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Preface

Introduction to Linear Algebra with Applications is an introductory text targeted to

second-year or advanced first-year undergraduate students. The organization of this

text is motivated by what our experience tells us are the essential concepts that students

should master in a one-semester undergraduate linear algebra course. The centerpiece

of our philosophy regarding the presentation of the material is that each topic should

be fully developed before the reader moves onto the next. In addition, there should be

a natural connection between topics. We take great care to meet both of these objec-

tives. This allows us to stay on task so that each topic can be covered with the depth

required before progression to the next logical one. As a result, the reader is prepared

for each new unit, and there is no need to repeat a concept in a subsequent chapter

when it is utilized.

Linear algebra is taken early in an undergraduate curriculum and yet offers the

opportunity to introduce the importance of abstraction, not only in mathematics, but in

many other areas where linear algebra is used. Our approach is to take advantage of this

opportunity by presenting abstract vector spaces as early as possible. Throughout the

text, we are mindful of the difficulties that students at this level have with abstraction

and introduce new concepts first through examples which gently illustrate the idea.

To motivate the definition of an abstract vector space, and the subtle concept of

linear independence, we use addition and scalar multiplication of vectors in Euclidean

space. We have strived to create a balance among computation, problem solving, and

abstraction. This approach equips students with the necessary skills and problem-

solving strategies in an abstract setting that allows for a greater understanding and

appreciation for the numerous applications of the subject.

Pedagogical Features

1. Linear systems, matrix algebra, and determinants: We have given a stream-

lined, but complete, discussion of solving linear systems, matrix algebra, determi-

nants, and their connection in Chap. 1. Computational techniques are introduced,

and a number of theorems are proved. In this way, students can hone their

problem-solving skills while beginning to develop a conceptual sense of the fun-

damental ideas of linear algebra. Determinants are no longer central in linear

algebra, and we believe that in a course at this level, only a few lectures should

be devoted to the topic. For this reason we have presented all the essentials on

determinants, including their connection to linear systems and matrix inverses,

in Chap. 1. This choice also enables us to use determinants as a theoretical tool

throughout the text whenever the need arises.

ix



x Preface

2. Vectors: Vectors are introduced in Chap. 1, providing students with a familiar

structure to work with as they start to explore the properties which are used later

to characterize abstract vector spaces.

3. Linear independence: We have found that many students have difficulties with

linear combinations and the concept of linear independence. These ideas are fun-

damental to linear algebra and are essential to almost every topic after linear

systems. When students fail to grasp them, the full benefits of the course cannot

be realized. In Introduction to Linear Algebra with Applications we have devoted

Chap. 2 to a careful exposition of linear combinations and linear independence

in the context of Euclidean space. This serves several purposes. First, by placing

these concepts in a separate chapter their importance in linear algebra is high-

lighted. Second, an instructor using the text can give exclusive focus to these ideas

before applying them to other problems and situations. Third, many of the impor-

tant ramifications of linear combinations and linear independence are considered

in the familiar territory of Euclidean spaces.

4. Euclidean spaces ⺢n: The Euclidean spaces and their algebraic properties are

introduced in Chap. 2 and are used as a model for the abstract vectors spaces of

Chap. 3. We have found that this approach works well for students with limited

exposure to abstraction at this level.

5. Geometric representations: Whenever possible, we include figures with geomet-

ric representations and interpretations to illuminate the ideas being presented.

6. New concepts: New concepts are almost always introduced first through concrete

examples. Formal definitions and theorems are then given to describe the situation

in general. Additional examples are also provided to further develop the new idea

and to explore it in greater depth.

7. True/false chapter tests: Each chapter ends with a true/false Chapter Test with

approximately 40 questions. These questions are designed to help the student

connect concepts and better understand the facts presented in the chapter.

8. Rigor and intuition: The approach we have taken attempts to strike a balance

between presenting a rigorous development of linear algebra and building intu-

ition. For example, we have chosen to omit the proofs for theorems that are not

especially enlightening or that contain excessive computations. When a proof is

not present, we include a motivating discussion describing the importance and

use of the result and, if possible, the idea behind a proof.

9. Abstract vector spaces: We have positioned abstract vector spaces as a central

topic within Introduction to Linear Algebra with Applications by placing their

introduction as early as possible in Chap. 3. We do this to ensure that abstract

vector spaces receive the appropriate emphasis. In a typical undergraduate math-

ematics curriculum, a course on linear algebra is the first time that students are

exposed to this level of abstraction. However, Euclidean spaces still play a central

role in our approach because of their familiarity and since they are so widely

used. At the end of this chapter, we include a section on differential equations

which underscores the need for the abstract theory of vector spaces.
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10. Section fact summaries: Each section ends with a summary of the important facts

and techniques established in the section. They are written, whenever possible,

using nontechnical language and mostly without notation. These summaries are

not meant to give a recapitulation of the details and formulas of the section;

rather they are designed to give an overview of the main ideas of the section.

Our intention is to help students to make connections between the concepts of

the section as they survey the topic from a greater vantage point.

Applications

Over the last few decades the applications of linear algebra have mushroomed, increas-

ing not only in their numbers, but also in the diversity of fields to which they apply.

Much of this growth is fueled by the power of modern computers and the availability

of computer algebra systems used to carry out computations for problems involving

large matrices. This impressive power has made linear algebra more relevant than

ever. Recently, a consortium of mathematics educators has placed its importance, rel-

ative to applications, second only to calculus. Increasingly, universities are offering

courses in linear algebra that are specifically geared toward its applications. Whether

the intended audience is engineering, economics, science, or mathematics students,

the abstract theory is essential to understanding how linear algebra is applied.

In this text our introduction to the applications of linear algebra begins in Sec. 1.8

where we show how linear systems can be used to solve problems related to chemistry,

engineering, economics, nutrition, and urban planning. However, many types of appli-

cations involve the more sophisticated concepts we develop in the text. These appli-

cations require the theoretical notions beyond the basic ideas of Chap. 1, and are

presented at the end of a chapter as soon as the required background material is com-

pleted. Naturally, we have had to limit the number of applications considered. It is our

hope that the topics we have chosen will interest the reader and lead to further inquiry.

Specifically, in Sec. 4.6, we discuss the role of linear algebra in computer graph-

ics. An introduction to the connection between differential equations and linear algebra

is given in Secs. 3.5 and 5.3. Markov chains and quadratic forms are examined in

Secs. 5.4 and 6.7, respectively. Section 6.5 focuses on the problem of finding approx-

imate solutions to inconsistent linear systems. One of the most familiar applications

here is the problem of finding the equation of a line that best fits a set of data points.

Finally, in Sec. 6.8 we consider the singular value decomposition of a matrix and its

application to data compression.

Technology

Computations are an integral part of any introductory course in mathematics and

certainly in linear algebra. To gain mastery of the techniques, we encourage the student

to solve as many problems as possible by hand. That said, we also encourage the

student to make appropriate use of the available technologies designed to facilitate,

or to completely carry out, some of the more tedious computations. For example, it

is quite reasonable to use a computer algebra system, such as MAPLE or MATLAB,
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to row-reduce a large matrix. Our approach in Introduction to Linear Algebra with

Applications is to assume that some form of technology will be used, but leave the

choice to the individual instructor and student. We do not think that it is necessary to

include discussions or exercises that use particular software. Note that this text can be

used with or without technology. The degree to which it is used is left to the discretion

of the instructor. From our own experience, we have found that Scientific Notebook,TM

which offers a front end for LATEX along with menu access to the computer algebra

system MuPad, allows the student to gain experience using technology to carry out

computations while learning to write clear mathematics. Another option is to use LATEX

for writing mathematics and a computer algebra system to perform computations.

Another aspect of technology in linear algebra has to do with the accuracy and

efficiency of computations. Some applications, such as those related to Internet search

engines, involve very large matrices which require extensive processing. Moreover, the

accuracy of the results can be affected by computer roundoff error. For example, using

the characteristic equation to find the eigenvalues of a large matrix is not feasible.

Overcoming problems of this kind is extremely important. The field of study known as

numerical linear algebra is an area of vibrant research for both software engineers and

applied mathematicians who are concerned with developing practical solutions. In our

text, the fundamental concepts of linear algebra are introduced using simple examples.

However, students should be made aware of the computational difficulties that arise

when extending these ideas beyond the small matrices used in the illustrations.

Other Features

1. Chapter openers: The opening remarks for each chapter describe an application

that is directly related to the material in the chapter. These provide additional

motivation and emphasize the relevance of the material that is about to be covered.

2. Writing style: The writing style is clear, engaging, and easy to follow. Impor-

tant new concepts are first introduced with examples to help develop the reader’s

intuition. We limit the use of jargon and provide explanations that are as reader-

friendly as possible. Every explanation is crafted with the student in mind. Intro-

duction to Linear Algebra with Applications is specifically designed to be a

readable text from which a student can learn the fundamental concepts in linear

algebra.

3. Exercise sets: Exercise sets are organized with routine exercises at the beginning

and the more difficult problems toward the end. There is a mix of computational

and theoretical exercises with some requiring proof. The early portion of each

exercise set tests the student’s ability to apply the basic concepts. These exercises

are primarily computational, and their solutions follow from the worked examples

in the section. The latter portion of each exercise set extends the concepts and

techniques by asking the student to construct complete arguments.

4. Review exercise sets: The review exercise sets are organized as sample exams

with 10 exercises. These exercises tend to have multiple parts, which connect

the various techniques and concepts presented in the text. At least one problem

in each of these sets presents a new idea in the context of the material of the

chapter.
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5. Length: The length of the text reflects the fact that it is specifically designed for

a one-semester course in linear algebra at the undergraduate level.

6. Appendix: The appendix contains background material on the algebra of sets,

functions, techniques of proof, and mathematical induction. With this feature, the

instructor is able to cover, as needed, topics that are typically included in a Bridge

Course to higher mathematics.

Course Outline

The topics we have chosen for Introduction to Linear Algebra with Applications

closely follow those commonly covered in a first introductory course. The order in

which we present these topics reflects our approach and preferences for emphasis.

Nevertheless, we have written the text to be flexible, allowing for some permutations

of the order of topics without any loss of consistency. In Chap. 1 we present all the

basic material on linear systems, matrix algebra, determinants, elementary matrices,

and the LU decomposition. Chap. 2 is entirely devoted to a careful exposition of lin-

ear combinations and linear independence in ⺢n. We have found that many students

have difficulty with these essential concepts. The addition of this chapter gives us

the opportunity to develop all the important ideas in a familiar setting. As mentioned

earlier, to emphasize the importance of abstract vector spaces, we have positioned

their introduction as early as possible in Chap. 3. Also, in Chap. 3 is a discussion

of subspaces, bases, and coordinates. Linear transformations between vector spaces

are the subject of Chap. 4. We give descriptions of the null space and range of a

linear transformation at the beginning of the chapter, and later we show that every

finite dimensional vector space, of dimension n, is isomorphic to ⺢n. Also, in Chap. 4

we introduce the four fundamental subspaces of a matrix and discuss the action of an

m× n matrix on a vector in ⺢n. Chap. 5 is concerned with eigenvalues and eigenvec-

tors. An abundance of examples are given to illustrate the techniques of computing

eigenvalues and finding the corresponding eigenvectors. We discuss the algebraic and

geometric multiplicities of eigenvalues and give criteria for when a square matrix is

diagonalizable. In Chap. 6, using ⺢n as a model, we show how a geometry can be

defined on a vector space by means of an inner product. We also give a description

of the Gram-Schmidt process used to find an orthonormal basis for an inner product

space and present material on orthogonal complements. At the end of this chapter we

discuss the singular value decomposition of an m× n matrix. The Appendix contains

a brief summary of some topics found in a Bridge Course to higher mathematics.

Here we include material on the algebra of sets, functions, techniques of proof, and

mathematical induction. Application sections are placed at the end of chapters as soon

as the requisite background material has been covered.

Supplements

1. Instructor solutions manual: This manual contains detailed solutions to all

exercises.

2. Student solutions manual: This manual contains detailed solutions to odd-

numbered exercises.



xiv Preface

3. Text website www.mhhe.com/defranza: This website accompanies the text and

is available for both students and their instructors. Students will be able to access

self-assessment quizzes and extra examples for each section and end of chapter

cumulative quizzes. In addition to these assets, instructors will be able to access

additional quizzes, sample exams, the end of chapter true/false tests, and the

Instructor’s Solutions Manual.
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To The Student

You are probably taking this course early in your undergraduate studies after two or

three semesters of calculus, and most likely in your second year. Like calculus, linear

algebra is a subject with elegant theory and many diverse applications. However,

in this course you will be exposed to abstraction at a much higher level. To help

with this transition, some colleges and universities offer a Bridge Course to Higher

Mathematics. If you have not already taken such a course, this may likely be the

first mathematics course where you will be expected to read and understand proofs of

theorems, provide proofs of results as part of the exercise sets, and apply the concepts

presented. All this is in the context of a specific body of knowledge. If you approach

this task with an open mind and a willingness to read the text, some parts perhaps

more than once, it will be an exciting and rewarding experience. Whether you are

taking this course as part of a mathematics major or because linear algebra is applied

in your specific area of study, a clear understanding of the theory is essential for

applying the concepts of linear algebra to mathematics or other fields of science. The

solved examples and exercises in the text are designed to prepare you for the types

of problems you can expect to see in this course and other more advanced courses in

mathematics. The organization of the material is based on our philosophy that each

topic should be fully developed before readers move onto the next. The image of a tree

on the front cover of the text is a metaphor for this learning strategy. It is particularly

applicable to the study of mathematics. The trunk of the tree represents the material

that forms the basis for everything that comes afterward. In our text, this material is

contained in Chaps. 1 through 4. All other branches of the tree, representing more

advanced topics and applications, extend from the foundational material of the trunk or

from the ancillary material of the intervening branches. We have specifically designed

our text so that you can read it and learn the concepts of linear algebra in a sequential

and thorough manner. If you remain committed to learning this beautiful subject, the

rewards will be significant in other courses you may take, and in your professional

career. Good luck!

Jim DeFranza

jdefranza@stlawu.edu

Dan Gagliardi

gagliardid@canton.edu
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C H A P T E R

Systems of Linear
Equations and Matrices

CHAPTER OUTLINE 1.1 Systems of Linear Equations 2

1.2 Matrices and Elementary Row Operations 14

1.3 Matrix Algebra 26

1.4 The Inverse of a Square Matrix 39

1.5 Matrix Equations 48

1.6 Determinants 54

1.7 Elementary Matrices and LU Factorization 68

1.8 Applications of Systems of Linear Equations 79

I
n the process of photosynthesis solar energy

is converted into forms that are used by living

organisms. The chemical reaction that occurs in

the leaves of plants converts carbon dioxide and

water to carbohydrates with the release of oxygen.

The chemical equation of the reaction takes the

form

aCO2 + bH2O→ cO2 + dC6H12O6

where a, b, c, and d are some positive whole

numbers. The law of conservation of mass states

that the total mass of all substances present before

and after a chemical reaction remains the same.

That is, atoms are neither created nor destroyed Photograph by Jan Smith/RF

in a chemical reaction, so chemical equations must be balanced. To balance the pho-

tosynthesis reaction equation, the same number of carbon atoms must appear on both

sides of the equation, so

a = 6d

The same number of oxygen atoms must appear on both sides, so

2a + b = 2c + 6d

and the same number of hydrogen atoms must appear on both sides, so

2b = 12d

1



2 Chapter 1 Systems of Linear Equations and Matrices

This gives us the system of three linear equations in four variables


a − 6d = 0

2a + b− 2c− 6d = 0

2b − 12d = 0

Any positive integers a, b, c, and d that satisfy all three equations are a solution to

this system which balances the chemical equation. For example, a = 6, b = 6, c = 6,

and d = 1 balances the equation.

Many diverse applications are modeled by systems of equations. Systems of

equations are also important in mathematics and in particular in linear algebra. In

this chapter we develop systematic methods for solving systems of linear equations.

1.1

ß

Systems of Linear Equations

As the introductory example illustrates, many naturally occurring processes are

modeled using more than one equation and can require many equations in many vari-

ables. For another example, models of the economy contain thousands of equations

and thousands of variables. To develop this idea, consider the set of equations 
2x − y = 2

x + 2y = 6

which is a system of two equations in the common variables x and y. A solution to

this system consists of values for x and y that simultaneously satisfy each equation.

In this example we proceed by solving the first equation for y, so that

y = 2x − 2

To find the solution, substitute y = 2x − 2 into the second equation to obtain

x + 2(2x − 2) = 6 and solving for x gives x = 2

Substituting x = 2 back into the first equation yields 2(2)− y = 2, so that y = 2.

Therefore the unique solution to the system is x = 2, y = 2. Since both of these

equations represent straight lines, a solution exists provided that the lines intersect.

These lines intersect at the unique point (2, 2), as shown in Fig. 1(a). A system of

equations is consistent if there is at least one solution to the system. If there are no

solutions, the system is inconsistent. In the case of systems of two linear equations

with two variables, there are three possibilities:

1. The two lines have different slopes and hence intersect at a unique point, as shown

in Fig. 1(a).

2. The two lines are identical (one equation is a nonzero multiple of the other), so

there are infinitely many solutions, as shown in Fig. 1(b).
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x 

y 

⫺5

⫺5

5

5

(a)

(2, 2)

2x − y = 2x + 2y = 6

x 

y 

⫺5

⫺5

5

5

(b)

x + y = 1

2x + 2y = 2

x 

y 

⫺5

⫺5

5

5

(c)

−x + y = 1

x − y = 1

Figure 1

3. The two lines are parallel (have the same slope) and do not intersect, so the

system is inconsistent, as shown in Fig. 1(c).

When we are dealing with many variables, the standard method of representing

linear equations is to affix subscripts to coefficients and variables. A linear equation

in the n variables x1, x2, . . . , xn is an equation of the form

a1x1 + a2x2 + · · · + anxn = b

To represent a system of m linear equations in n variables, two subscripts are used for

each coefficient. The first subscript indicates the equation number while the second

specifies the term of the equation.

DEFINITION 1 Systemof Linear Equations A system of m linear equations in n variables,

or a linear system, is a collection of equations of the form


a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

a31x1 + a32x2 + · · · + a3nxn = b3

...
...

...
...

...

am1x1 + am2x2 + · · · + amnxn = bm

This is also referred to as an m× n linear system.

For example, the collection of equations

−2x1 + 3x2 + x3 − x4 =−2

x1 + x3 − 4x4 = 1

3x1 − x2 − x4 = 3

is a linear system of three equations in four variables, or a 3× 4 linear system.

A solution to a linear system with n variables is an ordered sequence

(s1, s2, . . . , sn) such that each equation is satisfied for x1 = s1, x2 = s2, . . . , xn = sn.

The general solution or solution set is the set of all possible solutions.
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The EliminationMethod

The elimination method, also called Gaussian elimination, is an algorithm used to

solve linear systems. To describe this algorithm, we first introduce the triangular form

of a linear system.

An m× n linear system is in triangular form provided that the coefficients

aij = 0 whenever i > j. In this case we refer to the linear system as a triangular

system. Two examples of triangular systems are


x1 − 2x2 + x3 =−1

x2 − 3x3 = 5

x3 = 2

and




x1 + x2 − x3 − x4 = 2

x2 − x3 − 2x4 = 1

2x3 − x4 = 3

When a linear system is in triangular form, then the solution set can be obtained

using a technique called back substitution. To illustrate this technique, consider the

linear system given by 


x1 − 2x2 + x3 =−1

x2 − 3x3 = 5

x3 = 2

From the last equation we see that x3 = 2. Substituting this into the second equation,

we obtain x2 − 3(2) = 5, so x2 = 11. Finally, using these values in the first equation,

we have x1 − 2(11)+ 2 = −1, so x1 = 19. The solution is also written as (19, 11, 2).

DEFINITION 2 Equivalent Linear Systems Two linear systems are equivalent if they have

the same solutions

For example, the system


x1 − 2x2 + x3 =−1

2x1 − 3x2 − x3 = 3

x1 − 2x2 + 2x3 = 1

has the unique solution x1 = 19, x2 = 11, and x3 = 2, so the linear systems


x1 − 2x2 + x3 =−1

x2 − 3x3 = 5

x3 = 2

and




x1 − 2x2 + x3 =−1

2x1 − 3x2 − x3 = 3

x1 − 2x2 + 2x3 = 1

are equivalent.

The next theorem gives three operations that transform a linear system into an

equivalent system, and together they can be used to convert any linear system to an

equivalent system in triangular form.
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THEOREM 1 Let 


a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

a31x1 + a32x2 + · · · + a3nxn = b3

...
...

...
...

...

am1x1 + am2x2 + · · · + amnxn = bm

be a linear system. Performing any one of the following operations on the linear

system produces an equivalent linear system.

1. Interchanging any two equations.

2. Multiplying any equation by a nonzero constant.

3. Adding a multiple of one equation to another.

Proof Interchanging any two equations does not change the solution of the linear

system and therefore yields an equivalent system. If equation i is multiplied by a

constant c  = 0, then equation i of the new system is

cai1x1 + cai2x2 + · · · + cainxn = cbi

Let (s1, s2, . . . , sn) be a solution to the original system. Since

ai1s1 + ai2s2 + · · · + ainsn = bi, then cai1s1 + cai2s2 + · · · + cainsn = cbi

Hence (s1, s2, . . . , sn) is a solution of the new linear system. Consequently, the

systems are equivalent.

For part (3) of the theorem, consider the new system obtained by adding c times

equation i to equation j of the original system. Thus, equation j of the new system

becomes

(cai1 + aj1)x1 + (cai2 + aj2)x2 + · · · + (cain + ajn)xn = cbi + bj

or equivalently,

c(ai1x1 + ai2x2 + · · · + ainxn)+ (aj1x1 + aj2x2 + · · · + ajnxn) = cbi + bj

Now let (s1, s2, . . . , sn) be a solution for the original system. Then

ai1s1 + ai2s2 + · · · + ainsn = bi and aj1s1 + aj2s2 + · · · + ajnsn = bj

Therefore,

c(ai1s1 + ai2s2 + · · · + ainsn)+ (aj1s1 + aj2s2 + · · · + ajnsn) = cbi + bj

so that (s1, s2, . . . , sn) is a solution of the modified system and the systems are

equivalent.
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EXAMPLE 1 Use the elimination method to solve the linear system. 
x + y = 1

−x + y = 1

Solution Adding the first equation to the second gives the equivalent system 
x + y = 1

2y = 2

From the second equation, we have y = 1. Using back substitution gives x = 0.

The graphs of both systems are shown in Fig. 2. Notice that the solution is the same

in both, but that adding the first equation to the second rotates the line −x + y = 1

about the point of intersection.

x 

y 

⫺5

⫺5

5

5

(a)

x + y = 1 −x + y = 1

(1, 0)

x 

y 

⫺5

⫺5

5

5

(b)

x + y = 1 −x + y = 1

y = 1

Figure 2

Converting a linear system to triangular form often requires many steps. Moreover,

the operations used to convert one linear system to another are not unique and may

not be apparent on inspection. To articulate this process, the notation, for example,

(−2) · E1 + E3 −→ E3

will mean add −2 times equation 1 to equation 3, and replace equation 3 with the

result. The notation Ei ↔ Ej will be used to indicate that equation i and equation j

are interchanged.

EXAMPLE 2 Solve the linear system. 


x + y + z= 4

−x − y + z=−2

2x − y + 2z= 2

Solution To convert the system to an equivalent triangular system, we first eliminate the

variable x in the second and third equations to obtain



1.1 Systems of Linear Equations 7




x + y + z= 4

−x − y + z=−2

2x − y + 2z= 2

E1 +E2→E2

− 2E1 +E3→E3
−→




x + y + z = 4

2z = 2

− 3y =−6

Interchanging the second and third equations gives the triangular linear system


x + y + z = 4

2z = 2

− 3y =−6

E2 ↔ E3 −→




x + y + z = 4

− 3y =−6

2z = 2

Using back substitution, we have z = 1, y = 2, and x = 4− y − z = 1. There-

fore, the system is consistent with the unique solution (1, 2, 1).

Recall from solid geometry that the graph of an equation of the form

ax + by + cz = d is a plane in three-dimensional space. Hence, the unique solution

to the linear system of Example 2 is the point of intersection of three planes, as shown

in Fig. 3(a). For another perspective on this, shown in Fig. 3(b) are the lines of the

pairwise intersections of the three planes. These lines intersect at a point that is the

solution to the 3× 3 linear system.

(a)

(1, 2, 1)

(b)

Figure 3

Similar to the 2× 2 case, the geometry of Euclidean space helps us better understand

the possibilities for the general solution of a linear system of three equations in three

variables. In particular, the linear system can have a unique solution if the three planes

all intersect at a point, as illustrated by Example 2. Alternatively, a 3× 3 system can

have infinitely many solutions if

1. The three planes are all the same.

2. The three planes intersect in a line (like the pages of a book).

3. Two of the planes are the same with a third plane intersecting them in a line.

For example, the linear system given by

− y + z= 0

y = 0

z= 0
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represents three planes whose intersection is the x axis. That is, z = 0 is the xy plane,

y = 0 is the xz plane, and y = z is the plane that cuts through the x axis at a 45◦

angle.

Finally, there are two cases in which a 3× 3 linear system has no solutions. First,

the linear system has no solutions if at least one of the planes is parallel to, but not

the same as, the others. Certainly, when all three planes are parallel, the system has

no solutions, as illustrated by the linear system


z = 0

z = 1

z = 2

Figure 4 Also, a 3× 3 linear system has no solutions, if the lines of the pairwise intersections

of the planes are parallel, but not the same, as shown in Fig. 4.

From the previous discussion we see that a 3× 3 linear system, like a 2× 2 linear

system, has no solutions, has a unique solution, or has infinitely many solutions. We

will see in Sec. 1.4 that this is the case for linear systems of any size.

In Example 3 we consider a linear system with four variables. Of course the

geometric reasoning above cannot be applied to the new situation directly, but provides

the motivation for understanding the many possibilities for the solutions to linear

systems with several variables.

EXAMPLE 3 Solve the linear system. 


4x1 − 8x2 − 3x3 + 2x4 = 13

3x1 − 4x2 − x3 − 3x4 = 5

2x1 − 4x2 − 2x3 + 2x4 = 6

Solution Since every term of the third equation can be divided evenly by 2, we multiply the

third equation by 1
2
. After we do so, the coefficient of x1 is 1. We then interchange

the first and third equations, obtaining


4x1 − 8x2 − 3x3 + 2x4 = 13

3x1 − 4x2 − x3 − 3x4 = 5

2x1 − 4x2 − 2x3 + 2x4 = 6

1
2
E3 → E3 −→




4x1 − 8x2 − 3x3 + 2x4 = 13

3x1 − 4x2 − x3 − 3x4 = 5

x1 − 2x2 − x3 + x4 = 3

E1 ↔ E3 −→




x1 − 2x2 − x3 + x4 = 3

3x1 − 4x2 − x3 − 3x4 = 5

4x1 − 8x2 − 3x3 + 2x4 = 13

Next using the operations −3E1 + E2 → E2 and −4E1 + E3 → E3, we obtain

the linear system 


x1 − 2x2 − x3 + x4 = 3

2x2 + 2x3 − 6x4 =−4

x3 − 2x4 = 1
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which is an equivalent system in triangular form. Using back substitution, the gen-

eral solution is

x3 = 2x4 + 1 x2 = x4 − 3 x1 = 3x4 − 2

with x4 free to assume any real number. It is common in this case to replace x4

with the parameter t. The general solution can now be written as

S = {(3t − 2, t − 3, 2t + 1, t) | t ∈ ⺢}

and is called a one-parameter family of solutions. The reader can check that

x1 = 3t − 2, x2 = t − 3, x3 = 2t + 1, and x4 = t is a solution for any t by substi-

tuting these values in the original equations. A particular solution can be obtained

by letting t be a specific value. For example, if t = 0, then a particular solution is

(−2,−3, 1, 0).

In Example 3, the variable x4 can assume any real number, giving infinitely many

solutions for the linear system. In this case we call x4 a free variable. When a linear

system has infinitely many solutions, there can be more than one free variable. In this

case, the solution set is an r-parameter family of solutions where r is equal to the

number of free variables.

EXAMPLE 4 Solve the linear system.


x1 − x2 − 2x3 − 2x4 − 2x5 = 3

3x1 − 2x2 − 2x3 − 2x4 − 2x5 =−1

−3x1 + 2x2 + x3 + x4 − x5 =−1

Solution After performing the operations E3 + E2 → E3 followed by E2 − 3E1 → E2, we

have the equivalent system


x1 − x2 − 2x3 − 2x4 − 2x5 = 3

x2 + 4x3 + 4x4 + 4x5 =− 10

− x3 − x4 − 3x5 =− 2

The variables x4 and x5 are both free variables, so to write the solution, let x4 = s

and x5 = t. From the third equation, we have

x3 = 2− x4 − 3x5 = 2− s − 3t

Substitution into the second equation gives

x2 = −10− 4x3 − 4x4 − 4x5

= −10− 4(2− s − 3t)− 4s − 4t

= −18+ 8t
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Finally, substitution into the first equation gives

x1 = 3+ x2 + 2x3 + 2x4 + 2x5

= 3+ (−18+ 8t)+ 2(2− s − 3t)+ 2s + 2t

= −11+ 4t

The two-parameter solution set is therefore given by

S = {(−11+ 4t,−18+ 8t, 2− s − 3t, s, t) | s, t ∈ ⺢}

Particular solutions for s = t = 0 and s = 0, t = 1 are (−11,−18, 2, 0, 0) and

(−7,−10,−1, 0, 1), respectively.

EXAMPLE 5 Solve the linear system. 


x1 − x2 + 2x3 = 5

2x1 + x2 = 2

x1 + 8x2 − x3 = 3

−x1 − 5x2 − 12x3 = 4

Solution To convert the linear system to an equivalent triangular system, we will eliminate

the first terms in equations 2 through 4, and then the second terms in equations

3 and 4, and then finally the third term in the fourth equation. This is accomplished

by using the following operations.


x1 − x2 + 2x3 = 5

2x1 + x2 = 2

x1 + 8x2 − x3 = 3

−x1 − 5x2 − 12x3 = 4

− 2E1 +E2→E2

−E1 +E3→E3

E1 +E4→E4

→




x1 − x2 + 2x3 = 5

3x2 − 4x3 =− 8

9x2 − 3x3 =− 2

− 6x2 − 10x3 = 9

−3E2 + E3 → E3

2E2 + E4 → E4
→




x1 − x2 + 2x3 = 5

3x2 − 4x3 = −8

9x3 = 22

− 18x3 = −7

2E3 + E4 → E4 →




x1 − x2 + 2 x3 = 5

3x2 − 4 x3 = −8

9 x3 = 22

0 = −37

The last equation of the final system is an impossibility, so the original linear system

is inconsistent and has no solution.

In the previous examples the algorithm for converting a linear system to triangular

form is based on using a leading variable in an equation to eliminate the same variable

in each equation below it. This process can always be used to convert any linear system

to triangular form.
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EXAMPLE 6 Find the equation of the parabola that passes through the points (−1, 1), (2,−2),

and (3, 1). Find the vertex of the parabola.

Solution The general form of a parabola is given by y = ax2 + bx + c. Conditions on a, b,

and c are imposed by substituting the given points into this equation. This gives

1= a(−1)2 + b(−1)+ c= a − b+ c

−2= a(2)2 + b(2) + c= 4a + 2b+ c

1= a(3)2 + b(3) + c= 9a + 3b+ c

From these conditions we obtain the linear system


a − b+ c= 1

4a + 2b+ c=−2

9a + 3b+ c= 1

First, with a as the leading variable, we use row operations to eliminate a from

equations 2 and 3. In particular, we have


a − b+ c= 1

4a + 2b+ c=−2

9a + 3b+ c= 1

−4E1 + E2 → E2

−9E1 + E3 → E3
→




a − b+ c= 1

6b− 3c=−6

12b− 8c=−8

Next, with b as the leading variable we, eliminate b from equation 3, so that


a − b+ c= 1

6b− 3c=−6

12b− 8c=−8

−2E2 + E3 → E3 →




a − b+ c= 1

6b− 3c=−6

− 2c= 4

Now, using back substitution on the last system gives c = −2, b = −2, and a = 1.

Thus, the parabola we seek is

y = x2 − 2x − 2

Completing the square gives the parabola in standard form

y = (x − 1)2 − 3

with vertex (1,−3), as shown in Fig. 5.

x 

y 

⫺5

⫺5

5

5

(1,−3)

(−1, 1)

(2,−2)

(3, 1)

y = x2 − 2x − 2

Figure 5

Fact Summary

1. A m× n linear system has a unique solution, infinitely many solutions, or

no solutions.

2. Interchanging any two equations in a linear system does not alter the set of

solutions.

3. Multiplying any equation in a linear system by a nonzero constant does not

alter the set of solutions.
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4. Replacing an equation in a linear system with the sum of the equation and a

scalar multiple of another equation does not alter the set of solutions.

5. Every linear system can be reduced to an equivalent triangular linear

system.

Exercise Set 1.1

1. Consider the linear system


x1 − x2 − 2x3 = 3

−x1 + 2x2 + 3x3 = 1

2x1 − 2x2 − 2x3 =−2

Perform the operations E1 + E2 → E2 and

−2E1 + E3 → E3, and write the new equivalent

system. Solve the linear system.

2. Consider the linear system


2x1 − 2x2 − x3 =−3

x1 − 3x2 + x3 =−2

x1 − 2x2 = 2

Perform the operations E1 ↔ E2,

−2E1 + E2 → E2, −E1 + E3 → E3, E2 ↔ E3,

and −4E2 + E3 → E3, and write the new

equivalent system. Solve the linear system.

3. Consider the linear system


x1 + 3x4 = 2

x1 + x2 + 4x4 = 3

2x1 + x3 + 8x4 = 3

x1 + x2 + x3 + 6x4 = 2

Perform the operations −E1 + E2 → E2,

−2E1 + E3 → E3, −E1 + E4 → E4, −E2 +

E4 → E4, and −E3 + E4 → E4, and write the

new equivalent system. Solve the linear system.

4. Consider the linear system


x1 + x3 =−2

x1 + x2 + 4x3 =−1

2x1 + 2x3 + x4 =−1

Perform the operations −E1 + E2 → E2 and

−2E1 + E3 → E3, and write the new equivalent

system. Solve the linear system.

In Exercises 5–18, solve the linear system using

the elimination method.

5.

 
2x + 3y =−2

−2x = 0

6.

 
x + 3y =−1

− y =−1

7.

 
4x = 4

−3x + 2y =−3

8.

 
2x + 3y =−1

x − y = 0

9.

 
3x − 2y = 4

x − 2
3
y = 4

3

10.

 
3x − 5y = 1

−x + 5
3
y =− 1

3

11.



− 3x − 2y + 2z=−2

− x − 3y + z=−3

x − 2y + z=−2

12.




x + 3y + z= 2

− 2x + 2y − 4z=−1

− y + 3z= 1
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13.



−2x − 2y + 2z= 1

x + 5z=−1

3x + 2y + 3z=−2

14.



−x + y + 4z=−1

3x − y + 2z= 2

2x − 2y − 8z= 2

15.

 
3x1 + 4x2 + 3x3 = 0

3x1 − 4x2 + 3x3 = 4

16.

 
−2x1 + x2 = 2

3x1 − x2 + 2x3 = 1

17.

 
x1 − 2x2 − 2x3 − x4 =−3

− 2x1 + x2 + x3 − 2x4 =−3

18.

 
2x1 + 2x2 − x3 = 1

− x2 + 3x4 = 2

In Exercises 19–22, solve for x, y, and z in terms of

a, b, and c.

19.

 
−2x + y = a

−3x + 2y = b

20.

 
2x + 3y = a

x + y = b

21.




3x + y + 3z= a

−x − z= b

−x + 2y = c

22.



−3x + 2y + z= a

x − y − z= b

x − y − 2z= c

In Exercises 23–28, give restrictions on a, b, and c

such that the linear system is consistent.

23.

 
x − 2y = a

−2x + 4y = 2

24.

 
−x + 3y = a

2x − 6y = 3

25.

 
x − 2y = a

−x + 2y = b

26.

 
6x − 3y = a

−2x + y = b

27.




x − 2y + 4z= a

2x + y − z= b

3x − y + 3z= c

28.




x − y + 2z= a

2x + 4y − 3z= b

4x + 2y + z= c

In Exercises 29–32, determine the value of a that

makes the system inconsistent.

29.

 
x + y =−2

2x + ay = 3

30.

 
2x − y = 4

ax + 3y = 2

31.

 
x − y = 2

3x − 3y = a

32.

 
2x − y = a

6x − 3y = a

In Exercises 33–36, find an equation in the form

y = ax2 + bx + c for the parabola that passes through

the three points. Find the vertex of the parabola.

33. (0, 0.25), (1,−1.75), (−1, 4.25)

34. (0, 2), (−3,−1), (0.5, 0.75)

35. (−0.5,−3.25), (1, 2), (2.3, 2.91)

36. (0,−2875), (1,−5675), (3, 5525)

37. Find the point where the three lines

−x + y = 1,−6x + 5y = 3, and 12x + 5y = 39

intersect. Sketch the lines.

38. Find the point where the four lines

2x + y = 0, x + y = −1, 3x + y = 1, and

4x + y = 2 intersect. Sketch the lines.

39. Give an example of a 2× 2 linear system that
a. Has a unique solution

b. Has infinitely many solutions

c. Is inconsistent

40. Verify that if ad − bc  = 0, then the system of

equations  
ax + by = x1

cx + dy = x2

has a unique solution.
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41. Consider the system 
x1 − x2 + 3x3 − x4 = 1

x2 − x3 + 2x4 = 2

a. Describe the solution set where the variables x3

and x4 are free.

b. Describe the solution set where the variables x2

and x4 are free.

42. Consider the system


x1 − x2 + x3 − x4 + x5 = 1

x2 − x4 − x5 =−1

x3 − 2x4 + 3x5 = 2

a. Describe the solution set where the variables x4

and x5 are free.

b. Describe the solution set where the variables x3

and x5 are free.

43. Determine the values of k such that the linear

system  
9x + ky = 9

kx + y =−3

has

a. No solutions

b. Infinitely many solutions

c. A unique solution

44. Determine the values of k such that the linear

system 


kx + y + z= 0

x + ky + z= 0

x + y + kz= 0

has

a. A unique solution

b. A one-parameter family of solutions

c. A two-parameter family of solutions

1.2

ß

Matrices and Elementary RowOperations

In Sec. 1.1 we saw that converting a linear system to an equivalent triangular system

provides an algorithm for solving the linear system. The algorithm can be streamlined

by introducing matrices to represent linear systems.

DEFINITION 1 Matrix An m× n matrix is an array of numbers with m rows and n columns.

For example, the array of numbers
 2 3 −1 4

3 1 0 −2

−2 4 1 3




is a 3× 4 matrix.

When solving a linear system by the elimination method, only the coefficients of

the variables and the constants on the right-hand side are needed to find the solution.

The variables are placeholders. Utilizing the structure of a matrix, we can record the

coefficients and the constants by using the columns as placeholders for the variables.

For example, the coefficients and constants of the linear system

−4x1 + 2x2 − 3x4 = 11

2x1 − x2 − 4x3 + 2x4 =− 3

3x2 − x4 = 0

−2x1 + x4 = 4
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can be recorded in matrix form as

−4 2 0 −3 11

2 −1 −4 2 −3

0 3 0 −1 0

−2 0 0 1 4




This matrix is called the augmented matrix of the linear system. Notice that for an

m× n linear system the augmented matrix is m× (n+ 1). The augmented matrix

with the last column deleted 

−4 2 0 −3

2 −1 −4 2

0 3 0 −1

−2 0 0 1




is called the coefficient matrix. Notice that we always use a 0 to record any missing

terms.

The method of elimination on a linear system is equivalent to performing similar

operations on the rows of the corresponding augmented matrix. The relationship is

illustrated below:

Linear system


x + y − z= 1

2x − y + z=−1

−x − y + 3z= 2

Using the operations −2E1 + E2 → E2

and E1 + E3 → E3, we obtain the equiv-

alent triangular system


x + y − z= 1

− 3y + 3z=−3

2z= 3

Corresponding augmented matrix
 1 1 −1 1

2 −1 1 −1

−1 −1 3 2




Using the operations −2R1 + R2 → R2

and R1 + R3 → R3, we obtain the equiv-

alent augmented matrix
 1 1 −1 1

0 −3 3 −3

0 0 2 3




The notation used to describe the operations on an augmented matrix is similar

to the notation we introduced for equations. In the example above,

−2R1 + R2 −→ R2

means replace row 2 with −2 times row 1 plus row 2. Analogous to the triangular

form of a linear system, a matrix is in triangular form provided that the first nonzero

entry for each row of the matrix is to the right of the first nonzero entry in the row

above it.

The next theorem is a restatement of Theorem 1 of Sec. 1.1, in terms of operations

on the rows of an augmented matrix.
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THEOREM 2 Any one of the following operations performed on the augmented matrix, corre-

sponding to a linear system, produces an augmented matrix corresponding to an

equivalent linear system.

1. Interchanging any two rows.

2. Multiplying any row by a nonzero constant.

3. Adding a multiple of one row to another.

Solving Linear Systems with AugmentedMatrices

The operations in Theorem 2 are called row operations. An m× n matrix A is called

row equivalent to an m× n matrix B if B can be obtained from A by a sequence of

row operations.

The following steps summarize a process for solving a linear system.

1. Write the augmented matrix of the linear system.

2. Use row operations to reduce the augmented matrix to triangular form.

3. Interpret the final matrix as a linear system (which is equivalent to the original).

4. Use back substitution to write the solution.

Example 1 illustrates how we can carry out steps 3 and 4.

EXAMPLE 1 Given the augmented matrix, find the solution of the corresponding linear system.

a.


 1 0 0 1

0 1 0 2

0 0 1 3


 b.


 1 0 0 0 5

0 1 −1 0 1

0 0 0 1 3


 c.


 1 2 1 −1 1

0 3 −1 0 1

0 0 0 0 0




Solution a. Reading directly from the augmented matrix, we have x3 = 3, x2 = 2, and

x1 = 1. So the system is consistent and has a unique solution.

b. In this case the solution to the linear system is x4 = 3, x2 = 1+ x3,

and x1 = 5. So the variable x3 is free, and the general solution is

S = {(5, 1+ t, t, 3) | t ∈ ⺢}.

c. The augmented matrix is equivalent to the linear system 
x1 + 2x2 + x3 − x4 = 1

3x2 − x3 = 1

Using back substitution, we have

x2 =
1

3
(1+ x3) and x1 = 1− 2x2 − x3 + x4 =

1

3
−

5

3
x3 + x4
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So the variables x3 and x4 are free, and the two-parameter solution set is given by

S =

  
1

3
−

5s

3
+ t,

1

3
+

s

3
, s, t

     s, t ∈ ⺢
 

EXAMPLE 2 Write the augmented matrix and solve the linear system.


x − 6y − 4z=−5

2x − 10y − 9z=−4

− x + 6y + 5z= 3

Solution To solve this system, we write the augmented matrix
 1 −6 −4 −5

2 −10 −9 −4

−1 6 5 3




where we have shaded the entries to eliminate. Using the procedure described above,

the augmented matrix is reduced to triangular form as follows:
 1 −6 −4 −5

2 −10 −9 −4

−1 6 5 3


 −2R1 + R2 → R2

R1 + R3 → R3
−→


 1 −6 −4 −5

0 2 −1 6

0 0 1 −2




The equivalent triangular linear system is


x − 6y − 4z=−5

2y − z= 6

z=−2

which has the solution x = −1, y = 2, and z = −2.

Echelon Form of aMatrix

In Example 2, the final augmented matrix
 1 −6 −4 −5

0 2 −1 6

0 0 1 −2




is in row echelon form. The general structure of a matrix in row echelon form is

shown in Fig. 1. The height of each step is one row, and the first nonzero term in a

row, denoted in Fig. 1 by *, is to the right of the first nonzero term in the previous

row. All the terms below the stairs are 0.
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0 *
*

*

*
. . . . . . 

0

0. . . .

Figure 1

Although, the height of each step in Fig. 1 is one row, a step may extend over

several columns. The leading nonzero term in each row is called a pivot element. The

matrix is in reduced row echelon form if, in addition, each pivot is a 1 and all other

entries in this column are 0. For example, the reduced row echelon form of the matrix
 1 −6 −4 −5

0 2 −1 6

0 0 1 −2




is given by 
 1 0 0 −1

0 1 0 2

0 0 1 −2




Transforming a matrix in row echelon form to reduced row echelon form in effect

incorporates back substitution as row operations on the matrix. If we read from

the last matrix above, the solution to the corresponding linear system is, as before,

x = −1, y = 2, and z = −2.

Here are three additional matrices that are in reduced row echelon form


 1 0 0 −1

0 1 0 2

0 0 1 4







1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





 1 −2 0 1 −1

0 0 1 −1 2

0 0 0 0 0




and two that are not in reduced row echelon form
 1 3 2 1

0 1 −5 6

0 1 4 1





 1 −2 1 0

0 0 2 1

0 0 0 3




In general, for any m× n matrix in reduced row echelon form, the pivot entries

correspond to dependent variables, and the nonpivot entries correspond to independent

or free variables. We summarize the previous discussion on row echelon form in the

next definition.
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DEFINITION 2 Echelon Form An m× n matrix is in row echelon form if

1. Every row with all 0 entries is below every row with nonzero entries.

2. If rows 1, 2, . . . , k are the rows with nonzero entries and if the leading

nonzero entry (pivot) in row i occurs in column ci , for 1, 2, . . . , k, then

c1 < c2 < · · · < ck .

The matrix is in reduced row echelon form if, in addition,

3. The first nonzero entry of each row is a 1.

4. Each column that contains a pivot has all other entries 0.

The process of transforming a matrix to reduced row echelon form is called

Gauss-Jordan elimination.

EXAMPLE 3 Solve the linear system by transforming the augmented matrix to reduced row

echelon form. 


x1 − x2 − 2x3 + x4 = 0

2x1 − x2 − 3x3 + 2x4 =−6

−x1 + 2x2 + x3 + 3x4 = 2

x1 + x2 − x3 + 2x4 = 1

Solution The augmented matrix of the linear system is


1 −1 −2 1 0

2 −1 −3 2 −6

−1 2 1 3 2

1 1 −1 2 1




To transform the matrix into reduced row echelon form, we first use the leading 1

in row 1 as a pivot to eliminate the terms in column 1 of rows 2, 3, and 4. To do

this, we use the three row operations

−2R1 + R2 → R2

R1 + R3 → R3

−R1 + R4 → R4

in succession, transforming the matrix


1 −1 −2 1 0

2 −1 −3 2 −6

−1 2 1 3 2

1 1 −1 2 1


 to




1 −1 −2 1 0

0 1 1 0 −6

0 1 −1 4 2

0 2 1 1 1




For the second step we use the leftmost 1 in row 2 as the pivot and eliminate

the term in column 2 above the pivot, and the two terms below the pivot. The

required row operations are
R2 + R1 → R1

−R2 + R3 → R3

−2R2 + R4 → R4
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reducing the matrix


1 −1 −2 1 0

0 1 1 0 −6

0 1 −1 4 2

0 2 1 1 1


 to




1 0 −1 1 −6

0 1 1 0 −6

0 0 −2 4 8

0 0 −1 1 13




Notice that each entry in row 3 is evenly divisible by 2. Therefore, a leading 1 in

row 3 is obtained using the operation − 1
2
R3 → R3, which results in the matrix


1 0 −1 1 −6

0 1 1 0 −6

0 0 1 −2 −4

0 0 −1 1 13




Now, by using the leading 1 in row 3 as a pivot, the operations

R3 + R1 → R1

−R3 + R2 → R2

R3 + R4 → R4

row-reduce the matrix


1 0 −1 1 −6

0 1 1 0 −6

0 0 1 −2 −4

0 0 −1 1 13


 to




1 0 0 −1 −10

0 1 0 2 −2

0 0 1 −2 −4

0 0 0 −1 9




Using the operation −R4 → R4, we change the signs of the entries in row 4 to

obtain the matrix 


1 0 0 −1 −10

0 1 0 2 −2

0 0 1 −2 −4

0 0 0 1 −9




Finally, using the leading 1 in row 4 as the pivot, we eliminate the terms above it

in column 4. Specifically, the operations

R4 + R1 → R1

−2R4 + R2 → R2

2R4 + R3 → R3

applied to the last matrix give


1 0 0 0 −19

0 1 0 0 16

0 0 1 0 −22

0 0 0 1 −9




which is in reduced row echelon form.

The solution can now be read directly from the reduced matrix, giving us

x1 = −19 x2 = 16 x3 = −22 and x4 = −9.
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EXAMPLE 4 Solve the linear system. 


3x1 − x2 + x3 + 2x4 =−2

x1 + 2x2 − x3 + x4 = 1

− x1 − 3x2 + 2x3 − 4x4 =−6

Solution The linear system in matrix form is
 3 −1 1 2 −2

1 2 −1 1 1

−1 −3 2 −4 −6




which can be reduced to 
 1 2 −1 1 1

0 1 −1 3 5

0 0 1 − 20
3
−10




Notice that the system has infinitely many solutions, since from the last row we

see that the variable x4 is a free variable. We can reduce the matrix further, but the

solution can easily be found from the echelon form by back substitution, giving us

x3 = −10+
20

3
x4

x2 = 5+ x3 − 3x4 = 5+

 
−10+

20

3
x4

 
− 3x4 = −5+

11

3
x4

x1 = 1− 2x2 + x3 − x4 = 1−
5

3
x4

Letting x4 be the arbitrary parameter t , we see the general solution is

S =

  
1−

5t

3
,−5+

11t

3
,−10+

20t

3
, t

     t ∈ ⺢
 

Example 5 gives an illustration of a reduced matrix for an inconsistent linear

system.

EXAMPLE 5 Solve the linear system. 


x + y + z= 4

3x − y − z= 2

x + 3y + 3z= 8

Solution To solve this system, we reduce the augmented matrix to triangular form. The

following steps describe the process.
 1 1 1 4

3 −1 −1 2

1 3 3 8


 −3R1 + R2 → R2

−R1 + R3 → R3
−→


 1 1 1 4

0 −4 −4 −10

0 2 2 4



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R2 ↔ R3 −→


 1 1 1 4

0 2 2 4

0 −4 −4 −10




1
2
R2 → R2 −→


 1 1 1 4

0 1 1 2

0 −4 −4 −10




4R2 + R3 → R3 −→


 1 1 1 4

0 1 1 2

0 0 0 −2




The third row of the last matrix corresponds to the equation 0 = −2. As this

system has no solution, the system is inconsistent. This can also be seen from the

fact that the three planes do not have a common intersection, as shown in Fig.2.

Figure 2 In Example 5, each entry in the last row of the reduced coefficient matrix is 0,

but the constant term is nonzero and the linear system is inconsistent. The reduced

augmented matrix for a consistent linear system can have a row of zeros. However, in

this case the term in the last column of this row must also be zero. Example 6 gives

an illustration.

EXAMPLE 6 Determine when the augmented matrix represents a consistent linear system.
 1 0 2 a

2 1 5 b

1 −1 1 c




Solution The operation −2R1 + R2 → R2 followed by−R1 + R3 → R3 and finally followed

by R2 + R3 → R3 reduces the augmented matrix to
 1 0 2 a

0 1 1 b − 2a

0 0 0 b + c − 3a




Hence, the corresponding linear system is consistent provided that b + c − 3a = 0.

That is, the system is consistent for all a, b, and c such that the point (a, b, c) lies

on the plane b + c − 3a = 0. Notice also that when the system is consistent, the

third row will contain all zeros and the variable x3 is a free variable.

Shown in the following list is an outline that summarizes the process for trans-

forming a matrix to its equivalent reduced row echelon form.

1. If necessary, interchange rows so that the leading nonzero entry of row 1 is the

leftmost nonzero entry of the matrix. Then divide each entry of row 1 by the

leading entry.
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2. Eliminate all other nonzero terms in this leading column.

3. Repeat the first two steps, starting with row 2. Note that the leading entry may

not be in column 2.

4. Continue in this way, making sure that the leading entry of each row is a 1 with

zeros elsewhere in that column.

5. The leading 1 in any row should be to the right of a leading 1 in the row above it.

6. All rows of zeros are placed at the bottom of the matrix.

We have implicitly assumed in our discussion that every matrix is row equivalent

to exactly one matrix in reduced row echelon form. It is an important fact that we

will state here as a theorem without proof.

THEOREM 3 The reduced row echelon form of every matrix is unique.

Fact Summary

1. Altering an augmented matrix by interchanging two rows, or multiplying a

row by a nonzero constant, or replacing a row with the sum of the same

row and a scalar multiple of another row does not alter the set of solutions

of the corresponding linear system.

2. If an augmented matrix is row-reduced to triangular form, the coefficient

matrix has a row of zeros, and the corresponding augmented term is not

zero, then the linear system has no solutions.

3. Every matrix has a unique reduced row echelon form.

4. If the augmented matrix of an n× n linear system is row-reduced to

triangular form and the coefficient matrix has no rows of zeros, then the

linear system has a unique solution.

5. If the augmented matrix of an n× n linear system is row-reduced to

triangular form, the coefficient matrix has rows of zeros, and each

corresponding augmented term is 0, then the linear system has infinitely

many solutions.

Exercise Set 1.2

In Exercises 1–8, write the linear system

as an augmented matrix. Do not solve the

system.

1.

 
2x − 3y = 5

−x + y =−3

2.

 
2x − 2y = 1

3x = 1

3.




2x − z= 4

x + 4y + z= 2

4x + y − z= 1
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4.



−3x + y + z= 2

− 4z= 0

−4x + 2y − 3z= 1

5.

 
2x1 − x3 = 4

x1 + 4x2 + x3 = 2

6.

 
4x1 + x2 − 4x3 = 1

4x1 − 4x2 + 2x3 =−2

7.




2x1 + 4x2 + 2x3 + 2x4 =−2

4x1 − 2x2 − 3x3 − 2x4 = 2

x1 + 3x2 + 3x3 − 3x4 =−4

8.




3x1 − 3x3 + 4x4 =−3

−4x1 + 2x2 − 2x3 − 4x4 = 4

4x2 − 3x3 + 2x4 =−3

In Exercises 9–20, write the solution of the linear

system corresponding to the reduced augmented

matrix.

9.


 1 0 0 −1

0 1 0 1
2

0 0 1 0




10.


 1 0 0 2

0 1 0 0

0 0 1 − 2
3




11.


 1 0 2 −3

0 1 −1 2

0 0 0 0




12.


 1 0 − 1

3
4

0 1 3 4
3

0 0 0 0




13.


 1 −2 0 −3

0 0 1 2

0 0 0 0




14.


 1 5 5 −1

0 0 0 0

0 0 0 0




15.


 1 0 0 0

0 1 0 0

0 0 0 1




16.


 1 0 0 0

0 0 1 0

0 0 0 1




17.

 
1 0 −2 5 3

0 1 −1 2 2

 

18.

 
1 3 −3 0 1

0 0 0 1 4

 

19.


 1 0 0 −3 1

0 1 0 −1 7

0 0 1 2 −1




20.


 1 0 2

5
0 −1

0 1 −3 0 1

0 0 0 1 4
5




In Exercises 21–28, determine whether the matrices

are in reduced row echelon form.

21.

 
1 0 2

0 1 3

 

22.

 
1 2 0

0 0 1

 

23.


 1 2 3

0 1 2

0 0 1




24.


 1 2 0

0 0 2

0 0 0




25.


 1 2 0 −1

0 0 1 −2

0 0 0 0




26.


 1 0 −3 4

0 1 1 5

0 0 0 0




27.


 1 0 0 4 −1

0 0 1 5 2

0 1 0 0 −1



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28.


 1 1 0 4 2

3

0 1 1 5 6

0 0 0 1 1
3




In Exercises 29–36, find the reduced row echelon

form of the matrix.

29.

 
2 3

−2 1

 

30.

 
−3 2

3 3

 

31.


 3 3 1

3 −1 0

−1 −1 2




32.


 0 2 1

1 −3 −3

1 2 −3




33.

 
−4 1 4

3 4 −3

 

34.

 
−4 −2 −1

−2 −3 0

 

35.


 −2 2 −1 2

0 3 3 −3

1 −4 2 2




36.


 4 −3 −4 −2

−4 2 1 −4

−1 −3 1 −4




In Exercises 37–48, write the linear system as an

augmented matrix. Convert the augmented matrix to

reduced row echelon form, and find the solution of the

linear system.

37.

 
x + y = 1

4x + 3y = 2

38.

 
−3x + y = 1

4x + 2y = 0

39.




3x − 3y = 3

4x − y − 3z= 3

−2x − 2y =−2

40.




2x − 4z= 1

4x + 3y − 2z= 0

2x + 2z= 2

41.




x + 2y + z= 1

2x + 3y + 2z= 0

x + y + z= 2

42.




3x − 2z=−3

−2x + z=−2

− z= 2

43.

 
3x1 + 2x2 + 3x3 =−3

x1 + 2x2 − x3 =−2

44.

 
− 3x2 − x3 = 2

x1 + x3 =−2

45.



−x1 + 3x3 + x4 = 2

2x1 + 3x2 − 3x3 + x4 = 2

2x1 − 2x2 − 2x3 − x4 =−2

46.



−3x1 − x2 + 3x3 + 3x4 =−3

x1 − x2 + x3 + x4 = 3

−3x1 + 3x2 − x3 + 2x4 = 1

47.




3x1 − 3x2 + x3 + 3x4 =−3

x1 + x2 − x3 − 2x4 = 3

4x1 − 2x2 + x4 = 0

48.



−3x1 + 2x2 − x3 − 2x4 = 2

x1 − x2 − 3x4 = 3

4x1 − 3x2 + x3 − x4 = 1

49. The augmented matrix of a linear system has the

form 
 1 2 −1 a

2 3 −2 b

−1 −1 1 c




a. Determine the values of a, b, and c for which

the linear system is consistent.

b. Determine the values of a, b, and c for which

the linear system is inconsistent.

c. When it is consistent, does the linear system

have a unique solution or infinitely many

solutions?
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d. Give a specific consistent linear system and

find one particular solution.

50. The augmented matrix of a linear system has the

form  
ax y 1

2x (a − 1)y 1

 

a. Determine the values of a for which the linear

system is consistent.

b. When it is consistent, does the linear system

have a unique solution or infinitely many

solutions?

c. Give a specific consistent linear system and

find one particular solution.

51. The augmented matrix of a linear system has the

form 
 −2 3 1 a

1 1 −1 b

0 5 −1 c




a. Determine the values of a, b, and c for which

the linear system is consistent.

b. Determine the values of a, b, and c for which

the linear system is inconsistent.

c. When it is consistent, does the linear system

have a unique solution or infinitely many

solutions?

d. Give a specific consistent linear system and

find one particular solution.

52. Give examples to describe all 2× 2 reduced row

echelon matrices.

1.3

ß

Matrix Algebra

Mathematics deals with abstractions that are based on natural concepts in concrete

settings. For example, we accept the use of numbers and all the algebraic properties

that go with them. Numbers can be added and multiplied, and they have properties

such as the distributive and associative properties. In some ways matrices can be

treated as numbers. For example, we can define addition and multiplication so that

algebra can be performed with matrices. This extends the application of matrices

beyond just a means for representing a linear system.

Let A be an m× n matrix. Then each entry of A can be uniquely specified by

using the row and column indices of its location, as shown in Fig. 1.

Column j

↓

Row i −→




a11 · · · a1j · · · a1n

...
...

...

ai1 · · · aij · · · ain

...
...

...

am1 · · · amj · · · amn


 = A

Figure 1

For example, if

A =


 −2 1 4

5 7 11

2 3 22



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then

a11 = −2 a12 = 1 a13 = 4

a21 = 5 a22 = 7 a23 = 11

a31 = 2 a32 = 3 a33 = 22

A vector is an n× 1 matrix. The entries of a vector are called its components.

For a given matrix A, it is convenient to refer to its row vectors and its column

vectors. For example, let

A =


 1 2 −1

3 0 1

4 −1 2




Then the column vectors of A are
 1

3

4





 2

0

−1


 and


 −1

1

2




while the row vectors of A, written vertically, are


 1

2

−1





 3

0

1


 and


 4

−1

2




Two m× n matrices A and B are equal if they have the same number of rows

and columns and their corresponding entries are equal. Thus, A = B if and only if

aij = bij , for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Addition and scalar multiplication of matrices

are also defined componentwise.

DEFINITION 1 Addition and Scalar Multiplication If A and B are two m× n matrices,

then the sum of the matrices A+ B is the m× n matrix with the ij term given by

aij + bij . The scalar product of the matrix A with the real number c, denoted by

cA, is the m× n matrix with the ij term given by caij .

EXAMPLE 1 Perform the operations on the matrices

A =


 2 0 1

4 3 −1

−3 6 5


 and B =


 −2 3 −1

3 5 6

4 2 1




a. A+ B b. 2A− 3B



28 Chapter 1 Systems of Linear Equations and Matrices

Solution a. We add the two matrices by adding their corresponding entries, so that

A+ B =


 2 0 1

4 3 −1

−3 6 5


+


 −2 3 −1

3 5 6

4 2 1




=


 2+ (−2) 0+ 3 1+ (−1)

4+ 3 3+ 5 −1+ 6

−3+ 4 6+ 2 5+ 1




=


 0 3 0

7 8 5

1 8 6




b. To evaluate this expression, we first multiply each entry of the matrix A by 2

and each entry of the matrix B by −3. Then we add the resulting matrices.

This gives

2A+ (−3B) = 2


 2 0 1

4 3 −1

−3 6 5


+ (−3)


 −2 3 −1

3 5 6

4 2 1




=


 4 0 2

8 6 −2

−6 12 10


+


 6 −9 3

−9 −15 −18

−12 −6 −3




=


 10 −9 5

−1 −9 −20

−18 6 7




In Example 1(a) reversing the order of the addition of the matrices gives the

same result. That is, A+ B = B + A. This is so because addition of real numbers

is commutative. This result holds in general, giving us that matrix addition is also a

commutative operation. Some other familiar properties that hold for real numbers also

hold for matrices and scalars. These properties are given in Theorem 4.

THEOREM 4 Properties of Matrix Addition and Scalar Multiplication Let A,B, and

C be m× n matrices and c and d be real numbers.

1. A+ B = B + A

2. A+ (B + C) = (A+ B)+ C

3. c(A+ B) = cA+ cB

4. (c + d)A = cA+ dA

5. c(dA) = (cd)A

6. The m× n matrix with all zero entries, denoted by 0, is such that A+ 0 =

0+ A = A.

7. For any matrix A, the matrix −A, whose components are the negative of each

component of A, is such that A+ (−A) = (−A)+ A = 0.
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Proof In each case it is sufficient to show that the column vectors of the two

matrices agree. We will prove property 2 and leave the others as exercises.

(2) Since the matrices A,B, and C have the same size, the sums (A+ B)+ C

and A+ (B + C) are defined and also have the same size. Let Ai ,Bi , and Ci

denote the ith column vector of A,B, and C, respectively. Then

(Ai + Bi )+ Ci =




 a1i

...

ami


+


 b1i

...

bmi




+


 c1i

...

cmi




=


 a1i + b1i

...

ami + bmi


+


 c1i

...

cmi


 =


 (a1i + b1i )+ c1i

...

(ami + bmi)+ cmi




Since the components are real numbers, where the associative property of addition

holds, we have

(Ai + Bi )+ Ci =


 (a1i + b1i )+ c1i

...

(ami + bmi)+ cmi




=


 a1i + (b1i + c1i )

...

ami + (bmi + cmi)


 = Ai + (Bi + Ci )

As this holds for every column vector, the matrices (A+ B)+ C and A+ (B + C)

are equal, and we have (A+ B)+ C = A+ (B + C).

Matrix Multiplication

We have defined matrix addition and a scalar multiplication, and we observed that

these operations satisfy many of the analogous properties for real numbers. We have

not yet considered the product of two matrices. Matrix multiplication is more difficult

to define and is developed from the dot product of two vectors.

DEFINITION 2 Dot Product of Vectors Given two vectors

u =




u1

u2

...

un


 and v =




v1

v2

...

vn




the dot product is defined by

u · v = u1v1 + u2v2 + · · · + unvn =

n 
i=1

uivi
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Observe that the dot product of two vectors is a scalar. For example,
 2

−3

−1




·


 −5

1

4


 = (2)(−5)+ (−3)(1)+ (−1)(4) = −17

Now to motivate the concept and need for matrix multiplication we first introduce

the operation of multiplying a vector by a matrix. As an illustration let

B =

 
1 −1

−2 1

 
and v =

 
1

3

 
The product of B and v, denoted by Bv, is a vector, in this case with two components.

The first component of Bv is the dot product of the first row vector of B with v,

while the second component is the dot product of the second row vector of B with v,

so that

Bv =

 
1 −1

−2 1

  
1

3

 
=

 
(1)(1)+ (−1)(3)

(−2)(1)+ (1)(3)

 
=

 
−2

1

 

Using this operation, the matrix B transforms the vector v =

 
1

3

 
to the vector

Bv =

 
−2

1

 
. If A =

 
−1 2

0 1

 
is another matrix, then the product of A and Bv

is given by

A(Bv) =

 
−1 2

0 1

  
−2

1

 
=

 
4

1

 
The question then arises, is there a single matrix which can be used to transform

the original vector

 
1

3

 
to

 
4

1

 
? To answer this question, let

v =

 
x

y

 
A =

 
a11 a12

a21 a22

 
and B =

 
b11 b12

b21 b22

 
The product of B and v is

Bv =

 
b11x + b12y

b21x + b22y

 
Now, the product of A and Bv is

A(Bv) =

 
a11 a12

a21 a22

  
b11x + b12y

b21x + b22y

 

=

 
a11(b11x + b12y)+ a12(b21x + b22y)

a21(b11x + b12y)+ a22(b21x + b22y)

 

=

 
(a11b11 + a12b21)x + (a11b12 + a12b22)y

(a21b11 + a22b21)x + (a21b12 + a22b22)y

 

=

 
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

  
x

y
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Thus, we see that A(Bv) is the product of the matrix 
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

 

and the vector

 
x

y

 
. We refer to this matrix as the product of A and B, denoted by

AB, so that

A(Bv) = (AB)v

See Fig. 2.

x 

y 

⫺5

⫺5

5

5x 

y 

⫺5

⫺5

5

5 x 

y 

⫺5

⫺5

5

5

B

Bv ABv
v

A

AB

Figure 2

Notice that the product matrix AB is obtained by computing the dot product of

each row vector of the matrix A, on the left, with each column vector of the matrix

B, on the right. Using the matrices A and B given above, we have

AB =

 
−1 2

0 1

  
1 −1

−2 1

 
=

 
(−1)(1)+ (2)(−2) (−1)(−1)+ (2)(1)

(0)(1)+ (1)(−2) (0)(−1)+ (1)(1)

 
=

 
−5 3

−2 1

 

This matrix transforms the vector

 
1

3

 
to

 
4

1

 
in one step. That is,

(AB)v =

 
−5 3

−2 1

  
1

3

 
=

 
4

1

 
which was our original aim. The notion of matrices as transformations is taken up

again in Chap. 4 where we consider more general transformations of vectors.

For another illustration of the matrix product let

A =


 1 3 0

2 1 −3

−4 6 2


 and B =


 3 −2 5

−1 4 −2

1 0 3




The entries across the first row of the product matrix AB are obtained from the dot

product of the first row vector of A with the first, second, and third column vectors of
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B, respectively. The terms in the second row of AB are the dot products of the second

row vector of A with the first, second, and third column vectors of B, respectively.

Finally, the terms in the third row of AB are the dot products of the third row vector

of A again with the first, second, and third column vectors of B, respectively. Thus,

the product matrix AB is

AB =


 (1)(3)+(3)(−1)+(0)(1) −2+ 12+ 0 5− 6+ 0

6− 1− 3 −4+ 4+ 0 10− 2− 9

−12− 6+ 2 8+ 24+ 0 −20− 12+ 6




=


 0 10 −1

2 0 −1

−16 32 −26




In the previous example, the product AB exists since the matrices A and B have

the same number of rows and the same number of columns. This condition can be

relaxed somewhat. In general, the product of two matrices A and B exists if the

number of columns of A is equal to the number of rows of B.

DEFINITION 3 MatrixMultiplication Let A be an m× n matrix and B an n× p matrix; then

the product AB is an m× p matrix. The ij term of AB is the dot product of the

ith row vector of A with the j th column vector of B, so that

(AB)ij = ai1b1j + ai2b2j + · · · + ainbnj =

n 
k=1

aikbkj

It is important to recognize that not all properties of real numbers carry over to

properties of matrices. Because matrix multiplication is only defined when the number

of columns of the matrix on the left equals the number of rows of the matrix on the

right, it is possible for AB to exist with BA being undefined. For example,

AB =

 
1 3 0

2 1 −3

  3 −2 5

−1 4 −2

1 0 3




is defined, but

BA =


 3 −2 5

−1 4 −2

1 0 3


 1 3 0

2 1 −3

 
is not. As a result, we cannot interchange the order when multiplying two matrices

unless we know beforehand that the matrices commute. We say two matrices A and

B commute when AB = BA.

Example 2 illustrates that even when AB and BA are both defined, they might

not be equal.
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EXAMPLE 2 Verify that the matrices

A =

 
1 0

−1 2

 
and B =

 
0 1

1 1

 

do not satisfy the commutative property for multiplication.

Solution The products are

AB =

 
1 0

−1 2

  
0 1

1 1

 
=

 
0 1

2 1

 
and

BA =

 
0 1

1 1

  
1 0

−1 2

 
=

 
−1 2

0 2

 
so that AB  = BA.

In Example 3 we describe all matrices that commute with a particular matrix.

EXAMPLE 3 Find all 2× 2 matrices that commute with the matrix

A =

 
1 0

1 1

 

Solution We start by letting B denote an arbitrary 2× 2 matrix

B =

 
a b

c d

 
Then the product of matrix A on the left with matrix B on the right is given by

AB =

 
1 0

1 1

  
a b

c d

 
=

 
a b

a + c b + d

 
On the other hand,

BA =

 
a b

c d

  
1 0

1 1

 
=

 
a + b b

c + d d

 
Setting AB = BA, we obtain

a = a + b a + c = c + d and b + d = d

so that b = 0 and a = d. Let S be the set of all 2× 2 matrices defined by

S =

  
a 0

c a

     a, c ∈ ⺢

 
Then each matrix in S commutes with the matrix A.
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EXAMPLE 4 Perform the operations on the matrices

A =


 −3 1

2 2

−1 5


 B =

 
−1 1 −1 3

2 5 −3 1

 
and C =

 
3 2 −2 1

1 6 −2 4

 

a. A(B + C) b. AB + AC

Solution We first notice that the matrix A is 3× 2 and both B and C are 2× 4, so AB and

AC are defined. Also since the matrices B and C have the same number of rows

and columns, the matrix B + C is defined, so the expressions in parts (a) and (b)

are defined.

a. We first add the matrices B and C inside the parentheses and then multiply

on the left by the matrix A. This gives us

A(B + C)

=


 −3 1

2 2

−1 5


  −1 1 −1 3

2 5 −3 1

 
+

 
3 2 −2 1

1 6 −2 4

  

=


 −3 1

2 2

−1 5


 2 3 −3 4

3 11 −5 5

 

=


 −3(2)+ 1(3) −3(3)+ 1(11) −3(−3)+ 1(−5) −3(4)+ 1(5)

2(2)+ 2(3) 2(3)+ 2(11) 2(−3)+ 2(−5) 2(4)+ 2(5)

−1(2)+ 5(3) −1(3)+ 5(11) −1(−3)+ 5(−5) −1(4)+ 5(5)




=


 −3 2 4 −7

10 28 −16 18

13 52 −22 21




b. In this case we compute AB and AC separately and then add the two resulting

matrices. We have

AB + AC =


 −3 1

2 2

−1 5


 −1 1 −1 3

2 5 −3 1

 

+


 −3 1

2 2

−1 5


 3 2 −2 1

1 6 −2 4

 

=


 5 2 0 −8

2 12 −8 8

11 24 −14 2


+


 −8 0 4 1

8 16 −8 10

2 28 −8 19




=


 −3 2 4 −7

10 28 −16 18

13 52 −22 21



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Notice that in Example 4 the matrix equation

A(B + C) = AB + AC

holds. This and other familiar properties involving multiplication and addition of real

numbers hold for matrices. They are listed in Theorem 5.

THEOREM 5 Properties of MatrixMultiplication Let A,B, and C be matrices with sizes

so that the given expressions are all defined, and let c be a real number.

1. A(BC) = (AB)C

2. c(AB) = (cA)B = A(cB)

3. A(B + C) = AB + AC

4. (B + C)A = BA+ CA

We have already seen that unlike with real numbers, matrix multiplication does

not commute. There are other properties of the real numbers that do not hold for

matrices. Recall that if x and y are real numbers such that xy = 0, then either x = 0

or y = 0. This property does not hold for matrices. For example, let

A =

 
1 1

1 1

 
and B =

 
−1 −1

1 1

 
Then

AB =

 
1 1

1 1

  
−1 −1

1 1

 
=

 
0 0

0 0

 

Transpose of aMatrix

The transpose of a matrix is obtained by interchanging the rows and columns of a

matrix.

DEFINITION 4 Transpose If A is an m× n matrix, the transpose of A, denoted by At, is the

n×m matrix with ij term

(At )ij = aji

where 1 ≤ i ≤ n and 1 ≤ j ≤ m.

For example, the transpose of the matrix

A =


 1 2 −3

0 1 4

−1 2 1


 is At =


 1 0 −1

2 1 2

−3 4 1




Notice that the row vectors of A become the column vectors of At . Theorem 6

gives some properties of the transpose.
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THEOREM 6 Suppose A and B are m× n matrices, C is an n× p matrix, and c is a scalar.

1. (A+ B)t = At + Bt

2. (AC)t = CtAt

3. (At )t = A

4. (cA)t = cAt

Proof (2) We start by showing that the products involved are all defined. Since

AC is m× p, then (AC)t is p ×m. As Ct is p × n and At is n×m, then CtAt

is also p ×m. So the sizes of the products agree. Now to show that the products

are equal, we apply the definitions of multiplication and transpose to obtain

(CtAt )ij =

n 
k=1

(Ct )ik(A
t )kj

=

n 
k=1

ckiajk =

n 
k=1

ajkcki = (AC)ji

= ((AC)t )ij

The proofs of parts 1, 3, and 4 are left as exercises.

DEFINITION 5 Symmetric Matrix An n× n matrix is symmetric provided that At = A.

EXAMPLE 5 Find all 2× 2 matrices that are symmetric.

Solution Let

A =

 
a b

c d

 
Then A is symmetric if and only if

A =

 
a b

c d

 
=

 
a c

b d

 
= At

which holds if and only if b = c. So a 2× 2 matrix is symmetric if and only if the

matrix has the form  
a b

b d

 

Fact Summary

Let A,B, and C be matrices.

1. The definitions of matrix addition and scalar multiplication satisfy many of

the properties enjoyed by real numbers. This allows algebra to be carried

out with matrices.
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2. When AB is defined, the ij entry of the product matrix is the dot product

of the ith row vector of A with the j th column vector of B.

3. Matrix multiplication does not in general commute. Even when AB and

BA are both defined, it is possible for AB  = BA.

4. The distributive properties hold. That is, A(B + C) = AB + AC and

(B + C)A = BA+ CA.

5. (A+ B)t = At + Bt, (AB)t = BtAt , (At)t = A, (cA)t = cAt

6. The matrix A =

 
a b

c d

 
is symmetric if and only if b = c.

Exercise Set 1.3

In Exercises 1–4, use the matrices

A =

 
2 −3

4 1

 
B =

 
−1 3

−2 5

 

C =

 
1 1

5 −2

 

1. Find A+ B and B + A.

2. Find 3A− 2B.

3. Find (A+ B)+ C and A+ (B + C).

4. Find 3(A+ B)− 5C.

In Exercises 5 and 6, use the matrices

A =


 −3 −3 3

1 0 2

0 −2 3




B =


 −1 3 3

−2 5 2

1 2 4




C =


 −5 3 9

−3 10 6

2 2 11




5. Find (A− B)+ C and 2A+ B.

6. Show that A+ 2B − C = 0.

In Exercises 7 and 8, use the matrices

A =

 
3 1

−2 4

 
B =

 
2 0

1 −2

 

7. Find AB and BA.

8. Show that 3(AB) = A(3B).

In Exercises 9 and 10, use the matrices

A =

 
2 −3 −3

−3 −2 0

 

B =


 3 −1

2 −2

3 0




9. Find AB.

10. Find BA.

11. Let

A =


 −1 1 1

3 −3 3

−1 2 1




and

B =


 −2 3 −3

0 −1 2

3 −2 −1




Find AB.

12. Let

A =


 −2 −2 −1

−3 2 1

1 −1 −1




and

B =


 1 −1 −2

−2 −2 3

−3 1 −3




Find AB.
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In Exercises 13–16, use the matrices

A =

 
−2 −3

3 0

 
B =

 
2 0

−2 0

 

C =

 
2 0

−1 −1

 

13. Find A(B + C).

14. Find (A+ B)C.

15. Find 2A(B − 3C).

16. Find (A+ 2B)(3C).

In Exercises 17–24, use the matrices

A =

 
2 0 −1

1 0 −2

 

B =

 
−3 1 1

−3 −3 −2

 
C =

 
3 −1

−1 −3

 
Whenever possible, perform the operations. If a

computation cannot be made, explain why.

17. 2At − Bt

18. Bt − 2A

19. ABt

20. BAt

21. (At + Bt)C

22. C(At + Bt)

23. (AtC)B

24. (AtBt )C

25. Let

A =

 
−1 −2

1 2

 
B =

 
1 3

2 −1

 

C =

 
7 5

−1 −2

 
Show that AB = AC and yet B  = C.

26. Let

A =

 
0 2

0 5

 

Find a 2× 2 matrix B that is not the zero matrix,

such that AB is the zero matrix.

27. Find all 2× 2 matrices of the form

A =

 
a b

0 c

 
such that

A2 = AA =

 
1 0

0 1

 

28. Let A =

 
2 1

1 1

 
. Find all matrices of the form

M =

 
a b

c d

 
such that AM = MA.

29. Find matrices A and B such that AB = 0 but

BA  = 0.

30. Show there are no 2× 2 matrices A and B such

that

AB − BA =

 
1 0

0 1

 

31. Determine all values of a and b such that 
1 2

a 0

  
3 b

−4 1

 
=

 
−5 6

12 16

 

32. If A and B are 2× 2 matrices, show that the sum

of the terms on the diagonal of AB − BA is 0.

33. Let

A =


 1 0 0

0 −1 0

0 0 1




Find the matrix A20.

34. If A and B are n× n matrices, when does

(A+ B)(A− B) = A2 − B2?

35. If the matrices A and B commute, show that

A2B = BA2.

36. Suppose A,B, and C are n× n matrices and B

and C both commute with A.

a. Show that BC and A commute.

b. Give specific matrices to show that BC and

CB do not have to be equal.
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37. Suppose that A is an n× n matrix. Show that if

for each vector x in ⺢n, Ax = 0, then A is the

zero matrix.

38. For each positive integer n, let

An =

 
1− n −n

n 1+ n

 
Show that AnAm = An+m.

39. Find all 2× 2 matrices that satisfy AAt = 0.

40. Suppose that A and B are symmetric matrices.

Show that if AB = BA, then AB is symmetric.

41. If A is an m× n matrix, show that AAt and AtA

are both defined and are both symmetric.

42. An n× n matrix A is called idempotent provided

that A2 = AA = A. Suppose that A and B are

n× n idempotent matrices. Show that if

AB = BA, then the matrix AB is idempotent.

43. An n× n matrix A is skew-symmetric provided

At = −A. Show that if a matrix is

skew-symmetric, then the diagonal entries are 0.

44. The trace of an n× n matrix A is the sum of the

diagonal terms, denoted tr(A).

a. If A and B are n× n matrices, show that

tr(A+ B) = tr(A)+ tr(B).

b. If A is an n× n matrix and c is a scalar, show

that tr(cA) = c tr(A).

1.4

ß

The Inverse of a SquareMatrix

In the real number system, the number 1 is the multiplicative identity. That is, for any

real number a,

a · 1 = 1 · a = a

We also know that for every number x with x  = 0, there exists the number 1
x
, also

written x−1, such that

x ·
1

x
= 1

We seek a similar relationship for square matrices. For an n× n matrix A, we can

check that the n× n matrix

I =




1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




is the multiplicative identity. That is, if A is any n× n matrix, then

AI = IA = A

This special matrix is called the identity matrix. For example, the 2× 2, 3× 3, and

4× 4 identity matrices are, respectively,

 
1 0

0 1

 
 1 0 0

0 1 0

0 0 1


 and




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1






40 Chapter 1 Systems of Linear Equations and Matrices

DEFINITION 1 Inverse of a SquareMatrix Let A be an n× n matrix. If there exists an n× n

matrix B such that

AB = I = BA

then the matrix B is a (multiplicative) inverse of the matrix A.

EXAMPLE 1 Find an inverse of the matrix

A =

 
1 1

1 2

 

Solution In order for a 2× 2 matrix B =

 
x1 x2

x3 x4

 
to be an inverse of A, matrix B must

satisfy  
1 1

1 2

  
x1 x2

x3 x4

 
=

 
x1 + x3 x2 + x4

x1 + 2x3 x2 + 2x4

 
=

 
1 0

0 1

 
This matrix equation is equivalent to the linear system


x1 + x3 = 1

x2 + x4 = 0

x1 + 2x3 = 0

x2 + 2x4 = 1

The augmented matrix and the reduced row echelon form are given by


1 0 1 0 1

0 1 0 1 0

1 0 2 0 0

0 1 0 2 1


→




1 0 0 0 2

0 1 0 0 −1

0 0 1 0 −1

0 0 0 1 1




Thus, the solution is x1 = 2, x2 = −1, x3 = −1, x4 = 1, and an inverse matrix is

B =

 
2 −1

−1 1

 
The reader should verify that AB = BA = I .

Theorem 7 establishes the uniqueness, when it exists, of the multiplicative inverse.

THEOREM 7 The inverse of a matrix, if it exists, is unique.

Proof Assume that the square matrix A has an inverse and that B and C are

both inverse matrices of A. That is, AB = BA = I and AC = CA = I. We show

that B = C. Indeed,

B = BI = B(AC) = (BA)C = (I )C = C
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We refer to the unique inverse as the inverse of A and denote it by A−1. When

the inverse of a matrix A exists, we call A invertible. Otherwise, the matrix A is

called noninvertible.

