (7.5)

The constants of integration C1 and K1 in Eqs (7.4) and (7.5) are arbitrary. The

values of y and f for different streamlines and velocity potential lines may change

but flow pattern is unaltered. The constants of integration may be omitted and it is

possible to write

y = U0 y, f = U0 x (7.6)

These are plotted in Fig. 7.2(a) and consist of a rectangular mesh of straight

streamlines and orthogonal straight potential-lines. It is conventional to put

arrows on the streamlines showing the direction of flow.

In terms of polar (r � q) coordinate, Eq. (7.6) becomes

y = U0 r sin q, f = U0 r cos q (7.7)

If we consider a uniform stream at an angle a to the x-axis as shown in Fig. 7.2b,

we require that

u = U0 cos a = 
∂y

∂

∂f

∂y x
=

and v = U0 sin a = �
∂y

∂

∂f

∂x y
= (7.8)

Integrating, we obtain for a uniform velocity U0 at an angle a, the stream function

and velocity potential respectively as

 y = U0(y cosa � x sina), f = U0 (x cosa + y sina) (7.9)
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x

y

k

= 3U0h

=
 U

0
k

=
 2

U
0
k

=
 3

U
0
k

= 2U0h

1
1 2

2

3

3

4

= U0h

U0

rh

y

x
(b)

(a)

Fig. 7.2 (a) Flownet for a uniform stream

(b) Flownet for uniform stream with an angle a with x-axis

7.2.2 Source or Sink

Consider a flow with straight streamlines emerging from a point, where the

velocity along each streamline varies inversely with distance from the point, as

shown in Fig. 7.3. Only the radial component of velocity is non-trivial (vq = 0,

vz = 0).

K
=

K
=3K

=

= K

= K ln r1

= 0

= K ln (r2)

r2 > r1

O

2

44

Fig. 7.3 Flownet for a source flow
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Such a flow is called source flow. In a steady source flow the amount of fluid

crossing any given cylindrical surface of radius r and unit length is constant ( &m)

&m  = 2p r vr r

or vr =
&m

r2

1

pr
◊  = 

L
2

1

p
◊ =
r

K

r
(7.10a)

where, K is the source strength

K =
&m

2 2pr p
= L

(7.10b)

and L is the volume flow rate

Again recall from Sec. 4.2.2 that the definition of stream function in cylindrical

polar coordinate states that

vr =
1

r

∂y

∂q
and vq = -

∂y

∂ r
(7.11)

Now for the source flow, it can be said that

1

r

∂y

∂q
 =

K

r
(7.12)

and -
∂y

∂ r
 = 0 (7.13)

Combining Eqs (7.12) and (7.13), we get

y = Kq + C1 (7.14)

However, this flow is also irrotational and we can write

$i vr + $jvq = $ $i j
∂f

∂

∂f

∂qr r
+ 1

or vr =
∂f

∂ r
and vq = 0 = 

1

r

∂f

∂q

or
∂f

∂ r
 = vr = 

K

r
or f = K ln r + C2 (7.15)

Likewise in uniform flow, the integration constants C1 and C2 in Eqs (7.14) and

(7.15) have no effect on the basic structure of velocity and pressure in the flow.

The equations for streamlines and velocity potential lines for source flow become
y = Kq and f = K ln r (7.16)

where K is defined as the source strength and is proportional to L which is the rate

of volume flow from the source per unit depth perpendicular to the page as shown

in Fig. 7.3. If L is negative, we have sink flow, where the flow is in the opposite

direction of the source flow. In Fig. 7.3, the point O is the origin of the radial

streamlines. We visualize that point O is a point source or sink that induces radial

flow in the neighbourhood. The point source or sink is a point of singularity in the

flow field (because vr becomes infinite). It can also be visualized that point O in

Fig. 7.3 is simply a point formed by the intersection of plane of the paper and a
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line perpendicular to the paper. The line perpendicular to the paper is a line

source, with volume flow rate (L) per unit length. However, for sink, the stream

function and velocity potential function are

y = � Kq and f = � K ln r (7.17)

7.2.3 Vortex Flow

In this flow all the streamlines are concentric circles about a given point where

the velocity along each streamline is inversely proportional to the distance from

the centre, as shown in Fig. 7.4. Such a flow is called vortex (free vortex) flow.

This flow is necessarily irrotational.

Fig. 7.4 Flownet for a vortex (free vortex)

In a purely circulatory (free vortex flow) motion, we can write the tangential

velocity as

vq =
Circulation constant

r

vq =
G /2p

r
(7.18)

where G is circulation,

Also, for purely circulatory motion one can write

vr = 0 (7.19)

With the definition of stream function, it is evident that

vq = �
∂y

∂ r
and vr = 

1

r

∂y

∂q

Combining Eqs (7.18) and (7.19) with the above said relations for stream

function, it is possible to write

y = - G
2p

 ln r + C1 (7.20)
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Because of irrotationality, it should satisfy

$i vr + $jvq = $ $i j
∂f

∂

∂f

∂qr r
+ 1

Eqs (7.18) and (7.19) and the above solution of Laplace�s equation yields

f =
G

2p
q + 2C (7.21)

The integration constants C1 and C2 have no effect whatsoever on the structure of

velocities or pressures in the flow. Therefore like other elementary flows, we

shall consistently ignore such constants. It is clear that the streamlines for vortex

flow are circles while the potential lines are radial. These are given by

y = �
G

2p
 ln r and f = 

G
2p

q (7.22)

In Fig. 7.4, point O can be imagined as a point vortex that induces the circulatory

flow around it. The point vortex is a singularity in the flow field (vq becomes

infinite). It is also discerned that the point O in Fig. 7.4 is simply a point formed

by the intersection of the plane of a paper and a line perpendicular to the plane.

This line is called vortex filament of strength G, where G is the circulation around

the vortex filament and the circulation is defined as

G = ◊Ú V ds
r r

Ñ (7.23)

In Eq. (7.23), the line integral of the velocity component tangent to a curve of

elemental length ds, is taken around a closed curve. It may be stated that the

circulation for a closed path in an irrotational flow field is zero. However, the

circulation for a given path in an irrotational flow containing a finite number of

singular points is constant. In general this circulation constant G denotes the

algebraic strength of the vortex filament contained within the closed curve.

From Eq. (7.23) we can write

G = ◊Ú V ds
r r

Ñ  = ÚÑ (udx + vdy + wdz)

For a two-dimensional flow

G = ÚÑ  (udx + v dy)

or GGGGG = ÚÑ V cosa ds (7.24)

Consider a fluid element as shown in Fig. 7.5. Circulation is positive in the anti-

clockwise direction (not a mandatory but general convention).

Fig. 7.5 Circulation in a flow field
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d G = u d x + 
u

x y u y x y
x y

∂ ∂
d d d d d

∂ ∂

Ê ˆ Ê ˆ
+ - + -Á ˜ Á ˜Ë ¯ Ë ¯

v

v v

or d G =
u

x y
x y

∂ ∂
d d

∂ ∂

Ê ˆ
-Á ˜Ë ¯

v

or d G = 2 wz dA

or d G/d A = 2wz = Wz (7.25)

Physically, circulation per unit area is the vorticity of the flow.

Now, for a free vortex flow, the tangential velocity is given by Eq. (7.18) as

vq =
G /2p

r

C

r
=

For a circular path (refer Fig. 7.5)

a = 0, V = vq = 
C

r

Thus, G =

2

0

C

r

p

ÚÑ r dq = 2p C (7.26)

It may be noted that although free vortex is basically an irrotational motion,

the circulation for a given path containing a singular point (including the origin)

is constant (2p C ) and independent of the radius of a circular streamline.

However, if the circulation is calculated in a free vortex flow along any closed

contour excluding the singular point (the origin), it should be zero. Let us look at

Fig. 7.6 (a) and take a closed contour ABCD in order to find out circulation about

the point, P around ABCD

GABCD = � vqAB
 r1 dq � vrBC

 (r2 � r1) + vqCD
 r2 dq + vrDA

 (r2 � r1)

There is no radial flow

vrBC
 = vrDA

 = 0, vqAB
 = 

C

r1
 and vqCD

 = 
C

r2

GABCD =
-

◊ + ◊ =
C

r
r

C

r
r

1
1

2
2 0d dq q (7.27)

If there exists a solid body rotation at constant w induced by some external

mechanism, the flow should be called a forced vortex motion (Fig. 7.6b) and we

can write
vq = wr and

G =

2
2

0

d d 2s r r r

p

q w q p w= ◊ =Ú ÚÑ Ñv (7.28)

Equation (7.28) predicts that the circulation is zero at the origin and it

increases with increasing radius. The variation is parabolic.

It may be mentioned that the free vortex (irrotational) flow at the origin

(Fig. 7.6a) is impossible because of mathematical singularity. However,
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physically there should exist a rotational (forced vortex) core which is shown by

the dotted line. Below are given two statements which are related to Kelvin�s

circulation theorem (stated  in 1869) and Cauchy�s theorem on irrotational motion

(stated in 1815) respectively

(i) The circulation around any closed contour is invariant with time in an

inviscid fluid.

(ii) A body of inviscid fluid in irrotational motion continues to move

irrotationally.

dq

vq = rw

vq =

vq

vq

vq

C
r

B

A
P

D

C

r1dq

r1

r2dq

rd
q

rd
q

r

r

r

r r

o

dq

dq

r2

Rotational
core

(a)

(b)

Fig. 7.6  (a) Free vortex flow (b)  Forced vortex flow
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7.3 SUPERPOSITION OF ELEMENTARY FLOWS

We can now form different flow patterns by superimposing the velocity potential

and stream functions of the elementary flows stated above.

7.3.1 Doublet

In order to develop a doublet, imagine a source and a sink of equal strength K at

equal distance s from the origin along x-axis as shown in Fig. 7.7.

From any point P(x, y) in the field, r1 and r2 are drawn to the source and the

sink. The polar coordinates of this point (r, q) have been shown.

Sink

s

O

s

r1

r2

r

P x, y( )

q1 q q2

y

y

x

x

Source

Fig. 7.7 Superposition of a source and a sink

The potential functions of the two flows may be superimposed to describe the

potential for the combined flow at P as

f = K ln r1 � K ln r2 (7.29)

Similarly

y = K (q1 � q2) = � Ka (7.30)

where, a = (q2 � q1)

We can also write

tan q1 =
y

x s+
and tan q2 = 

y

x s-
(7.31)

 r1 = r s rs2 2 2+ + cos q and r2 = r s rs2 2 2+ - cos q (7.32)

Now using the above mentioned relations we find

tan (q2 � q1) =
tan tan

tan tan

q q

q q
2 1

2 11

-
+

or tan a =
2

2 2 2 2
1

yx ys yx ys y

x s x s

Ê ˆÈ ˘+ - +
+Í ˙ Á ˜- -Ë ¯Î ˚



Flow of Ideal Fluids 287

or tan a =
2

2 2 2

ys

x y s+ -
(7.33)

Hence the stream function and the velocity potential function are formed by

combining Eqs (7.30) and (7.33), as well as Eqs (7.29) and (7.32) respectively

y = � K tan�1 
2 2 2

2ys

x y s

Ê ˆ
Á ˜+ -Ë ¯

(7.34)

f =
2 2

2 2

2 cos
ln

2 2 cos

K r s rs

r s rs

q

q

Ê ˆ+ +
Á ˜+ -Ë ¯

(7.35)

Doublet is a special case when a source as well as a sink are brought together in

such a way that s Æ 0 and at the same time the strength K (L /2p) is increased to

an infinite value. These are assumed to be accomplished in a manner which makes

the product of s and 
L
p

 (in limiting case) a finite value c. Under the aforesaid

circumstances

y = �
L

2

2
2 2 2p

◊
+ -

ys

x y s

[Since in the limiting case tan�1 a = a]

y = - ◊
+

=
-c c qy

x y r2 2

sin
(7.36)

From Eq. (7.35), we get

f =
L
4p

 [ln (r2 + s2 + 2rs cos q) � ln (r2 + s2 � 2rs cos q)]

or f = ( )2 2

2 2 2 2

2 cos 2 cos
ln 1 ln ) 1

4

2 2rs rs
r s (r s

r s r s

q q

p

È ˘Ï ¸ Ï ¸Ê ˆ Ê ˆL Ô Ô Ô Ô+ + - + -Í ˙Ì ˝ Ì ˝Á ˜ Á ˜+ +Ë ¯ Ë ¯Í ˙Ô Ô Ô ÔÓ ˛ Ó ˛Î ˚

or f = 

2 3

2 2 2 2 2 2

2 cos 1 2 cos 1 2 cos

4 2 3

rs rs rs

r s r s r s

q q

p

ÈÏ ¸Ê ˆ È ˘L Ô ÔÍ - + +Ì ˝Í ˙Á ˜Í + + +Ë ¯ Î ˚Ô ÔÓ ˛Î
L

2 3

2 2 2 2 2 2

2 cos 1 2 cos 1 2 cos

2 3

rs rs rs

r s r s r s

q q q
˘Ï ¸Ê ˆ È ˘Ô Ô˙- - - - +Ì ˝Í ˙Á ˜ ˙+ + +Ë ¯ Î ˚Ô ÔÓ ˛˚

L

or f = 

3

2 2 2 2

4 cos 2 2 cos

4 3

rs rs

r s r s

q q

p

È ˘Ê ˆL Í ˙+ +Á ˜Í ˙+ +Ë ¯Î ˚
L

In the limiting condition the above expression can be written as

f ª
c qr

r s

cos
2 2+
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or f ª
c qcos

r
(7.37)

We can see that the streamlines associated with the doublet are

�
sinc q

r
 = C1

If we replace sinq by y/r, and the minus sign be absorbed in C1, we get

c
y

r2
 = C1 (7.38a)

In terms of cartesian coordinate, it is possible to write

x
2
 + y

2 
�

 c

C
y

1

 = 0 (7.38b)

Equation (7.38b) represents a family of circles. For x = 0, there are two values

of y, one of which is zero. The centres of the circles fall on the y-axis. On the

circle, where y = 0, x has to be zero for all the values of the constant. It is obvious

that the family of circles formed due to different values of C1 must be tangent to

x-axis at the origin. These streamlines are illustrated in Fig. 7.8. Due to the initial

positions of the source and the sink in the development of the doublet, it is certain

that the flow will emerge in the negative x direction from the origin and it will

converge via the positive x direction of the origin.

= C3

= C2

Streamlines

x

y

Velocity 
potential lines

Fig. 7.8 Streamlines and velocity potential lines for a doublet
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However, the velocity potential lines are

c qcos

r
 = K1

In cartesian coordinate this equation becomes

x2 + y2 � 
c
K

x
1

 = 0 (7.39)

Once again we shall obtain a family of circles. The centres will fall on x-axis. For

y = 0 there are two values of x, one of which is zero. When x = 0, y has to be zero

for all values of the constant. Therefore these circles are tangent to y-axis at the

origin. The orthogonality of constant y and constant f lines are maintained as we

iron out the procedure of drawing constant value lines (Fig. 7.8). In addition to

the determination of the stream function and velocity potential, it is observed

from Eq. (7.37) that for a doublet

vr =
∂f

∂

c q

r r
=

- cos
2

(7.40)

As the centre of the doublet is approached, the radial velocity tends to be infinite.

It shows that the doublet flow has a singularity. Since the circulation about a

singular point of a source or a sink is zero for any strength, it is obvious that the

circulation about the singular point in a doublet flow must be zero. It follows that

for all paths in a doublet flow G = 0

G = ◊Ú V ds
r r

Ñ  = 0 (7.41)

Applying Stokes Theorem between the line integral and the area-integral

G = (— ¥zz r r
V) dA  = 0 (7.42)

From Eq. (7.42), the obvious conclusion is — ¥ 
r
V  = 0, i.e., doublet flow is an

irrotational flow.

At large distances from a doublet, the flow approximates the disturbances of a

two dimensional airfoil. The influence of an airfoil as felt at distant walls may be

approximated mathematically by a combination of doublets with varying

strengths. Thus the cruise conditions of a two dimensional airfoil can be simu-

lated by the superposition of a uniform flow and a doublet sheet of varying

strengths.

7.3.2 Flow About a Cylinder Without Circulation

Inviscid-incompressible flow about a cylinder in uniform flow is equivalent to the

superposition of a uniform flow and a doublet. The doublet has its axis of

development parallel to the direction of the uniform flow. The combined potential

of this flow is given by

f = U x
r

0 +
c qcos

(7.43)
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and consequently the stream function becomes

y = U0y � 
c qsin

r
(7.44)

In our analysis, we shall draw streamlines in the flow field. In two-dimensional

flow, a streamline may be interpreted as the edge of a surface on which the

velocity vector should always be tangent and there is no flow in the direction

normal to it. The latter is identically the characteristics of a solid impervious

boundary. Hence, a streamline may also be considered as the contour of an

impervious two-dimensional body. Figure 7.9 shows a set of streamlines. The

streamline C-D may be considered as the edge of a two-dimensional body while

the remaining streamlines form the flow about the boundary.

C D

Fig. 7.9 Surface streamline

Now we follow the essential steps involving the superposition of elementary

flows in order to form a flow about the body of interest. A streamline has to be

determined which encloses an area whose shape is of practical importance in

fluid flow. This streamline will describe the boundary of a two-dimensional solid

body. The remaining streamlines outside this solid region will constitute the flow

about this body.

Let us look for the streamline whose value is zero. Thus we obtain

U y
r

0 -
c qsin

 = 0 (7.45)

replacing y by r sin q, we have

sin q 0U r
r

cÊ ˆ-Á ˜Ë ¯  = 0 (7.46)

If q = 0 or q = p, the equation is satisfied. This indicates that the x-axis is a part

of the streamline y = 0. When the quantity in the parentheses is zero, the equation

is identically satisfied. Hence it follows that

r =

1/ 2

0U

cÊ ˆ
Á ˜Ë ¯

(7.47)

It can be said that there is a circle of radius 

1/ 2

0U

cÊ ˆ
Á ˜Ë ¯

 which is an intrinsic part of

the streamline y = 0. This is shown in Fig. 7.10. Let us look at the points of
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intersection of the circle and x-axis, i.e.

the points A and B. The polar coordinates

of these points are

r =

1/ 2

0U

cÊ ˆ
Á ˜Ë ¯

, q = p, for point A

r =

1/ 2

0U

cÊ ˆ
Á ˜Ë ¯

, q = 0, for point B

The velocity at these points are found

out by taking partial derivatives of the

velocity potential in two orthogonal

Fig. 7.10 Streamline y = 0 in a

superimposed flow of

doublet and uniform stream

r =

1/2c

U0

y = 0

y = 0

y = 0

A B
x

y

directions and then substituting the proper values of the coordinates. Thus

vr =
∂f

∂ r
 = U0 cos q � 

c qcos

r 2
(7.48a)

vq =
1

r

∂f

∂q
 = �U0 sin q � 

c qsin

r 2
(7.48b)

At point A

1/ 2

0

, r
U

c
q p

È ˘Ê ˆ
Í ˙= = Á ˜Ë ¯Í ˙Î ˚

vr = 0, vq = 0

At point B

1/ 2

0

0, r
U

c
q

È ˘Ê ˆ
Í ˙= = Á ˜Ë ¯Í ˙Î ˚

vr = 0, vq = 0

The points A and B are clearly the stagnation points through which the flow

divides and subsequently reunites forming a zone of circular bluff body.

The circular region, enclosed by part of the streamline y = 0 could be imagined

as a solid cylinder in an inviscid flow. At a large distance from the cylinder the

flow is moving uniformly in a cross-flow configuration.

Figure 7.11 shows the streamlines of the flow. The streamlines outside the

circle describe the flow pattern of the inviscid irrotational flow across a cylinder.

However, the streamlines inside the circle may be disregarded since this region is

considered as a solid obstacle.

Fig. 7.11 Inviscid flow past a cylinder
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7.3.3 Lift and Drag for Flow Past a Cylinder Without

Circulation

Lift and drag are the forces per unit length on the cylinder in the directions normal

and parallel respectively, to the direction of uniform flow.

Pressure for the combined doublet and uniform flow becomes uniform at large

distances from the cylinder where the influence of doublet is indeed small. Let us

imagine the pressure p0 is known as well as uniform velocity U0. Now we can

apply Bernoulli�s equation between infinity and the points on the boundary of the

cylinder. Neglecting the variation of potential energy-between the aforesaid point

at infinity and any point on the surface of the cylinder, we can write

p

g

U

g

0 0
2

2r
+  =

p

g

U

g

b b

r
+

2

2
(7.49)

where, the subscript b indicates the surface on the cylinder. As we know, since

fluid cannot penetrate the solid boundary, the velocity Ub should be only in the

transverse direction, or in other words, only vq component of velocity is present

on the streamline y = 0.

Thus at r = 

1/ 2

0U

cÊ ˆ
Á ˜Ë ¯

Ub =
vq

c
c

∂f
∂q

at
at

r U
r U

r
=

=

=

/
/

/
/0

1 2

0

1 2

1

b g b g

(7.50)

= � 2U0 sin q

From Eqs (7.49) and (7.50) we obtain

pb =

2 2
0 0 0(2 sin )

2 2

U p U
g

g g g

q
r

r

È ˘
+ -Í ˙

Í ˙Î ˚
(7.51)

The drag is calculated by integrating the force components arising out of pressure,

in the x direction on the boundary. Referring to Fig. 7.12, the drag force can be

written as

y

pb

x

r = 
U0

U0

d

Fig 7.12 Calculation of drag on a cylinder



Flow of Ideal Fluids 293

D = � 

1/ 22

00

cos dbp
U

p
c

q q
Ê ˆ
Á ˜Ë ¯Ú

or D =

1/ 22 2 2
0 0 0

00

(2 sin )
cos d

2 2

U p U
g

U g g g

p
qc

r q q
r

È ˘Ê ˆ
- + -Í ˙Á ˜Ë ¯ Í ˙Î ˚

Ú

D =

1/ 22 2
20

0
00

(1 4sin ) cos d
2

U
p

U

p
r c

q q q
È ˘Ê ˆ

- + -Í ˙Á ˜Ë ¯Í ˙Î ˚
Ú (7.52)

Similarly, the lift force

L =

1/ 22

00

sin dbp
U

p
c

q q
Ê ˆ

- Á ˜Ë ¯Ú (7.53)

The Eqs (7.52) and (7.53) produce D = 0 and L= 0 after the integration is carried

out.

However, in reality, the cylinder will always experience some drag force. This

contradiction between the inviscid flow result and the experiment is usually

known as D�Almbert paradox. The reason for the discrepancy lies in completely

ignoring the viscous effects throughout the flow field. Effect of the thin region

adjacent to the solid boundary is of paramount importance in determining drag

force. However, the lift may often be predicted by the present technique. We shall

appreciate this fact in a subsequent section.

7.3.4 Flow About a Rotating Cylinder

In addition to superimposed uniform flow and a doublet, a vortex is thrown at the

doublet centre. This will simulate a rotating cylinder inuniform stream. We shall

see that the pressure distribution will result in a force, a component of which will

culminate in lift force. The phenomenon of generation of lift by a rotating object

placed in a stream is known as Magnus effect. The velocity potential and stream

functions for the combination of doublet, vortex and uniform flow are

f = U0 x + 
c q

p
q

cos

r
- G

2
 (clockwise rotation) (7.54)

y = U0 y � 
c q

p

sin

r
+ G

2
 ln r (clockwise rotation)(7.55)

By making use of either the stream function or velocity potential function, the

velocity components are

vr = 0 2

1
cosU

r r

∂y c
q

∂q

Ê ˆ= -Á ˜Ë ¯
(7.56)

vq = 0 2

1
sin

2
U

r rr

∂f c
q

∂q p

GÊ ˆ= - + -Á ˜Ë ¯
(7.57)
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Implicit in the above derivation are x = r cosq and y = r sin q. At the stagnation

points the velocity components must vanish. From Eq. (7.56), we get

cos q 0 2
U

r

cÊ ˆ-Á ˜Ë ¯  = 0 (7.58)

From Eq. (7.58) it is evident that a zero radial velocity component may occur

at q = ± p

2
 and along the circle, r = 

1/ 2

0U

cÊ ˆ
Á ˜Ë ¯

. Eq. (7.57) depicts that a zero

transverse velocity requires

sin q =
-

+
G /

( / )

2

0
2

p

c

r

U r
or q = sin�1 

0 2

/2 r

U
r

p

c

È ˘
Í ˙-G
Í ˙
Í ˙+
Í ˙Î ˚

(7.59)

However, at the stagnation point, both radial and transverse velocity components

must be zero.

So, the location of stragnation point occurs at

r =

1/ 2

0U

cÊ ˆ
Á ˜Ë ¯

and q = sin�1 

1/ 2

0

0
0

2
U

U
U

c
p

c
c

Ï ¸Ê ˆÊ ˆÔ Ô-G Á ˜Ì ˝Á ˜Á ˜Ë ¯Ô Ë ¯ ÔÓ ˛
È ˘Ê ˆ

+Í ˙Á ˜Ë ¯Î ˚

or q = sin�1 
1/ 2

0

0

1

2
2

U

U

c
p

-GÈ ˘◊Í ˙
Ê ˆÍ ˙
Á ˜Í ˙Ë ¯Î ˚

or q = sin�1 
( )1/ 2

04 Ucp

È ˘-GÍ ˙
Í ˙Î ˚

(7.60)

There will be two stagnation points since there are two angles for a given sine

except for sin
�1

 (±1).

The streamline passing through these points may be determined by evaluating

y at these points. Substitution of the stagnation coordinate (r, q ) into the stream

function (Eq. 7.55) yields

y =
( )

1/ 2 1/ 2

1
0 1/ 2 1/ 2

0 00

0

sin sin ln
24

U
U UU

U

c c c

pp cc

-

È ˘
Í ˙ È ˘Ê ˆ Ê ˆ-G GÍ ˙ Í ˙- +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Ê ˆÍ ˙ Î ˚

Á ˜Í ˙Ë ¯Î ˚
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y = ( )
( )

1/ 2
1/ 2 1/ 2

0 0 1/ 2
00

( ) ln
24

U U
UU

cc c
pcp

È ˘ Ê ˆ-G GÈ ˘ Í ˙- + Á ˜Î ˚ Ë ¯Í ˙Î ˚

or ystag= 

1/ 2

0

ln
2 U

c

p

Ê ˆG
Á ˜Ë ¯

(7.61)

Equating the general expression for stream function to the above constant, we

get

U0 r sin q � 

1/ 2

0

sin
ln ln

2 2
r =

r U

c q c

p p

Ê ˆG G
+ Á ˜Ë ¯

By rearranging we can write

sin q 

1/ 2

0
0

ln ln 0
2

U r r ±
r U

c c

p

È ˘Ê ˆGÈ ˘ Í ˙- + =Í ˙ Á ˜Ë ¯Í ˙Î ˚ Î ˚
(7.62)

All points along the circle r = 

1/ 2

0U

cÊ ˆ
Á ˜Ë ¯

 satisfy Eq. (7.62), since for this value of

r, each quantity within parentheses in the equation is zero. Considering the

interior of the circle (on which y = 0) to be a solid cylinder, the outer streamline

pattern is shown in Fig. 7.13.

A B

Stagnation points

Fig. 7.13 Flow past a cylinder with circulation

A further look into Eq. (7.60) explains that at the stagnation point

q =
1

1/ 2
0

( /2 )
sin

2( )U

p

c

- È ˘- G
Í ˙
Í ˙Î ˚

or q = 1

0

( /2 )
sin

2U r

p- È ˘- G
Í ˙
Î ˚

(7.63)

The limiting case arises for 
( / )G 2

0

p

U r
 = 2, where q = sin�1 (�1) = � 90° and two

stagnation points meet at the bottom as shown in Fig. 7.14.
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Stagnation point

Fig. 7.14 Flow past a circular cylinder with circulation value 
G/2

U
o
r

p
 = 2

However, in all these cases the effects of the vortex and doublet become

negligibly small as one moves a large distance from the cylinder. The flow is

assumed to be uniform at infinity. We have already seen that the change in

strength G of the vortex changes the flow pattern, particularly the position of the

stagnation points but the radius of the cylinder remains unchanged.

7.3.5 Lift and Drag for Flow About a Rotating Cylinder

The pressure at large distances from the cylinder is uniform and given by p0.

Deploying Bernoulli�s equation between the points at infinity and on the boundary

of the cylinder,

pb = rg
2 2
0 0

2 2

bU p U

g g gr

È ˘
+ -Í ˙

Í ˙Î ˚
(7.64)

The velocity Ub is as such 1/ 2

0

r
U

q

cÊ ˆ
= Á ˜Ë ¯

v

Hence, Ub =

1/ 2

0
0

1
2 sin

2

U
U

r

∂f
q

∂q p c

È ˘G
= - - Í ˙

Î ˚
(7.65)

From Eqs (7.64) and (7.65) we can write

pb =

1
2

2

0
0

2
0 0

2 sin
2

2 2

U
U

U p
g

g g g

q
p c

r
r

È ˘È ˘Ê ˆGÍ ˙Í ˙- - Á ˜Í ˙Ë ¯Í ˙Í ˙Î ˚+ -Í ˙
Í ˙
Í ˙
Í ˙Î ˚

(7.66)

The lift may calculated as (refer Fig. 7.12)

L =

1
2

2

00

� sin dbp
U

p
c

q q
È ˘
Í ˙
Î ˚

Ú
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or L =

2
1

2
0

0
2 2

0
0

0

2 sin
2

�
2 2

U
U

U
p

p

r q
p c

r

Ï ¸È ˘
Ô ÔÊ ˆGÍ ˙- -Ô ÔÁ ˜Í ˙Ë ¯Ô ÔÍ ˙Ô ÔÎ ˚+ -Ì ˝
Ô Ô
Ô Ô
Ô Ô
Ô ÔÓ ˛

Ú

1

2

0

(sin ) d
U

c
q q

È ˘
Í ˙
Î ˚

or L =

1 1
2 2 2 2

2 20
0

0 00

� sin sin 4 sin
2 2

o

U
p U

U U

p
r c c r

q q q

È
Ê ˆ Ê ˆ ÏÍ + - ÌÁ ˜ Á ˜Í Ë ¯ Ë ¯ ÓÍÎ

Ú

11
2 22

0 0 0

2
0

4 sin
sin d

2 4

U U U

U

q c
q q

p c cp

˘¸
Ê ˆG Ê ˆ È ˘G Ô ˙+ + ˝Í ˙Á ˜ ˙Á ˜Ë ¯ Ë ¯Î ˚Ô ˙˛ ˚

or L =

1 1
2 2 2 2

0
0

0 00

� sin sin
2

U
p

U U

p
r c c

q q

È
Ê ˆ Ê ˆÍ +Á ˜ Á ˜Í Ë ¯ Ë ¯ÍÎ

Ú  � 2 0
2 3r qU sin

1 1
22 2

20 0

2
sin sin d

8o

U U

U

rc r
q q q

p cp

˘
Ê ˆ G Ê ˆG ˙- - Á ˜Á ˜ ˙Ë ¯Ë ¯ ˙̊

or L = rU0 G (7.67)

The drag force, which includes the multiplication by cos q (and integration over

2p) is zero.

Thus the inviscid flow also demonstrates lift. It can be seen that the lift
becomes a simple formula involving only the density of the medium, free stream
velocity and circulation. In addition, it can also be shown that in two dimensional
incompressible steady flow about a boundary of any shape, the lift is always a

product of these three quantities.

The validity of Eq. (7.67) for any two-dimensional incompressible steady
potential flow around a body of any shape, not necessarily a circular cylinder, is

known as the Kutta-Joukowski theorem named after the German fluid dynamist
Wilhelm Kutta (1867�1944) and Russian mathematician Nikolai J. Joukowski
(1847�1921). A very popular example of the lift force acting on a rotating body is
observed in the game of soccer. If a player imparts rotation on the ball while
shooting it, instead of following the usual trajectory, the ball will swerve in the
air and puzzle the goalkeeper. The swerve in the air can be controlled by varying

the strength of circulation, i.e., the amount of rotation. In 1924, a man named
Flettner had a ship built in Germany which possessed two rotating cylinders to

generate thrust normal to wind blowing past the ship. The Flettner design did not

gain any popularity but it is of considerable scientific interest (shown in

Fig. 7.15).
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Wind (V m/s)

U m/s

Ship 

Cylinders

Fig. 7.15 Schematic diagram of the plan view of Flettner�s ship

7.4 AEROFOIL THEORY

Aerofoils are streamline shaped wings which are used in airplanes and

turbomachinery. These shapes are such that the drag force is a very small fraction

of the lift. The following nomenclatures are used for defining an aerofoil (refer to

Fig. 7.16).

The chord (c) is the distance between the leading edge and trailing edge. The

length of an aerofoil, normal to the cross-section (i.e., normal to the plane of a

paper) is called the span of aerofoil. The camber line represents the mean profile

of the aerofoil. Some important geometrical parameters for an aerofoil are the

ratio of maximum thickness to chord (t/c) and the ratio of maximum camber to

chord (h/c). When these ratios are small, an aerofoil can be considered to be thin.

For the analysis of flow, a thin aerofoil is represented by its camber.

y = y1

x

y = y2

t      h

Leading 
edge

Chord (C)

Camber line y = (y1 + y2)/2

Trailing edge

Fig. 7.16 Aerofoil section

The theory of thick cambered aerofoils is an advanced topic. Basically it uses

a complex-variable mapping which transforms the inviscid flow across a rotating

cylinder into the flow about an aerofoil shape with circulation.

7.4.1 Flow Around a Thin Aerofoil

Thin aerofoil theory is based upon the superposition of uniform flow at infinity

and a continuous distribution of clockwise free vortex on the camber line having



Flow of Ideal Fluids 299

circulation density g (s) per unit length. The circulation density g (s) should be

such that the resultant flow is tangent to the camber line at every point.

Since the slope of the camber line is assumed to be small, g (s)ds = g (h)dh
(refer Fig. 7.17). The total circulation around the profile is given by

G =

0

( ) d

C

g h hÚ (7.68)

A vortical motion of strength g dh at x = h develops a velocity at the point P

which may be expressed as

dv =
g h h

p h

( )

( )

d

2 - x
 acting upwards

The total induced velocity in the upward direction at P due to the entire vortex

distribution along the camber line is

Camber line

P (x, 0)

P (x, y)

ds

U

U

(s) ds

V1

V2

v

Vs

x

x

v

y

c

d

U sin 

U cos 

Fig. 7.17 Flow around thin aerofoil

v(x) =

0

1 ( ) d

2 ( )

C

x

g h h

p h -Ú (7.69)
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For a small camber (having small a), this expression is identically valid for the
induced velocity at P¢ due to the vortex sheet of variable strength g (s) on the
camber line. The resultant velocity due to U• and v(x) must be tangential to the

camber line so that the slope of a camber line may be expressed as

d

d

y

x
 =

U

U U

•

• •

+
= +

sin

cos
tan

cos

a

a
a

a

v v

or
d

d

y

x
 = a +

•

v

U
 [since a is very small] (7.70)

From Eqs (7.69) and (7.70) we can write

d

d

y

x
 = a + 

0

1 ( ) d

2 ( )

C

U x

g h h

p h• -Ú (7.71)*

Let us consider an element ds on the camber line. Consider a small rectangle

(drawn with dotted line) around ds. The upper and lower sides of the rectangle are

very close to each other and these are parallel to the camber line. The other two

sides are normal to the camber line. The circulation along the rectangle is

measured in clockwise direction as

V1 ds � V2 ds = g ds [normal component of velocity at the camber
line should be zero]

or V1 � V2 = g (7.72)

If the mean velocity in the tangential direction at the camber line is given by

Vs = (V1 + V2)/2, it can be rewritten as

V1 = Vs + 
g

2
and V2 = Vs � 

g

2

In the event, it can be said that if v is very small [v <<U•], Vs becomes equal to

U•. The difference in velocity across the camber line brought about by the vortex

sheet of variable strength g (s) causes pressure difference and generates lift force.

7.4.2 Generation of Vortices Around a Wing

The lift around an aerofoil is generated following Kutta-Joukowski theorem. Lift

is a product of r, U• and the circulation G. Mechanism of induction of circu-

lation is to be understood clearly.

When the motion of a wing starts from rest, vortices are formed at the trailing

edge (refer Fig. 7.18).

At the start, there is a velocity discontinuity at the trailing edge. This is

eventual because near the trailing edge, the velocity at the bottom surface is

* For a given aerofoil, the left hand side term of the integral Eq. (7.71) is a known

function. Finding out g (h) from it is a formidable task. This exercise is not being

discussed in this text. Interested readers may refer to the books by Glauert [1] and

Batchelor [2]. If g (h) is determined, the circulation G and consequently the lift L =

r U• G can easily be calculated.
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higher than that at the top surface. This discrepancy in velocity culminates in the

formation of vortices at the trailing edge. Figure 7.18 (a) depicts the formation of

starting vortex by impulsively moving aerofoil. However, the starting vortices

induce a counter circulation as shown in Figure 7.18 (b). The circulation around a

path (ABCD) enclosing the wing and just shed (starting) vortex must be zero.

Here we refer to Kelvin�s theorem once again.

(a) (b)

= 0

+ 

A

B C

D

Fig 7.18 Vortices generated when an aerofoil just begins to move

Initially the flow starts with the zero circulation around the closed path.

Thereafter, due to the change in angle of attack or flow velocity, if a fresh starting

vortex is shed, the circulation around the wing will adjust itself so that a net zero

vorticity is set around the closed path.

The discussions in the previous section were for two-dimensional, infinite span

wings. But real wings have finite span or finite aspect ratio l, defined as

l =
b

As

2

(7.73)

where b is the span length and As is the plan form area as seen from the top. For a

wing of finite span, the end conditions affect both the lift and the drag. In the

leading edge region, pressure at the bottom surface of a wing is higher than that at

the top surface. The longitudinal vortices are generated at the edges of finite wing

owing to pressure differences between the bottom surface directly facing the flow

and the top surface (refer Fig. 7.19). This is very prominent for small aspect ratio

delta wings which are used in high-performance aircrafts as shown in Fig. 7.20.

Starting vortices

Longitudinal vorticesBound vortices

U

Fig. 7.19 Vortices around a finite wing
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Leading edge

Trailing edge

Angle of attack

b
l

Fig. 7.20 Counter rotating leading edge vortices generated by a delta-wing

However, circulation around a wing gives rise to bound vortices that move

along with the wing. In 1918, Prandtl successfully modelled such flows by

replacing the wing with a lifting line. The bound vortices around this lifting line,

the starting vortices and the longitudinal vortices formed at the edges, constitute a

closed vortex ring as shown in Fig. 7.19.

Summary

This chapter has given a brief description of inviscid, incompressible, irrotational

flows.

∑ Irrotationality leads to the condition — ¥ 
r

V  = 0 which demands 
r

V  = —f,

where f is known as a potential function. For a potential flow —2f = 0.

∑ The stream function y also obeys the Laplace�s equation —2 y = 0 for the

potential flows. Laplace�s equation is linear, hence any number of particular

solutions of Laplace�s equation added together will yield another solution. So

a complicated flow for an inviscid, incompressible, irrotational condition can

be synthesized by adding together a number of elementary flows which are

also inviscid, incompressible and irrotational. This is called the method of

superposition.

∑ Some inviscid flow configurations of practical importance are solved by

using the method of superposition. The circulation in a flow field is defined

as G = dV s◊Ú
r r

. Subsequently, the vorticity may be defined as circulation per

unit area. The circulation for a closed path in an irrotational flow field is

zero. However, the circulation for a given closed path in an irrotational flow

containing a finite number of singular points is a non-zero constant.

∑ The lift around an immersed  body is generated when the flow field possesses

circulation. The lift around a body of any shape is given by L = rU0G, where

r is the density and U0 is the velocity in the streamwise direction.

Solved Examples

Example 7.1 The velocity components of two dimensional incompressible flow

are u = 2xy and v = a2 + x2 � y2. Show that a velocity potential function exists and find out

the velocity potential.
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Solution The velocity potential function exists only for irrotational flow. The condition

to be satisfied is

∂
∂
v

x
 =

∂
∂

u

y

Evaluating the derivatives mentioned above, we get

∂
∂
v

x
 = 2x and

∂
∂

u

y
 = 2x

The flow is irrotational. From definition we can also write

u =
∂f
∂ x

∂f
∂ x

 = 2 xy or f = x
2
y + f1 (y)

also, v =
∂f
∂ y

or
∂f
∂ y

 = a
2
 + x

2
 � y

2
or f = a

2
y + x

2
y � 

y3

3
 + f2(x)

Since both the solutions are same, we can write

x2y + f1(y) = a2y + x2y � 
y3

3
 + f2(x)

or f1(y) = a2y � 
y3

3
 + f2(x)

In order to keep the above expression valid for all the values of y, f2(x) has to be a

constant.

Thus f = a
2
y + x

2
y � 

y3

3
 + constant

Since f = constant and represents a family of lines, f may be written without a constant

as

f = a2y + x2y � 
y3

3

Example 7.2 The flow of an incompressible fluid is defined by u = 2, v = 8x. Does

a stream function exist? If so, find its expression.

Solution Compliance of continuity describes the existence of a stream function

∂
∂

∂
∂

u

x y
+ v

 =
∂
∂

∂
∂

( )
( )

2
8

x y
x+  = 0

So, the stream function exists.

Now we can write

dy =
∂y
∂

∂y
∂x

x
y

yd d+

or dy = � vdx + udy
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or dy = � 8xdx + 2dy

or y = � 4x2 + 2y + C

Dropping the constant C, y = � 4x2 + 2y.

Example 7.3 Does a velocity potential function f = 2(x2 + 2y � y2) describe the

possible flow of an incompressible fluid? If so, find out the equation for the velocity

vector 
r
V . Also determine the equation for streamlines.

Solution For the given f, in order to describe an incompressible flow, we check with

the Laplace�s equation

∂ f

∂

∂ f

∂

2

2

2

2
x y

+  = 2(2) + 2(�2) = 0

So, a flow field exists.

The velocity components are

u =
∂f
∂ x

 = 2(2x) = 4x

v =
∂f
∂ y

 = 2 (2 � 2y) = 4 � 4y

Velocity vector
r
V  = 4x $i  + (4 � 4y)$j

Stream function y can be expressed as

dy =
∂y
∂

∂y
∂x

x
y

yd d+

or dy = � vdx + udy

or dy = � (4 � 4y) dx + 4x dy

y = � z (4� 4y)dx + z 4x dy + C

y = � 4x + 4xy + 4xy + C

Dropping the constant C, stream function becomes

y = 4 (2xy � x)

Example 7.4 The radial velocity of a flow is described by vr = k

r
 cos q.

If vq = 0 at q = 0, find out vq and the stream function for the flow.

Solution vr =
1
r

k

r
◊ =∂y
∂q

qcos

or
∂y
∂q

 = k r  cos q

or y = k r  sin q = f (r)

Now vq = � 
∂y
∂ r

k

r
=

2
 sin q + f ¢(r)

We know, vq = 0 at q = 0, which depicts

f ¢(r) = 0 and f (r) = constant
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Therefore vq =
k

r2
 sin q and

y = k r  sin q

Example 7.5 A two dimensional source of volume flow rate L = 2.5 m
2
/s is located

in a uniform flow (U0) of 2 m/s. Determine the stagnation point and the maximum

thickness of resulting half body.

Solution We have already constructed different flow patterns by superimposing

elementary flows. An interesting body shape appears if we superimpose a uniform flow

over an isolated source or sink which is known as Rankine half body (refer Fig. 7.21).

Let the source be located at the origin.

Maximum 
width = 2ymax

ymax
= K

= K1

K2

K3 K4

= K

= 0a x

y

U0

Fig. 7.21 Uniform flow plus source equals a half body

(i) Then the stream function of combination is

y = U0 y + 
L

2
1

p
tan- F

H
I
K

y
x

or y = U0 y + K tan
�1

 
y
x

F
H

I
K

Velocity u =
∂y
∂ y

U K x

x y
= +

+0 2 2

Similarly v = � 
∂y
∂ x

K
y

x y
= +

+2 2

At the stagnation point u = 0, v = 0, demand from the above equation y = 0 and

x = �
.L

2
2 5

2 20p pU
= - ¥  = � 0.2 m

The coordinates of stagnation points are (� a, 0) or (� 0.2, 0)
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The value of stream function at the stagnation point is

y (� 0.2, 0) = 0 + L
2

01

p
tan-

or ystag = 0 + 
2 5
2

.
p

p  = 1.25 m2/s

The half-body is described by dividing streamline

y = L L
2 2

= ◊p
p

 = p K

or U0 y  + L L
2 2

1

p
tan

- =y
x

or U0 y + 
L Lq

p2 2
= or y = 

L 1

2 0

- q
pe j

U

at q = 0 ymax = L
2 0U

, the maximum ordinate

at q = p
2

, y = L
4 0U

, the upper ordinate at the origin

at q = p, y = 0, the stagnation point

at q =
3
2
p

, y = �
L

4 0U , the lower ordinate at the origin

(ii) However, the equation of the half body becomes

U0y + 
L L

2 2
1

p
tan- F

H
I
K =y

x

The maximum thickness occurs as x Æ •

2y + 
1 25

0
1.

tan
p

-
 = 1.25

y =
1 25

2
.

 = 0.625 m

The maximum thickness = 2ymax = 1.25 m

Example 7.6 A source at the origin and a uniform flow at 5m/s are superimposed.

The half-body which is formed has a maximum width of 2 m. Calculate (i) location of

stagnation point (ii) width of the body at the origin and (iii) velocity at a point 0 7
2

. , pe j .

Solution (i) We have seen in Example 7.5, that

at q = 0, ymax = L
2

2
20U

=  = 1 m

or L = 2 ¥ 5 ¥ 1 = 10 m2/s

for stagnation point,

x = � �K
U U0 02

10
2 5

= = -
¥

L
p p

 = � 0.32 m

and y = 0
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(ii) at q = p
2

, y = L
4 0U

 [from Example 7.5]

at q = p
2

, y = 
10

4 5¥  = 0.5 m

The width of the body at the origin is 2 ¥ 0.5 = 1 m

(iii) In polar coordinate

y = U0 r sin q + Kq where K = L
2p

vr =
1

20r
U

r
∂y
∂q

q
p

= +cos L

vq = � sin
∂y
∂

q
r

U= - 0

at the point (0.7, p/2)

vr =
L

2
10

2 0 7p pr
= ¥ .

 = 2.27 m/s

vq = � U0 sin q = �5 sin p
2

 = �5 m/s

Vresultant = ( . ( )2 27) 52 2+  = 5.49 m/s

Example 7.7 A line source discharging a flow at 0.6 m
2
/s per unit length is located

at (�1,0) and a sink of volume flow rate 1.2 m2/s is located at (2,0). For a dynamic

pressure of 10 N/m2 at the origin, determine the velocity and dynamic pressure at (1,1).

( 1, 0) (2, 0)

P(x, y)

1

r1

y

x

r2

2

Fig. 7.22 Source and sink pair

Solution y at P may be expressed as

y = K1q1 � K2q2

or y =
L L1

1
2

22 2p
q

p
q-

or y =
0 6
2 1

1 2
2 2

1 1.
tan

.
tan

p p
- -

+
F
H

I
K - -

F
H

I
K

y
x

y
x

u = 
∂y
∂ y

 =
0 6
2

1

1

1 2
2

2

22 2 2 2

. ( )

( )

. ( � )

( � )p p
x

x y

x

x y

+
+ +

L
NM

O
QP

-
+

L
NM

O
QP
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v = �
∂y
∂ x

 =
0 6
2 1

1 2
2 22 2 2 2

.

( )

.

( � )p p
y

x y

y

x y+ +
L
N
M

O
Q
P -

+
L
N
M

O
Q
P

at the origin (0,0)

u =
0 6
2

1 2
2

2
4

0 6
2

0 6
2

0 6. . . . .
p p p p p

- - = + =e j  = 0.1909 m/s

v = 0

Dynamic pressure 1
2

2rV  = 10 N/m
2

or r =
20

2
V

 = 548.3 kg/m
3

At point (1,1)

u =
0 6
2

2
5

1 2
2

1
2

0 6
5

0 6
2

. . . .
p p p p

◊ + ◊ = +

= 0.0381 + 0.0954 = 0.1335 m/s

v =
0 6
2

1
5

1 2
2

1
2

0 6
10

0 6
2

. . . .
p p p p

◊ - ◊ = +

= 0.019 � 0.0954 = � 0.0764 m/s

Vresultant = 0.1538 m/s

Dynamic pressure at (1,1) = 1
2

 ¥ 548.3 ¥ (0.1538)
2

=  6.48 N/m
2

Example 7.8 The wind velocity at a location 5 km away from the centre of a tornado

(consider inviscid, irrotational vortex motion) was measured as 30 km/hr and the

barometric pressure was 750 mm of Hg. Calculate the wind velocity 1 km from the

tornado centre and its barometric pressure. [Density of air = 1.2 kg/m3, density of mercury

= 13.6 ¥ 103 kg/m3].

1 km
v

v

b

a

5 km

Fig. 7.23 Model of a tornado (irrotational vortex)
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Solution pa = 750 mm of Hg = 0.75 m of Hg

= 0.75 ¥ 13.6 ¥ 10
3
 ¥ 9.81 = 100.062 kN/m

2

From free vortex consideration, we can write

ra vq a = rb vq b = C

ra = 5000 m, vqa = 
30 1000
60 60

¥
¥  = 8.33 m/s

C = circulation constant = 41650 m2/s

at rb = 1000 m,

vqb =
41650
1000

 = 41.65 m/s

Bernoulli�s equation between points a and b

p

g

V

g
a a

r
q+
2

2
 =

p

g

V

g

b b

r

q+
2

2

100062
1 2 9 81

8 33
2 9 81

2

. .
( . )

.¥ + ¥  =
p

g
b

r
+ ¥

( . )
.

41 65
2 9 81

2

or
p

g
b

r  = 8500 + 3.536 � 88.416

or
p

g
b

r
 = 8415.12

or pb = 99062 N/m
2
 = 99.062 kN/m

2

Example 7.9 A source with volume flow rate 0.2 m
2
/s and a vortex with strength

1 m2/s are located at the origin. Determine the equations for velocity potential and stream

function. What should be the resultant velocity at x = 0.9 m and y = 0.8 m?

Solution

For the source y = K1q, f = K1 ln r

For the vortex y = � K2 ln r, f = K2q

Combined y =
0 2
2

1
2

.
p

q
p

- ln r  = 
1 0 1 1

2p
q. ln- r

Combined f =
0 2
2

1
2

.
ln

p p
qr +  = 1 0 1 1

2p
q. ln r +

Now vr =
∂f
∂ pr r

= 1
10

vq =
1 1

2r r
∂f
∂q p

=

at x = 0.9 m and y = 0.8 m

r = ( . ) ( . )0 9 0 82 2+  = 1.204 m

vr (0.9, 0.8) = 1
10 1 204¥ ¥p .

 = 0.026 m/s

vq (0.9, 0.8) =
1

2
1

2 1 204p pr
= ¥ ¥ .
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= 0.132 m/s

Vresultant = ( . ) ( . )0 026 0 1322 2+  = 0.134 m/s

Example 7.10 A 300 mm diameter circular cylinder is rotated about its axis in a

stream of water having a uniform velocity of 5 m/s. Estimate the rotational speed when

both the stagnation points coincide. Estimate the lift force experienced by the cylinder

under such condition. r of water may be assumed to be 1000 kg/m3.

Solution Stagnation point is given by

q = sin�1 
� G

4 0p r U
F
H

I
K

When both the stagnation points coincide, the two angles are equal and q = �90°.

Stagnation point is at the lower surface [Fig. 7.14].

Thus G
4 0p r U

 = 1

or G = 4p r U0

If the cylinder is rotating at an angular speed w, the circulation due to the equivalent

forced vortex is

G = z (wr ) r dq = 2p r
2
 w

2p w r2 = 4 p r U0

w =
2 0U

r

or w =
2 5
0 15

¥
.

 = 66.67 rad/s

and G = 4p ¥ 0.15 ¥ 5

= 9.42 m
2
/s

Lift force = L = r U G

or L = 1000 ¥ 5 ¥ 9.42 
kg

m

m
s

m
s3

2

◊ ◊L
NM

O
QP

or L = 47100 N/m

As such, the lift is calculated per metre length of the cylinder

So Lift = 47.1 kN/m2
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Exercises

7.1 Choose the correct answer for the following questions

(i) Stream function is defined for

(a) all 3-D flow situations (b) flow of perfect fluid

(c) irrotational flows only (d) 2-D incompressible flows.

(ii) Velocity potential exists for

(a) all 3-D flow situations (b) flow of perfect fluid

(c) all irrotational flows (d) steady irrotational flow

(iii) The continuity equation for a fluid states that

(a) mass flow rate through a stream tube is constant.

(b) the derivatives of velocity components exist at every point.

(c) the velocity is tangential to stream lines.

(d) the stream function exists for steady flows.

(iv) —. 
r
V  = 0 implies that

(a) dilatation rate for a fluid particle is zero.

(b) net mass flux from a control volume in any flow situation is zero.

(c) the fluid is compressible.

(d) density is a function of time only.

(v) Momentum theorem is valid only if the fluid is

(a) incompressible (b) in irrotational motion

(c) inviscid (d) irrespective of the above restrictions.

(vi) Circulation is defined as

(a) line integral of velocity about any path

(b) integral of tangential component of velocity about a path

(c) line integral of velocity about a closed path

(d) line integral of tangential component of velocity about a closed path.

(vii) In an irrotational flow, Stokes, theorem implies that circulation is zero

(a) around two dimensional infinite bodies

(b) in simply connected regions

(c) in  multiply connected regions

(d) without any restriction.

(viii) The curl of a given velocity field indicates

(a) the rate of increase or decrease of flow at a point

(b) the rate of twisting of the lines of flow

(c) the deformation rate

(d) none of the above

7.2 Prove that the streamlines y (r, q) in a polar coordinate system are orthogonal to

the velocity potential lines f(r, q).

7.3 The x and y components of velocity in a two-dimensional incompressible flow

are given by

u = 3x + 3y and v = 2x � 3y

Derive an expression for the stream function. Show that the flow is rotational.

Calculate the vorticity in the flow field.

Ans. (�x
2
 + 3xy + (3/2) y

2
, — ¥

r
V  = � 1)
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7.4 A source of volume flow rate 2 m2/s is located at origin and another source of

volume flow rate 4 m2/s is located at (3,0). Find out the velocity components at

(2, 2).

Ans. u = � 0.048 m/s, v = 0.334 m/s)

7.5 A source of volume flow rate 5 m
2
/s at the origin and a uniform flow of velocity

4 m/s combine to form a two-dimensional half body. Find out the maximum

width of the half body. Ans. (1.25 m)

7.6 A source and a sink of equal volume flow rate 10  m
2
/s are located 2 m apart. If

a uniform flow of 5 m/s  is superimposed, find out the location of the stagna-

tion points.

Ans. (1.28, 0) and (� 1.28, 0)

7.7 The discharge of 30 m2/s pollutants from a chemical plant into 10 m deep river,

flowing at 0.3 m/s, can be modelled as a 2-D source across the river depth. It is

found that the fishes in a certain zone die out whereas those outside the zone are

unaffected. Find out the extent of this critical zone, if the point of discharge is in

the midplane of a wide river.

Ans. (Rankine half body with stagnation point (15.91, 0) and 2ymax = 100 m)

7.8 The Flettner rotor ship (Fig. 7.15) make use of two rotating vertical cylinders.

Each has a diameter of 3 m and length of 15 m. If they rotate at a speed of

720 rpm, calculate the magnitude of Magnus force developed by the rotors in a

breeze of 10 m/s. Assume air density as 1.22 kg/m3.

Ans. (390.083 kN)

7.9 Find out the strength of a doublet which simulates a physical situation of 2 m

diameter cylinder in a uniform flow of 15 m/s.

Ans. (L = 47.124 m
3
/s per metre)

7.10 Consider a forced vortex rotated at an angular speed w. Evaluate the circulation

around any closed path in a forced vortex flow.

Derive the expression of hydrodynamic pressure as a function of radius for (i) a

free vortex and (ii) a forced vortex.

Ans. (Forced vortex G = 2p r2 w ; (i) p = � r C2/r2 + C2 (ii) p = rw2 r2/2 + C1)

7.11 A tornado may be modelled as a circulating flow  shown in Fig. 7.24 with

vr = vz = 0

vq = w r for r £ R

=
w R

r

2

 for r ≥ R

R

v (r)

r

Fig. 7.24 Model of tornado (combination of free and forced vortex)
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Determine whether the flow pattern is irrotational in either the inner (r < R) or

the outer (r > R) region. Using r momentum equation, determine the pressure

distribution p (r) in the tornado, assuming p = p• at r Æ •. Find out the location

of the minimum pressure.

Ans. (p = p• � rw2 R2 (1 � r2/ 2R2) for r < R;

p = p• � rw2
 R

4
 / 2r

2
 for r > R)

7.12 A 2 m diameter cylinder is rotating at 1400 rpm in an air stream flowing at

20 m/s. Calculate the lift and drag forces per unit depth of the cylinder. Assume

air density as 1.22 kg/m
3
. Ans. (L = 22.476 kN, D = 0)

7.13 Flow past a rotating cylinder can be simulated by superposition of a doublet,

a uniform flow and a vortex. The peripheral velocity of the rotating cylinder

alone is given by vq at r = R (R is the radius of the cylinder). Use the expression

for the combined velocity potential for the superimposed uniform flow,

doublet and vortex flow (clockwise rotation) and show that the resultant ve-

locity at any point on the cylinder is given by � 2Uo sin q � vq (at r = R). The

angle q is the angular position of the point of interest. A cylinder rotates at

360 rpm around its own axis which is perpendicular to the uniform air stream

(density 1.24 kg/m3) having a velocity of 25 m/s. The cylinder is 2 m in diam-

eter. Find out (a) circulation, G (b) lift per unit length and the (c) position of the

stagnation points.

Ans. (236.87 m2/s, 7343 N/m, � 48.93° and 228.93°)

7.14 Flow past a rotating cylinder can be simulated by superposition of a doublet,

a uniform flow and a vortex. The peripheral velocity of the rotating cylinder

alone is given by vq at r = R (R is the radius of the cylinder). Use the expression

for the combined velocity potential for the superimposed uniform flow,

doublet and vortex flow (clockwise rotation) and show that the resultant ve-

locity at any point on the cylinder is given by � 2Uo sin q � vq (at r = R). The

angle q is the angular position of the point of interest. A cylinder rotates at

240 rpm around its own axis which is perpendicular to the uniform air stream

(density 1.24 kg/m3) having a velocity of 20 m/s. The cylinder is 2 m in diam-

eter. Find out (a) circulation, G (b) lift per unit length and the (c) speed of

rotation of the cylinder, which yields only a single stagnation point.

Ans. (157.91 m2/s, 3916.25 N/m, 382 rpm)



8.1 INTRODUCTION

In the analysis of motion of a real fluid, the effect of viscosity should be given

consideration. Influence of viscosity is more pronounced near the boundary of a

solid body immersed in a fluid in motion. The relationship between stress and rate

of strain for the motion of real fluid flow was first put forward by Sir Isaac

Newton and for this reason the viscosity law bears his name. Later on, G.G.

Stokes, an English mathematician and C.L.M.H. Navier, a French engineer,

derived the exact equations that govern the motion of real fluids. These equations

are in general valid for compressible or incompressible laminar flows and known

as Navier-Stokes equations. When a motion becomes turbulent, these equations

are generally not able to provide with a complete solution. Usually, in order to

obtain accurate results for such situations, the Navier-Stokes equations are

modified and solved based on several semi-empirical theories. In the recent past,

some researchers have proposed that, on a fine enough scale, all turbulent flows

obey the Navier-Stokes equation and computationally, if a fine enough grid is

used with appropriate discretization methods, may be both the fine scale and large

scale aspects of turbulence can be captured. However, in this chapter we shall

discuss the equation of motion for laminar flows and various other aspects of

laminar incompressible flows.

Viscous Incompressible
Flows

8
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8.2 GENERAL VISCOSITY LAW

The well-known Newton�s viscosity law is

t = m
∂
∂

V

n
(8.1)

where n is the coordinate direction normal to the solid-fluid interface, m is the

coefficient of viscosity and V is velocity. This law is valid for parallel flows.

There are more generalized relations which can relate stress field and velocity

field  for any kind of flow. Such relations are called constitutive equations. We

shall consider here the Stokes� viscosity law.

According to Stokes� law of viscosity, shear stress is proportional to rate of shear

strain so that

txy = tyx = m 
u

x y

∂ ∂

∂ ∂

È ˘
+Í ˙

Î ˚

v
(8.2a)

tyz = tzy = m 
w

y z

∂ ∂

∂ ∂

È ˘
+Í ˙

Î ˚

v
(8.2b)

tzx = txz = m 
u w

z x

∂ ∂

∂ ∂

È ˘
+Í ˙

Î ˚
(8.2c)

The first subscript of t denotes the direction of the normal to the plane on

which the stress acts, while the second subscript denotes direction of the force

which causes the stress.

The expressions of Stokes� law of viscosity for normal stresses are

sxx = � p + 2m 
∂

∂

u

x
 + m¢ 

u w

x y z

∂ ∂ ∂

∂ ∂ ∂

È ˘
+ +Í ˙

Î ˚

v
(8.3a)

syy = � p + 2m 
∂

∂

v

y
 + m¢ 

u w

x y z

∂ ∂ ∂

∂ ∂ ∂

È ˘
+ +Í ˙

Î ˚

v
(8.3b)

szz = � p + 2m 
∂

∂

w

z
 + m¢ 

u w

x y z

∂ ∂ ∂

∂ ∂ ∂

È ˘
+ +Í ˙

Î ˚

v
(8.3c)

where m¢ is related to the second coefficient of viscosity m1 by the relationship

m¢ = � 
2

3
 (m � m1). We have already seen that thermodynamic pressure

p = � 
( )s s sxx yy zz+ +

3
. Now, if we  add the three Eqs (8.3a), (8.3b) and (8.3c),

we obtain

sxx + syy + szz = �3p + 2m 
u w

x y z

∂ ∂ ∂

∂ ∂ ∂

È ˘
+ +Í ˙

Î ˚

v
 + 3m¢ 

u w

x y z

∂ ∂ ∂

∂ ∂ ∂

È ˘
+ +Í ˙

Î ˚

v

or sxx + syy + szz = �3p + (2m + 3m¢) 
u w

x y z

∂ ∂ ∂

∂ ∂ ∂

È ˘
+ +Í ˙

Î ˚

v
(8.4)
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For incompressible fluid, 
∂

∂

∂

∂

∂

∂

u

x y

w

z
+ +

v
 = —◊

r
V  = 0

So, p = �
( )s s sxx yy zz+ +

3
 is satisfied in the same manner. For compressible

fluids, Stokes� hypothesis is m¢ = �
2

3
 m. Invoking this to Eq. (8.4), will finally

conclude that p = � 
( )s s sxx yy zz+ +

3
. Generally, fluids obeying the ideal gas

equation follow this hypothesis and they are called Stokesian fluids. It may also

be mentioned that the second coefficient of viscosity, m1, has been verified to be

negligibly small.

Now, we can write

sxx = � p + 2m 
2

3

u u w

x x y z

∂ ∂ ∂ ∂
m

∂ ∂ ∂ ∂

È ˘
- + +Í ˙

Î ˚

v
(8.5a)

syy = � p + 2m 
2

3

u w

y x y z

∂ ∂ ∂ ∂
m

∂ ∂ ∂ ∂

È ˘
- + +Í ˙

Î ˚

v v
(8.5b)

szz = � p + 2m 
2

3

w u w

z x y z

∂ ∂ ∂ ∂
m

∂ ∂ ∂ ∂

È ˘
- + +Í ˙

Î ˚

v
(8.5c)

In deriving the above stress-strain rate relationship, it was assumed that a fluid

has the following properties

1. Fluid is homogeneous and isotropic, i.e. the relation between

components of stress and those of rate of strain is the same in all

directions.

2. Stress is a linear function of strain rate.

3. The stress-strain relationship will hold good irrespective of the

orientation of the reference coordinate system.

4. The stress components must reduce to the hydrostatic pressure

(typically thermodynamic pressure = hydrostatic pressure) p when all

the gradients of velocities are zero.

8.3 NAVIER�STOKES EQUATIONS

Generalized equations of motion of a real flow are named after the inventors of

them and they are known as Navier�Stokes equations. However, they are derived

from the Newton�s second law which states that the product of mass and

acceleration is equal to sum of the external forces acting on a body. External

forces are of two kinds�one acts throughout the mass of the body and another

acts on the boundary.

The first one is known as body force (gravitational force, electromagnetic

force) and the second one is surface force (pressure and frictional force).
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Let the body force per unit mass be

r
fb  = $i  fx + $j  fy + $k  fz (8.6)

and surface force per unit volume be

r
F  = $ $ $i F j F k Fx y z+ +  (8.7)

Consider a differential fluid element in the flow field (Fig. 8.1). We wish to

evaluate the surface forces acting on the boundary of this rectangular parallel-

epiped.

Fig. 8.1 Definition of the components of stress and their locations in a

differential fluid element

To accomplish this, we shall consider surface force on the surface AEHD, per

unit area,

$i  sxx + $j  txy + $k  txz = 
r
F sx

Surface force on the surface BFGC per unit area is

r
Fsx  + 

∂

∂

r
F

x

sx  dx

Net force on the body due to imbalance of surface forces on the above two

surfaces is

∂

∂

r
F

x

sx  dx dy dz (8.8)
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Total force on the body due to net surface forces on all six surfaces is

∂

∂

∂

∂

∂

∂

r r r
F

x

F

y

F

z

sx sy sz+ +
F
HG

I
KJ

 dx dy dz (8.9)

and the resultant surface force dF per unit volume, is

d
r
F  =

∂

∂

∂

∂

∂

∂

r r r
F

x

F

y

F

z

sx sy sz+ + (8.10)

The quantities 
r
Fsx , 

r
Fsy  and 

r
Fsz are vectors which can be resolved into normal

stresses denoted by s and shearing stresses denoted by t as
r
Fsx  = $ $ $i j kxx xy xzs t t+ +
r
Fsy  = $ $ $i j kyx yy yzt s t+ +

U

V
||

W
|
|

(8.11)

r
Fsz  =

$ $ $i j kzx zy zzt t s+ +

The stress system is having nine scalar quantities. These nine quantities form a

stress tensor. The set of nine components of stress tensor can be described as

p =

xx xy xz

yx yy yz

zx zy zz

s t t

t s t

t t s

È ˘
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

(8.12)

The above stress tensor is symmetric, which means that two shearing stresses

with subscripts which differ only in their sequence are equal. Considering the

equation of motion for instantaneous rotation of the fluid element (Fig. 8.1)

about y axis, we can write

&w y  dIy = (txz dy dz)dx � (tzx dx dy)dz

= (txz � tzx) dV

where dV  is the volume of the element, and &w y  and dIy are the angular accel-

eration and moment of inertia of the element about y-axis respectively. Since dIy

is proportional to fifth power of the linear dimensions and dV  is proportional to

the third power of the linear dimensions, the left hand side of the above equation

vanishes faster than the right hand side on contracting the element to a point.

Hence, the result is

txz = tzx

From the similar considerations about other two remaining axes, we can

write

txy = tyx

tyz = tzy

which has already been observed in Eqs (8.2a), (8.2b) and (8.2c) earlier.

Invoking these conditions into Eq. (8.12), the stress tensor becomes
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p =

xx xy xz

xy yy yz

xz yz zz

s t t

t s t

t t s

È ˘
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

(8.13)

Combining Eqs (8.10), (8.11) and (8.13), the resultant surface force per unit

volume becomes

d
r
F  = $i

x y z

xx xy xz∂s

∂

∂t

∂

∂t

∂
+ +F

HG
I
KJ

+ � xy yy yz
j

x y z

∂t ∂s ∂t

∂ ∂ ∂

Ê ˆ
+ +Á ˜Ë ¯

+ $k
x y z

xz yz zz∂t

∂

∂t

∂

∂s

∂
+ +F

HG
I
KJ

(8.14)

As per the velocity field,

D

D

r
V

t
 = $ $ $i

u

t
j

t
k

w

t

D

D

D

D

D

D
+ +v

(8.15)

By Newton�s law of motion applied to the differential element, we can write

r(dx dy dz) 
D

D

r
V

t
 = ( )dF

r
 (dx dy dz) + r

r
fb  (dx dy dz)

or r
D

D

r
V

t
 = d

r
F  + r

r
fb

Substituting Eqs (8.15), (8.14) and (8.6) into the above expression, we obtain

r 
D

D

u

t
 = rfx + 

xyxx xz

x y z

∂t∂s ∂t

∂ ∂ ∂

Ê ˆ
+ +Á ˜Ë ¯

(8.16a)

r 
D

D

v

t
 = rfy + 

xy yy yz

x y z

∂t ∂s ∂t

∂ ∂ ∂

Ê ˆ
+ +Á ˜Ë ¯

(8.16b)

r 
D

D

w

t
 = rfz + 

yzxz zz

x y z

∂t∂t ∂s

∂ ∂ ∂

Ê ˆ
+ +Á ˜Ë ¯

(8.16c)

In order to express 
D

D

u

t
, 

D

D

v

t
 and 

D

D

w

t
 in terms of field derivatives, Eqs (8.2)

and (8.5) are introduced into Eq. (8.16) and we obtain

r 
D

D

u

t
 = rfx � 

2
2

3

p u
V

x x x

∂ ∂ ∂
m

∂ ∂ ∂

È ˘Ê ˆ
+ - —◊Í ˙Á ˜Ë ¯Î ˚

r

+ 
∂

∂ y
 

u w u

y x z x z

∂ ∂ ∂ ∂ ∂
m m

∂ ∂ ∂ ∂ ∂

È ˘ È ˘Ê ˆ Ê ˆ
+ + +Í ˙ Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚ Î ˚

v
(8.17a)
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r 
D

D

v

t
 = rfy �  

2
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3

p
V

y y y

∂ ∂ ∂
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∂ ∂ ∂

È ˘Ê ˆ
+ - —◊Í ˙Á ˜Ë ¯Î ˚
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w u

z z y x y x

∂ ∂ ∂ ∂ ∂ ∂
m m

∂ ∂ ∂ ∂ ∂ ∂

È ˘ È ˘Ê ˆ Ê ˆ
+ + +Í ˙ Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚ Î ˚

v v
(8.17b)

and r 
D

D

w

t
 = rfz � 

2
2

3

p w
V

z z z

∂ ∂ ∂
m

∂ ∂ ∂

È ˘Ê ˆ
+ - —◊Í ˙Á ˜Ë ¯Î ˚

r

+ 
w u w

x x z y z y

∂ ∂ ∂ ∂ ∂ ∂
m m

∂ ∂ ∂ ∂ ∂ ∂

È ˘ È ˘Ê ˆ Ê ˆ
+ + +Í ˙ Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚ Î ˚

v
(8.17c)

These differential equations are known as Navier�Stokes equations. At this

juncture, it is necessary to discuss the equation of continuity as well, which is

having a general form

∂ r

∂ t
 +

∂ r

∂

∂ r

∂

∂ r

∂

( ) ( ) ( )u

x y

w

z
+ +

v

 = 0 (8.18)

The general form of continuity equation is simplified in case of incompressible

flow where r = constant. Equation of continuity for incompressible flow becomes

∂

∂

∂

∂

∂

∂

u

x y

w

z
+ +

v
 = 0 (8.19)

Invoking Eq. (8.19) into Eqs (8.17a), (8.17b) and (8.17c), we get

r 
u u u u

u w
t x y z

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

Ê ˆ
+ + +Á ˜Ë ¯

v

= 
2 2 2

2 2 2x

p u u u
f

x x y z

∂ ∂ ∂ ∂
r m

∂ ∂ ∂ ∂

Ê ˆ
- + + +Á ˜Ë ¯

(8.20a)

r vu w
t x y z

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

Ê ˆ
+ + +Á ˜Ë ¯

v v v v

= 
2 2 2

2 2 2y

p
f

y x y z

∂ ∂ ∂ ∂
r m

∂ ∂ ∂ ∂

Ê ˆ
- + + +Á ˜Ë ¯

v v v
(8.20b)

r v
w w w w

u w
t x y z

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

Ê ˆ
+ + +Á ˜Ë ¯

= 
2 2 2

2 2 2
�z

p w w w
f

z x y z

∂ ∂ ∂ ∂
r m

∂ ∂ ∂ ∂

Ê ˆ
+ + +Á ˜Ë ¯

(8.20c)

In short, vector notation may be used to write Navier-Stokes and continuity

equations for incompressible flow as

r 
D

D

r
V

t
 = r m

r r
f p Vb - — + —2 (8.21)

and — ◊
r
V  = 0 (8.22)
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We observe that we have four unknown quantities, u, v, w and p, and four

equations,�equations of motion in three directions and the continuity equation.

In principle, these equations are solvable but to date generalized solution is not

available due to the complex nature of the set of these equations. The highest

order terms, which come from the viscous forces, are linear and of second order.

The first order convective terms are non-linear and hence, the set is termed as

quasi-linear.

Navier�Stokes equations in cylindrical coordinate (Fig. 8.2) are useful in

solving many problems. If vr, vq and vz denote the velocity components along the

radial, cross-radial and axial directions respectively, then for the case of

incompressible flow, Eqs (8.21) and (8.22) lead to the following system of

equations:

vz

z
r

v

vr

Fig. 8.2 Cyl+indrical polar coordinate and the velocity components

r 
2

r r r r
r z

t r r r z

q q∂ ∂ ∂ ∂

∂ ∂ ∂q ∂

Ê ˆ
+ + ◊ - +Á ˜Ë ¯

v vv v v v
v v = r

∂

∂
f

p

r
r -

2 2 2

2 2 2 2 2 2

1 1 2r r r r r

r rr r r r z

q∂∂ ∂ ∂ ∂
m

∂ ∂q∂ ∂q ∂

Ê ˆ
+ + ◊ - + ◊ - ◊ +Á ˜Ë ¯

vv v v v v
(8.23a)
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2 2 2 2 2 2

1 1 2 r
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q q q q q∂ ∂ ∂ ∂∂
m
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(8.23b)
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∂ ∂ ∂q ∂

Ê ˆ
+ + ◊ +Á ˜Ë ¯

vv v v v
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= r
∂

∂
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1 1z z z z

r rr r z

∂ ∂ ∂ ∂
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∂∂ ∂q ∂

Ê ˆ
+ + ◊ + ◊ +Á ˜Ë ¯

v v v v
(8.23c)

1r r z

r r r z

q∂∂ ∂

∂ ∂q ∂
+ + ◊ +

vv v v
 = 0 (8.24)

Let us quickly look at a little more general way of deriving the Navier-Stokes

equations from the basic laws of physics. Consider a general flow field as

represented in Fig. 8.3. Let us imagine a closed control volume V 0 within the
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flow field. A control surface, A0, is defined as the surface which bounds the

volume V 0. The control volume is fixed in space and the fluid is moving through

it. The control volume occupies reasonably large finite region of the flow field.

According to Reynolds transport theorem, we know that the laws of physics

which are basically stated for a system, can be re-stated for a control volume

through some integral relationship. However, for momentum conservation, the

Reynolds transport theorem states, �The rate of change of momentum for a system

equals the sum of the rate of change of momentum inside the control volume and

the rate of efflux of momentum across the control surface.�

Again, the rate of change of momentum for a system (in our case the control

volume is the system) is equal to the net external force acting on it. Now, we shall

transform these statements into equation by accounting for each term.

Fig. 8.3 Finite control volume fixed in space with the fluid moving through it

Rate of change of momentum inside the control volume

= ∂
∂

r
t

V
r

dV

V0

zzz
= ∂

∂
r

t
V( )
r

dV

V0

zzz (since t is independent
of space variable) (8.25)

Rate of efflux of momentum through control surface

=

0

( d )

A

V V Ar ◊ÚÚ
rr r

 = 

0

d

A

V V n Ar ◊ÚÚ
r r r

= —◊zzz ( )r
r r
V V dV

V0

=
r r r r
V V V V( )—◊ + ◊—zzz r rd i dV

V0

(8.26)

Surface force acting on the control volume

=

0

d

A

A s◊ÚÚ
r
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=

0

d

A

As ◊ÚÚ
r

[s is symmetric stress tensor]

= ( )—◊zzz s dV

V0

(8.27)

and, the body force acting on the control volume

= r
r
f dV

V0

zzz (8.28)

r
f  in Eq. (8.28) is the body force per unit mass.

Finally, we get,

∂
∂

r r r
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∂
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r r r r rV
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r
f

or
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t t
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∂ ∂

Ê ˆ Ê ˆ
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r
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We know that 
∂ r

∂
r

t
V+ —◊
r

 = 0 is the general form of mass conservation

equation, valid for both compressible and incompressible flows. Invoking this

relationship in Eq. (8.29), we obtain

V
V V

t

∂
r

∂

Ê ˆ
+ ◊—Á ˜Ë ¯

r
r r

 = —◊s + r
r
f

or r
D

D

r
V

t
  = —◊s + r

r
f (8.30)

Equation (8.30) is often referred to as Cauchy�s equation of motion. In this

equation, s, the stress tensor, is given by

s = �pI* + m¢ ( )V—◊
r

 + 2m (Def V
r

)** (8.31)

*I =

1 0 0

0 1 0

0 0 1

È ˘
Í ˙
Í ˙
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r
V ) =
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j i

i j

V V

x x

∂ ∂

∂ ∂

Ê ˆ
+Á ˜

Ë ¯
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From Eq. (8.31), we get

—◊s = � —p + (m¢ + m)  — ( )V—◊
r

 + m —2 V
r

(8.32)

and also from Stokes�s hypothesis, ¢ +m m
2

3
 = 0 (8.33)

Invoking Eq. (8.32) in Eq. (8.30) and introducing Eq. (8.33) will yield

r
D

D

r
V

t
 = � — + — + — —◊ +p V V fm m r2 1

3

r r r
( ) (8.34)

This is the most general form of Navier-Stokes equation. The specific forms

for different coordinate systems can easily be obtained from Eq. (8.34).

In a cartesian coordinate system,

(Def 
r
V ) =

1 1

2 2

1 1

2 2

1 1

2 2

u u w u
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u w
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u w w w
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v

v v v

v

This is known as deformation tensor. It can be readily seen that (Def 
r
V ) is a

symmetric tensor.

8.4 EXACT SOLUTIONS OF NAVIER�STOKES
EQUATIONS

The basic difficulty in solving Navier-Stokes equations arises due to the

presence of nonlinear (quadratic) inertia terms on the left hand side. However,

there are some nontrivial solutions of the Navier-Stokes equations in which the

nonlinear inertia terms are identically zero. One such class of flows is termed as

parallel flows in which only one velocity term is nontrivial and all the fluid

particles move in one direction only.

Let us choose x to be the direction along which all fluid particles travel, i.e.

u π 0, v = w = 0. Invoking this in continuity equation, we get

∂

∂

∂

∂

∂u

x y z
+ +

v
0 0

 = 0

∂

∂

u

x
 = 0 which means u = u (y, z, t)

Now, Navier-Stokes equations for incompressible flow become
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So, we obtain

∂

∂

p

y
 =

∂
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 = 0, which means p = p(x) alone,
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(8.35)

For a steady two dimensional flow through parallel plates, Eq. (8.35) is further

simplified and analytical solution can be obtained. An insightful description of

many such analytical solutions in different geometrical configurations has been

well documented in White [1] and Faber [2]. However, we shall discuss some of

the important exact solutions in the following sections.

8.4.1 Parallel Flow in a Straight Channel

Consider steady flow between two infinitely broad parallel plates as shown in

Fig. 8.4. Flow is independent of any variation in z direction, hence, z dependence

is gotten rid of and Eq. (8.35) becomes

Fig. 8.4 Parallel flow in a straight channel

d

d

p

x
 = m

d

d

2

2

u

y
(8.36)

The boundary conditions are at y = b, u = 0; and y = �b, u = 0.

From Eq. (8.36), we can write

d

d
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y
 =

1
1

m

d

d

p

x
y C+

or u =  
1

2 m
◊

d

d

p

x
 y2 + C1 y + C2
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Applying the boundary conditions, the constants are evaluated as:

C1 = 0 and C2 = �
1

2

2

m
◊ ◊d

d

p

x

b

So, the solution is

u = � ( )
1

2

2 2

m
◊ -

d

d

p

x
b y (8.37)

which implies that the velocity profile is parabolic. We can extend our analysis

little further in order to establish the relationship between the maximum velocity

and average velocity in the channel.

At y = 0, u = Umax; this yields

Umax = �
b p

x

2

2 m
◊ d

d
(8.38a)

On the other hand, the average velocity,
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d

d
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x
b (8.38b)

So,
U

U

av

max

 =
2

3

or Umax = 
3

2
Uav (8.38c)

The shearing stress at the wall for the parallel flow in a channel can be

determined from the velocity gradient as

t yx b
 = maxd

� 2
d

b

Uu p
b

y x b

∂
m m

∂

Ê ˆ
= =Á ˜Ë ¯

Since the upper plate is a �minus y surface�, a negative stress acts in the positive

x direction, i.e. to the right.

The local friction coefficient, Cf, is defined by

Cf =
( ) /t
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2 2
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2
12

r

m

U bav ( ) Re
= (8.38d)
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where Re = Uav(2b)/n is the Reynolds number of flow based on average velocity

and the channel height (2b). Experiments show that Eq. (8.38d) is valid in the

laminar regime of the channel flow. The maximum Reynolds number value

corresponding to fully developed laminar flow, for which a stable motion will

persist, is 2300. In a reasonably careful experiment, laminar flow can be observed

up to even Re = 10,000. But the value below which the flow will always remain

laminar, i.e. the critical value of Re is 2300.

8.4.2 Couette Flow

Another simple solution for Eq. (8.35) is obtained for Couette flow between two

parallel plates (Fig. 8.5). Here, one plate is at rest and the other is moving with a

velocity U. Let us assume the plates are infinitely large in z direction, so the

z dependence is not there and the governing equation is 
d

d

d

d 2

p

x

u

y
= m

2

 subjected

to the boundary conditions at y = 0, u = 0 and y = h, u = U.

U

h

x

Fig. 8.5 Couette flow between two parallel flat plates

We get,

u =
1

2

2
1 2

m
◊ + +
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y C y C

Invoking the condition (at y = 0, u = 0), C2 becomes equal to zero.

u =
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2
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m
◊ +

d
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y C y

Invoking the other condition (at y = h, u = U),
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U
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So, u =
2 d

1
2 d

y h p y y
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(8.39)

Equation (8.39) can also be expressed in the form

u

U
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2 d
1

2 d

y h p y y

h U x h hm
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or
u

U
 = 1

y y y
P

h h h

Ê ˆ+ -Á ˜Ë ¯
(8.40a)

where P =
2 d

�
2 d

h p

U xm

Ê ˆ
Á ˜Ë ¯

Equation (8.40a) describes the velocity distribution in non-dimensional form

across the channel with P as a parameter known as the non-dimensional pressure

gradient. When P = 0, the velocity distribution across the channel is reduced to

u

U
 =

y

h

This particular case is known as simple Couette flow. When P > 0, i.e. for a

negative or favourable pressure gradient (� dp/dx) in the direction of motion, the

velocity is positive over the whole gap between the channel walls. For negative

value of P (P < 0), there is a positive or adverse pressure gradient in the direction

of motion and the velocity over a portion of channel width can become negative

and back flow may occur near the wall which is at rest. Figure 8.6a shows the

effect of dragging action of the upper plate exerted on the fluid particles in the

channel for different values of pressure gradient.

Prssure increases in 
the direction of 
upper-plate motion

Pressure decreases in 
the direction of 
upper-plate motionZero pressure 

gradient

P < 1

dp dp dp dp dp
>> 0 > 0 = 0 < 0 << 0

dx dx dx dx dx

P < 0 P = 0 P > 0 P > 1

Fig. 8.6a Velocity profile for the Couette flow for various values of

pressure gradient

Maximum and Minimum Velocities The quantitative description of non-

dimensional velocity distribution across the channel, depicted by Eq. (8.40a), is

shown in Fig. 8.6b. The location of maximum or minimum velocity in the channel

is found out by setting the derivative du/dy equal to zero. From Eq. (8.40a), we

can write

d

d

u

y
 = 1 2

U PU y

h h h

Ê ˆ+ -Á ˜Ë ¯

For maximum or minimum velocity,
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d

d

u

y
 = 0

which gives
y

h
 =

1

2

1

2
+

P
(8.40b)

It is interesting to note that maximum velocity for P = 1 occurs at y/h = 1 and

equals to U. For P > 1, the maximum velocity occurs at a location 
y

h
 < 1. This

means that with P > 1, the fluid particles attain a velocity higher than that of the

moving plate at a location somewhere below the moving plate. On the other hand,

when P = �1, the minimum velocity occurs, according to Eq. (8.40b), at 
y

h
 = 0.

For P < �1, the minimum velocity occurs at a location 
y

h
 > 0. This means that

there occurs a back flow near the fixed plate. The values of maximum and

minimum velocities can be determined by substituting the value of y from

Eq. (8.40b) into Eq. (8.40a) as

umax =
U P

P

( )1

4

2+
for P ≥ 1

umin =
U P

P

( )1

4

2+
for P £ 1 (8.40c)
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Fig. 8.6b Velocity distribution of the Couette flow

8.4.3 Hagen Poiseuille Flow

Consider fully developed laminar flow through a straight tube of circular cross-

section as in Fig. 8.7. Rotational symmetry is considered to make the flow two-

dimensional axisymmetric. Let us take z-axis as the axis of the tube along which

all the fluid particles travel, i.e.

vz π 0, vr = 0, vq = 0
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Fig. 8.7 Hagen�Poiseuille flow through a pipe

Now, from continuity equation, we obtain
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Navier-Stokes equations, we finally obtain
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For steady flow, the governing equation becomes
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(8.42)

The boundary conditions are

at r = 0, vz is finite and

at r = R, vz = 0.

Equation (8.42) can be written as
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at r = 0, vz is finite which means A should be equal to zero and at r = R, vz = 0

yields

B = �
1

4

2

m
◊ ◊

d

d

p

z
R

vz =
2 2

2

d
� 1

4 d

R p r

z Rm

Ê ˆÊ ˆ -Á ˜ Á ˜Ë ¯ Ë ¯
(8.43)

This shows that the axial velocity profile in a fully developed laminar pipe

flow is having parabolic variation along r.

At r = 0, as such, vz = vzmax

vzmax
 =

2 d
�

4 d

R p

zm

Ê ˆ
Á ˜Ë ¯

(8.44a)

The average velocity in the channel,

vzav
 = 0
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or vzmax
 = 2 vzav

(8.44c)

Now, the discharge through a pipe is given by

Q = p R2
vzav

(8.45)

or Q = p R
2 R p

z

2

8m
-FH

I
K

d

d
[From Eq. 8.44b]

or Q =
4 d

128 d

D p

z

p

m

Ê ˆ- Á ˜Ë ¯
(8.46)

Equation (8.46) is commonly used in the measurement of viscosity with the help

of capillary tube viscometers. Such a viscometer consists of a constant head tank

to supply liquid to a capillary tube (Fig. 8.8).

C Capillary

M Manometer

N Measuring cylinder

P Pump

R Reservoir

T Tank (constant head)

V Valve
M

P

R
V

C

V

T

N

V

Fig. 8.8 Schematic diagram of the experimental facility for determination of viscosity
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Pressure drop readings across a specified length in the developed region of the

flow are taken with the help of a manometer. The developed flow region is

ensured by providing the necessary and sufficient entry length. From Eq. (8.46),

the expression for viscosity can be written as

m = - ◊ =
-p pD

Q

p

l

D

Q

p p

l

4 4
1 2

128 128

d

d

( )

The volumetric flow rates (Q) are measured by collecting the liquid in a

measuring cylinder. The diameter (D) of the capillary tube is known beforehand.

Now the viscosity of a flowing fluid can easily be evaluated.

Shear stress profile across the cross-section can also be determined from this

information. Shear stress at any point of the pipe flow given by

t r  = m
d

d

vz

r

From Eq. (8.43), 
d

d
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2

d 2
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(8.47a)

which means t r  =
1 d

2 d

p
r

z

Ê ˆ ◊Á ˜Ë ¯
(8.47b)

This also indicates that t varies linearly with the radial distance from the axis.

At the wall, t assumes the maximum value.

At r = R, t = tmax = 
1

2

d

d

p

z
R

F
HG

I
KJ

Again, over a pipe length of l, the total shear force is

Fs = tmax 2pR ◊ l

or Fs =
2 11

2

p p

l

-Ê ˆ ◊Á ˜Ë ¯
2p R2 ◊ l

or Fs = �pR2 ¥ [Pressure drop between the specified length]

as it should be. Negative sign indicates that the force is acting in opposite to the

flow direction.

However, from Eq. (8.44b), we can write

(vz)av = 21 d
�

8 d

p
R

zm

Ê ˆ
Á ˜Ë ¯

(8.47c)
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�
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8

2

m( )vz

R

av (8.48)

Over a finite length l, the head loss hf = 
pressure drop

rg
(8.49)
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Combining Eqs (8.48) and (8.49), we get
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On the other hand, the head loss in a pipe flow is given by Darcy-Weisbach

formula as

hf =
f l

g D

z( )v
av

2

2
(8.51)

where �f� is Darcy friction factor. Equations (8.50) and (8.51) will yield

32 1
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( )
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D g

av
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av◊
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f l

g D
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which finally gives f = 
64

Re
, where Re = 

r

m

( )vz Dav  is the Reynolds number.

So, for a fully developed laminar flow, the Darcy (or Moody) friction factor is

given by

f =
64

Re
(8.52a)

Alternatively, the skin friction coefficient for Hagen-Poiseuille flow can be

expressed by

Cf =
t

r

at r R

z

=

1

2
( )v av

2

With the help of Eqs (8.47b) and (8.47c), it can be written

Cf =
16

Re
(8.52b)

The skin friction coefficient Cf is called as Fanning�s friction factor. From

comparison of Eqs (8.52a) and (8.52b), it appears

f = 4 Cf

For fully developed turbulent flow, the analysis is much more complicated,

and we generally depend on experimental results. Friction factor for a wide range

of Reynolds number (104 to 108) can be obtained from a look-up chart which we

shall discuss later. Friction factor, for high Reynolds number flows, is also a

function of tube surface condition. However, in circular tube, flow is laminar for

Re £ 2300 and turbulent regime starts with Re ≥ 4000. In between, transition

from laminar to turbulent is induced.
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As it has been pointed out, the surface condition of the tube is another

responsible parameter in determination of friction factor. Friction factor in the

turbulent regime is determined for different degree of surface-roughness 
e

Dh

F
HG

I
KJ

of the  pipe, where e is the dimensional roughness and Dh is usually the hydraulic

diameter of the pipe. Friction factors for different Reynolds number and surface-

roughness have been determined experimentally by various investigators and the

comprehensive results are expressed through a graphical presentation which is

known as Moody Chart after L.F. Moody who compiled it. This will be presented

in detail in Chapter 11.

The hydraulic diameter which is used as the characteristic length in

determination of friction factor, instead of ordinary geometrical diameter, is

defined as

Dh =
4 A

P

w

w

(8.53)

where Aw is the flow area and Pw is the wetted perimeter.

Now, let us quickly look at the so called kinetic energy correction factor (a)

and momentum correction factor (b) associated with fully developed laminar

flow.

Kinetic energy correction factor, a The kinetic energy associated with the fluid

flowing with its profile through elemental area dA = 
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v d
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z Ar
È ˘
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Here, for Hagen-Poiseuille flow,
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Momentum correction factor, b The momentum associated with fluid flowing

with its profile through elemental area dA = r vz
2 dA; and the total momentum

passing through any particular section per unit time = r 
2
zÚ v  dA. This can be
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related to the momentum rate due to average flow velocity (vz)av� through a

correction factor b, as
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zr Ú v  dA or b = 

2

av

1

( )

z

zA

È ˘
Í ˙
Î ˚
Ú

v

v
 dA

Here, for Hagen-Poiseuille flow,
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8.4.4 Flow between Two Concentric Rotating Cylinders

Another example which leads to an exact solution of Navier-Stokes equation is

the flow between two concentric rotating cylinders. Consider flow in the annulus

of two cylinders (Fig. 8.9), where r1 and r2 are the radii of inner and outer

cylinders, respectively, and the cylinders move with different rotational speeds

w1 and w2, respectively.

w1

w2

r1

r1

r2

r2

vr

vq

q

vz

Fig. 8.9 Flow beween two concentric rotating cylinders

From the physics of the problem we know, vz = 0, vr = 0. From the continuity

Eq. (8.24) and these two conditions, we obtain

∂

∂q
qv  = 0

which means vq is not a function of q. We assume z dimension to be large enough

so that end effects can be neglected and 
∂

∂ z
 (any property) = 0. Now, we can say

vq = vq(r). With these simplifications and assuming that �q symmetry� holds

good, (8.23) reduces to

r qv
2

r
 =

d

d

p

r
(8.55)

and
d

d

d

d

2
v v vq q q

r r r r2 2

1+ ◊ -  = 0 (8.56)

Equation (8.55) signifies that the centrifugal force is supplied by the radial

pressure, exerted by the wall of the enclosure on the fluid. In other words, it

describes the radial pressure distribution.
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From Eq. (8.56), we get

d 1 d
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For the azimuthal component of velocity, vq, the boundary conditions are: at

r = r1, vq = r1 w1 at r = r2, vq = r2 w2. Application of these boundary conditions on

Eq. (8.57) will produce
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Finally, the velocity distribution is given by
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Now, trq = m &g rq is the general stress-strain relation.

or trq = m 
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Equations (8.58) and (8.59) yields
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For the case, when the inner cylinder is at rest and the outer cylinder rotates,

the torque transmitted by the outer cylinder to the fluid is
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(8.61)



Viscous Incompressible Flows 337

where l is the length of the cylinder. The moment T1, with which the fluid acts on

the inner cylinder has the same magnitude. If the angular velocity of the external

cylinder and the moment acting on the inner cylinder are measured, the coefficient

of viscosity can be evaluated by making use of the Eq. (8.61).