THEOREM 8 The inverse of the matrix A =

 
a b

c d

 
exists if and only if ad − bc  = 0. In this

case the inverse is the matrix

A−1 =
1

ad − bc

 
d −b

−c a

 
Proof First, assume that ad − bc  = 0, and let

B =

 
x1 x2

x3 x4

 
We need to find x1, x2, x3, and x4 such that

AB =

 
1 0

0 1

 
Taking the product of the two matrices yields 

ax1 + bx3 ax2 + bx4

cx1 + dx3 cx2 + dx4

 
=

 
1 0

0 1

 
which results in the linear system


ax1 + bx3 = 1

ax2 + bx4 = 0

cx1 + dx3 = 0

cx2 + dx4 = 1

The augmented matrix of this linear system is given by


a 0 b 0 1

0 a 0 b 0

c 0 d 0 0

0 c 0 d 1




which reduces to 


1 0 0 0 d
ad−bc

0 1 0 0 − b
ad−bc

0 0 1 0 − c
ad−bc

0 0 0 1 a
ad−bc




Since ad − bc  = 0, the inverse of the matrix A is

A−1 =

 
d

ad−bc
− b

ad−bc

− c
ad−bc

a
ad−bc

 
=

1

ad − bc

 
d −b

−c a

 
To prove the reverse claim, we use the contrapositive. That is, if ad − bc = 0,

then the inverse does not exist. An outline of the proof is given in Exercise 41.
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To illustrate the use of the formula, let

A =

 
2 −1

1 3

 
then

A−1 =
1

6− (−1)

 
3 1

−1 2

 
=

 
3
7

1
7

− 1
7

2
7

 
For an example which underscores the necessity of the condition that ad − bc  = 0,

we consider the matrix

A =

 
1 1

1 1

 
Observe that in this case ad − bc = 1− 1 = 0. Now, the matrix A is invertible if

there is a B =

 
x1 x2

x3 x4

 
such that 
1 1

1 1

  
x1 x2

x3 x4

 
=

 
1 0

0 1

 
This matrix equation yields the inconsistent system


x1 + x3 = 1

x2 + x4 = 0

x1 + x3 = 0

x2 + x4 = 1

Hence, A is not invertible.

To find the inverse of larger square matrices, we extend the method of aug-

mented matrices. Let A be an n× n matrix. Let B be another n× n matrix, and let

B1,B2, . . . ,Bn denote the n column vectors of B. Since AB1, AB2, . . . , ABn are the

column vectors of AB, in order for B to be the inverse of A, we must have

AB1 =




1

0
...

0


 AB2 =




0

1
...

0


 . . . ABn =




0

0
...

1




That is, the matrix equations

Ax =




1

0
...

0


 Ax =




0

1
...

0


 . . . Ax =




0

0
...

1




must all have unique solutions. But all n linear systems can be solved simultaneously

by row-reducing the n× 2n augmented matrix


a11 a12 . . . a1n 1 0 . . . 0

a21 a22 . . . a2n 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...

an1 an2 . . . ann 0 0 . . . 1



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On the left is the matrix A, and on the right is the matrix I. Then A will have an

inverse if and only if it is row equivalent to the identity matrix. In this case, each

of the linear systems can be solved. If the matrix A does not have an inverse, then

the row-reduced matrix on the left will have a row of zeros, indicating at least one of

the linear systems does not have a solution.

Example 2 illustrates the procedure.

EXAMPLE 2 Find the inverse of the matrix

A =


 1 1 −2

−1 2 0

0 −1 1




Solution To find the inverse of this matrix, place the identity on the right to form the 3× 6

matrix 
 1 1 −2 1 0 0

−1 2 0 0 1 0

0 −1 1 0 0 1




Now use row operations to reduce the matrix on the left to the identity, while

applying the same operations to the matrix on the right. The final result is
 1 0 0 2 1 4

0 1 0 1 1 2

0 0 1 1 1 3




so the inverse matrix is

A−1 =


 2 1 4

1 1 2

1 1 3




The reader should check that AA−1 = A−1A = I.

EXAMPLE 3 Use the method of Example 2 to determine whether the matrix

A =


 1 −1 2

3 −3 1

3 −3 1




is invertible.

Solution Following the procedure described above, we start with the matrix
 1 −1 2 1 0 0

3 −3 1 0 1 0

3 −3 1 0 0 1



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After the two row operations −3R1 + R2 → R2 followed by −3R1 + R3 → R3,

this matrix is reduced to 
 1 −1 2 1 0 0

0 0 −5 −3 1 0

0 0 −5 −3 0 1




Next perform the row operation −R2 + R3 → R3 to obtain
 1 −1 2 1 0 0

0 0 −5 −3 1 0

0 0 0 0 −1 1




The 3× 3 matrix of coefficients on the left cannot be reduced to the identity matrix,

and therefore, the original matrix does not have an inverse. Also notice that a

solution does exist to

Ax =


 1

0

0




while solutions to

Ax =


 0

1

0


 and Ax =


 0

0

1




do not exist.

The matrix A of Example 3 has two equal rows and cannot be row-reduced to the

identity matrix. This is true for any n× n matrix with two equal rows and provides

an alternative method for concluding that such a matrix is not invertible.

Theorem 9 gives a formula for the inverse of the product of invertible

matrices.

THEOREM 9 Let A and B be n× n invertible matrices. Then AB is invertible and

(AB)−1 = B−1A−1

Proof Using the properties of matrix multiplication, we have

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

and

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = BB−1 = I

Since, when it exists, the inverse matrix is unique, we have shown that the inverse

of AB is the matrix B−1A−1.
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EXAMPLE 4 Suppose that B is an invertible matrix and A is any matrix with AB = BA. Show

that A and B−1 commute.

Solution Since AB = BA, we can multiply both sides on the right by B−1 to obtain

(AB)B−1 = (BA)B−1

By the associative property of matrix multiplication this last equation can be writ-

ten as

A(BB−1) = BAB−1

and since BB−1 = I, we have

A = BAB−1

Next we multiply on the left by B−1 to obtain

B−1A = B−1BAB−1 so B−1A = AB−1

as required.

Fact Summary

Let A and B denote matrices.

1. The inverse of a matrix, when it exists, is unique.

2. If A =

 
a b

c d

 
and ad − bc  = 0, then A−1 = 1

ad−bc

 
d −b

−c a

 
.

3. A matrix A is invertible if and only if it is row equivalent to the identity

matrix.

4. If A and B are invertible n× n matrices, then AB is invertible and

(AB)−1 = B−1A−1.

Exercise Set 1.4

In Exercises 1–16, a matrix A is given. Find A−1 or

indicate that it does not exist. When A−1 exists, check

your answer by showing that AA−1 = I .

1.

 
1 −2

3 −1

 

2.

 
−3 1

1 2

 

3.

 
−2 4

2 −4

 

4.

 
1 1

2 2

 

5.


 0 1 −1

3 1 1

1 2 −1



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6.


 0 2 1

−1 0 0

2 1 1




7.


 3 −3 1

0 0 1

−2 2 −1




8.


 1 3 0

1 2 3

0 −1 3




9.




3 3 0 −3

0 1 2 0

0 0 −1 −1

0 0 0 −2




10.




1 3 0 −3

0 1 2 −3

0 0 2 −2

0 0 0 2




11.




1 0 0 0

2 1 0 0

−3 −2 −3 0

0 1 3 3




12.




1 0 0 0

−2 1 0 0

1 −1 −2 0

2 −2 0 2




13.




2 −1 4 −5

0 −1 3 −1

0 0 0 2

0 0 0 −1




14.




3 0 0 0

−6 1 0 0

2 −5 0 0

1 −3 4 2




15.



−1 1 0 −1

−1 1 −1 0

−1 0 0 0

−2 1 −1 1




16.



−2 −3 3 0

2 0 −2 0

2 0 −1 −1

−2 0 1 1




17. Let

A =

 
2 1

3 −4

 
B =

 
1 2

−1 3

 
Verify that AB + A can be factored as A(B + I )

and AB + B can be factored as (A+ I )B.

18. If A is an n× n matrix, write A2 + 2A+ I in

factored form.

19. Let

A =

 
1 2

−2 1

 

a. Show that A2 − 2A+ 5I = 0.

b. Show that A−1 = 1
5
(2I − A).

c. Show in general that for any square matrix A

satisfying A2 − 2A+ 5I = 0, the inverse is

A−1 = 1
5
(2I − A).

20. Determine those values of λ for which the matrix
 1 λ 0

3 2 0

1 2 1




is not invertible.

21. Determine those values of λ for which the matrix
 1 λ 0

1 3 1

2 1 1




is not invertible.

22. Determine those values of λ for which the matrix
 2 λ 1

3 2 1

1 2 1




is not invertible.

23. Let

A =


 1 λ 0

1 1 1

0 0 1



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a. Determine those values of λ for which A is

invertible.

b. For those values found in part (a) find the

inverse of A.

24. Determine those values of λ for which the matrix
 λ −1 0

−1 λ −1

0 −1 λ




is invertible.

25. Find 2× 2 matrices A and B that are not

invertible but A+ B is invertible.

26. Find 2× 2 matrices A and B that are invertible

but A+ B is not invertible.

27. If A and B are n× n matrices and A is invertible,

show that

(A+ B)A−1(A− B) = (A− B)A−1(A+ B)

28. If B = PAP−1, express B2, B3, . . . , Bk, where k

is any positive integer, in terms of A,P, and

P−1.

29. Let A and B be n× n matrices.

a. Show that if A is invertible and AB = 0, then

B = 0.

b. If A is not invertible, show there is an n× n

matrix B that is not the zero matrix and such

that AB = 0.

30. Show that if A is symmetric and invertible, then

A−1 is symmetric.

In Exercises 31–34, the matrices A and B are

invertible symmetric matrices and AB = BA.

31. Show that AB is symmetric.

32. Show that A−1B is symmetric.

33. Show that AB−1 is symmetric.

34. Show that A−1B−1 is symmetric.

35. A matrix A is orthogonal provided that

At = A−1. Show that the product of two

orthogonal matrices is orthogonal.

36. Show the matrix

A =

 
cos θ − sin θ

sin θ cos θ

 
is orthogonal. (See Exercise 35.)

37. a. If A,B, and C are n× n invertible matrices,

show that

(ABC)−1 = C−1B−1A−1

b. Use mathematical induction to show that for all

positive integers k, if A1, A2, . . . , Ak are n× n

invertible matrices, then

(A1A2 · · ·Ak)
−1 = A−1

k A−1
k−1 · · ·A

−1
1

38. An n× n matrix A is diagonal provided that

aij = 0 whenever i  = j. Show that if ann  = 0 for

all n, then A is invertible and the inverse is


1
a11

0 0 . . . 0

0 1
a22

0 . . . 0

...
...

. . .
...

...

0 0 . . . 1
an−1,n−1

0

0 0 . . . 0 1
ann




39. Let A be an n× n invertible matrix. Show that if

A is in upper (lower) triangular form, then A−1 is

also in upper (lower) triangular form.

40. Suppose B is row equivalent to the n× n

invertible matrix A. Show that B is invertible.

41. Show that if ad − bc = 0, then A =

 
a b

c d

 
is

not invertible.

a. Expand the matrix equation 
a b

c d

  
x1 x2

x3 x4

 
=

 
1 0

0 1

 
b. Show the 2× 2 linear system in the variables

x1 and x3 that is generated in part (a) yields

d = 0. Similarly, show the system in the

variables x2 and x4 yields b = 0.

c. Use the results of part (b) to conclude that

ad − bc = 0.
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1.5

ß

Matrix Equations

In this section we show how matrix multiplication can be used to write a linear

system in terms of matrices and vectors. We can then write a linear system as a single

equation, using a matrix and two vectors, which generalizes the linear equation ax = b

for real numbers. As we will see, in some cases the linear system can then be solved

using algebraic operations similar to the operations used to solve equations involving

real numbers.

To illustrate the process, consider the linear system


x − 6y − 4z=−5

2x − 10y − 9z=−4

−x + 6y + 5z= 3

The matrix of coefficients is given by

A =


 1 −6 −4

2 −10 −9

−1 6 5




Now let x and b be the vectors

x =


 x

y

z


 and b =


 −5

−4

3




Then the original linear system can be rewritten as

Ax = b

We refer to this equation as the matrix form of the linear system and x as the vector

form of the solution.

In certain cases we can find the solution of a linear system in matrix form directly

by matrix multiplication. In particular, if A is invertible, we can multiply both sides

of the previous equation on the left by A−1, so that

A−1(Ax) = A−1b

Since matrix multiplication is associative, we have 
A−1A

 
x = A−1b

therefore,

x = A−1b

For the example above, the inverse of the matrix

A =


 1 −6 −4

2 −10 −9

−1 6 5


 is A−1 =


 2 3 7

− 1
2

1
2

1
2

1 0 1



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Therefore, the solution to the linear system in vector form is given by

x = A−1b =


 2 3 7

− 1
2

1
2

1
2

1 0 1




 −5

−4

3


 =


 −1

2

−2




That is,

x = −1 y = 2 and z = −2

We have just seen that if the matrix A has an inverse, then the equation Ax = b

has a unique solution. This fact is recorded in Theorem 10.

THEOREM 10 If the n× n matrix A is invertible, then for every vector b, with n components,

the linear system Ax = b has the unique solution x = A−1b.

EXAMPLE 1 Write the linear system in matrix form and solve. 
2x + y = 1

−4x + 3y = 2

Solution The matrix form of the linear system is given by 
2 1

−4 3

  
x

y

 
=

 
1

2

 
Notice that since 2(3)− (1)(−4) = 10  = 0, the coefficient matrix is invertible. By

Theorem 8, of Sec. 1.4, the inverse is

1
10

 
3 −1

4 2

 
Now, by Theorem 10, the solution to the linear system is

x = 1
10

 
3 −1

4 2

  
1

2

 
= 1

10

 
1

8

 
=


 1

10

8
10




so that

x = 1
10

and y = 8
10

DEFINITION 1 Homogeneous Linear System A homogeneous linear system is a system of

the form Ax = 0.

The vector x = 0 is always a solution to the homogeneous system Ax = 0, and

is called the trivial solution.
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EXAMPLE 2 Let

A =


 1 2 1

1 3 0

1 1 2


 and x =


 x1

x2

x3




Find all vectors x such that Ax = 0.

Solution First observe that x = 0 is one solution. To find the general solution, we row-reduce

the augmented matrix
 1 2 1 0

1 3 0 0

1 1 2 0


 to


 1 2 1 0

0 1 −1 0

0 0 0 0




From the reduced matrix we see that x3 is free with x2 = x3, and x1 = −2x2 − x3 =

−3x3. The solution set in vector form is given by

S =




 −3t

t

t



      t ∈ ⺢


 .

Notice that the trivial solution is also included in S as a particular solution with

t = 0.

Observe that in Example 2, the coefficient matrix is not row equivalent to I , and

hence A is not invertible.

If a homogeneous linear system Ax = 0 is such that A is invertible, then by

Theorem 10, the only solution is x = 0. In Sec. 1.6 we will show that the converse

is also true.

EXAMPLE 3 Show that if x and y are distinct solutions to the homogeneous system Ax = 0,

then x+ cy is a solution for every real number c.

Solution Using the algebraic properties of matrices, we have that

A(x+ cy) = A(x)+ A(cy)

= Ax+ cAy

= 0+ c 0

= 0

Hence, x+ cy is a solution to the homogeneous system.

The result of Example 3 shows that if the homogeneous equation Ax = 0 has

two distinct solutions, then it has infinitely many solutions. That is, the homogeneous
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equation Ax = 0 either has one solution (the trivial solution) or has infinitely many

solutions. The same result holds for the nonhomogeneous equation Ax = b, with

b  = 0. To see this, let u and v be distinct solutions to Ax = b and c a real number.

Then

A(v+ c(u− v)) = Av+ A(c(u− v))

= Av+ cAu− cAv

= b+ cb− cb = b

These observations are summarized in Theorem 11.

THEOREM 11 If A is an m× n matrix, then the linear system Ax = b has no solutions, one

solution, or infinitely many solutions.

Fact Summary

Let A be an m× n matrix.

1. If A is invertible, then for every n× 1 vector b the matrix equation Ax = b

has a unique solution given by x = A−1b.

2. If A is invertible, then the only solution to the homogeneous equation

Ax = 0 is the trivial solution x = 0.

3. If u and v are solutions to Ax = 0, then the vector u+ cv is another

solution for every scalar c.

4. The linear system Ax = b has a unique solution, infinitely many solutions,

or no solution.

Exercise Set 1.5

In Exercises 1–6, find a matrix A and vectors x and b

such that the linear system can be written as Ax = b.

1.

 
2x + 3y =−1

−x + 2y = 4

2.

 
−4x − y = 3

−2x − 5y = 2

3.




2x − 3y + z=−1

−x − y + 2z=−1

3x − 2y − 2z= 3

4.




3y − 2z= 2

−x + 4z=− 3

−x − 3z= 4

5.




4x1 + 3x2 − 2x3 − 3x4 =−1

−3x1 − 3x2 + x3 = 4

2x1 − 3x2 + 4x3 − 4x4 = 3

6.




3x2 + x3 − 2x4 =−4

4x2 − 2x3 − 4x4 = 0

x1 + 3x2 − 2x3 = 3
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In Exercises 7–12, given the matrix A and vectors x

and b, write the equation Ax = b as a linear system.

7. A =

 
2 −5

2 1

 
x =

 
x

y

 
b =

 
3

2

 

8. A =

 
−2 4

0 3

 
x =

 
x

y

 
b =

 
−1

1

 

9. A =


 0 −2 0

2 −1 −1

3 −1 2




x =


 x

y

z


 b =


 3

1

−1




10. A =


 −4 −5 5

4 −1 1

−4 3 5




x =


 x

y

z


 b =


 −3

2

1




11. A =

 
2 5 −5 3

3 1 −2 −4

 

x =




x1

x2

x3

x4


b =

 
2

0

 

12. A =


 0 −2 4 −2

2 0 1 1

1 0 1 −2




x =




x1

x2

x3

x4


b =


 4

−3

1




In Exercises 13–16, use the information given to solve

the linear system Ax = b.

13.

A−1 =


 2 0 −1

4 1 4

1 2 4




b =


 1

−4

1




14.

A−1 =


 −4 3 −4

2 2 0

1 2 4




b =


 2

2

−2




15.

A−1 =



−3 −2 0 3

−1 2 −2 3

0 1 2 −3

−1 0 3 1




b =




2

−3

2

3




16.

A−1 =




3 0 −2 −2

2 0 1 −1

−3 −1 −1 1

2 −1 −2 −3




b =




1

−4

1

1




In Exercises 17–22, solve the linear system by finding

the inverse of the coefficient matrix.

17.

 
x + 4y = 2

3x + 2y =−3

18.

 
2x − 4y = 4

−2x + 3y = 3

19.



−x − z=− 1

−3x + y − 3z= 1

x − 3y + 2z= 1

20.



−2x − 2y − z= 0

−x − y =− 1

− y + 2z= 2
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21.



− x1 − x2 − 2x3 + x4 =−1

2x1 + x2 + 2x3 − x4 = 1

− 2x1 − x2 − 2x3 − 2x4 = 0

− 2x1 − x2 − x3 − x4 = 0

22.



−x1 − 2x2 + x4 =−3

−x1 + x2 − 2x3 + x4 =−2

−x1 + 2x2 − 2x3 + x4 = 3

− 2x2 + 2x3 − 2x4 =−1

23. Let

A =

 
1 −1

2 3

 
Use the inverse matrix to solve the linear system

Ax = b for the given vector b.

a. b =

 
2

1

 

b. b =

 
−3

2

 

24. Let

A =


 −1 0 −1

−3 1 −3

1 −3 2




Use the inverse matrix to solve the linear system

Ax = b for the given vector b.

a. b =


 −2

1

1




b. b =


 1

−1

0




25. Let

A =


 −1 −4

3 12

2 8




Find a nontrivial solution to Ax = 0.

26. Let

A =


 1 −2 4

2 −4 8

3 −6 12




Find a nontrivial solution to Ax = 0.

27. Find a nonzero 3× 3 matrix A such that the

vector 
 1

−1

1




is a solution to Ax = 0.

28. Find a nonzero 3× 3 matrix A such that the

vector 
 −1

2

1




is a solution to Ax = 0.

29. Suppose that A is an n× n matrix and u and v

are vectors in ⺢n. Show that if Au = Av and

u  = v, then A is not invertible.

30. Suppose that u is a solution to Ax = b and that v

is a solution to Ax = 0. Show that u+ v is a

solution to Ax = b.

31. Consider the linear system


2x + y = 1

−x + y =−2

x + 2y =−1

a. Write the linear system in matrix form Ax = b

and find the solution.

b. Find a 2× 3 matrix C such that CA = I. (The

matrix C is called a left inverse.)

c. Show that the solution to the linear system is

given by x = Cb.

32. Consider the linear system


2x + y = 3

−x − y =−2

3x + 2y = 5

a. Write the linear system in matrix form Ax = b

and find the solution.

b. Find a 2× 3 matrix C such that CA = I.

c. Show that the solution to the linear system is

given by x = Cb.
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1.6

ß

Determinants

In Sec. 1.4 we saw that the number ad − bc, associated with the 2× 2 matrix

A =

 
a b

c d

 
has special significance. This number is called the determinant of A and provides

useful information about the matrix. In particular, using this terminology, the matrix

A is invertible if and only if the determinant is not equal to 0. In this section the

definition of the determinant is extended to larger square matrices. The information

provided by the determinant has theoretical value and is used in some applications.

In practice, however, the computational difficulty in evaluating the determinant of a

very large matrix is significant. For this reason the information desired is generally

found by using other more efficient methods.

DEFINITION 1 Determinantofa2× 2Matrix The determinant of the matrix A =

 
a b

c d

 
,

denoted by |A| or det(A), is given by

|A| = det(A) =

    a b

c d

    = ad − bc

Using this terminology a 2× 2 matrix is invertible if and only if its determinant

is nonzero.

EXAMPLE 1 Find the determinant of the matrix.

a. A =

 
3 1

−2 2

 
b. A =

 
3 5

4 2

 
c. A =

 
1 0

−3 0

 

Solution a. |A| =

    3 1

−2 2

    = (3)(2)− (1)(−2) = 8

b. |A| =

    3 5

4 2

    = (3)(2)− (5)(4) = −14

c. |A| =

    1 0

−3 0

    = (1)(0)− (0)(−3) = 0

Using the determinant of a 2× 2 matrix, we now extend this definition to 3× 3

matrices.

DEFINITION 2 Determinant of a 3× 3Matrix The determinant of the matrix

A =


 a11 a12 a13

a21 a22 a23

a31 a32 a33



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is

|A| = a11

    a22 a23

a32 a33

    − a12

    a21 a23

a31 a33

    + a13

    a21 a22

a31 a32

    
The computation of the 3× 3 determinant takes the form

|A| = a11

      
∗ ∗ ∗

∗ a22 a23

∗ a32 a33

      − a12

      
∗ ∗ ∗

a21 ∗ a23

a31 ∗ a33

      + a13

       
∗ ∗ ∗

a21 a22 ∗

a31 a32 ∗

       
where the first 2× 2 determinant is obtained by deleting the first row and first column,

the second by deleting the first row and second column, and the third by deleting the

first row and third column.

EXAMPLE 2 Find the determinant of the matrix

A =


 2 1 −1

3 1 4

5 −3 3




Solution By Definition 2, the determinant is given by

det(A) = |A| = 2

    1 4

−3 3

    − 1

    3 4

5 3

    + (−1)

    3 1

5 −3

    
= (2) [3− (−12)]− (1)(9− 20)+ (−1)(−9− 5)

= 30+ 11+ 14

= 55

In Example 2, we found the determinant of a 3× 3 matrix by using an expansion

along the first row. With an adjustment of signs the determinant can be computed by

using an expansion along any row. The pattern for the signs is shown in Fig. 1. The

expansion along the second row is given by


 + − +

− + −

+ − +




Figure 1 det(A) = |A| = −3

    1 −1

−3 3

    + 1

    2 −1

5 3

    − 4

    2 1

5 −3

    
= −3(3− 3)+ (6+ 5)− 4(−6− 5) = 55

The 2× 2 determinants in this last equation are found from the original matrix by

deleting the second row and first column, the second row and second column, and

the second row and the third column, respectively. Expansion along the third row is

found in a similar way. In this case

det(A) = |A| = 5

    1 −1

1 4

    − (−3)

    2 −1

3 4

    + 3

    2 1

3 1

    
= 5(4+ 1)+ 3(8+ 3)+ 3(2− 3) = 55
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The determinant can also be computed using expansions along any column in a

similar manner. The method used to compute the determinant of a 3× 3 matrix can

be extended to any square matrix.

DEFINITION 3 Minors and Cofactors of a Matrix If A is a square matrix, then the minor

Mij , associated with the entry aij , is the determinant of the (n− 1)× (n− 1)

matrix obtained by deleting row i and column j from the matrix A. The cofactor

of aij is Cij = (−1)i+jMij .

For the matrix of Example 2, several minors are

M11 =

    1 4

−3 3

    M12 =

    3 4

5 3

    and M13 =

    3 1

5 −3

    
Using the notation of Definition 3, the determinant of A is given by the cofactor

expansion

det(A) = a11C11 + a12C12 + a13C13

= 2(−1)2(15)+ 1(−1)3(−11)− 1(−1)4(−14)

= 30+ 11+ 14 = 55

DEFINITION 4 Determinant of a SquareMatrix If A is an n× n matrix, then

det(A) = a11C11 + a12C12 + · · · + a1nC1n =

n 
k=1

a1kC1k

Similar to the situation for 3× 3 matrices, the determinant of any square matrix

can be found by expanding along any row or column.

THEOREM 12 Let A be an n× n matrix. Then the determinant of A equals the cofactor expansion

along any row or any column of the matrix. That is, for every i = 1, . . . , n and

j = 1, . . . , n,

det(A) = ai1Ci1 + ai2Ci2 + · · · + ainCin =

n 
k=1

aikCik

and

det(A) = a1jC1j + a2jC2j + · · · + anjCnj =

n 
k=1

akjCkj

For certain square matrices the computation of the determinant is simplified. One

such class of matrices is the square triangular matrices.

DEFINITION 5 Triangular Matrices An m× n matrix is upper triangular if aij = 0, for all

i > j , and is lower triangular if aij = 0, for all i < j. A square matrix is a

diagonal matrix if aij = 0, for all i  = j.
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Some examples of upper triangular matrices are

 
1 1

0 2

 
 2 −1 0

0 0 3

0 0 2


 and


 1 1 0 1

0 0 0 1

0 0 1 1




and some examples of lower triangular matrices are

 
1 0

1 1

 
 2 0 0

0 1 0

1 0 2


 and




1 0 0 0

0 0 0 0

1 3 1 0

0 1 2 1




THEOREM 13 If A is an n× n triangular matrix, then the determinant of A is the product of the

terms on the diagonal. That is,

det(A) = a11 · a22 · · · ann

Proof We present the proof for an upper triangular matrix. The proof for a

lower triangular matrix is identical. The proof is by induction on n. If n = 2, then

det(A) = a11a22 − 0 and hence is the product of the diagonal terms.

Assume that the result holds for an n× n triangular matrix. We need to show

that the same is true for an (n+ 1)× (n+ 1) triangular matrix A. To this end let

A =




a11 a12 a13 · · · a1n a1,n+1
0 a22 a23 · · · a2n a2,n+1
0 0 a33 · · · a3n a3,n+1
...

...
...

. . .
...

...

0 0 0 · · · ann an,n+1

0 0 0 · · · 0 an+1,n+1




Using the cofactor expansion along row n+ 1, we have

det(A) = (−1)(n+1)+(n+1)an+1,n+1

           

a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann

           
Since the determinant on the right is n× n and upper triangular, by the inductive

hypothesis

det(A) = (−1)2n+2(an+1,n+1)(a11a22 · · · ann)

= a11a22 · · · annan+1,n+1

Properties of Determinants

Determinants for large matrices can be time-consuming to compute, so any properties

of determinants that reduce the number of computations are useful. Theorem 14 shows

how row operations affect the determinant.
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THEOREM 14 Let A be a square matrix.

1. If two rows of A are interchanged to produce a matrix B, then det(B) =

− det(A).

2. If a multiple of one row of A is added to another row to produce a matrix B,

then det(B) = det(A).

3. If a row of A is multiplied by a real number α to produce a matrix B, then

det(B) = αdet(A).
Proof (1) The proof is by induction on n. For the case n = 2 let

A =

 
a b

c d

 
Then det(A) = ad − bc. If the two rows of A are interchanged to give the matrix

B =

 
c d

a b

 
then det(B) = bc − ad = − det(A).

Assume that the result holds for n× n matrices and A is an (n+ 1)× (n+ 1)

matrix. Let B be the matrix obtained by interchanging rows i and j of A. Expanding

the determinant of A along row i and of B along row j, we have

det(A) = ai1Ci1 + ai2Ci2 + · · · + ainCin

and

det(B) = aj1Dj1 + aj2Dj2 + · · · + ajnDjn

= ai1Dj1 + ai2Dj2 + · · · + ainDjn

where Cij and Dij are the cofactors of A and B, respectively. To obtain the result

there are two cases. If the signs of the cofactors Cij and Dij are the same, then

they differ by one row interchanged. If the signs of the cofactors Cij and Dij are

opposite, then they differ by two rows interchanged. In either case, by the inductive

hypothesis, we have
det(B) = − det(A)

The proofs of parts 2 and 3 are left as exercises.

We note that in Theorem 14 the same results hold for the similar column oper-

ations. To highlight the usefulness of this theorem, recall that by Theorem 13, the

determinant of a triangular matrix is the product of the diagonal entries. So an alter-

native approach to finding the determinant of a matrix A is to row-reduce A to

triangular form and apply Theorem 14 to record the effect on the determinant. This

method is illustrated in Example 3.

EXAMPLE 3 Find the determinant of the matrix

A =




0 1 3 −1

2 4 −6 1

0 3 9 2

−2 −4 1 −3



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Solution Since column 1 has two zeros, an expansion along this column will involve the

fewest computations. Also by Theorem 14, if row 2 is added to row 4, then the

determinant is unchanged and

det(A) =

        
0 1 3 −1

2 4 −6 1

0 3 9 2

0 0 −5 −2

        
Expansion along the first column gives

det(A) = −2

      
1 3 −1

3 9 2

0 −5 −2

      
We next perform the operation −3R1 + R2 −→ R2, leaving the determinant again

unchanged, so that

det(A) = −2

      
1 3 −1

0 0 5

0 −5 −2

      
Now, interchanging the second and third rows gives

det(A) = (−2)(−1)

      
1 3 −1

0 −5 −2

0 0 5

      
This last matrix is triangular, thus by Theorem 13,

det(A) = (−2)(−1)[(1)(−5)(5)]

= −50

Theorem 15 lists additional useful properties of the determinant.

THEOREM 15 Let A and B be n× n matrices and α a real number.

1. The determinant computation is multiplicative. That is,

det(AB) = det(A) det(B)

2. det(αA) = αn det(A)

3. det(At ) = det(A)

4. If A has a row (or column) of all zeros, then det(A) = 0.

5. If A has two equal rows (or columns), then det(A) = 0.

6. If A has a row (or column) that is a multiple of another row (or column), then

det(A) = 0.
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EXAMPLE 4 Let A =

 
1 2

3 −2

 
and B =

 
1 −1

1 4

 
. Verify Theorem 15, part 1.

Solution In this case the product is

AB =

 
3 7

1 −11

 
so that det(AB) = −33− 7 = −40. We also have det(A) det(B) = (−8)(5) = −40.

Properties of the determinant given in Theorem 15 can be used to establish the

connection between the determinant and the invertibility of a square matrix.

THEOREM 16 A square matrix A is invertible if and only if det(A)  = 0.

Proof If the matrix A is invertible, then by Theorem 15,

1 = det(I ) = det(AA−1) = det(A) det(A−1)

Since the product of two real numbers is zero if and only if at least one of them

is zero, we have det(A)  = 0 [also det(A−1)  = 0].

To establish the converse, we will prove the contrapositive statement. Assume

that A is not invertible. By the remarks at the end of Sec. 1.4, the matrix A is

row equivalent to a matrix R with a row of zeros. Hence, by Theorem 14, there is

some real number k  = 0 such that det(A) = k det(R), and therefore by Theorem 15,

part 4,

det(A) = k det(R) = k(0) = 0

COROLLARY 1 Let A be an invertible matrix. Then

det(A−1) =
1

det(A)

Proof If A is invertible, then as in the proof of Theorem 16, det(A)  = 0,

det(A−1)  = 0, and

det(A) det(A−1) = 1

Therefore,

det(A−1) =
1

det(A)

The final theorem of this section summarizes the connections between inverses,

determinants, and linear systems.

THEOREM 17 Let A be a square matrix. Then the following statements are equivalent.

1. The matrix A is invertible.

2. The linear system Ax = b has a unique solution for every vector b.
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3. The homogeneous linear system Ax = 0 has only the trivial solution.

4. The matrix A is row equivalent to the identity matrix.

5. The determinant of the matrix A is nonzero.

Determinants can be used to find the equation of a conic section passing through
The graph of the equation

(x − h)2

a2
+

(y − k)2

b2
= 1

is an ellipse with center

(h, k), horizontal axis of

length 2a, and vertical

axis of length 2b.

specified points. In the 17th century, Johannes Kepler’s observations of the orbits of

planets about the sun led to the conjecture that these orbits are elliptical. It was Isaac

Newton who, later in the same century, proved Kepler’s conjecture. The graph of an

equation of the form

Ax2 + Bxy + Cy2 +Dx + Ey + F = 0

is a conic section. Essentially, the graphs of conic sections are circles, ellipses, hyper-

bolas, or parabolas.

EXAMPLE 5 An astronomer who wants to determine the approximate orbit of an object travel-

ing about the sun sets up a coordinate system in the plane of the orbit with the

sun at the origin. Five observations of the location of the object are then made

and are approximated to be (0, 0.31), (1, 1), (1.5, 1.21), (2, 1.31), and (2.5, 1).

Use these measurements to find the equation of the ellipse that approximates the

orbit.

Solution We need to find the equation of an ellipse in the form

Ax2 + Bxy + Cy2 +Dx + Ey + F = 0

Each data point must satisfy this equation; for example, since the point (2, 1.31) is

on the graph of the conic section,

A(2)2 + B(2)(1.31)+ C(1.31)2 +D(2)+ E(1.31)+ F = 0

so

4A+ 2.62B + 1.7161C + 2D + 1.31E + F = 0

Substituting the five points in the general equation, we obtain the 5× 6 linear

system (with coefficients rounded to two decimal places)


0.1C + 0.31E + F = 0

A+ B + C + D + E + F = 0

4A+ 2.62B + 1.72C + 2D + 1.31E + F = 0

2.25A+ 1.82B + 1.46C + 1.5D + 1.21E + F = 0

6.25A+ 2.5B + C + 2.5D + E + F = 0

Since the equation Ax2 + Bxy + Cy2 +Dx + Ey + F = 0 describing the

ellipse passing through the five given points has infinitely many solutions, by

Theorem 17, we have
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������������

x2 xy y2 x y 1

0 0 0.1 0 0.31 1

1 1 1 1 1 1

4 2.62 1.72 2 1.31 1

2.25 1.82 1.46 1.5 1.21 1

6.25 2.5 1 2.5 1 1

������������
= 0

Expanding the determinant gives us the equation

−0.014868x2 + 0.0348xy − 0.039y2 + 0.017238x − 0.003y + 0.00483 = 0

The graph of the orbit is shown in Fig. 2.

x 

y 

Figure 2

Cramer’s Rule

Determinants can also be used to solve linear systems. To illustrate the technique

consider the 2× 2 linear system�
ax + by = u

cx + dy = v

with ad − bc  = 0. By Theorem 17, the linear system has a unique solution.

To eliminate the variable y, we multiply the first equation by d and the second

equation by b, and then we subtract the two equations. This gives

adx + bdy − (bcx + bdy) = du− bv

Simplifying, we have

(ad − bc)x = du− bv so that x =
du− bv

ad − bc

Using a similar procedure, we can solve for y.

y =
av − cu

ad − bc

Using determinants, we can write the solution as

x =

���� u b

v d

�������� a b

c d

����
and y =

���� a u

c v

�������� a b

c d

����
Notice that the solutions for x and y are similar. The denominator for each is the

determinant of the coefficient matrix. The determinant in the numerator for x is formed

by replacing the first column of the coefficient matrix with the column of constants

on the right-hand side of the linear system. The determinant in the numerator for y is

formed by replacing the second column of the coefficient matrix with the column of

constants. This method of solving a linear system is called Cramer’s rule.
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EXAMPLE 6 Use Cramer’s rule to solve the linear system. 
2x + 3y = 2

−5x + 7y = 3

Solution The determinant of the coefficient matrix is given by    2 3

−5 7

    = 14− (−15) = 29

and since the determinant is not zero, the system has a unique solution. The solution

is given by

x =

    2 3

3 7

    
29

=
14− 9

29
=

5

29
and y =

    2 2

−5 3

    
29

=
6− (−10)

29
=

16

29

THEOREM 18 Cramer’sRule Let A be an n× n invertible matrix, and let b be a column vector

with n components. Let Ai be the matrix obtained by replacing the ith column of A

with b. If x =




x1

x2

...

xn


 is the unique solution to the linear system Ax = b, then

xi =
det(Ai)

det(A)
for i = 1, 2, . . . , n

Proof Let Ii be the matrix obtained by replacing the ith column of the identity

matrix with x. Then the linear system is equivalent to the matrix equation

AIi = Ai so det(AIi) = det(Ai)

By Theorem 15, part 1, we have

det(A) det(Ii) = det(AIi) = det(Ai)

Since A is invertible, det(A)  = 0 and hence

det(Ii) =
det(Ai)

det(A)

Expanding along the ith row to find the determinant of Ii gives

det(Ii) = xi det(I ) = xi

where I is the (n− 1)× (n− 1) identity. Therefore,

xi =
det(Ai)

det(A)
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If a unique solution exists, then Cramer’s rule can be used to solve larger square

linear systems. Example 7 illustrates the technique for a 3× 3 system.

EXAMPLE 7 Solve the linear system. 


2x + 3y − z= 2

3x − 2y + z=−1

−5x − 4y + 2z= 3

Solution The determinant of the coefficient matrix is given by      
2 3 −1

3 −2 1

−5 −4 2

      = −11

By Cramer’s rule the solution to the system is

x = −
1

11

      
2 3 −1

−1 −2 1

3 −4 2

      = −
5

11

y = −
1

11

      
2 2 −1

3 −1 1

−5 3 2

      =
36

11

z = −
1

11

      
2 3 2

3 −2 −1

−5 −4 3

      =
76

11

The reader should verify this solution by substitution into the original system.

Fact Summary

Let A and B be n× n matrices.

1. det

 
a b

c d

 
= ad − bc.

2. The determinant of A can be computed by expanding along any row or

column provided that the signs are adjusted using the pattern

+ − + − · · ·

− + − + · · ·

+ − + − · · ·

− + − + · · ·
...

...
...

...
. . .




3. The matrix A is invertible if and only if det(A)  = 0.
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4. If A is a triangular matrix, then the determinant of A is the product of the

diagonal terms.

5. If two rows of A are interchanged, the determinant of the resulting matrix

is the negative of the determinant of A.

6. If a multiple of one row of A is added to another row, the determinant is

not altered.

7. If one row of A is multiplied by a scalar c, the determinant of the resulting

matrix is c times the determinant of A.

8. det(AB) = det(A) det(B), det(cA) = cn det(A), det(At ) = det(A)

9. If A has a row or column of zeros, then det(A) = 0.

10. If one row or column of A is a multiple of another row or column, then

det(A) = 0.

11. If A is invertible, then det(A−1) = 1
det(A)

.

Exercise Set 1.6

In Exercises 1–4, evaluate the determinant of the

matrix by inspection.

1.


 2 −40 10

0 3 12

0 0 4




2.


 1 2 3

4 5 6

1 2 3




3.




1 0 0 0

3 −1 0 0

4 2 2 0

1 1 6 5




4.


 1 −1 2

2 −2 4

1 2 −1




In Exercises 5–8, use determinants to decide if the

matrix is invertible.

5.

 
2 −1

−2 2

 

6.

 
1 3

5 −2

 

7.


 1 0 0

3 6 0

0 8 −1




8.


 7 2 1

7 2 1

3 6 6




9. Answer the questions using the matrix

A =


 2 0 1

3 −1 4

−4 1 −2




a. Find the determinant of the matrix by using an

expansion along row 1.

b. Find the determinant of the matrix by using an

expansion along row 2.

c. Find the determinant of the matrix by using an

expansion along column 2.

d. Interchange rows 1 and 3 of the matrix, and

find the determinant of the transformed matrix.

e. Multiply row 1 of the matrix found in part (d)

by −2, and find the determinant of the new

matrix. Use the value to find the determinant of

the original matrix.
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f. Replace row 3 of the matrix found in part (e)

with the sum of row 3 and −2 times row 1 and

find the determinant of the new matrix in two

ways. First, use an expansion along row 3 of

the new matrix. Second, use the value for the

determinant of A that has already been

calculated.

g. Does the matrix A have an inverse? Do not try

to compute the inverse.

10. Answer the questions using the matrix

A =



−1 1 1 2

3 −2 0 −1

0 1 0 1

3 3 3 3




a. Find the determinant of the matrix by using an

expansion along row 4.

b. Find the determinant of the matrix by using an

expansion along row 3.

c. Find the determinant of the matrix by using an

expansion along column 2.

d. In (a), (b), and (c), which computation do you

prefer, and why?

e. Does the matrix A have an inverse? Do not try

to compute the inverse.

In Exercises 11–26, find the determinant of the

matrix. Specify whether the matrix has an inverse

without trying to compute the inverse.

11.

 
5 6

−8 −7

 

12.

 
4 3

9 2

 

13.

 
−1 −1

−11 5

 

14.

 
1 2

4 13

 

15.

 
−1 4

1 −4

 

16.

 
1 1

2 2

 

17.


 5 −5 −4

−1 −3 5

−3 1 3




18.


 3 −3 5

2 4 −3

−3 −1 −5




19.


 −3 4 5

1 1 4

−1 −3 4




20.


 −2 −2 −4

1 1 3

−4 0 4




21.


 1 −4 1

1 −2 4

0 2 3




22.


 1 2 4

4 0 0

1 2 4




23.




2 −2 −2 −2

−2 2 3 0

−2 −2 2 0

1 −1 −3 −1




24.




1 −1 0 0

−3 −3 −1 −1

−1 −1 −3 2

−1 −2 2 1




25.



−1 1 1 0 0

0 0 −1 0 0

0 0 1 −1 0

0 1 1 0 1

1 −1 1 1 0




26.




1 0 −1 0 −1

−1 −1 0 0 −1

1 0 0 0 −1

0 1 1 1 0

−1 1 1 −1 0




In Exercises 27–30, let

A =


 a b c

d e f

g h i




and assume det(A) = 10.
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27. Find det(3A).

28. Find det(2A−1).

29. Find det
!
(2A)−1

"
.

30. Find

det


 a g d

b h e

c i f




31. Find x, assuming

det


 x2 x 2

2 1 1

0 0 −5


 = 0

32. Find the determinant of the matrix


1 1 1 1 1

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1




33. Suppose a1  = b1. Describe the set of all points

(x, y) that satisfy the equation

det


 1 1 1

x a1 b1

y a2 b2


 = 0

34. Use the three systems to answer the questions.

(1)

 
x + y = 3

2x + 2y = 1
(2)

 
x + y = 3

2x + 2y = 6

(3)

 
x + y = 3

2x − 2y = 1

a. Form the coefficient matrices A,B, and C,

respectively, for the three systems.

b. Find det(A), det(B), and det(C). How are they

related?

c. Which of the coefficient matrices have

inverses?

d. Find all solutions to system (1).

e. Find all solutions to system (2).

f. Find all solutions to system (3).

35. Answer the questions about the linear system.


x − y − 2z= 3

−x + 2y + 3z= 1

2x − 2y − 2z=−2

a. Form the coefficient matrix A for the linear

system.

b. Find det(A).

c. Does the system have a unique solution?

Explain.

d. Find all solutions to the system.

36. Answer the questions about the linear system.


x + 3y − 2z=−1

2x + 5y + z= 2

2x + 6y − 4z=−2

a. Form the coefficient matrix A for the linear

system.

b. Find det(A).

c. Does the system have a unique solution?

Explain.

d. Find all solutions to the system.

37. Answer the questions about the linear system.

−x − z=− 1

2x + 2z= 1

x − 3y − 3z= 1

a. Form the coefficient matrix A for the linear

system.

b. Find det(A).

c. Does the system have a unique solution?

Explain.

d. Find all solutions for the system.

In Exercises 38–43, use the fact that the graph of the

general equation

Ax2 + Bxy + Cy2 +Dx + Ey + F = 0

is essentially a parabola, circle, ellipse, or hyperbola.

38. a. Find the equation of the parabola in the form

Ax2 +Dx + Ey + F = 0

that passes through the points (0, 3),

(1, 1), and (4,−2).

b. Sketch the graph of the parabola.
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39. a. Find the equation of the parabola in the form

Cy2 +Dx + Ey + F = 0

that passes through the points (−2,−2), (3, 2),

and (4,−3).

b. Sketch the graph of the parabola.

40. a. Find the equation of the circle in the form

A(x2 + y2)+Dx + Ey + F = 0

that passes through the points (−3,−3), (−1, 2),

and (3, 0).

b. Sketch the graph of the circle.

41. a. Find the equation of the hyperbola in the form

Ax2 + Cy2 +Dx + Ey + F = 0

that passes through the points (0,−4), (0, 4),

(1,−2), and (2, 3).

b. Sketch the graph of the hyperbola.

42. a. Find the equation of the ellipse in the form

Ax2 + Cy2 +Dx + Ey + F = 0

that passes through the points (−3, 2), (−1, 3),

(1,−1), and (4, 2).

b. Sketch the graph of the ellipse.

43. a. Find the equation of the ellipse in the form

Ax2 + Bxy + Cy2 +Dx + Ey + F = 0

that passes through the points (−1, 0), (0, 1),

(1, 0), (2, 2), and (3, 1).

b. Sketch the graph of the ellipse.

In Exercises 44–51, use Cramer’s rule to solve the

linear system.

44.

 
2x + 3y = 4

2x + 2y = 4

45.

 
5x − 5y = 7

2x − 3y = 6

46.

 
2x + 5y = 4

4x + y = 3

47.

 
−9x − 4y = 3

−7x + 5y =−10

48.

 
−10x − 7y =−12

12x + 11y = 5

49.

 
−x − 3y = 4

−8x + 4y = 3

50.



−2x + y − 4z=−8

− 4y + z= 3

4x − z=−8

51.




2x + 3y + 2z=−2

−x − 3y − 8z=−2

−3x + 2y − 7z= 2

52. An n× n matrix is skew-symmetric provided

At = −A. Show that if A is skew-symmetric and

n is an odd positive integer, then A is not

invertible.

53. If A is a 3× 3 matrix, show that det(A) = det(At ).

54. If A is an n× n upper triangular matrix, show

that det(A) = det(At ).

1.7

ß

ElementaryMatrices and LU Factorization

In Sec. 1.2 we saw how the linear system Ax = b can be solved by using Gaussian

elimination on the corresponding augmented matrix. Recall that the idea there was

to use row operations to transform the coefficient matrix to row echelon form. The

upper triangular form of the resulting matrix made it easy to find the solution by using

back substitution. (See Example 1 of Sec. 1.2.) In a similar manner, if an augmented

matrix is reduced to lower triangular form, then forward substitution can be used to

find the solution of the corresponding linear system. For example, starting from the
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first equation of the linear system


x1 = 3

−x1 + x2 =−1

2x1 − x2 + x3 = 5

we obtain the solution x1 = 3, x2 = 2, and x3 = 1. Thus, from a computational per-

spective, to find the solution of a linear system, it is desirable that the corresponding

matrix be either upper or lower triangular.

In this section we show how, in certain cases, an m× n matrix A can be written

as A = LU, where L is a lower triangular matrix and U is an upper triangular matrix.

We call this an LU factorization of A. For example, an LU factorization of the

matrix

 
−3 −2

3 4

 
is given by 
−3 −2

3 4

 
=

 
−1 0

1 2

  
3 2

0 1

 

with L =

 
−1 0

1 2

 
and U =

 
3 2

0 1

 
. We also show in this section that when such

a factorization of A exists, a process that involves both forward and back substitution

can be used to find the solution to the linear system Ax = b.

Elementary Matrices

As a first step we describe an alternative method for carrying out row operations using

elementary matrices.

DEFINITION 1 ElementaryMatrix An elementary matrix is any matrix that can be obtained

from the identity matrix by performing a single elementary row operation.

As an illustration, the elementary matrix E1 is formed by interchanging the first

and third rows of the 3× 3 identity matrix I , that is,

E1 =


 0 0 1

0 1 0

1 0 0




Corresponding to the three row operations given in Theorem 2 of Sec. 1.2, there

are three types of elementary matrices. For example, as we have just seen, E1 is

derived from I by means of the row operation R1 ↔ R3 which interchanges the first

and third rows. Also, the row operation kR1 + R2 −→ R2 applied to I yields the

elementary matrix

E2 =


 1 0 0

k 1 0

0 0 1



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Next, if c  = 0, the row operation cR2 −→ R2 performed on I produces the matrix

E3 =


 1 0 0

0 c 0

0 0 1




Using any row operation, we can construct larger elementary matrices from larger

identity matrices in a similar manner.

We now show how elementary matrices can be used to perform row operations.

To illustrate the process, let A be the 3× 3 matrix given by

A =


 1 2 3

4 5 6

7 8 9




Multiplying A by the matrix E1, defined above, we obtain

E1A =


 7 8 9

4 5 6

1 2 3




Observe that E1A is the result of interchanging the first and third rows of A. Theorem 19

gives the situation in general.

THEOREM 19 Let A be an m× n matrix and E the elementary matrix obtained from the m×m

identity matrix I by a single row operation R. Denote by R(A) the result of

performing the row operation on A. Then R(A) = EA.

By repeated application of Theorem 19, a sequence of row operations can be

performed on a matrix A by successively multiplying A by the corresponding ele-

mentary matrices. Specifically, let Ei be the elementary matrix corresponding to the

row operation Ri with 1 ≤ i ≤ k. Then

Rk · · ·R2 (R1(A)) = Ek · · ·E2E1A

EXAMPLE 1 Let A be the matrix

A =


 1 2 −1

3 5 0

−1 1 1




Use elementary matrices to perform the row operations R1 : R2 − 3R1 −→ R2,

R2 : R3 + R1 −→ R3, and R3 : R3 + 3R2 −→ R3.

Solution The elementary matrices corresponding to these row operations are given by

E1 =


 1 0 0

−3 1 0

0 0 1


 E2 =


 1 0 0

0 1 0

1 0 1


 E3 =


 1 0 0

0 1 0

0 3 1



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respectively, so that

E3E2E1A =


 1 2 −1

0 −1 3

0 0 9




The reader should check that the matrix on the right-hand side is equal to the result

of performing the row operations above on A in the order given.

The Inverse of an Elementary Matrix

An important property of elementary matrices is that they are invertible.

THEOREM 20 Let E be an n× n elementary matrix. Then E is invertible. Moreover, its inverse

is also an elementary matrix.

Proof Let E be an elementary matrix. To show that E is invertible, we compute

its determinant and apply Theorem 17 of Sec. 1.6. There are three cases depending

on the form of E. First, if E is derived from I by an interchange of two rows,

then det(E) = − det(I ) = −1. Second, if E is the result of multiplying one row

of I by a nonzero scalar c, then det(E) = c det(I ) = c  = 0. Third, if E is formed

by adding a multiple of one row of I to another row, then det(E) = det(I ) = 1.

In either case, det(E)  = 0 and hence E is invertible. To show that E−1 is an

elementary matrix, we use the algorithm of Sec. 1.4 to compute the inverse. In this

case starting with the n× 2n augmented matrix

[E | I ]

we reduce the elementary matrix on the left (to I ) by applying the reverse operation

used to form E, obtaining !
I | E−1

"
That E−1 is also an elementary matrix follows from the fact that the reverse of

each row operation is also a row operation.

As an illustration of the above theorem, letR be the row operation 2R2 + R1 −→

R1, which says to add 2 times row 2 to row 1. The corresponding elementary matrix

is given by

E =


 1 2 0

0 1 0

0 0 1




Since det(E) = 1, then E is invertible with

E−1 =


 1 −2 0

0 1 0

0 0 1



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Observe that E−1 corresponds to the row operation R2: −2R2 + R1 −→ R1 which

says to subtract 2 times row 2 from row 1, reversing the original row operation R.

Recall from Sec. 1.2 that an m× n matrix A is row equivalent to an m× n matrix

B if B can be obtained from A by a finite sequence of row operations. Theorem 21

gives a restatement of this fact in terms of elementary matrices.

THEOREM 21 Let A and B be m× n matrices. The matrix A is row equivalent to B if and only if

there are elementary matrices E1, E2, . . . , Ek such that B = EkEk−1 · · ·E2E1A.

In light of Theorem 21, if A is row equivalent to B, then B is row equivalent to

A. Indeed, if A is row equivalent to B, then

B = EkEk−1 · · ·E2E1A

for some elementary matrices E1, E2, . . . , Ek . Successively multiplying both sides of

this equation by E−1
k , E−1

k−1, . . . , and E−1
1 , we obtain

A = E−1
1 · · ·E

−1
k−1E

−1
k B

Since each of the matrices E−1
1 , E−1

2 , . . . , E−1
k is an elementary matrix, B is row

equivalent to A.

Theorem 22 uses elementary matrices to provide a characterization of invertible

matrices.

THEOREM 22 An n× n matrix A is invertible if and only if it can be written as the product of

elementary matrices.

Proof First assume that there are elementary matrices E1, E2, . . . , Ek such that

A = E1E2 · · ·Ek−1Ek

We claim that the matrix B = E−1
k · · ·E

−1
2 E−1

1 is the inverse of A. To show this,

we multiply both sides of A = E1E2 · · ·Ek−1Ek by B to obtain

BA = (E−1
k · · ·E

−1
2 E−1

1 )A = (E−1
k · · ·E

−1
2 E−1

1 )(E1E2 · · ·Ek−1Ek) = I

establishing the claim. On the other hand, suppose that A is invertible. In Sec. 1.4,

we showed that A is row equivalent to the identity matrix. So by Theorem 21,

there are elementary matrices E1, E2, . . . , Ek such that I = EkEk−1 · · ·E2E1A.

Consequently, A = E−1
1 · · ·E

−1
k I. Since E−1

1 , . . . , E−1
k and I are all elementary

matrices, A is the product of elementary matrices as desired.

LU Factorization

There are many reasons why it is desirable to obtain an LU factorization of a matrix.

For example, suppose that A is an m× n matrix and bi , with 1 ≤ i ≤ k, is a collection

of vectors in ⺢n, which represent outputs for the linear systems Ax = bi . Finding input

vectors xi requires that we solve k linear systems. However, since the matrix A is the



1.7 Elementary Matrices and LU Factorization 73

same for each linear system, the process is greatly simplified if A is replaced with its

LU factorization. The details for solving a linear system using an LU factorization

are presented later in this section. If A is an n× n matrix with an LU factorization

given by A = LU, then L and U are also n× n. See Fig. 1. Then by Theorem 13 of

0
0A=

Figure 1 Sec. 1.6, the determinant of A is given by

det(A) = ( 11 · · ·  nn)(u11 · · ·unn)

where  ii and uii are the diagonal entries of L and U, respectively. If this determinant

is not zero, then by Theorem 9 of Sec. 1.4 the inverse of the matrix A is given by

A−1 = (LU)−1 = U−1L−1

To describe the process of obtaining an LU factorization of an m× n matrix A,

suppose that A can be reduced to an upper triangular matrix by a sequence of row

operations which correspond to lower triangular elementary matrices. That is, there

exist lower triangular elementary matrices L1, L2, . . . , Lk such that

LkLk−1 · · ·L1A = U

Since each of the matrices Li with 1 ≤ i ≤ k is invertible, we have

A = L−1
1 L−1

2 · · ·L
−1
k U

By Theorem 20, L−1
1 , L−1

2 , . . . , and L−1
k are elementary matrices. They are also lower

triangular. Now let L = L−1
1 L−1

2 · · ·L
−1
k . Observe that L is lower triangular as it is

the product of lower triangular matrices. The desired factorization is thus given by

A = LU .

EXAMPLE 2 Find an LU factorization of the matrix

A =


 3 6 −3

6 15 −5

−1 −2 6




Solution Observe that A can be row-reduced to an upper triangular matrix by means of

the row operations R1 : 1
3
R1 −→ R1, R2 : −6R1 + R2 −→ R2, and R3 : R1 +

R3 −→ R3. The corresponding elementary matrices are therefore given by

E1 =


 1

3
0 0

0 1 0

0 0 1


 E2 =


 1 0 0

−6 1 0

0 0 1


 E3 =


 1 0 0

0 1 0

1 0 1




respectively, so that

E3E2E1A =


 1 0 0

0 1 0

1 0 1




 1 0 0

−6 1 0

0 0 1




 1

3
0 0

0 1 0

0 0 1




 3 6 −3

6 15 −5

−1 −2 6




=


 1 2 −1

0 3 1

0 0 5


 = U
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An LU factorization of A is then given by A =
#
E−1

1 E−1
2 E−1

3

$
U, so that

 3 6 −3

6 15 −5

−1 −2 6


 =


 3 0 0

6 1 0

−1 0 1




 1 2 −1

0 3 1

0 0 5




From the remarks preceding Example 2, we see that to use the above procedure

with success, there are limitations on the matrix A. Specifically, A must be reducible to

upper triangular form without any row interchanges. This will ensure that the elemen-

tary matrices used in the elimination process will all be lower triangular. Theorem 23

summarizes these results.

THEOREM 23 Let A be an m× n matrix that can be reduced to the upper triangular matrix U

without row interchanges by means of the m×m lower triangular matrices L1,

L2, . . . Lk . If L = L−1
1 L−1

2 · · ·L
−1
k , then A has the LU factorization A = LU.

A simple example of a matrix that cannot be reduced to upper triangular form

without interchanges is given by P =

 
0 1

1 0

 
. This matrix does not have an LU

factorization. (See Exercise 29.)

As stated in Theorem 23, it is not necessary for A to be square, as shown in

Example 3.

EXAMPLE 3 Find an LU factorization of the matrix

A =


 1 −3 −2 0

1 −2 1 −1

2 −4 3 2




Solution Observe that A can be reduced to the upper triangular matrix U=


 1 −3 −2 0

0 1 3 −1

0 0 1 4




by means of the elementary matrices

E1 =


 1 0 0

−1 1 0

0 0 1


 E2 =


 1 0 0

0 1 0

−2 0 1


 E3 =


 1 0 0

0 1 0

1 −2 1



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Hence,

A =
#
E−1

1 E−1
2 E−1

3

$
U

=




 1 0 0

1 1 0

0 0 1




 1 0 0

0 1 0

2 0 1




 1 0 0

0 1 0

0 2 1






 1 −3 −2 0

0 1 3 −1

0 0 1 4




=


 1 0 0

1 1 0

2 2 1




 1 −3 −2 0

0 1 3 −1

0 0 1 4


 = LU

Solving a Linear System Using LU Factorization

We now turn our attention to the process of solving a linear system by using an

LU factorization. To illustrate the procedure, consider the linear system Ax = b with

b =


 3

11

9


 and A the matrix of Example 2. By using the LU factorization of A

found in Example 2,

Ax =


 3 6 −3

6 15 −5

−1 −2 6




 x1

x2

x3


 =


 3

11

9




can be written equivalently as

LUx =


 3 0 0

6 1 0

−1 0 1




 1 2 −1

0 3 1

0 0 5




 x1

x2

x3


 =


 3

11

9




To solve this equation efficiently, we define the vector y =


 y1

y2

y3


 by the equation

Ux = y, so that 
 1 2 −1

0 3 1

0 0 5




 x1

x2

x3


 =


 y1

y2

y3




Making this substitution in the linear system L(Ux) = b gives
 3 0 0

6 1 0

−1 0 1




 y1

y2

y3


 =


 3

11

9



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Using forward substitution, we solve the system Ly = b for y, obtaining y1 = 1,

y2 = 5, and y3 = 10. Next we solve the linear system Ux = y. That is,
 1 2 −1

0 3 1

0 0 5




 x1

x2

x3


 =


 1

5

10




Using back substitution, we obtain x3 = 2, x2 = 1, and x1 = 1.

The following steps summarize the procedure for solving the linear system

Ax = b when A admits an LU factorization.

1. Use Theorem 23 to write the linear system Ax = b as L(Ux) = b.

2. Define the vector y by means of the equation Ux = y.

3. Use forward substitution to solve the system Ly = b for y.

4. Use back substitution to solve the system Ux = y for x. Note that x is the solution

to the original linear system.

PLU Factorization

We have seen that a matrix A has an LU factorization provided that it can be row-

reduced without interchanging rows. We conclude this section by noting that when

row interchanges are required to reduce A, a factorization is still possible. In this

case the matrix A can be factored as A = PLU, where P is a permutation matrix,

that is, a matrix that results from interchanging rows of the identity matrix. As an

illustration, let

A =


 0 2 −2

1 4 3

1 2 0




The matrix A can be reduced to

U =


 1 2 0

0 2 3

0 0 −5




by means of the row operations R1 : R1 ↔ R3, R2 : −R1 + R2 −→ R2, and

R3 : −R2 + R3 −→ R3. The corresponding elementary matrices are given by

E1 =


 0 0 1

0 1 0

1 0 0


 E2 =


 1 0 0

−1 1 0

0 0 1


 and E3 =


 1 0 0

0 1 0

0 −1 1



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Observe that the elementary matrix E1 is a permutation matrix while E2 and E3 are

lower triangular. Hence,

A = E−1
1

#
E−1

2 E−1
3

$
U

=


 0 0 1

0 1 0

1 0 0




 1 0 0

1 1 0

0 1 1




 1 2 0

0 2 3

0 0 −5




= PLU

Fact Summary

1. A row operation on a matrix A can be performed by multiplying A by an

elementary matrix.

2. An elementary matrix is invertible, and the inverse is an elementary matrix.

3. An n× n matrix A is invertible if and only if it is the product of

elementary matrices.

4. An m× n matrix A has an LU factorization if it can be reduced to an

upper triangular matrix with no row interchanges.

5. If A = LU, then L is invertible.

6. An LU factorization of A provides an efficient method for solving Ax = b.

Exercise Set 1.7

In Exercises 1–4:

a. Find the 3× 3 elementary matrix E that performs

the row operation.

b. Compute EA, where

A =


 1 2 1

3 1 2

1 1 −4




1. 2R1 + R2 −→ R2

2. R1 ↔ R2

3. −3R2 + R3 −→ R3

4. −R1 + R3 −→ R3

In Exercises 5–10:

a. Find the elementary matrices required to

reduce A to the identity.

b. Write A as the product of elementary matrices.

5. A =

 
1 3

−2 4

 

6. A =

 
−2 5

2 5

 

7. A =


 1 2 −1

2 5 3

1 2 0




8. A =


 −1 1 1

3 1 0

−2 1 1




9. A =


 0 1 1

1 2 3

0 1 0



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10. A =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




In Exercises 11–16, find the LU factorization of the

matrix A.

11. A =

 
1 −2

−3 7

 

12. A =

 
3 9
1
2

1

 

13. A =


 1 2 1

2 5 5

−3 −6 −2




14. A =


 1 1 1

−1 0 −4

2 2 3




15. A =


 1 1

2
−3

1 3
2

1

−1 −1 4




16. A =




1 −2 1 3

−2 5 −3 −7

1 −2 2 8

3 −6 3 10




In Exercises 17–22, solve the linear system by using

LU factorization.

17.

 
−2x + y =−1

4x − y = 5

18.

 
3x − 2y = 2

−6x + 5y =− 7
2

19.




x + 4y − 3z= 0

−x − 3y + 5z=−3

2x + 8y − 5z= 1

20.




x − 2y + z=−1

2x − 3y + 6z= 8

−2x + 4y − z= 4

21.




x − 2y + 3z+ w= 5

x − y + 5z+ 3w= 6

2x − 4y + 7z+ 3w= 14

−x + y − 5z− 2w=−8

22.




x + 2y + 2z− w= 5

y + z− w=−2

−x − 2y − z+ 4w= 1

2x + 2y + 2z+ 2w= 1

In Exercises 23 and 24, find the PLU factorization of

the matrix A.

23. A =


 0 1 −1

2 −1 0

1 −3 2




24. A =


 0 0 1

2 1 1

1 0 −3




In Exercises 25–28, find the inverse of the matrix A

by using an LU factorization.

25. A =

 
1 4

−3 −11

 

26. A =

 
1 7

2 20

 

27. A =


 2 1 −1

2 2 −2

2 2 1




28. A =


 −3 2 1

3 −1 1

−3 1 0




29. Show directly that the matrix A =

 
0 1

1 0

 
does

not have an LU factorization.

30. Let A,B, and C be m× n matrices. Show that if

A is row equivalent to B and B is row equivalent

to C, then A is row equivalent to C.

31. Show that if A and B are n× n invertible

matrices, then A and B are row equivalent.

32. Suppose that A is an n× n matrix with an LU

factorization, A = LU.

a. What can be said about the diagonal entries

of L?

b. Express det(A) in terms of the entries of L

and U.

c. Show that A can be row-reduced to U using

only replacement operations.
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1.8

ß

Applications of Systems of Linear Equations

In the opening to this chapter we introduced linear systems by describing their con-

nection to the process of photosynthesis. In this section we enlarge the scope of the

applications we consider and show how linear systems are used to model a wide

variety of problems.

Balancing Chemical Equations

Recall from the introduction to this chapter that a chemical equation is balanced if

there are the same number of atoms, of each element, on both sides of the equation.

Finding the number of molecules needed to balance a chemical equation involves

solving a linear system.

EXAMPLE 1 Propane is a common gas used for cooking and home heating. Each molecule of

propane is comprised of 3 atoms of carbon and 8 atoms of hydrogen, written as

C3H8. When propane burns, it combines with oxygen gas, O2, to form carbon

dioxide, CO2, and water, H2O. Balance the chemical equation

C3H8 + O2 −→ CO2 + H2O

that describes this process.

Solution We need to find whole numbers x1, x2, x3, and x4, so that the equation

x1C3H8 + x2O2 −→ x3CO2 + x4H2O

is balanced. Equating the number of carbon, hydrogen, and oxygen atoms on both

sides of this equation yields the linear system


3x1 − x3 = 0

8x1 − 2x4 = 0

2x2 − 2x3 − x4 = 0

Solving this system, we obtain the solution set

S =

  
1

4
t,

5

4
t,

3

4
t, t

     t ∈ ⺢

 
Since whole numbers are required to balance the chemical equation, particular solu-

tions are obtained by letting t = 0, 4, 8, . . . . For example, if t = 8, then

x1 = 2, x2 = 10, x3 = 6, and x4 = 8. The corresponding balanced equation is given by

2C3H8 + 10O2 −→ 6CO2 + 8H2O

Network Flow

To study the flow of traffic through city streets, urban planners use mathematical

models called directed graphs or digraphs. In these models, edges and points are

used to represent streets and intersections, respectively. Arrows are used to indicate
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the direction of traffic. To balance a traffic network, we assume that the outflow of

each intersection is equal to the inflow, and that the total flow into the network is

equal to the total flow out.

EXAMPLE 2 Partial traffic flow information, given by average hourly volume, is known about

a network of five streets, as shown in Fig. 1. Complete the flow pattern for the

network.

100

300

400

300

200

500

500

400

600

Figure 1

Solution To complete the traffic model, we need to find values for the eight unknown flows,

as shown in Fig. 2.

100

300

400

300

200

500

500

400

600

x1

x2

x3 x4

x5

x6

x7

x8

Figure 2

Our assumptions about the intersections give us the set of linear equations


x2 + x6 = 300+ x1

100+ 500 = x6 + 300

200+ x3 = x2 + x7

300+ x7 = 400+ x4

400+ 500 = x3 + x8

x4 + 600 = 400+ x5
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Moreover, balancing the total flow into the network with the total flow out gives

us the additional equation

500+ 600+ 500+ 200+ 100 = 400+ x5 + x8 + 300+ x1

The final linear system is


−x1 + x2 + x6 = 300

x6 = 300

x2 − x3 + x7 = 200

− x4 + x7 = 100

x3 + x8 = 900

− x4 + x5 = 200

x1 + x5 + x8 = 1200

The solution is given by

x1 = 1100− s − t x2 = 1100− s − t x3 = 900− t x4 = −100+ s

x5 = 100+ s x6 = 300 x7 = s x8 = t

Notice that x7 and x8 are free variables. However, to obtain particular solutions,

we must choose numbers for s and t that produce positive values for each xi in the

system (otherwise we will have traffic going in the wrong direction!) For example,

s = 400 and t = 300 give a viable solution.

Nutrition

Designing a healthy diet involves selecting foods from different groups that, when

combined in the proper amounts, satisfy certain nutritional requirements.

EXAMPLE 3 Table 1 gives the amount, in milligrams (mg), of vitamin A, vitamin C, and calcium

contained in 1 gram (g) of four different foods. For example, food 1 has 10 mg of

vitamin A, 50 mg of vitamin C, and 60 mg of calcium per gram of food. Suppose

that a dietician wants to prepare a meal that provides 200 mg of vitamin A, 250

mg of vitamin C, and 300 mg of calcium. How much of each food should be used?

Table 1

Food 1 Food 2 Food 3 Food 4

Vitamin A 10 30 20 10

Vitamin C 50 30 25 10

Calcium 60 20 40 25
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Solution Let x1, x2, x3, and x4 denote the amounts of foods 1 through 4, respectively. The

amounts for each of the foods needed to satisfy the dietician’s requirement can be

found by solving the linear system


10x1 + 30x2 + 20x3 + 10x4 = 200

50x1 + 30x2 + 25x3 + 10x4 = 250

60x1 + 20x2 + 40x3 + 25x4 = 300

Rounded to two decimal places, the solution to the linear system is given by

x1 = 0.63+ 0.11t x2 = 3.13+ 0.24t

x3 = 5− 0.92t x4 = t

Observe that each of these values must be nonnegative. Hence, particular solutions

can be found by choosing nonnegative values of t such that

0 ≤ 5− 0.92t

Isolating t gives

t ≤
5

0.92
≈ 5.4

Economic Input-Output Models

Constructing models of the economy is another application of linear systems. In a real

economy there are tens of thousands of goods and services. By focusing on specific

sectors of the economy the Leontief input-output model gives a method for describing

a simplified, but useful model of a real economy. For example, consider an economy

for which the outputs are services, raw materials, and manufactured goods. Table 2

provides the inputs needed per unit of output.

Table 2

Services Raw materials Manufacturing

Services 0.04 0.05 0.02

Raw materials 0.03 0.04 0.04

Manufactured goods 0.02 0.3 0.2

Here to provide $1.00 worth of service, the service sector requires $0.04 worth of

services, $0.05 worth of raw materials, and $0.02 worth of manufactured goods. The

data in Table 2 are recorded in the matrix

A =



0.04 0.05 0.02

0.03 0.04 0.04

0.02 0.3 0.2



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This matrix is called the input-output matrix. The demand vector D gives the total

demand on the three sectors, in billions of dollars, and the production vector x, also

in billions of dollars, contains the production level information for each sector. Each

component of Ax represents the level of production that is used by the corresponding

sector and is called the internal demand.

As an example, suppose that the production vector is

x =


 200

100

150




Then the the internal demand is given by

Ax =


 0.04 0.05 0.02

0.03 0.04 0.04

0.02 0.3 0.2




 200

100

150


 =


 16

16

64




This result means that the service sector requires $16 billion of services, raw materi-

als, and manufactured goods. It also means that the external demand cannot exceed

$184 billion of services, $84 billion of raw materials, and $86 billion in manufactured

goods.

Alternatively, suppose that the external demand D is given. We wish to find a

level of production for each sector such that the internal and external demands are

met. Thus, to balance the economy, x must satisfy

x− Ax = D

that is,

(I − A)x = D

When I − A is invertible, then

x = (I − A)−1D

EXAMPLE 4 Suppose that the external demand for services, raw materials, and manufactured

goods in the economy described in Table 2 is given by

D =


 300

500

600




Find the levels of production that balance the economy.

Solution From the discussion above we have that the production vector x must satisfy

(I − A)x = D
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that is, 
 0.96 −0.05 −0.02

−0.03 0.96 −0.04

−0.02 −0.3 0.8




 x1

x2

x3


 =


 300

500

600




Since the matrix on the left is invertible, the production vector x can be found by

multiplying both sides by the inverse. Thus,
 x1

x2

x3


 =


 1.04 0.06 0.03

0.03 1.06 0.05

0.04 0.4 1.27




 300

500

600




≈


 360

569

974




So the service sector must produce approximately $360 billion worth of ser-

vices, the raw material sector must produce approximately $569 billion worth of raw

materials, and the manufacturing sector must produce approximately $974 billion

worth of manufactured goods.

Exercise Set 1.8

In Exercises 1–4, use the smallest possible positive

integers to balance the chemical equation.

1. When subjected to heat, aluminium reacts with

copper oxide to produce copper metal and

aluminium oxide according to the equation

Al3 + CuO −→ Al2O3 + Cu

Balance the chemical equation.

2. When sodium thiosulfate solution is mixed with

brown iodine solution, the mixture becomes

colorless as the iodine is converted to colorless

sodium iodide according to the equation

I2 + Na2S2O3 −→ NaI+ Na2S4O6

Balance the chemical equation.

3. Cold remedies such as Alka-Seltzer use the

reaction of sodium bicarbonate with citric acid in

solution to produce a fizz (carbon dioxide gas).

The reaction produces sodium citrate, water, and

carbon dioxide according to the equation

NaHCO3 + C6H8O7 −→

Na3C6H5O7 + H2O+ CO2

Balance the chemical equation. For every 100 mg

of sodium bicarbonate, how much citric acid

should be used? What mass of carbon dioxide will

be produced?

4. Balance the chemical equation

MnS+ As2Cr10O35 + H2SO4 −→

HMnO4 + AsH3 + CrS3O12 + H2O

5. Find the traffic flow pattern for the network in the

figure. Flow rates are in cars per hour. Give one

specific solution.
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300

800

700

500

300

6. Find the traffic flow pattern for the network in the

figure. Flow rates are in cars per hour. Give one

specific solution.
100

300

400

400

500

500

500

300

200

7. Find the traffic flow pattern for the network in the

figure. Flow rates are in cars per half-hour. What

is the current status of the road labeled x5?

150

100

100

50

x1

x2 x3

x4

x5

8. Find the traffic flow pattern for the network in the

figure. Flow rates are in cars per half-hour. What

is the smallest possible value for x8?

150

300

100

250

200

200

300

100

x1

x2

x3x4
x5

x6

x7 x8

9. The table lists the number of milligrams of

vitamin A, vitamin B, vitamin C, and niacin

contained in 1 g of four different foods. A

dietician wants to prepare a meal that provides

250 mg of vitamin A, 300 mg of vitamin B, 400

mg of vitamin C, and 70 mg of niacin. Determine

how many grams of each food must be included,

and describe any limitations on the quantities of

each food that can be used.

Group 1 Group 2 Group 3 Group 4

Vitamin A 20 30 40 10

Vitamin B 40 20 35 20

Vitamin C 50 40 10 30

Niacin 5 5 10 5

10. The table lists the amounts of sodium, potassium,

carbohydrates, and fiber in a single serving of

three food groups. Also listed are the daily

recommended amounts based on a 2000-calorie

diet. Is it possible to prepare a diet using the three

food groups alone that meets the recommended

amounts?
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Group 1 Group 2 Group 3 Requirement

Sodium (mg) 200 400 300 2400

Potassium (mg) 300 500 400 3500

Carbohydrates (g) 40 50 20 300

Fiber (g) 5 3 2 25

11. An economy is divided into three sectors as

described in the table. Each entry represents the

number of units required by the sector to produce

1 unit of output.

Services Raw materials Manufacturing

Services 0.02 0.04 0.05

Raw materials 0.03 0.02 0.04

Manufacturing 0.03 0.3 0.1

a. Write the input-output matrix A for the

economy.

b. If the levels of production, in billions, of the

three sectors of the economy are 300, 150, and

200, respectively, find the internal demand

vector for the economy. What is the total

external demand that can be met by the three

sectors?

c. Find the inverse of the matrix I − A.

d. If the external demands on the three sectors

are 350, 400, and 600, respectively, determine

the levels of production that balance the

economy.

12. Economies are, in general, very complicated with many sectors. The input-output

matrix A is based on grouping the different industries and services into 10 separate

sectors. If the external demands to the sectors are given in the vector D, determine

the levels of production that balance the economy.

A =




0.041 0.032 0.018 0.041 0.009 0.002 0.039 0.048 0.04 0.021

0.023 0.037 0.046 0.011 0.004 0.024 0.041 0.006 0.004 0.007

0.018 0.03 0.039 0.05 0.038 0.011 0.049 0.001 0.028 0.047

.034 0.005 0.034 0.039 0.023 0.007 0.009 0.023 0.05 0.006

0.022 0.019 0.021 0.009 0.007 0.035 0.044 0.023 0.019 0.019

0.044 0.005 0.02 0.006 0.013 0.005 0.032 0.016 0.047 0.02

0.018 0.001 0.049 0.011 0.043 0.003 0.024 0.047 0.027 0.042

0.026 0.004 0.03 0.015 0.044 0.021 0.01 0.004 0.011 0.044

0.01 0.011 0.039 0.025 0.005 0.029 0.024 0.023 0.021 0.042

0.048 0.03 0.019 0.045 0.044 0.033 0.014 0.03 0.042 0.05




D =




45

10

11

17

48

32

42

21

34

40




13. The table contains estimates for national health

care in billions of dollars.

Year Dollars (billions)

1965 30

1970 80

1975 120

1980 250

1985 400

1990 690

a. Make a scatter plot of the data.

b. Use the 1970, 1980, and 1990 data to write a

system of equations that can be used to find a

parabola that approximates the data.

c. Solve the system found in part (b).

d. Plot the parabola along with the data points.

e. Use the model found in part (c) to predict an

estimate for national health care spending in

2010.

14. The number of cellular phone subscribers

worldwide from 1985 to 2002 is given in the
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table. Use the data from 1985, 1990, and 2000 to

fit a parabola to the data points. Use the quadratic

function to predict the number of cellular phone

subscribers expected in 2010.

Year Cellular Phone

Subscribers(millions)

1985 1

1990 11

2000 741

2001 955

2002 1155

In Exercises 15–18, use the power of a matrix to solve

the problems. That is, for a matrix A, the nth power is

An = A · A · A · · ·A% &' (
n times

15. Demographers are interested in the movement of

populations or groups of populations from one

region to another. Suppose each year it is

estimated that 90 percent of the people of a city

remain in the city, 10 percent move to the suburbs,

92 percent of the suburban population remain in

the suburbs, and 8 percent move to the city.

a. Write a 2× 2 transition matrix that describes

the percentage of the populations that move

from city to city (remain in the city), city to

suburbs, suburbs to suburbs (remain in the

suburbs), and suburbs to city.

b. If in the year 2002 the population of a city was

1,500,000 and of the suburbs was 600,000,

write a matrix product that gives a 2× 1 vector

containing the populations in the city and in

the suburbs in the year 2003. Multiply the

matrices to find the populations.

c. If in the year 2002 the population of a city was

1,500,000 and of the suburbs was 600,000,

write a matrix product that gives a 2× 1 vector

containing the populations in the city and in

the suburbs in the year 2004. Multiply the

matrices to find the populations.

d. Give a matrix product in terms of powers of

the matrix found in part (a) for the size of the

city and suburban populations in any year after

2002.

16. To study the spread of a disease, a medical

researcher infects 200 laboratory mice of a

population of 1000. The researcher estimates that

it is likely that 80 percent of the infected mice

will recover in a week and 20 percent of healthy

mice will contract the disease in the same week.

a. Write a 2× 2 matrix that describes the

percentage of the population that transition

from healthy to healthy, healthy to infected,

infected to infected, and infected to healthy.

b. Determine the number of healthy and infected

mice after the first week.

c. Determine the number of healthy and infected

mice after the second week.

d. Determine the number of healthy and infected

mice after six weeks.

17. In a population of 50,000 there are 20,000

nonsmokers, 20,000 smokers of one pack or less a

day, and 10,000 smokers of more than one pack a

day. During any month it is likely that only 10

percent of the nonsmokers will become smokers

of one pack or less a day and the rest will remain

nonsmokers, 20 percent of the smokers of a pack

or less will quit smoking, 30 percent will increase

their smoking to more than one pack a day, 30

percent of the heavy smokers will remain smokers

but decrease their smoking to one pack or less,

and 10 percent will go cold turkey and quit. After

one month what part of the population is in each

category? After two months how many are in

each category? After one year how many are in

each category?

18. An entrepreneur has just formed a new company

to compete with the established giant in the

market. She hired an advertising firm to develop a
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campaign to introduce her product to the market.

The advertising blitz seems to be working, and in

any given month 2 percent of the consumers

switch from the time-honored product to the new

improved version, but at the same time 5 percent

of those using the new product decide to switch

back to the old established brand. How long will

it take for the new company to acquire 20 percent

of the consumers?

In Exercises 19 and 20, the figure shows an electrical

network. In an electrical network, current is measured

in amperes, resistance in ohms, and the product of

current and resistance in volts. Batteries are

represented using two parallel line segments of

unequal length, and it is understood the current flows

out of the terminal denoted by the longer line segment.

Resistance is denoted using a sawtooth. To analyze an

electrical network requires Kirchhoff’s laws, which

state all current flowing into a junction, denoted using

a black dot, must flow out and the sum of the products

of current I and resistance R around a closed path (a

loop) is equal to the total voltage in the path.

19. a. Apply Kirchhoff’s first law to either junction to

write an equation involving I1, I2, and I3.

b. Apply Kirchhoff’s second law to the two loops

to write two linear equations.

c. Solve the system of equations from parts

(a) and (b) to find the currents I1, I2, and I3.

10 V

8 V

Loop

Loop

I1

R1 = 4

I2

R2 = 3

I3

R3 = 5

20. a. Apply Kirchhoff’s first law to the four

junctions to write four equations involving

currents.

b. Apply Kirchhoff’s second law to the three

loops to write three linear equations.

c. Solve the system of equations from parts

(a) and (b) to find the currents I1, I2, I3, I4, I5,

and I6.

14 V

Loop

Loop

Loop

18 V

16 V

I1

R1 = 4

I2

R2 = 6

I3

R3 = 4

I4

R4 = 6

I5 R5 = 2 I6

R6 = 3

In Exercises 21 and 22, use the fact that if a plate has

reached a thermal equilibrium, then the temperature at

a grid point, not on the boundary of the plate, is the

average of the temperatures of the four closest grid

points. The temperatures are equal at each point on a

boundary, as shown in the figure. Estimate the

temperature at each interior grid point.

21.

20

20

25

30

22.

20

20

25

30
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Review Exercises for Chapter 1

1. Consider the linear system


x + y + 2z+ w = 3

−x + z+ 2w = 1

2x + 2y + w =− 2

x + y + 2z+ 3w = 5

a. Define the coefficient matrix A for the linear

system.

b. Find det(A).

c. Is the linear system consistent? Explain.

d. Find all solutions to Ax = 0.

e. Is the matrix A invertible? If yes, then find the

inverse.

f. Solve the linear system.

2. The augmented matrix of a linear system has the

form 


1 −1 2 1 a

−1 3 1 1 b

3 −5 5 1 c

2 −2 4 2 d




a. Can you decide by inspection whether the

determinant of the coefficient matrix is 0?

Explain.

b. Can you decide by inspection whether the

linear system has a unique solution for every

choice of a, b, c, and d? Explain.

c. Determine the values of a, b, c, and d for

which the linear system is consistent.

d. Determine the values of a, b, c, and d for

which the linear system is inconsistent.

e. Does the linear system have a unique solution

or infinitely many solutions?

f. If a = 2, b = 1, c = −1, and d = 4, describe

the solution set for the linear system.

3. Find all idempotent matrices of the form 
a b

0 c

 

4. Let S denote the set of all 2× 2 matrices. Find all

matrices

 
a b

c d

 
that will commute with every

matrix in S.

5. Let A and B be 2× 2 matrices.

a. Show that the sum of the terms on the main

diagonal of AB − BA is 0.

b. If M is a 2× 2 matrix and the sum of the main

diagonal entries is 0, show there is a constant c

such that

M2 = cI

c. If A,B, and C are 2× 2 matrices, then use

parts (a) and (b) to show that

(AB − BA)2C = C(AB − BA)2

6. Find the traffic flow pattern for the network in the

figure. Flow rates are in cars per hour. Give one

specific solution.

100

300

400

300

200

500

500

400

600
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7. a. Explain why the matrix

A =




1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1




is invertible.

b. Determine the maximum number of 1’s that

can be added to A such that the resulting

matrix is invertible.

8. Show that if A is invertible, then At is invertible

and (At )−1 = (A−1)t .

9. A matrix A is skew-symmetric provided At = −A.

a. Let A be an n× n matrix and define

B = A+ At and C = A− At

Show that B is symmetric and C is

skew-symmetric.

b. Show that every n× n matrix can be written as

the sum of a symmetric and a skew-symmetric

matrix.

10. Suppose u and v are solutions to the linear system

Ax = b. Show that if scalars α and β satisfy

α+ β = 1, then αu+ βv is also a solution to the

linear system Ax = b.

Chapter 1: Chapter Test

In Exercises 1–45, determine whether the statement is

true or false.

1. A 2× 2 linear system has one solution, no

solutions, or infinitely many solutions.

2. A 3× 3 linear system has no solutions, one

solution, two solutions, three solutions, or

infinitely many solutions.

3. If A and B are n× n matrices with no zero

entries, then AB  = 0.

4. Homogeneous linear systems always have at least

one solution.

5. If A is an n× n matrix, then Ax = 0 has a

nontrivial solution if and only if the matrix A has

an inverse.

6. If A and B are n× n matrices and Ax = Bx for

every n× 1 matrix x, then A = B.

7. If A,B, and C are invertible n× n matrices, then

(ABC)−1 = A−1B−1C−1.

8. If A is an invertible n× n matrix, then the linear

system Ax = b has a unique solution.

9. If A and B are n× n invertible matrices and

AB = BA, then A commutes with B−1.

10. If A and B commute, then A2B = BA2.

11. The matrix 


1 −2 3 1 0

0 −1 4 3 2

0 0 3 5 −2

0 0 0 0 4

0 0 0 0 6




does not have an inverse.

12. Interchanging two rows of a matrix changes the

sign of its determinant.

13. Multiplying a row of a matrix by a nonzero

constant results in the determinant being

multiplied by the same nonzero constant.

14. If two rows of a matrix are equal, then the

determinant of the matrix is 0.

15. Performing the operation aRi + Rj → Rj on a

matrix multiplies the determinant by the

constant a.

16. If A =

 
1 2

4 6

 
, then A2 − 7A = 2I.

17. If A and B are invertible matrices, then A+ B is

an invertible matrix.

18. If A and B are invertible matrices, then AB is an

invertible matrix.
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19. If A is an n× n matrix and A does not have an

inverse, then the linear system Ax = b is

inconsistent.

20. The linear system
 1 2 3

6 5 4

0 0 0




 x

y

z


 =


 1

2

3




is inconsistent.

21. The inverse of the matrix 
2 −1

3 1

 
is

 
1 1

−3 2

 

22. The matrix  
2 −1

4 −2

 
does not have an inverse.

23. If the n× n matrix A is idempotent and

invertible, then A = I.

24. If A and B commute, then At and Bt commute.

25. If A is an n× n matrix and det(A) = 3, then

det(AtA) = 9.

In Exercises 26–32, use the linear system 
2x + 2y = 3

x − y = 1

26. The coefficient matrix is

A =

 
2 2

1 −1

 
27. The coefficient matrix A has determinant

det(A) = 0

28. The linear system has a unique solution.

29. The only solution to the linear system is

x = −7/4 and y = −5/4.
30. The inverse of the coefficient matrix A is

A−1 =

 
1
4

1
2

1
4
− 1

2

 

31. The linear system is equivalent to the matrix

equation  
2 2

1 −1

  
x

y

 
=

 
3

1

 

32. The solution to the system is given by the matrix

equation  
x

y

 
=

 
1
4

1
2

1
4
− 1

2

  
3

1

 

In Exercises 33–36, use the linear system


x1 + 2x2 − 3x3 = 1

2x1 + 5x2 − 8x3 = 4

−2x1 − 4x2 + 6x3 =−2

33. The determinant of the coefficient matrix is    5 −8

−4 6

    +
    2 −8

−2 6

    +
    2 5

−2 −4

    
34. The determinant of the coefficient matrix is 0.

35. A solution to the linear system is

x1 = −4, x2 = 0, and x3 = −1.

36. The linear system has infinitely many solutions,

and the general solution is given by x3 is free,

x2 = 2+ 2x3, and x1 = −3− x3.

In Exercises 37–41, use the matrix

A =


 −1 −2 1 3

1 0 1 −1

2 1 2 1




37. After the operation R1 ←→ R2 is performed, the

matrix becomes
 1 0 1 −1

−1 −2 1 3

2 1 2 1




38. After the operation −2R1 + R3 −→ R3 is

performed on the matrix found in Exercise 37, the

matrix becomes
 1 0 1 −1

−1 −2 1 3

0 −2 0 −3




39. The matrix A is row equivalent to
 1 0 1 −1

0 −2 2 2

0 0 1 4



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40. The reduced row echelon form of A is
 1 0 0 −5

0 1 0 3

0 0 1 4




41. If A is viewed as the augmented matrix of a

linear system, then the solution to the linear

system is x = −5, y = 3, and z = 4.

In Exercises 42–45, use the matrices

A =


 1 1 2

−2 3 1

4 0 −3




B =

 
1 2 1

−1 3 2

 

42. The matrix products AB and BA are both defined.

43. The matrix expression −2BA+ 3B simplifies to a

2× 3 matrix.

44. The matrix expression −2BA+ 3B equals 
−3 −5 3

−5 7 16

 

45. The matrix A2 is
 7 4 −3

−4 7 −4

−8 4 17



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I
n the broadest sense a signal is any time-

varying quantity. The motion of a particle

through space, for example, can be thought of

as a signal. A seismic disturbance is detected

as signals from within the earth. Sound caused

by the vibration of a string is a signal, radio

waves are signals, and a digital picture with col-

ors represented numerically also can be consid-

ered a signal. A video signal is a sequence of

images. Signals represented using real numbers

are called continuous while others that use inte-

gers are called discrete. A compact disc contains

discrete signals representing sound. Some signals

are periodic; that is, the waveform or shape of the

signal repeats at regular intervals. The period of

a wave is the time it takes for one cycle of the

wave, and the frequency is the number of cycles

that occur per unit of time. If the period of a wave

is 2T , then the frequency is F = 1
2T
. Every periodic motion is the mixture of

sine and cosine waves with frequencies proportional to a common frequency, called

the fundamental frequency. A signal with period 2T is a mixture of the func-

tions

1, cos
πx

T
, sin

πx

T
, cos

2πx

T
, sin

2πx

T
, cos

3πx

T
, sin

3πx

T
, . . .

and for any n, the signal can be approximated by the fundamental set

1, cos
πx

T
, sin

πx

T
, cos

2πx

T
, sin

2πx

T
, . . . , cos

nπx

T
, sin

nπx

T

93
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The approximation obtained from the sum of the elements of the fundamental set with

appropriate coefficients, or weights, has the form

a0 + a1 cos
πx

T
+ b1 sin

πx

T
+ a2 cos

2πx

T

+ b2 sin
2πx

T
+ · · · + an cos

nπx

T
+ bn sin

nπx

T

This sum is called a linear combination of the elements of the fundamental set. A

square wave on the interval [−π,π] along with the approximations

4

π
sin x,

4

π
sin x + 4

3π
sin 3x,

4

π
sin x + 4

3π
sin 3x + 4

5π
sin 5x

and
4

π
sin x + 4

3π
sin 3x + 4

5π
sin 5x + 4

7π
sin 7x

are shown in Fig. 1. As more terms are added, the approximations become better.

x 

y 

⫺1

1

x 

y 

⫺1

1

Square wave

Figure 1

In Chap. 1 we defined a vector, with n entries, as an n× 1 matrix. Vectors are

used not only in mathematics, but in virtually every branch of science. In this chapter

we study sets of vectors and analyze their additive properties. The concepts presented

here, in the context of vectors, are fundamental to the study of linear algebra. In

Chap. 3, we extend these concepts to abstract vector spaces, including spaces of

functions as described in the opening example.

2.1

ß

Vectors in⺢n

Euclidean 2-space, denoted by ⺢2, is the set of all vectors with two entries, that is,

⺢
2 =

  
x1

x2

     x1, x2 are real numbers

 



2.1 Vectors in ⺢n 95

Similarly Euclidean 3-space, denoted by ⺢3, is the set of all vectors with three entries,

that is,

⺢
3 =




 x1

x2

x3



      x1, x2, x3 are real numbers




In general, Euclidean n-space consists of vectors with n entries.

DEFINITION 1 Vectorsin⺢n Euclidean n-space, denoted by ⺢n, or simply n-space, is defined by

⺢
n =






x1

x2
...

xn



        
xi ∈ ⺢, for i = 1, 2, . . . , n




The entries of a vector are called the components of the vector.

Geometrically, in ⺢2 and ⺢3 a vector is a directed line segment from the origin to

the point whose coordinates are equal to the components of the vector. For example,

the vector in ⺢2 given by

v =
 

1

2

 x 

y 

(1, 2)

Figure 2 is the directed line segment from the origin (0, 0) to the point (1, 2), as shown in

Fig. 2. The point (0, 0) is the initial point, and the point (1, 2) is the terminal

point. The length of a vector is the length of the line segment from the initial point

to the terminal point. For example, the length of v =
 

1

2

 
is

√
12 + 22 =

√
5. A

vector is unchanged if it is relocated elsewhere in the plane, provided that the length

and direction remain unchanged. For example, the directed line segments between

(0, 0) and (1, 2) and between (2, 2) and (3, 4) are both representations of the same

vector v =
 

1

2

 
. See Fig. 3. When the initial point of a vector is the origin, we say

that the vector is in standard position.

x 

y 

v

v

Figure 3

Since vectors are matrices, two vectors are equal provided that their corresponding

components are equal. The operations of addition and scalar multiplication are defined

componentwise as they are for matrices.

DEFINITION 2 Addition and Scalar Multiplication of Vectors Let u and v be vectors in

⺢
n and c a scalar.

1. The sum of u and v is

u + v =



u1

u2
...

un


+



v1

v2
...

vn


 =



u1 + v1

u2 + v2
...

un + vn



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2. The scalar product of c and u is

cu = c



u1

u2
...

un


 =



cu1

cu2
...

cun




These algebraic definitions of vector addition and scalar multiplication agree with

the standard geometric definitions. Two vectors u and v are added according to the

parallelogram rule, as shown in Fig. 4(a). The vector cu is a scaling of the vector u.

In Fig. 4(b) are examples of scaling a vector with 0 < c < 1 and c > 1. In addition,

if c < 0, then the vector cu is reflected through the origin, as shown in Fig. 4(b). The

difference u − v = u + (−v) is the vector shown in Fig. 4(c). As shown in Fig. 4(c),

it is common to draw the difference vector u − v from the terminal point of v to the

terminal point of u.

EXAMPLE 1 Let

u =

 1

−2

3


 v =


 −1

4

3


 and w =


 4

2

6




Find (2u + v)− 3w.

Solution Using the componentwise definitions of addition and scalar multiplication, we have

(2u + v)− 3w =

2


 1

−2

3


+


 −1

4

3




− 3


 4

2

6




=



 2

−4

6


+


 −1

4

3




+


 −12

−6

−18




=

 1

0

9


+


 −12

−6

−18


 =


 −11

−6

−9




x 

y 

(a)

v

u

u
+ v

x 

y 

(b)

u

2u

1
2
u

−2u

x 

y 

(c)

−v

v
u

u − v

Figure 4
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Vectors in ⺢n, being matrices with n rows and 1 column, enjoy all the algebraic

properties of matrices that we saw in Chap. 1.

EXAMPLE 2 Show that vector addition is commutative.

Solution If u and v are vectors in ⺢n, then

u + v =



u1

u2
...

un


+



v1

v2
...

vn


 =



u1 + v1

u2 + v2
...

un + vn




Since addition for real numbers is commutative,

u + v =



u1 + v1

u2 + v2
...

un + vn


 =



v1 + u1

v2 + u2
...

vn + un


 = v + u

The zero vector in ⺢n is the vector with each component equal to 0, that is,

0 =




0

0
...

0




Hence, for any vector v in ⺢n, we have v + 0 = v. Recall that for any real number a

there is a unique number −a such that a + (−a) = 0. This enables us to define the

additive inverse of any vector v as the vector

−v =




−v1

−v2
...

−vn




so that v + (−v) = 0.

Theorem 1 summarizes the essential algebraic properties of vectors in ⺢n. These

properties serve as a model for the structure we will require for the abstract vec-

tor spaces of Chap. 3. The first of these properties was proved in Example 2. The

remaining justifications are left as exercises.

THEOREM 1 Let u, v, and w be vectors in ⺢n, and let c and d be scalars. The following algebraic

properties hold.

1. Commutative property: u + v = v + u

2. Associative property: (u + v)+ w = u + (v + w)
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3. Additive identity: The vector 0 satisfies 0 + u = u + 0 = u.

4. Additive inverse: For every vector u, the vector −u satisfies

u + (−u) =−u + u = 0.

5. c(u + v) = cu + cv

6. (c + d)u = cu + du

7. c(du) = (cd)u

8. (1)u = u

By the associative property, the vector sum u1 + u2 + · · · + un can be computed

unambiguously, without the need for parentheses. This will be important in Sec. 2.2.

EXAMPLE 3 Let

u =
 

1

−1

 
v =

 
2

3

 
and w =

 
4

−3

 
Verify that the associative property holds for these three vectors. Also verify that

for any scalars c and d, c(du) = (cd)u.

Solution To verify the associative property, we have

(u + v)+ w =
  

1

−1

 
+
 

2

3

  
+
 

4

−3

 
=
 

1 + 2

−1 + 3

 
+
 

4

−3

 

=
 

3

2

 
+
 

4

−3

 
=
 

7

−1

 
and

u + (v + w) =
 

1

−1

 
+
  

2

3

 
+
 

4

−3

  

=
 

1

−1

 
+
 

6

0

 
=
 

7

−1

 
Hence, (u + v)+ w = u + (v + w).

For the second verification, we have

c(du) = c

 
d

 
1

−1

  
= c

 
d

−d
 

=
 

cd

−cd
 

= cd

 
1

−1

 
= (cd)u

The properties given in Theorem 1 can be used to establish other useful properties

of vectors in ⺢n. For example, if u ∈ ⺢n and c is a scalar, then

0u = 0



u1

u2
...

un


 =




0

0
...

0


 = 0 and c0 = 0
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We also have the property that (−1)u = −u. That is, the scalar product of −1 with

u is the additive inverse of u. In the case of real numbers, the statement xy = 0 is

equivalent to x = 0 or y = 0. A similar property holds for scalar multiplication. That

is, if cu = 0, then either c = 0 or u = 0. To see this, let

cu1

cu2
...

cun


 =




0

0
...

0




so that cu1 = 0, cu2 = 0, . . . , cun = 0. If c = 0, then the conclusion holds. Other-

wise, u1 = u2 = · · · = un = 0, that is, u = 0.

Fact Summary

1. The definitions of vector addition and scalar multiplication in ⺢n agree with

the definitions for matrices in general and satisfy all the algebraic properties

of matrices.

2. The zero vector, whose components are all 0, is the additive identity for

vectors in ⺢n. The additive inverse of a vector v, denoted by −v, is

obtained by negating each component of v.

3. For vectors in ⺢2 and ⺢3 vector addition agrees with the standard

parallelogram law. Multiplying such a vector by a positive scalar changes

the length of the vector but not the direction. If the scalar is negative, the

vector is reflected through the origin.

Exercise Set 2.1

In Exercises 1–6, use the vectors

u =

 1

−2

3


 v =


 −2

4

0




w =

 2

1

−1




1. Find u + v and v + u.

2. Find (u + v)+ w and u + (v + w).

3. Find u − 2v + 3w.

4. Find −u + 1
2
v − 2w.

5. Find −3(u + v)− w.

6. Find 2u − 3(v − 2w).

In Exercises 7–10, use the vectors

u =




1

−2

3

0


 v =




3

2

−1

1




7. Find −2(u + 3v)+ 3u.

8. Find 3u − 2v.

9. If x1 and x2 are real scalars, verify that

(x1 + x2)u = x1u + x2u.
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10. If x1 is a real scalar, verify that

x1(u + v) = x1u + x1v.

In Exercises 11–14, let

e1 =

 1

0

0


 e2 =


 0

1

0




e3 =

 0

0

1




Write the given vector in terms of the vectors e1, e2,

and e3.

11. v =

 2

4

1




12. v =

 −1

3

2




13. v =

 0

3

−2




14. v =

 −1

0
1
2




In Exercises 15 and 16, find w such that

−u + 3v − 2w = 0.

15. u =

 1

4

2


 v =


 −2

2

0




16. u =

 −2

0

1


 v =


 2

−3

4




In Exercises 17–24, write the vector equation as an

equivalent linear system and then solve the system.

Explain what the solution to the linear system implies

about the vector equation.

17. c1

 
1

−2

 
+ c2

 
3

−2

 
=
 −2

−1

 

18. c1

 
2

5

 
+ c2

 −1

−2

 
=
 

0

5

 

19. c1

 
1

2

 
+ c2

 −1

−2

 
=
 

3

1

 

20. c1

 −1

3

 
+ c2

 
2

−6

 
=
 −1

1

 

21. c1


 −4

4

3


+ c2


 0

3

−1


+ c3


 −5

1

−5


=


 −3

−3

4




22. c1


 0

−1

1


+ c2


 1

1

0


+ c3


 1

1

−1


 =


 −1

0

−1




23. c1


 −1

0

1


+ c2


 −1

1

1


+ c3


 1

−1

−1


=


 −1

0

2




24. c1


 −1

2

4


+ c2


 0

2

4


+ c3


 2

1

2


 =


 6

7

3




In Exercises 25–28, find all vectors

 
a

b

 
, so that the

vector equation can be solved.

25. c1

 
1

−1

 
+ c2

 
2

1

 
=
 
a

b

 

26. c1

 
1

1

 
+ c2

 −1

1

 
=
 
a

b

 

27. c1

 
1

−1

 
+ c2

 
2

−2

 
=
 
a

b

 

28. c1

 
3

1

 
+ c2

 
6

2

 
=
 
a

b

 

In Exercises 29–32, find all vectors

v =

 a

b

c




so that the vector equation c1v1 + c2v2 + c3v3 = v can

be solved.
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29. v1 =

 1

0

1


 v2 =


 0

1

1




v3 =

 2

1

0




30. v1 =

 1

1

1


 v2 =


 0

1

0




v3 =

 1

1

0




31. v1 =

 1

1

−1


 v2 =


 2

1

1




v3 =

 3

2

0




32. v1 =

 −1

0

2


 v2 =


 1

−2

8




v3 =

 1

−1

3




In Exercises 33–39, verify the indicated vector

property of Theorem 1 for vectors in ⺢n.

33. Property 2.

34. Property 3.

35. Property 4.

36. Property 5.

37. Property 6.

38. Property 7.

39. Property 8.

40. Prove that the zero vector in ⺢n is unique.

2.2

ß

Linear Combinations

In three-dimensional Euclidean space ⺢3 the coordinate vectors that define the three

axes are the vectors

e1 =

 1

0

0


 e2 =


 0

1

0


 and e3 =


 0

0

1




Every vector in ⺢3 can then be obtained from these three coordinate vectors, for

example, the vector

v =

 2

3

3


 = 2


 1

0

0


+ 3


 0

1

0


+ 3


 0

0

1




Geometrically, the vector v is obtained by adding scalar multiples of the coordi-

nate vectors, as shown in Fig. 1. The vectors e1, e2, and e3 are not unique in this

respect. For example, the vector v can also be written as a combination of the

vectors

v1 =

 1

1

1


 v2 =


 0

1

1


 and v3 =


 −1

1

1



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y 

z 

x 

2e1

3e3

3e2

v

2e1 + 3e2

Figure 1

that is,

3v1 − v2 + v3 =

 2

3

3




A vector written as a combination of other vectors using addition and scalar mul-

tiplication is called a linear combination. Combining vectors in this manner plays a

central role in describing Euclidean spaces and, as we will see in Chap. 3, in describing

abstract vector spaces.

DEFINITION 1 Linear Combination Let S = {v1, v2, . . . , vk} be a set of vectors in ⺢n, and

let c1, c2, . . . , ck be scalars. An expression of the form

c1v1 + c2v2 + · · · + ckvk =
k 
i=1

civi

is called a linear combination of the vectors of S. Any vector v that can be written

in this form is also called a linear combination of the vectors of S.

In Example 1 we show how linear systems are used to decide if a vector is a

linear combination of a set of vectors.

EXAMPLE 1 Determine whether the vector

v =

 −1

1

10




is a linear combination of the vectors

v1 =

 1

0

1


 v2 =


 −2

3

−2


 and v3 =


 −6

7

5



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Solution The vector v is a linear combination of the vectors v1, v2, and v3 if there are scalars

c1, c2, and c3, such that

v =

 −1

1

10


 = c1v1 + c2v2 + c3v3

= c1


 1

0

1


+ c2


 −2

3

−2


+ c3


 −6

7

5




=

 c1 − 2c2 − 6c3

3c2 + 7c3

c1 − 2c2 + 5c3




Equating components gives the linear system

c1 − 2c2 − 6c3 = −1

3c2 + 7c3 = 1

c1 − 2c2 + 5c3 = 10

To solve this linear system, we reduce the augmented matrix
 1 −2 −6 −1

0 3 7 1

1 −2 5 10


 to


 1 0 0 1

0 1 0 −2

0 0 1 1




From the last matrix, we see that the linear system is consistent with the unique

solution

c1 = 1 c2 = −2 and c3 = 1

Using these scalars, we can write v as the linear combination

v =

 −1

1

10


 = 1


 1

0

1


+ (−2)


 −2

3

−2


+ 1


 −6

7

5




The case for which a vector is not a linear combination of a set of vectors is

illustrated in Example 2.

EXAMPLE 2 Determine whether the vector

v =

 −5

11

−7




is a linear combination of the vectors

v1 =

 1

−2

2


 v2 =


 0

5

5


 and v3 =


 2

0

8



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Solution The vector v is a linear combination of the vectors v1, v2, and v3 if there are scalars

c1, c2, and c3, such that
 −5

11

−7


 = c1


 1

−2

2


+ c2


 0

5

5


+ c3


 2

0

8




The augmented matrix corresponding to this equation is given by
 1 0 2 −5

−2 5 0 11

2 5 8 −7




Reducing the augmented matrix
 1 0 2 −5

−2 5 0 11

2 5 8 −7


 to


 1 0 2 −5

0 5 4 1

0 0 0 2




shows that the linear system is inconsistent. Therefore, the vector v cannot be

written as a linear combination of the three vectors v1, v2, and v3.

To see this geometrically, first observe that the vector v3 is a linear combination

of v1 and v2. That is,

v3 = 2v1 + 4

5
v2

Therefore, any linear combination of the three vectors v1, v2, and v3, is just a linear

combination of v1 and v2. Specifically,

c1v1 + c2v2 + c3v3 = c1v1 + c2v2 + c3

 
2v1 + 4

5
v2

 

= (c1 + 2c3)v1 +
 
c2 + 4

5
c3

 
v2

The set of all vectors that are linear combinations of v1 and v2 is a plane in ⺢3,

which does not contain the vector v, as shown in Fig. 2.

v

Figure 2
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In ⺢n the coordinate vectors are the n vectors given by

e1 =




1

0
...

0


 e2 =




0

1
...

0


 . . . en =




0

0
...

1




These vectors can also be defined by the equations

(ek)i =
 

1 if i = k

0 if i  = k

where 1 ≤ k ≤ n.

An important property of the coordinate vectors is that every vector in ⺢n can be

written as a linear combination of the coordinate vectors. Indeed, for any vector v in

⺢
n, let the scalars be the components of the vector, so that

v =



v1

v2
...

vn


 = v1




1

0
...

0


+ v2




0

1
...

0


+ · · · + vn




0

0
...

1




= v1e1 + v2e2 + · · · + vnen
Linear combinations of more abstract objects can also be formed, as illustrated

in Example 3 using 2 × 2 matrices. This type of construction is used extensively in

Chap. 3 when we consider abstract vector spaces.

EXAMPLE 3 Show that the matrix

A =
 

1 1

1 0

 
is a linear combination of the matrices

M1 =
 

1 0

0 1

 
M2 =

 
0 1

1 1

 
and M3 =

 
1 1

1 1

 

Solution Similar to the situation with vectors, we must find scalars c1, c2, and c3 such that

c1M1 + c2M2 + c3M3 = A

that is,

c1

 
1 0

0 1

 
+ c2

 
0 1

1 1

 
+ c3

 
1 1

1 1

 
=
 

1 1

1 0

 
After performing the scalar multiplication and addition, we obtain 

c1 + c3 c2 + c3

c2 + c3 c1 + c2 + c3

 
=
 

1 1

1 0
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Equating corresponding entries gives the linear system

c1 + c3 = 1

c2 + c3 = 1

c1 + c2 + c3 = 0

This system is consistent with solution c1 = −1, c2 = −1, and c3 = 2. Thus, the

matrix A is a linear combination of the matrices M1,M2, and M3.

EXAMPLE 4 Consider the homogeneous equation Ax = 0. Show that if x1, x2, . . . , xn are solu-

tions of the equation, then every linear combination c1x1 + c2x2 + · · · + cn xn is

also a solution of the equation.

Solution Since x1, x2, . . . , xn are solutions of the matrix equation, we have

Ax1 = 0 Ax2 = 0 . . . Axn = 0

Then using the algebraic properties of matrices, we have

A(c1x1 + c2x2 + · · · + cnxn) = A(c1x1)+ A(c2x2)+ · · · + A(cnxn)

= c1(Ax1)+ c2(Ax2)+ · · · + cn(Axn)

= c10 + c20 + · · · + cn0

= 0

The result of Example 4 is an extension of the one given in Example 3 of

Sec. 1.5.

Vector Form of a Linear System

We have already seen that a linear system with m equations and n variables


a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm

can be written in matrix form as Ax = b, where A is the m× n coefficient matrix, x

is the vector in ⺢n of variables, and b is the vector in ⺢m of constants. If we use the

column vectors of the coefficient matrix A, then the matrix equation can be written
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in the equivalent form

x1



a11

a21
...

am1


+ x2



a12

a22
...

am2


+ · · · + xn



a1n

a2n
...

amn


 =



b1

b2
...

bm




This last equation is called the vector form of a linear system. This equation can also

be written as

x1A1 + x2A2 + · · · + xnAn = b

where Ai denotes the ith column vector of the matrix A. Observe that this equation is

consistent whenever the vector b can be written as a linear combination of the column

vectors of A.

THEOREM 2 The linear system Ax = b is consistent if and only if the vector b can be expressed

as a linear combination of the column vectors of A.

Matrix Multiplication

Before concluding this section, we comment on how linear combinations can be used

to describe the product of two matrices. Let A be an m× n matrix and B an n× p

matrix. If Bi is the ith column vector of B, then the ith column vector of the product

AB is given by

ABi =



a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn





b1i

b2i
...

bni




=



a11b1i + a12b2i + · · · + a1nbni
a21b1i + a22b2i + · · · + a2nbni
...

...
...

am1b1i + am2b2i + · · · + amnbni




=



a11b1i

a21b1i
...

am1b1i


+



a12b2i

a22b2i
...

am2b2i


+ · · · +



a1nbni
a2nbni
...

amnbni




= b1iA1 + b2iA2 + · · · + bniAn

Since for i = 1, 2, . . . , p the product ABi is the ith column vector of AB, each column

vector of AB is a linear combination of the column vectors of A.
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Fact Summary

1. Every vector in ⺢n is a linear combination of the coordinate vectors

e1, e2, . . . , en.

2. If x1, x2, . . . , xk are all solutions to the homogeneous equation Ax = 0,

then so is every linear combination of these vectors.

3. The linear system Ax = b can be written in the equivalent vector form as

x1A1 + x2A2 + · · · + xnAn = b. The left side is a linear combination of the

column vectors of A.

4. The linear system Ax = b is consistent if and only if b is a linear

combination of the column vectors of A.

Exercise Set 2.2

In Exercises 1–6, determine whether the vector v is a

linear combination of the vectors v1 and v2.

1. v =
 −4

11

 
v1 =

 
1

1

 

v2 =
 −2

3

 

2. v =
 

13

−2

 
v1 =

 −1

2

 

v2 =
 

3

0

 

3. v =
 

1

1

 
v1 =

 −2

4

 

v2 =
 

3

−6

 

4. v =
 

3

2

 
v1 =

 
1

−2

 

v2 =
 

1
2

−1

 

5. v =

 −3

10

10


 v1 =


 −2

3

4




v2 =

 1

4

2




6. v =

 −2

6

8


 v1 =


 3

4

−1




v2 =

 2

7

3




In Exercises 7–12, determine whether the vector v is a

linear combination of the vectors v1, v2, and v3.

7. v =

 2

8

2


 v1 =


 2

−2

0




v2 =

 3

0

−3


 v3 =


 −2

0

−1



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8. v =

 5

−4

−7


 v1 =


 1

−1

0




v2 =

 −2

−1

−1


 v3 =


 3

−1

−3




9. v =

 −1

1

5


 v1 =


 1

2

−1




v2 =

 −1

−1

3


 v3 =


 0

1

2




10. v =

 −3

5

5


 v1 =


 −3

2

1




v2 =

 1

4

1


 v3 =


 −1

10

3




11. v =




3

−17

17

7


 v1 =




2

−3

4

1




v2 =




1

6

−1

2


 v3 =




−1

−1

2

3




12. v =




6

3

3

7


 v1 =




2

3

4

5




v2 =




1

−1

2

3


 v3 =




3

1

−3

1




In Exercises 13–16, find all the ways that v can be

written as a linear combination of the given vectors.

13. v =
 

3

0

 
v1 =

 
3

1

 

v2 =
 

0

−1

 
v3 =

 −1

2

 

14. v =
 −1

−1

 
v1 =

 
1

−1

 

v2 =
 −2

−1

 
v3 =

 
3

0

 

15. v =

 0

−1

−3


 v1 =


 0

1

1




v2 =

 −2

−1

2


 v3 =


 −2

−3

−1




v4 =

 2

−1

−2




16. v =

 −3

−3

1


 v1 =


 −1

−1

2




v2 =

 0

−1

−1


 v3 =


 0

−1

−2




v4 =

 −3

−1

−2




In Exercises 17–20, determine if the matrix M is a

linear combination of the matrices M1,M2, and M3.

17. M =
 −2 4

4 0

 

M1 =
 

1 2

1 −1

 
M2 =

 −2 3

1 4

 

M3 =
 −1 3

2 1
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18. M =
 

2 3

1 2

 

M1 =
 

2 2

1 1

 
M2 =

 −1 1

2 1

 

M3 =
 

1 2

3 1

 

19. M =
 

2 1

−1 2

 

M1 =
 

2 2

−1 3

 
M2 =

 
3 −1

2 −2

 

M3 =
 

3 −1

2 2

 

20. M =
 

2 1

3 4

 

M1 =
 

1 0

0 −1

 
M2 =

 
0 1

0 0

 

M3 =
 

0 0

0 1

 

21. Let A =
 

1 3

−2 1

 
and x =

 
2

−1

 
. Write the

product Ax as a linear combination of the column

vectors of A.

22. Let A =

 1 2 −1

2 3 4

−3 2 1


 and x =


 −1

−1

3


.

Write the product Ax as a linear combination of

the column vectors of A.

23. Let A =
 −1 −2

3 4

 
and B =

 
3 2

2 5

 
. Write

each column vector of AB as a linear

combination of the column vectors of A.

24. Let A =

 2 0 −1

1 −1 4

−4 3 1


 and

B =

 3 2 1

−2 1 0

2 −1 1


. Write each column

vector of AB as a linear combination of the

column vectors of A.

In Exercises 25 and 26, write the polynomial p(x), if

possible, as a linear combination of the polynomials

1 + x and x2

25. p(x) = 2x2 − 3x − 1

26. p(x) = −x2 + 3x + 3

In Exercises 27 and 28, write the polynomial p(x), if

possible, as a linear combination of the polynomials

1 + x,−x, x2 + 1 and 2x3 − x + 1

27. p(x) = x3 − 2x + 1

28. p(x) = x3

29. Describe all vectors in ⺢3 that can be written as a

linear combination of the vectors
 1

2

−1





 3

7

−2


 and


 1

3

0




30. Describe all 2 × 2 matrices that can be written as

a linear combination of the matrices 
1 0

0 0

  
0 1

1 0

 
and

 
0 0

0 1

 

31. If v = v1 + v2 + v3 + v4 and

v4 = v1 − 2v2 + 3v3, write v as a linear

combination of v1, v2, and v3.

32. If v = v1 + v2 + v3 + v4 and v2 = 2v1 − 4v3,

write v as a linear combination of v1, v3, and v4.

33. Suppose that the vector v is a linear combination

of the vectors v1, v2, . . . , vn, and

c1v1 + c2v2 + · · · + cnvn = 0, with c1  = 0. Show

that v is a linear combination of v2, . . . , vn.

34. Suppose that the vector v is a linear combination

of the vectors v1, v2, . . . , vn, and w1,w2, . . . ,wm,

are another m vectors. Show that v is a linear

combination of v1, v2, . . . , vn,w1,w2, . . . ,wm.

35. Let S1 be the set of all linear combinations of the

vectors v1, v2, . . . , vk in ⺢n, and S2 be the set of

all linear combinations of the vectors v1, v2, . . . ,
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vk, cvk, where c is a nonzero scalar. Show that

S1 = S2.

36. Let S1 be the set of all linear combinations of the

vectors v1, v2, . . . , vk in ⺢n, and S2 be the set of

all linear combinations of the vectors v1, v2, . . . ,

vk, v1 + v2. Show that S1 = S2.

37. Suppose that Ax = b is a 3 × 3 linear system that

is consistent. If there is a scalar c such that

A3 = cA1, then show that the linear system has

infinitely many solutions.

38. Suppose that Ax = b is a 3 × 3 linear system that

is consistent. If A3 = A1 + A2, then show that the

linear system has infinitely many solutions.

39. The equation

2y   − 3y  + y = 0

is an example of a differential equation. Show that

y = f (x) = ex and y = g(x) = e
1
2 x are solutions

to the equation. Then show that any linear

combination of f (x) and g(x) is another solution

to the differential equation.

2.3

ß

Linear Independence

In Sec. 2.2 we saw that given a set S of vectors in ⺢n, it is not always possible

to express every vector in ⺢
n as a linear combination of vectors from S. At the

other extreme, there are infinitely many different subsets S such that the collection

of all linear combinations of vectors from S is ⺢n. For example, the collection of all

linear combinations of the set of coordinate vectors S = {e1, . . . , en} is ⺢n, but so

is the collection of linear combinations of T = {e1, . . . , en, e1 + e2}. In this way S

and T both generate ⺢n. To characterize those minimal sets S that generate ⺢n, we

require the concept of linear independence. As motivation let two vectors u and v in

⺢
2 lie on the same line, as shown in Fig. 1. Thus, there is a nonzero scalar c such

that

x 

y 

v

u = 1
2
v

−v

Figure 1 u = cv

This condition can also be written as

u − cv = 0

In this case we say that the vectors u and v are linearly dependent. Evidently we

have that two vectors u and v are linearly dependent provided that the zero vector is

a nontrivial (not both scalars 0) linear combination of the vectors. On the other hand,

the vectors shown in Fig. 2 are not linearly dependent. This concept is generalized to

sets of vectors in ⺢n.

x 

y 

v

u

Figure 2

DEFINITION 1 Linearly Indpendent and Linearly Dependent The set of vectors S =
{v1, v2, . . . , vm} in ⺢n is linearly independent provided that the only solution to

the equation

c1v1 + c2v2 + · · · + cmvm = 0

is the trivial solution c1 = c2 = · · · = cm = 0. If the above linear combination has

a nontrivial solution, then the set S is called linearly dependent.
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For example, the set of coordinate vectors

S = {e1, . . . , en}
in ⺢n is linearly independent.

EXAMPLE 1 Determine whether the vectors

v1 =




1

0

1

2


 v2 =




0

1

1

2


 and v3 =




1

1

1

3




are linearly independent or linearly dependent.

Solution We seek solutions to the vector equation

c1




1

0

1

2


+ c2




0

1

1

2


+ c3




1

1

1

3


 =




0

0

0

0




From this we obtain the linear system


c1 + c3 = 0

c2 + c3 = 0

c1 + c2 + c3 = 0

2c1 + 2c2 + 3c3 = 0

Subtracting the first equation from the third equation gives c2 = 0. Then, from

equation 2, we have c3 = 0 and from equation 1 we have c1 = 0. Hence, the only

solution to the linear system is the trivial solution c1 = c2 = c3 = 0. Therefore, the

vectors are linearly independent.

EXAMPLE 2 Determine whether the vectors

v1 =

 1

0

2


 v2 =


 −1

1

2


 v3 =


 −2

3

1


 v4 =


 2

1

1




are linearly independent.

Solution As in Example 1, we need to solve

c1


 1

0

2


+ c2


 −1

1

2


+ c3


 −2

3

1


+ c4


 2

1

1


 =


 0

0

0



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This leads to the homogeneous linear system


c1 − c2 − 2c3 + 2c4 = 0

c2 + 3c3 + c4 = 0

2c1 + 2c2 + c3 + c4 = 0

with solution set given by

S = {(−2t, 2t,−t, t) | t ∈ ⺢}
Since the linear system has infinitely many solutions, the set of vectors

{v1, v2, v3, v4} is linearly dependent.

In Example 2, we verified that the set of vectors {v1, v2, v3, v4} is linearly depen-

dent. Observe further that the vector v4 is a linear combination of v1, v2, and v3,

that is,

v4 = 2v1 − 2v2 + v3

In Theorem 3 we establish that any finite collection of vectors in ⺢
n, where the

number of vectors exceeds n, is linearly dependent.

THEOREM 3 Let S = {v1, v2, . . . , vn} be a set of n nonzero vectors in ⺢m. If n > m, then the

set S is linearly dependent.

Proof Let A be the m× n matrix with column vectors the vectors of S so that

Ai = vi for i = 1, 2, . . . , n

In this way we have

c1v1 + c2v2 + · · · + cnvn = 0

in matrix form, is the homogeneous linear system

Ac = 0 where c =



c1

c2
...

cn




As A is not square with n > m, there is at least one free variable. Thus, the solution

is not unique and S = {v1, . . . , vn} is linearly dependent.

Notice that from Theorem 3, any set of three or more vectors in ⺢2, four or

more vectors in ⺢3, five or more vectors in ⺢4, and so on, is linearly dependent. This

theorem does not address the case for which n ≤ m. In this case, a set of n vectors

in ⺢m may be either linearly independent or linearly dependent.

The notions of linear independence and dependence can be generalized to include

other objects, as illustrated in Example 3.
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EXAMPLE 3 Determine whether the matrices

M1 =
 

1 0

3 2

 
M2 =

 −1 2

3 2

 
and M3 =

 
5 −6

−3 −2

 
are linearly independent.

Solution Solving the equation

c1

 
1 0

3 2

 
+ c2

 −1 2

3 2

 
+ c3

 
5 −6

−3 −2

 
=
 

0 0

0 0

 
is equivalent to solving 

c1 − c2 + 5c3 2c2 − 6c3

3c1 + 3c2 − 3c3 2c1 + 2c2 − 2c3

 
=
 

0 0

0 0

 
Equating corresponding entries gives the linear system


c1 − c2 + 5c3 = 0

2c2 − 6c3 = 0

3c1 + 3c2 − 3c3 = 0

2c1 + 2c2 − 2c3 = 0

The augmented matrix of the linear system is


1 −1 5 0

0 2 −6 0

3 3 −3 0

2 2 −2 0


 which reduces to




1 0 2 0

0 1 −3 0

0 0 0 0

0 0 0 0




Therefore, the solution set is

S = {(−2t, 3t, t) | t ∈ ⺢}
Since the original equation has infinitely many solutions, the matrices are linearly

dependent.

Criteria to determine if a set of vectors is linearly independent or dependent are

extremely useful. The next several theorems give situations where such a determination

can be made.

THEOREM 4 If a set of vectors S = {v1, v2, . . . , vn} contains the zero vector, then S is linearly

dependent.

Proof Suppose that the vector vk = 0, for some index k, with 1 ≤ k ≤ n. Setting

c1 = c2 = · · · = ck−1 = 0, ck = 1, and ck+1 = ck+2 = · · · = cn = 0, we have

0v1 + · · · + 0vk−1 + 1vk + 0vk+1 + · · · + 0vn = 0

which shows that the set of vectors is linearly dependent.
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THEOREM 5 A set of nonzero vectors is linearly dependent if and only if at least one of the

vectors is a linear combination of other vectors in the set.

Proof Let S = {v1, v2, . . . , vn} be a set of nonzero vectors that is linearly depen-

dent. Then there are scalars c1, c2, . . . , cn, not all 0, with

c1v1 + c2v2 + · · · + cnvn = 0

Suppose that ck  = 0 for some index k. Then solving the previous equation for the

vector vk, we have

vk = −c1

ck
v1 − · · · − ck−1

ck
vk−1 − ck+1

ck
vk+1 − · · · − cn

ck
vn

Conversely, let vk be such that

vk = c1v1 + c2v2 + · · · + ck−1vk−1 + ck+1vk+1 + · · · + cnvn

Then

c1v1 + c2v2 + · · · + ck−1vk−1 − vk + ck+1vk+1 + · · · + cnvn = 0

Since the coefficient of vk is −1, the linear system has a nontrivial solution. Hence,

the set S is linearly dependent.

As an illustration, let S be the set of vectors

S =




 1

3

1


,

 −1

2

1


,

 2

6

2






Notice that the third vector is twice the first vector, that is,
 2

6

2


 = 2


 1

3

1




Thus, by Theorem 5, the set S is linearly dependent.

EXAMPLE 4 Verify that the vectors

v1 =
 −1

0

 
v2 =

 
0

1

 
and v3 =

 
1

0

 
are linearly dependent. Then show that not every vector can be written as a linear

combination of the others.

Solution By Theorem 3, any three vectors in ⺢2 are linearly dependent. Now, observe that

v1 and v3 are linear combinations of the other two vectors, that is,

v1 = 0v2 − v3 and v3 = 0v2 − v1



116 Chapter 2 Linear Combinations and Linear Independence

However, v2 cannot be written as a linear combination of v1 and v3. To see this,

notice that the equation

av1 + bv3 = v2

is equivalent to the inconsistent linear system 
−a + b = 0

0 = 1

As shown in Fig. 3, any linear combination of the vectors v1 and v3 is a vector that

is along the x axis. Therefore, v2 is not a linear combination of v1 and v3.

x 

y 

v1 v3

v2

Figure 3

THEOREM 6 1. If a set of vectors S is linearly independent, then any subset of S is also a

linearly independent set of vectors.

2. If a set of vectors T is linearly dependent and S is a set of vectors that contains

T , then S is also a linearly dependent set of vectors.

Proof (1) Let T be a subset of S. Reorder and relabel the vectors of S, if

necessary, so that T = {v1, . . . , vk} and S = {v1, . . . , vk, vk+1, . . . , vm}. Consider

the equation

c1v1 + c2v2 + · · · + ckvk = 0

Next let ck+1 = ck+2 = · · · = cm = 0, and consider the linear combination

c1v1 + c2v2 + · · · + ckvk + 0vk+1 + · · · + 0vm = 0

Since S is linearly independent, c1 = c2 = · · · = ck = 0 and hence T is linearly

independent.

(2) Let T = {v1, . . . , vk} and suppose that T ⊂ S. Label the vectors of S that are

not in T as vk+1, . . . , vm. Since T is linearly dependent, there are scalars c1, . . . , ck,

not all 0, such that

c1v1 + c2v2 + · · · + ckvk = 0

Then c1, c2, . . . , ck, ck+1 = ck+2 = · · · = cm = 0 is a collection of m scalars, not

all 0, with

c1v1 + c2v2 + · · · + ckvk + 0vk+1 + · · · + 0vm = 0

Consequently, S is linearly dependent.

Given a set of vectors S = {v1, . . . , vn} and an arbitrary vector not in S, we have

seen that it may or may not be possible to write v as a linear combination of S. We

have also seen that sometimes v can be written as a linear combination of the vectors

of S in infinitely many ways. That this cannot happen for a linearly independent set

is the content of Theorem 7.
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THEOREM 7 Let S = {v1, v2, . . . , vn} be a linearly independent set. Suppose that there are scalars

c1, c2, . . . , cn such that

v =
n 
k=1

ckvk

Then the scalars are unique.

Proof To prove the result, let v be written as

v =
n 
k=1

ckvk and as v =
n 
k=1

dkvk

Then

0 = v − v =
n 
k=1

ckvk −
n 
k=1

dkvk

=
n 
k=1

(ck − dk)vk

Since the set of vectors S is linearly independent, the only solution to this last

equation is the trivial one. That is,

c1 − d1 = 0, c2 − d2 = 0, . . . , cn − dn = 0, or c1 = d1, c2 = d2, . . . , cn = dn

Linear Systems

At the end of Sec. 2.2, in Theorem 2, we made the observation that a linear sys-

tem Ax = b is consistent if and only if the vector b is a linear combination of the

column vectors of the matrix A. Theorem 8 gives criteria for when the solution is

unique.

THEOREM 8 Let Ax = b be a consistent m× n linear system. The solution is unique if and only

if the column vectors of A are linearly independent.

Proof First we prove that the condition is necessary. Suppose that the column

vectors A1,A2, . . . ,An are linearly independent, and let

c =



c1

c2
...

cn


 and d =



d1

d2
...

dn






118 Chapter 2 Linear Combinations and Linear Independence

be solutions to the linear system. In vector form, we have

c1A1 + c2A2 + · · · + cnAn = b and d1A1 + d2A2 + · · · + dnAn = b

By Theorem 7, c1 = d1, c2 = d2, . . . , cn = dn. Hence, c = d and the solution to

the linear system is unique.

To prove the sufficiency, we will prove the contrapositive statement. Let v be a

solution to the linear system Ax = b, and assume that the column vectors of A are

linearly dependent. Then there are scalars c1, c2, . . . , cn, not all 0, such that

c1A1 + c2A2 + · · · + cnAn = 0

that is, if c =



c1

c2
...

cn


, then Ac = 0. Since matrix multiplication satisfies the dis-

tributive property,

A(v + c) = Av + Ac = b + 0 = b

Therefore, the vector v + c is another solution to the linear system, and the solution

is not unique. This completes the proof of the contrapositive statement. Therefore,

we have shown that if the solution is unique, then the column vectors of A are

linearly independent.

Theorem 8 provides another way of establishing Theorem 11 of Sec. 1.5 that a

linear system has no solutions, one solution, or infinitely many solutions.

Linear Independence and Determinants

In Chap. 1, we established that a square matrix A is invertible if and only if det(A)  = 0.

(See Theorem 16 of Sec. 1.6.) This is equivalent to the statement that the linear

system Ax = b has a unique solution for every b if and only if det(A)  = 0. This

gives an alternative method for showing that a set of vectors is linearly independent.

Specifically, if A is a square matrix, then by Theorem 8, the column vectors of A are

linearly independent if and only if det(A)  = 0.

EXAMPLE 5 Let

S =




 1

0

3


,

 1

2

4


,

 1

4

5






Determine whether the set S is linearly independent.

Solution Let A be the matrix whose column vectors are the vectors of S; that is,

A =

 1 1 1

0 2 4

3 4 5



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The determinant of A can be found by expanding along the first column, so that

det(A) = 1

    2 4

4 5

    − 0

    1 1

4 5

    + 3

    1 1

2 4

    
= −6 − 0 + 3(2) = 0

Therefore, by the previous remarks S is linearly dependent.

The final theorem summarizes the connections that have thus far been established

concerning solutions to a linear system, linear independence, invertibility of matrices,

and determinants.

THEOREM 9 Let A be a square matrix. Then the following statements are equivalent.

1. The matrix A is invertible.

2. The linear system Ax = b has a unique solution for every vector b.

3. The homogeneous linear system Ax = 0 has only the trivial solution.

4. The matrix A is row equivalent to the identity matrix.

5. The determinant of the matrix A is nonzero.

6. The column vectors of A are linearly independent.

Fact Summary

Let S be a set of m vectors in ⺢n.

1. If m > n, then S is linearly dependent.

2. If the zero vector is in S, then S is linearly dependent.

3. If u and v are in S and there is a scalar c such that u = cv, then S is

linearly dependent.

4. If any vector in S is a linear combination of other vectors in S, then S is

linearly dependent.

5. If S is linearly independent and T is a subset of S, then T is linearly

independent.

6. If T is linearly dependent and T is a subset of S, then S is linearly

dependent.

7. If S = {v1, . . . , vm} is linearly independent and v = c1v1 + · · · + cmvm,

then the set of scalars c1, . . . , cm is uniquely determined.

8. The linear system Ax = b has a unique solution if and only if the column

vectors of A are linearly independent.

9. If A is a square matrix, then the column vectors of A are linearly

independent if and only if det(A)  = 0.
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Exercise Set 2.3

In Exercises 1–10, determine whether the given

vectors are linearly independent.

1. v1 =
 −1

1

 
v2 =

 
2

−3

 

2. v1 =
 

2

−4

 
v2 =

 
1

2

 

3. v1 =
 

1

−4

 
v2 =

 −2

8

 

4. v1 =
 

1

0

 
v2 =

 
0

−1

 

v3 =
 

1

−1

 

5. v1 =

 −1

2

1


 v2 =


 −2

2

3




6. v1 =

 4

2

−6


 v2 =


 −2

−1

3




7. v1 =

 −4

4

−1


 v2 =


 −5

3

3




v3 =

 3

−5

5




8. v1 =

 3

−3

−1


 v2 =


 −1

2

−2




v3 =

 −1

3

1




9. v1 =




3

−1

−1

2


 v2 =




1

0

2

1




v3 =




3

−1

0

1




10. v1 =




−2

−4

1

1


 v2 =




3

−4

0

4




v3 =




−1

−12

2

6




In Exercises 11–14, determine whether the matrices

are linearly independent.

11. M1 =
 

3 3

2 1

 
M2 =

 
0 1

0 0

 

M3 =
 

1 −1

−1 −2

 

12. M1 =
 −1 2

1 1

 
M2 =

 
1 4

0 1

 

M3 =
 

2 2

−1 0

 

13. M1 =
 

1 −2

−2 −2

 
M2 =

 
0 −1

2 2

 

M3 =
 −1 1

−2 2

 
M4 =

 
1 1

−1 −2

 

14. M1 =
 

0 −1

−1 1

 
M2 =

 −2 −1

1 −1

 

M3 =
 

2 0

−1 2

 
M4 =

 −2 2

2 −1
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In Exercises 15–18, explain, without solving a linear

system, why the set of vectors is linearly dependent.

15. v1 =
 −1

4

 
v2 =

 
1
2

−2

 

16. v1 =
 

2

−1

 
v2 =

 −1

−2

 

v3 =
 

1

3

 

17. v1 =

 1

−6

2


 v2 =


 0

0

0




v3 =

 4

7

1




18. v1 =

 1

0

−2


 v2 =


 1

−2

1




v3 =

 2

−2

−1




In Exercises 19 and 20, explain, without solving a

linear system, why the column vectors of the matrix A

are linearly dependent.

19. a. A =

 −1 2 5

3 −6 3

2 −4 3




b. A =

 2 1 3

1 0 1

−1 1 0




20. a. A =

 4 −1 2 6

5 −2 0 2

−2 4 −3 −2




b. A =




−1 2 3

2 3 1

−1 −1 0

3 5 2




21. Determine the values of a such that the vectors
 1

2

1





 −1

0

1





 2

a

4




are linearly independent.

22. Determine the values of a such that the matrices 
1 2

0 1

  
1 0

1 0

  
1 −4

a −2

 
are linearly independent.

23. Let

v1 =

 1

1

1


 v2 =


 1

2

3


 v3 =


 1

1

2




a. Show that the vectors are linearly independent.

b. Find the unique scalars c1, c2, c3 such that the

vector

v =

 2

1

3




can be written as

v = c1v1 + c2v2 + c3v3

24. Let

M1 =
 

1 0

−1 0

 
M2 =

 
1 1

1 0

 

M3 =
 

0 1

1 1

 

a. Show that the matrices are linearly

independent.

b. Find the unique scalars c1, c2, c3 such that the

matrix

M =
 

3 5

4 3

 
can be written as

M = c1M1 + c2M2 + c3M3
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c. Show that the matrix

M =
 

0 3

3 1

 
cannot be written as a linear combination of

M1, M2, and M3.

In Exercises 25 and 26, for the given matrix A

determine if the linear system Ax = b has a unique

solution.

25. A =

 1 2 0

−1 0 3

2 1 2




26. A =

 3 2 4

1 −1 4

0 2 −4




In Exercises 27–30, determine whether the set of

polynomials is linearly independent or linearly

dependent. A set of polynomials

S = {p1(x), p2(x), . . . , pn(x)} is linearly independent

provided

c1p1(x)+ c2p2(x)+ · · · + cnpn(x) = 0

for all x implies that

c1 = c2 = · · · = cn = 0

27. p1(x) = 1p2(x) = −2 + 4x2

p3(x) = 2x p4(x) = −12x + 8x3

28. p1(x) = 1p2(x) = x

p3(x) = 5 + 2x − x2

29. p1(x) = 2p2(x) = x p3(x) = x2

p4(x) = 3x − 1

30. p1(x) = x3 − 2x2 + 1p2(x) = 5x

p3(x) = x2 − 4p4(x) = x3 + 2x

In Exercises 31–34, show that the set of functions is

linearly independent on the interval [0, 1]. A set of

functions S = {f1(x), f2(x), . . . , fn(x)} is linearly

independent on the interval [a, b] provided

c1f1(x)+ c2f2(x)+ · · · + cnfn(x) = 0

for all x ∈ [a, b] implies that

c1 = c2 = · · · = cn = 0

31. f1(x) = cosπx f2(x) = sinπx

32. f1(x) = ex f2(x) = e−x

f3(x) = e2x

33. f1(x) = x f2(x) = x2 f3(x) = ex

34. f1(x) = x f2(x) = ex

f3(x) = sinπx

35. Verify that two vectors u and v in ⺢n are linearly

dependent if and only if one is a scalar multiple

of the other.

36. Suppose that S = {v1, v2, v3} is linearly

independent and

w1 = v1 + v2 + v3 w2 = v2 + v3

and

w3 = v3

Show that T = {w1,w2,w3} is linearly

independent.

37. Suppose that S = {v1, v2, v3} is linearly

independent and

w1 = v1 + v2 w2 = v2 − v3

and

w3 = v2 + v3

Show that T = {w1,w2,w3} is linearly

independent.

38. Suppose that S = {v1, v2, v3} is linearly

independent and

w1 = v2 w2 = v1 + v3

and

w3 = v1 + v2 + v3

Determine whether the set T = {w1,w2,w3} is

linearly independent or linearly dependent.

39. Suppose that the set S = {v1, v2} is linearly

independent. Show that if v3 cannot be written as

a linear combination of v1 and v2, then

{v1, v2, v3} is linearly independent.

40. Let S = {v1, v2, v3}, where v3 = v1 + v2.

a. Write v1 as a linear combination of the vectors

in S in three different ways.
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b. Find all scalars c1, c2, and c3 such that

v1 = c1v1 + c2v2 + c3v3.

41. Show that if the column vectors of an m× n

matrix A1, . . . ,An are linearly independent,

then

{x ∈ ⺢n | Ax = 0} = {0}
.

42. Let v1, . . . , vk be linearly independent vectors in

⺢
n, and suppose A is an invertible n× n matrix.

Define vectors wi = Avi , for i = 1, . . . , k. Show

that the vectors w1, . . . ,wk are linearly

independent. Show, using a 2 × 2 matrix, that the

requirement of invertibility is necessary.

Review Exercises for Chapter 2

1. If ad − bc  = 0, show that the vectors 
a

b

 
and

 
c

d

 
are linearly independent. Suppose that

ad − bc = 0. What can you say about the two

vectors?

2. Suppose that S = {v1, v2, v3} is a linearly

independent set of vectors in ⺢n. Show that

T = {v1, v2, v1 + v2 + v3} is also linearly

independent.

3. Determine for which nonzero values of a the

vectors
 a2

0

1





 0

a

2


 and


 1

0

1




are linearly independent.

4. Let

S =







2s − t

s

t

s



        
s, t ∈ ⺢




a. Find two vectors in ⺢4 so that all vectors in S

can be written as a linear combination of the

two vectors.

b. Are the vectors found in part (a) linearly

independent?

5. Let

v1 =

 1

0

2


 and v2 =


 1

1

1




a. Is S = {v1, v2} linearly independent?

b. Find a vector


 a

b

c


 that cannot be written

as a linear combination of v1 and v2.

c. Describe all vectors in ⺢3 that can be written

as a linear combination of v1 and v2.

d. Let

v3 =

 1

0

0




Is T = {v1, v2, v3} linearly independent or

linearly dependent?

e. Describe all vectors in ⺢3 that can be written

as a linear combination of v1, v2, and v3.

6. Let

v1 =

 1

−1

1


 v2 =


 2

1

1




v3 =

 0

2

1


 and v4 =


 −2

2

1




a. Show that S = {v1, v2, v3, v4} is linearly

dependent.

b. Show that T = {v1, v2, v3} is linearly

independent.

c. Show that v4 can be written as a linear

combination of v1, v2, and v3.
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d. How does the set of all linear combinations of

vectors in S compare with the set of all linear

combinations of vectors in T ?

7. Consider the linear system


x + y + 2z+ w= 3

−x + z+ 2w= 1

2x + 2y + w= −2

x + y + 2z+ 3w= 5

a. Write the linear system in the matrix form

Ax = b.

b. Find the determinant of the coefficient

matrix A.

c. Are the column vectors of A linearly

independent?

d. Without solving the linear system, determine

whether it has a unique solution.

e. Solve the linear system.

8. Let

M1 =
 

1 0

−1 1

 
M2 =

 
1 1

2 1

 

M3 =
 

0 1

1 0

 

a. Show that the set {M1,M2,M3} is linearly

independent.

b. Find the unique scalars c1, c2, and c3 such that 
1 −1

2 1

 
= c1M1 + c2M2 + c3M3

c. Can the matrix  
1 −1

1 2

 
be written as a linear combination of M1, M2,

and M3?

d. Describe all matrices

 
a b

c d

 
that can be

written as a linear combination of M1, M2,

and M3.

9. Let

A =

 1 3 2

2 −1 3

1 1 −1




a. Write the linear system Ax = b in vector

form.

b. Compute det(A). What can you conclude as to

whether the linear system is consistent or

inconsistent?

c. Are the column vectors of A linearly

independent?

d. Without solving the linear system, does the

system have a unique solution? Give two

reasons.

10. Two vectors in ⺢n are perpendicular provided

their dot product is 0. Suppose S = {v1, v2, . . . ,

vn} is a set of nonzero vectors which are pairwise

perpendicular. Follow the steps to show S is

linearly independent.

a. Show that for any vector v the dot product

satisfies v · v ≥ 0.

b. Show that for any vector v  = 0 the dot product

satisfies v · v > 0.

c. Show that for all vectors u, v, and w the dot

product satisfies

u · (v + w) = u · v + u · w
d. Consider the equation

c1v1 + c2v2 + · · · + cnvn = 0

Use the dot product of vi , for each 1 ≤ i ≤ n,

with the expression on the left of the previous

equation to show that ci = 0, for each

1 ≤ i ≤ n.
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Chapter 2: Chapter Test

In Exercises 1–33, determine whether the statement is

true or false.

1. Every vector in ⺢3 can be written as a linear

combination of
 1

0

0





 0

1

0





 0

0

1




2. Every 2 × 2 matrix can be written as a linear

combination of 
1 0

0 0

  
0 1

0 0

  
0 0

1 0

 
3. Every 2 × 2 matrix can be written as a linear

combination of 
1 0

0 0

  
0 1

0 0

  
0 0

1 0

 
 

0 0

0 1

 
In Exercises 4–8, use the vectors

v1 =

 1

0

1


 v2 =


 2

1

0




v3 =

 4

3

−1




4. The set S = {v1, v2, v3} is linearly independent.

5. There are scalars c1 and c2 so that

v3 = c1v1 + c2v2.

6. The vector v2 can be written as a linear

combination of v1 and v3.

7. The vector v1 can be written as a linear

combination of v2 and v3.

8. If v1, v2, and v3 are the column vectors of a 3 × 3

matrix A, then the linear system Ax = b has a

unique solution for all vectors b in ⺢3.

9. The polynomial p(x) = 3 + x can be written as a

linear combination of q1(x) = 1 + x and

q2(x) = 1 − x − x2.

10. The set

S =




 1

−1

3


,

 1

0

1


,


 2

−2

6


,

 0

1

0






is linearly independent.

In Exercises 11–14, use the matrices

M1 =
 

1 −1

0 0

 
M2 =

 
0 0

1 0

 

M3 =
 

0 0

0 1

 
M4 =

 
2 −1

1 3

 

11. The set S = {M1,M2,M3,M4} is linearly

independent.

12. The set T = {M1,M2,M3} is linearly

independent.

13. The set of all linear combinations of matrices in S

is equal to the set of all linear combinations of

matrices in T .

14. Every matrix that can be written as a linear

combination of the matrices in T has the

form  
x −x
y z
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15. The vectors
 s

0

0





 1

s

1





 0

1

s




are linearly independent if and only if s = 0 or

s = 1.

In Exercises 16–19, use the vectors

v1 =
 

1

1

 
v2 =

 
3

−1

 
16. The set S = {v1, v2} is linearly independent.

17. Every vector in ⺢2 can be written as a linear

combination of v1 and v2.

18. If the column vectors of a matrix A are v1 and v2,

then det(A) = 0.

19. If b is in ⺢2 and c1v1 + c2v2 = b, then 
c1

c2

 
= A−1b

where A is the 2 × 2 matrix with column vectors

v1 and v2.

20. The column vectors of the matrix 
cos θ sin θ

− sin θ cos θ

 
are linearly independent.

21. If v1 and v2 are linearly independent vectors

in ⺢n and v3 cannot be written as a scalar

multiple of v1, then v1, v2, and v3 are linearly

independent.

22. If S = {v1, v2, . . . , vm} is a set of nonzero vectors

in ⺢n that are linearly dependent, then every

vector in S can be written as a linear combination

of the others.

23. If v1 and v2 are in ⺢3, then the matrix with

column vectors v1, v2, and v1 + v2 has a nonzero

determinant.

24. If v1 and v2 are linearly independent, v1, v2, and

v1 + v2 are also linearly independent.

25. If the set S contains the zero vector, then S is

linearly dependent.

26. The column vectors of an n× n invertible matrix

can be linearly dependent.

27. If A is an n× n matrix with linearly independent

column vectors, then the row vectors of A are

also linearly independent.

28. If the row vectors of a nonsquare matrix are

linearly independent, then the column vectors are

also linearly independent.

29. If v1, v2, v3, and v4 are in ⺢4 and {v1, v2, v3} is

linearly dependent, then {v1, v2, v3, v4} is linearly

dependent.

30. If v1, v2, v3, and v4 are in ⺢4 and {v1, v2, v3} is

linearly independent, then {v1, v2, v3, v4} is

linearly independent.

31. If v1, v2, v3, and v4 are in ⺢4 and {v1, v2, v3, v4}
is linearly independent, then {v1, v2, v3} is linearly

independent.

32. If v1, v2, v3, and v4 are in ⺢4 and {v1, v2, v3, v4}
is linearly dependent, then {v1, v2, v3} is linearly

dependent.

33. If S = {v1, v2, . . . , v5} is a subset of ⺢4, then S is

linearly dependent.
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W
hen a digital signal is sent through space

(sometimes across millions of miles),

errors in the signal are bound to occur. In

response to the need for reliable information,

mathematicians and scientists from a variety

of disciplines have developed ways to improve

the quality of these transmissions. One obvious

method is to send messages repeatedly to increase

the likelihood of receiving them correctly. This,

however, is time-consuming and limits the num-

ber of messages that can be sent. An innovative

methodology developed by Richard Hamming in

1947 involves embedding in the transmission a

means for error detection and self-correction. One

of Hamming’s coding schemes, known as Ham-

ming’s (7,4) code, uses binary vectors (vectors

consisting of 1s and 0s) with seven components.

Some of these vectors are identified as codewords © Brand X Pictures/PunchStock/RF

depending on the configuration of the 1s and 0s within it. To decide if the binary

vector

b =




b1

b2
...

b7




127
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is a codeword, a test using matrix multiplication is performed. The matrix given by

C =

 1 1 1 0 1 0 0

0 1 1 1 0 1 0

1 0 1 1 0 0 1




is called the check matrix. To carry out the test, we compute the product of C and b,

using modulo 2 arithmetic, where an even result corresponds to a 0 and an odd result

corresponds to a 1. This product produces a binary vector with three components

called the syndrome vector given by

Cb = s

A binary vector b is a codeword if the syndrome vector s = 0. Put another way, b

is a codeword if it is a solution to the homogeneous equation Cb ≡ 0 (mod 2). For

example, the vector

u =




1

1

0

0

0

1

1




is a codeword since

Cu =

 1 1 1 0 1 0 0

0 1 1 1 0 1 0

1 0 1 1 0 0 1







1

1

0

0

0

1

1




=

 2

2

2


 ≡


 0

0

0


 (mod 2)

whereas the vector

v =




1

1

1

0

0

0

0




is not since Cv =

 3

2

2


 ≡


 1

0

0


 (mod 2)

With this ingenious strategy the recipient of a legitimate codeword can safely assume

that the vector is free from errors. On the other hand, if the vector received is not

a codeword, an algorithm involving the syndrome vector can be applied to restore

it to the original. In the previous example the fifth digit of v was altered during the
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transmission. The intended vector is given by

v∗ =




1

1

1

0

1

0

0




Hamming’s (7,4) code is classified as a linear code since the sum of any two code-

words is also a codeword. To see this, observe that if u and v are codewords, then

the sum u + v is also a codeword since

C(u + v) = Cu + Cv = 0 + 0 = 0 (mod 2)

It also has the property that every codeword can be written as a linear combination

of a few key codewords.

In this chapter we will see how the set of all linear combinations of a set of vectors

forms a vector space. The set of codewords in the chapter opener is an example.

3.1

ß

Definition of a Vector Space

In Chap. 2 we defined a natural addition and scalar multiplication on vectors in

⺢n as generalizations of the same operations on real numbers. With respect to these

operations, we saw in Theorem 1 of Sec. 2.1 that sets of vectors satisfy many of

the familiar algebraic properties enjoyed by numbers. In this section we use these

properties as axioms to generalize the concept of a vector still further. In particular,

we consider as vectors any class of objects with definitions for addition and scalar

multiplication that satisfy the properties of this theorem. In this way our new concept

of a vector will include vectors in ⺢n but many new kinds as well.

DEFINITION 1 Vector Space A set V is called a vector space over the real numbers provided

that there are two operations—addition, denoted by ⊕, and scalar multiplication,

denoted by  —that satisfy all the following axioms. The axioms must hold for

all vectors u, v, and w in V and all scalars c and d in ⺢.

1. The sum u ⊕ v is in V .

2. u ⊕ v = v ⊕ u

3. (u ⊕ v) ⊕ w = u ⊕ (v ⊕ w)

Closed under addition

Addition is commutative

Addition is associative
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4. There exists a vector 0 ∈ V such that for

every vector u ∈ V , 0 ⊕ u = u ⊕ 0 = u.

5. For every vector u ∈ V , there exists a vec-

tor, denoted by −u, such that u ⊕ (−u) =
−u ⊕ u = 0.

6. The scalar product c  u is in V.

7. c  (u ⊕ v) = (c  u) ⊕ (c  v)

8. (c + d)  u = (c  u) ⊕ (d  u)

9. c  (d  u) = (cd)  u

10 1  u = u

Additive identity

Additive inverse

Closed under scalar

multiplication

In this section (and elsewhere when necessary) we use the special symbols ⊕
and  of the previous definition to distinguish vector addition and scalar multi-

plication from ordinary addition and multiplication of real numbers. We also will

point out that for general vector spaces the set of scalars can be chosen from any

field. In this text, unless otherwise stated, we chose scalars from the set of real

numbers.

EXAMPLE 1 Euclidean Vector Spaces The set V = ⺢n with the standard operations of

addition and scalar multiplication is a vector space.

Solution Axioms 2 through 5 and 7 through 10 are shown to hold in Theorem 1 of Sec. 2.1.

The fact that ⺢n is closed under addition and scalar multiplication is a direct con-

sequence of how these operations are defined. The Euclidean vector spaces ⺢n

are the prototypical vector spaces on which the general theory of vector spaces is

built.

EXAMPLE 2 Vector Spaces of Matrices Show that the set V = Mm×n of all m × n matrices

is a vector space over the scalar field ⺢, with ⊕ and  defined componentwise.

Solution Since addition of matrices is componentwise, the sum of two m × n matrices is

another m × n matrix as is a scalar times an m × n matrix. Thus, the closure

axioms (axioms 1 and 6) are satisfied. We also have that 1  A = A. The other

seven axioms are given in Theorem 4 of Sec. 1.3.
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When we are working with more abstract sets of objects, the operations of addition

and scalar multiplication can be defined in nonstandard ways. The result is not always

a vector space. This is illustrated in the next several examples.

EXAMPLE 3 Let V = ⺢. Define addition and scalar multiplication by

a ⊕ b = 2a + 2b and k  a = ka

Show that addition is commutative but not associative.

Solution Since the usual addition of real numbers (on the right-hand side) is commutative,

a ⊕ b = 2a + 2b

= 2b + 2a

= b ⊕ a

Thus, the operation ⊕ is commutative.

To determine whether addition is associative, we evaluate and compare the

expressions

(a ⊕ b) ⊕ c and a ⊕ (b ⊕ c)

In this case, we have

(a ⊕ b) ⊕ c = (2a + 2b) ⊕ c and

= 2(2a + 2b) + 2c

= 4a + 4b + 2c

a ⊕ (b ⊕ c) = a ⊕ (2b + 2c)

= 2a + 2(2b + 2c)

= 2a + 4b + 4c

We see that the two final expressions are not equal for all choices of a, b, and

c. Therefore, the associative property is not upheld, and V is not a vector space.

EXAMPLE 4 Let V = ⺢. Define addition and scalar multiplication by

a ⊕ b = ab and k  a = ka

Show that V is not a vector space.

Solution In this case

a ⊕ b = ab and b ⊕ a = ba

Since ab  = ba for all choices of a and b, the commutative property of addition is

not upheld, and V is not a vector space.

In Example 5 we show that familiar sets with nonstandard definitions for addition

and scalar multiplication can be vector spaces.
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EXAMPLE 5 Let V = {(a, b) | a, b ∈ ⺢}. Let v = (v1, v2) and w = (w1, w2). Define

(v1, v2) ⊕ (w1, w2) = (v1 + w1 + 1, v2 + w2 + 1) and

c  (v1, v2) = (cv1 + c − 1, cv2 + c − 1)

Verify that V is a vector space.

Solution First observe that since the result of addition or scalar multiplication is an ordered

pair, V is closed under addition and scalar multiplication. Since addition of real

numbers is commutative and associative, axioms 2 and 3 hold for the ⊕ defined

here. Now an element w ∈ V is the additive identity provided that for all v ∈ V

v ⊕ w = v or (v1 + w1 + 1, v2 + w2 + 1) = (v1, v2)

Equating components gives

v1 + w1 + 1 = v1 and v2 + w2 + 1 = v2 so

w1 = −1 and w2 = −1

This establishes the existence of an additive identity. Specifically, 0 = (−1,−1),

so axiom 4 holds.

To show that each element v in V has an additive inverse, we must find a

vector w such that

v ⊕ w = 0 = (−1,−1)

Since v ⊕ w = (v1 + w1 + 1, v2 + w2 + 1), this last equation requires that

v1 + w1 + 1 = −1 and v2 + w2 + 1= −1 so that

w1 = −v1 − 2 and w2 = −v2 − 2

Thus, for any element v = (v1, v2) in V, we have −v = (−v1 − 2,−v2 − 2). The

remaining axioms all follow from the similar properties of the real numbers.

A polynomial of degree n is an expression of the form

p(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1 + anx
n

where a0, . . . , an are real numbers and an  = 0. The degree of the zero polynomial is

undefined since it can be written as p(x) = 0xn for any positive integer n. Polynomials

comprise one of the most basic sets of functions and have many applications in

mathematics.

EXAMPLE 6 Vector Space of Polynomials Let n be a fixed positive integer. Denote by Pn

the set of all polynomials of degree n or less. Define addition by adding like terms.

That is, if

p(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1 + anx
n
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and

q(x) = b0 + b1x + b2x
2 + · · · + bn−1x

n−1 + bnx
n

then

p(x) ⊕ q(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x
2 + · · · + (an + bn)x

n

If c is a scalar, then scalar multiplication is defined by

c  p(x) = ca0 + ca1x + ca2x
2 + · · · + can−1x

n−1 + canx
n

Verify that V = Pn ∪ {0} is a real vector space, where 0 is the zero polynomial.

Solution Since the sum of two polynomials of degree n or less is another polynomial of

degree n or less, with the same holding for scalar multiplication, the set V is closed

under addition and scalar multiplication. The zero vector is just the zero polynomial,

and the additive inverse of p(x) is given by

−p(x) = −a0 − a1x − a2x
2 − · · · − an−1x

n−1 − anx
n

The remaining axioms are consequences of the properties of real numbers. For

example,

p(x) ⊕ q(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x
2 + · · · + (an + bn)x

n

= (b0 + a0) + (b1 + a1)x + (b2 + a2)x
2 + · · · + (bn + an)x

n

= q(x) ⊕ p(x)

In the sequel we will use Pn to denote the vector space of polynomials of degree

n or less along with the zero polynomial.

The condition degree n or less cannot be replaced with all polynomials of degree

equal to n. The latter set is not closed under addition. For example, the polynomials

x2 − 2x + 1 and −x2 + 3x + 4 are both polynomials of degree 2, but the sum is

x + 5, which has degree equal to 1.

EXAMPLE 7 Vector Space of Real-Valued Functions Let V be the set of real-valued

functions defined on a common domain given by the interval [a, b]. For all f and

g in V and c ∈ ⺢, define addition and scalar multiplication, respectively, by

(f ⊕ g)(x) = f (x) + g(x) and (c  f )(x) = cf (x)

for each x in [a, b]. Show that V is a real vector space.

Solution Since the pointwise sum of two functions with domain [a, b] is another function

with domain [a, b], the set V is closed under addition. Similarly, the set V is closed

under scalar multiplication.
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To show that addition in V is commutative, let f and g be functions in V.

Then

(f ⊕ g)(x) = f (x) + g(x) = g(x) + f (x) = (g ⊕ f )(x)

Addition is also associative since for any functions f, g, and h in V , we have

(f ⊕ (g ⊕ h))(x) = f (x) + (g ⊕ h)(x)

= f (x) + g(x) + h(x)

= (f ⊕ g)(x) + h(x)

= ((f ⊕ g) ⊕ h)(x)

The zero element of V, denoted by 0, is the function that is 0 for all real

numbers in [a, b]. We have that 0 is the additive identity on V since

(f ⊕ 0)(x) = f (x) + 0(x) = f (x)

Next we let c and d be real numbers and let f be an element of V . The

distributive property of real numbers gives us

(c + d)  f (x) = (c + d)f (x) = cf (x) + df (x)

= (c  f )(x) ⊕ (d  f )(x)

so (c + d)  f = (c  f ) ⊕ (d  f ), establishing property 8.

The other properties follow in a similar manner.

The set of complex numbers, denoted by ⺓, is defined by

⺓ = {a + bi | a, b ∈ ⺢}
where i satisfies

i2 = −1 or equivalently i =
√

−1

The set of complex numbers is an algebraic extension of the real numbers, which

it contains as a subset. For every complex number z = a + bi, the real number a is

called the real part of z and the real number b the imaginary part of z.

With the appropriate definitions of addition and scalar multiplication, the set of

complex numbers ⺓ is a vector space.

EXAMPLE 8 Vector Space of Complex Numbers Let z = a + bi and w = c + di be ele-

ments of ⺓ and α a real number. Define vector addition on ⺓ by

z ⊕ w = (a + bi) + (c + di) = (a + c) + (b + d)i

and scalar multiplication by

α  z = α  (a + bi) = αa + (αb)i

Verify that ⺓ is a vector space.
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Solution For each element z = a + bi in ⺓, associate the vector in ⺢2 whose components

are the real and imaginary parts of z. That is, let

z = a + bi ←→
 
a

b

 
Observe that addition and scalar multiplication in ⺓ correspond to those same

operations in ⺢2. In this way ⺓ and ⺢2 have the same algebraic structure. Since

⺢2 is a vector space, so is ⺓.

In Example 8, we showed that ⺓ is a vector space over the real numbers. It is

also possible to show that ⺓ is a vector space over the complex scalars. We leave the

details to the reader.

Example 9 is from analytic geometry.

EXAMPLE 9 Let a, b, and c be fixed real numbers. Let V be the set of points in three-dimensional

Euclidean space that lie on the plane P given by

ax + by + cz = 0

Define addition and scalar multiplication on V coordinatewise. Verify that V is a

vector space.

Solution To show that V is closed under addition, let u = (u1, u2, u3) and v = (v1, v2, v3)

be points in V. The vectors u and v are in V provided that

au1 + bu2 + cu3 = 0 and av1 + bv2 + cv3 = 0

Now by definition

u ⊕ v = (u1 + v1, u2 + v2, u3 + v3)

We know that u ⊕ v is in V since

a(u1 + v1) + b(u2 + v2) + c(u3 + v3) = au1 + av1 + bu2 + bv2 + cu3 + cv3

= (au1 + bu2 + cu3) + (av1 + bv2 + cv3)

= 0

Similarly, V is closed under scalar multiplication since for any scalar α, we have

α  u = (αu1, αu2, αu3)

and

a(αu1) + b(αu2) + c(αu3) = α(au1 + bu2 + cu3) = α(0) = 0

In this case the zero vector is (0, 0, 0), which is also on the plane P. Since

the addition and scalar multiplication defined on V are the analogous operations

defined on the vector space ⺢3, the remaining axioms are satisfied for elements of

V as well.
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We conclude this section by showing that some familiar algebraic properties of

⺢n extend to abstract vector spaces.

THEOREM 1 In a vector space V, additive inverses are unique.

Proof Let u be an element of V. Suppose that v and w are elements of V and

both are additive inverses of u. We show that v = w. Since

u ⊕ v = 0 and u ⊕ w = 0

axioms 4, 3, and 2 give

v = v ⊕ 0 = v ⊕ (u ⊕ w) = (v ⊕ u) ⊕ w = 0 ⊕ w = w

establishing the result.

THEOREM 2 Let V be a vector space, u a vector in V , and c a real number.

1. 0  u = 0

2. c  0 = 0

3. (−1)  u = −u

4. If c  u = 0, then either c = 0 or u = 0.

Proof (1) By axiom 8, we have

0  u = (0 + 0)  u = (0  u) ⊕ (0  u)

Adding the inverse −(0  u) to both sides of the preceding equation gives the

result.

(2) By axiom 4, we know that 0 ⊕ 0 = 0. Combining this with axiom 7 gives

c  0 = c  (0 ⊕ 0) = (c  0) ⊕ (c  0)

Again adding the inverse −(c  0) to both sides of the last equation gives the

result.

(3) By axioms 10 and 8 and part 1 of this theorem,

u ⊕ (−1)  u = (1  u) ⊕ [(−1)  u]

= (1 − 1)  u

= 0  u

= 0

Thus, (−1)  u is an additive inverse of u. Since −u is by definition the addi-

tive inverse of u and by Theorem 1 additive inverses are unique, we have

(−1)  u = −u.