8.5 LOW REYNOLDS NUMBER FLOW

We have seen in Chapter 6 that Reynolds number is the ratio of inertia force to

viscous force. For flow at low Reynolds number, the inertia terms in the

Navier�Stokes equations become small as compared to viscous terms. As such,

when the inertia terms are omitted from the equations of motion, the analyses are

valid for only Re << 1. Consequently, this approximation, linearizes the Navier�

Stokes equations and for some problems, makes it amenable to analytical

solutions. We shall discuss such flows in this section. Motions at very low

Reynolds number are sometimes referred to as creeping motion.

8.5.1 Theory of Hydrodynamic Lubrication

Thin film of oil, confined between the interspace of moving parts, may acquire

high pressures up to 100 MPa which is capable of supporting load and reducing

friction. The salient features of this type of motion can be understood from a study

of slipper bearing (Fig. 8.10). The slipper moves with a constant velocity U past

the bearing plate. This slipper face and the bearing plate are not parallel but

slightly inclined at an angle of a. A typical bearing has a gap width of 0.025 mm

or less, and the convergence between the walls may be of the order of 1/5000. It is

assumed that the sliding surfaces are very large in transverse direction so that the

problem can be considered two-dimensional.

 p0

y

x U

Slipper

Bearing plate

h1
h (x)

h2

l

Fig. 8.10 Flow in a slipper bearing

For the analysis, we may assume that the slipper is at rest and the plate is

forced to move with a constant velocity U. The height h(x) of the wedge between
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the block and the guide is assumed to be very small as compared with the length l

of the block. This motion is different from that we have considered while

discussing Couette flow. The essential difference lies in the fact that here the two

walls are inclined at an angle to each other. Due to the gradual reduction of

narrowing passage, the convective acceleration u 
∂

∂

u

x
 is distinctly not zero.

However, a relative estimation of inertia term with respect to viscous term

suggests that, for all practical purposes, inertia terms can be neglected. The

estimate is done in the following way

Inertia force

Viscous force
 =

22

2 2 2

( / ) /

( / ) /

u u x U l U l h

lu y U h

r ∂ ∂ r r

mm ∂ ∂ m

Ê ˆ= = Á ˜Ë ¯

The inertia force can be neglected with respect to viscous force if the modified

Reynolds number,

R*=

2

1
U l h

ln

Ê ˆ <<Á ˜Ë ¯

The equation for motion in y direction can be omitted since the v component of

velocity is very small with respect to u. Besides, in the x-momentum equation,

∂ 2u/∂ x2 can be neglected as compared with ∂ 2u/∂ y2 because the former is

smaller than the latter by a factor of the order of (h/l)2. With these simplifications

the equations of motion reduce to

m 
∂
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2

2

u

y
 =

d

d

p

x
(8.62)

The equation of continuity can be written as

Q =

( )

0

d

h x

u yÚ (8.63)

The boundary conditions are:
at y = 0, u = U at x = 0, p = p0

at y = h, u = 0 and at x = l, p = p0 (8.64)

Integrating Eq. (8.62) with respect to y, we obtain

u =
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2
1 2

m
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Application of the kinematic boundary conditions (at y = 0, u = U and at y = h,

u = 0), yields
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2 d

1 1
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It is to be noticed that 
d

d

p

x

Ê ˆ
Á ˜Ë ¯

 is constant as far as integration along y is concerned,

but p and 
d

d

p

x
 vary along x-axis. At the point of maximum pressure, 

d

d

p

x
 = 0,

hence
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u = U 1
y

h

Ê ˆ-Á ˜Ë ¯
(8.66)

Equation (8.66) depicts that the velocity profile along y is linear at the location

of maximum pressure. The gap at this location may be denoted as h*.

Now, substituting Eq. (8.65) into Eq. (8.63) and integrating, we get
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Uh p h

2 12

3

- ¢
m
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2 3

12
2

U Q

h h
m
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where p¢ = dp/dx.

Integrating Eq. (8.67) with respect to x, we obtain
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where a = (h1 � h2)/l and C3 is a constant.

Since the pressure must be the same (p = p0), at the ends of the bearing, namely,

p = p0 at x = 0 and p = p0 at x = l, the unknowns in the above equations can be

determined by applying the pressure boundary conditions. We obtain

Q =
U h h

h h

1 2

1 2+
and C3 = p0 � 

6

1 2

m

a

U

h h( )+
With these values inserted, the equation for pressure distribution (8.68) becomes
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Ux h h

h h h
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(8.69)

It may be seen from Eq. (8.69) that, if the gap is uniform, i.e. h = h1 = h2, the

gauge pressure will be zero. Furthermore, it can be said that very high pressure

can be developed by keeping the film thickness very small. Figure 8.10 shows the

distribution of pressure throughout the bearing.

The total load bearing capacity per unit width is

P = 2
0 2

1 20 0

( )6
( ) d d

l l
x h hU

p p x x
h h h

m -
- =

+Ú Ú
After substituting h = h1 � a x with a = (h1 � h2)/l in the above equation and

performing the integration,
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m È ˘Ï ¸-
-Í ˙Ì ˝

+- Í ˙Ó ˛Î ˚
(8.70)

The shear stress at the bearing plate is
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(8.71)

Substituting the value of p¢ from Eq. (8.67) and then invoking the value of Q in

Eq. (8.71), the final expression for shear stress becomes
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6 1 2
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mU

h

U h h

h h h
-

+( )

The drag force required to move the lower surface at speed U is expressed by
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Michell thrust bearing, named after A.G.M. Michell, works on the principles

based on the theory of hydrodynamic lubrication. The journal bearing (Fig. 8.11)

develops its force by the same action, except that the surfaces are curved.

A
L
ine of centres

O

W B

p

h1

h2

Fig. 8.11 Hydrodynamic action of a journal bearing

8.5.2 Low Reynolds Number Flow Around a Sphere

Stokes obtained the solution for the pressure and velocity field for the slow motion

of a viscous fluid past a sphere. In his analysis, Stokes neglected the inertia terms

of Navier-Stokes equations. Details of the solutions are beyond the scope of this

text. However, integrating the pressure distribution and the shearing stress over

the surface of a sphere of radius R, Stokes found that the drag D of the sphere,

which is placed in a parallel stream of uniform velocity U•, is given by

D = 6 pm RU• (8.73)

This is the well-known Stokes� equation for the drag of a sphere. It can be

shown that one third of the total drag is due to pressure distribution and the

remaining two third arises from frictional forces. If the drag coefficient is defined

according to the relation

CD =
D

U A
1

2

2r •

(8.74)
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where 2

4
A d

pÊ ˆ=Á ˜Ë ¯
 is the frontal area of the sphere, then
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p m

r
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R U

U d

•

•

or CD =
24

Re
; Re = 

U d•

n
(8.75)

A comparison between Stokes� drag coefficient in Eq. (8.75) and experiments

is shown in Fig. 8.12. The approximate solution due to Stokes� is valid for Re < 1.

10-210-3
10-2

10-1

10

102

103

104

1

10-1 1 10 102 103 104 105 106 Re

CD

108

24
Stokes' theory

Re

Fig. 8.12 Comparison between Stokes� drag coefficient and experimental

drag coefficient

An important application of Stokes� law is the determination of viscosity of a

viscous fluid by measuring the terminal velocity of a falling sphere. In this device,

a sphere is dropped in a transparent cylinder containing the fluid under test. If the

specific weight of the sphere is close to that of the liquid, the sphere will approach

a small constant speed after being released in the fluid. Now we can apply Stokes�

law for steady creeping flow around a sphere where the drag force on the sphere

is given by Eq. (8.73).

With the sphere, falling at a constant speed, the acceleration is zero. This

signifies that the falling body has attained terminal velocity and we can say that

the sum of the buoyant force and drag force is equal to weight of the body.

4

3

3p rR gs  =
4

3
63p r p mR g V Rl T+ (8.76)

where rs is the density of the sphere, rl is density of the liquid and VT is the

terminal velocity.

Solving for m, we get

m =
2

9

2gR

VT
s l( )r r- (8.77)
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The terminal velocity VT can be measured by observing the time for the sphere to

cross a known distance between two points after its acceleration has ceased.

Summary

∑ The Navier�Stokes equations, based on the conservation of momentum

have been derived for a viscous incompressible fluid.

∑ The Navier�Stokes equations are not amenable to an analytical solution

due to the presence of nonlinear inertia terms in it. However, there are

some special situations where the nonlinear inertia terms are reduced to

zero. In such situations, exact solutions of the Navier-Stokes equations are

obtainable. This includes the plane Poiseuille flow, the Couette flow, the

flow through a straight pipe and the flow between two concentric rotating

cylinders. All these flows are known as parallel flow where only one

component of the velocity is non-trivial.

∑ Knowledge of the velocity field obtained through analytical methods

permits calculation of shear stress, pressure drop and flow rate.

Applications of the parallel flow theory to the measurement of viscosity

and hydrodynamics of bearing-lubrication are explained.
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Solved Examples

Example 8.1 Two infinite plates are at h distance apart as in Fig. 8.13. There is a

fluid of viscosity m between the plates and the pressure is constant. The upper plate is

moving at speed U = 4 m/s. The height of the channel h = 1.8 cm. Calculate the shear

stress at the upper and lower walls if m = 0.44 kg/m.s and r = 888 kg/m3
.

v
h

U

u

x

Fig. 8.13 Parallel flow between two plates with upper plate moving

Solution Re = rhU/m = (888) (1.8/100) (4)/0.44 = 145. So, the flow is laminar and t =

m
∂

∂

u

y
, u at any y is given by 

U

h
y.

Shear stresses at the two walls are of equal magnitude, therefore,
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t = m
∂

∂

u

y
 = m

( )U

h

- 0
 (0.44) (4)/(1.8 /100)

= 97.8 Pa

Example 8.2 Water at 60° flows between two large flat plates. The lower plate

moves to the left at a speed of 0.3 m/s. The plate spacing is 3 mm and the flow is laminar.

Determine the pressure gradient required to produce zero net flow at a cross-section. (m =

4.7 ¥ 10�4
 Ns/m

2
 at 60 °C)

by

x U

U = 0.3 m/sec
b = 3 mm

Fig. 8.14

Solution Governing equation: m 
d

d

d

d

2u

y

p

x2
=

u =
1

2

2
1 2

m

d

d

p

x
y C y C+ +

at y = 0, u = �U, C2 = �U

at y = b, u = 0, which yields

0 =
1

2

2
1

m

d

d

p

x
b C b U+ - ,

or C1 =
U

b

p

x
b- ◊

1

2m

d

d

u =
1

2
12

m

d

d

p

x
y by U

y

b
( )- + -F

H
I
K

Now, Q = u y
p

x
y by U

y

b
y

b b

d
d

d
d

0

2

0

1

2
1z z= - + -F

H
I
K

L
N
M

O
Q
P

m
( )

or Q = �
1

12 2

3

m

d

d

p

x
b

Ub
-

For, Q = 0, with m = 4.7 ¥ 10�4 Ns/m2

d

d

p

x
 = �

6 6 0 3 4 7 10

0 003
2

4

2

U

b

m
=
- ¥ ¥ ¥ -. .

( . )
 = � 94.0 N/m2 ◊ m

Example 8.3 A continuous belt (Fig. 8.15) passing upward through a chemical

bath at velocity U0, picks up a liquid film of thickness, h, density r, and viscosity m.

Gravity tends to make the liquid drain down, but the movement of the belt keep the fluid

from running off completely. Assume that the flow is fully developed and that the
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atmosphere produces no shear at the outer surface of the film. State clearly the boundary

conditions to be satisfied by velocity at y = 0 and y = h. Obtain an expression for the

velocity profile.

Belt

p = patm

Bath

U0

dx

dy

h g

y

x

Fig. 8.15

Solution The governing equation is

m
d

d

2

2

u

y
 = rg

or m
d

d

u

y
 = rgy + C1

or
d

d

u

y
 =

r

m m

gy C
+ 1

u =
r

m m

gy C
y C

2
1

2
2

+ +

at y = 0, u = U0, so C2 = U0

at y = h, t = 0, so 
d

d

u

y
 = 0 and C1 = � rgh

u =
r

m

r

m

r

m

gy ghy
U

g y
hy U

2

0

2

0
2 2

- + = -
F
HG

I
KJ
+

Example 8.4 Water enters a rectangular duct at a rate of 10 m3/s as shown below.

Two of the faces of the duct are porous. On the upper face, water is added at a rate shown

by the parabolic curve, while on the front face water leaves at a rate determined linearly

by the distance from the end. The maximum values of both rates are as given in Fig. 8.16.

What is the average velocity leaving the duct if it is 1m long and has a cross-section of

0.1 m
2
?
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3 m3/s per unit 
length

5 m3/s per unit length

10 m3/s

V2

z

y

x

Fig. 8.16

Solution Consider the top surface. The water enters the top surface in a parabolic

manner. Let us first find this parabolic curve.

Let w = ay2 + by + c, where w is the flow rate per unit length at top face. Following are the

boundary conditions:

at y = 0, w = 0

at y = 1, w = 3

at y = 0, 
d

d

w

y
 = 0

So, c = b = 0, a = 3

Thus, w  = 3y2

Similarly, consider the front surface.

let u = my + d

when  y = 1, u = 0
U
V
W

we get: d = 5

y = 0, u = 5 m = �5

So,  u = � 5y + 5

For steady incompressible flow, the continuity equation gives

r r
V A

cs

◊z d  = 0

Choose the interior of the duct as a control volume.

Thus, � 10 � 3 0 12

0

1

0

1

2y y y Vd 5� 5y)dz z+ +( ( . )  = 0

or � 10 � 1 + 5
5

2
-F

H
I
K  = � 0.1 V2

Finally, V2 = 85 m/s

Example 8.5 Water at 20 °C is flowing between a two dimensional channel in

which the top and bottom walls are 1.5 mm apart. If the average velocity is 2 m/s, find out
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(a) the maximum velocity, (b) the pressure drop, (c) the wall shearing stress, and (d) the

friction coefficient [m = 0.00101 kg/m ◊ s].

Solution (a) The maximum velocity is given by

Umax =
3

2

3

2
2Uav = [ ] = 3 m/s

(b) The pressure drop in a two dimensional straight channel is given by

d

d

p

x
 =

-2
2

mU

b

max , where b = half the channel height

=
-

¥
2 0 00101 3

1 5 2 1000 2

( . )

[ . /( )]

= � 10773.33 N/m
3

or �10773.33 N/m2 per metre

(c) The wall shearing stress in a channel flow is given by

tyx = - = - =
-
¥

m
∂

∂

u

y
b

p

x

d

d

1 5

2 1000

.
 (�10773.33)

or tyx = 8.080 N/m2

(d) Re (based on channel height and average velocity)

=
r

m

U bav( ) ( . / )

.

2 1000 2 1 5 1000

0 00101
=

¥ ¥
 ª 2970

which is more than 2300 but the flow is not turbulent as well. Laminar approximation is

quite logical. However, Cf = 
12

Re
 = 0.004.

Example 8.6 The analysis of a fully developed laminar flow through a pipe can

alternatively be derived from control volume approach. Derive the expression

vz = 
R p

z

r

R

2 2

24
1

m
-FH

I
K -

F
HG

I
KJ

d

d
 starting from the control volume approach.

R

p p + p

dr dr

r
r

r
z

l

Fig. 8.17 Fully developed laminar flow through a pipe

Solution Let us have a look at Fig. 8.17. The fluid moves due to the pressure gradient

which acts in the direction of the axis and in the sections perpendicular to it the pressure

may be regarded as constant. Due to viscous friction, individual layers act on each other

producing a shearing stress which is proportional to 
∂

∂

vz

r
.
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In order to establish the condition of equilibrium, we consider a fluid cylinder of length

d l and radius r. Now we can write

[p � (p + d p)] p r
2
 = � t 2 p r d l

or � dp p r2 = � m 
∂

∂

vz

r
 2 p r d l

or
∂

∂

vz

r
 =

1

2

1

2m m

d

d

d

d

p

l
r

p

z
r=

upon integration,

vz =
1

4

2

m

d

d

p

z
r K+

at r =R, vz = 0, hence K = �
1

4

2

m

d

d

p

z
R

F
HG

I
KJ
◊

So, vz =
R p

z

r

R

2 2

24
1

m
�

d

d

F
H

I
K -

F
HG

I
KJ

Example 8.7 In the laminar flow of a fluid in a circular pipe, the velocity profile is

exactly a parabola. The rate of discharge is then represented by volume of a paraboloid.

Prove that for this case the ratio of the maximum velocity to mean velocity is 2.

Solution See Fig. 8.17. For a paraboloid,

vz = vzmax
 1

2

- F
H

I
K

L

N
M
M

O

Q
P
P

r

R

Q = v vz z

R

A
r

R
r rd dz z= - F

H
I
K

L

N
M
M

O

Q
P
Pmax
( )1 2

2

0

p

= 2p vzmax
 

r r

R

R R
R

z

2 4

2

0

2 2

2 4
2

2 4
-

L

N
M

O

Q
P = -

L

N
M

O

Q
Pp v

max

= vzmax
 

p R2

2

F
HG

I
KJ

vzmean
 =

Q

A

R

R

z z= =
v v

max max
( / )

( )

p

p

2

2

2

2

Thus,
v

v

z

z

max

mean

 = 2

Example 8.8 The velocity distribution for a fully-developed laminar flow in a pipe

is given by
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u = � 
R p

z
r R

2
2

4
1

m

∂

∂
◊ -[ / ]b g

Determine the radial distance from the pipe axis at which the velocity equals the

average velocity.

Solution For a fully-developed laminar flow in a pipe, we can write

u = � 
R p

z

r

R

2 2

4
1

m

∂

∂
- F

H
I
K

L

N
M
M

O

Q
P
P

Vav =
Q

A R

R p

z

r

R
r r

R

= - - F
H

I
K

L

N
M
M

O

Q
P
P

R
S
|

T|

U
V
|

W|
z1

4
1 2

2

2 2

0
p m

∂

∂
p d

= �
R p

z

2

8m

∂

∂

Now, for u =Vav we have,

R p

z

r

R

2 2

4
1

m

∂

∂
- F

H
I
K

L

N
M
M

O

Q
P
P

 = �
R p

z

2

8m

∂

∂

or 1 � 
r

R

F
H

I
K

2

 =
1

2

or
r

R

F
H

I
K

2

 =
1

2
or r = 

R

2
 = 0.707 R

Example 8.9 SAE 10 oil is flowing through a pipe line at a velocity of 1.0 m/s. The

pipe is 45 m long and has a diameter of 150 mm. Find the head loss due to friction. [r =

869 kg/m3 and m = 0.0814 kg/m ◊ s]

Solution hf =
f l V

gD

2

2

In order to know f, first we have to calculate Re.

Re =
r

m

V D

=
( ) ( ) ( / )

.

869 1 150 1000

0 0814
 = 1601.35

Since Re < 2000, the flow can be assumed to be laminar and

f = 64/Re = 64/1601 = 0.04

So, hf =
( . )( )( . )

( )( . )( / )

0 04 45 1 0

2 9 81 150 1000

2

 = 0.612 m
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Example 8.10 Heavy fuel oil flows from A to B through a 100 m horizontal steel

pipe of 150 mm diameter. The pressure at A is 1.08 MPa and at B is 0.95 MPa. The

kinematic viscosity is 412.5 ¥ 10�6 m2/s, and the relative density of the oil is 0.918. What

is the flow rate in m3/s?

Solution The Bernoulli�s equation between A and B

1 08 10

918 9 81 2
0

6 2.

.

¥
¥

+ +
V

g
 =

0 95 10

918 9 81 2
0

100

2 0 150

6 2 2.

. .

¥
¥

+ + +
¥

V

g
f

V

g

or 119.925 � 105.49 =
666 67

2

2. f V

g

Both V and f are unknown so we have to follow another approach. If laminar flow exists,

then from Eq. (8.48),

p p

l

1 2-
 =

8mV

R

av
2

or Vav =
( ) ( ) (. )

( . )( )

p p D

l

1 2
2 2

6
32

1080 950 1000 150

32 412 5 10 918 100

-
=

-
¥ ¥-m

=
130 1000 0 0225

32 412 5 918 100
10

6¥ ¥
¥ ¥ ¥

¥
.

.
 = 2.41 m/s

Re =
2 41 150 1000

412 5 10
6

. ( / )

.

¥
¥ -  = 876.36

Hence, laminar flow assumption is valid.

Q = AVav = 
p

4
 (0.15)2 ¥ 2.41 = 0.0425 m3/s

Example 8.11 A wind tunnel has a wooden (e = 0.0001 m) rectangular section 40

cm by 1 m by 50 m long. The average velocity is 45 m/s for air at sea-level standard

conditions. Find the power required if the fan has 65 percent efficiency. For air, r =

1.2 kg/m3, m = 1.81 ¥ 10�5 kg/m-s.

Solution The wetted perimeter of the duct is

Pw =
40

100

40

100
1 1+ + +L

NM
O
QP
 = 2.8 m

and the flow area is Aw = 
40

100
1¥  = 0.4 m

2
.

Hence, hydraulic diameter Dh = 
4 0 4

2 8

¥ .

.
 = 0.5714 m

Re =
r

m

D Vh av =
¥ -

( . )( . ) ( )

( . )

1 20 0 5714 45

1 81 10
5

 = 1.7 ¥ 10
6

Now, e/Dh =
0 0001

0 5714

.

.
 = 0.000175
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From Moody�s chart for Re = 1.7 ¥ 106 and e/Dh = 0.000175

f = 0.0140

hf = f 
L

D

V

gh

F
HG

I
KJ

=
F
HG

I
KJ ¥

L

N
M

O

Q
P

2 2

2
0 0140

50

0 5714

45

2 9 8
( . )

.

( )

.

= 126.5 m

and pressure drop, Dp = rghf = (1.20) (9.8) (126.5) = 1489 Pa

Q = AV = 
40

100
1 45

F
H

I
K a fa f = 18.0 m

3
/s

Pumping power, P =
r

h

gQhf =
( . )( . )( . ) ( . )

.

1 20 9 8 18 0 126 5

0 65

= 41200 W

Example 8.12 A circular pipe of radius a and length L is attached to a smoothly

rounded outlet of a liquid reservoir by means of flanges and bolts as shown in

Fig. 8.18. At the flange section the velocity is uniform over the cross-section with

magnitude V0. At the outlet, which discharges into the atmosphere, the velocity profile is

parabolic because of the friction in the pipe. What force must be supplied by the bolts to

hold the pipe in place?

Fig. 8.18

Solution For the control volume as shown, continuity equation gives (for steady flow)

r
r r
V A

CS

◊z d  = 0 or, � V0 p a2 + 2

0

V r re

a

p dz  = 0, So, V r r
V a

e

a

d =z 0
2

0
2

since Ve is parabolic, let Ve = a0 + a1r + a2r
2

at r = a,Ve = 0 Æ a1a + a2 a
2 + a0 = 0

at r = 0,
d

d

V

r
ae = Æ0 1 = 0

This will give

( )a a r r r
V a

a

0 2
2

0

0
2

2
+ =z d
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or a
a

a
a

V
a

0

2

2

4

0

2

2 4 2
◊ + = \ a0 + 

a2

2
 a2 = V0

Again, we know a0 + a
2
 a2 = 0

Combining the above two expressions, we get,

a2

2
 a2 = � V0 \ a2 = �

2 0
2

V

a
and a0 = + 2V0

\ Ve = 2V0 1
2

2
-

L

N
M

O

Q
P

r

a

Now, applying momentum equation to the control volume in the flow direction (let F be

the force as shown on the control volume; same force must be supplied by bolts):

F + (p1 � p2) p a
2
 = � rV0 p a

2 ◊ V0 + r 2 2

0

p r r Ve

a

dz

= � p r p rV a V r
r

a
r

a

0
2 2

0
2

2

2

0

2

8 1+ -
F
HG

I
KJz d

= p r V a
r

a

r

a

r

a
d

r

a
0
2 2

4

4

2

2

0

1

1 8 1 2- + + -
F
HG

I
KJ

F
H

I
K

L

N
M
M

O

Q
P
Pz

= p r V a0
2 2 1 4

4

3
4- + + -F

H
I
K

L
NM

O
QP

=
1

3

2
0
2p r a V

\ F = 
1

3

2
0
2p r a V  � (p1 � p2)p a

2
 in horizontal direction only (gravity is in vertical

direction).

Example 8.13 A slipper (slider) and plate (guide), both 0.5 m wide constitutes

a bearing as shown in Fig. 8.19. Density of the fluid, r = 9.00 kg/m3
 and viscosity, m =

0.1 Ns/m
2
.

20 cm

1 m/s

0.005 cm
0.002 cm

Fig. 8.19 Slipper and plate both 0.5 m wide

Find out the (a) load carrying capacity of the bearing, (b) drag, and (c) power lost in

the bearing.
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Solution (a) Considering the width as b and using Eq. (8.70) for the load carrying

capacity,

P =
6

2
2

1 2
2

1

2

1 2

1 2

p Ul b

h h

h

h

h h

h h( )
ln

-
-

-
+

L
N
M

O
Q
P

=
6 0 1 1 0 2 0 2 0 5

0 005 0 002 2

¥ ¥ ¥ ¥ ¥
-

L
N
M

O
Q
P

. . . .

( . . )
 ¥

ln
.

.

. .

. .

0 005

0 002
2

0 005 0 002

0 005 0 002
-

-
+

L
N
M

O
Q
P

=
0 012

9 0 10
6

.

. ¥ -  (0.9163 � 0.8571) = 78.93 N

(b) Making use of Eq. (8.72) for width b, the drag force may be written as

D =
mUlb

h h

h

h

h h

h h1 2

1

2

1 2

1 2

4 6
-

-
-
+

L
N
M

O
Q
Pln

=
0 1 1 0 2 0 5

0 005 0 002

. . .

( . . )

¥ ¥ ¥
-

4
0 005

0 002
6

0 005 0 002

0 005 0 002
ln

.

.

. .

. .
-

-
+

L
N
M

O
Q
P

=
0 01

0 003

.

.
 (3.6651 � 2.5714) = 3.645 N

(c) Power lost = drag ¥ velocity

= 3.645 ¥ 1 = 3.645 W

+

+ + +

+

Force on the shaft due to 
lubrication pressureLoad (ext.)

(a)

(b)

( p p0)

O

+

2

Bearing 
centre

Shaft 
centre

Fig. 8.20

Example 8.14 A cylindri-

cal journal bearing supports a

load directed vertically up-

wards, with the shaft rotating

clockwise. Sketch the position

of the shaft centre with respect

to that of the bearing (hole), if

no cavitation is present. Give

explanation. No equations are

required.

Solution In this case, the

pressure distribution is sym-

metric as shown (Fig 8.20)

where q is measured in the

direction of the rotation of shaft,

from the position of maximum

clearance. Thus, as shown, the

shaft centre is to the right of

bearing centre, and the line of

centres is horizontal.
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Example 8.15 For the following thrust bearing (Fig. 8.21), show that the force on

the straight slider in the x-direction is the same as that on the guide.

Slider

p0 = atm pressure

Guide

U

h2

h1

0

y

x

L

Fig. 8.21

Solution It is given that the velocity profile is

u

U
 = 1 1 3 1

2

1

1-F
H

I
K - -

+
F
HG

I
KJ

L

N
M
M

O

Q
P
P

y

h

y

h n

h

h

and load

P =
6

1

2 1

1

2

2
2 2

mU L

h n
n

n

n( )
ln

( )

-
-

-
+

L
N
M

O
Q
P

where n = h1/h2

Force on the slider in the x-direction is

Fs = t
a

a a
as

LL

x p p
x

d
d

cos
( )

cos

cos
( ) ( ) sin1 10

00

+ -zz

= t as

LL

x p p xd d+ -zz tan ( )0

00

Now, ts = -
F
HG

I
KJ =

m
∂

∂

u

y
y h

and u = U 1 1 3 1
2

1

1-F
H

I
K - -

+
◊

F
HG

I
KJ

L

N
M
M

O

Q
P
P

y

h

y

h n

h

h
, so we get

∂

∂

u

y
 = U

h h

y

h n

h

h
- -F

H
I
K -

+
◊

F
HG

I
KJ

L

N
M
M

O

Q
P
P

1
3

1 2
1

2

12
1�

\ ts = � mU
h h n

h

h
- + -

+
◊

F
HG

I
KJ

L

N
M
M

O

Q
P
P

1 3
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which is the same as Fs.

Exercises

8.1 Choose the correct answer.

(i) Bulk stress is equal to thermodynamic pressure

(a) if second coefficient of viscosity is zero

(b) for incompressible flows

(c) for a compressible fluid with negligible second coefficient of viscosity

(d) if bulk coefficient of viscosity is non-zero.

(ii) Assumptions made in derivation of Navier-Stokes equations are:

(a) continuum, incompressible flow Newtonian fluid and m = constant

(b) steady flow, incompressible flow, irrotational flow

(c) continuum, non-Newtonian fluid, incompressible flow

(d) continuum, Newtonian fluid, Stokes� hypothesis and isotropy.

(iii) In a fully developed pipe flow

(a) pressure gradient is greater than the wall shear stress

(b) inertia force balances the wall shear stress

(c) pressure gradient balances the wall shear stress only and has a constant

value

(d) none of the above

(iv) In the case of fully developed flow through tubes,

(a) Darcy�s friction factor is four times the skin friction coefficient

(b) Darcy�s friction factor and skin friction coefficients are same

(c) Darcy�s friction factor is double the skin friction coefficient
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(d) the skin friction coefficient is greater than the Darcy�s friction factor.

(v) Based on hydrodynamic theory of lubrication, state which of the following

are correct.

(a) The load bearing capacity remains unchanged so long either the slipper

or the bearing moves in the same direction while the other is held fixed.

(b) Reversing the direction of the movement of the slipper, bearing

remaining fixed, does not cause any change in load bearing capacity.

(c) u
u

x

u

y

∂

∂
m

∂

∂
>>

2

2

(d) For a large film thickness, h(x), the maximum pressure location shifts

from the middle.

(vi) Observation on a spherical object falling in a liquid pool is the method of

measuring viscosity by making use of Stokes� viscosity law. The falling

body attains terminal velocity if

(a) the weight of the falling body is more than the sum of the buoyancy

force and the drag force

(b) the drag force is equal to the buoyancy force

(c) the buoyancy force is more than the drag force

(d) the sum of the buoyancy force and the drag force is equal to the weight

of the body.

8.2 (a) What is the basic difference between the Euler�s equations of motion and the

Navier-Stokes equations?

(b) In case of flow through a straight tube of circular cross-section with

rotational symmetry, the axial component of velocity is the only non-trivial

component and all the fluid particles move in the same direction only. Find

out the average velocity and the maximum velocity within the tube. If Darcy�

Weisbach equation for pressure drop over a finite length is given by hf = f (L/

D) (V
2
/2g), prove that f = 64/Re, where L is the length and D is the diameter

of the tube.

8.3 What is the relationship between the average velocity and maximum velocity in

case of parallel flow between two fixed parallel plates? What do you understand

by inlet region and developed region?

Ans. (Umax = 1.5 Uav)

8.4 Show that in case of a Couette flow, the shear stress at the horizontal mid-plane

of the channel is independent of the pressure gradient imposed on the flow.

8.5 (a) Find out the total load and the frictional resistance on a block moving with a

velocity U over a horizontal plate separated by a thin layer of lubricating oil,

the thickness of layer being h1 and h2 at the edges of the block which has a

straight bottom.

(b) Also show that the volume flow rate of lubricant is given by

Q = U
h h

h h

1 2

1 2+
8.6 Oil flows between two parallel plates, one of which is at rest and the other moves

with a velocity U, (a) If the pressure is decreasing in the direction of flow at the

rate of 5 Pa/m, the dynamic viscosity is 0.05 kg/ms, the spacing of the horizontal

plate is 0.04 m and the volumetric flow Q per unit width is 0.02 m
2
/s, what is the
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velocity U? (b) Calculate U if the pressure is increasing at a rate of 5 Pa/m in the

direction of flow.

Ans. (a) 0.97 m/s (b) = 1.027 m/s

8.7 Water flows between two very large, horizontal, parallel flat plates 20 mm apart.

If the average velocity of water is 0.15 m/s, what is the shear stress (a) at the

lower plate, and (b) 5 mm and 10 mm above the lower plate? Assume m = 1.1 ¥
10

�3
 Ns/m

2
.

Ans. (a) 0.0495 N/m
2
 (b) 0.0248 N/m

2

8.8 A Newtonian liquid flows slowly under gravity along an inclined flat surface that

makes an angle q with the horizontal plane. The film thickness is T and it is

constant. The flow is two-dimensional. (a) Show that the fluid velocity u along x

(flow) direction is given by

u =
sin

2

g y
y T

q

n

Ê ˆ-Á ˜Ë ¯

(b) Calculate the average velocity uav, and the volumetric flow rate Q per unit

width of the surface. The pressure within the fluid is a function of y alone,

where y is the normal to the flow direction. The v-component of velocity is

trivial.

Ans. (Uav = g sin q T2/3n, Q = g sin q T3/3n)

8.9 A horizontal circular pipe of outer radius R1 is placed concentrically inside

another circular pipe of inner radius R2. Considering fully developed laminar

flow in the annular space between pipes show that the maximum velocity occurs

at a radius R0 given by

R0 =

1/ 2
2 2
2 1

2 12 ln ( / )

R R

R R

È ˘-
Í ˙
Í ˙Î ˚

8.10 The Reynolds number for flow of oil through a 5 cm diameter pipe is 1700.

The kinematic viscosity, n = 1.02 ¥ 10�6 m2/s. What is the velocity at a point

0.625 cm away from the wall.

Ans. (0.03 m/s)

8.11 The velocity along the centre line of the Hagen-Poiseuille flow in a 0.1 m diameter

pipe is 2 m/s. If the viscosity of the fluid is 0.07 kg/ms and its specific gravity is

0.92, calculate (a) the volumetric flow rate, (b) shear stress of the fluid at the pipe

wall, (c) local skin friction coefficient, and (d) the Darcy friction coefficient.

Ans. (a) 7.854 ¥ 10�3 m3/s (b) 5.6 N/m2, (c) 0.012 (d) 0.048

8.12 Kerosene at 10 °C flows steadily at 20 l/min through a 150 m long horizontal

length of 5.5 cm diameter cast iron pipe. Compare the pressure drop of the

kerosene flow with that of the same flow rate of benzene at 10 °C through the

same pipe. For kerosene at 10 °C, r = 820 kg/m3 and m = 0.0025 Ns/m2 and for

benzene r = 899 kg/m3 and m = 0.0008 Ns/m2. Why do you obtain greater

pressure drop for benzene?

8.13 A viscous oil flows steadily between parallel plates. The fully developed velocity

profile is given by

u = �

22
2

1
8

h p y

x h

∂

m ∂

È ˘Ê ˆ Ê ˆ-Í ˙Á ˜Á ˜ Ë ¯Ë ¯ Í ˙Î ˚
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where the total gap between the plates is h = 3 mm and y is the distance from the

centre line. The viscosity of the oil is 0.5 Ns/m2 and the pressure gradient is

� 1200 N/m2/m. Find the magnitude and direction of the shear stress on the upper

plate, and the volumetric flow rate per metre width of the channel.

Ans. (a) �1.80 N/m
2
, (b) 5.40 ¥ 10

�6
 m

3
/s m

8.14 A fully developed laminar flow is taking place in the annulus between two

concentric pipes. The inner pipe is stationary, and the outer pipe is moving in the

axial direction with a velocity V0. Assume the axial pressure gradient to be zero

(dp/dz = 0). Find out a general expression for the shear stress as a function of

radial coordinate. Also find out a general expression for the velocity profile Vz(r).

Ans. (a) t = A/r, (b) Vz = V0 
ln ( / )

ln ( / )

r r

r r

i

o i



9.1 INTRODUCTION

The boundary layer of a flowing fluid is the thin layer close to the wall. In a flow
field, viscous stresses are very prominent within this layer. Although the layer is
thin, it is very important to know the details of flow within it. The main-flow
velocity within this layer tends to zero while approaching the wall. Also the
gradient of this velocity component in a direction normal to the surface is large as
compared to the gradient of this component in the streamwise direction.

9.2 BOUNDARY LAYER EQUATIONS

In 1904, Ludwig Prandtl, the well known German scientist, introduced the
concept of boundary layer [1] and derived the equations for boundary layer flow
by correct reduction of Navier-Stokes equations. He hypothesized that for fluids
having relatively small viscosity, the effect of internal friction in the fluid is
significant only in a narrow region surrounding solid boundaries or bodies over
which the fluid flows. Thus, close to the body is the boundary layer where shear
stresses exert an increasingly larger effect on the fluid as one moves from free
stream towards the solid boundary. However, outside the boundary layer where
the effect of the shear stresses on the flow is small compared to values inside the
boundary layer (since the velocity gradient ∂u/∂y is negligible), the fluid particles
experience no vorticity, and therefore, the flow is similar to a potential flow.
Hence, the surface at the boundary layer interface is a rather fictitious one
dividing rotational and irrotational flow. Prandtl�s model regarding the boundary
layer flow is shown in Fig. 9.1. Hence with the exception of the immediate vicinity
of the surface, the flow is frictionless (inviscid) and the velocity is U. In the
region, very near to the surface (in the thin layer), there is friction in the flow

Laminar Boundary Layers

9
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which signifies that the fluid is retarded until it adheres to the surface. The
transition of the mainstream velocity from zero at the surface to full magnitude
takes place across the boundary layer. Its thickness is d which is a function of the
coordinate direction x. The thickness is considered to be very small compared to
the characteristic length L of the domain. In the normal direction, within the thin
layer, the gradient ∂u/∂y is very large compared to the gradient in the flow
direction ∂u/∂x. Next step is to simplify the Navier�Stokes equations for steady
two dimensional laminar incompressible flows. Considering the Navier-Stokes
equations together with the equation of continuity, the following dimensional
form is obtained.

u
u

x

u

y

∂

∂

∂

∂
+ v  = �

2 2

2 2

1 p u u

x x y

∂ m ∂ ∂

r ∂ r ∂ ∂

È ˘
+ +Í ˙

Î ˚
(9.1)

u
x y

∂

∂

∂

∂

v
v
v

+  = �
2 2

2 2

1 p v v

y x y

∂ m ∂ ∂

r ∂ r ∂ ∂

È ˘
+ +Í ˙

Î ˚
(9.2)

∂

∂

∂

∂

u

x y
+

v
 = 0 (9.3)

Potential 
flow

Free 
stream

Boundary 
layer

u(x, y)

U

y

x
L

u

U

(x)

Fig. 9.1 Boundary layer on a flat plate

Here the velocity components u and v are acting along the streamwise x and
normal y directions respectively. The static pressure is p, while r is the density
and m is the dynamic viscosity of the fluid.

The equations are now non-dimensionalised. The length and the velocity
scales are chosen as L and U• respectively. The non-dimensional variables are:

u
* =

u

U U
p

p

U• • •
= =, ,* *

v
v

r 2

x
* =

x

L
y

y

L
, * =

where U• is the dimensional free stream velocity and the pressure is non-
dimensionalised by twice the dynamic pressure pd = (1/2) r U2

•. Using these
nondimensional variables, the Eqs (9.1) to (9.3) become
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∂

∂

∂

∂

u

x y

*

*

*

*+
v

 = 0 (9.6)

where the Reynolds number,

Re =
r

m

U L•

Let us examine what happens to the u velocity as we go across the boundary
layer. At the wall the u velocity is zero. The value of u on the inviscid side, that is
on the free stream side beyond the boundary layer is U. For the case of external
flow over a flat plate, this U is equal to U•.

Based on the above, we can identify the following scales for the boundary
layer variables:

Variable Dimensional scale Nondimensional scale

u U• 1

x L 1

y d e (=d /L)

The symbol e describes a value much smaller than 1. Now, let us look at the
order of magnitude of each individual terms involved in Eqs (9.4), (9.5) and (9.6).
We start with the continuity Eq. (9.6). One general rule of incompressible fluid
mechanics is that we are not allowed to drop any term from the continuity
equation. From the scales of boundary layer variables, the derivative ∂u*/∂x* is of
the order 1. The second term in the continuity equation ∂v*/∂y

* should also be of
the order 1. Now, what makes ∂v*/∂y

* to have the order 1? Admittedly v* has to
be of the order e because y* becomes e (= d/L) at its maximum. Next, consider
Eq. (9.4). Inertia terms are of the order 1. Among the second order derivatives,
∂ 2u*/∂ x*2 is of the order 1 and ∂ 2 u*/∂ y*2 contains a large estimate of (1/e 2).
However after multiplication with 1/Re, the sum of these two second order
derivatives should produce at least one term which is of the same order  of
magnitude as the inertia terms. This is possible only if the Reynolds number (Re)
is of the order of 1/e2. It follows from the Eq. (9.4) that �∂ p*/∂ x* will not exceed
the order of 1 so as to be in balance with the remaining terms. Finally, Eqs (9.4),
(9.5) and (9.6) can be rewritten as

u
u
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*
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∂
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*
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∂
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As a consequence of the order of magnitude analysis, 
∂

∂

2
u

x

*

*2
 can be dropped

from the x direction momentum equation, because on multiplication with 1/Re it
assumes the smallest order of magnitude. Now, consider the y direction momen-
tum Eq. (9.5). All the terms of this equation are of a smaller magnitude than those
of Eq. (9.4). This equation can only be balanced if ∂p*/∂y* is of the same order of
magnitude as other terms. Thus the y momentum equation reduces to

∂

∂

p

y

*

*  = O (e) (9.7)

This means that the pressure across the boundary layer does not change. The
pressure is impressed on the boundary layer, and its value is determined by
hydrodynamic considerations. This also implies that the pressure p is only a
function of x. The pressure forces on a body are solely determined by the
inviscid flow outside the boundary layer. The application of Eq. (9.4) at the
outer edge of boundary layer gives

u
u

x

*
*d

d *
 = �

d

d *

p

x

*

(9.8a)

In dimensional form, this can be written as

U 
d
d
U

x
 = - 1

r

d

d

p

x
(9.8b)

On integrating Eq. (9.8b), the well known Bernoulli�s equation is obtained,

p + 
1
2

2rU  = a constant (9.9)

Finally, it can be said that by the order of magnitude analysis, the Navier-Stokes
equations are simplified into equations given below.

u
u

x

u

y

*
*

*
*

*

*

∂

∂

∂

∂
+ v  = �

Re

*

*

*

*2

∂

∂

∂

∂

p

x

u

y
+ 1 2

(9.10)
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∂
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∂

∂

∂

∂

u

x y

*

*

*

*+
v

 = 0 (9.12)



Laminar Boundary Layers 363

These are known as Prandtl�s boundary-layer equations. The available
boundary conditions are:
Solid surface

at y* = 0, u* = 0 = v*

or at y = 0 u = 0 =  v
(9.13)

Outer edge of boundary-layer

at y* = (e) = d
L

, u
* = 1

or  at y = d, u = U (x)
(9.14)

The unknown pressure p in the x-momentum equation can be determined
from Bernoulli�s Eq. (9.9), if the inviscid velocity distribution U (x) is also
known. The preceding derivations are related to a flat surface, but these can be
easily extended to curved surfaces. While doing so, it is seen that Eqs (9.10) to
(9.14) continue to be applicable only if the curvature does not change abruptly.
However, the boundary layer equations are relatively easier to solve as com-
pared to the Navier-Stokes equations and have been solved by various analytical
and numerical techniques.

We solve the Prandtl boundary layer equations for u*(x, y) and v*(x, y) with
U obtained from the outer inviscid flow analysis. The equations are solved by
commencing at the leading edge of the body and moving downstream to the
desired location. Note that the reduced momentum Eq. (9.10) is still nonlinear.
However, it does allow the no-slip boundary condition to be satisfied which
constitutes a significant improvement over the potential flow analysis while
solving real fluid flow problems. The Prandtl boundary layer equations are thus
a simplification of the Navier-Stokes equations.

9.3 BLASIUS FLOW OVER A FLAT PLATE

The classical problem considered by H. Blasius was a two-dimensional, steady,
incompressible flow over a flat plate at zero angle of incidence with respect to
the uniform stream of velocity U•. The fluid extends to infinity in all directions
from the plate. The physical problem is already illustrated in Fig. 9.1.

Blasius wanted to determine (a) the velocity field solely within the boundary
layer, (b) the boundary layer thickness (d), (c) the shear stress distribution on
the plate, and (d) the drag force on the plate.

The Prandtl boundary layer equations in the case under consideration are

u
u

x

u

y

∂

∂

∂

∂
+ v  = n

∂

∂

2

2
u

y
(9.15)

∂

∂

∂

∂

u

x y
+

v
 = 0 (9.3)

The boundary conditions are

at y = 0, u = v = 0
at y = • u = U• (9.16)

¸
˝
˛

¸
˝
˛
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It may be mentioned that the substitution of the term 
1 d

d

p

xr

È ˘
-Í ˙

Î ˚
 in the original

boundary layer momentum equation in terms of the free stream velocity produces
d

d

U
U

x

•
•

È ˘
Í ˙Î ˚

 which is equal to zero. Hence the governing Eq. (9.15) does not

contain any pressure-gradient term. However, the characteristic parameters of
this problem are U•, n, x, y, that is,

u = u (U•, n, x, y)

Before we write down this relationship in terms of two non-dimensional
parameters, we have to be acquainted with the law of similarity in boundary layer
flows. It states that the u component of velocity with two velocity profiles of
u(x, y) at different x locations differ only by scale factors in u and y. Therefore,
the velocity profiles u(x, y) at all values of x can be made congruent if they are
plotted in coordinates which have been made dimensionless with reference to the
scale factors. The local free stream velocity U(x) at section x is an obvious scale
factor for u, because the dimensionless u(x) varies between zero and unity with y
at all sections. The scale factor for y, denoted by g(x), is proportional to the local
boundary layer thickness so that y itself varies between zero and unity. The
principle of similarity demands that the velocity at two arbitrary x locations,
namely, x1 and x2 should satisfy the equation

{ }1 1

1

, / ( )

( )

u x y g x

U x

È ˘Î ˚  =
{ }2 2

2

, / ( )

( )

u x y g x

U x

È ˘Î ˚ (9.17)

Now, for Blasius flow, it is possible to write

u

U•
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y
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n
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Á ˜
Á ˜
Á ˜
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 = F(h) (9.18)

where h ~ 
y

d
 and d ~ 

n x

U•

or more precisely, h =
y

x

U

n

•

(9.19)

The stream function can now be obtained in terms of the velocity components
as

y = d ( ) d ( ) d
x

u y U F U x F
U

n
h h n h h• •

•
= =Ú Ú Ú

or y = U x• n  f(h) + constant (9.20)

where Ú F(h) dh = f(h) and the constant of integration is zero if the stream

function at the solid surface is set equal to zero.
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Now, the velocity components and their derivatives are:

u =
∂y

∂

∂y

∂h

∂h

∂
h

y y
U f= ◊ = ¢• ( ) (9.21a)

v =
1 1 1 1

� ( ) ( )
2 2

y
U f x f

x x xx x

U

y y h
n h h

h n
•

•

È ˘Ï ¸
Í ˙Ô Ô

Ê ˆ∂ ∂ ∂ Ô ÔÍ ˙+ ◊ = - ◊ + -¢ Ì ˝Á ˜ Í ˙Ë ¯∂ ∂ ∂ Ô ÔÍ ˙
Ô ÔÍ ˙Ó ˛Î ˚

or v =
1

2

n
h h h

U

x
f f• ¢ -[ ( ) ( )] (9.21b)

∂

∂

u

x
 =

1 1
( ) ( )

2

y
U f U f

x xx

U

∂h
h h

∂ n
• •

•

È ˘
Í ˙
Í ˙= ◊ - ◊ ◊¢¢ ¢¢ Í ˙
Í ˙
Í ˙Î ˚

or
∂

∂

u

x
 = �

U

x
f• ◊ ◊ ¢ ¢

2

h
h( ) (9.21c)

∂

∂

u

y
 =

1
( ) ( )U f U f

y x

U

∂h
h h

∂ n
• •

•

È ˘
Í ˙
Í ˙◊ = ◊¢¢ ¢¢ Í ˙
Í ˙
Í ˙Î ˚

or
∂

∂

u

y
 = U

U

x
f•

• ¢ ¢
n

h( ) (9.21d)

∂

∂

2

2

u

y
 =

1
( )

U
U f

x x

U

h
n n

•
•

•

Ï ¸
Ô Ô
Ô Ô¢¢¢ Ì ˝
Ô Ô
Ô ÔÓ ˛

or
∂

∂

2

2
u

y
 =

U

x
f• ¢¢¢

2

n
h( ) (9.21e)

Substituting (9.21) into (9.15), we have

� U

x
f f

U

x
f f f• •¢ ¢¢ + ¢ - ¢¢

2 2

2 2

h
h h h h h h. ( ) ( ) [ ( ) ( )] ( )  = 

U

x
f• ¢¢ ¢

2

( )h

or  � ( ) ( ) ( )1
2

2 2U

x
f f

U

x
f• •¢¢ = ¢¢ ¢h h h

or 2f ¢¢ ¢ (h) + f(h) f ¢¢(h) = 0 (9.22)

This is known as Blasius Equation. The boundary conditions as in Eq. (9.16), in
combination with Eq. (9.21a) and (9.21b) become
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at h = 0 : f (h) = 0, f ¢(h) = 0

at h = • : f ¢(h) = 1
(9.23)

Equation (9.22) is a third order nonlinear differential equation. Blasius
obtained the solution of this equation in the form of series expansion through
analytical techniques which is beyond the scope of this text. However, we shall
discuss a numerical technique to solve the aforesaid equation which can be
understood rather easily.

It is to be observed that the equation for f does not contain x. Further boundary
conditions at x = 0 and y = • merge into the condition h Æ •, u/U• = f ¢ = 1. This
is the key feature of similarity solution.

We can rewrite Eq. (9.22) as three first order differential equations in the
following way

f ¢ = G (9.24a)

G¢ = H (9.24b)

H¢ = - 1
2

f H (9.24c)

Let us next consider the boundary conditions. The condition f (0) = 0 remains
valid. Next the condition f ¢(0) = 0 means that G(0) = 0. Finally f ¢(•) = 1 gives us
G(•) = 1. Note that the equations for f and G have initial values. However, the
value for H(0) is not known. Hence, we do not have a usual initial-value problem.
Nevertheless, we handle this problem as an initial-value problem by choosing
values of H(0) and solving by numerical methods f(h), G(h), and H(h). In
general, the condition G(•) = 1 will not be satisfied for the function G arising
from the numerical solution. We then choose other initial values of H so that
eventually we find an H(0) which results in G(•) = 1. This method is called the
shooting technique.

In Eq. (9.24), the primes refer to differentiation wrt the similarity variable h.
The integration steps following Runge-Kutta method are given below

fn+1 = fn + 
1
6

 (k1 + 2k2 + 2k3 + k4) (9.25a)

Gn+1 = Gn + 
1
6

 (l1 + 2l2 + 2l3 + l4) (9.25b)

Hn+1 = Hn + 
1
6

 (m1 + 2m2 + 2m3 + m4) (9.25c)

One moves from hn to hn+1 = hn + h. A fourth order accuracy is preserved if h
is constant along the integration path, that is, hn+1 � hn = h for all values of n. The
values of k, l and m are as follows.

For generality let the system of governing equations be

f ¢ = F1 ( f, G, H, h), G¢ = F2( f, G, H, h) and H¢ = F3 ( f, G, H, h).
Then,

k1 = h F1 ( fn, Gn, Hn, hn)
l1 = h F2 ( fn, Gn, Hn, hn)

m1 = h F3 ( fn, Gn, Hn, hn)

¸
˝
˛
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k2 = h F1 1 1 1
1 1 1

, , ,
2 2 2 2n n n n

h
f k G l H m h

Ï ¸Ê ˆ Ê ˆ Ê ˆ Ê ˆ+ + + +Ì ˝Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Ó ˛

l2 = h F2 1 1 1
1 1 1

, , ,
2 2 2 2n n n n

h
f k G l H m h

Ï ¸Ê ˆ Ê ˆ Ê ˆ Ê ˆ+ + + +Ì ˝Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Ó ˛

m2 = h F3 1 1 1

1 1 1
, , ,

2 2 2 2n n n n

h
f k G l H m h

Ï ¸Ê ˆ Ê ˆ Ê ˆ Ê ˆ+ + + +Ì ˝Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Ó ˛
In a similar way k3, l3, m3 and k4, l4, m4 are calculated following standard
formulae for the Runge Kutta integration. For example, k3 is given by

k3 = hF1 f k G l H m
h

n n n n+ + + +F
H

I
K

F
H

I
K

F
H

I
K

F
H

I
K

R
S
T

U
V
W

1

2

1

2

1

2 2
2 2 2, , , h

The functions F1, F2 and F3 are G, H, � fH/2 respectively. Then at a distance Dh
from the wall, we have

f(Dh) = f(0) + G(0) Dh (9.26a)

G(Dh) = G(0) + H(0) Dh (9.26b)

H(Dh) = H(0) + H¢(0) Dh (9.26c)

H¢(Dh) = �
1
2

 f (Dh) H (Dh) (9.26d)

As it has been mentioned earlier f ¢¢(0) = H(0) = l is unknown. It must be
determined such that the condition f ¢(•) = G(•) = 1 is satisfied. The condition at
infinity is usually approximated at a finite value of h (around h = 10). The process
of obtaining l accurately involves iteration and may be calculated using the
procedure described below.

For this purpose, consider Fig. 9.2(a) where the solutions of G versus h for
two different values of H(0) are plotted. The values of G(•) are estimated from
the G curves and are plotted in Fig. 9.2(b). The value of H(0) now can be
calculated by finding the value H

~
(0) at which the line 1�2 crosses the line

G(•) = 1. By using similar traingles, it can be said that

H H

G

H H

G G

~
( ) ( )

( )

( ) ( )

( ) ( )

0 0

1

0 01

1

2 1

2 1

-
- •

=
-

• - •

By solving this, we get 
~
H (0). Next we repeat the same calculation as above by

using 
~
H (0) and the better of the two initial values of H(0). Thus we get another

improved value 
~~
H (0). This process may continue, that is, we use 

~~
H (0) and 

~
H (0)

as a pair of values to find more improved values for H(0), and soforth. It should

be always kept in mind that for each value of H(0), the curve G(h) versus h is to

be examined to get the proper value of G(•).
The functions f(h), f ¢(h) = G and f ¢¢(h) = H are plotted in Fig. 9.3. The

velocity components, u and v inside the boundary layer can be computed from
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Initial value H(O)2

G ( )1

G ( )1

H(O)1 H(O)2 H(O)

H(O)

G ( )2

G ( )2

G ( )

1

1

1

2

G

Initial value H(O)1

(a)

(b)

0

Fig. 9.2 Correcting the initial guess for H(O)
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Fig. 9.3 f, G, and H distribution in the boundary layer
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Eqs (9.21a) and (9.21b) respectively. Measurements to test the accuracy of
theoretical results were carried out by many scientists. In his experiments, J.
Nikuradse, found excellent agreement with the theoretical results with respect to
velocity distribution (u/U•) within the boundary layer of a stream of air on a flat
plate. However, some values of the velocity profile shape f ¢(h) = u/U• = G and
f ¢¢(h) = H are given in Table 9.1.

Table 9.1 Blasius Velocity Profile G = u/U•, f and H after Schlichting [2]

h f G H

0 0 0 0.33206

0.2 0.00664 0.06641 0.33199

0.4 0.02656 0.13277 0.33147

0.8 0.10611 0.26471 0.32739

1.2 0.23795 0.39378 0.31659

1.6 0.42032 0.51676 0.29667

2.0 0.65003 0.62977 0.26675

2.4 0.92230 0.72899 0.22809

2.8 1.23099 0.81152 0.18401

3.2 1.56911 0.87609 0.13913

3.6 1.92954 0.92333 0.09809

4.0 2.30576 0.95552 0.06424

4.4 2.69238 0.97587 0.03897

4.8 3.08534 0.98779 0.02187

5.0 3.28329 0.99155 0.01591

8.8 7.07923 1.00000 0.00000

9.4 WALL SHEAR AND BOUNDARY LAYER
THICKNESS

With the profile known, wall shear can be evaluated as

tw = m 
∂

∂

u

y y = 0

or tw = m U• 
∂

∂h
h

∂h

∂ h

¢ ◊
=

f
y

( )
0

or tw = m U• ¥ 0.33206 ¥ 
1

( )/n x U•
[ f ¢¢(0) = 0.33206 from Table 9.1]

or tw =
0 332 2.

Re

r U

x

• (9.27a)
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and the local skin friction coefficient is

Cfx =
t

r

w

U
1

2
2
•

Substituting from (9.27a) we get

Cfx =
0 664.

Re x

(9.27b)

In 1951, Liepmann and Dhawan [3], measured the shearing stress on a flat
plate directly. Their results showed a striking confirmation of Eq. (9.27).
Total frictional force per unit width for the plate of length L is

F =
0

d
L

w xtÚ

or F =
2

0

0.332 d
L

U x

U x

r

n

•

•
Ú

or F =
2 1/2

0

0.332

1/
2

L

U x

U

r

n

•

•

È ˘
Í ˙
Í ˙¥

Ê ˆÍ ˙
Á ˜Í ˙Ë ¯Î ˚

or F = 0.664 ¥ r
n

U
L

U
•

•

2 (9.28)

and the average skin friction coefficient is

C f  =

( )2

1.328
1 Re
2

L

F

U Lr •

= (9.29)

where, ReL = U• L /n.

Since u/U• approaches 1.0 as y Æ •, it is customary to select the boundary layer
thickness d as that point where u/U• approaches 0.99. From Table 9.1, u/U•
reaches 0.99 at h = 5.0 and we can write

x

U

n
d

•

Ê ˆ
Á ˜Ë ¯ ª 5 0.

or d ª 
5.0

5.0
Re x

x x

U

n

•

Ê ˆ
=Á ˜Ë ¯

(9.30)

However, the aforesaid definition of boundary layer thickness is somewhat
arbitrary, a physically more meaningful measure of boundary layer estimation is
expressed through displacement thickness.
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Fig. 9.4 (a) Displacement thickness (b) Momentum thickness

Displacement thickness (d*) is defined as the distance by which the external
potential flow is displaced outwards due to the decrease in velocity in the bound-
ary layer.

U• d * =
0

•

Ú (U• � u) dy

Therefore, d * =
0

1
u

U

•

•

Ê ˆ
-Á ˜Ë ¯Ú  dy (9.31)

Substituting the values of (u/U•) and h from Eqs (9.21a) and (9.19) into
Eq. (9.31), we obtain

d* =
0

(1 ) d lim[ ( )]
x x

f f
U U h

n n
h h h

•

Æ•• •
- = -¢Ú

or d* = 1.7208 
n x

U

x

x•
=

1 7208.

Re
(9.32)

Following the analogy of the displacement thickness, a momentum thickness
may be defined. Momentum thickness (d**) is defined as the loss of momentum
in the boundary layer as compared with that of potential flow. Thus

r U•
2 d ** =

0

•

Ú ru (U• � u) dy

or d ** =
0

1 d
u u

y
U U

•

• •

Ê ˆ
-Á ˜Ë ¯Ú (9.33)

With the substitution of (u/U•) and h from Eq. (9.21a) and (9.19), we can
evaluate numerically the value of d** for a flat plate as

d ** =
0

(1 ) d
x

f f
U

n
h

•

•
-¢ ¢Ú

or d** = 0.664 
n x

U

x

x•
= 0 664.

Re
(9.34)

The relationships between d, d* and d** have been shown in Fig. 9.4.
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9.5 MOMENTUM-INTEGRAL EQUATIONS FOR
BOUNDARY LAYER

If we are to employ boundary layer concepts in real engineering designs, we need
to devise approximate methods that would quickly lead to an answer even if the
accuracy is somewhat less. Karman and Pohlhausen devised a simplified method
by satisfying only the boundary conditions of the boundary layer flow rather than
satisfying Prandtl�s differential equations for each and every particle within the
boundary layer. We shall discuss this method herein.

Consider the case of steady, two-dimensional and incompressible flow, i.e. we
shall refer to Eqs (9.10) to (9.14). Upon integrating the dimensional form of
Eq. (9.10) with respect to y = 0 (wall) to y = d (where d signifies the interface of
the free stream and the boundary layer), we obtain

2

2
0 0

1 d
d d

d

u u p u
u v y y

x y x y

d d
∂ ∂ ∂

n
∂ ∂ r ∂

Ê ˆÊ ˆ
+ = - +Á ˜Á ˜Ë ¯ Ë ¯Ú Ú

or
2

2
0 0 0 0

1 d
d v d d d

d

u u p u
u y y y y

x y x y

d d d d
∂ ∂ ∂

n
∂ ∂ r ∂

+ = - +Ú Ú Ú Ú (9.35)

The second term of the left hand side can be expanded as

0

d
u

v y
y

d
∂

∂Ú  = [ ]0
0

v
dvu u y

y

d
d ∂

∂
- Ú

or
0

d
u

y
y

d
∂

∂Ú v  =
0

u
v d since

u
U u y

x x y

d

d

∂ ∂ ∂

∂ ∂ ∂•
Ê ˆ

+ = -Á ˜Ë ¯Ú
v

or
0

d
u

y
y

d
∂

∂Ú v  =
0 0

u u
d dU y u y

x x

d d
∂ ∂

∂ ∂•- +Ú Ú (9.36)

Substituting Eq. (9.36) in Eq. (9.35) we obtain

00 0 0

1 d
2 d � d d �

d
y

u u p u
u y U y y

x x x y

d d d
∂ ∂ ∂

∂ ∂ r ∂
•

=

= -Ú Ú Ú v (9.37)

Substituting the relation between 
d

d

p

x
 and the free stream velocity U• for the

inviscid zone in Eq. (9.37) we get

0

0 0 0

d
2 d � d � d

d
y

u

yUu u
u y U y U y

x x x

d d d

∂
m

∂∂ ∂

∂ ∂ r

=•
• •

Ê ˆ
Á ˜
Á ˜= - Á ˜
Á ˜
Á ˜Ë ¯

Ú Ú Ú

or
0

d
2 d

d
wUu u

u U U y
x x x

d
t∂ ∂

∂ ∂ r
•

• •
Ê ˆ

- - = -Á ˜Ë ¯Ú
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which is reduced to

{ }
0 0

d
[ ( )] d ( ) d

d
wU

u U u y U u y
x x

d d
t∂

∂ r
•

• •- + - =Ú Ú
Since the integrals vanish outside the boundary layer, we are allowed to put
d = •.

0 0

d
[ ( )]d ( ) d

d
wU

u U u y U u y
x x

t∂

∂ r

• •
•

• •- + - =Ú Ú

or
0 0

dd
[ ( )]d ( ) d

d d
wU

u U u y U u y
x x

t

r

• •
•

• •- + - =Ú Ú (9.38)

Substituting Eq. (9.31) and (9.33) in Eq. (9.38) we obtain

d
d

d

dx
U U

U

x

w
• •

•+ =2 d d
t

r
** * (9.39)

Equation (9.39) is known as momentum integral equation for two dimensional
incompressible laminar boundary layer. The same remains valid for turbulent
boundary layers as well. Needless to say, the wall shear stress (tw) will be

different for laminar and turbulent flows. The term d

d

U
U

x

•
•

Ê ˆ
Á ˜Ë ¯

 signifies

spacewise acceleration of the free stream. Existence of this term means the

presence of free stream pressure gradient in the flow direction. For example, we

get finite value of 
d

d

U
U

x

•
•

Ê ˆ
Á ˜Ë ¯

 outside the boundary layer in the entrance region

of a pipe or a channel. For external flows, the existence of 
d

d

U
U

x

•
•

Ê ˆ
Á ˜Ë ¯

 depends

on the shape of the body. During the flow over a flat plate, 
d

d

U
U

x

•
•

Ê ˆ
Á ˜Ë ¯

 = 0 and

the momentum integral equation is reduced to

d

dx
U w

• =2 d
t

r
** (9.40)

9.6 SEPARATION OF BOUNDARY LAYER

It has been observed that the flow is reversed at the vicinity of the wall under
certain conditions. The phenomenon is termed as separation of boundary layer.
Separation takes place due to excessive momentum loss near the wall in a
boundary layer trying to move downstream against increasing pressure, i.e., dp/dx

> 0, which is called adverse pressure gradient. Figure 9.5 shows the flow past a
circular cylinder, in an infinite medium. Up to q = 90°, the flow area is  like a
constricted passage and the flow behaviour is like that of a nozzle. Beyond
q = 90° the flow area is diverged, therefore, the flow behaviour is much similar to
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a diffuser. This dictates the inviscid pressure distribution on the cylinder which is
shown by a firm line in Fig. 9.5. Here p• and U• are the pressure and velocity in
the free stream and p is the local pressure on the cylinder.

Cylinder

Boundary 
layer

A

p

U

p p

U

2

3.0

2.0

1.0

.0

1.0

0˚ 45˚ 90˚ 135˚ 180˚

Fig. 9.5 Flow separation and formation of wake behind a circular cylinder

Consider the forces in the flow field. It is evident that in the inviscid region, the
pressure force and the force due to streamwise acceleration are acting in the same
direction (pressure gradient being negative/favourable) until q = 90°. Beyond
q = 90°, the pressure gradient is positive or adverse. Due to the adverse pressure
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gradient the pressure force and the force due to acceleration will be opposing each
other in the inviscid zone of this part. So long as no viscous effect is considered,
the situation does not cause any sensation. However, in the viscid region (near the
solid boundary), up to q = 90°, the viscous force opposes the combined pressure
force and the force due to acceleration. Fluid particles overcome this viscous
resistance. Beyond q = 90°, within the viscous zone, the flow structure becomes
different. It is seen that the force due to acceleration is opposed by both the
viscous force and pressure force. Depending upon the magnitude of adverse
pressure gradient, somewhere around q = 90°, the fluid particles, in the boundary
layer are separated from the wall and driven in the upstream direction. However,
the far field external stream pushes back these separated layers together with it
and develops a broad pulsating wake behind the cylinder. Now let us look at the
mathematical explanation of flow-separation. Following the foregoing
observation, the point of separation may be defined as the limit between forward
and reverse flow in the layer very close to the wall, i.e., at the point of separation

0y

u

y

∂

∂ =

Ê ˆ
Á ˜Ë ¯

 = 0 (9.41)

This means that the shear stress at the wall, tw = 0. But at this point, the adverse
pressure continues to exist and at the downstream of this point the flow acts in a
reverse direction resulting in a back flow. We can also explain flow separation
using the argument about the second derivative of velocity u at the wall. From the
dimensional form of the momentum Eq. (9.10) at the wall, where u = v = 0, we
can write

2

2
0y

u

y

∂

∂ =

Ê ˆ
Á ˜Ë ¯

 = 
1
m

d

d

p

x
(9.42)

Consider the situation due to a favourable pressure gradient were 
d

d

p

x
 < 0.

From Eq. (9.42) we have, (∂ 2
u/∂y

2)wall < 0. As we proceed towards the free

stream, the velocity u approaches U• aysmptotically, so ∂u/∂y decreases at a
continuously lesser rate in y direction. This means that (∂2u/∂y2) remains less
than zero near the edge of the boundary layer. Finally it can be said that for a
decreasing pressure gradient, the curvature of a velocity profile (∂2u/∂y2) is
always negative as shown in (Fig. 9.6a). Next consider the case of adverse
pressure gradient, ∂p/∂x > 0. From Eq. (9.42), we observe that at the boundary,
the curvature of the profile must be positive (since ∂p/∂x > 0).

However, near the interface of boundary layer and free stream the previous
argument regarding ∂u/∂y and ∂2u/∂y2 still holds good and the curvature is
negative. Thus we observe that for an adverse pressure gradient, there must exist
a point for which ∂ 2u/∂y2 = 0. This point is known as point of inflection of the
velocity profile in the boundary layer as shown in Fig. 9.6b. However, point of
separation means ∂u/∂y = 0 at the wall. In addition, Eq. (9.42) depict ∂ 2u/∂y 2 > 0
at the wall since separation can only occur due to adverse pressure gradient. But



376 Introduction to Fluid Mechanics and Fluid Machines

we have already seen that at the edge of the boundary layer, ∂ 2u/∂y2 < 0. It is
therefore, clear that if there is a point of separation, there must exist a point of
inflection in the velocity profile.

Fig. 9.6 Velocity distribution within a boundary layer

(a) Favourable pressure gradient, 
d

d
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x
<

(b) adverse pressure gradient, 
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d
0

p

x
>

Let us reconsider the flow past a circular cylinder and continue our discussion
on the wake behind a cylinder. The pressure distribution which was shown by the
firm line in Fig. 9.5 is obtained from the potential flow theory. However, some-
where near q = 90° (in experiments it has been observed to be at q = 81°), the
boundary layer detaches itself from the wall. Meanwhile, pressure in the wake
remains close to separation-point-pressure since the eddies (formed as a conse-
quence of the retarded layers being carried together with the upper layer through
the action of shear) cannot convert rotational kinetic energy into pressure head.
The actual pressure distribution is shown by the dotted line in Fig. 9.5. Since
the wake zone pressure is less than that of the forward stagnation point (pres-
sure at point A in Fig. 9.5), the cylinder experiences a drag force which is
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basically attributed to the pressure difference. The drag force, brought about by
the pressure difference is known as form drag whereas the shear stress at the wall
gives rise to skin friction drag. Generally, these two drag forces together are
responsible for resultant drag on a body.

9.7 KARMAN-POHLHAUSEN APPROXIMATE
METHOD FOR SOLUTION OF
MOMENTUM INTEGRAL EQUATION
OVER A FLAT PLATE

The basic equation for this method is obtained by integrating the x direction
momentum equation (boundary layer momentum equation) with respect to y from
the wall (at y = 0) to a distance d (x) which is assumed to be outside the boundary
layer. With this notation, we can rewrite the Karman momentum integral equation
(9.39) as

( )
**

2 ** * dd
2

d d
wU

U U
x x

td
d d

r
•

• •+ + = (9.43)

The effect of pressure gradient is described by the second term on the left hand
side. For pressure gradient surfaces in external flow or for the developing sections
in internal flow, this term will be retained and will contribute to the pressure
gradient. However, we assume a velocity profile which is a polynomial of h =
y/d. As it has been seen earlier, h is a form of similarity variable. This implies
that with the growth of boundary layer as distance x varies from the leading edge,
the velocity profile (u/U•) remains geometrically similar. We choose a velocity
profile in the form

u

U•
 = a0 + a1 h + a2 h2 + a3 h

3 (9.44)

In order to determine the constants a0, a1, a2 and a3 we shall prescribe the
following boundary conditions

at y = 0, u = 0 or at h = 0, 
u

U•
 = 0 (9.45a)

at y = 0, 
∂

∂

2

2
u

y
 = 0 or at h = 0, 

∂

∂h

2

2
( / )u U•  = 0 (9.45b)

at y = d, u = U• or at h = 1, 
u

U•
 = 1 (9.45c)

at y = d, 
∂

∂

u

y
 = 0 or at h = 1, 

∂

∂h

( / )u U•  = 0 (9.45d)

These requirements will yield

a0 = 0, a2 = 0, a1 + 3a3 = 0 and a1 + a3 = 1

Finally, we obtain the following values for the coefficients in Eq. (9.44),
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a0 = 0, a1 =
3
2

, a2 = 0 and a3 = � 
1
2

and the velocity profile becomes
u

U•
 =

3
2

1
2

3h h- (9.46)

For flow over a flat plate, 
d

d

p

x
 = 0, hence U• 
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Eq. (9.43) reduces to
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Again from Eq. (9.33), the momentum thickness is
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The wall shear stress is given by
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Substituting the values of d** and tw in Eq. (9.47) we get,
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where C1 is any arbitrary unknown constant.
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The condition at the leading edge (at x = 0, d = 0) yields

C1 = 0
Finally we obtain,

d2 =
280

13

nx

U•
(9.49)

or d = 4.64
nx

U•

or d =
4 64.

Re

x

x

(9.50)

This is the value of boundary layer thickness on a flat plate. Although, the
method is an approximate one, the result is found to be reasonably accurate. The
value is slightly lower than the exact solution of laminar flow over a flat plate
given by Eq. (9.30). As such, the accuracy depends on the order of the velocity
profile. It may be mentioned that instead of Eq. (9.44), we can as well use a fourth
order polynomial as

u

U•
 = a0 + a1h + a2h2 + a3h

3 + a4h
4 (9.51)

In addition to the boundary conditions in Eq. (9.45), we shall require another
boundary condition

at y = d, 
∂

∂

2

2
u

y
 = 0 or at h = 1, 

∂

∂h

2

2

( / )u U•  = 0

To determine the constants as a0 = 0, a1 = 2, a2 = 0, a3 = �2 and a4 = 1. Finally the
velocity profile will be

u

U•
 = 2h � 2h3 + h4

Subsequently, for a fourth order profile the growth of boundary layer is given by

d =
5 83.

Re

x

x

(9.52)

This is also very close to the value of the exact solution.

9.8 INTEGRAL METHOD FOR NON-ZERO
PRESSURE GRADIENT FLOWS

A wide variety of �integral methods� in this category have been discussed by
Rosenhead [4]. The Thwaites method [5] is found to be a very elegant method,
which is an extension of the method due to Holstein and Bohlen [6]. We shall
discuss the Holstein-Bohlen method in this section.

This is an approximate method for solving boundary layer equations for two-
dimensional generalized flow. The integrated Eq. (9.39) for laminar flow with
pressure gradient can be written as
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The velocity profile the boundary layer is considered to be a fourth-order
polynomial in terms of the dimensionless distance h = y/d, and is expressed as

u/U = ah + bh2 + ch3 + dh4

The boundary conditions are

h = 0: u = 0, v = 0 v u

d h2

2∂

∂ 2  = 1
r

d
d

p

x
 = -U

U
x

d
d

h = 1: u = U,
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h
 = 0, 

∂

∂

2 u

h2  = 0

A dimensionless quantity, known as shape factor is introduced as

l =
d

n

2 d

d

U

x
(9.54)

The following relations are obtained

a = 2
6

+
l

, b = -
l

2
, c = - +2

2

l
, d = 1

6
-

l

Now, the velocity profile can be expressed as

u/U = F(h) + lG(h), (9.55)

where

F(h) = 2h � 2h3 + h4, G(h) = 
1

6
 h(1 � h)3

The shear stress tw = m(∂u/∂y)y=0 is given by

t d

m
w

U
 = 2

6
+

l
(9.56)

We use the following dimensionless parameters,

L =
t d

m
w

U

**

(9.57)
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U
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(9.58)

H = d*/d** (9.59)

The integrated momentum Eq. (9.53) reduces to
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or
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d

d

( )**d

n

2L

N
M

O

Q
P = 2[L � K (H + 2)] (9.60)

The parameter L is related to the skin friction and K is linked to the pressure
gradient. If we take K as the independent variable, L and H can be shown to be the
functions of K since
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Therefore,
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The right-hand side of Eq. (9.60) is thus a function of K alone. Walz [7] pointed
out that this function can be approximated with a good degree of accuracy by a
linear function of K so that

2[L � K(H + 2)] = a � bK

Equation (9.60) can now be written as
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Solution of this differential equation for the dependent variable (U[d**]2/n)
subject to the boundary condition U = 0 when x = 0, gives

U [ ]**d

n

2

 =
a

U
b

x

- z1

0

Ub � 1 dx

With a = 0.47 and b = 6, the approximation is particularly close between the
stagnation point and the point of maximum velocity. Finally the value of the
dependent variable is
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[d **]2 =
0 47

6
5

0

. n

U
U x

x

dz (9.64)

By taking the limit of Eq. (9.64), according to L�Hospital�s rule, it can be shown
that

[d **]2|x = 0 = 0.47n/6U ¢(0)

This corresponds to K = 0.0783. It may be mentioned that [d **] is not equal to
zero at the stagnation point. If ([d **]2/n) is determined from Eq. (9.64), K(x) can
be obtained from Eq. (9.58). Table 9.2 gives the necessary parameters for
obtaining results, such as velocity profile and shear stress tw. The approximate
method can be applied successfully to a wide range of problems.

Table 9.2 Auxiliary functions after Holstein and Bohlen [6]

l K f1(K) f2(K)

12 0.0948 2.250 0.356

10 0.0919 2.260 0.351

8 0.0831 2.289 0.340

7.6 0.0807 2.297 0.337

7.2 0.0781 2.305 0.333

7.0 0.0767 2.309 0.331

6.6 0.0737 2.318 0.328

6.2 0.0706 2.328 0.324

5.0 0.0599 2.361 0.310

3.0 0.0385 2.427 0.283

1.0 0.0135 2.508 0.252

0 0 2.554 0.235

� 1 � 0.0140 2.604 0.217

� 3 � 0.0429 2.716 0.179

� 5 � 0.0720 2.847 0.140

� 7 � 0.0999 2.999 0.100

� 9 � 0.1254 3.176 0.059

� 11 � 0.1474 3.383 0.019

� 12 � 0.1567 3.500 0

As mentioned earlier, K and l are related to the pressure gradient and the shape
factor. Introduction of K and l in the integral analysis enables extension of
Karman-Pohlhausen method for solving flows over curved geometry. However,
the analysis is not valid for the geometries, where l < � 12 and l > + 12.

9.9 ENTRY FLOW IN A DUCT

Growth of boundary layer has a remarkable influence on flow through a constant
area duct or pipe. Let us consider a flow entering a pipe with uniform velocity.
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The boundary layer starts growing on the wall at the entrance of the pipe.
Gradually it becomes thicker in the downstream and the flow becomes fully
developed when the boundary layers from the wall meet at the axis of the pipe
(Fig. 9.7). The velocity profile is nearly rectangular at the entrance and it
gradually changes to a parabolic profile at the fully developed region. Before the
boundary layers from the periphery meet at the axis, there prevails a core region
which is uninfluenced by viscosity. Since the volume-flow must be same for every
section and the boundary-layer thickness increases in the flow direction, the
inviscid core accelerates, and there is a corresponding fall in pressure. It can be
shown that for laminar incompressible flows, the velocity profile approaches the
parabolic profile through a distance Le from the entry of the pipe, which is given
by

Le

D
 ª  0.05 Re, where Re = 

U Dav

n

For a Reynolds number of 2000, this distance, which is often referred to as the
entrance length is about 100 pipe-diameters. For turbulent flows, the entrance
region is shorter, since the turbulent boundary layer grows faster.

At the entrance region, the velocity gradient is steeper at the wall, causing a
higher value of shear stress as compared to a developed flow. In addition,
momentum flux across any section in the entrance region is higher than that
typically at the inlet due to the change in shape of the velocity profile. Arising out
of these, an additional pressure drop is brought about at the entrance region as
compared to the pressure drop in the fully developed region.

Entrance region Developed
region

Le

d

Fig. 9.7 Development of boundary layer in the entrance region of a duct

9.10 CONTROL OF BOUNDARY LAYER
SEPARATION

It has already been seen that the total drag on a body is attributed to form drag and
skin friction drag. In some flow configurations, the contribution of form drag
becomes significant. In order to reduce the form drag, the boundary layer
separation should be prevented or delayed so that somewhat better pressure
recovery takes place and the form drag is reduced considerably. There are some
popular methods for this purpose which are stated as follows.



384 Introduction to Fluid Mechanics and Fluid Machines

(i) By giving the profile of the body a streamlined shape as shown in
Fig. 9.8. This has an elongated shape in the rear part to reduce the
magnitude of the pressure gradient. The optimum contour for a
streamlined body is the one for which the wake zone is very narrow
and the form drag is minimum.

(a)

CD = 1.2 CD = 0.07

10 < Re < 103 5 10 < Re < 103 5

(b)

D D

Fig. 9.8 Reduction of drag coefficient (CD) by giving the profile a streamlined shape

(ii) The injection of fluid through porous wall can also control the
boundary layer separation. This is generally accomplished by blowing
high energy fluid particles tangentially from the location where
separation would have taken place otherwise. This is shown in
Fig. 9.9. The injection of fluid promotes turbulence and thereby
increases skin friction. But the form drag is reduced considerably due
to suppression of flow separation and this reduction can be of
significant magnitude so as to ignore the enhanced skin friction drag.

Fig. 9.9 Boundary layer control by blowing

9.11 MECHANICS OF BOUNDARY LAYER
TRANSITION

One of the interesting problems in fluid mechanics is the physical mechanism of
transition from laminar to turbulent flow. The problem evolves about the
generation of both steady and unsteady vorticity near a body, its subsequent
molecular diffusion, its kinematic and dynamic convection and redistribution
downstream, and the resulting feedback on the velocity and pressure fields near
the body. We can perhaps realise the complexity of the transition problem by
examining the behaviour of a real flow past a cylinder.

Figure 9.10 (a) shows the flow past a cylinder for a very low Reynolds number
(~1). The flow smoothly divides and reunites around the cylinder. At a Reynolds
number of about 4, the flow separates in the downstream and the wake is formed
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by two symmetric eddies. The eddies remain steady and symmetrical but grow in
size up to a Reynolds number of about 40 as shown in Fig. 9.10(b).

When the Reynolds number crosses 40, oscillation in the wake induces
asymmetry and finally the wake starts shedding vortices into the stream. This
situation is termed as onset of periodicity as shown in Fig. 9.10(c) and the wake
keeps on undulating up to a Reynolds number of 90. As the Reynolds number
further increases, the eddies are shed alternately from a top and bottom of the
cylinder and the regular pattern of alternately shed clockwise and counter-
clockwise vortices form Von Karman vortex street as in Fig. 9.10(d). However,
periodicity is eventually induced in the flow field with the vortex-shedding
phenomenon. The periodicity is characterised by the frequency of vortex
shedding f. In non-dimensional form, the vortex shedding frequency is expressed
as fD/Uref, known as the Strouhal number named after V. Strouhal, a German
physicist who experimented with wires singing in the wind. The Strouhal number
shows a slight but continuous variation with Reynolds number around a value of
0.21. At about Re = 500, multiple frequencies start showing up and the wake
tends to become turbulent.

D D

(a)

(c)

(b)

(d)

Re = U D/

Re ~ 1

Re > 40

Re ~ 4 to about 40

Re ~ 90 to about 500

D D

Fig. 9.10 Influence of Reynolds number on wake-zone aerodynamics

An understanding of the transitional flow processes will help in practical
problems either by improving procedures for predicting positions or for
determining methods of advancing or retarding the transition position.

The critical value at which the transition occurs in pipe flow is Recr = 2300.
The actual value depends upon the disturbance in flow. Some experiments have
shown the critical Reynolds number to reach as high as 40,000. The precise upper
bound is not known, but the lower bound appears to be Recr = 2300. Below this
value, the flow remains laminar even when subjected to strong disturbances.
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For 2300 £ Recr £ 2600, the flow alternates randomly between laminar and
partially turbulent. Near the centerline, the flow is more laminar than turbulent,
whereas near the wall, the flow is more turbulent than laminar. For flow over a
flat plate, turbulent regime is observed between Reynolds numbers (U• x/n) of
3.5 ¥ 105 and 106.

9.12 SEVERAL EVENTS OF TRANSITION

Transitional flow consists of several events as shown in Fig. 9.11. Let us consider
the events one after another.

1. Region of instability of small wavy disturbances Consider a laminar flow over
a flat plate aligned with the flow direction (Fig. 9.11). It has been seen that in the
presence of an adverse pressure gradient, at a high Reynolds number (water
velocity approximately 9-cm/sec), two-dimensional waves appear. These waves
can be made visible by a method known as tellurium method. In 1929, Tollmien
and Schlichting predicted that the waves would form and grow in the boundary
layer. These waves are called Tollmien-Schlichting wave.

2. Three-dimensional waves and vortex formation Disturbances in the free
stream or oscillations in the upstream boundary layer can generate wave growth,
which has a variation in the spanwise direction. This leads an initially two-
dimensional wave to a three-dimensional form. In many such transitional flows,
periodicity is observed in the spanwise direction. This is accompanied by the
appearance of vortices whose axes lie in the direction of flow.

3. Peak-Valley development with streamwise vortices As the three-dimensional
wave propagates downstream, the boundary layer flow develops into a complex
streamwise vortex system. However, within this vortex system, at some spanwise
location, the velocities fluctuate violently. These locations are called peaks and
the neighbouring locations of the peaks are valleys (Fig. 9.12).

4. Vorticity concentration and shear layer development At the spanwise
locations corresponding to the peak, the instantaneous streamwise velocity
profiles demonstrate the following. Often, an inflexion is observed on the velocity
profile. The inflectional profile appears and disappears once after each cycle of
the basic wave.

5. Breakdown The instantaneous velocity profiles produce high shear in the
outer region of the boundary layer. The velocity fluctuations develop from the
shear layer at a higher frequency than that of the basic wave. However, these
velocity fluctuations have a strong ability to amplify any slight three-
dimensionality, which is already present in the flow field. As a result, a staggered
vortex pattern evolves with the streamwise wavelength twice the wavelength of
Tollmien-Schlichting wavelength. The spanwise wavelength of these structures
is about one-half of the streamwise value. This is known as breakdown. Klebanoff
et al. [8] refer to the high frequency fluctuations as hairpin eddies.
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6. Turbulent-spot development The hairpin-eddies travel at a speed grater than
that of the basic (primary) waves. As they travel downstream, eddies spread in
the spanwise direction and towards the wall. The vortices begin a cascading
breakdown into smaller vortices. In such a fluctuating state, intense local changes
occur at random locations in the shear layer near the wall in the form of turbulent
spots. Each spot grows almost linearly with the downstream distance. The
creation of spots is considered as the main event of transition.

(1) (2) (3) (4) (5) (6)

Boundary layer

Streamline

Fig. 9.11 Sequence of event involved in transition

Peak Peak
Peak

Valley Valley

Fig. 9.12 Cross-stream view of the streamwise vortex system

Summary

∑ The boundary layer is the thin layer of fluid adjacent to the solid
surface. Phenomenologically, the effect of viscosity is very prominent
within this layer.

∑ The main-stream velocity undergoes a change from zero at the solid-
surface to the full magnitude through the boundary layer.

∑ Effectively, the boundary layer theory is a complement to the inviscid
flow theory.

∑ The governing equation for the boundary layer can be obtained through
correct reduction of the Navier-Stokes equations within the thin layer
referred above. There is no variation in pressure in y direction within
the boundary layer.

∑ The pressure is impressed on the boundary layer by the outer inviscid
flow which can be calculated using Bernoulli�s equation.

∑ The boundary layer equation is a second order non-linear partial
differential equation. The exact solution of this equation is known as
similarity solution. For the flow over a flat plate, the similarity
solution is often referred to as Blasius solution. Complete analytical
treatment of this solution is beyond the scope of this text. However, the
momentum integral equation can be derived from the boundary layer
equation which is amenable to analytical treatment.
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∑ The solutions of the momentum integral equation are called approx-
imate solutions of the boundary layer equation.

∑ The boundary layer equations are valid up to the point of separation.
At the point of separation, the flow gets detached from the solid surface
due to excessive adverse pressure gradient.

∑ Beyond the point of separation, the flow reversal produces eddies.
During flow past bluff-bodies, the desired pressure recovery does not
take place in a separated flow and the situation gives rise to pressure

drag or form drag.
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Solved Examples

Example 9.1 Water flows over a flat plate at a free stream velocity of 0.15 m/s.

There is no pressure gradient and laminar boundary layer is 6 mm thick. Assume a

sinusoidal velocity profile

u

U•
 = sin

p

d2

yF
H

I
K

For the flow conditions stated above, calculate the local wall shear stress and skin friction

coefficient.

[m = 1.02 ¥ 10�3 kg/ms, r = 1000 kg/m3]
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∂
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Example 9.2 Air at standard conditions flows over a flat plate. The freestream

speed is 3 m/sec. Find d and tw at x = 1 m from the leading edge (assume a cubic velocity

profile). For air, n = 1.5 ¥ 10�5 m2/sec and r = 1.23 kg/m3.

Solution Applying the results developed in section 9.7 for cubic velocity profile and

the growth of boundary layer, we can write

U

U•
 =

3

2

1

2
3h h h

d
- =, where at any

y
x

and
d

x
 =

4 64.

Rex

For air with n = 1.5 ¥ 10�5 m2/s,  the local Reynolds number at x is

Rex =
U x•

-=
¥

¥n

3 1

1 5 10 5.
 = 2 ¥ 105

d =
4 64 4 64 1

2 105

.

Re

.x

x

=
¥

¥
m = 0.0103 m = 10.3 mm

tw = m
∂

∂

u

y
y = 0

 = 
m

d h
h h

h

U d•

=
◊ -L

NM
O
QPd

3

2

1

2
3

0

tw =
3

2

3

2

m

d

rn

d

U U• •=

or tw =
3 1 23 1 5 10 3

2 0 0103

5¥ ¥ ¥ ¥
¥

-. .

.

tw = 8.06 ¥ 10�3 N/m2

Example 9.3 Air moves over a flat plate with a uniform free stream velocity of 10

m/s. At a position 15 cm away from the front edge of the plate, what is the boundary layer

thickness? Use a parabolic profile in the boundary layer. For air, n = 1.5 ¥ 10�5m2/s and

r = 1.23 kg/m3.

Solution For a parabolic profile let us take
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u

U•
 = a + by + cy2

The boundary conditions are

at y = 0, u = 0

at y = d, u = U•

at y = d,
∂

∂

u

y
 = 0

Evaluating the constants we get

u

U•
 = 2 2

2
2y y

d d
h h

F
H

I
K - F

H
I
K = -

Now tw = m
∂

∂

m

d

∂

∂ d
h

u

y

U u U

y
y =

• •

=

= ◊
0 0

( / )

( / )

 =
m

d

h h

h
h

U•

=

◊
-d

d

( )2 2

0

 = 
2m

d

U•

Applying momentum integral equation

tw = r
d

hU
x

u

U

u

U
•

• •
-

F

HG
I

KJz2

0

1

1
d

d
d

2 m

d

U•  = r
d

h h h h hU
x

• - - +z2 2 2

0

1

2 1 2
d

d
d( )( )

2
2

m

d r

U

U

•

•
 =

d

d
d

d
h h h h h

x
( � )2 5 42 3 4

0

1

- +z

or
2 m

d rU•
 =

2

15

d

d

d

x

or d d d =
15m

rU•
 dx

d 2

2
 =

15m

rU•
x + C

It is assumed that at x = 0, d = 0 which yields C = 0. Thus

d =
30 m

rU
x

•

or
d

x
 =

30 5 48m

rU x x•
=

.

Re

In this problem, Rex =
10 15 10

1 5 10

2

5

¥ ¥
¥

-

-.
 = 1 ¥ 105
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d =
5 48.

Rex

 ¥ 15 cm = 0.259 cm

or d = 2.59 mm

Example 9.4 Air moves over a 10 m long flat plate. The transition from laminar to

turbulent flow takes place between Reynolds numbers of 2.5 ¥ 106 and 3.6 ¥ 106. What

are the minimum and maximum distance from the front edge of the plate along which one

expect laminar flow in the boundary layer? The free stream velocity is 30 m/s and

n = 1.5 ¥ 10�5 m2/s.

Solution We can see that the range of Reynolds numbers for laminar flow is 2.5 ¥ 106

to 3.6 ¥ 106

For the lower limit,

2.15 ¥ 106 =
30

1 5 10 5

x

. ¥ -

or xmin = 1.075 m

for the upper limit,

3.6 ¥ 10�6 =
30

1 5 10 5

x

. ¥ -

or xmax = 1.8 m

Example 9.5 Water at 15 °C flows over a flat plate at a speed of 1.2 m/s. The plate

is 0.3 m long and 2 m wide. The boundary layer on each surface of the plane is laminar.

Assume the velocity profile is approximated by a linear expression for which 
d

x x

=
3 46.

Re
.

Determine the drag force on the plate. For water n = 1.1 ¥ 10-6 m2/s, r = 1000 kg/m3.

Solution On a flat plate, the drag is due to skin friction acting on each side of the plate

FD = 2

0

L

z twx b dx

For linear profile
u

U

y u

y
w

y• =

= =
d

t m
∂

∂
and

0

or tw =
m

d

∂

∂ d

m

d

U U U

y

U

y

• •

=

•◊ =
( / )

( / )
0

FD = 2
m

d

m

n

U
b x

U U

x
b x

L L

• • •z z= ◊d d

0 2

2
3 46.

=
2

3 46

1
1 2

2

m

n

U U
b

x
x

L

• • z. ( / ) d
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=
2

3 46
2

1

2m

n

U b U
x

o

L

• •
L

N
M
M

O

Q
P
P.

=
4

3 46

m

n

U b U L• •

.
 = 

mU b
L

•

3 46.
Re

ReL =
U L•

-=
¥

¥n

1 2 0 3

11 10 6

. .

.
 = 3.27 ¥ 105

Therefore, (ReL)1/2 = 572

Thus, FD =
4 11 10 1 2 2 572

3 46

3¥ ¥ ¥ ¥ ¥-. .

.
 = 1.745 N

Example 9.6 Air is flowing over a thin flat plate which is 1 m long and 0.3 m wide.

At the leading edge, the flow is assumed to be uniform and U• = 30 m/s. The flow

condition is independent of z (see Fig. 9.13). Using the control volume abcd, calculate

the mass flow rate across the surface ab. Determine the magnitude and direction of the x

component of force required to hold the plate stationary. The velocity profile at bc is

given by

U

U•
 = 2

2

2
y yF

H
I
K - F

H
I
Kd

and d = 4 mm. Density of air = 1.23 kg/m3 and n = 1.5 ¥ 10�5 m2/sec.