(4) Let c  u = 0. If c = 0, then the conclusion holds. Suppose that c  = 0. Then

multiply both sides of

c  u = 0
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by
1

c
and apply part 2 of this theorem to obtain

1

c
 (c  u) = 0 so that 1  u = 0

and hence u = 0.

Fact Summary

1. To determine whether a set V with addition and scalar multiplication

defined on V is a vector space requires verification of the 10 vector space

axioms.

2. The Euclidean space ⺢n and the set of matrices Mm×n, with the standard

componentwise operations, are vector spaces. The set of polynomials of

degree n or less with termwise operations is a vector space.

3. In all vector spaces, additive inverses are unique. Also

0  u = 0 c  0 = 0 and (−1)  u = −u

In addition if c  u = 0, then either the scalar c is the number 0 or the

vector u is the zero vector.

Exercise Set 3.1

In Exercises 1–4, let V = ⺢3. Show that V with the

given operations for ⊕ and  is not a vector space.

1.


 x1

y1

z1


 ⊕


 x2

y2

z2


 =


 x1 − x2

y1 − y2

z1 − z2




c  

 x1

y1

z1


 =


 cx1

cy1

cz1




2.


 x1

y1

z1


 ⊕


 x2

y2

z2


 =


 x1 + x2 − 1

y1 + y2 − 1

z1 + z2 − 1




c  

 x1

y1

z1


 =


 cx1

cy1

cz1




3.


 x1

y1

z1


 ⊕


 x2

y2

z2


 =


 2x1 + 2x2

2y1 + 2y2

2z1 + 2z2




c  

 x1

y1

z1


 =


 cx1

cy1

cz1




4.


 x1

y1

z1


 ⊕


 x2

y2

z2


 =


 x1 + x2

y1 + y2

z1 + z2




c  

 x1

y1

z1


 =


 c + x1

y1

z1




5. Write out all 10 vector space axioms to show ⺢2

with the standard componentwise operations is a

vector space.
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6. Write out all 10 vector space axioms to show that

M2×2 with the standard componentwise operations

is a vector space.

7. Let V = ⺢2 and define addition as the standard

componentwise addition and define scalar

multiplication by

c  
 
x

y

 
=
 
x + c

y

 
Show that V is not a vector space.

8. Let

V =




 a

b

1



      a, b ∈ ⺢




a. With the standard componentwise operations

show that V is not a vector space.

b. If addition and scalar multiplication are defined

componentwise only on the first two

components and the third is always 1, show

that V is a vector space.

9. Let V = ⺢2 and define 
a

b

 
⊕
 

c

d

 
=
 
a + 2c

b + 2d

 

c  
 
a

b

 
=
 
ca

cb

 
Determine whether V is a vector space.

10. Let

V =
  

t

−3t

     t ∈ ⺢
 

and let addition and scalar multiplication be the

standard operations on vectors. Determine

whether V is a vector space.

11. Let

V =
  

t + 1

2t

     t ∈ ⺢
 

and let addition and scalar multiplication be the

standard operations on vectors. Determine

whether V is a vector space.

12. Let

V =
  

a b

c 0

     a, b, c ∈ ⺢
 

and let addition and scalar multiplication be the

standard componentwise operations. Determine

whether V is a vector space.

13. Let

V =
  

a b

c 1

     a, b, c ∈ ⺢
 

a. If addition and scalar multiplication are the

standard componentwise operations, show that

V is not a vector space.

b. Define 
a b

c 1

 
⊕
 

d e

f 1

 
=
 

a + d b + e

c + f 1

 
and

k  
 
a b

c 1

 
=
 
ka kb

kc 1

 
Show that V is a vector space.

In Exercises 14–19, let V be the set of 2 × 2 matrices

with the standard (componentwise) definitions for

vector addition and scalar multiplication. Determine

whether V is a vector space. If V is not a vector space,

show that at least one of the 10 axioms does not hold.

14. Let V be the set of all skew-symmetric matrices,

that is, the set of all matrices such that At = −A.

15. Let V be the set of all upper triangular matrices.

16. Let V be the set of all real symmetric matrices,

that is, the set of all matrices such that At = A.

17. Let V be the set of all invertible matrices.

18. Let V be the set of all idempotent matrices.

19. Let B be a fixed matrix, and let V be the set of

all matrices A such that AB = 0.

20. Let

V =
  

a b

c −a

     a, b, c ∈ ⺢
 

and define addition and scalar multiplication as

the standard componentwise operations.

Determine whether V is a vector space.

21. Let V denote the set of 2 × 2 invertible matrices.

Define

A ⊕ B = AB c  A = cA
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a. Determine the additive identity and additive

inverse.

b. Show that V is not a vector space.

22. Let

V =
  

t

1 + t

     t ∈ ⺢
 

Define  
t1

1 + t1

 
⊕
 

t2
1 + t2

 

=
 

t1 + t2
1 + t1 + t2

 

c  
 

t

1 + t

 
=
 

ct

1 + ct

 
a. Find the additive identity and inverse.

b. Show that V is a vector space.

c. Verify that 0  v = 0 for all v.

23. Let

V =




 1 + t

2 − t

3 + 2t



      t ∈ ⺢




Define 
 1 + t1

2 − t1
3 + 2t1


 ⊕


 1 + t2

2 − t2
3 + 2t2




=

 1 + (t1 + t2)

2 − (t1 + t2)

3 + (2t1 + 2t2)




c  

 1 + t

2 − t

3 + 2t


 =


 1 + ct

2 − ct

3 + 2ct




a. Find the additive identity and inverse.

b. Show that V is a vector space.

c. Verify 0  v = 0 for all v.

24. Let

u =

 1

0

1


 v =


 2

−1

1




and

S = {au + bv | a, b ∈ ⺢}

Show that S with the standard componentwise

operations is a vector space.

25. Let v be a vector in ⺢n, and let

S = {v}
Define ⊕ and  by

v ⊕ v = v c  v = v

Show that S is a vector space.

26. Let

S =




 x

y

z



      3x − 2y + z = 0




Show that S with the standard componentwise

operations is a vector space.

27. Let S be the set of all vectors
 x

y

z




in ⺢3 such that x + y − z = 0 and

2x − 3y + 2z = 0. Show that S with the standard

componentwise operations is a vector space.

28. Let

V =
  

cos t

sin t

     t ∈ ⺢
 

and define  
cos t1
sin t1

 
⊕
 

cos t2
sin t2

 

=
 

cos(t1 + t2)

sin(t1 + t2)

 

c  
 

cos t

sin t

 
=
 

cos ct

sin ct

 

a. Determine the additive identity and additive

inverse.

b. Show that V is a vector space.

c. Show that if ⊕ and  are the standard

componentwise operations, then V is not a

vector space.
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29. Let V be the set of all real-valued functions

defined on ⺢ with the standard operations that

satisfy f (0) = 1. Determine whether V is a

vector space.

30. Let V be the set of all real-valued functions

defined on ⺢.

Define f ⊕ g by

(f ⊕ g)(x) = f (x) + g(x)

and define c  f by

(c  f )(x) = f (x + c)

Determine whether V is a vector space.

31. Let f (x) = x3 defined on ⺢ and let

V = {f (x + t) | t ∈ ⺢}
Define

f (x + t1) ⊕ f (x + t2) = f (x + t1 + t2)

c  f (x + t) = f (x + ct)

a. Determine the additive identity and additive

inverses.

b. Show that V is a vector space.

3.2

ß

Subspaces

Many interesting examples of vector spaces are subsets of a given vector space V that

are vector spaces in their own right. For example, the xy plane in ⺢3 given by


 x

y

0



      x, y ∈ ⺢




is a subset of ⺢3. It is also a vector space with the same standard componentwise

operations defined on ⺢3. Another example of a subspace of a vector space is given

in Example 9 of Sec. 3.1. The determination as to whether a subset of a vector space

is itself a vector space is simplified since many of the required properties are inherited

from the parent space.

DEFINITION 1 Subspace A subspace W of a vector space V is a nonempty subset that is itself

a vector space with respect to the inherited operations of vector addition and scalar

multiplication on V .

The first requirement for a subset W ⊆ V to be a subspace is that W be closed

under the operations of V . For example, let V be the vector space ⺢2 with the

standard definitions of addition and scalar multiplication. Let W ⊆ ⺢2 be the subset

defined by

W =
  

a

0

     a ∈ ⺢
 

Observe that the sum of any two vectors in W is another vector in W , since 
a

0

 
⊕
 
b

0

 
=
 
a + b

0
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In this way we say that W is closed under addition. The subset W is also closed under

scalar multiplication since for any real number c,

c  
 
a

0

 
=
 
ca

0

 
which is again in W.

On the other hand, the subset

W =
  

a

1

     a ∈ ⺢
 

is not closed under addition, since 
a

1

 
⊕
 
b

1

 
=
 
a + b

2

 
which is not in W. See Fig. 1. The subset W is also not closed under scalar multipli-

cation since

c  
 
a

1

 
=
 
ca

c

 
x 

y 

1

W is not a subspace of V

W

u
v

u ⊕ v

Figure 1 which is not in W for all values of c  = 1.

Now let us suppose that a nonempty subset W is closed under both of the oper-

ations on V. To determine whether W is a subspace, we must show that each of the

remaining vector space axioms hold. Fortunately, our task is simplified as most of

these properties are inherited from the vector space V. For example, to show that the

commutative property holds in W , let u and v be vectors in W. Since u and v are

also in V , then

u ⊕ v = v ⊕ u

Similarly, any three vectors in W satisfy the associative property, as this property is

also inherited from V. To show that W contains the zero vector, let w be any vector

in W. Since W is closed under scalar multiplication, 0  w ∈ W. Now, by Theorem 2

of Sec. 3.1, we have 0  w = 0. Thus, 0 ∈ W. Similarly, for any w ∈ W ,

(−1)  w = −w

is also in W. All the other vector space properties, axioms 7 through 10, are inherited

from V. This shows that W is a subspace of V. Conversely, if W is a subspace of

V , then it is necessarily closed under addition and scalar multiplication. This proves

Theorem 3.

THEOREM 3 Let W be a nonempty subset of the vector space V. Then W is a subspace of V if

and only if W is closed under addition and scalar multiplication.

By Theorem 3, the first of the examples above with

W =
  

a

0

     a ∈ ⺢
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is a subspace of ⺢2 while the second subset

W =
  

a

1

     a ∈ ⺢
 

is not.

For any vector space V the subset W = {0}, consisting of only the zero vector,

is a subspace of V, called the trivial subspace. We also have that any vector space

V, being a subset of itself, is a subspace.

EXAMPLE 1 Let

W =
  

a

a + 1

     a ∈ ⺢
 

be a subset of the vector space V = ⺢2 with the standard definitions of addition

and scalar multiplication. Determine whether W is a subspace of V.

Solution In light of Theorem 3, we check to see if W is closed under addition and scalar

multiplication. Let

u =
 

u

u + 1

 
and v =

 
v

v + 1

 
be vectors in W . Adding the vectors gives

u ⊕ v =
 

u

u + 1

 
⊕
 

v

v + 1

 

=
 

u + v

u + v + 2

 
This last vector is not in the required form since

u + v + 2  = u + v + 1

and hence we see that u ⊕ v is not in W. Thus, W is not a subspace of V.

It is sometimes easy to show that a subset W of a vector space is not a subspace.

In particular, if 0 /∈ W or the additive inverse of a vector is not in W , then W is not a

subspace. In Example 1, W is not a subspace since it does not contain the zero vector.

EXAMPLE 2 The trace of a square matrix is the sum of the entries on the diagonal. Let M2×2

be the vector space of 2 × 2 matrices with the standard operations for addition and

scalar multiplication, and let W be the subset of all 2 × 2 matrices with trace 0,

that is,

W =
  

a b

c d

     a + d = 0

 
Show that W is a subspace of M2×2.
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Solution Let

w1 =
 
a1 b1

c1 d1

 
and w2 =

 
a2 b2

c2 d2

 
be matrices in W , so that a1 + d1 = 0 and a2 + d2 = 0. The sum of the two matri-

ces is

w1 ⊕ w2 =
 
a1 b1

c1 d1

 
⊕
 
a2 b2

c2 d2

 
=
 
a1 + a2 b1 + b2

c1 + c2 d1 + d2

 
Since the trace of w1 ⊕ w2 is

(a1 + a2) + (d1 + d2) = (a1 + d1) + (a2 + d2) = 0

then W is closed under addition. Also, for any scalar c,

c  w1 = c  
 
a1 b1

c1 d1

 
=
 
ca1 cb1

cc1 cd1

 
The trace of this matrix is ca1 + cd1 = c(a1 + d1) = 0. Thus, W is also closed

under scalar multiplication. Therefore, W is a subspace of M2×2.

EXAMPLE 3 Let W be the subset of V = Mn×n consisting of all symmetric matrices. Let the

operations of addition and scalar multiplication on V be the standard operations.

Show that W is a subspace of V.

Solution Recall from Sec. 1.3 that a matrix A is symmetric provided that At = A. Let A

and B be matrices in W and c be a real number. By Theorem 6 of Sec. 1.3,

(A ⊕ B)t = At ⊕ Bt = A ⊕ B and (c  A)t = c  At = c  A

Thus, W is closed under addition and scalar multiplication, and consequently, by

Theorem 3, W is a subspace.

EXAMPLE 4 Let V = Mn×n with the standard operations and W be the subset of V consisting

of all idempotent matrices. Determine whether W is a subspace.

Solution Recall that a matrix A is idempotent provided that A2 = A (See Exercise 42 of

Sec. 1.3.) Let A be an element of W , so that A2 = A. Then

(c  A)2 = (cA)2 = c2A2 = c2A = c2  A

so that

(c  A)2 = c  A if and only if c2 = c

Since this is not true for all values of c, then W is not closed under scalar multi-

plication and is not a subspace.
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The two closure criteria for a subspace can be combined into one as stated in

Theorem 4.

THEOREM 4 A nonempty subset W of a vector space V is a subspace of V if and only if for

each pair of vectors u and v in W and each scalar c, the vector u ⊕ (c  v) is in W .

Proof Let W be a nonempty subset of V , and suppose that u ⊕ (c  v) belongs

to W for all vectors u and v in W and all scalars c. By Theorem 3 it suffices to

show that W is closed under addition and scalar multiplication. Suppose that u and

v are in W ; then u ⊕ (1  v) = u ⊕ v is in W, so that W is closed under addition.

Next, since W is nonempty, let u be any vector in W. Then 0 = u ⊕ [(−1)  u],

so that the zero vector is in W. Now, if c is any scalar, then c  u = 0 ⊕ (c  u)

and hence is in W. Therefore, W is also closed under scalar multiplication.

Conversely, if W is a subspace with u and v in W , and c a scalar, then since W

is closed under addition and scalar multiplication, we know that u ⊕ (c  v) is

in W .

EXAMPLE 5 Let W be the subset of ⺢3 defined by

W =




 3t

0

−2t



      t ∈ ⺢




Use Theorem 4 to show that W is a subspace.

Solution Let u and v be vectors in W and c be a real number. Then there are real numbers

p and q such that

u ⊕ (c  v) =

 3p

0

−2p


 ⊕


c  


 3q

0

−2q






=

 3(p + cq)

0

−2(p + cq)




As this vector is in W , by Theorem 4, W is a subspace.

Alternatively, the set W can be written as

W =


 t


 3

0

−2



      t ∈ ⺢




which is a line through the origin in ⺢3.
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We now consider what happens when subspaces are combined. In particular,

let W1 and W2 be subspaces of a vector space V. Then the intersection W1 ∩ W2 is

also a subspace of V. To show this, let u and v be elements of W1 ∩ W2 and let c

be a scalar. Since W1 and W2 are both subspaces, then by Theorem 4, u ⊕ (c  v) is

in W1 and is in W2, and hence is in the intersection. Applying Theorem 4 again, we

have that W1 ∩ W2 is a subspace.

The extension to an arbitrary number of subspaces is stated in Theorem 5.

THEOREM 5 The intersection of any collection of subspaces of a vector space is a subspace of

the vector space.

Example 6 shows that the union of two subspaces need not be a subspace.

EXAMPLE 6 Let W1 and W2 be the subspaces of ⺢2 with the standard operations given by

W1 =
  

x

0

     x ∈ ⺢
 

and W2 =
  

0

y

     y ∈ ⺢
 

Show that W1 ∪ W2 is not a subspace.

Solution The subspaces W1 and W2 consist of all vectors that lie on the x axis and the y axis,

respectively. Their union is the collection of all vectors that lie on either axis and

is given by

W1 ∪ W2 =
  

x

y

     x = 0 or y = 0

 
This set is not closed under addition since 

1

0

 
⊕
 

0

1

 
=
 

1

1

 
which is not in W1 ∪ W2, as shown in Fig. 2.

x 

y 

W2

W1

 
0

1

 

 
1

0

 

 
1

1

 
/∈ W1 ∪ W2

Figure 2



146 Chapter 3 Vector Spaces

Span of a Set of Vectors

Subspaces of a vector space can be constructed by collecting all linear combinations of

a set of vectors from the space. These subspaces are used to analyze certain properties

of the vector space. A linear combination is defined in abstract vector spaces exactly

as it is defined in ⺢n in Chap. 2.

DEFINITION 2 Linear Combination Let S = {v1, v2, . . . , vk} be a set of vectors in a vector

space V , and let c1, c2, . . . , ck be scalars. A linear combination of the vectors of

S is an expression of the form

(c1  v1) ⊕ (c2  v2) ⊕ · · · ⊕ (ck  vk)

When the operations of vector addition and scalar multiplication are clear, we

will drop the use of the symbols ⊕ and  . For example, the linear combination given

in Definition 2 will be written as

c1v1 + c2v2 + · · · + ckvk =
k 

i=1

civi

Unless otherwise stated, the operations on the vector spaces ⺢n, Mm×n, Pn, and

their subspaces are the standard operations. Care is still needed when interpreting

expressions defining linear combinations to distinguish between vector space opera-

tions and addition and multiplication of real numbers.

DEFINITION 3 Span of a Set of Vectors Let V be a vector space and let S = {v1, . . . , vn} be

a (finite) set of vectors in V. The span of S, denoted by span(S), is the set

span(S) = {c1v1 + c2v2 + · · · + cnvn | c1, c2, . . . , cn ∈ ⺢}

PROPOSITION 1 If S = {v1, v2, . . . , vn} is a set of vectors in a vector space V, then span(S) is a

subspace.

Proof Let u and w be vectors in span(S) and c a scalar. Then there are scalars

c1, . . . , cn and d1, . . . , dn such that

u + cw = (c1v1 + · · · + cnvn) + c(d1v1 + · · · + dnvn)

= (c1 + cd1)v1 + · · · + (cn + cdn)vn

Therefore, u + cw is in span(S), and hence the span is a subspace.
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EXAMPLE 7 Let S be the subset of the vector space ⺢3 defined by

S =




 2

−1

0


,

 1

3

−2


,

 1

1

4






Show that

v =

 −4

4

−6




is in span(S).

Solution To determine if v is in the span of S, we consider the equation

c1


 2

−1

0


 + c2


 1

3

−2


 + c3


 1

1

4


 =


 −4

4

−6




Solving this linear system, we obtain

c1 = −2 c2 = 1 and c3 = −1

This shows that v is a linear combination of the vectors in S and is thus in span(S).

The span of a single nonzero vector in ⺢n is a line through the origin, and the span

of two linearly independent vectors is a plane through the origin as shown in Fig. 3.

x 

y 

v

−2v

3v

−3.5v

span{v}

x 

z 

y 

span{v1, v2}v1

v2

Figure 3

Since every line through the origin in ⺢2 and ⺢3, and every plane through the

origin in ⺢3, can be written as the span of vectors, these sets are subspaces.
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EXAMPLE 8 Let

S =
  

1 0

0 0

 
,

 
0 1

1 0

 
,

 
0 0

0 1

  

Show that the span of S is the subspace of M2×2 of all symmetric matrices.

Solution Recall that a 2 × 2 matrix is symmetric provided that it has the form 
a b

b c

 
Since any matrix in span(S) has the form

a

 
1 0

0 0

 
+ b

 
0 1

1 0

 
+ c

 
0 0

0 1

 
=
 
a b

b c

 
span(S) is the collection of all 2 × 2 symmetric matrices.

EXAMPLE 9 Show that

span




 1

1

1


,

 1

0

2


,

 1

1

0




 = ⺢

3

Solution Let

v =

 a

b

c




be an arbitrary element of ⺢3. The vector v is in span(S) provided that there are

scalars c1, c2, and c3 such that

c1


 1

1

1


 + c2


 1

0

2


 + c3


 1

1

0


 =


 a

b

c




This linear system in matrix form is given by
 1 1 1 a

1 0 1 b

1 2 0 c




After row-reducing, we obtain
 1 0 0 −2a + 2b + c

0 1 0 a − b

0 0 1 2a − b − c



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From this final augmented matrix the original system is consistent, having solution

c1 = −2a + 2b + c, c2 = a − b, and c3 = 2a − b − c, for all choices of a, b, and

c. Thus, every vector in ⺢3 can be written as a linear combination of the three

given vectors. Hence, the span of the three vectors is all of ⺢3.

EXAMPLE 10 Show that

span




 −1

2

1


,

 4

1

−3


,

 −6

3

5




  = ⺢

3

Solution We approach this problem in the same manner as in Example 9. In this case,

however, the resulting linear system is not always consistent. We can see this by

reducing the augmented matrix
 −1 4 −6 a

2 1 3 b

1 −3 5 c


 to


 −1 4 −6 a

0 9 −9 b + 2a

0 0 0 c + 7
9
a − 1

9
b




This last augmented matrix shows that the original system is consistent only if

7a − b + 9c = 0. This is the equation of a plane in 3-space, and hence the span is

not all of ⺢3. See Fig. 4.

Notice that the solution to the equation 7a − b + 9c = 0 can be written in

parametric form by letting b = s, c = t , and a = 1
7
s − 9

7
t , so that

span




 −1

2

1


,

 4

1

−3


,

 −6

3

5




 =


 s


 1

7

1

0


 + t


 − 9

7

0

1



      s, t ∈ ⺢


x 

y 

z 

7x − y + 9z = 0

Figure 4 In this way, we see that the span is the subspace of all linear combinations of

two linearly independent vectors, highlighting the geometric interpretation of the

solution as a plane.

With Examples 9 and 10 we have completed the groundwork for the notion of a

basis, which is central to linear algebra and is the subject of Sec. 3.3. Specifically, in

Example 9, we saw that the set of vectors

S = {v1, v2, v3} =




 1

1

1


,


 1

0

2


,


 1

1

0





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spans ⺢3. These vectors are also linearly independent. To see this, observe that the

matrix

A =

 1 1 1

1 0 1

1 2 0




whose column vectors are the vectors of S, is row equivalent to the 3 × 3 identity

matrix, as seen in the solution to Example 9. [Another way of showing that S is

linearly independent is to observe that det(A) = 1  = 0.] Consequently, by Theorem 7

of Sec. 2.3, we have that every vector in ⺢3 can be written in only one way as a

linear combination of the vectors of S.

On the other hand, the span of the set of vectors

S  =  
v 

1, v 
2, v 

3

 =




 −1

2

1


,


 4

1

−3


,


 −6

3

5






of Example 10 is a plane passing through the origin. Hence, not every vector in ⺢3

can be written as a linear combination of the vectors in S  . As we expect, these vectors

are linearly dependent since

det




 −1 4 −6

2 1 3

1 −3 5




 = 0

In particular, v 
3 = 2v 

1 − v 
2. The vectors v 

1 and v 
2 are linearly independent vectors

which span the plane shown in Fig. 4, but not ⺢3.

To pursue these notions a bit further, there are many sets of vectors which span

⺢3. For example, the set

B = {e1, e2, e3, v} =




 1

0

0


,


 0

1

0


,


 0

0

1


,


 1

2

3






spans ⺢3, but by Theorem 3 of Sec. 2.3 must necessarily be linearly dependent. The

ideal case, in terms of minimizing the number of vectors, is illustrated in Example 9

where the three linearly independent vectors of S span ⺢3. In Sec. 3.3 we will see

that S is a basis for ⺢3, and that every basis for ⺢3 consists of exactly three linearly

independent vectors.

EXAMPLE 11 Show that the set of matrices

S =
  −1 0

2 1

 
,

 
1 1

1 0

  
does not span M2×2. Describe span(S).



3.2 Subspaces 151

Solution The equation

c1

 −1 0

2 1

 
+ c2

 
1 1

1 0

 
=
 
a b

c d

 
is equivalent to the linear system


−c1 + c2 = a

c2 = b

2c1 + c2 = c

c1 = d

From these equations we see that

c1 = d and c2 = b

which gives

a = b − d and c = b + 2d

Therefore,

span(S) =
  

b − d b

b + 2d d

     b, d ∈ ⺢
 

EXAMPLE 12 Show that the set of polynomials

S = {x2 + 2x + 1, x2 + 2, x}
spans the vector space P2.

Solution An arbitrary vector in P2 can be written in the form ax2 + bx + c. To determine

whether the span(S) = P2, we consider the equation

c1(x
2 + 2x + 1) + c2(x

2 + 2) + c3x = ax2 + bx + c

which simplifies to

(c1 + c2)x
2 + (2c1 + c3)x + (c1 + 2c2) = ax2 + bx + c

Since two polynomials are equal if and only if the coefficients of like terms are

equal, equating coefficients in the previous equation gives, in matrix form, the linear

system 
 1 1 0 a

2 0 1 b

1 2 0 c




This matrix reduces to 
 1 0 0 2a − c

0 1 0 −a + c

0 0 1 −4a + b + 2c



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Hence, the linear system has the unique solution c1 = 2a − c, c2 = −a + c, and

c3 = −4a + b + 2c, for all a, b, and c. Therefore, span(S) = P2.

The Null Space and Column Space of a Matrix

Two special subspaces associated with every matrix A are the null space and column

space of the matrix.

DEFINITION 4 Null Space and Column Space Let A be an m × n matrix.

1. The null space of A, denoted by N(A), is the set of all vectors in ⺢n such

that Ax = 0.

2. The column space of A, denoted by col(A), is the set of all linear combinations

of the column vectors of A.

Observe that N(A) is a subset of ⺢n and col(A) is a subset of ⺢m. Moreover,

by Proposition 1, col(A) is a subspace of ⺢m. Using this terminology, we give a

restatement of Theorem 2 of Sec. 2.2.

THEOREM 6 Let A be an m × n matrix. The linear system Ax = b is consistent if and only if

b is in the column space of A.

EXAMPLE 13 Let

A =

 1 −1 −2

−1 2 3

2 −2 −2


 and b =


 3

1

−2




a. Determine whether b is in col(A).

b. Find N(A).

Solution a. By Theorem 6, the vector b is in col(A) if and only if there is a vector x such

that Ax = b. The corresponding augmented matrix is given by
 1 −1 −2 3

−1 2 3 1

2 −2 −2 −2


 which reduces to


 1 0 0 3

0 1 0 8

0 0 1 −4



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Hence, the linear system Ax = b is consistent, and vector b is in col(A).

Specifically, 
 3

1

−2


 = 3


 1

−1

2


 + 8


 −1

2

−2


 − 4


 −2

3

−2




b. To find the null space of A, we solve the homogeneous equation Ax = 0.

The corresponding augmented matrix for this linear system is the same as in

part (a), except for the right column that consists of three zeros. Consequently,

the only solution is the trivial solution and hence N(A) = {0}.

In Theorem 7 we show that the null space of a matrix also is a subspace.

THEOREM 7 Let A be an m × n matrix. Then the null space of A is a subspace of ⺢n.

Proof The null space of A is nonempty since 0 is in N(A). That is, A0 = 0.

Now let u and v be vectors in N(A) and c a scalar. Then

A(u + cv) = Au + A(cv)

= Au + cA(v)

= 0 + c0 = 0

Hence, u + cv is in N(A), and therefore by Theorem 4, N(A) is a subspace.

Fact Summary

Let V be a vector space and W a nonempty subset of V.

1. To verify that W is a subspace of V , show that u ⊕ c  v is in W for any u

and v in W and any scalar c.

2. The span of a set of vectors from V is a subspace.

3. The span of a single nonzero vector in ⺢2 or ⺢3 is a line that passes

through the origin. The span of two linearly independent vectors in ⺢3 is a

plane that passes through the origin. These sets are subspaces.

4. The intersection of subspaces is a subspace. The union of two subspaces

may not be a subspace.

5. If A is an m × n matrix, the null space of A is a subspace of ⺢n and the

column space of A is a subspace of ⺢m.

6. The linear system Ax = b is consistent if and only if b is in the column

space of A.
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Exercise Set 3.2

In Exercises 1–6, determine whether the subset S of

⺢2 is a subspace. If S is not a subspace, find vectors u

and v in S such that u + v is not in S; or a vector u

and a scalar c such that cu is not in S.

1. S =
  

0

y

     y ∈ ⺢
 

2. S =
  

x

y

     xy ≥ 0

 

3. S =
  

x

y

     xy ≤ 0

 

4. S =
  

x

y

     x2 + y2 ≤ 1

 

5. S =
 

x

2x − 1

    x ∈ ⺢
 

6. S =
  

x

3x

     x ∈ ⺢
 

In Exercises 7–10, determine whether the subset S of

⺢3 is a subspace.

7. S =




 x1

x2

x3



      x1 + x3 = −2




8. S =




 x1

x2

x3



      x1x2x3 = 0




9. S =




 s − 2t

s

t + s



      s, t ∈ ⺢




10. S =




 x1

2

x3



      x1, x3 > 0




In Exercises 11–18, determine whether the subset S of

M2×2 is a subspace.

11. Let S be the set of all symmetric matrices.

12. Let S be the set of all idempotent matrices.

13. Let S be the set of all invertible matrices.

14. Let S be the set of all skew-symmetric matrices.

15. Let S be the set of all upper triangular matrices.

16. Let S be the set of all diagonal matrices.

17. Let S be the set of all matrices with a22 = 0.

18. Let S be the set of all matrices with

a11 + a22 = 0.

In Exercises 19–24, determine whether the subset S of

P5 is a subspace.

19. Let S be the set of all polynomials with degree

equal to 3.

20. Let S be the set of all polynomials with even

degree.

21. Let S be the set of all polynomials such that

p(0) = 0.

22. Let S be the set of all polynomials of the form

p(x) = ax2.

23. Let S be the set of all polynomials of the form

p(x) = ax2 + 1.

24. Let S be the set of all polynomials of degree less

than or equal to 4.

In Exercises 25 and 26, determine if the vector v is in

the span of

S =




 1

1

0


,

 −1

−1

1


,

 −1

2

0






25. v =

 1

−1

1




26. v =

 −2

7

−3




In Exercises 27 and 28, determine if the matrix M is

in the span of

S =
  

1 1

0 −1

 
,

 
0 1

2 1

 
,

 
1 −1

−4 −3
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27. M =
 −2 1

6 5

 

28. M =
 

1 1

2 −3

 
In Exercises 29 and 30, determine if the polynomial

p(x) is in the span of

S = {1 + x, x2 − 2, 3x}

29. p(x) = 2x2 − 6x − 11

30. 3x2 − x − 4

In Exercises 31–36, give an explicit description of the

span of S.

31. S =




 2

−1

−2


,

 1

3

−1






32. S =




 1

1

2


,

 2

3

1


,

 1

2

−1






33.

  
1 2

1 0

 
,

 
1 −1

0 1

  

34. S =
  

1 0

1 0

 
,

 
1 1

−1 −1

 
,

 
0 −1

1 1

  

35. S =  
x, (x + 1)2, x2 + 3x + 1

 
36. S =  

x2 − 4, 2 − x, x2 + x + 2
 

In Exercises 37–40, a subset S of ⺢3 is given.

a. Find span(S).

b. Is S linearly independent?

37. S =




 2

1

−1


,

 3

0

−2






38. S =




 1

1

2


,

 0

−1

1


,

 2

5

1






39. S =




 3

3

2


,

 0

1

0


,

 1

−1

−1






40. S =




 1

2

1


,

 −1

0

3


,

 0

1

1


,

 2

1

1






41. Let

S =




 1

2

2


,

 −1

3

−1


,

 1

2

−1


,


 0

6

1


,

 −3

4

5






a. Find span(S).

b. Is S linearly independent?

c. Let

T =




 1

2

2


,

 −1

3

−1


,

 1

2

−1


,


 −3

4

5






Is span(T ) = ⺢3? Is T linearly independent?

d. Let

H =




 1

2

2


,

 −1

3

−1


,

 1

2

−1






Is span(H) = ⺢3? Is H linearly independent?

42. Let

S =
  

2 −3

0 0

 
,

 
1 1

1 0

 
,

 −3 1

1 0

  

a. Find span(S).

b. Is S linearly independent?

c. Let

T =
  

2 −3

0 0

 
,

 
1 1

1 0

 
,

 −3 1

1 0

 
,

 
0 0

0 1

  

Is span(T ) = M2×2? Is T linearly

independent?
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43. Let

S =  
1, x − 3, x2 + 2x, 2x2 + 3x + 5

 
a. Find span(S).

b. Is S linearly independent?

c. Show that 2x2 + 3x + 5 is a linear combination

of the other three polynomials in S.

d. Let T =  
1, x − 3, x2 + 2x, x3

 
. Is T linearly

independent? Is span(T ) = P3?

44. Let

S =







2s − t

s

t

−s



        
s, t ∈ ⺢




a. Show that S is a subspace of ⺢4.

b. Find two vectors that span S.

c. Are the two vectors found in part (b) linearly

independent?

d. Is S = ⺢4?

45. Let

S =




 −s

s − 5t

3t + 2s



      s, t ∈ ⺢




a. Show that S is a subspace of ⺢3.

b. Find a set of vectors that span S.

c. Are the two vectors found in part (b) linearly

independent?

d. Is S = ⺢3?

46. Let

S = span

  
1 0

0 1

 
,

 
1 0

1 0

 
,

 
0 1

1 1

  
a. Describe the subspace S.

b. Is S = M2×2?

c. Are the three matrices that generate S linearly

independent?

47. Let A be a 2 × 3 matrix and let

S =
 

x ∈ ⺢3
  Ax =

 
1

2

  
Is S a subspace? Explain.

48. Let A be an m × n matrix and let

S =  
x ∈ ⺢n

  Ax = 0
 

Is S a subspace? Explain.

49. Let A be a fixed n × n matrix and let

S = {B ∈ Mn×n | AB = BA}
Is S a subspace? Explain.

50. Suppose S and T are subspaces of a vector

space V . Define

S + T = {u + v | u ∈ S, v ∈ T }
Show that S + T is a subspace of V.

51. Let S = span({u1, u2, . . .um}) and

T = span({v1, v2, . . . vn}) be subspaces of a

vector space V. Show that

S + T = span({u1, . . .um, v1, . . . vn})
(See Exercise 50.)

52. Let

S =
  

x −x

y z

     x, y, z ∈ ⺢
 

and

T =
  

a b

−a c

     a, b, c ∈ ⺢
 

a. Show that S and T are subspaces.

b. Describe all matrices in S + T .

(See Exercises 50 and 51.)

3.3

ß

Basis and Dimension

In Sec. 2.3 we introduced the notion of linear independence and its connection to

the minimal sets that can be used to generate or span ⺢n. In this section we explore

this connection further and see how to determine whether a spanning set is minimal.
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This leads to the concept of a basis for an abstract vector space. As a first step, we

generalize the concept of linear independence to abstract vector spaces introduced in

Sec. 3.1.

DEFINITION 1 Linear Independence and Linear Dependence The set of vectors S =
{v1, v2, . . . , vm} in a vector space V is called linearly independent provided that

the only solution to the equation

c1v1 + c2v2 + · · · + cmvm = 0

is the trivial solution c1 = c2 = · · · = cm = 0. If the equation has a nontrivial solu-

tion, then the set S is called linearly dependent.

EXAMPLE 1 Let

v1 =

 1

0

−1


 v2 =


 0

2

2


 v3 =


 −3

4

7




and let W = span{v1, v2, v3}.
a. Show that v3 is a linear combination of v1 and v2.

b. Show that span{v1, v2} = W.

c. Show that v1 and v2 are linearly independent.

Solution a. To solve the vector equation

c1


 1

0

−1


 + c2


 0

2

2


 =


 −3

4

7




we row-reduce the corresponding augmented matrix for the linear system to

obtain 
 1 0 −3

0 2 4

−1 2 7


 −→


 1 0 −3

0 1 2

0 0 0




The solution to the vector equation above is c1 = −3 and c2 = 2, therefore

v3 = −3v1 + 2v2

Notice that the vector v3 lies in the plane spanned by v1 and v2, as shown

in Fig. 1.

Figure 1 b. From part (a) an element of W = {c1v1 + c2v2 + c3v3 | c1, c2, c3 ∈ ⺢} can be

written in the form

c1v1 + c2v2 + c3v3 = c1v1 + c2v2 + c3(−3v1 + 2v2)

= (c1 − 3c3)v1 + (c2 + 2c3)v2



158 Chapter 3 Vector Spaces

and therefore, every vector in W is a linear combination of v1 and v2. As a

result, the vector v3 is not needed to generate W, so that span{v1, v2} = W.

c. Since neither vector is a scalar multiple of the other, the vectors v1 and v2 are

linearly independent.

In Example 1, we were able to reduce the number of linearly dependent vec-

tors that span W to a linearly independent set of vectors which also spans W . We

accomplished this by eliminating the vector v3 from the set, which, as we saw in the

solution, is a linear combination of the vectors v1 and v2 and hence does not affect

the span. Theorem 8 gives a general description of the process.

THEOREM 8 Let v1, . . . , vn be vectors in a vector space V , and let W = span{v1, . . . , vn}. If

vn is a linear combination of v1, . . . , vn−1, then

W = span{v1, . . . , vn−1}
Proof If v is in span{v1, . . . , vn−1}, then there are scalars c1, c2, . . . , cn−1 such

that v = c1v1 + · · · + cn−1vn−1. Then v = c1v1 + · · · + cn−1vn−1 + 0vn, so that v

is also in span{v1, . . . , vn}. Therefore,

span{v1, . . . , vn−1} ⊆ span{v1, . . . , vn}
Conversely, if v is in span{v1, . . . , vn}, then there are scalars c1, . . . , cn such

that v = c1v1 + · · · + cnvn. Also, since vn is a linear combination of v1, . . . , vn−1,

there are scalars d1, . . . , dn−1 such that vn = d1v1 + · · · + dn−1vn−1. Then

v = c1v1 + · · · + cn−1vn−1 + cnvn

= c1v1 + · · · + cn−1vn−1 + cn(d1v1 + · · · + dn−1vn−1)

= (c1 + cnd1)v1 + · · · + (cn−1 + cndn−1)vn−1

so that v ∈ span{v1, . . . , vn−1} and span{v1, . . . , vn} ⊆ span{v1, . . . , vn−1}.
Therefore,

W = span{v1, . . . , vn} = span{v1, . . . , vn−1}

EXAMPLE 2 Compare the column spaces of the matrices

A =




1 0 −1 1

2 0 1 7

1 1 2 7

3 4 1 5


 and B =




1 0 −1 1 2

2 0 1 7 −1

1 1 2 7 1

3 4 1 5 −2



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Solution By using the methods presented in Chap. 2 it can be shown that the the column

vectors of the matrix A are linearly independent. Since the column vectors of B

consist of a set of five vectors in ⺢4, by Theorem 3 of Sec. 2.3, the vectors are

linearly dependent. In addition, the first four column vectors of B are the same as

the linearly independent column vectors of A, hence by Theorem 5 of Sec. 2.3 the

fifth column vector of B must be a linear combination of the other four vectors.

Finally by Theorem 8, we know that col(A) = col(B).

As a consequence of Theorem 8, a set of vectors {v1, . . . , vn} such that V =
span{v1, . . . , vn} is minimal, in the sense of the number of spanning vectors, when

they are linearly independent. We also saw in Chap. 2 that when a vector in ⺢n can

be written as a linear combination of vectors from a linearly independent set, then the

representation is unique. The same result holds for abstract vector spaces.

THEOREM 9 If B = {v1, v2, . . . , vm} is a linearly independent set of vectors in a vector space V,

then every vector in span(B) can be written uniquely as a linearly combination of

vectors from B.

Motivated by these ideas, we now define what we mean by a basis of a vector

space.

DEFINITION 2 Basis for a Vector Space A subset B of a vector space V is a basis for V

provided that

1. B is a linearly independent set of vectors in V

2. span(B) = V

As an example, the set of coordinate vectors

S = {e1, . . . , en}
spans ⺢n and is linearly independent, so that S is a basis for ⺢n. This particular basis

is called the standard basis for ⺢n. In Example 3 we give a basis for ⺢3, which is

not the standard basis.

EXAMPLE 3 Show that the set

B =




 1

1

0


,

 1

1

1


,

 0

1

−1






is a basis for ⺢3.
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Solution First, to show that S spans ⺢3, we must show that the equation

c1


 1

1

0


 + c2


 1

1

1


 + c3


 0

1

−1


 =


 a

b

c




has a solution for every choice of a, b, and c in ⺢. To solve this linear system, we

reduce the corresponding augmented matrix
 1 1 0 a

1 1 1 b

0 1 −1 c


 to AB =


 1 0 0 2a − b − c

0 1 0 −a + b + c

0 0 1 −a + b




Therefore, c1 = 2a − b − c, c2 = −a + b + c, and c3 = −a + b. For example, sup-

pose that v =

 1

2

3


; then

c1 = 2(1) − 2 − 3 = −3

c2 = −1 + 2 + 3 = 4

c3 = −1 + 2 = 1

so that

−3


 1

1

0


 + 4


 1

1

1


 +


 0

1

−1


 =


 1

2

3




Since the linear system is consistent for all choices of a, b, and c, we know that

span(B) = ⺢3.

To show that B is linearly independent, we compute the determinant of the

matrix whose column vectors are the vectors of B, that is,      
1 1 0

1 1 1

0 1 −1

      = 1

Since this determinant is nonzero, by Theorem 9 of Sec. 2.3 the set B is linearly

independent. Therefore, B is a basis for ⺢3. Alternatively, to show that B is linearly

independent, notice from the reduced matrix above that

A =

 1 1 0

1 1 1

0 1 −1




is row equivalent to I . Again by Theorem 9 of Sec. 2.3, B is linearly independent.

As we have already illustrated in the examples above, bases for a vector space are

not unique. For example, consider the standard basis B = {e1, e2, e3} for ⺢3. Another

basis for ⺢3 is given by B  = {2e1, e2, e3}, where we have simply multiplied the first

vector by 2.
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Theorem 10 generalizes this idea, showing that an infinite family of bases can be

derived from a given basis for a vector space by scalar multiplication.

THEOREM 10 Let B = {v1, . . . , vn} be a basis for a vector space V and c a nonzero scalar. Then

Bc = {cv1, v2, . . . , vn} is a basis.

Proof If v is an element of the vector space V , then since B is a basis there are

scalars c1, . . . , cn such that v = c1v1 + c2v2 + · · · + cnvn. But since c  = 0, we can

also write

v = c1

c
(cv1) + c2v2 + · · · + cnvn

so that v is a linear combination of the vectors in Bc. Thus, span(Bc) = V. To

show that Bc is linearly independent, consider the equation

c1(cv1) + c2v2 + · · · + cnvn = 0

By vector space axiom 9 we can write this as

(c1c)(v1) + c2v2 + · · · + cnvn = 0

Now, since B is linearly independent, the only solution to the previous equation is

the trivial solution

c1c = 0 c2 = 0 . . . cn = 0

Since c  = 0, then c1 = 0. Therefore, Bc is linearly independent and hence is a

basis.

EXAMPLE 4 Let W be the subspace of M2×2 of matrices with trace equal to 0, and let

S =
  

1 0

0 −1

 
,

 
0 1

0 0

 
,

 
0 0

1 0

  
Show that S is a basis for W.

Solution In Example 2 of Sec. 3.2 we showed that W is a subspace of M2×2. To show that

span(S) = W, first recall that a matrix

A =
 
a b

c d

 
has trace 0 if and only if a + d = 0, so that A has the form

A =
 
a b

c −a

 
Since for every such matrix 

a b

c −a

 
= a

 
1 0

0 −1

 
+ b

 
0 1

0 0

 
+ c

 
0 0

1 0
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then span(S) = W . We also know that S is linearly independent since the linear

system

c1

 
1 0

0 −1

 
+ c2

 
0 1

0 0

 
+ c3

 
0 0

1 0

 
=
 

0 0

0 0

 
is equivalent to  

c1 c2

c3 −c1

 
=
 

0 0

0 0

 
which has only the trivial solution c1 = c2 = c3 = 0. Thus, S is a basis for W.

Similar to the situation for ⺢n, there is a natural set of matrices in Mm×n that

comprise a standard basis. Let eij be the matrix with a one in the ij position, and 0s

elsewhere. The set S = {eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is the standard basis for Mm×n.

For example, the standard basis for M2×2 is

S =
  

1 0

0 0

 
,

 
0 1

0 0

 
,

 
0 0

1 0

 
,

 
0 0

0 1

  

EXAMPLE 5 Determine whether

B =
  

1 3

2 1

 
,

 −1 2

1 0

 
,

 
0 1

0 −4

  
is a basis for M2×2.

Solution Let

A =
 
a b

c d

 
be an arbitrary matrix in M2×2. To see if A is in the span of S, we consider the

equation

c1

 
1 3

2 1

 
+ c2

 −1 2

1 0

 
+ c3

 
0 1

0 −4

 
=
 
a b

c d

 
The augmented matrix corresponding to this equation is given by


1 −1 0 a

3 2 1 b

2 1 0 c

1 0 −4 d




After row-reducing, we obtain


1 −1 0 a

0 5 1 −3a + b

0 0 −3 −a − 3b + 5c

0 0 0 a + 4b − 7c + d




Observe that the above linear system is consistent only if a + 4b − 7c + d = 0.

Hence, B does not span M2×2, and therefore is not a basis.
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Notice that in Example 5 the set B is linearly independent, but the three matrices

do not span the set of all 2× 2 matrices. We will see that the minimal number of

matrices required to span M2×2 is four.

Another vector space we have already considered is Pn, the vector space of

polynomials of degree less than or equal to n. The standard basis for Pn is the set

B = {1, x, x2, . . . , xn}

Indeed, if p(x) = a0 + a1x + a2x
2 + · · · + anx

n is any polynomial in Pn, then it is a

linear combination of the vectors in B, so span(B) = Pn. To show that B is linearly

independent, suppose that

c0 + c1x + c2x
2 + · · · + cnx

n = 0

for all real numbers x. We can write this equation as

c0 + c1x + c2x
2 + · · · + cnx

n = 0+ 0x + 0x2 + · · · + 0xn

Since two polynomials are identical if and only if the coefficients of like terms are

equal, then c1 = c2 = c3 = · · · = cn = 0.

Another basis for P2 is given in Example 6.

EXAMPLE 6 Show that B = {x + 1, x − 1, x2} is a basis for P2.

Solution Let ax2 + bx + c be an arbitrary polynomial in P2. To verify that B spans P2, we

must show that scalars c1, c2, and c3 can be found such that

c1(x + 1)+ c2(x − 1)+ c3x
2 = ax2 + bx + c

for every choice of a, b, and c. Collecting like terms on the left-hand side gives

c3x
2 + (c1 + c2)x + (c1 − c2) = ax2 + bx + c

Equating coefficients on both sides, we obtain c3 = a, c1 + c2 = b and c1 − c2 = c.

This linear system has the unique solution

c1 =
1
2
(b + c) c2 =

1
2
(b − c) c3 = a

Therefore, span(B) = P2. To show linear independence, we consider the equation

c1(x + 1)+ c2(x − 1)+ c3x
2 = 0+ 0x + 0x2

Observe that the solution above holds for all choices of a, b, and c, so that c1 =

c2 = c3 = 0. Therefore, the set B is also linearly independent and hence is a basis.

Another way of showing that the set B of Example 6 is a basis for P2 is to show

that the polynomials of the standard basis can be written as linear combinations of

the polynomials in B. Specifically, we have

1 = 1
2
(x + 1)− 1

2
(x − 1) x = 1

2
(x + 1)+ 1

2
(x − 1)

and x2 is already in B.
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Dimension

We have already seen in Theorem 3 of Sec. 2.3 that any set of m vectors from ⺢n,

with m > n, must necessarily be linearly dependent. Hence, any basis of ⺢n contains

at most n vectors. It can also be shown that any linearly independent set of m vectors,

with m < n, does not span ⺢n. For example, as we have already seen, two linearly

independent vectors in ⺢3 span a plane. Hence, any basis of ⺢n must contain exactly n

vectors. The number n, an invariant of ⺢n, is called the dimension of ⺢n. Theorem 11

shows that this holds for abstract vector spaces.

THEOREM 11 If a vector space V has a basis with n vectors, then every basis has n vectors.

Proof Let B = {v1, v2, . . . , vn} be a basis for V , and let T = {u1, u2, . . . , um}
be a subset of V with m > n. We claim that T is linearly dependent. To establish

this result, observe that since B is a basis, then every vector in T can be written

as a linear combination of the vectors from B. That is,

u1 = λ11v1 + λ12v2 + · · · + λ1nvn

u2 = λ21v1 + λ22v2 + · · · + λ2nvn
...

um = λm1v1 + λm2v2 + · · · + λmnvn

Now consider the equation

c1u1 + c2u2 + · · · + cmum = 0

Using the equations above, we can write this last equation in terms of the basis

vectors. After collecting like terms, we obtain

(c1λ11 + c2λ21 + · · · + cmλm1)v1

+ (c1λ12 + c2λ22 + · · · + cmλm2)v2

...

+ (c1λ1n + c2λ2n + · · · + cmλmn)vn = 0

Since B is a basis, it is linearly independent, hence

c1λ11 + c2λ21 + · · · + cmλm1 = 0

c1λ12 + c2λ22 + · · · + cmλm2 = 0

...

c1λ1n + c2λ2n + · · · + cmλmn = 0

This last linear system is not square with n equations in the m variables c1, . . . , cm.

Since m > n, by Theorem 3 of Sec. 2.3 the linear system has a nontrivial solution,

and hence T is linearly dependent.
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Now, suppose that T = {u1, u2, . . . , um} is another basis for the vector space V.

By the result we just established it must be the case that m ≤ n. But by the same

reasoning, the number of vectors in the basis B also cannot exceed the number of

vectors in T , so n ≤ m. Consequently n = m as desired.

We can now give a definition for the dimension of an abstract vector space.

DEFINITION 3 Dimension of a Vector Space The dimension of the vector space V , denoted

by dim(V ), is the number of vectors in any basis of V.

For example, since the standard bases for ⺢n,M2×2,Mm×n, and Pn are

{e1, e2, . . . , en}
{e11, e12, e21, e22}
{eij | 1 ≤ i ≤ m, i ≤ j ≤ n}
{1, x, x2, . . . , xn}

respectively, we have

dim(⺢n) = n dim(M2×2) = 4 dim(Mm×n) = mn dim(Pn) = n + 1

We call a vector space V finite dimensional if there exists a basis for V with

a finite number of vectors. If such a basis does not exist, then V is called infinite

dimensional. The trivial vector space V = {0} is considered finite dimensional, with

dim(V ) = 0, even though it does not have a basis. In this text our focus is on finite

dimensional vector spaces, although infinite dimensional vector spaces arise naturally

in many areas of science and mathematics.

To determine whether a set of n vectors from a vector space of dimension n is

or is not a basis, it is sufficient to verify either that the set spans the vector space or

that the set is linearly independent.

THEOREM 12 Suppose that V is a vector space with dim(V ) = n.

1. If S = {v1, v2, . . . , vn} is linearly independent, then span(S) = V and S is a

basis.

2. If S = {v1, v2, . . . , vn} and span(S) = V, then S is linearly independent and

S is a basis.

Proof (1) Suppose that S is linearly independent, and let v be any vector in V. If

v is in S, then v is in span(S). Now suppose that v is not in S. As in the proof of
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Theorem 11, the set {v, v1, v2, . . . , vn} is linearly dependent. Thus, there are scalars

c1, . . . , cn, cn+1, not all zero, such that

c1v1 + c2v2 + · · · + cnvn + cn+1v = 0

Observe that cn+1  = 0, since if it were, then S would be linearly dependent, vio-

lating the hypothesis that it is linearly independent. Solving for v gives

v = − c1

cn+1

v1 − c2

cn+1

v2 − · · · − cn

cn+1

vn

As v was chosen arbitrarily, every vector in V is in span(S) and therefore V =
span(S).

(2) (Proof by contradiction) Assume that S is linearly dependent. Then by

Theorem 5 of Sec. 2.3 one of the vectors in S can be written as a linear combina-

tion of the other vectors. We can eliminate this vector from S without changing the

span. We continue this process until we arrive at a linearly independent spanning

set with less than n elements. This contradicts the fact that the dimension of

V is n.

EXAMPLE 7 Determine whether

B =




 1

0

1


,

 1

1

0


,

 0

0

1






is a basis for ⺢3.

Solution Since dim(⺢3) = 3, the set B is a basis if it is linearly independent. Let

A =

 1 1 0

0 1 0

1 0 1




be the matrix whose column vectors are the vectors of B. The determinant of this

matrix is 1, so that by Theorem 9 of Sec. 2.3 the set B is linearly independent and

hence, by Theorem 12, is a basis. We can also show that B is a basis by showing

that B spans ⺢3.

Finding a Basis

In Sec. 3.2, we saw that the span of a nonempty set of vectors S = {v1, . . . , vm} is

a subspace. We then ask whether S is a basis for this subspace (or a vector space).

From Theorem 12, this is equivalent to determining whether S is linearly independent.

When the vectors v1, . . . , vm are in ⺢n, as in Example 7, form the matrix A with ith

column vector equal to vi . By Theorem 2 of Sec. 1.2, if B is the row echelon matrix

obtained from reducing A, then Ax = 0 if and only if Bx = 0. Now if the column

vectors of A are linearly dependent, then there are scalars c1, . . . , cm, not all 0, such
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that c1v1 + · · · + cmvm = 0. To express this in matrix form, let

c =




c1

c2
...

cm




Then Ac = 0 = Bc. Hence, the column vectors of A and B are both linearly dependent

or linearly independent. Observe that the column vectors of B associated with the

pivots are linearly independent since none of the vectors can be a linear combination

of the column vectors that come before. Therefore, by the previous remarks, the

corresponding column vectors of A are also linearly independent. By Theorem 12,

these same column vectors form a basis for col(A). When choosing vectors for a basis

of col(A), we must select the column vectors in A corresponding to the pivot column

vectors of B, and not the pivot column vectors of B. For example, the row-reduced

echelon form of the matrix

A =

 1 0 1

0 0 0

0 1 1


 is the matrix B =


 1 0 1

0 1 1

0 0 0




However, the column spaces of A and B are different. In this case col(A) is the xz

plane and col(B) is the xy plane with

col(A) = span{v1, v2} = span




 1

0

0


,

 0

0

1






and

col(B) = span{w1,w2} = span




 1

0

0


,

 0

1

0






respectively. See Fig. 2.

x 

y 

z 

xz plane span{v1, v2}

v1

v2

x 

y 

z 

xy plane span{w1,w2}

w1

w2

Figure 2
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The details of these observations are made clearer by considering a specific

example. Let

S = {v1, v2, v3, v4, v5} =




 1

1

0


,

 1

0

1


,

 2

1

2


,

 2

1

1


,

 3

1

3






We begin by considering the equation

c1


 1

1

0


 + c2


 1

0

1


 + c3


 2

1

2


 + c4


 2

1

1


 + c5


 3

1

3


 =


 0

0

0




To solve this system, we reduce the corresponding augmented matrix to reduced

echelon form. That is,
 1 1 2 2 3 0

1 0 1 1 1 0

0 1 2 1 3 0


 reduces to


 1 0 0 1 0 0

0 1 0 1 1 0

0 0 1 0 1 0




In the general solution, the variables c1, c2, and c3 are the dependent variables cor-

responding to the leading ones in the reduced matrix, while c4 and c5 are free. Thus,

the solution is given by

S = {(−s,−s − t,−t, s, t) | s, t ∈ ⺢}
Now to find a basis for span(S), we substitute these values into the original vector

equation to obtain

−s


 1

1

0


 + (−s − t)


 1

0

1


 + (−t)


 2

1

2


 + s


 2

1

1


 + t


 3

1

3


 =


 0

0

0




We claim that each of the vectors corresponding to a free variable is a linear com-

bination of the others. To establish the claim in this case, let s = 1 and t = 0. The

above vector equation now becomes

−

 1

1

0


 −


 1

0

1


 +


 2

1

1


 =


 0

0

0




that is,

−v1 − v2 + v4 = 0

Thus, v4 is a linear combination of v1 and v2. Also, to see that v5 is a linear combi-

nation of v1, v2, and v3, we let s = 0 and t = 1.

In light of Theorem 8 we eliminate v4 and v5 from S to obtain S  = {v1, v2, v3}.
Observe that S  is linearly independent since each of these vectors corresponds to a

column with a leading 1. Thus, the equation

c1


 1

1

0


 + c2


 1

0

1


 + c3


 2

1

2


 =


 0

0

0




has only the trivial solution.
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We summarize the procedure for finding a basis for the span of a set of vectors.

Given a set S = {v1, v2, v3, . . . , vn} to find a basis for span(S):

1. Form a matrix A whose column vectors are v1, v2, . . . , vn.

2. Reduce A to row echelon form.

3. The vectors from S that correspond to the columns of the reduced matrix with

the leading 1s are a basis for span(S).

In Example 8 we use the process described above to show how to obtain a basis

from a spanning set.

EXAMPLE 8 Let

S =




 1

0

1


,

 0

1

1


,

 1

1

2


,

 1

2

1


,

 −1

1

−2






Find a basis for the span of S.

Solution Start by constructing the matrix whose column vectors are the vectors in S. We

reduce the matrix
 1 0 1 1 −1

0 1 1 2 1

1 1 2 1 −2


 to


 1 0 1 0 −2

0 1 1 0 −1

0 0 0 1 1




Observe that the leading 1s in the reduced matrix are in columns 1, 2, and 4.

Therefore, a basis B for span(S) is given by {v1, v2, v4}, that is,

B =




 1

0

1


,

 0

1

1


,

 1

2

1






A set of vectors in a vector space that is not a basis can be expanded to a basis

by using Theorem 13.

THEOREM 13 Suppose that S = {v1, v2, . . . , vn} is a linearly independent subset of a vector space

V. If v is a vector in V that is not in span(S), then T = {v, v1, v2, . . . , vn} is linearly

independent.

Proof To show that T is linearly independent, we consider the equation

c1v1 + c2v2 + · · · + cnvn + cn+1v = 0

If cn+1  = 0, then we can solve for the vector v in terms of the vectors of S, contrary

to the hypothesis that v is not in the span of S. Thus, cn+1 = 0 and the starting

equation is equivalent to

c1v1 + c2v2 + · · · + cnvn = 0
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Since S is linearly independent, then

c1 = 0 c2 = 0 . . . cn = 0

Hence, T is linearly independent.

An alternative method for expanding a set of vectors in ⺢n to a basis is to add the

coordinate vectors to the set and then trim the resulting set to a basis. This technique

is illustrated in Example 9.

EXAMPLE 9 Find a basis for ⺢4 that contains the vectors

v1 =




1

0

1

0


 and v2 =




−1

1

−1

0




Solution Notice that the set {v1, v2} is linearly independent. However, it cannot span ⺢4

since dim(⺢4) = 4. To find a basis, form the set S = {v1, v2, e1, e2, e3, e4}. Since

span{e1, e2, e3, e4} = ⺢4, we know that span(S) = ⺢4. Now proceed as in

Example 8 by reducing the matrix


1 −1 1 0 0 0

0 1 0 1 0 0

1 −1 0 0 1 0

0 0 0 0 0 1




to reduced row echelon form


1 0 0 1 1 0

0 1 0 1 0 0

0 0 1 0 −1 0

0 0 0 0 0 1




Observe that the pivot columns are 1, 2, 3, and 6. A basis is therefore given by the

set of vectors {v1, v2, e1, e4}.

The following useful corollary results from repeated application of Theorem 13.

COROLLARY 1 Let S = {v1, v2, . . . , vr} be a linearly independent set of vectors in an n-dimensional

vector space V with r < n. Then S can be expanded to a basis for V. That is, there

are vectors {vr+1, vr+2, . . . , vn} so that {v1, v2, . . . , vr , vr+1, . . . , vn} is a basis

for V .
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Fact Summary

Let V be a vector space with dim(V ) = n.

1. There are finite sets of vectors that span V. The set of vectors can be

linearly independent or linearly dependent. A basis is a linearly independent

set of vectors that spans V.

2. Every nontrivial vector space has infinitely many bases.

3. Every basis of V has n elements.

4. The standard basis for ⺢n is the n coordinate vectors e1, e2, . . . , en.

5. The standard basis for M2×2 consists of the four matrices 
1 0

0 0

  
0 1

0 0

  
0 0

1 0

  
0 0

0 1

 

6. The standard basis for Pn is {1, x, x2, . . . , xn}.
7. If vn is a linear combination of v1, v2, . . . , vn−1, then

span{v1, v2, . . . , vn−1} = span{v1, v2, . . . , vn−1, vn}
8. dim(⺢n) = n, dim(Mm×n) = mn, dim(Pn) = n + 1

9. If a set B of n vectors of V is linearly independent, then B is a basis for V.

10. If the span of a set B of n vectors is V , then B is a basis for V.

11. Every linearly independent subset of V can be expanded to a basis for V.

12. If S is a set of vectors in ⺢n, a basis can always be found for span(S) from

the vectors of S.

Exercise Set 3.3

In Exercises 1–6, explain why the set S is not a basis

for the vector space V .

1. S =




 2

1

3


,

 0

−1

1




V = ⺢3

2. S =
  

2

1

 
,

 
1

0

 
,

 
8

−3

  
V = ⺢2

3. S =




 1

0

1


,

 −1

1

0


,

 0

1

1




V = ⺢3

4. S = {2, x, x3 + 2x2 − 1}V = P3

5. S = {x, x2, x2 + 2x, x3 − x + 1} V = P3

6. S =
  

1 0

0 1

 
,

 
0 1

0 0

 
,

 
0 0

1 0

 
,

 
2 −3

1 2

  
V = M2×2

In Exercises 7–12, show that S is basis for the vector

space V.

7. S =
  

1

1

 
,

 −1

2

  
V = ⺢2

8. S =
  −1

3

 
,

 
1

−1

  
V = ⺢2
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9. S =




 1

−1

1


,

 0

−2

−3


,

 0

2

−2






V = ⺢3

10. S =




 −1

−1

0


,

 2

−1

−3


,

 1

1

2






V = ⺢3

11. S =
  

1 0

1 0

 
,

 
1 1

−1 0

 
,

 
0 1

−1 2

 
,

 
1 0

0 1

  
V = M2×2

12. S = {x2 + 1, x + 2,−x2 + x} V = P2

In Exercises 13–18, determine whether S is a basis

for the vector space V.

13. S =




 −1

2

1


,

 1

0

1


,

 1

1

1




V = ⺢3

14. S =




 2

−2

1


,

 5

1

2


,

 3

1

1




V = ⺢3

15. S =







1

1

−1

1


,



2

1

3

1


,



2

4

2

5


,



−1

2

0

3






V = ⺢4

16. S =







−1

1

0

1


,



2

1

−1

2


,



1

3

1

−1


,



2

1

1

2






V = ⺢4

17. S = {1, 2x2 + x + 2,−x2 + x} V = P2

18. S =
  

1 0

0 0

 
,

 
1 1

0 0

 
,

 −2 1

1 1

 
,

 
0 0

0 2

  
V = M2×2

In Exercises 19–24, find a basis for the subspace S of

the vector space V. Specify the dimension of S.

19. S =




s + 2t

− s + t

t

      s, t ∈ ⺢


V = ⺢3

20. S =
  

a a + d

a + d d

     a, d ∈ ⺢
 
V = M2×2

21. Let S be the subspace of V = M2×2 consisting of

all 2 × 2 symmetric matrices.

22. Let S be the subspace of V = M2×2 consisting of

all 2 × 2 skew-symmetric matrices.

23. S = {p(x) | p(0) = 0} V = P2

24. S = {p(x) | p(0) = 0, p(1) = 0} V = P3

In Exercises 25–30, find a basis for the span(S) as a

subspace of ⺢3.

25. S =




 2

2

−1


,

 2

0

−2


,

 1

2

1






26. S =




 −2

1

3


,

 4

−1

2


,

 2

0

5






27. S =




 2

−3

0


,

 0

2

2


,

 −1

−1

0


,

 2

3

−1






28. S =




 −2

0

2


,

 1

0

−3


,

 −3

−3

−2


,

 1

2

−2






29. S =




 2

−3

0


,

 0

2

2


,

 2

−1

2


,

 4

0

4






30. S =




 2

2

0


,

 1

−1

0


,

 0

2

2


,

 2

3

1






In Exercises 31–36, find a basis for the vector space

V that contains the given vectors.

31. S =




 2

−1

3


,

 1

0

2




V = ⺢3
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32. S =




 −1

1

3


,

 1

1

1




V = ⺢3

33. S =







1

−1

2

4


,



3

1

1

2




V = ⺢4

34. S =







−1

1

1

−1


,



1

−3

−1

2


,



1

−2

−1

3




V = ⺢4

35. S =




 −1

1

3


,

 1

1

1




V = ⺢3

36. S =




 2

2

−1


,

 −1

−1

3




V = ⺢3

37. Find a basis for the subspace of Mn×n consisting

of all diagonal matrices.

38. Show that if S = {v1, v2, . . . , vn} is a basis for the

vector space V and c is a nonzero scalar, then

S  = {cv1, cv2, . . . , cvn} is also a basis for V.

39. Show that if S = {v1, v2, . . . , vn} is a basis for ⺢n

and A is an n × n invertible matrix, then

S  = {Av1, Av2, . . . , Avn} is also a basis.

40. Find a basis for the subspace

S = {x ∈ ⺢4 | Ax = 0} of ⺢4 where

A =

 3 3 1 3

−1 0 −1 −1

2 0 2 1




41. Suppose that V is a vector space with

dim(V ) = n. Show that if H is a subspace of V

and dim(H) = n, then H = V.

42. Let S and T be the subspaces of P3 defined by

S = {p(x) | p(0) = 0}
and

T = {q(x) | q(1) = 0}
Find dim(S), dim(T ), and dim(S ∩ T ).

43. Let

W =




 2s + t + 3r

3s − t + 2r

s + t + 2r



      s, t, r ∈ ⺢




Find dim(W).

44. Let S and T be the subspaces of ⺢4 defined by

S =







s

t

0

0



        
s, t ∈ ⺢




and

T =







0

s

t

0



        
s, t ∈ ⺢




Find dim(S), dim(T ), and dim(S ∩ T ).

3.4

ß

Coordinates and Change of Basis

From our earliest experiences with Euclidean space we have used rectangular coordi-

nates, (or xy coordinates), to specify the location of a point in the plane. Equivalently,

these coordinates describe a vector in standard position which terminates at the point.

Equipped with our knowledge of linear combinations, we now understand these xy

coordinates to be the scalar multiples required to express the vector as a linear com-

bination of the standard basis vectors e1 and e2. For example, the vector v =
 

2

3

 
,

with xy coordinates (2, 3), can be written as

v = 2e1 + 3e2
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as shown in Fig. 1(a). This point (or vector) can also be specified relative to another

pair of linearly independent vectors, describing an x  y  coordinate system. For

example, since  
2

3

 
= 5

2

 
1

1

 
+ 1

2

 −1

1

 
the x  y  coordinates of v are given by

 
5
2
, 1

2

 
. See Fig. 1(b).

x 

y 

(a)

x'
 

y'
 

(b)

x 

y 

Figure 1

In this section we generalize this concept to abstract vector spaces. Let V be

a vector space with basis B = {v1, v2, . . . , vn}. From Theorem 7 of Sec. 2.3, every

vector v in V can be written uniquely as a linear combination of the vectors of B.

That is, there are unique scalars c1, c2, . . . , cn such that

v = c1v1 + c2v2 + · · · + cnvn

It is tempting to associate the list of scalars {c1, c2, . . . , cn} with the coordinates of

the vector v. However, changing the order of the basis vectors in B will change the

order of the scalars. For example, the sets

B =
  

1

0

 
,

 
0

1

  
and

B  =
  

0

1

 
,

 
1

0

  

are both bases for ⺢2. Then the list of scalars associated with the vector

 
1

2

 
is

{1, 2} relative to B but is {2, 1} relative to B  . To remove this ambiguity, we introduce

the notion of an ordered basis.

DEFINITION 1 Ordered Basis An ordered basis of a vector space V is a fixed sequence of

linearly independent vectors that span V.
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DEFINITION 2 Coordinates Let B = {v1, v2, . . . , vn} be an ordered basis for the vector space

V. Let v be a vector in V , and let c1, c2, . . . , cn be the unique scalars such that

v = c1v1 + c2v2 + · · · + cnvn

Then c1, c2, . . . , cn are called the coordinates of v relative to B. In this case we

write

[v]B =




c1

c2
...

cn




and refer to the vector [v]B as the coordinate vector of v relative to B.

In ⺢n the coordinates of a vector relative to the standard basis B = {e1, e2, . . . , en}
are simply the components of the vector. Similarly, the coordinates of a poly-

nomial p(x) = a0 + a1x + a2x
2 + · · · + anx

n in Pn relative to the standard basis

{1, x, x2, . . . , xn} are the coefficients of the polynomial.

EXAMPLE 1 Let V = ⺢2 and B be the ordered basis

B =
  

1

1

 
,

 −1

1

  

Find the coordinates of the vector v =
 

1

5

 
relative to B.

Solution The coordinates c1 and c2 are found by writing v as a linear combination of the

two vectors in B. That is, we solve the equation

c1

 
1

1

 
+ c2

 −1

1

 
=
 

1

5

 
In this case c1 = 3 and c2 = 2. We therefore have that the coordinate vector of

v =
 

1

5

 
relative to B is

[v]B =
 

3

2

 

EXAMPLE 2 Let V = P2 and B be the ordered basis

B =  
1, x − 1, (x − 1)2
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Find the coordinates of p(x) = 2x2 − 2x + 1 relative to B.

Solution We must find c1, c2, and c3 such that

c1(1) + c2(x − 1) + c3(x − 1)2 = 2x2 − 2x + 1

Expanding the left-hand side and collecting like terms give

c3x
2 + (c2 − 2c3)x + (c1 − c2 + c3) = 2x2 − 2x + 1

Equating the coefficients of like terms gives the linear system


c1 − c2 + c3 = 1

c2 − 2c3 = −2

c3 = 2

The unique solution to this system is c1 = 1, c2 = 2, and c3 = 2, so that

[v]B =

 1

2

2




EXAMPLE 3 Let W be the subspace of all symmetric matrices in the vector space M2×2. Let

B =
  

1 0

0 0

 
,

 
0 1

1 0

 
,

 
0 0

0 1

  

Show that B is a basis for W and find the coordinates of

v =
 

2 3

3 5

 
relative to B.

Solution In Example 8 of Sec. 3.2, we showed that B spans W. The matrices in B are also

linearly independent and hence are a basis for W. Observe that v can be written as

2

 
1 0

0 0

 
+ 3

 
0 1

1 0

 
+ 5

 
0 0

0 1

 
=
 

2 3

3 5

 
Then relative to the ordered basis B, the coordinate vector of v is

[v]B =

 2

3

5



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Change of Basis

Many problems in applied mathematics are made easier by changing from one basis of

a vector space to another. To simplify our explanation of the process, we will consider

a vector space V with dim(V ) = 2 and show how to change from coordinates relative

to one basis for V to another basis for V.

Let V be a vector space of dimension 2 and let

B = {v1, v2} and B  = {v 
1, v

 
2}

be ordered bases for V. Now let v be a vector in V , and suppose that the coordinates

of v relative to B are given by

[v]B =
 
x1

x2

 
that is v = x1v1 + x2v2

To determine the coordinates of v relative to B  , we first write v1 and v2 in terms of

the vectors v 
1 and v 

2. Since B  is a basis, there are scalars a1, a2, b1, and b2 such

that

v1 = a1v
 
1 + a2v

 
2

v2 = b1v
 
1 + b2v

 
2

Then v can be written as

v = x1(a1v
 
1 + a2v

 
2) + x2(b1v

 
1 + b2v

 
2)

Collecting the coefficients of v 
1 and v 

2 gives

v = (x1a1 + x2b1)v
 
1 + (x1a2 + x2b2)v

 
2

so that the coordinates of v relative to the basis B  are given by

[v]B  =
 
x1a1 + x2b1

x1a2 + x2b2

 

Now by rewriting the vector on the right-hand side as a matrix product, we have

[v]B  =
 
a1 b1

a2 b2

  
x1

x2

 
=
 
a1 b1

a2 b2

 
[v]B

Notice that the column vectors of the matrix are the coordinate vectors [v1]B  and

[v2]B  . The matrix  
a1 b1

a2 b2

 

is called the transition matrix from B to B  and is denoted by [I ]B
 

B , so that

[v]B  = [I ]B
 

B [v]B
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EXAMPLE 4 Let V = ⺢2 with bases

B =
  

1

1

 
,

 
1

−1

  
and B  =

  
2

−1

 
,

 −1

1

  
a. Find the transition matrix from B to B  .

b. Let [v]B =
 

3

−2

 
and find [v]B  .

Solution a. By denoting the vectors in B by v1 and v2 and those in B  by v 
1 and v 

2, the

column vectors of the transition matrix are [v1]B  and [v2]B  . These coordinate

vectors are found from the equations

c1

 
2

−1

 
+ c2

 −1

1

 
=
 

1

1

 
and d1

 
2

−1

 
+ d2

 −1

1

 
=
 

1

−1

 
Solving these equations gives c1 = 2 and c2 = 3, and d1 = 0 and d2 = −1, so

that

[v1]B  =
 

2

3

 
and [v2]B  =

 
0

−1

 
Therefore, the transition matrix is

[I ]B
 

B =
 

2 0

3 −1

 
b. Since

[v]B  = [I ]B
 

B [v]B

then

[v]B  =
 

2 0

3 −1

  
3

−2

 
=
 

6

11

 
Observe that the same vector, relative to the different bases, is obtained from

the coordinates [v]B and [v]B  . That is,

3

 
1

1

 
− 2

 
1

−1

 
=
 

1

5

 
= 6

 
2

−1

 
+ 11

 −1

1

 

The procedure to find the transition matrix between two bases of a vector space

of dimension 2 can be generalized to ⺢n and other vector spaces of finite dimension.

The result is stated in Theorem 14.

THEOREM 14 Let V be a vector space of dimension n with ordered bases

B = {v1, v2, . . . , vn} and B  = {v 
1, v

 
2, . . . , v

 
n}

Then the transition matrix from B to B  is given by

[I ]B
 

B =



 v1



B  


 v2



B  

· · ·

 vn



B  



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Moreover, a change of coordinates is carried out by

[v]B  = [I ]B
 

B [v]B

In Example 5 we use the result of Theorem 14 to change from one basis of P2

to another.

EXAMPLE 5 Let V = P2 with bases

B = {1, x, x2} and B  = {1, x + 1, x2 + x + 1}
a. Find the transition matrix [I ]B

 
B .

b. Let p(x) = 3 − x + 2x2 and find [p(x)]B  .

Solution a. To find the first column vector of the transition matrix, we must find scalars

a1, a2, and a3 such that

a1(1) + a2(x + 1) + a3(x
2 + x + 1) = 1

By inspection we see that the solution is a1 = 1, a2 = 0, and a3 = 0. Therefore,

[1]B  =

 1

0

0




The second and third column vectors of the transition matrix can be found by

solving the equations

b1(1) + b2(x + 1) + b3(x
2 + x + 1) = x

and

c1(1) + c2(x + 1) + c3(x
2 + x + 1) = x2

respectively. The solutions are given by b1 = −1, b2 = 1, and b3 = 0, and

c1 = 0, c2 = −1, and c3 = 1. Hence, the transition matrix is

[I ]B
 

B =

 1 −1 0

0 1 −1

0 0 1




b. The basis B is the standard basis for P2, so the coordinate vector of

p(x) = 3 − x + 2x2 relative to B is given by

[p(x)]B  =

 3

−1

2



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Hence,

[p(x)]B  =

 1 −1 0

0 1 −1

0 0 1




 3

−1

2


 =


 4

−3

2




Notice that 3 − x + 2x2 = 4(1) − 3(x + 1) + 2(x2 + x + 1).

EXAMPLE 6 Let B = {e1, e2} be the standard ordered basis for ⺢2, B  be the ordered basis

given by

B  = {v 
1, v

 
2} =

  −1

1

 
,

 
1

1

  

and let v =
 

3

4

 
.

a. Find the transition matrix from B to B  .
b. Find [v]B  .

c. Write the vector v as a linear combination of e1 and e2 and also as a linear

combination of v 
1 and v 

2.

d. Show the results of part (c) graphically.

Solution a. The transition matrix from B to B  is computed by solving the equations

c1

 −1

1

 
+ c2

 
1

1

 
=
 

1

0

 
and d1

 −1

1

 
+ d2

 
1

1

 
=
 

0

1

 
That is, we must solve the linear systems 

−c1 + c2 = 1

c1 + c2 = 0
and

 
−d1 + d2 = 0

d1 + d2 = 1

The unique solutions are given by c1 = − 1
2
, c2 = 1

2
and d1 = 1

2
, d2 = 1

2
. The

transition matrix is then given by

[I ]B
 

B =
 

− 1
2

1
2

1
2

1
2

 

b. Since B is the standard basis, the coordinates of v relative to B are [v]B = 
3

4

 
. By Theorem 14, the coordinates of v relative to B  are given by

[v]B  =
 

− 1
2

1
2

1
2

1
2

  
3

4

 
=
 

1
2

7
2
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c. Using the coordinates of v relative to the two bases, we have

3

�
1

0

�
+ 4

�
0

1

�
= v =

1

2
v

 
1 +

7

2
v

 
2

d. The picture given in Fig. 2 shows the location of the terminal point (3, 4) of

the vector v relative to the e1e2 axes and the v
 
1v

 
2 axes.

⫺5

⫺5

5

5

v

v
 
1 v

 
2

v2

v1

Figure 2

Inverse of a TransitionMatrix

A fact that will be useful in Chap. 4 is that the transition matrix [I ]B
 

B between bases

B and B  of a finite dimensional vector space is invertible. Moreover, the transition

matrix from B  to B is the inverse of [I ]B
 

B . To see this, suppose that V is a vector

space of dimension n with ordered bases

B = {v1, v2, . . . , vn} and B  = {v 
1, v

 
2, . . . , v 

n}

To show that [I ]B
 

B is invertible, let x ∈ ⺢n be such that

[I ]B
 

B x = 0

Observe that the left-hand side of this equation in vector form is x1[v1]B  + · · · +

xn[vn]B  . Since B is a basis, then the vectors vi for 1 ≤ i ≤ n are linearly independent.

Hence, so are the vectors [v1]B  , · · · , [vn]B  . Therefore, x1 = x2 = · · · = xn = 0. Since

the only solution to the homogeneous equation [I ]B
 

B x = 0 is the trivial solution, then

by Theorem 17 of Sec. 1.6, the matrix [I ]B
 

B is invertible. Moreover, by Theorem 14,

since

[v]B  = [I ]B
 

B [v]B we know that ([I ]B
 

B )−1[v]B  = [v]B

and therefore

[I ]BB  = ([I ]B
 

B )−1

The previous observations are summarized in Theorem 15.
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THEOREM 15 Let V be a vector space of dimension n with ordered bases

B = {v1, v2, . . . , vn} and B  = {v 
1, v

 
2, . . . , v

 
n}

Then the transition matrix [I ]B
 

B from B to B  is invertible and

[I ]BB  = ([I ]B
 

B )−1

Fact Summary

Let V be a vector space with dim(V ) = n.

1. In ⺢n, the coordinates of a vector with respect to the standard basis are the

components of the vector.

2. Given any two ordered bases for V , a transition matrix can be used to

change the coordinates of a vector relative to one basis to the coordinates

relative to the other basis.

3. If B and B  are two ordered bases for V, the transition matrix from B to B  

is the matrix [I ]B
 

B whose column vectors are the coordinates of the basis

vectors of B relative to the basis B  . Also

[v]B  = [I ]B
 

B [v]B

4. If B and B  are two ordered bases for V, the transition matrix from B to B  

is invertible and the inverse matrix is the transition matrix from B  to B.

That is, ([I ]B
 

B )−1 = [I ]B
B  

Exercise Set 3.4

In Exercises 1–8, find the coordinates of the vector v

relative to the ordered basis B.

1. B =
  

3

1

 
,

 −2

2

  
v =

 
8

0

 

2. B =
  −2

4

 
,

 −1

1

  
v =

 −2

1

 

3. B =




 1

−1

2


,

 3

−1

1


,

 1

0

2






v =

 2

−1

9




4. B =




 2

2

1


,

 1

0

2


,

 0

0

1






v =

 0

1
1
2



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5. B = {1, x − 1, x2} v = p(x) = −2x2 + 2x + 3

6. B = {x2 + 2x + 2, 2x + 3,−x2 + x + 1}
v = p(x) = −3x2 + 6x + 8

7. B =
  

1 −1

0 0

 
,

 
0 1

1 0

 
,

 
1 0

0 −1

 
,

 
1 0

−1 0

  

v =
 

1 3

−2 2

 

8. B =
  

1 −1

0 1

 
,

 
0 1

0 2

 
,

 
1 −1

1 0

 
,

 
1 1

0 3

  

v =
 

2 −2

1 3

 
In Exercises 9–12, find the coordinates of the vector v

relative to the two ordered bases B1 and B2.

9. B1 =
  −3

1

 
,

 
2

2

  

B2 =
  

2

1

 
,

 
0

1

  
v =

 
1

0

 

10. B1 =




 −2

1

0


,

 1

0

2


,

 −1

1

0






B2 =




 1

0

1


,

 0

1

2


,

 −1

−1

0






v =

 −2

2

2




11. B1 = {x2 − x + 1, x2 + x + 1, 2x2}
B2 = {2x2 + 1,−x2 + x + 2, x + 3}
v = p(x) = x2 + x + 3

12. B1 =
  

1 0

0 2

 
,

 
1 −1

1 0

 
 

0 1

1 0

 
,

 
2 0

−1 1

  

B2 =
  

3 −1

0 1

 
,

 −1 0

1 1

 
,

 
0 0

1 0

 
,

 
0 −1

1 1

  

v =
 

0 0

3 1

 
In Exercises 13–18, find the transition matrix between

the ordered bases B1 and B2; then given [v]B1
, find

[v]B2
.