U
a b

d c

y

z

x

Fig. 9.13 Control volume of interest on flat plate

Solution At bc,
U

U•
 = 2h � h2; h = y/d

Steady state continuity equation is given by

r
r r

V A◊z d

S

 = 0

or �rU• bd + r

d

u b y mabd +z &

0

 = 0
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but 

0

d

z ru b dy = rU• bd 

0

1

z (2h � h2)dh = rU• bd h
h

r d2
3

0

1

3

2

3
-

L

N
M

O

Q
P = •U b

mab = rU• bd � 
2

3

1

3
r d r dU b U b• •=

or &m ab =
1

3
 ¥ 1.23 ¥ 30 ¥ 0.3 ¥ 0.004 = 0.0147 kg/s

Steady state momentum equation is given by

u F

CS

sxr
r r

V A◊ =z d

or Rx = uda {�r U• bd} + uab mab + 

0

d

z u r ub dy

But, uda = uab = U•, and

0

d

z u ru b dy = rU
2
• bd 

0

1

z (2h � h2)2dh

= rU2
• bd 

4

3 3
2 4

5

0

1

h h
h

- +
L

N
M

O

Q
P  = 

8

15
rU2

• bd

Thus, Rx = � rU
2
• bd + 

1

3
rU

2
• bd + 

8

15
rU

2
• bd = � 

2

15
rU

2
• bd

Rx = � 
2

15
{1.23 ¥ (3)2 ¥ 0.3 ¥ 0.004}

= � 0.177 N (the force must be applied to the CV by
the plate)

Hence, Fx = Rx = 0.177 N (to the left)

Exercises

9.1 Choose the correct answer

(i) The laminar boundary layer thickness on a flat plate varies as
(a) x(�1/2) (b) x(4/5) (c) x(1/2) (d) x2

(ii) The turbulent boundary layer thickness on a flat plate varies as

(a) x(+1/2) (b) x(4/5) (c) x(1/7) (d) x(6/7)

(iii) The injection of air through a porous wall can control the boundary layer
separation on the upper curved surface of an aerofoil wing. The injection of
fluid also promotes turbulence. The final result is
(a) increase in the skin friction and decrease in the form drag
(b) increase in the form drag and decrease in the skin friction
(c) decrease in both the skin friction and form drag
(d) increase in both the skin friction and form drag
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(iv) In the entrance region of a pipe, the boundary layer grows and the inviscid
core accelerates. This is accompanied by a
(a) rise in pressure
(b) constant pressure gradient
(c) fall in pressure in the flow direction
(d) pressure pulse

(v) Flow separation is caused by
(a) reduction of pressure to vapour pressure
(b) a negative pressure gradient
(c) a positive pressure gradient
(d) the boundary layer thickness reducing to zero.

(vi) At the point of separation
(a) shear stress is zero
(b) velocity is negative
(c) pressure gradient is negative
(d) shear stress is maximum

(vii) Choose the expression for the momentum thickness of an incompressible
boundary layer

(a)
5 0.

Re

x

x

(b)
0

1 d
u

y
U

•

•

Ê ˆ
-Á ˜Ë ¯Ú

(c)
0

1 d
u u

y
U U

•

• •

Ê ˆ
-Á ˜Ë ¯Ú (d) ( )

0

/ du U y

•

•Ú

(viii) For cross flow over a circular cylinder at a Reynolds number Re
U D

n
•È ˘=Í ˙Î ˚

greater than 200, the wake is
(a) at a pressure equal to the forward stagnation point
(b) at a pressure lower than the forward stagnation point
(c) the principal cause of skin friction
(d) at a pressure higher than the forward stagnation point

9.2 Nikuradse, a well known student of Prandtl, obtained experimental data for
laminar flow over a flat plate placed at zero angle of attack. His measurements
suggest

3
u y y

a b
U d d

Ê ˆ Ê ˆ= +Á ˜ Á ˜Ë ¯ Ë ¯

where, y is the perpendicular distance from the plate. The local velocity is u.
Evaluate a and b from physical boundary conditions. Obtain the expressions for
the boundary layer thickness d, displacement thickness d*, momentum thickness
d** and the shear stress tw on the surface of the plate.

Ans. (a = 3/2, b = �1/2, d/x = 4.64 /(Rex)
0.5,

(d*/x = 1.73 (Rex)
0.5, tw = 0.323 m (Rex)

0.5 U/x

9.3 Given the choice between cos Ay and sin Ay as velocity profiles, which one would
you prefer? To determine choice of the profile, find the displacement thickness,
momentum thickness, wall shear stress and boundary layer thickness, from the
momentum integral equation for flow over a flat plate.

Ans. (sin Ay, d* = 0.363 d, d** = 0.137 d, tw = pm U•/2d, d/x = 4.8/(Rex)
0.5
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9.4 For the laminar flow over a flat plate, the experiments confirm the velocity profile
3

3 1
�

2 2

u y y

U d d

Ê ˆ Ê ˆ= Á ˜ Á ˜Ë ¯ Ë ¯ . For the turbulent flow over a flat plate, the

experimental observations over a range of Reynolds number suggest

1/ 7
u y

U d

Ê ˆ= Á ˜Ë ¯ . Find the ratio of (d*/d) for laminar and turbulent cases.

Ans. (d*/d)Iam = 3/8, (d*/d)tur = 1/8

9.5 Assuming the velocity profile 
u

U

y

a x•
= tanh

( )
 for the boundary layer over a

flat plate at zero incidence, find the relations for d, d* d** and tw. Check whether

the profile satisfies all the boundary conditions.

Note: a(x) π d (x) where d is such that at y = d, u = 0.99 U•

Ans. (d/x = 6.76/(Rex)
0.5, d*/x = 1.77/(Rex)

0.5 d**/x = 0.783/(Rex)
0.5,

tw = m U• (Rex)
0.5/2.553 x

9.6 An approximate expression for the velocity profile in a steady, 2�D,
incompressible boundary layer is

u

U•
 = 1 1 sin

6
e k eh h p h- -Ê ˆ- + - -Á ˜Ë ¯ , for 0 £ h £ 3

= 1 � e�h � ke�h, for h ≥ 3

where h = y/d (x). Show that the profile satisfies the following boundary
conditions

at y = 0, u = 0

at y = •, u = U• , 
∂

∂

∂

∂

u

y

u

y
=

2

2
 = 0

Also find out k from an appropriate boundary condition.

Ans. (k = (d2/n) (dU•/dx) �1)

9.7 Water of kinematic viscosity n = 1.02 ¥ 10�6 m2/s is flowing steadily over a
smooth flat plate at zero angle of attack with a velocity 1.6 m/s. The length of the
plate is 0.3 m. Calculate (a) the thickness of boundary layer at 15 cm from the
leading edge (b) the rate-of-growth of boundary layer at 15 cm from the leading
edge, and (c) the total drag coefficient on one side of the plate. Assume a
parabolic velocity profile.

Ans. (d = 1.7 mm, dd/dx = 5.625 ¥ 10�3, C f = 1.935 ¥ 10�3

9.8 Water flows between two parallel walls as shown in Fig. 9.14. The velocity is
uniform at the entrance and core region. Beyond a distnace Le downstream from
the entrance, the flow becomes fully developed so that the velocity varies over the
entire width 2h of the channel. In the boundary layer region, velocity varies as

u = U(x) 
2

y

d

Ê ˆ
Á ˜Ë ¯  where d = a x ; a being a constant. Determine the acceleration

on the axis of symmetry for 0 £ x £ Le.
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Boundary 
layer

Core

u

U (x)

U0

y

h

x

Le

Fig. 9.14 Development of boundary layers in a channel

Ans. a = (U2
0 / 3Le) (x/Le)�1/2/(1 � (2/3)(x/Le)0.5)3

9.9 Consider the laminar boundary layer on a flat plate with uniform suction velocity
V0 as shwon in Fig. 9.15:

Incompressible 
fluid

V0 = constant

y

U

x

Fig. 9.15 Flow on a flat plate with uniform suction velocity

Far down the plate (large x), a fully-developed situation may be shown to exist in
which the velocity distribution does not vary with x. Find the velocity distribution
in this region, as well as the wall shear. The governing equations are

∂

∂

∂

∂

u

x y
+

v
 = 0 and u

u

x y

p

x

u

y

∂

∂

∂

∂ r
n

∂

∂
+ = - +v

v 1 2

2
d

d

The boundary conditions are at y = 0, u = 0, v = V0 and u(•) = U

Ans. u = U{1 �exp (�V0 y/n)}, tw = rUV0

9.10 Consider a laminar boundary layer on flat plate with a velocity profile given by

u

U
 =

3

2

1

2
3h h- , where, h = y/d

For this profile 
d

x x

=
4 64.

Re
.

Determine an expression for the local skin friction coefficient in terms of distance
and flow properties.

Ans. (Cf = 0.647 (Rex)
0.5)

9.11 A low-speed wind-tunnel is provided with air supply upto a speed of 50 m/s at
20 °C. One needs to study the behaviour of boundary-layer over a flat plate kept
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inside the wind-tunnel, up to a Reynolds number of Rex = 108. What is the
minimum plate length that should be used? At what distance from the leading
edge would the transition occur if the critical Reynolds number is Rex, c = 3.5 ¥
105 ? At 25 °C, n of air is 15.7 ¥ 10�6 m2/s.

Ans. (xmin = 31.4 m, xcr = 0.109 m)

9.12 Perform a numerical solution (develop a FORTRAN code) using Eq. (9.24) and a
Runge-Kutta method (as outlined in the text) which will iterate the Blasius
equation from an initial guess H(0) = 0.2 and converge to the exact value of H(0)
= 0.4696.

9.13 A liquid film of uniform thickness flows down the inner wall of vertical pipe, the
thickness of the film being very small compared to the pipe radius. Show that, in
the absence of any appreciable shear force on the free surface of the film, the
volume flow of liquid per unit time, Q1, is given by

Q1 =
32

3

r gtp

n

where, r is the pipe radius, g the gravitational acceleration, t is the thickness of
the film and n is the kinematic viscosity of the liquid.

Show further that, if air flows up the pipe at such a rate that the free surface
of the film remains at rest, then the volume flow of liquid per unit time, Q, is given
by

Q @ 
Q

g

p

x

1

4
1

1
-

F
HG

I
KJr

d

d
.

where 
d

d

p

x
 is the pressure drop along the pipe, r is the density of the liquid

and other symbols are as defined above.
9.14 The velocity distribution in the laminar boundary layer is of the form

u

Ue

 = F(h) + lG(h)

where, F(h) =
3

2 2

3

h
h

- ; G(h) = 
h h h

4 2 4

2 3

- + ; h = 
y

d
 and l = 

2 d

d

Ue

x

d

n

Find the value of l when the flow is on the point of separating and show that
then the displacement thickness will be half the boundary layer thickness.



10.1 INTRODUCTION

The turbulent motion is an irregular motion. The irregularity associated with

turbulence is such that it can be described by the laws of probability and turbulent

fluid motion can be considered as an irregular condition of flow in which various

quantities (such as velocity components and pressure) show a random variation

with time and space in such a way that the statistical average of those quantities

can be quantitatively expressed.

An irregular motion is associated with random fluctuations. It is postulated

that the fluctuations inherently come from disturbances (such as roughness of a

solid surface) and they may be either dampened out due to viscous damping or

may grow by drawing energy from the free stream. At a Reynolds number less

than the critical, the kinetic energy of flow is not enough to sustain the random

fluctuation against the viscous damping and in such cases laminar flow continues

to exist. At somewhat higher Reynolds number than the critical Reynolds number,

the kinetic energy of flow supports the growth of fluctuations and transition to

turbulence takes place.

10.2 CHARACTERISTICS OF TURBULENT FLOW

In view of the preceding discussion, the most important characteristic of turbulent

motion is the fact that velocity and pressure at a point fluctuate with time in a

random manner (Fig. 10.1).

Turbulent Flow

10
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Laminar

t t

Turbulent

UP
UP

Fig. 10.1 Variation of u components of velocity for laminar and

turbulent flows at a point P

The mixing in turbulent flow is more due to these fluctuations. As a result we

can see more uniform velocity distributions in turbulent pipe flows as compared

to laminar flows (see Fig. 10.2).

Laminar

u(r)
u(r)

r
r

x x

º P º P

(a) (b)

up

up

Turbulent

Fig. 10.2 Comparison of velocity profiles in a pipe for (a) laminar

and (b) turbulent flows

Turbulence can be generated by frictional forces at the confining solid walls or

by the flow of layers of fluids with different velocities over one another. The

turbulence generated in these two ways are considered to be different. Turbulence

generated and continuously affected by fixed walls is designated as wall tur-

bulence, and turbulence generated by two adjacent layers of fluid in absence of

walls is termed as free turbulence.

One of the effects of viscosity on turbulence is to make the flow more

homogeneous and less dependent on direction. If the turbulence has the same

structure quantitatively in all parts of the flow field, the turbulence is said to be

homogeneous. Turbulence is called isotropic if its statistical features have no

directional preference and perfect disorder persists. Its velocity fluctuations are

independent of the axis of reference, i.e. invariant to axis rotation and reflection.

Isotropic turbulence is by its definition always homogeneous. In such a situation,

the gradient of the mean velocity does not exist. The mean velocity is either zero

or constant throughout. However, when the mean velocity has a gradient, the

turbulence is called anisotropic.
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A little more discussion on homogeneous and isotropic turbulence is needed at

this stage. The term homogeneous turbulence implies that the velocity fluctuations

in the system are random. The average turbulent characteristics are independent

of the position in the fluid, i.e., invariant to axis translation.

Consider the root mean square velocity fluctuations

u¢ = u2 , v¢ = v2 , w¢ = w2

In homogeneous turbulence, the rms values of u¢, v¢ and w¢ can all be different,

but each value must be constant over the entire turbulent field. It is also to be

understood that even if the rms fluctuation of any component, say u¢s are constant

over the entire field, the instantaneous values of u may differ from point to point

at any instant.

In addition to its homogeneous nature, if the velocity fluctuations are

independent of the axis of reference, i.e., invariant to axis rotation and reflection,

the situation leads to isotropic turbulence, which by definition as mentioned

earlier, is always homogeneous.

In isotropic turbulence fluctuations are independent of the direction of

reference and

u2  = v2  = w2

or u¢ = v¢ = w¢
Again it is of relevance to say that even if the rms fluctuations at any point are

same, their instantaneous values may differ from each other at any instant.

Turbulent flow is also diffusive. In general, turbulence brings about better

mixing of a fluid and produces an additional diffusive effect. The term �eddy-

diffusion� is often used to distinguish this effect from molecular diffusion. The

effects caused by mixing are as if the viscosity is increased by a factor of 100 or

more. At a large Reynolds number there exists a continuous transport of energy

from the free stream to the large eddies. Then, from the large eddies smaller eddies

are continuously formed. Near the wall smallest eddies dissipate energy and

destroy themselves.

10.3 LAMINAR�TURBULENT TRANSITION

For turbulent flow over a flat plate, the boundary layer starts out as laminar flow

at the leading edge and subsequently, the flow turns into transition flow and very

shortly thereafter turns into turbulent flow. The turbulent boundary layer

continues to grow in thickness, with a small region below it called a viscous

sublayer. In this sublayer, the flow is well behaved, just as the laminar boundary

layer (Fig. 10.3).

A careful observation further suggests that at a certain axial location, the

laminar boundary layer tends to become unstable. Physically this means that the

disturbances in the flow grow in amplitude at this location.
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Transitional
Laminar 
sublayer

Turbulent

Laminar

U U

Fig. 10.3 Laminar-turbulent transition

Free stream turbulence, wall roughness and acoustic signals may be among the

sources of such disturbances. Transition to turbulent flow is thus initiated with

the instability in laminar flow. The possibility of instability in boundary layer

was felt by Prandtl as early as 1912. The theoretical analysis of Tollmien and

Schlichting showed that unstable waves could exist if the Reynolds number was

575. The Reynolds number was defined as

Re = U•d*/n

where U• is the free stream velocity and d* is the displacement thickness. Taylor

developed an alternate theory, which assumed that the transition is caused by a

momentary separation at the boundary layer associated with the free stream

turbulence. In a pipe flow the initiation of turbulence is usually observed at

Reynolds numbers (U•D/n) in the range of 2000 to 2700. The development starts

with a laminar profile, undergoes a transition, changes over to turbulent profile

and then stays turbulent thereafter (Fig. 10.4). The length of development is of the

order of 25 to 40 diameters of the pipe. The mechanisms related to the growth and

the decay of turbulence in a flow field are indeed an advanced topic and beyond

the scope of this text. However, the interested readers may like to refer to

Tennekes and Lumley [1] and Hinze [2] for advanced knowledge.

Developing 
region

U

Fully developed 
turbulent flow

L

x

u

Fig. 10.4 Development of turbulent flow in a circular duct
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10.4 CORRELATION FUNCTIONS

A statistical correlation can be applied to fluctuating velocity terms in turbulence.

Turbulent motion is by definition eddying motion. Notwithstanding the

circulation strength of the individual eddies, a high degree of correlation exists

between the velocities at two points in space, if the distance between the points is

smaller than the diameter of the eddy.

Consider a statistical property of a random variable (velocity) at two points

separated by a distance r. An Eulerian correlation tensor (nine terms) at the two

points can be defined by

Q = u u( ) ( )x x r+

In other words, the dependence between the two velocities at two points is

measured by the correlations, i.e. the time averages of the products of the

quantities measured at two points. The correlation of the u¢ components of the

turbulent velocity of these two points is defined as

¢ ¢ +u x u x r( ) ( )

It is conventional to work with the non-dimensional form of the correlation, such

as

R(r) =
¢ ¢ +

¢ ¢ +

u x u x r

u x u x r

( ) ( )

( ) ( )
/

2 2
1 2

e j
A value of R(r) of unity signifies a perfect correlation of the two quantities

involved and their motion is in phase. Negative value of the correlation function

implies that the time averages of the velocities in the two correlated points have

different signs. Figure 10.5 shows typical variations of the correlation R with

increasing separation r.

To describe the evolution of a fluctuating function u¢(t), we need to know the

manner in which the value of u¢ at different times are related. For this purpose a

correlation function

R(t) = 2( ) ( )u t u t ut+¢ ¢ ¢

between the values of u¢ at different times has been chosen. This is called

autocorrelation function.

The correlation studies reveal that the turbulent motion is composed of eddies

which are convected by the mean motion. The eddies have a wide range variation

in their size. The size of the large eddies is comparable with the dimensions of the

neighbouring objects or the dimensions of the flow passage. The size of the

smallest eddies can be of the order of 1 mm or less. However, the smallest eddies

are much larger than the molecular mean free paths and the turbulent motion

obeys the principles of continuum mechanics.
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R r( )

Or

1.0

Fig. 10.5 Variation of R with the distance of separation r

10.5 MEAN MOTION AND FLUCTUATIONS

In 1883, O. Reynolds conducted experiments with pipe flow by feeding into the

stream a thin thread of liquid dye. For low Reynolds numbers, the dye traced a

straight line and did not disperse. With increasing velocity, the dye thread got

mixed in all directions and the flowing fluid appeared to be uniformly coloured in

the downstream. It was conjectured that on the main motion in the direction of the

axis, there existed a superimposed motion all along the main motion at right

angles to it. The superimposed motion causes exchange of momentum in

transverse direction and the velocity distribution over the cross-section is more

uniform than in laminar flow. This description of turbulent flow which consists of

superimposed streaming and fluctuating (eddying) motion is referred to as

Reynolds decomposition of turbulent flow.

Here, we shall discuss different descriptions of mean motion. Generally, for

Eulerian velocity u, the following two methods of averaging could be obtained.

(i) Time average for a stationary turbulence

u x
t
( )0  =

1

1
1

0
1 �

1
lim ( , ) d

2

t

t
t

u x t t
tÆ• Ú

(ii) Space average for a homogeneous turbulence

u t
s
( )0  = 0

�

1
lim ( , ) d

2

x

x
x

u x t x
xÆ• Ú

For a stationary and homogeneous turbulence, it is assumed that the two

averages lead to the same result: u
t = u

s and the assumption is known as the

ergodic hypothesis.

In our analysis, average of any quantity will be evaluated as a time average.

We take t1 a finite interval. This interval must be larger than the time scale of

turbulence. Needless to say that it must be small compared with the period t2 of

any slow variation (such as periodicity of the mean flow) in the flow field that we

do not consider to be chaotic or turbulent.

Thus, for a parallel flow, it can be written that the axial velocity component is

u( y, t) = u ( y) + u¢ (G, t) (10.1)
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As such, the time mean component u (y) determines whether the turbulent

motion is steady or not. Let us look at two different turbulent motions described in

Fig. 10.6 (a) and (b). The symbol G signifies any of the space variables.

While the motion described by Fig. 10.6 (a) is for a turbulent flow with steady

mean velocity the Fig. 10.6 (b) shows an example of turbulent flow with unsteady

mean velocity. The time period of the high frequency fluctuating component is t1

whereas the time period for the unsteady mean motion is t2 and for obvious reason

t2 >> t1. Even if the bulk motion is parallel, the fluctuation u¢ being random varies

in all directions. Now let us look at the continuity equation,

∂

∂

∂

∂

∂

∂

u

x y

w

z
+ +

v
 = 0

Invoking Eq. (10.1) in the above expression, we get

∂

∂

∂

∂

∂

∂

∂

∂

u

x

u

x y

w

z
+ ¢ + +

v
 = 0 (10.2)
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Fig. 10.6 Steady and unsteady mean motions in a turbulent  flow

Since 
∂

∂

¢u

x
 π 0, Eq. (10.2) depicts that y and z components of velocity exist even

for the parallel flow if the flow is turbulent. We can write

u(y, t) = u (y) + u¢ (G, t)

v = 0 + v¢ (G, t)

¸
Ô
˝
Ô
˛

(10.3)

w = 0 + w¢ (G, t)

However, the fluctuating components do not bring about the bulk displacement

of a fluid element. The instantaneous displacement is u¢ dt, and that is not

responsible for the bulk motion. We can conclude from the above

T

T-
Ú u¢ dt = 0, (t1 < T £ t2)

Due to the interaction of fluctuating components, macroscopic momentum

transport takes place. Therefore, interaction effect between two fluctuating

components over a long period is non-zero and this can be expressed as
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T

T-
Ú u¢ v¢ dt π 0

We take time average of these two integrals and write

u ¢ =
1

2

T

T
T -

Ú u¢ dt = 0 (10.4a)

and ¢ ¢u v  =
1

2

T

T
T -

Ú u¢ v¢ dt π 0 (10.4b)

Now, we can make a general statement with any two fluctuating parameters, say,

with f ¢ and g¢ as

¢f  = ¢g  = 0 (10.5a)

¢ ¢f g  π 0 (10.5b)

The time averages of the spatial gradients of the fluctuating components also

follow the same laws, and they can be written as

∂

∂

¢f

s
 =

∂

∂

2

2

¢f

s
 = 0

and
∂

∂

( )¢ ¢f g

s
 π 0

(10.6)

The intensity of turbulence or degree of turbulence in a flow is described by

the relative magnitude of the root mean square value of the fluctuating

components with respect to the time averaged main velocity. The mathematical

expression is given by

I =
1

3

2 2 2( )¢ + ¢ + ¢ •u w Uv (10.7a)

The degree of turbulence in a wind tunnel can be brought down by introducing

screens of fine mesh at the bell mouth entry. In general, at a certain distance from

the screens, the turbulence in a wind tunnel becomes isotropic, i.e. the mean

oscillation in the three components are equal,

¢u 2  = ¢ = ¢v
2 2w

In this case, it is sufficient to consider the oscillation u¢ in the direction of flow

and to put

I = ¢ •u U2
(10.7b)

This simpler definition of turbulence intensity is often used in practice even in

cases when turbulence is not isotropic.

Following Reynolds decomposition, it is suggested to separate the motion into

a mean motion and a fluctuating or eddying motion. Denoting the time average of

¸
Ô
˝
Ô
˛
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the u component of velocity by u  and fluctuating component as u¢, we can write

down the following,

u = u  + u¢, v = v  + v¢, w = w  + w¢, p = p  + p¢ (10.8)

By definition, the time averages of all quantities describing fluctuations are

equal to zero.

¢u  = 0, ¢v  = 0, ¢w  = 0, ¢p  = 0 (10.9)

The fluctuations u¢, v¢, and w¢ influence the mean motion u , v  and w  in such

a way that the mean motion exhibits an apparent increase in the resistance to

deformation. In other words, the effect of fluctuations is an apparent increase in

viscosity or macroscopic momentum diffusivity.

We shall state some rules of mean time-averages here. If f and g are two

dependent variables and if s denotes any one of the independent variables x, y, z,

t, then

f  = f ; f g f g f g f g+ = + ◊ = ◊; ;

∂

∂

f

s
 = ; d d

f
f s f s

s

∂

∂
=Ú Ú (10.10)

10.6 DERIVATION OF GOVERNING
EQUATIONS FOR TURBULENT FLOW

For incompressible flows, the Navier�Stokes equations can be rearranged in the

form

r 
2

2( ) ( v) ( )
�

u u u uw p
u

t x y z x

∂ ∂ ∂ ∂ ∂
m

∂ ∂ ∂ ∂ ∂

È ˘
+ + + = + —Í ˙

Î ˚
(10.11a)

r 
2

2v ( v) (v ) (v )
� v

u w p

t x y z y

∂ ∂ ∂ ∂ ∂
m

∂ ∂ ∂ ∂ ∂

È ˘
+ + + = + —Í ˙

Î ˚
(10.11b)

r 
2

2( ) (v ) ( )
�

w uw w w p
w

t x y z z

∂ ∂ ∂ ∂ ∂
m

∂ ∂ ∂ ∂ ∂

È ˘
+ + + = + —Í ˙

Î ˚
(10.11c)

and
∂

∂

∂

∂

∂

∂

u

x y

w

z
+ +

v
 = 0 (10.12)

Let us express the velocity components and pressure in terms of time-mean

values and corresponding fluctuations. In continuity equation, this substitution

and subsequent time averaging will lead to

∂

∂

∂

∂

∂

∂

( ) ( ) ( )u u

x y

w w

z

+ ¢ +
+ ¢ +

+ ¢v v
 = 0

or
v vu w u w

x y z x y z

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

Ê ˆÊ ˆ ¢ ¢ ¢
+ + + + +Á ˜Á ˜Ë ¯ Ë ¯

 = 0
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Since
∂

∂

∂

∂

∂

∂

¢ = ¢ = ¢u

x y

w

z

v
 = 0 [From Eq. (10.6)]

We can write

∂

∂

∂

∂

∂

∂

u

x y

w

z
+ +

v
 = 0 (10.13a)

From Eqs (10.13a) and (10.12), we obtain

∂

∂

∂

∂

∂

∂

¢ + ¢ + ¢u

x y

w

z

v
 = 0 (10.13b)

It is evident that the time-averaged velocity components and the fluctuating

velocity components, each satisfy the continuity equation for incompressible

flow. Let us imagine a two-dimensional flow in which the turbulent components

are independent of the z-direction. Eventually, Eq. (10.13b) tends to

∂

∂

¢u

x
 = � 

∂

∂

¢v
y

(10.14)

On the basis of condition (10.14), it is postulated that if at an instant there is an

increase in u¢ in the x-direction, it will be followed by an increase in v¢ in the

negative y-direction. In other words, ¢ ¢u v  is non-zero and negative. This is

another important consideration within the framework of mean-motion

description of turbulent flows.

Invoking the concepts of (10.8) into the equations of motion (10.11a, b, c), we

obtain expressions in terms of mean and fluctuating components. Now, forming

time averages and considering the rules of (10.10) we discern the following. The

terms which are linear, such as 
∂

∂

∂

∂

¢ ¢u

t

u

x
and

2

2
 vanish when they are averaged

[from (10.6)]. The same is true for the mixed terms like u ◊u¢, or u ◊v¢, but the

quadratic terms in the fluctuating components remain in the equations. After

averaging, they form ¢u 2 , ¢ ¢u v  etc.

For example, if we perform the aforesaid exercise on the x momentum

equation, we shall obtain
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Introducing simplifications arising out of continuity Eq. (10.13a), we shall obtain

r 2v �
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Performing a similar treatment on y and z momentum equations, finally we

obtain the momentum equations in the form

r 
2v �

u u u p
u w u

x y z x
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m
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(10.15a)
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(10.15c)

The left hand side of Eqs (10.15a)�(10.15c) are essentially similar to the

steady-state Navier�Stokes equations if the velocity components u, v and w are

replaced by u , v  and w . The same argument holds good for the first two terms on

the right hand side of Eqs (10.15a)�(10.15c). However, the equations contain

some additional terms which depend on turbulent fluctuations of the stream. These

additional terms can be interpreted as components of a stress tensor. Now, the

resultant surface force per unit area due to these terms may be considered as

r 
2v �

u u u p
u w u

x y z x

∂ ∂ ∂ ∂
m
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È ˘
+ + = + —Í ˙
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Comparing Eqs (10.15) and (10.16), we can write

2
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(10.17)

It can be said that the mean velocity components of turbulent flow satisfy the

same Navier�Stokes equations of laminar flow. However, for the turbulent flow,

the laminar stresses must be increased by additional stresses which are given by

the stress tensor (10.17). These additional stresses are known as apparent stresses

of turbulent flow or Reynolds stresses. Since turbulence is considered as eddying

motion and the aforesaid additional stresses are added to the viscous stresses due

to mean motion in order to explain the complete stress field, it is often said that

the apparent stresses are caused by eddy viscosity. The total stresses are now

sxx = � p
u

x
u+ - ¢2 2m

∂

∂
r

txy = m 
v

v
u

u
y x

∂ ∂
r

∂ ∂

Ê ˆ
+ - ¢ ¢Á ˜Ë ¯

(10.18)

and so on. The apparent stresses are much larger than the viscous components,

and the viscous stresses can even be dropped in many actual calculations.

10.7 TURBULENT BOUNDARY LAYER
EQUATIONS

For a two-dimensional flow (w = 0) over a flat plate, the thickness of turbulent

boundary layer is assumed to be much smaller than the axial length and the order

of magnitude analysis (refer to Chapter-9) may be applied. As a consequence, the

following inferences are drawn:

(a)
∂

∂

p

y
 = 0, (b) 
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p

x
 = 

d

d
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x

˘
˙
˙
˙̊
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(c)
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∂
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The turbulent boundary layer equation together with the equation of continuity

becomes

∂

∂

∂

∂

u

x y
+

v
 = 0 (10.19)
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v (10.20)

A comparison of Eq. (10.20) with laminar boundary layer Eq. (9.10) depicts.

that: u, v and p are replaced by the time average values u , v  and p , and laminar

viscous force per unit volume 
∂ t

∂

( )l

y
 is replaced by

∂

∂ y
(tl + tt), where tl = m

∂

∂

u

y

is the laminar shear stress and tt = � ru¢ v¢ is the turbulent stress.

10.8 BOUNDARY CONDITIONS

All the components of apparent stresses vanish at the solid walls and only stresses

which act near the wall are the viscous stresses of laminar flow. The boundary

conditions, to be satisfied by the mean velocity components, are similar to laminar

flow. A very thin layer next to the wall behaves like a near wall region of the

laminar flow. This layer is known as laminar sublayer and its velocities are such

that the viscous forces dominate over the inertia forces. No turbulence exists in it

(see Fig. 10.7). For a developed turbulent flow over a flat plate, in the near wall

region, inertial effects are insignificant, and we can write from Eq. (10.20),

n 
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∂

∂
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xy

u v

du
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Fig. 10.7 Different zones of a turbulent flow past a wall
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which can be integrated as, 
n ∂

∂

u

y
u- ¢ ¢v  = constant

Again, as we know that the fluctuating components, do not exist near the wall,

the shear stress on the wall is purely viscous and it follows

n
∂

∂

u

y y = 0

 =
t

r
w

However, the wall shear stress in the vicinity of the laminar sublayer is estimated

as

tw =
0

0

s s

s s

U U
m m

d d

È ˘-
=Í ˙-Î ˚

(10.21a)

where Us is the fluid velocity at the edge of the sublayer. The flow in the sublayer

is specified by a velocity scale (characteristic of this region). We define the

friction velocity,

ut =

1/2

wt

r

È ˘
Í ˙
Î ˚

(10.21b)

as our velocity scale. Once ut is specified, the structure of the sublayer is

specified. It has been confirmed experimentally that the turbulent intensity

distributions are scaled with ut . For example, maximum value of the ¢u 2  is

always about 8ut
2. The relationship between ut and the Us can be determined from

Eqs (10.21a) and (10.21b) as

ut
2 = n

d

Us

s

Let us assume Us = C U• . Now we can write

ut
2
 = C

U

s

n
d

•  where C  is a proportionality constant (10.22a)

or
d

n
tsu  =

U
C

ut

•È ˘
Í ˙
Î ˚

(10.22b)

Hence, a non-dimensional coordinate may be defined as, h = 
yut

n
 which will

help us estimating different zones in a turbulent flow. The thickness of laminar

sublayer or viscous sublayer is considered to be h ª 5. Turbulent effect starts in

the zone of h > 5 and in a zone of 5 < h < 70, laminar and turbulent motions

coexist. This domain is termed as buffer zone. Turbulent effects far outweigh the

laminar effect in the zone beyond h = 70 and this regime is termed as turbulent

core.

For flow over a flat plate, the turbulent sheat stress (� r ¢ ¢u v ) is constant

throughout in the y direction and this becomes equal to tw at the wall. In the event
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of flow through a channel, the turbulent shear stress (� r ¢ ¢u v ) varies with y and

it is possible to write

t

t
t

w

 =
z

h
(10.22c)

where the channel is assumed to have a height 2h and z is the distance measured

from the centreline of the channel (= h � y). Figure 10.7 explains such variation of

turbulent stress.

10.9 SHEAR STRESS MODELS

In analogy with the coefficient of viscosity for laminar flow, J. Boussinesq

introduced a mixing coefficient mt for the Reynolds stress term by invoking

tt = � r m
∂

∂
¢ ¢ =u

u

y
tv

Now the expressions for shearing stresses are written as
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The term nt is known as eddy viscosity and the model is known as eddy

viscosity model. The difficulty in using Eq. (10.23) can be discussed herein. The

value of nt is not known. The term n is a property of the fluid whereas nt is

attributed to random fluctuations and is not a property of the fluid. However, it is

necessary to find out empirical relations between nt and the mean velocity. We

shall discuss one such well known relation between the aforesaid apparent or

eddy viscosity and the mean velocity components in the following subsection.

10.9.1 Prandtl�s Mixing Length Hypothesis

Let us consider a fully developed turbulent boundary layer (Fig. 10.3). The

streamwise mean velocity varies only from streamline to streamline. The main

flow direction is assumed parallel to the x-axis (Fig. 10.8).

The time average components of velocity are given by u  = u  (y), v  = 0,

w  = 0. The fluctuating component of transverse velocity v¢ transports mass and

momentum across a plane at y1 from the wall. The shear stress due to the

fluctuation is
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given by tt = � r ¢ ¢ =u v
u

y
tm

∂

∂
(10.24)

A lump of fluid, which comes to the layer y1 from a layer (y1 � l) has a positive

value of v¢. If the lump of fluid retains its original momentum then its velocity at

its current location y1 is smaller than the velocity prevailing there. The difference

in velocities is then

D u1 = u (y1) � u  (y1 � l) ª l
1y

u

y

∂

∂

Ê ˆ
Á ˜Ë ¯ (10.25)

Proportional to u

l u (y1)

u (y1 l)

y1

y

y

x

u (y1 + l)

u (y)

v

l

Fig. 10.8 One-dimensional parallel flow and Prandtl�s mixing length hypothesis

The above expression is obtained by expanding the function u (y1 � l) in a

Taylor series and neglecting all higher order terms and higher order derivatives.

As it is said, l is a small length scale known as Prandtl�s mixing length. Prandtl

proposed that the transverse displacement of any fluid particle is, on an average,

�l�. Let us consider another lump of fluid with a negative value of v¢. This is

arriving at y1 from (y1 + l). If this lump retains its original momentum, its mean

velocity at the current lamina y1 will be somewhat more than the original mean

velocity of y1. This difference is given by

Du2 = u ( y1 + l) � u  ( y1) ª l

1y

u

y

∂

∂

Ê ˆ
Á ˜Ë ¯

(10.26)

The velocity differences caused by the transverse motion can be regarded as the

turbulent velocity components at y1. We calculate the time average of the absolute

value of this fluctuation as

¢u  = ( )
1

1 2

1
| | | |

2
y

u
u u l

y

∂

∂

Ê ˆ
D + D = Á ˜Ë ¯

(10.27)
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Suppose these two lumps of fluid meet at a layer y1. The lumps will collide with a

velocity 2u¢ and diverge. This proposes the possible existence of transverse

velocity component in both directions with respect to the layer at y1. Now,

suppose that the two lumps move away in a reverse order from the layer y1 with a

velocity 2u¢. The empty space will be filled from the surrounding fluid creating

transverse velocity components which will again collide at y1. Keeping in mind

this argument and the physical explanation accompanying Eqs (10.14), we may

state that

¢v  ~ ¢u

or ¢v  = const ¢u  = (const) l 
∂

∂

u

y

along with the condition that the moment at which u¢ is positive, v¢ is more likely

to be negative and conversely when u¢ is negative. Possibly, we can write at this

stage

¢ ¢u v  = � C1 ¢u  ¢v

or ¢ ¢u v  = � C2 l
2
 

2
u

y

∂

∂

Ê ˆ
Á ˜Ë ¯

(10.28)

where C1 and C2 are different proportionality constants. However, the constant

C2 can now be included in still unknown mixing length and Eq. (10.28) may be

rewritten as

¢ ¢u v  = � l2 

2
u

y

∂

∂

Ê ˆ
Á ˜Ë ¯

For the expression of turbulent shearing stress tt, we may write

tt = � r ¢ ¢u v  = r l2 

2
u

y

∂

∂

Ê ˆ
Á ˜Ë ¯

(10.29)

After comparing this expression with the eddy viscosity concept and

Eq. (10.24), we may arrive at a more precise definition,

tt = r l2 
∂

∂

∂

∂
m

∂

∂

u

y

u

y

u

y
t

F
HG

I
KJ = (10.30a)

where the apparent viscosity may be expressed as

mt = r l2 
∂

∂

u

y
(10.30b)

and the apparent kinematic viscosity is given by

nt = l
2
 

∂

∂

u

y
(10.30c)
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The decision of expressing one of the velocity gradients of Eq. (10.29) in terms

of its modulus as 
∂

∂

u

y
 was made in order to assign a sign to tt according to the

sign of 
∂

∂

u

y
. It may be mentioned that the apparent viscosity and consequently,

the mixing length are not properties of fluid. They are dependent on turbulent

fluctuation. However, our problem is still not resolved. How to determine the

value of �l� the mixing length? Several correlations, using experimental results

for tt have been proposed to determine l.

However, so far the most widely used value of mixing length in the regime of

isotropic turbulence is given by

l = c y (10.31)

where y is the distance from the wall and c is known as von Karman constant

(ª 0.4).

10.10 UNIVERSAL VELOCITY DISTRIBUTION LAW
AND FRICTION FACTOR IN DUCT FLOWS FOR
VERY LARGE REYNOLDS NUMBERS

For flows in a rectangular channel at very large Reynolds numbers the laminar

sublayer can practically be ignored. The channel may be assumed to have a width

2h and the x axis will be placed along the bottom wall of the channel. We shall

consider a turbulent stream along  a smooth flat wall in such a duct and denote the

distance from the bottom wall by y, while u( y) will signify the velocity. In the

neighbourhood of the wall, we shall apply

l = c y

According to Prandtl�s assumption, the turbulent shearing stress will be

tt = rc2 y2 

2
u

y

∂

∂

Ê ˆ
Á ˜Ë ¯

(10.32)

At this point, Prandtl introduced an additional assumption which like a plane

Couette flow takes a constant shearing stress throughout, i.e

tt = tw (10.33)

where tw denotes the shearing stress at the wall. Invoking once more the friction

velocity ut = 

1/2

wt

r

È ˘
Í ˙
Î ˚

, we obtain

ut
2 = c2y2 

2
u

y

∂

∂

Ê ˆ
Á ˜Ë ¯

(10.34)

or
∂

∂

u

y
 =

u

y

t

c
(10.35)

On integrating we find
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u  =
u

y Ct

c
ln + (10.36)

Despite the fact that Eq. (10.36) is derived on the basis of the friction velocity in

the neighbourhood of the wall because of the assumption that tw = tt = constant,

we shall use it for the entire region. At y = h (at the horizontal mid plane of the

channel), we have u  = Umax. The constant of integration is eliminated by

considering

Umax =
u

h Ct

c
ln +

or C = Umax � 
u

ht

c
ln

Substituting C in Eq. (10.36), we get

and
U u

u

max -

t

 =
1

ln
h

yc

Ê ˆ
Á ˜Ë ¯

(10.37)

Equation (10.37) is known as universal velocity defect law of Prandtl and its

distribution has been shown in Fig. 10.9.

Here, we have seen that the friction velocity ut is a reference parameter for

velocity. We shall now discuss the problem with (u /ut) and h (= y ut /n) as

parameters. Equation (10.36) can be rewritten once again for this purpose as

u

ut

 =
1

c
 ln y + C

Fig. 10.9 Distribution of universal velocity defect law of

Prandtl in a turbulent channel flow

The no-slip condition at the wall cannot be satisfied with a finite constant of

integration. This is expected that the appropriate condition for the present problem
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should be that u  = 0 at a very small distance y = y0 from the wall. Hence,

Eq. (10.36) becomes

u

ut

 =
1

c
 (ln y � ln y0) (10.38)

The distance y0 is of the order of magnitude of the thickness of the viscous layer.

Now we can write Eq. (10.38) as

u

ut

 =
1

c
ln ln

u
y t b

n

È ˘-Í ˙Î ˚

or
u

ut

 = Al ln h + D1 (10.39)

where A1 = (l/c), the unknown b is included in Dl.

Equation (10.39) is generally known as the universal velocity profile because

of the fact that it is applicable from moderate to a very large Reynolds number.

However, the constants A1 and D1 have to be found out from experiments. The

aforesaid profile is not only valid for channel (rectangular) flows, it retains the

same functional relationship for circular pipes as well. It may be mentioned that

even without the assumption of having a constant shear stress throughout, the

universal velocity profile can be derived. Interested readers are referred to

Example 10.3.

Experiments, performed by J. Nikuradse, showed that Eq. (10.39) is in good

agreement with experimental results. Based on Nikuradse�s and Reichardt�s

experimental data, the empirical constants of Eq. (10.39) can be determined for a

smooth pipe as

u

ut

 = 2.5 ln h + 5.5 (10.40)

This velocity distribution has been shown through curve (b) in Fig. 10.10.

5
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20

u
u

30

10
5

102 103 10460

b

Laminar 
sublayer 

Buffer 
zone

Turbulent 
zone

Fig. 10.10 The universal velocity distribution law for smooth pipes
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However, the corresponding friction factor concerning Eq. (10.40) is

1

f
 = 2.0 log10 (Re f ) � 0.8 (10.41)

As mentioned earlier, the universal velocity profile does not match very close to the

wall where the viscous shear predominates the flow. However, von Karman

suggested a modification for the laminar sublayer and the buffer zone which are

u

ut

 = h = 
u yt

n
for h < 5.0 (10.42)

and

u

ut

 = 11.5 log10 
u yt

n
 � 3.0 for 5 < h < 60 (10.43)

Equation (10.42) has been shown through curve (a) in Fig. 10.10.

It may be worthwhile to mention here that a surface is said to be hydraulically

smooth so long

0 £
e

n

tp u
 £ 5 (10.44)

where ep is the average height of the protrusions inside the pipe.

Physically, the above expression means that for smooth pipes protrusions will

not be extended outside the laminar sublayer. If protrusions exceed the thickness of

laminar sublayer, it is conjectured (also justified though experimental verification)

that some additional frictional resistance will contribute to pipe friction due to the

form drag experienced by the protrusions in the boundary layer. In rough pipes

experiments indicate that the velocity profile may be expressed as:

u

ut

 = 2.5 ln 
y

pe
+ 8 5. (10.45)

At the centre-line, the maximum velocity is expressed as

U

u

max

t

 = 2.5 ln 
R

pe
+ 8 5. (10.46)

Note that n no longer appears with R and ep. This means that for completely rough

zone of turbulent flow, the profile is independent of Reynolds number and a

strong function of pipe roughness. However, for pipe roughness of varying

degrees, the recommendation due to Colebrook and White works well. Their

formula is

1

f
 = 1.74 � 2.0 log10 

18.7

Re

p

R f

eÈ ˘
+Í ˙

Í ˙Î ˚
(10.47)

where R is the pipe radius.

For ep Æ 0, this equation produces the result of the smooth pipes (Eq. (10.41)).

For Re Æ •, it gives the expression for friction factor for a completely rough pipe

at a very high Reynolds number which is given by
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f =
2

1

2 log 1.74
p

R

e

Ê ˆ
+Á ˜

Ë ¯

(10.48)

Turbulent flow through pipes has been investigated by many researchers because

of its enormous practical importance.

In the next section, we shall discuss, in detail the velocity distribution and

other important aspects of turbulent pipe flows.

10.11 FULLY DEVELOPED TURBULENT FLOW IN A

PIPE FOR MODERATE REYNOLDS NUMBERS

The entry length of a turbulent flow is much shorter than that of a laminar flow, J.

Nikuradse determined that a fully developed profile for turbulent flow can be

observed after an entry length of 25 to 40 diameters. We shall focus herein our

attention to fully developed turbulent flow. Considering a fully developed

turbulent pipe flow  (Fig. 10.11) we can write

2 p R tw = � 
d

d

p

x

Ê ˆ
Á ˜Ë ¯

 p R
2

(10.49)

or
d

�
d

p

x

Ê ˆ
Á ˜Ë ¯

 =
2 w

R

t
(10.50)

x

dp w

w

dx

Fig. 10.11 Fully developed turbulent pipe flow

It can be said that in a fully developed flow, the pressure gradient balances the

wall shear stress only and has a constant value at any x. However, the friction

factor (Darcy friction factor) is defined in a fully developed flow as

� 
d

d

p

x

Ê ˆ
Á ˜Ë ¯

 =
r fU

D

av
2

2
(10.51)

Comparing Eq. (10.50) with Eq. (10.51), we can write

tw =
f

U
8

r av
2 (10.52)

H. Blasius conducted a critical survey of available experimental results and

established the empirical correlation for the above equation as

f = 0.3164 Re�0.25, where Re = rUavD/m (10.53)
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It is found that the Blasius�s formula is valid in the range of Reynolds number of

Re £ 105. At the time when Blasius compiled the experimental data, results for

higher Reynolds numbers were not available. However, later on, J. Nikuradse

carried out experiments with the laws of friction in a very wide range of Reynolds

numbers, 4 ¥ 10
3
 £ Re £ 3.2 ¥ 10

6
. The velocity profile in this range follows:

u

u
 =

1/ n
y

R

È ˘
Í ˙Î ˚

(10.54)

where u  is the time mean velocity at the pipe centre and y is the distance from the

wall. The exponent n varies slightly with Reynolds number. In the range of

Re ~ 105, n is 7.

The ratio of u  and Uav for the aforesaid profile is found out by considering the

volume flow rate Q as

Q = p R2Uav = 

0

R

Ú 2p r u dr

or p R2Uav = 2p u  

0

R

Ú (R � y) (y/R)1/n (�dy)

or p R2 Uav = 2p u

1 1 2 1 1

0
1 2 1

R
n n n

n n n n
n n

R y y R
n n

- + +
-È ˘Ê ˆ Ê ˆ

Í ˙-Á ˜ Á ˜
+ +Í ˙Ë ¯ Ë ¯Î ˚

or p R2 Uav = 2p u  
2 2

1 2 1

n n
R R

n n

È ˘
-Í ˙+ +Î ˚

or p R2 Uav = 2p R2 u

2

( 1) (2 1)

n

n n

È ˘
Í ˙

+ +Î ˚

or
U

u

av  =
2

1 2 1

2n

n n( ) ( )+ +
(10.55a)

Now, for different values of n (for different Reynolds numbers) we shall obtain

different values of Uav/u  from Eq. (10.55a). On substitution of Blasius resistance

formula (10.53) in Eq. (10.52), the following expression for the shear stress at the

wall can be obtained.

tw =
0 3164

8

0 25.
Re .- r Uav

2

or tw =

1/4

2
av

av

0.03955
2

U
R U

n
r

Ê ˆ
Á ˜Ë ¯

or tw =

1/4
7 /4
av0.03325 U

R

n
r

Ê ˆ
Á ˜Ë ¯

or tw =

7/ 4 1/4
7/ 4av0.03325 ( )

U
u

u R

n
r

Ê ˆ Ê ˆ
Á ˜Á ˜ Ë ¯Ë ¯
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For n = 7, Uav /u  becomes equal to 0.8. Substituting Uav/u  = 0.8 in the above

equation, we get

tw = 0.03325 r (0.8)1/4(u )7/4 (n/R)1/4

Finally it produces tw = 0.0225 r (u )
7/4

 (n/R)
1/4

(10.55b)

or ut
2 = 0.0225 (u )7/4 

1/4

R

nÊ ˆ
Á ˜Ë ¯

where ut is friction velocity. However, ut
2 may be splitted into ut

7/4 and ut
1/4 and

we obtain
7/ 4

u

ut

Ê ˆ
Á ˜Ë ¯

 = 44.44 

1/4
u Rt

n

Ê ˆ
Á ˜Ë ¯

or
u

ut

 = 8.74 

1/7
u Rt

n

Ê ˆ
Á ˜Ë ¯

(10.56a)

Now we can assume that the above equation is not only valid at the pipe axis

(y = R) but also at any distance from the wall y and a general form is proposed as

u

ut

 = 8.74 

1/7
yut

n

Ê ˆ
Á ˜Ë ¯

(10.56b)

In conclusion, it can be said that (1/7)th power velocity distribution law (10.56b)

can be derived from Blasius�s resistance formula (10.53). Equation (10.55b) gives

the shear stress relationship in pipe flow at a moderate Reynolds number, i.e Re £
105. Unlike very high Reynolds number flow, here laminar effect cannot be

neglected and the laminar sublayer brings about remarkable influence on the outer

zones.

It is worth mentioning that the friction factor for pipe flows, f, defined by

Eq. (10.53) is valid for a specific range of Reynolds number and for a particular

surface condition. The experimental results for a wide range of Reynolds numbers

and variety of pipe roughness can be summarized through Moody diagram which

has been shown in Chapter 11.

10.12 SKIN FRICTION COEFFICIENT FOR
BOUNDARY LAYERS ON A FLAT PLATE

Calculations of skin friction drag on lifting surface and on aerodynamic bodies are

somewhat similar to the analyses of skin friction on a flat plate. Because of zero

pressure gradient, the flat plate at zero incidence is easy to consider. In some of the

applications cited above, the pressure gradient will differ from zero but the skin

friction will not be dramatically different so long there is no separation.

We begin with the momentum integral equation for flat plate boundary layer

which is valid for both laminar and turbulent flow.

( )2 **d

d
U

x
d•  = wt

r
(10.57a)
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Invoking the definition of Cfx 
21

2

w
fxC

U

t

r •

Ê ˆ
Á ˜=Á ˜
Á ˜Ë ¯

, Eq. (10.57a) can be rewritten as

Cfx = 2
d

d

d **

x
(10.57b)

Due to the similarity in the laws of wall, correlations of previous section may be

applied to the flat plate by substituting d for R and U• for the time mean velocity at

the pipe centre. The rationale for using the turbulent pipe flow results in the situation

of a turbulent flow over a flat plate is to consider that the time mean velocity, at the

centre of the pipe is analogous to the free stream velocity, both the velocities being

defined at the edge of boundary layer thickness.

Finally, the velocity profile will be [following Eq. (10.54)]

u

U•
 =

1/7
y

d

È ˘
Í ˙Î ˚

for Re £ 105 (10.58)

If we evaluate momentum thickness with this profile, we shall obtain

 d** =

1/7 1/7

0

7
1 d

72

y y
y

d

d
d d

È ˘Ê ˆ Ê ˆ- =Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
Ú (10.59)

Consequently, the law of shear stress (in range of Re £ 105) for the flat plate is

found out by making use of the pipe flow expression of Eq. (10.55b) as

tw = 0.0225 r(u )
7/4

 

1/4

R

nÊ ˆ
Á ˜Ë ¯

or
t

r
w

u( )2
 = 0.0225 

1/4

Ru

nÈ ˘
Í ˙
Î ˚

Substituting U• for u  and d for R in the above expression, we get

or
t

r
w

U•
2

 = 0.0225 

1/4

U

n

d •

È ˘
Í ˙
Î ˚

(10.60)

Once again substituting Eqs (10.59) and (10.60) in Eq. (10.57), we obtain

7 d

72 dx

d
◊  =

1/4

0.0225
U

n

d •

È ˘
Í ˙
Î ˚

or d1/4 d

d

d

x
 =

1/4

0.2314
U

n

•

È ˘
Í ˙
Î ˚

or d 5/4 =

1/4

0.2892 x C
U

n

•

Ê ˆ
+Á ˜Ë ¯

(10.61)
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For simplicity, if we assume that the turbulent boundary layer grows from the

leading edge of the plate we shall be able to apply the boundary conditions x = 0,

d = 0 which will yield C = 0, and Eq. (10.61) will become

(d/x)5/4 = 0.2892 

1/4

xU

n

•

È ˘
Í ˙
Î ˚

or
d

x
 = 0.37 

1/5

xU

n

•

È ˘
Í ˙
Î ˚

or
d

x
 = 0.37 (Rex)

�1/5 (10.62)

where Rex = (U• x)/n

From Eqs (10.57b), (10.59) and (10.62), it is possible to calculate the average

skin friction coefficient on a flat plate as

C f = 0.072 (ReL)
�1/5

(10.63)

It can be shown that Eq. (10.63) predicts the average skin friction coefficient

correctly in the regime of Reynolds number below 2 ¥ 106.

This result is found to be in good agreement with the experimental results in the

range of Reynolds number between 5 ¥ 105 and 107 which is given by

C f = 0.074 (ReL)�1/5 (10.64)

Equation (10.64) is a widely accepted correlation for the average value of

turbulent skin friction coefficient on a flat plate.

With the help of Nikuradse�s experiments, Schlichting obtained the semi-

empirical equation for the average skin friction coefficient as

C f =
0 455

2 58

.

(log Re) .
(10.65)

Equation (10.65) was derived assuming the flat plate to be completely turbulent

over its entire length. In reality, a portion of it is laminar from the leading edge to

some downstream position. For this purpose, it was suggested to use

C f =
0 455

2 58

.

(log Re) Re.
- A

(10.66a)

where A has various values depending on the value of Reynolds number at which

the transition takes place. If the trasition is assumed to take place around a Reynolds

number of 5 ¥ 10
5
, the average skin friction correlation of Schlichling can be written

as

C f =
0 455 1700

2 58

.

(log Re) Re.
- (10.66b)

All that we have presented so far, are valid for a smooth plate. Schlichting used a

logarithmic expression for turbulent flow over a rough surface and derived

C f =

2.5

1.89 1.62 log
p

L

e

-
Ê ˆ

+Á ˜
Ë ¯

(10.67)
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Summary

∑ Turbulent motion is an irregular motion of fluid particles in a flow field.

However, for homogeneous and isotropic turbulence, the flow field can

be described by time-mean motions and fluctuating components. This is

called Reynolds decomposition of turbulent flow.

∑ In a three dimensional flow field, the velocity components and the

pressure can be expressed in terms of the time-averages and the

corresponding fluctuations. Substitution of these depenent variables in

the Navier�Stokes equations for incompressible flow and subsequent

time averaging yield the governing equations for the turbulent flow. The

mean velocity components of turbulent flow satisfy the same Navier-

Stokes equations for laminar flow. However, for the turbulent flow, the

laminar stresses are increased by additional stresses arising out of the

fluctuating velocity components. These additional stresses are known as

apparent stresses of turbulent flow or Reynolds stresses.

∑ In analogy with the laminar shear stresses, the turbulent shear stresses

can be expressed in terms of mean velocity gradients and a mixing

coefficient known as eddy viscosity. The eddy viscosity (nt) can be

expressed as nt = l2 d

d

u

y
,  where l is known as Prandtl�s mixing length.

∑ For a homogeneous and isotropic turbulence, most widely used value of

mixing length is given by l = c y. In this expression, y is the distance from

the wall and c is known as von Karman constant (ª 0.4). For high

Reynolds number, fully developed turbulent duct flows, the velocity

profile is given by

u

ut

 = A1 ln h + D1

where u  is the time-mean velocity at any h (= yut /n) and ut is the friction

velocity given by t rw / . The constants A1 and D1 are determined from

experiments which are 2.5 and 5.5, respectively, for smooth pipes. The

corresponding friction factor ( f) is given by

the expression 
1

f
 = 2.0 log10 (Re f ) � 0.8.

∑ However, for pipe roughness of varying degree, the following

recommendation of Colebrook and White works well

1

f
 = 10

18.7
1.74 2.0 log

Re

p

R f

eÈ ˘
- +Í ˙

Í ˙Î ˚
where ep/R is pipe roughness.

∑ In the range of Re £ 105, the velocity distribution in a smooth pipe is

given by
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u

ut

 =

1/7

8.74
y ut

n

Ê ˆ
Á ˜Ë ¯

∑ The friction factor in this regime is given by Blasius as

f = 0.3164 (Re)�0.25

∑ The growth of boundary layer for turbulent flow over a flat plate is

given by

d

x
 = 0.37 (Rex)

�1/5

∑ The expression for the average skin friction coefficient on the entire

plate of length L has been determined as

C f = 0.072 (ReL)
�1/5

∑ This result is found to be in good agreement with the experimental

results in the range of 5 ¥ 105 < Re < 107 which is given by

C f = 0.074 (ReL)�1/5

∑ For turbulent flow over a rough plate, the average skin friction

coefficient is given by

C f =

2.5

1.89 1.62 log
p

L

e

-
Ê ˆ

+Á ˜
Ë ¯
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Solved Examples

Example 10.1 Prove that

f xd

t T

t T

� /

/

2

2+

z  = f xd

t T

t T

� /

/

2

2+

z
where f is a constinuous function of x

Solution

f xd

t T

t T

� /

/

2

2+

z  =
1

2

2

2

2

T
t

t T

t T

t T

t T

� /

/

� /
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z z
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N
M
M
M
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Q
P
P
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f xd d
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Changing the order of integration, we can write

or f xd

t T

t T

� /

/

2

2+

z  =

t T

t T

t T

t T

T
t

� /

/

� /

/

2

2

2

2
1

+ +

z z
L

N
M
M
M

O

Q
P
P
P

f xd d

or f xd

t T

t T

� /

/

2

2+

z  = f xd

t T

t T

� /

/

2

2+

z
Example 10.2 The well known scientist Theodore von Karman suggested the

mixing length to be l = c 
d d

d d2

u y

u y

/

/ 2
. Using this relation drive the velocity profile near the

wall of a flat-plate boundary layer flow.

Solution We know

tt = m
∂

∂
m r

∂

∂t t

u

y
l

u

y
, where = 2

So, tt = r
∂

∂
l

u

y

2

2

Substituting von Karman�s suggestion, we get

tt =
r c r c2 2 2

2 2

2 4

2 2

( / ) ( / )

( / )

( / )

( / )

d d d d

d d

d d

d d
2 2

u y u y

u y

u y

u y
=

or
d

d

u

y

F
HG

I
KJ

4

 =
t

r c
t u

y

1
2 2

2
d

d

2F
HG

I
KJ

Assuming tt = tw and considering ut = t rw /

d

d

u

y

F
HG

I
KJ

4

 =
u u

y

t

c

2

2 2

2
d

d

2F
HG

I
KJ

Taking the square root, and applying physical argument that (du /dy) cannot be

imaginary, we obtain

d

d

u

y

F
HG

I
KJ

2

 = ± 
u u

y

t

c

d

d

2

2

F
HG

I
KJ

Let m = du /dy

then dm/dy = ± 
c

tu
 m

2

Integration yields,

� 
1

m
 = ± 

c

tu
 y + C1
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Using m fi • as y fi 0, we get C1 = 0

Then,
d

d

u

y
 =

u

y

t

c
, since 

d

d

u

y
≥ 0

Integrating, we obtain,

u  =
ut

c
 ln  y + C2

At some value y = y0 , u  = 0

Invoking this, C2 = �
ut

c
 ln y0

Thus,
u

ut

 =
1

0
c

◊ -ln ( )y y

Let us substitute y0 = b
n

tu
 order of which is same as viscous sublayer and b is an

arbitrary constant.

We shall get, thus,

u

ut

 =
1

c n
btln ln

u y
-F

H
I
K

or
u

ut

 = A1 ln h + D1

This is the universal velocity profile.

Example 10.3 Using Karman�s relation l = c 
d d

d d2

u y

u y

/

/ 2 , show that the universal

velocity distribution in a fully developed channel flow (Fig. 10.11) is given by

U u

u

max -

t

 = � ln
1

1
c

-
F
HG

I
KJ

+
L

N
M
M

O

Q
P
P

y

h

y

h

where, 2h is the height of the channel, y is the distance measured from the centre line of

the channel and c is an empirical constant. The pressure gradient in flow direction is �

(dp/dx).

Solution From Reynolds equation, we get

∂ t

∂

( )t

y
 =

∂

∂

p

x

or tt =
∂

∂

p

x
y C

F
HG

I
KJ + 1

At y = 0, tt = 0, that makes C1 = 0

Thus, tt =
∂

∂

p

x

F
HG

I
KJ  y
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and tw =
∂

∂

p

x

F
HG

I
KJ  h

we get
t

t
t

w

 =
y

h

From Karman�s relation, we can write

tt =
r c ∂ ∂

∂ ∂

2 4

2 2 2

u y

u y

/

/

b g
e j

Then tw =
h u y

y u y

r c ∂ ∂

∂ ∂

2 4

2 2 2

/

/

b g
e j

ut
2
 =

h u y

y u y

c ∂ ∂

∂ ∂

2 4

2 2 2

/

/

b g
e j

Thus,
∂

∂

2

2

u

y
 = ±

F
HG

I
KJ

c ∂

∂tu

h

y

u

y

2

Substituting for m = 
∂

∂

u

y
 and integrating,

� 
1

m
 = ± 2 2

c

tu
h y C+

at y = h, m Æ • and C2 = ± 2 
c

tu
h

Now, we know that 
∂

∂

u

y
 £ 0 for y > 0 and we write

du  = �
/

u

h

y

y h

t

c2 1

d

-z
Substituting for x = 1 � 

y

h
 and integrating,

u  =
u

Ct

c
x xln - + 3

or u  =
u y

h

y

h
Ct

c
ln �1 1 3-

F
HG

I
KJ

-
F
HG

I
KJ

L

N
M
M

O

Q
P
P

+

at y = 0, u  = Umax

C3 = Umax + 
ut

c

Finally,
U u

u

max -

t

 =
1

1
c

ln �-
F
HG

I
KJ

L

N
M
M
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Q
P
P

y

h

y

h
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Example 10.4 During flow over a flat plate the laminar boundary layer undergoes a

transition to turbulent boundary layer as the flow proceeds in the downstream. It is observed

that a parabolic laminar profile is finally changed into a 1/7th power law velocity profile in

the turbulent regime. Find out the ratio of turbulent and laminar boundary layers if the

momentum flux within the boundary layer remains constant.

Solution Assume width of the boundary layers be a. Then momentum flux is

A = z u r u a dy = r U•
2
 a d 

u

U•

F
HG

I
KJz

2

dh

where h = y/d

For laminar flow,
u

U•
 = 2 h � h2

Alam = r d h h h hU a• +z2 2 3 4

0

1

lam 4 � 4 d( )

= r d h h
h

U a• +
L
N
M

O
Q
P2 3 4

5

0

1
4

3 5
lam �

=
8

15

2r dU a• lam

For 1/7th power law turbulent profile,

u

U•
 = h1/7

Aturb = r d h hU a• z2 1 7 2

0

1

turb d( )/

= r d h hU a• z2 2 7

0

1

turb d/

= r d h r dU a U a• •
L
NM

O
QP

=2 9 7

0

1
27

9

7

9
turb turb

/

Comparing the momentum fluxes,

d

d
turb

lam

 =
72

105

It is to be noted that generally turbulent boundary layer grows faster than the laminar

boundary layer when a completely turbulent flow is considered from the leading edge.

However the present result is valid at transition for a constant momentum flow.

Example 10.5 Air (r = 1.23 kg/m
3
 and n = 1.5 ¥ 10

�5
 m

2
/s) is flowing over a flat

plate. The free stream speed is 15 m/s. At a distance of 1 m from the leading edge, calculate

d and tw for (a) completely laminar flow, and (b) completely turbulent flow for a 1/7th power

law velocity profile.
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Solution Applying the results developed in Chapters 9 and 10, we can write for

parabolic velocity profile (laminar flow)

d

x
 =

5 48

0

.

Rex
w

y

u

y
and t m

∂

∂
=

=

Rex =
U x

n
=

¥
¥

= ¥-
15 1

1 5 10
1 0 10

5
6

.
.

d =
5 48

1 0 10
1

6

.

. ¥
¥ m  = 5.48 mm

tw = m
∂

∂

m

d h
h h h

u

y

U

y =

•
== ◊ -

0

2
02

d

d
[ ]

tw =
2 1 23 1 5 10 15

0 00548
0 101

5¥ ¥ ¥ ¥
=

-. .

.
. N m2

For turbulent flow,

d

x
 =

0 37
1 5

.

(Re ) /
x

 (from Eq. 10.62)

or d =
0 370

1 0 106 1 5

.

( . ) /¥
 ¥ 1 m = 23.34 mm

or d/x = 0.0233

tw = 0.0225 rU
2
•

n

dU•

F
HG

I
KJ

1 4/

 (from Eq. 10.60)

tw = 0.0225 ¥ 1.23 ¥ (15)
2
 

n

dU x

x

•
◊

F
HG

I
KJ

1 4/

or tw = 0.0225 ¥ 1.23 ¥ (15)
2
 

1

1 0 10

1

0 02336

1 4

. .

/

¥
¥

L
NM

O
QP

= 0.502 N/m
2

Turbulent boundary layer has a larger shear stress than the laminar boundary layer.

Exercises

10.1 Only write down the option (true/false) or the choice (a, b, c or d) or the

appropriate conditions.

(i) For flow through pipes, due to the same pressure gradient, the turbulent

velocity profile will be more uniform than the laminar velocity profile.

(True/False)

(ii) If the mean velocity has a gradient, the turbulence is called isotropic.

(True/False)

(iii)
∂

∂

∂

∂

¢ + ¢u

x y

v

 = 0 for a turbulent flow signifies
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(a) conservation bulk momentum transport

(b)  increase in u¢ in positive x direction will be followed by increase in v¢
in negative y direction

(c) turbulence is anisotropic

(d) turbulence is isotropic

(vi) In a turbulent pipe flow the initiation of turbulence is usually observed at a

Reynolds number (based on pipe diameter) of

(a) 3.5 ¥ 105
(b) 2 ¥ 10

6

(c) between 2000 and 2700 (d) 5000

(v) A turbulent boundary is thought to be comprising of laminar sublayer, a

buffer layer and a turbulent zone. The velocity profile outside the laminar

sublayer is described by a

(a) parabolic profile (b) cubic profile

(c) linear profile (d) logarithmic profile

(vi) A laminar boundary layer is less likely to separate than a turbulent boundary

layer. (True/False)

10.2 Show that, with the help of both the mixing length hypothesis due to Prandtl and

mixing length law due to Karman (given in Example 10.2), the universal velocity

profile near the wall in case of a fully developed turbulent flow through a circular

pipe can be expressed as

U u

u

max -

t

 =
1

ln
R

R rk

Ê ˆ
Á ˜-Ë ¯

where r is the radius of the pipe and k is a constant.

10.3 Calculate power required to move a flat plate, 8 m long and 3 m wide in water

(r = 1000 kg/m3, m = 1.02 ¥ 10�3 kg/ms) at 8 m/s for the following cases:

(a) the boundary layer is turbulent over the entire surface of the plate

(b) the transition takes place at Re = 5 ¥ 10
5
.

Ans. (a) 12.536 ¥ 10
3
 W (b) 12.518 ¥ 10

3
 W

10.4 The transition Reynolds number in a pipe flow based on Uav is approximately

2300. How does this value can be extrapolated for the flow over a flat-plate if U•
in the flat-plate case is analogous to Umax in the pipe and d is analogous to pipe

radius R?

Ans. (Rex = 2.116 ¥ 105)

10.5 A plate 50 cm long and 2.5 m wide moves in water at a speed of 15 m/s. Estimate

its drag if the transition takes place at Re = 5 ¥ 105 for (a) a smooth wall, and (b)

a rough wall, ep = 0.1 mm. For water, r = 1000 kg/m3 and m = 1.02 ¥ 10�3 kg/ms.

Ans. ((a) 411.405 W (b) 806.168 W)

10.6 In turbulent flat-plate flow, the wall shear stress is given by the formula

tw = 0.0225 

1/4

2
U

U

n
r

d
•

•

È ˘
Í ˙
Î ˚

Two important equations concerning 1/7th power law velocity profiles are

Cfx = 2 
d

d

d **

x
and d** = 

7

72
d

From the above three equations, find the final expression for skin friction

coefficient (Cfx).

Ans. (Cfx = 0.0576 (Rex)
�1/5)
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10.7 Water flows at a rate of 0.05 m3/s in a 20 cm diameter cast iron pipe

(ep/D = 0.0007). What is the head (pressure) loss per kilometer of pipe? For

water, r = 1000 kg/m3, n = 1.0 ¥ 10�6 m2/s. Use Moody�s Chart.

Ans. (12.2 m)

10.8 Air (r = 1.2 kg/m3 and n = 1.5 ¥ 10�5 m2/s) flows at a rate of 2.5 m3/s in a 30 cm

¥  60 cm steel rectangular duct (ep = 4.6 ¥ 10�5 m). What is the pressure drop per

50 m of the duct? Use Moody�s chart.

Ans. (217 pa)

10.9 Water is being transported through a rough pipe line (ut ep /n = 100), 1 km long

with maximum velocity of 4 m/s. If the Reynolds number is 1.5 ¥ 106, find out

the diameter of the pipe and power required to maintain the flow. For water, r =

1000 kg/m3, n = 1.0 ¥ 10�6 m2/s.

Ans. (D = 0.454 m, P = 134.113 kW)

10.10 Modify the friction drag coefficient given by Eq. (10.64) as C f  = 0.074 (ReL)�1/5

� A/ReL. Let the flow be laminar up to a distance Xcr from the leading edge and

turbulent for Xcr £ x £ L. Consider the transition to occurs at Rex = 5 ¥ 105.

Ans. (A = 1700)

10.11 Air flows over a smooth flat plate at a velocity of 4.4 m/s. The density of air is

1.029 kg/m3 and the kinematic viscosity is 1.35 ¥ 10�5 m2/s. The length of the

plate is 12 m in the direction of flow. Calculate (a) the boundary layer thickness

at 16 cm and 12 m respectively, from the leading edge and (b) the drag coefficient

for the entire plate surface (one side) considering turbulent flow.

Ans. ((a) 3.5 ¥ 10�3 m, and 0.0207 m (b) C f  = 3.554 ¥ 10�3)

10.12 The velocity distribution for a laminar boundary layer flow is given by 
u

ue

 = sin

p

d2
◊
yF

H
I
K . The velocity at y = k is given by uk. It is assumed that the small

roughness of height k will not generate eddies to disturb the boundary layer if

u kk

n
 is less than about 5.0. Show that at a distance x from the leading edge, the

maximum permissible roughness height for the boundary layer to remain

undistributed is given by 
k

c
 = 

A x

c(Re)
/

/

3 4

1 4F
H

I
K  where, Re = 

u ce

n
, c is the total

length of the plate and A is a constant.



11.1 INTRODUCTION

Fully developed laminar and turbulent flows through pipes of uniform cross-

section have already been discussed in sections 8.4.3 and 10.11 respectively.

While a complete analytical solution for the equation of motion in case of a

laminar flow is available, even the advanced theories in the analyses of turbulent

flow depend at some point on experimentally derived information. Flow through

pipes is usually turbulent in practice. One of the most important items of

information that an hydraulic engineer needs is the power required to force fluid

at a certain steady rate through a pipe or pipe network system. This information is

furnished in practice through some routine solution of pipe flow problems with

the help of available empirical and theoretical information. This chapter deals

with the typical approaches to the solution of pipe flow problems in practice.

11.2 CONCEPT OF FRICTION FACTOR IN A
PIPE FLOW

The friction factor in the case of a pipe flow was already mentioned in Sec. 8.4.3.

A little elaborate discussion on the friction factor or friction coefficient is still

needed for the sake of its use in different practical problems. Skin friction coeffi-

cient for a fully developed flow through a closed duct is defined as

Cf =
t

r

w

V(1/2) 2
(11.1)

Applications of Viscous
Flows Through Pipes

11
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where, V is the average velocity of flow given by V = Q/A, Q and A are the

volume flow rate through the duct and the cross-sectional area of the duct

respectively. From a force balance of a typical fluid element (Fig. 11.1) in course

of its flow through a duct of constant cross-sectional area, we can write

tw =
D p A

S L

*

(11.2)

w

w

p* p* p*

L

Fig. 11.1 Force balance of a fluid element in the course of flow through a duct

where, tw is the shear stress at the wall and D p* is the piezometric pressure drop

over a length of L. A and S are respectively the cross-sectional area and wetted

perimeter of the duct. Substituting the expression (11.2) in Eq. (11.1), we have,

Cf =
D p A

S L V

*

( / )1 2 2r

=
1

4 1 2 2

D

L

p

V

h D *

( / )r
(11.3)

where, Dh = 4A/S and is known as the hydraulic diameter. In case of a circular

pipe, Dh = D, the diameter of the pipe. The coefficient Cf defined by Eqs (11.1)

or (11.3) is known as Fanning�s friction factor. To do away with the factor 1/4 in

the Eq. (11.3), Darcy defined a friction factor f as

f =
D

L

p

V

h D *

( / )1 2 2r
(11.4)

Comparison of Eqs (11.3) and (11.4) gives f = 4Cf. Equation (11.4) can be written

for a pipe flow as

f =
D

L

p

V

D *

( / )1 2 2r
(11.5)

Equation (11.5) is written in a different fashion for its use in the solution of pipe

flow problems in practice as

D p* = f
L

D
V

1

2

2r (11.6a)



Applications of Viscous Flows Through Pipes 435

or in terms of head loss (energy loss per unit weight)

hf =
D p

g

*

r
 = f

L

D
V g( / )2 2 (11.6b)

where, hf represents the loss of head due to friction over the length L of the pipe.

Equation (11.6b) is frequently used in practice to determine hf by making use of

theoretical or empirical information on f beforehand.

11.3 VARIATION OF FRICTION FACTOR

In case of a laminar fully developed flow through pipes, the friction factor f is

found from the exact solution of the Navier-Stokes equation as discussed in

Sec. 8.4.3. It is given by

f =
64

Re
(11.7)

It has also been discussed in Secs 10.10 and 10.11 that in case of a turbulent flow,

friction factor depends on both the Reynolds number and the roughness of pipe

surface. Sir Thomas E. Stanton (1865�1931) first started conducting experiments

on a number of pipes of various diameters and materials and with various fluids.

Afterwards, a German engineer Nikuradse carried out experiments on flows

through pipes in a very wide range of Reynolds number. A comprehensive

documentation of the experimental and theoretical investigations on the laws of

friction in pipe flows has been made in the form of a diagram, as shown in

Fig. 11.2, by L.F. Moody to show the variation of friction factor f with the

pertinent governing parameters, namely, the Reynolds number of flow and the

relative roughness e/D of the pipe. This diagram is known as Moody�s diagram

which is employed till today as the best means for predicting the values of f.

Roughness in commercial pipes is due to the protrusions at the surface which

are random both in size and spacing. However the commercial pipes are specified

by the average roughness which is the measure of some average height of the

protrusions. This equivalent average roughness is determined from the

experimental comparisons of flow rate and pressure drop in a commercial pipe

with that of a pipe with artificial roughness created by gluing grains of sand of

uniform size to the wall. Friction factor f in laminar flow, as given by Eq. (11.7),

is independent of the roughness of pipe wall, unless the roughness is so great that

the irregularities make an appreciable change in diameter of the pipe. Beyond a

Reynolds number of 2000, i.e. in turbulent region, the flow depends on the

roughness of the pipe. Figure 11.2 depicts that the friction factor f at a given

Reynolds number, in the turbulent region, depends on the relative roughness,

defined as the ratio of average roughness to the diameter of the pipe, rather than

the absolute roughness. For moderate degree of roughness, a pipe acts as a smooth

pipe up to a value of Re where the curve of f vs Re for the pipe coincides with that

of a smooth pipe. This zone is known as the smooth zone of flow. The region

where f vs Re curves (Fig. 11.2) become horizontal showing that f is independent
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of Re, is known as the rough zone and the intermediate region between the smooth

and rough zone is known as the transition zone. The position and extent of all

these zones depend on the relative roughness of the pipe. In the smooth zone of

flow, the laminar sublayer becomes thick, and hence, it covers appreciably the

irregular surface protrusions. Therefore all the curves for smooth flow coincide.

With increasing Reynolds number, the thickness of sublayer decreases and hence

the surface bumps protrude through it. The higher is the roughness of the pipe, the

lower is the value of Re at which the curve of f vs Re branches off from smooth

pipe curve (Fig. 11.2). In the rough zone of flow, the flow resistance is mainly due

to the form drag of those protrusions. The pressure drop in this region is

approximately proportional to the square of the average velocity of flow. Thus f

becomes independent of Re in this region.

In practice, there are three distinct classes of problems relating to flow through

a single pipe line as follows:

(i) The flow rate and pipe diameter are given. One has to determine the

loss of head over a given length of pipe and the corresponding power

required to maintain the flow over that length.

(ii) The loss of head over a given length of a pipe of known diameter is

given. One has to find out the flow rate and the transmission of power

accordingly.

(iii) The flow rate through a pipe and the corresponding loss of head over a

part of its length are given. One has to find out the diameter of the pipe.

In the first category of problems, the friction factor f is found out explicitly

from the given values of flow rate and pipe diameter. Therefore, the loss of head

hf and the power required P can be calculated by the sraightforward application

of Eq. (11.6b). A typical example of this category of problems is given below:

Example 1 Determine the loss of head in friction when water at 15 °C flows

through a 300 m long galvanized steel pipe of 150 mm diameter at 0.05 m3/s.

(kinematic viscosity of water at 15 °C = 1.14 ¥ 10�6 m2/s. Average surface

roughness for galvanized steel = 0.15 mm). Also calculate the pumping power

required to maintain the above flow.

Solution Average velocity of flow V = 
0 05

4 0 15 2

.

( / )( . )p
 = 2. 83 m/s

Therefore, Reynolds number Re = 
V D

n
=

¥
¥ -

2 83 0 15

114 10 6

. .

.
 = 3.72 ¥ 105

Relative roughness  e/D = 0.15/150 = 0.001

From Fig. 11.2, f = 0.02

Hence, using Eq. (11.6b)

hf = 0.02 
300

0 15

2 83)

2 9 81

2

.

( .

.¥
 = 16.33 m

Power required to maintain a flow at the rate of Q under a loss of head of hf is

given by
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P = r g hf Q

= 103 ¥ 9.81 ¥ 16.33 ¥ 0.05 W

= 8 kW

In the second and third categories of problems, both the flow rate and the pipe

diameter are not known before hand to determine the friction factor. Therefore the

problems in these categories cannot be solved by the straightforward application

of Eq. (11.6b), as shown in Example 1 above. A method of iteration is suggested

in this case where a guess is first made regarding the value of f. With the guess

value of f the flow rate or the pipe diameter, whichever is unknown in the

problem, is found out as a first approximation using the Eq. (11.6b). Then the

guess value of f is updated with the new value of Reynolds number found from the

approximate value of flow rate or pipe diameter as calculated. The problem is

repeated till a legitimate convergence in f is achieved. Examples of this typical

method dealing with the problems belonging to categories (ii) and (iii), as

mentioned above, are given below:

Example 2 Oil of kinematic viscosity 10�5 m2/s flows at a steady rate through

a cast iron pipe of 100 mm diameter and of 0.25 mm average surface roughness.

If the loss of head over a pipe length of 120 m is 5 m of the oil, what is the flow

rate through the pipe?

Solution Since the velocity is unknown, Re is unknown. Relative rougness e/D

= 0.25/100 = 0.0025.

A guess of the friction factor at this relative roughness is made from Fig. 11.2

as f = 0.026

Then Eq. (11.6b) gives a first trial

5 = 0.026 
120

0 10 2 9 81

2

. .

V

¥
when, V = 1.773 m/s

Then, Re =
1 773 0 10

10
1 773 10

5

4. .
.

¥
= ¥-

The value of Re, with e/D as 0.0025, gives f = 0.0316 (Fig. 11.2). The second

step of iteration involves a recalcualtion of V with f = 0.0316, as

5 = 0.0316 ¥ 
120

0 1 2 9 81

2

. .

V

¥
which gives V = 1.608 m/s

and Re =
1 608 0 10

10 5

. .¥
-  = 1.608 ¥ 104

The value of f at this Re (Fig. 11.2) becomes 0.0318. The relative change between

the two successive values of f is 0.63% which is insignificant. Hence the value of

V = 1.608 m/s is accepted as the final value.

Therefore, the flow rate Q = 1.608 ¥ (p/4) ¥ (0.10)2 = 0.013 m3/s
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Example 3 Determine the size of a galvanized iron pipe needed to transmit

water a distance of 180 m at 0.085 m
3
/s with a loss of head of 9 m. (Take

kinematic viscosity of water n = 1.14 ¥ 10
�6

 m
2
/s, and the average surface

roughness for galvanized iron = 0.15 mm).

Solution From (11.6b),

9 =

2

2

180 0.085 1

2 9.81/4
f

D Dp

Ê ˆ
Á ˜ ¥Ë ¯

which gives D5 = 0.012 f (11.8)

and Re =
0 085

4 114 102 6

.

( / ) .

D

Dp ¥ ¥ -

= 9.49 ¥ 104 
1

D
(11.9)

First, a guess in f is made as 0.024.

Then from Eq. (11.8) D = 0.196 m

and from Eq. (11.9) Re = 4.84 ¥ 105

The relative roughness e/D =
0 15

0 196

.

.
 ¥ 10

�3
 = 0.00076

With the values of Re and e/D, the updated value of f is found from Fig. 11.2 as

0.019. With this value of f as 0.019, a recalculation of D and Re from Eqs (11.8)

and (11.9) gives D = 0.187 m, Re = 5.07 ¥ 105. e/D becomes (0.15/0.187) ¥ 10�3

= 0.0008. The new values of Re and Œ/D predict f = 0.0192 from Fig. 11.2. This

value of f differs negligibly (by 1%) from the previous value of 0.019. Therefore

the calculated diameter D = 0.187 m is accepted as the final value.

11.4 CONCEPT OF FLOW POTENTIAL AND
FLOW RESISTANCE

Consider the flow of water from one reservoir to another as shown in Fig. 11.3.

The two reservoirs A and B are maintained with constant levels of water. The

difference  between these two levels is DH as shown in the figure. Therefore

water flows from reservoir A to reservoir B. Application of Bernoulli�s equation

between two points A and B at the free surfaces in the two reservoirs gives

patm

gr
 + HA + ZA =

patm

gr
 + HB + ZB + hf

or D H = (ZA + HA) � (ZB + HB) = hf (11.10)

where hf is the loss of head in the course of flow from A to B. Therefore,

Eq. (11.10) states that under steady state, the head causing flow DH becomes

equal to the total loss of head due to the flow. Considering the possible

hydrodynamic losses, the total loss of head hf can be written in terms of its

different components as
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patm

patm

B

L

V

D

A

H

HB

ZA

ZB

HA

Datum

Fig. 11.3 Flow of liquid from one reservoir to another

hf =
0 5

2

2. V

g
+ f

L

D

V

g

2

2
+

V

g

2

2

Loss of head at Friction loss in Exit loss to the

entry to the pipe pipe over its reservoir B

from reservoir A length L

= 
2

1.5
2

L V
f

D g

Ê ˆ+Á ˜Ë ¯
(11.11)

where, V is the average velocity of flow in the pipe. The velocity V in the above

equation is usually substituted in terms of flow rate Q, since, under steady state,

the flow rate remains constant throughout the pipe even if its diameter changes.

Therefore, we replace V in Eq. (11.11) as V  = 4Q/pD2 and finally get

hf =
2

2 4

1
8 1.5

L
f Q

D D gp

È ˘Ê ˆ+Í ˙Á ˜Ë ¯Î ˚

or hf = R Q2 (11.12)

where, R =
2 4

8
1.5

L
f

DD gp

È ˘Ê ˆ+Í ˙Á ˜Ë ¯Î ˚
(11.13)

The term R is defined as the flow resistance. In a situation where f becomes

independent of Re, the flow resistance expressed by Eq. (11.13) becomes simply

a function of the pipe geometry. With the help of Eq. (11.10), Eq. (11.12) can be

written as

D H = RQ2 (11.14)

DH in Eq. (11.14) is the head causing the flow and is defined as the difference in

flow potentials between A and B.
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This equation is comparable to the voltage-current relationship in a purely

resistive electrical circuit. In a purely resistive electrical circuit, DV = r i, where

DV is the voltage or electrical potential difference across a resistor whose

resistance is r and the electrical current flowing through it is i. The difference

however is that while the voltage drop in an electrical circuit is linearly

proportional to current, the difference in the flow potential in a fluid circuit is

proportional to the square of the flow rate. Therefore, the fluid flow system as

shown in Fig. 11.3 and described by Eq. (11.14) can be expressed by an

equivalent electrical network system as shown in Fig. 11.4.

Q
2

R

H

Fig. 11.4 Equivalent electrical network system for a simple
pipe flow problem shown in Fig. 11.3

11.5 FLOW THROUGH BRANCHED PIPES

In several practical situations, flow takes place under a given head through

different pipes jointed together either in series or in parallel or in a combination of

both of them.

11.5.1 Pipes in Series

If a pipeline is joined to one or more pipelines in continuation, these are said to

constitute pipes in series. A typical example of pipes in series is shown in

Fig. 11.5. Here three pipes A, B and C are joined in series.

A
B

QA

QA = QB = QC

VA

QB VC

VB

C

DA

LA

H1 H2

1 2DB

LB

DC

LC

QC

Fig. 11.5 Pipes in series

In this case, rate of flow Q remains same in each pipe. Hence,

QA = QB = QC = Q

If the total head available at Sec. 1 (at the inlet to pipe A) is H1 which is greater

than H2, the total head at Sec. 2 (at the exit of pipe C), then the flow takes place
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from 1 to 2 through the system of pipelines in series. Application of Bernoulli�s

equation between Secs 1 and 2 gives

H1 � H2 = hf

where, hf is the loss of head due to the flow from 1 to 2. Recognizing the minor

and major losses associated with the flow, hf can be written as

hf = fA 
L

D

V

g

A

A

A
2

2
+

( )V V

g

A B- 2

2
+ f

L

D

V

g
B

B

B

B
2

2
+

2 2
1

1
2

C

c

V

C g

Ê ˆ
-Á ˜Ë ¯

Friction loss Loss due to Friction loss Loss due to abrupt

in pipe A  enlargement at  in pipe B  contraction at entry

 entry to pipe B  to pipe C

+ fC 
L

D

V

g

C

C

c
2

2
(11.15)

Friction loss in Pipe C

The subscripts A, B and C refer to the quantities in pipe A, B and C

respectively. Cc is the coefficient of contraction.

The flow rate Q satisfies the equation

Q =
p p pD

V
D

V
D

VA
A

B
B

C
C

2 2 2

4 4 4
= = (11.16)

Velocities VA, VB and VC in Eq. (11.15) are substituted from Eq. (11.16), and we

get

hf =

22

2 5 2 2 4 2 5

8 8 1 8
1A A B

A B

A B A B

L D L
f f

g D g D D g Dp p p

È Ê ˆ
Í + - +Á ˜Í Ë ¯Î

R1 R2 R3

+ 

2

2

2 4 2 5

8 1 1 8
1 C

c
C C C

L
f Q

Cg D g Dp p

˘Ê ˆ
˙- +Á ˜Ë ¯ ˙̊

(11.17)

R4 R5

or hf = RQ2

where, R = R1 + R2 + R3 + R4 + R5 (11.18)

Equation (11.18) states that the total flow resistance is equal to the sum of the

different resistance components. Therefore, the above problem can be described

by an equivalent electrical network system as shown in Fig. 11.6.

Q
2

Q
2

H1

R1 R3R2 R4 R5

H2

Fig. 11.6 Equivalent electrical network system for flow through pipes in series
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11.5.2 Pipes in Parallel

When  two or more pipes are connected, as shown in Fig. 11.7, so that the flow

divides and subsequently comes together again, the pipes are said to be in parallel.

In this case (Fig. 11.7), equation of continuity gives

Q = QA + QB (11.19)

where, Q is the total flow rate and QA and QB are the flow rates through pipes A

and B respectively. Loss of head between the locations 1 and 2 can be expressed

by applying Bernoulli�s equation either through the path 1�A�2 or 1�B�2.

Therefore, we can write

QA DA

DB

Q Q

A

BQB

H1 1 2  H2

Fig. 11.7 Pipes in parallel

H1 � H2 = f
L

D

V

g

L

D g
f QA

A

A

A A

A

A A

2

2 5

2

2

8
=

p

and H1 � H2  = f
L

D

V

g

L

D g
f QB

B

B

B B

B

B B

2

2 5

2

2

8
=

p

Equating the above two expressions, we get

QA
2 =

R

R
QB

A
B
2 (11.20)

where, RA =
8
2 5

L

D g
fA

A

A
p

RB =
8
2 5

L

D g
fB

B

B
p

Equations (11.19) and (11.20) give

QA =
K

K
Q Q

K
QB

1

1

1+
=

+
, (11.21)

where, K = R RB A/ (11.22)
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The flow system can be described by an equivalent electrical circuit as shown in

Fig. 11.8.

RA

RBH1 H2

QA

QB
Q

2
Q

22

2

Fig. 11.8 Equivalent electrical network system for flow through pipes in parallel

From the above discussion on flow through branched pipes (pipes in series or

in parallel, or in combination of both), the following principles can be

summarized:

(i) The friction equation (Eq. 11.4) must be satisfied for each pipe.

(ii) There can be only one value of head at any point.

(iii) Algebraic sum of the flow rates at any junction must be zero, i.e. the

total mass flow rate towards the junction must be equal to the total

mass flow rate away from it.

(iv) Algebraic sum of the products of the flux (Q2) and the flow resistance

(the sense being determined by the direction of flow) must be zero in

any closed hydraulic circuit.

The principles (iii) and (iv) can be written analytically as

S Q = 0 at a node (Junction) (11.23)

S R|Q|Q = 0 in a loop (11.24)

While Eq. (11.23) implies the principle of continuity in a hydraulic circuit,

Eq. (11.24) is referred to as pressure equation of the circuit.

11.5.3 Pipe Network: Solution by Hardy Cross Method

The distribution of water supply in practice is often made through a pipe network

comprising a combination of pipes in series and parallel. The flow distribution in

a pipe network is determined from Eqs (11.23) and (11.24). The solution of

Eqs (11.23) and (11.24) for the purpose is based on an iterative technique with an

initial guess in Q. The method was proposed by Hardy-Cross and is described

below:

(a) The flow rates in each pipe are assumed so that the continuity

(Eq. 11.23) at each node is satisfied. Usually the flow rate is assumed

more for smaller values of resistance R and vice versa.

(b) If the assumed values of flow rates are not correct, the pressure

equation (Eq. (11.24) will not be satisfied. The flow rate is then altered

based on the error in satisfying the Eq. (11.24).

Let Q0 be the correct flow in a path whereas the assumed flow be Q. The error dQ

in flow is then defined as
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Q = Q0 + dQ (11.25)

Let h = R|Q|Q (11.26a)

and h¢ = R|Q0|Q0 (11.26b)

Then according to Eq. (11.24)

S h¢ = 0 in a loop (11.27a)

and S h = e in a loop (11.27b)

Where e is defined to be the error in pressure equation for a loop with the assumed

values of flow rate in each path.

From Eqs (11.27a) and (11.27b) we have

S (h � h¢) = e

or, S dh = e (11.28)

Where dh (= h � h¢) is the error in pressure equation for a path. Again from

Eq. (11.26a), we can write

d

d

h

Q
 = 2R|Q|

or, dh = 2R|Q|dQ (11.29)

Substituting the value of dh from Eq. (11.29) in Eq. (11.28) we have

S 2R|Q|dQ = e

Considering the error dQ to be the same for all hydraulic paths in a loop, we can

write

dQ =
e

R QS 2 | |
(11.30)

The Eq. (11.30) can be written with the help of Eqs (11.26a) and (11.27b) as

dQ =
S
S

R Q Q

R Q

| |

| |2
(11.31)

The error in flow rate dQ is determined from Eq. (11.31) and the flow rate in

each path of a loop is then altered according to Eq. (11.25). The procedure is

repeated unless a reasonable convergence is achieved to get the correct flow rates.

The Hardy-Cross method can also be applied to a hydraulic circuit containing

a pump or a turbine. The pressure equation (Eq. (11.24)) is only modified in

consideration of a head source (pump) or a head sink (turbine) as

� DH + SR|Q|Q = 0 (11.32)

where DH is the head delivered by a source in the circuit. Therefore, the value of

DH to be substituted in Eq. (11.32) will be positive for a pump and negative for a

turbine.

The application of Hardy-Cross method in a pipe network is illustrated in the

following example.

Example 4 A pipe network with two loops is shown in Fig. 11.9. Determine

the flow in each pipe for an inflow of 5 units at the junction A and outflows of 2.0
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units and 3.0 units at junctions D and C respectively. The resistance R for

different pipes are shown in the figure.

5.0 units

R = 200 units R = 300 units

2.0 units 3.0 units

R = 120 units

R = 150 units

R
= 4

00
un
its

A

D

B

C

Fig. 11.9 A pipe network

Solution Flow direction is assumed positive clockwise for both the loops ABD

and BCD. The iterative solutions based on Hardy-Cross method has been made.

The five trials have been made and the results of each trial is shown in Fig. 11.10;

for each trial, dQ is calculated from Eq. (11.31). After fifth trial, the error dQ is

so small that it changes the flow only in the third place of decimal. Hence the

calculation has not been continued beyond the fifth trial.