13. B1 =
  

1

1

 
,

 −1

1

  

B2 =
  

1

0

 
,

 
0

1

  
[v]B1

=
 

2

3

 

14. B1 =
  −2

1

 
,

 
1

2

  

B2 =
  

1

3

 
,

 
2

0

  
[v]B1

=
 

1

−1

 

15. B1 =




 1

2

1


,

 0

1

1


,

 0

1

0






B2 =




 0

1

0


,

 −1

1

−1


,

 2

1

−1






[v]B1
=

 −1

0

2




16. B1 =




 −2

1

0


,

 1

0

2


,

 −1

1

0






B2 =




 1

0

1


,

 0

1

2


,

 −1

−1

0





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[v]B1
=

 2

1

1




17. B1 = {1, x, x2} B2 = {x2, 1, x},

[v]B1
=

 2

3

5




18. B1 = {x2 − 1, 2x2 + x + 1,−x + 1}
B2 = {(x − 1)2, x + 2, (x + 1)2}

[v]B1
=

 1

1

2




19. Let B = {v1, v2, v3} be the ordered basis of ⺢3

consisting of

v1 =

 −1

1

1


 v2 =


 1

0

1




v3 =

 −1

1

0




Find the coordinates of the vector

v =

 a

b

c




relative to the ordered basis B.

20. Let B = {v1, v2, v3, v4} be the basis of ⺢4

consisting of

v1 =




1

0

1

0


 v2 =




0

−1

1

−1




v3 =




0

−1

−1

0


 v4 =




−1

0

0

−1




Find the coordinates of the vector

v =




a

b

c

d




relative to the ordered basis B.

21. Let

B1 =




 1

0

0


,

 0

1

0


,

 0

0

1






be the standard ordered basis for ⺢3 and let

B2 =




 0

1

0


,

 1

0

0


,

 0

0

1






be a second ordered basis.

a. Find the transition matrix from the ordered

basis B1 to the ordered basis B2.

b. Find the coordinates of the vector

v =

 1

2

3




relative to the ordered basis B2.

22. Let

B1 =
  

2

2

 
,

 
1

−2

  
and

B2 =
  −1

2

 
,

 
3

0

  

be two ordered bases for ⺢2.

a. Find [I ]
B2
B1

b. Find [I ]
B1
B2

c. Show that
 

[I ]
B2
B1

 −1

= [I ]
B1
B2
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23. Let

S =
  

1

0

 
,

 
0

1

  
be the standard ordered basis for ⺢2 and let

B =
  

1

0

 
,

 
− 1

2

1
2

 !

be a second ordered basis.

a. Find [I ]BS

b. Find the coordinates of 
1

2

  
1

4

  
4

2

  
4

4

 
relative to the ordered basis B.

c. Draw the rectangle in the plane with vertices

(1, 2), (1, 4), (4, 1), and (4, 4).

d. Draw the polygon in the plane with vertices

given by the coordinates found in part (b).

24. Fix a real number θ and define the transition

matrix from the standard ordered basis S on ⺢2 to

a second ordered basis B by

[I ]BS =
 

cos θ − sin θ

sin θ cos θ

 

a. If [v]S =
 
x

y

 
, then find [v]B.

b. Draw the rectangle in the plane with vertices 
0

0

  
0

1

  
1

0

  
1

1

 

c. Let θ = π
2
. Draw the rectangle in the plane

with vertices the coordinates of the vectors,

given in part (b), relative to the ordered

basis B.

25. Suppose that B1 = {u1, u2, u3} and

B2 = {v1, v2, v3} are ordered bases for a vector

space V such that u1 = −v1 + 2v2, u2 =
−v1 + 2v2 − v3, and u3 = −v2 + v3.

a. Find the transition matrix [I ]
B2
B1

b. Find [2u1 − 3u2 + u3]B2

3.5

ß

Application: Differential Equations

Differential equations arise naturally in virtually every branch of science and tech-

nology. They are used extensively by scientists and engineers to solve problems

concerning growth, motion, vibrations, forces, or any problem involving the rates

of change of variable quantities. Not surprisingly, mathematicians have devoted a

great deal of effort to developing methods for solving differential equations. As it

turns out, linear algebra is highly useful to these efforts. However, linear algebra also

makes it possible to attain a deeper understanding of the theoretical foundations of

these equations and their solutions. In this section and in Sec. 5.3 we give a brief

introduction to the connection between linear algebra and differential equations.

As a first step, let y be a function of a single variable x. An equation that

involves x, y, y  , y   , . . . , y(n), where n is a fixed positive integer, is called an ordinary

differential equation of order n. We will henceforth drop the qualifier ordinary since

none of the equations we investigate will involve partial derivatives. Also, for obvious

reasons we will narrow the scope of our discussion and consider only equations of a

certain type.
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The Exponential Model

One of the simplest kinds of differential equations is the first-order equation given by

y  = ky

where k is a real number. This equation is used to model quantities that exhibit

exponential growth or decay and is based on the assumption that the rate of change

of the quantity present at any time t is directly proportional to the quantity present at

time t. A solution to a differential equation is a function y = f (t) that satisfies the

equation, that is, results in an identity when substituted for y in the original equation.

To solve this equation, we write it as

y  

y
= k

and integrate both sides of the equation with respect to the independent variable to

obtain

ln y =
"

y  

y
dt =

"
k dt = kt + A

Solving for y gives

y = eln y = ekt+A = eAekt = Cekt

where C is an arbitrary constant.

As an illustration, consider the differential equation y  = 3y. Then any function of

the form y(t) = Ce3t is a solution. Since the parameter C in the solution is arbitrary,

the solution produces a family of functions all of which satisfy the differential equation.

For this reason y(t) = Ce3t is called the general solution to y  = 3y.

In certain cases a physical constraint imposes a condition on the solution that

allows for the identification of a particular solution. If, for example, in the previous

problem it is required that y = 2 when t = 0, then 2 = Ce3(0), so that C = 2. This is

called an initial condition. A differential equation together with an initial condition

is called an initial-value problem. The solution to the previous initial-value problem

is given by

y(t) = 2e3t

From a linear algebra perspective we can think of the general solution to the

differential equation y  = ky as the span, over ⺢, of the vector ekt which describes a

one-dimensional subspace of the vector space of differentiable functions on the real

line.

Second-Order Differential Equations with Constant
Coefficients

We now extend the differential equation of the previous subsection to second-order

and consider equations of the form

y   + ay  + by = 0

Motivated by the solution to the exponential model, we check to see if there are any

solutions of the form y = erx, for some real number r . After computing the first and
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second derivatives y  = rerx and y   = r2erx, we see that y = erx is a solution of the

second-order equation if and only if

r2erx + arerx + berx = 0

that is,

erx(r2 + ar + b) = 0

Since erx > 0 for every choice of r and x, we know erx is a solution of y   + ay  +
by = 0 if and only if

r2 + ar + b = 0

This equation is called the auxiliary equation. As this equation is quadratic there

are three possibilities for the roots r1 and r2. This in turn yields three possible vari-

ations for the solution of the differential equation. The auxiliary equation can have

two distinct real roots, one real root, or two distinct complex roots. These cases are

considered in order.

Case 1 The roots r1 and r2 are real and distinct.

In this case there are two solutions, given by

y1(x) = er1x and y2(x) = er2x

EXAMPLE 1 Find two distinct solutions to the differential equation y   − 3y  + 2y = 0.

Solution Let y = erx. Since the auxiliary equation r2 − 3r + 2 = (r − 1)(r − 2) = 0 has

the distinct real roots r1 = 1 and r2 = 2, two distinct solutions for the differential

equation are

y1(x) = ex and y2(x) = e2x

Case 2 There is one repeated root r . Although the auxiliary equation has only one

root, there are still two distinct solutions, given by

y1(x) = erx and y2(x) = xerx

EXAMPLE 2 Find two distinct solutions to the differential equation y   − 2y  + y = 0.

Solution Let y = erx. Since the auxiliary equation r2 − 2r + 1 = (r − 1)2 = 0 has the

repeated root r = 1, two distinct solutions of the differential equation are

y1(x) = ex and y2(x) = xex



188 Chapter 3 Vector Spaces

Case 3 The auxiliary equation has distinct complex (conjugate) roots given by

r1 = α + βi and r2 = α − βi. In this case the solutions are

y1(x) = eαx cos βx and y2(x) = eαx sin βx

EXAMPLE 3 Find two distinct solutions to the differential equation y   − 2y  + 5y = 0.

Solution Let y = erx , so the auxiliary equation corresponding to y   − 2y  + 5y = 0 is given

by r2 − 2r + 5 = 0. Applying the quadratic formula gives the complex roots r1 =
1 + 2i and r2 = 1 − 2i. The two solutions to the differential equation are then given

by

y1(x) = ex cos 2x and y2(x) = ex sin 2x

In what follows we require Theorem 16 on existence and uniqueness for second-

order linear differential equations. A proof can be found in any text on ordinary

differential equations.

THEOREM 16 Let p(x), q(x), and f (x) be continuous functions on the interval I. If x0 is in I,

then the initial-value problem

y   + p(x)y  + q(x)y = f (x) y(x0) = y0 y  (x0) = y  
0

has a unique solution on I.

Fundamental Sets of Solutions

With solutions in hand for each one of these cases, we now consider the question

as to whether there are other solutions to equations of this type, and if so, how they

can be described. The simple (but elegant) answer, to which the remainder of this

section is devoted, is found by using linear algebra. We will see that in each case

the functions y1(x) and y2(x) form a basis for the vector space of solutions to the

equation y   + ay  + by = 0. Accordingly, every solution y(x) to this equation can be

written as a linear combination y(x) = c1y1(x) + c2y2(x).

Toward this end, for a positive integer n ≥ 0, let V = C(n)(I ) be the vector space

of all functions that are n times differentiable on the real interval I. If n = 0, then

C(0)(I ) denotes the set of all continuous functions on I. We first show that the solution

set to the differential equation y   + ay  + by = 0 is a subspace of V = C(2)(I ).

THEOREM 17 Superposition Principle Suppose that y1(x) and y2(x) are functions in

C(2)(I ). If y1(x) and y2(x) are solutions to the differential equation y   + ay  +
by = 0 and c is any scalar, then y1(x) + cy2(x) is also a solution.
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Proof Since y1(x) and y2(x) are both solutions, then

y   
1 (x) + ay  

1(x) + by1(x) = 0 and y   
2 (x) + ay  

2(x) + by2(x) = 0

Now to show that y(x) = y1(x) + cy2(x) is a solution to the differential equation,

observe that

y  (x) = y  
1(x) + cy  

2(x) and y   (x) = y   
1 (x) + cy   

2 (x)

Substituting the values for y, y  , and y   in the differential equation and rearranging

the terms gives

y   
1 (x) + cy   

2 (x) + a[y  
1(x) + cy  

2(x)] + b[y1(x) + cy2(x)]

= y   
1 (x) + cy   

2 (x) + ay  
1(x) + acy  

2(x) + by1(x) + bcy2(x)

= [y   
1 (x) + ay  

1(x) + by1(x)] + c[y   
2 (x) + ay  

2(x) + by2(x)]

= 0 + 0 = 0

Let S be the set of solutions to the differential equation y   + ay  + by = 0. By

the superposition principle above and by Theorem 4 of Sec. 3.2, we know that S is a

subspace of C(2)(I ).

To analyze the algebraic structure of S, we recall from Exercise 31 of Sec. 2.3

that a set of functions U = {f1(x), f2(x), . . . , fn(x)} is linearly independent on an

interval I if and only if

c1f1(x) + c2f2(x) + · · · + cnfn(x) = 0

for all x ∈ I implies that c1 = c2 = · · · = cn = 0. Theorem 18 provides a useful test

to decide whether two functions are linearly independent on an interval.

THEOREM 18 Wronskian Let f (x) and g(x) be differentiable functions on an interval I .

Define the function W [f, g] on I by

W [f, g](x) =
    f (x) g(x)

f  (x) g (x)

    = f (x)g (x) − f  (x)g(x)

If W [f, g](x0) is nonzero for some x0 in I , then f (x) and g(x) are linearly inde-

pendent on I .

Proof Consider the equation

c1f (x) + c2g(x) = 0

Taking derivatives of both sides, we obtain

c1f
 (x) + c2g

 (x) = 0

Taken together, these equations form a linear system of two equations in the two

variables c1 and c2. Observe that the determinant of the corresponding coefficient

matrix is W
#
f, g

$
(x). Hence, if W [f, g](x) is nonzero for some x0 ∈ I , then by
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Theorem 17 of Sec. 1.6 we know that c1 = c2 = 0. Accordingly, f (x) and g(x)

are linearly independent.

The function W [f, g] of Theorem 18 is called the Wronskian of f and g. The

Wronskian, and the result of Theorem 18, can be extended to any finite set of functions

that have continuous derivatives up to order n.

If y1 and y2 are solutions to the differential equation y   + ay  + by = 0, then

Abel’s formula for the Wronskian gives the next result.

THEOREM 19 Let y1(x) and y2(x) be solutions to the differential equation y   + ay  + by = 0.

The functions y1 and y2 are linearly independent if and only if W [y1, y2](x)  = 0

for all x in I .

At this point we are now ready to show that any two linearly independent solutions

to the differential equation y   + ay  + by = 0 span the subspace of solutions.

THEOREM 20 Fundamental Set of Solutions Suppose that y1(x) and y2(x) are two linearly

independent solutions, on the interval I , to the differential equation

y   + ay  + by = 0

Then every solution can be written as a linear combination of y1(x) and y2(x).

Proof Let y(x) be a particular solution to the initial-value problem

y   + ay  + by = 0 with y(x0) = y0 and y  (x0) = y  
0

for some x0 in I . We claim that there exist real numbers c1 and c2 such that

y(x) = c1y1(x) + c2y2(x)

Differentiating both sides of this equation gives

y  (x) = c1y
 
1(x) + c2y

 
2(x)

Now substituting x0 into both of these equations and using the initial conditions

above, we obtain the linear system of two equations in the two variables c1 and c2

given by  
c1y1(x0) + c2y2(x0) = y0

c1y
 
1(x0) + c2y

 
2(x0) = y  

0

Observe that the determinant of the coefficient matrix is the Wronskian

W [y1, y2](x0). Since y1(x) and y2(x) are linearly independent, then by Theorem 19,

the determinant of the coefficient matrix is nonzero. Consequently, by Theorem 17



3.5 Application: Differential Equations 191

of Sec. 1.6, there exist unique numbers c1 and c2 that provide a solution for the

linear system. Define the function g by

g(x) = c1y1(x) + c2y2(x)

Then g(x) is also a solution to the original initial-value problem. By the uniqueness

part of Theorem 16,

y(x) = g(x) = c1y1(x) + c2y2(x)

as claimed.

The linearly independent solutions y1(x) and y2(x) of Theorem 20 are called

a fundamental set of solutions. In light of this theorem, the fundamental set

{y1(x), y2(x)} is a basis for the subspace S of solutions to y   + ay  + by = 0. As

there are two of them, dim(S) = 2.

We now return to the specific cases for the solutions to y   + ay  + by = 0. Recall

that for case 1 we obtained the two solutions

y1(x) = er1x and y2(x) = er2x

with r1  = r2. To show that these functions form a fundamental set, we compute the

Wronskian, so that

W [y1, y2](x) =
    er1x er2x

r1e
r1x r2e

r2x

    
= r2(e

r1xer2x) − r1(e
r1xer2x)

= r2e
(r1+r2)x − r1e

(r1+r2)x

= e(r1+r2)x(r2 − r1)

Since the exponential function is always greater than 0 and r1 and r2 are distinct, the

Wronskian is nonzero for all x, and therefore the functions are linearly independent.

Hence, {er1x, er2x} is a fundamental set, and every solution y(x) to a problem of this

type has the form

y(x) = c1e
r1x + c2e

r2x

for scalars c1 and c2.

For case 2, the Wronskian is given by

W [erx, xerx] = e2rx

Since e2rx is never zero, {erx, xerx} is a fundamental set of solutions for problems of

this type.

Finally, for case 3 the Wronskian is given by

W [eαx cos βx, eαx sin βx] = βe2αx

so that {eαx cos βx, eαx sin βx} is a fundamental set as long as β is not zero. If β = 0,

then the differential equation becomes y  + ay  = 0 which reduces to case 1.

There are many physical applications of second-order differential equations with

constant coefficients. Two important areas are in mechanical and electrical oscillations.
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A fundamental problem in mechanics is the motion of an object on a vibrating spring.

The motion of the object is described by the solution of an initial-value problem of

the form

my   + cy  + ky = f (x) y(0) = A y  (0) = B

where m is the mass of the object attached to the spring, c is the damping coefficient,

k is the stiffness of the spring, and f (x) represents some external force. If there are

no external forces acting on the system, then f (x) = 0.

EXAMPLE 4 Let the mass of an object attached to a spring be m = 1, and the spring constant

k = 4. Solve the three initial-value problems describing the position of the object

attached to the spring with no external forces; initial conditions y(0) = 2, y  (0) = 0;

and damping coefficients c equaling 2, 4, and 5.

Solution The differential equation describing the position of the object is given by

y  + cy  + 4y = 0

When c = 2, the auxiliary equation for y   + 2y  + 4y = 0 is

r2 + 2r + 4 = 0

Since the roots are the complex values r1 = −1 +
√

3i and r2 = −1 −
√

3i, the

general solution for the differential equation is

y(x) = e−x
%
c1 cos(

√
3x) + c2 sin(

√
3x)

&
From the initial conditions, we have

y(x) = 2e−x

 
cos(

√
3x) +

√
3

3
sin(

√
3x)

 

When c = 4, the auxiliary equation for y   + 4y  + 4y = 0 is

r2 + 4r + 4 = (r + 2)2 = 0

Since there is one repeated real root, the general solution for the differential

equation is

y(x) = c1e
−2x + c2xe

−2x

From the initial conditions,

y(x) = 2e−2x(2x + 1)

When c = 5, the auxiliary equation for y   + 5y  + 4y = 0 is

r2 + 5r + 4 = (r + 1)(r + 4) = 0

Since there are two distinct real roots, the general solution for the differential

equation is

y(x) = c1e
−x + c2e

−4x
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From the initial conditions,

y(x) = 2
3
(4e−x − e−4x)

The graphs of the solutions are shown in Fig. 1.

c = 4

c = 2

c = 5

Figure 1

Exercise Set 3.5

In Exercises 1–4, find the general solution to the

differential equation.

a. Find two distinct solutions to the homogeneous dif-

ferential equation.

b. Show that the two solutions from part (a) are lin-

early independent.

c. Write the general solution.

1. y   − 5y  + 6y = 0

2. y   + 3y  + 2y = 0

3. y   + 4y  + 4y = 0

4. y   − 4y  + 5y = 0

In Exercises 5 and 6, find the solution to the

initial-value problem.

5. y   − 2y  + y = 0 y(0) = 1 y  (0) = 3

6. y   − 3y  + 2y = 0 y(1) = 0 y  (1) = 1

7. Consider the the nonhomogeneous differential

equation given by

y   − 4y  + 3y = g(x) where

g(x) = 3x2 + x + 2

a. Find the general solution to the associated

homogeneous differential equation for which

g(x) = 0. This is called the complementary

solution and is denoted by yc(x).

b. Assume there exists a particular solution

denoted yp(x) to the nonhomogeneous

equation of the form

yp(x) = ax2 + bx + c

Substitute yp(x) into the differential equation

to find conditions on the coefficients a, b,

and c.

c. Verify that y(x) = yc(x) + yp(x) is a solution

to the differential equation.

8. Consider the nonhomogeneous differential

equation given by

y   + 4y  + 3y = g(x) where

g(x) = 3 sin 2x

a. Find the general solution to the associated

homogeneous differential equation for which

g(x) = 0.
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b. Assume there exists a particular solution to the

nonhomogeneous equation of the form

yp(x) = A cos 2x + B sin 2x

Substitute yp(x) into the differential equation

to find conditions on the coefficients A and B.

c. Verify that yc(x) + yp(x) is a solution to the

differential equation.

9. Let w be the weight of an object attached to a

spring, g the constant acceleration due to gravity

of 32 ft/s2, k the spring constant, and d the

distance in feet that the spring is stretched by the

weight. Then the mass of the object is m = w
g

and

k = w
d
. Suppose that a 2-lb weight stretches a

spring by 6-in. Find the equation of the motion of

the weight if the object is pulled down by 3-in

and then released. Notice that this system is

undamped ; that is, the damping coefficient is 0.

10. Suppose an 8-lb object is attached to a spring

with a spring constant of 4 lb/ft and that the

damping force on the system is twice the velocity.

Find the equation of the motion if the object is

pulled down 1-ft and given an upward velocity

of 2 ft/s.

Review Exercises for Chapter 3

1. Determine for which values of k the vectors


1

−2

0

2







0

1

−1

3







0

0

1

4







2

3

4

k




form a basis for ⺢4.

2. For which values of a, b, c, d, e, and f are the

vectors 
 a

0

0





 b

c

0





 d

e

f




a basis for ⺢3?

3. Let

S =
  

a − b a

b + c a − c

     a, b, c ∈ ⺢
 

a. Show that S is a subspace of M2×2.

b. Is

 
5 3

−2 3

 
in S?

c. Find a basis B for S.

d. Give a 2 × 2 matrix that is not in S.

4. Let S = {p(x) = a + bx + cx2 | a + b + c = 0}.
a. Show that S is a subspace of P2.

b. Find a basis for S. Specify the dimension of S.

5. Suppose that S = {v1, v2, v3} is a basis for a

vector space V.

a. Determine whether the set T = {v1, v1 +
v2, v1 + v2 + v3} is a basis for V.

b. Determine whether the set

W = {−v2 + v3, 3v1 + 2v2 + v3, v1 −
v2 + 2v3} is a basis for V.

6. Let S = {v1, v2, v3}, where

v1 =




1

−3

1

1


 v2 =




2

−1

1

1




v3 =




4

−7

3

3




a. Explain why the set S is not a basis for ⺢4.

b. Show that v3 is a linear combination of v1 and

v2.

c. Find the dimension of the span of the set S.

d. Find a basis B for ⺢4 that contains the vectors

v1 and v2.
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e. Show that

T =







1

2

−1

1


,



1

0

1

0


,



1

0

1

−1


,



1

2

1

−1






is a basis for ⺢4.

f. Find the transition matrix from the ordered

basis B to the ordered basis T .

g. Use the matrix found in part (f) to find the

transition matrix from the ordered basis T to

the ordered basis B.

h. If

[v]B =




1

3

−2

5




find the coordinates of v relative to the ordered

basis T .

i. If

[v]T =




−2

13

−5

−1




find the coordinates of v relative to the ordered

basis B.

7. Suppose span{v1, . . . , vn} = V and

c1v1 + c2v2 + · · · + cnvn = 0

with c1  = 0. Show that span{v2, . . . , vn} = V .

8. Let V = M2×2.

a. Give a basis for V and find its dimension. Let

S be the set of all matrices of the form 
a b

c a

 
and let T be the set of all matrices of the form 

x y

y z

 
b. Show that S and T are subspaces of the vector

space V.

c. Give bases for S and T and specify their

dimensions.

d. Give a description of the matrices in S ∩ T .

Find a basis for S ∩ T and give its dimension.

9. Let

u =
 
u1

u2

 
and v =

 
v1

v2

 
such that

u · v = 0 and

'
u2

1 + u2
2 = 1 =

'
v2

1 + v2
2

a. Show that B = {u, v} is a basis for ⺢2.

b. Find the coordinates of the vector w =
 
x

y

 
relative to the ordered basis B.

10. Let c be a fixed scalar and let

p1(x) = 1 p2(x) = x + c

p3(x) = (x + c)2

a. Show that B = {p1(x), p2(x), p3(x)} is a basis

for P2.

b. Find the coordinates of f (x) = a0 +
a1x + a2x

2 relative to the ordered basis B.

Chapter 3: Chapter Test

In Exercises 1–35, determine whether the statement is

true or false.

1. If V = ⺢ and addition and scalar multiplication

are defined as

x ⊕ y = x + 2y c  x = x + c

then V is a vector space.

2. The set

S =




 1

3

1


,

 2

1

−1


,

 0

4

3






is a basis for ⺢3.

3. A line in ⺢3 is a subspace of dimension 1.
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4. The set

S =
  

2 1

0 1

 
,

 
3 0

2 1

 
,

 
1 0

2 0

  
is a basis for M2×2.

5. The set 


 1

2

3


,

 0

1

2


,

 −2

0

1






is a basis for ⺢3 if and only if

det


 1 0 −2

2 1 0

3 2 1


  = 0

6. The set

S =
  

x

y

     y ≤ 0

 
is a subspace of ⺢2.

7. The set

S = {A ∈ M2×2 | det(A) = 0}
is a subspace of M2×2.

8. The set

{2, 1 + x, 2 − 3x2, x2 − x + 1}
is a basis for P3.

9. The set

{x3 − 2x2 + 1, x2 − 4, x3 + 2x, 5x}
is a basis for P3.

10. The dimension of the subspace

S =




 s + 2t

t − s

s



      s, t ∈ ⺢




of ⺢3 is 2.

11. If

S =
  

1

4

 
,

 
2

1

  
and

T =
  

1

4

 
,

 
2

1

 
,

 
3

5

  

then span(S) = span(T ).

12. The set

S =




 2a

a

0



      a ∈ ⺢




is a subspace of ⺢3 of dimension 1.

13. If S = {v1, v2, v3} and T = {v1, v2, v3, v1 + v2},
then span(S) = span(T ).

14. If S = {v1, v2, v3}, T = {v1, v2, v3, v1 + v2}, and

S is a basis, then T is not a basis.

15. If {v1, v2, v3} is a basis for a vector space V and

w1 = v1 + 2v2 + v3, w2 = v1 + v2 + v3,

w3 = v1 − v2 − v3, then W = {w1,w2,w3} is

also a basis for V.

16. If V is a vector space of dimension n and S is a

set of vectors that span V , then the number of

vectors in S is less than or equal to n.

17. If V is a vector space of dimension n, then any

set of n − 1 vectors is linearly dependent.

18. If S and T are subspaces of a vector space V,

then S ∪ T is a subspace of V.

19. If S = {v1, . . . , vn} is a linearly independent set

of vectors in ⺢n, then S is a basis.

20. If A is a 3 × 3 matrix and for every vector

b =

 a

b

c


 the linear system Ax = b has a

solution, then the column vectors of A span ⺢3.

21. If an n × n matrix is invertible, then the column

vectors form a basis for ⺢n.

22. If a vector space has bases S and T and the

number of elements of S is n, then the number of

elements of T is also n.

23. In a vector space V , if

span{v1, v2, . . . , vn} = V

and w1,w2, . . . ,wm are any elements of V , then

span{v1, v2, . . . , vn,w1,w2, . . . ,wm} = V.
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24. If V is a vector space of dimension n and H is a

subspace of dimension n, then H = V.

25. If B1 and B2 are bases for the vector space V,

then the transition matrix from B1 to B2 is the

inverse of the transition matrix from

B2 to B1.

In Exercises 26–29, use the bases of ⺢2

B1 =
  

1

−1

 
,

 
0

2

  

and

B2 =
  

1

1

 
,

 
3

−1

  

26. The coordinates of

 
1

0

 
, relative to B1, are 

1

1

 
.

27. The coordinates of

 
1

0

 
relative to B2 are

1
4

 
1

1

 
.

28. The transition matrix from B1 to B2 is

[I ]
B2
B1

= 1

2

 −1 3

1 −1

 
29. The transition matrix from B2 to B1 is

[I ]
B1
B2

=
 

1 3

1 1

 
In Exercises 30–35, use the bases of P3,

B1 = {1, x, x2, x3}

and

B2 = {x, x2, 1, x3}

30. [x3 + 2x2 − x]B1
=

 1

2

−1




31. [x3 + 2x2 − x]B1
=




0

−1

2

1




32. [x3 + 2x2 − x]B2
=




0

−1

2

1




33. [x3 + 2x2 − x]B2
=




−1

2

0

1




34. [(1 + x)2 − 3(x2 + x − 1) + x3]B2

=




4

−1

−2

1




35. The transition matrix from B1 to B2 is

[I ]
B2
B1

=




0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1



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A
critical component in the design of an airplane is

the airflow over the wing. Four forces that act on

an aircraft, and need to be considered in its design,

are lift, the force of gravity, thrust, and drag. Lift and

drag are aerodynamic forces that are generated by the

movement of the aircraft through the air. During take-

off, thrust from the engines must overcome drag. Lift,

created by the rush of air over the wing, must over-

come the force of gravity before the airplane can fly.

Mathematical models developed by aeronautical engi-

neers simulate the behavior of an aircraft in flight. These

models involve linear systems with millions of

equations and variables. As we saw in Chap. 1, lin-

ear algebra provides systematic methods for solv-

ing these equations. Another use of linear algebra

x 
y 

z 

PitchRoll

Yaw

in the design process of an airplane is in modeling the movement of the aircraft

through space. To check the feasibility of their designs, aeronautical engineers use

computer graphics to visualize simulations of the aircraft in flight. Three control

parameters which affect the position of an aircraft are pitch, roll, and yaw. The pitch

measures the fore and aft tilt of an airplane, relative to the earth, while the roll mea-

sures the tilt from side to side. Together these give the attitude of the aircraft. Using

the figure above, the pitch is a rotation about the y axis, while a roll is a rotation

about the x axis. The yaw measures the rotation about the z axis, and when combined

with the pitch, gives the heading. During a simulation, the attitude and heading of

the aircraft can be changed by applying a transformation to its coordinates relative

to a predefined center of equilibrium. As we shall see in this chapter, such a trans-

formation can be represented by matrix multiplication. Specifically, if the angles of

199
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rotation for pitch, roll, and yaw are given by θ,ϕ, and ψ, respectively, then the matrix

representations for these transformations are given by
 cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ





 1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ


 and


 cosψ sinψ 0

− sinψ cosψ 0

0 0 1




This type of transformation is a linear map between vector spaces, in this case from

⺢
3 to ⺢3. The generation and manipulation of computer graphics are one of many

applications that require the linear transformations which are introduced in this chapter.

Due to their wide applicability linear transformations on vector spaces are of

general interest and are the subject of this chapter. As functions between vector spaces,

they are special since they preserve the additive structure of linear combinations. That

is, the image of a linear combination under a linear transformation is also a linear

combination in the range. In this chapter we investigate the connection between linear

transformations and matrices, showing that every linear transformation between finite

dimensional vector spaces can be written as a matrix multiplication.

4.1

ß

Linear Transformations

In mathematics every line of inquiry ultimately leads to a description of some set and

functions on that set. One may metaphorically refer to elements of the set as nouns

and functions that operate on elements as verbs. In linear algebra the sets are vector

spaces, which we discussed in Chap. 3, and linear transformations on vector spaces

are the functions.

If V and W are vector spaces, then a mapping T from V to W is a function that

assigns to each vector v in V a unique vector w in W . In this case we say that T

maps V into W , and we write T: V −→ W . For each v in V the vector w = T (v) in

W is the image of v under T.

EXAMPLE 1 Define a mapping T: ⺢2 −→ ⺢
2 by

T

  
x

y

  
=
 
x + y
x − y

 
a. Find the image of the coordinate vectors e1 and e2 under the mapping T.

b. Give a description of all vectors in ⺢2 that are mapped to the zero vector.

c. Show that the mapping T satisfies

T (u+ v) = T (u)+ T (v) (preserves vector space addition)

and

T (cv) = cT (v) (preserves scalar multiplication)

for all vectors u and v in V and all scalars c in ⺢.
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Solution a. Since e1 =
 

1

0

 
and e2 =

 
0

1

 
, we have

T (e1) =
 

1+ 0

1− 0

 
=
 

1

1

 
and T (e2) =

 
1

−1

 
b. To answer this question, we solve

T

  
x

y

  
=
 
x + y
x − y

 
=
 

0

0

 
This leads to the linear system  

x + y = 0

x − y = 0

where the unique solution is x = y = 0. Thus, the only vector that is mapped

by T to

 
0

0

 
is the zero vector

 
0

0

 
.

c. To show that the mapping T preserves vector space addition, let

u =
 
u1

u2

 
and v =

 
v1

v2

 
Then

T (u+ v) = T
  

u1

u2

 
+
 
v1

v2

  

= T
  

u1 + v1

u2 + v2

  

=
 
(u1 + v1)+ (u2 + v2)

(u1 + v1)− (u2 + v2)

 

=
 
u1 + u2

u1 − u2

 
+
 
v1 + v2

v1 − v2

 

= T
  

u1

u2

  
+ T

  
v1

v2

  
= T (u)+ T (v)

We also have

T (cu) = T
  

cu1

cu2

  

=
 
cu1 + cu2

cu1 − cu2

 
= c

 
u1 + u2

u1 − u2

 
= cT (u)

A mapping T between vector spaces V and W that satisfies the two properties,

as in Example 1,

T (u+ v) = T (u)+ T (v) and T (cu) = cT (u)
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is called a linear transformation from V into W . Notice that the operations of addition

and scalar multiplication on the left-hand side of each equation refer to operations in

the vector space V, and on the right-hand side refer to operations in the vector spaceW .

Definition 1 combines the two requirements for the linearity of T into one

statement.

DEFINITION 1 LinearTransformation Let V andW be vector spaces. The mapping T: V → W

is called a linear transformation if and only if

T (cu+ v) = cT (u)+ T (v)

for every choice of u and v in V and scalars c in ⺢. In the case for which V = W ,

then T is called a linear operator.

The mapping T defined in Example 1 is a linear operator on ⺢2. In Example 2

we show how matrices can be used to define linear transformations.

EXAMPLE 2 Let A be an m× n matrix. Define a mapping T: ⺢n
→ ⺢

m by

T (x) = Ax

a. Show that T is a linear transformation.

b. Let A be the 2× 3 matrix

A =

 
1 2 −1

−1 3 2

 

Find the images of 
 1

1

1


 and


 7

−1

5




under the mapping T: ⺢3→ ⺢
2 with T (x) = Ax.

Solution a. By Theorem 5 of Sec. 1.3, for all vectors u and v in ⺢n and all scalars c in ⺢,

A(cu+ v) = cAu+ Av

Therefore,

T (cu+ v) = cT (u)+ T (v)

b. Since T is defined by matrix multiplication, we have

T




 1

1

1




 =

 
1 2 −1

−1 3 2

  1

1

1


 =

 
2

4
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and

T




 7

−1

5




 =

 
1 2 −1

−1 3 2

  7

−1

5


 =  

0

0

 

Later in this chapter, in Sec. 4.4, we show that every linear transformation between

finite dimensional vector spaces can be represented by a matrix. In Examples 1 and 2, we

have discussed some of the algebraic properties of linear transformations. In Example 3

we consider the action of a linear transformation from a geometric perspective.

EXAMPLE 3 Define a linear transformation T: ⺢3 −→ ⺢
2 by

T




 x

y

z




 =

 
x

y

 

a. Discuss the action of T on a vector in ⺢3, and give a geometric interpretation

of the equation

T




 1

0

1


+


 0

1

1




 = T




 1

0

1




+ T




 0

1

1






b. Find the image of the set

S1 =


 t


 1

2

1



      t ∈ ⺢




c. Find the image of the set

S2 =




 x

y

3



      x, y ∈ ⺢




d. Describe the set

S3 =




 x

0

z



      x, z ∈ ⺢




and find its image.

Solution a. The linear transformation T gives the projection, or shadow, of a vector in

3-space to its image in the xy plane. Let

v1 =

 1

0

1


 v2 =


 0

1

1


 and v3 = v1 + v2 =


 1

1

2



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The images of these vectors are shown in Fig. 1. We see from the figure that

T (v3) =
 

1

1

 
is equal to the vector sum T (v1)+ T (v2) =

 
1

0

 
+
 

0

1

 
,

as desired.

y 

z 

x 

x 

y 
T

v1

v2

v3

T (v1)

T (v2) T (v3)

Figure 1

b. The set S1 is a line in 3-space with direction vector


 1

2

1


. By the definition

of T we have

T (S1) =
 
t

 
1

2

     t ∈ ⺢
 

which is a line in ⺢2 through the origin with slope 2.

c. The set S2 is a plane in 3-space 3 units above and parallel to the xy plane. In

this case,

T (S2) =
  

x

y

     x, y ∈ ⺢
 

Thus, the image of S2 is the entire xy plane, which from the description of T

as a projection is the result we expect.

d. The set S3 is the xz plane. Here we have

T (S3) =
  

x

0

     x ∈ ⺢
 

which is just the x axis. Again, this is the expected result, given our description

of T.

In Example 4 we use the derivative of a function to define a linear transformation

between vector spaces of polynomials.
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EXAMPLE 4 Define a mapping T: P3 −→ P2 by

T (p(x)) = p (x)
where p (x) is the derivative of p(x).

a. Show that T is a linear transformation.

b. Find the image of the polynomial p(x) = 3x3 + 2x2 − x + 2.

c. Describe the polynomials in P3 that are mapped to the zero vector of P2.

Solution First observe that if p(x) is in P3, then it has the form

p(x) = ax3 + bx2 + cx + d
so that

T (p(x)) = p (x) = 3ax2 + 2bx + c
Since p (x) is in P2, then T is a map from P3 into P2.

a. To show that T is linear, let p(x) and q(x) be polynomials of degree 3 or less,

and let k be a scalar. Recall from calculus that the derivative of a sum is the

sum of the derivatives, and that the derivative of a scalar times a function is

the scalar times the derivative of the function. Consequently,

T (kp(x)+ q(x)) = d

dx
(kp(x)+ q(x))

= d

dx
(kp(x))+ d

dx
(q(x))

= kp (x)+ q  (x)
= kT (p(x))+ T (q(x))

Therefore, the mapping T is a linear transformation.

b. The image of the polynomial p(x) = 3x3 + 2x2 − x + 2 is

T (p(x)) = d

dx
(3x3 + 2x2 − x + 2) = 9x2 + 4x − 1

c. The only functions in P3 with derivative equal to zero are the constant poly-

nomials p(x) = c, where c is a real number.

PROPOSITION 1 Let V and W be vector spaces, and let T: V → W be a linear transformation. Then

T (0) = 0.

Proof Since T (0) = T (0+ 0) and T is a linear transformation, we know that

T (0) = T (0+ 0) = T (0)+ T (0). Subtracting T (0) from both sides of the last

equation gives T (0) = 0.
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EXAMPLE 5 Define a mapping T: ⺢2 −→ ⺢
2 by

T

  
x

y

  
=
  

ex

ey

  
Determine whether T is a linear transformation.

Solution Since

T (0) = T
  

0

0

  
=
 
e0

e0

 
=
 

1

1

 
by the contrapositive of Proposition 1, we know that T is not a linear transfor-

mation.

EXAMPLE 6 Define a mapping T: Mm×n −→ Mn×m by

T (A) = At

Show that the mapping is a linear transformation.

Solution By Theorem 6 of Sec. 1.3, we have

T (A+ B) = (A+ B)t = At + Bt = T (A)+ T (B)
Also by this same theorem,

T (cA) = (cA)t = cAt = cT (A)
Thus, T is a linear transformation.

EXAMPLE 7 Coordinates Let V be a vector space with dim(V ) = n, and B =
{v1, v2, . . . , vn} an ordered basis for V . Let T: V −→ ⺢

n be the map that sends a

vector v in V to its coordinate vector in ⺢n relative to B. That is,

T (v) = [v]B

It was shown in Sec. 3.4 that this map is well defined, that is, the coordinate vector

of v relative to B is unique. Show that the map T is also a linear transformation.

Solution Let u and v be vectors in V and let k be a scalar. Since B is a basis, there are

unique sets of scalars c1, . . . , cn and d1, . . . , dn such that

u = c1v1 + · · · + cnvn and v = d1v1 + · · · + dnvn
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Applying T to the vector ku+ v gives

T (ku+ v) = T ((kc1 + d1)v1 + · · · + (kcn + dn)vn)

=



kc1 + d1

kc2 + d2
...

kcn + dn


 = k



c1

c2
...

cn


+



d1

d2
...

dn




= kT (u)+ T (v)
Therefore, we have shown that the mapping T is a linear transformation.

As mentioned earlier, when T: V −→ W is a linear transformation, then the

structure of V is preserved when it is mapped into W . Specifically, the image of a

linear combination of vectors, under a linear map, is equal to a linear combination

of the image vectors with the same coefficients. To see this, let V and W be vector

spaces and T: V → W be a linear transformation. Then by repeated application of

Definition 1, we have

T (c1v1 + c2v2 + · · · + cnvn) = T (c1v1)+ · · · + T (cnvn)
= c1T (v1)+ c2T (v2)+ · · · + cnT (vn)

The fact that a linear transformation T between vector spaces V and W preserves

linear combinations is useful in evaluating T when its action on the vectors of a basis

for V is known. This is illustrated in Example 8.

EXAMPLE 8 Let T: ⺢3 → ⺢
2 be a linear transformation, and let B be the standard basis for ⺢3.

If

T (e1) =
 

1

1

 
T (e2) =

 −1

2

 
and T (e3) =

 
0

1

 
find T (v), where

v =

 1

3

2




Solution To find the image of the vector v, we first write the vector as a linear combination

of the basis vectors. In this case

v = e1 + 3e2 + 2e3
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Applying T to this linear combination and using the linearity properties of T, we

have
T (v) = T (e1 + 3e2 + 2e3)

= T (e1)+ 3T (e2)+ 2T (e3)

=
 

1

1

 
+ 3

 −1

2

 
+ 2

 
0

1

 

=
 −2

9

 

EXAMPLE 9 Let T: ⺢3 −→ ⺢
3 be a linear operator and B a basis for ⺢3 given by

B =




 1

1

1


,

 1

2

3


,

 1

1

2






If

T




 1

1

1




 =


 1

1

1


 T




 1

2

3




 =


 −1

−2

−3


 T




 1

1

2




 =


 2

2

4




find

T




 2

3

6






Solution Since B is a basis for ⺢3, there are (unique) scalars c1, c2, and c3 such that

c1


 1

1

1


+ c2


 1

2

3


+ c3


 1

1

2


 =


 2

3

6




Solving this equation, we obtain c1 = −1, c2 = 1, and c3 = 2. Hence,

T




 2

3

6




 = T


−1


 1

1

1


+


 1

2

3


+ 2


 1

1

2






By the linearity of T, we have

T




 2

3

6




 = (−1)T




 1

1

1




+ T




 1

2

3




+ 2T




 1

1

2






= −

 1

1

1


+


 −1

−2

−3


+ 2


 2

2

4




=

 2

1

4



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Operations with Linear Transformations

Linear transformations can be combined by using a natural addition and scalar mul-

tiplication to produce new linear transformations. For example, let S, T: ⺢2 → ⺢
2 be

defined by

S

  
x

y

  
=
 
x + y
−x

 
and T

  
x

y

  
=
 

2x − y

x + 3y

 

We then define

(S + T )(v) = S(v)+ T (v) and (cS)(v) = c(S(v))

To illustrate this definition, let v =
 

2

−1

 
; then

(S + T )(v) = S(v)+ T (v) =
 

2+ (−1)

−2

 
+
 

2(2)− (−1)

2+ 3(−1)

 
=
 

6

−3

 

For scalar multiplication let c = 3. Then

(3T )(v) = 3T (v) = 3

 
5

−1

 
=
 

15

−3

 

In Theorem 1 we show that these operations on linear transformations produce

linear transformations.

THEOREM 1 Let V and W be vector spaces and let S, T: V → W be linear transformations. The

function S + T defined by

(S + T )(v) = S(v)+ T (v)
is a linear transformation from V into W . If c is any scalar, the function cS

defined by

(cS)(v) = cS(v)
is a linear transformation from V into W .

Proof Let u, v ∈ V and let d be any scalar. Then

(S + T )(du+ v) = S(du+ v)+ T (du+ v)

= S(du)+ S(v)+ T (du)+ T (v)
= dS(u)+ S(v)+ dT (u)+ T (v)
= d(S(u)+ T (u))+ S(v)+ T (v)
= d(S + T )(u)+ (S + T )(v)
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so that S + T is a linear transformation. Also

(cS)(du+ v) = c(S(du+ v))

= c(S(du)+ S(v))
= c(dS(u)+ S(v))
= (cd)S(u)+ cS(v)
= d(cS)(u)+ (cS)(v)

so that cS is a linear transformation.

Using the sum of two linear transformations and the scalar product defined above,

the set of all linear transformations between two given vector spaces is itself a vector

space, denoted by £(U, V ). Verification of this is left to Exercise 45 at the end of this

section.

As we saw in Example 2, every m× n matrix A defines a linear map from ⺢
n to

⺢
m. Also, if B is an n× p matrix, then B defines a linear map from ⺢

p to ⺢n. The

product matrix AB, which is an m× p matrix, then defines a linear transformation

from ⺢
p to ⺢m. As we shall see (in Sec. 4.4), this map corresponds to the composition

of the maps defined by A and B. The desire for this correspondence is what motivated

the definition of matrix multiplication given in Sec. 1.3.

THEOREM 2 Let U,V, and W be vector spaces. If T: V → U and S : U → W are linear trans-

formations, then the composition map S◦T: V → W , defined by

(S◦T )(v) = S(T (v))
is a linear transformation. (See Fig. 2.)

Proof To show that S◦T is a linear transformation, let v1 and v2 be vectors in

V and c a scalar. Applying S◦T to cv1 + v2, we obtain

(S◦T )(cv1 + v2) = S(T (cv1 + v2))

= S(cT (v1)+ T (v2))

= S(cT (v1))+ S(T (v2))

= cS(T (v1))+ S(T (v2))

= c(S◦T )(v1)+ (S◦T )(v2)

V U W
T

S

v

T (v)

S◦T (v)

Figure 2 This shows that S◦T is a linear transformation.

In the case of all linear operators on a vector space V , denoted by £(V, V ), the

operations of addition and scalar multiplication make £(V, V ) a vector space. If, in

addition, we define a product on £(V, V ) by

ST (v) = (S◦T )(v)
then the product satisfies the necessary properties making £(V, V ) a linear algebra.
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Fact Summary

Let V,W , and Z be vector spaces and S and T functions from V into W .

1. The function T is a linear transformation provided that for all u, v in V and

all scalars c, T (cu + v) = cT (u) + T (v).

2. If A is an m × n matrix and T is defined by T (x) = Ax, then T is a linear

transformation from ⺢
n into ⺢m.

3. If T is a linear transformation, then the zero vector in V is mapped to the

zero vector in W , that is, T (0) = 0.

4. If B = {v1, v2, . . . , vn} is an ordered basis for V and W = ⺢
n, then the

coordinate mapping T (v) = [v]B is a linear transformation.

5. If {v1, v2, . . . , vn} is a set of vectors in V and T is a linear transformation,

then

T (c1v1 + c2v2 + · · · + cnvn) = c1T (v1) + c2T (v2)+ · · · + cnT (vn)

for all scalars c1, . . . , cn.

6. If S and T are linear transformations and c is a scalar, then S + T and cT

are linear transformations.

7. If T: V −→ W is a linear transformation and L : W −→ Z is a linear

transformation, then L◦T: V −→ Z is a linear transformation.

Exercise Set 4.1

In Exercises 1–6, determine whether the function

T: ⺢2 → ⺢
2 is a linear transformation.

1. T

  
x

y

  
=

 
y

x

 

2. T

  
x

y

  
=

 
x + y

x − y + 2

 

3. T

  
x

y

  
=

 
x

y2

 

4. T

  
x

y

  
=

 
2x − y

x + 3y

 

5. T

  
x

y

  
=

 
x

0

 

6. T

  
x

y

  
=

 
x+y

2

x+y

2

 

In Exercises 7–16, determine whether the function is a

linear transformation between vector spaces.

7. T: ⺢ → ⺢, T (x) = x2

8. T: ⺢ → ⺢, T (x) = −2x

9. T: ⺢2 → ⺢, T

  
x

y

  
= x2 + y2

10. T: ⺢3 → ⺢
2,

T




 x

y

z




 =

 
x

y

 

11. T: ⺢3 → ⺢
3,

T




 x

y

z




 =


 x + y − z

2xy

x + z + 1



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12. T: ⺢3 → ⺢
3,

T




 x

y

z




 =


 cos x

sin y

sin x + sin z




13. T: P3 → P3,

T (p(x)) = 2p  (x)− 3p (x)+ p(x)
14. T: Pn→ Pn,

T (p(x)) = p(x)+ x
15. T: M2×2 → ⺢, T (A) = det(A)

16. T: M2×2 → M2×2, T (A) = A+ At
In Exercises 17–20, a function T: V → W between

vector spaces and two vectors u and v in V are given.

a. Find T (u) and T (v).

b. Is T (u+ v) = T (u)+ T (v)?
c. Is T a linear transformation?

17. Define T: ⺢2 → ⺢
2 by

T

  
x

y

  
=
 −x

y

 

Let

u =
 −2

3

 
v =

 
2

−2

 

18. Define T: P2 → P2 by

T (p(x)) = p  (x)− 2p (x)+ p(x)
Let

u = x2 − 3x + 1 v = −x − 1

19. Define T: P3 → ⺢
2 by

T (ax3 + bx2 + cx + d) =
 −a − b + 1

c + d
 

Let

u = −x3 + 2x2 − x + 1 v = x2 − 1

20. Define T: ⺢3 → ⺢
2 by

T




 x

y

z




 =

 
x2 − 1

y + z
 

Let

u =

 1

2

3


 v =


 − 1

2

−1

1




21. If T: ⺢2 → ⺢
2 is a linear operator and

T

  
1

0

  
=
 

2

3

 

T

  
0

1

  
=
 −1

4

 

then find T

  
1

−3

  
.

22. If T: ⺢3 → ⺢
3 is a linear operator and

T




 1

0

0




 =


 1

−1

0




T




 0

1

0




 =


 2

0

1




T




 0

0

1




 =


 1

−1

1




then find T




 1

7

5




.

23. If T: P2 → P2 is a linear operator and

T (1) = 1+ x T (x) = 2+ x2

T (x2) = x − 3x2

then find T (−3+ x − x2).

24. If T: M2×2 → M2×2 is a linear operator and

T (e11) =
 

0 1

0 0

 

T (e12) =
 

1 0

0 −1

 

T (e21) =
 

1 1

0 0

 

T (e22) =
 

0 0

2 0
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then find

T

  
2 1

−1 3

  

25. Suppose that T: ⺢2 → ⺢
2 is a linear operator

such that

T

  
1

1

  
=
 

2

−1

 

T

  −1

0

  
=
 

2

−1

 

Is it possible to determine T

  
3

7

  
? If so, find

it; and if not, explain why.

26. Define a linear operator T: ⺢3 → ⺢
3 by

T (u) = Au, where

A =

 1 2 3

2 1 3

1 3 2




a. Find T (e1), T (e2), and T (e3).

b. Find T (3e1 − 4e2 + 6e3).

27. Suppose that T: P2 → P2 is a linear operator such

that

T (x2) = 2x − 1 T (−3x) = x2 − 1

T (−x2 + 3x) = 2x2 − 2x + 1

a. Is it possible to determine T (2x2 − 3x + 2)? If

so, find it; and if not, explain why.

b. Is it possible to determine T (3x2 − 4x)? If so,

find it; and if not, explain why.

28. Suppose that T: ⺢3 → ⺢
3 is a linear operator

such that

T




 1

0

0




 =


 −1

2

3




T




 1

1

0




 =


 2

−2

1




T




 1

3

0




 =


 8

−10

−3




a. Find

T




 2

−5

0






b. Is it possible to determine T (v) for all vectors

v in ⺢3? Explain.

29. Define a linear operator T: ⺢2 → ⺢
2 by

T

  
x

y

  
=
 −x
−y

 

a. Find a matrix A such that T (v) = Av.

b. Find T (e1) and T (e2).

30. Define a linear transformation T: ⺢2 → ⺢
3 by

T

  
x

y

  
=

 x − 2y

3x + y
2y




a. Find a matrix A such that T (v) = Av.

b. Find T (e1) and T (e2).

31. Define T: ⺢3 → ⺢
2 by

T




 x

y

z




 =

 
x + y
x − y

 

Find all vectors that are mapped to 0.

32. Define T: ⺢3 → ⺢
2 by

T




 x

y

z




 =

 
x + 2y + z
−x + 5y + z

 

Find all vectors that are mapped to 0.

33. Define T: ⺢3 → ⺢
3 by

T




 x

y

z




 =


 x − y + 2z

2x + 3y − z

− x + 2y − 2z




a. Find all vectors in ⺢3 that are mapped to the

zero vector.
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b. Let w =

 7

−6

−9


. Determine whether there is

a vector v in ⺢3 such that T (v) = w.

34. Define T: P2 → P2 by

T (p(x)) = p (x)− p(0)

a. Find all vectors that are mapped to 0.

b. Find two polynomials p(x) and q(x) such that

T (p(x)) = T (q(x)) = 6x − 3.

c. Is T a linear operator?

35. Suppose T1: V → ⺢ and T2: V → ⺢ are linear

transformations. Define T: V → ⺢
2 by

T (v) =
 
T1(v)

T2(v)

 

Show that T is a linear transformation.

36. Define T: Mn×n→ ⺢ by T (A) = tr(A). Show

that T is a linear transformation.

37. Suppose that B is a fixed n× n matrix. Define

T: Mn×n→ Mn×n by T (A) = AB − BA. Show

that T is a linear operator.

38. Define T: ⺢→ ⺢ by T (x) = mx + b. Determine

when T is a linear operator.

39. Define T: C(0)[0, 1] → ⺢ by

T (f ) =
 1

0

f (x) dx

for each function f in C(0)[0, 1].

a. Show that T is a linear operator.

b. Find T (2x2 − x + 3).

40. Suppose that T: V → W is a linear transformation

and T (u) = w. If T (v) = 0, then find T (u+ v).

41. Suppose that T: ⺢n→ ⺢
m is a linear

transformation and {v,w} is a linearly

independent subset of ⺢n. If {T (v), T (w)} is

linearly dependent, show that T (u) = 0 has a

nontrivial solution.

42. Suppose that T: V → V is a linear operator and

{v1, . . . , vn} is linearly dependent. Show that

{T (v1), . . . , T (vn)} is linearly dependent.

43. Let S = {v1, v2, v3} be a linearly independent

subset of ⺢3. Find a linear operator T: ⺢3 → ⺢
3,

such that {T (v1), T (v2), T (v3)} is linearly

dependent.

44. Suppose that T1: V → V and T2: V → V are

linear operators and {v1, . . . , vn} is a basis for V .

If T1(vi ) = T2(vi ), for each i = 1, 2, . . . , n, show

that T1(v) = T2(v) for all v in V .

45. Verify that £(U, V ) is a vector space.

4.2

ß

The Null Space and Range

In Sec. 3.2, we defined the null space of an m× n matrix to be the subspace of ⺢n of

all vectors x with Ax = 0. We also defined the column space of A as the subspace of

⺢
m of all linear combinations of the column vectors of A. In this section we extend

these ideas to linear transformations.

DEFINITION 1 Null Space and Range Let V and W be vector spaces. For a linear transfor-

mation T: V −→ W the null space of T , denoted by N(T ), is defined by

N(T ) = {v ∈ V | T (v) = 0}
The range of T, denoted by R(T ), is defined by

R(T ) = {T (v) | v ∈ V }
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The null space of a linear transformation is then the set of all vectors in V that are

mapped to the zero vector, with the range being the set of all images of the mapping,

as shown in Fig. 1.

V U

T

N(T ) 0

V U

T

R(T )

Figure 1

In Theorem 3 we see that the null space and the range of a linear transformation

are both subspaces.

THEOREM 3 Let V and W be vector spaces and T: V −→ W a linear transformation.

1. The null space of T is a subspace of V .

2. The range of T is a subspace of W .

Proof (1) Let v1 and v2 be in N(T ), so that T (v1) = 0 and T (v2) = 0. If c is a

scalar, then using the linearity of T , we have

T (cv1 + v2) = cT (v1)+ T (v2) = c0+ 0 = 0

Thus, cv1 + v2 is in N(T ), and by Theorem 4 of Sec. 3.2, N(T ) is a subspace

of V .

(2) Let w1 and w2 be in R(T ). Then there are vectors v1 and v2 in V such that

T (v1) = w1 and T (v2) = w2. Then for any scalar c,

T (cv1 + v2) = cT (v1)+ T (v2) = cw1 + w2

so that cw1 + w2 is in R(T ) and hence R(T ) is a subspace of W .

EXAMPLE 1 Define the linear transformation T: ⺢4 −→ ⺢
3 by

T





a

b

c

d




 =




 a + b
b − c
a + d






a. Find a basis for the null space of T and its dimension.
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b. Give a description of the range of T.

c. Find a basis for the range of T and its dimension.

Solution a. The null space of T is found by setting each component of the image vector

equal to 0. This yields the linear system

a + b = 0

b − c = 0

a + d = 0

This linear system has infinitely many solutions, given by

S =







−t

t

t

t



        
t ∈ ⺢




Hence,

N(T ) = span







−1

1

1

1






A basis for N(T ) consists of the one vector


−1

1

1

1




Consequently, dim(N(T )) = 1.

b. Observe that any vector in the range can be written as

a


 1

0

1


+ b


 1

1

0


+ c


 0

−1

0


+ d


 0

0

1




for some real numbers a, b, c, and d. Therefore,

R(T ) = span




 1

0

1


,

 1

1

0


,

 0

−1

0


,

 0

0

1






c. Since the range is a subspace of ⺢3, it has dimension less than or equal to 3.

Consequently, the four vectors found to span the range in part (b) are linearly

dependent and do not form a basis. To find a basis for R(T ), we use the

trimming procedure given in Sec. 3.3 and reduce the matrix
 1 1 0 0

0 1 −1 0

1 0 0 1


 to


 1 0 0 1

0 1 0 −1

0 0 1 −1



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Since the reduced matrix has pivots in the first three columns, a basis for the

range of T is

B =




 1

0

1


,

 1

1

0


,

 0

−1

0






Therefore, dim(R(T )) = 3. Observe that B also spans ⺢3, so that R(T ) = ⺢3.

EXAMPLE 2 Define the linear transformation T: P4 −→ P3, by

T (p(x)) = p (x)
Find the null space and range of T.

Solution Recall that the derivative of a constant polynomial is 0. Since these are the only

polynomials for which the derivative is 0, we know that N(T ) is the set of constant

polynomials in P4. We claim that the range of T is all of P3. To see this, let

q(x) = ax3 + bx2 + cx + d be an arbitrary element of P3. A polynomial p(x)

whose derivative is q(x) is found by using the antiderivative. That is, to find p(x),

we integrate q(x) to obtain

p(x) =
 
q(x) dx =

 
(ax3 + bx2 + cx + d) dx = a

4
x4 + b

3
x3 + c

2
x2 + dx + e

which is an element of P4, with p (x) = q(x). This shows that for every polynomial

q(x) in P3 there is a polynomial p(x) in P4 such that T (p(x)) = q(x), giving that

the range of T is all of P3.

In Sec. 4.1, we saw that the image of an arbitrary vector v ∈ V can be computed if

the image T (vi ) is known for each vector vi in a basis for V . This leads to Theorem 4.

THEOREM 4 Let V and W be finite dimensional vector spaces and B = {v1, v2, . . . , vn} a basis

for V . If T: V → W is a linear transformation, then

R(T ) = span{T (v1), T (v2), . . . , T (vn)}
Proof To show that the two sets are equal, we will show that each is a subset of

the other. First, if w is in R(T ), then there is a vector v in V such that T (v) = w.

Now, since B is a basis for V , there are scalars c1, . . . , cn with

v = c1v1 + c2v2 + · · · + cnvn
so that

T (v) = T (c1v1 + c2v2 + · · · + cnvn)
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From the linearity of T, we have

w = T (v) = c1T (v1)+ c2T (v2)+ · · · + cnT (vn)
As w is a linear combination of T (v1), T (v2), . . . , T (vn), then w ∈ span{T (v1),

T (v2), . . . , T (vn)}. Since this is true for all w in R(T ), then

R(T ) ⊂ span{T (v1), T (v2), . . . , T (vn)}
On the other hand, suppose that w ∈ span{T (v1), T (v2), . . . , T (vn)}. Then

there are scalars c1, . . . , cn with

w = c1T (v1)+ c2T (v2)+ · · · + cnT (vn)
= T (c1v1 + c2v2 + · · · + cnvn)

Therefore, w is the image under T of c1v1 + c2v2 + · · · + cnvn, which is an element

of V . Therefore, span{T (v1), T (v2), . . . , T (vn)} ⊂ R(T ).

EXAMPLE 3 Let T: ⺢3 → ⺢
3 be a linear operator and B = {v1, v2, v3} a basis for ⺢3. Suppose

that

T (v1) =

 1

1

0


 T (v2) =


 1

0

−1


 T (v3) =


 2

1

−1




a. Is


 1

2

1


 in R(T )?

b. Find a basis for R(T ).

c. Find the null space N(T ).

Solution a. From Theorem 4, the vector w =

 1

2

1


 is in R(T ) if there are scalars c1, c2,

and c3 such that

c1T (v1)+ c2T (v2)+ c3T (v3) =

 1

2

1




that is,

c1


 1

1

0


+ c2


 1

0

−1


+ c2


 2

1

−1


 =


 1

2

1




The set of solutions to this linear system is given by S = {(2− t,−1− t, t) |
t ∈ ⺢}. In particular, if t = 0, then a solution is c1 = 2, c2 = −1, and c3 = 0.

Thus, w ∈ R(T ).
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b. To find a basis for R(T ), we row-reduce the matrix
 1 1 2

1 0 1

0 −1 −1


 to obtain


 1 0 1

0 1 1

0 0 0




Since the leading 1s are in columns 1 and 2, a basis for R(T ) is given by

R(T ) = span




 1

1

0


,

 1

0

−1






Observe that since the range is spanned by two linearly independent vectors,

R(T ) is a plane in ⺢3, as shown in Fig. 2.

c. Since B is a basis for ⺢3, the null space is the set of all vectors c1v1 + c2v2 +
c3v3 such that

c1T (v1)+ c2T (v2)+ c3T (v3) =

 0

0

0




By using the reduced matrix 
 1 0 1

0 1 1

0 0 0




from part (b), the null space consists of all vectors such that c1 = −c3, c2 =
−c3, and c3 is any real number. That is,

N(T ) = span {−v1 − v2 + v3}
which is a line in ⺢3. See Fig. 2.

y 

x 

z 

x y 

z T

N(T)

R(T)

Figure 2

Notice that in Example 3 we have

dim(⺢3) = dim(R(T ))+ dim(N(T ))

In Theorem 5 we establish this fundamental result for all linear transformations

between finite dimensional vector spaces.
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THEOREM 5 Let V and W be finite dimensional vector spaces. If T: V −→ W is a linear

transformation, then

dim(V ) = dim(R(T ))+ dim(N(T ))

Proof Suppose that dim(V ) = n. To establish the result, we consider three cases.

First, suppose that dim(N(T )) = dim(V ) = n. In this case, the image of every

vector in V is the zero vector (in W ), so that R(T ) = {0}. Since the dimension of

the vector space containing only the zero element is 0, the result holds.

Now suppose 1 ≤ r = dim(N(T )) < n. Let {v1, v2, . . . , vr} be a basis for N(T ).

By Corollary 1 of Sec. 3.3, there are n− r vectors {vr+1, vr+2, . . . , vn}, such

that {v1, v2, . . . , vr , vr+1, . . . , vn} is a basis for V . We claim that S = {T (vr+1),

T (vr+2), . . . , T (vn)} is a basis for R(T ). By Theorem 4, we have

R(T ) = span{T (v1), T (v2), . . . , T (vr ), T (vr+1), . . . , T (vn)}
Since T (v1) = T (v2) = · · · = T (vr ) = 0, each vector in R(T ) is a linear combina-

tion of T (vr+1), . . . , T (vn) and hence R(T ) = span(S). To show that S is linearly

independent, we consider the equation

cr+1T (vr+1)+ cr+2T (vr+2)+ · · · + cnT (vn) = 0

We need to show that cr+1 = cr+2 = · · · = cn = 0. Since T is linear, the previous

equation can be written as

T (cr+1vr+1 + cr+2vr+2 + · · · + cnvn) = 0

From this last equation, we have cr+1vr+1 + cr+2vr+2 + · · · + cnvn is in N(T ).

However, since {v1, v2, . . . , vr} is a basis for N(T ), there are scalars c1, c2, . . . , cr
such that

cr+1vr+1 + cr+2vr+2 + · · · + cnvn = c1v1 + c2v2 + · · · + crvr
that is,

−c1v1 − c2v2 − · · · − crvr + cr+1vr+1 + cr+2vr+2 + · · · + cnvn = 0

Now, since {v1, v2, . . . , vr , vr+1, . . . , vn} is a basis for V and hence linearly inde-

pendent, the coefficients of the last equation must all be 0, that is, c1 = c2 = · · · =
cr = cr+1 = · · · = cn = 0. In particular, cr+1 = cr+2 = · · · = cn = 0. Hence, the

n− r vectors T (vr+1), . . . , T (vn) are a basis for R(T ). Consequently,

n = dim(V ) = (n− r)+ r = dim(R(T ))+ dim(N(T ))

Finally, suppose that N(T ) = {0}, so that dim(N(T )) = 0. If {v1, . . . , vn} is a

basis for V , then by Theorem 4 we have

R(T ) = span{T (v1), . . . , T (vn)}
A similar argument to the one above shows that {T (v1), . . . , T (vn)} is linearly

independent. Thus, dim(R(T )) = n = dim(V ), and the result also holds in this

case.
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EXAMPLE 4 Define a linear transformation T: P4 −→ P2 by

T (p(x)) = p  (x)
Find the dimension of the range of T, and give a description of the range.

Solution Let B = {1, x, x2, x3, x4} be the standard basis for P4. Since p(x) is in N(T ) if and

only if its degree is 0 or 1, the null space is the subspace of P4 consisting of polyno-

mials with degree 1 or less. Hence, {1, x} is a basis for N(T ), and dim(N(T )) = 2.

Since dim(P4) = 5, by Theorem 5 we have

2+ dim(R(T )) = 5 so dim(R(T )) = 3

Then as in the proof of Theorem 5, we have 
T (x2), T (x3), T (x4)

 =  
2, 6x, 12x2

 
is a basis for R(T ). Observe that R(T ) is just the subspace P2 of P4.

Matrices

In Sec. 3.2 we defined the column space of a matrix A, denoted by col(A), as the

span of its column vectors. We also defined the null space of the m× n matrix A as

the set of all vectors x in ⺢n such that Ax = 0. We further examine these notions here

in the context of linear transformations. In particular, let A be an m× n matrix and

let T: ⺢n −→ ⺢
m be the linear transformation defined by

T (v) = Av
This last equation can be written in vector form as

T (v) = v1A1 + v2A2 + · · · + vnAn
where Ai are the column vectors of A, and vi are the components of v for 1 ≤ i ≤ n.

In this way we see that the range of T, which is a subspace of ⺢m, is equal to the

column space of A, that is,

R(T ) = col(A)

The dimension of the column space of A is called the column rank of A. We also have

N(T ) = {v ∈ ⺢n | Av = 0} = N(A)
The dimension of N(A) is called the nullity of A. Applying Theorem 5, we have

column rank(A)+ nullity(A) = n
Another subspace of ⺢n associated with the matrix A is the row space of A,

denoted by row(A), and is the span of the row vectors of A. Since the transpose

operation maps the row vectors of A to the column vectors of At , the row space of

A is the same as the column space of At , that is,

row(A) = col(At)
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By using the algorithm for finding a basis, given in Sec. 3.3, a basis for col(A) can

be found by row reduction. In particular, the columns with the leading 1s in the row-

reduced form of A correspond to the column vectors of A needed for a basis of col(A).

Hence, the column rank of A is equal to the number of leading 1s in the row-reduced

form of A. On the other hand, row-reducing A eliminates row vectors that are linear

combinations of the others, so that the nonzero row vectors of the reduced form of A

form a basis for row(A). Hence, the row rank is equal to the number of leading 1s

in the reduced form of A. We have now established Theorem 6.

THEOREM 6 The row rank and the column rank of a matrix A are equal.

We can now define the rank of a matrix A as dim(row(A)) or dim(col(A)).

Again by Theorem 5, we have

rank(A)+ nullity(A) = n

Linear Systems

When the nullity of a matrix A is known, the above formula can sometimes be used to

determine whether the linear system Ax = b is consistent. For example, suppose that

a linear system consists of 20 equations each with 22 variables. Further suppose that a

basis for the null space of the 20× 22 coefficient matrix consists of two vectors. That

is, every solution to the homogeneous linear system Ax = 0 is a linear combination

of two linearly independent vectors in ⺢22. Then nullity(A) = 2, so that

dim(col(A)) = rank(A) = 22− nullity(A) = 20

But the only subspace of ⺢20 with dimension 20 is ⺢20 itself. Hence, col(A) = ⺢20,

and consequently every vector b in ⺢20 is a linear combination of the columns of A.

That is, the linear system Ax = b is consistent for every vector b in ⺢20. In general,

if A is an m× n matrix, nullity(A) = r , and dim(col) = n− r = m, then the linear

system Ax = b is consistent for every vector b in ⺢m.

We now add several more items to the list of equivalences given in Theorem 9

of Sec. 2.3, connecting solutions of the linear system Ax = b and properties of the

coefficient matrix A.

THEOREM 7 Let A be an n× n matrix. Then the following statements are equivalent.

1. The matrix A is invertible.

2. The linear system Ax = b has a unique solution for every vector b.

3. The homogeneous linear system Ax = 0 has only the trivial solution.

4. The matrix A is row equivalent to the identity matrix.
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5. The determinant of the matrix A is nonzero.

6. The column vectors of A are linearly independent.

7. The column vectors of A span ⺢n.

8. The column vectors of A are a basis for ⺢n.

9. rank(A) = n
10. R(A) = col(A) = ⺢n
11. N(A) = {0}
12. row(A) = ⺢n
13. The number of pivot columns of the reduced row echelon form of A is n.

Fact Summary

Let V and W be vector spaces and T a linear transformation from V into W .

1. The null space N(T ) is a subspace of V, and the the range R(T ) is a

subspace of W .

2. If B = {v1, . . . , vn} is a basis for V , then

R(T ) = span{T (v1), . . . ,T(vn)}

3. If V and W are finite dimensional vector spaces, then

dim(V ) = dim(R(T ))+ dim(N(T ))

4. If A is an m× n matrix, then

rank(A)+ nullity(A) = n
5. If A is an m× n matrix, then the rank of A is the number of leading 1s in

the row-reduced form of A.

6. If A is an n× n invertible matrix, in addition to Theorem 9 of Sec. 2.3, we

know that rank(A) = n, R(A) = col(A) = ⺢n, N(A) = {0}, and the

number of leading 1s in the row echelon form of A is n.

Exercise Set 4.2

In Exercises 1–4, define a linear operator T: ⺢2 → ⺢
2

by

T

  
x

y

  
=
 

x − 2y

−2x + 4y

 
Determine whether the vector v is in N(T ).

1. v =
 

0

0

 



224 Chapter 4 Linear Transformations

2. v =
 

2

1

 

3. v =
 

1

3

 

4. v =
 

1
2

1
4

 

In Exercises 5–8, define a linear operator

T: P3 → P3 by

T (p(x)) = xp  (x)

Determine whether the polynomial p(x) is in N(T ).

5. p(x) = x2 − 3x + 1

6. p(x) = 5x + 2

7. p(x) = 1− x2

8. p(x) = 3

In Exercises 9–12, define a linear operator

T: ⺢3 → ⺢
3 by

T




 x

y

z




 =


 x + 2z

2x + y + 3z

x − y + 3z




Determine whether the vector v is in R(T ).

9. v =

 1

3

0




10. v =

 2

3

4




11. v =

 −1

1

−2




12. v =

 −2

−5

−1




In Exercises 13–16, define a linear transformation

T: M2×2 → M3×2 by

T

 
a b

c d

 
=

 a + c b+ d

−a + 2c −b+ 2d

2a 2b




Determine whether the matrix A is in R(T ).

13. A =

 −1 −1

−5 −2

2 0




14. A =

 1 2

3 −3

−2 2




15. A =

 1 0

2 1

4 0




16. A =

 4 1

−1 5

6 −2




In Exercises 17–24, find a basis for the null space of

the linear transformation T.

17. T: ⺢2 → ⺢
2,

T

  
x

y

  
=
 

3x + y
y

 

18. T: ⺢2 → ⺢
2,

T

  
x

y

  
=
 −x + y

x − y
 

19. T: ⺢3 → ⺢
3,

T




 x

y

z




 =


 x + 2z

2x + y + 3z

x − y + 3z




20. T: ⺢3 → ⺢
3,

T




 x

y

z




 =


 −2x + 2y + 2z

3x + 5y + z
2y + z




21. T: ⺢3 → ⺢
3,

T




 x

y

z




 =


 x − 2y − z

−x + 2y + z

2x − 4y − 2z




22. T: ⺢4 → ⺢
3,

T





x

y

z

w




 =


 x + y − z+w

2x + y + 4z+w
3x + y + 9z



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23. T: P2 → ⺢,

T (p(x)) = p(0)
24. T: P2 → P2,

T (p(x)) = p  (x)
In Exercises 25–30, find a basis for the range of the

linear transformation T .

25. T: ⺢3 → ⺢
3,

T (v) =

 1 1 2

0 1 −1

2 0 1


 v

26. T: ⺢5 → ⺢
3,

T (v) =

 1 −2 −3 1 5

3 −1 1 0 4

1 1 3 1 2


 v

27. T: ⺢3 → ⺢
3,

T




 x

y

z




 =


 x

y

0




28. T: ⺢3 → ⺢
3,

T




 x

y

z




 =


 x − y + 3z

x + y + z

−x + 3y − 5z




29. T: P3 → P3,

T (p(x)) = p  (x)+ p (x)+ p(0)

30. T: P2 → P2,

T (ax2 + bx + c) = (a + b)x2 + cx + (a + b)

31. Let T: ⺢3 → ⺢
3 be a linear operator and

B = {v1, v2, v3} a basis for ⺢3. Suppose

T (v1) =

 −2

1

1


 T (v2) =


 0

1

−1




T (v3) =

 −2

2

0




a. Determine whether

w =

 −6

5

0




is in the range of T.

b. Find a basis for R(T ).

c. Find dim(N(T )).

32. Let T: ⺢3 → ⺢
3 be a linear operator and

B = {v1, v2, v3} a basis for ⺢3. Suppose

T (v1) =

 −1

2

1


 T (v2) =


 0

5

0




T (v3) =

 −1

−1

2




a. Determine whether

w =

 −2

1

2




is in the range of T.

b. Find a basis for R(T ).

c. Find dim(N(T )).

33. Let T: P2 → P2 be defined by

T (ax2 + bx + c) = ax2 + (a − 2b)x + b

a. Determine whether p(x) = 2x2 − 4x + 6 is in

the range of T.

b. Find a basis for R(T ).

34. Let T: P2 → P2 be defined by

T (ax2 + bx + c) = cx2 + bx − b

a. Determine whether p(x) = x2 − x − 2 is in the

range of T.

b. Find a basis for R(T ).

35. Find a linear transformation T: ⺢3 → ⺢
2 such

that R(T ) = ⺢2.

36. Find a linear operator T: ⺢2 → ⺢
2 such that

R(T ) = N(T ).
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37. Define a linear operator T: Pn → Pn by

T (p(x)) = p (x)
a. Describe the range of T.

b. Find dim(R(T )).

c. Find dim(N(T )).

38. Define a linear operator T: Pn → Pn by

T (p(x)) = dk

dxk
(p(x))

where 1 ≤ k ≤ n. Show dim(N(T )) = k.

39. Suppose T: ⺢4 → ⺢
6 is a linear transformation.

a. If dim(N(T )) = 2, then find dim(R(T )).

b. If dim(R(T )) = 3, then find dim(N(T )).

40. Show that if T: V → V is a linear operator such

that R(T ) = N(T ), then dim(V ) is even.

41. Let

A =
 

1 0

0 −1

 
Define T: M2×2 → M2×2 by

T (B) = AB − BA

Find a basis for the null space of T.

42. Define T: Mn×n→ Mn×n by T (A) = At . Show

that R(T ) = Mn×n.

43. Define T: Mn×n→ Mn×n by T (A) = A+ At .
a. Find R(T ).

b. Find N(T ).

44. Define T: Mn×n→ Mn×n by T (A) = A− At .
a. Find R(T ).

b. Find N(T ).

45. Let A be a fixed n× n matrix, and define

T: Mn×n→ Mn×n by T (B) = AB. When does

R(T ) = Mn×n?

46. Let A be a fixed n× n diagonal matrix, and

define T: ⺢n→ ⺢
n by T (v) = Av.

a. Show dim(R(T )) is the number of nonzero

entries on the diagonal of A.

b. Find dim(N(T )). How is it related to the

diagonal terms of the matrix A?

4.3

ß

Isomorphisms

Many of the vector spaces that we have discussed are, from an algebraic perspective,

the same. In this section we show how an isomorphism, which is a special kind of

linear transformation, can be used to establish a correspondence between two vector

spaces. Essential to this discussion are the concepts of one-to-one and onto mappings.

For a more detailed description see App. A, Sec. A.2.

DEFINITION 1 One-to-One and Onto Let V and W be vector spaces and T: V → W a

mapping.

1. The mapping T is called one-to-one (or injective) if u  = v implies that T (u)  =
T (v). That is, distinct elements of V must have distinct images in W .

2. The mapping T is called onto (or surjective) if T (V ) = W . That is, the range

of T is W .

A mapping is called bijective if it is both injective and surjective.

When we are trying to show that a mapping is one-to-one, a useful equiva-

lent formulation comes from the contrapositive statement. That is, T is one-to-one if

T (u) = T (v) implies that u = v. To show that a mapping is onto, we must show that

if w is an arbitrary element of W , then there is some element v ∈ V with T (v) = w.
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EXAMPLE 1 Let T: ⺢2 → ⺢
2 be the mapping defined by T (v) = Av, with

A =

�
1 1

−1 0

�

Show that T is one-to-one and onto.

Solution First, to show that T is one-to-one, let

u =

�
u1
u2

�
and v =

�
v1
v2

�

Then

T (u) =

�
1 1

−1 0

� �
u1
u2

�
=

�
u1 + u2
−u1

�

and

T (v) =

�
1 1

−1 0

� �
v1
v2

�
=

�
v1 + v2
−v1

�

Now if T (u) = T (v), then �
u1 + u2
−u1

�
=

�
v1 + v2
−v1

�

Equating the second components gives u1 = v1, and using this when equating the

first components gives u2 = v2. Thus, u = v, establishing that the mapping is one-

to-one.

Next, to show that T is onto, let w =

�
a

b

�
be an arbitrary vector in ⺢2. We

must show that there is a vector v =

�
v1
v2

�
in ⺢2 such that

T (v) =

�
1 1

−1 0

� �
v1
v2

�
=

�
a

b

�

Applying the inverse of A to both sides of this equation, we have�
v1
v2

�
=

�
0 −1

1 1

� �
a

b

�
that is

�
v1
v2

�
=

�
−b

a + b

�

Thus, T is onto. For example, let w =

�
1

2

�
; then using the above formula for the

preimage, we have v =

�
−2

1+ 2

�
=

�
−2

3

�
. As verification, observe that

T (v) =

�
1 1

−1 0

� �
−2

3

�
=

�
1

2

�

An alternative argument is to observe that the column vectors of A are linearly

independent and hence are a basis for ⺢2. Therefore, the range of T being the

column space of A is all of ⺢2.
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Theorem 8 gives a useful way to determine whether a linear transforation is

one-to-one.

THEOREM 8 The linear transformation T: V −→ W is one-to-one if and only if the null space

of T consists of only the zero vector of V .

Proof First suppose that T is one-to-one. We claim that N(T ) = {0}. To show

this, let v be any vector in the null space of T, so that T (v) = 0. We also have,

by Proposition 1 of Sec. 4.1, T (0) = 0. Since T is one-to-one, then v = 0, so only

the zero vector is mapped to the zero vector.

Now suppose that N(T ) = {0} and

T (u) = T (v)
Subtracting T (v) from both sides of the last equation and using the linearity of T,

we obtain

T (u)− T (v) = 0 so that T (u− v) = 0

Thus, u− v ∈ N(T ). Since the null space consists of only the zero vector, u− v =
0, that is, u = v.

EXAMPLE 2 Define a linear operator T: ⺢2 −→ ⺢
2 by

T

  
x

y

  
=
 

2x − 3y

5x + 2y

 
Use Theorem 8 to show that T is one-to-one.

Solution The vector

 
x

y

 
is in the null space of T if and only if

 
2x − 3y = 0

5x + 2y = 0

This linear system has the unique solution x = y = 0. Thus, N(T ) = {0} and hence

by Theorem 8, T is one-to-one.

The mapping of Example 2 can alternatively be defined by using the matrix

A =
 

2 −3

5 2

 
so that T (x) = Ax. Since det(A)  = 0, then A is invertible. This allows us to show

that the map is also onto. Indeed, if b is any vector in ⺢2, then x = A−1b is the vector

in the domain that is the preimage of b, so that T is onto.

In Theorem 4 of Sec. 4.2, we showed that if T: V −→ W is a linear transfor-

mation between vector spaces, and B = {v1, . . . , vn} is a basis for V , then R(T ) =
span{T (v1), . . . , T (vn)}. If, in addition, the transformation is one-to-one, then the

spanning vectors are also a basis for the range, as given in Theorem 9.
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THEOREM 9 Suppose that T: V → W is a linear transformation and B = {v1, . . . , vn} is a basis

for V . If T is one-to-one, then {T (v1), . . . , T (vn)} is a basis for R(T ).

Proof By Theorem 4 of Sec. 4.2, we know that the span{T (v1), . . . , T (vn)} =
R(T ), so it suffices to show that {T (v1), . . . , T (vn)} is linearly independent. To do

so, we consider the equation

c1T (v1)+ c2T (v2)+ · · · + cnT (vn) = 0

which is equivalent to

T (c1v1 + c2v2 + · · · + cnvn) = 0

Since T is one-to-one, the null space consists of only the zero vector of V , so that

c1v1 + c2v2 + · · · + cnvn = 0

Finally, since B is a basis for V , it is linearly independent; hence

c1 = c2 = · · · = cn = 0

Therefore, {T (v1), . . . , T (vn)} is linearly independent.

We note that in Theorem 9 if T is also onto, then {T (v1), . . . , T (vn)} is a basis

for W .

We are now ready to define an isomorphism on vector spaces.

DEFINITION 2 Isomorphism Let V and W be vector spaces. A linear transformation T: V −→
W that is both one-to-one and onto is called an isomorphism. In this case the vector

spaces V and W are said to be isomorphic.