First trial

 Loop ABD Loop BCD

R |Q|Q 2R |Q| R |Q|Q 2R|Q|

120 ¥ 22 = 480 2 ¥ 120 ¥ 2 = 480 300 ¥ (1.2)2 = 432 2 ¥ 300 ¥ 1.2 = 720

400 ¥ (0.8)2 = 256 2 ¥ 400 ¥ 0.8 = 640 � 150 ¥ (1.8)2 = � 486 2 ¥ 150 ¥ 1.8 = 540

� 200 ¥ 32 = � 1800 2 ¥ 200 ¥ 3 = 1200 � 400 ¥ (0.8)2 = � 256 2 ¥ 400 ¥ 0.8 = 640

SR|Q|Q = � 1064 2SR|Q| = 2320 SR|Q|Q = � 310 2SR|Q| = 1900

dQ = 
S
S

R Q Q

R Q

| |

| |2
dQ = 

S
S

R Q Q

R Q

| |

| |2

= 
-1064

2320
= 

- 300

1900

= � 0.46 = � 0.16

Second trial:

 Loop ABD Loop BCD

R |Q|Q 2R |Q| R |Q|Q 2R|Q|

120 ¥ (2.46)2 = 726.19 2 ¥ 120 ¥ 2.46 = 590.40 300 ¥ (1.36)2 = 554.88 2 ¥ 300 ¥ 1.36 = 816

400 ¥ (1.10)2 = 484.00 2 ¥ 400 ¥ 1.10 = 880.00 � 150 ¥ (1.64)2 = � 403.44 2 ¥ 150 ¥ 1.64 = 492

�1200 ¥ (2.54)2 = �1290.32 2 ¥ 200 ¥ 2.54 = 1016.00 � 400 ¥ (1.10)2 = � 484.00 2 ¥ 400 ¥ 1.10 = 880

SR|Q|Q = � 50.13 2SR|Q| = 2486.40 SR|Q|Q = � 332.56 2SR|Q| = 2188

dQ = 
S

S
R Q Q

R Q

| |

| |2
dQ = 

S
S
R Q Q

R Q

| |

| |2

= 
- 50 13

2486 40

.

.
= 

- 332 56

2188

.

= � 0.02 = � 0.15
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R = 120
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R = 120

(a) First trial

(c) Third trial

(b) Second trial

(d) Fourth trial

(d) Fifth trial
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Fig. 11.10 Flow distribution in a pipe network after different trials

for the Example 4
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Third trial:

Loop ABD Loop BCD

R |Q|Q 2R |Q| R |Q|Q 2R|Q|

120 ¥ (2.48)2 = 738.05 2 ¥ 120 ¥ 2.48 = 595.20 300 ¥ (1.51)2 = 684.03 2 ¥ 300 ¥ 1.51 = 906.00

400 ¥ (0.97)2 = 376.36 2 ¥ 400 ¥ 0.97 = 776.00 � 150 ¥ (1.49)2 = � 333.01 2 ¥ 150 ¥ 1.49 = 447.00

�200 ¥ (2.52)2 = � 1270.08 2 ¥ 200 ¥ 2.52 = 1008.00 � 400 ¥ (0.97)2 = � 376.36 2 ¥ 400 ¥ 0.97 = 776.00

SR|Q|Q = � 155.67 2SR|Q| = 2379.20 SR|Q|Q = � 25.34 2SR|Q| = 2129

dQ = 
S
S

R Q Q

R Q

| |

| |2
dQ = 

S
S

R Q Q

R Q

| |

| |2

= 
-155 67

2379 67

.

.
= 

- 25 34

2129

.

= � 0.06 = � 0.01

Fourth trial:

Loop ABD Loop BCD

R |Q|Q 2R |Q| R |Q|Q 2R|Q|

120 ¥ (2.54)2 = 774.20 2 ¥ 120 ¥ 2.54 = 609.60 300 ¥ (1.52)2 = 693.12 2 ¥ 300 ¥ 1.52 = 912.00

400 ¥ (1.02)2 = 416.16 2 ¥ 400 ¥ 1.02 = 816.00 � 150 ¥ (1.48)2 = � 328.56 2 ¥ 150 ¥ 1.48 = 444.00

�200 ¥ (2.46)2 = � 1210.32 2 ¥ 200 ¥ 2.46 = 984.00 � 400 ¥ (1.02)2 = � 416.16 2 ¥ 400 ¥ 1.02 = 816.00

SR|Q|Q = � 19.96 2SR|Q| = 2409.60 SR|Q|Q = � 51.6 2SR|Q| = 2172

dQ =
S
S

R Q Q

R Q

| |

| |2
dQ = 

S
S

R Q Q

R Q

| |

| |2

=
-19 96

2409 60

.

.
= 

- 51 6

2172

.

= � 0.008 = � 0.02

Fifth trial:

Loop ABD Loop BCD

R |Q|Q 2R |Q| R |Q|Q 2R|Q|

120 ¥ (2.58)2 = 779.08 2 ¥ 120 ¥ 2.58 = 619.20 300 ¥ (1.54)2 = 711.48 2 ¥ 300 ¥ 1.54 = 924.00

400 ¥ (1.008)2 = 406.42 2 ¥ 400 ¥ 1.008 = 806.40 � 150 ¥ (1.46)2 = � 319.74 2 ¥ 150 ¥ 1.46 = 438.00

�200 ¥ (2.452)2 = �1202.46 2 ¥ 200 ¥ 2.452 = 980.80 � 400 ¥ (1.08)2 = � 406.42 2 ¥ 400 ¥ 1.008 = 806.40

SR|Q|Q = � 16.96 2SR|Q| = 2406.40 SR|Q|Q = � 14.68 2SR|Q| = 2168.40

dQ = 
S
S

R Q Q

R Q

| |

| |2
dQ = 

S
S

R Q Q

R Q

| |

| |2

= 
-16 96

2406 40

.

.
= 

-14 68

2168 40

.

.

= � 0.007 = � 0.007

11.6 FLOW THROUGH PIPES WITH SIDE TAPPINGS

In course of flow through a pipe, a fluid may be withdrawn from the side tappings

along the length of the pipe as shown in Fig. 11.11. If the side tappings are very
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closely spaced, the loss of head over a given length of pipe can be obtained as

shown below.

q

q

dx

QxQo

Vx

x

1

1

Fig. 11.11 Flow through pipes with side tappings

The rate of flow through the pipe, under this situation, decreases in the

direction of flow due to side tappings. Therefore, the average flow velocity at any

section of the pipe is not constant. The frictional head loss dhf over a small length

dx of the pipe at any section can be written as

dhf = f
dx

D

V

g

x
2

2
(11.33)

where, Vx is the average flow velocity at that section. If the side tappings are very

close together, Eq. (11.33) can be integrated to determine the loss of head due to

friction over a given length L of the pipe, provided, Vx can be replaced in terms of

the length of the pipe. Let us consider, for this purpose, a Section 1�1 at the

upstream just after which the side tappings are provided. If the tappings are

uniformly and closely spaced, so that the fluid is removed at a uniform rate q per

unit length of the pipe, then the volume flow rate Qx at a distance x from the inlet

Section 1�1 can be written as

Qx = Q0 � qx

wehre, Q0 is the volume flow rate at Sec. 1�1. Hence,

Vx =
4 4

1
2

0
2

0

Q

D

Q

D

q

Q
xx

p p
= −

F
HG

I
KJ

(11.34)

Substituting Vx from Eq. (11.34) into Eq. (11.33), we have,

dhf =

22
0

2 5
0

16
1 d

2

Q f q
x x

QD gp

Ê ˆ
-Á ˜Ë ¯

(11.35)

Therefore, the loss of head due to friction over a length L is given by

hf =
2 2

20

2 5 2
0 00

8 1
d 1

3

L

f

Q f L q q
h L L

QD g Qp

Ê ˆ
= - +Á ˜Ë ¯Ú (11.36a)
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Here, the friction factor f has been assumed to be constant over the length L

of the pipe. If the entire flow at Sec. 1-1 is drained off over the length L, then,

Q0 � qL = 0 or
q

Q0

 = 
1

L

Equation (11.36(a)), under this situation, becomes

hf = 
8

3

0
2

2 5

Q f L

D gp
 =

1

3

4 1

2

1

3

1

2

0
2

2

0
2f

L

D

Q

D g
f

L

D
V

gp

F
HG

I
KJ

= (11.36b)

where, V0 is the average velocity of flow at the inlet Section 1�1.

Equation (11.36b) indicates that the loss of head due to friction over a length L

of a pipe, where the entire flow is drained off uniformly from the side tappings,

becomes one third of that in a pipe of same length and diameter, but without side

tappings.

11.7 LOSSES IN PIPE BENDS

Fig. 11.12 Flow through pipe

bend

B

D

C

A

Bends are provided in pipes to change

the direction of flow through it. An

additional loss of head, apart from that

due to fluid friction, takes place in the

course of flow through pipe bend. The

fluid takes a curved path while flowing

through a pipe bend as shown in

Fig. 11.12. Whenever a fluid flows in a

curved path, there must be a force

acting radially inwards on the fluid to

provide the inward acceleration, known

a s centripetal acceleration. This

results in an increase in pressure near the outer wall of the bend, starting at some

point A (Fig. 11.12) and rising to a maximum at some point B. There is also a

reduction of pressure near the inner wall giving a minimum pressure at C and a

subsequent rise from C to D. Therefore between A and B and between C and D

the fluid experiences an adverse pressure gradient (the pressure increases in the

direction of flow). Fluid particles in this region, because of their close proximity

to the wall, have low velocities and cannot overcome the adverse pressure

gradient and this leads to a separation of flow from the boundary and consequent

losses of energy in generating local eddies. Losses also take place due to a

secondary flow in the radial plane of the pipe because of a change in pressure in

the radial depth of the pipe. This flow, in conjunction with the main flow, produces

a typical spiral motion of the fluid which persists even for a downstream distance

of fifty times the pipe diameter from the central plane of the bend. This spiral

motion of the fluid increases the local flow velocity and the velocity gradient at

the pipe wall, and therefore results in a greater frictional loss of head than that
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which occurs for the same rate of flow in a straight pipe of the same length and

diameter.

The additional loss of head (apart from that due to usual friction) in flow

through pipe bends is known as bend loss and is usually expressed as a fraction of

the velocity head as KV
2
/2g, where V is the average velocity of flow through the

pipe. The value of K depends on the total length of the bend and the ratio of radius

of curvature of the bend and pipe diameter R/D. The radius of curvature R is

usually taken as the radius of curvature of the centre line of the bend. The factor K

varies slightly with Reynolds number Re in the typical range of Re encountered in

practice, but increases with surface roughness.

11.8 LOSSES IN PIPE FITTINGS

An additional loss of head takes place in the course of flow through pipe fittings

like valves, couplings and so on. In general, more restricted the passage is, greater

is the loss of head. For turbulent flow, the losses are proportional to the square of

the average flow velocity and are usually expressed by KV2/2g, where V is the

average velocity of flow. The value of K depends on the exact shape of the flow

passages. Typical values of K are given in Table 11.1. Since the eddies generated

by fittings persist for some distance downstream, the total loss of head caused by

two fittings close together is not necessarily the same as the sum of the losses

which each alone would cause.

These losses are sometimes expressed in terms of an equivalent length of an

unobstructed straight pipe in which an equal loss would occur for the same

average flow velocity. That is

K 
V

g

2

2
 = f  

L

D

V

g

e
2

2
or

L

D

e  = 
K

f
(11.37)

where Le represents the equivalent length which is usually expressed in terms of

the pipe diameter as given by Eq. (11.37). Thus Le /D depends upon the friction

factor f, and therefore on the Reynolds number and roughness of the pipe.

Table 11.1 Approximate Loss Coefficients K for Commercial Pipe Fittings

Type and position of fittings Values of K

Globe valve, wide open 10

Gate valve, wide open 0.2

three-quarters open 1.15

half open 5.6

quarter open 24

Pump foot valve 1.5

90° elbow (threaded) 0.9

45° elbow (threaded) 0.4

Side outlet of T junction 1.8
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11.9 POWER TRANSMISSION BY A PIPELINE

In certain occasions, hydraulic power is transmitted by conveying fluid through a

pipeline. For an example, water from a reservoir at a high altitude is often

conveyed by a pipeline to an impulse hydraulic turbine in an hydroelectric power

station. The hydrostatic head of water is thus transmitted by a pipeline. Let us

analyse the efficiency of power transmission under the situation.

Reservoir

Pipeline

Turbine

H

Fig. 11.13 Transmission of hydraulic power by a pipeline to a turbine

The potential head of = H (the difference in the water level

water in the reservoir in the reservoir and the turbine center)

(Fig. 11.13)

The head available at

the pipe exit (or at the = HE = H � hf

turbine entry)

Where hf is the loss of head in the pipeline due to friction.

Assuming that the friction coefficient and other loss coefficients are constant,

we can write

hf = RQ2

Where Q is the volume flow rate and R is the hydraulic resistance of the pipeline.

Therefore, the power available P at the exit of the pipeline becomes

P = rgQHE = rgQ(H � RQ2)

For P to be maximum, for a given head H, dP/dQ should be zero. This gives

H � 3RQ2 = 0

or, RQ2 = hf =
H

3
(11.33)

[d2P/dQ2 is always negative which shows that P has only a maximum value (not

a minimum) with Q].

From Eq. (11.33), we can say that maximum power is obtained when one third

of the head available at the source (reservoir) is lost due to friction in the flow.
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The efficiency of power transmission hp is defined as

hp =
r

r

gQ H RQ

gQH

( )- 2

= 1 � 
RQ

H

2

(11.34)

The efficiency hp equals to unity for the trivial case of Q = 0. For flow to

commence RQ2 £ H and hence hp is a monotonically decreasing function of Q

from a maximum value of unity to zero. The zero value of hp corresponds to the

situation given by RQ2 = H (or, Q = H R/ ) when the head H available at the

reservoir is totally lost to overcome friction in the flow through the pipe. The

efficiency of transmission at the condition of maximum power delivered is

obtained by substituting RQ2 from Eq. (11.33) in Eq. (11.34) as

hat P = Pmax
 = 1 � 

H

H

/3

=
2

3

Therefore the maximum power transmission efficiency through a pipeline is 67%.

Summary

∑ The Fanning�s friction coefficient Cf for a flow through a closed

duct is defined in terms of shear stress at the wall as Cf = tw/(1/2) rV2,

and in terms of piezometric pressure drop Dp* over a length L, as

Cf = 
1

4
 (Dh/L) DP

*
/(1/2) rV

2
. Darcy�s friction factor f is defined as

f = 4 Cf.

∑ Loss of head in a pipe flow is expressed in terms of Darcy�s friction

factor f as hf = f (L/D) (V
2
/2g).

∑ Friction factor in case of a laminar fully developed flow through pipes

is found from the exact solution of Navier�Stokes equation and is

given by f = 64/Re. Friction factor in a turbulent flow depends on both

the Reynolds number of flow and the roughness at pipe surface.

∑ The head causing the flow is known as flow potential. Flows, in

practice, takes place through several pipes joined together either in

series or in parallel or in a combination of both of them. The flow

through a pipe network system has to overcome the pipe friction and

other flow resistances due to minor losses. The relationship between

the head causing the flow DH and the flow rate Q can be expressed as

DH = RQ
2
, where R is the flow resistance in the hydraulic path. This

equation is analogus to the voltage-current relationship in a purely

resistive electrical circuit. Therefore, the pipe flow system can be

described by an equivalent electrical network system.
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∑ The loss of head due to friction over a length L of a pipe, where the

entire flow is drained off uniformly from the side tappings, becomes

one third of that in a pipe of same length and diameter, but without side

tappings.

∑ An additional head loss over that due to pipe friction takes place in a

flow through pipe bends and pipe fittings like valves, couplings and so

on.

The hydraulic power can be transmitted by a pipeline. For a maximum

power transmission, the head lost due to friction in the flow equals to

one third of the head at source to be transmitted. The maximum power

trasmission efficiency is 2/3 (67%).

Solved Examples

Example 11.1 In a fully developed flow through a pipe of 300 mm diameter, the

shear stress at the wall is 50 Pa. The Darcy�s friction factor f is 0.05. What is the rate of

flow in case of (i) water flowing through the pipe and (ii) oil of specific gravity 0.70

flowing through the pipe.

Solution Darcy�s friction factor f is defined (see Eq. 11.1 to 11.4) as

f = 4
1

2

2
¥

t

r

w

V

where, tw is the wall shear stress and V is the average flow velocity.

Therefore, V = 8 t

r
w

f

and, flow rate Q = V ¥ p R
2
 (where R is the pipe radius)

(i) For water flowing through the pipe

Q = p ¥ (0.3)2 
8 50

10 0 053

¥
¥ .

= 0.8 m3/s

(ii) For oil flowing through the pipe

Q = p ¥ (0.3)2 
8 50

0 70 10 0 053

¥
¥ ¥. .

= 0.96 m
3
/s

Example 11.2 Three pipes of 400 mm, 200 mm and 300 mm diameters and having

lengths of 400 m, 200 m and 300 m respectively are connected in series to make a

compound pipe. The ends of this compound pipe are connected with two tanks whose

difference in water levels is 16 m as shown in Fig. 11.14a. If the friction factor f for

all the pipes is same and equal to 0.02, determine the diischarge through the compound

pipe neglecting first the minor losses and then including them. Draw the equivalent

electrical network system. (Take coefficient of contraction = 0.6.)
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Solution Application of Bernoulli�s equation between points A and B (Fig. 11.14a)

gives

patm

gr
 + 0 + 16 =

patm

gr
 + 0 + 0 + hf

or hf = 16 m (11.35)

Fig. 11.14 (a) Flow of water through pipes in series

(b) Equivalent electrical network system for
flow through pipes in series

Let Q be the volumetric rate of discharge through the pipelines. Then,

the velocity of flow in pipe I (Fig. 11.14a) =
4

0 4
2

Q

p ( . )
 = 7.96 Q

the velocity of flow in pipe II (Fig. 11.14a) =
4

0 2
2

Q

p ( . )
 = 31.83 Q

the velocity of flow in pipe III (Fig. 11.14a) =
4

0 3
2

Q

p ( . )
 = 14.15 Q

When minor losses are not considered, the loss of head hf in the course of flow from

A to B constitutes of the friction losses in three pipes only, and can be written as
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hf = 0 02
400

0 4

7 96

2
0 02

200

0 2

31 83

2

2 2

.
.

( . )
.

.

( . )
¥ ¥ + ¥ ¥

L

N
M

g g

+ 0 02
300

0 3

14 15

2

2
2.

.

( . )
¥ ¥

O

Q
P

g
Q

= 1301.46 Q
2

(11.36)

Equating Eq. (11.35) with Eq. (11.36) we have,

16 = 1301.46 Q
2

which gives Q = 0.111 m3/s

The equivalent electrical network system in this case is shown in Fig. 11.14b. The

resistances R1, R2, and R3 represent the flow resistances due to friction in pipes I, II and

III respectively, and are accordingly the first, second and third terms in R.H.S. of

Eq. (11.36).

When minor losses are considered,

hf = 16 = 0.5 ¥ 
( . )

.
.

( . )7 96

2
0 02

400

0 4

7 96

2

2 2Q

g

Q

g
+ ¥ ¥

+ 
1

0 6
1

31 83

2

2 2

.

( . )
-

F
HG

I
KJ

¥
Q

g
 + 0 2

200

0 2

31 83

2

2

.
.

( . )
¥ ¥

Q

g

+ 
( . . )31 83 14 15

2

2
Q Q

g

-
 + ¥ ¥0 2

300

0 3

14 15

2

2

.
.

( . )Q

g
 + 

( . )14 15

2

2
Q

g

= 1352 Q2 (11.37)

which gives Q = 0.109 m3/s

The equivalent electrical network system, under this situation, is shown in

Fig. 11.11b. The resistances R1, R2, R3, R4, R5, R6 and R7 represent the flow resistances

corresponding to losses of head due to entry at pipe I, friction in pipe I, contraction at

entrance to pipe II, friction in pipe II, expansion at entrance to pipe III, friction in pipe III,

exit from pipe III respectively.

Example 11.3 Two reservoirs 5.2 km apart are connected by a pipeline which

consists of a 225 mm diameter pipe for the first 1.6 km, sloping at 5.7 m per km. For the

remaining distance, the pipe diameter is 150 mm laid at a slope of 1.9 m per km. The

levels of water above the pipe openings are 6 m in the upper reservoir and 3.7 m in the

lower reservoir. Taking f = 0.024 for both the pipes and Cc = 0.6, calculate the rate of

discharge through the pipeline.

Solution The connections of pipelines are shown in Fig. 11.15. From the given

conditions of pipe slopings,

h1 = 5.7 ¥ 1.6 = 9.12 m

h2 = 1.9 ¥ 3.6 = 6.84 m

Therefore, the length of the first pipe L1 = ( . ) ( . )1 6 10 9 123 2 2¥ + m
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= 1.6 km

and, the length of the second pipe L2 = ( . ) ( . )3 6 10 6 843 2 2¥ + m

= 3.6 km

Applying Bernoulli�s equation between the points A and B taking the horizontal plane

through the pipe connection in the lower reservoir as datum (Fig. 11.15), we can write

patm

gr
 + 6 + 9.12 + 6.84 =

patm

gr
 + 3.7 + hf or hf = 18.26 m

Fig. 11.15 Flow of water from a upper reservoir to a lower one
through pipes in series

where, hf is the total loss of head in the flow. Considering all the losses in the path of

flow, we can write

hf = 0 5
2

1
2

.
V

g
+ 0 024

1 6 10

0 225 2

3
1
2

.
.

.
¥

¥ V

g
+

1

0 6
1

2

2

2
2

.
-

F
HG

I
KJ

V

g

Entrance loss Friction loss in pipe 1 Loss due to contraction

to pipe 1 at the entrance to pipe 2

+ 0.024 ¥ 
3 6 10

0 150 2

3
2
2.

.

¥ V

g
+

V

g

2
2

2

Friction loss in pipe 2 Exit loss from pipe 2 to

lower reservoir

or 18.26 = 171.17 
V

g

1
2

2
 + 577.44 

V

g

2
2

2
(11.38)

where, V1 and V2 are the average flow velocities in pipe I and II respectively. If Q is the

rate of discharge, then
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V1 =
4

0 225
25 152

Q
Q

p ( . )
.=

V2 =
4

0 15
56 592

Q
Q

p ( . )
.=

Inserting the expressions for V1 and V2 in Eq. (11.38), we have

18.26 =
17117 25 15

2 9 81

577 44 56 59

2 9 81

2 2
2. ( . )

.

. ( . )

.

¥
¥

+
¥
¥

L

N
M

O

Q
P Q

which gives Q = 0.0135 m
3
/s

Example 11.4 A pipeline of 0.6 m in diameter is 1.5 km long. In order to augment

the discharge, another parallel line of the same diameter is introduced in the second half

of the length. Neglecting minor losses, find the increase in discharge if f = 0.04. The head

at inlet is 30 m over that at the outlet.

Solution Initially, for the single pipe, the discharge is calculated from the relationship

DH = hf = f 
L

D

V

g

2

2

The average flow velocity V = 
4

2

Q

Dp

Hence, DH =
16

2
2 5

2

p ¥ ¥ g

f L

D
Q

(where DH is the difference in head between the inlet and outlet at the pipe and hf is the

frictional head loss).

or Q2 =
30 2 9 81 0 6

16 0 04 1500

2 5¥ ¥ ¥ ¥
¥ ¥

p . ( . )

.

or Q = 0.686 m3/s

1.5 km

0.75 km

A B C

D

Q Q

Q

Fig. 11.16 Flow through a compound pipe

Let Q¢ be the discharge through the first half of the pipe when another parallel line of

same diameter is introduced to the second half of the length as shown in Fig. 11.16. If Q¢1
and Q¢2 are the flow rates through the two branched pipes in parallel, then from

continuity,
Q¢ = Q¢1 + Q¢2
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We can write for the two parallel paths BC and BD

HB � HC =
0 04 0 75

0 6 2 9 81

4

0 6 2

2

1
2. .

. . ( . )

¥
¥ ¥

L
N
M

O
Q
P ¢

p
Q

HB � HD =
0 04 0 75

0 6 2 9 81

4

0 6 2

2

2
2. .

. . ( . )

¥
¥ ¥

L
N
M

O
Q
P ¢

p
Q

At outlet, HC = HD

Therefore, we get from the above two equations along with the equation of continuity

Q¢1 = Q¢2 = Q¢/2

Applying Bernoulli�s equation between A and C through the hydraulic path ABC, we

have

30 =
0 04 0 75 10

0 6 2 9 81

4

0 6

3

2

2

2. .

. . ( . )

¥ ¥
¥ ¥

L
N
M

O
Q
P ¢

p
Q

+
¥ ¥
¥ ¥

L
N
M

O
Q
P

¢F
HG

I
KJ

0 04 0 75 10

0 6 2 9 81

4

0 6 2

3

2

2 2
. .

. . ( . )p

Q

= 39.85 Q¢2

which gives Q¢ = 0.868 m3/s

Therefore, the increase in the rate of discharge by the new arrangement becomes

Q¢ � Q = 0.868 � 0.686 = 0.182 m3/s

which is 0.182 ¥ 100/0.686 = 26.4% of the initial rate of discharge.

Example 11.5 A pipeline conveys 8.33 litre per second of water from an overhead

tank to a building. The pipe is 2 km long and 0.15 m in diameter. It is desired to increase

the discharge by 30% by installing another pipeline in parallel with this over half the

length. Suggest a suitable diameter of the pipe to be installed. Is there any upper limit on

discharge augmentation by this arrangement? (Take friction factor f = 0.03.)

Solution The height H of the overhead tank above the building can be determined from

the conditions with a single pipe.

H = hf = 0 03
2000

0 15

4 0 00833

0 15

1

2 9 812

2

.
.

( . )

( . ) .

¥L
N
M

O
Q
P ¥p

 = 4.53 m

d = 0.15 m

A B C
Q1

Q2

D

hf1

hf2

1

2

l = 2 km

f = 0.03

0.00833 m3/s

Fig. 11.17 Flow through a compound pipe

In the new plan as shown in Fig. 11.17

hf = 4.53 = hfAB
 + hfBC

(11.39)
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again,

hfBC
 = hfBD

 =
f L

gd

Q

d

f L

gd

Q

d

1

1

1

1
2

2

2

2

2

2
2

2

2

4

2

4

p p( ) ( )

L
N
M

O
Q
P =

L
N
M

O
Q
P

Here, L1 = L2 = 1000 m

Therefore, (Q1/Q2)
2
 = (d1/d2)

5
(11.40)

hfAB
 =

0 03 1000

2 0 15

4

0 15
2

2
.

( . ) ( . )

¥ L
N
M

O
Q
P

g

Q

p

Therefore, Eq. (11.39) can be written as

0 03 1000 8

9 81 0 15

0 03 1000 8

9 81 0 15

2

2 5
1
2

2 5

.

. ( . )

.

. ( . )

¥ ¥
¥ ¥

+
¥ ¥ ¥
¥ ¥

Q Q

p p
 = 4.53 (11.41)

In this case, Q = 1.3 ¥ 0.00833 = 0.0108 m3/s

Then, from Eq. (11.41), we get

Q1
2 = 0.00014 � (0.0108)2

which gives Q1 = 0.0048 m3/s

From continuity, Q2 = 0.0108 � 0.0048 = 0.006 m
3
/s

From Eq. (11.40), we have d2 = 
0 006

0 0048
0 15

2 5
.

.
.

/F
HG

I
KJ

¥

= 0.164 m

It can be observed from Eq. (11.41) that

Q1
2
 = 0.00014 � Q

2

or Q
2
 = 0.00014 � Q1

2

Now Q will be maximum when &Q 1 will be minimum. For a physically possible situation,

the minimum value of &Q 1 will be zero. Therefore, the maximum value of Q will be

Qmax = 0 00014.  = 0.0118 m
3
/s

which is 41.6% more than the initial value. The case (Q1 = 0, Q = 0.0118 m3/s)

corresponds to a situation of an infinitely large branched pipe, i.e. d2 Æ •.

Example 11.6 Two points A and B at the ground level were supplied equal quantity

of water through branched pipes each 200 mm in diameter and 10 m long. Water supply

is made from an overhead tank whose water level above the ground is 12 m, and the

length and diameter of the pipe up to the junction point O are 14 m and 500 mm. The

point O is also on the ground level as shown in Fig. 11.18. The connection of a new pipe

of 200 mm diameter and 20 m length is to be made from O to C. The friction factor f for

all the pipes is 0.016. Valves in the pipelines A and B are provided for controlling the

flow rates.

Calculate, (i) the flow rates at A and B when the valves are fully open, before C was

connected, (ii) the flow rates at A, B and C with valves fully open, (iii) the valve resistance
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coefficients on pipelines A and B so as to obtain equal flow rates at A, B and C, and the

value of such flow rates (Neglect entry and bend losses).

200 mm , 20 m

200 mm , 10 m

500 mm , 14 m

O, A, B, C are at 
ground level

20
0 

m
m

 
, 1

0 
m

O

A

B

C

Fig. 11.18 Supply of water from an overhead tank through branched pipes

Solution (i) Let the flow rate through the main pipe from the overhead tank to the

junction O be Q and those through the pipes OA and OB are Q1 and Q2. From continuity,

Q1 + Q2 = Q

Since length, diameter and friction factor for the pipes OA and OB are equal,

Q1 = Q2 = Q/2

Velocity in the main pipe from the tank to the point O = 
4

0 5 2

Q

p ( . )

= 5.09 Q

Velocity in the pipe OA = 
2

0 2 2

Q

p ( . )
 = 15.92 Q

Applying Bernoulli�s equation between a point at the water level in the overhead tank

and the point A through the path connecting the main pipe and the pipe OA, we can write

12 = 0.016 
14

0 5

1

2
5 09 0 016

10

0 2

1

2
15 92

2 2

.
. .

.
.

g
Q

g
Qb g b g+

or 12 = 10.92 Q
2

which gives Q = 1.05 m
3
/s

Hence flow rates at A and B are

Q1 = Q2 =
1 05

2

.
 = 0.525 m

3
/s

(ii) Let Q be the flow rate in the main pipe and Q1, Q2, Q3 be the flow rates through the

pipes OA, OB and OC respectively.

From continuity, Q = Q1 + Q2 + Q3 (11.42)
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If the discharge pressures at A, B and C are equal, then the sum of the frictional loss

and the velocity head (or the exit loss) through each pipe OA, OB and OC must be equal.

Hence we can write

1 0 016
10

0 2

16

0 22 4 1
2+

F
HG

I
KJ

.
. ( . )p

Q  = 1 0 016
10

0 2

16

0 22 4 2
2+

F
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I
KJ

.
. ( . )p

Q

= 1 0 016
20

0 2

16

0 22 4 3
2+

F
HG

I
KJ

.
. ( . )p

Q

whch gives Q2 = Q1 (11.43)

and Q3 = 0.832 Q1 (11.44)

Therefore, from Eqs (11.42), (11.43) and (11.44) we get

Q = 2.832 Q1

Applying Bernoulli�s equation between a point at the water level in the overhead tank

and the point A through the hydraulic path connecting the main pipe and the pipe OA, we

can write,
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p p

= 46.06 Q1
2

which gives Q1 = 0.51 m
3
/s

and from (11.43) Q2 = 0.51 m
3
/s

from (11.44) Q3 = 0.42 m3/s

from (11.42) Q = 1.44 m3/s

(iii) Let Q1 be the flow rate through OA, OB and OC. Then the flow rate through the

main pipe Q = 3 Q1.

Since the diameter of the pipes OA, OB and OC are same, the average velocity of flow

through these pipes will also be the same. Let this velocity be V1.

Then, V1 =
4

0 2

1
2

Q

p ( . )
 = 31.83 Q1

Velocity through the main pipe V = 
4 3

0 5

1
2

¥ Q

p ( . )
 = 15.28 Q1

Let K be the valve resistance coefficient in pipe OA or OB.

Equating the total losses through two parallel hydraulic paths OC and any one of OA

and OB, we have

0 016
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31 83
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I
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= ¥ +
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I
KJ

K Q
g

Q

or 1.8 + K = 2.6

Hence K = 0.8

Applying Bernoulli�s equation between a point at the water level in the overhead tank

and the point A through the path connecting the main pipe and OA, we have
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12 = 0 016
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= 139.76 Q2
1

which gives Q1 = 0.293 m3/s

and hence, Q = 3 ¥ 0.293 = 0.879 m3/s

Example 11.7 Two reservoirs are connected through a 300 mm diameter pipe line,

1000 m long as shown in Fig. 11.19. At a point B, 300 m from the reservoir A, a valve is

inserted on a short branch line which discharges to atmosphere. The valve may be

regarded as  a rounded orifice 75 mm diameter, Cd = 0.65. If friction factor f for all the

pipes is 0.013, calculate the rate of discharge to the reservoir C when the valve at B is

fully opened. Estimate the leakage through the short pipe line at B.

Q1

Q2

Q B

C

A

300 m

2
8
 m

D = 300 mm

1000 m

Fig. 11.19 Flow of water between two reservoir through a pipe

with a bypass discharge to atmosphere

Solution Let the flow rate through the first 300 m of the pipe be Q and the flow rates

through the next 700 m of the pipe and the short branch line containing the valve be Q1

and Q2 respectively.

From continuity, Q = Q1 + Q2

Velocity in the pipe  BC =
4

0 3

1
2

Q

p ( . )
 = 14.15 Q1

Applying Bernoulli�s equation between points B and C,
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B - atm

r
 = 309.55 Q1

2 (11.45)

The discharge through the valve acting as an orifice can be written as
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Q2 = 0 65
0 075
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p pB atm (11.46)

Using Eqs (11.45) and (11.46), we have

Q2 = 0 65
0 075

4
2 309 55 9 81

2
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K ¥ ¥p  Q1

= 0.224 Q1

Hence, Q = 1.224 Q1

Applying Bernoulli�s equation between A and C through the path ABC, we have,
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= 526.16 Q2
1

which gives Q1 = 0.231 m
3
/s

Q2 = 0.224 ¥ 0.231 = 0.052 m3/s

Example 11.8 Two reservoirs open to atmosphere are connected by a pipe 800

metres long. The pipe goes over a hill whose height is 6 m above the level of water in the

upper reservoir. The pipe diameter is 300 mm and friction factor f = 0.032. The difference

in water levels in the two reservoirs is 12.5 m. If the absolute pressure of water anywhere

in the pipe is not allowed to fall below 1.2 m of water in order to prevent vapour

formation, calculate the length of pipe in the portion between the upper reservoir and the

hill sumit, and also the discharge through the pipe. Neglect bend losses. Draw the

equivalent electrical network system.

Solution Let the length of pipe upstream of C be L1 and that of the downstream be L2

(Fig. 11.20a).

It is given L1 + L2 = 800 m

Considering the entry, friction and exit losses,

the total loss from A to C = hf1 = 0 5
0 032

0 3 2

1
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L V

g
(11.47)

the total loss from C to B = hf2 = 1
0 032

0 3 2

2
2

+
F
HG

I
KJ

.

.

L V

g

Therefore,

the total loss from A to B = hf = 0 5
0 032 800
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= 86.83 
V

g

2

2

Applying Bernoulli�s equation between A and B, we have

D H = h f

A

C

6 m

h = 12.5 m

(a)

(b)

L1

B

L2

h = 12.5 m

R1

A BC

Q
2

R2

Fig. 11.20 (a) Flow of water between two reservoirs through a pipe

which goes over a height more than the water level in the
upper reservoir (b) Equivalent electrical network of pipe flow

problem of Example 11.8

or 12.5 = 86.83 
V

g

2

2

which gives V =
12 5 2 9 81

86 83

. .

.

¥ ¥
 = 1.68 m/s

Applying Bernoulli�s equation between A and C, we have
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6 (11.48)
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With the atmospheric pressure

patm = 760 mm of Hg

=
760 13 6

1000

¥ .
 = 10.34 m of water,

Equation (11.47) becomes

10.34 = 1 2 6
1 68

2 9 81

2

1.
( . )

.
+ +

¥
+ hf

which gives hf1 = 2.99 m

Using the value of hf1 = 2.99 m, and V = 1.68 m/s in Eq. (11.47) we get

(0.5 + 0.107 L1) 
( . )

.

1 68

2 9 81

2

¥
 = 2.99

or 0.5 + 0.107 L1 = 20.78

which gives L1 = 189.53 m

Rate of discharge through the pipe

Q =
p

4
 (0.3)

2
 ¥ 1.68 = 0.119 m

3
/s

The equivalent electrical network of the system is shown in Fig. 11.20b.

Example 11.9 A pump requires 50 kW to supply water at a rate of 0.2 m3/s to an

overhead tank. The pipe connecting the delivery end of the pump to the overhead tank is

120 m long and 300 mm in diameter and has a friction factor f = 0.02. A valve is inserted

in the delivery pipe to control the flow rate. The loss coefficient of the valve under wide

open condition is 5.0. Water is supplied from a reservoir 2 m below the horizontal level of

the pump though a suction pipe 6 m long and 400 mm in diameter having f = 0.03.

Determine the maximum height from the plane of the pump at which the overhead tank

can be placed under this situation. (Take the efficiency of the pump h = 80%).

Solution Let H be the height of the overhead tank from the pump

pd be the pressure at the delivery side of the pump

ps be the pressure at the suction side of the pump.

The average velocity of flow in the delivery pipe

Vd =
4 0 2

0 3
2

¥
¥

.

( . )p
 = 2.83 m/s

The average velocity of flow in the suction pipe

Vs =
4 0 2

0 4
2

¥
¥

.

( . )p
 = 1.59 m/s

Applying Bernoulli�s equation between a point at the inlet to the delivery pipe and a

point at the water surface in the overhead tank where the pressure is atmospheric, we

have,
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or
p p

g

d - atm

r
 = H + 5.31 (11.49)

Applying Bernoulli�s equation between a point on the water surface in the supply

reservoir and a point at the end of the suction pipe connecting the pump, we can write,

p
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g

satm -
r

 = 2.25 (11.50)

From Eqs (11.49) and (11.50), we get

p p

g

d s-
r

 = H + 7.56

Power delivered by the pump to water = 50 ¥ 0.8 = 40 kW

Therefore, we can write,

0.2 ¥ (pd � ps) = 40 ¥ 103

or  0.2 ¥ 103 ¥ 9.81 (H + 7.56) = 40 ¥ 103

which gives, H = 12.83 m

Example 11.10 Water flows through a pipe line of 300 mm in diameter and 20 km

long in a horizontal plane. At a point B, the pipe is branched off into two parallel pipes

each of 150 mm diameter and 3.5 km long as shown in Fig. 11.21. In one of the these

pipes, water is completely drained off from side tappings at a constant rate of 0.01 litre/s

per metre length of the pipe. Determine the flow rate and loss of head in the main pipe.

(Take friction factor for all the pipes as 0.012.)

300 mm 

3.5 km 

20 km

A Q B

D

C

150 m
m 

150 mm 

Fig. 11.21 Flow through a branched pipe with side tappings

Solution Let Q be the flow rate through the pipe AB and be divided at B into Q1 and Q2

for the pipes BC and BD respectively. Then from continuity,

Q = Q1 + Q2

Since the entire flow at inlet to the pipe BD is drained off through side tappings at a

constant rate of 0.01 litre per metre length,
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Q2 = 0.01 ¥ 3500 = 35 litre/s = 0.035 m
3
/s

Hence, average velocity at inlet to pipe BD

 =
4 0 035

0 15
2

¥ .

( . )p
 = 1.98 m/s

The loss of head in BD can be written with the help of Eq. (11.36b) as

hfBD =
1

3
0 012

3500

0 15

1 98

2 9 81

2

¥ ¥ ¥
¥

.
.

( . )

.
 = 18.65 m

Since B is a common point and C and D are at the same horizontal level and have the

same pressure which is equal to that of the atmosphere, the loss of head in the parallel

pipes BC and BD are equal.

Therefore, hfBC = hfBD = 18.65 m (11.51)

Average flow velocity in pipe BC = 
4

0 15

1
2

Q

p ( . )
 = 56.59 Q1

Equating hfBC given by Eq. (11.51) with the different losses taking place in pipe BC, we

can write

hfBC = 18.65 = 0.012 ¥ 
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g
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g
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= 45865.6 Q1
2

which gives Q1 = 0.02 m3/s

Hence, Q = 0.035 + 0.02 + 0.055 m3/s

Velocity in the main pipe AB =  
4 0 055

0 3
2

¥ .

( . )p
 = 0.78 m/s

The loss of head in the main pipe AB = 0 012
20000

0 30

0 78

2

2

.
.

( . )
¥

g
 = 24.81 m

Exercises

11.1 Under what circumstances is the friction factor for the flow through a pipe of

constant diameter

(a) inversely proportional to Reynolds number

(b) dependent on relative roughness only

(c) independent of relative roughness?

11.2 Choose the correct answer

(i) Friction loss through a pipe flow implies

(a) loss of energy due to the coefficient of friction between the material of

the pipe and the fluid

(b) loss due to dynamic coefficient of friction

(c) loss of flow rate in a pipe due to surface roughness

(d) loss of energy due to surface roughness

(e) loss of momentum due to surface roughness
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(ii) For pipes arranged in series

(a) the flow may be different in different pipes

(b) the head loss per unit length must be more in a smaller pipe

(c) the velocity must be the same in all pipes

(d) the head loss must be the same in all pipes

(e) The flow rate must be the same in all pipes

(iii) In parallel pipe system

(a) the pipes must be placed geometrically parallel to each other

(b) the flow must be the same in all pipes

(c) the head loss per unit length must be the same for all pipes

(d) the head loss across each of the parallel pipes must be the same

(e) none of the above is true

11.3 A 200 mm diameter pipe 200 m long discharges oil from a tank into atmosphere.

At the midpoint of the pipe length, the pressure is one and a half times the

atmospheric pressure. The specific gravity of the oil is 0.9. The friction factor

f = 0.03. Calculate

(a) the discharge rate of oil

(b) the pressure in the tank at the inlet of the pipe

 (Ans. 0.086 m3/s, 206.64 kN/m2)

11.4 Calculate the power required to pump sulphuric acid (viscosity 0.04 Ns/m2 and

specific gravity 1.83) at 45 litre/s from a supply tank through a glass-lined

150 mm diameter pipe, 18 m long, into a storage tank. The liquid level in the

storage tank is 6 m above from that in the supply tank. For laminar flow f = 64/Re

and for turbulent flow f = 0.0056 (1 + 100Re�1/3). Take all losses into account

(Ans. 6.12 kW)

11.5 The total head at inlet to a pipe network system is 20 m of water more than that at

its outlet: Compare the rate of discharge of water, if the network system consists

of (a) three pipes each 700 m long but of diameters 450 mm, 300 mm and

600 mm respectively in the order from inlet to outlet, (b) the same three pipes in

parallel. Assume friction factor for all the pipes to be 0.01, and the coefficient of

contraction Cc = 0.6.

(Ans. (a) 0.263 m3/s, (b) 2.73 m3/s]

11.6 Water flows from a tank A to a tank B. The difference in water level between the

two tanks is 7 m. The tanks are connected by 30.5 m of 300 mm diameter pipe

(f = 0.02)  followed by 30.5 m of 150 mm diameter pipe ( f = 0.015). There are

two 90° bends in each pipe (k = 0.50 each), the coefficient of contraction Cc =

0.75. If the junction of the two pipes is 5 m below the top water level, find the

pressure heads (in gauge) in 300 mm and 150 mm pipe at the junction.

(Ans. 4.76 m, 3.56 m)

11.7 There is a sudden increase in the diameter of a pipe from d1 to d2. What would be

the ratio d2 /d1 if the minor loss is independent of the direction of flow? Assume

coefficient of contraction Cc = 0.6.

Ans. 3d i
11.8 Show that the loss of head Dh due to friction for a laminar flow in a diffuser of

round cross-section and with a small taper angle a is given by

Dh = 64 mQ (d2
3
 � d

3
1)/[3 p r g d

3
1 d

3
2 tan (a/2)]
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where, Q is the rate of volumetric discharge, m and r are the viscosity and density

of the fluid respectively, d1 and d2 are the diameters of the diffuser at its inlet and

outlet respectively. Assume that Poiseuille�s law is valid for each element of the

diffuser length.

11.9 A single pipe 400 mm in diameter and 400 m long conveys water at the rate of

0.5 m3/s. Find the increase in discharge if another pipe of 200 m long and

200 mm in diameter is joined parallel with the existing pipe over half of its

length. Friction factor for all the pipes is same.

(Ans. 0.04 m3/s)

11.10 Three piping systems (I), (II) and (III) are studied (Fig. 11.22). Take  f = 0.012

for all the pipes. Indicate which one has the greatest and which one has the lowest

capacity under a given head.

(Greatest - II, lowest - III)

A

A

B

B

C

C

915 m, 406 mmf

915 m, 457 mmf

910 m, 406 mmf

1220 m, 254 mmf

1829 m, 305 mmf

(I)

(II) (III)

610 m, 356 mmf

Fig. 11.22 Different piping systems

11.11 A pump delivers water through two pipes laid in parallel. One pipe is 100 mm in

diameter and 45 m long and discharges to atmosphere at a level of 6 m above the

pump outlet. The other pipe, 150 mm in diameter and 60 m long, discharges to

atmosphere at a level of 8 m above the pump outlet. The two pipes are connected

to a junction immediately after the pump. The inlet to the pump is 600 mm below

the level of its outlet. Taking the datum level as that of the pump inlet, determine

the total head at the pump outlet if the flow rate through it is 0.037 m3/s. Take

friction factor for the pipes f = 0.032, and neglect losses at the pipe junction.

(Ans. 9.64 m)

11.12 Water flows out of a reservoir through a horizontal pipe 500 mm in diameter and

400 m long. The level of water in the reservoir is 10 m. Due to partial closure of

the pipe at the discharge end by an obstruction, the flow velocity through the pipe

is 3 m/s, and the pressure loss per unit length is 135 N/m3. Calculate the pipe

friction factor and the loss coefficient of the obstruction. Estimate the flow

velocity when the resistance is withdrawn completely. Neglect entry loss, but

account for the exit velocity head.

(Ans. f = 0.015, k = 8.8, 3.88 m/s)

11.13 A pipe system consists of three pipes connected in series (i) 300 m long, 150  mm

in diameter (ii) 150 m long, 100 mm in diameter (iii) 250 m long, 200 mm in

diameter. Determine the equivalent length of a 125 mm diameter pipe. (Take

friction factor f = 0.02, coefficient of contraction Cc = 0.6).

(Ans. 620.4 m)
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11.14 Two reservoirs are connected by three cast iron pipes in series. The length and

diameter of the pipes are L1 = 600 m, D1 = 0.3 m, L2 = 900 m, D2 = 0.4 m, L3 =

1500 m and D3 = 0.45 m respectively. Find out Reynolds number in each of the

pipes. The density and viscosity at water are 1000 kg/m3 and 1.1 ¥ 10�3 Ns/m2.

The friction factor in each pipe may be approximated as 0.02. The loss due to

expansion at the junctions between pipe-1 and pipe-2 as well as between pipe-2

and pipe-3 may be neglected. The discharge is 0.11 m
3
/s. Determine the

difference in elevation between the top surfaces of the reservoirs. Include the

entry loss to pipe-1 and exit loss between pipe-3 and the adjacent reservoir.

(Ans. 8.426 m)

11.15 A ring main consists of a quadrilateral network ABCD and a triangular network

ADE, the pipe AD being common to both networks. The resistances of the

pipelines are AB = 4, BC = 2, CD = 5, DA = 4, AE = 2, and DE = 3 units. Let a

flow of 10 units enter at E and flows of 3, 4, 3 units leave at B, C and D,

respectively. Determine the magnitudes of the pipe flows to an accuracy of 0.1

flow unit and indicate their directions on a sketch.

(Ans. EA = 5.32; ED = 4.68; AB = 3.82; BC = 0.82; DC = 3.18; AD = 1.50)



12.1 INTRODUCTION

The flow of a fluid is not always required to be bounded on all sides by solid

surfaces as discussed in the previous chapters. The flow of liquids, under certain

circumstances, may take place when the uppermost boundary is the free surface

of the liquid itself. Then the cross-section of flow is not determined entirely by the

solid boundaries. The controlling parameters of flow in this case are different

from those in the case of flow through closed ducts.

Flow with a free surface takes place in open channels. The free surface is

subjected only to atmospheric pressure which is constant. Therefore the flow is

caused by the weight of the fluid. It has been discussed earlier, in several

occasions, that a uniform flow through a closed duct takes place due to a drop in

the Piezometric pressure p* (= p + rgz). But for an open channel, a uniform flow

is caused by the second term rgz since, the static pressure remains constant in the

direction of flow. Natural streams, rivers, artificial canals, irrigation ditches and

flumes are the examples of open channels in practice. Pipe lines or tunnels which

are not completely full of liquid also have the essential features of open channels.

12.2 FLOW IN OPEN CHANNELS

12.2.1 Geometrical Terminologies

Depth of Flow h The depth of flow h at any Sec. (Fig. 12.1) is the vertical

distance of the bed of the channel from the free surface at that section.

Flows with

a Free Surface

12
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Top Breadth B It is the breadth of the channel section at the free surface

(Fig. 12.1).

The Water Area A The water area is the flow cross-sectional area perpendicular

to the direction of flow.

The Wetted Perimeter P The wetted perimeter P is the perimeter of the solid

boundary in contact with the liquid.

Hydraulic Radius Rh The hydraulic radius Rh is defined as Rh = A/P.

Flow AA

B

hh

Fig. 12.1 Geometry of a straight channel

12.2.2 Types of Flow in Open Channels

The flow in an open channel may be uniform or non-uniform, steady or unsteady,

laminar or turbulent.

Fig. 12.2 Uniform and non-uniform flows in open channel

Uniform Flow Uniform flow occurs in a channel when the cross-section and

depth of flow do not change along the length of the channel. This is characterised

by the liquid surface being parallel to the base of the channel (Fig. 12.2a).Under

this circumstance, the velocity of liquid does not change either in magnitude or

direction from one section to another in the part of the channel under

consideration.

Non-uniform Flow Flow in which the liquid surface is not parallel to the base of

the channel (Fig. 12.2b) is said to be non-uniform or varied, since the depth of

flow continuously varies from one section to another. This flow occurs in a
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channel which is shaped irregularly and also in a prismatic channel when depth

and velocity vary. The change in depth may be gradual or rapid according to

which a non-uniform flow is termed as a gradually varied flow (Fig. 12.2b) or a

rapidly varied flow (Fig. 12.2c). In a gradually varied flow, the degree of non-

uniformity is small and gradual. This may extend upstream to a considerable

distance due to some control structure, e.g., spillway of a dam, as shown in

Fig. 12.2b. In a rapidly varied flow, the change in depth and velocity is rather

abrupt or takes place within a short distance. Boundary frictional losses are small

and the head loss arises mainly from eddy formation. Such a flow is observed in a

hydraulic jump (Fig. 12.2c), which will be discussed later in Sec. 12.4 of this

chapter.

Steady or Unsteady Flow Flow is termed steady or unsteady according to

whether the velocity at a point in the channel is invarient with time or not.

Unsteady non-uniform flow is more common in practice. It occurs when a sluice

gate is operated in a dam or during a tidal bore. Non-uniform flow always occurs

in short channels because a certain length of channel is required for the

establishment of uniform flow. Analysis of unsteady non-uniform flows is more

complicated and difficult as compared to that of a steady uniform flow.

The flow is an open channel may be either laminar or turbulent depending

upon the relative magnitudes of viscous and inertia forces. Reynolds number Re,

as the criterion of transition from laminar to turbulent flow, is defined in this case

as Re = Vav l/n where Vav is the average flow velocity at any cross-section, l, the

characteristic length, is usually the hydraulic radius Rh (= A/P) and n is the

kinematic viscosity of the liquid. The lower critical value of Reynolds number

below which the flow is always laminar is 600. Flows in open channels are

usually turbulent in practice. Laminar flow may be observed in small grooves in

domestic draining boards set at a small slope.

Another important classification of an open channel flow is made on the basis

of whether a small disturbance in the flow can travel upstream or not. This

depends on flow velocity and is characterised by the magnitude of Froude number

Fr. When Froude number is less than 1.0, any small disturbance can travel against

the flow and affects the upstream condition and the flow is described as tranquil.

When Froude number is greater than 1, a small disturbance cannot propagate

upstream but is washed downstream, and the flow is said to be rapid. When

Froude number is exactly equal to 1.0, the flow is said to be critical. Further

discussion on tranquil and rapid flow has been made in Sec. 12.2.7. Therefore, a

complete description of flow consists of four characteristics. The flow may be:

(a) Either uniform or non-uniform

(b) Either steady or unsteady

(c) Either laminar or turbulent

(d) Either tranquil or rapid
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12.2.3 Application of Bernoulli�s Equation in Open Channels

Bernoulli�s equation can be well applied to flow through an open channel, since

no restriction to flow between boundaries of a particular kind was made in the

derivation of this equation. Bernoulli�s equation can be written for a steady

incompressible and inviscid flow as

p

g

V

gr
+

2

2
 + z = constant along a streamline

In case of a flow through a channel where the streamlines are sensible straight

and parallel or of a little curved in nature (for a gradually varied flow), there is

only a hydrostatic variation of pressure over the cross-section. This implies that

the pressure at any point in the stream is governed only by its depth below the free

surface. Consider the flow through a straight channel as shown in Fig. 12.3.

Pressure head (p/rg) at any point in the channel is therefore the vertical height of

the free surface from the point. Hence, the sum of pressure head (p/rg) and

potential head (z) at any point becomes equal to the height of the free surface, at

the cross-section containing the point, above a horizontal datum of reference.

(Fig. 12.3). Bernuolli�s equation is thus simplified to the following form:

The height of liquid surface above datum + (V
2
/2g) = constant (12.1)

Arbitrary horizontal datum

Free surface
Streamline
Bed of channel

p g/r

z

Fig. 12.3 Representation of pressure

head and potential head in

flow through a straight

channel

1.2
1.1

0.9

Fig. 12.4 Contours of constant

velocity in a rectangular

channel

provided that friction is negligible. If it is assumed that, at the section considered,

the velocity is same at all streamlines, then Eq. (12.1) is valid for the entire

stream. In practice, however, a uniform distribution of velocity over a section is

never achieved. The actual velocity distribution in an open channel is influenced

both by the solid boundaries and by the free surface. The irregularities in the

boundaries of an open channel are usually very large and greatly influence the

velocity distribution. A typical velocity distribution for a channel of rectangular

section is shown in Fig. 12.4. The maximum velocity usually occurs at a point

slightly below the free surface. The numeric in Fig. 12.4 represents the ratio of

actual velocity to the velocity at free surface. In practice, when liquid flows from

one section to another, friction converts a part of mechanical energy into

intermolecular energy and this part of energy is regarded to be lost. If this loss of

mechanical energy per unit weight between Secs 1 and 2 (Fig. 12.5) is hf, then for
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steady flow, Bernoulli�s equation (Eq. 12.1) between the two sections can be

written as

(Height of liquid surface + 
V

g

1
2

2
= (Height of liquid surface

above a horizontal above a horizontal + 
V

g

2
2

2
 + hf

datum of reference) datum of reference)

or h1 + z1 + 
V

g

1
2

2
 = h2 + z2 + 

V

g

2
2

2
 + hf (12.2a)

where V1 and V2 are the average flow velocities over the cross-sections at 1 and 2

respectively.

To take account of non-uniformity of velocity over the cross-section

Eq. (12.2a) may be written as

h1 + z1 + a1 
V

g

1
2

2
 = h2 + z2 + a2 

V

g

2
2

2
 + hf (12.2b)

Liquid surface

Streamline

Channel bed

Arbitrary horizontal datum

h1

h2

z1
z2

l

Fig. 12.5 Representation of total head at two sections in a channel flow

12.2.4 Energy Gradient and Hydraulic Gradient Lines

The concept of energy and hydraulic gradient lines is not restricted to channel

flows, rather it is referred, in general, to all kinds of flows through closed or open

ducts. The energy gradient line is the contour of the total mechanical energy per

unit weight or the total head (z + p/rg + V2/2g) at a cross-section, as ordinate

against the distance along the flow. The hydraulic gradient line is obtained by

plotting the sum of potential and pressure heads (z + p/rg) as ordinate against the

same abscissa (the distance along the flow). Thus, the hydraulic gradient line is

the contour of the free surface in an open channel. The hydraulic gradient line is

any kind of flow can be constructed by subtracting the velocity head V2/2g from

the energy gradient line at every section. The energy and hydraulic gradient lines

are illustrated in case of a pipe flow and flow through a straight channel in

Figs 12.6 and 12.7 respectively.

Figure 12.6 shows a flow of fluid through a pipe one end of which is attached

to a reservoir maintained with a constant height of water, and the other end to a

converging nozzle that increases the velocity at the expense of pressure. The

energy gradient line, as shown, fall gradually and continuously due to the

frictional head loss in the pipeline and the nozzle. The hydraulic gradient line
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always runs below the energy gradient line, difference being the velocity head at

the corresponding section. Since the velocity increases in the nozzle, the hydraulic

gradient line falls sharply in that region. Both the energy gradient and hydraulic

gradient lines meet on the reservoir surface where the velocity is negligible. If a

pump or a turbine is fitted in the system, the energy gradient line would show an

abrupt rise across the pump by an amount equal to the head developed, or an

abrupt fall across the turbine by an amount equal to the head extracted. The

hydraulic gradient line on the other hand, may show an abrupt rise or fall in a

pipeline, if there occurs a sudden enlargement or contraction of the pipe at any

section.

The energy gradient and hydraulic gradient lines in case of a channel flow are

shown in Fig. 12.7. The hydraulic gradient line in this situation is the liquid

surface itself. In case of an uniform flow, the depth of the bed h, and accordingly

the average velocity and kinetic energy correction factor remain the same along

the direction of flow in the channel (h1 = h2, V1 = V2, a1 = a2). As a consequence,

the energy gradient line, the hydraulic gradient line or the liquid surface and the

channel bed run parallel to each other. The loss of mechanical energy due to

friction per unit length of the bed becomes hf /l, where hf is the total loss of head

over the length of the channel l. The quantity hf /l is termed as the energy gradient

since it corresponds to the slope of the energy gradient line. For a uniform flow

through a channel, the energy gradient becomes equal to the geometrical gradient

of the channel bed and of the liquid surface.

hf
V g2/2

Energy gradient line

Free surface or hydraulic
gradient line

Channel bed

Arbitrary horizontal datum

p/ gr

z

1

2

Fig. 12.7 Energy gradient and hydraulic gradient lines in case of a

channel flow

Energy gradient line

Hydraulic gradient
line

2

V
2

V
2
2

2g

2g

Fig. 12.6 Energy gradient and hydraulic gradient lines in case of a pipe flow
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12.2.5 Steady Uniform Flow�the Chezy Equation

A relationship between the average flow velocity and pressure drop in a steady

uniform flow through a straight channel will now be developed. Let us consider a

control volume abcd in a straight channel as shown in Fig. 12.8. The hydrostatic

pressure forces at the surfaces ab and cd balance each other. The other forces

acting on the control volume are the component of weight along the flow direction

and the shear force at the solid boundary. Since the flow is steady and uniform,

the rate of momentum influx to the control volume at ab is equal to the rate of

momentum efflux from it at cd. Therefore, the net rate of momentum efflux from

the control volume is zero. Hence, applying the momentum theorem to the control

volume for a steady and uniform flow, we can write, as follows:

W

b
c

d
a

(1) (2)

Horizontal
Channel section

t0

90º - q

q

B

A

P

h

l

Fig. 12.8 Application of momentum theorem on a control volume

in a uniform flow through a straight channel

The net force acting on the control volume in the direction of flow = Net rate of

momentum efflux from the control volume = 0

or W sin q � t0 Pl = 0

or rg Al sin q = t0 Pl

or t0 = rg (A/P) sin q = rg Rh S (12.3)

where, t0 is the average shear stress at the solid boundary and S (= sin q) is the

slope of the bed of the channel. The hydraulic radius Rh = A/P as defined in

Sec. 12.2.1.

An expression to substitute t0 in terms of the average flow velocity V is needed.

This is done by expressing t0 in terms of of Fanning�s friction factor f as,

t0 =
1

2
 rV2 f (12.4)

Moreover, in almost all cases of practical interest, the Reynolds number of flow

in an open channel is sufficiently high where the shear stress at the boundary is

proportional to the square of the average velocity and hence f remains constant.

Combining Eq. (12.3) with (12.4), we have

V = (2g/f )1/2 (RhS)1/2

or V = c (RhS)1/2 (12.5)
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This is the well known Chezy equation. The parameter c = (2g/f )1/2 is called

the Chezy�s coefficient and has the dimension L1/2 T�1. Although the validity of

Eq. (12.5) has been experimentally verified for uniform flow only, it can also be

used with reasonable accuracy for gradually varied flows. An expression similar

to Eq. (12.3) can be derived for a non-uniform flow also.

Variation of Chezy Coefficient To determine the velocity �V� from Chezy

equation (Eq. 12.5), one has to know the value of c, the Chezy coefficient. In case

of flow through pipes, as described in Chapter 11, the friction factor f depends on

both the Reynolds number Re and on the relative roughness e/d of the solid

surface. Thus, Chezy�s coefficient may be expected to depend on both Re and e/

Rh (Rh is the hydraulic radius), and also on the shape and size of the channel. The

flow in open channels are fully turbulent in practice and hence the dependence of

c on Re is negligible, while e/Rh becomes the only influencing parameter for c.

The differences in the shape of the channel cross-section are taken care of by the

use of hydraulic radius Rh. It is found from experience that the shape of the cross-

section has little effect on the flow, if the shear stress t0 does not vary much

around the wetted perimeter. Therefore, the hydraulic radius Rh, itself represents

the characteristic parameter for the influence of both the shape and size of the

channel on flow through it.

Experiments were made by several workers to correlate the value of c with the

pertinent governing parameters. We shall mention here a few such important

empirical relation as follows:

c =

23
1 0 00155

1 23
0 00155

+ +

+ +
F
H

I
K

n S

S

n

Rh

.

.
(12.6)

[the Ganguillet-Kulter (G.K.) formula]

c = (1/n) R y
h [the Pavlovskii formula] (12.7)

where y = 2.5 n � 0.13 � 0.75 Rh(n � 0.1)

c = (1/n)Rh
1/6 [Manning�s formula] (12.8)

The parameter n in all these formulae is the roughness coefficient. The

hydraulic radius Rh has to be substituted in metre to get the value of c in m1/2 s

from the above relations. The simplest expression amongst all is the Eq. (12.8)

due to Manning. The values of roughness coefficient n for a straight channel are

shown in Table 12.1. It is interesting to note that all the formulae (Eq. 12.6, 12.7

and 12.8) give the same value for the Chezys coefficient c = 1/n at the unit

hydraulic radius Rh = 1. Inserting the value of c from Eq. (12.8) into Eq. (12.5),

the expression for velocity can be written as

V = (1/n) Rh
2/3

 S
1/2

(12.9)

This equation is widely used in calculating the flow velocity in an open channel

because of its simplest form and yet good agreement with experiments.
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Table 12.1 Values of Manning�s Roughness Coefficient n for Straight

Uniform Channels

Type of surface n

Smooth cement, planed timber 0.010

Rough timber, canvas 0.012

Cast iron, good ashler masonry, brick work 0.013

Vertified clay, asphalt, good concrete 0.015

Rubble masonry 0.018

Firm gravel 0.020

Canals and rivers in good condition 0.025

Canals and rivers in bad condition 0.035

12.2.6 Optimum Hydraulic Cross-Section

With the help of Manning�s equation [Eq. (12.9)] for the velocity of flow, we can

write the expression for volumetric discharge rate through an open channel as

Q =
A

n
 Rh

2/3 S1/2 = 
A S

n P

5 3 1 2

2 3

/ /

/
(12.10)

A typical application of the above equation in the design of artificial canal for

uniform flow is the economical proportioning of its cross-section. It may be

observed from Eq. (12.10) that the discharge rate Q is maximum when the wetted

perimeter is minimum for a given flow area. The most efficient cross-section,

from the hydraulic point of view, is semi-circular as it has the least wetted

perimeter among all sections with the same flow area. It is desirable to use such a

section not only for the sake of obtaining the maximum discharge for a given

cross-sectional area, but for the sake of economy due to the fact that a minimum

wetted perimeter requires a minimum of lining material. The cross-sectional area

of a channel under this condition is known as the optimum hydraulic cross-

section. The condition is characterised by the maximum value of the hydraulic

radius Rh = A/P. Although a semi-circular channel has the maximum hydraulic

mean radius and it is built from prefabricated sections, the semi-circular shape is

impractical for other forms of construction. Trapezoidal sections on the other

hand, are very popular. We should therefore find out the condition for maximum

hydraulic mean radius for a trapezoidal section as follows:

Let us consider a trapezoidal section, as shown in Fig. 12.9.

h

b

a
h cosec a

Fig. 12.9 Section of a trapezoidal channel

Cross-sectional area of flow A = bh + h2 cos a
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Wetted perimeter P = b + 2h cosec a

Since b = (A/h) � h cot a,

Rh =
A

P
 = 

A

A h h h( / ) cot cos- +a a2 ec
(12.11)

For a given value of A, the expression is a maximum when its denominator is a

minimum. This is found from the consideration

d

dh
 [(A/h) � h cot a + 2h cosec a] = 0

or � (A/h2) � cot a + 2 cosec a = 0

or A = h2 (2 cosec a � cot a) (12.12)

The second derivative, 2A/h3, is clearly positive and so the condition is indeed

for a minimum of the denominator of Eq. (12.11), and hence for a maximum of

Rh. Substituting the value of A from Eq. (12.12) in the expression for Rh, i.e. into

Eq. (12.11), we have

Rh =
h

h h h

2 2

2 2

( cos

( cos cot ) cot cos

ec cot )

ec ec

a a

a a a a

-

- - +

=
h

h

h2 2

2 2 2

( cos cot )

( cot )

ec

cosec

a a

a a

-

-
= (12.13)

In other words, for maximum efficiency, a trapezoidal channel should be so

proportioned that its hydraulic mean radius is half the central depth of flow. Since

a rectangle is a special case of a trapezium (with a = 90°), the optimum

proportions for a rectangular section is given by Rh = h/2, and from Eq. (12.12),

A = 2h2 which finally gives that the width of the rectangle B = 2h2/h = 2h.

If, instead of depth of flow, the side slope is varied to give the optimum cross-

section, i.e. maximum Rh, then we can find the required condition as

d

da
 [(A/h) � h cot a + 2h cosec a] = 0

or h cosec a (cosec a � 2 cot a) = 0

Since h π 0,

cosec a � 2 cot a = 0

or cos a = 1/2

which gives a = 60° (12.14)

This concludes that, for a given depth of flow the optimum trapezoidal section,

given by maximum Rh, is half of a regular hexagon.

12.2.7 Propagation of Waves by Small Disturbances

in Open Channels

Any temporary disturbance of a free surface produces waves; for examples, a

stone dropped into a pond, removal or insertion of an obstruction like sudden
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opening or closing of a sluice gate in a river causes waves which are propagated

upstream and downstream of the source of disturbances. The depth of water in a

channel is considered to be shallow when it is small as compared to the length of

a wave on its surface. Again, a wave is termed as a positive wave when it results

in an increase in the depth of stream, and is termed as a negative one if it causes a

decrease in the depth.

We consider an open channel with a rectangular cross-section and a horizontal

base. The slope of the bed is assumed to be nearly zero so that the weight of the

liquid has a negligible component in the direction of flow. Let the uniform flow in

the channel, represented by velocity V1 and depth h1, (Fig. 12.10a) be disturbed

by a small disturbance, for example, the closing of a gate downstream, so that a

positive wave travels upstream with a constant velocity C (relative to the bed of

the channel). Due to the disturbance, the changes in downstream conditions of the

flow are considered in a sense that a short distance downstream of the wave the

flow has again become uniform with altered values of velocity and depth as V2

and h2 respectively (Fig. 12.10a).

V1 V2

V C1 +

y

x

V C2 +

C

h1 h1

F1 F2

a

1 2
(a) (b)

b

h2 h2

Control
volume

Fig. 12.10 (a) Propagation of a wave in an open channel (b) A typical

control volume in the analysis of propagation velocity of a

surface wave in a channel flow

The change in velocity from V1 to V2 caused by the passage of the wave is the

result of a net force acting on the fluid. The magnitude of this force can be found

out by applying the momentum theorem to a control volume enclosing the wave.

Such a control volume 1ab21 shown in Fig. 12.10b is taken for our analysis. In

order of make the flow steady, the frame of reference is chosen where the surge

wave is stationary while the fluid upstream and downstream the wave move

moves with velocity V1 + C and V2 + C respectively. In other words, we can say,

that the coordinate axes for the analysis, are considered to be fixed with the

moving wave. The net force acting on the control volume in the x direction is due

to the forces acting on the surfaces 1a and 2b. The forces acting on these surfaces

(Fig. 12.10b) are the hydrostatic pressure forces and can be written as

F1 =
r gh1

2

2
 and F2 = 

r gh2
2

2

Here the width of the channel has been considered to be unity.
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Therefore, the net force in the x direction on the control volume

=
r rgh gh1

2
2
2

2

-
(12.15)

The net rate of x-momentum efflux from the control volume

= rQ (V2 � V1) (12.16)

where Q is the rat of volumetric discharge

From continuity,

Q = (V1 + C)h1 = (V2 + C)h2 (12.17a)

which gives V2 = (V1 + C) 
h

h

1

2

 � C (12.17b)

For a steady flow, the momentum theorem as applied to the control volume 1ab2

gives

rg

2
 (h2

1 � h2
2) = rQ (V2 � V1) (12.18)

Substituting for Q and V2 from Eqs (12.17a) and (12.17b) respectively into

Eq. (12.18) we get

rg

2
 (h2

1 � h2
2) = r (V1 + C)h1 ( )V C

h

h
C V1

1

2
1+ - -
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= r (V1 + C)2 
h

h

1

2

 (h1 � h2)

which gives, V1 + C = (gh2)
1/2 

1

2

2 1

1 2
+L

NM
O
QP

h h/
/

(12.19)

If the height of the wave is considered to be small, which is usually true for

waves created by small disturbances, then, h2 = h1 = h, and Eq. (12.19) can be

written as

V1 + C = (gh)1/2 (12.20)

This equation implies that the velocity of the wave relative to the undisturbed

liquid is (gh)1/2. Though this derivation applies only to waves propagated in

rectangular channels, it can be shown that, for channels with different types of

cross-section, the velocity of propagation of a small wave is (gh )1/2 relative to

the undisturbed liquid, where h  is the mean depth given by

h  =
Area of cross-section

Width of the liquid surface
 = 

A

B
(12.21)

Equation (12.20) gives the velocity of a wave whose height is small. A larger

wave will be propagated with a higher velocity than that given by the Eq. (12.20).

Moreover, the height of the wave does not remain constant over an appreciable

distance due to frictional effects. In the derivation of Eq. (12.20), the effect of

friction has been assumed to be negligible for the control volume 1ab2
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(Fig. 12.10b), since the distance between the sections 1a and 2b are considered to

be very small. The present analysis is, however, valid for a shallow depth.

12.2.8 Specific Energy and Alternative Depth of Flow

Definition of Specific Energy In the definition of total energy of a flowing fluid,

a reference horizontal datum is chosen arbitrarily so that the potential energy of a

fluid element is prescribed from the datum. In a channel flow, the sum of the

pressure head, p/rg and the potential head, z, (measured from any horizontal

datum) is equivalent to the height of free surface above the datum, and the total

energy is therefore equivalent to this height plus the height corresponding to

velocity head V 2/2g as already explained in Fig. 12.7 in Sec. 12.2.4. Specific

energy of a fluid element at any point in a channel flow is defined as its total

energy per unit weight where the component potential energy is measured from

the base or bed of the channel as the datum. Therefore, specific energy Es at any

section of the channel if given by

Es = h + 
V

g

av
2

2
(12.22)

where Vav represents the average flow velocity. If A and Q are the cross-sectional

area and rate of volumetric flow respectively at the section considered, then

Vav = Q/A (12.23a)

Again, if the width of the channel at that section is b, then

A = b h (12.23b)

With the help of Eqs (12.23a) and (12.23b), Eq. (12.22) can be written as

Es = h + 
q

g h

2

22

1F
HG

I
KJ

(12.24)

where q = Q/b

Equation (12.24) relates the specific energy with the depth of flow and the

discharge per unit width. Out of the three variables Es, q and h, any two can vary

independently and the third one becomes dependent by Eq. (12.24). Our particular

interest centres around the instances in which q is constant while h and Es vary,

i.e. how the specific energy varies with depth of flow for a given rate of discharge.

If Es is plotted against h for a constant value of q, we get a curve, as shown in

Fig. 12.11, which is known as the specific energy diagram. At small values of h,

the second term in the right hand side of Eq. (12.24) becomes predominant over

the first one and then Es becomes an inverse function of h with Es Æ µ as h Æ 0.

Therefore, this part of the specific energy curve becomes asymptotic to the Es

axis. Conversely, as h increases, the velocity becomes smaller and the second

term (q2/2g) 
1
2h

 becomes insignificant compared to the first term h an therefore

Es varies directly with h in this region and finally becomes asymptotic to the line

Es = h. Between these two extremes, there is clearly a minimum value of Es. The
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depth of flow at which the minimum value of Es occurs is known as critical depth

hc. The value of Esmin
 and hc can be found out as follows:

For Es to be minimum, we can write from Eq. (12.24)

∂ Es/∂ h = 1 + 
q

g

2

2
 (�2/h3) = 0

which gives h = (q2/g)1/3

This value of h is the critical depth hc and hence we can write

hc = (q2/g)1/3 (12.25)

The corresponding minimum value of Es is obtained by substituting q in terms of

hc from Eq. (12.25) into Eq. (12.24) as

Esmin
 = hc + (h3

c/2h2
c) = 

3

2
 hc (12.26)

We now examine another interesting case where h and q vary while specific

energy Es is kept constant. Again, with the help of Eq. (12.24), the curve of h

against q for constant Es is drawn as shown in Fig. 12.12. Here we observe that q

reaches a maximum at a given value of h which indicates a maximum discharge

for a given specific energy. To obtain this condition, we first write the Eq. (12.24)

in a form

q2 = 2gh2 (Es � h)

For maximum discharge,

2q 
∂

∂

q

h
 = 2g(2Es h � 3h2) = 0

which gives h =
2

3
 Es (12.27)

From Eqs (12.26) and (12.27) we conclude that, at the critical depth, either the

discharge is maximum for a given specific energy or the specific energy is

minimum for a given discharge.

Critical Velocity The velocity of flow at the critical depth is known as critical

velocity in case of a channel flow. Since the velocity of flow V = Q/bh = q/h, the

critical velocity Vc may be determined from Eq. (12.25) as

Vc = q/hc = 
( ) /gh

h

c

c

3 1 2

 = (ghc)
1/2 (12.28)

Though the expressions for critical depth and critical velocity have been

derived here for a rectangular channel, the same results can be obtained for a

channel with any shape of section provided the mean depth h  as defined by

Eq. (12.21) is used in place of depth of flow h for a rectangular cross-section.

Physical Implication of Critical Velocity and Definition of Tranquil and Rapid

Flow The most important outcome of critical velocity is that it separates two

distinct types of flow�one in which the velocity is less than the critical value,
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and the other in which the velocity exceeds the critical value. We find that for

each value of Es other than the minimum (Fig. 12.11), and for each value of q

other than the maximum (Fig. 12.12), there are two possible values of h, one

greater and one less than hc (although 12.24) is a cubic in h, the third root is

always negative and is therefore physically meaningless). These two values of h

are known as alternative depths. When h < hc, the flow velocity V is greater than

Vc and when h > hc, V is less than Vc. Before examining the physical significance

of these two regimes of flow given by V > Vc and V < Vc, we first find the physical

implication of the critical velocity. We have  shown in Sec. 12.2.7 that the

velocity of propagation (relative to the undisturbed liquid) of a small surface

q = Constant

Tranquil

Rapid

hc

45∞

Es

h

Esmin

E = hs

Fig. 12.11 Variation of specific energy with the depth of flow for a given

discharge

Tranquil

Rapid

Es = Constant

hc

h

q

qmax

Fig. 12.12 Variation of discharge with depth of flow for a given specific

energy
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wave in a shallow liquid equals to (gh)1/2, where h is the mean depth of flow in

case of varying cross-section, or simply the depth of flow, in case of a rectangular

cross-section throughout the channel. A surface wave can be caused by any small

disturbance to the flow. Hence the surface wave can be considered as a

messenger, propagated against the flow, for the liquid upstream to be informed

about the disturbances downstream so that it can change its behaviour

accordingly. The absolute velocity of surface wave propagating upstream will be

(gh1/2 � V), which is positive when V < gh1/2 and negative when V > gh1/2. This

implies physically that when the flow velocity is less than the critical velocity, the

surface wave will have the opportunity to reach the upstream and to influence the

upstream liquid by the disturbances downstream. On the other hand, when the

flow velocity is greater than the critical velocity, surface wave cannot propagate

upstream and hence the information about events downstream is never conveyed

to upstream. When the flow velocity is equal to the critical velocity, a small wave

which tries to travel upstream cannot progress, since (gh1/2 � V) becomes zero.

The wave under this situation is known as standing wave.

These three regimes of flow can be characterised by a dimensionless parameter

defined as the ratio of flow velocity to the critical velocity V/(gh)1/2. We have

already seen in Section 6.2 that this dimensionless term is known as Froude

number Fr, where Fr = V/(gh)1/2.

Flow in which the velocity V is less than the critical velocity (gh)1/2, i.e. when

Froude number Fr < 1, is referred to as tranquil flow. Flow in which the velocity

V is greater than the critical velocity, i.e. when Fr > 1, is termed as rapid or

shooting flow. The flow in which the velocity is equal to the critical velocity, i.e.

when Fr = 1 is known as critical flow.

12.3 FLOW IN CLOSED CIRCULAR CONDUITS
ONLY PARTLY FULL

Flows in closed conduits partly full are usually encountered in practice, namely,

in drains and sewers. Since the liquid has a free surface inside the conduits, the

flow is governed by the principles of channel flow. There are however some

special characteristic features of the flow which result from the convergence of

the boundary to the top.

Let us consider a circular conduit of diameter d partly full of liquid flowing

through it. Let the angle subtended by the free surface at the centre of the conduit

be 2q as shown in Fig. 12.13a.

The area of cross-section of the liquid

A =
d2q

q q
4

2
1

2 2 2
-

F
H

I
K

d d
sin cos

=
d2

4

1

2
2q q-

F
H

I
Ksin (12.29)

The wetted perimeter P = dq
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Therefore, the hydraulic radius Rh = A/P = 
d

4
1

1

2

2
-

F
H

I
K

sin q

q

Fig. 12.13 (a) Flow through a closed conduit partly full (b) Variation of

discharge and velocity with depth of flow for a closed conduit

partly full

The rate of discharge may be calculated from Manning�s equation (Eq. 12.9) as

Q =
d

n
S

d2
1 2

2 3

4
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2
2

1

4
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1
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2
q q
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H
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H
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I
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2

2
1

2
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2 3

(12.30)

where the constant K =
d

8/ 3

45 3

1 2

/

/
S

n
(12.31)

The rate of discharge for the conduit flowing full can be obtained by putting q
= p in Eq. (12.30) as

Qfull = Kp

The rate of discharge Q is usually expressed in a dimensionless form as

Q

Qfull

 =
1 2

2
1

2

2

2 3

p
q

q q

q
-

F
H

I
K -
F
HG

I
KJ

sin sin
/

(12.32)

In a similar fashion we can also write,

V

Vfull

 = 1
2

2

2 3

-
F
HG

I
KJ

sin
/

q

q
(12.33)

The depth of flow h (Fig. (12.13a)) can be expressed in a dimensionless from h/d

as

h

d
 =

1

2

1

2
-  cos q (12.34)
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The variations of Q/Qfull, and V/Vfull with h/d are shown in Fig. 12.13b. The

maximum value of Q/Qfull is found to be (from Eq. (12.32)) 1.08, at h/d = 0.94.

This indicates that the rate of discharge through a conduit is more in case of

conduit partly full with h/d = 0.94 than that in the case of the conduit flowing full.

Similarly, it is found from Eq. (12.33) that the maximum value of V/Vfull = 1.14 at

h/d = 0.81. The physical explanation for this can be attributed to the typical

variation of Chezy�s coefficient with the hydraulic radius Rh in Manning�s

formula. However, the values are based on the assumption that Manning�s

roughness coefficient n is independent of the depth of flow. In practice, n tends to

decrease with increasing flow depth. For this reason, the experimental results

differ slightly from the theoretical values with constant n and show the maximum

discharge and velocity at h/d = 0.97

and 0.83 respectively. Under fluctuat-

ing condition of discharge, in practice,

low velocity may cause deposition of

solids in the conduit whereas high

velocity at large depths of flow may

cause excessive scour. This is rectified

to some extent by changing the shape

of the conduit from circular to oval or

egg-shaped sections as shown in

Fig. 12.14.

12.4 HYDRAULIC JUMP

A sudden transition from a rapid flow to a tranquil flow is known as hydraulic

jump. A rapid flow, in practice may occur due to the release of liquid in a channel

at high velocity under a sluice gate or at the foot of a steep spillway. If this flow

has to be decelerated to a uniform tranquil flow due to some obstruction

downstream or by the roughness of the boundary of a long channel with a mild

slope, then the only possible way is a sudden change from rapid to tranquil flow at

some location rather than a gradual transition via the critical condition. This can

be explained in the following way:

A deceleration of flow is accompanied by an increase in the depth of flow

which, in the regime of rapid flow decreases the specific energy (Fig. 12.11). If

this increase in depth continues beyond the critical value then the specific energy

has to increase (Fig. 12.11) which is not possible under the circumstances without

any addition of energy from outside. Hence the specific energy may only decrease.

Therefore a demand from a rapid flow to a uniform tranquil flow due to some

resistance downstream in a channel is met only through a sudden transition before

the critical condition is reached. This is known as hydraulic jump. It represents a

typical discontinuity in the flow (Fig. 12.15a) during which the usual specific

energy-depth of flow relation is invalid. The process of hydraulic jump is highly

irreversible and is shown by the path 1-2 in Fig. 12.15b. The hydraulic jump

results in the formation of eddies and turbulences which are responsible for the

F i g . 12.14 Commonly used sections

for fluctuating flows

through conduits partly

full
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loss of mechanical energy hj (Fig. 12.15b). The most important task in this context

is to determine the relationship between the depths of flow before and after the

hydraulic jump.

l

1
1

2

(a) (b)

2

V1
V2h1

h

h2

Es2 h j
Es1

Es

h1

h2
hc

Fig. 12.15 (a) Hydraulic jump in a channel flow (b) Representation of

hydraulic jump in the specific energy diagram

Let us consider for the purpose of simplicity a rectangular channel where a

hydraulic jump has taken place to increase the depth of flow from h1 to h2. The

jump may be considered as a standing wave through which the change has

occurred. The from Eq. (12.19), we can write, putting C = 0,

V1 = (gh2)
1/2
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Since h2 > h1 the right hand side of this equation is greater than unity. This

concludes that a hydraulic jump, Froude number before the jump is greater than

unity and hence the flow is rapid. We can also calculate the Froude number after

the jump as

Fr2 =
V

gh

h h h

h
2

2
1 2

2 1

1 2

1

2
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/
/
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P (12.36)

For h1/h2 < 1, the right hand side of this equation is less than unity which

concludes that the Froude number after the jump is less than unity and the flow

becomes tranquil.

A rearrangement of Eq. (12.35) gives

h2
2 + h1h2 � 

2 1
2

1V h

g
 = 0
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If we put V1 = q/h1, where q is the discharge per unit width, we get

h1 h2
2 + h2

1 h2 � 2q2/g = 0 (12.37)

which gives

h2 = - ± +
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h h q
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The negative sign for the radical is rejected because h2 cannot be negative. Hence,

h2 =
h q
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(Since, 8 q2/gh3
1 = 8 V2

1/gh1 = 8 Fr2
1)

Equation (12.37) is symmetrical in respect of h1 and h2 and hence a similar

solution for h1 in terms of h2 may be obtained by interchanging the subscripts.

The depths of flow on both sides of a hydraulic jump are termed as the conjugate

depths for the jump.

Loss of Mechanical Energy in Hydraulic Jump The loss of mechanical energy

that takes place in a hydraulic jump is calculated by the application of energy

equation (Bernoulli�s equation). If the loss of total head in the jump is hj as shown

in Fig. 12.15b, then we can write by the application of Bernoulli�s equation

between Secs 1 and 2 (Fig. 12.15a) neglecting the slope of the channel,

h1 + (V2
1/2g) = h2 + (V2

2/2g) + hj

or hj = h1 � h2 + 
V V

g
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(Since from continuity, q = V1 h1 = V2 h2)

From Eq. (12.37), we can write

q
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Invoking this relation into Eq. (12.40), we get
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The loss of head hj amounts to be the part of mechanical energy that is being

dissipated into intermolecular energy as a result of the creation of eddies and

turbulences in the wave. Friction at the boundaries make a negligible contribution

to it. This dissipation of energy results in a little rise in the liquid temperature.

The hydraulic jump is a very effective means of reducing unwanted energy in a

stream which is usually generated by the rapid discharge from a steep spillway to

the channel.

12.5 OCCURRENCE OF CRITICAL CONDITIONS

We have discussed so far the nature of tranquil, rapid and critical flows. We have

also seen that the transition from rapid to tranquil flow occurs through a hydraulic

jump. Now it is important to know that under what conditions the critical flow

occurs. The location where the critical flow occurs is called the control section.

The following situations show the occurrence of critical conditions.

Change of Slope of Channel Bed Critical flow occurs when a tranquil flow

changes to a rapid one. One of such situations is illustrated in Fig. 12.16 which

shows a long prismatic channel of mild slope connected to another long channel

of steep slope with identical cross-section. At large distance from the junction,

there will be uniform tranquil flow in the mild channel and uniform rapid flow in

the steep channel. The depths in the channels will be the normal depths

corresponding to the respective slope and rate of flow. The transition from

tranquil to rapid flow will be non-uniform and must pass through the critical

condition that occurs at the junction. If the change of the slope is abrupt, an

appreciable curvature of the streamlines takes place near the junction. This will

not justify the assumption of a hydrostatic variation of pressure at the section.

This may result in the occurrence of critical condition given by the flow velocity

(gh)1/2 not exactly at the junction of the two slopes, but slightly upstream of it.

The discharge of liquid from a long channel of steep slope to a long channel of

mild slope requires the flow to change from rapid to tranquil. This transition takes

place abruptly through a hydraulic jump near the junction point.

S S< c
S S>

c

hc

hc

Fig. 12.16 Transition from tranquil to rapid flow

Flow over a Spillway and in a Channel with a Rise in its Bed The critical flow may

occur even in a channel with a constant slope. A rise in the channel floor or bed

may bring about a critical flow. Flow over a spillway (Fig. 12.17a) and flow in a



Flows with a Free Surface 493

channel with a rise in its bed caused by some obstruction (Fig. 12.17b) will pass

through a critical condition.

In the case of a flow through a rectangular channel of constant width, the total

mechanical energy per unit weight at any cross-section is usually written as

H = h + 
q

gh

2

22
 + z

where h is the depth of flow and z is the elevation of the bed from any reference

horizontal datum.

Neglecting the effect of friction, we can write
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where, x is the distance measured along the direction of flow.

Since q = Q/b = Vbh/b = Vh,
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Recalling that Fr = V/(gh)1/2, we have

d

d

h

x
 (1 � Fr2) + 

d

d

z

x
 = 0 (12.43)

In case of flow over a spillway, (Fig. 12.17a), dz/dx = 0 at the crest, and since

dh/dx π 0, (1 � Fr2) = 0. This gives Fr = 1, i.e. the critical condition at the crest.

As another example for the occurrence of critical flow, we consider a rise in

channel bed caused by some obstruction or gradual transition as shown in

Fig. 12.17b.

Crest

(a) (b)

S S0 > c

hc

hc

D z hc

E.G.

h1 Es1
Es2

Fig. 12.17 (a) Flow over a spillway (b) Flow over an obstruction

We consider a tranquil flow upstream of the hump or the obstruction.

Therefore, the approach velocity to the obstruction is below the critical one and

let the uniform depth upstream be h1 and the corresponding specific energy be Es1
.

If Es2
 is the specific energy at the crest of the hump, then for a steady flow and a

constant width of channel (i.e., q is constant), Es1
 and Es2

 satisfy the relation

Es2
 = Es1

 � Dz
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At any value of Es2
 > Esc

 there are two possible depths corresponding to Es2
. To

have the state at the crest with the lower depth out of the two, the specific energy

of the flow upstream the hump should pass through a minimum and then increase.

This is possible only if the bed could rise above the level of the hump and then

drop. Therefore, under the present situation, the possible state is with the higher

depth corresponding to Es2
 and the flow remains tranquil over the hump and the

surface of water falls under this situation, since, from Eq. 12.43, dh/dx < 0 when

dz/dx > 0 for Fr < 1. At the crest of the hump, dz/dx = 0 and dh/dx = 0, and hence

according to Eq. (12.43), Fr may or may not be equal to unity. Therefore we can

say that the critical condition may or may not exist at the crest in general. As the

height of the step is raised, i.e. Dz is increased Es1
 � Es2

 increases until Es2

corresponds to the critical specific energy Esc
. Any further rise in Dz will maintain

critical flow over the step.

Summary

∑ Flow with a free surface is caused by the weight of the fluid flowing.

Flow in open channels in an example of such a flow. A uniform flow

through an open channel is characterised by the liquid surface being

parallel to the base of the channel whose cross-section is same along

the length of the channel. In a non-uniform flow, the liquid surface is

not parallel to the base of the channel.

∑ Energy gradient line is the contour of total head (total mechanical

energy per unit weight) at a cross-section as ordinate against the

distance along the flow as abscissa. The hydraulic gradient line is the

contour of the sum of potential and pressure heads as ordinate against

the distance along the flow as abscissa.

∑ The relationship between the average flow velocity and pressure drop

in a steady uniform flow through a straight channel is given by the well

known Chezy equation as V = c (Rh Sb)
1/2. The Chezy coefficient c

includes the friction factor f and depends on surface roughness and the

hydraulic radius of the channel. The simplest and widely used

empirical relation, in this regard, is given by c = (1/n) Rh
1/6 and is

known as Manning�s formula, where n is the roughness coefficient.

∑ The optimum hydraulic cross-section of a channel is characterised by

the maximum value of the hydraulic radius. For a trapezoidal section,

this condition is satisfied when the hydraulic radius becomes equal to

half the central depth of flow.

∑ Specific energy of a fluid element at any point in a channel flow is

defined as its total energy per unit weight where the component

potential energy is measured from the base of the channel. At critical

depth given by hc = (q2/g)1/3, the specific energy of flow is a minimum

for a given discharge, or the discharge is a maximum for a given

specific energy.
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∑ The velocity of flow at the critical depth is known as critical velocity

and is given by Vc = (ghc)
1/2. Flow in which the velocity is less than the

critical velocity is known as tranquil flow, while the flow with a

velocity greater than the critical velocity is referred to as rapid flow. A

small disturbance in open channels propagates upstream as a surface

wave with a velocity (relative to the undisturbed fluid) equal to (gh)1/2.

Therefore, a surface wave caused by any disturbance downstream can

propagate upstream in a tranquil flow, while it cannot do so in a rapid

flow.

∑ A sudden transition from rapid flow to a tranquil one is known as

hydraulic jump and takes place through an abrupt discontinuity in the

flow. The loss of head in a hydraulic jump is given by (h2 � h1)3/4h1

h2, here h1 and h2 are the depths of flow before and after the jump

respectively.

Solved Examples

Example 12.1 The depth of a uniform steady flow of water in a 1.22 m wide

rectangular cement lined channel laid on a slope of 4 m in 10000 m, is 610 mm. Find the

rate of discharge using Manning�s value for c (Chezy coefficient).

Solution We have to use Eq. (12.9) for the present purpose.

Here, Rh =
1 22 0 61

1 22 2 0 61

. ( . )

. .

¥

+ ¥
 = 0.305 m = 305 mm

S(slope) =
4

10000
 = 0.0004

n (from the Table 12.1) = 0.01

Therefore, from Eq. (12.9)

V =
1

0 01.
 (0.305)2/3 (0.0004)1/2

or Q = V ◊ A = 
1 22 0 61

0 01

. .

.

¥
 (0.305)2/3 (0.0004)1/2

= 0.674 m3

Example 12.2 A trapezoidal channel, having a bottom width of 6.096 m and side

slopes 1 to 1, flows 1.219 m deep on a slope of 0.0009. Find the rate of uniform discharge.

Take n (roughness coefficient) = 0.025.

Solution Here A, the cross-sectional area of flow (Fig. 12.18)

=
1

2
 [6.096 + 6.096 + 2 ¥ 1.219] ¥ 1.219

= (6.096 + 1.219) ¥ 1.219 = 8.917 m2
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1.219 m 1.219 m

6.096 m

1.219 m

Fig. 12.18 A trapezoidal channel

Wetted perimeter P = 6.096 + 2(1.219/cos 45°)

= 6.096 + 2 ¥ 1.219 ¥ (2)
1/2

= 9.544 m

Therefore Rh = 8.917/9.544 = 0.934 m

Now we apply Eq. (12.9) to get the discharge as

Q =
8 917 0 934 0 0009

0 025

2 3 1 2. ( . ) ( . )

.

/ /
¥

 = 10.22 m3/s

Example 12.3 How deep will water flow at the rate of 6.79 m
3
/s in a rectangular

channel 6.1 m wide, laid on a slope of 0.0001? Use n = 0.0149.

Solution Let the depth be h

Then A (cross-sectional areas of flow) = 6.1 ¥ h

P (wetted perimeter) = 6.1 + 2h

Therefore Rh (Hydraulic radius) = 
6 1

6 1 2

.

.

¥

+

h

h

By making use of Eq. (12.9),

6.79 =
6 1

0 0149

6 1

6 1 2

2 3
.

.

.

.