Proposition 2 builds on the remarks following Example 2 and gives a useful

characterization of linear transformations defined by a matrix that are isomorphisms.

PROPOSITION 2 Let A be an n× n matrix and T: ⺢n −→ ⺢
n be the mapping defined by T (x) = Ax.

Then T is an isomorphism if and only if A is invertible.

Proof Let A be invertible and b be any vector in ⺢n. Then x = A−1b is the

preimage of b. Thus, the mapping T is onto. To show that T is one-to-one, observe

that by Theorem 10 of Sec. 1.5 the equation Ax = 0 has only the solution x =
A−10 = 0. Thus, by Theorem 8, the mapping T is one-to-one and hence is an

isomorphism from ⺢
n onto ⺢n.

Conversely, suppose that T is an isomorphism. Then T: ⺢n −→ ⺢
n is onto,

with the column space of A being ⺢n. Hence, by Theorem 7 of Sec. 4.2 the matrix

A is invertible.
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Theorem 10 is of fundamental importance to the study of finite dimensional vector

spaces and is the main result of the section.

THEOREM 10 If V is a vector space with dim(V ) = n, then V and ⺢n are isomorphic.

Proof Let B = {v1, . . . , vn} be an ordered basis for V . Let T: V −→ ⺢
n be the

coordinate transformation defined by T (v) = [v]B , first introduced in Example 7 of

Sec. 4.1. We claim that T is an isomorphism. First, to show that T is one-to-one,

suppose that T (v) = 0. Since B is a basis, there are unique scalars c1, . . . , cn such

that

v = c1v1 + · · · + cnvn

Thus,

T (v) = [v]B =



c1

c2
...

cn


 =




0

0
...

0




so that c1 = c2 = · · · = cn = 0 and v = 0. Therefore, N(T ) = {0}, and by Theorem

8, T is one-to-one.

Now, to show that T is onto, let

w =



k1

k2
...

kn




be a vector in ⺢n. Define v in V by v = k1v1 + · · · + knvn. Observe that T (v) = w

and hence T is onto. Therefore, the linear transformation T is an isomorphism, and

V and ⺢n are isomorphic vector spaces.

So far in our experience we have seen that dim(P2) = 3 and dim(S2×2) = 3,

where S2×2 is the vector space of 2 × 2 symmetric matrices. Consequently, by Theorem

10, the vector spaces P2 and S2×2 are both isomorphic to ⺢3, where the isomorphism

is the coordinate map between the standard bases. Next we show that in fact all vector

spaces of dimension n are isomorphic to one another. To do so, we first require the

notion of the inverse of a linear transformation.

DEFINITION 3 Inverse of a Linear Transformation Let V and W be vector spaces and

T: V −→ W a one-to-one linear transformation. The mapping T −1: R(T ) −→ V ,

defined by

T −1(w) = v if and only if T (v) = w

is called the inverse of T. If T is onto, then T −1 is defined on all of W .
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By Theorem 4 of Sec. A.2, if T is one-to-one, then the inverse map is well

defined. Indeed, let u and v be vectors in V such that T −1(w) = u and T −1(w) = v.

Applying T gives T (T −1(w)) = T (u) and T (T −1(w)) = T (v), so that T (u) = T (v).
Since T is one-to-one, we have u = v.

The inverse map of a one-to-one linear transformation is also a linear transfor-

mation, as we now show.

PROPOSITION 3 Let V and W be vector spaces and T: V −→ W a one-to-one linear transformation.

Then the mapping T −1: R(T ) −→ V is also a linear transformation.

Proof Let w1 and w2 be vectors in R(T ), and let c be a scalar. Also let v1 and

v2 be vectors in V with T −1(w1) = v1 and T −1(w2) = v2. Since T is linear,

T (cv1 + v2) = cT (v1)+ T (v2)

= cw1 + w2

Hence,

T −1(cw1 + w2) = cv1 + v2

= cT −1(w1)+ T −1(w2)

Consequently, T −1 is a linear transformation.

Proposition 4 shows that the inverse transformation of an isomorphism defined

by matrix multiplication can be written using the inverse of the matrix. The proof is

left as an exercise.

PROPOSITION 4 Let A be an n× n invertible matrix and T: ⺢n −→ ⺢
n the linear transformation

defined by T (x) = Ax. Then T −1(x) = A−1x.

EXAMPLE 3 Let T: ⺢2 → ⺢
2 be the mapping of Example 1 with T (v) = Av, where

A =
 

1 1

−1 0

 

Verify that the inverse map T −1: ⺢2 −→ ⺢
2 is given by T −1(w) = A−1w, where

A−1 =
 

0 −1

1 1

 

Solution Let v =
 
v1

v2

 
be a vector in ⺢2. Then

w = T (v) =
 
v1 + v2

−v1
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Applying A−1 to w, we obtain 
0 −1

1 1

  
v1 + v2

−v1

 
=
 
v1

v2

 
= T −1(w)

THEOREM 11 If V and W are vector spaces of dimension n, then V and W are isomorphic.

Proof By Theorem 10, there are isomorphisms T1: V −→ ⺢
n and T2: W −→ ⺢

n,

as shown in Fig. 1. Let φ = T −1
2

◦T1: V −→ W . To show that φ is linear, we first

note that T −1
2 is linear by Proposition 3. Next by Theorem 2 of Sec. 4.1, the

composition T −1
2

◦T1 is linear. Finally, by Theorem 4 of Sec. A.2, the mapping φ

is one-to-one and onto and is therefore a vector space isomorphism.

V ⺢
n

W

φ

T1

T2

φ = T −1
2

◦T1: V −→ W

Figure 1

EXAMPLE 4 Find an explicit isomorphism from P2 onto the vector space of 2× 2 symmetric

matrices S2×2.

Solution To use the method given in the proof of Theorem 11, first let

B1 = {1, x, x2} and B2 =
  

0 0

0 1

 
,

 
0 1

1 0

 
,

 
1 0

0 0

  
be ordered bases for P2 and S2×2, respectively. Let T1 and T2 be the respective

coordinate maps from P2 and S2×2 into ⺢3. Then

T1(ax
2 + bx + c) =


 c

b

a


 and T2

  
a b

b c

  
=

 c

b

a



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Observe that T −1
2 : ⺢3 −→ S2×2 maps the vector
 c

b

a


 to the symmetric matrix

 
a b

b c

 

Thus, the desired isomorphism is given by (T −1
2

◦T1): P2 −→ S2×2 with

(T −1
2

◦T1)(ax
2 + bx + c) =

 
a b

b c

 
For example,

(T −1
2

◦T1)(x
2 − x + 2) = T −1

2 (T1(x
2 − x + 2)) = T −1

2




 2

−1

1




 =

 
1 −1

−1 2

 

Fact Summary

Let V and W be vector spaces and T a linear transformation from V into W .

1. The mapping T is one-to-one if and only if the null space of T consists of

only the zero vector.

2. If {v1, . . . , vn} is a basis for V and T is one-to-one, then

S = {T (v1), . . . , T (vn)} is a basis for the range of T. If T is also onto, then

S is a basis for W .

3. Every vector space of dimension n is isomorphic to the Euclidean space ⺢n.

4. If T is one-to-one, then T −1 is also a linear transformation.

5. If V and W are both of dimension n, then they are isomorphic.

6. Let A be an n× n matrix and T (x) = Ax. Then the mapping T is an

isomorphism if and only if A is invertible.

7. If A is an invertible matrix and T (x) = Ax, then T −1(x) = A−1x.

Exercise Set 4.3

In Exercises 1–6, determine whether the linear

transformation is one-to-one.

1. T: ⺢2 → ⺢
2,

T

  
x

y

  
=
 

4x − y
x

 

2. T: ⺢2 → ⺢
2,

T

  
x

y

  
=
 

1
2
x + 1

2
y

1
2
x + 1

2
y

 

3. T: ⺢3 → ⺢
3,

T




 x

y

z




 =


 x + y − z

y

y − z




4. T: ⺢3 → ⺢
3,

T




 x

y

z




 =




2
3
x − 2

3
y − 2

3
z

− 2
3
x − 1

3
y − 1

3
z

− 2
3
x − 4

3
y − 1

3
z



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5. T: P2 → P2,

T (p(x)) = p (x)− p(x)

6. T: P2 → P3,

T (p(x)) = xp(x)
In Exercises 7–10, determine whether the linear

transformation is onto.

7. T: ⺢2 → ⺢
2,

T

  
x

y

  
=
 

3x − y
x + y

 

8. T: ⺢2 → ⺢
2,

T

  
x

y

  
=
 −2x + y

x − 1
2
y

 

9. T: ⺢3 → ⺢
3,

T




 x

y

z




 =


 x − y + 2z

y − z
2z




10. T: ⺢3 → ⺢
3,

T




 x

y

z




 =


 2x + 3y − z

−x + y + 3z

x + 4y + 2z




In Exercises 11–14, T: ⺢2 → ⺢
2 is a linear operator.

Determine whether the set {T (e1), T (e2)} is a basis

for ⺢2.

11. T: ⺢2 → ⺢
2,

T

  
x

y

  
=
 −x − 2y

3x

 

12. T: ⺢2 → ⺢
2,

T

  
x

y

  
=
 

x

−3x

 

13. T: ⺢2 → ⺢
2,

T

  
x

y

  
=
 

3x − y
−3x − y

 

14. T: ⺢2 → ⺢
2,

T

  
x

y

  
=
 

1
10
x + 1

5
y

1
5
x + 2

5
y

 

In Exercises 15–18, T: ⺢3 → ⺢
3 is a linear operator.

Determine whether the set {T (e1), T (e2), T (e3)} is a

basis for ⺢3.

15. T: ⺢3 → ⺢
3,

T




 x

y

z




 =


 −x − y + 2z

y − z
5z




16. T: ⺢3 → ⺢
3,

T




 x

y

z




 =


 2x + 3y − z

2x + 6y + 3z

4x + 9y + 2z




17. T: ⺢3 → ⺢
3,

T




 x

y

z




 =


 4x − 2y + z

2x + z
2x − y + 3

2
z




18. T: ⺢3 → ⺢
3,

T




 x

y

z




 =


 x − y + 2z

−x + 2y − z
−y + 5z




In Exercises 19 and 20, T: P2 → P2 is a linear

operator. Determine whether the set

{T (1), T (x), T (x2)} is a basis for P2.

19. T (ax2 + bx + c) = (a + b + c)x2 + (a + b)x + a
20. T (p(x)) = xp (x)
In Exercises 21–24, let T: V → V be the linear

operator defined by T (v) = Av.

a. Show that T is an isomorphism.

b. Find A−1.

c. Show directly that T −1(w) = A−1w for all

w ∈ V .

21. T

  
x

y

  
=
 

1 0

−2 −3

  
x

y
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22. T

  
x

y

  
=
 −2 3

−1 −1

  
x

y

 

23. T




 x

y

z




 =


 −2 0 1

1 −1 −1

0 1 0




 x

y

z




24. T




 x

y

z




 =


 2 −1 1

−1 1 −1

0 1 0




 x

y

z




In Exercises 25–28, determine whether the matrix

mapping T: V → V is an isomorphism.

25. T

  
x

y

  
=
 −3 1

1 −3

  
x

y

 

26. T

  
x

y

  
=
 −3 1

−3 1

  
x

y

 

27. T




 x

y

z




 =


 0 −1 −1

2 0 2

1 1 −3




 x

y

z




28. T




 x

y

z




 =


 1 3 0

−1 −2 −3

0 −1 3




 x

y

z




29. Show that T: Mn×n→ Mn×n defined by

T (A) = At

is an isomorphism.

30. Show that T: P3 → P3 defined by

T (p(x)) = p   (x)+ p  (x)+ p (x)+ p(x)
is an isomorphism.

31. Let A be an n× n invertible matrix. Show that

T: Mn×n→ Mn×n defined by

T (B) = ABA−1

is an isomorphism.

32. Find an isomorphism from M2×2 onto ⺢4.

33. Find an isomorphism from ⺢
4 onto P3.

34. Find an isomorphism from M2×2 onto P3.

35. Let

V =




 x

y

z



      x + 2y − z = 0




Find an isomorphism from V onto ⺢2.

36. Let

V =
  

a b

c −a
     a, b, c ∈ ⺢

 
Find an isomorphism from P2 onto V .

37. Suppose T: ⺢3 → ⺢
3 is an isomorphism. Show

that T takes lines through the origin to lines

through the origin and planes through the origin

to planes through the origin.

4.4

ß

Matrix Representation of a Linear Transformation

Matrices have played an important role in our study of linear algebra. In this section

we establish the connection between matrices and linear transformations. To illustrate

the idea, recall from Sec. 4.1 that given any m× n matrix A, we can define a linear

transformation T: ⺢n −→ ⺢
m by

T (v) = Av
In Example 8 of Sec. 4.1, we showed how a linear transformation T: ⺢3 −→ ⺢

2 is

completely determined by the images of the coordinate vectors e1, e2, and e3 of ⺢3.

The key was to recognize that a vector v =

 v1

v2

v3


 can be written as

v = v1e1 + v2e2 + v3e3 so that T (v) = v1T (e1)+ v2T (e2)+ v3T (e3)
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In that example, T was defined so that

T (e1) =
 

1

1

 
, T (e2) =

 −1

2

 
T (e3) =

 
0

1

 

Now let A be the 2× 3 matrix whose column vectors are T (e1), T (e2), and T (e3).

Then

T (v) =
 

1 −1 0

1 2 1

 
v = Av

That is, the linear transformation T is given by a matrix product. In general, if

T: ⺢n −→ ⺢
m is a linear transformation, then it is possible to write

T (v) = Av

where A is the m× n matrix whose j th column vector is T (ej ) for j = 1, 2, . . . , n.

The matrix A is called the matrix representation of T relative to the standard

bases of ⺢n and ⺢m.

In this section we show that every linear transformation between finite dimensional

vector spaces can be written as a matrix multiplication. Specifically, let V and W be

finite dimensional vector spaces with fixed ordered bases B and B  , respectively. If

T: V −→ W is a linear transformation, then there exists a matrix A such that

[T (v)]B  = A[v]B

In the case for which V = ⺢n, W = ⺢m, and B and B  are, respectively, the standard

bases, the last equation is equivalent to

T (v) = Av

as above. We now present the details.

Let V and W be vector spaces with ordered bases B = {v1, v2, . . . , vn} and B  =
{w1,w2, . . . ,wm}, respectively, and let T: V −→ W be a linear transformation. Now

let v be any vector in V and let

[v]B =



c1

c2
...

cn




be the coordinate vector of v relative to the basis B. Thus,

v = c1v1 + c2v2 + · · · + cnvn
Applying T to both sides of this last equation gives

T (v) = T (c1v1 + c2v2 + · · · + cnvn)
= c1T (v1)+ c2T (v2)+ · · · + cnT (vn)

Note that for each i = 1, 2, . . . , n the vector T (vi ) is in W . Thus, there are unique

scalars aij with 1 ≤ i ≤ m and 1 ≤ j ≤ n such that
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T (v1) = a11w1 + a21w2 + · · · + am1wm

T (v2) = a12w1 + a22w2 + · · · + am2wm

...

T (vn) = a1nw1 + a2nw2 + · · · + amnwm

Thus, the coordinate vectors relative to the ordered basis B  are given by

[T (vi )]B  =




a1i
a2i
...

ami


 for i = 1, 2, . . . , n

Recall from Example 7 of Sec. 4.1 that the coordinate map defines a linear transfor-

mation. Thus, the coordinate vector of T (v) relative to B  can be written in vector

form as

[T (v)]B  = c1




a11
a21
...

am1


+ c2




a12
a22
...

am2


+ · · · + cn




a1n
a2n
...

amn




or in matrix form as

[T (v)]B  =




a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

...

am1 am2 . . . amn







c1
c2
...

cn




The matrix on the right-hand side of the last equation is denoted by [T ]B
 

B , with

[T ]B
 

B =




 T (v1)



B  


 T (v2)



B  

· · ·


 T (vn)



B  




We call [T ]B
 

B the matrix of T relative to B and B  . In the case for which T: V → V

is a linear operator and B is a fixed ordered basis for V , the matrix representation for

the mapping T is denoted by [T ]B .

The preceding discussion is summarized in Theorem 12.

THEOREM 12 Let V and W be finite dimensional vector spaces with ordered bases B = {v1,

v2, . . . vn} and B  = {w1,w2, . . .wm}, respectively, and let T: V −→ W be a linear

transformation. Then the matrix [T ]B
 

B is the matrix representation for T relative to

the bases B and B  . Moreover, the coordinates of T (v) relative to B  are given by

[T (v)]B  = [T ]B
 

B [v]B
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Suppose that in Theorem 12 the vector spaces V and W are the same, B and B  

are two different ordered bases for V , and T: V −→ V is the identity operator, that

is, T (v) = v for all v in V . Then [T ]B
 
B is the change of bases matrix [I ]B

 
B , given in

Sec. 3.4.

EXAMPLE 1 Define the linear operator T: ⺢3 −→ ⺢
3 by

T




 x

y

z




 =


 x

−y
z




a. Find the matrix of T relative to the standard basis for ⺢3.

b. Use the result of part (a) to find

T




 1

1

2






Solution a. Let B = {e1, e2, e3} be the standard basis for ⺢3. Since

[T (e1)]B =

 1

0

0


 [T (e2)]B =


 0

−1

0


 [T (e3)]B =


 0

0

1




then

[T ]B =

 1 0 0

0 −1 0

0 0 1




b. Since B is the standard basis for ⺢3, the coordinates of any vector are given

by its components. In this case, with

v =

 1

1

2


 then [v]B =


 1

1

2




Thus, by Theorem 12,

T (v) = [T (v)]B =

 1 0 0

0 −1 0

0 0 1




 1

1

2


 =


 1

−1

2




Notice that the action of T is a reflection through the xz plane, as shown in

Fig. 1.x 

y 

z 

vT (v)

Figure 1

The following steps summarize the process for finding the matrix representation

of a linear transformation T: V −→ W relative to the ordered bases B and B  .
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1. For the given basis B = {v1, v2, . . . , vn}, find T (v1), T (v2), . . . , T (vn).

2. Find the coordinates of T (v1), T (v2), . . . , T (vn) relative to the basis B  =
{w1,w2, . . . ,wm} of W . That is, find [T (v1)]B  , [T (v2)]B  , . . . , [T (vn)]B  .

3. Define the m× n matrix [T ]B
 
B with ith column vector equal to [T (vi )]B  .

4. Compute [v]B .

5. Compute the coordinates of T (v) relative to B  by

[T (v)]B  = [T ]B
 
B [v]B =



c1

c2
...

cm




6. Then T (v) = c1w1 + c2w2 + · · · + cmwm.

EXAMPLE 2 Let T: ⺢2 −→ ⺢
3 be the linear transformation defined by

T (v) = T
  

x1

x2

  
=

 x2

x1 + x2

x1 − x2




and let

B =
  

1

2

 
,

 
3

1

  
B  =




 1

0

0


,


 1

1

0


,


 1

1

1






be ordered bases for ⺢2 and ⺢3, respectively.

a. Find the matrix [T ]B
 
B .

b. Let v =
 −3

−2

 
. Find T (v) directly and then use the matrix found in part (a).

Solution a. We first apply T to the basis vectors of B, which gives

T

  
1

2

  
=

 2

3

−1


 and T

  
3

1

  
=

 1

4

2




Next we find the coordinates of each of these vectors relative to the basis B  .
That is, we find scalars such that

a1


 1

0

0


+ a2


 1

1

0


+ a3


 1

1

1


 =


 2

3

−1




and

b1


 1

0

0


+ b2


 1

1

0


+ b3


 1

1

1


 =


 1

4

2



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The solution to the first linear system is

a1 = −1 a2 = 4 a3 = −1

and the solution to the second system is

b1 = −3 b2 = 2 b3 = 2

Thus,

[T ]B
 
B =


 −1 −3

4 2

−1 2




b. Using the definition of T directly, we have

T

  −3

−2

  
=

 −2

−3− 2

−3+ 2


 =


 −2

−5

−1




Now, to use the matrix found in part (a), we need to find the coordinates of

v relative to B. Observe that the solution to the equation

a1

 
1

2

 
+ a2

 
3

1

 
=
 −3

−2

 
is a1 = −

3

5
a2 = −

4

5

Thus, the coordinate vector of

 −3

−2

 
relative to B is

 −3

−2

 
B

=
 
− 3

5

− 4
5

 

We can now evaluate T, using matrix multiplication, so that

[T (v)]B  =

 −1 −3

4 2

−1 2


 − 3

5

− 4
5

 
=

 3

−4

−1




Hence,

T (v) = 3


 1

0

0


− 4


 1

1

0


−


 1

1

1


 =


 −2

−5

−1




which agrees with the direct computation.

EXAMPLE 3 Define a linear transformation T: P2 −→ P3 by

T (f (x)) = x2f   (x)− 2f  (x)+ xf (x)
Find the matrix representation of T relative to the standard bases for P2 and P3.
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Solution Since the standard basis for P2 is B = {1, x, x2}, we first compute

T (1) = x T (x) = x2 − 2 T (x2) = x2(2)− 2(2x)+ x(x2) = x3 + 2x2 − 4x

Since the standard basis for P3 is B  = {1, x, x2, x3}, the coordinates relative to

B  are

[T (1)]B  =




0

1

0

0


 [T (x)]B  =



−2

0

1

0


 and [T (x2)]B  =




0

−4

2

1




Hence, the matrix of the transformation is given by

[T ]B
 
B =




0 −2 0

1 0 −4

0 1 2

0 0 1




As an example, let f (x) = x2 − 3x + 1. Since f  (x) = 2x − 3 and f   (x) = 2,

we have

T (f (x)) = x2(2)− 2(2x − 3)+ x(x2 − 3x + 1)

= x3 − x2 − 3x + 6

Using the matrix representation of T to find the same image, we observe that

[f (x)]B =

 1

−3

1




The coordinates of the image of f (x) under the mapping T relative to B  are then

given by

[T (f (x))]B  = [T ]B
 
B [f (x)]B =




0 −2 0

1 0 −4

0 1 2

0 0 1




 1

−3

1


 =




6

−3

−1

1




The image T (f (x)) is the linear combination of the monomials in B  with coeffi-

cients the components of [T (f (x))]B  , that is,

T (f (x)) = 6(1)− 3(x)− x2 + x3 = x3 − x2 − 3x + 6

This agrees with the direct calculation.

In Sec. 4.1 we discussed the addition, scalar multiplication, and composition of

linear maps. The matrix representations for these combinations are given in a natural

way, as described by Theorems 13 and 14. The proofs are omitted.
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THEOREM 13 Let V and W be finite dimensional vector spaces with ordered bases B and B  ,
respectively. If S and T are linear transformations from V to W , then

1. [S + T ]B
 
B = [S]B

 
B + [T ]B

 
B

2. [kT ]B
 
B = k[T ]B

 
B for any scalar k

As before in the special case for which S and T are linear operators on a finite

dimensional vector space V , and B is a fixed ordered basis for V , the notation becomes

[S + T ]B = [S]B + [T ]B and [kT ]B = k[T ]B .

EXAMPLE 4 Let S and T be linear operators on ⺢2 with

S

  
x

y

  
=
 
x + 2y

−y
 

and T

  
x

y

  
=
 −x + y

3x

 

If B is the standard basis for ⺢2, find [S + T ]B and [3S]B .

Solution The matrix representations for the linear operators S and T are, respectively,

[S]B =



 S(e1)



B


 S(e2)



B


 =  

1 2

0 −1

 

and

[T ]B =



 T (e1)



B


 T (e2)



B


 =  −1 1

3 0

 

Then by Theorem 13,

[S + T ]B =
 

1 2

0 −1

 
+
 −1 1

3 0

 
=
 

0 3

3 −1

 
and

[3S]B = 3

 
1 2

0 −1

 
=
 

3 6

0 −3

 

As we mentioned in Sec. 4.1, the matrix of the composition is the product of the

matrices of the individual maps, as given in Theorem 14.

THEOREM 14 Let U,V , and W be finite dimensional vector spaces with ordered bases B,B  , and

B   , respectively. If T: U → V and S: V → W are linear transformations, then

[S◦T ]B
  
B = [S]B

  
B  [T ]B

 
B
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Again, if S and T are linear operators on a finite dimensional vector space V ,

and B is a fixed ordered basis for V , then

[S◦T ]B = [S]B [T ]B

Repeated application of Theorem 14 gives the following result.

COROLLARY 1 Let V be a finite dimensional vector space with ordered basis B. If T is a linear

operator on V , then

[T n]B = ([T ]B)
n

EXAMPLE 5 Let D: P3 → P3 be the linear operator defined by

D(p(x)) = p (x)
a. Find the matrix of D relative to the standard basis B = {1, x, x2, x3}. Use the

matrix to find the derivative of p(x) = 1− x + 2x3.

b. Find the matrix needed to compute the second derivative of a polynomial in

P3. Use this matrix to find the second derivative of p(x) = 1− x + 2x3.

Solution a. By Theorem 12, we have

[D]B =



 D(1)



B


 D(x)



B


 D(x2)



B


 D(x3)



B




=




0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0




Since the coordinate vector of p(x) = 1− x + 2x3, relative to B, is given by

[p(x)]B =




1

−1

0

2




then

[D(p(x))]B =




0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0






1

−1

0

2


 =



−1

0

6

0



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Therefore, as expected, D(p(x)) = −1+ 6x2.

b. By Corollary 1, the matrix we need is given by

[D2]B = ([D]B)
2 =




0 0 2 0

0 0 0 6

0 0 0 0

0 0 0 0




If p(x) = 1− x + 2x3, then

[D2(p(x))]B =




0 0 2 0

0 0 0 6

0 0 0 0

0 0 0 0






1

−1

0

2


 =




0

12

0

0




so that p  (x) = 12x.

The final result of this section describes how to find the matrix representation of

the inverse map of an invertible linear operator.

COROLLARY 2 Let T be an invertible linear operator on a finite dimensional vector space V and

B an ordered basis for V . Then

[T −1]B = ([T ]B)
−1

Proof Since T −1◦T is the identity map, by Theorem 14, we have

[I ]B = [T −1◦T ]B = [T −1]B [T ]B

Since [I ]B is the identity matrix, [T −1]B = ([T ]B)
−1.

Fact Summary

Let V and W be vector spaces, B = {v1, . . . , vn} and B  = {w1, . . . ,wm} ordered

bases of V and W , respectively, and T a linear transformation from V into W .

1. The matrix of T relative to B and B  is given by

[T ]B
 
B = [ [T (v1)]B  [T (v2)]B  · · · [T (vn)]B  ]

2. If v is a vector in V , the coordinates of T (v) relative to the basis B  can be

computed by

[T (v)]B  = [T ]B
 
B [v]B
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3. To find T (v) multiply each basis vector in B  by the corresponding

component of [T (v)]B  . That is, if [T (v)]B  = [b 1 b
 
2 . . . b

 
m]t , then

T (v) = b 1w1 + b 2w2 + · · · + b mwm
4. If S is another linear transformation from V into W , then the matrix

representation of S + T relative to B and B  is the sum of the matrix

representations for S and T. That is, [S + T ]B
 
B = [S]B

 
B + [T ]B

 
B .

5. If c is a scalar, then to find the matrix representation of cT relative to B and

B  , multiply the matrix representation for T by c. That is, [cT ]B
 
B = c[T ]B

 
B .

6. If S is a linear transformation from W into Z and B   is an ordered basis

for Z, then [S◦T ]B
  
B = [S]B

  
B  [T ]B

 
B .

7. [T n]B = ([T ]B)
n

8. If T is invertible, then [T −1]B = ([T ]B)
−1.

Exercise Set 4.4

In Exercises 1–4, T: ⺢n→ ⺢
n is a linear operator.

a. Find the matrix representation for T relative to the

standard basis for ⺢n.

b. Find T (v), using a direct computation and using

the matrix representation.

1. T: ⺢2 → ⺢
2,

T

  
x

y

  
=
 

5x − y
−x + y

 
v =

 
2

1

 

2. T: ⺢2 → ⺢
2,

T

  
x

y

  
=
 −x

y

 

v =
 −1

3

 

3. T: ⺢3 → ⺢
3,

T




 x

y

z




 =


 −x + y + 2z

3y + z
x − z




v =

 1

−2

3




4. T: ⺢3 → ⺢
3,

T




 x

y

z




 =


 x

y

−z




v =

 2

−5

1




In Exercises 5–12, T: V → V is a linear operator with

B and B  ordered bases for V .

a. Find the matrix representation for T relative to

the ordered bases B and B  .

b. Find T (v), using a direct computation and

using the matrix representation.

5. T: ⺢2 → ⺢
2,

T

  
x

y

  
=
 −x + 2y

3x

 

B =
  

1

−1

 
,

 
2

0

  



246 Chapter 4 Linear Transformations

B  =
  

1

0

 
,

 
0

1

  

v =
 −1

−2

 

6. T: ⺢3 → ⺢
3,

T




 x

y

z




 =


 2x − z
−x + y + z

2z




B =




 −1

0

1


,

 1

2

0


,

 1

2

1






B  =




 1

0

0


,

 0

1

0


,

 0

0

1






v =

 1

−1

1




7. T: ⺢2 → ⺢
2,

T

  
x

y

  
=
 

2x

x + y
 

B =
  −1

−2

 
,

 
1

1

  

B  =
  

3

−2

 
,

 
0

−2

  

v =
 −1

−3

 

8. T: ⺢3 → ⺢
3,

T




 x

y

z




 =


 x + z

2y − x
y + z




B =




 −1

1

1


,

 −1

−1

1


,

 0

1

1






B  =




 0

0

1


,

 1

0

−1


,

 −1

−1

0






v =

 −2

1

3




9. T: P2 → P2,

T (ax2 + bx + c) = ax2 + bx + c
B = {1, 1− x, (1− x)2}
B  = {1, x, x2}
v = x2 − 3x + 3

10. T: P2 → P2,

T (p(x)) = p (x)+ p(x)
B = {1− x − x2, 1, 1+ x2}
B  = {−1+ x,−1+ x + x2, x}
v = 1− x

11. Let

H =
 

1 0

0 −1

 

and let T be the linear operator on all 2× 2

matrices with trace 0, defined by

T (A) = AH −HA
B =

  
1 0

0 −1

 
,

 
0 1

0 0

 
,

 
0 0

1 0

  
B  = B
v =

 
2 1

3 −2

 

12. T: M2×2 → M2×2,

T (A) = 2At + A
B and B  the standard basis on M2×2

v =
 

1 3

−1 2

 

13. Let T: ⺢2 → ⺢
2 be the linear operator defined by

T

  
x

y

  
=
 
x + 2y

x − y

 

Let B be the standard ordered basis for ⺢2 and B  

the ordered basis for ⺢2 defined by

B  =
  

1

2

 
,

 
4

−1

  
a. Find [T ]B .

b. Find [T ]B  .
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c. Find [T ]B
 
B .

d. Find [T ]BB  .

e. Let C be the ordered basis obtained by

switching the order of the vectors in B. Find

[T ]B
 
C .

f. Let C  be the ordered basis obtained by

switching the order of the vectors in B  . Find

[T ]B
 
C .

14. Let T: ⺢2 → ⺢
3 be the linear transformation

defined by

T

  
x

y

  
=

 x − y

x

x + 2y




Let B and B  be ordered bases for ⺢2 and B   the

ordered basis for ⺢3 defined by

B =
  

1

1

 
,

 
1

3

  

B  =
  

1

0

 
,

 
0

1

  

B   =




 1

1

0


,

 0

1

1


,

 1

1

2






a. Find [T ]B
  
B .

b. Find [T ]B
  
B  .

c. Let C be the ordered basis obtained by

switching the order of the vectors in B. Find

[T ]B
  
C .

d. Let C  be the ordered basis obtained by

switching the order of the vectors in B  . Find

[T ]B
  
C .

e. Let C   be the ordered basis obtained by

switching the order of the first and third

vectors in B   . Find [T ]C
  
B .

15. Let T: P1 → P2 be the linear transformation

defined by

T (a + bx) = ax + b
2
x2

Let B and B  be the standard ordered bases for

P1 and P2, respectively.

a. Find [T ]B
 
B .

b. Let C be the ordered basis obtained by

switching the order of the vectors in B. Find

[T ]B
 
C .

c. Let C  be the ordered basis obtained by

switching the first and second vectors in B  .
Find [T ]C

 
C .

d. Define S: P2 → P1 by

S(a + bx + cx2) = b + 2cx

Find [S]B
B  .

e. Verify that [S]B
B  [T ]B

 
B = I , but that

[T ]B
 
B [S]BB   = I .

f. Interpret the statement

[S]BB  [T ]B
 
B = I

in terms of the functions T and S.

16. Define a linear operator T: M2×2 → M2×2 by

T

  
a b

c d

  
=
 

2a c − b
−d d − a

 

Let B be the standard ordered basis for M2×2 and

B  the ordered basis

B  =
  

1 0

0 1

 
,

 
0 1

1 0

 
 −1 1

−1 1

 
,

 −1 −1

1 1

  
a. Find [T ]B

 
B .

b. Find [T ]B
B  .

c. Find [T ]B  .

d. Find [I ]B
 
B and [I ]B

B  .

e. Verify that

[T ]B
 
B = [T ]B  [I ]B

 
B

[T ]BB  = [I ]BB  [T ]B  

17. Define a linear operator T: ⺢2 → ⺢
2 by

T

  
x

y

  
=
 

x

−y
 

Find the matrix for T relative to the standard

basis for ⺢2. Describe geometrically the action of

T on a vector in ⺢2.
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18. Define a linear operator T: ⺢2 → ⺢
2 by

T

  
x

y

  
=
 

cos θ− sin θ

sin θ cos θ

  
x

y

 
Describe geometrically the action of T on a

vector in ⺢2.

19. Let c be a fixed scalar and define T: ⺢n→ ⺢
n by

T





x1

x2
...

xn




 = c



x1

x2
...

xn




Find the matrix for T relative to the standard

basis for ⺢n.

20. Define T: M2×2 → M2×2 by

T (A) = A− At

Find the matrix for T relative to the standard

basis for M2×2.

21. Define T: M2×2 → ⺢ by

T (A) = tr(A)

Find the matrix [T ]B
 
B , where B is the standard

basis for M2×2 and B  = {1}.
In Exercises 22–25, let S, T: ⺢2 → ⺢

2 be defined by

T

  
x

y

  
=
 

2x + y

− x + 3y

 

and

S

  
x

y

  
=
 

x

x + y
 

a. Find the matrix representation for the given

linear operator relative to the standard basis.

b. Compute the image of v =
 −2

3

 
directly

and using the matrix found in part (a).

22. −3S

23. 2T + S
24. T ◦S

25. S◦T

In Exercises 26–29, let S, T: ⺢3 → ⺢
3 be defined by

T




 x

y

z




 =


 x − y − z

2y + 2z

−x + y + z




and

S




 x

y

z




 =


 3x − z

x

z




a. Find the matrix representation for the given

linear operator relative to the standard basis.

b. Compute the image of

v =

 −1

1

3




directly and using the matrix found in part (a).

26. 2T

27. −3T + 2S

28. T ◦S

29. S◦T

30. Let B be the basis for ⺢2 defined by

B =
  

1

1

 
,

 
1

3

  

If T: ⺢2 → ⺢
2 is the linear operator defined by

T

  
x

y

  
=
 

9x − 5y

15x − 11y

 

find the matrix for T k , for k ≥ 1, relative to the

basis B.

31. Define T: P4 → P4 by

T (p(x)) = p   (x)
Find the matrix for T relative to the standard

basis for P4. Use the matrix to find the third

derivative of p(x) = −2x4 − 2x3 + x2 − 2x − 3.

32. Let T: P2 → P2 be defined by

T (p(x)) = p(x)+ xp (x)
Find the matrix [T ]B where B is the standard

basis for P2.
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33. Let S: P2 → P3 and D: P3 → P2 be defined by

S(p(x)) = xp(x)
and

D(p(x)) = p (x)
Find the matrices [S]B

 
B and [D]BB  , where

B = {1, x, x2} and B  = {1, x, x2, x3}. Observe

that the operator T in Exercise 32 satisfies

T = D◦S. Verify Theorem 14 by showing that

[T ]B = [D]BB  [S]B
 
B .

34. a. Define a basis for ⺢2 by

B =
  

1

1

 
,

 
0

1

  

Find [T ]B where T: ⺢2 → ⺢
2 is the linear

operator that reflects a vector v through the

line perpendicular to

 
1

1

 
.

b. Let B = {v1, v2} be a basis for ⺢2. Find [T ]B
where T: ⺢2 → ⺢

2 is the linear operator that

reflects a vector v through the line

perpendicular to v1.

35. Let A be a fixed 2× 2 matrix and define

T: M2×2 → M2×2 by

T (B) = AB − BA
Find the matrix for T relative to the standard

basis for M2×2.

36. Let B = {v1, v2, v3} and B  = {v2, v1, v3} be

ordered bases for the vector space V . If

T: V → V is defined by T (v) = v, then find

[T ]B
 
B . Describe the relationship between [v]B and

[v]B  and the relationship between the identity

matrix I and [T ]B
 
B .

37. Let V be a vector space and B = {v1, v2, . . . , vn}
be an ordered basis for V. Define v0 = 0 and

T: V → V by

T (vi ) = vi + vi−1 for i = 1, . . . , n

Find [T ]B .

4.5

ß

Similarity

We have just seen in Sec. 4.4 that if T: V −→ V is a linear operator on the vector

space V , and B is an ordered basis for V , then T has a matrix representation relative

to B. The specific matrix for T depends on the particular basis; consequently, the

matrix associated with a linear operator is not unique. However, the action of the

operator T on V is always the same regardless of the particular matrix representation,

as illustrated in Example 1.

EXAMPLE 1 Let T: ⺢2 −→ ⺢
2 be the linear operator defined by

T

  
x

y

  
=
 

x + y

− 2x + 4y

 

Also let B1 = {e1, e2} be the standard basis for ⺢2 and let B2 =
  

1

1

 
,

 
1

2

  

be a second basis for ⺢2. Verify that the action on the vector v =
 

2

3

 
by the

operator T is the same regardless of the matrix representation used for T.
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Solution The matrix representations for T relative to B1 and B2 are

[T ]B1
=
 

1 1

−2 4

 
and [T ]B2

=
 

2 0

0 3

 
respectively. Next, observe that

[v]B1
=
 

2

3

 
and [v]B2

=
 

1

1

 
Applying the matrix representations of the operator T relative to B1 and B2, we

obtain

[T (v)]B1
= [T ]B1

[v]B1
=
 

1 1

−2 4

  
2

3

 
=
 

5

8

 
and

[T (v)]B2
= [T ]B2

[v]B2
=
 

2 0

0 3

  
1

1

 
=
 

2

3

 
To see that the result is the same, observe that

T (v) = 5

 
1

0

 
+ 8

 
0

1

 
=
 

5

8

 
and T (v) = 2

 
1

1

 
+ 3

 
1

2

 
=
 

5

8

 

Theorem 15 gives the relationship between the matrices for a linear operator

relative to two distinct bases.

THEOREM 15 Let V be a finite dimensional vector space, B1 and B2 two ordered bases for V,

and T: V −→ V a linear operator. Let P = [I ]
B1
B2

be the transition matrix from B2

to B1. Then

[T ]B2
= P−1[T ]B1

P

Proof Let v be any vector in V. By Theorem 12 of Sec. 4.4, we have

[T (v)]B2
= [T ]B2

[v]B2

Alternatively, we can compute [T (v)]B2
as follows: First, since P is the transition

matrix from B2 to B1,

[v]B1
= P [v]B2

Thus, the coordinates of T (v) relative to B1 are given by

[T (v)]B1
= [T ]B1

[v]B1
= [T ]B1

P [v]B2

Now, to find the coordinates of T (v) relative to B2, we multiply on the left by

P−1, which is the transition matrix from B1 to B2, to obtain

[T (v)]B2
= P−1[T ]B1

P [v]B2

Since both representations for [T (v)]B2
hold for all vectors v in V , then [T ]B2

=
P−1[T ]B1

P . See Fig. 1.
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[v]B1

[v]B2
[T (v)]B2

[T (v)]B1

P

[T ]B1

P−1

[T ]B2

Figure 1

EXAMPLE 2 Let T, B1, and B2 be the linear operator and bases of Example 1. Then

[T ]B1
=
 

1 1

−2 4

 
Use Theorem 15 to verify that

[T ]B2
=
 

2 0

0 3

 

Solution Since B1 is the standard basis for ⺢2, by Theorem 14 of Sec. 3.4 the transition

matrix from B2 to B1 is

P = [I ]
B1
B2
=
  

1

1

 
B1

 
1

2

 
B1

 
=
 

1 1

1 2

 
and hence

P−1 =
 

2 −1

−1 1

 
Then

P−1[T ]B1
P =

 
2 −1

−1 1

  
1 1

−2 4

  
1 1

1 2

 
=
 

2 0

0 3

 
= [T ]B2

EXAMPLE 3 Let T: ⺢2 −→ ⺢
2 be the linear operator given by

T

  
x

y

  
=
 −x + 2y

3x + y

 
and let

B1 =
  

2

−1

 
,

 
1

0

  
and B2 =

  
1

−1

 
,

 
0

1
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be ordered bases for ⺢2. Find the matrix of T relative to B1, and then use Theorem 15

to find the matrix of T relative to B2.

Solution Since

T

  
2

−1

  
=
 −4

5

 
and T

  
1

0

  
=
 −1

3

 
we have

[T ]B1
=
  −4

5

 
B1

 −1

3

 
B1

 
=
 −5 −3

6 5

 
The transition matrix from B2 to B1 is

P = [I ]
B1
B2
=
  

1

−1

 
B1

 
0

1

 
B1

 
=
 

1 −1

−1 2

 

Therefore, by Theorem 15

[T ]B2
= P−1[T ]B1

P =
 

2 1

1 1

  −5 −3

6 5

  
1 −1

−1 2

 

=
 −3 2

−1 3

 

In general, if the square matrices A and B are matrix representations for the same

linear operator, then the matrices are called similar. Using Theorem 15, we can define

similarity for square matrices without reference to a linear operator.

DEFINITION 1 Similar Matrices Let A and B be n× n matrices. We say that A is similar to

B if there is an invertible matrix P such that B = P−1AP .

The notion of similarity establishes a relation between matrices. This relation is

symmetric; that is, if the matrix A is similar to the matrix B, then B is similar to A.

To see this, let A be similar to B; that is, there is an invertible matrix P such that

B = P−1AP

Now let Q = P−1, so that B can be written as

B = QAQ−1

Hence, A = Q−1BQ, establishing that B is similar to A. For this reason we say that

A and B are similar if either A is similar to B or B is similar to A. In addition,

the relation is reflexive since any matrix is similar to itself with P being the identity

matrix. This relation is also transitive; that is, if A is similar to B and B is similar

to C, then A is similar to C. See Exercise 17. Any relation satisfying these three

properties is called an equivalence relation.
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Fact Summary

Let V be a finite dimensional vector space, B1 and B2 ordered bases of V, and T

a linear operator on V.

1. The matrix representations [T ]B1
and [T ]B2

are similar. That is, there is an

invertible matrix P such that [T ]B2
= P−1[T ]B1

P . In addition, the matrix

P is the transition matrix from B2 to B1.

2. A matrix is similar to itself. If A is similar to B, then B is similar to A. If

A is similar to B and B is similar to C, then A is similar to C.

Exercise Set 4.5

In Exercises 1 and 2, [T ]B1
is the matrix

representation of a linear operator relative to the basis

B1, and [T ]B2
is the matrix representation of the same

operator relative to the basis B2. Show that the action

of the operator on the vector v is the same whether

using [T ]B1
or [T ]B2

.

1. [T ]B1
=
 

1 2

−1 3

 
, [T ]B2

=
 

2 1

−1 2

 
,

B1 =
  

1

0

 
,

 
0

1

  

B2 =
  

1

1

 
,

 −1

0

  

v =
 

4

−1

 

2. [T ]B1
=
 

0 1

2 −1

 
, [T ]B2

=
 −2 0

4 1

 
,

B1 =
  

1

0

 
,

 
0

1

  

B2 =
  

1

2

 
,

 
1

1

  

v =
 

5

2

 
In Exercises 3–6, a linear operator T and bases B1

and B2 are given.

a. Find [T ]B1
and [T ]B2

.

b. Verify that the action on v of the linear

operator T is the same when using the matrix

representation of T relative to the bases B1

and B2.

3. T

  
x

y

  
=
 
x + y
x + y

 
,

B1 = {e1, e2}
B2 =

  
1

1

 
,

 −1

1

  

v =
 

3

−2

 

4. T

  
x

y

  
=
 −x

y

 

B1 = {e1, e2}
B2 =

  
2

−1

 
,

 −1

2

  

v =
 

2

−2

 

5. T




 x

y

z




 =


 x

0

z




B1 = {e1, e2, e3}

B2 =




 1

0

1


,

 −1

1

0


,

 0

0

1






v =

 1

2

−1



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6. T




 x

y

z




 =


 x + y

x − y + z

y − z




B1 = {e1, e2, e3}

B2 =




 −1

1

0


,

 0

0

1


,

 1

0

1






v =


 2

−1

−1




In Exercises 7–10, [T ]B1
and [T ]B2

are, respectively,

the matrix representations of a linear operator relative

to the bases B1 and B2. Find the transition matrix

P = [I ]
B1
B2

, and use Theorem 15 to show directly that

the matrices are similar.

7. [T ]B1
=

 
1 1

3 2

 
[T ]B2

=

 9
2

− 1
2

23
2

− 3
2

 

B1 = {e1, e2}

B2 =

  
3

−1

 
,

 
−1

1

  

8. [T ]B1
=

 
0 2

2 −3

 
[T ]B2

=

 
−4 1

0 1

 

B1 = {e1, e2}

B2 =

  
−1

2

 
,

 
1

0

  

9. [T ]B1
=

 
1 0

0 −1

 
[T ]B2

=

 
0 3
1
3

0

 

B1 =

  
1

1

 
,

 
2

−1

  

B2 =

  
1

0

 
,

 
−1

2

  

10. [T ]B1
=

 
−1 0

0 1

 
[T ]B2

=

 
−2 −1

3 2

 

B1 =

  
1

−1

 
,

 
1

1

  

B2 =

  
−1

2

 
,

 
0

1

  

In Exercises 11–14, find the matrix representation of

the linear operator T relative to B1. Then use

Theorem 15 to find [T ]B2
.

11. T

  
x

y

  
=

 
2x

3y

 

B1 = {e1, e2}

B2 =

  
2

3

 
,

 
1

2

  

12. T

  
x

y

  
=

 
x − y

x + 2y

 

B1 = {e1, e2}

B2 =

  
3

5

 
,

 
1

2

  

13. T

  
x

y

  
=

 
y

−x

 

B1 =

  
1

−1

 
,

 
1

0

  

B2 =

  
1

1

 
,

 
0

1

  

14. T

  
x

y

  
=

 
−2x + y

2y

 

B1 =

  
2

0

 
,

 
−1

1

  

B2 =

  
2

2

 
,

 
0

−1

  

15. Let T: P2 −→ P2 be the linear operator defined

by T (p(x)) = p (x). Find the matrix

representation [T ]B1
relative to the basis

B1 = {1, x, x2} and the matrix representation

[T ]B2
relative to B2 = {1, 2x, x2 − 2}. Find the

transition matrix P = [I ]
B1
B2

, and use Theorem 15
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to show directly that the matrices [T ]B1
and [T ]B2

are similar.

16. Let T: P2 −→ P2 be the linear operator defined

by T (p(x)) = xp (x)+ p  (x). Find the matrix

representation [T ]B1
relative to the basis

B1 = {1, x, x2} and the matrix representation

[T ]B2
relative to B2 = {1, x, 1+ x2}. Find the

transition matrix P = [I ]
B1
B2

, and use Theorem 15

to show directly that the matrices [T ]B1
and [T ]B2

are similar.

17. Show that if A and B are similar matrices and B

and C are similar matrices, then A and C are

similar matrices.

18. Show that if A and B are similar matrices, then

det(A) = det(B).

19. Show that if A and B are similar matrices, then

tr(A) = tr(B).

20. Show that if A and B are similar matrices, then

At and Bt are similar matrices.

21. Show that if A and B are similar matrices, then

An and Bn are similar matrices for each positive

integer n.

22. Show that if A and B are similar matrices and λ

is any scalar, then det(A− λI ) = det(B − λI ).

4.6

ß

Application: Computer Graphics

The rapid development of increasingly more powerful computers has led to the explo-

sive growth of digital media. Computer-generated visual content is ubiquitous, found

in almost every arena from advertising and entertainment to science and medicine.

The branch of computer science known as computer graphics is devoted to the study

of the generation and manipulation of digital images. Computer graphics are based

on displaying two- or three-dimensional objects in two-dimensional space. Images

displayed on a computer screen are stored in memory using data items called pixels,

which is short for picture elements. A single picture can be comprised of millions

of pixels, which collectively determine the image. Each pixel contains informa-

tion on how to color the corresponding point on a computer screen, as shown in

Fig. 1. If an image contains curves or lines, the pixels which describe the object

may be connected by a mathematical formula. The saddle shown in Fig. 1 is an

example.

Figure 1
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Graphics Operations in⺢2

To manipulate images, computer programmers use linear transformations. Most of the

examples we consider in this section use linear operators on ⺢2. One of the proper-

ties of linear transformations that is especially useful to our work here is that linear

transformations map lines to lines, and hence polygons to polygons. (See Exercise 10

of the Review Exercises for Chapter 4.) Therefore, to visualize the result of a linear

transformation on a polygon, we only need to transform the vertices. Connecting the

images of the vertices then gives the transformed polygon.

Scaling and Shearing

A transformation on an object that results in a horizontal contraction or dilation

(stretching) is called a horizontal scaling. For example, let T be the triangle shown

in Fig. 2 with vertices (1, 1), (2, 1), and
!

3
2
, 3
"
. Suppose that we wish to perform

a horizontal scaling of T by a factor of 3. The transformed triangle T  is obtained

by multiplying the x coordinate of each vertex by 3. Joining the new vertices with

straight lines produces the result shown in Fig. 3.

The linear operator S: ⺢2 −→ ⺢
2 that accomplishes this is given by

S

  
x

y

  
=
 

3x

y

 x 

y 

5

6

T 

Figure 2 To find a matrix representation of S, let B = {e1, e2} be the standard basis for ⺢2.

Then by Theorem 12 of Sec. 4.4, we have

[S]B = [ [S(e1)] [S(e2)] ] =
 

3 0

0 1

 
Let vi and v i , for i = 1, 2, and 3, be, respectively, the vertices (in vector form) of T

and T  . Since the coordinates of the vertices of T are given relative to B, the vertices

of T  can be found by matrix multiplication. Specifically,

v 1 =
 

3 0

0 1

  
1

1

 
=
 

3

1

 
v 2 =

 
3 0

0 1

  
2

1

 
=
 

6

1

 x 

y 

5

6

T T'
S

Figure 3 and

v 3 =
 

3 0

0 1

  3
2

3

 
=
 

9
2

3

 

These results are consistent with the transformed triangle T  , as shown in Fig. 3.

In general, a horizontal scaling by a factor k is given by the linear transformation

Sh defined by

Sh

  
x

y

  
=
 
kx

y
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The matrix representation of Sh, relative to the standard basis for ⺢2, is given by

[Sh]B =
 
k 0

0 1

 
Similarly, a vertical scaling is given by the linear operator

Sv

  
x

y

  
=
 
x

ky

 

The matrix representation of Sv, relative to the standard basis for ⺢2, is given by

[Sv]B =
 

1 0

0 k

 
If both components are multiplied by the same number k, then the result is called a

uniform scaling. In all the above cases, if k > 1, then the transformation is called a

dilation, or stretching; and if 0 < k < 1, then the operator is a contraction.

EXAMPLE 1 Let T denote the triangle with vertices given by the vectors

v1 =
 

0

1

 
v2 =

 
2

1

 
v3 =

 
1

3

 
as shown in Fig. 4.

a. Stretch the triangle horizontally by a factor of 2.

b. Contract the triangle vertically by a factor of 3.

c. Stretch the triangle horizontally by a factor of 2, and contract the triangle

vertically by a factor of 3.

Solution a. To stretch the triangle horizontally by a factor of 2, we apply the matrix 
2 0

0 1

 
to each vertex to obtain

v 1 =
 

0

1

 
v 2 =

 
4

1

 
v 3 =

 
2

3

 
Connecting the new vertices by straight-line segments gives the triangle T  

shown in Fig. 5(a).

x 

y 

⫺5

⫺5

5

5

T 

Figure 4 b. To contract the triangle vertically by a factor of 3, we apply the matrix 
1 0

0 1
3

 
to each vertex to obtain

v  1 =
 

0
1
3

 
v  2 =

 
2
1
3

 
v  3 =

 
1

1
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The contracted triangle T   is shown in Fig. 5(b).

x 

y 

⫺5

⫺5

5

5

(a)

T'

x 

y 

⫺5

⫺5

5

5

(b)

T''

Figure 5

c. This operator is the composition of the linear operators of parts (a) and (b).

By Theorem 14 of Sec. 4.4, the matrix of the operator, relative to the standard

basis for ⺢2, is given by the product 
1 0

0 1
3

  
2 0

0 1

 
=
 

2 0

0 1
3

 
Applying this matrix to the vertices of the original triangle gives

v   1 =
 

0
1
3

 
v   2 =

 
4
1
3

 
v   3 =

 
2

1

 x 

y 

⫺5

⫺5

5

5

T'''

Figure 6 as shown in Fig. 6.

Another type of transformation, called shearing, produces the visual effect of

slanting. The linear operator S: ⺢2 → ⺢
2 used to produce a horizontal shear has the

form

S

  
x

y

  
=
 
x + ky
y

 
where k is a real number. Relative to the standard basis B, the matrix representation

of S is given by

[S]B =
 

1 k

0 1

 

As an illustration, let T be the triangle of Fig. 7(a) with vertices v1 =
 

0

0

 
,

v2 =
 

2

0

 
, and v3 =

 
1

1

 
, and let k = 2. After applying the matrix

[S]B =
 

1 2

0 1
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to each of the vertices of T, we obtain v 1 =
 

0

0

 
, v 2 =

 
2

0

 
, and v 3 =

 
3

1

 
.

The resulting triangle T  is shown in Fig. 7(b).

x 

y 

⫺5

⫺5

5

5

(a)

T 

x 

y 

⫺5

⫺5

5

5

T'

(b)

Figure 7

A vertical shear is defined similarly by

S

  
x

y

  
=
 

x

y + kx
 

In this case the matrix for S, relative to the standard basis B, is given by

[S]B =
 

1 0

k 1

 

EXAMPLE 2 Perform a vertical shear, with k = 2, on the triangle of Fig. 2.

Solution The matrix of this operator, relative to the standard basis for ⺢2, is given by 
1 0

2 1

 
Applying this matrix to the vertices

v1 =
 

1

1

 
v2 =

 
2

1

 
v3 =

 
3
2

3

 
we obtain

v 1 =
 

1

3

 
v 2 =

 
2

5

 
v 3 =

 
3
2

6

 x 

y 

⫺5

⫺5

5

5

Figure 8 The images of the original triangle and the sheared triangle are shown in Fig. 8.
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Reflection

The reflection of a geometric object through a line produces the mirror image of the

object across the line. The linear operator that reflects a vector through the x axis is

given by

Rx

  
x

y

  
=
 

x

−y
 

A reflection through the y axis is given by

Ry

  
x

y

  
=
 −x

y

 

and a reflection through the line y = x is given by

Ry=x

  
x

y

  
=
 
y

x

 

The matrix representations, relative to the standard basis B, for each of these are given

by

[Rx ]B =
 

1 0

0 −1

 
[Ry]B =

 −1 0

0 1

 
[Ry=x]B =

 
0 1

1 0

 

EXAMPLE 3 Perform the following reflections on the triangle T of Fig. 4.

a. Reflection through the x axis.

b. Reflection through the y axis.

c. Reflection through the line y = x.

Solution a. The vertices of the triangle in Fig. 4 are given by

v1 =
 

0

1

 
v2 =

 
2

1

 
v3 =

 
1

3

 
Applying the matrix [Rx ]B to the vertices of the original triangle, we obtain

v 1 =
 

0

−1

 
v 2 =

 
2

−1

 
v 3 =

 
1

−3

 
The image of the triangle is shown in Fig. 9(a).

b. Applying the matrix [Ry ]B to the vertices of the original triangle, we obtain

v 1 =
 

0

1

 
v 2 =

 −2

1

 
v 3 =

 −1

3

 
The image of the triangle with this reflection is shown in Fig. 9(b).

c. Finally, applying the matrix [Rx=y]B to the vertices of the original triangle,

we obtain

v 1 =
 

1

0

 
v 2 =

 
1

2

 
v 3 =

 
3

1

 
The image of the triangle is shown in Fig. 9(c).
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x 

y 

⫺5

⫺5

5

5

(a)

x 

y 

⫺5

⫺5

5

5

(b)

x 

y 

⫺5

⫺5

5

5

(c)

Figure 9

Reversing Graphics Operations

The operations of scaling, shearing, and reflection are all reversible, and hence the matrix

representations for each of these operators are invertible. By Corollary 2 of Sec. 4.4, to

reverse one of these operations, we apply the inverse matrix to the transformed image.

EXAMPLE 4 Let S be the linear operator that performs a reflection through the line y = x,

followed by a horizontal stretching by a factor of 2.

a. Find the matrix representation of S, relative to the standard basis B.

b. Find the matrix representation of the reverse operator, again relative to B.

Solution a. Using the matrices given above for these operations, and by Theorem 14 of

Sec. 4.4, the matrix of the transformation, relative to the standard basis for ⺢2,

is given by the product

[S]B =

 
2 0

0 1

  
0 1

1 0

 
=

 
0 2

1 0

 
b. By Corollary 2 of Sec. 4.4, the matrix which reverses the operation of part (a)

is given by

[S−1]B = ([S]B)
−1 = −

1

2

 
0 −2

−1 0

 
=

 
0 1
1
2

0

 

As we noted in Example 4(a), if a graphics operation S is given by a sequence

of linear operators S1, S2, . . . , Sn, then

S = Sn◦Sn−1◦ · · · ◦S1

The matrix representation, relative to the basis B, is then given by the matrix product

[S]B = [Sn]B [Sn−1]B · · · [S1]B

The reverse process is given by

[S]−1
B = [S1]−1

B [S2]−1
B · · · [Sn]−1

B
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Thus, applying the matrices [S1]−1
B , [S2]−1

B , . . . , [Sn]
−1
B in succession reverses the pro-

cess one transformation at a time.

Translation

A translation of a point in the plane moves the point vertically, horizontally, or both.

For example, to translate the point (1, 3) three units to the right and two units up, add

3 to the x coordinate and 2 to the y coordinate to obtain the point (4, 5).

Now let v =
 
v1

v2

 
be any vector in ⺢2 and b =

 
b1

b2

 
some fixed vector. An

operation S: ⺢2 → ⺢
2 of the form

S(v) = v+ b =
 
v1 + b1

v2 + b2

 
is called a translation by the vector b. This transformation is a linear operator if

and only if b = 0. Consequently, when b  = 0, then S cannot be accomplished by

means of a 2× 2 matrix. However, by using homogeneous coordinates, translation of

a vector in ⺢2 can be represented by a 3× 3 matrix. The homogeneous coordinates

of a vector in ⺢2 are obtained by adding a third component whose value is 1. Thus,

the homogeneous coordinates for the vector v =
 
x

y

 
are given by

w =

 x

y

1




Now, to translate w by the vector b =
 
b1

b2

 
, we let

A =

 1 0 b1

0 1 b2

0 0 1




so that

Aw =

 1 0 b1

0 1 b2

0 0 1




 x

y

1


 =


 x + b1

y + b2

1




To return to ⺢2, we select the first two components of Aw so that

S(v) =
 
x + b1

y + b2

 
as desired.

As an illustration of this, let b =
 

1

−2

 
. Using homogeneous coordinates, the

3× 3 matrix to perform the translation is

A =

 1 0 1

0 1 −2

0 0 1



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Now let v =
 

3

2

 
. Then

 1 0 1

0 1 −2

0 0 1




 3

2

1


 =


 4

0

1




The vector S(v) =
 

4

0

 
is the translation of v by the vector b.

In the previous illustration the translation can be accomplished with less work

by simply adding the vector b to v. The benefits of using a matrix representation are

realized when we combine translation with other types of transformations. To do this,

we note that all the previous linear operators can be represented by 3× 3 matrices.

For example, the 3× 3 matrix for reflecting a point (in homogeneous coordinates)

through the x axis is 
 1 0 0

0 −1 0

0 0 1




EXAMPLE 5 Find the image of the triangle T of Fig. 4 under a translation by the vector

b =
 −5

3

 
, followed by a horizontal scaling by a factor of 1.5, followed by

a reflection through the x axis.

Solution The matrix for the composition of these operations is given by the product
 1 0 0

0 −1 0

0 0 1




 1.5 0 0

0 1 0

0 0 1




 1 0 −5

0 1 3

0 0 1


 =


 1.5 0 −7.5

0 −1 −3

0 0 1




The vertices of the original triangle in homogeneous coordinates are given by

v1 =

 0

1

1


 v2 =


 2

1

1


 v3 =


 1

3

1




After applying the above matrix to each of these vectors, we obtain

v 1 =

 −7.5

−4

1


 v 2 =


 −4.5

−4

1


 v 3 =


 −6

−6

1




x 

y 

⫺10

⫺10

10

10

P

Q

R

T = RQP
Figure 10 The resulting triangle, along with the intermediate steps, are shown in Fig. 10.

EXAMPLE 6 Find a 3× 3 matrix that will transform the triangle shown in Fig. 11(a) to the

triangle shown in Fig. 11(b).
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x 

y 

6

9

(a) Triangle T

x 

y 

6

9

(b) Triangle T'

Figure 11

Solution Triangle T  is obtained from triangle T through a horizontal scaling by a factor of

3, followed by a vertical scaling by a factor of 2, without changing the left vertex

(1, 1). The scalings alone will move the point (1, 1) to (3, 2). One way to correct this

is to first translate the triangle so that the left vertex is located at the origin, perform

the scaling, and then translate back. The matrix to perform all these operations is

the product of the matrices for each transformation. The matrix is given by
 1 0 1

0 1 1

0 0 1




 1 0 0

0 2 0

0 0 1




 3 0 0

0 1 0

0 0 1




 1 0 −1

0 1 −1

0 0 1


 =


 3 0 −2

0 2 −1

0 0 1




Notice that 
 1 0 1

0 1 1

0 0 1


 =


 1 0 −1

0 1 −1

0 0 1



−1

that is, the matrix representation for translation by

 
1

1

 
is the inverse of the matrix

representation for translation by

 −1

−1

 
.

Rotation

Another common graphics operation is a rotation through an angle θ. See Fig. 12. To

describe how a point is rotated, let (x, y) be the coordinates of a point in ⺢2 and θ a

real number. From trigonometry, the new coordinates (x  , y  ) of a point (x, y) rotated

x 

y 

x 

y 

Rotation by 45
◦

Figure 12 by θ rad about the origin are given by

x  = x cos θ− y sin θ

y = x sin θ+ y cos θ

If θ > 0, then v is revolved about the origin in a counterclockwise direction. If θ < 0,

the direction is clockwise. These equations define a linear operator Sθ : ⺢2 → ⺢
2
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given by

Sθ

  
x

y

  
=
 
x cos θ− y sin θ

x sin θ+ y cos θ

 
The matrix of Sθ relative to the standard basis B = {e1, e2} for ⺢2 is given by

[Sθ]B =
 

cos θ − sin θ

sin θ cos θ

 
When using homogeneous coordinates, we apply the matrix

 cos θ − sin θ 0

sin θ cos θ 0

0 0 1




EXAMPLE 7 Find the image of the triangle of Fig. 4 under a translation by the vector b = 
1

−1

 
, followed by a rotation of 30

◦
, or π/6 rad, in the counterclockwise

direction.

Solution The matrix for the combined operations is given by
 cos π

6
− sin π

6
0

sin π
6

cos π
6

0

0 0 1




 1 0 1

0 1 −1

0 0 1


 =




√
3

2
− 1

2
0

1
2

√
3

2
0

0 0 1






1 0 1

0 1 −1

0 0 1




=




√
3

2
− 1

2

√
3

2
+ 1

2

1
2

√
3

2
1
2
−
√

3
2

0 0 1




The vertices of the triangle in homogeneous coordinates are given by

v1 =

 0

1

1


 v2 =


 2

1

1


 and v3 =


 1

3

1




After applying the above matrix to each of these vectors, we obtain

v 1 =




√
3

2
1
2

1


 v 2 =




3
√

3
2
3
2

1


 and v 3 =



√

3− 1√
3+ 1

1


x 

y 

⫺5

⫺5

5

5

Figure 13 The resulting triangle is shown in Fig. 13.

Projection

Rendering a picture of a three-dimensional object on a flat computer screen requires

projecting points in 3-space to points in 2-space. We discuss only one of many methods

to project points in ⺢3 to points in ⺢2 that preserve the natural appearance of an object.
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Parallel projection simulates the shadow that is cast onto a flat surface by a far away

light source, such as the sun. Shown in Fig. 14 are rays intersecting an object in

3-space and the projection into 2-space. The orientation of the axes in Fig. 14 is such

that the xy plane represents the computer screen.

To show how to find the xy coordinates of a projected point, let the vector

vd =

 xd
yd
zd




represent the direction of the rays. If (x0, y0, z0) is a point in ⺢3, then the parametric

equations of the line going through the point and in the direction of vd are given by

x 

y 

z 

Figure 14 

x(t) = x0 + txd
y(t) = y0 + tyd
z(t) = z0 + tzd

for all t ∈ ⺢. The coordinates of the projection of (x0, y0, z0) onto the xy plane are

found by letting z(t) = 0. Solving for t , we obtain

t = − z0

zd

Now, substituting this value of t into the first two equations above, we find the

coordinates of the projected point, which are given by

xp = x0 −
z0

zd
xd yp = y0 −

z0

zd
yd and zp = 0

The components of vd can also be used to find the angles that the rays make with the

z axis and the xz plane. In particular, we have

tanψ = yd

xd
and tanϕ =

#
x2
d + y2

d

zd

where ψ is the angle vd makes with the xz plane and φ is the angle made with the

z axis. On the other hand, if the angles ψ and φ are given, then these equations can

be used to find the components of the projection vector vd .

EXAMPLE 8 Let ψ = 30
◦

and φ = 26.6
◦
.

a. Find the direction vector vd and project the cube, shown in Fig. 15, into ⺢2.

The vertices of the cube are located at the points (0, 0, 1), (1, 0, 1), (1, 0, 0),

(0, 0, 0), (0, 1, 1), (1, 1, 1), (1, 1, 0), and (0, 1, 0).
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x 

y 

z 

Figure 15

b. Find a 3× 3 matrix that will rotate the (projected) vertices of the cube by 30
◦

and another that will translate the cube by the vector

 
2

1

 
.

Solution a. We can arbitrarily set zd = −1. Then

tanψ = tan 30
◦ ≈ 0.577 = yd

xd
and (tanφ)2 = (tan 26.6

◦
)2 ≈ (0.5)2 = x2

d + y2
d

so that

yd = 0.577xd and x2
d + y2

d = 1
4

Solving the last two equations gives xd ≈ 0.433 and yd ≈ 0.25, so that the

direction vector is

vd =

 0.433

0.25

−1




Using the formulas for a projected point given above, we can project each

vertex of the cube into ⺢2. Connecting the images by line segments gives the

picture shown in Fig. 16. The projected points are given in Table 1.

Table 1

Vertex Projected Point

(0,0,1) (0.433, 0.25)

(1,0,1) (1.433, 0.25)

(1,0,0) (1, 0)

(0,0,0) (0, 0)

(0,1,1) (0.433, 1.25)

(1,1,1) (1.433, 1.25)

(1,1,0) (1, 1)

(0,1,0) (0, 1)
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b. Using homogeneous coordinates, we find the matrices to rotate the cube coun-

terclockwise by 30
◦

and translate the cube by the vector

 
2

1

 
are given by




cos(π
6
) − sin(π

6
) 0

sin(π
6
) cos(π

6
) 0

0 0 1


 and


 1 0 2

0 1 1

0 0 1




respectively. Depictions of the results when the original cube is rotated and

then the result is translated are shown in Figs. 17 and 18.

x 

y 

Figure 16

x 

y 

Figure 17

x 

y 

Figure 18

Exercise Set 4.6

1. Find the matrix representation relative to the

standard basis for the linear transformation

T: ⺢2 −→ ⺢
2 that transforms the triangle with

vertices at the points (0, 0), (1, 1), and (2, 0) to

the triangle shown in the figure.
a.

x 

y 

⫺5

⫺5

5

5

b.

x 

y 

⫺5

⫺5

5

5

c.

x 

y 

⫺5

⫺5

5

5

2. Find the matrix representation relative to the

standard basis for the linear transformation

T: ⺢2 −→ ⺢
2 that transforms the square with

vertices at the points (0, 0), (1, 0), (1, 1), and

(0, 1) to the polygon shown in the figure.

a.

x 

y 

⫺5

⫺5

5

5
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b.

x 

y 

⫺5

⫺5

5

5

c.

x 

y 

⫺5

⫺5

5

5

3. Let T: ⺢2 −→ ⺢
2 be the transformation that

performs a horizontal stretching by a factor of 3,

followed by a vertical contraction by a factor of 2,

followed by a reflection through the x axis.

a. Find the matrix of T relative to the standard

basis.

b. Apply the transformation to the triangle with

vertices (1, 0), (3, 0), and (2, 2), and give a

sketch of the result.

c. Find the matrix relative to the standard basis

that reverses T.

4. Let T: ⺢2 −→ ⺢
2 be the transformation that

performs a reflection through the y axis, followed

by a horizontal shear by a factor of 3.

a. Find the matrix of T relative to the standard

basis.

b. Apply the transformation to the rectangle with

vertices (1, 0), (2, 0), (2, 3), and (1, 3), and

give a sketch of the result.

c. Find the matrix relative to the standard basis

that reverses T.

5. Let T: ⺢2 −→ ⺢
2 be the transformation that

performs a rotation by 45
◦
, followed by a

reflection through the origin.

a. Find the matrix of T relative to the standard

basis.

b. Apply the transformation to the square with

vertices (0, 0), (1, 0), (1, 1), and (0, 1), and

give a sketch of the result.

c. Find the matrix relative to the standard basis

that reverses T.

6. Let T: ⺢2 −→ ⺢
2 be the transformation that

performs a reflection through the line y = x,

followed by a rotation of 90
◦
.

a. Find the matrix of T relative to the standard

basis.

b. Apply the transformation to the triangle with

vertices (0, 0), (2, 0), and (1, 3), and give a

sketch of the result.

c. Find the matrix relative to the standard basis

that reverses T.

d. Describe this transformation in another way.

Verify your answer.

7. Let T: ⺢2 −→ ⺢
2 be the (nonlinear)

transformation that performs a translation by the

vector

 
1

1

 
, followed by a rotation of 30

◦
.

a. Using homogeneous coordinates, find the 3× 3

matrix that performs the translation and

rotation.

b. Apply the transformation to the parallelogram

with vertices (0, 0), (2, 0), (3, 1), and (1, 1),

and give a sketch of the result.

c. Find the matrix that reverses T.

8. Let T: ⺢2 −→ ⺢
2 be the (nonlinear)

transformation that performs a translation by the

vector

 −4

2

 
, followed by a reflection through

the y axis.

a. Using homogeneous coordinates, find the 3× 3

matrix that performs the translation and

reflection.

b. Apply the transformation to the trapezoid with

vertices (0, 0), (3, 0), (2, 1), and (1, 1), and

give a sketch of the result.

c. Find the matrix that reverses T.

9. Let

B =
  

1

1

 
,

 −1

1
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be a basis for ⺢2, and let A be the triangle in the

xy coordinate system with vertices (0, 0), (2, 2),

and (0, 2).

a. Find the coordinates of the vertices of A

relative to B.

b. Let T be the transformation that performs a

reflection through the line y = x. Find [T ]SB ,

where S is the standard basis for ⺢2.

c. Apply the matrix found in part (b) to the

coordinates found in part (a). Sketch the

result.

d. Show the same result is obtained by applying 
0 1

1 0

 
to the original coordinates.

10. Let

B =
  

1

0

 
,

 
1

1

  

be a basis for ⺢2, and let A be the parallelogram

in the xy coordinate system with vertices

(0, 0), (1, 1), (1, 0), and (2, 1).

a. Find the coordinates of the vertices of A

relative to B.

b. Find the matrix representation relative to B of

the transformation T that performs a reflection

through the horizontal axis.

c. Apply the matrix found in part (b) to the

coordinates found in part (a). Write the

resulting vectors relative to the standard basis,

and sketch the result.

d. Find the matrix representation relative to the

standard basis for the transformation that

performs the same operation on the

parallelogram. Apply this matrix to the original

coordinates, and verify the result agrees with

part (c).

Review Exercises for Chapter 4

1. Let T: ⺢2 −→ ⺢
4 be a linear transformation.

a. Verify that

S =
  

1

1

 
,

 
3

−1

  

is a basis for ⺢2.

b. If

T

 
1

1

 
=




1

2

0

2


 and

T

 
3

−1

 
=




3

2

4

−2




determine

T

 
x

y

 
for all

 
x

y

 
∈ ⺢2

(Hint : Find the coordinates of

 
x

y

 
relative

to S.)

c. Describe all vectors in N(T ).

d. Is the linear map T one-to-one? Explain.

e. Find a basis for R(T ).

f. Is T onto? Give two reasons.

g. Find a basis for ⺢4 that contains the vectors


1

0

1

1


 and



−1

1

0

1




h. Use the basis B =
  

1

2

 
,

 
1

−1

  
of ⺢2

and the basis found in part (g) for ⺢4, call it C,

and find a matrix representation for T with

respect to the bases B and C.
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i. Apply the matrix A found in part (h) to an

arbitrary vector

 
x

y

 
.

2. Define linear transformations S, T: P3 → P4 and

H: P4 → P4 by

S(p(x)) = p (0)
T (p(x)) = (x + 1)p(x)

H(p(x)) = p (x)+ p(0)

a. Compute H ◦T and S◦(H ◦T ).
b. Find the matrix for S, T, and H relative to the

standard bases for P3 and P4.

c. Show that T is one-to-one.

d. Find R(T ).

3. Let S, T: ⺢2 → ⺢
2 be transformations so S

reflects every vector through the x axis and T

reflects every vector through the y axis.

a. Give definitions for S and T. Show the

mappings are linear transformations.

b. Find the matrix for S and for T relative to the

standard basis for ⺢2.

c. Find the matrix for the linear transformations

T ◦S and S◦T . Describe geometrically the

action of T ◦S and S◦T .

4. a. Let T: M2×2 → M2×2 be defined by

T (A) =
 

1 3

−1 1

 
A

Is T a linear transformation? Is T one-to-one?

Is T an isomorphism?

b. Let T: M2×2 → M2×2 be defined by

T (A) =
 

1 0

1 0

 
A

Is T a linear transformation? Is T one-to-one?

Show R(T ) is isomorphic to ⺢2.

5. Let v1 and v2 be linearly independent vectors in

⺢
2 and T: ⺢2 → ⺢

2 a linear operator such that

T (v1) = v2 and T (v2) = v1

Let B = {v1, v2} and B  = {v2, v1}.

a. Find [T ]B .

b. Find [T ]B
 
B .

6. Let T: ⺢2 → ⺢
2 be the linear operator that

projects a vector across the line span

  
1

−1

  
and S: ⺢2 → ⺢

2 the linear operator that reflects a

vector across the line span

  
1

0

  
. Let B

denote the standard basis for ⺢2.

a. Find [T ]B and [S]B .

b. Find T

  −2

1

  
and S

  
2

3

  
.

c. Find the matrix representation for the linear

operator H : ⺢2 → ⺢
2 that reflects a vector

across the subspace span

  
1

−1

  
and

across the subspace span

  
1

0

  
.

d. Find H

  −2

−1

  
.

e. Find N(T ) and N(S).

f. Find all vectors v such that T (v) = v and all

vectors v such that S(v) = v.

7. Let T: ⺢3 → ⺢
3 be the linear operator that

reflects a vector across the plane

span




 1

0

0


,

 0

1

1






The projection of a vector u onto a vector v is the

vector

projv u =
u·v
v·vv

and the reflection of v across the plane with

normal vector n is

v− 2 projn v

Let B denote the standard basis for ⺢3.

a. Find [T ]B .

b. Find T




 −1

2

1




.
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c. Find N(T ).

d. Find R(T ).

e. Find the matrix relative to B for T n, n ≥ 2.

8. Define a transformation T: P2 → ⺢ by

T (p(x)) =
 1

0

p(x) dx

a. Show that T is a linear transformation.

b. Compute T (−x2 − 3x + 2).

c. Describe N(T ). Is T one-to-one?

d. Find a basis for N(T ).

e. Show that T is onto.

f. Let B be the standard basis for P2 and

B  = {1}, a basis for ⺢. Find [T ]B
 
B .

g. Compute T (−x2 − 3x + 2), using the matrix

found in part (f).

h. Define linear operators T: C(1)[0, 1] →
C(1)[0, 1] and S: C(1)[0, 1] → C(1)[0, 1] by

T (f ) = d

dx
f (x)

and

S(f ) = F, where F(x) =
 x

0

f (t) dt

Find T (xex) and S(xex). Describe S◦T and

T ◦S.

9. Let T: V → V be a linear operator such that

T 2 − T + I = 0, where I denotes the identity

mapping. Show that T −1 exists and is equal to

I − T.

10. Let T: ⺢2 → ⺢
2 be a linear operator.

a. Show that the line segment between two

vectors u and v in ⺢2 can be described by

tu+ (1− t)v for 0 ≤ t ≤ 1

b. Show that the image of a line segment under

the map T is another line segment.

c. A set in ⺢2 is called convex if for every pair

of vectors in the set, the line segment between

the vectors is in the set. See the figure.

Convex set Not a convex set

Suppose T: ⺢2 → ⺢
2 is an isomorphism and S

is a convex set in ⺢2. Show that T (S) is a

convex set.

d. Define T: ⺢2 −→ ⺢
2 by

T

  
x

y

  
=
 

2x

y

 

Show that T is an isomorphism. Let

S =
  

x

y

     x2 + y2 = 1

 

Describe the image of the set S under the

transformation T.

Chapter 4: Chapter Test

In Exercises 1–40, determine whether the statement is

true or false.

1. The transformation T: ⺢2 → ⺢
2 defined by

T

  
x

y

  
=
 

2x − 3y

x + y + 2

 

is a linear transformation.

2. The transformation T: ⺢→ ⺢ defined by

T (x) = 2x − 1 is a linear transformation.

3. If b = 0, then the transformation T: ⺢→ ⺢

defined by T (x) = mx + b is a linear

transformation.

4. If A is an m× n matrix, then T defined by

T (v) = Av
is a linear transformation from ⺢

n into ⺢m.
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5. Let A be a fixed matrix in Mn×n. Define a

transformation T: Mn×n→ Mn×n by

T (B) = (B + A)2 − (B + 2A)(B − 3A)

If A2 = 0, then T is a linear transformation.

6. Let u =
 

1

0

 
and v =

 
0

1

 
. If T: ⺢2 −→ ⺢

2 is

a linear operator and

T (u+ v) = v and T (2u− v) = u+ v

then

T (u) =
 

2
3

1
3

 

7. If T: ⺢2 → ⺢
2 is defined by

T

  
x

y

  
=
 

2 −4

1 −2

  
x

y

 

then T is an isomorphism.

8. If T: V −→ W is a linear transformation and

{v1, . . . , vn} is a linearly independent set in V,

then {T (v1), . . . , T (vn)} is a linearly independent

subset of W .

9. The vector spaces P8 and M3×3 are isomorphic.

10. If a linear map T: P4 −→ P3 is defined by

T (p(x)) = p (x), then T is a one-to-one map.

11. If A is an n× n invertible matrix, then as a

mapping from ⺢
n into ⺢n the null space of A

consists of only the zero vector.

12. The linear operator T: ⺢2 → ⺢
2 defined by

T

  
x

y

  
=
 
x − y

0

 

is one-to-one.

13. If T: ⺢2 → ⺢
2 is the transformation that reflects

each vector through the origin, then the matrix for

T relative to the standard basis for ⺢2 is −1 0

0 −1

 
14. A linear transformation preserves the operations

of vector addition and scalar multiplication.

15. Every linear transformation between finite

dimensional vector spaces can be defined using a

matrix product.

16. A transformation T: V → W is a linear

transformation if and only if

T (c1v1 + c2v2) = c1T (v1)+ c2T (v2)

for all vectors v1 and v2 in V and scalars c1

and c2.

17. If f: ⺢ −→ ⺢ is a linear operator and

φ: ⺢2 −→ ⺢
2 is defined by

φ(x, y) = (x, y − f (x))
then the mapping φ is an isomorphism.

18. Let U,V , and W be finite dimensional vector

spaces. If U is isomorphic to V and V is

isomorphic to W , then U is isomorphic to W .

19. If T: V → V is a linear operator and u ∈ N(T ),
then

T (cu+ v) = T (v)
for all v ∈ V and scalars c.

20. If P : ⺢3 → ⺢
3 is the projection defined by

P




 x

y

z




 =


 x

y

0




then P 2 = P .

21. If T: V → W is a linear transformation between

vector spaces such that T assigns each element of

a basis for V to the same element of W , then T is

the identity mapping.

22. If T: ⺢4 → ⺢
5 and dim(N(T )) = 2, then

dim(R(T )) = 3.

23. If T: ⺢4 → ⺢
5 and dim(R(T )) = 2, then

dim(N(T )) = 2.

24. If T: ⺢3 → ⺢
3 is defined by

T




 x

y

z




 =


 2x − y + z

x

y − x



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then the matrix for T −1 relative to the standard

basis for ⺢3 is 
 0 1 0

0 0 1

−1 −2 1




25. If T: ⺢2 → ⺢
2 is defined by

T

  
x

y

  
=
 

2x + 3y

−x + y

 
B = {e1, e2}, and B  = {e2, e1}, then

[T ]B
 
B =

 −1 1

2 3

 

26. There exists a linear transformation T between

vector spaces such that T (0)  = 0.

27. The linear transformation T: ⺢3 → ⺢
3 defined by

T




 x

y

z




 =


 x

0

y




projects each vector in ⺢3 onto the xy plane.