/
h h

h

¥

+

F
HG

I
KJ

 (0.0001)1/2

or 1.66 = h
h

h

6 1

6 1 2

2 3
.

.

/

+

F
HG

I
KJ

(12.44)

The value of h is found out from this equation by the method of successive trails.

Equations (12.44) is therefore written, for this purpose, as

h = 1.66
6 1 2

6 1

2 3
.

.

/
+F

HG
I
KJ

h

h
(12.45)

For a first trial, let us put h = 1.50 in the R.H.S. of Eq. (12.45) and get

h
1
 = 1.65

Superscript on h indicates the number of trials.

Now we put h1 in the R.H.S. of Eq. (12.45) for the second trial to get a new value of

h as

h2 = 1.59

Putting this value of h in Eq. (12.45) we obtain

h3 = 1.61
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Putting the new value of h again in Eq. (12.45) we obtain

h
4
 = 1.60

The difference between the two successive values of h now becomes 0.62%.

Therefore, we can write the final value of the depth h as 1.60 m.

Example 12.4 Show that the vertical distribution of velocity is parabolic for a

uniform laminar flow in a wide open channel with constant slope and depth of flow.

dL

dy

a

b tc
W

F1

x

h

a

y F2

u

y

d

Fig. 12.19 A uniform laminar flow in an open channel with constant slope

and depth of flow

Solution Let the depth of flow be h (Fig. 12.19). A control volume abcda of length dL

and of width B (the width of the channel) is taken as shown in the figure. Now we have to

apply the momentum theorem to this control volume.

The forces acting on the surfaces ab and cd are the hydrostatic pressure forces as

shown in the figure.

Let F1 and F2 be the hydrostatic pressure forces on these two surfaces ab and cd

respectively.

Therefore the net force acting on the control volume in the direction of flow can be

written as

Fx = F1 � F2 + rg(h � y) dL B sin a � t dL B

Since F1 = F2

Fx = r g(h � y) dL B sin a � t dL B

For a steady uniform flow, the momentum coming into the control volume across the

face ab is equal to that leaving from the control volume across the face cd. Therefore the

net rate of momentum efflux from the control volume is zero.

Hence, we can write, from the momentum theorem applied to the control volume

abcda,

Fx = r g(h � y) dL B sin a � t dL B = 0

which gives,

t = r g(h � y) sin a (12.46)

For a laminar flow,

t = m
d

d

u

y
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Substituting the expression of t in the Eq. (12.46) we get,

du =
r

m

g
 (h � y) sin a dy

or u =
r a

m

g
hy

ysin
-

F

HG
I

KJ
2

2
 + C1 (12.47)

For small values of a, sin a = tan a = S (slope of the channel). The constant of integration

C1 in Eq. (12.47) can be obtained from the boundary condition that at y = 0, u = 0, which

gives C1 = 0. Hence, Eq. (12.47) becomes

u =
r a

m

g
y h y h

sin
( / ) ( / )-
L
NM

O
QP

1

2

2
(12.48)

Equation (12.48) is the required velocity distribution which is parabolic in nature.

Example 12.5 In a hydraulics laboratory, a flow of 0.412 m3/s was measured from

a rectangular channel flowing 1.22 m wide and 0.61 m deep. If the slope of the channel

was 0.0004, find its roughness factor using Manning�s formula.

Solution Here,

A = 1.22 ¥ (0.61)

= 0.7442 m2

P =  1.22 + 2 ¥ 0.61 = 2.44

Therefore, Rh = A/P = 0.305 m

Using Eq. (12.9)

Q = 0.412 = 
1 22 0 610. .¥

n
 (0.305)

2/3
 (0.0004)

1/2

which gives n = 0.0163

Example 12.6 (a) Determine the most efficient section of trapezoidal channel,

n = 0.025, to carry 12.74 m3/s. To prevent scouring, the maximum velocity is to be

0.92 m/s and the side slopes of the trapezoidal channel are 1 vertical to 2 horizontal. (b)

What slope S of the channel is required?

2h 2hb

h

Fig. 12.20 A trapezoidal channel

Solution (a) It is known from Eq. (12.13) that for the most efficient section (the

minimum wetted perimeter for a given discharge) of a trapezoidal channel

Rh = h/2

where Rh is the hydraulic radius and h is the depth of flow (Fig. 12.20). Hence we can

write,
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Rh = h/2 = A/P = 
bh h h

b h

+

+

2 2 2

2 5
1 2

( / ) ( )

( )
/

or b = 2h (5)1/2 � 4h (12.49)

= 0.472 h

where b is the width at the base (Fig. 12.20). Again, from continuity, the cross-sectional

area to accommodate the maximum velocity is given by

A = 12.74/0.92 = bh + 2h2

or b = (13.85 � 2h2)/h (12.50)

Equating (12.49) and (12.50) we get

h = 2.37 m and b = 1.12 m

(b) Using Manning�s equation, i.e. Eq. (12.9), for this trapezoidal channel with

b = 1.12 m, h = 2.37 m and n = 0.025, we can write

0.92 =
( . / )

.

/ /2 37 2

0 025

2 3 1 2S

or S = 0.00042

Example 12.7 A circular culvert has a capacity of 0.5 m3/s when flowing full.

Velocity should not be less than 0.7 m/s if the depth is one-fourth of the diameter.

Assuming uniform flow, find the diameter and the slope, taking Manning�s roughness

coefficient n = 0.012.

Solution Putting h/d = 1/4 in Eq. (12.34), we get

1

4
 =

1

2

1

2
-  cos q

or cos q =
1

2
which gives q = p/3 radians.

From Eq. (12.33), we get

V

Vfull

 = 1
2 3

2 3

2 3

-
L

N
M

O

Q
P

sin /

/

/
p

p

= 0.70

Hence, Vfull =
V

0 70.
 = 

0 70

0 70

.

.
 = 1 m/s

From continuity Qfull =
p

4
d

2
 Vfull

or 0.5 =
p

4
d

2
 ¥ 1

which gives d, the diameter for the culvert = 0.798 m. When flowing full, the hydraulic

radius

Rh = A/P = d/4 = 0.798/4 = 0.1995 m
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From Eq. (12.9)

1 =
( . )

.

/0 1995

0 012

2 3

 S
1/2

or S =
( . ) ( . )

( . ) /

0 012 0 012

0 1995 4 3
 = 0.0012

Example 12.8 A rectangular channel carries 5.66 m3/s. Find the critical depth hc

and critical velocity Vc for (a) a width of 3.66 m and (b) a width of 2.74 m, (c) what slope

will produce the critical velocity in (a) if n = 0.020?

Solution (a) Critical depth is defined as the depth at which the flow velocity is given by

its critical value as

Vc = (ghc)
1/2

again, Vc = Q/bhc = 5.66/3.66 hc

Therefore, 5.66/3.66 hc = (ghc)
1/2

or hc =
5 66 5 66

3 66 3 66 9 81

1 3
. .

. . .

/
¥

¥ ¥

L

N
M

O

Q
P  = 0.625 m

Now, Vc = (9.81 ¥ 0.625)
1/2

 = 2.48 m/s

(b) When the width is 2.74 m

hc =
5 66 5 66

2 74 2 74 9 81

1 3
. .

. . .

/
¥

¥ ¥

L

N
M

O

Q
P  = 0.758 m

and, Vc = (9.81 ¥ 0.758)
1/2

 = 2.73 m/s

(c) Applying Eq. (12.9), we can write

Vc =
R S

n

c
2 3 1 2/ /

where Rc is the hydraulic radius at the critical flow and is given by

Rc =
3 66 0 625

3 66 2 0 625

. .

( . . )

¥

+ ¥
 = 0.466

Hence, 2.48 =
( . )

.

/0 466

0 02

2 3

 S
1/2

which gives S = 0.0068

Example 12.9 A rectangular channel, 9.14 m wide, carries 7.64 m
3
/s when flowing

914 mm deep. (a) What is the specific energy? (b) Is the flow tranquil or rapid?

Solution (a) We know from Eq. (12.24) that

Es = h + 
q

g h

2

22

1F

HG
I

KJ

or Es = 0.914 + 
1

2 9 81 0 914

7 64

9 142

2

¥ ¥

F
HG

I
KJ. ( . )

.

.
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= 0.957 m

(b) From Eq. (12.25),

hc =
7 64

9 14

1

9 81

2 1 3

.

. .

/

F
HG

I
KJ

L

N
M
M

O

Q
P
P

 = 0.415 m = 415 mm

Therefore the flow is tranquil since the depth of flow is grater than the critical depth.

Example 12.10 A trapezoidal channel has a bottom width of 6.1 m and side slope

of 2 horizontal to 1 vertical. When the depth of water is 1.07 m, the flow is 10.47 m3
/s. (a)

What is the specific energy of flow? (b) Is the flow tranquil or rapid?

Solution The cross-sectional area of flow

A = 6.1(1.07) + 2 
1

2

F
H

I
K

 (1.07) (2.14) = 8.82 m2

From Eq. (12.24), we can write

Es = h + 
1

2g
 (Q/A)2

where Q is the volumetric flow rate

Hence, ES = 1.07 + 
1

2 9 81

10 47

8 82

2

¥

F
HG

I
KJ.

.

.
 = 1.14 m

To determine the critical depth, we have to first find out a similar relation as given in

Eq. (12.25) for a channel whose width varies with the depth. For this purpose, we start

with Eq. (12.24) as,

ES = h + 
1

2g
 (Q/A)

2

where Q is the flow rate and A is the cross-sectional area. At critical condition, i.e. for

minimum specific energy.

d

d

E

h

S  = 1
2

22

3+ -
F
HG

I
KJ

Q

g A

A

h

d

d
 = 0

substituting dA = B¢ dh (B¢ is the width at the water surface), we get

(Q
2
B¢)/(g A

3
c) = 1

or Q2/g = A3
c/B¢

From the geometry of the channel Ac = 6.1 hc + 2 h2
c

and B¢ = 6.1 + 4 hc

(where hc is the critical depth and Ac is the corresponding cross-sectional area of flow)

Therefore,

(10.47)2/9.81 = (6.1 hc + 2 h2
c)

3/(6.1 + 4 hc)

Solving by trial, hc = 0.625 m

Since the actual depth exceeds the critical one, the flow is tranquil.
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Example 12.11 A rectangular channel, 6.1 m wide, carries 11.32 m
3
/s and

discharges onto a 6.1 m wide apron having no slope with a mean velocity of 6.1 m/s. (a)

What is the height of the hydraulic jump? (b) What energy is absorbed (lost) in the jump?

Solution (a) V1 = 6.1 m/s

q1 (the rate of discharge per unit width) = 11.32/6.1

= 1.86 m3/sm width

Therefore, h1 = q1/V1 = 1.86/6.1 = 0.305 m

and Fr1 = V1/(gh1)
1/2

 = 6.1/(9.81 ¥ 0.305)
1/2

 = 3.53

using Eq. (12.39),

h2/h1 =
1

2
 [{1 + 8(3.53)2}1/2 � 1]

from which h2 = 1.38 m

Hence, the height of the hydraulic jump = 1.38 � 0.305 = 1.075 m

using Eq. (12.41)

Loss of head in the hydraulic jump hj =
( .

. .

1 07)

4 0 305 1 38

3

¥ ¥

= 0.73 m

Therefore the loss of total energy per second = r g Q hj

=
9 81 10 11 32 0 73

10

3

3

. ( . ) ( . )¥ ¥ ¥
 = 81.06 kW

Example 12.12 A control sluice spanning, the entry to a 3.5 m wide rectangular

channel, admits 5.5 m3/s of water with a uniform velocity of 4.14 m/s. Explain under

what conditions a hydraulic jump will be formed and, assuming that these conditions

exist, calculate (a) the height of the jump, and (b) power dissipated in the jump.

Solution The upstream depth of flow is

h1 =
5 5

3 5 4 14

.

. .¥
 = 0.379 m

The upstream Froude number Fr1 = 
4 14

9 81 0 379
1 2

.

( . . )
/

¥
 = 2.15

For the hydraulic jump to occur, the downstream flow must be tranquil and the depth

of flow at downstream must satisfy the Eq. (12.39).

Therefore,

h2 =
0 379

2

.
 [{1 + 8(2.15)

2
}

1/2
 � 1] = 0.978 m

(a) Therefore, the height of the jump

Dh = (h2 � h1) = (0.978 � 0.379) = 0.6 m

(b) The loss of head in the jump is found out from Eq. (12.41) as

hj =
( . )

. .

0 6

4 0 978 0 379

3

¥ ¥
 = 0.146 m
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The rate of dissipation of energy = r g Qhj

= 10
3
 ¥ 9.81 ¥ 5.5 ¥ 0.146 W = 7.66 kW

Exercises

12.1 Choose the correct answer:

(i) In an open-channel flow, the free surface, the hydraulic gradient, and energy

gradient lines are such that

(a) the three of them coincide

(b) the first two coincide

(c) the last two must remain parallel

(d) the first and the last must remain parallel

(e) the three of them are different but parallel.

(ii) A small disturbance in a rapid flow in an open channel

(a) can propagate both upstream and downstream

(b) can propagate neither upstream nor downstream

(c) cannot propagate upstream

(iii) For a critical flow in an open channel

(a) specific energy is maximum for a given flow

(b) shear stress is maximum at the bed surface

(c) the flow is minimum for a given specific energy

(d) the specific energy is minimum for a given flow

(iv) A hydraulic jump must occur when

(a) the flow is rapid

(b) the depth is less than the critical depth

(c) the slope is mild or level

(d) the flow is increased in a given channel

(e) the bed slope changes from steep to mild

12.2 The breadth of a rectangular channel is twice its depth. Assuming the chezy

coefficient c to be 55 m
1/2

/s, find the cross-sectional dimensions of the channel

and the slope to satisfy the conditions that the discharge when flowing full should

be 0.8 m3
/s, and the velocity when flowing half full should be 0.6 m/s.

(Ans. h = 0.74 m, B = 1.48 m, s = 0.00048)

12.3 A channel of symmetrical trapezoidal section, 900 mm deep and with top and

bottom widths 1.8 m and 600 mm respectively carries water at a depth of

600 mm. If the channel slopes uniformly at 1 in 2600 and Chezy�s coefficient is

60 m1/2/s, calculate the steady rate of flow in the channel.

(Ans. 0.38 m3
/s)

12.4 An open channel of trapezoidal section with 5 m width at the base and with side

slope of 2 horizontal: 1 vertical has a bed slope of 1 in 3000. It is found that when

the flow is 8.5 m3
/s, the depth of water in the channel is 1.5 m. Calculate the flow

rate when the depth is 1 m assuming the validity of Manning�s formula.

(Ans. 4.0 m3/s)

12.5 A long channel of trapezoidal section is constructed from rubble masonary at a

bed slope of 1 in 7000. The sides slope at tan�1
 1.5 to the horizontal and the

required flow rate is 2.8 m3/s. Determine the base width of the channel if the

maximum depth is 1 m (use Table 12.1 for roughness coefficient of the channel).

(Ans. 4.46 m)
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12.6 A trapezoidal channel with a bottom width of 1.5 m and side slopes of 2

horizontal: 1 vertical has a bed slope of 1 in 3000. If the depth of water flowing

through the channel is 2.5 m, what is the average shear stress at the boundary?

(Ans. 4.19 N/m2)

12.7 A trapezoidal canal with side slopes of 1 horizontal: 1 vertical and bed slopes of

0.00035 discharges water at the rate of 24 m
3
/s. Determine the base width and

depth of flow if the shear stress at the boundary is not to exceed 6 N/m
2
. Take

Manning�s roughness factor n = 0.028.

(Ans. 6.64 m, 2.66 m)

12.8 A sewer pipe is to be laid at a slope of 1 in 8100 to carry a maximum discharge of

600 litres/s when the depth of water is 75% of the vertical diameter. Find the

diameter of this pipe if the value of Manning�s roughness factor n = 0.025.

(Ans. 1.79 m)

12.9 A circular conduit is to satisfy the following conditions: Capacity when flowing

full, 0.13 m3/s, velocity when the depth is one quarter the diameter, not less than

600 mm/s. Assuming uniform flow, determine the diameter and the slope if

Chezy�s coefficient c = 58 m1/2/s.

(Ans. 442 mm, 0.0016)

12.10 Determine the dimensions of the most economical trapezoidal concrete channel

with a bed slope of 1 in 4000 and a side slope of 1 vertical to 2 horizontal to carry

water at the rate of 0.15 m
3
/s. Take Manning�s n = 0.015.

(Ans. b = 0.19 m, h = 0.41 m)

12.11 In a long rectangular channel 3 m wide, the specific energy is 1.8 m and the rate

of flow is 12 m3/s. Calculate two possible depths of flow and the corresponding

Froude numbers. If mannaging�s roughness factor n = 0.014, what is the critical

slope for this discharge?

(Ans. 1.03 m, 1.36 m, 1.22, 0.80, 0.0039)

12.12 For a constant specific energy of 2 m. What maximum flow may occur in a

rectangular channel of 3 m wide?

(Ans. 14.48 m
3
/s)

12.13 A horizontal rectangular channel of constant width has a sluice gate installed in

it. At a position of 1 m opening, the velocity of water is 10 m/s. Determine

whether a jump can occur, and if so,

(a) the height downstream

(b) the loss of the head in the jump

(c) the ratio of Froude numbers across it.

[Ans. (a) 4.04 m, (b) 1.74 m, (c) 8.12]

12.14 In a rectangular channel of 0.6 m wide, a jump occurs where the Froude number

is 3. The depth after the jump is 0.6 m. Estimate the loss of head and the power

dissipated due to the jump.

(Ans. 0.22 m, 0.78 kW)



13.1 INTRODUCTION

Although most of the engineering problems are steady or quasi-steady in nature,

there are certain classes of problems in practice where the phenomenon of

unsteady flow becomes significant. In an unsteady flow, velocity, pressure,

density etc. at a particular point change with time. Such variations pose

considerable difficulties in solving unsteady flow problems. Problems of unsteady

flow may be put into three broad categories according to the rate at which the

changes in hydrodynamic parameters occur:

(i) Slow changes of flow where the velocity changes slowly so that the

temporal acceleration can be neglected. An example of this category of problems

is the continuous filling or emptying of a reservoir as discussed in Sec. 5.8 of

Chapter 5.

(ii) Rapid changes of flow causing the temporal acceleration to be important.

Examples of this category of problems are oscillations of liquids in U tubes and

between reservoirs, flows in positive displacement pumps and in hydraulic and

pneumatic servo-mechanisms.

(iii) Very fast changes of flow, arising from sudden opening or closing of a

valve, so that density changes considerably and elastic force becomes significant.

The present chapter discusses a few unsteady flow problems of engineering

importance.

Applications of
Unsteady Flows

13



13.2 INERTIA PRESSURE AND ACCELERATIVE HEAD

Whenever any fluid element undergoes acceleration, either positive or negative,

it must be acted upon by a net external force. This force corresponds to a

difference in piezometric pressure across the fluid element. This pressure

difference is known as the inertia pressure.

Let us consider, for a simple case, a stream tube of length L and uniform cross-

sectional area A. The velocity of fluid flowing through it is considered to be

uniform both across a section and along the flow. Let the velocity of flow at any

instant be V. Therefore, the mass of the fluid concerned is rAL and the force

causing the acceleration, according to Newton�s second law, is the product of

mass and acceleration. The acceleration here is the temporal acceleration. Hence,

the force causing acceleration equals to rAL (∂V/∂ t). If this force arises because

of a difference in the piezometric pressure D pi between the upstream and

downstream ends of the tube, then

D pi A = rAL 
∂

∂

V

t

or D pi = rL 
∂

∂

V

t
(13.1)

D pi, as defined by Eq. (13.1), is known as the inertia pressure (difference in

piezometric pressure responsible for fluid acceleration). The corresponding head

can be written as

hi =
D p

g

L

g

V

t

i

r

∂

∂
= (13.2)

where hi is known as inertia head or accelerative head.

Energy Equation with Accelerative Head While deriving Bernoulli�s equation in

Sec. 4.6.1 of Chapter 4, we considered the flow to be steady. If the unsteady term

of the Euler�s equation, i.e. the temporal derivative of the velocity is taken care of

in the derivation of Bernoulli�s equation, then we can arrive at a modified form of

the Bernoulli�s equation for an unsteady but incompressible flow as

21
d

2

V V p
S

g t g g

∂

∂ r
+ +Ú  + z = C (13.3)

where C is a constant along a streamline. The first term in Eq. (13.3) represents

the accelerative head. Therefore, Bernoulli�s equation between two points 1 and

2 along a streamline can be written, for an unsteady flow, along with the

consideration of friction loss as,

p

g

V

g
z1 1

2

1
2r

+ +  =
p

g

V

g
z h hf i

2 2
2

2
2r

+ + + +

where hf is the head loss due to friction, and



hi =

2

1

1
d

V
S

g t

∂

∂Ú
We shall now describe a few applications of unsteady flow problems in

practice.

13.3 ESTABLISHMENT OF FLOW

The initiation of flow in a pipeline is governed by inertia pressure. Let us consider

a pipe of uniform cross-section and of length L to convey liquid from a reservoir

as shown in Fig. 13.1. The reservoir maintains a constant height of liquid above

the pipe connection to the reservoir. The pipe has a valve at its downstream end

which is initially closed, and the pressure downstream the valve is constant. When

the valve is opened, the difference in piezometric pressure between the ends of the

pipeline is applied to the static liquid column in it. Since at this moment, viscous

and other resistive forces are zero because of no movement of the liquid, this

inertia pressure force, being the net external force, tries to accelerate the liquid

column to a maximum. As soon as the flow initiates, the viscous and other types

of resistive forces, if any, arise and gradually become prominent with the increase

in velocity and eventually balance the pressure force to establish a steady state.

Therefore we see that the flow within the pipe increases from zero to a steady

value determined by the frictional and other losses in the pipe. Even if the valve

could be opened instantaneously, the fluid would not reach its steady state velocity

instantaneously. The attainment of a steady flow in the pipeline after the

instantaneous opening of a valve at its downstream is known as the establishment

of flow. An analytical expression for the response characteristic of the liquid

column to the steady state can be derived as follows:

Let the loss of head in the pipeline be represented by KV 2/2g, where V is the

instantaneous average velocity at any section which remains same in the direction

of flow. The term KV2/2g includes both the frictional head loss and the minor

losses (entry  loss, valve loss, etc.). We can write the Bernoulli�s equation in

consideration of accelerative head between points 1 and 2 (Fig. 13.1) as

H

Datum

h

L

1

2

z

Fig. 13.1 Establishment of flow in a pipeline
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22
2

1

1
d

2
f

pV V
h S

g g g t

∂

r ∂
+ + + Ú (13.4)

V1 << V for much larger cross-sectional area of the reservoir as compared to that

of the pipeline, and

p1 = patm + rg(H � z)

p2 = patm (atmospheric pressure)

hf = KV2/2g

Therefore, we have from Eq. (13.4)

( )H h
V

g
+ -

2

2
 =

L

g

V

t

KV

g

∂

∂
+

2

2
(13.5)

Since the velocity is a function of time only, the partial derivative of V in

Eq. (13.5) is changed to a total derivative and we get an ordinary differential

equation as

d

d

V

t
 =

21
( ) (1 )

2

V
g H h K

L

È ˘
+ - +Í ˙

Î ˚
(13.6)

Let V0 be the steady state velocity. Then, applying Bernoulli�s equation between

1 and 2, at steady state, we have,

(H + h) = (1 + K) 
V

g

0
2

2

substituting the value of (H + h) into Eq. (13.6), we get

d

d

V

t
 =

1

2
0
2 2+

-
K

L
V V( )

On integrating the equation we have

t =
2 2

00

2 d

1 ( )

V
L V

K V V+ -Ú

=
L

V K

V V

V V0

0

01( )
ln

+
+
-

or t =
LV

g H h

V V

V V

0 0

02 ( )
ln

+
+
-

(13.7)

Here we have assumed that the value of K remains same for all values of V.

Equation (13.7) shows that V Æ V0 when t Æ µ, which implies that it takes

infinite time for the flow to be established. However, the velocity reaches any

fraction of V0, say 99% of V0, within a finite period of time which depends upon

V0, L, H and h. Usually, the time of establishment is defined as the time required

for V to reach 0.99 V0. Therefore, we get from Eq. (13.7),



testablishment = 0 1.99
ln

2 ( ) 0.01

LV

g H h

Ê ˆ
Á ˜+ Ë ¯

= 0 27 0.
( )

LV

H h+
(13.8)

13.4 OSCILLATION IN A U-TUBE

(A) Frictionless Liquid Column Let us consider the oscillation of an inviscid

liquid in a U-tube of internal diameter d as shown in Fig. 13.2a. Let l be the length

of the liquid column.

z1

h

z

t

V1

V2z2
2

1

Datum

(a)

Equation (13.21)

Equation (13.20b)

(b)

Fig. 13.2 (a) Oscillation of liquid column in a U-tube

(b) Response characteristics with laminar resistance

When the liquid is in equilibrium, the height of liquid column in both the limbs

from a datum line is denoted by h. Let us consider, after the equilibrium of the



liquid column being somehow disturbed, an instant when the meniscus in the left

limb is coming down with a velocity V1, while that in right limb is going up with

a velocity V2 as shown in Fig. 13.2a. Since, the tube is uniform in cross-section,

V1 = V2 = V (13.9a)

and z1 = z2 = z (13.9b)

where V and z represent the velocity of liquid column in the u-tube and the

displacement of liquid level from its equilibrium position in either limb

respectively.

The Bernouli�s equation for unsteady flow between the points 1 and 2

(Fig. 13.2a) can be written in the present case as

p

g

V

g
h zatm

r
+ + +

2

2
( ) =

22
atm

1

1 d
( ) d

2 d

p V V
h z S

g g g tr
+ + - + Ú (13.10)

or
d

d

V

t

g

l
z-

2
 = 0 (13.11)

Since z is diminishing with time at the instant considered, we can write

V = � 
d

d

z

t

Hence,
d

d

V

t
 = �

d

d

2z

t 2

Therefore, we have from Eq. (13.11)

d

d

2z

t

g

l
z

2

2
+  = 0 (13.12)

The solution of Eq. (13.12) is

z = A cos (2g/l)1/2t + B sin (2g/l)1/2t (13.13)

To determine the constants A and B, initial conditions are taken as

at t = 0; z = z0 (the maximum displacement from the equilibrium position)

and, dz/dt = 0

which gives A = z0 and B = 0

Therefore, Eq. (13.13) becomes

z = z0 cos 

1/2
2 g

t
l

Ê ˆ
Á ˜Ë ¯

(13.14)

This equation implies that the liquid column executes an undamped periodic

oscillation with an amplitude z0 and a time period of 2p (l/2g)1/2.

(B) Viscous Fluid If we consider the viscous effects in the oscillation of liquid

columns, the Bernoulli�s equation between 1 and 2 can be written as

p

g

V

g
h zatm

r
+ + +

2

2
( ) =

22
atm

1

1 d
( ) d

2 d
f

p V V
h z h S

g g g tr
+ + - + + Ú (13.15)



where hf is the frictional head loss in the tube due to the motion of the liquid

column, and can be expressed in terms of velocity head as

hf =
f l V

g d

2

2

If we consider the flow to be laminar, friction factor f can be written as

f =
64 64

Re
=

n

V d

Hence, hf =
32

2

n l

g d
V

Invoking this value into Eq. (13.15), we get

d

d

V

t d
V

g

l
z+ -

32 2
2

n
 = 0

Substituting V = � 
d

d

z

t

and
d

d

V

t
 = � 

d

d

2z

t 2

we have,

d

d d

d

d

2z

t

z

t

g

l
z

2 2

32 2
+ +

n
 = 0 (13.16)

The differential equation corresponds to a damped oscillatory system. The

general solution of the equation can be written as

z = Ae
C1t

 + Be
C2t

(13.17)

The values of C1 and C2 are the roots of the equation

m2 + 
32 2

2

n

d
m

g

l
+  = 0

where m is a general variable.

Hence,
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and C2 = � 
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putting a =
16

2

n

d
(13.19a)

w2 =
2 g

l
(13.19b)

and z = a/w = 
16

2

n

d
 (l/2g)1/2 (13.19c)



we can write

C1 = [� z + (z2 � 1)1/2]w

and C2 = [ � z � (z2 � 1)1/2]w

The nature of the solution of Eq. (13.16) depends on three conditions: whether

the damping factor (a) z < 1, (b) z > 1 and (c) z = 1.

(a) When z < 1 (light damping), the general solution of Eq. (13.16) is written

as a special form of Eq. (13.17) as

z = Ae�zw t sin [(1 � z2)1/2 w t + f ] (13.20a)

The amplitude A and the phase difference f are found from the initial

conditions. If we assume the initial conditions as

at t = 0, z = z0 and dz/dt = 0

we get from Eq. (13.20a)

A =
z0

2 1 21( ) /- z

and f =
2 1/2

1 (1 )
tan

z

z
- È ˘-

Í ˙
Î ˚

Equation (13.20a) can then be written as

z =
2 1/2
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2 1/2

(1 )
sin (1 ) tan
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tz
e t
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z w

zz
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(13.20b)

The time period of oscillation is

T =
2

1 2 1 2

p

w z( ) /-
(13.20c)

The flow under this situation oscillates with diminishing amplitudes

(Fig. 13.2b), because of the exponential damping term, and eventually comes to

rest.

(b) When z > 1 (large damping) the Eq. (13.17) can be written as

z = A exp [{�z + (z2
 � 1)

1/2
}wt] + B exp [{�z �(z2

 � 1)
1/2w t] (13.21)

with the initial conditions as z = 0, 
d

d

z

t
 = 0 at t = 0 we have

A = 0

2 1/2
1

2 ( 1)

z z

z

È ˘
+Í ˙

-Î ˚

and B = 0

2 1/2
1

2 ( 1)

z z

z

È ˘
-Í ˙

-Î ˚
The flow under this situation does not oscillate, rather asymptotically reaches the

equilibrium position as shown in Fig. 13.2b.

(c) When z = 1 (critical damping), the solution of Eq. (13.16) becomes

z = (A + Bt) e �zw t (13.22a)



with the same initial conditions as described above in (a) and in (b), we get

A = z0, B = z w z0

Hence Eq. (13.22a) becomes

z = z0 (1 + zw t) e 
�zw t

(13.22b)

The motion, under this situation is in transition, i.e. it changes from oscillatory

to non-oscillatory types.

13.5 DAMPED OSCILLATION BETWEEN TWO
RESERVOIRS

We now consider the oscillation of a viscous liquid column between two prismatic

reservoirs connected by a long pipeline as shown in Fig. 13.3. The flow in the

pipeline is assumed to be turbulent so that the head loss becomes proportional to

the square of the velocity. Let us assume that the reservoirs are of uniform cross-

sectional area A1 and A2. The pipeline is of uniform circular cross-section of

diameter dp and area ap.

The total length of the pipeline is l as shown in Fig. 13.3. Let the height of the

liquid levels, under equilibrium position, from a reference datum be h.

Fig. 13.3 Oscillation of liquid column between two reservoirs

connected with a pipline

Applying Bernoulli�s equation between the liquid levels (1) and (2);

[Fig. 13.3] when the liquid column is in motion, we have,
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Let V be the velocity at a distance S from the surface 1 along a streamline, where

the cross-sectional area is A which may be ap, A1 or A2 depending upon the

distance S, and the liquid level in reservoir A1 be moving down with a velocity V1,

while that in reservoir A2 be moving up with a velocity V2.

From continuity,

V1A1 = V2 A2 = VA (13.24)



Again, from Kinematic condition

V1 = � 
d

d

z

t

1 (13.25a)

V2 = � 
d

d

z

t

2 (13.25b)

and from geometrical condition z = z1 + z2 (13.25c)

Equations (13.24), (13.25a), (13.25b) and (13.25c) give

d

d

z

t

1  =
A

A A

z

t

2

1 2+
d

d
 (13.26a)

and,
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With the help of Eqs (13.25), (13.26) and (13.27), Eq. (13.23) can be written as
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If le is the equivalent length of the connecting pipe incorporating the minor

losses, then the total head loss hf can be written as

hf = 

22 2
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2 2
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again,
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(Since A1 and A2 are much larger than ap)

With the help of Eqs (13.29a) and (13.29b), Eq. (13.28) can be written as
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and N =
g a

l

A A
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p ( )2 1

1 2

-

The Eq. (13.30) is a nonlinear ordinary differential equation in z. The non-

linearity arises due to the term 

2
d

d

z

t

Ê ˆ
Á ˜Ë ¯

. This equation can be solved numerically

for z with suitable initial conditions. Fourth order Runge Kutta method is best

adopted for this purpose. However, an analytical solution for the first derivative

of z, i.e. 
d

d

z

t
 can be obtained. By substituting y = 

2
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Ê ˆ
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, in Eq. (13.30) we get
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the solution of which is
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If we put the initial condition

z = z0, 
d

d

z

t
 = 0 at t = 0

We get,
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Therefore, Eq. (13.31) becomes,
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To find the time-displacement (z vs t) relationship, Eq. (13.32) has to be solved

numerically with the initial condition as z = z0 at t = t0.

13.6 WATER HAMMER

In the preceding sections, we considered unsteady problems where though the

changes in velocity were high to make the acceleration head as significant as the

velocity head, but at the same time were too low to cause the compressibility

effect on the liquid. We now consider the category of unsteady flow phenomena

where the change in velocity is so rapid that the compressibility effect of the

liquid becomes prominent and hence the elastic forces are important. As a result,

a change in pressure does not take place instantaneously throughout the fluid.

This means that if a change in pressure is caused by a change in velocity at any

location, this change is not sensed immediately by the entire fluid�rather this is

sensed by the propagation of a pressure wave with a finite velocity. The problem

assumes importance in fields like hydroelectric plants where the flow of water in



a pipeline is required to be decreased suddenly by manipulating a valve down-

stream. This causes a phenomenon like knocking of the pipe system due to

repeated up and down motion of a pressure wave within the pipe. It is also our

common experience that when a domestic water tap is turned off very quickly, a

heavy knocking sound is heard and the entire pipe vibrates. This typical

phenomenon is known as water hammer. The name is perhaps a little unfortunate

because, not only water, but any liquid in a pipe under such situation will cause

the phenomenon of water hammer.

Instantaneous Closure of a Valve For a detailed physical explanation of the

above phenomenon of water hammer, let us consider a simple situation where a

long pipeline discharging water from a reservoir is fitted with a valve at its end as

shown in Fig. 13.4a. The uniform flow velocity in the pipe is considered to be V0.

Fig. 13.4 Effect of instantaneous valve closure

We assume that the valve is closed instantaneously to stop the discharge from

the pipeline. An instantaneous closure of a valve is not possible in practice; an

extremely rapid closure may be made at the best. However, the concept of

instantaneous valve closure makes the explanation simple for a basic physical

understanding of the problem. If the liquid is fully incompressible, then the

instantaneous closure of the valve will cause the entire liquid in the pipe to come

to rest instantaneously. But any liquid, in fact, is compressible to some extent and



so its constituent particles do not decelerate instantaneously. Therefore even an

instantaneous closure of the valve cannot make the entire column of fluid

stationary at once.

Only the fluid particles adjacent to the valve will be stopped instantaneously,

and the other would come to rest later (Fig. 13.4b). While the flow near the valve

is stopped completely, the fluid far away from the valve still moves with a velocity

V0 and compreses the fluid adjacent to the valve increasing its pressure and

density. This way, fluid column comes to rest layer by layer from valve end to the

reservoir (Fig. 13.4c). The kinetic energy of the liquid coming to rest is

transformed partly into elastic energy of liquid by compression and partly into

elastic energy of pipe due to its expansion. The process of deceleration and subse-

quent pressure rise of the liquid column due to the valve closure is conceived by

the propagation of a pressure wave upstream as a message that is generated at the

valve end. As the pressure wave moves upstream, the fluid downstream, though

which it has moved, comes to rest and the portion of the pipe downstream

expands, depending upon its rigidity, due to rise in pressure of the fluid. The fluid

upstream, where the pressure wave is yet to reach, is still in motion with the

velocity V0. The velocity with which the pressure wave moves upstream is very

high compared to the velocity of the liquid. The increase in pressure head of the

liquid, and the velocity of propagation of pressure wave are the two important

parameters to be determined in analysing any water hammer problem.

Velocity of Pressure Wave Figure 13.5a shows a pipe in which liquid flowing

from left to right with a velocity V0 is brought to rest by a pressure wave XX

moving from right to left.
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Fig. 13.5 (a) Propagation of a pressure wave in a pipe flow (b) Model of

a control volume analysis in determining the wave velocity

Let the pressure and density of the undisturbed liquid left of the wave be p and

r respectively, and the cross-sectional area of the pipe be A. After the wave has

passed, these quantities become p + Dp, r + Dr and A + DA respectively as

shown in Fig. 13.5a. Let the velocity of propagation of the pressure wave be C

relative to the flowing liquid, and hence, C�V0 with respect to the stationary pipe.

The conditions will appear steady if we refer to coordinate axes moving with the

wave, which, in other word, means to consider a system where a velocity C�V0 in

an opposite direction to that of the wave is superimposed on the flow to bring the



wave front stationary as illustrated in Fig. 13.5b. Here the wave will appear to be

stationary while the fluid from left approaches with a velocity C and moves away

with a velocity C�V0 after crossing the wave. Now we apply the continuity and

momentum equations for a steady flow to an elemental control volume abcd

across the wave front as shown in Fig. 13.5b.

Continuity Equation

Ar C = (A + D A) (r + Dr) (C � Vo)

or Ar C = (Ar + r D A + A D r) (C � Vo)

(neglecting the higher order term D A D r)

or ArVo = (C � Vo) (r D A + A D r)

Dividing both the sides by Ar (C � Vo) we get

V

C V

o

o-
  =

D DA

A
+

r

r
(13.33)

Momentum Equation Neglecting the wall shear force, we can apply the

momentum theorem to the control volume abcd as

ArC [(C � Vo) � C] = p(A + D A) � (p + Dp) (A + DA)

or ArCV0 = Dp A (the higher order term D pDA is neglected)

or Vo/C =
D p

Cr 2
(13.34)

The velocity C is, in fact, very high compared to Vo. Hence, the Eq. (13.33) can

be written as

V

C

o  =
D DA

A
+

r

r
(13.35)

Comparing Eqs (13.34) and (13.35), we can write

D p

Cr 2
 =

D DA

A
+

r

r
(13.36)

The change in density of a fluid is related to its change in pressure through the

bulk modulus of elasticity E [Eq. (1.5) in Chapter 1] as

Dp = E 
Dr
r

(13.37)

Substituting the value of Dr /r from Eq. (13.37) into Eq. (13.36) we have
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Hence, C =
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(13.38)

The quantity D A/A in Eq. (13.38) is found out in consideration of the elasticity

of the pipe. It is assumed that the pipe is subjected to circumferential hoop stress

st but negligible longitudinal stress. Then we can write

D A

A
 =

2 2D d

d E

t

p

=
s

(13.39)

where st is the hoop stress and Ep is the elasticity of the pipe material. For a

circular pipe in which the thickness t of the wall is small compared to the diameter

d, the hoop stress is given by

st =
D pd

t2

Therefore from Eq. (13.39)

D A

A
 =

D pd

t Ep

(13.40)

Inserting the expression of DA/A from Eq. (13.40) into Eq. (13.38), we have,

C =

1/2

/

1 / p
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Ed E t

rÈ ˘
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+Í ˙Î ˚
(13.41)

For a rigid pipe, the quantity Ed/Ept is small compared to unity, and hence the

Eq. (13.41) can be written as

C = [E/r]
1/2

(13.42)

The quantity (E/r]
1/2

 corresponds to the speed of sound through an elastic

medium. Therefore, Eq. (13.42) implies that the speed of pressure wave relative

to the flowing liquid is equal to the local acoustic speed through the liquid. Taking

the value of E for water at 20 °C as 2.2 ¥ 106 kN/m2 and r = 103 kg/m3, the value

of C from Eq. (13.42) is found to be 1482 m/s. Other liquids give figures of the

same order. Let us calculate the value of C from Eq. (13.41) in consideration of

pipe elasticity. For a steel pipe, Ep = 2 ¥ 108 kN/m2. Considering the diameter and

thickness of the pipe to be 75 mm and 6 mm respectively, we have

C =

1/2

9 3

9

11

2.2 10 /10

2.2 10 0.075
1

2 10 0.006

È ˘
Í ˙

¥Í ˙
Í ˙¥ ¥

+Í ˙
¥ ¥Í ˙Î ˚

= 1390.7 m/s

Hence we see that the variation in the value of C calculated from Eqs (13.41)

and (13.42) is marginal as compared to their absolute values. In fact, the values



of C are much in excess of any liquid flow velocity encountered in practice.

Therefore, the Eq. (13.42) is used to determine the value of C for all practical

purposes.

Reflection of Waves and Pressure Fluctuation We have so long discussed how a

pressure wave is generated at the valve end due its instantaneous closure and is

transmitted upstream by decelerating and pressurising the liquid column in the

pipe. If the pipe is not of infinite length, the reflection of pressure wave at the

reservoir and valve ends causes a periodic fluctuation of pressure at any location

in the pipe. This is illustrated in Fig. 13.6.

Let us assume, for the sake of simplicity, that the flow is inviscid. When the

valve is closed instantaneously, a pressure wave moves upstream with a velocity

C relative to the liquid as discussed earlier. The wave, as it progresses, brings the

liquid to rest increasing its pressure (Fig. 13.6b). Let us consider the initial

pressure to be p0 and the corresponding pressure head to be ho (= po/rg). The

increase in presure head of the liquid due to the propagation of pressure wave

upstream can be found from Eq. (13.34) as  Dh = Dp/rg = CV0/g. Therefore, after

a time t = l/C (Fig. 13.6c), where l is the length of the pipe, the whole pipe is filled

with high pressure liquid (the pressure head being more than the original one by

an amount CV0/g) at rest.

The situation illustrated in Fig. 13.6c is unstable since there occurs a

discontinuity of pressure at the reservoir end, because the liquid is at original

pressure in the reservoir unlike in the pipe where it is at increased pressure. What

happens, in this situation, is that the liquid begins to flow from the pipe back into

the reservoir so as to equalize the liquid pressure in the pipe to the original value

existing in the reservoir. This is conceived by the propagation of a reflected

pressure wave from reservoir end towards the valve end. The action of this

reflected wave from the reservoir end is to superimpose a negative pressure head,

�Dh of same magnitude of CV0/g on the existing positive pressure head Dh and to

set a velocity of the liquid towards the reservoir. When the pressure wave reaches

the valve end at t = 2 l/C, the entire liquid in the pipe is at original pressure and is

moving with a velocity Vo towards the reservoir. The pipe diameter is also back to

its original value. This condition, as depicted in Fig. 13.6e, is similar to that at t =

0 (Fig. 13.6a) except that the liquid velocity V0 is in the opposite direction.

As liquid tries to maintain its inertia of motion, i.e. its velocity V0 towards the

reservoir end (Fig. 13.6e), the decompression of the liquid column in the pipe

takes place. Therefore, the pressure of the liquid in the pipe falls below its original

value. This decrease in pressure in the liquid column again starts from the valve

end and progresses gradually towards the reservoir end. The fall in pressure in the

entire liquid column is thus conceived by the propagation of a negative pressure

wave as a reflected wave from the valve end. The magnitude of the reflected wave

is same as that of the incident wave, and the sign remains unchanged.

At time t = 3l/C, when the negative pressure wave reaches the reservoir end,

the entire fluid in the pipe is at rest and at a pressure head lower than the original

one by an amount of Dh (Fig. 13.6g). This is again an unstable situation due to



Fig. 13.6 Temporal histories of pressure head along a pipe length after

an instantaneous closure of valve (inviscid fluid)
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pressure discontinuity at the reservoir end and causes a flow of liquid from the

reservoir end to the valve end to equalize the pressure in the liquid, i.e. to destroy

the negative pressure head of the liquid in the pipe. This process is again depicted

by the propagation of a positive pressure wave Dh, from the reservoir end towards

the valve, and at time t = 4l/C this pressure wave will reach the valve end when

the pressure of the entire liquid column in the pipe is again at its original value

and the velocity is V0 towards the valve.

Therefore, we observe that after a time period of  t = 4 l/C, the initial condition

of the liquid in the pipe, i.e. the condition at the instant when the valve was closed

(at t = 0), is reached (Fig. 13.6i). This complete cycle of events is repeated and, in

the absence of friction, would be repeated indefinitely, with the same period of

time 4 l/C and with undiminishing intensity of pressure waves.

The periodic fluctuation of the pressure head at two points, one adjacent to the

valve and the other at a distance x from the reservoir end are shown in Fig. 13.7a

and 13.7b respectively. It is observed from the foregoing discussion that the time

taken for a round trip of the positive pressure wave over any point, say A, at a

distance x from the pipe inlet (reservoir end) is 2 x/C. Thus, for an instantaneous

closing of the valve, the excess pressure created at the point A at a distance x from

the pipe inlet due to the passing over of a pressure wave remains constant for a

time interval of 2x/C and this duration equals to 2 l/C at the valve end. Therefore,

the pressure head of the liquid at the valve end remains h0 + Dh (h0 is the original

presure head) over a time of 2l/C from the instant when the valve is closed.

At the time t = 2 l/C, the reflected negative pressure wave from the reservoir

end reaches the valve end and diminishing the excess pressure head Dh there, is

again reflected back instantaneously as a negative pressure wave and moves

towards the reservoir end. Therefore, the pressure head adjacent to the valve at

this instant, t = 2l/C, drops from h0 + Dh to h0 � Dh, and then remains constant

over a period of 2l/C, i.e. from t = 2 l/C to t = 4 l/C. During this interval, the

negative pressure wave originated from the valve end reaches the reservoir end

and again comes back to the valve end as a reflected positive pressure wave. As

soon as this wave strikes the valve end, it first diminishes the existing negative

pressure wave �Dh at the valve end and is reflected back immediately as a positive

pressure wave of Dh that starts proceeding towards the reservoir end. Therefore,

at t = 4 l/C the pressure head adjacent to the valve increases from h0 � Dh to h0 +

Dh and assumes the initial value at the start when the valve was just closed. This

cyclic variation of pressure with time goes on repeating again and again.

Figure 13.7b shows the pressure time diagram for a point at a distance x from

the reservoir. In this case, the pressure at the point remains at its original value

from the instant the value is closed (t = 0) until the positive pressure wave,

originating from the valve end, reaches there after a time t = (l � x)/C. Therefore,

at t = (l � x)/C, the pressure head changes to ho + Dh and remains the same for a

period of 2 x/C which is the time required for the round trip of the pressure wave

to the reservoir and back to that point. At time t = (l + x)/C (Fig. 13.7b), the

pressure head changes from ho + Dh to ho, the original pressure, and remains at

this value for a period of 2(l � x)/C during which the negative pressure wave



reaching the valve end is again reflected back to the point. At this instant, given by

t = (3 l�x)/C, the pressure head at the point falls from ho to ho � Dh and remains at

this value for a period of 2 x/C until the negative pressure wave, after reaching the

reservoir end, is reflected back as a positive pressure wave to that point.

Therefore, at t = (3l + x)/C, the pressure head increases instantaneously from ho �

Dh to ho. After a time of l � x/C from then the positive wave reaches the valve end,

when the situation in the entire pipe is identical to that of the initial one when the

valve was just closed.

The effect of friction on the pressure time diagram for a point at the valve end

is shown in Fig. 13.8. Due to the viscous dissipation of energy, the amplitude of

pressure wave is reduced in each reflection and hence the oscillations of the

pressure wave is damped. The interesting feature is that while the excess pressure

over the time period 2l/C remains constant in the case without friction, it changes

when frictional effect is considered. When the velocity of fluid is reduced, so is

the head lost to friction. Therefore, the head available at the downstream end of

the pipe consequently rises somewhat as layer after layer of the fluid is slowed

down. This effect is transmitted back from each layer in turn with a velocity C,

and so the full effect is not felt at the valve until a time 2l/C after its closure. In

Fig. 13.8, this effect is indicated by the upward slope of the line ab. During the

Fig. 13.7 Pressure-time diagram for instantaneous valve closure
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second time interval of 2l/C, velocity and pressure amplitudes have reversed their

signs, and thus the line slopes downwards. The frictional effect is usually

neglected since the friction head is small compared to the head produced by the

water hammer. However, it is always safer to design a pipeline assuming the

initial head at the valve to be the same as in the reservoir, and thus neglecting

subsequent frictional effects.

a
+

2l/C

2l/C

Time
c

h0

b

d

h = V0C/g

Fig. 13.8 Effect of friction on pressure-time diagram at valve end for

instantaneous valve closure

Rapid and Slow Closure of the Valve Our discussion has so far been based on

the instantaneous closure of the valve which means that the time taken for the

valve to be fully closed is zero. But this is practically impossible, and therefore,

some time must elapse for the complete closure of the valve. If this time interval

of valve closure is equal to or less than 2l/C, then results are not essentially

different from that discussed from an instantaneous valve closure. Therefore,

when the time for the valve to be fully closed is less than or equal to 2l/C, the

closing of valve is known as rapid closure. In rapid closure, though the pressure

head at the valve is gradually built up as the valve is closed, the maximum

pressure head reached for an inviscid fluid, however is the same and equals to

CVo/g as with the instantaneous closure. This is because the conversion of entire

kinetic energy of fluid to its strain energy (or pressure energy) is completed before

any reflected wave reaches the valve end. If on the other hand, the time for

complete closure of the valve is greater than 2 l/C, then before the entire kinetic

energy being converted into strain energy to raise the pressure head to its

maximum value of CVo/g, a reflected wave of negative pressure arrives to reduce

the pressure head at the valve end. This situation is termed as slow closure of

valve. Therefore, we see that the maximum pressure rise depends on whether the

time during which the valve is closed is greater or less than 2 l/C. When the time

of valve closure is much longer than 2 l/C, the effect of compressibility may be

neglected. Thus we can summarize the above discussion as follows:

tc(time taken for valve closure) = 0 (instantaneous closure)

£ 2l/C (rapid closure)

> 2l/C (slow closure)

>> 2l/C (slow closure where compressibility

effect and subsequent phenomenon of water

hammer can be neglected)



When a valve is rapidly closed (tc < 2l/C), the whole length of the pipe is not

subjected to peak pressure. Let, the length xo of the pipe from the reservoir end be

subjected to reduced pressure while the remaining portion, (l � xo) up to the valve

end be subjected to peak pressure head CVo/g. The value of xo depends upon the

value of tc, the time of valve closure, and can be obtained by equating the time for

the peak pressure to be generated up to the length (l � xo) with the time for the first

reflected negative pressure wave to reach there as,

tc + 
l x

C

- 0  =
l

C

x

C
+ 0

or  xo = Ctc/2

When tc = 0, i.e. for instantaneous closure, xo = 0 which means that the entire pipe

is subjected to maximum pressure. The essential feature in the analysis of water

hammer problems due to a rapid or slow closure of the valve is to assume that the

movement of the valve does not take place continuously, rather in series of

discrete steps of instantaneous partial closure occurring at equal intervals of 2l/C

or a sub-multiple of 2l/C. Between these discrete steps, the valve is assumed

stationary. Each of these steps generates its own particular wave which is similar

in form to those depicted in Fig. 13.7a and 13.7b. We can calculate the increase in

pressure head due to the first step of instantaneous closure by assuming that the

velocity is reduced from V0 to V1 in this step. The momentum equation for a

control volume circumscribing the pressure wave in a steady state, under this

situation, can be written as

rC [(C � V0 + V1) � C] = � D p

or rC(V0 � V1) = D p

Hence, Dh =
D p

g

C V V

gr
=

-( )0 1 (13.43)

For a rapid closure, the total pressure head at the valve end at the instant of its

complete closure is given by

S Dh =
CV

g

0

This is because no reflected wave returns back to the valve before it is

completely closed. Determination of V1 and the pressure head developed for the

first step is made as follows:

Let the initial pressure head and the pressure head after the first step of partial

valve closure be h0 and h1 respectively. Then Eq. (13.43) can be written as

h1 � h0 =
C V V

g

( )0 1-
(13.44)

Another relation between h1 and V1 is required if either is to be calculated. Let us

consider that the valve discharges into atmosphere, and it is regarded as similar to

an orifice with a constant coefficient of discharge Cd. Therefore, we can write

from continuity

AV1 = Q = Cd A
v
 (2gh1)1/2 (13.45a)



where A
v
 is the area of valve opening after the first step of closure and A is the

cross-sectional area of pipe where the fluid velocity is V1. Equation (13.45a) can

be written as

V1 = B (h1)
1/2

(13.45b)

where, B = Cd (A
v
/A)(2g)1/2

The factor B is usually known as the valve opening factor or area coefficient.

It should be noted that Cd is not necessarily constant, and therefore the variation

of B with the valve setting has to be determined by experiment for each design of

valve. Simultaneous solution of Eq. (13.44) and (13.45b) gives the values of V1

and h1. Calculations are usually carried out step by step for each discrete step of

partial closure of the valve.

Surge Tanks In many practical situations, problems associated with water

hammer may be overcome by the use of a surge tank. One  such situation occurs

in hydroelectric power stations. In hydroelectric installations, the turbine is

supplied with water via a long pipeline or a tunnel cut through rock known as

penstock. If the electric power taken from the generator which is mechanically

coupled to the turbine, is suddenly altered, the turbine tends to change its speed.

However this speed is kept constant, to maintain the constancy in cycle frequency

in the power line, by altering the water flow rate to the turbine through the

operation of a valve at its inlet. This is known as governing of turbines and the

mechanism, through which it is automatically done, is known as governor.

Therefore, it is the consequent acceleration or deceleration of water in the pipeline

which may give rise to water hammer.

The minimization of water hammer is of utmost importance because the large

pressure fluctuations not only produce a harmful effect on the pipeline but also

impede the governing. By using a surge tank in the pipeline at a convenient place

near the turbine, the adverse effect of water hammer can be restricted to a shorter

length of the penstock. Such an arrangement is shown in Fig. 13.9. The simplest

type of surge tank is an open vertical cylinder S (Fig. 13.9) of large diameter. It

may be constructed of steel, or tunnelled in rock, and should be as close to the

turbine as possible. The upstream pipeline AB is of small slope, and the top of the

surge tank S is higher than the water level in the reservoir A. When there is a

sudden reduction in load on the turbines, the rate of flow of water to the turbines

is decreased through the governing mechanism. But the rate of flow in the line AB

cannot fall at once to the required new value. What happens, under this situation,

is that the temporary surplus of water goes into the surge tank S and the rise in

water level in the surge tank then creates a hydrostatic head which decelerates the

water in pipe AB. In case the required deceleration is very high, water is allowed

to overflow from the top of the surge tank so that the head in the surge tank does

not increase indefinitely. Thus a gradual deceleration of water in pipe AB takes

place. Therefore, a much shorter length of pipe BC is now subjected to water

hammer effects due to partial closure of the valve C. Therefore the pipe BC must

be constructed strong enough to withstand the increased pressure.



Another important feature of a surge tank is that it provides a reverse supply of

water to make up a temporary deficiency of flow down the pipe AB when the

demand at the turbines is increased. If the load on the turbines is suddenly

increased, a sudden acceleration of the water column in the supply pipe is

required. The excessive drop in pressure at the turbines, under this situation, is

controlled by supplying water from the surge tank and thus meeting up the

demand. As the water level in the surge tank is drawn down, the difference in

head along AB is increased, and so the water there is gradually accelerated until

the rate of flow in AB equals to that required by the turbine.

We present here an analysis for the reduction of flow rate in a hydroelectric

installation with a simple cylindrical surge tank as shown in Fig. 13.10. The part

AB of the pipe is free from water hammer effects since it has two open reservoirs

at its ends. Therefore, the flow in this part is treated as a simple inertia problem

similar to that discussed in Sec. 13.2. The flow in pipe BC is subjected to water

hammer.

A

B

C

S

‘Penstock’

Turbine

Fig. 13.9 A simple surge tank

Fig 13.10 Working principle of a cylindrical surge tank



At any instant, we can write from continuity,

aV = A  
d

d

h

t

È ˘-Í ˙Î ˚
 + Q (13.46)

where,

A = cross-sectional area of surge tank,

a = cross-sectional area of upstream pipeline AB,

V = average velocity (over a cross-section) in pipe AB,

h = depth of water level in surge tank below that of the reservoir, which is

taken as datum,

Q = rate of volume flow through the pipe BC to the turbine.

Under steady condition, the level in the surge tank h would be constant and

would equal to the frictional head loss hf due to flow from the reservoir to the

surge tank through pipe AB. But at any instant while the surge is taking place, the

level in the surge tank goes up from its steady state level, and thus an additional

head of (hf � h) is available to decelerate the liquid in pipe AB. If the area of the

surge tank is considered to be large compared to a, the area of pipe AB, then the

frictional head and the head required to decelerate the liquid in the surge tank can

be neglected compared to that required for decelerating the liquid in pipe AB.

Therefore, we can write, according to Eq. (13.2),

hf � h  =
d

d

L V

g t

Ê ˆ-Á ˜Ë ¯
(13.47)

Instantaneous values of h and V can be found out from simultaneous solution of

Eqs (13.46) and (13.47). It is difficult to have a closed form solution if friction

factor f in determining hf is not constant. However numerical integrations of

Eqs (13.46) and (13.47) are possible, with a known initial steady condition, to

determine the value of h and V at every instant while the surge is taking place.

For a special case when Q = 0, and assuming a constant value of f, we have a

solution for V as

V
2
 =

2 4
exp

4 4

gd a d f Ah
h C

f L f A ad

Ê ˆ Ê ˆ+ + Á ˜Á ˜ Ë ¯Ë ¯

where d is the diameter of pipe AB and C is a constant.

Under steady condition, head (hf � h) should become zero and so the level in

the tank should fall immediately after the maximum height has been reached. The

level then oscillates about the steady position where h = hf. However, the

movements are damped out by friction.

We can conclude from the above discussion that a surge tank has two distinct

functions:

(i) Minimization of water hammer effect in the pipelines leading from

penstock to the turbines.

(ii) Taking up the surplus water when the load is reduced and meeting up

with the extra water when the load is increased.



A simple cylindrical surge tank has the disadvantage in a sense that these two

effects are in no way separated, and hence it becomes a little sluggish in operation.

Tanks of different designs with varying cross-section along the height and with

overflow devices or damping arrangements such as a restriction in the entrance

are incorporated in practice.

Summary

∑ The temporal acceleration in an unsteady flow becomes important

when the change in velocity is rapid. In a very fast change of flow,

arising from sudden opening or closing of valve, the density of fluid

changes considerably and the elastic force becomes significant.

∑ The difference in the piezometric pressure, causing a uniform temporal

acceleration of a liquid column, is known as inertia pressure and the

corresponding head is known as inertia head which is given by (L/g)

(∂V/∂t), where L is the length of the liquid column being accelerated.

∑ Oscillation of an inviscid liquid column in a u-tube shows an

undamped periodic motion with a time period of 2p (l /2g)1/2, where l

is the length of the liquid column. The nature of oscillation of a viscous

liquid column in a u-tube depends upon the kind of flow and damping

factor. For a laminar flow, the oscillation is of damped periodic in

nature with diminishing amplitude when the damping factor is less than

unity. The flow is a non-oscillatory type reaching the equilibrium

position asymptotically or a transitory one changing from oscillatory

to non-oscillatory types depending upon whether the damping factor is

greater than unity or equals to unity respectively.

∑ When the flow in a pipe line is suddenly reduced by closing a valve

downstream, a phenomenon like knocking of the pipe system takes

place due to repeated up and down motion of a pressure wave within

the pipe. This phenomenon is known as water hammer. The

disturbance created at the valve end, due to its closure, propagates

upstream as a messenger in the form of a pressure wave with a velocity

C (relative to the liquid medium) which equals to [(E/r) / (1 + Ed/

Ept)]1/2. The rise in pressure head due to deceleration of the liquid to

rest by the instantaneous closure of a valve is given by CVo/g. The

valve closure is said to be rapid when the time of closing the valve is

less than or equal to 2l/C (l being the length of the pipe), so that the

maximum rise in pressure head at the valve end becomes equal to C

V0/g. The valve closure is considered to be slow when the time of

closing the valve is greater than 2l/C and under this situation the

maximum rise in pressure head at the valve end becomes less than C

Vo /g due to the arrival of a reflected wave of negative pressure head

from the reservoir end.

∑ The problem of water hammer in the penstock in a hydroelectric power

station is circumvented by the use of a surge tank.



Solved Examples

Example 13.1 A straight pipe 600 m in length, and 1m in diameter, with a constant

friction factor f = 0.025, and a sharp inlet, leads from a reservoir where a constant level is

maintained at 25 m above the pipe outlet which is initially closed by a globe valve

(K = 10). If the valve is suddenly opened, find the time required to attain 90% of steady-

state discharge.

Solution This problem is an example of the straight forward application of

Eq. (13.7) which gives the time for establishment of steady flow in a pipe. By making use

of this equation for the present problem, we have

t =
600

2 9 81 25

1 9

0 1

0¥
¥ ¥

V

( . )
ln

.

.
(13.48)

Steady state velocity V0 is found out by the application of Bernoulli�s equation, at steady

state, between a point on the free surface of water in the reservoir and a point on the

discharge plane after the valve, as

25 =
V

g

0
2

2
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0 025 600

1
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.
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Putting this value of V0 in Eq. (13.48), we have

t =
600

2 9 81 25 26 5

1 9

0 11 2
( . . ]

ln
.

./¥ ¥ ¥
= 15.5s

Example 13.2 A valve at the outlet end of a pipe 1m in diameter and 600 m long is

rapidly opened. The pipe discharges to atmosphere and the piezometric head at the inlet

end of the pipe is 23 m (relative to the outlet level). The head loss through the open valve

is 10 times the velocity head in the pipe, other minor losses amount to twice the velocity

head, and f, the friction factor is assumed constant at 0.020. What is the velocity after

12 sec?

Solution We first determine the steady-state velocity V0 by the application of

Bernoulli�s equation, at steady state, between a point at the inlet end of the pipe and a

point at its outlet end as

23 =
V

g

0
2

2

0 020 600

1
10 2

. ¥
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Therefore, V0 =
2 9 81 23

24

1 2¥ ¥L
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O
QP

.
/

 = 4.34 m/s

Let the velocity after 12 sec be V. Then, from Eq. (13.7) we can write



12 =
600 4 34

2 9 81 23
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(where x = V/V0)

Hence, ln 
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( )

1

1

+
-

L
N
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P

x

x
 = 2.08

or
( )

( )

1

1

+
-

x

x
 = 8

which gives x = 7/9

Therefore, V =
7 4 34

9

¥ .
 = 3.37 m/s

Example 13.3 A 20 mm diameter U-tube contains liquid column of length 4 m.

The kinematic viscosity of the liquid is 8 ¥ 10�6
 m

2
/s. If the liquid column oscillates, find

the time period of oscillation assuming the flow to be laminar. Find also the ratio of two

successive amplitudes.

Solution The differential equation for oscillation of a liquid column in a U-tube (in

consideration of flow to be laminar) is given by Eq. (13.16), and the nature of its solution

depends upon the value of damping factor given by

z =
16

22

n

d

l

g

F
HG

I
KJ

Here, z =
16 8 10

20 10

4

2 9 81

6

2 6

¥ ¥
¥ ¥

-

-( ) .
 = 0.14

Since z < 1, the oscillatory flow in the present case is represented by the Eq. (13.20a),

and hence the time period is given by the Eq. (13.20c) as

T =
2

1 0 14

4

2 9 812 1 2

p

{ ( . ) } ./- ¥
 = 2.86 s

The ratio of two successive amplitudes can be written with the help of Eq. (13.20a) as

z

z

t

t T

( )

( )+
 = e

zw T
 = exp . . / .0 14 2 9 81 4 2 86¥ ¥d i = 2.43

Example 13.4 Determine the maximum time for rapid valve closure on a pipeline

600 mm in diameter, 450 m long, made of steel (E = 207 ¥ 106 kN/m2) with a wall

thickness of 12.5 mm. The pipe contains benzene of specific gravity 0.88, E = 1.035 ¥
106 kN/m2 flowing at 0.85 m3/s. The pipe is not restricted longitudinally.

Solution The maximum time for a rapid valve closure is given by

tmax =
2l

C



where l is the length of the pipe and C is the velocity (relative to flow of liquid) of pressure

wave created by the valve closure.

C is given according to Eq. (13.41) as

C =
E

Ed E tp

/

( / )

/

r
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L
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or C = 974 m/s

Hence, tmax =
2 450

974

¥
 = 0.924 s

Example 13.5 Water has to flow uniformly at the rate of 0.20 m3/s though a pipe of

200 mm diameter. Calculate the minimum thickness of the pipe that has to be provided

if, for a sudden stoppage of flow, the pipe should not be stressed more than 5 ¥ 104
 kN/

m
2
. (Take E for water = 2 ¥ 10

6
 kN/m

2
 and E for the pipe material = 120 ¥ 10

6
 kN/m

2
)

Solution The velocity of flow V through the pipe is given by

V =
4 0 20

0 2
2

¥ ( . )

( . )p

= 6.37 m/s

The velocity of pressure wave created due to valve closure is determined using

Eq. (13.41) as

C =
( / )

( . / )

2 10 10

1 2 0 2 120

9 3¥
+ ¥ t

(where t is the thickness of the pipe)

=
2 10

1 0 0033

6¥
+ . / t

=
2

0 0033
103t

t +
¥

.
m/s

Now, D p = rCV = 6.37 
2

0 0033
106t

t +
¥

.
N/m2

Again, from the consideration of stress in the pipe wall

t =
D pd t

t2

6 37 0 2

2 5 10
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0 0033
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7
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s
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¥
¥ ¥ +

¥
. .

.



= 0.01274 
2

0 0033

t

t + .

or 6161t
2
 + 20.33t � 2 = 0

This equation of t gives one positive root of t = 0.016 as the feasible solution.

Therefore, t = 0.016 m = 16 mm.

Example 13.6 A uniform U-tube has two vertical limbs open to atmosphere and

connected by a horizontal middle part. The left and right limbs are filled with liquids of

length l1, l2 and density r1, r2 respectively. The liquid columns meet in the horizontal

part of the tube. Calculate the frequency of oscillation under gravity, neglecting viscous

effect.

z z
1

2

V

V

l1
l2

Fig. 13.11 Oscillations of two liquid columns in a U-tube

Solution At equilibrium position, the heights of liquid columns in left and right limbs

from the horizontal base of the manometer are l1 and l2 respectively (Fig. 13.11). Let us

consider an instant of oscillation when the liquid column in the left limb moves upward

while that in the right limb moves downward as shown in Fig. 13.11. By the application

of Bernoulli�s equation for unsteady flow between points 1 and 2 (Fig. 13.11) we get,

r r r r r
∂

∂
1

2

1 1 2

2

2 2

1

2

2 2

V
p g l z

V
p g l z

V

t
s+ + - = + + + + zatm atm d( ) ( )

[Displacement of the liquid columns and hence their velocities are equal since the

cross-sectional area of two limbs are considered to be the same]

or (r2 � r1) 
V2

2
 + (r2l2 � r1l1)g + (r2 + r1)gz + (r1l1 + r2l2) 

d

d

V

t
 = 0 (13.49)

Equating the hydrostatic pressures at the base of the manometer in the equilibrium

position of the liquids, we have



r2l2 g = r1l1g (13.50)

With the help of Eq. (13.50) and writing

V =
d

d
and

d

d

d

d

2
z

t

V

t

z

t
= 2

We have from Eq. (13.49)
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For small values of (dz/dt)
2
 (when amplitudes of oscillation are small compared to the

lengths of the liquid columns), this equation becomes,

d

d (

2

2

z

t

g

l l
z2

1 2

2 1 1

+
+
+

( )

)

r r

r r
 = 0

Hence the frequency of oscillation becomes
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Example 13.7 A cast iron pipe of 300 mm diameter and 8 mm thick is 1500 m

long. The pipe is to convey 200 liter/s of water.

(a) Estimate the maximum time of closure of a valve at the downstream end that

would be recognised as a rapid closure.

(b) What is the peak water hammer pressure produced by rapid closure?

(c) What is the length of the pipe subjected to peak water hammer pressure if the

time of closure is 2.0 s?

[For water E = 2200 MPa; for cast iron E = 80 ¥ 10
9
 Pa]

Solution (a) The velocity of the pressure wave due to valve closure is determined

according to Eq. (13.41) as

C =
2 2 10

10 1
2 2 0 3

80 8 10

9

3
3

.

. .

¥
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= 1041 m/s

The maximum time of valve closure to be recognised as a rapid one is given by

tmax =
2 2 1500

1041

l

C
=

¥
 = 2.88 s

(b) The velocity of flow through the pipe

V0 =
0 2 4

0 3
2

.

( . )

¥
¥p

 = 2.83 m/s

Therefore, the peak pressure due to rapid closure

pmax = rCV0 = 103 ¥ 1041 ¥ 2.83 Pa

= 2.95 MPa



(c) Let the length of the pipe from the valve end which will be subjected to peak

pressure be x. Then equating the time for the peak pressure to be generated upto the

length x from the valve end with the time for the first reflected negative pressure wave to

reach there, we have,

x

C
+ 2  =

l

C

l x

C
+

-

or
x

1041
2+  =

1500

1041

1500

1041
+

- x

which gives x = 459 m

Example 13.8 A 400 mm steel pipe is 2000 m long and conveys 100 litre/s of

water with a static head of 200 m at the downstream end of the pipe. If a valve at the

downstream end is closed in 6 s, estimate the stress in the pipe wall at the valve. The pipe

thickness is 5 mm.

[For water E = 2.2 ¥ 109 Pa; for steel E = 2.2 ¥ 1011 Pa]

Use an approximate expression to calculate the maximum rise in pressure head for a

slow closure as D ps = 
2l

TC
pr◊D , where D ps and D pr are the peak rises in pressure due to

slow and rapid closure respectively. l, C and T are the length of the pipe, the wave velocity

and the time of valve closure respectively]

Solution The wave velocity C is given by

C =
2 2 10

10 1
2 2 0 4
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¥
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¥

¥ ¥ ¥
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= 1105 m/s

Velocity of flow Vo =
0 1 4

0 4
2

.

( . )

¥
¥p

 = 0.796 m/s

The peak rise in water hammer pressure due to rapid closure

D pr = rCVo = 10
3
 ¥ 1105 ¥ 0.796 = 879 kPa

The maximum time of rapid closure Tmax = 
2 2000

1105

¥
 = 3.62 s

Since the time of closure is 6 s which is greater than 3.62 s, the present situation

corresponds to a slow closure.

The rise in pressure head at the valve end due to the slow closure is given by D ps =

879 ¥ 
3 62

6

.
 = 530 kPa.

Therefore, the rise in total pressure D p = D ps + D pstatic

= 530 ¥ 10
3
 + 200 ¥ 10

3
 ¥ 9.81 Pa

= 2.5 MPa



Therefore the stress s is determined as

s = 
D pd

t2
 =

2 5 10 0 4

2 5 10

6

3

. ( . )¥ ¥
¥ ¥ -  = 1 ¥ 10

8
 N/m

2
 = 100 MN/m

2

Exercises

13.1 Choose the correct answer:

(i) A long pipe connected to a water tank, providing a constant head, has a

valve at its downstream end which is suddenly opend. If t1 is the time to

reach 90% of the steady state flow determined by neglecting friction and

other losses, and t2 is the corresponding time obtained by including friction

and other losses, then

(a) t2 > t1 (b) t2 = t1 (c) t2 < t1 (d) t2 ≥ t1

(e) t2 £ t1

(ii) The propagation velocity of a pressure wave in a rigid pipe carrying a fluid

of density r and viscosity m varies as

(a) r (b) 1/r (c) r/m (d) r

(iii) The downstream valve of a pipe conveying a liquid at steady rate is closed

during a time interval of l/C, where l is the length of the pipe and C is the

wave velocity relative to liquid in the pipe. Under this situation, the peak

water hammer pressure would be experienced

(a) only at the valve end

(b) by one fourth length of the pipe from the valve end

(c) by half of the pipe length

(d) by the full pipe length

(iv) In a pipe of 4000 m long carrying oil, the velocity of propagation of a

pressure wave is 500 m/s. A valve at the downstream end is closed suddenly.

At the mid point of the pipeline, the peak water hammer pressure will  exist

for a duration of

(a) 1.0s (b) 2.0s (c) 4.0s (d) 8.0s

(v) A surge tank is provided in a hydroelectric power station to

(a) reduce frictional losses in the system

(b) reduce water hammer problem in the penstock

(c) increase the net head across the turbine

13.2 A 200 mm diameter and 2000 m long pipe leads from a large reservoir to an

outlet which is 30 m below the water level in the reservoir. If a valve at the pipe

outlet is suddenly opened, find the time required to reach (i) 50% and (ii) 90% of

steady state discharge. Assume the friction factor f = 0.02 and minor losses

(excluding the exit loss) as 10 (V2/2g).

(Ans. 6.23s, 16.71s)

13.3 Two reservoirs with a constant difference of 15 m in their free water surface are

connected by a 200 mm diameter pipe of length 500 m and f = 0.020. The minor

losses in the pipe (including the exit loss) can be taken as 10 times the velocity

head in the pipe. If a valve controlling the flow is suddenly opened, (i) find the

time for 95% of the steady flow to be established, and (ii) find the flow at the end

of 10s from the opening of the valve.

(Ans. 13.78s, 0.06 m3
/s)



13.4 Determine the error in calculating the excess pressure of water hammer in a steel

pipe carrying water with an inner diameter d = 15 mm and a wall thickness

t = 2 mm if the elasticity of the material of the pipe wall is disregarded. Take

E = 2.07 ¥ 105 MN/m2 for steel and E = 2.2 ¥ 103 MN/m2 for water.

[Ans. 3.92%]

13.5 A steel pipe 300 mm in diameter and 1500 m long conveys crude oil having a

specific gravity of 0.8 and a bulk modulus of elasticity 1520 MPa. The rate of

discharge of oil is 0.08 m3/s. A valve at the downstream end of the pipe is

completely closed in 2s. If the thickness of the pipe is 20 mm, calculate the addi-

tional stress in the pipe due to the valve operation. (For steel pipe, modulus of

elasticity = 2.07 ¥ 105 MPa).

(Ans. 8.88 MPa)

13.6 A steel pipeline of 1200 m long, 500 mm in diameter has a wall thickness of

5 mm. The pipe discharges water at the rate of 0.1 m
3
/s. The static head at the

outlet is 200 m of water. If the working stress of steel is 0.1 kN/mm
2
, calculate

the minimum time of closure of a downstream valve. For water: E = 2.2 ¥ 103

MPa and for steel: E = 2.07 ¥ 105 MPa.

(Ans. 32.17s)

13.7 A valve at the end of a pipe 600 m long is closed in five equal steps each of 2 l/C,

where C = 1200 m/s (the wave velocity relative to liquid in the pipe). The initial

head at the valve which discharges to atmosphere, is 100 m and the initial

velocity in the pipe is 1 m/s. Neglecting the frictional effects, determine the head

at the valve after 1, 2 and 3 s.

[Ans. 116.64 m, 111.5 m, 87.14 m)

13.8 Show that, if the friction loss in a pipe-line is proportional to the square of the

velocity, the oscillatory motion of the level in a simple, open, cylindrical surge

tank following complete shut-down of the turbines in a hydroelectric plant is

given by an equation of the form

22

2

d d

dd

H H
H

tt
a b

Ê ˆ¢ ¢
+ + ¢Á ˜¢Ë ¯¢

= 0

where H¢ = H /l, t¢ = t 
g

l
, with H being the instantaneous depth of water level

in surge tank below that of the reservoir, l the length of the pipeline from reservoir

to surge tank and t the time, a and b are the dimensionless constants. Find the

values of a and b for surge tank whose diameter is 10 times more than that of the

pipeline and the length to diameter ratio of the pipeline is 200. (Take friction

factor f = 0.02)

(Ans. a = �200, b = 0.01)



14.1 INTRODUCTION

Compressible flow is often called as variable density flow. For the flow of all

liquids and for the flow of gases under certain conditions, the density changes are

so small that assumption of constant density remains valid (see Chapter 1).

Consider a small element of fluid of volume v . The pressure exerted on the

element by the neighbouring fluid is p. If the pressure is now increased by an

amount dp, the volume of the element will correspondingly be reduced by the

amount dv . The compressibility of the fluid, K, is thus defined as

K = �
1

v

vd

dp
(14.1)

However, when a gas is compressed, its temperature increases. Therefore, the

above mentioned definition of compressibility is not complete unless temperature

condition is specified. If the temperature is maintained at a constant level, the

isothermal compressibility is defined as

KT = �
1

v

vd

dp
T

F
HG

I
KJ

(14.2)

Compressibility is a property of fluids. Liquids have very low value of

compressibility (for example, compressibility of water is 5 ¥ 10�10 m2/N at 1 atm

under isothermal condition), while gases have very high compressibility (for

example, compressibility of air is 10
�5

 m
2
/N at 1 atm under isothermal condition).

If the fluid element is considered to have unit mass, v  is the specific volume

Compressible Flow

14
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(volume per unit mass) and the density is r = 1/v. In terms of density, Eq. (14.1)

becomes

K =
1

r

r
◊

d

d p
(14.3)

We can also say that for a change in pressure, dp, the change in density is

dr = rKdp (14.4)

So far we have thought about a fluid and its property�compressibility. If we

also consider the fluid motion, we shall appreciate that the flows are initiated and

maintained by changes in pressure on the fluid. It is also known that high pressure

gradient is responsible for high speed flow. However, for a given pressure

gradient (dp), the change in density of a liquid will be smaller than the change in

density of a gas (as seen in Eq. (14.4)). So, for flow of gases, moderate to high

pressure gradients lead to substantial changes in the density. Due to such pressure

gradients, gases flow with high velocity. Such flows, where r is a variable, are

known as compressible flows.

If we recapitulate Chapter 1, we can say that the proper criterion for a nearly

incompressible flow is a small Mach number,

Ma =
V

a
 << 1 (14.5)

where V is the flow velocity and a is the speed of sound in the fluid. For small

Mach number, changes in fluid density are small everywhere in the flow field. In

this chapter we shall treat compressible flows which have Mach numbers greater

than 0.3 and exhibit appreciable density changes.

The Mach number is the most important parameter in compressible flow

analysis. Aerodynamicists make a distinction between different regions of Mach

number in the following way:

∑ Ma < 0.3: incompressible flow; change in density is negligible.

∑ 0.3 < Ma < 0.8: subsonic flow; density changes are significant but

shock waves do not appear.

∑ 0.8 < Ma < 1.2: transonic flow; shock waves appear and divide the

subsonic and supersonic regions of the flow. Transonic flow is

characterized by mixed regions of locally subsonic and supersonic

flow.

∑ 1.2 < Ma < 3.0: supersonic flow; flow field everywhere is above

acoustic speed. Shock waves appear and across the shock wave, the

streamline changes direction discontinuously.

∑ 3.0 < Ma: hypersonic flow; where the temperature, pressure and

density of the flow increase almost explosively across the shock wave.

The above five categories of flow are appropriate to external aerodynamics.

For internal flow, it is to be studied whether the flow is subsonic (Ma < 1) or

supersonic (Ma > 1). The effect of change in area on velocity changes in subsonic

and supersonic regime is of considerable interest. By and large, in this chapter we

shall mostly focus our attention to internal flows. The material in this chapter is
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inspired by the two-volume classical book on compressible flows by

A.H. Shapiro [1].

14.2 THERMODYNAMIC RELATIONS OF
PERFECT GASES

14.2.1 Perfect Gas

Compressible flow calculations can be made by assuming the fluid to be a perfect

gas. A perfect gas is one in which intermolecular forces are neglected. The

equation of state for a perfect gas can be derived from kinetic theory. It was

synthesized from laboratory experiments by Robert Boyle, Jacques Charles,

Joseph Gay-Lussac and John Dalton. However, for a perfect gas, it can be written

pV  = MRT (14.6)

where p is pressure (N/m2), V  is the volume of the system (m3), M is the mass of

the system (kg), R is the specific gas constant (J/kg K) and T is the temperature

(K). This equation of state can be written as

pv  = RT (14.7)

where v  is the specific volume (m3/kg). We can also write

p = rRT (14.8)

where r is the density (kg/m3).

In another approach, which is particularly useful in chemically reacting

systems, the equation of state is written as

pV  = NR T (14.9)

where N is the number of moles in the system, and R is the universal gas constant

which is same for all gases. It may be recalled that a mole of a substance is that

amount which contains a mass equal to the molecular weight of the gas and which

is identified with the particular system of units being used. For example, in case

of oxygen (O2), 1 kilogram-mole (or kg ◊mol) has a mass of 32 kg. Because the

masses of different molecules are in the same ratio as their molecular weights,

1 mol of different gases always contains the same number of molecules, i.e.

1 kg-mol always contains 6.02 ¥ 1026 molecules, independent of the species of

the gas. Dividing Eq. (14.9) by the number of moles of the system yields

pV
1
 =R T (14.10)

If, Eq. (14.9) is divided by the mass of the system, we can write

pv  = hR T (14.11)

where v  is the specific volume as before and h is the mole-mass ratio (kg-mol/kg).

Also, Eq. (14.9) can be divided by system volume, which results in

p = CRT (14.12)

where C is the concentration (kg-mol/m3).

The equation of state can also be expressed in terms of particles. If NA is the

number of particles in a mole (Avogadro constant, which for a kilogram-mole is

6.02 ¥ 1026 particles), from Eq. (14.12) we obtain
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p = (NAC) 
A

T
N

Ê ˆ
Á ˜Ë ¯
R

(14.13)

In the above equation, (NAC) is the number density, i.e. number of particles per

unit volume and (R /NA) is the gas constant per particle, which is nothing but

Boltzmann constant.

Finally, Eq. (14.13) can be written as

p = nkT (14.14)

where n is the number density and k is Boltzmann constant.

So far, we have come across different forms of equation of state for perfect

gas. They are necessarily same. A closer look depicts that there are variety of gas

constants. They are categorized as

1. Universal gas constant: When the equation deals with moles, it is in

use. It is same for all the gases.

R = 8314 J/ (kg-mol-K)

2. Characteristic gas constant: When the equation deals with mass, the

characteristic gas constant (R) is used. It is a gas constant per unit

mass and it is different for different gases. As such R = R /M, where

M is the molecular weight. For air at standard conditions,

R = 287 J/(kg-K)

3. Boltzmann constant: When the equation deals with particles,

Boltzmann constant is used. It is a gas constant per particle.

k = 1.38 ¥ 10�23 J/K

However, the question is how accurately one can apply the perfect gas theory?

It has been experimentally determined that at low pressures (1 atm or less) and at

high temperature (273 K and above), the value of (pv /RT) for most pure gases

differs with unity by a quanity less than one per cent. It is also understood that at

very cold temperatures and high pressures the molecules are densely packed.

Under such circumstances, the gas is defined as real gas and the perfect gas

equation of state is replaced by vander Waals equation which is

p
a

b+F
H

I
K

-
v

v
2

( ) = RT (14.15)

where a and b are constants and depend on the type of the gas. In conclusion, it

can be said that for wide range of applications related to compressible flows, the

temperatures and pressures are such that the equation of state for the perfect gas

can be applied with a high degree of confidence.

14.2.2 Internal Energy and Enthalpy

Microscopic view of a gas is a collection of particles in random motion. Energy of

a particle can consist of translational energy, rotational energy, vibrational energy

and electronic energy. All these energies summed over all the particles of the gas,

form the internal energy, e, of the gas.
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Let, us imagine a gas is in equilibrium. Equilibrium signifies gradients in

velocity, pressure, temperature and chemical concentrations do not exist. Let e be

the internal energy per unit mass. Then the enthalpy, h, is defined per unit mass,

as h = e + pv , and we know that

e = e (T, v)

h = h (T, p)

¸
˝
˛

(14.16)

If the gas is not chemically reacting and the intermolecular forces are

neglected, the system can be called as a thermally perfect gas, where internal

energy and enthalpy are functions of temperature only. One can write

e = e (T)

h = h (T)

de = c
v
 dT

¸
Ô
˝
Ô
˛

(14.17)

dh = cp dT

If the specific heats are constant it can be called as a calorically perfect gas where

e = c
v
T

h = cpT

¸
˝
˛

(14.18)

In most of the compressible flow applications, the pressure and temperatures

are such that the gas can be considered as calorically perfect. However, for

calorically perfect gases, we can accept constant specific heats and write

cp � c
v
 = R (14.19)

and the specific heats at constant pressure and constant volume are defined as

cp =

p

h

T

∂

∂

Ê ˆ
Á ˜Ë ¯

c
v
 =

v

e

T

∂

∂

Ê ˆ
Á ˜Ë ¯

(14.20)

From Eq. (14.19), one can write

1 � 
c

cp

v  =
R

cp

(14.21)

We also know that cp/c
v
 = g. We can rewrite Eq. (14.21) as

1 � 
1

g
 =

R

cp

or cp =
g

g

R

- 1
(14.22)

In a similar way, from Eq. (14.19) we can write

c
v
 =

R

g - 1
(14.23)
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14.2.3 First Law of Thermodynamics

Let us imagine a system with a fixed mass of gas. If dq amount of heat is added to

the system across the system-boundary and if dw is the work done on the system

by the surroundings, then there will be an eventual change in internal energy of

the system which is denoted by de and we can write

de = dq + dw (14.24)

This is first law of thermodynamics. Here, de is an exact differential and its

value depends only on initial and final states of the system. However, dq and dw

are dependent on the process. A process signifies the way by which heat can be

added and the work is done on the system. Here, we shall be interested in

isentropic process which is a combination of adiabatic (no heat is added to or

taken away from the system) and reversible process (occurs through successive

stages, each stage consists of an infinitesimal small gradient). In an isentropic

process, entropy of a system remains same.

14.2.4 Entropy and Second Law of Thermodynamics

Equation (14.24) does not tell us about the direction (i.e., a hot body with respect

to its surrounding will gain temperature or cool down) of the process. To

determine the proper direction of a process, we define a new state variable, the

entropy, which is

ds =
d q

T

rev (14.25)

where s is the entropy of the system, dqrev is the heat added reversibly to the

system and T is the temperature of the system. Entropy is a state variable and it

can be connected with any type of process, reversible or irreversible. An effective

value of dqrev can always be assigned to relate initial and end points of an

irreversible process, where the actual amount of heat added is dq. One can write

ds =
d q

T
s+ d irrev (14.26)

It states that the change in entropy during a process is equal to actual heat added

divided by the temperature plus a contribution from the irreversible dissipative

phenomena. The dissipative phenomena always increase the entropy,

dsirrev ≥ 0 (14.27)

Significance of greater than sign is understood. The equal sign represents a

reversible process. A combination of Eqs (14.26) and (14.27) yields,

ds ≥
d q

T
(14.28)

If the process is adiabatic, d q = 0, Eq. (14.28) yields,

ds ≥ 0 (14.29)

Equations (14.28) and (14.29) are the expressions for the second law of

thermodynamics. The second law tells us in what direction the process will take
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place. The direction of a process is such that the change in entropy of the system

plus surrounding is always positive or zero (for a reversible adiabatic process). In

conclusion, it can be said that the second law governs the direction of a natural

process.

For a reversible process, it can be said (see Nag [2]) that dw = �pd v , where

dv  is change in volume and from the first law of thermodynamics it can be written

as

dq � pdv  = de (14.30)

If the process is reversible, we use the definition of entropy in the form

dqrev
 = T ds, then Eq. (14.30) becomes

T ds � pdv = de

or Tds = de + pdv (14.31)

Another form can be obtained in terms of enthalpy. For example, by definition

h = e + pv

Differentiating, we obtain

dh = de + pdv  + vdp (14.32)

Combining Eqs (14.31) and (14.32), we have

Tds = dh � vdp (14.33)

Equations (14.31) and (14.33) are termed as first Tds equation and second Tds

equation, respectively.

For a thermally perfect gas, we have dh = cp dT (from Eq. 14.20) and we can

substitute this in Eq. (14.33) to obtain

ds = c
T

T

p

T
p

d d
-
v

(14.34)

Further substitution of pv  = RT into Eq. (14.34) yields

ds = c
T

T
R

p

p
p

d d
- (14.35)

Integrating Eq. (14.35) between states 1 and 2,

s2 � s1 =
2

1

2

1

d
ln

T

p

T

pT
c R

T p
-Ú (14.36)

If cp is a variable, we shall require gas tables; but for constant cp, we obtain the

analytic expression

s2 � s1 = c
T

T
R

p

p
p ln ln2

1

2

1

- (14.37)

In a similar way, starting with Eq. (14.31) and making use of the relation

de = c
v
dT, the change in entropy can also be obtained as

s2 � s1 = c
T

T
R

v

v

v

ln ln2

1

2

1

+ (14.38)
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14.2.5 Isentropic Relation

An isentropic process has already been described as reversible-adiabatic. For an

adiabatic process dq = 0, and for a reversible process, dsirrev = 0. From

Eq. (14.26), we can see that for an isentropic process, ds = 0. However, in

Eq. (14.37), substitution of isentropic condition yields

cp ln
T

T

2

1

 = R
p

p
ln 2

1

or ln
p

p

2

1

 =
c

R

T

T

p
ln 2

1

or
p

p

2

1

 =

/

2

1

pc R
T

T

Ê ˆ
Á ˜Ë ¯

(14.39)

Substituting Eq. (14.22) in Eq. (14.39), we get

p

p

2

1

 =
1

2

1

T

T

g

g -Ê ˆ
Á ˜Ë ¯

(14.40)

In a similar way, from Eq. (14.38)

0 = c
v
 ln 

T

T
R2

1

2

1

+ ln
v

v

ln
v

v

2

1

 = � ln
c

R

T

T

v 2

1

or
v

v

2

1

 =

v /

2

1

c R
T

T

-
Ê ˆ
Á ˜Ë ¯

(14.41)

Substituting Eq. (14.23) in Eq. (14.41), we get

v

v

2

1

 =

1

1
2

1

T

T

g

-
-Ê ˆ

Á ˜Ë ¯
(14.42)

From our known relationship of r2/r1 = v1/v2, we can write

r

r
2

1

 =

1

1
2

1

T

T

g -Ê ˆ
Á ˜Ë ¯

(14.43)

Combining Eq. (14.40) with Eq. (14.43), we find,

p

p

2

1

 = 2

1

g
r

r

Ê ˆ
Á ˜Ë ¯

 = 
1

2

1

T

T

g

g -Ê ˆ
Á ˜Ë ¯

(14.44)
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14.3 SPEED OF SOUND

A pressure pulse in an incompressible flow behaves like that in a rigid body. A

displaced particle displaces all the particles in the medium. In a compressible

fluid, on the other hand, displaced mass compresses and increases the density of

neighbouring mass which in turn increases density of the adjoining mass and so

on. Thus, a disturbance in the form of an elastic wave or a pressure wave travels

through the medium. If the amplitude of the elastic wave is infinitesimal, it is

termed as acoustic wave or sound wave.

Figure 14.1(a) shows an infinitesimal pressure pulse propagating at a speed

�a� towards still fluid (V = 0) at the left. The fluid properties ahead of the wave

are p, T and r, while the properties behind the wave are p + dp, T + dT and r + dr.

The fluid velocity dV is directed toward the left following wave but much slower.

In order to make the analysis steady, we superimpose a velocity �a� directed

towards right, on the entire system (Fig. 14.1(b)). The wave is now stationary and

the fluid appears to have velocity �a� on the  left and (a � dV) on the right. The

flow in Fig. 14.1 (b) is now steady and one dimensional across the wave. Consider

an area A on the wave front. A mass balance gives

p
T

p
T

V = 0

dV

(a)

(b)

Moving wave of 
frontal area A

Control volume

Stationary (Fixed) wave

a
p + dp

p + dp

T + dT

T + dT

+ d

+ d

V = a

V = a dV

Fig. 14.1 Propagation of a sound wave (a) wave propagating into still fluid
(b)  stationary wave

rAa = (r + dr) A (a � dV)

or dV = a
d

+ d

r

r r

È ˘
Í ˙
Î ˚

(14.45)
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This shows that dV > 0 if dr is positive. A compression wave leaves behind a

fluid moving in the direction of the wave (Fig. 14.1(a)). Equation (14.45) also

signifies that the fluid velocity on the right is much smaller than the wave speed

�a�. Within the framework of infinitesimal strength of the wave (sound wave),

this �a� itself is very small.

Now, let us apply the momentum balance on the same control volume in

Fig. 14.1 (b). It says that the net force in the x direction on the control volume

equals the rate of outflow of x momentum minus the rate of inflow of x momentum.

In symbolic form, this yields

pA � (p + dp) A = Ar a (a � dV) � (Ar a)a

In the above expression, Ara is the mass flow rate. The first term on the right

hand side represents the rate of outflow of x momentum and the second term

represents the rate of inflow of x momentum. Simplifying the momentum

equation, we get

dp = ra dV (14.46)

Combining Eqs (14.45) and (14.46), we get

a2 =
d d

1
d

p r

r r

Ê ˆ
+Á ˜Ë ¯

(14.47a)

In the limit of infinitesimally small strength, dr Æ 0, we can write

a2 =
d

d

p

r
(14.47b)

Notice that in the limit of infinitesimally strength of sound wave, there are no

velocity gradients on either side of the wave. Therefore, the frictional effects

(irreversible) are confined to the interior of the wave. Moreover, we can

appreciate that the entire process of sound wave propagation is adiabatic because

there is no temperature gradient except inside the wave itself. So, for sound

waves, we can see that the process is reversible adiabatic or isentropic. This

brings up the correct expression for the sound speed

a =

s

p∂

∂ r

Ê ˆ
Á ˜Ë ¯

(14.48)

For a perfect gas, by using of p/rg = constant, and p = rRT, we deduce the speed

of sound as

a =
g

r
g

p
RT= (14.49)

For air at sea-level and at a temperature of 15 °C, it gives a = 340 m/s.

14.4 PRESSURE FIELD DUE TO A MOVING
SOURCE

Consider a point source emanating infinitesimal pressure disturbances in a still

fluid, in which the speed of sound is �a�. If the point disturbance, is stationary
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then the wave fronts are concentric spheres. This is shown in Fig. 14.2(a), where

the wave fronts at intervals of Dt are shown.

Now suppose that source moves to the left at speed U < a. Figure 14.2(b)

shows four locations of the source, 1 to 4, at equal intervals of time Dt, with point

4 being the current location of the source. At point 1, the source emanated a wave

which has spherically expanded to a radius 3aDt in an interval of time 3Dt. During

this time the source has moved to the location 4 at a distance of 3UDt from point

1. The figure also shows the locations of the wave fronts emitted while the source

was at points 2 and 3, respectively.

When the source speed is supersonic (U > a) as shown in Fig. 14.2(c), the

point source is ahead of the disturbance and an observer in the downstream

location is unaware of the approaching source. The disturbance emitted at

a t

a t

U t

a t

2a t

2a t

U t

2U t

2U t

3U t

3U t

2a t

3a t

3a t

3a t

U = 0

U

U

(a)

U < a

U  > a

(b)

(c)

1

1234

234

Zone of 
silence

Zone of 
action

Mach cone

Fig. 14.2 Wave fronts emitted from a point source in a still fluid when the

source speed U is (a) U = 0, (b) U < a, and (c) U > a
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different points of time are enveloped by an imaginary conical surface known as

�Mach Cone�. The half angle of the cone, a, is known as Mach angle and given

by

sin a =
a t

U t

D
D

= 1

Ma

or a = sin�1 (1/Ma)

Since the disturbances are confined to the cone, the area within the cone is

known as zone of action and the area outside the cone is zone of silence. An

observer does not feel the effects of the moving source till the Mach Cone covers

his position.

14.5 BASIC EQUATIONS FOR
ONE-DIMENSIONAL FLOW

Having had an exposure to the speed of sound, we begin our study of a class of

compressible flows that can be treated as one dimensional flow. Such a

simplification is meaningful for flow through ducts where the centreline of the

ducts does not have a large curvature and the cross-section of the ducts does not

vary abruptly. For one dimensional assumption, the flow can be studied by

ignoring the variation of velocity and other properties across the cross-normal

direction of the flow. However, these distributions are taken care of by assigning

an average value over the cross-section (Fig. 14.3). The area of the duct is taken

as A(x) and the flow properties are taken as p(x), r(x), V(x) etc. The forms of the

basic equations in a one-dimensional compressible flow are discussed next.

Fig. 14.3 One-dimensional approximation

Continuity Equation For steady one-dimensional flow, the equation of

continuity is

r(x) V(x) A(x) = &m  = constant

Differentiating,  we get

d d dr

r
+ +

V

V

A

A
 = 0 (14.50)



550 Introduction to Fluid Mechanics and Fluid Machines

Energy Equation Let us consider a control volume within the duct shown by

dotted lines in Fig. 14.3. The first law of thermodynamics for a control volume

fixed in space is

d

d
d d

t
e

V
V e

V
V Ar r+

F

HG
I

KJ
+ +

F

HG
I

KJzzz zz
2 2

2 2
◊

= V A q A◊ ◊( )t d d- ◊zzzz (14.51)

where 
V2

2
 is the kinetic energy per unit mass. The first term on the left hand side

signifies the rate of change of energy (internal + kinetic) within the control

volume, and the second term depicts the flux of energy out of control surface. The

first term on the right hand side represents the work done on the control surface,

and the second term on the right means the heat transferred through the control

surface. It may be mentioned that dA is directed along the outward normal.

We shall assume steady state so that the first term on the left hand side of

Eq. (14.51) is zero. Writing m = r1 V1 A1 = r2 V2 A2 (where the subscripts are for

Sections 1 and 2), the second term on the left of Eq. (14.51) yields

e
V

V A+
F

HG
I

KJzz
2

2
r ◊d  =

2 2
2 1

2 1
2 2

V V
m e e
È ˘Ê ˆ Ê ˆ

+ - +Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚
&

The work done on the control surfaces is

ÚÚ V ◊ (t ◊ dA) = V1 p1 A1 � V2 p2 A2

The rate of heat transfer to the control volume is

� ÚÚ q ◊ dA = Q &m

where Q is the heat added per unit mass (in J/kg).

Invoking all the aforesaid relations in Eq. (14.51) and dividing by &m , we get

e
V

e
V

2
2
2

1
1
2

2 2
+ - -  = 1

1 1 1 2 2 2
&

[ ]
m

V p A V p A Q- + (14.52)

We know that the density r is given by &m /VA, hence the first term on the right

may be expressed in terms of v  
F
HG

specific volume; 
1

r
I
KJ

. Equation (14.52) can

be rewritten as

e
V

e
V

2
2
2

1
1
2

2 2
+ - -  = p1v1 � p2v2 + Q (14.53)

It is understood that p1v1 is the work done (per unit mass) by the surrounding in

pushing fluid into the control volume. Following a similar argument, p2v2 is the

work done by the fluid inside the control volume on the surroundings in pushing

fluid out of the control volume. Equation (14.53) may be reduced to a simpler

form. Noting that h = e + pv , we obtain
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h2 + 
V2

2

2
 = h1 + 

V1
2

2
 + Q (14.54)

This is energy equation, which is valid even in the presence of friction or non-

equilibrium conditions between Secs 1 and 2. It is evident that the sum of enthalpy

and kinetic energy remains constant in an adiabatic flow. Enthalpy performs a

similar role that internal energy performs in a nonflowing system. The difference

between the two types of systems is the flow work pv  required to push the fluid

through a section.

Bernoulli and Euler Equations For inviscid flows, the steady form of the

momentum equation is the Euler equation,

d
d

p
V V

r
+  = 0 (14.55)

Integrating along a streamline, we get the Bernoulli�s euqation for a

compressible flow as

2d

2

p V

r
+Ú  = constant (14.56)

For adiabatic frictionless flows the Bernoulli�s equation is identical to the

energy equation. To appreciate this, we have to remember that this is an isentropic

flow, so that the Tds equation is given by

Tds = dh � vdp

which yields dh =
dp

r

Then the Euler equation (14.55) can also be written as

VdV + dh = 0

Needless to say that this is identical to the adiabatic form of the energy

Eq. (14.54). The merger of the momentum and energy equation is attributed to the

elimination of one of the flow variables due to constant entropy.

Momentum Principle for a Control Volume For a finite control volume between

Sections 1 and 2 (Fig. 14.3), the momentum principle is

p1A1 � p2A2 + F = &mV2 � &mV1

or p1A1 � p2A2 + F = r2V2
2A2 � r1V1

2 A1 (14.57)

where F is the x component of resultant force exerted on the fluid by the walls.

The momentum principle, Eq. (14.57), is applicable even when there are frictional

dissipative processes within the control volume.

14.6 STAGNATION AND SONIC PROPERTIES

The stagnation values are useful reference conditions in a compressible flow.

Suppose the properties of a flow (such as T, p, r, etc.) are known at a point. The

stagnation properties at a point are defined as those which are to be obtained if the
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local flow were imagined to cease to zero velocity isentropically. The stagnation

values are denoted by a subscript zero. Thus, the stangation enthalpy is defined as

h0 = h + 
1

2
V2

For a perfect gas, this yields,

cpT0 = cpT + 
1

2
V2 (14.58)

which defines the stagnation temperature. It is meaningful to express the ratio of

(T0/T) in the form

T

T

0  = 1
2

1
1

2

2 2

+ = +
-

◊V

c T

V

RTp

g

g

or
T

T

0  = 1
1

2

2+
-g

Ma (14.59)

If we know the local temperature (T) and Mach number (Ma), we can find out the

stagnation temperature T0. Consequently, isentropic relations can be used to

obtain stagnation pressure and stagnation density as

p

p

0  =
1 � 120 1

1 Ma
2

T

T

g g

g gg- -Ê ˆ È ˘= +Á ˜ Í ˙Ë ¯ Î ˚
(14.60)

r

r
0  =

1 1

1 � 120 1
1 Ma

2

T

T

g gg- -Ê ˆ È ˘= +Á ˜ Í ˙Ë ¯ Î ˚
(14.61)

In general, the stagnation properties can vary throughout the flow field.

However, if the flow is adiabatic, then h + 
V2

2
 is constant throughout the flow

(Eq. 14.54). It follows that the h0, T0, and a0 are constant throughout an adiabatic

flow, even in the presence of friction. It is understood that all stagnation prop-

erties are constant along an isentropic flow. If such a flow starts from a large

reservoir where the fluid is practically at rest, then the properties in the reservoir

are equal to the stagnation properties everywhere in the flow (Fig. 14.4).

Isentropic process

Reservoir

h0

T0

p0

Q = 0

Fig. 14.4 An isentropic process starting from a reservoir
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There is another set of conditions of comparable usefulness where the flow is

sonic, Ma = 1.0. These sonic, or critical properties are denoted by asterisks: p*,

r*, a*, and T*. These properties are attained if the local fluid is imagined to expand

or compress isentropically until it reachers Ma = 1.

We have already discussed that the total enthalpy, hence T0, is conserved so

long the process is adiabatic, irrespective of frictional effects. In contrast, the

stagnation pressure p0 and density r0 decrease if there is friction.

From Eq. (14.58), we note that

V2 = 2 cp (T0 � T)

or V =

1

2

0

2
( )

1

R
T T

g

g

È ˘
-Í ˙-Î ˚

(14.62a)

is the relationship between the fluid velocity and local temperature (T), in an

adiabatic flow. The flow can attain a maximum velocity of

Vmax =

1

2
02

1

RTg

g

È ˘
Í ˙-Î ˚

(14.62b)

As it has already been stated, the unity Mach number, Ma = 1, condition is of

special significance in compressible flow, and we can now write from

Eq. (14.59), (14.60) and (14.61),

T

T

0
*

 =
1

2

+ g
(14.63a)

p

p

0
*

 =
11

2

g

gg -+Ê ˆ
Á ˜Ë ¯

(14.63b)

r

r
0
*

 =

1

11

2

gg -+Ê ˆ
Á ˜Ë ¯

(14.63c)

For diatomic gases, like air g  = 1.4, the numerical values are

T

T

*

0

 = 0.8333,
p

p

*

0

 = 0.5282, and
r

r

*

0

 = 0.6339

The fluid velocity and acoustic speed are equal at sonic condition and is

V* = a* = [g RT*]1/2 (14.64a)

or V
*
 =

1

2

0

2

1
RT

g

g

È ˘
Í ˙+Î ˚

(14.64b)

We shall employ both stagnation conditions and critical conditions as reference

conditions in a variety of one dimensional compressible flows.

14.6.1 Effect of Area Variation on Flow Properties in Isentropic Flow

In considering the effect of area variation on flow properties in isentropic flow,

we shall concern ourselves primarily with the velocity and pressure. We shall

determine the effect of change in area, A, on the velocity V, and the pressure p.
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From Eq. (14.55), we can write

2d

2

p V
d

r

Ê ˆ
+ Á ˜Ë ¯

 = 0

or dp = � rV dV

Dividing by rV2, we obtain

d p

Vr 2
 = � 

dV

V
(14.65)

A convenient differential form of the continuity equation can be obtained from

Eq. (14.50) as

d A

A
 = � 

d dV

V
-

r

r

Substituting from Eq. (14.65),

d A

A
 =

d dp

Vr

r

r2
-

or
d A

A
 =

2

2

d
1

d /d

p V

pV rr

È ˘
-Í ˙

Î ˚
(14.66)

Invoking the relation (14.47b) for isentropic process in Eq. (14.66), we get

d A

A
 =

2
2

2 2 2

d d
1 [1 Ma ]

p V p

V a Vr r

È ˘
- = -Í ˙

Î ˚
(14.67)

From Eq. (14.67), we see that for Ma < 1 an area change causes a pressure change

of the same sign, i.e. positive dA means positive dp for Ma < 1. For Ma > 1, an

area change causes a pressure change of opposite sign.

Again, substituting from Eq. (14.65) into Eq. (14.67), we obtain

d A

A
 = � 

dV

V
[1 � Ma2] (14.68)

From Eq. (14.68), we see that Ma < 1 an area change causes a velocity change of

opposite sign, i.e. positive dA means negative dV for Ma < 1. For Ma > 1, an area

change causes a velocity change of same sign.

These results are summarized in Fig. 14.5, and the relations (14.67) and

(14.68) lead to the following important conclusions about compressible flows:

(i) At subsonic speeds (Ma < 1) a decrease in area increases the speed of flow.

A subsonic nozzle should have a convergent profile and a subsonic diffuser

should possess a divergent profile. The flow behaviour in the regime of Ma < 1 is

therefore qualitatively the same as in incompressible flows.

(ii) In supersonic flows (Ma > 1), the effect of area changes are different.

According to Eq. (14.68), a supersonic nozzle must be built with an increasing

area in the flow direction. A supersonic diffuser must be a converging channel.

Divergent nozzles are used to produce supersonic flow in missiles and launch

vehicles.
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dp < 0, dV > 0

Ma < 1 
(Subsonic)

Ma > 1
(Supersonic)

Ma > 1
(Supersonic)

Ma < 1 
(Subsonic)

dp > 0, dV < 0
Nozzle 

Flow 

Flow 

Flow 

Flow 

Diffuser

Fig. 14.5 Shapes of nozzles and diffusers in subsonic and supersonic regimes

Suppose a nozzle is used to obtain a supersonic stream staring from low speeds

at the inlet (Fig. 14.6). Then the Mach number should increase from Ma = 0 near

the inlet to Ma > 1 at the exit. It is clear that the nozzle must converge in the

subsonic portion and diverge in the supersonic portion. Such a nozzle is called a

convergent�divergent nozzle. A convergent�divergent nozzle is also called a de

Laval nozzle, after Carl G.P. de Laval who first used such a configuration in his

steam turbines in late nineteenth century. From Fig. 14.6 it is clear that the Mach

number must be unity at the throat, where the area is neither increasing nor

decreasing. This is consistent with Eq. (14.68) which shows that dV can be non-

zero at the throat only if Ma = 1. It also follows that the sonic velocity can be

achieved only at the throat of a nozzle or a diffuser.

Fig. 14.6 A convergent�divergent nozzle

The condition, however, does not restrict that Ma must necessarily be unity at the

throat. According to Eq. (14.68), a situation is possible where Ma π 1 at the

throat if dV = 0 there. For an example, the flow in a convergent-divergent duct

may be subsonic everywhere with Ma increasing in the convergent portion and
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decreasing in the divergent portion with Ma π 1 at the throat (see Fig. 14.7). The

first part of the duct is acting as a nozzle, whereas the second part is acting as a

diffuser. Alternatively, we may have a convergent-divergent duct in which the

flow is supersonic everywhere with Ma decreasing in the convergent part and

increasing in the divergent part and again Ma π 1 at the throat (see Fig. 14.8).

Ma < 1

Ma 

1.0

Ma < 1

Fig. 14.7 Convergent-divergent duct with Ma π 1 at throat

Ma > 1

Ma 

1.0

Ma > 1

Fig. 14.8 Convergent-divergent duct with Ma π 1 at throat

14.6.2 Isentropic Flow in a Converging Nozzle

Let us consider the mass flow rate of an ideal gas through a converging nozzle. If

the flow is isentropic, we can write

&m  = rAV

or
&m

A
 =

p

RT
. a Ma [invoking Eqs (14.5) and (14.8)]

or
&m

A
 =

p

RT
RT◊ g ◊◊◊◊◊Ma

or
&m

A
 =

p

T R
◊

g
 ◊◊◊◊◊ Ma
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or
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p
p
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0
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[invoking Eq. (14.44)]
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(14.69)

In the expression (14.69), p0, T0, g and R are constant. The discharge per unit

area 
&m

A
 is a function of Ma only. There exists a particular value of Ma for which

( &m /A) is maximum. Differentiating with respect to Ma and equating it to zero, we

get

d

dMa
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 = 0
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0 2( 1)2
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or 1 � 
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Ma ( 1)

1
2 1 Ma

2

g
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+
-Ï ¸+Ì ˝

Ó ˛

 = 0

or Ma2 (g + 1) = 2 + (g � 1) Ma2

or Ma = 1

So, discharge is maximum when Ma = 1.

We know that V = aMa = g RT Ma. By logarithmic differentiation, we get

dV

V
 =

dMa 1 d

Ma 2

T

T
+ (14.70)

We also know that

T

T0

 =

1
21

1 Ma
2

g
--È ˘+Í ˙Î ˚

(14.59 repeated)

By logarithmic differentiation, we get

dT
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(14.71)
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From Eqs (14.70) and (14.71), we get

dV
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From Eqs (14.68) and (14.72) we get

dA

A Ma

1

12( )-
= 

1

1
1

2

2+
- ◊

g
Ma

Ma

Ma

d

dA

A
= 

( )
( )

Ma Ma

Ma

2 1

1
1

2

-

+
- ◊

g
d

(14.73)

By substituting Ma = 1 in Eq. (14.73), we get dA = 0 or A = constant. Some

Ma = 1 can occur only at the throat and nowhere else, and this happens only when

the discharge is maximum. When Ma = 1, the discharge is maximum and the

nozzle is said to be choked. The properties at the throat are termed as critical

properties which are already expressed through Eq. (14.63a), (14.63b) and

(14.63c). By substituting Ma = 1 in Eq. (14.69), we get

&
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(14.74)

(as we have earlier designated critical or sonic conditions by a superscript

asterisk). Dividing Eq. (14.74) by Eq. (14.69) we obtain

A
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1 2
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2

1

2 1
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{ } (14.75)

From Eq. (14.75) we see that a choice of Ma gives a unique value of A/A*. The

variation of A/A* with Ma is shown in Fig. 14.9. Note that the curve is double

valued; that is, for a given value of A/A* (other than unity), there are two possible

values of Mach number. This signifies the fact that the supersonic nozzle is

diverging.
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Fig.14.9 Variation of A/A* with Ma in isentropic flow for Yg = 1.4

14.6.3 Pressure Distribution and Choking in a
Converging Nozzle

Let us first consider a convergent nozzle as shown in Fig. 14.10(a). Figure

14.10(b) shows the pressure ratio p/p0 along the length of the nozzle. The inlet

conditions of the gas are at the stagnation state (p0, T0) which are constants. The

pressure at the exit plane of the nozzle is denoted by pE and the back pressure is

pB which can be varied by the adjustment of the valve. At the condition p0 = pE =

pB, there shall be no flow through the nozzle. The pressure is p0 throughout, as

shown by condition (i) in Fig. 14.10(b). As pB is gradually reduced, the flow rate

shall increase. The pressure will decrease in the direction of flow as shown by

condition (ii) in Fig. 14.10(b). The exit plane pressure pE shall remain equal to

pB so long as the maximum discharge condition is not reached. Condition (iii) in

Fig. 14.10(b) illustrates the pressure distribution in the maximum discharge

situation. When ( &m /A) attains its maximum value, given by substituting Ma = 1

in Eq. (14.69), pE is equal to p*. Since the nozzle does not have a diverging

section, further reduction in back pressure pB will not accelerate the flow to

supersonic condition. As a result, the exit pressure pE shall continue to remain at

p* even though pB is lowered further. The convergent-nozzle discharge against

the variation of back pressure is shown in Fig. 14.11. As it has been pointed out

earlier, the maximum value of ( &m /A) at Ma = 1 is stated as the choked flow. With

a given nozzle, the flow rate cannot be increased further. thus neither the nozzle

exit pressure, nor the mass flow rate are affected by lowering pB below p
*
.
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Fig. 14.10 (a) Compressible flow through a converging nozzle (b) Pressure

distribution along a converging nozzle for different values of back

pressure

m T0

p < pB E

p pB / 00.5282

Ma 1=

p = p*p0A

.

Fig.14.11 Mass flow rate and the variation of back pressure in a converging nozzle

However for pB less than p*, the flow leaving the nozzle has to expand to match

the lower back pressure as shown by condition (iv) in Fig. 14.10(b). This expan-

sion process is three-dimensional and the pressure distribution cannot be pre-

dicted by one-dimensional theory. Experiments reveal that a series of shocks form

in the exit stream, resulting in an increase in entropy.
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14.6.4 Isentropic Flow in a Converging-Diverging Nozzle

Now consider the flow in a convergent-divergent nozzle (Fig. 14.12). The

upstream stagnation conditions are assumed constant; the pressure in the exit

plane of the nozzle is denoted by pE; the nozzle discharges to the back pressure,

pB. With the value initially closed, there is no flow through the nozzle; the pres-

sure is constant at p0. Opening the valve slightly produces the pressure

distribution shown by curve (i). Completely subsonic flow is discerned. Then pB

is lowered in such a way that sonic condition is reached at the throat (ii). The flow

rate becomes maximum for a given nozzle and the stagnation conditions. On

further reduction of the back pressure, the flow upstream of the throat does not

respond. However, if the back pressure is reduced further (cases (iii) and (iv)),

the flow initially becomes supersonic in the diverging section, but then adjusts to

the back pressure by means of a normal shock standing inside the nozzle. In such

cases, the position of the shock moves downstream as pB is decreased, and for

curve (iv) the normal shock stands right at the exit plane. The flow in the entire

divergent portion up to the exit plane is now supersonic. When the back pressure

is reduced even further (v), there is no normal shock anywhere within the nozzle,

and the jet pressure adjusts to pB by means of oblique shock waves outside the

exit plane. A converging diverging nozzle is generally intended to produce

supersonic flow near the exit plane. If the back pressure is set at (vi), the flow will

be isentropic throughout the nozzle, and supersonic at nozzle exit. Nozzles

operating at pB = pVI (corresponding to curve (vi) in Fig. 14.12) are said to be at

design conditions. Rocket-propelled vehicles use converging-diverging nozzles

to accelerate the exhaust gases to the maximum possible velocity to produce high

thrust.

Valve

Normal shock

Oblique shock

pBpE

p0

p/p0

Ma = 1

Shock

(vi)

(i)
(ii)

(iii)

(iv)

(v)

1.0

p/p0

Fig.14.12 Pressure distribution along a converging-diverging nozzle for

different values of back pressure pB
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14.7 NORMAL SHOCKS

Shock waves are highly localized irreversibilities in the flow. Within the distance

of a mean free path, the flow passes from a supersonic to a subsonic state, the

velocity decreases suddenly and the pressure rises sharply. To be more specific, a

shock is said to have occurred if there is an abrupt reduction of velocity in the

downstream in course of a supersonic flow in a passage or around a body. Normal

shocks are substantially perpendicular to the flow and oblique shocks are inclined

at other angles. Shock formation is possible for confined flows as well as for

external flows. Normal shock and oblique shock may mutually interact to make

another shock pattern. Different type of shocks are presented in Fig. 14.13.

Supersonic

Supersonic Supersonic

Supersonic
Subsonic

Subsonic

Subsonic

Su
bs
on
ic

(a) Normal shock

(c) Attached shock

(b) Oblique shock

(d) Detached shock

Fig. 14.13 Different type of shocks

V1

p , , T1 1 1r

dp

dx
p1

p , , T2 2 2r

p2

Control surface

V2

Fig. 14.14 One dimensional normal shock
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Figure 14.14 shows a control surface that includes a normal shock. The fluid is

assumed to be in thermodynamic equilibrium upstream and downstream of the

shock, the properties of which are designated by the subscripts 1 and 2,

respectively.

Continuity equation can be written as

&m

A
= r1V1 = r2V2 = G (14.76)

where G is the mass velocity kg/m2s.

From momentum equation, one can write

p1 � p2 = 
&m

A
 (V2 � V1) = r2 V2 

2 � r1 V 2 2

or p1 + r1 V 
2
1 = p2 + r2 V

2
2 (14.77a)

or F1 = F2 (14.77b)

where F = p + rV 2 can be termed as impulse function.

The energy equation may be written as

h1 + 
V1

2

2
= h2 + 

V2
2

2
 = h01 = h02 = h0 (14.78)

where h0 is stagnation enthalpy.

From the second law of thermodynamics, it may be written as

s2 � s1 ≥ 0 (14.79)

But Eq. (14.79) is of little help in calculating actual entropy change across the

shock. To calculate the entropy change, we have

Tds = dh � vdp (14.33 repeated)

For an ideal gas we can write

ds = cp 
d dT

T
R

p

p
-

For constant specific heat, this equation can be integrated to give

s2 � s1 = cp ln 
T

T

2

1

 � R ln 
p

p

2

1

(14.80)

For an ideal gas the equation of state can be written as

p = rRT (14.8 repeated)

Equations (14.76), (14.77a), (14.78), (14.80) and (14.8) are the governing equa-

tions for the flow of an ideal gas through normal shock. If all the properties at

state �1� (upstream of the shock) are known, then we have six unknowns (T2, p2,

r2, V2, h2, s2) in these five equations. However, we have known relationship

between h and T [Eq. (14.17)] for an ideal gas which is given by dh = cp dT. For

an ideal gas with constant specific heats,
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Dh = h2 � h1 = cp (T2 � T1) (14.81)

Thus, we have the situation of six equations and six unknowns.

If all the conditions at state �1� (immediately upstream of the shock) are

known, how many possible states �2� (immediate downstream of the shock) are

there? The mathematical answer indicates that there is a unique state �2� for a

given state �1�. Before describing the physical picture and precise location of

these two states let us introduce Fanno line and Rayleigh line flows.

14.7.1 Fanno Line Flows

If we consider a problem of frictional adiabatic flow through a duct, the governing

Eqs (14.76), (14.78), (14.80) (14.8) and (14.81) are valid between any two points

�1� and �2�. Equation (14.77a) requires to be modified in order to take into

account the frictional force, Rx , of the duct wall on the flow and we obtain

Rx + p1A � p2A = 
&mV2 � 

&mV1 (14.82)

So, for a frictional flow, we thus have the situation of six equations and seven

unknowns. If all the conditions of �1� are known, how many possible states �2�

are there? Mathematically, we get number of possible states �2�. With an infinite

number of possible states �2� for a given state �1�, what do we observe if all

possible states �2� are plotted on a T-s diagram? The locus of all possible states

�2� reachable from state �1� is a continuous curve passing through state �1�.

However, the question is how to determine this curve? Perhaps the simplest way

is to assume different values of T2. For an assumed value of T2, the corresponding

values of all other properties at �2� and Rx can be determined.

s

bT

Ma < 1

1¢

1

Ma > 1

Ma = 1

Fig. 14.15 Fanno line representation of constant area adiabatic flow

The locus of all possible downstream states is called Fanno line and is shown

in Fig. 14.15. Point �b� corresponds to maximum entropy where the flow is sonic.

This point splits the Fanno line into subsonic (upper) and supersonic (lower)
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portions. If the inlet flow is supersonic and corresponds to point 1 in Fig. 14.15,

then friction causes the downstream flow to move closer to point �b� with a

consequent decrease of Mach number towards unity. Each point on the curve

between point 1 and �b� corresponds to a certain duct length L. As L is made

larger, the conditions at the exit move closer to point �b�. Finally, for a certain

value of L, the flow becomes sonic. Any further increase in L is not possible

without a drastic revision of the inlet conditions. Consider the alternative case

where the inlet flow is subsonic, say, given the point 1¢ in Fig. 14.15. As L

increases, the exit conditions move closer to point �b�. If L is increased to a

sufficiently large value, then point �b� is reached and the flow at the exit becomes

sonic. The flow is again choked and any further increase in L is not possible

without an adjustment of the inlet conditions.

14.7.2 Rayleigh Line Flows

If we consider the effects of heat transfer on a frictionless compressible flow

through a duct, the governing Eq. (14.76), (14.77a), (14.80), (14.8) and (14.81)

are valid between any two points �1� and �2�. Equation (14.78) requires to be

modified in order to account for the heat transferred to the flowing fluid per unit

mass, dQ, and we obtain

dQ = h02 � h01 (14.83)

So, for frictionless flow of an ideal gas in a constant area duct with heat transfer,

we have again a situation of six equations and seven unknowns. If all conditions

at state �1� are known, how many possible states �2� are there? Mathematically,

there exists infinite number of possible states �2�. With an infinite number of

possible states �2� for a given state �1�, what do we observe if all possible states

�2� are plotted on a T-s diagram? The locus of all possible states �2� reachable

from state �1� is a continuous curve passing through state �1�. Again, the

question arises as to how to determine this curve? The simplest way to go about

this problem is to assume different values of T2. For an assumed value of T2, the

corresponding values of all other properties at �2� and d Q can be determined.

The results of these calculations are shown on the T-s plane in Fig. 14.16. The

curve in Fig. 14.16 is called the Rayleigh line.

At the point of maximum temperature (point �c� in Fig. 14.16), the value of

Mach number for an ideal gas is 1/ g . At the point of maximum entropy, the

Mach number is unity. On the upper branch of the curve, the flow is always

subsonic and it increases monotonically as we proceed to the right along the

curve. At every point on the lower branch of the curve, the flow is supersonic, and

it decreases monotonically as we move to the right along the curve. Irrespective

of the initial Mach number, with heat addition, the flow state proceeds to the right

and with heat rejection, the flow state proceeds to the left along the Rayleigh line.

For example, let us consider a flow which is at an initial state given by 1 on the

Rayleigh line in fig. 14.16. If heat is added to the flow, the conditions in the

downstream region 2 will move close to point �b�. The velocity reduces due to

increase in pressure and density, and Ma approaches unity. If dQ is increased to a
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sufficiently high value, then point �b� will be reached and flow in region 2 will be

sonic. The flow is again choked, and any further increase in dQ is not possible

without an adjustment of the initial condition. The flow cannot become subsonic

by any further increase in dQ.
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Ma > 1

Ma < 1
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s
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Ma = 1

Ma 1/= g

Fig. 14.16 Rayleigh line representation of frictionless flow in a constant

area duct with heat transfer

14.7.3 The Physical Picture of the Flow through a Normal
Shock

It is possible to obtain physical picture of the flow through a normal shock by

employing some of the ideas of Fanno line and Rayleigh line Flows. Flow through

a normal shock must satisfy Eqs (14.76), (14.77a), (14.78), (14.80), (14.8) and

14.81). Since all the condition of state �1� are known, there is no difficulty in

locating state �1� on T-s diagram. In order to draw a Fanno line curve through

state �1�, we require a locus of mathematical states that satisfy Eqs (14.76),

(14.78), (14.80), (14.8) and (14.81). The Fanno line curve does not satisfy

Eq. (14.77a). A Rayleigh line curve through state �1� gives a locus of

mathematical states that satisfy Eqs (14.76), (14.77a), (14.80), (14.8) and

(14.81). The Rayleigh line does not satisfy Eq.  (14.78). Both the curves on a

same T-s diagram are shown in Fig. 14.17. As we have already pointed out, the

normal shock should satisfy all the six equations stated above. At the same time,

for a given state �1�, the end state �2� of the normal shock must lie on both the

Fanno line and Rayleigh line passing through state �1.� Hence, the intersection of

the two lines at state �2� represents the conditions downstream from the shock. In

Fig. 14.17, the flow through the shock is indicated as transition from state �1� to

state �2�. This is also consistent with directional principle indicated by the second

law of thermodynamics, i.e. s2 > s1. From Fig. 14.17, it is also evident that the



Compressible Flow 567

flow through a normal shock signifies a change of speed from supersonic to

subsonic. Normal shock is possible only in a flow which is initially supersonic.

Fanno line

Rayleigh line

Shock

Ma = 1

Ma = 1

T

s

Ma < 1

Ma 1>

Fig. 14.17 Intersection of Fanno line and Rayleigh line and the solution for

normal shock condition

14.7.4 Calculation of Flow Properties Across a Normal Shock

The most easy way to analyze a normal shock is to consider a control surface

around the wave as shown in Fig. 14.14. The continuity equation (14.76), the

momentum equation (14.77) and the energy equation (14.78) have already been

discussed earlier. The energy equation can be simplified for an ideal gas as

T01 = T02 (14.84)

By making use of the equation for the speed of sound (14.49) and the equation

of state for ideal gas (14.8), the continuity equation can be rewritten to include

the influence of Mach number as:

p

RT

1

1

Ma1 g RT1 = 
p

RT

2

2

Ma2 g RT2 (14.85)

The Mach number can be introduced in momentum equation in the following way:

r2 V
2
2 � r1 V

2
1 = p1 � p2

p1 + 
p

RT

1

1

 V2
1 = p2 + 

p

RT
V2

2

2
2
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p1 (1 + g Ma
2
1) = p2 (1 + g Ma

2
2) (14.86)

Rearranging this equation for the static pressure ratio across the shock wave, we

get

p

p

2

1

= 
( )

( )

1

1

1
2

2
2

+
+

g

g

Ma

Ma
(14.87)

As we have already seen that the Mach number of a normal shock wave is

always greater than unity in the upstream and less than unity in the downstream,

the static pressure always increases across the shock wave.

The energy equation can be written in terms of the temperature and Mach

number using the stagnation temperature relationship (14.84) as

T

T

2

1

= 
{ [ ) / ]

{ [ )/ ]

1 1 2

1 1 2

1
2

2
2

+ -
+ -

g

g

Ma

Ma
(14.88)

Substituting Eqs (14.87) and (14.88) into Eq. (14.85) yields the following

relationship for the Mach numbers upstream and downstream of a normal shock

wave:

1/2
21
12

1

Ma 1
1 Ma

21 Ma

g

g

-Ê ˆ+Á ˜Ë ¯+
= 

1/2
22
22

2

Ma 1
1 Ma

21 Ma

g

g

-Ê ˆ+Á ˜Ë ¯+
(14.89)

Then, solving this equation for Ma2 as a function of Ma1, we obtain two

solutions. One solution is trivial, Ma1 = Ma2, which signifies no shock across the

control volume. The other solution is

Ma
2
2 = 

( )

( )

g

g g

- +
- -

1 2

2 1

1
2

1
2

Ma

Ma
(14.90)

Ma1 = 1 in Eq. (14.90) results in Ma2 = 1. Equations (14.87) and (14.88) also

show that there would be no pressure or temperature increase across the shock. In

fact, the shock wave corresponding to Ma1 = 1 is the sound wave across which,

by definition, pressure and temperature changes are infinitesimal. Therefore, it

can be said that the sound wave represents a degenerated normal shock wave.

14.7.5 Oblique Shock

The discontinuities in supersonic flows do not always exist as normal to the flow

direction. There are oblique shocks which are inclined with respect to the flow

direction. Let us refer to the shock structure on an obstacle, as depicted

qualitatively in Fig.14.18. The segment of the shock immediately in front of the

body behaves like a normal shock. Oblique shock is formed as a consequence of

the bending of the shock in the free-stream direction. Sometimes in a supersonic

flow through a duct, viscous effects cause the shock to be oblique near the walls,

the shock being normal only in the core region. The shock is also oblique when a

supersonic flow is made to change direction near a sharp corner.
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Normal
shock

Oblique
shock

Mach wave

Fig. 14.18 Normal and oblique shock in front of an obstacle

The same relationships derived earlier for the normal shock are valid for the

velocity components normal to the oblique shock. The oblique shock continues to

bend in the downstream direction until the Mach number of the velocity

component normal to the wave is unity. At that instant, the oblique shock

degenerates into a so called Mach wave across which changes in flow properties

are infinitesimal.

Let us consider a two-dimensional oblique shock as shown in Fig. 14.19.

Shock wave

v

v

V2

V1

p1

a

q

b

p2

u2u1

Fig. 14.19 Two dimensional oblique shock

In analyzing flow through such a shock, it may be considered as a normal

shock on which a velocity v (parallel to the shock) is superimposed. The change

across shock front is determined in the same way as for the normal shock. The

equations for mass, momentum and energy conservation are, respectively,

r1u1 = r2u2 (14.91)

r1u1 (u1 � u2) = p2 � p1 (14.92)
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These equations are analogous to corresponding equations for normal shock. In

addition to these, we have

u

a

1

1

= Ma1 sin a and 
u

a

2

2

 = Ma2 sin b

Then modifying normal shock relations by writing Ma1 sin a and Ma2 sin b in

place of Ma1 and Ma2, we obtain

p

p

2

1

= 
2 1

1

1
2 2g a g

g

Ma sin - +
+

(14.94)
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(14.95)

Ma2
2 sin2 b = 

2 1

1

1
2 2

2

+ -
+

( ) sin

tan (tan / tan )

g a

a b a

Ma
(14.96)

Note that although Ma2 sin b < 1, Ma2 may be greater than 1. So the flow behind

an oblique shock may be supersonic although the normal component of velocity is

subsonic. In order to obtain the angle of deflection of flow passing through an

oblique shock, we use the relation

tan q = tan (a � b) = 
tan tan

tan tan

a b

a b

-
+1

= 
tan (tan / tan ) tan

tan (tan / tan )

a b a a

a b a

-
+1 2

Having substituted (tan b /tan a) from Eq. (14.95), finally we get the relation

tan q = 
Ma

Ma

1
2

1
2

2 2

2 2

sin cot

( cos )

a a

g a

-
+ +

(14.97)

Sometimes, a design is done in such a way that an oblique shock is allowed

instead of a normal shock. The losses for the case of oblique shock are much less

than those of normal shock. This is the reason for making the nose angle of the

fuselage of a supersonic aircraft small.

Summary

∑ Fluid density varies significantly due to a large Mach number (Ma =

V/a) flow. This leads to a situation where continuity and momentum
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equations must be coupled to the energy equation and the equation of

state to solve for the four unknowns, namely, p, r, T and V.

∑ The stagnation enthalpy and hence, T0 are conserved in isentropic

flows. The effect of area variation on flow properties in an isentropic

flow is of great significance. This reveals the phenomenon of choking

(maximum mass flow) at the sonic velocity in the throat of a nozzle. At

choked condition, the ratio of the throat pressure to the stagnation

pressure is constant and it is equal to 0.528 for g  = 1.4. A nozzle is

basically a converging or converging-diverging duct where the kinetic

energy keeps increasing at the expense of static pressure. A diffuser

has a reversed geometry where pressure recovery takes place at the

expense of kinetic energy. At supersonic velocities, the normal-shock

wave appears across which the gas discontinuously reverts to the

subsonic conditions.

∑ In order to understand the effect of non-isentropic flow conditions, an

understanding of constant area duct flow with friction and heat transfer

is necessary. These are known as Fanno line flows and Rayleigh line

flows, both of which entail choking of the exit flow. The conditions

before and after a normal shock are defined by the points of

intersection of Fanno and Rayleigh lines on a T-s diagram.

∑ If a supersonic flow is made to change its direction, the oblique shock

is evolved. The oblique shock continues to bend in the downstream

direction until the Mach number of the velocity component normal to

the wave is unity.
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Solved Examples

Example 14.1 An airplane travels at 800 km/h at sea level where the temperature

is 15ºC. How fast would the airplane be flying at the same Mach number at an altitude

where the temperature is � 40 ºC?

Solution The sonic velocity a at the sea level is

a = g RT = 1 4 287 288. ( ) ( )  = 340.2 m/s

Velocity of the airplane, V = 800 km/h = 222.2 m/s
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So, the Mach number, Ma of airplane = 222.2/340.2 = 0.653

The sonic velocity at an altitude where the temperature is � 40 °C

a = g RT = 1 4 287 233). ( ) ( = 306.0 m/s

Velocity of the airplane for the same Mach number

V = 0.653 × 306 = 199.8 m/s

or velocity of the airplane, V = 199.8 × 3600/1000 = 719.3 km/h.

Example 14.2  An object is immersed in an air flow with a static pressure of

200 kPa (abs), a static temperature of 20 °C, and a velocity of 200 m/s. What is the

pressure and temperature at the stagnation point?

Solution Velocity of sound at 20 ºC = g RT = 1 4 287 293. ( )  = 343 m/s

Corresponding Mach number,

Ma = 200/343 = 0.583

Stagnation temperature, T0 = (293) [1 + 0.2 × (0.583)
2
]

= 293 × 1.068 = 312.9 K = 39.9 ºC

Stagnation pressure, p0 = (200) (1.068)
3.5

 = 251.8 kPa

Example 14.3 A nozzle is designed to expand air isentropically to atmospheric

pressure from a large tank in which properties are held constant at 5 ºC and 304 kPa

(abs). The desired flow rate is 1 kg/s. Determine the exit area of the nozzle.

Solution We know that

p
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Mach number at the exit is given by
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Mae = 1.36

Since Mae  > 1.0, the nozzle is converging-diverging. Again, we know

T
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3



Compressible Flow 573

Ve = Mae ae = Mae (g  RTe) 
0.5

 = 1.36 (1.4 × 287 × 203)
0.5

= 388 m/s

We also know that &m = re Ve Ae; so the exit area Ae is

Ae = &m /re Ve = 1.0/1.73 × 388 = 1.49 × 10
�3

 m
2
.

Example 14.4 Air at an absolute pressure 60.0 kPa and 27 ºC enters a passage at

486 m/s. The cross-sectional area at the entrance is 0.02 m2. At Sec. 2, further

downstream, the pressure is 78.8 kPa (abs). Assuming isentropic flow, calculate the

Mach number at Sec. 2. Also, identify the type of the nozzle.

Solution For isentropic flow, p01 = p02 = p0 = constant

At section 1, Ma1 = V1/a1;

the sonic velocity, a1 = (g RT)
0.5

 = (1.4 × 287 × 300)
0.5

= 347 m/s

So, Ma1 = 486/347 = 1.40

Now, P01 = p1 1
1

2
1
2

1

+
-F

H
I
K

-g g g
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/( )

= 60(1 + 0.2 (1.40)2)3.5 = 191 kPa
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Ma2 = 1.2

Since Ma2 < Ma1 and Ma2 > 1.0, the flow passage from 1 to 2 is a supersonic diffuser.

Example 14.5 A supersonic diffuser decelerates air isentropically from a Mach

number of 3 to a Mach number of 1.4. If the static pressure at the diffuser inlet is 30.0 kPa

(abs), calculate the static pressure rise in the diffuser and the ratio of inlet to outlet area of

the diffuser.

Solution For isentropic flow, p01 = p02 = p03

Now,
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Now, p2 � p1 = 11.5, p1 � p1 = 10.5 × 30.0 kPa = 315 kPa is the static pressure rise in the

diffuser.

Again, from continuity, r1V1A1 = r2V2A2

or
A

A

1

2

= r2V2/r1V1

We also know that p/rg = constant and r2/r1 = (p2/p1)
1/g

From the definition of Mach number, we can write Ma = V/a and a = g RT
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or A1/A2 = 3.79

So, the area ratio is 3.79.

Example 14.6  Air flows isentropically through a converging nozzle attached to a

large tank where the absolute pressure is 171 kPa and the temperature is 27 ºC. At the

inlet section, the Mach number is 0.2. The nozzle discharges into the atmosphere through

an area 0.015 m2. Determine the magnitude and direction of the force that must be applied

to hold the nozzle in place.

Solution Refer to Fig. 14.20.
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T0 = 27 °C

p0 = 171 kPa

M1 = 0.2

x

Rx

pb = 101 kPa

A2
2= 0.015 m

Fig. 14.20 Magnitude and direction of force required to keep the nozzle in

place
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So, the flow is not choked

T2 = T0 2
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V2 = Ma2a2 = Ma2 (g RT2)
0.5 = 0.901 (1.4 × 287 × 258)0.5

= 290 m/s

r2 = 
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287 258
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¥
 = 1.36 kg/m3

&m = r2 V2 A2 = 1.36 × 290 × 0.016 = 5.92 kg/s
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g
Ma  = 300/{1 + 0.2 (0.2)2] = 298 K

V1 = Ma1 a1 = Ma1 (g  RT1)
0.5

 = 0.2 (1.4 × 287 × 298)
0.5

= 69.2 m/s

r1 = p0 1
2

1

1
1

2
+

-L
NM

O
QP

-
g
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Ma
/( )

 = 171/[1 + 0.2 (0.2)
2
]
3.5

= 166 kPa

r1 = p1/(RT1) = 166 × 103/(287 × 298) = 1.94 kg/m3

A1 = &m /r1 V1 = 5.92/(1.94 × 69.2) = 0.044 m2

Rx = p1 A1 � p2 A2 � patm (A1 � A2) �  &m (V2 � V1)

= p1g A1 � p2g A2 � &m  (V2 � V1)

= (166 �101) × 103 × 0.044 � 5.92 (290 � 69.2)

Rx = 1560 N (to the left)
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Example 14.7 Air flowing isentropically through a converging nozzle discharges

to the atmosphere. At any section where the absolute pressure is 179 kPa, the temperature

is given by 39 ºC and the air velocity is 177 m/s. Determine the nozzle throat pressure.

Solution Refer to Fig. 14.21.

p pb = = 101 kPaatm

T1 = 39 C∞
p1 = 179 kPa

V1 = 177 m/sec

Fig. 14.21 Pressure, temperature and velocity are specified at any section

of a converging nozzle

The nozzle will be choked (Math = 1.0) if pb/p0 = 0.528

Ma1 = V1/a1; a1 = g RT1  = (1.4 ¥ 287 ¥ 312)0.5

= 354 m/s

Ma1 = V1/a1 = 177/354 = 0.5

p
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1
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+
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K

-
g

g g

Ma
/( )

p0  = 179 (1 + 0.2 (0.5)2 )3.5

or p0 = 212 kPa

So, pb /p0 = 101/212 = 0.476 which is less than 0.528

For  Math = 1.0, pth/p0 = 0.528

Pth = 0.528 × p0 = 0.528 × 212 = 112 kPa

Example 14.8 Air flows steadily and isentropically in a converging-diverging

nozzle. At the throat, the air is at 140 kPa (abs), and at 60 ºC. The throat cross-sectional

area is 0.05 m
2
. At a certain section in the diverging part of the nozzle, the pressure is

70.0 kPa (abs). Calculate the velocity and area of the this section.

Solution Refer Fig. 14.22.
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Tth = 60 °C
p1 = 70.0 kPa

Pth = 140 kPa

Ath
2= 0.05 m

Fig. 14.22 Flow in a converging-diverging nozzle and conditions at a

diverging section

Since p1 < pth, flow downstream of throat is supersonic and Math = 1.0
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Example 14.9 Air flows steadily and adiabatically from a large tank through a

converging nozzle connected to a constant area duct. The nozzle itself may be considered

frictionless. Air in the tank is at p = 1.00 Mpa (abs), T = 125 ºC. The absolute pressure at
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the nozzle exit (duct inlet) is 784 kPa. Determine the pressure at the end of the duct

length L, if the temperature there is 65 °C, and the entropy increases.

Solution Refer to Fig. 14.23.

T0 = 125 C∞ T2 = 65 C∞

p0 = 1.05 MPa

p1 = 784 kPa

Nozzle is

frictionless

Fig. 14.23 Flow from a tank through a nozzle connected to a duct
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 = 0.942

V2 = Ma2 a2 = 0.942 (1.4 × 287 × 338)0.5 = 347 m/s

V1 = Ma1 a1 = 0.60 (1.4 × 287 × 371)0.5 = 232 m/s

r1 = p1/(RT1) = 784 × 103/(287 × 371) = 7.36 kg/m3

r2 = 
V

V

1

2

r1 = 4.92 kg/m3

p2 = r2 RT2 = 4.92 × 287 × 338 = 477 kPa

Tds = dh � v dp = cp dT � 
1

r
dp

s2 � s1 = ds c p

s

s

=z
1

2

ln 
T

T

2

1

� R ln 
p

p

2

1

= 10 ln (338/371) � 287 ln(477/784) = 49.5 J/kg K

Example 14.10  A normal shock wave takes place during the flow of air at a Mach

number of 1.8. The static pressure and temperature of the air upstream of the shock wave

are 100 kPa (abs) and 15 ºC. Determine the Mach number, pressure and temperature

downstream of the shock.



Compressible Flow 579

Making use of Eq. (14.90), the Mach number downstream of the shock can be

calculated as
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2
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( . ) ( . )

( . ) ( . ) .
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 = 0.38; or Ma2 = 0.616

Equations (14.87) and (14.88) provide the downstream pressure and temperature.
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Exercises

14.1 Choose the correct answer (A, B, C for D) for the following:

(i) Select the expression that does not give the speed of a sound wave (g = cp/cv)

(a) g rp/ (b) g r / p (c) ∂ ∂p/ r (d) g RT

(ii) Shock waves are highly localized irreversibilities in the flow. Within the

distance of a mean free path, the flow passes from a

(a) supersonic to subsonic state

(b) subsonic to supersonic state

(c) subsonic state to sonic state

(d) supersonic to hypersonic state

(iii) The compressible flow upstream of a shock is always

(a) supersonic (b) subsonic

(c) sonic (d) none of these

(iv) Fluid is flowing through a duct with a Mach number equal to 1.2. An increase

in cross-sectional area in the downstream will cause an

(a) decrease in velocity (b) increase in velocity

(c) increase in static pressure (d) choked flow situation

(v) In a steady, adiabatic flow (it is not known whether reversible or not) of a

compressible fluid

(a) the stagnation temperature may vary throughout the flow field

(b) the stagnation pressure and stagnation density may change

(c) the stagnation temperature and stagnation density remain constant.

14.2 An airplane is capable of flying with a Mach number of 0.8. What can be the

maximum speed of the airplane (a) at the sea level where temperature is 15 ºC,

and (b) at the high altitude where the temperature is � 55 ºC?

(Ans. (a) 272.13 m/s (b) 236.76 m/s)

14.3 Air is at rest (p = 101 kPa, T = 288 K) in a chamber. It is expanded isentropically.

What is the Mach number when the velocity becomes 200 m/s? What is the

velocity when the speed becomes sonic? Also find out the maximum attainable

speed. (Ans. 0.587, 340 m/s, 760 m/s)
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14.4 Oxygen flow from a reservoir in which the temperature is at 200 ºC and the

pressure is at 300 kPa (abs). Assuming isentropic flow, calculate the velocity,

pressure and temperature where the Mach number is 0.8. For oxygen, g  = 1.4,

R = 260 J/kg K. (Ans. 312.5 m/s, 196.8 kPa, 419.3 K)

14.5 One problem in creating high Mach number flows is condensation of the oxygen

component in air when the temperature reaches 50 K. If the temperature of a

reservoir is 300 K and the flow is isentropic, at what Mach number will

condensation of oxygen take place? (Ans. Ma = 5.0)

14.6 A venturimeter with throat diameter 20 mm is installed in a pipe line of 60 mm to

measure air flow rate. The inlet side pressure and temperature are 400 kPa (abs)

and 298 K. The throat pressure is 300 kPa (abs). The flow in the venturimeter is

considered frictionless and without heat transfer. Estimate the mass flow rate of

air.

14.7 Air flows steadily and isentropically into an aircraft inlet at a rate of 100 kg/s. At

a section where the area is 0.464 m2, the Mach number, temperature and absolute

pressure are found to be 3, � 60 ºC and 15.0 kPa. Determine the velocity and

cross-sectional area downstream where T = 138 ºC. Sketch the flow passage.

(Ans. V2 = 610 m/s, A2 = 0.129 m
2 

)

14.8 Air flows steadily and isentropically through a passage. At Section 1 where the

cross-sectional area is 0.02 m
2
, the air is at 40.0 kPa (abs), 60 ºC, and the Mach

number is 2.0. At a section 2 downstream, the velocity is 519 m/s. Calculate the

Mach number at Sec. 2. Sketch the shape of the passage between Secs 1 and 2.

(Ans. Ma2 = 1.2)

14.9 Air flows from a large tank (p = 650 kPa (abs), T = 550ºC) through a converging

nozzle, with a throat area of 600 mm2, and discharges to the atmosphere.

Determine the rate of mass flow under isentropic condition in the nozzle.

(Ans. 0.548 kg/s)

14.10 Air enters a converging-diverging nozzle with negligible velocity at an absolute

pressure of 1.0 MPa and a temperature of 60 ºC. If the flow is isentropic and the

exit temperature is � 11 ºC, what is the Mach number at the exit?

(Ans. 1.16)

14.11 Air is to be expanded through a converging-diverging nozzle by a frictionless

adiabatic process from a pressure of 1.10 MPa (abs) and a temperature of 115 ºC

to a pressure of 141 kPa (abs). Determine the throat and exit areas for a well-

designed shockless nozzle if the mass flow rate is 2 kg/sec.

(Ans. 8.86 × 10�4 m2, 1.5 × 10�3 m2)

14.12 Air, at a stagnation pressure of 7.2 MPa (abs) and a stagnation temperature of

1100 K, flows isentropically through a converging-diverging nozzle having a

throat area of 0.01 m2. Determine the velocity at the downstream section where

the Mach number is 4.0. Also find out the mass flow rate.

(Ans. 1300 m/s, 87.4 kg/s)

14.13 A normal shock wave exists in a 500 m/s stream of nitrogen with a static

temperature of � 40 ºC and static pressure of 70 kPa. Calculate the Mach number,

pressure, and temperature downstream of the wave and entropy increase across

the wave. For nitrogen, g = 1.4, R = 297 J/kg K.

(Ans. Ma2 = 0.665, p2 = 200 kPa, T2 = 325 K, Ds = 34.1 J/kg K)



15.1 INTRODUCTION

A fluid machine is a device which converts the energy stored by a fluid into

mechanical energy or vice versa. The energy stored by a fluid mass appears in the

form of potential, kinetic and intermolecular energy. The mechanical energy, on

the other hand, is usually transmitted by a rotating shaft. Machines using liquid

(mainly water, for almost all practical purposes) are termed as hydraulic

machines. In this chapter we shall discuss, in general, the basic fluid mechanical

principle governing the energy transfer in a fluid machine and also a brief

description of different kinds of hydraulic machines along with their

performances. Discussion on machines using air or other gases is beyond the

scope of the chapter.

15.2 CLASSIFICATIONS OF FLUID MACHINES

The fluid machines may be classified under different categories as follows:

15.2.1 Classification Based on Direction of Energy

Conversion

The device in which the kinetic, potential or intermolecular energy held by the

fluid is converted in the form of mechanical energy of a rotating member is known

as a turbine. The machines, on the other hand, where the mechanical energy from

moving parts is transferred to a fluid to increase its stored energy by increasing

either its pressure or velocity are known as pumps,  compressors,  fans or blowers.

Principles of
Fluid Machines

15
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15.2.2 Classification Based on Principle of Operation

The machines whose functioning depend essentially on the change of volume of a

certain amount of fluid within the machine are known as positive displacement

machines. The word positive displacement comes from the fact that there is a

physical displacement of the boundary of a certain fluid mass as a closed system.

This principle is utilized in practice by the reciprocating motion of a piston within

a cylinder while entrapping a certain amount of fluid in it. Therefore, the word

reciprocating is commonly used with the name of the machines of this kind. The

machine producing mechanical energy is known as reciprocating engine while the

machine developing energy of the fluid from the mechanical energy is known as

reciprocating pump or reciprocating compressor.

The machines, functioning of which depend basically on the principle of fluid

dynamics, are known as rotodynamic machines. They are distinguished from

positive displacement machines in requiring relative motion between the fluid and

the moving part of the machine. The rotating element of the machine usually

consisting of a number of vanes or blades, is known as rotor or impeller while the

fixed part is known as stator.

For turbines, the work is done by the fluid on the rotor, while, in case of pump,

compressor, fan or blower, the work is done by the rotor on the fluid element.

Depending upon the main direction of fluid path in the rotor, the machine is termed

as radial flow or axial flow machine. In radial flow machine, the main direction of

flow in the rotor is radial while in axial flow machine, it is axial. For radial flow

turbines, the flow is towards the centre of the rotor, while, for pumps and

compressors, the flow is away from the centre. Therefore, radial flow turbines

are sometimes referred to as radially inward flow machines and radial flow pumps

as radially outward flow machines. Examples of such machines are the Francis

turbines and the centrifugal pump or compressors. The examples of axial flow

machines are Kaplan turbines and axial flow compressors. If the flow is partly

radial and partly axial, the term mixed-flow machine is used.

15.2.3 Classification Based on Fluid Used

The fluid machines use either liquid or gas as the working fluid depending upon

the purpose. The machine transferring mechanical energy of rotor to the energy

of fluid is termed as a pump when it uses liquid, and is termed as a compressor or

a fan or a blower, when it uses gas. The compressor is a machine where the main

objective is to increase the static pressure of a gas. Therefore, the mechanical

energy held by the fluid is mainly in the form of pressure energy. Fans or blowers,

on the other hand, mainly cause a high flow of gas, and hence utilize the

mechanical energy of the rotor to increase mostly the kinetic energy of the fluid.

In these machines, the change in static pressure is quite small.

For all practical purposes, liquid used by the turbines producing power is water,

and therefore, they are termed as water turbines or hydraulic turbines. Turbines

handling gases in practical fields are usually referred to as steam turbine, gas

turbine, and air turbine depending upon whether they use steam, gas (the mixture

of air and products of burnt fuel in air) or air.
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15.3 ROTODYNAMIC MACHINES

In this section, we shall discuss the basic principle of rotodynamic machines and

the performance of different kinds of those machines. The important element of a

rotodynamic machine, in general, is a rotor consisting of a number of vanes or

blades. There always exists a relative motion between the rotor vanes and the

fluid. The fluid has a component of velocity and hence of momentum in a direction

tangential to the rotor. While flowing through the rotor, tangential velocity and

hence the momentum changes.

The rate at which this tangential momentum changes corresponds to a

tangential force on the rotor. In a turbine, the tangential momentum of the fluid is

reduced and therefore work is done by the fluid to the moving rotor. But in case of

pumps and compressors there is an increase in the tangential momentum of the

fluid and therefore work is absorbed by the fluid from the moving rotor.

15.3.1 Basic Equation of Energy Transfer in Rotodynamic

Machines

The basic equation of fluid dynamics relating to energy transfer is same for all

rotodynamic machines and is a simple form of �Newton�s Laws of Motion�

applied to a fluid element traversing a rotor. Here we shall make use of the

momentum theorem as applicable to a fluid element while flowing through fixed

and moving vanes. Figure 15.1 represents diagrammatically a rotor of a genera-

lised fluid machine, with 0�0 the axis of rotation and w the angular velocity. Fluid

enters the rotor at 1, passes through the rotor by any path and is discharged at 2.

The points 1 and 2 are at radii r1 and r2 from the centre of the rotor, and the

directions of fluid velocities at 1 and 2 may be at any arbitrary angles. For the

analysis of energy transfer due to fluid flow in this situation, we assume the

following:

(a) The flow is steady, that is, the mass flow rate is constant across any

section (no storage or depletion of fluid mass in the rotor).

(b) The heat and work interactions between the rotor and its surroundings

take place at a constant rate.

(c) Velocity is uniform over any area normal to the flow. This means that

the velocity vector at any point is representative of the total flow over

a finite area. This condition also implies that there is no leakage loss,

and the entire fluid is undergoing the same process.

The velocity at any point may be resolved into three mutually perpendicular

components as shown in Fig. 15.1. The axial component of velocity Va is directed

parallel to the axis of rotation, the radial component Vf is directed radially through

the axis of rotation, while the tangential component Vw is directed at right angles to

the radial direction and along the tangent to the rotor at that part.

The change in magnitude of the axial velocity components through the rotor

causes a change in the axial momentum. This change gives rise to an axial force,

which must be taken by a thrust bearing to the stationary rotor casing. The change

in magnitude of radial velocity causes a change in momentum in radial direction.
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However, for an axisymmetric flow, this does not result in any net radial force on

the rotor. In case of a non uniform flow distribution over the periphery of the rotor

in practice, a change in momentum in radial direction may result in a net radial

force which is carried as a journal load. The tangential component Vw only has an

effect on the angular motion of the rotor. In consideration of the entire fluid body

within the rotor as a control volume, we can write from the moment of momentum

theorem (Eq. 4.35b))

T = m (Vw2
 r2 � Vw1 r1) (15.1)

Where T is the torque exerted by the rotor on the moving fluid, m is the mass flow

rate of fluid through the rotor. The subscripts 1 and 2 denote values at inlet and

outlet of the rotor respectively. The rate of energy transfer to the fluid is then

given by

E = Tw = m(Vw2
 r2w � Vw1

 r1w) = m(Vw2
 U2 � Vw1

 U1) (15.2)

Where w is the angular velocity of the rotor and U = wr which represents the linear

velocity of the rotor. Therefore U2 and U1 are the linear velocities of the rotor at

points 2 (outlet) and 1 (inlet) respectively (Fig. 15.1). The Eq. (15.2) is known as

Euler�s equation in relation to fluid machines. The Eq. (15.2) can be written in

terms of head gained �H� by the fluid as

H =
V U V U

g

w w2 12 1-
(15.3)

In usual convention relating to fluid machines, the head delivered by the fluid to

the rotor is considered to be positive and vice-versa. Therefore, Eq. (15.3) is

written with a change in the sign of the right hand side in accordance with the sign

convention as

H =
V U V U

g

w w1 21 2-
(15.4)
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Vw 2

Fig. 15.1 Components of flow velocity in a generalised fluid machine
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Components of Energy Transfer It is worth mentioning in this context that either

of the Eqs (15.2) and (15.4) is applicable regardless of changes in density or

components of velocity in other directions. Moreover, the shape of the path taken

by the fluid in moving from inlet to outlet is of no consequence. The expression

involves only the inlet and outlet conditions. A rotor, the moving part of a fluid

machine, usually consists of a number of vanes or blades mounted on a circular

disc. Figure 15.2a shows the velocity triangles at the inlet and outlet of a rotor.

The inlet and outlet portions of a rotor vane are only shown as a representative of

the whole rotor.

Fig. 15.2 (a) Velocity triangles for a generalised rotor vane (b) Centrifugal

effect in a flow of fluid with rotation

Vector diagrams of velocities at inlet and outlet correspond to two velocity

triangles, where Vr is the velocity of fluid relative to the rotor and a1, a2 are the

angles made by the directions of the absolute velocities at the inlet and outlet

respectively with the tangential direction, while b1 and b2 are the angles made by

the relative velocities with the tangential direction. The angles b1 and b2 should

match with vane or blade angles at inlet and outlet respectively for a smooth,

shockless entry and exit of the fluid to avoid undesirable losses. Now we shall

apply a simple geometrical relation as follows:

From the inlet velocity triangle,

Vr1

2 = V1
2 + U1

2 � 2 U1V1 cos a1 = V1
2 + U1

2 � 2 U1Vw1

or U1Vw1
 =

1

2
(V1

2
 + U1

2
 � V

2
r1

) (15.5)
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Similarly from the outlet velocity triangle,

Vr2

2 = V2
2 + U2

2 � 2 U2V2 cos a2 = V2
2 + U2

2 � 2 U2Vw2

or U2Vw2
 =

1

2
(V2

2 + U2
2 � Vr2

2) (15.6)

Invoking the expressions of U1Vw1
 and U2Vw2

 in Eq. (15.4), we get

H (Work head, i.e., energy per unit weight of fluid, transferred between the fluid

and the rotor) as

H =
1

2 g
[(V1

2
 � V2

2
) + (U1

2
 � U2

2
) + (Vr2

2
 � Vr1

2
)] (15.7)

The Eq. (15.7) is an important form of the Euler�s equation relating to fluid

machines since it gives the three distinct components of energy transfer as shown

by the pair of terms in the round brackets. These components throw light on the

nature of the energy transfer. The first term of Eq. (15.7) is readily seen to be the

change in absolute kinetic energy or dynamic head of the fluid while flowing

through the rotor. The second term of Eq. (15.7) represents a change in fluid

energy due to the movement of the rotating fluid from one radius of rotation to

another. This can be better explained by demonstrating a steady flow through a

container having uniform angular velocity w as shown in Fig. 15.2b. The

centrifugal force on an infinitesimal body of a fluid of mass dm at radius r gives

rise to a pressure difference dp across the thickness dr of the body in a manner

that a differential force of dp dA acts on the body radially inward. This force, in

fact, is the centripetal force responsible for the rotation of the fluid element and

thus becomes equal to the centrifugal force under equilibrium conditions in the

radial direction. Therefore, we can write

dp ◊ dA = dm w2 r

with dm = dA dr r, where r is the density of the fluid, it becomes

dp/r = w2 r dr

For a reversible flow (flow without friction) between two points, say, 1 and 2, the

work done per unit mass of the fluid (i.e., the flow work) can be written as

2

1

dp

rÚ  =

2 2 2 2 2 2 2
2 2 1 2 1

1

d
2 2

r r U U
r r

w w
w

- -
= =Ú

This work is, therefore, done on or by the fluid element due to its displacement

from radius r1 to radius r2 and hence becomes equal to the energy held or lost by it.

Since the centrifugal force field is responsible for this energy transfer, the corre-

sponding head (energy per unit weight) U2/2g is termed as centrifugal head. The

transfer of energy due to a change in centrifugal head [(U2
2 � U2

1)/2g] causes a

change in the static head of the fluid.

The third term represents a change in the static head due to a change in fluid

velocity relative to the rotor. This is similar to what happens in case of a flow

through a fixed duct of variable cross-sectional area. Regarding the effect of flow

area on fluid velocity Vr relative to the rotor, a converging passage in the direction
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of flow through the rotor increases the relative velocity (Vr2 > Vr1) and hence

decreases the static pressure. This usually happens in case of turbines. Similarly,

a diverging passage in the direction of flow through the rotor

decreases the relative velocity (Vr2 < Vr1) and increases the static pressure as

occurs in case of pumps and compressors.

The fact that the second and third terms of Eq. (15.7) correspond to a change

in static head can be demonstrated analytically by deriving Bernoulli�s equation in

the frame of the rotor.

In a rotating frame, the momentum equation for the flow of a fluid, assumed

�inviscid� can be written as

r w w w
∂

∂

r

r r
r

r
r r

rv

t
v v v r+ — + ¥ + ¥ ¥

L
NM

O
QP

◊ 2 ( )  = � —p

where 
r

v  is the fluid velocity relative to the coordinate frame rotating with an

angular velocity 
r

w .

We assume that the flow is steady in the rotating frame so that 
∂

∂

r

v

t
 = 0. We

choose a cylindrical coordinate system (r, q, z) with z- axis along the axis of

rotation. Then the momentum equation reduces to

r r

r

r

r

v v v◊— + ¥ - = - —2
12w w
r

i ri pz r

where, 
r

iz  and 
r

ir  are the unit vectors along z and r directions respectively. Let 
r

is  be

a unit vector in the direction of 
r

v  and s be a coordinate along the stream line. Then

we can write

v
v

s
i v

i

s
vi i ris

s
z s r

∂

∂

∂

∂

r

r

r r

+ + ¥ -2 22w w  = - —
1

r
p

Taking scalar product with 
r

is  it becomes

v
v

s
r

r

s

∂

∂

∂

∂
- w 2  = -

1

r

∂

∂

p

s

We have used 
r

r

i
i

s
s

s◊
∂

∂
 = 0. With a little rearrangement, we have

∂

∂ s
v r

p1

2

1

2

2 2 2- +
F
HG

I
KJ

w
r

 = 0

Since v is the velocity relative to the rotating frame we can replace it by Vr. Further

wr = U is the linear velocity of the rotor. Integrating the momentum equation from

inlet to outlet along a streamline we have

1

2
 (V2

r2
 � V2

r1
) � 

1

2
 (U2

2 � U 2
1) + 

p p2 1-
r

 = 0
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or,
1

2
 (U2

1 � U2
2) + 

1

2
 (V2

r2
 � V2

r1
) =

p p1 2-
r

(15.8)

Therefore, we can say, with the help of Eq. (15.8), that the last two terms of

Eq. (15.7) represent a change in the static head of fluid.

Energy Transfer in Axial Flow Machines For an axial flow machine, the main

direction of flow is parallel to the axis of the rotor, and hence the inlet and outlet

points of the flow do not vary in their radial locations from the axis of rotation.

Therefore, U1 = U2 and the equation of energy transfer [Eq. (15.7)] can be written,

under this situation, as

H =
1

2 g
[(V1

2 � V2
2) + (Vr2

2 � Vr1

2)] (15.9)

Hence, change in the static head in the rotor of an axial flow machine is only due to

the flow of fluid through the variable area passage in the rotor.

Radially Outward and Inward Flow Machines For radially outward flow

machines, U2 > U1, and hence the fluid gains in static head, while, for a radially

inward flow machine, U2 < U1 and the fluid losses its static head. Therefore, in

radial flow pumps or compressors the flow is always directed radially outward,

and in a radial flow turbine it is directed radially inward.

Impulse and Reaction Machines The relative proportion of energy transfer

obtained by the change in static head and by the change in dynamic head is one of

the important factors for classifying fluid machines. The machine for which the

change in static head in the rotor is zero is known as impulse machine. In these

machines, the energy transfer in the rotor takes place only by the change in

dynamic head of the fluid. The parameter characterising the proportions of

changes in the dynamic and static head in the rotor of a fluid machine is known as

degree of reaction and is defined as the ratio of energy transfer by the change in

static head to the total energy transfer in the rotor.

Therefore, the degree of reaction,

R =

( ) ( )2 2 2 2
1 2 2 1

1

2
U U Vr Vr

g

H

È ˘- + -Î ˚
(15.10)

For an impulse machine R = 0, because there is no change in static pressure in the

rotor. It is difficult to obtain a radial flow impulse machine, since the change in

centrifugal head is obvious there. Nevertheless, an impulse machine of radial flow

type can be conceived by having a change in static head in one direction

contributed by the centrifugal effect and an equal change in the other direction

contributed by the change in relative velocity. However, this has not been

established in practice. Thus for an axial flow impulse machine U1 = U2, Vr1
 =

Vr2
. For an impulse machine, the rotor can be made open, that is, the velocity V1

can represent an open jet of fluid flowing through the rotor, which needs no
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casing. A very simple example of an impulse machine is a paddle wheel rotated by

the impingement of water from a stationary nozzle as shown in Fig. 15.3a.

Water jet

Fixed nozzle

(a) (b)

Water under 
pressure 

Enlarged view 
of nozzle arm

High velocity 
jet

High velocity 
jet

Entry of water 
under pressure 

Fig. 15.3 (a)  Paddle wheel as an example of impulse turbine

(b)  Lawn sprinkler as an example of reaction turbine

A machine with any degree of reaction must have an enclosed rotor so that

the  fluid cannot expand freely in all directions. A simple example of a reaction

machine can be shown by the familiar lawn sprinkler, in which water comes out

(Fig. 15.3b) at a high velocity from the rotor in a tangential direction. The

essential feature of the rotor is that water enters at high pressure and this

pressure energy is transformed into kinetic energy by a nozzle which is a part of

the rotor itself.

In the earlier example of impulse machine (Fig. 15.3a), the nozzle is stationary

and its function is only to transform pressure energy to kinetic energy and finally

this kinetic energy is transferred to the rotor by pure impulse action. The change

in momentum of the fluid in the nozzle gives rise to a reaction force but as the

nozzle is held stationary, no energy is transferred by it. In the case of lawn

sprinkler (Fig. 15.3b), the nozzle, being a part of the rotor, is free to move and, in

fact, rotates due to the reaction force caused by the change in momentum of the

fluid and hence the word reaction machine follows.

Efficiencies The concept of efficiency of any machine comes from the

consideration of energy transfer and is defined, in general, as the ratio of useful

energy delivered to the energy supplied. Two efficiencies are usually considered

for fluid machines�the hydraulic efficiency concerning the energy transfer

between the fluid and the rotor, and the overall efficiency concerning the energy

transfer between the fluid and the shaft. The difference between the two

represents the energy absorbed by bearings, glands, couplings, etc. or, in

general, by pure mechanical effects which occur between the rotor itself and

the point of actual power input or output.



590 Introduction to Fluid Mechanics and Fluid Machines

Therefore, for a pump or compressor,

hhydraulic = hh =

useful energy gained by the fluid
at final discharge

mechanical energy supplied to rotor
(15.11a)

hoverall =

useful energy gained by the fluid
at final discharge

mechanical energy supplied to
shaft at coupling

(15.11b)

For a turbine,

hh =
mechanical energy delivered by the rotor

energy available from the fluid
(15.12a)

hoverall =

mechanical energy in output shaft
at coupling

energy available from the fluid
(15.12b)

The ratio of rotor and shaft energy is represented by the mechanical efficiency

hm.

Hence, hm =
h

h
overall

h

(15.13)

15.3.2 Principle of Similarity and Dimensional Analysis in

Rotodynamic Machines

The principle of similarity is a consequence of nature for any physical

phenomenon. The concept of similarity and dimensional analysis related to the

problems of fluid flow, in general, has been discussed in Chapter 6. By making use

of this principle, it becomes possible to predict the performance of one machine

from the results of tests on a geometrically similar machine, and also to predict the

performance of the same machine under conditions different from the test

conditions. For fluid machines, geometrical similarity must apply to all significant

parts of the system viz., the rotor, the entrance and discharge passages and so on.

Machines which are geometrically similar form a homologous series. Therefore,

the members of such a series, having a common shape are simply enlargements or

reductions of each other. If two machines are kinematically similar, the velocity

vector diagrams at inlet and outlet of the rotor of one machine must be similar to

those of the other. Geometrical similarity of the inlet and outlet velocity diagrams

is, therefore, a necessary condition for dynamic similarity.

Let us now apply dimensional analysis to determine the dimensionless

parameters, i.e., the p terms as the criteria of similarity. For a machine of a given

shape, and handling compressible fluid, the relevant variables are given in

Table 15.1.
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Table 15.1 Variable Physical Parameters of Fluid Machine

Variable physical parameters Dimensional formula

D = any physical dimension of the machine as

a measure of the machine�s size, usually the

rotor diameter L

Q = volume flow rate through the machine L3T �1

N = rotational speed (rev./min.) T �1

H = difference in head (energy per unit weight) across

the machine. This may be either gained or given by

 the fluid depending upon whether the machine is a

pump or a turbine respectively L

r = density of fluid ML
�3

m = viscosity of fluid ML �1T �1

E = coefficient of elasticity of fluid ML �1T �2

g = acceleration due to gravity LT �2

P = power transferred between fluid and rotor (the

difference between P and H is taken care of by

the hydraulic efficiency hh) ML2T �3

In almost all fluid machines flow with a free surface does not occur, and the

effect of gravitational force is negligible. Therefore, it is more logical to consider

the energy per unit mass gH as the variable rather than H alone so that

acceleration due to gravity g does not appear as a separate variable. Therefore, the

number of separate variables becomes eight: D,  Q,  N,  gH,  r,  m,  E and P. Since the

number of fundamental dimensions required to express these variables are three,

the number of independent p terms (dimensionless terms), becomes five. Using

Buckingham�s p theorem with D, N and r as the repeating variables, the

expressions for the p terms are obtained as,

p1 = 
Q

ND3
, p2 =

gH

N D2 2
, p3 = 

r

m

ND2

, p4 = 
P

N Dr 3 5
, p5 = 

E

N D

/r
2 2

We shall now discuss the physical significance and usual termionologies of

the different p  terms.

All lengths of the machine are proportional to D, and all areas to D2. Therefore,

the average flow velocity at any section in the machine is proportional to Q/D2.

Again, the peripheral velocity of the rotor is proportional to the product ND.

The first p term can be expressed as

p1 = 
Q

ND3  =
Q D

ND

V

U

/ 2

µ
fluid velocity

rotor velocity

Thus, p1 represents the condition for kinematic similarity, and is known as

capacity coefficient or discharge coefficient. The second p term p2 is known as

the head coefficient since it expresses the head H in dimensionless form.
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Considering the fact that ND µ rotor velocity, the term p2 becomes gH/U 2, and

can be interpreted as the ratio of fluid head to kinetic energy of the rotor. Dividing

p2 by the square of p1 we get

p

p

2

1
2

 = 
gH

Q D( / )2 2
µ

total fluid energy per unit mass

kinetic energy of the fluid per unit mass

The term p3 can be expressed as r (ND)D/m and thus represents the Reynolds

number with rotor velocity as the characteristic velocity. Again, if we make the

product of p1 and p3, it becomes r (Q/D2)D/m which represents the Reynold�s

number based on fluid velocity. Therefore, if p1 is kept same to obtain kinematic

similarity, p3 becomes proportional to the Reynolds number based on fluid

velocity.

The term p4 expresses the power P in dimensionless form and is therefore

known as power coefficient. Combination of p4, p1 and p2 in the form of p4/p1p2

gives P/rQgH. The term rQgH represents the rate of total energy given up by the

fluid, in case of turbine, and gained by the fluid in case of pump or compressor.

Since P is the power transferred to or from the rotor. Therefore p4/p1 p2 becomes

the hydraulic efficiency hh for a turbine and 1/hh for a pump or a compressor.

From the fifth p term, we get

1

5p
 =

ND

E / r

Multiplying p1 on both sides, we get

p

p

1

5

 =
Q D

E

/

/

2

r
µ

fluid velocity

local acoustic velocity

Therefore, we find that p1/ p 5
 represents the well known Mach number.

For a fluid machine, handling incompressible fluid, the term p5 can be dropped.

Moreover, if the effect of liquid viscosity on the performance of fluid machines is

neglected or regarded as secondary, (which is often sufficiently true for certain

cases or over a limited range) the term p3 can also be dropped. Then the

relationship between the different dimensionless variables (p terms) can be

expressed as

f 
3 2 2 3 5

, ,
Q gH P

ND N D N Dr

È ˘
Í ˙
Î ˚

 = 0 (15.14)

or, with another arrangement of the p terms,

f 
2 2 3 5

, ,h

gH P

N D N D
h

r

È ˘
Í ˙
Î ˚

 = 0 (15.15)

If data obtained from tests on a model machine, are plotted so as to show the

variation of dimensionless parameters 
Q

ND

gH

N D

P

N D3 2 2 3 5
, ,

r
 with one

another, then the graphs are applicable to any machine in the same homologous

series. The curves for other homologous series would naturally be different.
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Therefore one set of relationship or curves of the p terms would be sufficient to

describe the performance of all the members of one series.

The performance or operating conditions for a turbine handling a particular

fluid are usually expressed by the values of N,  P and H, and for a pump by N,  Q and

H. It is important to know the range of these operating parameters covered by a

machine of a particular shape (homologous series). Such information enables us

to select the type of machine best suited to a particular application, and thus serves

as a starting point in its design. Therefore a parameter independent of the size of

the machine D is required which will be the characteristic of all the machines of a

homologous series. A parameter involving N, P and H but not D is obtained by

dividing (p4)1/2 by (p2)
5/4. Let this parameter be designated by KsT

 as

KsT
  =

( / )

( / ) ( )

/

/

/

/ /

P N D

gH N D

NP

gH

r

r

3 5 1 2

2 2 5 4

1 2

1 2 5 4
= (15.16)

Similarly, a parameter involving N, Q and H but not D is obtained by dividing

(p1)
1/2 by (p2)3/4 and is represented by KsP

 as

KsP
 =

( / )

( / ) ( )

/

/

/

/

Q ND

gH N D

NQ

gH

3 1 2

2 2 3 4

1 2

3 4
= (15.17)

Since the dimensionless parameters KsT
 and KsP

 are found as a combination of

basic p terms, they must remain same for complete similarity of flow in machines

of a homologous series. Therefore, a particular value of KsT
 or KsP

 relates all the

combinations of N, P and H or N, Q and H for which the flow conditions are

similar in the machines of that homologous series. Interest naturally centres on

the conditions for which the efficiency is a maximum. For turbines, the values of

N, P and H, and for pumps and compressors, the values of N, Q and H are usually

quoted for which the machines run at maximum efficiency.

The machines of a particular homologous series, that is, of a particular shape,

correspond to a particular value of Ks for their maximum efficient operation.

Machines of different shapes have, in general, different values of Ks. Thus the

parameter Ks (KsT
 or KsP

) is referred to as the shape factor of the machines. Con-

sidering the fluids used by the machines to be incompressible, (for hydraulic

turbines and pumps), and since the acceleration due to gravity does not vary under

this situation, the terms g and r are taken out from the expressions of KsT
 and KsP

.

The portions left as NP1/2/H5/4 and NQ1/2/H3/4 are termed, for the practical pur-

poses, as the specific speed Ns for turbines or pumps. Therefore, we can write,

NsT
 (specific speed for turbines) = NP1/2/H5/4 (15.18)

NsP
 (specific speed for pumps) = NQ

1/2
/H

3/4
(15.19)

The name specific speed for these expressions has a little justification.

However a meaning can be attributed from the concept of a hypothetical machine.

For a turbine, NsT is the speed of a member of the same homologous series as the

actual turbine, so reduced in size as to generate unit power under a unit head of

the fluid. Similarly, for a pump, NsP is the speed of a hypothetical pump with

reduced size but representing a homologous series so that it delivers unit flow rate

at a unit head. The specific speed Ns is, therefore, not a dimensionless quantity.
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The dimension of Ns can be found from their expressions given by Eqs (15.18)

and (15.19). The dimensional formula and the unit of specific speed are given as

follows:

Specific speed Dimensional formula Unit (SI)

NsT
 (turbine) M1/2 T �5/2 L �1/4 kg1/2/s5/2m1/4

NsP
(pump) L3/4 T �3/2 m3/4/s3/2

The dimensionless parameter Ks is often known as the dimensionless specific

speed to distinguish it from Ns. The values of specific speed Ns (for maximum

efficiencies) for different types of turbines and pumps will be discussed later.

15.4 DIFFERENT TYPES OF ROTODYNAMIC MACHINES

In this section we shall discuss the hydraulic machines which use water as the

fluid in practice.

15.4.1 Impulse Hydraulic Turbine: The Pelton Wheel

The only hydraulic turbine of the impulse type in common use, is named after an

American engineer Laster-A Pelton, who contributed much to its development in

about 1880. Therefore this machine is known as Pelton turbine or Pelton wheel. It

is an efficient machine particularly suited to high heads. The rotor consists of a

large circular disc or wheel on which a number (seldom less than 15) of spoon

shaped buckets are spaced uniformly round its periphery as shown in Fig. 15.4.

Fig. 15.4 A Pelton wheel
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The wheel is driven by jets of water being discharged at atmospheric pressure

from pressure nozzles. The nozzles are mounted so that each directs a jet along a

tangent to the circle through the centres of the buckets. Down the centre of each

bucket, there is a splitter ridge which divides the jet into two equal streams which

flow round the smooth inner surface of the bucket and leaves the bucket with a

relative velocity almost opposite in direction to the original jet.

For maximum change in momentum of the fluid and hence for the maximum

driving force on the wheel, the deflection of the water jet should be 180°. In

practice, however, the deflection is limited to about 165° so that the water leaving

a bucket may not hit the back of the following bucket. Therefore, the camber

angle of the buckets is made as 165° (q = 165°, Fig. 15.5a).

The number of jets is not more than two for horizontal shaft turbines and is

limited to six for vertical shaft turbines. The flow partly fills the buckets and the

fluid remains in contact with the atmosphere. Therefore, once the jet is produced

by the nozzle, the static pressure of the fluid remains atmospheric throughout the

machine. Because of the symmetry of the buckets, the side thrusts produced by

the fluid in each half should balance each other.

Analysis of force on the bucket and power generation Figure 15.5a shows a

section through a bucket which is being acted on by a jet. The plane of section is

parallel to the axis of the wheel and contains the axis of the jet. The absolute

velocity of the jet V1 with which it strikes the bucket is given by

V1 = C
v
 [2gH]1/2

V1

Bucket

(a)

(b) (c)

Plane of wheel
U

2

2U

U

V1

Vr1 V2

Vw2

Vr2 = kVr1

Fig. 15.5 (a) Flow along the bucket of a pelton wheel

(b) Inlet velocity triangle

(c) Outlet velocity triangle

where, C
v
 is the coefficient of velocity which takes care of the friction in the

nozzle. H is the head at the entrance to the nozzle which is equal to the total or

gross head of water stored at high altitudes minus the head lost due to friction in

the long pipeline leading to the nozzle. Let the velocity of the bucket (due to the
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rotation of the wheel) at its centre where the jet strikes be U. Since the jet velocity

V1 is tangential, i.e. V1 and U are colinear, the diagram of velocity vector at inlet

(Fig. 15.5b) becomes simply a straight line and the relative velocity Vr1
 is given by

Vr1
 = V1 � U

It is assumed that the flow of fluid is uniform and it glides the blade all along

including the entrance and exit sections to avoid the unnecessary losses due to

shock. Therefore the direction of relative velocity at entrance and exit should

match the inlet and outlet angles of the buckets respectively. The velocity triangle

at the outlet is shown in Fig. 15.5c. The bucket velocity U remains the same both

at the inlet and outlet. With the direction of U being taken as positive, we can write.

The tangential component of inlet velocity (Fig. 15.5b)

Vw1
 = V1 = Vr1

 + U

and the tangential component of outlet velocity (Fig. 15.5c)

Vw2
 = � (Vr2

 cos b2 � U)

where, Vr1
 and Vr2

 are the velocities of the jet relative to the bucket at its inlet and

outlet and b2 is the outlet angle of the bucket.

From the Eq. (15.2) (the Euler�s equation for hydraulic machines), the energy

delivered by the fluid per unit mass to the rotor can be written as

E/m = [Vw1
 � Vw2

]U

= [Vr1
 + Vr2

 cos b2] U (15.20)

(since, in the present situation, U1 = U2 = U)

The relative velocity Vr2
 becomes slightly less than Vr1

 mainly because of the

friction in the bucket. Some additional loss is also inevitable as the fluid strikes the

splitter ridge, because the ridge cannot have zero thickness. These losses are

however kept to a minimum by making the inner surface of the bucket polished

and reducing the thickness of the splitter ridge. The relative velocity at outlet Vr2
 is

usually expressed as Vr2
 = KVr1

 where, K is a factor with a value less than 1.

Therefore, we can write Eq. (15.20) as

E/m = Vr1
 [1 + K cos b2] U (15.21)

If Q is the volume flow rate of the jet, then the power transmitted by the fluid to

the wheel can be written as

P = r Q Vr1
 [ 1 + K cos b2] U

= r Q [1 + K cos b2] (V1 � U) U (15.22)

The power input to the wheel is  found from the kinetic energy of the jet arriving at

the wheel and is given by 
1

2
1
2r QV . Therefore the wheel efficiency of a pelton

turbine can be written as

hw =
2 1 2 1

1
2

r b

r

Q K V U U

QV

[ cos ]( )+ -



Principles of Fluid Machines 597

= 2
1 1

2[1 cos ] 1
U U

K
V V

b
È ˘

+ -Í ˙
Î ˚

(15.23)

It is found from Eq. (15.23) that the efficiency hw depends on K, b2 and U/V1.

For a given design of the bucket, i.e. for constant values of b2 and K, the efficiency

hw becomes a function of U/V1 only, and we can determine the condition given by

U/V1 at which hw becomes maximum.

For hw to be maximum,

d

d

hw

U V( / )1

 = 2
1

2[1 cos ] 1 2
U

K
V

b
È ˘

+ -Í ˙
Î ˚

 = 0

or U/V1 =
1

2
(15.24)

d2hw/d(U/V1)2 is always negative indicating that the Eq. (15.23) has only a

maximum (not a minimum) value.

The condition given by Eq. (15.24) states that the efficiency of the wheel in

converting the kinetic energy of the jet into mechanical energy of rotation becomes

maximum when the wheel speed at the centre of the bucket becomes one half of

the incoming velocity of the jet. The overall efficiency h0 will be less than hw

because of friction in bearing and windage, i.e. friction between the wheel and the

atmosphere in which it rotates. Moreover, as the losses due to bearing friction and

windage increase rapidly with speed, the overall efficiency reaches it peak when

the ratio U/V1 is slightly less than the theoretical value of 0.5. The value usually

obtained in practice is about 0.46 (Fig. 15.6). An overall efficiency of 85�90 per

cent may usually be obtained in large machines. To obtain high values of wheel

efficiency, the buckets should have smooth surface and be properly designed.

The length, width, and depth of the buckets are chosen about 2.5, 4 and 0.8 times

the jet diameter. The buckets are notched for smooth entry of the jet.

Efficiency 

Theoretical

Actual

Max. when U = V1/2

U = V1

Blade speed, U

Fig. 15.6 Variation of wheel efficiency with blade speed

Specific speed and wheel geometry The specific speed of a Pelton wheel depends

on the ratio of jet diameter d and the wheel pitch diameter D (the diameter

at the centre of the bucket). If the hydraulic efficiency of a Pelton wheel is defined
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as the ratio of the power delivered P to the wheel to the head available H at the

nozzle entrance, then we can write

P = r Q g H hh = 
p r hd V

C

h
2

1
3

24 2¥
v

[since Q =
p d

V
2

1
4

and V1 = C
v
(2gH)1/2]

The specific speed NsT
 [Eq. (15.18)] = N P

H

1 2

5 4

/

/

The rotational speed N can be written as

N = U/pD

Therefore, it becomes

NsT
 =

5/ 43/2 1/21/2 2
1/21 v

1/2 2
1

( ) 2

(8)

h

v

d V g CU

D C V

p h
r

p

È ˘Ê ˆ
Í ˙Á ˜Ë ¯ Í ˙Î ˚

=
5/ 4

1/23/2 1/2

1/2 1/4
1( ) 2

v h

g U d
C

V D
h r

p
(15.25a)

It may be concluded from Eq. (15.25a) that the specific speed NsT
 depends

primarily on the ratio d/D as the quantities U/V1, C
v
 and hh vary only slightly.

Using the typical values of U/V1 = 0.46, C
v
 = 0.97 and hh = 0.85, the approximate

relation between the specific speed and diameter ratio is obtained as

NsT
  ~= 105 (d/D) kg1/2s�5/2m�1/4 (15.25b)

The optimum value of the overall efficiency of a Pelton turbine depends both on

the values of the specific speed and the speed ratio. The Pelton wheels with a

single jet operate in the specific speed range of 4�16, and therefore the ratio D/d

lies between 6 to 26 as given by the Eq. (15.25b). A larger value of D/d reduces the

rpm as well as the mechanical efficiency of the wheel. It is possible to increase the

specific speed by choosing a lower value of D/d, but the efficiency will decrease

because of the close spacing of buckets. The value of D/d is normally kept

between 14 and 16 to maintain high efficiency. The number of buckets required to

maintain optimum efficiency is usually fixed by the empirical relation

n(number of buckets) = 15 + 
53

NsT

Governing of Pelton Turbine First let us discuss what is meant by governing of

turbines in general. When a turbine drives an electrical generator or alternator, the

primary requirement is that the rotational speed of the shaft and hence that of the

turbine rotor has to be kept fixed. Otherwise the frequency of the electrical output

will be altered. But when the electrical load changes depending upon the demand,

the speed of the turbine changes automatically. This is because the external

resisting torque on the shaft is altered while the driving torque due to change of
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momentum in the flow of fluid through the turbine remains the same. For example,

when the load is increased, the speed of the turbine decreases and vice versa. A

constancy in speed is therefore maintained by adjusting the rate of energy input to

the turbine accordingly. This is usually accomplished by changing the rate of fluid

flow through the turbine�the flow is increased when the load is increased and the

flow is decreased when the load is decreased. This adjustment of flow with the

load is known as the governing of turbines.

In case of a Pelton turbine, an additional requirement for its operation at the

condition of maximum efficiency is that the ratio of bucket to initial jet velocity

U/V1 has to be kept at its optimum value of about 0.46. Hence, when U is fixed,

V1 has to be fixed. Therefore the control must be made by a variation of the cross-

sectional area, A, of the jet so that the flow rate changes in proportion to the

change in the flow area keeping the jet velocity V1 same. This is usually achieved

by a spear valve in the nozzle (Fig. 15.7a). Movement of the spear along the axis

of the nozzle changes the annular area between the spear and the housing. The

shape of the spear is such, that the fluid coalesces into a circular jet and then the

effect of the spear movement is to vary the diameter of the jet. Deflectors are

often used (Fig. 15.7b) along with the spear valve to prevent the serious water

hammer problem due to a sudden reduction in the rate of flow. These plates

temporarily deflect the jet so that the entire flow does not reach the bucket; the

spear valve may then be moved slowly to its new position to reduce the rate of

flow in the pipe-line gradually. If the bucket width is too small in relation to the

jet diameter, the fluid is not smoothly deflected by the buckets and, in

consequence, much energy is dissipated in turbulence and the efficiency drops

considerably. On the other hand, if the buckets are unduly large, the effect of

friction on the surfaces is unnecessarily high. The optimum value of the ratio of

bucket width to jet diameter has been found to vary between 4 to 5.

Spear valve

Deflector

High load
(a)

(b)

Low load

Flow

Fig. 15.7 (a)  Spear valve to alter jet area in a Pelton wheel

(b) Jet deflected from bucket
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Limitation of a Pelton Turbine The Pelton wheel is efficient and reliable when

operating under large heads. To generate a given output power under a smaller

head, the rate of flow through the turbine has to be higher which requires an

increase in the jet diameter. The number of jets are usually limited to 4 or 6 per

wheel. The increase in jet diameter in turn increases the wheel diameter. Therefore

the machine becomes unduly large, bulky and slow-running. In practice, turbines

of the reaction type are more suitable for lower heads.

15.4.2 Reaction Turbine

The principal feature of a reaction turbine that distinguishes it from an impulse

turbine is that only a part of the total head available at the inlet to the turbine is
converted to velocity head, before the runner is reached. Also in the reaction
turbines the working fluid, instead of engaging only one or two blades, completely
fills the passages in the runner. The pressure or static head of the fluid changes
gradually as it passes through the runner along with the change in its kinetic
energy based on absolute velocity due to the impulse action between the fluid and
the runner. Therefore the cross-sectional  area of flow through the passages of
the runner changes gradually to accommodate the variation in static pressure of
the fluid. A reaction turbine is usually well suited for low heads. A radial flow
hydraulic turbine of reaction type was first developed by an American Engineer,
James B. Francis (1815�92) and is named after him as the Francis turbine. The

schematic diagram of a Francis turbine is shown in Fig. 15.8.

Stay vanes
Runner

Draft tube

Spiral-casing

Fig. 15.8 A Francis turbine
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Most of these machines have vertical shafts although some smaller machines

of this type have horizontal shaft. The fluid enters from the penstock (pipeline

leading to the turbine from the reservoir at high altitude) to a spiral casing which

completely surrounds the runner. This casing is known as scroll casing or volute.

The cross-sectional area of this casing decreases uniformly along the

circumference to keep the fluid velocity constant in magnitude along its path

towards the guide vane. This is so because the rate of flow along the fluid path in

the volute decreases due to continuous entry of the fluid to the runner through the

openings of the guide vanes or stay vanes. The basic purpose of the guide vanes

(stay vanes) is to convert a part of pressure energy of the fluid at its entrance to the

kinetic energy and then to direct the fluid on to the runner blades at the angle

appropriate to the design. Moreover, the guide vanes are pivoted and can be turned

by a suitable governing mechanism to regulate the flow while the load changes.