28. The linear operator T: ⺢2 → ⺢
2 defined by

T

  
x

y

  
=
 

0 1

1 0

  
x

y

 

reflects each vector in ⺢2 across the line y = x.

29. Let T: V → W be a linear transformation and

B = {v1, . . . , vn} a basis for V. If T is onto, then

{T (v1), . . . , T (vn)} is a basis for W.

30. The vector space P2 is isomorphic to the subspace

of ⺢5

W =






a

b

0

c

0




          
a, b, c ∈ ⺢




31. If T: V → V is the identity transformation, then

the matrix for T relative to any pair of bases B

and B  for V is the identity matrix.

32. If T: ⺢3 → ⺢
3 is defined by

T




 x

y

z




 =


 x + y + z

y − x
y




then dim(N(T )) = 1.

33. If T: P2 → P2 is defined by

T (ax2 + bx + c) = 2ax + b

then a basis for N(T ) is {−3}.
34. If T: M2×2 → M2×2 is defined by

T (A) = A2 − A

then N(T ) = {0}.
35. If T: P3 → P3 is defined by

T (p(x)) = p  (x)− xp (x)

then T is onto.

36. If T: P3 → P3 is defined by

T (p(x)) = p  (x)− xp (x)

then q(x) = x2 is in R(T ).

37. The linear operator T: ⺢3 → ⺢
3 defined by

T




 x

y

z




 =


 3 −3 0

1 2 1

3 −1 1




 x

y

z




is an isomorphism.

38. If A is an m× n matrix and T: ⺢n→ ⺢
m is

defined by

T (v) = Av
then the range of T is the set of all linear

combinations of the column vectors of A.

39. If A is an m× n matrix with m > n and

T: ⺢n→ ⺢
m is defined by

T (v) = Av

then T cannot be one-to-one.

40. If A is an m× n matrix with m > n and

T: ⺢n→ ⺢
m is defined by

T (v) = Av
then T cannot be onto.
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A
Markov chain is a mathematical model used

to describe a random process that, at any

given time t = 1, 2, 3, . . . , is in one of a finite

number of states. Between the times t and t + 1

the process moves from state j to state i with

a probability pij . Markov processes are also

memoryless ; that is, the next state of the sys-

tem depends only on the current state. As an

example, consider a city C with surrounding res-

idential areas N, S,E, and W . Residents can

move between any two locations or stay in their

current location, with fixed probabilities. In this

case a state is the location of a resident at any

given time. The state diagram shown in Fig. 1

describes the situation with the probabilities of

moving from one location to another shown in the

corresponding transition matrix A = (pij ). For

example, entry p34 = 0.2 is the probability that U.S. Geological Survery/DAL

C

N

S E

W

Figure 1 a resident in region E moves to region S. Since a resident is assumed to be living

in one of the five regions, the probability of being in one of these regions is 1, and

hence each column sum of A is equal to 1. A square matrix with each entry between

C N S E W

C
N
S
E
W


0.3 0.2 0.4 0.1 0.1
0.2 0.4 0.1 0.2 0.1
0.1 0.2 0.2 0.2 0.1
0.2 0.1 0.2 0.3 0.2
0.2 0.1 0.1 0.2 0.5



0 and 1 and column sums all equal to 1 is called a stochastic matrix. The initial

distribution of the population is called the initial probability vector. Assume that the

initial population distribution is given by the vector

v =


0.3

0.2

0.1

0.2

0.2


275
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Then the population distribution after one time step is Av, after two time steps is

A(Av) = A2v, and so on. For example, after 10 time steps, the population distribution

(rounded to two decimal places) is

A10v =


0.21

0.20

0.16

0.20

0.23


Notice that the sum of the entries of the population distribution vector is equal to 1.

Starting with some initial distribution vector, the long-term behavior of the Markov

chain, that is, Anv as n tends to infinity, gives the limiting population distribution

in the five regions into the future. When Anv approaches a distribution vector s

as n tends toward infinity, we say that s is the steady-state vector. If a transition

matrix for a Markov chain is a stochastic matrix with positive terms, then for any

initial probability vector v, there is a unique steady-state vector s. Moreover, if s is

the steady-state vector, then As = s. Finding the steady-state vector is equivalent to

solving the matrix equation

Ax = λx

with λ = 1. In general, if there is a scalar λ and a nonzero vector v such that Av = λv,

then λ is called an eigenvalue for the matrix A and v is an eigenvector corresponding

to the eigenvalue λ. In our Markov chain example, the steady-state vector corresponds

to the eigenvalue λ = 1 for the transition matrix A.

In the last decade the growth in the power of modern computers has, quite mirac-

ulously, made it possible to compute the eigenvalues of a matrix with rows and

columns in the billions. Google’s page rank algorithm is essentially a Markov chain

with transition matrix consisting of numerical weights for each site on the World Wide

Web used as a measure of its relative importance within the set. The algorithm was

developed by Larry Page and Sergey Brin, the founders of Google.

For any n× n matrix A, there exists at least one number-vector pair λ, v such that

Av = λv (although λ may be a complex number). That is, the product of A and v is

a scaling of the vector v. Many applications require finding such number-vector pairs.

5.1

ß

Eigenvalues and Eigenvectors

One of the most important problems in linear algebra is the eigenvalue problem. It

can be stated thus: If A is an n× n matrix, does there exist a nonzero vector v such

that Av is a scalar multiple of v?

DEFINITION 1 Eigenvalue andEigenvector Let A be an n× n matrix. A number λ is called

an eigenvalue of A provided that there exists a nonzero vector v in ⺢n such that

Av = λv
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Every nonzero vector satisfying this equation is called an eigenvector of A corre-

sponding to the eigenvalue λ.

The zero vector is a trivial solution to the eigenvalue equation for any number λ

and is not considered as an eigenvector.

As an illustration, let

A =
 

1 2

0 −1

 
Observe that  

1 2

0 −1

  
1

0

 
=
 

1

0

 
so v1 =

 
1

0

 
is an eigenvector of A corresponding to the eigenvalue λ1 = 1. We

also have  
1 2

0 −1

  
1

−1

 
=
 −1

1

 
= −1

 
1

−1

 
so v2 =

 
1

−1

 
is another eigenvector of A corresponding to the eigenvalue λ2 = −1.

In Example 1 we show how to find eigenvalues and eigenvectors for a 2 × 2

matrix.

EXAMPLE 1 Let

A =
 

0 1

1 0

 
a. Find the eigenvalues of A.

b. Find the eigenvectors corresponding to each of the eigenvalues found in

part (a).

Solution a. The number λ is an eigenvalue of A if there is a nonzero vector v =
 
x

y

 
such that 

0 1

1 0

  
x

y

 
= λ

 
x

y

 
which is equivalent to

 
y

x

 
=
 

λx

λy

 
This matrix equation is equivalent to the homogeneous linear system 

−λx + y = 0

x − λy = 0

By Theorem 17 of Sec. 1.6, the linear system has a nontrivial solution if and

only if     −λ 1

1 −λ

    = 0
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Consequently, λ is an eigenvalue of A if and only if

λ2 − 1 = 0 so that λ1 = 1 and λ2 = −1

b. For λ1 = 1, a vector v1 =
 
x

y

 
is an eigenvector if 

0 1

1 0

  
x

y

 
=
 
x

y

 
This yields the linear system −x + y = 0

x − y = 0
with solution set S =

  
t

t

     t ∈ ⺢
 

Thus, any vector of the form v1 =
 
t

t

 
, for t  = 0, is an eigenvector corre-

sponding to the eigenvalue λ1 = 1. In a similar way, we find that any vector

of the form v2 =
 

t

−t
 
, for t  = 0, is an eigenvector of A corresponding to

the eigenvalue λ2 = −1. Specific eigenvectors of A can be found by choosing

any value for t so that neither v1 nor v2 is the zero vector. For example, letting

t = 1, we know that

v1 =
 

1

1

 
is an eigenvector corresponding to λ1 = 1 and

v2 =
 

1

−1

 
is an eigenvector corresponding to λ2 = −1.

Geometric Interpretation of Eigenvalues and Eigenvectors

A nonzero vector v is an eigenvector of a matrix A only when Av is a scaling of

the vector v. For example, let A =
 

1 −1

2 4

 
. Using the techniques just introduced,

the eigenvalues of A are λ1 = 2 and λ2 = 3 with corresponding eigenvectors

v1 =
 

1

−1

 
and v2 =

 
1

−2

 
, respectively. Observe that

Av1 =
 

1 −1

2 4

  
1

−1

 
=
 

2

−2

 
= 2v1

and

Av2 =
 

1 −1

2 4

  
1

−2

 
=
 

3

−6

 
= 3v2
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In Fig. 2, we provide sketches of the vectors v1, v2, Av1, and Av2 to underscore that

the action of A on each of its eigenvectors is a scaling. Observe that this is not the

case for an arbitrary vector. For example, if v =
 

1

1

 
, then

Av =
 

1 −1

2 4

  
1

1

 
=
 

0

6

 
Eigenspaces

Notice that in Example 1, for each of the eigenvalues there are infinitely many eigen-

vectors. This is the case in general. To show this, let v be an eigenvector of the matrix

x 

y 

⫺5

⫺6

5

5v1

Av1v2

Av2

Figure 2 A corresponding to the eigenvalue λ. If c is any nonzero real number, then

A(cv) = cA(v) = c(λv) = λ(cv)

so cv is another eigenvector associated with the eigenvalue λ. Notice that all eigen-

vectors corresponding to an eigenvalue are parallel but can have opposite directions.

Building on the procedure used in Example 1, we now describe a general method

for finding eigenvalues and eigenvectors. If A is an n× n matrix, then

Av = λv

for some number λ if and only if

Av− λv = 0 that is (A− λI )v = Av− λIv = 0
Again by Theorem 17, of Sec. 1.6, this equation has a nontrivial solution if and only

if

det(A− λI ) = 0

We summarize this result in Theorem 1.

THEOREM 1 The number λ is an eigenvalue of the matrix A if and only if

det(A− λI ) = 0

The equation det(A− λI ) = 0 is called the characteristic equation of the matrix

A, and the expression det(A− λI ) is called the characteristic polynomial of A. If

A is an n× n matrix and λ is an eigenvalue of A, then the set

Vλ = {v ∈ ⺢n | Av = λv}
is called the eigenspace of A corresponding to λ. Notice that Vλ is the union of the

set of eigenvectors corresponding to λ and the zero vector.

We have already shown that Vλ is closed under scalar multiplication. Therefore,

to show that Vλ is a subspace of ⺢n, we need to show that it is also closed under

addition. To see this, let u and v be vectors in Vλ; that is, Au = λu and Av = λv for

a particular eigenvalue λ. Then

A(u+ v) = Au+ Av = λu+ λv = λ(u+ v)
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Alternatively, the set

Vλ = {v ∈ ⺢n | Av = λv} = {v ∈ ⺢n | (A− λI )v = 0} = N(A− λI )

Since Vλ is the null space of the matrix A− λI , by Theorem 3 of Sec. 4.2 it is a

subspace of ⺢n.

EXAMPLE 2 Find the eigenvalues and corresponding eigenvectors of

A =
 

2 −12

1 −5

 
Give a description of the eigenspace corresponding to each eigenvalue.

Solution By Theorem 1 to find the eigenvalues, we solve the characteristic equation

det(A− λI ) =
    2 − λ −12

1 −5 − λ

    
= (2 − λ)(−5 − λ)− (1)(−12)

= λ2 + 3λ + 2

= (λ + 1)(λ + 2) = 0

Thus, the eigenvalues are λ1 = −1 and λ2 = −2. To find the eigenvectors, we need

to find all nonzero vectors in the null spaces of A− λ1I and A− λ2I . First, for

λ1 = −1,

A− λ1I = A+ I =
 

2 −12

1 −5

 
+
 

1 0

0 1

 
=
 

3 −12

1 −4

 
The null space of A+ I is found by row-reducing the augmented matrix 

3 −12 0

1 −4 0

 
to

 
1 −4 0

0 0 0

 
The solution set for this linear system is given by S =

  
4t

t

     t ∈ ⺢
 

. Choosing

t = 1, we obtain the eigenvector v1 =
 

4

1

 
. Hence, the eigenspace corresponding

to λ1 = −1 is

Vλ1
=
 
t

 
4

1

     t is any real number

 
For λ2 = −2,

A− λ2I =
 

4 −12

1 −3

 
In a similar way we find that the vector v2 =

 
3

1

 
is an eigenvector corresponding

to λ2 = −2. The corresponding eigenspace is
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Vλ2
=
 
t

 
3

1

     t is any real number

 
The eigenspaces Vλ1

and Vλ2
are lines in the direction of the eigenvectors

 
4

1

 
and

 
3

1

 
, respectively. The images of the eigenspaces, after multiplication by

A, are the same lines, since the direction vectors A

 
4

1

 
and A

 
3

1

 
are scalar

multiples of

 
4

1

 
and

 
3

1

 
, respectively.

In Example 3 we illustrate how the eigenspace associated with a single eigenvalue

can have dimension greater than 1.

EXAMPLE 3 Find the eigenvalues of

A =


1 0 0 0

0 1 5 −10

1 0 2 0

1 0 0 3


and find a basis for each of the corresponding eigenspaces.

Solution The characteristic equation of A is

det(A− λI ) =

        
1 − λ 0 0 0

0 1 − λ 5 −10

1 0 2 − λ 0

1 0 0 3 − λ

        = (λ − 1)2(λ − 2)(λ − 3) = 0

Thus, the eigenvalues are

λ1 = 1 λ2 = 2 and λ3 = 3

Since the exponent of the factor λ − 1 is 2, we say that the eigenvalue λ1 = 1 has

algebraic multiplicity 2. To find the eigenspace for λ1 = 1, we reduce the matrix

A− (1)I =


0 0 0 0

0 0 5 −10

1 0 1 0

1 0 0 2

 to


1 0 0 2

0 0 1 −2

0 0 0 0

0 0 0 0


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Hence, the eigenspace corresponding to λ1 = 1 is

V1 =

 s


0

1

0

0

 + t


−2

0

2

1


        s, t ∈ ⺢


Observe that the two vectors

0

1

0

0

 and


−2

0

2

1


are linearly independent and hence form a basis for Vλ1

. Since dim(Vλ1
) = 2, we

say that λ1 has geometric multiplicity equal to 2. Alternatively, we can write

Vλ1
= span




0

1

0

0

,


−2

0

2

1




Similarly, the eigenspaces corresponding to λ2 = 2 and λ3 = 3 are, respectively,

Vλ2
= span




0

5

1

0


 and Vλ3

= span




0

−5

0

1




In Example 3 the algebraic and geometric multiplicities of each eigenvalue are

equal. This is not the case in general. For example, if

A =
 

1 1

0 1

 
then the characteristic equation is (λ − 1)2 = 0. Thus, λ = 1 has algebraic multiplicity

2. However,

Vλ =
  

t

0

     t ∈ ⺢
 

so λ = 1 has geometric multiplicity 1.

Although eigenvectors are always nonzero, an eigenvalue can be zero. Also, as

mentioned at the beginning of this section, eigenvalues can be complex numbers.

These cases are illustrated in Example 4.

EXAMPLE 4 Find the eigenvalues of

A =
 0 0 0

0 0 −1

0 1 0


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Solution The characteristic equation is

det(A− λI ) =

      
−λ 0 0

0 −λ −1

0 1 −λ

      = −λ3 − λ = −λ(λ2 + 1) = 0

Thus, the eigenvalues are λ1 = 0,λ2 = i, and λ3 = −i. The corresponding eigen-

vectors are  1

0

0

  0

1

−i

 and

 0

1

i



A fact that will be useful in the next section has to do with the eigenvalues of a

square triangular matrix. For example, let

A =
 

2 4

0 −3

 
Since det(A− λI ) = 0 if and only if (2 − λ)(−3 − λ) = 0, we see that the eigenval-

ues of A are precisely the diagonal entries of A. In general, we have the following

result.

PROPOSITION 1 The eigenvalues of an n× n triangular matrix are the numbers on the diagonal.

Proof Let A be an n× n triangular matrix. By Theorem 13 of Sec. 1.6, the

characteristic polynomial is given by

det(A− λI ) = (a11 − λ)(a22 − λ) · · · (ann − λ)

Hence, det(A− λI ) = 0 if and only if λ1 = a11,λ2 = a22, . . . ,λn = ann.

Eigenvalues and Eigenvectors of Linear Operators

The definitions of eigenvalues and eigenvectors can be extended to linear operators.

DEFINITION 2 Eigenvalue and Eigenvector of a LinearOperator Let V be a vector space

and T:V −→ V be a linear operator. A number λ is an eigenvalue of T provided

that there is a nonzero vector v in V such that T (v) = λv. Every nonzero vector that

satisfies this equation is an eigenvector of T corresponding to the eigenvalue λ.

As an illustration define T: P2 → P2 by

T (ax2 + bx + c) = (−a + b + c)x2 + (−b − 2c)x − 2b − c
Observe that

T (−x2 + x + 1) = 3x2 − 3x − 3 = −3(−x2 + x + 1)
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so p(x) = −x2 + x + 1 is an eigenvector of T corresponding to the eigenvalue

λ = −3.

Example 5 is from ordinary differential equations.

EXAMPLE 5 Interpret the solutions to the equation

f  (x) = kf (x)

as an eigenvalue problem of a linear operator.

Solution Let D denote the collection of all real-valued functions of one variable that have

derivatives of all orders. Examples of such functions are polynomials, the trigono-

metric functions sin(x) and cos(x), and the natural exponential function ex on ⺢.

Define a linear operator T: D −→ D by

T (f (x)) = f  (x)

Then λ is an eigenvalue of T if there is a function f (x), not identically zero, such

that T (f (x)) = λf (x). That is, f (x) satisfies the differential equation

f  (x) = λf (x)

Nonzero solutions to this differential equation are eigenvectors of the operator T,

called eigenfunctions, corresponding to the eigenvalue λ. The general solution to

this equation is given by

f (x) = keλx

where k is an arbitrary constant. This class of functions is a model for exponential

growth and decay with extensive applications.

Fact Summary

Let A be an n× n matrix.

1. The number λ is an eigenvalue of A if and only if det(A− λI ) = 0.

2. The expression det(A− λI ) is a polynomial of degree n.

3. If λ is an eigenvalue of A and c is a nonzero scalar, then cλ is another

eigenvalue of A.

4. If λ is an eigenvalue of A, then the eigenspace

Vλ = {v ∈ ⺢n | Av = λv}
is a subspace of ⺢n.
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5. The eigenspace corresponding to λ is the null space of the matrix A− λI .

6. The eigenvalues of a square triangular matrix are the diagonal entries.

Exercise Set 5.1

In Exercises 1–6, a matrix A and an eigenvector v are

given. Find the corresponding eigenvalue directly by

solving Av = λv.

1. A =
 

3 0

1 3

 
v =

 
0

1

 
2. A =

 −1 1

0 −2

 
v =

 −1

1

 

3. A =
 −3 2 3

−1 −2 1

−3 2 3

 v =
 1

0

1


4. A =

 1 0 1

3 2 0

3 0 −1


v =

 − 4
3

1

4



5. A =


1 0 1 1

0 1 0 0

1 1 0 0

0 1 0 1



v =


−1

0

−1

1



6. A =


1 1 1 0

−1 −1 0 −1

−1 1 0 1

0 −1 −1 0



v =


0

1

−1

0



In Exercises 7–16, a matrix A is given.

a. Find the characteristic equation for A.

b. Find the eigenvalues of A.

c. Find the eigenvectors corresponding to each

eigenvalue.

d. Verify the result of part (c) by showing that

Avi = λivi .

7. A =
 −2 2

3 −3

 
8. A =

 −2 −1

−1 −2

 
9. A =

 
1 −2

0 1

 
10. A =

 
0 2

−1 −3

 

11. A =
 −1 0 1

0 1 0

0 2 −1


12. A =

 0 2 0

0 −1 1

0 0 1


13. A =

 2 1 2

0 2 −1

0 1 0


14. A =

 1 1 1

0 1 0

0 0 1



15. A =


−1 0 0 0

0 2 0 0

0 0 −2 0

0 0 0 4


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16. A =


3 2 3 −1

0 1 2 1

0 0 2 0

0 0 0 −1


17. Show that if λ2 + bλ + c is the characteristic

polynomial of the 2 × 2 matrix A, then

b = −tr(A) and c = det(A).

18. Let A be an invertible matrix. Show that if λ is

an eigenvalue of A, then 1/λ is an eigenvalue of

A−1.

19. Let A be an n× n matrix. Show that A is not

invertible if and only if λ = 0 is an eigenvalue

of A.

20. Let V be a vector space with dim(V ) = n and

T: V −→ V a linear operator. If λ is an

eigenvalue of T with geometric multiplicity n,

then show that every nonzero vector of V is an

eigenvector.

21. Let A be an idempotent matrix. Show that if λ is

an eigenvalue of A, then λ = 0 or λ = 1.

22. Show that A and At have the same eigenvalues.

Give an example to show A and At can have

different eigenvectors.

23. Show that if there is a positive integer n such that

An = 0, then λ = 0 is the only eigenvalue of A.

24. Let A =
 

1 0

0 −1

 
. Define an operator

T: M2×2 → M2×2 by

T (B) = AB − BA

a. Show that e =
 

0 1

0 0

 
is an eigenvector

corresponding to the eigenvalue λ = 2.

b. Show that f =
 

0 0

1 0

 
is an eigenvector

corresponding to the eigenvalue λ = −2.

25. Let A and B be n× n matrices with A invertible.

Show that AB and BA have the same eigenvalues.

26. Show that no such matrices A and B exist such

that

AB − BA = I

27. Show that the eigenvalues of a square triangular

matrix are the diagonal entries of the matrix.

28. Let λ be an eigenvalue of A. Use mathematical

induction to show that for all n in the set of all

natural numbers ⺞, if λ is an eigenvalue of A,

then λn is an eigenvalue of An. What can be said

about corresponding eigenvectors?

29. Let C = B−1AB. Show that if v is an eigenvector

of C corresponding to the eigenvalue λ, then Bv

is an eigenvector of A corresponding to λ.

30. Let A be an n× n matrix and suppose v1, . . . , vm
are eigenvectors of A. If S = span{v1, . . . , vm},
show that if v ∈ S, then Av ∈ S.

31. Let T: ⺢2 → ⺢
2 be the linear operator that

reflects a vector through the x axis. Find the

eigenvalues and corresponding eigenvectors for T.

32. Define a linear operator T: ⺢2 → ⺢
2 by

T

 
x

y

 
=
 
y

x

 
Show that the only eigenvalues of T are λ = ±1.

Find the corresponding eigenvectors.

33. Define a linear operator T: ⺢2 → ⺢
2 by

T

 
x

y

 
=
 

cos θ − sin θ

sin θ cos θ

  
x

y

 
That is, the action of T is a counterclockwise

rotation of a vector by a nonnegative angle θ.

Argue that if θ  = 0,π, then T has no real

eigenvalues; if θ = 0, then λ = 1 is an eigenvalue;

and if θ = π, then λ = −1 is an eigenvalue.

34. Let D denote the function space of all real-valued

functions that have two derivatives, and define a

linear operator T on D by

T (f ) = f   − 2f  − 3f

a. Show that for each k, the function f (x) = ekx

is an eigenfunction for the operator T.

b. Find the corresponding eigenvalues for each

eigenfunction f (x) = ekx .
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c. Find two nonzero functions f such that

f   (x)− 2f  (x)− 3f (x) = 0

35. Define a linear operator T: P2 → P2 by

T (ax2 + bx + c) = (a − b)x2 + cx
Define two ordered bases for P2 by

B = {x − 1, x + 1, x2} and B  = {x + 1, 1, x2}.

a. Find the matrix representation for T relative to

the basis B.

b. Find the matrix representation for T relative to

the basis B  .
c. Show that the eigenvalues for the matrices

found in parts (a) and (b) are the same.

5.2

ß

Diagonalization

Many applications of linear algebra involve factoring a matrix and writing it as the

product of other matrices with special properties. For example, in Sec. 1.7, we saw

how the LU factorization of a matrix can be used to develop efficient algorithms for

solving a linear system with multiple input vectors. In this section, we determine if a

matrix A has a factorization of the form

A = PDP−1

where P is an invertible matrix and D is a diagonal matrix. The ideas presented here

build on the concept of similarity of matrices, which we discussed in Sec. 4.5. Recall

that if A and B are n× n matrices, then A is similar to B if there exists an invertible

matrix P such that

B = P−1AP

If B is a diagonal matrix, then the matrix A is called diagonalizable. Observe that if

D is a diagonal matrix, then A is diagonalizable if either

D = P−1AP or A = PDP−1

for some invertible matrix P . One of the immediate benefits of diagonalizing a matrix

A is realized when computing powers of A. This is often necessary when one is solving

systems of differential equations. To see this, suppose that A is diagonalizable with

A = PDP−1

Then

A2 = (PDP−1)(PDP−1) = PD(P−1P )DP−1 = PD2P−1

Continuing in this way (see Exercise 27), we see that

Ak = PDkP−1

for any positive whole number k. Since D is a diagonal matrix, the entries of Dk are

simply the diagonal entries of D raised to the k power.

As we shall soon see, diagonalization of a matrix A depends on the number of

linearly independent eigenvectors, and fails when A is deficient in this way. We note

that a connection does not exist between a matrix being diagonalizable and the matrix

having an inverse. A square matrix has an inverse if and only if the matrix has only

nonzero eigenvalues (see Exercise 19 of Sec. 5.1).
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EXAMPLE 1 Let

A =
 1 2 0

2 1 0

0 0 −3


Show that A is diagonalizable with

P =
 1 1 0

−1 1 0

0 0 1


Solution The inverse matrix is given by

P−1 =


1
2

− 1
2

0
1
2

1
2

0

0 0 1


so that

P−1AP =

 −1 0 0

0 3 0

0 0 −3


Therefore, the matrix A is diagonalizable.

The diagonal entries of the matrix P−1AP, in Example 1, are the eigenvalues of

the matrix A, and the column vectors of P are the corresponding eigenvectors. For

example, the product of A and the first column vector of P is given by

A

 1

−1

0

 =
 1 2 0

2 1 0

0 0 −3

 1

−1

0

 = −1

 1

−1

0


Similarly, the second and third diagonal entries of P−1AP are the eigenvalues of A

with corresponding eigenvectors the second and third column vectors of P, respec-

tively. With Theorem 2 this idea is extended to n× n matrices.

THEOREM 2 An n× n matrix A is diagonalizable if and only if A has n linearly independent

eigenvectors. Moreover, if D = P−1AP , with D a diagonal matrix, then the diag-

onal entries of D are the eigenvalues of A and the column vectors of P are the

corresponding eigenvectors.

Proof First suppose that A has n linearly independent eigenvectors

v1, v2, . . . , vn, corresponding to the eigenvalues λ1,λ2, . . . ,λn. Note that the



5.2 Diagonalization 289

eigenvalues may not all be distinct. Let

v1 =


p11

p21
...

pn1

 v2 =


p12

p22
...

pn2

 . . . vn =


p1n

p2n
...

pnn


and define the n× n matrix P so that the ith column vector is vi . Since the column

vectors of P are linearly independent, by Theorem 9 of Sec. 2.3 the matrix P is

invertible. Next, since the ith column vector of the product AP is

APi = Avi = λivi
we have

AP =


λ1p11 λ2p12 . . . λnp1n

λ1p21 λ2p22 . . . λnp2n

...
...

. . .
...

λ1pn1 λ2pn2 . . . λnpnn



=


p11 p12 . . . p1n

p21 p22 . . . p2n

...
...

. . .
...

pn1 pn2 . . . pnn




λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn


= PD

where D is a diagonal matrix with diagonal entries the eigenvalues of A. So

AP = PD and multiplying both sides on the left by P−1 gives

P−1AP = D

The matrix A is similar to a diagonal matrix and is therefore diagonalizable.

Conversely, suppose that A is diagonalizable, that is, a diagonal matrix D and

an invertible matrix P exist such that

D = P−1AP

As above, denote the column vectors of the matrix P by v1, v2, . . . , vn and the

diagonal entries of D by λ1,λ2, . . . ,λn. Since AP = PD, for each i = 1, . . . , n,

we have
Avi = λivi

Hence, v1, v2, . . . , vn are eigenvectors of A. Since P is invertible, then by Theorem

9 of Sec. 2.3 the vectors v1, v2, . . . , vn are linearly independent.

EXAMPLE 2 Use Theorem 2 to diagonalize the matrix

A =
 1 0 0

6 −2 0

7 −4 2


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Solution Since A is a triangular matrix, by Proposition 1 of Sec. 5.1, the eigenvalues of the

matrix A are the diagonal entries

λ1 = 1 λ2 = −2 and λ3 = 2

The corresponding eigenvectors, which are linearly independent, are given, respec-

tively, by

v1 =
 1

2

1

 v2 =
 0

1

1

 and v3 =
 0

0

1


Therefore, by Theorem 2, D = P−1AP , where

D =
 1 0 0

0 −2 0

0 0 2

 and P =
 1 0 0

2 1 0

1 1 1


To verify that D = P−1AP , we can avoid finding P−1 by showing that

PD = AP

In this case,

PD =
 1 0 0

2 1 0

1 1 1

 1 0 0

0 −2 0

0 0 2

 =
 1 0 0

2 −2 0

1 −2 2


=
 1 0 0

6 −2 0

7 −4 2

 1 0 0

2 1 0

1 1 1


= AP

EXAMPLE 3 Let

A =
 0 1 1

1 0 1

1 1 0

 and B =
 −1 1 0

0 −1 1

0 0 2


Show that A is diagonalizable but that B is not diagonalizable.

Solution To find the eigenvalues of A, we solve the characteristic equation

det(A− λI ) = det

 −λ 1 1

1 −λ 1

1 1 −λ


= −(λ + 1)2(λ − 2) = 0

Thus, the eigenvalues of A are λ1 = −1, with algebraic multiplicity 2, and λ2 = 2,

with algebraic multiplicity 1. To find the eigenvectors, we find the null space of
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A− λI for each eigenvalue. For λ1 = −1 we reduce the matrix 1 1 1

1 1 1

1 1 1

 to

 1 1 1

0 0 0

0 0 0


Hence,

N(A+ I ) = span


 −1

1

0

,
 −1

0

1


In a similar manner we find

N(A− 2I ) = span


 1

1

1


Since the three vectors

 −1

1

0

,
 −1

0

1

, and

 1

1

1

 are linearly independent,

by Theorem 2 the matrix A is diagonalizable.

Using the same approach, we find that B has the same characteristic polynomial

and hence the same eigenvalues. However, in this case

N(B + I ) = span


 1

0

0

 and N(B − 2I ) = span


 1

3

9


Since B does not have three linearly independent eigenvectors, by Theorem 2, B

is not diagonalizable.

The matrix P that diagonalizes an n× n matrix A is not unique. For example, if

the columns of P are permuted, then the resulting matrix also diagonalizes A. As an

illustration, the matrix A of Example 3 is diagonalized by

P =
 −1 −1 1

1 0 1

0 1 1

 with P−1AP =
 −1 0 0

0 −1 0

0 0 2


However, if Q is the matrix obtained from interchanging columns 2 and 3 of P , then

Q also diagonalizes A, with

Q−1AQ =
 −1 0 0

0 2 0

0 0 −1


Notice, in this case, that the second and third diagonal entries are also interchanged.

Theorem 3 gives sufficient conditions for a matrix to be diagonalizable.
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THEOREM 3 Let A be an n× n matrix, and let λ1,λ2, . . . ,λn be distinct eigenvalues with

corresponding eigenvectors v1, v2, . . . , vn. Then the set {v1, v2, . . . , vn} is linearly

independent.

Proof The proof is by contradiction. Assume that λ1,λ2, . . . ,λn are distinct

eigenvalues of A with corresponding eigenvectors v1, v2, . . . , vn, and assume that

the set of eigenvectors is linearly dependent. Then by Theorem 5 of Sec. 2.3,

at least one of the vectors can be written as a linear combination of the others.

Moreover, the eigenvectors can be reordered so that v1, v2, . . . , vm, with m < n,

are linearly independent, but v1, v2, . . . , vm+1 are linearly dependent with vm+1 a

nontrivial linear combination of the first m vectors. Therefore, there are scalars

c1, . . . , cm, not all 0, such that

vm+1 = c1v1 + · · · + cmvm
This is the statement that will result in a contradiction. We multiply the last equation

by A to obtain

Avm+1 = A(c1v1 + · · · + cmvm)
= c1A(v1)+ · · · + cmA(vm)

Further, since vi is an eigenvector corresponding to the eigenvalue λi , then Avi =
λivi , and after substitution in the previous equation, we have

λm+1vm+1 = c1λ1v1 + · · · + cmλmvm
Now multiplying both sides of vm+1 = c1v1 + · · · + cmvm by λm+1, we also have

λm+1vm+1 = c1λm+1v1 + · · · + cmλm+1vm

By equating the last two expressions for λm+1vm+1 we obtain

c1λ1v1 + · · · + cmλmvm = c1λm+1v1 + · · · + cmλm+1vm

or equivalently,

c1(λ1 − λm+1)v1 + · · · + cm(λm − λm+1)vm = 0
Since the vectors v1, v2, . . . , vm are linearly independent, the only solution to the

previous equation is the trivial solution, that is,

c1(λ1 − λm+1) = 0 c2(λ2 − λm+1) = 0 . . . cm(λm − λm+1) = 0

Since all the eigenvalues are distinct, we have

λ1 − λm+1  = 0 λ2 − λm+1  = 0 . . . λm − λm+1  = 0

and consequently

c1 = 0 c2 = 0 . . . cm = 0

This contradicts the assumption that the nonzero vector vm+1 is a nontrivial linear

combination of v1, v2, . . . , vm.
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COROLLARY 1 If A is an n× n matrix with n distinct eigenvalues, then A is diagonalizable.

EXAMPLE 4 Show that every 2 × 2 real symmetric matrix is diagonalizable.

Solution Recall that the matrix A is symmetric if and only if A = At . Every 2 × 2 symmetric

matrix has the form

A =
 
a b

b d

 
See Example 5 of Sec. 1.3. The eigenvalues are found by solving the characteristic

equation

det(A− λI ) =
    a − λ b

b d − λ

    = λ2 − (a + d)λ + ad − b2 = 0

By the quadratic formula, the eigenvalues are

λ = a + d ±
 
(a − d)2 + 4b2

2

Since the discriminant (a − d)2 + 4b2 ≥ 0, the characteristic equation has either one

or two real roots. If (a − d)2 + 4b2 = 0, then (a − d)2 = 0 and b2 = 0, which holds

if and only if a = d and b = 0. Hence, the matrix A is diagonal. If

(a − d)2 + 4b2 > 0, then A has two distinct eigenvalues; so by Corollary 1, the

matrix A is diagonalizable.

By Theorem 2, if A is diagonalizable, then A is similar to a diagonal matrix

whose eigenvalues are the same as the eigenvalues of A. In Theorem 4 we show that

the same can be said about any two similar matrices.

THEOREM 4 Let A and B be similar n× n matrices. Then A and B have the same eigenvalues.

Proof Since A and B are similar matrices, there is an invertible matrix P such

that B = P−1AP . Now

det(B − λI ) = det(P−1AP − λI )

= det(P−1(AP − P (λI )))
= det(P−1(AP − λIP ))

= det(P−1(A− λI )P )
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Applying Theorem 15 and Corollary 1 of Sec. 1.6, we have

det(B − λI ) = det(P−1) det(A− λI ) det(P )

= det(P−1) det(P ) det(A− λI )

= det(A− λI )

Since the characteristic polynomials of A and B are the same, their eigenvalues

are equal.

EXAMPLE 5 Let

A =
 

1 2

0 3

 
and P =

 
1 1

1 2

 
Verify that the matrices A and B = P−1AP have the same eigenvalues.

Solution The characteristic equation for A is

det(A− λI ) = (1 − λ)(3 − λ) = 0

so the eigenvalues of A are λ1 = 1 and λ2 = 3. Since

B = P−1AP =
 

2 −1

−1 1

  
1 2

0 3

  
1 1

1 2

 
=
 

3 4

0 1

 
the characteristic equation for B is

det(B − λI ) = (1 − λ)(3 − λ) = 0

and hence, the eigenvalues of B are also λ1 = 1 and λ2 = 3.

In Sec. 4.5, we saw that a linear operator on a finite dimensional vector space

can have different matrix representations depending on the basis used to construct the

matrix. However, in every case the action of the linear operator on a vector remains

the same. These matrix representations also have the same eigenvalues.

COROLLARY 2 Let V be a finite dimensional vector space, T: V −→ V a linear operator, and B1

and B2 ordered bases for V . Then [T ]B1
and [T ]B2

have the same eigenvalues.

Proof Let P be the transition matrix from B2 to B1. Then by Theorem 15 of

Sec. 4.5, P is invertible and [T ]B2
= P−1[T ]B1

P . Therefore, by Theorem 4, [T ]B1

and [T ]B2
have the same eigenvalues.
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Recall that in Example 3, the characteristic polynomial for A and B is

−(λ + 1)2(λ − 2). For the matrix A the eigenspaces corresponding to λ1 = −1

and λ2 = 2 are

Vλ1
= span


 −1

1

0

,
 −1

0

1

 and Vλ2
= span


 1

1

1


whereas the eigenspaces for B are

Vλ1
= span


 1

0

0

 and Vλ2
= span


 1

3

9


Notice that for the matrix A, we have dim(Vλ1

) = 2 and dim(Vλ2
) = 1, which,

respectively, are equal to the corresponding algebraic multiplicities in the charac-

teristic polynomial. This is not the case for the matrix B, since dim(Vλ1
) = 1 and

the corresponding algebraic multiplicity is 2. Moreover, for A, we have dim(Vλ1
)+

dim(Vλ2
) = 3 = n.

The general result describing this situation is given, without proof, in Theorem 5.

THEOREM 5 Let A be an n× n matrix, and suppose that the characteristic polynomial is

c(x − λ1)
d1(x − λ2)

d2 · · · (x − λk)
dk . The matrix A is diagonalizable if and only if

di = dim(Vλi ), for each i = 1, . . . , n, and

d1 + d2 + · · · + dk = dim(Vλ1
)+ dim(Vλ2

)+ · · · + dim(Vλk ) = n

To summarize Theorem 5, an n× n matrix A is diagonalizable if and only if the

algebraic multiplicity for each eigenvalue is equal to the dimension of the correspond-

ing eigenspace, which is the corresponding geometric multiplicity, and the common

sum of these multiplicities is n.

Diagonalizable Linear Operators

In Theorem 12 of Sec. 4.4, we established that every linear operator on a finite

dimensional vector space has a matrix representation. The particular matrix for the

operator depends on the ordered basis used. From Corollary 2, we know that all

matrix representations for a given linear operator are similar. This allows us to make

the following definition.

DEFINITION 1 Diagonalizable Linear Operator Let V be a finite dimensional vector space

and T: V −→ V a linear operator. The operator T is called diagonalizable if there

is a basis B for V such that the matrix for T relative to B is a diagonal matrix.
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Now suppose that V is a vector space of dimension n, T: V −→ V a linear

operator, and B = {v1, v2, . . . , vn} a basis for V consisting of n eigenvectors. Then

[T ]B =
 T (v1)


B

 T (v2)


B

· · ·
 T (vn)


B


Since for each i = 1, . . . , n the vector vi is an eigenvector, then T (vi ) = λivi , where

λi is the corresponding eigenvalue. Since for each i, the basis vector vi can be written

uniquely as a linear combination of v1, . . . , vn, we have

vi = 0v1 + · · · + 0vi−1 + vi + 0vi+1 + · · · + 0vn

Then the coordinate vector of T (vi ) relative to B is

[T (vi )]B =



0
...

0

λi
0
...

0


Therefore, [T ]B is a diagonal matrix. Alternatively, we can say that T is diagonalizable

if there is a basis for V consisting of eigenvectors of T. As an illustration, define the

linear operator T: ⺢2 −→ ⺢
2 by

T

  
x

y

  
=
 

2x

x + y
 

Observe that

v1 =
 

1

1

 
and v2 =

 
0

1

 
are eigenvectors of T with corresponding eigenvalues λ1 = 2 and λ2 = 1, respectively.

Let B = {v1, v2}, so that

[T ]B = [ [T (v1)]B [T (v2)]B] =
 

2 0

0 1

 

is a diagonal matrix.

In practice it is not always so easy to determine the eigenvalues and eigenvectors

of T. However, if B is any basis for V such that [T ]B is diagonalizable with diagonal-

izing matrix P , then T is diagonalizable. That is, if B  is the basis consisting of the

column vectors of P , then [T ]B  = P−1[T ]BP is a diagonal matrix. This procedure

is illustrated in Example 6.
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EXAMPLE 6 Define the linear operator T: ⺢3 −→ ⺢
3 by

T

 x1

x2

x3

 =
 3x1 − x2 + 2x3

2x1 + 2x3

x1 + 3x2


Show that T is diagonalizable.

Solution Let B = {e1, e2, e3} be the standard basis for ⺢3. Then the matrix for T relative to

B is

[T ]B =
 3 −1 2

2 0 2

1 3 0


Observe that the eigenvalues of [T ]B are λ1 = −2,λ2 = 4, and λ3 = 1 with cor-

responding eigenvectors, respectively,

v1 =
 1

1

−2

 v2 =
 1

1

1

 and v3 =
 −5

4

7


Now let B  = {v1, v2, v3} and

P =
 1 1 −5

1 1 4

−2 1 7


Then

[T ]B  = 1

9

 −1 4 −3

5 1 3

−1 1 0

 3 −1 2

2 0 2

1 3 0

 1 1 −5

1 1 4

−2 1 7

 =
 −2 0 0

0 4 0

0 0 1



Fact Summary

Let A be an n× n matrix.

1. If A is diagonalizable, then A = PDP−1 or equivalently D = P−1AP . The

matrix D is a diagonal matrix with diagonal entries the eigenvalues of A.

The matrix P is invertible whose column vectors are the corresponding

eigenvectors.

2. If A is diagonalizable, then the diagonalizing matrix P is not unique. If the

columns of P are permuted, then the diagonal entries of D are permuted in

the same way.

3. The matrix A is diagonalizable if and only if A has n linearly independent

eigenvectors.

4. If A has n distinct eigenvalues, then A is diagonalizable.
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5. Every 2× 2 real symmetric matrix is diagonalizable and has real

eigenvalues.

6. Similar matrices have the same eigenvalues.

7. If A is diagonalizable, then the algebraic multiplicity for each eigenvalue is

equal to the dimension of the corresponding eigenspace (the geometric

multiplicity). The common sum of these multiplicities is n.

8. Let T: V −→ V be a linear operator on a finite dimensional vector

space V . If V has an ordered basis B consisting of eigenvectors of T, then

[T ]B is a diagonal matrix.

9. Let T: V −→ V be a linear operator and B1 and B2 ordered bases for V.

Then [T ]B1
and [T ]B2

have the same eigenvalues.

Exercise Set 5.2

In Exercises 1–4, show that A is diagonalizable, using

the matrix P .

1. A =

 
1 0

−2 −3

 
P =

 
−2 0

1 1

 

2. A =

 
−1 1

−3 −5

 

P =

 
1 −1

−3 1

 

3. A =


 1 0 0

2 −2 0

0 2 0




P =


 0 0 3

2

0 −1 1

1 1 2




4. A =


 −1 2 2

0 2 0

2 −1 2




P =


 1 −2 −2

0 −4 0

2 1 1




In Exercises 5–18, find the eigenvalues, and if

necessary the corresponding eigenvectors, of A and

determine whether A is diagonalizable.

5. A =

 
−1 1

0 −2

 

6. A =

 
−2 −3

−2 −2

 

7. A =

 
−1 −1

0 −1

 

8. A =

 
−3 −2

2 1

 

9. A =

 
0 1

0 1

 

10. A =

 
2 2

−2 −2

 

11. A =


 2 2 0

2 2 2

0 0 3




12. A =


 −1 3 2

−1 2 3

−1 2 3




13. A =


 2 1 1

2 −1 −1

−1 1 2



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14. A =
 −1 0 0

−1 2 −1

0 −1 2


15. A =

 1 0 0

−1 0 0

−1 0 0


16. A =

 0 1 0

1 0 −1

0 −1 0



17. A =


0 0 0 0

1 0 1 0

0 1 0 1

1 1 1 1



18. A =


1 0 0 1

0 0 1 1

1 0 0 1

0 1 0 1


In Exercises 19–26, diagonalize the matrix A.

19. A =
 

2 0

−1 −1

 

20. A =
 −2 1

1 2

 

21. A =
 1 0 0

0 −2 1

1 −2 1



22. A =
 0 −1 2

0 2 2

0 0 1



23. A =
 −1 0 0

−1 1 0

0 0 1


24. A =

 1 0 0

0 0 0

0 −1 1



25. A =


1 0 1 0

0 1 0 0

1 0 1 1

0 0 0 1



26. A =


1 0 1 1

0 1 0 0

1 1 1 1

1 1 1 1


27. Suppose A is diagonalizable with D = P−1AP.

Show that for any positive integer k,

Ak = PDkP−1

28. Let

A =
 

2 1

2 1

 
Factor A in the form A = PDP−1, where D is a

diagonal matrix. Then find A6. See Exercise 27.

29. Let

A =
 3 −1 −2

2 0 −2

2 −1 −1


Factor A in the form A = PDP−1, where D is a

diagonal matrix. Then find Ak , for any positive

integer k. See Exercise 27.

30. Suppose A is an n× n matrix that is diagonalized

by P. Find a matrix that diagonalizes At .

31. Suppose A is an n× n matrix that is diago-

nalizable. Show that if B is a matrix similar to A,

then B is diagonalizable.

32. Show that if A is invertible and diagonalizable,

then A−1 is diagonalizable. Find a 2 × 2 matrix

that is not a diagonal matrix, is not invertible, but

is diagonalizable.

33. Suppose A is an n× n matrix and λ is an

eigenvalue of multiplicity n. Show that A is

diagonalizable if and only if A = λI.

34. An n× n matrix A is called nilpotent if there is a

positive integer k such that Ak = 0. Show that a

nonzero nilpotent matrix is not diagonalizable.

35. Define a linear operator T: P2 → P2 by

T (p(x)) = p (x)

a. Find the matrix A for T relative to the

standard basis {1, x, x2}.
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b. Find the matrix B for T relative to the basis

{x, x − 1, x2}.
c. Show the eigenvalues of A and B are the same.

d. Explain why T is not diagonalizable.

36. Define a vector space V = span{sin x, cos x} and

a linear operator T: V → V by T (f (x)) = f  (x).
Show that T is diagonalizable.

37. Define a linear operator T: ⺢3 → ⺢
3 by

T

 x1

x2

x3

 =
 2x1 + 2x2 + 2x3

−x1 + 2x2 + x3

x1 − x2



Show that T is not diagonalizable.

38. Define a linear operator T: ⺢3 → ⺢
3 by

T

 x1

x2

x3

 =
 4x1 + 2x2 + 4x3

4x1 + 2x2 + 4x3

4x3


Show that T is diagonalizable.

39. Let T be a linear operator on a finite dimensional

vector space, A the matrix for T relative to a

basis B1, and B the matrix for T relative to a

basis B2. Show that A is diagonalizable if and

only if B is diagonalizable.

5.3

ß

Application: Systems of Linear Differential
Equations

In Sec. 3.5 we considered only a single differential equation where the solution

involved a single function. However, in many modeling applications, an equation

that involves the derivatives of only one function is not sufficient. It is more likely

that the rate of change of a variable quantity will be linked to other functions outside

itself. This is the fundamental idea behind the notion of a dynamical system. One of

the most familiar examples of this is the predator-prey model. For example, suppose

we wish to create a model to predict the number of foxes and rabbits in some habitat.

The growth rate of the foxes is dependent on not only the number of foxes but also the

number of rabbits in their territory. Likewise, the growth rate of the rabbit population

in part is dependent on their current number, but is obviously mitigated by the number

of foxes in their midst. The mathematical model required to describe this relationship

is a system of differential equations of the form 
y  

1(t) = f (t, y1, y2)

y  
2(t) = g(t, y1, y2)

In this section we consider systems of linear differential equations. Problems such as

predator-prey problems involve systems of nonlinear differential equations.

Uncoupled Systems

At the beginning of Sec. 3.5 we saw that the differential equation given by

y  = ay

has the solution y(t) = Ceat , where C = y(0). An extension of this to two dimensions

is the system of differential equations 
y  

1 = ay1

y  
2 = by2
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where a and b are constants and y1 and y2 are functions of a common variable t . This

system is called uncoupled since y  
1 and y  

2 depend only on y1 and y2, respectively.

The general solution of the system is found by solving each equation separately and

is given by

y1(t) = C1e
at and y2(t) = C2e

bt

where C1 = y1(0) and C2 = y2(0).

The previous system of two differential equations can also be written in matrix

form. To do this, define

y =
 
y  

1

y  
2

 
A =

 
a 0

0 b

 
and y =

 
y1

y2

 
Then the uncoupled system above is equivalent to the matrix equation

y = Ay

The matrix form of the solution is given by

y(t) =
 
eat 0

0 ebt

 
y(0)

where y(0) =
 
y1(0)

y2(0)

 
As an illustration, consider the system of differential equations 

y  
1 = −y1

y  
2 = 2y2

In matrix form the system is written as

y = Ay =
 −1 0

0 2

 
y

The solution to the system is

y =
 
e−t 0

0 e2t

 
y(0)

that is,

y1(t) = y1(0)e
−t and y2(t) = y2(0)e

2t

The Phase Plane

In the case of a single differential equation, it is possible to sketch particular solutions

in the plane to see explicitly how y(t) depends on the independent variable t . However,

for a system of two differential equations, the solutions are vectors which depend on

a common parameter t , which is usually time. A particular solution can be viewed as

a parameterized curve or trajectory in the plane, called the phase plane. Shown in

Fig. 1 are trajectories for several particular solutions of the system 
y  

1 = −y1

y  
2 = 2y2
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Figure 1

The vectors shown in Fig. 1 comprise the direction field for the system and

describe the motion along a trajectory for increasing t . This sketch is called the phase

portrait for the system. Phase portraits are usually drawn without the direction field.

We have done so here to give a more complete picture of the system and its solutions.

Diagonalization

In the previous example, the matrix A is diagonal, as this is the case for any uncoupled

system of differential equations. We now consider more general systems of the form

y = Ay

for which A is not a diagonal matrix, but is diagonalizable with real distinct eigen-

values. To solve problems of this type, our strategy is to reduce the system y = Ay

to one that is uncoupled.

To develop this idea, let A be a 2 × 2 diagonalizable matrix with distinct real

eigenvalues. Consider the system of differential equations given by

y = Ay

Since A is diagonalizable, then by Theorem 2 of Sec. 5.2 there is a diagonal matrix

D and an invertible matrix P such that

D = P−1AP

The diagonal matrix D is given by

D =
 

λ1 0

0 λ2

 
where λ1 and λ2 are the eigenvalues of A. The column vectors of P are the corre-

sponding eigenvectors. To uncouple the system y = Ay, let

w = P−1y
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Differentiating both sides of the last equation gives

w = (P−1y) = P−1y 

= P−1Ay

= P−1(PDP−1)y = (P−1P )(DP−1)y

= DP−1y

= Dw

Since D is a diagonal matrix, the original linear system y = Ay is transformed into

the uncoupled linear system

w = P−1APw = Dw

The general solution of this new system is given by

w(t) =
 
eλ1t 0

0 eλ2t

 
w(0)

Now, to find the solution to the original system, we again use the substitution w =
P−1y to obtain

P−1y(t) =
 
eλ1t 0

0 eλ2t

 
P−1y(0)

Hence, the solution to the original system is

y(t) = P

 
eλ1t 0

0 eλ2t

 
P−1y(0)

EXAMPLE 1 Find the general solution to the system of differential equations 
y  

1 = −y1

y  
2 = 3y1 + 2y2

Sketch several trajectories in the phase plane.

Solution The differential equation is given in matrix form by

y = Ay =
 −1 0

3 2

 
y

After solving the characteristic equation det(A− λI ) = 0, we know that the eigen-

values of A are λ1 = −1 and λ2 = 2 with corresponding eigenvectors

v1 =
 

1

−1

 
and v2 =

 
0

1

 
Hence, the matrix P which diagonalizes A (see Theorem 2 of Sec. 5.2) is

P =
 

1 0

−1 1

 
with P−1 =

 
1 0

1 1
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The related uncoupled system is then given by

w = P−1APw

=
 

1 0

1 1

  −1 0

3 2

  
1 0

−1 1

 
w

=
 −1 0

0 2

 
w

whose general solution is

w(t) =
 
e−t 0

0 e2t

 
w(0)

Hence, the solution to the original system is given by

y(t) =
 

1 0

−1 1

  
e−t 0

0 e2t

  
1 0

1 1

 
y(0)

=
 

e−t 0

−e−t + e2t e2t

 
y(0)

The general solution can also be written in the form

y1(t) = y1(0)e
−t and y2(t) = −y1(0)e

−t +  
y1(0)+ y2(0)

 
e2t

The phase portrait is shown in Fig. 2. The signs of the eigenvalues and the

direction of the corresponding eigenvectors help to provide qualitative information

about the trajectories in the phase portrait. In particular, notice in Fig. 2 that along

the line spanned by the eigenvector v1 =
 

1

−1

 
the flow is directed toward the

origin. This is so because the sign of λ1 = −1 is negative. On the other hand, flow

along the line spanned by v2 =
 

0

1

 
is away from the origin, since in this case

λ2 = 2 is positive.

Figure 2



5.3 Application: Systems of Linear Differential Equations 305

In Example 2 we describe the solution for a system when the eigenvalues have

the same sign.

EXAMPLE 2 Find the general solution to the system of differential equations 
y  

1 = y1 + 3y2

y  
2 = 2y2

Solution The system of differential equations is given in matrix form by

y = Ay =
 

1 3

0 2

 
y

The eigenvalues of A are λ1 = 1 and λ2 = 2 with corresponding eigenvectors

v1 =
 

1

0

 
and v2 =

 
3

1

 

The matrix that diagonalizes A is then

P =
 

1 3

0 1

 
with P−1 =

 
1 −3

0 1

 
The uncoupled system is given by

w =
 

1 −3

0 1

  
1 3

0 2

  
1 3

0 1

 
w

=
 

1 0

0 2

 
w

with general solution

w(t) =
 
et 0

0 e2t

 
w(0)

Hence, the solution to the original system is given by

y(t) =
 

1 3

0 1

  
et 0

0 e2t

  
1 −3

0 1

 
y(0)

=
 
et −3et + 3e2t

0 e2t

 
y(0)

The general solution can also be written in the form

y1(t) =  
y1(0)− 3y2(0)

 
et + 3y2(0)e

2t and y2(t) = y2(0)e
2t
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The phase portrait is shown in Fig. 3. For this example, since λ1 and λ2 are both

positive, the flow is oriented outward along the lines spanned by v1 and v2.

Figure 3

The process described for solving a system of two equations can be extended to

higher dimensions provided that the matrix A of the system is diagonalizable.

EXAMPLE 3 Find the general solution to the system of differential equations
y  

1 = −y1

y  
2 = 2y1 + y2

y  
3 = 4y1 + y2 + 2y3

Solution The system of differential equations in matrix form is

y = Ay =
 −1 0 0

2 1 0

4 1 2

 y
Since A is triangular, the eigenvalues of A are the diagonal entries λ1 = −1, λ2 = 1,

and λ3 = 2 with corresponding eigenvectors

v1 =
 −1

1

1

 v2 =
 0

1

−1

 and v3 =
 0

0

2


respectively. Since A is a 3 × 3 matrix with three distinct eigenvalues, by Corollary

1 of Sec. 5.2, A is diagonalizable. Now, by Theorem 2 of Sec. 5.2, the diagonalizing

matrix is given by

P =
 −1 0 0

1 1 0

1 −1 2

 with P−1 =
 −1 0 0

1 1 0

1 1
2

1
2


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The related uncoupled system then becomes

w =
 −1 0 0

1 1 0

1 1
2

1
2

 −1 0 0

2 1 0

4 1 2

 −1 0 0

1 1 0

1 −1 2

w
=
 −1 0 0

0 1 0

0 0 2

w
with general solution

w(t) =
 e−t 0 0

0 et 0

0 0 e2t

w(0)
Hence, the solution to the original system is given by

y(t) =
 −1 0 0

1 1 0

1 −1 2

 e−t 0 0

0 et 0

0 0 e2t

 −1 0 0

1 1 0

1 1
2

1
2

 y(0)
=
 e−t 0 0

−e−t + et et 0

−e−t − et + 2e2t −et + e2t e2t

 y(0)
The general solution can also be written in the form

y1(t) = y1(0)e
−t y2(t) = −y1(0)e

−t + [y1(0)+ y2(0)]e
t and

y3(t) = −y1(0)e
−t − [y1(0)+ y2(0)]e

t + [2y1(0)+ y2(0)+ y3(0)]e
2t .

Example 4 gives an illustration of how a linear system of differential equations

can be used to model the concentration of salt in two interconnected tanks.

EXAMPLE 4 Suppose that two brine storage tanks are connected with two pipes used to exchange

solutions between them. The first pipe allows water from tank 1 to enter tank 2 at

a rate of 5 gal/min. The second pipe reverses the process allowing water to flow

from tank 2 to tank 1, also at a rate of 5 gal/min. Initially, the first tank contains

a well-mixed solution of 8 lb of salt in 50 gal of water, while the second tank

contains 100 gal of pure water.

1 2

Figure 4
a. Find the linear system of differential equations to describe the amount of salt

in each tank at time t .

b. Solve the system of equations by reducing it to an uncoupled system.
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c. Determine the amount of salt in each tank as t increases to infinity and explain

the result.

Solution a. Let y1(t) and y2(t) be the amount of salt (in pounds) in each tank after t min.

Thus, y  
1(t) and y  

2(t) are, respectively, the rates of change for the amount of

salt in tank 1 and tank 2. To develop a system of equations, note that for each

tank

Rate of change of salt = rate in − rate out

Since the volume of brine in each tank remains constant, for tank 1, the rate in

is 5
100
y2(t) while the rate out is 5

50
y1(t). For tank 2, the rate in is 5

50
y1(t) while

the rate out is 5
100
y2(t). The system of differential equations is then given by 

y  
1(t)= 5

100
y2(t)− 5

50
y1(t)

y  
2(t)= 5

50
y1(t)− 5

100
y2(t)

that is,

 
y  

1(t)= − 1
10
y1(t)+ 1

20
y2(t)

y  
2(t)= 1

10
y1(t)− 1

20
y2(t)

Since the initial amounts of salt in tank 1 and tank 2 are 8 and 0 lb, respectively,

the initial conditions on the system are y1(0) = 8 and y2(0) = 0.

b. The system of equations in matrix form is given by

y =
 

− 1
10

1
20

1
10

− 1
20

 
y with y(0) =

 
8

0

 

The eigenvalues of the matrix are λ1 = − 3
20

and λ2 = 0 with corresponding

eigenvectors

 −1

1

 
and

 
1

2

 
. Thus, the matrix that uncouples the system

is

P =
 −1 1

1 2

 
with P−1 =

 
− 2

3
1
3

1
3

1
3

 
The uncoupled system is then given by

w =
 

− 2
3

1
3

1
3

1
3

  
− 1

10
1
20

1
10

− 1
20

  −1 1

1 2

 
w

=
 

− 3
20

0

0 0

 
w

The solution to the uncoupled system is

w(t) =
 
e− 3

20 t 0

0 1

 
w(0)
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Hence, the solution to the original system is given by

y(t) =
 −1 1

1 2

  
e− 3

20 t 0

0 1

  − 2
3

1
3

1
3

1
3

 
y(0)

= 1

3

 
2e− 3

20 t + 1 −e− 3
20 t + 1

−2e− 3
20 t + 2 e− 3

20 t + 2

  
8

0

 

= 8

3

 
2e− 3

20 t + 1

−2e− 3
20 t + 2

 
c. The solution to the system in equation form is given by

y1(t) = 8

3

 
2e− 3

20 t + 1
 

and y2(t) = 8

3

 
−2e− 3

20 t + 2
 

To find the amount of salt in each tank as t goes to infinity, we compute the

limits

lim
t→∞

8

3

 
2e− 3

20 t + 1
 

= 8

3
(0 + 1) = 8

3
and

lim
t→∞

8

3

 
−2e− 3

20 + 2
 

= 8

3
(0 + 2) = 16

3
These values make sense intuitively as we expect that the 8 lb of salt should

eventually be thoroughly mixed, and divided proportionally between the two

tanks in a ratio of 1 : 2.

Exercise Set 5.3

In Exercises 1–6, find the general solution to the

system of differential equations.

1.

 
y  

1 = −y1 + y2

y  
2 = − 2y2

2.

 
y  

1 = −y1 + 2y2

y  
2 = y1

3.

 
y  

1 = y1 − 3y2

y  
2 = −3y1 + y2

4.

 
y  

1 = y1 − y2

y  
2 = −y1 + y2

5.


y  

1 = −4y1 − 3y2 − 3y3

y  
2 = 2y1 + 3y2 + 2y3

y  
3 = 4y1 + 2y2 + 3y3

6.


y  

1 = −3y1 − 4y2 − 4y3

y  
2 = 7y1 + 11y2 + 13y3

y  
3 = −5y1 − 8y2 − 10y3

In Exercises 7 and 8, solve the initial-value problem.

7.

 
y  

1 = −y1 y1(0) = 1 y2(0) = −1

y  
2 = 2y1 + y2
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8.


y  

1 = 5y1 − 12y2 + 20y3

y  
2 = 4y1 − 9y2 + 16y3

y  
3 = 2y1 − 4y2 + 7y3

y1(0) = 2 y2(0) = −1 y3(0) = 0

9. Suppose that two brine storage tanks are

connected with two pipes used to exchange

solutions between them. The first pipe allows

water from tank 1 to enter tank 2 at a rate of

1 gal/min. The second pipe reverses the process,

allowing water to flow from tank 2 to tank 1, also

at a rate of 1 gal/min. Initially, the first tank

contains a well-mixed solution of 12 lb of salt in

60 gal of water, while the second tank contains

120 gal of pure water.

a. Find the linear system of differential equations

to describe the amount of salt in each tank at

time t .

b. Solve the system of equations by reducing it to

an uncoupled system.

c. Determine the amount of salt in each tank as t

increases to infinity and explain the result.

10. On a cold winter night when the outside

temperature is 0 degrees Fahrenheit (0oF) at

9:00 p.m. the furnace in a two-story home fails.

Suppose the rates of heat flow between the

upstairs, downstairs, and outside are as shown in

the figure. Further suppose the temperature of the

first floor is 70
◦
F and that of the second floor is

60
◦
F when the furnace fails.

1

0

2

0.1

0.1

0.5

0.5

0.2

0.2

a. Use the balance law

Net rate of change = rate in − rate out

to set up an initial-value problem to model the

heat flow.

b. Solve the initial-value problem found in

part (a).

c. Compute how long it takes for each floor to

reach 32
◦
F.

5.4

ß

Application: Markov Chains

In probability theory a Markov process refers to a type of mathematical model used

to analyze a sequence of random events. A critical factor when computing the proba-

bilities of a succession of events is whether the events are dependent on one another.

For example, each toss of a fair coin is an independent event as the coin has no mem-

ory of a previous toss. A Markov process is useful in describing the tendencies of

conditionally dependent random events, where the likelihood of each event depends

on what happened previously.

As an illustration, we consider a simple weather model based on the two obser-

vations that
Table 1

Sunny Cloudy

Sunny 0.7 0.5

Cloudy 0.3 0.5

1. If today is sunny, then there is a 70 percent chance that tomorrow will be sunny.

2. If today is cloudy, then there is a 50 percent chance that tomorrow will be cloudy.

The conditional probabilities for the weather tomorrow, given the weather for

today, are given in Table 1.

The column headings in Table 1 describe today’s weather, and the row headings

the weather for tomorrow. For example, the probability that a sunny day today is
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followed by another sunny day tomorrow is 0.7, and the probability that a sunny day

today is followed by a cloudy day tomorrow is 0.3. Notice that the column sums are

both 1, since, for example, it is certain that a sunny day today is followed by either

a sunny day or a cloudy day tomorrow.

In a Markov process, these observations are applied iteratively, giving us the

ability to entertain questions such as, If today is sunny, what is the probability that it

will be sunny one week from today?

State Vectors and TransitionMatrices

To develop the Markov process required to make predictions about the weather using

the observations above, we start with a vector v =
 
v1

v2

 
whose components are the

probabilities for the current weather conditions. In particular, let v1 be the probability

that today is sunny and v2 the probability that today is cloudy. Each day the com-

ponents of v change in accordance with the probabilities, listed in Table 1, giving us

the current state of the weather. In a Markov process, the vector v is called a state

vector, and a sequence of state vectors a Markov chain. Using Table 1, the state

vector v =
 
v 

1

v 
2

 
for the weather tomorrow has components

v 
1 = 0.7v1 + 0.5v2 and v 

2 = 0.3v1 + 0.5v2

That is, the probability v 
1 of a sunny day tomorrow is 0.7 times the probability of a

sunny day today plus 0.5 times the probability of a cloudy day today. Likewise, the

probability v 
2 of a cloudy day tomorrow is 0.3 times the probability of a sunny day

today plus 0.5 times the probability of a cloudy day today. For example, if today is

sunny, then v1 = 1 and v2 = 0 so that

v 
1 = 0.7(1)+ 0.5(0) = 0.7 and v 

2 = 0.3(1)+ 0.5(0) = 0.3

which is in agreement with the observations above. Observe that if we let T be the

matrix

T =
 

0.7 0.5

0.3 0.5

 
then the relationship above between v and v can be written using matrix multiplica-

tion as  
v 

1

v 
2

 
=
 

0.7 0.5

0.3 0.5

  
v1

v2

 
In a Markov chain, the matrix used to move from one state to the next is called

the transition matrix. If n is the number of possible states, then the transition matrix

T is an n× n matrix where the ij entry is the probability of moving from state j

to state i. In the above example t12 = 0.5 gives the probability that a cloudy day

is followed by one that is sunny. A vector with positive entries whose sum is 1 is

called a probability vector. A matrix whose column vectors are probability vectors

is called a stochastic matrix. The transition matrix T given above is an example of

a stochastic matrix.
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Returning to the weather example, to predict the weather 2 days forward, we

apply the transition matrix T to the vector v so that 
v  

1

v  
2

 
=
 

0.7 0.5

0.3 0.5

  
v 

1

v 
2

 
=
 

0.7 0.5

0.3 0.5

 2  
v1

v2

 
=
 

0.64 0.60

0.36 0.40

  
v1

v2

 
Thus, for example, if today is sunny, the state vector for the weather 2 days from now

is given by  
v  

1

v  
2

 
=
 

0.64 0.60

0.36 0.40

  
1

0

 
=
 

0.64

0.36

 
In general, after n days the state vector for the weather is given by

T nv =
 

0.7 0.5

0.3 0.5

 n  
v1

v2

 
To answer the question posed earlier about the weather one week after a sunny day,

we compute 
0.7 0.5

0.3 0.5

 7  
1

0

 
=
 

0.625 0.625

0.375 0.375

  
1

0

 
=
 

0.625

0.375

 
That is, if today is sunny, then the probability that it will be sunny one week after

today is 0.625, and the probability it will be cloudy is 0.375.

Diagonalizing the TransitionMatrix

As we have just seen, determining future states in a Markov process involves comput-

ing powers of the transition matrix. To facilitate the computations, we use the methods

of Sec. 5.2 to diagonalize the transition matrix. To illustrate, we again consider the

transition matrix

T =
 

7
10

5
10

3
10

5
10

 

of the weather example above. Observe that T has distinct eigenvalues given by

λ1 = 1 and λ2 = 2
10

with corresponding eigenvectors

v1 =
 

5
3

1

 
and v2 =

 −1

1
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For reasons that will soon be clear, we scale v1 (by the reciprocal of the sum of its

components) so that it becomes a probability vector. Observe that this new vector

!v1 =
 

5
8

3
8

 
is also an eigenvector since it is in the eigenspace Vλ1

. Since the 2 × 2 transition

matrix has two distinct eigenvalues, by Corollary 1 of Sec. 5.2, T is diagonalizable

and, by Theorem 2 of Sec. 5.2, can be written as

T = PDP−1

=
 

5
8

−1

3
8

1

  
1 0

0 2
10

  
1 1

− 3
8

5
8

 

By Exercise 27 of Sec. 5.2, the powers of T are given by

T n = PDnP−1 = P

 
1n 0

0
"

2
10

#n  
P−1

As mentioned above, this gives us an easier way to compute the state vector for

large values of n. Another benefit from this representation is that the matrix Dn

approaches  
1 0

0 0

 
as n gets large. This suggests that the eigenvector corresponding to λ = 1 is useful in

determining the limiting proportion of sunny days to cloudy days far into the future.

Steady-State Vector

Given an initial state vector v, of interest is the long-run behavior of this vector in a

Markov chain, that is, the tendency of the vector T nv for large n. If for any initial

state vector v there is some vector s such that T nv approaches s, then s is called a

steady-state vector for the Markov process.

In our weather model we saw that the transition matrix T has an eigenvalue λ = 1

and a corresponding probability eigenvector given by

!v1 =
 

5
8

3
8

 
=
 

0.625

0.375
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We claim that this vector is a steady-state vector for the weather model. As verification,

let u be an initial probability vector, say, u =
 

0.4

0.6

 
. We then compute

T 10u =
 

0.6249999954

0.3750000046

 
and T 20u =

 
0.6250000002

0.3750000002

 
which suggests that T nu approaches !v1. That this is in fact the case is stated in

Theorem 6. Before doing so, we note that a regular transition matrix T is a transition

matrix such that for some n, all the entries of T n are positive.

THEOREM 6 If a Markov chain has a regular stochastic transition matrix T, then there is a

unique probability vector s with T s = s. Moreover, s is the steady-state vector for

any initial probability vector.

EXAMPLE 1 A group insurance plan allows three different options for participants, plan A, B,

or C. Suppose that the percentages of the total number of participants enrolled in

each plan are 25 percent, 30 percent, and 45 percent, respectively. Also, from past

experience assume that participants change plans as shown in the table.

A B C

A 0.75 0.25 0.2

B 0.15 0.45 0.4

C 0.1 0.3 0.4

a. Find the percent of participants enrolled in each plan after 5 years.

b. Find the steady-state vector for the system.

Solution Let T be the matrix given by

T =
 0.75 0.25 0.2

0.15 0.45 0.4

0.1 0.3 0.4


a. The number of participants enrolled in each plan after 5 years is approximated

by the vector

T 5v =
 0.49776 0.46048 0.45608

0.28464 0.30432 0.30664

0.21760 0.23520 0.23728

 0.25

0.30

0.45

 =
 0.47

0.30

0.22


so approximately 47 percent will be enrolled in plan A, 30 percent in plan B,

and 22 percent in plan C.

b. The steady-state vector for the system is the probability eigenvector corre-

sponding to the eigenvalue λ = 1, that is,

s =
 0.48

0.30

0.22


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Exercise Set 5.4

1. Each year it is estimated that 15 percent of the

population in a city moves to the surrounding

suburbs and 8 percent of people living in the

suburbs move to the city. Currently, the total

population of the city and surrounding suburbs is

2 million people with 1.4 million living in the

city.

a. Write the transition matrix for the Markov

chain describing the migration pattern.

b. Compute the expected population after 10

years.

c. Find the steady-state probability vector.

2. After opening a new mass transit system, the

transit authority studied the user patterns to try to

determine the number of people who switched

from using an automobile to the system. They

estimated that each year 30 percent of those who

tried the mass transit system decided to go back

to driving and 20 percent switched from driving

to using mass transit. Suppose that the population

remains constant and that initially 35 percent of

the commuters use mass transit.

a. Write the transition matrix for the Markov

chain describing the system.

b. Compute the expected number of commuters

who will be using the mass transit system in 2

years. In 5 years.

c. Find the steady-state probability vector.

3. A plant blooms with red, pink, or white flowers.

When a variety with red flowers is cross-bred

with another variety, the probabilities of the new

plant having red, pink, or white flowers are given

in the table.

R P W

R 0.5 0.4 0.1

P 0.4 0.4 0.2

W 0.1 0.2 0.7

Suppose initially there are only plants with pink

flowers which are bred with other varieties with

the same likelihood. Find the probabilities of each

variety occurring after three generations. After 10

generations.

4. A fleet of taxis picks up and delivers commuters

between two nearby cities A and B and the

surrounding suburbs S. The probability of a driver

picking up a passenger in location X and

delivering the passenger to location Y is given in

the table. The taxi company is interested in

knowing on average where the taxis are.

A B S

A 0.6 0.3 0.4

B 0.1 0.4 0.3

S 0.3 0.3 0.3

a. If a taxi is in city A, what is the probability it

will be in location S after three fares?

b. Suppose 30 percent of the taxis are in city A,

35 percent are in city B, and 35 percent are in

the suburbs. Calculate the probability of a taxi

being in location A, B, or S after five fares.

c. Find the steady-state probability vector.

5. An endemic disease that has reached epidemic

proportions takes the lives of one-quarter of those

who are ill each month while one-half of those

who are healthy become ill. Determine whether

the epidemic will be eradicated. If so, estimate

how long it will take.

6. A regional study of smokers revealed that from

one year to the next 55 percent of smokers quit

while 20 percent of nonsmokers either became

new smokers or started smoking again. If 70

percent of the population are smokers, what

fraction will be smoking in 5 years? In 10 years?

In the long run?

7. A frog is confined to sitting on one of four lily

pads. The pads are arranged in a square. Label the

corners of the square A, B, C, and D clockwise.

Each time the frog jumps, the probability of
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jumping to an adjacent pad is 1/4, the probability

of jumping to the diagonal pad is 1/6, and the

probability of landing on the same pad is 1/3.

a. Write the transition matrix for the Markov

process.

b. Find the probability state vector after the frog

has made n jumps starting at pad A.

c. Find the steady-state vector.

8. Let the transition matrix for a Markov process be

T =
 

0 1

1 0

 
a. Find the eigenvalues of T .

b. Find T n for n ≥ 1. Use T n to explain why the

Markov process does have a steady-state

vector.

c. Suppose T is the transition matrix describing

the population distribution at any time for a

constant population where residents can move

between two locations. Describe the interaction

in the population.

9. Show that for all p and q such that 0 < p < 1

and 0 < q < 1, the transition matrix

T =
 

1 − p q

p 1 − q
 

has steady-state probability vector 
q

p+q
p

p+q

 
10. Suppose the transition matrix T for a Markov

process is a 2 × 2 stochastic matrix that is also

symmetric.

a. Find the eigenvalues for the matrix T.

b. Find the steady-state probability vector for the

Markov process.

Review Exercises for Chapter 5

1. Let

A =
 
a b

b a

 
for some real numbers a and b.

a. Show that

 
1

1

 
is an eigenvector of A.

b. Find the eigenvalues of A.

c. Find the eigenvectors corresponding to each

eigenvalue found in part (b).

d. Diagonalize the matrix A, using the

eigenvectors found in part (b). That is, find the

matrix P such that P−1AP is a diagonal

matrix. Specify the diagonal matrix.

2. Let

A =
 0 0 2

0 2 0

0 0 −1


a. Find the eigenvalues of A.

b. From your result in part (a) can you conclude

whether A is diagonalizable? Explain.

c. Find the eigenvectors corresponding to each

eigenvalue.

d. Are the eigenvectors found in part (c) linearly

independent? Explain.

e. From your result in part (c) can you conclude

whether A is diagonalizable? Explain.

f. If your answer to part (e) is yes, find a matrix

P that diagonalizes A. Specify the diagonal

matrix D such that D = P−1AP .

3. Repeat Exercise 2 with

A =


1 0 1 0

1 1 1 0

0 0 0 0

1 0 1 0


4. Let T be a linear operator on a finite dimensional

vector space with a matrix representation

A =
 1 0 0

6 3 2

−3 −1 0


a. Find the characteristic polynomial for A.

b. Find the eigenvalues of A.

c. Find the dimension of each eigenspace of A.
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d. Using part (c), explain why the operator T is

diagonalizable.

e. Find a matrix P and diagonal matrix D such

that D = P−1AP .

f. Find two other matrices P1 and P2 and

corresponding diagonal matrices D1 and D2

such that D1 = P−1
1 AP1 and D2 = P−1

2 AP2.

5. Let

A =
 0 1 0

0 0 1

−k 3 0


a. Show the characteristic equation of A is

λ3 − 3λ + k = 0.

b. Sketch the graph of y(λ) = λ3 − 3λ + k for

k < −2, k = 0, and k > 2.

c. Determine the values of k for which the matrix

A has three distinct real eigenvalues.

6. Suppose that B = P−1AP and v is an eigenvector

of B corresponding to the eigenvalue λ. Show

that P v is an eigenvector of A corresponding to

the eigenvalue λ.

7. Suppose that A is an n× n matrix such that every

row of A has the same sum λ.

a. Show that λ is an eigenvalue of A.

b. Does the same result hold if the sum of every

column of A is equal to λ?

8. Let V be a vector space and T: V −→ V a linear

operator. A subspace W of V is invariant under

T if for each vector w in W , the vector T (w) is

in W .

a. Explain why V and {0} are invariant subspaces

of every linear operator on the vector space.

b. Show that if there is a one-dimensional

subspace of V that is invariant under T, then T

has a nonzero eigenvector.

c. Let T be a linear operator on ⺢2 with matrix

representation relative to the standard basis

given by

A =
 

0 −1

1 0

 

Show that the only invariant subspaces of T

are ⺢2 and {0}.

9. a. Two linear operators S and T on a vector

space V are said to commute if S(T (v)) =
T (S(v)) for every vector v in V. If S and T are

commuting linear operators on V and λ0 is an

eigenvalue of T, show that Vλ0
is invariant

under S, that is, S(Vλ0
) ⊆ Vλ0

.

b. Let S and T be commuting linear operators on

an n-dimensional vector space V. Suppose that

T has n distinct eigenvalues. Show that S and

T have a common eigenvector.

c. A pair of linear operators T and S on a vector

space V is called simultaneously diagonalizable

if there is an ordered basis B for V such that

[T ]B and [S]B are both diagonal. Show that if

S and T are simultaneously diagonalizable

linear operators on an n-dimensional vector

space V, then S and T commute.

d. Show directly that the matrices

A =
 3 0 1

0 2 0

1 0 3


and

B =
 1 0 −2

0 1 0

−2 0 1


are simultaneously diagonalizable.

10. The Taylor series expansion (about x = 0) for the

natural exponential function is

ex = 1 + x + 1

2!
x2 + 1

3!
x3 + · · · =

∞$
k=0

1

n!
xk

If A is an n× n matrix, we can define the matrix

exponential as

eA = I + A+ 1

2!
A2 + 1

3!
A3 + · · ·

= lim
m→∞

(I + A+ 1

2!
A2 + 1

3!
A3 + · · · + 1

m!
Am)
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a. Let D be the diagonal matrix

D =


λ1 0 0 . . . 0

0 λ2 0 . . . 0
...

...
. . .

...

0 . . . . . . . . . λn


and find eD .

b. Suppose A is diagonalizable and D = P−1AP .

Show that eA = PeDP−1.

c. Use parts (a) and (b) to compute eA for the

matrix

A =
 

6 −1

3 2

 

Chapter 5: Chapter Test

In Exercises 1–40, determine whether the statement is

true or false.

1. The matrix

P =
 

1 1

0 1

 
diagonalizes the matrix

A =
 −1 1

0 −2

 
2. The matrix

A =
 −1 1

0 −2

 
is similar to the matrix

D =
 −1 0

0 −1

 
3. The matrix

A =
 −1 0 0

0 1 0

−1 −1 1


is diagonalizable.

4. The eigenvalues of

A =
 −1 0

−4 −3

 
are λ1 = −3 and λ2 = −1.

5. The characteristic polynomial of

A =
 −1 −1 −1

0 0 −1

2 −2 −1


is λ3 + 2λ2 + λ − 4.

6. The eigenvectors of

A =
 −4 0

3 −5

 
are

 
0

1

 
and

 
1

3

 
.

7. The matrix

A =
 

3 −2

2 −1

 
has an eigenvalue λ1 = 1 and Vλ1

has

dimension 1.

8. If

A =

      − 1
2

√
3

2√
3

2
1
2

      
then AAt = I .

9. If A is a 2 × 2 matrix with det(A) < 0, then A

has two real eigenvalues.

10. If A is a 2 × 2 matrix that has two distinct

eigenvalues λ1 and λ2, then tr(A) = λ1 + λ2.

11. If A =
 
a b

b a

 
, then the eigenvalues of A are

λ1 = a + b and λ2 = b − a.

12. For all integers k the matrix A =
 

1 k

1 1

 
has

only one eigenvalue.

13. If A is a 2 × 2 invertible matrix, then A and A−1

have the same eigenvalues.

14. If A is similar to B, then tr(A) = tr(B).

15. The matrix A =
 

1 1

0 1

 
is diagonalizable.
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16. If A =
 
a b

c d

 
and

a + c = b + d = λ

then λ is an eigenvalue of A.

In Exercises 17–19, let

A =
 1 0 0

0 2 0

0 0 −1


and

B =
 −1 0 0

0 1 0

0 0 2


17. The matrices A and B have the same eigenvalues.

18. The matrices A and B are similar.

19. If

P =
 0 1 0

0 0 1

1 0 0


then B = P−1AP .

20. If a 2 × 2 matrix has eigenvectors

 −1

1

 
and 

1

−2

 
, then it has the form 

2α − β α − β

β − 2α 2β − α

 
21. The only matrix similar to the identity matrix is

the identity matrix.

22. If λ = 0 is an eigenvalue of A, then the matrix A

is not invertible.

23. If A is diagonalizable, then A is similar to a

unique diagonal matrix.

24. If an n× n matrix A has only m distinct

eigenvalues with m < n, then A is not

diagonalizable.

25. If an n× n matrix A has n distinct eigenvalues,

then A is diagonalizable.

26. If an n× n matrix A has a set of eigenvectors that

is a basis for ⺢n, then A is diagonalizable.

27. If an n× n matrix A is diagonalizable, then A has

n linearly independent eigenvectors.

28. If A and B are n× n matrices, then AB and BA

have the same eigenvalues.

29. If D is a diagonal matrix and A = PDP−1, then

A is diagonalizable.

30. If A is invertible, then A is diagonalizable.

31. If A and B are n× n invertible matrices, then

AB−1 and B−1A have the same eigenvalues.