The guide vanes are also known as wicket gates. The guide vanes impart a

tangential velocity and hence an angular momentum to the water before its entry

to the runner. The flow in the runner of a Francis turbine is not purely radial but a

combination of radial and tangential. The flow is inward, i.e. from the periphery

towards the centre. The height of the runner depends upon the specific speed.

The height increases with the increase in the specific speed. The main direction of

flow changes as water passes through the runner and is finally turned into the axial

direction while entering the draft tube.

The draft tube is a conduit which connects the runner exit to the tail race where

the water is being finally discharged from the turbine. The primary function of the

draft tube is to reduce the velocity of the discharged water to minimize the loss of

kinetic energy at the outlet. This permits the turbine to be set above the tail water

without any appreciable drop of available head. A clear understanding of the

function of the draft tube in any reaction turbine, in fact, is very important for the

purpose of its design. The purpose of providing a draft tube will be better

understood if we carefully study the net available head across a reaction turbine.

Net head across a reaction turbine and the purpose of providing a draft tube The

effective head across any turbine is the difference between the head at inlet to the

machine and the head at outlet from it. A reaction turbine always runs completely

filled with the working fluid. The tube that connects the end of the runner to the

tail race is known as a draft tube and should completely be filled with the working

fluid flowing through it. The kinetic energy of the fluid finally discharged into the

tail race is wasted. A draft tube is made divergent so as to reduce the velocity at

outlet to a minimum. Therefore a draft tube is basically a diffuser and should be

designed properly with the angle between the walls of the tube to be limited to

about 8 degree so as to prevent the flow separation from the wall and to reduce

accordingly the loss of energy in the tube. Figure 15.9 shows a flow diagram from

the reservoir via a reaction turbine to the tail race.

The total head H1 at the entrance to the turbine can be found out by applying the

Bernoulli�s equation between the free surface of the reservoir and the inlet to the

turbine as

H0 =
p

g

V

g
z h f

1 1
2

2r
+ + +
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or H1 = H0 � hf = 
p

g

V

g
z1 1

2

2r
+ +

where hf is the head lost due to friction in the pipeline connecting the reservoir and

the turbine. Since the draft tube is a part of the turbine, the net head across the

turbine, for the conversion of mechanical work, is the difference of total head at

inlet to the machine and the total head at discharge from the draft tube at tail race

and is shown as H in Fig. 15.9.

Draft tube

Turbine

2g

V1
2

2

1

3
Tail race

H0

z

hf

2g

V3
2

p g1/r H = Net head
producing workH1

Fig. 15.9 Head across a reaction turbine

Therefore, H = total head at inlet to machine (1) � total head at discharge (3)

=
p

g

1

r
 + 

V

g
z

V
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1
2

3
2

2 2
+ -  = H1 � 

V

g

3
2

2

= (H0 � hf) � 
V

g

3
2

2

The pressures are defined in terms of their values above the atmospheric

pressure. Sections 2 and 3 in Fig. 15.9 represent the exits from the runner and the

draft tube respectively. If the losses in the draft tube are neglected, then the total

head at 2 becomes equal to that at 3. Therefore, the net head across the machine is

either (H1 � H3) or (H1 � H2). Applying the Bernoull�s equation between 2 and 3 in

consideration of flow, without losses, through the draft tube, we can write,

p

g

V

g
z2 2

2

2r
+ +  = 0 + 

V

g

3
2

2
 + 0

or
p

g

2

r
 = �

2 2
2 3

2

V V
z

g

È ˘-
+Í ˙

Í ˙Î ˚
(15.26)

Since V3 < V2, both the terms in the bracket are positive and hence p2/r g is

always negative, which implies that the static pressure at the outlet of the runner
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is always below the atmospheric pressure. Equation (15.26) also shows that the

value of the suction pressure at runner outlet depends on z, the height of the

runner above the tail race and (V2
2 � V3

2)/2g, the decrease in kinetic energy of the

fluid in the draft tube. The value of this minimum pressure p2 should never fall

below the vapour pressure of the liquid at its operating temperature to avoid the

problem of cavitation. Therefore, we find that the incorporation of a draft tube

allows the turbine runner to be set above the tail race without any drop of available

head by maintaining a vacuum pressure at the outlet of the runner.

Runner of Francis Turbine The shape of the blades of a Francis runner is complex.

The exact shape depends on its specific speed. It is obvious from the equation of

specific speed (Eq. 15.18) that higher specific speed means lower head. This

requires that the runner should admit a comparatively large quantity of water for a

given power output and at the same time the velocity of discharge at runner outlet

should be small to avoid cavitation. In a purely radial flow runner, as developed by

James B. Francis, the bulk flow is in the radial direction. To be more clear, the

flow is tangential and radial at the inlet but is entirely radial with a negligible

tangential component at the outlet. The flow, under the situation, has to make a

90° turn after passing through the rotor for its inlet to the draft tube. Since the

flow area (area perpendicular to the radial direction) is small, there is a limit to the

capacity of this type of runner in keeping a low exit velocity. This leads to the

design of a mixed flow runner where water is turned from a radial to an axial

direction in the rotor itself. At the outlet of this type of runner, the flow is mostly

axial with negligible radial and tangential components. Because of a large discharge

area (area perpendicular to the axial direction), this type of runner can pass a large

amount of water with a low exit velocity from the runner. The blades for a reaction

turbine are always so shaped that the tangential or whirling component of velocity

at the outlet becomes zero (Vw2
 = 0). This is made to keep the kinetic energy at

outlet a minimum.

Figure 15.10 shows the velocity triangles at inlet and outlet of a typical blade of

a Francis turbine. Usually the flow velocity (velocity perpendicular to the

tangential direction) remains constant throughout, i.e. Vf1 = Vf2 and is equal to that

at the inlet to the draft tube.

The Euler�s equation for turbine [Eq. (15.2)] in this case reduces to

E/m = e = Vw1
 U1 (15.27)

where, e is the energy transfer to the rotor per unit mass of the fluid.

From the inlet velocity triangle shown in Fig. 15.10.

Vw1
 = Vf1

 cot a1 (15.28a)

and U1 = Vf1
 (cot a1 + cot b1) (15.28b)

substituting the values of Vw1
 and U1 from Eqs (15.28a) and (15.28b) respectively

into Eq. (15.27), we have

e = Vf1

2 cot a1 (cot a1 + cot b1) (15.29)
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The loss of kinetic energy per unit mass becomes equal to Vf2

2/2. Therefore,

neglecting friction, the blade efficiency becomes

hb =
e

e Vf+ ( / )
2

2 2

=
2

2

1

2 1

2
1 1 1

2 2
1 1 1

V

V V

f

f f

cot (cot cot )

cot (cot cot )

a a b

a a b

+

+ +

since Vf1
 = Vf2

, hb can be written as

hb = 1
1

1 2 1 1 1

-
+ +cot (cot cot )a a b

The change in pressure energy of the fluid in the rotor can be found out by

subtracting the change in its kinetic energy from the total energy released.

Therefore, we can write for the degree of reaction

R =

e V V

e

V

e

f f- -
= -

1

2 1

1

2
1
2 2 2 2

12 1
( ) cot a

[since V1
2 � Vf2

2 = V1
2 � Vf1

2 = Vf1

2 cot2 a1]

using the expression of e from Eq. (15.29), we have

R = 1
2

1

1 1

-
+

cot

(cot cot )

a

a b
(15.30)

The inlet blade angle b1 of a Francis runner varies from 45�120° and the guide

vane angle a1 from 10�40°. The ratio of blade width to the diameter of runner

B/D, at blade inlet, depends upon the required specific speed and varies from 1/20

to 2/3.

U1

U2

V1

Vr1

Vr2

Vf1

Vf2

1

2

1

2

Fig. 15.10 Velocity triangle for a Francis runner
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Expression for specific speed The dimensional specific speed of a turbine, as

given by Eq. (15.18), can be written as

NsT =
NP

H

1 2

5 4

/

/

Power generated P for a turbine can be expressed in terms of available head H

and hydraulic efficiency hh as

P = r Q g H hh

Hence, it becomes

NsT
 = N (r Q g hh)

1/2 H �3/4 (15.31)

Again, N = U1/pD1,

Substituting U1 from Eq. (15.28b),

N =
V

D

f1 1 1

1

(cot cot )a b

p

+
(15.32)

Available head H equals the head delivered by the turbine plus the head lost at the

exit. Thus,

gH = e + (Vf2

2/2)

Since Vf1
 = Vf2

gH = e + (Vf1

2/2)

with the help of Eq. (15.29), it becomes

gH = Vf1

2 cot a1 (cot a1 + cot b1) + 
Vf1

2

2

or H =
V

g

f1

2

2
[1 + 2 cot a1 (cot a1 + cot b1)] (15.33)

Substituting the values of H and N from Eqs (15.33) and (15.32) respectively into

the expression of NsT
 given by Eq. (15.31), we get,

NsT
 = 23/4g5/4 (r hh Q)1/2 

V

D

f1

1 2

1

- /

p
 (cot a1 + cot b1) [1+2 cot a1

(cot a1 + cot b1)]�3/4

Flow velocity at inlet Vf1
 can be substituted from the equation of continuity as

Vf1
 =

Q

D Bp 1

where B is the width of the runner at its inlet
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Finally, the expression for NsT
 becomes,

NsT
 = 23/4g5/4 (r hh)1/2 

1/2

1

B

Dp

Ê ˆ
Á ˜Ë ¯

 (cot a1 + cot b1)

[1+2 cot a1 (cot a1 + cot b1)]
�3/4

(15.34)

For a Francis turbine, the variations of geometrical parameters like a1 , b1 B/D

have been described earlier. These variations cover a range of specific speed

between 50 and 400. Higher specific speed corresponds to a lower head. This

requires that runner should admit a comparatively large quantity of water. For a

runner of given diameter, the maximum flow rate is achieved when the flow is

parallel to the axis. Such a machine is known as axial flow reaction turbine. Such

a turbine was first designed by an Austrian Engineer, Viktor Kaplan and is

therefore named after him as Kaplan turbine.

15.4.3 Development of Kaplan Runner from the Change in the

Shape of Francis Runner with Specific Speed

Figure 15.11 shows in stages the change in the shape of a Francis runner with the

variation of specific speed. The first three types [Fig. 15.11 (a), (b) and (c)] have,

in order, the Francis runner (radial flow runner) at low, normal and high specific

speeds. As the specific speed increases, discharge becomes more and more axial.

The fourth type, as shown in Fig. 15.11 (d), is a mixed flow runner (radial flow at

inlet but axial flow at outlet) and is known as Dubs runner which is mainly suited

for high specific speeds. Figure 15.11 (e) shows a propeller type runner with a

less number of blades where the flow is entirely axial (both at inlet and outlet).

This type of runner is the most suitable one for very high specific speeds and is

known as Kaplan runner or axial flow runner.

From the inlet velocity triangle for each of the five runners, as shown in

Figs (15.11a to 15.11e), it is found that an increase in specific speed (or a

decreased in head) is accompanied by a reduction in inlet velocity V1. But the flow

velocity Vf1 at inlet increases allowing a large amount of fluid to enter the turbine.

The most important point to be noted in this context is that the flow at inlet to all the

runners, except the Kaplan one, is in radial and tangential directions. Therefore,

the inlet velocity triangles of those turbines (Figs 15.11a to 15.11d) are shown in

a plane containing the radial and tangential directions, and hence the flow velocity

Vf1 represents the radial component of velocity.

In case of a Kaplan runner, the flow at inlet is in axial and tangential

directions. Therefore, the inlet velocity triangle in this case (Fig. 15.11e) is

shown in a plane containing the axial and tangential directions, and hence the

flow velocity Vf1 represents the axial component of velocity Va. The tangential

component of velocity is almost nil at outlet of all runners. Therefore, the outlet

velocity triangle (Fig. 15.11f) is identical in shape for all the runners. However,

the exit velocity V2 is axial in Kaplan and Dubs runner, while it is the radial one

in all other runners.
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Fig. 15.11 Evolution of Kaplan runner from Francis one
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Figure 15.12 shows a schematic diagram of a propeller or Kaplan turbine. The

function of the guide vane is same as in case of a Francis turbine. Between the

guide vanes and the runner, the fluid in a propeller turbine turns through a right-

angle into the axial direction and then passes through the runner. The runner

usually has four or six blades and closely resembles a ship�s propeller. Neglecting

the frictional effects, the flow approaching the runner blades can be considered to

be a free vortex with whirl velocity being inversely proportional to radius, while

on the other hand, the blade velocity is directly proportional to the radius. To take

care of this different relationship of the fluid velocity and the blade velocity with

the change in radius, the blades are twisted. The angle with the axis is greater at the

tip than at the root.

Guide vane

Runner

Fig. 15.12 A propeller or Kaplan turbine

Different types of draft tubes incorporated in reaction turbines The draft tube is an

integral part of a reaction turbine. Its principle has been explained earlier. The

shape of draft tube plays an important role especially for high specific speed

turbines, since the efficient recovery of kinetic energy at runner outlet depends

mainly on it. Typical draft tubes, employed in practice, are discussed as follows.
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Straight divergent tube [Fig. 15.13(a)] The shape of this tube is that of a frustrum

of a cone. It is usually employed for low specific speed, vertical shaft Francis

turbine. The cone angle is restricted to 8° to avoid the losses due to separation.

The tube must discharge sufficiently low under tail water level. The maximum

efficiency of this type of draft tube is 90%. This type of draft tube improves speed

regulation on falling load.

Simple elbow type (Fig. 15.13b) The vertical length of the draft tube should be

made small in order to keep down the cost of excavation, particularly in rock. The

exit diameter of draft tube should be as large as possible to recover kinetic energy

at runner�s outlet. The cone angle of the tube is again fixed from the consideration

of losses due to flow separation. Therefore, the draft tube must be bent to keep its

definite length. Simple elbow type draft tube will serve such a purpose. Its

efficiency is, however, low (about 60%). This type of draft tube turns the water

from the vertical to the horizontal direction with a minimum depth of excavation.

Sometimes, the transition from a circular section in the vertical portion to a

rectangular section in the horizontal part (Fig. 15.13c) is incorporated in the

design to have a higher efficiency of the draft tube. The horizontal portion of the

draft tube is generally inclined upwards to lead the water gradually to the level of

the tail race and to prevent entry of air from the exit end.

Fig. 15.13 Different types of draft tubes

Cavitation in reaction turbines The phenomenon of cavitation has already been

discussed in Sec. 5.5 of Chapter 5. To avoid cavitation, the minimum pressure in

the passage of a liquid flow, should always be more than the vapour pressure of

the liquid at the working temperature. In a reaction turbine, the point of minimum

pressure is usually at the outlet end of the runner blades, i.e. at the inlet to the draft

tube. For the flow between such a point and the final discharge into the tail race

(where the pressure is atmospheric), the Bernoulli�s equation can be written, in

consideration of the velocity at the discharge from draft tube to be negligibly

small, as

p

g

V

g
ze e

r
+ +

2

2
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p

g

atm

r
 + hf (15.35)
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Where, pe and Ve represent the static pressure and velocity of the liquid at

the outlet of the runner (or at the inlet to the draft tube). The larger the value of Ve,

the smaller is the value of pe and the cavitation is more likely to occur. The

term hf in Eq. (15.35) represents the loss of head due to friction in the draft

tube and z is the height of the turbine runner above the tail water surface.

For cavitation not to occur pe > pv, where pv is the vapour pressure of the liquid at

the working temperature.

An important parameter in the context of cavitation is the available suction

head (inclusive of both static and dynamic heads) at exit from the turbine and

is usually referred to as the net positive suction head �NPSH� which is defined as

NPSH =
p

g

V

g

p

g

e e v

r r
+ -

2

2
(15.36)

With the help of Eq. (15.35) and in consideration of negligible frictional losses in

the draft tube (hf = 0), Eq. (15,36) can be written as

NPSH =
p

g

p

g

vatm

r r
-  � z (15.37)

A useful design parameter s, known as Thoma�s Cavitation Parameter (after the

German Engineer Dietrich Thoma, who first introduced the concept) is defined as

s =
NPSH

H
 = 

( / ) ( / )p g p g z

H

vatm r r- -
(15.38)

For a given machine, operating at its design condition, another useful parameter

sc, known as critical cavitation parameter is defined as

sc =
( / ) ( / )p g p g z

H

eatm r r- -
(15.39)

Therefore, for cavitation not to occur, s > sc (since, pe > pv).

If either z or H is increased, s is reduced. To determine whether cavitation is

likely to occur in a particular installation, the value of s may be calculated. When

the value of s is greater than the value of sc for a particular design of turbine,

cavitation is not expected to occur.

In practice, the value of sc is used to determine the maximum elevation of the

turbine above tail water surface for cavitation to be avoided. The parameter sc

increases with an increase in the specific speed of the turbine. Hence, turbines

having higher specific speed must be installed closer to the tail water level.

15.4.4 Performance Characteristics of Reaction Turbines

It is not always possible in practice, although desirable, to run a machine at its

maximum efficiency due to changes in operating parameters. Therefore, it be-

comes important to know the performance of the machine under conditions for

which the efficiency is less than the maximum. It is more useful to plot the basic

dimensionless performance parameters (Fig. 15.14) as derived earlier from the

similarity principles of fluid machines. Thus one set of curves, as shown in

Fig. 15.14, is applicable not just to the conditions of the test, but to any machine in

the same homologous series, under any altered conditions.
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Fig. 15.14 Performance characteristics of a reaction turbine (in dimensionless

parameters)

Figure 15.15 is one of the typical plots where variation in efficiency of different

reaction turbines with the rated power is shown.
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Fig. 15.15 Variation of efficiency with load

Comparison of Specific Speeds of Hydraulic Turbines Specific speeds and their

ranges of variation for different types of hydraulic turbines have already been

discussed earlier. Figure 15.16 shows the variation of efficiencies with the

dimensionless specific speed of different hydraulic turbines. The choice of a

hydraulic turbine for a given purpose depends upon the matching of its specific

speed corresponding to maximum efficiency with the required specific speed
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determined from the operating parameters, namely, N (rotational speed), P

(power) and H (available head).
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Fig. 15.16 Variation of efiiciency with specific speed for hydraulic turbines

Governing of Reaction Turbines Governing of reaction turbines is usually done

by altering the position of the guide vanes and thus controlling the flow rate by

changing the gate openings to the runner. The guide blades of a reaction turbine

(Fig. 15.17) are pivoted and connected by levers and links to the regulating ring.

Two long regulating rods, being attached to the regulating ring at their one ends,

are connected to a regulating lever at their other ends.  The regulating lever is

keyed to a regulating shaft which is turned by a servomotor piston of the oil

Connected to oil pressure 
governor piping

Servomotor

Spiral casing

Regulating 
ring

Turbine inlet

Regulating 
lever

Regulating rod

Fig. 15.17 Governing of reaction turbine
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pressure governor. The penstock feeding the turbine inlet has a relief valve better

known as �Pressure Regulator�.

When the guide vanes have to be suddenly closed, the relief valve opens and

diverts the water to the tail race. Its function is, therefore, similar to that of the

deflector in Pelton turbines. Thus the double regulation, which is the simultaneous

operation of two elements is accomplished by moving the guide vanes and relief

valve in Francis turbine by the governor. Double regulation system for Kaplan

turbines comprises the movement of guide vanes as well as of runner vanes.

15.4.5 Rotodynamic Pumps

A rotodynamic pump is a device where mechanical energy is transferred from the

rotor to the fluid by the principle of fluid motion through it. Therefore, it is

essentially a turbine in reverse. Like turbines, pumps are classified according to

the main direction of fluid path through them like (i) radial flow or centrifugal, (ii)

axial flow and (iii) mixed flow types.

Centrifugal Pumps The centrifugal pump, by its principle, is converse of the

Francis turbine. The flow is radially outward, and hence the fluid gains in

centrifugal head while flowing through it. However, before considering the

operation of a pump in detail, a general pumping system is discussed as follows.

General Pumping System and the Net Head Developed by a Pump The word

pumping, referred to a hydraulic system commonly implies to convey liquid from

a low to a high reservoir. Such a pumping system, in general, is shown in Fig.

15.18. At any point in the system, the elevation or potential head is measured from

a fixed reference datum line. The total head at any point comprises pressure head,

velocity head and elevation head. For the lower reservoir, the total head at the free

surface is HA and is equal to the elevation of the free surface above the datum line

since the velocity and static gauge pressure at A are zero. Similarly the total head

at the free surface in the higher reservoir is (HA + HS) and is equal to the elevation

of the free surface of the reservoir above the reference datum.

The variation of total head as the liquid flows through the system is shown in

Fig. 15.19. The liquid enters the intake pipe causing a head loss hin for which the

total energy line drops to point B corresponding to a location just after the entrance

to intake pipe. The total head at B can be written as

HB = HA � hin

As the fluid flows from the intake to the inlet flange of the pump at elevation z1

the total head drops further to the point C (Fig. 15.19) due to pipe friction and

other losses equivalent to hf1
. The fluid then enters the pump and gains energy

imparted by the moving rotor of the pump. This raises the total head of the fluid to

a point D (Fig. 15.19) at the pump outlet (Fig. 15.18).

In course of flow from the pump outlet to the upper reservoir, friction and

other losses account for a total head loss of hf2
 down to a point E. At E an exit loss

he occurs when the liquid enters the upper reservoir, bringing the total head at

point F (Fig. 15.19) to that at the free surface of the upper reservoir. If the total

heads are measured at the inlet and outlet flanges respectively, as done in a

standard pump test, then
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Fig. 15.18 A general pumping system
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Fig. 15.19 Change of head in a pumping system

Total inlet head to the pump = (p1/rg) + (V
2
1/2g) + z1

Total outlet head of the pump = (p2/rg) + (V2
2/2g) + z2

where V1 and V2 are the velocities in suction and delivery pipes respectively.

Therefore, the total head developed by the pump,

H = [(p2 � p1) /rg] + [(V2
2 �V1

2)/2g] + [z2 � z1] (15.40)

The head developed H is termed as manometric head. If the pipes connected to

inlet and outlet of the pump are of same diameter, V2 = V1, and therefore the head
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developed or manometric head H is simply the gain in piezometric pressure head

across the pump which could have been recorded by a manometer connected

between the inlet and outlet flanges of the pump. In practice, (z2 � z1) is so small in

comparison to (p2 � p1)/rg that it is ignored. It is therefore not surprising to find

that the static pressure head across the pump is often used to describe the total

head developed by the pump. The vertical distance between the two levels in the

reservoirs Hs is known as static head or static lift. Relationship between Hs, the

static head and H, the head developed can be found out by applying Bernoulli�s

equation between A and C and between D and F (Fig. 15.18) as follows:

Between A and C,

0 + 0 + HA =
p

g

V

g
z h hf

1
in

r
+ + + +

1
2

1
2 1

(15.41)

Between D and F,

p

g

V

g
z2

r
+ +2

2

2
2

 = 0 0
2

+ + + + +H H h hs A f e (15.42)

substituting HA from Eq. (15.41) into Eq. (15.42), and then with the help of

Eq. (15.40), we can write

H = Hs + hin + hf1
 + hf2

 + he

= Hs + S losses (15.43)

Therefore, we have, the total head developed by the pump = static head + sum of

all the losses.

The simplest form of a centrifugal pump is shown in Fig. 15.20. It consists

of three important parts: (i) the rotor, usually called as impeller, (ii) the volute

casing and (iii) the diffuser ring. The impeller is a rotating solid disc with curved

blades standing out vertically from the face of the disc. The tips of the blades

Stationary 
diffuser vanes

Diffuser

With diffuserWithout diffuser

Impeller

Volute

Fig. 15.20 A centrifugal pump
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are sometimes covered by another flat disc to give shrouded blades, otherwise

the blade tips are left open and the casing of the pump itself forms the solid

outer wall of the blade passages. The advantage of the shrouded blade is that

flow is prevented from leaking across the blade tips from one passage to

another.

As the impeller rotates, the fluid is drawn into the blade passage at the impeller

eye, the centre of the impeller. The inlet pipe is axial and therefore fluid enters the

impeller with very little whirl or tangential component of velocity and flows

outwards in the direction of the blades. The fluid receives energy from the impeller

while flowing through it and is discharged with increased pressure and velocity

into the casing. To convert the kinetic energy of fluid at the impeller outlet

gradually into pressure energy, diffuser blades mounted on a diffuser ring are

used.

The stationary blade passages so formed have an increasing cross-sectional

area which reduces the flow velocity and hence increases the static pressure of

the fluid. Finally, the fluid moves from the diffuser blades into the volute casing

which is a passage of gradually increasing cross-section and also serves to reduce

the velocity of fluid and to convert some of the velocity head into static head.

Sometimes pumps have only volute casing without any diffuser.

Figure 15.21 shows an impeller of a centrifugal pump with the velocity

triangles drawn at inlet and outlet. The blades are curved between the inlet and

outlet radius. A particle of fluid moves along the broken curve shown in Fig. 15.21.
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Fig. 15.21 Velocity triangles for centrifugal pump impeller
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Let b1 be the angle made by the blade at inlet, with the tangent to the inlet radius,

while b2 is the blade angle with the tangent at outlet. V1 and V2 are the absolute

velocities of fluid at inlet and outlet respectively, while Vr1
 and Vr2

 are the relative

velocities (with respect to blade velocity) at inlet and outlet respectively.

Therefore, according to Eq. (15.3),

Work done on the fluid per unit weight = (Vw2
 U2 � Vw1

 U1)/g (15.44)

A centrifugal pump rarely has any sort of guide vanes at inlet. The fluid

therefore approaches the impeller without appreciable whirl and so the inlet angle

of the blades is designed to produce a right-angled velocity triangle at inlet (as

shown in Fig. 15.21). At conditions other than those for which the impeller was

designed, the direction of relative velocity Vr does not coincide with that of a

blade. Consequently, the fluid changes direction abruptly on entering the impeller.

In addition, the eddies give rise to some back flow into the inlet pipe, thus causing

fluid to have some whirl before entering the impeller. However, considering the

operation under design conditions, the inlet whirl velocity Vw1
 and accordingly the

inlet angular momentum of the fluid entering the impeller is set to zero. Therefore,

Eq. (15.44) can be written as

Work done on the fluid per unit weight = Vw2
 U2/g (15.45)

We see from this equation that the work done is independent of the inlet radius.

The difference in total head across the pump [given by Eq. (15.40)], known as

manometric head, is always less than the quantity Vw2
U2/g because of the energy

dissipated in eddies due to friction.

The ratio of manometric head H and the work head imparted by the rotor on the

fluid Vw2
 U2/g (usually known as Euler head) is termed as manometric efficiency

hm. It represents the effectiveness of the pump in increasing the total energy of the

fluid from the energy given to it by the impeller. Therefore, we can write

hm =
gH

V Uw2 2

(15.46)

The overall efficiency h0 of a pump is defined as

h0 =
rQ gH

P
(15.47)

where, Q is the volume flow rate of the fluid through the pump, and P is the shaft

power, i.e. the input power to the shaft. The energy required at the shaft exceeds

Vw2
 U2/g because of friction in the bearings and other mechanical parts. Thus a

mechanical efficiency is defined as

hmech =
rQV U

P

w2 2
(15.48)

so that, h0 = hm ¥ hmech (15.49)

Slip Factor Under certain circumstances, the angle at which the fluid leaves the

impeller may not be the same as the actual blade angle. This is due a phenomenon
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known as fluid slip, which finally results in a reduction in Vw2
 the tangential

component of fluid velocity at impeller outlet. One possible explanation for slip is

given as follows.

In course of flow through the impeller passage, there occurs a difference in

pressure and velocity between the leading and trailing faces of the impeller blades.

On the leading face of a blade there is relatively a high pressure and low velocity,

while on the trailing face, the pressure is lower and hence the velocity is higher.

This results in a circulation around the blade and a non-uniform velocity

distribution at any radius. The mean direction of flow at outlet, under this

situation, changes from the blade angle at outlet b2 to a different angle b ¢2 as

shown in Fig. 15.22. Therefore the tangential velocity component at outlet Vw2
 is

reduced to V ¢w2
, as shown by the velocity triangles in Fig. 15.22, and the difference

DVw is defined as the slip. The slip factor ss is defined as

ss = V¢w2
/Vw2

Fig. 15.22 Slip and velocity distribution in the impeller blade passageof a

centrifugal pump

With the application of slip factor ss, the work head imparted to the fluid (Euler

head) becomes ssVw2
 U2/g. The typical values of slip factor lie in the region of 0.9.

Losses in a centrifugal pump It has been mentioned earlier that the shaft power P

or energy that is supplied to the pump by the prime mover is not the same as the

energy received by the liquid. Some energy is dissipated as the liquid passes

through the machine. The losses can be divided into different categories as

follows:
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(a) Mechanical friction power loss due to friction between the fixed and

rotating parts in the bearing and stuffing boxes.

(b) Disc friction power loss due to friction between the rotating faces of

the impeller (or disc) and the liquid.

(c) Leakage and recirculation power loss. This is due to loss of liquid

from the pump and recirculation of the liquid in the impeller. The

pressure difference between impeller tip and eye can cause a

recirculation of a small volume of liquid, thus reducing the flow rate

at outlet of the impeller as shown in Fig. 15.23.

QQ Q

Main flowLeakage flow between 
blade and casing q

Q

Q

Fig. 15.23 Leakage and recirculation in a centrifugal pump

Characteristics of a Centrifugal Pump With the assumption of no whirl

component of velocity at entry to the impeller of a pump, the work done on the

fluid per unit weight by the impeller is given by Eq. (15.45). Considering the fluid

to be frictionless, the head developed by the pump will be the same and can be

considered as the theoretical head developed. Therefore we can write for

theoretical head developed Htheo as

Htheo =
V U

g

w2 2
(15.50)

From the outlet velocity triangle (Fig. 15.21).

Vw2
 = U2 � Vf2

 cot b2 = U2 � (Q/A)cot b2 (15.51)

where Q is rate of flow at impleller outlet and A is the flow area at the periphery of

the impeller. The blade speed at outlet U2 can be expressed in terms of rotational

speed of the impeller N as

U2 = p D N

Using this relation and the relation given by Eq. (15.51), the expression of

theoretical head developed can be written from Eq. (15.50) as

Htheo = p2D2N2 � 2cot
DN

Q
A

p
b

È ˘
Í ˙Î ˚

= K1 � K2Q (15.52)

where, K1 = 
p 2 2 2D N

g
and K2 = (p DN/gA) cot b2

For a given impeller running at a constant rotational speed. K1 and K2 are

constants, and therefore head and discharge bears a linear relationship as shown
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by Eq. (15.52). This linear variation of Htheo with Q is plotted as curve I in

Fig. 15.24.

If slip is taken into account, the theoretical head will be reduced to ssVw2
U2/g.

Moreover the slip will increase with the increase in flow rate Q. The effect of slip

in head-dicharge relationship is shown by the curve II in Fig. 15.24. The loss due

to slip can occur in both a real and an ideal fluid, but in a real fluid the shock losses

at entry to the blades, and the friction losses in the flow passages have to be

considered. At the design point the shock losses are zero since the fluid moves

tangentially onto the blade, but on either side of the design point the head loss due

to shock increases according to the relation

hshock = K3 (Qf � Q)
2

(15.53)

Slip

Eq. (15.53)

Design point

Eq. (15.54)
hschock

hf

Hydraulic
losses

H

Q
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III
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IV

(1 ) theo- ss H

Fig. 15.24 Head-discharge characteristics of a centrifugal pump

where Qf is the off design flow rate and K3 is a constant. The losses due to friction

can usually be expressed as

hf = K4Q
2 (15.54)

where, K4 is a constant.

Equations (15.53) and (15.54) are also shown in Fig. 15.24 (curves III and IV)

as the characteristics of losses in a centrigugal pump. By substracting the sum of

the losses from the head in consideration of the slip, at any flow rate (by

substracting the sum of ordinates of the curves III and IV from the ordinate of the

curve II at all values of the abscissa), we get the curve V which represents the

relationship of the actual head with the flow rate, and is known as head-dischrage

characteristic curve of the pump.
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Effect of blade outlet angle The head-discharge characteristic of a centrigugal

pump depends (among other things) on the outlet angle of the impeller blades

which in turn depends on blade settings. Three types of blade settings are possible

(i) the forward facing for which the blade curvature is in the direction of rotation

and, therefore, b2 > 90° (Fig. 15.25a), (ii) radial, when b2 = 90° (Fig. 15.25b), and

(iii) backward facing for which the blade curvature is in a direction opposite to

that of the impeller rotation and therefore b2 < 90° (Fig. 15.25c). The outlet

velocity triangles for all the cases are also shown in Figs 15.25a, 15.25b, 15.25c.

From the geometry of any triangle, the relationship between Vw,  U2 and b2 can be

written as.

F ig . 15.25 Outlet velocity triangles for different blade settings in a

centrifugal pump

Vw2
 = U2 � Vf2

 cot b2

which was expressed earlier by Eq. (15.51).

In case of forward facing blade, b2 > 90° and hence cot b2 is negative and

therefore Vw2
 is more than U2. In case of radial blade, b2 = 90° and Vw2

 = U2. In

case of backward facing blade, b2 < 90° and Vw2
 < U2. Therefore the sign of K2,

the constant in the theoretical head-discharge relationship given by the

Eq. (15.52), depends accordingly on the type of blade setting as follows:

For forward curved blades K2 < 0

For radial blades K2 = 0

For backward curved blades K2 > 0

With the incorporation of above conditions, the relationship of head and

discharge for three cases are shown in Fig. 15.26. These curves ultimately revert

to their more recognised shapes as the actual head-discharge characteristics

respectively after consideration of all the losses as explained earlier (Fig. 15.27).

For both radial and forward facing blades, the power is rising monotonically as

the flow rate is increased. In the case of backward facing blades, the maximum

efficiency occurs in the region of maximum power. If, for some reasons, Q

increases beyond QD there occurs a decrease in power. Therefore the motor used

to drive the pump at part load, but rated at the design point, may be safely used at

the maximum power. This is known as self-limiting characteristic. In case of
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radial and forward-facing blades, if the pump motor is rated for maximum power,

then it will be under utilized most of the time, resulting in an increased cost for the

extra rating. Whereas, if a smaller motor is employed, rated at the design point,

then if Q increases above QD the motor will be overloaded and may fail. It,

therefore, becomes more difficult to decide on a choice of motor in these later

cases (radial and forward-facing blades).

F ig . 15.26 Theoretical head-discharge characteristic curves of a centrifugal

pump for different blade settings

Head
Forward

Radial

Radial

Power

Forward

Q

P, H

Backward

Backward

F i g . 15.27 Actual head-discharge and power-discharge characteristic curves

of a centrifugal pump

Flow through Volute Chambers Apart from frictional effects, no torque is applied

to a fluid particle once it has left the impeller. The angular momentum of



Principles of Fluid Machines 623

fluid is therefore constant if friction is neglected. Thus the fluid particles follow

the path of a free vortex. In an ideal case, the radial velocity at the impeller outlet

remains constant round the circumference. The combination of uniform radial

velocity with the free vortex (Vw . r = constant) gives a pattern of spiral streamlines

which should be matched by the shape of the volute. This is the most important

feature of the design of a pump. At maximum efficiency, about 10 per cent of the

head generated by the impeller is usually lost in the volute.

Vanned diffuser A vanned diffuser, as shown in Fig. 15.28, converts the outlet

kinetic energy from impeller to pressure energy of the fluid in a shorter length and

with a higher efficiency. This is very advantageous where the size of the pump is

important. A ring of diffuser vanes surrounds the impeller at the outlet. The fluid

leaving the impeller first flows through a vaneless space before entering the

diffuser vanes. The divergence angle of the diffuser passage is of the order of

8�10° which ensures no boundary layer separation. The optimum number of

vanes are fixed by a compromise between the diffusion and the frictional loss. The

greater the number of vanes, the better is the diffusion (rise in static pressure by

the reduction in flow velocity) but greater is the frictional loss. The number of

diffuser vanes should have no common factor with the number of impeller vanes

to prevent resonant vibration.

Throat of diffuser passage

Diffuser vanes

Diffuser passage

V2

Fig. 15.28 A vanned diffuser of a centrifugal pump

Cavitation in centrifugal pumps Cavitation is likely to occur at the inlet to the

pump, since the pressure threre is the minimum and is lower than the atmospheric

pressure by an amount that equals the vertical height above which the pump is
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situated from the supply reservoir (known as sump) plus the velocity head and

frictional losses in the suction pipe. Applying the Bernoulli�s equation between the

surface of the liquid in the sump and the entry to the impeller, we have

p

g

V

g
zi i

r
+ +

2

2
 =

p

g
hA

f
r

� (15.55)

where, pi is the pressure at the impeller inlet and pA is the pressure at the liquid

surface in the sump which is usually the atmospheric pressure, Z is the vertical

height of the impeller inlet from the liquid surface in the sump, hf is the loss of head

in the suction pipe. Strainers and non-return valves are commonly fitted to intake

pipes. The term hf must therefore include the losses occurring past these devices,

in addition to losses caused by pipe friction and by bends in the pipe.

In the similar way as described in case of a reaction turbine, the net positive

suction head �NPSH� in case of a pump is defined as the available suction head

(inclusive of both static and dynamic heads) at pump inlet above the head

corresponding to vapour pressure.

Therefore,

NPSH =
p

g

V

g

p

g

i i v

r r
+ -

2

2
(15.56)

Again, with the help of Eq. (15.55), we can write

NPSH =
p

g

p

g

A v

r r
-  � z � hf

The Thomas cavitation parameter s and critical cavitation parameter sc are

defined accordingly (as done in case of reaction turbine) as

s =
NPSH

H
 = 

( / ) ( / )p g p g z h

H

A v fr r- - -
(15.57)

and sc =
( / ) ( / )p g p g z h

H

A i fr r- - -
(15.58)

We can say that for cavitation not to occur,

s > sc (i.e. pi > pv)

In order that s should be as large as possible, z must be as small as possible. In

some installations, it may even be necessary to set the pump below the liquid level

at the sump (i.e. with a negative value of z) to avoid cavitation.

Axial Flow or Propeller Pump The axial flow or propeller pump is the converse of

axial flow turbine and is very similar to it in appearance. The impeller consists of

a central boss with a number of blades mounted on it. The impeller rotates within

a cylindrical casing with fine clearance between the blade tips and the casing

walls. Fluid particles, in course of their flow through the pump, do not change

their radial locations. The inlet guide vanes are provided to properly direct the fluid

to the rotor. The outlet guide vanes are provided to eliminate the whirling com-

ponent of velocity at discharge. The usual number of impeller blades lies between

2 and 8, with a hub diameter to impeller diameter ratio of 0.3 to 0.6.
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Stationary inlet 
guide vanes

Impeller
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X X

Stationary outlet 
guide vanes

Fig. 15.29 A propeller of an axial flow pump

Matching of pump and system characteristics The design point of a hydraulic

pump corresponds to a situation where the overall efficiency of operation is

maximum. However the exact operating point of a pump, in practice, is

determined from the matching of pump characteristic with the headloss-flow,

characteristic of the external system (i.e. pipe network, valve and so on) to which

the pump is connected.

Let us consider the pump and the piping system as shown in Fig. 15.18. Since

the flow is highly turbulent, the losses in pipe system are proportional to the

square of flow velocities and can, therefore, be expressed in terms of constant

loss coefficients. Therefore, the losses in both the suction and delivery sides can

be written as

h1 = fl1V1
2/2gd1 + K1V1

2/2g (15.59a)

h2 = fl2V2
2/2gd2 + K2V2

2/2g (15.59b)

where, h1 is the loss of head in suction side and h2 is the loss of head in delivery

side and f is the Darcy�s friction factor, l1, d1 and l2, d2 are the lengths and

diameters of the suction and delivery pipes respectively, while V1 and V2 are

accordingly the average flow velocities. The first terms in Eqs (15.59a) and

(15.59b) represent the ordinary friction loss (loss due to friction between fluid

and the pipe wall), while the second terms represent the sum of all the minor

losses through the loss coefficients K1 and K2 which include losses due to valves

and pipe bends, entry and exit losses, etc. Therefore the total head the pump has to

develop in order to supply the fluid from the lower to upper reservoir is
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H = Hs + h1 + h2 (15.60)

Now flow rate through the system is proportional to flow velocity. Therefore

resistance to flow in the form of losses is proportional to the square of the flow

rate and is usually written as

h1 + h2 = system resistance = K Q2 (15.61)

where K is a constant which includes, the lengths and diameters of the pipes and

the various loss coefficients. System resistance as expressed by Eq. (15.61), is a

measure of the loss of head at any particular flow rate through the system. If any

parameter in the system is changed, such as adjusting a valve opening, or inserting

a new bend, etc., then K will change. Therefore, total head of Eq. (15.60)

becomes,

H = Hs + KQ
2

(15.62)

The head H can be considered as the total opposing head of the pumping system

that must be overcome for the fluid to be pumped from the lower to the upper

reservoir.

The Eq. (15.62) is the equation for system characteristic, and while plotted on

H�Q plane (Fig. 15.30), represents the system characteristic curve. The point of

interesection between the system characteristic and the pump characteristic on

H�Q plane is the operating point which may or may not lie at the design point that

corresponds to maximum efficiency of the pump. The closeness of the operating

and design points depends on how good an estimate of the expected system losses

has been made. It should be noted that if there is no rise in static head of the liquid

(for example pumping in a horizontal pipeline between two reservoirs at the same

elevation), Hs is zero and the system curve passes through the origin.

Hs

, H
Q characteristic 

of pump 

H Q characteristic of 
pump 

H Q characteristic of 
system 

Design point

Operating 
pointH = Hs + KQ

2

QD
Q

Fig. 15.30 H-Q Characteristics of pump and system

Effect of Speed Variation Head-Discharge characteristic of a given pump is

always referred to a constant speed. If such characteristic at one speed is known,
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it is possible to predict the characteristic at other speeds by using the principle of

similarity. Let A, B, C are three points on the characteristic curve (Fig. 15.31) at

speed N1.

For points A,  B and C, the corresponding heads and flows at a new speed N2 are

found as follows:

System characteristic 
with static lift

System characteristic 
without static lift

HS

H

N1

C

Q

B

A

A

BC

N2

Fig. 15.31 Effect of speed variation on operating point of a centrifugal pump

From the equality of p1 terms [Eq. (15.14)] gives

Q1/N1 = Q2 /N2 (since for a given pump D is constant)(15.63)

and similarly, equality of p2 terms [Eq. (15.14)] gives

H1/N
2
1 = H2/N2

2
(15.64)

Applying Eqs (15.63) and (15.64) to points A,  B and C the corresponding points A¢
B¢ and C¢ are found and then the characteristic curve can be drawn at the new

speed N2

Thus,

Q2 = Q1N2/N1 and H2 = H1(N2)
2/(N1)2

which gives
H

H

2

1

 =
Q

Q

2
2

1
2

or H µ Q2 (15.65)

Equation (15.65) implies that all corresponding or similar points on Head -

Discharge characteristic curves at different speeds lie on a parabola passing

through the origin. If the static lift Hs becomes zero, then the curve for system

characteristic and the locus of similar operating points will be the same parabola

passing through the origin. This means that, in case of zero static lift, for an

operating point at speed N1, it is only necessary to apply the similarity laws directly

to find the corresponding operating point at the new speed since it will lie on the

system curve itself (Fig. 15.31).

Variation of Pump Diameter A variation in pump diameter may also be examined

through the similarity laws. For a constant speed,
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Q1/D1
3 = Q2/D2

3

and
H1/D1

2 = H2/D2
2

or H µ Q2/3 (15.66)

Pumps in Series and Parallel When the head or flow rate of a single pump is not

sufficient for an application, pumps are combined in series or in parallel to meet

the desired requirement. Pumps are combined in series to obtain an increase in

head or in parallel for an increase in flow rate. The combined pumps need not be of

the same design.

Figures 15.32 and 15.33 show the combined H�Q characteristic for the cases

of identical pumps connected in series and parallel respectively. It is found that the

operating point changes in both cases. Fig. 15.34 shows the combined

characteristic of two different pumps connected in series and parallel.

H

Characteristic of
combined pumps

Operating point for
combined pumps

System
characteristic

Single pump
operating point

Single pump
characteristic

H1

H1

Q

Fig. 15.32 Two similar pumps connected in series

H
Single pump
characteristic

System
characteristic

Operating point for
combined pumps

Characteristic of
combined pumps

Single pump
operating point

Q1Q1

Q

Fig. 15.33 Two similar pumps connected in parallel

Specific Speed of Centrifugal Pumps The concept of specific speed for a pump is

same as that for a turbine. However, the quantities of interest are N,  H and Q rather

than N, H and P like in case of a turbine.
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For pumps,

Nsp
 = N Q1/2/H3/4 (15.67)

H

Q

Pumps in series

Pumps in parallel

Pump 1

Pump 2

Fig. 15.34 Two different pumps connected in series and parallel

The effect of the shape of rotor on specific speed is also similar to that for

turbines. That is, radial flow (centrifugal) impellers have the lower values of Nsp

compared to those of axial-flow designs. The impeller, however, is not the entire

pump and, in particular, the shape of volute may appreciably affect the specific

speed. Nevertheless, in general, centrifugal pumps are best suited for providing

high heads at moderate rates of flow as compared to axial flow pumps which are

suitable for large rates of flow at low heads. Similar to turbines, the higher is the

specific speed, the more compact is the machine for given requirements. For

multistage pumps, the specific speed refers to a single stage.

15.5 RECIPROCATING PUMP

We have described at the beginning of this chapter that the fluid machines can be

divided into two categories depending upon their principle of operation: the

rotodynamic type and the positive displacement type. While the functioning of a

rotodynamic machine depends on the hydrodynamic principles of continuous

flow of a fluid through it, the working principle of a positive displacement machine

is based on the change of volume occupied by a certain amount of fluid within the

machine. The reciprocating pump is a positive displacement type of pump.

A reciprocating pump consists primarily of a piston or a plunger executing

reciprocating motion inside a close fitting cylinder (Fig. 15.35). The motion of

the piston outwards (i.e., towards the right in Fig. 15.35) causes a reduction of

pressure in the cylinder, and therefore liquid flows into the cylinder through the

inlet valve. The reverse movement of the piston (i.e. the motion of piston inside

the cylinder) pushes the liquid and increases its pressure. Then the inlet valve

closes and the outlet valve opens so that the high pressure liquid is discharged

into the delivery pipe. Usually, the operation of the valve is controlled

automatically by the pressure in the cylinder. In some designs, ports on the wall
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of the cylinder are provided instead of valve. These ports are covered and

uncovered by the movement of the piston.

Outlet valve

Inlet valve

Suction level

hs

ls

hd

p

Cylinder

Reciprocating piston

Fig. 15.35 A reciprocating pump

The axial force exerted by the piston on the fluid at any instant is pA, where p is

the instantaneous pressure of the liquid in the cylinder and A is the cross-sectional

area of the piston. Due to a motion of the piston through a small distance dx along

the axis, the work done on the liquid becomes pA dx = pdV  where dV  represents

the volume swept by the piston due to its movement through a distance dx.

Therefore the net work done by the pump is given by Ú p dV , calculated round the

complete cycle. This can be represented by the area enclosed by a curve of

pressure against volume. For an incompressible fluid, the ideal form of the dia-

gram would be a simple rectangle ABCD as shown in Fig. 15.36, since the rise or

fall in pressure will not be associated with any change in volume. In practice,

however, the acceleration and deceleration of the piston give rise to

corresponding acceleration and deceleration of the liquid in the associated pipe-

lines. At the beginning of the suction stroke, the liquid is accelerated, and hence an

additional pressure difference is required. This makes the suction pressure at A to

assume a lower valve at E (Fig. 15.36).

Similarly, due to deceleration of liquid at the end of the suction stroke, a rise of

pressure in the cylinder is needed and therefore the end point B in the suction

stroke gets shifted to F. Neglecting the frictional effect and considering the

motion of the piston to be a simple harmonic one, the suction stroke is represented

by a straight line EF. A further modification of the diagram results from the effect

of friction and other losses in the suction pipe. The losses are zero at the ends of

the stroke when the velocity is zero, and a maximum at mid-stroke (again for

simple harmonic motion of the piston) when the velocity is at its maximum. The

base of the diagram (Fig. 15.36) therefore becomes ELF. Inertia and friction in

the delivery pipe cause similar modification of the ideal delivery stroke DC to
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KPG. Finally, the actual shape of the pressure volume diagram becomes

ELFGPK. The effects of inertia and friction in the cylinder are normally negligible

as compared to those in the suction and delivery pipes. The speed of such a pump

is usually restricted by the pressure corresponding to the point E of the diagram

which is the minimum pressure point in a cycle. This pressure must not be allowed

to fall below a pressure where the air cavitation (liberation of dissolved gases from

the liquid) starts.

Analytical expressions of accelerating heads during suction and delivery strokes It

has already been mentioned that the liquid mass in suction and delivery pipes gets

accelerated and decelerated due to the typical accelerating and decelerating motion

undergone by the piston during suction and delivery strokes. This causes a non-

uniform additional head, known as acceleration head which the pump has to

develop during the suction and delivery strokes along with the constant theoretical

suction and delivery head respectively. To obtain an expression of the acceleration

head in each stroke, it is essential to determine first the velocity of the piston. This

can be obtained from the consideration of crank revolution. The motion of the

piston is usually considered to be a simple harmonic one with zero velocities at

ends and maximum at the centre. However, this assumption is only true when the

ratio of the length of connecting rod to that of crank is very large.

Let us consider the displacement of the piston, after a time t from its inner dead

centre position (IDC) be x (Fig. 15.37). Then we can write

x = r � r cos q

where r is the radius of the crank and q is the angular displacement of the crank

during the time interval t. If w is the angular velocity of the crank, then we have

q = w t.

and x = r � r cos w t

Absolute 
pressure

Delivery

Suction

Volume

Atmospheric 
pressure

p
D

P G

C

F

B

K

A

LE

Fig. 15.36 Pressure-displacement diagram for a reciprocating pump
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Fig. 15.37 Piston displacement diagram of a reciprocating machine

Hence, the instantaneous velocity of the piston 
d

d

x

t
 = rw sin w t. Considering the

liquid in the piston to be moving with the velocity of the piston, the velocity V of

liquid in the pipeline can be written from the principle of continuity as

V =
A

a
r w sin w t

where, A and a are the cross-sectional areas of the cylinder and pipeline

respectively.

The acceleration of liquid in pipeline can be written as

d

d

V

t
 =

d
sin

d

A
r t

t a
w w

Ê ˆ
Á ˜Ë ¯

 = 
A

a
r w2

 cos w t

Therefore, the force F required to accelerate the liquid mass is given by

F = r al 
A

a
r w2 cos w t

= r l A rw2 cos q (since q = w t)

(l is the length of the pipeline)

The pressure head caused by the force F is given by

F

a gr
 =

l

g

A

a
r w2

 cos q

This is known as acceleration head ha. Using subscripts s and d to represent the

quantities for suction and delivery sides, we can write

has
 =

l

g

A

a

s

s

◊ r w2 cos q

had
 =

l

g

A

a

d

d

◊ r w2 cos q

It is evident from these expressions and Fig. 15.37 that the maximum and

minimum acceleration heads take place at the beginning and at the end of each
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stroke respectively with zero at the middle of the stroke. Magnitude of maximum

acceleration head = 
l

g

A

a
r w 2

. The pump is, therefore, required to develop an

additional head of 
l

g

A

a
rs w 2 , at the beginning of the suction stroke, over the

constant suction head determined by the height of the pump above the supply

level. Similarly, an additional head of 
l

g

A

a
rd

d

w 2  is required to be developed by

the pump, at the beginning of the delivery stroke, over the constant delivery head

determined by the static lift of the pump. This has already been shown in

Fig. 15.36.

Rate of Delivery

Single acting piston or plunger pump In a single acting piston pump the entrance

and discharge of liquid takes place from one side of the piston only. Therefore one

stroke is meant only for suction and the other stroke is meant only for discharge.

Rate of delivery against crank angle for such type of pump is shown in Fig. 15.38.

During the first half revolution of crank there is only suction and therefore rate of

delivery is zero. During the second half (corresponding to crank angles between

180° to 360°) of the crank revolution, discharge takes place. Since the motion of

the piston is approximately simple harmonic, rate of delivery versus crank angle

curve will be a sine curve. Velocity of discharge of water at any instant is

proportional to the velocity of the piston at that instant. Therefore the sine-curve,

shown in Fig. 15.38 also represents the velocity of discharge to some scale.
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Fig. 15.38 Rate of delivery versus crank angle for a single

acting reciprocating pump

Double acting piston or plunger pump In this type of pump the provisions are

made for the entrance and discharge of liquid from both the sides of the piston.

Therefore each stroke is a suction cum delivery stroke. Curve of rate of delivery
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against angle of rotation of crank is therefore the two sine curves drawn at a phase

difference of 180°.

Multi-Cylinder Pumps We observe that the rate of delivery from a single cylinder,

whether single acting or double acting, is non-uniform. Multi-cylinder pumps are

used to obtain a somewhat uniform discharge. In multi-cylinder pumps a number

of cylinders are connected in parallel, their cranks being equally spaced over

360°. The fluctuating discharge from the individual cylinders are thus added

together resulting in an almost uniform total discharge. This is illustrated in

Fig. 15.39 for a three cylinder pump with the cranks at 120° to each other.

30º 90º

D
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ch
ar

g
e

Crank 
angle 

150º 210º 270º 330º

Fig. 15.39 Rate of delivery versus crank angle for a three cylinder

reciprocating pump

Air Vessel The pulsation of pressure due to inertia or acceleration heads in

suction and delivery pipe and the non-uniformity of discharge during the delivery

stroke may largely be eliminated by connecting a large and closed chamber to both

suction and delivery pipe at points close to the pump cylinder as shown in Fig.

15.40. These vassels are known as air vessels.

Fig. 15.40 Reciprocating pump connected with air vessels
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Working principle An air vessel in a reciprocating pump acts like a fly-wheel  of

an engine. The top of the vessel contains compressed air which can contract or

expand to absorb most of the pressure fluctuations. Whenever the pressure rises,

water in excess of the mean discharge is forced into the air vessel, thereby

compressing the air within the vessel. When the water pressure in pipe falls, the

compresed air again ejects the excess water out. Thus the air vessel acts like an

intermediate reservoir. On suction side, the water first accumulates here and is

then transferred to the cylinder of the pump. On delivery side, the water first goes

to the vessel and then flows with a uniform velocity in the delivery pipe. The

column of water which is now fluctuating, is only between the pump cylinder and

the air vessels which is very small due to the vessels being fitted as near to the

pump cylinder as possible. From the working principle, the advantages of air

vessel attached to a reciprocating pump can be written as follows:

(a) Suction side:

(i) Reduces the possibility of cavitation.

(ii) Pump can be run at a higher speed.

(iii) Length of suction pipe below the air vessel can be increased.

(b) Delivery side:

(i) A large amount of power consumed in supplying accelerating

head can be saved.

(ii) Maintains almost a constant rate of discharge.

15.6 HYDRAULIC SYSTEM

A hydraulic system is a circuit in which the forces and power are transmitted

through a liquid. The system may be divided into two groups, the hydrostatic and

hydrodynamic system.

Hydrostatic system The primary function of this system is the transmission of

force and power by the hydrostatic pressure of the fluid without causing its

continuous bulk motion and any fluid dynamical effect on the principle of

operation. Hydraulic press, hydraulic lift, hydraulic crane, pressure accumulator,

rotary type positive displacement pumps are the examples of such a system.

However, the description of such systems is beyond the scope of this book.

Hydrodynamic system The main purpose of this system is to transmit power by

a change in velocity of flow of the working fluid medium. The change in pressure

of the working fluid is avoided as far as possible. The system primarily consists of

a centrifugal pump and a turbine, as a driver and driven respectively, built into a

single unit with a closed hydraulic circuit. Since the driver and the driven is not

mechanically connected, impulsive shocks and periodic vibrations are prevented

by the fluid coupling them.

The hydrodynamic transmission systems are of two types�hydraulic

coupling and hydraulic torque convertor.

Hydraulic or Fluid Coupling The essential features of a fluid coupling are shown

in Fig. 15.41. The primary function of the coupling is to transmit power with the

same torque on driving and driven shaft. It mainly consists of a radial pump
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Fig. 15.41 Fluid or hydraulic coupling

impeller keyed to a driving shaft A, and a radial reaction turbine keyed to a driven

shaft B. The blades of both the pump impeller and turbine runner are of straight

radial type. There is no mechanical connection between the driving and the driven

shaft. The two shafts together form a casing completely filled in with the working

fluid which is usually the ordinary mineral lubricating oil. If the shaft A is allowed

to rotate, the oil will pass through the impeller blades and will flow radially

outwards with higher energy. The fluid will then strike the turbine runners and,

while flowing radially inwards, transfer power to the turbine blades. With the

increase in the speed of shaft A, sufficient head is developed in fluid at the outlet of

pump impeller so that the power transferred to the turbine rotor becomes high

enough to set the driven shaft B in motion. Due to slip, the two shafts rotate at

different speeds. If the driver and follower rotate at the same speed, the circulation

of oil cannot take place. This is because of the fact that the head produced by the

pump should be greater than the centrifugal head resisting flow through the

turbine. At equal speed of the shaft A and B, the heads would balance each other

and then no flow would occur and no torque would be transmitted. If w1 and w2

are the angular velocities of driving and driven shaft respectively, then the slip is

expressed as (w1 � w2)/w1. Under usual operating conditions, the slip is about 2 to

3 per cent. From the dimensional analysis, the torque T can be expressed in terms

of the pertinent controlling dimensionless variables as

T

Drw1
2 5

 =
2

2 1
3

1

�V
, ,

D
F

D

w rw

w m

Ê ˆ
Á ˜Ë ¯

The term T/rw2
1 D5 is known as torque coefficient, and rw1D2/m corresponds to

the Reynolds number of fluid flow. V  is the volume of the fluid in the coupling and

D is the diameter of the impeller or the runner.

Fluid Torque Converter The main difference in the principle of operation between

a fluid coupling and fluid torque converter is that while the coupling transmits
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power with the same torque on driving and driven shaft, the converter provides

for torque multiplication with same power (neglecting the losses) on driving and

driven shaft. A torque converter essentially differs from the coupling in that a

third stationary member usually known as reactionary member (Fig. 15.42) is

incorporated between the turbine runner and the pump impeller. In fact, the

function of the reactionary member is to augment the torque produced by the

driving shaft and then to transmit the increased torque to the driven shaft. The

reactionary member consists of a series of fixed guide vanes through which the

fluid flows. For a greater torque on the driven shaft, the change in angular

momentum in the turbine runner should be greater than that in the pump. The

stationary reaction blades are so shaped as to increase the angular momentum of

the fluid which is further increased in course of flow through the pump impeller.

Thus the stationary members contribute to an additional torque over that of the

driving shaft. The amplification of torque depends on the design of stationary

blades and the speed ratio (ratio of angular velocities of driven and driving shaft).

Fig. 15.42 Fluid or hydraulic torque converter

Summary

∑ A fluid machine is termed as a turbine when the stored energy of a fluid

is transferred to mechanical energy of the rotating member of the

machine, and is termed as a pump or compressor when the mechanical

energy of the moving parts of the machine is transferred to increase the

energy stored by the fluid. The machines for which the principle of

operation depends on the theory of fluid dynamics are known as

rotodynamic machines, while the machines which function on the

principle of a change in volume of certain amount of fluid trapped in the

machines are known as positive displacement machines.
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∑ In a rotodynamic fluid machine, the head (energy per unit weight of the

fluid) transferred by the fluid to the machine is given by (Vw1
 U1 � Vw2

U2)/g. A negative sign of the expression implies the head transferred by

the machine to the fluid. The above expression can be split up into three

terms to show the three distinct components of energy transfer as

V U V U

g

w w1 21 2-
 =

1

2
1
2

2
2

1
2

2
2 2 2

2 1g
V V U U V Vr r( ) ( ) ( )- + - - -

The first term on RHS represents the change in absolute dynamic head

of the fluid, the second and the third term pertain to the change in

pressure head. For an axial flow machine, U1 = U2. The second term

becomes positive for a radially inward flow machine like turbines while

it becomes negative for a radially outward flow machine like centrifugal

pump.

∑ The hydraulic efficiency of a turbine is defined as the ratio of

mechanical energy delivered by the rotor to the energy available from

fluid, while for a pump, it is defined as the ratio of useful energy gained

by the fluid at final discharge and the mechanical energy supplied to

rotor. The pertinent dimensionless parameters governing the principle

of operation of fluid machines are

Q

ND

gH

N D
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N D
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The dimensionless specific speed of a turbine is given by NP1/2/r1/2

(gH)
5/4

 and the corresponding dimensional version is Np
1/2

/H
5/4

. The

dimensionless specific speed of a pump is given by NQ
1/2

/(gH)
3/4

, and

the dimensionl version is NQ1/2/H3/4. The values of specific speed are

quoted for maximum efficiency of the machine.

∑ The only hydraulic turbine of impulse type is the Pelton wheel. The

buckets of the wheel in a Pelton turbine is exposed to atmosphere, and

the high pressure water expands to atmospheric pressure in a nozzle

and strikes the bucket as a water jet. Pelton wheel runs at its maximum

bucket efficiency (defined as the ratio of work developed by the

buckets to the kinetic energy of water available at the rotor inlet) when

the ratio of blade speed to jet speed becomes 0.46. The governing of

Pelton turbine is made by changing the cross-sectional area of water jet

by a spear valve in the nozzle. The Pelton wheel is efficient under large

heads, but unsuitable to smaller heads.

∑ The reaction turbines are efficient under smaller head. In a reaction

machine, there is a change in the pressure head of the fluid while

flowing through the rotor. Francis turbine is a radial flow reaction

turbine. To keep the kinetic energy at outlet a minimum, the tangential

component of velocity at outlet becomes zero. Therefore, the head
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developed is given by Vw1
U1/g. With the increase in specific speed and

decrease in head, the shape of radial flow Francis runner changes to

that of an axial flow machine known as Kaplan runner. The draft tube is

a conduit which connects the runner exit to the tail race. The primary

function of a draft tube is to reduce the discharge velocity of water to

minimize the loss of kinetic energy at the outlet and to permit the turbine

to be set above the tail race without any appreciable drop in available

head. A draft tube has to be properly designed to avoid the phenomenon

of cavitation which is likely to occur at the tube inlet. Governing of

reaction turbines is usually done by altering the position of the guide

vanes and thus controlling the flow rate by changing the gate openings

to the runner.

∑ A centrifugal pump, by its principle, is converse of the Francis turbine.

The flow is radially outward. The fluid enters the impeller eye with zero

tangential velocity. Therefore, the head developed by the fluid is given

by s Vw2
U2 /g. The term s is known as the slip factor which takes care

of the deviation of actual tangential velocity component at outlet from

the theoretical one due to the secondary flow within the blade passages

resulting in a non-uniform velocity distribution at any radius. The actual

operating point of a centrifugal pump is determined by the matching or

intersection of head-discharge characteristic curve of the pump and

the head loss-flow rate characteristic curve of the pipeline to which the

pump is connected.

∑ A reciprocating pump is a positive displacement type of pump and

works on the principle of forcing a definite amount of liquid in a

cylinder by the reciprocating motion of a piston within it. The rate of

discharge from a single cylinder pump is non-uniform. The delivery is

made uniform by using multi-cylinder pumps in parallel with their

cranks being equally spaced over 360°. Incorporation of air vessel at

the suction side reduces the possibility of cavitation at higher speed

keeping a higher length of suction pipe below the air vessel. The

introduction of an air vessel at the delivery side maintains almost a

constant discharge with the saving of a large amount of power

consumed in supplying accelerating head.

∑ The primary function of a fluid coupling is to transmit power though

the dynamic action of the fluid with the same torque on driving and

driven shaft, while a fluid torque converter transmits torque with

amplification keeping the power on driving and driven shaft the same.

Solved Examples

Example 15.1 A radial flow hydraulic turbine is required to be designed to pro-

duce 20 MW under a head of 16 m at a speed of 90 rpm. A geometrically similar model with

an output of 30 kW and a head of 4 m is to be tested under dynamically similar conditions.
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At what speed must the model be run? What is the requried impeller diameter ratio be-

tween the model and prototype and what is the volume flow rate through the model if its

efficiency can be asumed to be 90 per cent?

Solution Equating the power coefficients (p term containing the power P) for the

model and prototype, we can write

P

N D

1

1 1
3

1
5r

 =
P

N D

2

2 2
3

2
5r

(where subscript 1 refers to the prototype and subscript 2 to the model)

Considering the fluids to be incompressible, and same for both the prototype and model,

we have

D2/D1 = [P2/P1]
1/5

 (N1/N2]
3/5

= [0.03/20]
1/5

 [N1/N2]
3/5

= 0.272 [N1/N2]
3/5

(15.68)

Equating the head coefficients (p term containing the head H)

g H

N D

1

1 1
2

( )
 =

g H

N D

2

2 2
2

( )

Then,

D2/D1 = [H2/H1]
1/2

 [N1/N2] = [4/16]
1/2

 [N1/N2] (15.69)

Therefore, equating the diameter ratios from Eqs (15.68) and (15.69), we have

0.272 [N1/N2]
3/5

 = [4/16]
1/2

 [N1/N2]

or [N2/N1]
2/5

 = 1.84

Hence, N2 = N1 (1.84)5/2 = 90 ¥ (1.84)5/2

= 413.32 rpm

From Eq. (15.68)

D2/D1 = 0.272 [90/413.32]3/5 = 0.11

Model efficiency =
Power output

Water power input

Hence, 0.9 =
30 ¥ 103

rQ g H

or Q =
30 10

0 9 10 9 81 4

3

3

¥
¥ ¥ ¥. .

 = 0.85 m
3
/s

Therefore, model volume flow rate = 0.85 m
3
/s

Example 15.2 A reservoir has a head of 40 m and a channel leading from the

reservoir permits a flow rate of 34 m3
/s. If the rotational speed of the rotor is

150 rpm, what is the most suitable type of turbine to use?

Solution We have,

Turbine power = r g Q H  = 1000 ¥ 9.81 ¥ 34 ¥ 40

= 13.34 MW
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Dimensionless specific speed of a turbine is given according to Eq. (15.16) by

KsT
 =

N P

gH

1 2

1 2 5 4

/

/ /
( )r

=
150 13 34 10

60 1000 9 81 40

6 1 2

1 2 5 4

¥ ¥
¥ ¥ ¥

( . )

( ) ( . )

/

/ /

= 0.165 rev

= 1.037 rad

It is found from Fig. 15.16, that at this specific speed, the Francis turbine is the most

efficient among other turbines. Therefore, Francis turbine would be the most suitable

choice for this application.

Example 15.3 A centrifugal pump handles liquid whose kinematic viscosity is

three times that of water. The dimensionless specific speed of the pump is 0.183 rev and

it has to discharge 2 m3
/s of liquid against a total head of 15 m. Determine the speed, test

head and flow rate for a one-quarter scale model investigation of the full size pump if the

model uses water.

Solution Since the viscosity of the liquid in the model and prototype vary

significantly, equality of Reynolds number must apply for dynamic similarity. Let

subscripts 1 and 2 refer to prototype and model respectively.

Equating Reynolds number

N1D1
2/n1 = N2D2

2/n2

or N2/N1 = (4)
2
/3 = 5.333

Equating the flow coefficients

Q1/N1D1
3
 = Q2/N2D2

3

or Q2/Q1 = (N2/N1) (D2/D1)
3

= 5.333/(4)3 = 0.0833

Equating head coefficients

H1/(N1D1)
2 = H2/(N2D2)

2

or H2/H1 = (N2/N1)
2
 (D2/D1)

2

= (5.33/4)
2
 = 1.776

Dimensionless specific speed of the pump can be written according to Eq. (15.17) as

Ksp
 =

N Q

gH

1 1
1 2

1
3 4

/

/
( )

or N1 =
K gH

Q

sp
( )

/

/

1
3 4

1
1 2

=
0 183 9 81 15

2

3 4

1 2

. ( . ) /

/

¥

= 5.47 rev/s

Therefore, model speed N2 = 5.47 ¥ 5.33 = 29.15 rev/s
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and model flow rate = 0.0833 ¥ 2 = 0.166 m3/s

and model head = 15 ¥ 1.776 = 26.64 m

Example 15.4 Specifications for an axial flow coolant pump for one loop of a

pressurized water nuclear reactor are as follows.

Head 85 m

Flow rate 10,000 m3/hour

Speed 1490 rpm

Diameter 1200 mm

Water density 714 kg/m
3

Power 2 MW (electrical)

The manufacturer plans to build a model. Test conditions limit the available electric

power to 250 kW and flow to 0.25 m3/s of cold water. If the model and prototype

efficiencies are assumed equal, find the head, speed and scale ratio of the model. Cal-

culate the dimensionless specific speed of the prototype and confirm that it is identical

with the model.

Solution Let subscripts 1 and 2 represent prototype and model respectively. Equating

the flow power and head coefficients for the model and prototype, we have

Q1/Q2 = (N1/N2) (D1/D2)3

or N1/N2 =
10000

0 25 3600. ¥
F
HG

I
KJ  (D2/D1)

3

= 11.11 (D2/D1)
3

Also P1/P2 = (N1/N2)
3 (D1/D2)

5 (r1/r2)

Substituting for (N1/N2), we have

2/0.25 = (11.11)3 (D2/D1)9 (D1/D2)
5 (714/1000)

or (D2/D1)
4
 =

8

1111 0 714
3

( . ) .¥

which gives the scale ratio D2/D1 = 0.3

Then N1/N2 = 11.11 ¥ (0.3)3 = 0.3

or N2/N1 = 1/0.3 = 3.33

H2/H1 = (N2/N1)
2
 (D2/D1)

2

=
N

N

D

D

2

1

2

1

2 2
1

0 3
0 3

F
HG

I
KJ

F
HG

I
KJ

R
S|
T|

U
V|
W|

= ¥
R
S
T

U
V
W.

.  = 1.0

The dimensionless specific speed is given by

Ksp
 =

N Q

gH

1 2

3 4

/

/
( )

For the prototype

Ksp1

 =
2 1490

60

p ¥
(10000/3600)

1/2
 (1/9.81)

3/4
(1/85)

3/4
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= 1.67 rad

For the model

Ksp2

 = 2p ¥ 
1490

60
3 33

0 25

9 81 85

1 2

3 4
¥ ¥

¥
.

( . )

( . )

/

/

= 1.67 rad

Therefore we see that the dimensionless specific speeds of both model and prototype

are the same.

Example 15.5 The mean bucket speed of a Pelton turbine is 15 m/s. The rate of

flow of water supplied by the jet under a head of 42 m is 1 m3
/s. If the jet is deflected by the

buckets at an angle of 165°, find the power and efficiency of the turbine. (Take coefficient

of velocity C
v
 = 0.985).

Solution Bucket speed is same at both inlet and outlet of the water jet.

Therefore, U1 = U2 = 15 m/s

Velocity of jet at inlet V1 = 0.985 (2 ¥ 9.81 ¥ 42)1/2

= 28.27 m/s

Now the inlet and outlet velocity triangles are drawn as shown below:

From inlet velocity triangle,

Vr1
 = V1 � U1 = 28.27 � 15 = 13.27 m/s

Vw1
 = V1 = 28.27 m/s

The blade outlet angle is given by

b2 = 180° � 165° = 15°

Neglecting the frictional losses in the bucket

Vr1
 = Vr2

 = 13.27 m/s

From outlet velocity triangle

Vw2
 = U2 � Vr2

 cos b2 [here U2 > Vr2
 cos b2]

= 15 �13.27 cos 15°

= 2.18 m/s

Power developed P = rQ (Vw1
 � Vw2

)U1

= 103 ¥ 1 ¥ (28.27 � 2.18) ¥ 15

= 391.35 kW

Turbine efficiency, h =
Power developed

Available power
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=
391.

.

35 10

10 9 81 1 42

3

3

¥
¥ ¥ ¥

= 0.95 = 95%

Example 15.6 A single jet pelton turbine is required to drive a generator to

develop 10 MW. The available head at the nozzle is 762 m. Assuming electric generator

efficiency 95%, Pelton wheel effeciency 87%, coefficient of velocity for nozzle 0.97,

mean bucket velocity 0.46 of jet velocity, outlet angle of the buckets 15° and the friction

of the bucket reduces the relative velocity by 15 per cent, find the following

(a) the diameter of the jet, and

(b) the rate of flow of water through the turbine

(c) the force exerted by the jet on the buckets.

If the ratio of mean bucket circle diameter to the jet diameter is not to be less than 10,

find the best synchronous speed for generation at 50 cycles per second and the

corresponding mean diameter of the runner.

Solution Mechanical power output of the turbine = 
Electrical power output

Generator efficiency

=
10

0.95

= 10.53 MW

Pelton wheel efficiency h =
P

gQHr

where Q is the flow rate through the turbine.

Then, Q =
P

gHh r¥

=
10 53 10

0 87 10 9 81 762

6

3

.

. .

¥
¥ ¥ ¥

 = 1.62 m3

If d1 is the diameter of the jet, we can write

Q1 = (p/4) ¥ d1
2 CV (2gH)1/2

where, CV is the coefficient of velocity.

Then 1.62 = (p/4) ¥ d1
2 ¥ 0.97 ¥ (2 ¥ 9.81 ¥ 762)1/2

which gives d1 = 0.132 m = 132 mm

The inlet and outlet velocity triangles are shown below:

U1

Inlet Outlet

Vr2
V2

U2

Vr1

V1

Vw2

15º
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Jet velocity V1 = C
v
 [2gH]

1/2
 = 0.97 [2 ¥ 9.81 ¥ 762]

1/2

= 118.6 m/s

Mean bucket velocity U1 = U2 = 0.46 ¥ 118.6 = 54.56 m/s

From the inlet velocity triangle,

Vw1
 = V1 = 118.6 m/s

Vr1
 = V1 � U1 = 118.50 � 54.56 = 63.94 m/s

Vr2
 = 0.85 ¥ 63.94 = 54.35 m/s

From the outlet velocity triangle,

Vw2
 = U2 � Vr2

 cos b2 = 54.56 � 54.35 ¥ cos 15°

= 2.06 m/s

Therefore, the force exerted by the jet on the bucket is given by

F = r Q (Vw1
 � Vw2

) = 103 ¥ 1.62 [118.5 � 2.06] N

= 188.63 kN

Considering the ratio of mean bucket circle diameter D to the jet diameter d as 10,

D = 10 ¥ 0.132 = 1.32 m

Again, U1 = [p DN]/60

Hence, N = [54.56 ¥ 60] / (p ¥ 1.32] = 789.51 rpm

Frequency of generator f = p ◊ N/60

where p = number of pair of poles

p = 4 gives Nsyn = [60 ¥ 50]/4
= 750 rpm which is nearest to 789 rpm

Therefore, we choose Nsyn = 750 rpm

Now D (revised) = [1.32 ¥ 789.51]/750 = 1.39 m

Example 15.7 In a hydroelectric scheme a number of Pelton wheels are to be used

under the following conditions: total output required 30 MW; gross head 245 m; speed

6.25 rev/s; 2 jets per wheel; C
v
 of nozzles 0.97; maximum overall efficiency (based on

conditions immediately before the nozzles) 81.5%; dimensionless specific speed not to

exceed 0.022 rev. per jet; head lost to friction in pipeline is 12 m. Ratio of blade to jet speed

is 0.46.

Calculate (a) the number of wheels required, (b) the diameters of the jets and wheels,

(c) the hydraulic efficiency, if the blade deflects the water jet through 165° and reduces

its relative velocity by 15%, (d) the percentage of the input power which remains as

kinetic energy of the water at discharge.

Solution Dimensionless specific speed for turbine KsT
 = 

N P

gH

1 2

1 2 5 4

/

/ /
( )r

Here KsT
 = 0.022 rev per jet.

The available head to the turbine (i.e., at the inlet to the nozzle)

H = 245 � 12 = 233 m
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Hence, power per jet

P = [0.022 ¥ (10
3
)
1/2

 ¥ (9.81 ¥ 233)
5/4

/6.25]
2

= 3.09 ¥ 10
6
 W = 3.09 MW

(a) Therefore no. of wheels = 30/[3.09 ¥ 2]

= 5 (no. of wheels would be an integer)

(b) If Q is the flow rate in m
3
/s per jet, then,

10
3
 ¥ Q ¥ 9.81 ¥ 233 ¥ 0.815 =3.09 ¥ 10

6

which gives Q = 1.66 m3/s

velocity of the jet V1 = 0.97 ¥ [2 ¥ 9.81 ¥ 233]
1/2

= 65.58 m

Hence, 1.66 =
p

4
 ¥ d

2
 ¥ 65.58 (where d is the diameter of the jet)

or d =
4 1 66

65 58

¥
¥

.

.p
 = 0.179 m = 179 mm

Blade or wheel speed U = 0.46 ¥ 65.58 = 30.17 m/s

Therefore wheel diameter D = 
30 17

6 25

.

.p ¥
 = 1.54 m

(c) The inlet and outlet velocity triangles are drawn as shown

U1

Inlet Outlet

Vr2
V2

U2

Vr1

V1

Vw2

165º

U1 = U2 = 30.17 m/s

V1 = Vw1
 = 65.58 m/s

Vr1
 = V1 � U1 = 65.58 � 30.17 = 35.41 m/s

The relative velocity at outlet Vr2
 = 0.85 ¥ 35.41

= 30.1 m/s

From outlet velocity triangle Vw2
 = 30.17 � 30.1 (cos 15°)

= 1.1 m/s

Hydraulic efficiency hh =
V V U

g H

w w1 2 1-e j

=
( . . ) .

.

65 58 11 30 17

9 81 233

- ¥
¥

 = 0.851

= 85.1%

The kinetic energy at the outlet/unit mass = V2
2
/2
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Input power / unit mass = gH

where H is the net head to the turbine (at nozzle inlet).

Let x be the percentage of input power remaining as kinetic energy of water at discharge.

Then x =
V

gH

2
2

2
100¥

From outlet velocity triangle V2
2 = [(30.1 ¥ sin 15°)2 + (1.1)2]

= 61.90 m
2
/s

2

Therefore, x =
61 90

2 9 81 233
100

.

.¥ ¥
¥  = 1.35%

Example 15.8 The blading of a single jet Pelton wheel runs at its optimum speed

which is 0.46 times the jet speed. The overall efficiency of the machine is 0.85. Show that

the dimensionless specific speed is 0.192 d/D rev, where d represents the jet diameter

and D the wheel diameter. For the nozzle, the velocity coefficient C
v
 = 0.97.

Solution Dimensionless specific speed KsT
 is given by the expression

KsT
 =

N P

gH

1 2

1 2 5 4

/

/ /
( )r

(15.70)

The power developed P = hoverall ¥ r g QH

again, Q =
p pd

V
d

gH
2

1

2
1 2

4 4
0 97 2¥ = ¥ . [ ] /

= 1.08 d2 (gH)1/2

Hnece, P = 0.85 ¥ r ¥ [1.08 d
2
 (gH)

1/2
] gH

= 0.92 r d
2
(gH)

3/2
(15.71)

The rotational speed N = U/p d

again the wheel speed U = 0.46 ¥ V1 = 0.46 ¥ 0.97 (2 gH)
1/2

= 0.63 (gH)
1/2

Hence, N =
0 63

0 2
1 2 1 2

. ( )
.

( )
/ /

gH

D

gH

Dp
= (15.72)

Substituting the values of P and N from Eqs (15.71) and (15.72) respectively into

Eq. (15.70), we have

KsT
  = 0 2 0 92

11 2
2 3 2 1 2

1 2 5 4
.

( )
. ( )

( )

/
/ /

/ /

gH

D
d gH

gH

L
N
M

O
Q
P r

r

= 0.192 
d

D

Example 15.9 A Francis turbine has a diameter of 1.4 m and rotates at 430 rpm.

Water enters the runner without shock with a flow velocity of 9.5 m/s and leaves the

runner without whirl with an absolute velocity of 7 m/s. The difference between the sum

of the static and potential heads at entrance to the runner and at the exit from the runner

is 62 m. The turbine develops 12.25 MW. The flow rate through the turbine is 12 m3/s for

a net head of 115 m.
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Find the following:

(a) the absolute velocity of water at entry to the runner and the angle of the

inlet guide vanes,

(b) the entry angle of the runner blades and

(c) the loss of head in the runner.

Solution The inlet and outlet velocity triangles are drawn as shown below:

1 1

2

Vw1

V1

Vr1
Vr2

Vf1

U1

U2

V2

Inlet Outlet

90º

(a) Runner tip speed U1 = 
p pND

60

430 1 4

60
=

¥ ¥ .
 = 31.52 m/s

Since Vw2
 = 0,

power given to the runner by water = r Q Vw1
 U1

Hence, 12.25 ¥ 106 = 103 ¥ 12 ¥ Vw1
 ¥ 31.52

which gives Vw1
 = 32.39 m/s

Inlet guide vane angle a1 is given by

tan a1 = [9.5 / 32.29]

or a1 = tan
�1

 [9.5/32.39] = 16.35°

From the inlet velocity diagram, the absolute velocity at runner inlet

V1 = [Vf1

2
 + Vw1

2
]

1/2
 = [(9.5)

2
 + (32.39)

2
]
1/2

 = 33.75 m/s

(b) Runner blade entry angle b1 is given by

tan b1 =
9 5

32 39 31 52

.

. .-
which gives b1 = 84.77°

(c) Total head across the runner

= Head transferred to the runner
+ Head lost in the runner

At inlet, H1 = (p1/rg) + (V1
2
/2g) + z1

At outlet, H2 = (p2/rg) + (V2
2
/2g) + z2

where, z1 and z2 are the elevations of runner inlet and outlet from a reference datum.

For zero whirl at outlet, the work done per unit weight of the fluid = [Vw1
 U1/g]

Hence loss of head in the runner becomes

hL = H1 � H2 � [Vw1
 U1/g]
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=
p p

g

V V

g
z z V U gw

1 2 1
2

2
2

1 2 1
2 1

-L
NM

O
QP

+
-L

N
M

O
Q
P + - -

r
[ ] /

It is given that
p p

g

1 2-L
NM

O
QPr

 + [z1 � z2] = 62 m

Therefore, hL = 62 + 
( . ) (

.

. .

.

33 75 7)

2 9 81

31 52 32 39

9 81

2 2-
¥

L
N
M

O
Q
P -

¥L
NM

O
QP

= 13.49 m

Example 15.10 An inward flow vertical shaft reaction turbine runs at a speed of

375 rpm under an available total head of 62 m above the atmospheric pressure. The

external diameter of the runner is 1.5 m and the dimensionless specific speed based on

the power transferred to the runner is 0.14 rev. Water enters the turbine without shock

with a flow velocity of 9 m/s and leaves the runner without whirl with an absolute velocity

of 7 m/s. The discharge velocity of water at tailrace is 2.0 m/s. The mean height of the

runner entry plane is 2 m above the tailrace level while the entrance to the draft tube is

1.7 m above the tailrace level. At entrance to the runner, the static pressure head is 35 m

above the atmospheric pressure, while at exit from the runner, the static pressure head is

2.2 m below the atmospheric pressure.

Assuming a hydraulic efficiency of 90 per cent, find (a) the runner blade entry angle,

(b) the head loss in the guide vanes, in the runner and in the draft tube.

Solution (a) Runner speed at inlet U1 = 
p pND

60

375 1 5

60
=

¥ ¥ .

= 29.45 m/s

Since Vw2
 = 0,

the power transferred to the runner per unit mass flow of water = Vw1
 U1

Hydraulic efficiency hh =
V U

g H

w1 1

Therefore, 0.9 =
Vw1

29 45

9 81 62

¥

¥

.

.

or Vw1
 =

0 9 9 81 62

29 45

. .

.

¥ ¥
 = 18.59 m/s

The inlet velocity triangle is shown below:

Vr1

Vf1

U1

V1

1

Vw1

From the velocity triangle,
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tan (180° � b1) =
V

U V

f

w

1

11

9

29 45 18 59-
=

-( . . )
 = 0.83

Hence b1 = 140.35°

(b) Let the loss of head in the guide vanes be h1g
. Then applying the Bernoulli�s

equation between the inlet to guide vanes and exit from the guide vanes (i.e. inlet to the

runner), we have

p

g

V

g
z0 0

2

0
2r

+ +  = 
p

g

V

g
z h

g

1 1
2

1 1
2r

+ + +

(0 and 1 apply to inlet and exit of guide vanes respectively)

From the velocity triangle at runner inlet

V1
2
 = (18.59)

2
 + (9)

2
 = 426.59 m

2
/s

2

Again,
p

g

V

g
z0 0

2

0
2r

+ +  = 62 m (total head to the turbine)

Therefore, 62 = 35
426 59

2 9 81
2 1+

¥
+

F
HG

I
KJ +

.

.
h

g

hence, h1g
 = 62 � 58.74 = 3.26 m

For the loss of head in the runner h1r
, the application of Bernoulli�s equation between

points at runner entry and runner exit gives

p

g

V

g
z1 1

2

1
2r

+ +  =
p

g

V

g
z h W

r

2 2
2

2 1
2r

+ + + +

where W is the work head delivered by the fluid to the runner and is given by

W =
V U

g

w1 1 18 59 29 45

9 81
=

¥. .

.
 = 55.81 m

Therefore,

h1r = 35
426 59

2 9 81
2 2 2

7

2 9 81
1 7

2

+
¥

+
L
NM

O
QP

- - +
¥

+
L
N
M

O
Q
P

.

.
.

.
.  � 55.81

= 58.74 � 2.0 � 55.81 = 0.93 m

For the losses of head h1d
 in the draft tube, the Bernoulli�s equation between the

points at entry and exit of the draft tube gives

p

g

V

g
z2 2

2

2
2r

+ +  = 
p

g

V

g
z h

d

3 3
2

3 1
2r

+ + +

where subscript 2 represents the runner outlet, i.e. the inlet of draft tube, and subscript

3 represents the exit from draft tube. p3 is atmospheric pressure (zero gauge) and z3 is the

datum level.

Therefore,

- +
¥

+
L
NM

O
QP

2 2
49

2 9 81
1 7.

.
.  = 0

4

2 9 81
0 1+

¥
+

L
NM

O
QP

+
.

h
d

which gives, h1d
 = 1.8 m
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Example 15.11 The diameter of the runner of a vertical-shaft turbine is 450 mm at

the inlet. The width of the runner at the inlet is 50 mm. The diameter and the width at the

outlet are 300 mm and 75 mm respectively. The blades occupy 8% of the circumference.

The guide vane angle is 24°, the inlet angle of the runner blade is 95° and the outlet angle

is 30°. The fluid leaves the runner without any whirl. The pressure head at inlet is 55 mm

above that at exit from the runner. The fluid friction losses account for 18% of the

pressure head at inlet. Calculate the speed of the runner and the output power (use

mechanical efficiency as 95%).

Solution Applying the Bernoulli�s equation between the inlet and outlet of the

runner, we have

p

g

V

g

1 1
2

2r
+  =

p

g

V

g
W h

r

2 2
2

1
2r

+ + + (15.73)

where W is the work head given by the fluid to runner and h1r
 is the head loss in the

runner, subscript 1 represents the runner inlet while 2 represents the runner outlet.

p

g

p

g

1 2

r r
-  = 55 m (given in the problem)

and  h1r
 = 0.18 ¥ 55 = 9.9 m (given in the problem)

The inlet and outlet velocity triangles are shown below:

1= 24º

1 = 95º 2 = 30º

Vw1

V1

Vr1
Vr2

Vf1

U1

U2

V2

Inlet Outlet

W = [Vw1
 U1]/g

From inlet velocity triangle

Vw1
 = V1 cos 24° = 0.913 V1

From continuity,

Vf1
 D1 B1 = V2 D2 B2

or Vf1
 ¥ 450 ¥ 50 = V2 ¥ 300 ¥ 75

which gives V2 = Vf1

Therefore, V2 = Vf1
 = V1 sin 24° = 0.406 V1

From the consideration of rotational speed,

U1/D1 = U2/D2

or U1 =
D

D
U U1

2
2 2

450

300
=  = 1.5 U2
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Again, from the outlet velocity triangle,

U2 =
V V2 1

30

0 406

30tan

.

tan∞
=

∞
 = 0.703 V1

Hence, U1 = 1.5 ¥ 0.703 V1 = 1.05 V1

Therefore, W = [Vw1
 U1]/g = 

0 913 1 05
1
2. .¥

g
V  = 

0 96 1
2

. V

g

Now Eq. (15.73) can be written as

55 � 9.9 =
-

+ +
V

g

V

g

V

g

1
2

1
2

1
2

2

0 406

2

0 96( . ) .

or 45.1 =
V

g

1
2

2
 [�1 + (0.406)2 + 2 ¥ 0.96] = 1.08 

V

g

1
2

2

Hence V1 = [45.1 ¥ 2 ¥ 9.81/1.08]1/2 = 28.62 m/s

U1 = 1.05 ¥ 28.62 = 30.05 m/s

Therefore, N = 30.05 / [p ¥ 0.45] = 21.26 rev./s

Rate of flow Q = 0.92 p D1 B1 ¥ Vf1

Vf1
 = 0.406 ¥ 28.62 = 11.62 m/s

Hence Q = 0,92 ¥ p ¥ 0.45 ¥ (0.05) ¥ 11.62 = 0.755 m3/s

Therefore power developed P = r Q Vw1
 U1

= 103 ¥ 0.755 ¥ (0.96) ¥ (28.62)2 = 593.60 kW

Example 15.12 An axial flow hydraulic turbine has a net head of 23 m across it,

and, when running at a speed of 150 rpm, developes 23 MW. The blade tip and hub

diameters are 4.75 and 2.0 m respectively. If the hydraulic efficiency is 93 % and the

overall efficiency 85 %, calculate the inlet and outlet blade angles at the mean radius,

assuming axial flow at outlet.

Solution Mean diameter dm = (4.75 + 2)/2 = 3.375 m

Power available from the fluid = (Power developed)/(overall efficiency)

Hence, 103 ¥ 9.81 ¥ 23 ¥ Q =
23 10

0 85

6¥
.

which gives the flow rate Q = 119.92 m3/s

Rotor speed at mean diameter

Um =
p pN dm

60

150 3 375

60
=

¥ ¥ .
 = 26.51 m/s

Power developed by the runner = Power available from the fluid ¥ hh

= (23/0.85) ¥ 106 ¥ 0.93 W

= 25.16 MW

Therefore, 103 ¥ 119.92 ¥ Vw1 ¥ 26.51 = 25.16 ¥ 106

which gives Vw1
 = 7.92 m/s
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Axial velocity, Va =
119 92

4 75 2 4
2 2

.

[( . ) ( ) ]/p -
= 8.22 m/s

Inlet and outlet velocity triangles are shown below:

For the inlet velocity triangle,

tan b1 =
V

U V

a

m w-
=

-
1

8 22

26 51 7 92

.

. .

which gives b1 = 23.85°

At outlet, tan b2 = Va/Um = 8.22/26.51

which gives b2 = 17.23°

Example 15.13 A centrifugal pump 1.3 m in diameter delivers 3.5 m3/min of water

at a tip speed of 10 m/s and a flow velocity of 1.6 m/s. The outlet blade angle is 30° to the

tangent at the impeller periphery. Assuming zero whirl at inlet, and zero slip, calculate

the torque delivered by the impeller.

Solution With zero slip and zero whirl at inlet, the work done on the liquid per unit

weight by the impeller can be written as

W = Vw2
 U2/g

Therefore power supplied P = r Q Vw2
 U2

(Subscript 2 represents the outlet)

From the outlet velocity triangle shown below;

Vw2
 = 10 � 

16

30tan ∞
 = 7.23 m

Hence P = 10
3
 ¥ 

3 5

60

.
 ¥ 7.23 ¥ 10 = 4217.5 W
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Torque delivered =
Power

Angular velocity
=

¥4217 5 0 65

10

. .

= 274.14 Nm

Example 15.14 An impeller with an eye radius of 51 mm and an outside diameter of

406 mm rotates at 900 rpm. The inlet and outlet blade angles measured from the radial flow

direction are 75° and 83° respectively, while the depth of blade is 64 mm.

Assuming zero inlet whirl, zero slip and an hydraulic efficiency of 89%, calculate

(a) the volume flow rate through the impeller,

(b) the stagnation and static pressure rise across the impeller,

(c) the power transferred to the fluid and

(d) the input power to the impeller.

Solution The inlet and outlet velocity triangles are shown below:

1

Vr2

Vr1

U1

V1

Inlet Outlet

75º

U2

V2

U2

Vw2

V
2f

83º

(a) At inlet, the impeller blade velocity is

U1 =
900 2

60
0 051

¥F
H

I
K ¥

p
.  = 4.81 m/s

tan b1 = V1/U1

V1 = 4.81 ¥ tan (90° � 75°) = 4.81 ¥ tan 15°

= 1.29 m/s

volume flow rate through the pump is given by

Q = 2p ¥ 0.051 ¥ 0.064 ¥ 1.29 = 0.026 m
3
/s

(b) From continuity,

Vf2
 =

0 051 1 29

0 203

. .

.

¥
 = 0.324 m/s

At outlet, the velocity of impeller blades is given by

U2 =
900 2

60

¥F
H

I
K

p
 ¥ 0.203 = 19.13 m/s

Power transferred to the fluid per unit weight by the impeller can be written as

E =
V U

g

U
V

U

g

w

f

2

2

2
2 2

7
=

-
∞

F
HG

I
KJtan
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= 19 13
0 324

7

19 13

9 81
.

.

tan

.

.
-

∞
F
HG

I
KJ  = 32.16 m

Therefore total head developed by the pump = H = 0.89 ¥ 32.16 = 28.62 m

If the changes in potential head across the pump is neglected, the total head

developed by the pump can be written as

H =
p p

g

V V

g

2 1 2
2

1
2

2

-L
NM

O
QP

+
-L

N
M

O
Q
P

r

Therefore, the rise in stagnation or total pressure becomes

p p

g

0 02 1
-

r
 =

p

g

V

g

p

g

V

g

2 2
2

1 1
2

2 2r r
+

L
N
M

O
Q
P - +

L
N
M

O
Q
P  = H

Hence, p02 � p01 = 103 ¥ 9.81 ¥ 28.62 Pa = 280.76 kPa.

At impeller exit

Vw2
 = 19.13 � 

0 324

7

.

tan ∞
 = 16.49 m/s

Therefore, V2 = [Vf2

2 + Vw2

2]1/2

= [(0.324)
2
 + (16.49)

2
]
1/2

 = 16.49 m/s

Solving for the static pressure head

p p

g

2 1-
r

 = H
V V

g
-

-L
N
M

O
Q
P2

2
1
2

2

= 28.62 � 
( . ) ( . )

.

16 49 1 29

2 9 81

2 2-
¥

L
N
M

O
Q
P  = 14.84 m

p2 � p1 = 10
3
 ¥ 9.81 ¥ 14.89 Pa = 145.58 kPa

(c) Power given to fluid = r g Q H

= 10
3
 ¥ 9.81 ¥ 0.026 ¥ 28.62 W = 7.30 kW

(d) Input power to impeller = 7.30/0.89 = 8.20 kW.

Example 15.15 The basic design of a centrifugal pump has a dimensionless

specific speed of 0.075 rev. The blades are forward facing on the impeller and the outlet

angle is 120° to the tangent, with an impeller passage width at outlet being equal to one-

tenth of the diameter. The pump is to be used to raise water through a vertical distance

of 35 m at a flow rate of 0.04 m3/s. The suction and delivery pipes are each of 150 mm

diameter and have a combined length of 40 m with a friction factor of 0.005. Other losses

at pipe entry, exit, bends, etc. are three times the velocity head in the pipes. If the blades

occupy 6 % of the circumferential area and the hydraulic efficiency (neglecting slip) is

76 %, what must be the diameter of the pump impeller.

Solution Velocity in the pipes v = 
0 04 4

0 15
2

.

( . )

¥
¥p

 = 2.26 m/s
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Total losses in the pipe

h1 =
4

2

3

2

2
2

f l

gd g
v

v

+  = 
4 0 005 40

0 15
3

2 26

2 9 81

2¥ ¥
+

L
NM

O
QP

¥
¥

.

.

( . )

.

= 2.17 m

Therefore total head required to be developed = 35 + 2.17

= 37.17 m

The speed of the pump is determined from the consideration of specific speed as

0.075 =
N ( . )

( . .

/

/

0 04

9 81 37 17)

1 2

3 4¥

or N =
0 075 9 81 37 17)

0 04

3 4

1 2

. ( . .

( . )

/

/

¥
 = 31.29 rev/s

Let the impeller diameter be D.

Flow area perpendicular to impeller outlet periphery

= p D ¥ D/10 ¥ 0.94 = 0.295 D
2

The inlet and outlet velocity triangles are drawn below:

Vr2

Vf2

Vr1

U1

V1

Inlet Outlet

V2

Vw2

120º

U2

Vf2
 =

Q

D D D0 295

0 04

0 295

0 135
2 2 2

.

.

.

.
= =  m/s

U2 = p ND = 31.29 ¥ p ¥ D = 98.3 D m/s

hh (Hydraulic efficiency) = gH/(Vw2
U2)

or 0.76 =
9 81 37 17

98 3
2

. .

.

¥
¥D Vw

which gives, Vw2
 =

4 88.

D
 m/s

From outlet velocity triangle

tan 60° =
V

V U D D D

f

w

2

2 2
2

0 135

4 88 98 3-
=

-
.

[ . / . ]

or D3 = 0.0496 D � 0.0008

which gives D = 0.214 m
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Example 15.16 When a laboratory test was carried out on a pump, it was found

that, for a pump total head of 36 m at a discharge of 0.05 m3
/s, cavitation began when the

sum of the static pressure and the velocity head at inlet was reduced to 3.5 m. The at-

mospheric pressure was 750 mm of Hg and the vapour pressure of water was 1.8 kPa. If

the pump is to operate at a location where atmospheric pressure was reduced to 620 mm

of Hg and the temperature is so reduced that the vapour pressure of water is 830 Pa, what

is the value of the cavitation parameter when the pump develops the same total head and

discharge? Is it necessary to reduce the height of the pump and if so by how much?

Solution Cavitation began, when, p

g

V

g

1 1
2

2r
+  = 3.5 m

(where subscript 1 refers to the condition at inlet to the pump)

and at this condition p1 = pvap

Therefore, V1
2/2g = 3.5 � 

1 8 10

9 81 10

3

3

.

.

¥
¥

= 3.32 m (net positive suction head)

Hence, the cavitation parameter s =
V

gH

1
2

2

= 3.32/36 = 0.092

This dimensionless parameter will remain same for both the cases.

Applying Bernoulli�s equation, between the liquid level at sump and the inlet to the

pump (taking the sump level as datum), we can write for the first case,

p

g

V

g
z1 1

2

1
2r

+ +  =
p

g
hf

atm

r
-

1
 (sum of head losses)

or (z1 + hf1
) =

p

g
H

p

g

atm

r
s

r
- ◊ - 1

= (0.75 ¥ 13.6) � 3.32 � 
1 8

9 81

.

.

= 6.7 m

for the second case,

¢
+

¢
+ ¢

p

g

V

g
z1 1

2

1
2r

 =
¢

- ¢
p

g
hf

atm

r 1

(Superscript ¢ refer to the second case)

or (z¢1 + h¢f1) =
¢

- -
¢p

g
H

p

g

atm vap

r
s

r

= (0.62 ¥ 13.6) � 3.32 � 
830

9 81 10
3

. ¥
= 5.03 m

since the flow rate is same, hf1
 = h¢f1
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Therefore, the pump must be lowered a distance

(z1 � z¢1) = 6.7 � 5.03 = 1.67 m

at the new location.

Exercises

15.1 A quarter scale turbine model is tested under a head of 10.8 m. The full-scale

turbine is required to work under a head of 30 m and to run at 7.14 rev/s. At what

speed must the model be run? If it develops 100 kW and uses 1.085 m3 of water

per second at this speed, what power will be obtained from the full-scale turbine?

The efficiency of the full-scale turbine being 3% greater than that of the model?

What is the dimensionless specific speed of the full-scale turbine?

(Ans. 17.14 rev/s, 7.66 MW, 0.513 rev/s)

15.2 A Pelton wheel operates with a jet of 150 mm diameter under the head of 500 m. Its

mean runner diameter is 2.25 m and it rotates with a speed of 375 rpm. The angle

of bucket tip at outlet as 15°, coefficient of velocity is 0.98, mechanical losses

equal to 3% of power supplied and the reduction in relative velocity of water

while passing through bucket is 15%. Find (a) the force of jet on the bucket, (b)

the power developed (c) bucket efficiency and (d) the overall efficiency.

(Ans. 165.15 kN, 7.3 MW, 90.3%, 87.6%)

15.3 A Pelton wheel works at the foot of a dam because of which the head available at

the nozzle is 400 m. The nozzle diameter is 160 mm and the coefficient of velocity

is 0.98. The diameter of the wheel bucket circle is 1.75 m and the buckets deflect

the jet by 150°. The wheel to jet speed ratio is 0.46. Neglecting friction, calculate

(a) the power developed by the turbine, (b) its speed and (c) hydraulic efficiency.

[Ans. (a) 6.08 MW, (b) 435.9 rpm, (c) 89.05%]

15.4 A powerhouse is equipped with impulse turbines of Pelton type. Each turbine

delivers a power of 14 MW when working under a head of 900 m and running at

600 rpm. Find the diameter of the jet and mean diameter of the wheel. Assume that

the overall efficiency is 89%, velocity coefficient of jet 0.98, and speed ratio 0.46.

(Ans. 132 mm, 1.91 m)

15.5 A Francis turbine has a wheel diameter of 1.2 m at the entrance and 0.6 m at the

exit. The blade angle at the entrance is 90° and the guide vane angle is 15°. The

water at the exit leaves the blades without any tangential velocity. The available

head is 30 m and the radial component of flow velocity is constant. What would

be the speed of wheel in rpm and blade angle at exit? Neglect friction.

(Ans. 268 rpm, 28.2°)

15.6 In a vertical shaft inward-flow reaction turbine, the sum of the pressure and

kinetic head at entrance to the spiral casing is 120 m and the vertical distance

between this section and the tail race level is 3 m. The peripheral velocity of the

runner at entry is 30 m/s, the radial velocity of water is constant at 9 m/s and

discharge from the runner is without swirl. The estimated hydraulic losses are

(a) between turbine entrance and exit from the guide vanes 4.8 m (b) in the runner

8.8 m (c) in the draft tube 0.79 m (d) kinetic head rejected to the tail race
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0.46 m. Calculate the guide vane angle and the runner blade angle at inlet and the

pressure heads at entry to and exit from the runner.

(Ans.  14.28°, 120.78°, 47.34 m, �5.88 m)

15.7 A Kaplan turbine operating under a net head of 20 m develops 16 MW with an

overall efficiency of 80 %. The diameter of the runner is 4.2 m, while the hub

diameter is 2 m and the dimensionless specific speed is 3 rad. If the hydraulic

efficiency is 90%, calculate the inlet and exit angles of the runner blades at the

mean blade radius if the flow leaving the runner is purely axial.

(Ans.  25°, 19.4°)

15.8 The following data refer to an elbow type draft tube:

Area of circular inlet = 25 m2

Area of rectangular outlet = 116 m
2

Velocity of water at inlet to draft tube = 10 m/s

The frictional head loss in the draft tube equals to 10% of the inlet velocity head.

Elevation of inlet plane above tail race level = 0.6 m

Determine:

(a) Vacuum or negative head at inlet

(b) Power thrown away in tail race

(Ans.  4.95 m vac, 578 kW)

15.9 Show that when runner blade angle at inlet of a Francis turbine is 90° and the

velocity of flow is constant, the hydraulic efficiency is given by 2/(2 + tan2 a),

where a is the vane angle.

15.10 A Kaplan turbine develops 10 MW under a head of 4.3 m. Taking a speed ratio of

1.8, flow ratio of 0.5, boss diameter 0.35 times the outer diameter and overall

efficiency of 90%, find the diameter and speed of the runner.

(Ans.  9.12 m, 34.6 rpm)

15.11 A conical type draft tube attached to a Francis turbine has an inlet diameter of 3 m

and its area at outlet is 20 m2
. The velocity of water at inlet, which is 5 m above tail

race level, is 5 m/s. Assuming the loss in draft tube equals to 50% of velocity

head at outlet, find (a) the pressure head at the top of the draft tube (b) the total

head at the top of the draft tube taking tail race level as datum (c) power lost in

draft tube.

(Ans.  6.03 m vac, 0.24 m, 0.08 m)

15.12 Calculate the least diameter of impeller of a centrifugal pump to just start

delivering water to a height of 30 m, if the inside diameter of impeller is half of the

outside diameter and the manometric efficiency is 0.8. The pump runs at 1000

rpm.

(Ans.  0.6 m)

15.13 The impeller of a centrifugal pump is  0.5 m in diameter and rotates at 1200 rpm.

Blades are curved back to an angle of 30° to the tangent at outlet tip. If the

measured velocity of flow at the outlet is 5 m/s, find the work input per kg of water

per second. Find the theoretical maximum lift to which the water can be raised if

the pump is provided with whirlpool chamber which reduces the velocity of

water by 50%.

(Ans. 72.78 m, 65.87 m)

15.14 The impeller of a centrifugal pump is 0.3 m in diameter and runs at 1450 rpm. The

pressure gauges on suction and delivery sides show the difference of 25 m. The
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blades are curved back to an angle of 30°. The velocity of flow through impeller,

being constant, equals to 2.5 m/s, find the manometric efficiency of the pump. If

the frictional losses in impeller amounts to 2 m, find the fraction of total energy

which is converted into pressure energy by impeller. Also find the pressure rise

in pump casing.

(Ans. 58.35%, 54.1%, 1.83 m of water)

15.15 A centrifugal pump is required to work against a head of 20 m while rotating at the

speed of 700 rpm. If the blades are curved back to an angle of 30° to tangent at

outlet tip and velocity of flow through impeller is 2 m/s, calculate the impeller

diameter when (a) all the kinetic energy at impeller outlet is wasted and (b) when

50% of this energy is converted into pressure energy in pump casing.

(Ans. 0.55 m, 0.48 m)

15.16 During a laboratory test on a pump, appreciable cavitation began when the

pressure plus the velocity head at inlet was reduced to 3.26 m while the change

in total head across the pump was 36.5 m and the discharge was 48 litres/s.

Barometric pressure was 750 mm of Hg and the vapour pressure of water 1.8 kPa.

What is the value of sc? If the pump is to give the same total head and discharge

in a location where the normal atmospheric pressure is 622 mm of Hg and the

vapour pressure of water is 830 Pa, by how much must the height of the pump

above the supply level be reduced?

(Ans. 0.084, 1.65 m)

15.17 A single acting reciprocating pump having a cylinder diameter of 150 mm and

stroke of 300 mm. is used to raise the water through a height of 20 m. Its crank

rotates at 60 rpm. Find the theoretical power required to run the pump and the

theoretical discharge. If actual discharge is 5 litres/s, find the percentage slip. If

delivery pipe is 100 mm in diameter and is 15 m long, find the acceleration head at

the beginning of the stroke.

(Ans. 1.04 kW, 0.0053 m3/s. 5.66, 20.37 m)

15.18 A reciprocating pump has a suction head of 6 m and delivery head of 15 m. It has

a bore of 150 mm and stroke of 250 mm and piston makes 60 double strokes in a

minute. Calculate the force required to move the piston during (a) suction stroke,

(b) during the delivery stroke. Find also the power to drive the pump.

(Ans. 1.04 kN, 2.60 kN, 1.81 kW)



In Chapter 15, we discussed the basic fluid mechanical principles governing the

energy transfer in a fluid machine. A brief description of different types of fluid

machines using water as the working fluid was also given in Chapter 15.

However, there exist a large number of fluid machines in practice, that use air,

steam and gas (the mixture of air and products of burnt fuel) as the working fluids.

The density of the fluids change with a change in pressure as well as in

temperature as they pass through the machines. These machines are called

�compressible flow machines� and more popularly �turbomachines�. Apart from

the change in density with pressure, other features of compressible flow,

depending upon the flow regimes, are also observed in course of flow of fluids

through turbomachines. Therefore, the basic equation of energy transfer (Euler�s

equation, as discussed in Chapter 15) along with the equation of state relating the

pressure, density and temperature of the working fluid and other necessary

equations of compressible flow, (as discussed in Chapter 14) are needed to

describe the performance of a turbomachine. However, a detailed discussion on

all types of turbomachines is beyond the scope of this book. We shall present a

very brief description of a few compressible flow machines, namely,

compressors, fans and blowers in this chapter.

16.1 CENTRIFUGAL COMPRESSORS

A centrifugal compressor is  a radial flow rotodynamic fluid machine that uses

mostly air as the working fluid and utilizes the mechanical energy imparted to the

Compressors,
Fans and Blowers

16
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machine from outside to increase the total internal energy of the fluid mainly in the

form of increased static pressure head.

During the second world war most of the gas turbine units used centrifugal

compressors. Attention was focused on the simple turbojet units where low

power-plant weight was of great importance. Since the war, however, the axial

compressors have been developed to the point where it has an appreciably higher

isentropic efficiency. Though centrifugal compressors are not that popular today,

there is renewed interest in the centrifugal stage, used in conjuction with one or

more axial stages, for small turbofan and turboprop aircraft engines.

A centrifugal compressor essentially consists of three components.

1. A stationary casing

2. A rotating impeller as shown in Fig. 16.1 (a) which imparts a high

velocity to the air. The impeller may be single or double sided as shown

in Fig. 16.1 (b) and (c) but the fundamental theory is same for both.

3. A diffuser consisting of a number of fixed diverging passages in which

the air is decelerated with a consequent rise in static pressure.

Impeller eye

Impeller blades

Vaneless spaceDiffuser

(a)

Impeller shroud

(b) (c) (d)

Depth of
diffuser

Fig. 16.1 Schematic views of a centrifugal compressor

Principle of operation Air is sucked into the impeller eye and whirled outwards at

high speed by the impeller disk. At any point in the flow of air through the impeller,

the centripetal acceleration is obtained by a pressure head so that the static

pressure of the air increases from the eye to the tip of the impeller. The remainder of

the static pressure rise is obtained in the diffuser, where the very high velocity of
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air leaving the impeller tip is reduced to almost the velocity with which the air

enters the impeller eye.

Usually, about half of the total pressure rise occurs in the impeller and the other

half in the diffuser. Owing to the action of the vanes in carrying the air around with

the impeller, there is a slightly higher static pressure on the forward side of the vane

than on the trailing face. The air will thus tend to flow around the edge of the vanes

in the clearing space between the impeller and casing. This results in a loss of

efficiency and the clearance must be kept as small as possible. Sometimes, a shroud

attached to the blades as shown in Fig. 16.1 (d) may eliminate such a loss, but it is

avoided because of increased disc friction loss and of manufacturing difficulties.

The straight and radial blades are usually employed to avoid any undesirable

bending stress to be set up in the blades. The choice of radial blades also determines

that the total pressure rise is divided equally between impeller and diffuser.

Work done and pressure rise Since no work is done on the air in the diffuser, the

energy absorbed by the compressor will be determined by the conditions of the air

at the inlet and outlet of the impeller. At the first instance, it is assumed that the air

enters the impeller eye in the axial direction, so that the initial angular momentum

of the air is zero. The axial portion of the vanes must be curved so that the air can

pass smoothly into the eye. The angle which the leading edge of a vane makes with

the tangential direction, a, will be given by the direction of the relative velocity of

the air at inlet, Vr1, as shown in Fig. 16.2. The air leaves the impeller tip with an

absolute velocity of V2 that will have a tangential or whirl component Vw2. Under

ideal conditions, V2, would be such that the whirl component is equal to the impeller

speed U2 at the tip. Since air enters the impeller in axial direction, Vw1 = 0. Under

r1

a

Vr1
Vf1=V1

U1

Section through eye
at radius r1

Ideal conditions
at impeller tip

V2
Vr2

V Uw2 = 2

V2
Velocity relative
to impeller

Vr2

V Uw2 < 2

Fig. 16.2 Velocity triangles at inlet and outlet of impeller blades
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the situation of Vw1 = 0 and Vw2 = U2, we can derive from Eq. (15.2), the energy

transfer per unit mass of air as

E

m
 = U 2

2 (16.2)

Due to its inertia the air trapped between the impeller vanes is reluctant to

move round with the impeller and we have already noted that this results in a

higher static pressure on the leading face of a vane than on the trailing face. It also

prevents the air from acquiring a whirl velocity equal to impeller speed. This

effect is known as slip. Because of slip, we obtain Vw2 < U2. The slip factor s is

defined in the similar way as done in the case of a centrifugal pump as

s =
V

U

w2

2

The value of s lies between 0.9 to 0.92. The energy transfer per unit mass in case

of slip becomes

E

m
 = V Uw2 2  = s U2

2
(16.2)

One of the widely used expressions for s was suggested by Stanitz from the

solution of potential flow through impeller passages. It is given by

s = 1 � 
0 63◊ p

n
, where n is the number of vanes.

Power input factor The power input factor takes into account of the effect of

disk friction, windage, etc. for which a little more power has to be supplied than

required by the theoretical expression. Considering all these losses, the actual

work done (or energy input) on the air per unit mass becomes

w = YsU
2
2 (16.3)

where Y is the power input factor.

From steady flow energy equation and in consideration of air as an ideal gas,

one can write for adiabatic work w per unit mass of air flow as

w = cp (T2t � T1t) (16.4)

Where T1t and T2t are the stagnation temperatures at inlet and outlet of the

impeller, and cp is the mean specific heat over the entire temperature range. With

the help of Eq. (16.3), we can write

w = Y sU2
2 = cp (T2t � T1t) (16.5)

The stagnation temperature represents the total energy held by a fluid. Since

no energy is added in the diffuser, the stagenation temperature rise across the

impeller must be equal to that across the whole compressor. If the stagnation

temperature at the outlet of the diffuser is designated by T3t, then T3t = T2t. One

can write from Eq. (16.5)



Compressors, Fans and Blowers 665

T

T

t

t

2

1

 =
T

T

t

t

3

1

 = 1 + 
YsU

c Tp t

2
2

1

(16.6)

The overall stagnation pressure ratio can be written as
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(16.7)

where, T¢3t and T3t are the stagnation temperatures at the end of an ideal (isentropic)

and actual process of comprssion respectively (Fig. 16.3), and hc is the isentropic

efficiency defined as

hc =
¢ -

-

T T

T T

t t

t t

3 1

3 1

(16.8)

Fig. 16.3 Ideal and actual processes of compression on T-s plane

Since the stagnation temperature at the outlet of impeller is same as that at the

outlet of the diffuser, one can also write T2t in place of T3t in Eq. (16.8). Typical

values of the power input factor lie in the region of 1.035 to 1.04. If we know hc,

we will be able to calculate the stagnation pressure rise for a given impeller speed.

The variation in stagnation pressure ratio across the impeller with the impeller

speed is shown in Fig. 16.4. For common materials, U2 is limited to 450 m/s.

Figure 16.5 shows the inducing section of a compressor. The relative velocity

Vr1 at the eye tip has to be held low otherwise the Mach number (based on Vr1)

given by Mr1 = 
V

RT

r1

1g
 will be too high causing shock losses. Mach number Mr1

should be in the range of 0.7�0.9. The typical inlet velocity triangles for large and

medium or small eye tip diameter are shown in Fig. 16.6 (a) and (b) respectively.
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Fig. 16.4 Variation in stagnation pressure ratio with impeller tip speed

Fig. 16.5 Inducing section of a centrifugal compressor

V1
V1

Vr1

(a) (b)

Vr1

U1
U1

Fig. 16.6 Velocity triangles at the tip of eye

16.1.1 Diffuser

The basic purpose of a compressor is to deliver air at high pressure required for

burning fuel in a combustion chamber so that the burnt products of combustion at

high pressure and temperature are used in turbines or propelling nozzles (in case of

an aircraft engine) to develop mechanical power. The problem of designing an effi-

cient combustion chamber is eased if velocity of the air entering the combustion

chamber is as low as possible. It is necessary, therefore to design the diffuser so

that only a small part of the stagnation temperature at the compressor outlet corre-

sponds to kinetic energy.

It is much more diffucult to arrange for an efficient deceleration of flow than it is

to obtain efficient acceleration. There is a natural tendency in a diffusing process

for the air to break away from the walls of the diverging passage and reverse its

direction. This is typically due to the phenomenon of boundary layer separation as
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explained in Section 9.6. This is shown in Fig. 16.7. Experiments have shown that

the maximum permissible included angle of divergence is 11° to avoid consider-

able losses due to flow separation.

Pressure
increasing

Decelerating flow
through a diffuser (D)

Accelerating flow
through a nozzle (N)

Accelerating and decelerating
flow through a nozzle and a diffuser
with an intervening throat (T)

D N N D

U x( )

U x( )
x

T

Decreasing
pressure

Boundary
layer Back

flow

Inviscid
core

Fig. 16.7 Accelerating and decelerating flows

In order to control the flow of air effectively and carry-out the diffusion process in

as short a length as possible, the air leaving the impeller is divided into a number of

separate streams by fixed diffuser vanes. Usually the passages formed by the vanes

are of constant depth, the width diverging in accordance with the shape of the vanes.

The angle of the diffuser vanes at the leading edge must be designed to suit the

direction of the absolute velocity of the air at the radius of the leading edges, so that

the air will flow smoothly over vanes. As there is a radial gap between the impeller

tip and the leading edge of the vanes (Fig. 16.8), this direction will not be that with

which the air leaves the impeller tip.

V2

Vw2

Vf 2 Diffuser

Vanes

Fig. 16.8 Diffuser vanes

To find the correct angle for diffuser vanes, the flow in the vaneless space should

be considered. No further energy is supplied to the air after it leaves the impeller. If

we neglect the frictional losses, the angular momentum Vw r remains consant.

Hence Vw decreases from impeller tip to diffuser vane, in inverse proportion to the

radius. For a channel of constant depth, the area of flow in the radial direction is

directly proportional to the radius. The radial velocity Vf will therefore also de-

crease from impeller tip to diffuser vane, in accordance with the equation of conti-

nuity. If both Vf and Vw decrease from the impeller tip then the resulant velocity

V decreases from the impeller tip and some diffusion takes place in the

vaneless space. The consequent increase in density means that Vf will not
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decrease in inverse proportion to the radius as done by Vw, and the way Vf varies

must be found from the equation of continuity.

16.1.2 Losses in a Centrifugal Compressor

The losses in a centrifugal compressor are almost of the same types as those in a

centrifugal pump described in Section 15.3.3 of Chapter 15. However, the

following features are to be noted.

Frictional losses A major portion of the losses is due to fluid friction in stationary

and rotating blade passages. The flow in impeller and diffuser is decelerating in

nature. Therefore the frictional losses are due to both skin friction and boundary

layer separation. The losses depend on the friction factor, length of the flow

passage and square of the fluid velocity. The variation of frictional losses with mass

flow is shown in Fig. 16.9.

Incidence losses During the off-design conditions, the direction of relative

velocity of fluid at inlet does not match with the inlet blade angle and therefore

fluid cannot enter the blade passage smoothly by gliding along the blade surface.

The loss in energy that takes place because of this is known as incidence loss. This

is sometimes referred to as shock losses. However, the word shock in this context

should not be confused with the aerodynamic sense of shock which is a sudden

discontinuity in fluid properties and flow parameters that arises when a supersonic

flow decelerates to a subsonic one as described in Chapter 14.

Clearance and leakage losses Certain minimum clearances are necessary between

the impeller shaft and the casing and between the outer periphery of the impeller

eye and the casing. The leakage of gas through the shaft clearance is minimized by

employing glands. The clearance losses depend upon the impeller diameter and the

static pressure at the impeller tip. A larger diameter of impeller is necessary for a

higher peripheral speed (U2) and it is very difficult in the situation to provide

sealing between the casing and the impeller eye tip.

The variations of frictional losses, incidence losses and the total losses with

mass flow rate are shown in Fig. 16.9. The leakage losses comprise a small

Fig. 16.9 Dependence of various losses with mass flow in a centrifugal

compressor



Compressors, Fans and Blowers 669

fraction of the total loss. The incidence losses attain the minimum value at the de-

signed mass flow rate. The shock losses are, in fact zero at the designed flow rate.

However, the incidence losses, as shown in Fig. 16.9, comprises both shock losses

and impeller entry loss due to a change in the direction of fluid flow from axial to

radial direction in the vaneless space before entering the impeller blades. The im-

peller entry loss is similar to that in a pipe bend and is very small compared to other

losses. This is why the incidence losses show a non zero minimum value (Fig. 16.9)

at the designed flow rate.

16.1.3 Compressor Characteristics

The theoretical and actual head-discharge relationships of a centrifugal compres-

sor are same as those of a centrifugal pump as described in Chapter 15. Therefore

the curves of H�Q are similar to those of Figs 15.26 and 15.27. However, the per-

formance of a compressor is usually specified by curves of delivery pressure and

temperature against mass flow rate for various fixed values of rotational speed at

given values of inlet pressure and temperature. It is always advisable to plot such

performance characteristic curves with dimensionless variables. To find these di-

mensionless variables, we start with an implicit functional relationship of all the

variables as

F (D, N, m, p1t, p2t, RT1t, RT2t, = 0 (16.9)

where D = characteristic linear dimension of the machine, N = rotational speed, m

= mass flow rate, p1t = stagnation pressure at compressor inlet, p2t = stagnation

pressure at compressor outlet, T1t = stagnation temperature at compressor inlet,

T2t = stagnation temperature at compressor outlet, and R = characteristic gas con-

stant.

By making use of Buckingham�s p theorem, we obtain the non-dimensional

groups (p terms) as

p

p

t

t
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The third and fourth non-dimensional groups are defined as �non-dimensional mass

flow� and non-dimensional rotational speed� respectively. The physical interpreta-

tion of these two non-dimensional groups can be ascertained as follows.
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Therefore, the �non-dimensional mass flow� and �non-dimensional rotational

speed� can be regarded as flow Mach number, MF and rotational speed Mach num-

ber, MR.

When we are concerned with the performance of a machine of fixed size com-

pressing a specified gas, R and D may be omitted from the groups and we can write

Function 
12 2

1 1 1 1

, , ,
tt t

t t t t

m Tp T N

p T p T

Ê ˆ
Á ˜
Ë ¯

 = 0 (16.10)

Though the terms m T pt t1 1/  and N T t/ 1  are truly not dimensionless, they are

referred to as �non-dimensional mass flow� and �non-dimensional rotational speed�

for practical purposes. The stagnation pressure and temperature ratios p2t/p1t and

T2t/T1t are plotted against m T pt t1 1/  in the form of two families of curves, each

curve of a family being drawn for fixed values of N T t/ 1 . The two families of

curves represent the compressor characteristics. From these curves, it is possible

to draw the curves of isentropic efficiency hc vs m T pt t1 1/  for fixed values of

N T t/ 1 . We can recall, in this context, the definition of the isentropic efficiency

as

hc =
¢ -
-

T T

T T

t t

t t

2 1

2 1

 = 
( / )

( / )

p p

T T

t t

t t

2 1

1

2 1

1

1

g

g

-

-
-

(16.11)

Before describing a typical set of characteristics, it is desirable  to consider what

might be expected to occur when a valve placed in the delivery line of the compres-

sor running at a constant speed, is slowly opened. When the valve is shut and the

mass flow rate is zero, the pressure ratio will have some value A

(Fig. 16.10), corresponding to the centrifugal pressure head produced by

Fig. 16.10 The theoretical characteristic curve, after Cohen et al. [1]
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the action of the impeller on the air trapped between the vanes. As the valve is

opened, flow commences and diffuser begins to influence the pressure rise, for

which the pressure ratio increases. At some point B, efficiency approaches its

maximum and the pressure ratio also reaches its maximum. Further increase of

mass flow will result in a fall of pressure ratio. For mass flows greatly in excess of

that corresponding to the design mass flow, the air angles will be widely different

from the vane angles and breakaway of the air will occur. In this hypothetical case,

the pressure ratio drops to unity at C, when the valve is fully open and all the power

is absorbed in overcoming internal frictional resistances.

In practice, the operating point A could be obtained if desired but a part of the

curve between A and B could not be obtained due to surging. It may be explained in

the following way. If we suppose that the compressor is operating at a point D on

the part of characteristic curve (Fig. 16.10) having a positive slope, then a decrease

in mass flow will be accompanied by a fall in delivery pressure. If the pressure of

the air downstream of the compressor does not fall quickly enough, the air will tend

to reverse its direction and will flow back in the direction of the resulting pressure

gradient. When this occurs, the pressure ratio drops rapidly causing a further drop

in mass flow until the point A is reached, where the mass flow is zero. When the

pressure downstream of the compressor has reduced sufficiently due to reduced

mass flow rate, the positive flow becomes established again and the compressor

picks up repeat the cycle of events which occurs at high frequency.

This surging of air may not happen immediately the operating point moves to the

left of B because the pressure downstream of the compressor may at first fall at a

greater rate than the delivery pressure. A the mass flow is reduced, the reverse will

apply and the conditions are unstable between As and B. As long as the operating

point is on the part of the characteristic having a negative slope, however, decrease

in mass flow is accompanied by a rise in delivery pressure and the operation is

stable.

Let us consider the constant speed curve ABC (Fig. 16.10). There is an

additional limitation to the operating range, between B and C. As the mass flow

increases and the pressure decreases, the density is reduced and the radial

component of velocity must increase. At constant rotational speed this means an

increase in resultant velocity and hence in angle of incidence at the diffuser vane

leading edge. At some point say E, the position is reached where no further increase

in mass flow can be obtained no matter how wide open the control valve is. This

point represents the maximum delivery obtainable at the particular rotational speed

for which the curve is drawn. This indicates that at some point within the

compressor sonic conditions have been reached, causing the limiting maximum

mass flow rate to be set as in the case of compressible flow through a converging

diverging nozzle. Choking is said to have taken place. Other curves may be

obtained for different speeds, so that the actual variation of pressure ratio over the

complete range of mass flow and rotational speed will be shown by curves such as

those in Fig. 16.11. The left hand extremities of the constant speed curves may be

joined up to form surge line, the right hand extremities indicate choking

(Fig. 16.11).
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Fig. 16.11 Variations of pressure ratio over the complete range of mass

flow for different rotational speeds, after Cohen et al. [1]

16.2 AXIAL FLOW COMPRESSORS

The basic components of an axial flow compressor are a rotor and a stator, the

former carrying the moving blades and the latter the stationary rows of blades. The

stationary blades convert the kinetic energy of the fluid into pressure energy, and

also redirect the flow into an angle suitable for entry to the next row of moving

blades. Each stage will consist of one rotor row followed by a stator row but it is

usual to provide a row of so-called inlet guide vanes. This is an additional stator

row upstream of the first stage in the compressor and serves to direct the axially

approaching flow correctly into the first row of rotating blades. Two forms of rotor

have been taken up, namely drum type and disk type. A disk type rotor  illustrated

in Fig. 16.12. The disk type is used where consideration of low weight is most

important. There is a contraction of the flow annulus from the low to the high-

pressure end of the compressor. This is necessary to maintain the axial velocity at a

reasonably constant level throughout the length of the compressor despite the

increase in density of air. Figure 16.13 illustrates flow through compressor stages.
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Inlet casting

Stator blade carrier

Outlet

Stator blade

Rotor blade

Fig. 16.12 Disk type axial flow compressor

The basic principle of acceleration of the working fluid, followed by diffusion to

convert acquired kinetic energy into a pressure rise, is applied in the axial compres-

sor. The flow is considered as occurring in a tangential plane at the mean blade

height where the blade peripheral velocity is U. This two dimensional approach

means that in general the flow velocity will have two components, one axial and one

peripheral denoted by subscript w, implying a whirl velocity. It is first assumed that

the air approaches the rotor blades with an absolute velocity V1, at an angle a1 to the

axial direction. In combination with the peripheral velocity U of the blades, its

relative velocity will be Vr1 at an angle b1 as shown in the upper velocity triangle

(Fig. 16.14). After passing through the diverging passages formed between the

rotor blades which do work on the air and increase its absolue velocity, the air will

emerge with the relative velocity of Vr2 at angle b2 which is less than b1. This

turning of air towards the axial direction is, as previously mentioned, necessary to

provide an increase in the effective flow area and is brought about by the camber of

the blades. Since Vr2 is less than Vr1 due to diffusion, some pressure rise has been

accomplished in the rotor. The velocity Vr2  in combination with U gives the

absolute velocity V2 at the exit from the rotor at an angle angle a2 to the axial

direction. The air then passes through the passages formed by the stator blades

where it is further diffused to velocity V3 at an angle a3 which in most designs equals

to a1 so that it is prepared for entry to next stage. Here again, the turning of the air

towards the axial direction is brought about by the camber of the blades.
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Fig. 16.13 Flow through stages
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Fig. 16.14 Velocity triangles of a stage of an axial flow compressor

Two basic equations follow immediately from the geometry of the velocity tri-

angles. These are:

U

Vf

 = tan a1 + tan b1 (16.12)

U

Vf

 = tan a2 + tan b2 (16.13)
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in which Vf = Vf1 = Vf2 is the axial velocity, assumed consant through the stage.

The work done per unit mass or specific work input, w being given by

w = U(Vw2 � Vw1) (16.14)

This expression can be put in terms of the axial velocity and air angles to give

w = UVf (tan a2 � tan a1) (16.15)

or by using Eqs. (16.12) and (16.13)

w = UVf (tan b1 � tan b2) (16.16)

This input energy will be absorbed usefully in raising the pressure and velocity of

the air. A part of it will be spent in overcoming various frictional losses. Regard-

less of the losses, the input will reveal itself as a rise in the stagnation temperature

of the air DTst. If the absolute velocity of the air leaving the stage V3 is made equal

to that at the entry V1, the stagnation temperature rise DTst will also be the static

temperature rise of the stage, DTs, so that

DTst = DTs = 
UV

c

f

p

 (tan b1 � tan b2) (16.17)

In fact, the stage temperature rise will be less than that given in Eq. (16.17)

owing to three dimensional effects in the compressor annulus. Experiments show

that it is necessary to multiply the right hand side of Eq. (16.17) by a work-done

factor l which is a number less than unity. This is a measure of the ratio of actual

work-absorbing capacity of the stage to its ideal value.

The radial distribution of axial velocity is not constant across the annulus but

becomes increasingly peaky (Fig. 16.15) as the flow proceeds, setting down to a

fixed profile at about the fourth stage. Equation (16.16) can be written with the

help of Eq. (16.12) as

w = U [(U � Vf tan a1) � Vf tan b2]

= U (U � Vf (tan a1 + tan b2)) (16.18)

Fig. 16.15 Axial velocity distributions
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Since the outlet angles of the stator and the rotor blades fix the value of a1 and

b2 and hence the value of (tan a1 + tan b2). Any increase in Vf will result in a

decrease in w and vice-versa. If the compressor is designed for constant radial

distribution of Vf as shown by the dotted line in Fig. (16.14), the effect of an

increase in Vf in the central region of the annulus will be to reduce the work

capacity of blading in that area. However this reduction is somewhat compen-

sated by an increase in w in the regions of the root and tip of the blading because

of the reduction of Vf at these parts of the annulus. However, the net result is a

loss in total work capacity because of the adverse effects of blade tip clearance

and boundary layers on the annulus walls. This effect becomes more pronounced

as the number of stages is increased and the way in which the mean value varies

with the number of stages. The variation of l with the number of stages is shown

in Fig. 16.16. Care should be taken to avoid confusion of this factor with the idea

of an efficiency. If w is the expression for the specific work input (Eq. 16.14),

then lw is the actual amount of work which can be supplied to the stage. The

application of an isentropic efficiency to the resulting temperature rise will yield

the equivalent isentropic temperature rise from which the stage pressure ratio

may be calculated. Thus the actual stage temperature rise is given by

DTst =
lUV

c

f

p

 (tan b1 � tan b2) (16.19)

and the pressure ratio Rs by

Rs =
1

1

1 s st

t

T

T

g

gh -È ˘D
+Í ˙

Î ˚
(16.20)

where T1t is the inlet stagnation temperature and hs is the stage isentropic effi-

ciency.

Fig. 16.16 Variation of work-done factor with number of stages

Example: At the mean diameter, U = 200 m/s, Vf = 180 m/s, b1 = 43.9° and b2 =

13.5°. The factor l = 0.86 and hs = 0.85 and inlet temperature T1t is 288 K. Calcu-

late the pressure ratio.



Compressors, Fans and Blowers 677

DTst =
0 86 200 180

1 005 103

◊
◊
¥ ¥

¥
 (tan 43.9° � tan 13.5°)

= 22.24 K

and Rs = 1
0 85 22 24

288

3 5

+
¥L

NM
O
QP
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 = 1.25

[cp of air has been taken as 1005 J/kg K]

16.2.1 Degree of Reaction

A certain amount of diffusion (a rise in static pressure) takes place as the air

passes through the rotor as well as the stator; the rise in pressure through the

stage is in general, attributed to both blade rows. The term degree of reaction is a

measure of the extent to which the rotor itself contributes to the increase in the

static head of fluid. It is defined as the ratio of the static enthalpy rise in the rotor

to that in the whole stage. Variation of cp over the relevent temperature range will

be negligibly small and hence this ratio of enthalpy rise will be equal to the corre-

sponding temperature rise.

It is useful to obtain a formula for the degree of reaction in terms of the various

veolcities and air angles associated with the stage. This will be done for the most

common case in which it is assumed that the air leaves the stage with the same

velocity (absolute) with which it enters (V1 = V3).

This leads to DTs = DTst. If DTA and DTB are the static temperature rises in the

rotor and the stator respectively, then from Eqs (16.15), (16.16) and (16.17)

w = cp (DTA + DTB) = cpDTs

= UVf (tan b1 � tan b2)

= UVf (tan a2 � tan a1) (16.21)

Since all the work input to the stage is transferred to air by means of the rotor, the

steady flow energy equation yields

w = cp DT V VA + -1

2
2
2

1
2( )

With the help of Eq. (16.21), it becomes

cpDTA = UVf (tan a2 � tan a1) � 
1

2
2
2

1
2( )V V-

But V2 = Vf sec a2 and V1 = Vf sec a1, and hence

cpDTA = UVf (tan a2 � tan a1) � 
1

2
 V2

f (sec2a2 � sec2a1)

= UVf (tan a2 � tan a1) � 
1

2
 V2

f (tan2a2 � tan2a1) (16.22)

The degree of reaction

L =
D

D D
T

T T

A

A B+
(16.23)
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With the help of Eq. (16.22), it becomes
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By adding up Eq. (16.12) and Eq. (16.13) we get

2U

Vf

 = tan a1 + tan b1 + tan a2 + tan b2

Hence,
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or L =
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2
 (tan b1 + tan b2) (16.24)

As the case of 50% reaction blading is important in design, it is of interest to see

the result for L = 0.5

tan b1 + tan b2 =
U

Vf

and it follows from Eqs (16.12) and (16.13) that

tan a1 = tan b2, i.e. a1 = b2 (16.25a)

tan b1 = tan a2, i.e. b1 = a2 (16.25b)

Furthermore since Vf is constant through the stage.

Vf = V1 cos a1 = V3 cos a3

And since we have initially assumed that V3 = V1, it follows that a1 = a3. Be-

cause of this equality of angles, namely, a1 = b2 = a3 and b1 = a2, blading designed

on this basis is sometimes referred to as symmetrical blading.

It is to be remembered that in deriving Eq. (16.24) for L we have implicitly as-

sumed a work done factor l of unity in making use of Eq. (16.22). A stage designed

with symmetrical blading is referred to as 50% reaction stage although

L will differ slightly for l.

16.3 FANS AND BLOWERS

Fans and blowers (Fig. 16.17) are turbomachines which deliver air at a desired

high velocity (and accordingly at a high mass flow rate) but at a relatively low

static pressure. The total pressure rise across a fan is extremely low and is of the

order of a few millimeters of water gauge. The rise in static pressure across a

blower is relatively higher and is more than 1000 mm of water guage that is
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required to overcome the pressure losses of the gas during its flow through various

passages.

Volute
casing

Impeller

Inlet

Outlet

Fig. 16.17 A centrifugal fan or blower

A large number of fans and blowers for relatively high pressure applications are

of centrifugal type. The main components of a centrifugal blower are shown in Fig.

16.18. It consists of an impeller which has blades fixed between the inner and outer

diameters. The impeller can be mounted either directly on the shaft extension of the

prime mover or separately on a shaft supported between two additional bearings.

Air or gas enters the impeller axially through the inlet nozzle which provides slight

acceleration to the air before its entry to the impeller. The action of the impeller

swings the gas from a smaller to a larger radius and delivers the gas at a high pres-

sure and velocity to the casing. The flow from the impeller blades is collected by a

spiral-shped casing known as volute casing or spiral casing. The casing can fur-

ther increase the static pressure of the air and it finally delivers the air to the exit of

the blower.

DriveFlow

Inlet flange

Nozzle

Impeller

b2

b1

Volute
casing

Outlet

D1 D2

Fig. 16.18 Main components of a centrifugal blower
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The centrifugal fan impeller can be fabricated by welding curved or almost straight

metal blades to the two side walls (shrouds) of the rotor. The casings are made of

sheet metal of different thickness and steel reinforcing ribs on the outside. Suitable

sealing devices are used between the shaft and the casing.

A centrifugal fan impeller may have backward swept blades, radial tipped

blades or forward swept blades as shown in Fig. 16.19. The inlet and outlet

velocity triangles are also shown accordingly in the figure. Under ideal conditions,

the directions of the relative velocity vectors Vr1 and Vr2 are same as the

blade angles at the entry and the exit. A zero whirl at the inlet is assumed

which results in a zero angular momentum at the inlet. The backward swept

blades are employed for lower pressure and lower flow rates. The radial tipped

blades are employed for handling dust-laden air or gas because they are less prone

to blockage, dust erosion and failure. The radial-tipped blades in practice are of

forward swept type at the inlet as shown in Fig. 16.19. The forward-swept blades

are widely used in practice. On account of the forward-swept blade tips at the exit,

the whirl component of exit velocity (Vw2) is large which results in a higher stage

pressure rise.

Vf2

Vr2

V
r1

Vr1

Vw
2

U
2

V 1
U
1

Forward
swept

Radial

Backward
sweptV V1 = f1

Vr2 = Vf2

Vr1

Vr2

Vw2

V2

V2

b2

b1

b2 = 90∞

b2

b1 b1
U1 U1

V1

V1

V2

a2
a2

a2

U2

U2

Fig. 16.19 Velocity triangles at inlet and outlet of different types of blades
of an impeller of a centrifugal blower

16.3.1 Parametric Calculations

The mass flow rate through the impeller is given by

&m  = r1 Q1 = r2 Q2 (16.26)

The areas of cross sections normal to the radial velocity components Vf1 and Vf 2

are A1 = pD1b1 and A2 = pD2b2

m = r1Vf1 (pD1b1) = r2Vf 2 (pD2b2) (16.27)

The radial component of velocities at the impeller entry and exit depend on its width

at these sections. For small pressure rise through the impeller stage, the density

change in the flow is negligible and the flow can be assumed to be almost incom-

pressible. For constant radial velocity

Vf1 = Vf2 = Vf (16.28)
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Eqs (16.27) and (16.28) give

b1/b2 = D2/D1 (16.29)

16.3.2 Work

The work done is given by Euler�s Equation (Eq. 15.2) as

w = U2Vw2 � U1Vw1 (16.30)

It is reasonable to assume zero whirl at the entry. This condition gives

a1 = 90°, Vw1 = 0 and hence, U1Vw1 = 0

Therefore we can write,

V1 = Vf1 = Vf 2 = U1 tan b1 (16.31)

Equation (16.30) gives

w = U2Vw2 = U2
2 

V

U

w2

2

F
HG

I
KJ

(16.32)

For any of the exit velocity triangles (Fig. 16.19)

U2 � Vw2 = Vf2 cot b2

V

U

w2

2

 = 1
2 2

2

-
L

N
M

O

Q
P

V

U

f cot b
(16.33)

Eq. (16.32) and (16.33) yield

w = U2
2 [1 � j cot b2] (16.34)

where j (= Vf 2/U2) is known as flow coefficient

Head developed in meters of air = Ha = 
U V

g

w2 2 (16.35)

Equivalent head in meters of water = Hw = 
r

r
a a

w

H
(16.36)

where ra and rw are the densities of air and water respectively.

Assuming that the flow fully obeys the geometry of the impeller blades, the spe-

cific work done in an isentropic process is given by

(Dh0) = U2 (1 � j cotb2) (16.37)

The power required to drive the fan is

P = m (Dh0) = mU2Vw2 = mU2
2 (1 � j cot b2)

= mcp (DT0) (16.38)

The static pressure rise through the impeller is due to the change in centrifugal en-

ergy and the diffusion of relative velocity component. Therefore, it can be written

as

p2 � p1 = (Dp) = 
1

2

1

2
2
2

1
2

1
2

2
2r r( ) ( )U U V Vr r- + - (16.39)
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The stagnation pressure rise through the stage can also be obtained as:

(Dp0) =
1

2

1

2

1

2
2
2

1
2

1
2

2
2

2
2

1
2r r r( ) ( ) ( )U U V V V Vr r- + - + - (16.40)

From (16.39) and (16.40) we get

(Dp0) = (Dp) + 
1

2
r (V2

2 � V2
1) (16.41)

From any of the outlet velocity triangles (Fig. 16.19),

V2

2sin b
 =

U2

2 2sin { ( )}p a b- +

or,
V2

2sin b
 =

U2

2 2sin ( )a b+
(16.42)

or, Vw2 = V2cos a2 = 
U2 2 2

2 2

sin cos

sin( )

b a

a b+

or,
V

U

w2

2

 =
sin cos

sin cos cos sin

b a

a b a b
2 2

2 2 2 2+

or,
V

U

w2

2

 =
tan

tan tan

b

a b
2

2 2+
(16.43)

work done per unit mass is also given by (from (16.32) and (16.43)):

w = U2
2 2

2 2

tan

tan tan

b

a b+
F
HG

I
KJ

(16.44)

16.3.3 Efficiency

On account of losses, the isentropic work 
1

r
 (Dp0) is less than the actual work.

Therefore the stage efficiency is defined by

hs =
( )D p

U Vw

0

2 2r
(16.45)

16.3.4 Number of Blades

Too few blades are unable to fully impose their geometry on the flow, whereas too

many of them restrict the flow passage and lead to higher losses. Most of the efforts

to determine the optimum number of blades have resulted in only empirical rela-

tions given below

(i) n = 
8 5

1
2

1 2

◊ sin

/

b

- D D
(16.46)
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(ii) n = 6◊5 
D D

D D

2 1

2 1

+
-

F

HG
I

KJ
 sin 

1

2
 (b1 + b2) (16.47)

(iii) n = 
1

3
 b2 (16.48)

For a detailed procedure on design, please refer to Stepanoff [2].

16.3.5 Impeller Size

The diameter ratio (D1/D2) of the impeller determines the length of the blade pas-

sages. The smaller the ratio the longer is the blade passage. The following

value for the diameter ratio is often used by the designers

D

D
1

2

 = 1◊2(j)1/3 (16.49)

where j = Vf 2/U2

The following relation for the blade width to diameter ratio is recommended:

b1/D1 ª 0◊2 (16.50)

If the rate of diffusion in a parallel wall impeller is too high, the tapered shape to-

wards the outer periphery, is preferable.

The typical performance curves describing the variations of head, power and

efficiency with discharge of a centrifugal blower or fan are shown in Fig. 16.20.

Fig. 16.20 Performance characteristic curves of a centrifugal blower or fan

16.3.6 Fan Laws

The relationships of discharge Q, head H and Power P with the diameter D and

rotational speed N of a centrifugal fan can easily be expressed from the

diamensionless performance parameters determined from the principle of similar-

ity of rotodynamic machines as described in Section 15.3.2. These relationships

are known as Fan Laws described as follows

Q = KqD
3
N (16.51)
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H =
K D N

g

h
2 2 r

(16.52)

P =
K D N

g

p
5 3 r

where Kq, Kh, and Kp are constants.

For the same fan, the dimensions get fixed and the laws are

Q

Q
1

2

 =
N

N
1

2

H

H

1

2

 =
N

N

1

2

2
F

HG
I

KJ
 and 

P

P

1

2

 = 
N

N

1

2

3
F

HG
I

KJ

For the Different size and other conditions remaining same, the laws are

Q

Q

1

2

 =
D

D
1

2

3
F

HG
I

KJ
, 

H

H

1

2

 = 
D

D
1

2

2
F

HG
I

KJ
 and 

P

P

1

2

 = 
D

D
1

2

5
F

HG
I

KJ

Summary

∑ A centrifugal compressor is a radial flow machine which utilizes the

mechanical energy imparted to the machine from outside to increase the

internal energy of the fluid mainly in the form of increased static pressure.

∑ A centrifugal compressor mainly consists of a rotating impeller which

imparts energy to the fluid flowing past the impeller blades and a diffuser

comprising a number of fixed diverging passages in which the fluid is

decelerated with a consequent rise in static pressure. Usually, about half

of the total pressure rise occurs in the impeller and the other half in the

diffuser.

∑ The losses in a centrifugal compressor are due to (i) fluid friction in

stationary and rotating blade passages, (ii) leakage through the clearances

between the impeller shaft and casing and between the outer periphery of

the impeller eye and the casing, (iii) incidence of fluid with shock during

off design conditions.

∑ The performance characteristics of a compressor are usually specified by

curves of stagnation pressure ratio (p2t/p1t) and stagnation temperature

ratio (T2t/T1t) against non-dimensional mass flow ( )2
1 1/t tm RT D p  and

non-dimensional rotational speed ( )1/ tND RT .

∑ Most of the positive slope part of the characteristic curve

( )2
2 1 1 1/  m /t t t tp p vs RT D p  of a centrifugal compressor cannot be

obtained in practice because of the phenomenon of Surging which is an
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unstable operation of the compressor manifested by a cyclic reversal of

pressure gradient and flow in the delivery pipe.

∑ An axial flow compressor consists of several stages. Each stage has a

rotor carrying the moving blades and a stator comprising the stationary

blades. While the rotor of a stage imparts energy to the fluid, the stator

serves the process of diffusion to increase the static pressure. The bulk

flow is in the axial direction and brought about by the camber of the blades

in the stator.

∑ An important parameter in the design of an axial flow compressor is the

degree of reaction which is defined as the ratio of the static enthalpy rise in

the rotor to that in the whole stage. A 50% degree of reaction results in a

symmetrical blading which means the inlet and outlet angles of a rotor

blade are equal to those of a stator blade.

∑ Fans and blowers are turbomachines which deliver air at a desired high

velocity but at a relativelely low static pressure. A large number of fans

and blowers for relatively high pressure applications are of centrifugal

type. A centrifugal blower consists of an impeller which has blades fixed

between inner and outer diameters and a spiral shaped volute casing.

∑ The relationships of discharge (Q), head (H) and power (P) with the

diameter (D) and rotational speed (N ) of a fan are known as Fan Laws.

For the same fan, Q µ N, H µ N 2 and P µ N 3. For fans of different sizes,

Q µ D3, H µ D2 and P µ D 5.
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Solved Examples

Example 16.1  Air at a stagnation temperature of 27º C enters the impeller of a

centrifugal compressor in the axial direction. The rotor which has 15 radial vanes, rotates

at 20000 rpm. The stagnation pressure ratio between diffuser outlet and impeller inlet is 4

and the isentropic efficiency is 85%. Determine (a) the impeller tip radius and (b) power

input to the compressor when the mass flow rate is 2 kg/s. Assume a power input factor of

1.05 and a slip factor s = 1 � 2/n, where n  is the number of vanes. For air, take g  = 1.4,

R = 287 J/kg K.

Solution (a) From Eq (16.7), we can write

T3t � T1t = 

T p pt t t

c

1 3 1

1

1( / )

g

g

h

-

-
L

N

M
M

O

Q

P
P
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again with the help of Eq (16.5) and T2t = T3t it becomes

U
2
2 = 

c T p pp t t t

c

1 3 1

1

1( / )

g

g

h sy

-

-
L

N

M
M

O

Q

P
P

Here, p3t/p1t = 4

Tlt = 300 K

cp = 
g

g

R

-1

= 
1 4 287

0 4

.

.

¥

= 1005 J/kg K.

s = 1 � 
2

15

= 0.867

y = 1.05

Therefore, U2
2 = 

1005 300
4 1

0 85 0 867 105

0 4

1 4
´ ´

-

F
H

I
K

´ ´

.

.

. . .

which gives U2 = 435 m/s

Thus the impeller tip radius is

r2 = 
435 60

2 20000

¥
¥p

= 0.21 m

(b) Power input to the air = 
2 1 05 0 867 435

1000

2¥ ¥ ¥. . ( )
kW

= 344.52 kW

Example 16.2  Determine the pressure ratio developed and the specific work input

to drive a centrifugal air compressor of an impeller diameter of  0.5 m and running at

7000 rpm. Assume zero whirl at the entry and T1t = 290 K. The slip factor and power

input factor to be unity, the process of compression is isentropic and for air cp =

1005 J/kg K, g  = 1.4.

Solution The impeller tip speed

U2 = 
p ¥ ¥0 7000

60

.5

= 183.26 m/s
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With the help of Eqs (16.6) and (16.7), we can write

Pressure ratio = 

2 1
2

1

1
p t

U

c T

g

g -È ˘
+Í ˙

Í ˙Î ˚

= 1
183

1005 290

2
1 4

0 4
+

¥
L
NM

O
QP

( .26)
.

.

= 1.46

From Eq (16.3), specific work input = U
2
2 = 

( .26)183

1000

2

 = 33.58 kJ/kg

Example 16.3 A centrifugal compressor has an impeller tip speed of 360 m/s. Deter-

mine (a) the absolute Mach number of flow leaving the radial vanes of the impeller and (b)

the mass flow rate. The following data are given

Impeller Tip speed 360 m/s

Radial component of flow velocity at impeller exit 30 m/s

Slip factor 0.9

Flow area at impeller exit 0.1 m2

Power input factor 1.0

Isentropic efficiency 0.9

Inlet stagnation temperature 300 K

Inlet stagnation pressure 100 kN/m2

R (for air) 287 J/kg K

g (for air) 1.4

Solution The absolute Mach number is the Mach number based on absolute velocity.

Therefore, M2 = 
V

RT

2

2g

Now V2 and T2 have to be determined.

From the velocity triangle at impeller exit

V2 = V Vw f2
2

2
2+

In case of slip, Vw2 = sU2

Hence, V2 = sU Vf2

2

2
2b g +

= ( .9 ) ( )0 360 30
2 2¥ +

= 325.38 m/s
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From Eq. (16.5)

T2t = Tlt + 
y s U

cp

2
2

L
NM

cp = 
g

g

R

-
= ¥ = O

QP1

1 4 287

0 4
1005

.

.
J / kg K

T2t = 300
0 360

1005

2

+ ¥.9 ( )

= 416 K.

T2 = T2t � 
V

cp

2
2

2

= 416
325 38

2 1005

2

-
¥

( . )

= 363.33 K.

Therefore, M2 = 
325

1 4 287 363 33

.28

. .¥ ¥

= 0.85

Mass flow rate &m = r2A2Vf2

We have to find out r2

With the help of Eq (16.7), we can write

p

p

t

t

2

1

= 1
0 416 300

300

1 4

0 4+ ¥ -L
NM

O
QP

.9 ( )
.

.

= 2.84

again,
p

p t

2

2

= 
T

T t

2

2

1 4

0 4
1 4

0 4363 33

416
0 623

F
HG

I
KJ

= F
H

I
K =

.

.
.

..
.

Hence

p2 = 0.623 p2t

= 0.623 × 2.84 plt

= 0.623 × 2.84 × 100 kPa

= 176.93 kPa

Therefore, &m = 
p

RT
A Vf

2

2
2 2

F
HG

I
KJ
◊
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=
176.93 10

287 363 33
0 1 30

3¥
¥

¥ ¥
.

.

= 5.09 kg/s

Example 16.4  The conditions of air at the entry of an axial flow compressor stage

are p1 = 100kN/m
2
 and Tl = 300 K. The air angles are b1 = 51º, b2 = 10º, a1 = a 3 = 8º.

The mean diameter and peripheral speed are 0.5 m and 150 m/s respectively. Mass flow

rate through the stage is 30 kg/s; the work done factor is 0.95 and mechanical efficiency is

90%. Assuming an isentropic stage efficiency of  85%, determine

(a) blade height at entry

(b) stage pressure ratio, and

(c) the power required to drive the stage

(for air, R = 287 J/kg K, g  = 1.4)

Solution (a) r1 = 
p

RT

1

1

 = 
100 10

287 300

3¥
¥

 = 1.16 kg/m3

From Eq. (16.12),

U

Vf

= tan a1 + tan b1

Hence, Vf = 
150

8 51tan º tan+ ∞

= 109.06 m/s

&m = Vf  r l (p d hl)

30 = 109.06 × 1.16 × p × 0.5 hl

which gives h1 = 0.15 m

(b) From Eq. (16.19)

DTst = 
l

b b
U V

c

f

p

(tan tan )1 2-

again, cp = 
1 4

1 4 1

.

( . )-
 × 287 = 1005 J/kg K

Hence, DTst = 
0 150 190 06

1005

.95 .¥ ¥
 (tan 51º � tan 10º )

= 16.37º C

With the help of Eq. (16.20) we can write

pressure ratio Rs = 1
0 85 16.37

300

1 4

0 4+ ¥L
NM

O
QP

.
.

.

= 1.17
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(c) P = 
&

&mw mc T

m

p st

mh h
=

D

= 
30 1005 16.37

0 1000

¥ ¥
¥.9

kW  = 548.39 kW

Example 16.5  The preliminary design of an axial flow compressor is to be based

upon a simplified consideration of the mean diameter conditions. Suppose that the charac-

teristics of a repeating stage of such a design are as follows:

Stagnation temperature rise (DTst) 30 K

Degree of reaction ( L) 0.6

Flow coefficienty (Vf /U) 0.5

Blade speed (U) 300 m/s

Assuming constant axial velocity across the stage and equal absolute velocities at inlet

and outlet, determine the blade angles of the rotor for a shock free flow.

 (cp for air = 1005 J/kg K).

Solution

Specific work input w = 1005 ¥ 30 J/kg

From Eq. (16.17)

1005 × 30 = (300)2 ¥ (0.5) (tan b1 � tan b 2)

or, tan b1 � tan b 2 = 0.67 (16.53)

Again from Eq. (16.24),

0.6 = 
0

2

.5
 (tan b1 + tan b 2)

tan b1 + tan b2 = 2.4 (16.54)

Eqs (16.53) and (16.54) give

b1 = 56.92º, b2 = 40.86º

Example 16.6  Air at a temperature of 27°C flows into a centrifugal compressor run-

ning at 20,000 rpm. The following data are given

Slip factor 0.80

Power input factor 1

Isentropic efficiency 80%

Outer diameter of blade tip 0.5 m

Assuming the absolute velocities of air entering and leaving the compressor are same,
find

(a) static temperature rise of air passing through the compressor

(b) the static pressure ratio.
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Solution Velocity of the blade tip

U2 = 
p ¥ ¥0 20 000

60

.5 ,

= 523.6 m/s

From Eq. (16.5),

Stagnation temperature rise (T2t � T1t ) = 
y s U

cp

2
2

= 
0 80 523 6

1005

2. ( . )¥
 = 218.23º C

(cp of air has been taken as 1005 J/kg K)

Since the absolute velocities at inlet and outlet of the stage are the same, the rise in
stagnation temperature equals to that in static temperature.

Static pressure ratio can be written as

p

p

2

1

= 
¢F

HG
I

KJ
-T

T
2

1

1

g

g

= 1 2 1

1

1
+

-L

N
M

O

Q
P

-h
g

gc T T

T

( )

= 1
0 8 218

300

1 4

0 4+ ¥L
NM

O
QP

. .23
.

.

= 4.98

Example 16.7  A centrifugal fan running at 1500 rpm has inner and outer diameter

of the impeller as 0.2 m and 0.24 m. The absolute and relative velocities of air at entry are

21 m/s and  20 m/s respectively and those at exit are 25 m/s and 18 m/s respectively. The

flow rate is 0.6 kg/s and the motor efficiency is 80%. Determine (a) the stage pressure rise,

(b) degree of reaction and (c) the power required to drive the fan. Assuming the flow to be

incompressible with the density of air as 1.2 kg/m3.

Solution  (a) U1 = 
p ¥ ¥0 1500

60

.20

= 15.71 m/s

U2 = 
p ¥ ¥0 1500

60

.24

= 18.85 m/s
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From Eq. (16.40), the total pressure rise across the stage is

(Dpt)stage = 
1

2
2
2

1
2

2
2

1
2

1
2

1
2r [( ) ( ) ( )]V V U U V Vr r- + - + -

= 
1

2
12 25 21 18 85 1571 20 182 2 2 2 2 2¥ - + - + -. [( ) ( . . ) ( )]

= 221.11 N/m2

(b) The static pressure rise across the stage is

(Dps)stage = 
1

2
2
2

1
2

1
2

2
2r [( ) ( )]U U V Vr r- + -

= 
1

2
12 1885 15 71 20 182 2 2 2¥ - + -. [( . . ) ( )]

= 110.71 N/m2

The degree of reaction = 
110 71

22111

.

.

= 0.5

(c) The specific power input to the stage is

w = 
( )Dp0 stage

r

= 
22111

1

.

.2

= 184.26 J/kg

Therefore, the power required to drive the fan is

P = 

m

m w

h

&

= 
0 6 184 26

0 8

◊ ◊
◊

¥

=138.19 W

Exercises

[For the Problems, assume R = 287 J/kg K and g = 1.4 and Cp = 1005 J/kg K for air]

16.1 Determine the pressure ratio developed and the specific work input to drive a

centrifugal air compressor having an impeller diameter of 0.5 m and running at

7000 rpm. Assume zero whirl at the entry and T1t = 288 K.

(1.47, 33.58 kJ/kg)

16.2 A centrifugal compressor develops a pressure ratio of 4 : 1. The inlet eye of the

compressor impeller is 0.3 m in diameter. The axial velocity at inlet is 120 m/s

and the mass flow rate is 10 kg/s. The velocity in the delivery duct is 110 m/s.
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The tip speed of the impeller is 450 m/s and runs at 16,000 rpm with a total head

isentropic efficiency of 80%. The inlet stagnation pressure and temperature are

101 kN/m2 and 300 K. Calculate (a) the static temperatures and pressures at inlet

and outlet of the compressor, (b) the static pressure ratio, (c) the power required

to drive the compressor.

Ans. (T1 = 292.8 K, T2 = 476.45 K, p1 = 93 kN/m
2
,

p2 = 386.9 kN/m
2
, p2/p1 = 4.16, P = 1.83 MW)

16.3 The following results were obtained from a test on a small single-sided

centrifugals compressor

Compressor delivery stagnation pressure 2.97 bar

Compressor delivery stagnation temperature 429 K

Static pressure at impeller tip 1.92 bar

Mass flow 0.60 kg/s

Rotational speed 766 rev/s

Ambient conditions 0.99 bar 288 K

Determine the isentropic efficiency of the compressor.

The diameter of the impeller is 0.165 m, the axial depth of the vaneless diffuser is

0.01 m and the number of impeller vanes is 17. Making use of the Stanitz

equation for slip factor, calculate the stagnation pressure at the impeller tip.

Ans. (0.75, 3.13 bar)

16.4 A single sided centrifugal compressor is to deliver 14 kg/s of air when operating at

a pressure ratio of 4 : 1 and a speed of 200 rev/s. The inlet stagnation conditions

are 288 K and 1.0 bar. The slip factor and power input factor may be taken as 0.9

and 1.04 respectively. The overall isentropic efficiency is 0.80. Determine the

overall diameter of the impeller.

Ans. (0.69 m)

16.5 Each stage of an axial flow compressor is of 50% degree of reaction and has the

same mean blade speed and the same value of outlet relative velocity angle b2 =

30º. The mean flow coefficient  (Vf /U) is constant for all stages at 0.5. At the

entry to the first stage, the stagnation temperature is 290 K, the stagnation

pressure is 101 kPa. The static pressure is 87 kPa and the flow area is 0.38 m
2
.

Determine the axial velocity, the mass flow rate and the shaft power needed to

drive the compressor when there are 6 stages and the mechanical efficiency is

0.98.

Ans. (135.51 m/s, 56.20 kg/s, 10.68 MW)

16.6 An axial flow compressor stage has blade root, mean and tip velocities of 150,

200 and 250 m/s. The stage is to be designed for a stagnation temperature rise of

20 K and an axial velocity of 150 m/s, both constant from root to tip. The work

done factor is 0.93. Assuming degree of reaction 0.5 at the mean radius, deter-

mine the stage air angles at root mean and tip for a free vortex design  where the

whirl component of velocity varies inversely with the radius

Ans. (a1= 17.04º (= b 2), b 1 = 45.75º (= a 2) at mean radius;

a 1 = 13.77º,

b 1 = 54.88º, b 2 = 40.36º, a 2 = 39.34º at tip;

a1 = 22.10º,

b1 = 30.71º, b2 = � 19.95º, a2 = 53.74º at root)
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16.7 An axial compressor has the following data:

Temperature and pressure at entry 300 K, 1.0 bar

Degree of reaction 50%

Mean blade diameter 0.4 m

Rotational speed 15,000 rpm

Blade height at entry 0.08 m

Air angles at rotor and stator exit 25º

Axial velocity 150 m/s

Work done factor 0.90

Isentropic stage efficiency 85%

Mechanical efficiency 97%

Determine (a) air angles at the rotor and stator entry (b) the mass flow rate of air

(c) the power required to drive the compressor, (d) the pressure ratio developed

by the stage (e) Mach number (based on relative velocities) at the rotor entry.

Ans. [(a) 25º, 58.44º (b) 17.51 kg/s, (c) 0.89 MW, (d) 1.58, (e) 0.83]

16.8 An axial flow compressor stage has a mean diameter of 0.6 m and runs at

15,000 rpm. If the actual temperature rise and pressure ratio developed are 30º C

and 1.36 respectively, determine (a) the power required to drive the compressor

while delivering 57 kg/s of air. Assume mechanical efficiency of 86% and an

initial temperature of 35º C (b) the isentropic efficiency of the stage and (c) the

degree of reaction if the temperature at the rotor exit is 55º C.

Ans. [(a) 2 MW, (b) 94.2%, (c) 66.6%]

16.9 A centrifugal blower takes in 200 m
3
/min of air at a pressure and the temperature

of 101 kN/m2 and 45º C and delivers it at a pressure of  750 mm of water gauge.

Assuming the efficiencies of the blower and drive as 80% and 82% respectively,

determine (a) the power required to drive the blower and (b) the pressure and

temperature of air at blower exit.

Ans. (37.38 kW, 108.36 kN/m2
, 326.06 K)

16.10 A backward-swept centrifugal fan develops a pressure of 80 mm of water guage.

It has an impeller diameter of 0.89 m and runs at 720 rpm. The blade angle at tip

is 39º and the width of the impeller is 0.1 m. Assuming a constant radial velocity

of 9.15 m/s and density of air as 1.2 kg/m3, determine the fan efficiency, dis-

charge and power required.

Ans. (87.61%, 2.56 m3/s, 2.29 kW)



Table A.1 Physical Properties of Some Common Liquids

at 20 °C and 101.325 kN/m2

Liquid Density, r Isentropic Surface tension

(kg/m3) bulk modulus in contact with

of elasticity, air, s ¥ 102

Es (GN/m2) (N/m)

Benzene 879 1.48 2.89

Carbon tetrachloride 1595 1.36 2.70

Castor oil 969 2.11 �

Glycerine 1260 4.59 6.30

Kerosene 820 1.43 2.68

Lubricating oil 880 1.44 �

Mercury 13550 28.50 48.40

Sea water 1025 2.42 7.00

Water 998 2.24 7.28

Physical
Properties of Fluids

Appendix A
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Table A.2 International Standard Atmosphere

Altitude above Temperature Absolute pressure Density

sea level (m) (K) (kN/m2) (kg/m3)

0* 288.15* 101.325* 1.2250*

1000 281.7 89.88 1.1117

2000 275.2 79.50 1.0066

4000 262.2 61.66 0.8194

6000 249.2 47.22 0.6602

8000 236.2 35.65 0.5258

10000 223.3 26.50 0.4134

11500 216.7 20.98 0.3375

14000 216.7 14.17 0.2279

16000 216.7 10.35 0.1665

18000 216.7 7.565 0.1216

20000 216.7 5.529 0.08892

22000 218.6 4.097 0.06451

24000 220.6 2.972 0.04694

26000 222.5 2.188 0.03426

28000 224.5 1.616 0.02508

30000 226.5 1.197 0.01848

32000 228.5 0.889 0.01356

* STP conditions

Dynamic viscosity of common fluids has been shown in Figure 1.7 of

Chapter 1. Figure A.1 shows the kinematic viscosity of common fluids.
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as a function of temperature



B.1 DEFINITION OF VECTOR

Definition of scalar and vector quantities has been provided in Sec. 3.2. Vector

quantities are denoted by symbols either with an arrow or a cap at the top, like
r r r
A BC , etc. or $ $ $A BC , etc. A vector quantity 

r
A is written in terms of its

components in a rectangular cartesian coordinates system (Fig. B.1) as
r
A =

r r r
i A j A k Ax y z+ +

A

k

J

Az

Ay

Ax io x

z

y

L

Fig. B.1 Magnitude and components of a vector

Review of Preliminary
Concepts in Vectors and

Their Operations

Appendix B
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where 
r
i , 

r
j  and 

r
k  are the unit vectors and Ax, Ay and Az are the components of 

r
A

in x, y, z directions respectively. |
r
A| is the magnitude of 

r
A. From Fig. B.1.

[|
r
A|]2 = L2 + A2

z = A2
x + A2

y + A2
z

Therefore, |
r
A| = A A Ax y z

2 2 2
+ +

B.2 ADDITION OF VECTORS

Vector quantities are added in consideration of both magnitude and direction.

Thus, for addition of two vectors 
r
A and 

r
B  we have from the rule of parallelogram

(Fig. B.2).

A B

C

Fig. B.2 Addition of vectors by the rule of parallelogram

r
C  =

r
A + 

r
B  and 

r
C  = 

r
i Cx + 

r
j Cy + 

r
k Cz

=
r
i Ax + 

r
j Ay + 

r
k Az + 

r
i Bx + 

r
j By + 

r
k Bz

=
r
i (Ax + Bx) + 

r
j (Ay + By) + 

r
k (Az + Bz)

Hence, Cx = Ax + Bx, Cy = Ay + By and Cz = Az + Bz

If a vector 
r
D equals to zero, then all its components are identically zero, i.e.,

Dx = Dy = Dz = 0.

B.3 PRODUCT OF VECTORS

B.3.1 The Dot Product (or Scalar Product)

The dot product of two vector quantities 
r
A and 

r
B  is defined as

r
A ◊

r
B  = |

r
A| |

r
B | cos qAB

where qAB is the angle between the vectors. The dot product is a scalar quantity

which physically represents the product of |
r
A| with the component of |

r
B | in the
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direction of 
r
A. If qAB < p /2, its magnitude is positive, while for qAB > p /2, it is

negative. If qAB = p /2, 
r
A ◊

r
B  = 0. The dot products of unit vectors in a cartesian

coordinate system are :
r
i ◊ 

r
i  = 1

r
j ◊ 

r
i  = 0

r
k ◊ 

r
i  = 0

r
i ◊ 

r
j  = 0

r
j ◊ 

r
j  = 1

r
k ◊ 

r
j  = 0

r
i ◊ 

r
k  = 0

r
j  ◊ 

r
k  = 0

r
k ◊ 

r
k  = 1

Therefore,
r
A ◊

r
B  = (

r
i Ax + 

r
j Ay + 

r
k Az) ◊ (

r
i Bx + 

r
j By + 

r
k Bz)

= Ax Bx + Ay By + Az Bz

The following rules apply for the dot product of vectors:

(i) The dot product is commutative, i.e. 
r
A ◊

r
B  = 

r
B ◊

r
A

(ii) The dot product is distributive, i.e. 
r
A ◊ (

r
B  + 

r
C ) = 

r
A ◊

r
B  + 

r
A ◊

r
C

(iii) The dot product is not associative, i.e., 
r
A(

r
B ◊

r
C) π (

r
A ◊

r
B )

r
C .

B.3.2 Cross Product of Vectors

The cross product of two vector quantities 
r
A and 

r
B  is written as 

r
A ¥ 

r
B . It is a

vector quantity whose magnitude is given by |
r
A ¥ 

r
B | = |

r
A| |

r
B | sin qAB and is

perpendicular to both 
r
A and 

r
B . The sense of 

r
A ¥ 

r
B  is given by the right-hand

rule, that is, as 
r
A is rotated into 

r
B , then 

r
A ¥ 

r
B  points in the direction of the right

thumb. This is shown in Fig. B.3.

A

z

o

y

x

A
A

B

B

B

ABRotation of 

into 

Fig. B.3 Cross product of vectors

If 
r
A and 

r
B  are parallel, then sin qAB = 0 and 

r
A ¥ 

r
B= 0. The cross products

among unit vectors in a cartesian coordinate system are
r
i  ¥ 

r
i  = 0

r
j  ¥ 

r
i  = �

r
k

r
k  ¥ 

r
i  = 

r
j
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r
i  ¥ 

r
j  =

r
k

r
j  ¥ 

r
j  = 0

r
k  ¥ 

r
j  = �

r
i

r
i  ¥ 

r
k  = � 

r
j

r
j  ¥ 

r
k  = 

r
i

r
k  ¥ 

r
k  = 0

The cross product 
r
A ¥ 

r
B  is usually written in a determinant form as

r
A ¥ 

r
B  =

r r r
i j k

A A A

B B B

x y z

x y z

By expanding the determinant we have
r
A ¥ 

r
B  = 

r
i (Ay Bz � Az By) + 

r
j (Az Bx � Ax Bz) + 

r
k (Ax By � Ay Bx)

The following properties apply for the cross product of vectors:

(i) The cross product is not commutative, i.e. 
r
A ¥ 

r
B  π 

r
B  ¥ 

r
A since the

interchange of two rows changes the sign of a determinant, 
r
A ¥ 

r
B  =

� 
r
B  ¥ 

r
A.

(ii) The cross product is distributive, i.e., 
r
A ¥ (

r
B  + 

v
C ) = 

r
A ¥ 

r
B  + 

r
A + 

v
C

(iii) The cross product is not associative, i.e., 
r
A ¥ (

r
B  ¥ 

v
C ) π (

r
A ¥ 

r
B ) ¥ 

v
C

B.4 DIFFERENTIATION OF VECTORS

The derivative of a vector quantity is defined in the same way as it is done for a

scalar quantity. Let there be a vector 
r
A = 

r
A(t) then in rectangular coordinates

Ax = Ax(t), Ay = Ay(t), Az = Az(t)

d

d

r
A

t
 = lim

( ) ( )

∆

∆

∆t

A t t A t

t→

+ −

0

r r

= lim
[ ( ) ( ) [ ( ) ( )] [ ( ) ( )]

D

D D D

Dt

x x y y z zi A t t A t j A t t A t k A t t A t

t®

+ - + + - + + -

0

r r r

The limiting process applies to each term, and hence

d

d

r
A

t
 = lim

( ) ( )
lim

( ) ( )

∆ ∆

∆

∆

∆

∆t

x x

t

y yA t t A t

t
i

A t t A t

t
j

→ →

+ −
+

+ −

0 0

r r

+
+ −

→

lim
( ) ( )

∆

∆

∆t

z zA t t A t

t
k

0

r

=
d

d

d

d

d

d

A

t
i

A

t
j

A

t
kx y z

r r r
+ +

Similarly, if 
r
A  = 

r
A  (x, y, z) that is, Ax = Ax (x, y, z), etc. then

∂

∂

r
A

x
 =

r r r
i

A

x
j

A

x
k

A

x

x y z∂

∂

∂

∂

∂

∂
+ +

∂

∂

r
A

y
 =

r r r
i

A

y
j

A

y
k

A

y

x y z∂

∂

∂

∂

∂

∂
+ +
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∂

∂

r
A

z
 =

r r r
i

A

z
j

A

z
k

A

z

x y z∂

∂

∂

∂

∂

∂
+ +

B.5 VECTOR OPERATOR —

B.5.1 Definition of —

The vector operator del, —, is defined as

— =
r r r
i

x
j

y
k

z

∂

∂

∂

∂

∂

∂
+ + (Cartesian coordinates)

— =
r r r
i

r
i

r
i

z
r z

∂

∂

∂

∂

∂

∂
+ +

θ
θ

(cylindrical coordinates)

where, 
r
ir , 

r
i
θ

 and 
r
iz  are the unit vectors in r, q and z directions respectively in a

cylindrical coordinate system. Three possible products and other functions can be

formed with the operator — as follows:

B.5.2 Gradient

When — operates on a differentiable scalar function, the resulting term is known

as the gradient of the scalar function. Let y (x, y, z) be a scalar function,

Then, —y = gradient y = grad y = 
r r r
i

x
j

y
k

z

∂y

∂

∂y

∂

∂y

∂
+ +

It has to be noted that though y is a scalar function, —y is a vector function (or

field). The pressure gradient, —p, i.e., the gradient of a pressure field p = p (x, y,

z), was used in Equation (4.26d) in Sec. 4.3.1 and in Eq. (8.21) in Sec. 8.3 while

describing the equation of motion for the ideal and real fluids respectively.

B.5.3 Divergence

The dot product of — and a vector function (or field) results in a scalar function

(or field) known as divergence. For a vector field 
r
A (x, y, z) in a rectangular

Cartesian coordinate system,

— ◊
r
A  = divergence 

r
A  (or div 

r
A )

=
r r r r r r
i

x
j

y
k

z
i A j A k Ax y z

∂

∂

∂

∂

∂

∂
+ +

F
HG

I
KJ

+ +. ( )

=
∂

∂

∂

∂

∂

∂

A

x

A

y

A

z

x y z
+ +

Since,
∂

∂

∂

∂

∂

∂

r r r
i

x

j

y

k

z
= = =

F
HG

I
KJ

0

In cylindrical coordinates, if 
r
A   = 

r
A  (r, q, z), then
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— ◊ 
r
A  =

r r r r r r
i

r
i

r
i

z
i A i A i Ar z r r z z

∂

∂

∂

∂

∂

∂
+ +

F
HG

I
KJ

+ +q q q
q

1
. ( )

=
∂

∂

∂

∂

∂

∂

A

r

A

r r

A A

z

r r r z
+ + +

1

θ

Since, and
∂

∂

∂

∂

∂

∂

∂

∂

r r r
r

r
i

r

i

z

i
i

i

r

r z r
=

F
HG

= = =0 0
q

q
q, ,

∂

∂

i
i i i i i i ir r r z z

q
q q

q
= - = = =

I
KJ

r r r r r r r
, . . . 1

The divergence of velocity vector 
r

V , i.e., — ◊ 
r

V  was used to describe the

continuity equation [Eq. (4.3)] in Sec. 4.2.

B.5.4 Curl

The cross product between — and a vector function (or field) results in a vector

function (or field) known as curl. For a vector field 
r
A  = 

r
A  (x, y, z) in Cartesian

coordinates,

— ¥ 
r
A  = Curl 

r
A  = 

r r r
i j k

x y z

A A Ax y z

∂

∂

∂

∂

∂

∂

or, — ¥ 
r
A  =

r r r
i

A

y

A

z
j

A

z

A

x
k

A

x

A

y

z y x z y x∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂
−

F
HG

I
KJ
+ −

F
HG

I
KJ
+ −

F
HG

I
KJ

In cylindrical coordinates, 
r
A  = 

r
A  (r, q, z). Then

— ¥ 
r
A  =

r r r r r r
i

r
i

r
i

z
i A i A i Ar z r r z z

∂

∂

∂

∂

∂

∂
+ +

F
HG

I
KJ

¥ + +q q q
q

1
( )

=
r r r r r r
i

r
i A i

r
i A i

r
i Ar r r r r z z

∂

∂

∂

∂

∂

∂
× + × + ×( ) ( ) ( )

θ θ

+ × + × + ×
r r r r r r
i

r
i A i

r
i A i

r
i Ar r z zθ θ θ θ θ

θ θ θ

1 1 1∂

∂

∂

∂

∂

∂
( ) ( ) ( )

+ × + × + ×
r r r r r r
i

z
i A i

z
i A i

z
i Az r r z z z z

∂

∂

∂

∂

∂

∂
( ) ( ) ( )

θ θ

=
r r r r r r
i i

A

r
i A

r
i i

A

r
i A

i

r
r r

r
r r

r
r r¥ + ¥

F
HG

I
KJ

+ ¥ + ¥
F
HG

I
KJ∂

∂

∂

∂

∂

∂

∂

0 0

q
q

q
q

+ ¥ + ¥
F
HG

I
KJ

+ ¥
r r r r r
i i

A

r
i A

r
i i

r

A
r z

z
r z

z
r

r∂

∂

∂

∂

∂

∂
q

q

1
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+ i A
r

i
i i

r

A
r

r

i

q q q
q

q q
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¥
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F
HG

I
KJ

+ ¥
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∂
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=
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The curl of velocity vector 
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V , i.e., — ¥
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V  was used in describing the rotation of a

fluid element in Sec. 3.2.5.

B.5.5 Laplacian
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B.6 VECTOR IDENTITIES

B.6.1 —  x —  q = 0, where q is Any Scalar Function

This relation may be verified by expanding it into components. Therefore, in
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consequently, —  ¥ —q = 0

The proof of the identity in cylindrical coordinates is a more lengthy

process and is left as an exercise for the readers.
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Adding Eqs (B.2), (B.3), (B.4) and (B.5) we have
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comparison of Eqs (B.1) and (B.6) proves that
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The relation was used in deriving the Bernoulli�s equation for irrotational flow in

Sec. 5.2.



Index

Absolute pressure, see Pressure

Absolute viscosity, see Viscosity

Acceleration:

convective 83, 84

local 84

material 84

Adhesion 12, 15

Adverse pressure gradient 373

Airfoils 298

Angular deformations, see Deformation

Angular momentum 126, 127

Apparent stress 409

Apparent viscosity 9

Archimedes principle 46

Atmosphere 32, 33

Average velocity 146

Barometer 34, 35

Bernoulli�s equation:

along a streamline 148, 149

irrotational flow 94, 176, 177

with head loss 149

Bingham plastic 9

Blasius frictional formula 419, 420

Blasius equation 365

Blowers 678

Body force 28, 316, 317

Boundary layer 359

displacement thickness 371

momentum thickness 371

skin friction coefficient 370, 433

Buckingham�s p theorem 252, 253

Bulk modulus 10

Buoyancy 45, 46

Capillarity 15, 16

Cavitation 192, 609, 610, 623, 624, 631

Centre

of buoyancy 46

of pressure 41, 42

Chezy coefficient 479

Chezy equation 478, 479

Choked flow, see Flow

Circulation

definition 283

Closed system, see System

Coefficient

of compressibility 538

of contraction 195, 200, 207, 208

of discharge 199, 207, 208, 214

of friction 433, 434

of velocity 207, 208

of viscosity 5

Cohesion 12, 15

Colebrook formula 418

Compressibility 538

Compressors

centrifugal 661

axial flow 672

Concentric cylinder 335

Conjugate depth 491

Conservation

of energy 145-148

of mass, see Continuity equation

of momentum 121-127

Constitutive equation 8

Contact angle 15

Continuity equation

differential form 110-115

integral form 119, 120

Continuum 2-3

Control volume 109, 127

Convective acceleration, see Acceleration

Couette flow 327-329

Critical depth 485

Critical flow in open channel 492

Cylindrical coordinates

Navier-Stokes equations 321



Index 709

Darcy-Weisbach formula 333

Deformation

angular 92

linear 91

Degree of reaction 676

Density 3

Depth(s) of flow alternative 486

conjugate 491

critical 485

Dialatant 9

Diffuser 555, 615, 623, 666

Dimension 251, 252

Dimensional analysis 250-254

Dimensions of flow 89, 90

Discharge coefficient, see Coefficient

Displacement thickness 371

Doublet two dimensional 286

Draft tube 602, 608, 609

Drag

form 377

skin friction 377

Dynamic viscosity, see Viscosity

Dynamic similarity, see Similarity

Eddy viscosity 412

Efficiency of hydraulic turbines 589,

590

of pumps 589, 590

Elastic wave propagation of (in

channels) 482-483

Energy: internal 147

kinetic 146

mechanical 149

potential 146

Energy gradient line 476, 477

Equation of motion, see Conservation of

mass

Euler�s number 247, 249

Eulerian description of fluid motion

80-81

Fan 678

Fan laws 683

Fanno line flow 564

Fittings losses in, see Losses

Flow:

around a cylinder 289-291

around a sphere 340

choked 559

compressible 11-12, 538-580

critical 487

establishment of 507, 508

gradually varied 474

ideal 7

inviscid 7

irrotational 94

non-uniform 82, 85

rapid 487

rapidly varied 474

steady 81-82

three-dimensional 90

tranquil 487

two dimensional 90

uniform 81, 85

uniformly accelerated 187-190

unsteady 81-82

varied 474

Flow behaviour index 8

Flow consistency index 8

Flow measurement

venturimeter 196-199

orificemeter 199-201

flow nozzle 201-202

Flow meter, see Flow measurement

Flow work 147

Fluid 1-2

Fluid properties 3-16

Force

body 28

buoyancy 45

elastic 246, 249

gravity 246, 248

hydrostatic 40

inertia 245

surface 28

surface tension 12-15, 246, 248

Forced vortex, see Vortex flows

Francis turbine 600-606

Free surface 12-13, 472

Free vortex, see Vortex flows

Friction factor:

for pipe flow 418, 433-437

Froude number 248, 487

Ganguillet-Kutter formula 479

Gauge pressure 33-34



710 Index

Gas constant:

ideal gas equation of state 10

characteristic gas constant 10

Geometric similarity, see Similarity

Gradually varied flow, see Flow

Guide vane 600, 608

Head

gross (across a turbine) 601, 602

net (across a turbine) 601, 602

potential 149

pressure 149

velocity 149

Head loss:

major 192

minor 192-196

in open channel flow 475, 476

in pipe bends 450, 451

in valves and fittings 451

coefficient 451

Hydraulic diameter 334

Hydraulic gradient line 476, 477

Hydraulic jump:

basic equation 489-491

increase in depth across 491

head loss across 491, 492

Hydraulic turbines, see Turbines

Hydrostatic force, see Force

Hydrostatic pressure, see Pressure

Hypersonic flow 539

Ideal fluid 7

Ideal gas 10

Impeller 615, 616, 662

Impeller eye 662, 666

Inertial control volume, see Control

volume

Irrotional flow, see Flow

Irrotational vortex, see Vortex flows

Jump

Hydraulic, see Hydraulic jump

Kaplan turbine 606-608

Kinematic similarity, see Similarity

Kinematic viscosity, see Viscosity

Kinetic energy, see energy correction

Factor 146, 147, 334

Kutta-Joukowski theorem 297

Lagrangian description of fluid

motion 79-80

Laminar Flow:

between parallel plates 327

Couette flow 327

parallel flow 325-336

in a circular pipe 329-331

Lapse rate 32

Lift 292-296

cylinder, no circulation 293

cylinder, with circulation 293-297

Linear deformation, see Deformation

Linear momentum, see Conservation of

momentum

Local acceleration, see Acceleration

Loss, see Head loss

Loss coefficient, see Head loss

Loss

frictional 668

incidence 668

clearance 668

Lubrication 337

Lumley, J.L. 401

Mach angle 549

Mach cone 549

Mach number 12, 539

Major loss, see Head loss

Manning�s formula 479

Manning�s roughness coefficient 479

Manometer:

simple u tube 35-37

inclined tube 37-38

inverted tube 38

micro 39-40

Measurement of flow, see Flow

measurement

Mechanical energy, see Energy

Metacentric height 49-52

Minor losses, see Head loss

Modified Bernoulli�s equation 487

Modulus of elasticity�s see Bulk modulus

Momentum

angular, see Angular

momentum, Conservation of

momentum
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linear, see Conservation of momentum

Momentum equation:

differential form 138-142

integral form 125, 126

Momentum thickness 371

Moody diagram 435, 437

Navier-Stokes equations 316-324

cylinderical coordinates 321

Net positive suction head 624

Newtonian fluid 5, 8

Newton�s law of viscosity 5

Nikuradse, J. 417, 435

Non-Newtonian fluid 8

Normal shock 562

Normal stress 1, 29

Mo slip condition 9

Nozzle

converging 559, 560

converging-diverging 561

DeLaval 555

Oblique shocks 568, 569

One-dimensional flow, see

Dimensions of flow

Open channel flow, see Channel flow

Open system, see System

Orifice 205-209

Orificemeter, see Flow measurement

Oscillation of liquid column in a

U tube 509-513

of liquid column between two

reservoirs 513-515

Parallel flow 325-336

Pascal 33

Pascal�s law 29

Pathline 87, 88

Pelton wheel 594-600

Perfect gas 10

Piezometer 34

Pipe system:

series 441, 442

parallel 443, 444

Pi-theorem 252, 253

Pitot static tube 205

Pitot tube 204

Poiseullie flow 329-331

Potential flow 278

doublet 286-289

sink 280, 281

source 280, 281

with circulation 293-297

without circulation 289-293

Power law model 8

Prandtl, L. 359

Prandtl boundary layer 363

Prandtl mixing length 412-415

Pressure

absolute 33

hydrostatic 29

stagnation 202-204

static 201-202

thermodynamic 29

Pressure wave 481, 482, 546

Properties of fluids, see Fluid properties

Pseudoplastic 8

Pump:

centrifugal 615-624

axial 624-625

reciprocating 629-635

Rank of matrix 253

Rate of deformation, see Deformation

Rayleigh�s indical method 260, 261

Rayleigh line flow 565, 566

Reynolds number 247, 333, 337,

361, 437

Rotating cylinders 335, 336

Runge-Kutta method 366

Schlichting, H. 369, 388, 423

Separation 373-376

Shock

normal 562

oblique 568, 569

Shooting technique 366

Skin friction coefficient 370

Slip factor 664

Stagnation properties 551-553

Stokes hypothesis 316

Stokes law of viscosity 316

Streak line 88-89

Stream function 116

Streamline 86-87

Streamtube 87

Stress 1
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Sublayer 401

Subsonic flow 539

Supersonic flow 539

Surface force, see Force

Surcace tension, 12-15

Surge tank 507-508

Surging 671

System:

closed 108, 109

isolated 108, 109

open 108, 109

Tennekes, H. 401

Tensor 318

Thermodynamic pressure, see Pressure

Thoma�s cavitation parameter 610, 624

Tranquil flow, see Flow

Translation 90

Turbine:

impulse, see Pelton wheel

reaction 600-612

Turbulent flows 398-432

rought plates 423

smooth plates 421, 422

mean-time averages 403

pipe flow 419-421

Navier-Stockes equations 406-409

Two-dimensional flow, see Flow

Uniform flow, see Flow

Uniformly accelerated flow, see Flow

Universal velocity profile 417

Universal gas constant 540

Unsteady flow, see flow

Varied flow, see Flow

Vector, definition 79

Velocity defect law 416

Vena contracts 199, 207

Venturimeter, see Flow measurement

Viscosity:

apparent 8

dynamic (or absolute) 4-5

eddy 412

kinematic 9

Newton�s law 315

Stokes� law 315

Von Karman, T.

momentum integral equation 377

Vortex street 385

Vortex flow 181-186, 283-285

forced 184, 185, 281, 285

free or irrotational vortex 181- 183,

283-284

spiral vortex 184

Vortex shedding frequency 385

Vorticity 94-96

Wake 374, 375

Water hammer 515-526

Weber number 248

Wetted perimeter 472

Zone of action 548, 549

Zone of silence 548, 549
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