32. A 3 × 3 matrix of the form a 1 0

0 a 1

0 0 b


always has fewer than three distinct eigenvalues.

33. If A and B are n× n diagonalizable matrices with

the same diagonalizing matrix, then AB = BA.

34. If λ is an eigenvalue of the n× n matrix A, then

the set of all eigenvectors corresponding to λ is a

subspace of ⺢n.

35. If each column sum of an n× n matrix A is a

constant c, then c is an eigenvalue of A.

36. If A and B are similar, then they have the same

characteristic equation.

37. If λ is an eigenvalue of A, then λ2 is an

eigenvalue of A2.

38. If A is a 2 × 2 matrix with characteristic

polynomial λ2 + λ − 6, then the eigenvalues of

A2 are λ1 = 4 and λ2 = 9.

39. Define a linear operator T: P1 → P1, by

T (a + bx) = a + (a + b)x. Then the matrix

representation for A relative to the standard

basis is

A =
 

1 0

1 1

 
and so T is not diagonalizable.

40. If V = span{ex, e−x} and T: V → V is defined

by T (f (x)) = f  (x), then T is diagonalizable.
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A
ccording to a growing number of scientists,

a contributing factor in the rise in global

temperatures is the emission of greenhouse gases

such as carbon dioxide. The primary source of

carbon dioxide in the atmosphere is from the

burning of fossil fuels. Table 1∗ gives the global

carbon emissions, in billions of tons, from burn-

ing fossil fuels during the period from 1950

through 2000. A scatterplot of the data, shown

in Fig. 1, exhibits an increasing trend which can

be approximated with a straight line, also shown

in Fig. 1, which best fits the data even though
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Figure 1 Table 1

Global Carbon Emissions 1950–2000

1950 1.63 1980 5.32

1955 2.04 1985 5.43

1960 2.58 1990 6.14

1965 3.14 1995 6.40

1970 4.08 2000 6.64

1975 4.62

∗Worldwatch Institute, Vital Signs 2006–2007. The trends that are shaping our future, W. W. Norton and
Company, New York London, 2006.
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there is no one line that passes through all the points. To find this line, let (xi, yi), for

i = 1, 2, . . . , 11, denote the data points where xi is the year, starting with x1 = 1950,

and yi is the amount of greenhouse gas being released into the atmosphere. The linear

equation y = mx + b will best fit these data if we can find values for m and b such

that the sum of the square errors

11 
i=1

 
yi − (mxi + b) 2 = [1.63 − (1950m− b)]2 + · · · + [6.64 − (2000m− b)]2

is minimized. One method for finding the numbers m and b uses results from multi-

variable calculus. An alternative approach, using linear algebra, is derived from the

ideas developed in this chapter. To use this approach, we attempt to look for numbers

m and b such that the linear system
m(1950)+ b = 1.63

m(1955)+ b = 2.04
...

m(2000)+ b = 6.64

is satisfied. In matrix form, this system is given by Ax = b, where

A =



1950 1

1955 1

1960 1

1965 1

1970 1

1975 1

1980 1

1985 1

1990 1

1995 1

2000 1


x =

 
m

b

 
and b =



1.63

2.04

2.58

3.14

4.08

4.62

5.32

5.43

6.14

6.40

6.64


Now, since there is no one line going through each of the data points, an exact solution

to the previous linear system does not exist! However, as we will see, the best-fit line

comes from finding a vector x so that Ax is as close as possible to b. In this case,

the equation of the best-fit line, shown in Fig. 1, is given by

y = 0.107x − 207.462

In the last several chapters we have focused our attention on algebraic properties

of abstract vector spaces derived from our knowledge of Euclidean space. For example,

the observations made in Sec. 2.1 regarding the behavior of vectors in ⺢n provided

us with a model for the axiomatic development of general vector spaces given in
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Sec. 3.1. In this chapter we follow a similar approach as we describe the additional

structures required to generalize the geometric notions of length, distance, and angle

from ⺢2 and ⺢3 to abstract vector spaces. These geometric ideas are developed from

a generalization of the dot product of two vectors in ⺢n, called the inner product,

which we define in Sec. 6.2. We begin with a description of the properties of the dot

product on ⺢n and its relation to the geometry in Euclidean space.

6.1

ß

The Dot Product on ⺢n

In Definition 2 of Sec. 1.3, we defined the dot product of two vectors

u =


u1

u2

...

un

 and v =


v1

v2

...

vn


in ⺢n as

u · v = u1v1 + u2v2 + · · · + unvn
To forge a connection between the dot product and the geometry of Euclidean space,

recall that in ⺢3 the distance from a point (x1, x2, x3) to the origin is given by

d =
 
x2

1 + x2
2 + x2

3

Now let

v =
 v1

v2

v3


be a vector in ⺢3 in standard position. Using the distance formula, the length (or

norm) of v, which we denote by || v ||, is defined as the distance from the terminal

point of v to the origin and is given by

|| v || =
 
v2

1 + v2
2 + v2

3

Observe that the quantity under the square root symbol can be written as the dot

product of v with itself. So the length of v can be written equivalently as

|| v || = √
v · v

Generalizing this idea to ⺢n, we have the following definition.

DEFINITION 1 Length of a Vector in ⺢n The length (or norm) of a vector

v =


v1

v2

...

vn


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in ⺢n, denoted by || v ||, is defined as

|| v || =
 
v2

1 + v2
2 + · · · + v2

n

= √
v · v

As an illustration, let v =
 1

2

−1

. Then

|| v || = √
v · v =

 
12 + 22 + (−1)2 =

√
6

In Sec. 2.1, it was shown that the difference u − v, of two vectors u and v in

standard position, is a vector from the terminal point of v to the terminal point of u,

as shown in Fig. 2. This provides the rationale for the following definition.

x 

y 

u v

u − v

Figure 2

DEFINITION 2 Distance Between Vectors in⺢n Let

u =


u1

u2

...

un

 and v =


v1

v2

...

vn


be vectors in ⺢n. The distance between u and v is defined by

||u − v || =
 
(u − v) · (u − v)

Since the orientation of a vector does not affect its length, the distance from u to

v is equal to the distance from v to u, so that

||u − v || = || v − u ||

EXAMPLE 1 Show that if v is a vector in ⺢n and c is a real number, then

|| cv || = | c | || v ||

Solution Let

v =


v1

v2
...

vn


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Then

|| cv || =
 
(cv) · (cv) =

 
(cv1)2 + (cv2)2 + · · · + (cvn)2

=
 
c2v2

1 + c2v2
2 + · · · + c2v2

n =
 
c2(v2

1 + v2
2 + · · · + v2

n)

= |c|
 
v2

1 + v2
2 + · · · + v2

n = | c | || v ||

The result of Example 1 provides verification of the remarks following Definition

2 of Sec. 2.1 on the effect of multiplying a vector v by a real number c. Indeed,

as a consequence of Example 1, if |c| > 1, then cv is a stretching or dilation of

v; and is a shrinking or contraction of v if |c| < 1. If, in addition, c < 0, then the

direction of cv is reversed. As an illustration, let v be a vector in ⺢n with || v || = 10.

Then 2v has length 20. The vector −3v has length 30 and points in the opposite

direction of v.

If the length of a vector in ⺢n is 1, then v is called a unit vector.

PROPOSITION 1 Let v be a nonzero vector in ⺢n. Then

uv = 1

|| v ||v

is a unit vector in the direction of v.

Proof Using Definition 1 and the result of Example 1, we have    1

|| v ||v
    =

    1

|| v ||

    || v || = || v ||
|| v || = 1

Since 1/ || v || > 0, then the vector uv has the same direction as v.

EXAMPLE 2 Let

v =
 1

2

−2


Find the unit vector uv in the direction of v.

Solution Observe that || v || =
 

12 + 22 + (−2)2 = 3. Then by Proposition 1, we have

uv = 1

3
v = 1

3

 1

2

−2


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Theorem 1 gives useful properties of the dot product. The proofs are straightfor-

ward and are left to the reader.

THEOREM 1 Let u, v, and w be vectors in ⺢n and c a scalar.

1. u · u ≥ 0

2. u · u = 0 if and only if u = 0

3. u · v = v ·u

4. u · (v + w) = u · v + u · w and (u + v) ·w = u ·w + v ·w

5. (cu) · v = c(u · v)

EXAMPLE 3 Let u and v be vectors in ⺢n. Use Theorem 1 to expand (u + v) · (u + v).

Solution By repeated use of part 4, we have

(u + v) · (u + v) = (u + v) ·u + (u + v) · v

= u · u + v · u + u · v + v · v

Now, by part 3, v ·u = u · v, so that

(u + v) · (u + v) = u · u + 2u · v + v · v

or equivalently,

(u + v) · (u + v) = ||u ||2 + 2u · v + || v ||2

The next result, know as the Cauchy-Schwartz inequality, is fundamental in devel-

oping a geometry on ⺢n. In particular, this inequality makes it possible to define the

angle between vectors.

THEOREM 2 Cauchy-Schwartz Inequality If u and v are in vectors in ⺢n, then

|u · v| ≤ ||u || || v ||

Proof If u = 0, then u · v = 0. We also know, in this case, that ||u || || v || =
0 || v || = 0 so that equality holds. Now suppose that u  = 0 and k is a real number.

Consider the dot product of the vector ku + v with itself. By Theorem 1, part 1,

we have

(ku + v) · (ku + v) ≥ 0

Now, by Theorem 1, part 4, the left-hand side can be expanded to obtain

k2(u · u) + 2k(u · v) + v · v ≥ 0

Observe that the expression on the left-hand side is quadratic in the variable k

with real coefficients. Letting a = u · u, b = u · v, and c = v · v, we rewrite this

inequality as

ak2 + 2bk + c ≥ 0
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This inequality imposes conditions on the coefficients a, b, and c. Specifically,

the equation ak2 + 2bk + c = 0 must have at most one real zero. Thus, by the

quadratic formula, the discriminant (2b)2 − 4ac ≤ 0, or equivalently,

(u · v)2 ≤ (u · u)(v · v)

After taking the square root of both sides, we obtain

|u · u| ≤ || v || || v ||
as desired.

The Angle between Two Vectors

With the Cauchy-Schwartz inequality in hand, we are now in a position to define the

angle between two vectors. To motivate this idea, let u and v be nonzero vectors in

⺢
2 with u − v the vector connecting the terminal point of v to the terminal point of

u, as shown in Fig. 3. As these three vectors form a triangle in ⺢2, we apply the law

of cosines to obtain

||u − v ||2 = ||u ||2 + || v ||2 − 2 ||u || || v || cos θ

x 

y 

||u |||| v ||

||u − v ||
θ

Figure 3 Using Theorem 1, we rewrite this equation as

u ·u − 2u · v + v · v = u · u + v · v − 2 ||u || || v || cos θ

After simplifying and solving for cos θ, we obtain

cos θ = u · v

||u || || v ||
Our aim now is to extend this result and use it as the definition of the cosine

of the angle between vectors in n-dimensional Euclidean space. To do so, we need

| cos θ| ≤ 1 for every angle θ, that is,

−1 ≤ u · v

||u || || v || ≤ 1

for all vectors u and v in ⺢n. But this fact follows immediately from the Cauchy-

Schwartz inequality. Indeed, dividing both sides of

|u · v| ≤ ||u || || v ||
by ||u || || v ||, we obtain

|u · v|
||u || || v || ≤ 1

so that

−1 ≤ u · v

||u || || v || ≤ 1

This permits us to make the following definition.
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DEFINITION 3 Angle Between Vectors in ⺢n If u and v are vectors in ⺢n, then the cosine

of the angle θ between the vectors is defined by

cos θ = u · v

||u || || v ||

EXAMPLE 4 Find the angle between the two vectors

u =



2

−2
3


 and v =



−1
2

2




Solution The lengths of the vectors are

||u || =
 
22 + (−2)2 + 32 =

√
17 and || v || =

 
(−1)2 + 22 + 22 = 3

and the dot product of the vectors is

u · v = 2(−1)+ (−2)2+ 3(2) = 0

By Definition 3, the cosine of the angle between u and v is given by

cos θ = u · v

|| u || || v || = 0

Hence, θ = π/2 and the vectors are perpendicular. Such vectors are also called

orthogonal.

DEFINITION 4 Orthogonal Vectors The vectors u and v are called orthogonal if the angle

between them is π/2.

As a direct consequence of Definition 3, we see that if u and v are nonzero vectors

in ⺢n with u · v = 0, then cos θ = 0, so that θ = π/2. On the other hand, if u and v

are orthogonal, then cos θ = 0, so that

u · v

||u || || v || = 0 therefore u · v = 0

The zero vector is orthogonal to every vector in ⺢n since 0 · v = 0, for every vector v.

These results are given in Proposition 2.
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PROPOSITION 2 Two nonzero vectors u and v in ⺢n are orthogonal if and only if u · v = 0. The

zero vector is orthogonal to every vector in ⺢n.

One consequence of Proposition 2 is that if u and v are orthogonal, then

||u+ v ||2 = (u+ v) · (u+ v) = ||u ||2 + 2u · v+ || v ||2

= ||u ||2 + || v ||2

This is a generalization of the Pythagorean theorem to ⺢n.

Theorem 3 gives several useful properties of the norm in ⺢n.

THEOREM 3 Properties of the Norm in ⺢n Let v be a vector in ⺢n and c a scalar.

1. || v || ≥ 0

2. || v || = 0 if and only if v = 0

3. || cv || = |c| || v ||

4. (Triangle inequality) ||u+ v || ≤ ||u || + || v ||

Proof Parts 1 and 2 follow immediately from Definition 1 and Theorem 1. Part 3

is established in Example 1. To establish part 4, we have

||u+ v ||2 = (u+ v) · (u+ v)

= (u · u)+ 2(u · v)+ (v · v)

= ||u ||2 + 2(u · v)+ || v ||2

≤ ||u ||2 + 2|u · v| + || v ||2

Now, by the Cauchy-Schwartz inequality, |u · v| ≤ ||u || || v ||, so that

|| u+ v ||2 ≤ ||u ||2 + 2 ||u || || v || + || v ||2

= (||u || + || v ||)2

After taking square roots of both sides of this equation, we obtain

||u+ v || ≤ ||u || + || v ||
x 

y 

||u |||| v ||

||u+ v ||

|| v ||

Figure 4 Geometrically, part 4 of Theorem 3 confirms our intuition that the shortest distance

between two points is a straight line, as seen in Fig. 4.



330 Chapter 6 Inner Product Spaces

PROPOSITION 3 Let u and v be vectors in ⺢n. Then || u + v || = ||u || + || v || if and only if the

vectors have the same direction.

Proof First suppose that the vectors have the same direction. Then the angle

between the vectors is 0, so that cos θ = 1 and u · v = ||u || || v ||. Therefore,

||u + v ||2 = (u + v) · (u + v)

= ||u ||2 + 2(u · v) + || v ||2

= ||u ||2 + 2 ||u || || v || + || v ||2

= (||u || + || v ||)2

Taking square roots of both sides of the previous equation gives ||u + v || =
|| u || + || v ||.

Conversely, suppose that ||u + v || = ||u || + || v ||. After squaring both sides,

we obtain

||u + v ||2 = ||u ||2 + 2 ||u || || v || + || v ||2
However, we also have

||u + v ||2 = (u + v) · (u + v) = ||u ||2 + 2u · v + || v ||2

Equating both expressions for ||u + v ||2 gives

||u ||2 + 2 ||u || || v || + || v ||2 = || u ||2 + 2u · v + || v ||2

Simplifying the last equation, we obtain u · v = ||u || || v || and hence

u · v

||u || || v || = 1

Therefore, cos θ = 1, so that θ = 0 and the vectors have the same direction.

Fact Summary

All vectors are in ⺢n.

1. The length of a vector and the distance between two vectors are natural

extensions of the same geometric notions in ⺢2 and ⺢3.

2. The dot product of a vector with itself gives the square of its length and is

0 only when the vector is the zero vector. The dot product of two vectors is

commutative and distributes through vector addition.

3. By using the Cauchy-Schwartz inequality |u · v| ≤ || u || || v ||, the angle

between vectors is defined by

cos θ = u · v

||u || || v ||
4. Two vectors are orthogonal if and only if the dot product of the vectors is 0.
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5. The norm of a vector is nonnegative, is 0 only when the vector is the zero

vector, and satisfies

|| cu || = |c| || u || and ||u + v || ≤ ||u || + || v ||
Equality holds in the last inequality only when the vectors are in the same

direction.

6. If u and v are orthogonal vectors, then the Pythagorean theorem

||u + v ||2 = ||u ||2 + || v ||2

holds.

Exercise Set 6.1

In Exercises 1–4, let

u =
 0

1

3

 v =
 1

−1

2


w =

 1

1

−3


Compute the quantity.

1. u · v

2.
u · v

v · v

3. u · (v + 2w)

4.
u ·w

w ·w
w

In Exercises 5–10, let

u =
 

1

5

 
v =

 
2

1

 
5. Find ||u ||.
6. Find the distance between u and v.

7. Find a unit vector in the direction of u.

8. Find the cosine of the angle between the two

vectors. Are the vectors orthogonal? Explain.

9. Find a vector in the direction of v with length 10.

10. Find a vector w that is orthogonal to both u and v.

In Exercises 11–16, let

u =
 −3

−2

3

 v =
 −1

−1

−3


11. Find ||u ||.

12. Find the distance between u and v.

13. Find a unit vector in the direction of u.

14. Find the cosine of the angle between the two

vectors. Are the vectors orthogonal? Explain.

15. Find a vector in the opposite direction of v with

length 3.

16. Find a vector w that is orthogonal to both u and v.

17. Find a scalar c, so that

 
c

3

 
is orthogonal to −1

2

 
.

18. Find a scalar c, so that

 −1

c

2

 is orthogonal to 0

2

−1

.
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In Exercises 19–22, let

v1 =
 1

2

−1

 v2 =
 6

−2

2


v3 =

 −1

−2

1

 v4 =
 −1/

√
3

1/
√

3

1/
√

3


v5 =

 3

−1

1


19. Determine which of the vectors are orthogonal.

20. Determine which of the vectors are in the same

direction.

21. Determine which of the vectors are in the

opposite direction.

22. Determine which of the vectors are unit vectors.

In Exercises 23–28, find the projection of u onto v

given by

w = u · v

v · v
v

The vector w is called the orthogonal projection of u

onto v. Sketch the three vectors u, v, and w.

23. u =
 

2

3

 
v =

 
4

0

 
24. u =

 −2

3

 
v =

 
4

0

 
25. u =

 
4

3

 
v =

 
3

1

 

26. u =
 5

2

1

 v =
 1

0

0


27. u =

 1

0

0

 v =
 5

2

1



28. u =
 2

3

−1

 v =
 0

2

3


29. Let S = {u1, u2, . . . , un} and suppose v ·ui = 0

for each i = 1, . . . , n. Show that v is orthogonal

to every vector in span(S).

30. Let v be a fixed vector in ⺢n and define

S = {u | u · v = 0}. Show that S is a subspace of

⺢n.

31. Let S = {v1, v2, . . . , vn} be a set of nonzero

vectors which are pairwise orthogonal. That is, if

i  = j , then vi · vj = 0. Show that S is linearly

independent.

32. Let A be an n× n invertible matrix. Show that if

i  = j , then row vector i of A and column vector

j of A−1 are orthogonal.

33. Show that for all vectors u and v in ⺢n,

||u + v ||2 + ||u − v ||2
= 2 ||u ||2 + 2 || v ||2

34. a. Find a vector that is orthogonal to every vector

in the plane P : x + 2y − z = 0.

b. Find a matrix A such that the null space N(A)

is the plane x + 2y − z = 0.

35. Suppose that the column vectors of an n× n
matrix A are pairwise orthogonal. Find AtA.

36. Let A be an n× n matrix and u and v vectors in

⺢n. Show that

u · (Av) = (Atu) · v

37. Let A be an n× n matrix. Show that A is

symmetric if and only if

(Au) · v = u · (Av)

for all u and v in ⺢n. Hint : See Exercise 36.
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6.2

ß

Inner Product Spaces

In Sec. 6.1 we introduced the concepts of the length of a vector and the angle between

vectors in Euclidean space. Both of these notions are defined in terms of the dot

product and provide a geometry on ⺢n. Notice that the dot product on ⺢n defines a

function from ⺢n × ⺢n into ⺢. That is, the dot product operates on two vectors in

⺢n, producing a real number. To extend these ideas to an abstract vector space V ,

we require a function from V × V into ⺢ that generalizes the properties of the dot

product given in Theorem 1 of Sec. 6.1.

DEFINITION 1 Inner Product Let V be a vector space over ⺢. An inner product on V is

a function that associates with each pair of vectors u and v in V a real number,

denoted by  u, v , that satisfies the following axioms:

1.  u, u ≥ 0 and  u, u = 0 if and only if u = 0 (positive definite)

2.  u, v =  v, u (symmetry)

3.  u + v,w =  u,w +  v,w 
4.  cu, v = c  u, v 

The last two properties make the inner product linear in the first variable. Using

the symmetry axiom, it can also be shown that the inner product is linear in the

second variable, that is,

3
 
.  u, v + w =  u, v +  u,w 

4
 
.  u, cv = c  u, v 

With these additional properties, the inner product is said to be bilinear.

A vector space V with an inner product is called an inner product space.

By Theorem 1 of Sec. 6.1, the dot product is an inner product on Euclidean

n-space. Thus, ⺢n with the dot product is an inner product space.

EXAMPLE 1 Let v =
 

1

3

 
. Find all vectors u in ⺢2 such that  u, v = 0, where the inner

product is the dot product.

Solution If u =
 
x

y

 
, then

 u, v = u · v = x + 3y
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so that  u, v = 0 if and only if y = − 1
3
x. Therefore, the set of all vectors such

that  u, v = 0 is given by S = span

  
1

− 1
3

  
. The vector v and the set S are

shown in Fig. 1. Notice that each vector in S is perpendicular to v.

For another example, consider the vector space of polynomials P2. To define an

x 

y 

⫺5

⫺5

5

5

S

v

Figure 1 inner product on P2, let p(x) = a0 + a1x + a2x
2 and q(x) = b0 + b1x + b2x

2. Now

let  · , ·  : P2 × P2 → ⺢ be the function defined by

 p, q = a0b0 + a1b1 + a2b2

Notice that this function is similar to the dot product on ⺢3. The proof that P2 is

an inner product space follows along the same lines as the proof of Theorem 1 of

Sec. 6.1.

Another way to define an inner product on P2 is to use the definite integral.

Specifically, let p(x) and q(x) be polynomials in P2, and let  · , ·  be the function

defined by

 p, q =
 1

0

p(x)q(x) dx

This function is also an inner product on P2. The justification, in this case, is based

on the fundamental properties of the Riemann integral which can be found in any text

on real analysis.

EXAMPLE 2 Let V = P2 with inner product defined by

 p, q =
 1

0

p(x)q(x) dx

a. Let p(x) = 1 − x2 and q(x) = 1 − x + 2x2. Find  p, q .
b. Let p(x) = 1 − x2. Verify that  p, p > 0.

Solution a. Using the definition given for the inner product, we have

 p, q =
 1

0

(1 − x2)(1 − x + 2x2) dx

=
 1

0

(1 − x + x2 + x3 − 2x4) dx

=
 
x − 1

2
x2 + 1

3
x3 + 1

4
x4 − 2

5
x5

     1
0

= 41

60
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b. The inner product of p with itself is given by

 p, p =
 1

0

(1 − x2)(1 − x2) dx

=
 1

0

(1 − 2x2 + x4) dx

=
 
x − 2

3
x3 + 1

5
x5

     1
0

= 8

15
> 0

Example 3 gives an illustration of an inner product on ⺢n that is not the dot

product.

EXAMPLE 3 Let V = ⺢2 and
u =

 
u1

u2

 
and v =

 
v1

v2

 
be vectors in V . Let k be a fixed positive real number, and define the function

 · , ·  : ⺢2 × ⺢2 → ⺢ by

 u, v = u1v1 + ku2v2

Show that V is an inner product space.

Solution First we show that  · , ·  is nonnegative. From the definition above, we have

 u, u = u2
1 + ku2

2

Since k > 0, then u2
1 + ku2

2 ≥ 0 for every vector u. In addition,

u2
1 + ku2

2 = 0 if and only if u1 = u2 = 0

or equivalently if u = 0. The property of symmetry also holds since

 u, v = u1v1 + ku2v2 = v1u1 + kv2u2 =  v, u 

Next, let w =
 
w1

w2

 
be another vector in ⺢2. Then

 u + v,w = (u1 + v1)w1 + k(u2 + v2)w2

= (u1w1 + ku2w2)+ (v1w1 + kv2w2)

=  u,w +  v,w 
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Finally, if c is a scalar, then

 cu, v = (cu1)v1 + k(cu2)v2 = c(u1v1 + ku2v2) = c  u, v 
Therefore, ⺢2 with this definition for  · , ·  is an inner product space.

Notice that in Example 3 the requirement that k > 0 is necessary. For example,

if k = −1 and u =
 

1

2

 
, then the inner product of u with itself is given by  u, u =

(1)2 + (−1)(2)2 = −3, which violates the first axiom of Definition 1.

Again using ⺢n as our model, we now define the length (or norm) of a vector v

in an inner product space V as

|| v || =
 

 v, v 
The distance between two vectors u and v in V is then defined by

|| u − v || =
 

 u − v, u − v 
The norm in an inner product space satisfies the same properties as the norm in

⺢
n. The results are summarized in Theorem 4.

THEOREM 4 Properties of the Norm in an Inner Product Space Let u and v be vectors

in an inner product space V and c a scalar.

1. || v || ≥ 0

2. || v || = 0 if and only if v = 0

3. || cv || = |c| || v ||
4. |  u, v | ≤ ||u || || v || (Cauchy-Schwartz inequality)

5. || u + v || ≤ ||u || + || v || (Triangle inequality)

EXAMPLE 4 Let V = ⺢
2 with inner product defined by

 u, v = u1v1 + 3u2v2

Let

u =
 

2

−2

 
and v =

 
1

4

 

a. Verify that the Cauchy-Schwartz inequality is upheld.

b. Verify that the Triangle Inequality is upheld.
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Solution a. Using the given definition for the inner product, we have

| u, v | = |(2)(1) + 3(−2)(4)| = | − 22| = 22

The norms of u and v are given, respectively, by

||u || =
 

 u, u =
 

(2)2 + 3(−2)2 =
√

16 = 4

and

|| v || =
 

 v, v =
 

(1)2 + 3(4)2 =
√

49 = 7

Since

22 = | u, v | < ||u || || v || = 28

the Cauchy-Schwartz inequality is satisfied for the vectors u and v.

b. To verify the triangle inequality, observe that

u + v =
 

2

−2

 
+
 

1

4

 
=
 

3

2

 

so that

||u + v || =
 

(3)2 + 3(2)2 =
√

21

Since √
21 = || u + v || < ||u || + || v || = 4 + 7 = 11

the triangle inequality holds for u and v.

Orthogonal Sets

Taking the same approach as in Sec. 6.1, we define the cosine of the angle between

the vectors u and v in an inner product space V by

cos θ =  u, v 
||u || || v ||

As before, the vectors u and v in V are orthogonal provided that  u, v = 0.

EXAMPLE 5 Let V = P2 with inner product defined by

 p, q =
 1

−1

p(x)q(x) dx

a. Show that the vectors in

S =  
1, x, 1

2
(3x2 − 1)

 
are mutually orthogonal.

b. Find the length of each vector in S.
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Solution a. The inner product of each pair of vectors in S is

 1, x =
 1

−1

x dx = 1
2
x2
  1
−1

= 0 
1,

1

2
(3x2 − 1)

 
=
 1

−1

1

2
(3x2 − 1) dx = 1

2
(x3 − x)

    1
−1

= 0 
x,

1

2
(3x2 − 1)

 
=
 1

−1

1

2
(3x3 − x) dx = 1

2

 
3

4
x4 − 1

2
x2

     1
−1

= 0

Since each pair of distinct vectors is orthogonal, the vectors in S are mutually

orthogonal.

b. For the lengths of the vectors in S, we have

|| 1 || =
 

 1, 1 =
  1

−1

dx =
√

2

|| x || =
 

 x, x =
  1

−1

x2 dx =
 

2
3  1

2
(3x2 − 1)

  =
  

1
2
(3x2 − 1), 1

2
(3x2 − 1)

 =
 

1
4

 1

−1
(3x2 − 1)2dx =

 
2
5

DEFINITION 2 Orthogonal Set A set of vectors {v1, v2, . . . , vn} in an inner product space is

called orthogonal if the vectors are mutually orthogonal; that is, if i  = j , then 
vi , vj

 = 0. If in addition, || vi || = 1, for all i = 1, . . . n, then the set of vectors

is called orthonormal.

Observe that the vectors of Example 5 form an orthogonal set. They do not, how-

ever, form an orthonormal set. Proposition 4 shows that the zero vector is orthogonal

to every vector in an inner product space.

PROPOSITION 4 Let V be an inner product space. Then  v, 0 = 0 for every vector v in V .

Proof Let v be a vector in V . Then

 v, 0 =  v, 0 + 0 =  v, 0 +  v, 0 
After subtracting  v, 0 from both sides of the previous equation, we have  v, 0 = 0

as desired.

A useful property of orthogonal sets of nonzero vectors is that they are linearly

independent. For example, the set of coordinate vectors {e1, e2, e3} in ⺢3 is orthogonal
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and linearly independent. Theorem 5 relates the notions of orthogonality and linear

independence in an inner product space.

THEOREM 5 If S = {v1, v2, . . . , vn} is an orthogonal set of nonzero vectors in an inner product

space V , then S is linearly independent.

Proof Since the set S is an orthogonal set of nonzero vectors, 
vi , vj

 = 0 for i  = j and  vi , vi = || vi ||2  = 0 for all i

Now suppose that

c1v1 + c2v2 + · · · + cnvn = 0

The vectors are linearly independent if and only if the only solution to the previous

equation is the trivial solution c1 = c2 = · · · = cn = 0. Now let vj be an element

of S. Take the inner product on both sides of the previous equation with vj so that 
vj , (c1v1 + c2v2 + · · · + cj−1vj−1 + cjvj + cj+1vj+1 + · · · + cnvn)

 =  
vj , 0

 
By the linearity of the inner product and the fact that S is orthogonal, this equation

reduces to

cj
 
vj , vj

 =  
vj , 0

 
Now, by Proposition 4 and the fact that

    vj      = 0, we have

cj
    vj     2 = 0 so that cj = 0

Since this holds for each j = 1, . . . , n, then c1 = c2 = · · · = cn = 0 and therefore

S is linearly independent.

COROLLARY 1 If V is an inner product space of dimension n, then any orthogonal set of n nonzero

vectors is a basis for V .

The proof of this corollary is a direct result of Theorem 12 of Sec. 3.3. Theorem

6 provides us with an easy way to find the coordinates of a vector relative to

an orthonormal basis. This property underscores the usefulness and desirability of

orthonormal bases.

THEOREM 6 If B = {v1, v2, . . . , vn} is an ordered orthonormal basis for an inner product space

V and v = c1v1 + c2v2 + · · · + cnvn, then the coordinates of v relative to B are

given by ci =  vi , v for each i = 1, 2, . . . , n.

Proof Let vi be a vector in B. Taking the inner product on both sides of

v = c1v1 + c2v2 + · · · + ci−1vi−1 + civi + ci+1vi+1 + · · · + cnvn
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with vi on the right gives

 v, vi =  (c1v1 + c2v2 + · · · + ci−1vi−1 + civi + ci+1vi+1 + · · · + cnvn), vi 
= c1  v1, vi + · · · + ci  vi , vi + · · · + cn  vn, vi 

Since B is an orthonormal set, this reduces to

 v, vi = ci  vi , vi = ci

As this argument can be carried out for any vector in B, then ci =  v, vi for all

i = 1, 2, . . . , n.

In Theorem 6, if the ordered basis B is orthogonal and v is any vector in V , then

the coordinates relative to B are given by

ci =  v, vi 
 vi , vi 

for each i = 1, . . . , n

so that

v =  v, v1 
 v1, v1 v1 +  v, v2 

 v2, v2 v2 + · · · +  v, vn 
 vn, vn 

vn

Fact Summary

All vectors are in an inner product space.

1. An inner product on a vector space is a function that assigns to each pair of

vectors a real number and generalizes the properties of the dot product on

⺢n.

2. The norm of a vector is defined analogously to the definition in ⺢n by

|| v || = √ v, v .
3. An orthogonal set of vectors is linearly independent. Thus, any set of n

orthogonal vectors is a basis for an inner product space of dimension n.

4. When an arbitrary vector is written in terms of the vectors in an orthogonal

basis, the coefficients are given explicitly by an expression in terms of the

inner product. If {v1, . . . , vn} is the orthogonal basis and v is an arbitrary

vector, then

v =  v, v1 
 v1, v1 v1 +  v, v2 

 v2, v2 v2 + · · · +  v, vn 
 vn, vn 

vn

If case B is an orthonormal basis, then

v =  v, v1 v1 + · · · +  v, vn vn
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Exercise Set 6.2

In Exercises 1–10, determine whether V is an inner

product space.

1. V = ⺢2

 u, v = u1v1 − 2u1v2 − 2u2v1 + 3u2v2

2. V = ⺢2

 u, v = −u1v1 + 2u1v2

3. V = ⺢2

 u, v = u2
1v

2
1 + u2

2v
2
2

4. V = ⺢3

 u, v = u1v1 + 2u2v2 + 3u3v3

5. V = ⺢n

 u, v = u · v

6. V = Mm×n
 A,B = tr(BtA)

7. V = Mm×n

 A,B =
m 
i=1

n 
j=1

aij bij

8. V = Pn

 p, q =
n 
i=0

piqi

9. V = C(0)[−1, 1]

 f, g =  1

−1
f (x)g(x)e−x dx

10. V = C(0)[−1, 1]

 f, g =  1

−1
f (x)g(x)x dx

In Exercises 11–14, let V = C(0)[a, b] with inner

product

 f, g =
 b

a

f (x)g(x) dx

Verify that the set of vectors is orthogonal.

11. {1, cos x, sin x}; a = −π, b = π

12.
 

1, x, 1
2
(5x3 − 3x)

 ; a = −1, b = 1

13.
 

1, 2x − 1,−x2 + x − 1
6

 ; a = 0, b = 1

14. {1, cos x, sin x, cos 2x, sin 2x}; a = −π, b = π

In Exercises 15–18, let V = C(0)[a, b] with inner

product

 f, g =
 b

a

f (x)g(x) dx

a. Find the distance between the vectors f and g.

b. Find the cosine of the angle between the

vectors f and g.

15. f (x) = 3x − 2, g(x) = x2 + 1; a = 0, b = 1

16. f (x) = cos x, g(x) = sin x; a = −π, b = π

17. f (x) = x, g(x) = ex; a = 0, b = 1

18. f (x) = ex, g(x) = e−x; a = −1, b = 1

In Exercises 19 and 20, let V = P2 with inner product

 p, q =
2 
i=0

piqi

a. Find the distance between the vectors p and q.

b. Find the cosine of the angle between the

vectors p and q.

19. p(x) = x2 + x − 2, q(x) = −x2 + x + 2

20. p(x) = x − 3, q(x) = 2x − 6

In Exercises 21–24, let V = Mn×n with inner product

 A,B = tr(BtA)

a. Find the distance between the vectors A and B.

b. Find the cosine of the angle between the

vectors A and B.

21. A =
 

1 2

2 −1

 
B =

 
2 1

1 3

 

22. A =
 

3 1

0 −1

 
B =

 
0 2

1 −2

 

23. A =
 1 0 −2

−3 1 1

−3 −3 −2



B =
 3 −1 −1

−3 2 3

−1 −2 1


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24. A =
 2 1 2

3 1 0

3 2 1


B =

 0 0 1

3 3 2

1 0 2


25. Describe the set of all vectors in ⺢2 that are

orthogonal to

 
2

3

 
.

26. Describe the set of all vectors in ⺢2 that are

orthogonal to

 
1

−b
 

.

27. Describe the set of all vectors in ⺢3 that are

orthogonal to

 2

−3

1

.

28. Describe the set of all vectors in ⺢3 that are

orthogonal to

 1

1

0

.

29. For f and g in C(0)[0, 1] define the inner product

by

 f, g =
 1

0

f (x)g(x) dx

a. Find
 
x2, x3

 
.

b. Find
 
ex, e−x .

c. Find || 1 || and || x ||.
d. Find the angle between f (x) = 1 and

g(x) = x.

e. Find the distance between f (x) = 1 and

g(x) = x.

30. Let A be a fixed 2 × 2 matrix, and define a

function on ⺢2 × ⺢2 by

 u, v = utAv

a. Verify that if A = I , then the function defines

an inner product.

b. Show that if A =
 

2 −1

−1 2

 
, then the

function defines an inner product.

c. Show that if A =
 

3 2

2 0

 
, then the function

does not define an inner product.

31. Define an inner product on C(0)[−a, a] by

 f, g =
 a

−a
f (x)g(x) dx

Show that if f is an even function and g is an

odd function, then f and g are orthogonal.

32. Define an inner product on C(0)[−π,π] by

 f, g =
 

π

−π

f (x)g(x) dx

Show

{1, cos x, sin x, cos 2x, sin 2x, . . .}
is an orthogonal set. (See Exercise 31.)

33. In an inner product space, show that if the set

{u1, u2} is orthogonal, then for scalars c1 and c2

the set {c1u1, c2u2} is also orthogonal.

34. Show that if  u, v and   u, v  are two different

inner products on V , then their sum

   u, v   =  u, v +   u, v  
defines another inner product.

6.3

ß

Orthonormal Bases

In Theorem 6 of Sec. 6.2 we saw that if B = {v1, v2, . . . , vn} is an ordered orthonormal

basis of an inner product space V , then the coordinates of any vector v in V are

given by an explicit formula using the inner product on the space. In particular, these

coordinates relative to B are given by ci =  v, vi for i = 1, 2, . . . n. For this reason,

an orthonormal basis for an inner product space is desirable. As we have already seen,
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the set of coordinate vectors S = {e1, e2, . . . , en} is an orthonormal basis for ⺢n. In

this section we develop a method for constructing an orthonormal basis for any finite

dimensional inner product space.

Orthogonal Projections

Of course, most of the bases we encounter are not orthonormal, or even orthogonal.

We can, however, in a finite dimensional inner product space, transform any basis to an

orthonormal basis. The method, called the Gram-Schmidt process, involves projections

of vectors onto other vectors.

To motivate this topic, let u and v be vectors in ⺢2, as shown in Fig. 1(a).

(a)

u

v

θ

(b)

u

vw

θ

Figure 1

Our aim is to find a vector w that results from an orthogonal projection of u onto v,

as shown in Fig. 1(b). To do this, recall from trigonometry that

cos θ = ||w ||
|| u || so that ||w || = ||u || cos θ

Moreover, using the expression for cos θ, established at the beginning of Sec. 6.1, we

have

||w || = ||u || cos θ = || u || u · v

|| u || || v || = u · v

|| v ||
This quantity is called the scalar projection of u onto v. Now, to find w, we take

the product of the scalar projection with a unit vector in the direction of v, so that

w =
 

u · v

|| v ||

 
v

|| v || = u · v

|| v ||2 v

Moreover, since || v ||2 = v · v, the vector w can be written in the form

w =
!u · v

v · v

"
v

This vector is called the orthogonal projection of u onto v and is denoted by projv u,

so that

projv u =
!u · v

v · v

"
v

u

vprojv u

u − projv u

Figure 2 Another useful vector, shown in Fig. 2, is the vector

u − projv u
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from u to projv u. From the manner in which projv u is defined, the vector u − projv u

is orthogonal to projv u, as shown in Fig. 2. To verify algebraically that projv u and

u − projv u are orthogonal, we show that the dot product of these two vectors is zero.

That is,

#
projv u

$
·

#
u − projv u

$ =
!u · v

v · v
v
"

·

!
u − u · v

v · v
v
"

= u · v

v · v

!
v ·u − u · v

v · v
v · v

"
= u · v

v · v
(v ·u − u · v) = u · v

v · v
(u · v − u · v) = 0

In Fig. 1, the angle θ shown is an acute angle. If θ is an obtuse angle, then projv u

gives the orthogonal projection of u onto the negative of v, as shown in Fig. 3. If

θ = 90
◦
, then projv u = 0.

u

vw
θ

Figure 3

EXAMPLE 1 Let

u =
 

1

3

 
and v =

 
1

1

 
a. Find projv u.

b. Find u − projv u, and verify that projv u is orthogonal to u − projv u.

Solution a. From the formula given above, we have

projv u =
!u · v

v · v

"
v =

 
(1)(1)+ (3)(1)
(1)(1)+ (1)(1)

  
1

1

 
= 2

 
1

1

 
=
 

2

2

 
b. Using the result of part (a), we have

u − projv u =
 

1

3

 
−
 

2

2

 
=
 −1

1

 
To show that projv u is orthogonal to u − projvu, we compute the dot product.

Here we have

projv u ·

#
u − projv u

$ =
 

2

2

 
·

 −1

1

 
= (2)(−1)+ (2)(1) = 0

See Fig. 4.x 

y 

u

v

u − projv u

projv u

Figure 4 Definition 1 provides an extension of this idea to general inner product spaces.
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DEFINITION 1 Orthogonal Projection Let u and v be vectors in an inner product space. The

orthogonal projection of u onto v, denoted by projv u, is defined by

projv u =  u, v 
 v, v v

The vector u − projv u is orthogonal to projv u.

EXAMPLE 2 Define an inner product on P3 by

 p, q =
 1

0

p(x)q(x) dx

Let p(x) = x and q(x) = x2.

a. Find projq p.

b. Find p − projq p and verify that projq p and p − projq p are orthogonal.

Solution a. In this case

 p, q =
 1

0

x3 dx = 1

4
and  q, q =

 1

0

x4 dx = 1

5

Now the projection of p onto q is given by

projq p =  p, q 
 q, q q = 5

4
x2

b. From part (a), we have

p − projq p = x − 5

4
x2

To show that the vectors p and p − projq p are orthogonal, we show that the

inner product is zero. Here we have 1

0

5

4
x2

 
x − 5

4
x2

 
dx =

 1

0

 
5

4
x3 − 25

16
x4

 
dx =

 
5

16
x4 − 5

16
x5

     1
0

= 0

We now turn our attention to the construction of an orthonormal basis for an

inner product space. The key to this construction is the projection of one vector onto

another. As a preliminary step, let V = ⺢2 and let B = {v1, v2} be a basis, as shown

in Fig. 5. Now, define the vectors w1 and w2 by

w1 = v1 and w2 = v2 − projv1
v2



346 Chapter 6 Inner Product Spaces

Recall from Example 1 that w2 defined in this way is orthogonal to w1 as shown in

Fig. 6. We normalize these vectors by dividing each by its length, so that

B  =
 

w1

||w1 || ,
w2

||w2 ||

 

is an orthonormal basis for ⺢2.

v2

v1

B = {v1, v2} is a basis for ⺢2

Figure 5

v2

v1 = w1

projv1
v2

w2

w2 = v2 − projv1
v2

Figure 6

To construct an orthonormal basis for ⺢n, we first need to extend this idea to

general inner product spaces.

THEOREM 7 Every finite dimensional inner product space has an orthogonal basis.

Proof The proof is by induction on the dimension n of the inner product space.

First if n = 1, then any basis {v1} is orthogonal. Now assume that every inner

product space of dimension n has an orthogonal basis. Let V be an inner product

space with dim(V ) = n+ 1, and suppose that {v1, v2, . . . , vn, vn+1} is a basis. Let

W = span{v1, v2, . . . , vn}. Observe that dim(W) = n. By the inductive hypothe-

sis, W has an orthogonal basis B. Let B = {w1,w2, . . . ,wn}. Notice that B  =
{w1,w2, . . . ,wn, vn+1} is another basis for V . By Theorem 5 of Sec. 6.2, it suf-

fices to find a nonzero vector w that is orthogonal to each vector in B. (Here is

where we extend the idea presented just prior to the theorem.) Let

w = vn+1 − projw1
vn+1 − projw2

vn+1 − · · · − projwnvn+1

= vn+1 −  vn+1,w1 
 w1,w1 w1 −  vn+1,w2 

 w2,w2 w2 − · · · −  vn+1,wn 
 wn,wn 

wn

Observe that w  = 0 since if w = 0, then B  will be linearly dependent and therefore

not a basis for V . To complete the proof, we must show that w is orthogonal to
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each vector in B. To see this, let wi be a vector in B. Then

 w,wi =  
vn+1 − projw1

vn+1 − projw2
vn+1 − · · · − projwnvn+1,wi

 
=  vn+1,wi −  vn+1,w1 

 w1,w1  w1,wi −  vn+1,w2 
 w2,w2  w2,wi 

− · · · −  vn+1,wi 
 wi ,wi 

 wi ,wi − · · · −  vn+1,wn 
 wn,wn 

 wn,wi 

Now, as each vector in B = {w1,w2, . . . ,wn} is mutually orthogonal, the previous

equation reduces to

 w,wi =  vn+1,wi − 0 − 0 − · · · −  vn+1,wi 
 wi ,wi 

 wi ,wi − 0 − · · · − 0

=  vn+1,wi −  vn+1,wi = 0

Therefore B  = {w1,w2, . . . ,wn,w} is an orthogonal set of n+ 1 vectors in V .

That B  is a basis for V is due to Corollary 1 of Sec. 6.2.

From Theorem 7, we also know that every finite dimensional vector space has

an orthonormal basis. That is, if B = {w1,w2, . . . ,wn} is an orthogonal basis, then

dividing each vector by its length gives the orthonormal basis

B  =
 

w1

||w1 || ,
w2

||w2 || , . . . ,
wn

||wn ||

 

Gram-Schmidt Process

Theorem 7 guarantees the existence of an orthogonal basis in a finite dimensional inner

product space. The proof of Theorem 7 also provides a procedure for constructing

an orthogonal basis from any basis of the vector space. The algorithm, called the

Gram-Schmidt process, is summarized here.

1. Let B = {v1, v2, . . . , vn} be any basis for the inner product space V .

2. Use B to define a set of n vectors as follows:

w1 = v1

w2 = v2 − projw1
v2 = v2 −  v2,w1 

 w1,w1 w1

w3 = v3 − projw1
v3 − projw2

v3

= v3 −  v3,w1 
 w1,w1 w1 −  v3,w2 

 w2,w2 w2

...

wn = vn − projw1
vn − projw2

vn − · · · − projwn−1
vn

= vn −  vn,w1 
 w1,w1 w1 −  vn,w2 

 w2,w2 w2 − · · · −  vn,wn−1 
 wn−1,wn−1 wn−1
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3. The set B  = {w1,w2, . . . ,wn} is an orthogonal basis for V .

4. Dividing each of the vectors in B  by its length gives an orthonormal basis for

the vector space V

B   =
 

w1

||w1 || ,
w2

||w2 || , . . . ,
wn

||wn ||

 

A Geometric Interpretation of the Gram-Schmidt Process

The orthogonal projection projvu of the vector u onto the vector v, in ⺢n, is the

projection of u onto the one-dimensional subspaceW = span{v}. See Figs. 2 and 3. As

seen above, to construct an orthogonal basis from the basis B = {v1, v2, v3}, the first

step in the Gram-Schmidt process is to let w1 = v1, and then perform an orthogonal

projection of v2 onto span{v1}. As a result, w1 is orthogonal to w2 = v2 − projw1
v2.

Our aim in the next step is to find a vector w3 that is orthogonal to the two-dimensional

subspace span{w1,w2}. This is accomplished by projecting v3 separately onto the one-

dimensional subspaces span{w1} and span{w2}, as shown in Fig. 7. The orthogonal

projections are

projw1
v3 =  v3,w1 

 w1,w1 w1 and projw2
v3 =  v3,w2 

 w2,w2 w2

Hence, the orthogonal projection of v3 onto span{w1,w2} is the sum of the projections

projw1
v3 + projw2

v3

also shown in Fig. 7. Finally, the required vector is

w3 = v3 − #
projw1

v3 + projw2
v3

$ = v3 − projw1
v3 − projw2

v3

which is orthogonal to both w1 and w2, as shown in Fig. 7.

In general, when dim(W) = n > 1, then the Gram-Schmidt process describes

projecting the vector vn+1 onto n one-dimensional subspaces span{w1},
span{w2}, . . . , span{wn}. Then the vector wn+1 that is orthogonal to each of the

vectors w1,w2, . . . ,wn is obtained by subtracting each projection from the vector vn.

w1

w2

v3

projw2
v3

projw1
v3

projw1
v3 + projw2

v3

w3

span{w1,w2}

Figure 7
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EXAMPLE 3 Let B be the basis for ⺢3 given by

B = {v1, v2, v3} =


 1

1

1

,
 −1

1

0

,
 −1

0

1


Apply the Gram-Schmidt process to B to find an orthonormal basis for ⺢3.

Solution In this case the inner product on ⺢3 is the dot product. Notice that v1 · v2 = 0,

so that the vectors v1 and v2 are already orthogonal. Applying the Gram-Schmidt

process results in w1 = v1 and w2 = v2. Following the steps outlined above, we

have

w1 = v1 =
 1

1

1


w2 = v2 −

 
v2 ·w1

w1 ·w1

 
w1 = v2 − 0

3
w1 = v2 =

 −1

1

0


Next note that v1 and v3 are also orthogonal, so that in this case only one projection

is required. That is,

w3 = v3 −
 
v3 ·w1

w1 ·w1

 
w1 −

 
v3 ·w2

w2 ·w2

 
w2

=
 −1

0

1

 − 0w1 − 1
2

 −1

1

0

 =
 − 1

2

− 1
2

1


Then

B  = {w1,w2,w3} =


 1

1

1

,
 −1

1

0

,
 − 1

2

− 1
2

1




is an orthogonal basis for ⺢3. See Fig. 8. An orthonormal basis is then given by

B   =
 

w1

||w1 || ,
w2

||w2 || ,
w3

||w3 ||

 
=

 1√
3

 1

1

1

, 1√
2

 −1

1

0

, 1√
6

 −1

−1

2



x 
y 

z 

w1

w2

v3w3

v3 − projw2
v3

Figure 8
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Example 4 illustrates the use of the Gram-Schmidt process on a space of poly-

nomials.

EXAMPLE 4 Define an inner product on P3 by

 p, q =
 1

−1

p(x)q(x) dx

Use the standard basis B = {v1, v2, v3, v4} = {1, x, x2, x3} to construct an orthog-

onal basis for P3.

Solution First note that B is not orthogonal, since 
x, x3

 =
 1

−1

x4 dx = 2

5

We can simplify some of the work by noting that since the interval [−1, 1] is a

symmetric interval,

When p is an odd function, then

 1

−1

p(x) dx = 0

When p is an even function, then

 1

−1

p(x) dx = 2

 1

0

p(x) dx

Now, since f (x) = x, g(x) = x3, and h(x) = x5 are all odd functions,

 v1, v2 =
 1

−1

x dx = 0  v2, v3 =
 1

−1

x3 dx = 0

 v4, v1 =
 1

−1

x3 dx = 0  v4, v3 =
 1

−1

x5 dx = 0

Since v1 and v2 are orthogonal, proceeding with the Gram-Schmidt process, we

have

w1 = v1 and w2 = v2

Next, to find w3, the required computation is

w3 = v3 −  v3,w1 
 w1,w1 w1 −  v3,w2 

 w2,w2 w2

= v3 −  v3, v1 
 v1, v1 v1 −  v3, v2 

 v2, v2 v2

= v3 −  v3, v1 
 v1, v1 v1 −  v2, v3 

 v2, v2 v2

But we have already noted above that 0 =  v2, v3 and since

 v3, v1 =
 1

−1

x2 dx = 2

 1

0

x2 dx = 2

3
and  v1, v1 =

 1

−1

dx = 2

then

w3 = x2 − 1

3
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To find w4, we first note that since  v4, v1 = 0,w1 = v1, and w2 = v2, then

w4 = v4 −  v4,w1 
 w1,w1 w1 −  v4,w2 

 w2,w2 w2 −  v4,w3 
 w3,w3 w3

= v4 −  v4, v2 
 v2, v2 v2 −  v4,w3 

 w3,w3 w3

Next, observe that p(x) = x5 − 1
3
x3 is an odd function. Hence,

 v4,w3 =
 1

−1

#
x5 − 1

3
x3
$
dx = 0

Consequently,

w4 = v4 −  v4, v2 
 v2, v2 v2 = x3 − 3

5
x

An orthogonal basis for P3 is therefore given by

B  =  
1, x, x2 − 1

3
, x3 − 3

5
x
 

By normalizing each of these vectors, we obtain the orthonormal basis

B   =
(√

2

2
,

√
6

2
x,

3
√

10

4

#
x2 − 1

3

$
,

5
√

14

4

#
x3 − 3

5
x
$)

EXAMPLE 5 Let U be the subspace of ⺢4 with basis

B = {u1, u2, u3} =




−1

1

1

0

,


−1

0

1

0

,


1

0

0

1




where the inner product is the dot product. Find an orthonormal basis for U .

Solution Following the Gram-Schmidt process, we let w1 = u1. Next we have

w2 = u2 − u2 ·w1

w1 ·w1

w1 =


−1

0

1

0

 − 2

3


−1

1

1

0

 =


− 1

3

− 2
3

1
3

0

 = −1

3


1

2

−1

0


To facilitate the computations, we replace w2 with

w2 =


1

2

−1

0


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To justify this substitution, note that w1 ·w2 = 0; that is, multiplying w2 by a

scalar does not change the fact that it is orthogonal to w1. To find w3, we use the

computation

w3 = u3 − u3 ·w1

w1 ·w1

w1 − u3 ·w2

w2 ·w2

w2

=


1

0

0

1

 −
 

−1

3

 
−1

1

1

0

 − 1

6


1

2

−1

0

 = 1

2


1

0

1

2


As before we replace w3 with

w3 =


1

0

1

2


An orthogonal basis for U is then given by

B  =




−1

1

1

0

,


1

2

−1

0

,


1

0

1

2




Normalizing each of the vectors of B  produces the orthonormal basis

B   =


1√
3


−1

1

1

0

, 1√
6


1

2

−1

0

, 1√
6


1

0

1

2




Fact Summary

1. Every finite dimensional inner product space has an orthonormal basis.

2. The Gram-Schmidt process is an algorithm to construct an orthonormal

basis from any basis of the vector space.

Exercise Set 6.3

In Exercises 1–8, use the standard inner product on

⺢n.

a. Find projv u.

b. Find the vector u − projvu and verify this

vector is orthogonal to v.

1. u =
 −1

2

 
v =

 −1

1

 

2. u =
 

3

−2

 
v =

 
1

−2
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3. u =
 

1

−2

 
v =

 
1

2

 

4. u =
 

1

−1

 
v =

 −2

−2

 

5. u =
 −1

3

0

 v =
 1

−1

−1


6. u =

 1

0

1

 v =
 3

2

−1


7. u =

 1

−1

−1

 v =
 0

0

1


8. u =

 3

2

0

 v =
 1

0

−1


In Exercises 9–12, use the inner product on P2

defined by

 p, q =
 1

0

p(x)q(x) dx

a. Find projqp.

b. Find the vector p − projqp and verify that this

vector is orthogonal to q.

9. p(x) = x2 − x + 1, q(x) = 3x − 1

10. p(x) = x2 − x + 1, q(x) = 2x − 1

11. p(x) = 2x2 + 1, q(x) = x2 − 1

12. p(x) = −4x + 1, q(x) = x

In Exercises 13–16, use the standard inner product on

⺢n. Use the basis B and the Gram-Schmidt process to

find an orthonormal basis for ⺢n.

13. B =
  

1

−1

 
,

 
1

−2

  

14. B =
  

2

−1

 
,

 
3

−2

  

15. B =


 1

0

1

,
 0

−1

1

,
 0

−1

−1



16. B =


 1

0

−1

,
 0

1

1

,
 1

1

1


In Exercises 17 and 18, use the inner product on P2

defined by

 p, q =
 1

0

p(x)q(x) dx

Use the given basis B and the Gram-Schmidt process

to find an orthonormal basis for P2.

17. B = {x − 1, x + 2, x2}

18. B = {x2 − x, x, 2x + 1}
In Exercises 19–22, use the standard inner product on

⺢n to find an orthonormal basis for the subspace

span(W).

19. W =


 1

1

1

,
 1

−1

−1


20. W =


 0

1

1

,
 −1

−1

1


21. W =




−1

−2

0

1

,


−1

3

−1

−1

,


1

−2

0

1




22. W =




1

−2

0

0

,


−1

3

1

−1

,


0

−1

0

−1




In Exercises 23 and 24, use the inner product on P3

defined by

 p, q =
 1

0

p(x)q(x) dx

to find an orthonormal basis for the subspace

span(W).

23. W = {x, 2x + 1}

24. W = {1, x + 2, x3 − 1}
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25. In ⺢4 with the standard inner product find an

orthonormal basis for

span




1

0

1

1

,


0

1

−1

1

,


2

−3

5

−1

,


−1

2

−3

1




26. In ⺢3 with the standard inner product find an

orthonormal basis for

span


 2

0

1

,
 3

1

1

,
 3

−1

2

,
 1

1

0


27. Let {u1, u2, . . . , un} be an orthonormal basis for

⺢n. Show that

|| v ||2 = |v · u1|2 + · · · + |v · un|2

for every vector v in ⺢n.

28. Let A be an n× n matrix. Show that the

following conditions are equivalent.

a. A−1 = At

b. The row vectors of A form an orthonormal

basis for ⺢n.

c. The column vectors of A form an orthonormal

basis for ⺢n.

29. Show that an n× n matrix A has orthonormal

column vectors if and only if AtA = I .

30. Let A be an m× n matrix, x a vector in ⺢m, and

y a vector in ⺢n. Show that x · (Ay) = Atx · y.

31. Show that if A is an m× n matrix with

orthonormal column vectors, then ||Ax || = || x ||.
32. Show that if A is an m× n matrix with

orthonormal column vectors and x and y are in

⺢n, then (Ax) · (Ay) = x · y.

33. Show that if A is an m× n matrix with

orthonormal column vectors and x and y are in

⺢n, then (Ax) · (Ay) = 0 if and only if x · y = 0.

34. In ⺢4 with the standard inner product show that

the set of all vectors orthogonal to both


1

0

−1

1



and


2

3

−1

2

 is a subspace. Find a basis for the

subspace.

35. Let S = {u1, . . . , um} be a set of vectors in ⺢n.

Show that the set of all vectors orthogonal to

every ui is a subspace of ⺢n.

In Exercises 36–41, a (real) n× n matrix A is called

positive semidefinite if A is symmetric and utAu ≥ 0

for every nonzero vector u in ⺢n. If the inequality is

strict, then A is positive definite.

36. Let A be a positive definite matrix. Show that the

function  u, v = utAv defines an inner product

on ⺢n. (Note that when A = I this function

corresponds to the dot product.)

37. Let A =
 

3 1

1 3

 
. Show that A is positive

definite.

38. Show that if A is positive definite, then the

diagonal entries are positive.

39. Let A be an m× n matrix. Show that AtA is

positive semidefinite.

40. Show that a positive definite matrix is invertible.

41. Show that the eigenvalues of a positive definite

matrix are positive.

42. Let

v1 =
 −2

−1

 
v2 =

 
2

−4

 
a. Are the vectors v1 =

 −2

−1

 
and

v2 =
 

2

−4

 
orthogonal?

Let A =
 −2 −1

2 −4

 
.

b. Find det(AtA).

c. Show that the area of the rectangle spanned by

v1 =
 −2

−1

 
and v2 =

 
2

−4

 
is

√
det(AtA).

d. Show that the area of the rectangle is | det(A)|.
e. If v1 and v2 are any two orthogonal vectors in

⺢2, show that the area of the rectangle spanned
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by the vectors is | det(A)|, where A is the

matrix with row vectors v1 and v2.

f. Let v1 and v2 be two vectors in ⺢2 that span a

parallelogram, as shown in the figure. Show

that the area of the parallelogram is | det(A)|,
where A is the matrix with row vectors v1

and v2.

g. If v1, v2, and v3 are mutually orthogonal

vectors in ⺢3, show that the volume of the box

spanned by the three vectors is | det(A)|, where

A is the matrix with row vectors v1, v2, and v3.

x 

y 

v1

v2

p

6.4

ß

Orthogonal Complements

Throughout this chapter we have seen the importance of orthogonal vectors and bases

in inner product spaces. Recall that two vectors u and v in an inner product space V

are orthogonal if and only if

 u, v = 0

A collection of vectors forms an orthogonal basis if the vectors are a basis and are

pairwise orthogonal. In this section we extend the notion of orthogonality to subspaces

of inner product spaces. As a first step, let v be a vector in an inner product space V

and W a subspace of V. We say that v is orthogonal to W if and only if

 v,w = 0 for each vector w ∈ W
As an illustration, let W be the yz plane in the Euclidean space ⺢3. Observe that W

is closed under addition and scalar multiplication, so that by Theorem 3 of Sec. 3.2 it

is a subspace. Using the dot product as the inner product on ⺢3, the coordinate vector

e1 =
 1

0

0


is orthogonal to W since  1

0

0


·

 0

y

z

 = 0

for every y, z ∈ ⺢. Note that any scalar multiple of e1 is also orthogonal to W .

Example 1 gives an illustration of how to find vectors orthogonal to a subspace.

EXAMPLE 1 Let V = ⺢3, with the dot product as the inner product, and let W be the subspace

defined by

W = span


 1

−2

3


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Describe all vectors in ⺢3 that are orthogonal to W .

Solution Let

w =
 1

−2

3


Thus, any vector in W has the form cw, for some real number c. Consequently, a

vector

v =
 x

y

z


in ⺢3 is orthogonal to W if and only if v ·w = 0. This last equation is equivalent

to the equation

x − 2y + 3z = 0

whose solution set is given by

S = {(2s − 3t, s, t) | s, t ∈ ⺢}
Therefore, the set of vectors orthogonal to W is given by

S =


 2s − 3t

s

t

      s, t ∈ ⺢

 =

 s
 2

1

0

 + t
 −3

0

1

      s, t ∈ ⺢


Letting s = t = 1 gives the particular vector

v =
 −1

1

1


which is orthogonal to W since

v·w =
 −1

1

1


·

 1

−2

3

 = (−1)(1)+ (1)(−2)+ (1)(3) = 0

If the vectors in S  are placed in standard position, then the solution set describes

a plane in ⺢3, as shown in Fig. 1. This is in support of our intuition as the set of

vectors orthogonal to a single vector in ⺢3 should all lie in a plane perpendicular

to that vector, which is called the normal vector.

x 

y 
⫺5

⫺5

5

5

0

0

0

z

w S  

Figure 1 The set of vectors found in Example 1, orthogonal to the subspace W, is called

the orthogonal complement of W . The following definition generalizes this idea to

inner product spaces.



6.4 Orthogonal Complements 357

DEFINITION 1 Orthogonal Complement Let W be a subspace of an inner product space V.

The orthogonal complement of W, denoted by W⊥, is the set of all vectors in V

that are orthogonal to W. That is,

W⊥ = {v ∈ V |  v,w = 0 for all w ∈ W }

EXAMPLE 2 Let V = P3 and define an inner product on V by

 p, q =
 1

0

p(x)q(x) dx

Find W⊥ if W is the subspace of constant polynomials.

Solution Let f (x) = a + bx + cx2 + dx3 be an arbitrary polynomial in P3 and p(x) = k be

an arbitrary constant polynomial. Then f is in W⊥ if and only if

 f, p =
 1

0

k(a + bx + cx2 + dx3) dx = k

 
a + b

2
+ c

3
+ d

4

 
= 0

Since this equation must hold for all k ∈ ⺢,

W⊥ =
 
a + bx + cx2 + dx3

    a + b

2
+ c

3
+ d

4
= 0

 

Notice in Examples 1 and 2 that the zero vector is an element of the orthogonal

complement W⊥. It can also be shown for these examples that W⊥ is closed under

vector space addition and scalar multiplication. This leads to Theorem 8.

THEOREM 8 Let W be a subspace of an inner product space V.

1. The orthogonal complement W⊥ is a subspace of V.

2. The only vector in W and W⊥ is the zero vector; that is, W ∩W⊥ = {0}.
Proof (1) Let u and v be vectors in W⊥, and w a vector in W, so that

 u,w = 0 and  v,w = 0

Now for any scalar c, we have

 u + cv,w =  u,w +  cv,w 
=  u,w + c  v,w 
= 0 + 0 = 0

Thus, u + cv is in W⊥, and therefore by Theorem 4 of Sec. 3.2, W⊥ is a subspace

of V.
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(2) Let w be any vector in W ∩W⊥. Then

 w,w = 0

and hence w = 0 (see Definition 1 of Sec. 6.2). Thus, W ∩W⊥ = {0}.

To determine whether a vector v is in the orthogonal complement of a subspace,

it suffices to show that v is orthogonal to each one of the vectors in a basis for the

subspace.

PROPOSITION 5 Let W be a subspace of an inner product space V and B = {w1, . . . ,wm} a basis

for W. The vector v is in W⊥ if and only if v is orthogonal to each vector in B.

Proof First suppose that v is orthogonal to each vector in B. Let w be a vector

in W . Then there are scalars c1, . . . , cm such that

w = c1w1 + · · · + cmwm
To show that v is in W⊥, take the inner product of both sides of the previous

equation with v, so that

 v,w = c1  v,w1 + c2  v,w2 + · · · + cm  v,wm 
Since

 
v,wj

 = 0 for all j = 1, 2, . . . , m, we have  v,w = 0 and hence v ∈ W⊥.
On the other hand, if v ∈ W⊥, then v is orthogonal to each vector in W. In

particular, v is orthogonal to wj , for all j = 1, 2, . . . , m.

EXAMPLE 3 Let V = ⺢4 with the dot product as the inner product, and let

W = span




1

0

−1

−1

,


0

1

−1

1




a. Find a basis for W .

b. Find a basis for W⊥.

c. Find an orthonormal basis for ⺢4.

d. Let

v0 =


1

0

0

0


Show that v0 can be written as the sum of a vector from W and a vector

from W⊥.
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Solution a. Let

w1 =


1

0

−1

−1

 and w2 =


0

1

−1

1


Notice that w1 and w2 are orthogonal and hence by Theorem 5 of Sec. 6.2 are

linearly independent. Thus, {w1,w2} is a basis for W .

b. Now by Proposition 5, the vector

v =


x

y

z

w


is in W⊥ if and only if v ·w1 = 0 and v ·w2 = 0. This requirement leads to

the linear system (
x − z− w = 0

y − z+ w = 0

The two-parameter solution set for this linear system is

S =



s + t
s − t
s

t


        s, t ∈ ⺢


The solution to this system, in vector form, provides a description of the

orthogonal complement of W and is given by

W⊥ = span




1

1

1

0

,


1

−1

0

1




Let

v1 =


1

1

1

0

 and v2 =


1

−1

0

1


Since v1 and v2 are orthogonal, by Theorem 5 of Sec. 6.2 they are linearly

independent and hence a basis for W⊥.

c. Let B be the set of vectors B = {w1,w2, v1, v2}. Since B is an orthogonal

set of four vectors in ⺢4, then by Corollary 1 of Sec. 6.2, B is a basis for

⺢4. Dividing each of these vectors by its length, we obtain the (ordered)

orthonormal basis for ⺢4 given by
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B  = {b1, b2, b3, b4} =

 1√
3


1

0

−1

−1

, 1√
3


0

1

−1

1

, 1√
3


1

1

1

0

, 1√
3


1

−1

0

1




d. By Theorem 6 of Sec. 6.2 the coordinates of v0 relative to B  are given by

ci = v0 ·bi , for 1 ≤ i ≤ 4. So

c1 = 1√
3

c2 = 0 c3 = 1√
3

c4 = 1√
3

Now, observe that the first two vectors of B  are an orthonormal basis for W

while the second two vectors are an orthonormal basis for W⊥. Let w be the

vector in W given by

w = c1b1 + c2b2 = 1

3


1

0

−1

−1


and u be the vector in W⊥ given by

u = c3b3 + c4b4 = 1

3


2

0

1

1


Then

w + u = 1

3


1

0

−1

−1

 + 1

3


2

0

1

1

 =


1

0

0

0

 = v0

The vector w in Example 3 is called the orthogonal projection of v onto the

subspace W , and the vector u is called the component of v orthogonal to W . The

situation, in general, is the content of Definition 2 and Theorem 9.

DEFINITION 2 Direct Sum Let W1 and W2 be subspaces of a vector space V . If each vec-

tor in V can be written uniquely as the sum of a vector from W1 and a vector

from W2, then V is called the direct sum of W1 and W2. In this case we write,

V = W1 ⊕W2.
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PROPOSITION 6 Let W1 and W2 be subspaces of a vector space V with V = W1 ⊕W2. Then

W1 ∩W2 = {0}.
Proof Let v ∈ W1 ∩W2. Then

v = w1 + 0 and v = 0 + w2

with w1 ∈ W1 and w2 ∈ W2. Hence, by the uniqueness of direct sum representa-

tions, we have w1 = w2 = 0.

THEOREM 9 Projection Theorem If W is a finite dimensional subspace of an inner product

space V, then

V = W ⊕W⊥

Proof The proof of this theorem has two parts. First we must show that for any

vector v ∈ V there exist vectors w ∈ W and u ∈ W⊥ such that w + u = v. Then

we must show that this representation is unique.

For the first part, let B = {w1, . . . ,wn} be a basis for W. By Theorem 7 of

Sec. 6.3, we can take B to be an orthonormal basis for W. Now, let v be a vector

in V , and let the vectors w and u be defined by

w =  v,w1 w1 +  v,w2 w2 + · · · +  v,wn wn and u = v − w

Since w is a linear combination of the vectors in B, then w ∈ W . To show that u is

inW⊥, we show that  u,wi = 0 for each i = 1, 2, . . . , n and invoke Proposition 5.

To this end, let wi be a vector in B. Then

 u,wi =  v − w,wi 
=  v,wi −  w,wi 

=  v,wi −
n 
j=1

 
v,wj

  
wj ,wi

 
Since B is an orthonormal basis,

 wi ,wi = 1 and
 
wj ,wi

 = 0 for i  = j

Hence,

 u,wi =  v,wi −  v,wi  wi ,wi = 0

Since this holds for each i = 1, . . . , n, then by Proposition 5 the vector u ∈ W⊥

as claimed.

For the second part of the proof, let

v = w + u and v = w + u 

with w and w in W and u and u in W⊥. Subtracting the previous equations gives

(w − w )+ (u − u ) = 0
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or equivalently,

w − w = u − u 

Now, from this last equation we know that the vector u − u is inW , as it is a linear

combination of the vectors w and w , which are in W . However, u − u is also in

W⊥ since it is the difference of two vectors inW⊥. Therefore, by Theorem 8, part 2,

u − u = 0 and hence u = u . This being the case, we now have w − w = 0, so

that w = w. Thus, we have shown that for every v in V, there are unique vectors

w in W and u in W⊥ such that v = w + u and hence V = W ⊕W⊥.

Motivated by the terminology of Example 3, we call the vector w, of Theorem 9,

the orthogonal projection of v onto W , which we denote by projWv, and call u the

component of v orthogonal to W .

Matrices

In Definition 4 of Sec. 3.2 we defined the null space of an m× n matrix A, denoted

by N(A), as the set of all vectors x in ⺢n such that Ax = 0. The column space of

A, denoted by col(A), is the subspace of ⺢m spanned by the column vectors of A.

In a similar way, the left null space of A, denoted by N(At), is the set of vectors

y in ⺢m such that Aty = 0. Finally, the row space of A, which we discussed in

Sec. 4.2, denoted by row(A), is the subspace of ⺢n spanned by the row vectors of

A. Since the rows of A are the columns of At , then row(A) = col(At ). These four

subspaces

N(A) N(At) col(A) and col(At )

are referred to as the four fundamental subspaces associated with the matrix A.

Theorem 10 gives relationships among them.

THEOREM 10 Let A be an m× n matrix.

1. N(A) = col(At)⊥

2. N(At) = col(A)⊥

Proof (1) Let v1, . . . , vm denote the row vectors of A. So that

Ax =


v1 · x

v2 · x
...

vm · x


First let x be a vector in N(A) so that Ax = 0. Then vi · x = 0 for i = 1, 2, . . . , m.

Thus, x ∈ row(A)⊥ = col(At )⊥ and N(A) ⊆ col(At )⊥. On the other hand, let x

be a vector in col(At )⊥ = row(A)⊥. Then x · vi = 0, for i = 1, . . . , m, so that

Ax = 0. Therefore, col(At )⊥ ⊆ N(A). Hence, N(A) = col(At)⊥.

For part 2, substitute At for A in part 1.
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Linear Systems

Let A be an m× n matrix. In light of Theorem 10, we are now in a position to

provide an analysis of the linear system Ax = b in terms of the geometric structure

of Euclidean space and the fundamental subspaces of A. As a first step, we describe

the action of A on a vector x in ⺢n. Since row(A) = col(At ), by Theorem 10, N(A)

is the orthogonal complement of row(A). Thus, by Theorem 9, a vector x in ⺢n can

be uniquely written as

x = xrow + xnull

where xrow is in the row space of A and xnull is in the null space of A. Now, multiplying

x by A, we have

Ax = A(xrow + xnull) = Axrow + Axnull

Since Axnull = 0, the mapping T : ⺢n −→ ⺢m defined by T (x) = Ax maps the row

space of A to the column space of A. Observe that no vector in ⺢n is mapped to a

nonzero vector in N(At), which by Theorem 10 is the orthogonal complement of the

column space of A. See Fig. 2.

dim r dim r

dim n − r dim m − r

⺢n ⺢m

N(A)

xnull N(At)

col(A)

Ax

xrow

row(A) x
A

A

A

Figure 2

We now consider, again from a geometric point of view, the consistency of the

linear system Ax = b for an m× n matrix A and a given vector b in ⺢m. We have

already observed in Sec. 3.2 that Ax = b is consistent if and only if b is in the column

space of A. By Theorem 10, this system is consistent if and only if b is perpendicular

to the left null space of A, or equivalently, if and only if b is orthogonal to every

vector in ⺢m, which is orthogonal to the column vectors of A. This sounds a bit

awkward. However, in cases where a basis for the null space of At consists of only

a few vectors, we can perform an easy check to see if Ax = b is consistent. As an

illustration, let

A =
 1 0 0

0 1 1

−1 −1 −1

 and b =
 2

1

−3


Since

At =
 1 0 −1

0 1 −1

0 1 −1

 then N(At) = span


 1

1

1


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Now as b is orthogonal to

 1

1

1

, by Proposition 5, b is orthogonal to N(At) and

hence in col(A). Therefore, the linear system Ax = b is consistent.

Fact Summary

Let W be a subspace of an inner product space V.

1. The orthogonal complement of the span of a single nonzero vector v in

3-space is the plane with normal vector v.

2. The orthogonal complement of W is a subspace of V.

3. The only vector common to both W and its orthogonal complement is the

zero vector.

4. If W is finite dimensional, then the vector space is the direct sum of W and

its orthogonal complement. That is, V = W ⊕W⊥.
5. If B is a basis for W, then v is in W⊥ if and only if v is orthogonal to each

vector in B.

6. If A is an m× n matrix, then N(A) = col(At )⊥ and N(At) = col(A)⊥.

Exercise Set 6.4

In Exercises 1–8, find the orthogonal complement of

W in ⺢n with the standard inner product.

1. W = span

  
1

−2

  
2. W = span

  
1

0

  

3. W = span


 2

1

−1


4. W = span


 1

0

2


5. W = span


 2

1

−1

,
 1

2

0


6. W = span


 −3

1

−1

,
 0

1

1



7. W = span




3

1

1

−1

,


0

2

1

2




8. W = span




1

1

0

1

,


1

0

1

1

,


0

1

1

1




In Exercises 9–12, find a basis for the orthogonal

complement of W in ⺢n with the standard inner

product.

9. W = span


 2

1

1

,
 −1

1

0


10. W = span


 1

−1

1

,
 −2

2

−2


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11. W = span




3

1

−1

2

,


1

1

4

0




12. W = span




1

1

1

1

,


2

0

−1

1

,


0

2

3

1




In Exercises 13 and 14, find a basis for the orthogonal

complement of W in P2 with the inner product

 p, q =
 1

0

p(x)q(x) dx

13. W = span{x − 1, x2}

14. W = span{1, x2}

15. Let W be the subspace of ⺢4, with the standard

inner product, consisting of all vectors w such that

w1 + w2 + w3 +w4 = 0. Find a basis for W⊥.
In Exercises 16–21, W is a subspace of ⺢n with the

standard inner product. If v is in ⺢n and {w1, . . . ,wm}
is an orthogonal basis for W, then the orthogonal

projection of v onto W is given by

projWv =
m 
i=1

 v,wi 
 wi ,wi 

wi

Find the orthogonal projection of v onto W. If

necessary, first find an orthogonal basis for W.

16. W = span


 1

0

−1

,
 2

1

1


v =

 1

−2

2



17. W = span


 2

0

0

,
 0

−1

0


v =

 1

2

−3



18. W = span


 3

−1

1

,
 −2

2

0


v =

 5

−3

1



19. W = span


 1

2

1

,
 −1

3

2


v =

 1

−3

5



20. W = span




1

2

−1

1

,


1

3

−1

0

,


3

0

1

−1




v =


0

0

1

0



21. W = span




3

0

−1

2

,


−6

0

2

4




v =


1

2

1

−1


In Exercises 22–25, W is a subspace of ⺢n with the

standard inner product.

a. Find W⊥.

b. Find the orthogonal projection of v onto W.

(See Exercises 16–21.)

c. Compute u = v − projWv.

d. Show u is in W⊥ so v is a sum of a vector in

W and one in W⊥.
e. Make a sketch of W,W⊥, v, projWv, and u.
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22. W = span

  
1

2

  
v =

 
1

1

 
23. W = span

  
3

−1

  
v =

 
0

1

 

24. W = span


 1

1

0


v =

 1

1

1


25. W = span


 1

1

−1

,
 −1

2

4


v =

 2

1

1


26. Show that if V is an inner product space, then

V ⊥ = {0} and {0}⊥ = V.

27. Show that if W1 and W2 are finite dimensional

subspaces of an inner product space and

W1 ⊂ W2, then W⊥
2 ⊂ W⊥

1 .

28. Let V = C(0)[−1, 1] with the inner product

 f, g =
 1

−1

f (x)g(x) dx

and W = {f ∈ V | f (−x) = f (x)}.
a. Show that W is a subspace of V.

b. Show W⊥ = {f ∈ V | f (−x) = −f (x)}.

c. Verify that W ∩W⊥ = {0}.
d. Let g(x) = 1

2
[f (x)+ f (−x)] and

h(x) = 1
2
[f (x)− f (−x)]. Verify

g(−x) = g(x) and h(−x) = −h(x), so every

f can be written as the sum of a function in W

and a function in W⊥.

29. Let V = M2×2 with the inner product

 A,B = tr(BtA)

Let W = {A ∈ V | A is symmetric}.
a. Show that

W⊥ = {A ∈ V | A is skew symmetric}
b. Show that every A in V can be written as the

sum of matrices from W and W⊥.

30. In ⺢2 with the standard inner product, the

transformation that sends a vector to the

orthogonal projection onto a subspace W is a

linear transformation. Let W = span

  
2

1

  
.

a. Find the matrix representation P relative to the

standard basis for the orthogonal projection of

⺢2 onto W.

b. Let v =
 

1

1

 
. Find projWv and verify the

result is the same by applying the matrix P

found in part (a).

c. Show P 2 = P.

31. If W is a finite dimensional subspace of an inner

product space, show that (W⊥)⊥ = W.

6.5

ß

Application: Least Squares Approximation

There are many applications in mathematics and science where an exact solution to

a problem cannot be found, but an approximate solution exists that is sufficient to

satisfy the demands of the application. Consider the problem of finding the equation

of a line going through the points (1, 2), (2, 1), and (3, 3). Observe from Fig. 1 that

this problem has no solution as the three points are noncollinear.

This leads to the problem of finding the line that is the best fit for these three

points based on some criteria for measuring goodness of fit. There are different ways

of solving this new problem. One way, which uses calculus, is based on the idea
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x 

y 

⫺5

⫺5

5

5

Figure 1

of finding the line that minimizes the sum of the square distances between itself and

each of the points. Another quite elegant method uses the concepts of linear algebra to

produce the same result. To illustrate the technique, we consider the original problem

of finding an equation of the form y = mx + b that is satisfied by the points (1, 2),

(2, 1), and (3, 3). Substitution of these points into the equation y = mx + b yields the

linear system 
m+ b = 2

2m+ b = 1

3m+ b = 3

As noted above, this system is inconsistent. As a first step toward finding an

optimal approximate solution, we let

A =
 1 1

2 1

3 1

 x =
 
m

b

 
and b =

 2

1

3


and we write the linear system as Ax = b. From this perspective, we see that the

linear system is inconsistent as b is not in col(A). Thus, the best we can do is to look

for a vector *w in col(A) that is as close as possible to b, as shown in Fig. 2.

b

*w
*w − b

col(A)

Figure 2
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We will soon see that the optimal choice is to let *w be the orthogonal projection of b

onto col(A). In this case, to find *w we let

W = col(A) = span


 1

2

3

,
 1

1

1


By Theorem 9 of Sec. 6.4, the vector b can be written uniquely as

b = *w + y

where y is in W⊥. By Theorem 10 of Sec. 6.4, we have W⊥ = N(At). By row

reducing At, the orthogonal complement of W is

W⊥ = span


 1

−2

1


As this space is one-dimensional, the computations are simplified by finding y first,

which in the terminology of Sec. 6.4 is the component of b orthogonal to W . To find

y, we use Definition 1 of Sec. 6.3 and compute the orthogonal projection of b onto

W⊥. Let v =
 1

−2

1

, so that

y = b · v

v · v
v = 1

2

 1

−2

1


Hence,

*w = b − y =
 2

1

3

 − 1

2

 1

−2

1

 = 1

2

 3

4

5


Finally, to find values for m and b, we solve the linear system Ax = *w, that is, the

system  1 1

2 1

3 1

 m
b

 
= 1

2

 3

4

5


By Theorem 6 of Sec. 3.2, this last linear system is consistent since the vector on the

right-hand side is in col(A). Solving the linear system, we obtain m = 1
2

and b = 1,

giving us the slope and the y intercept, respectively, for the best-fit line y = 1
2
x + 1.

The vector  
m

b

 
=
+

1
2

1

,x 

y 

⫺5

⫺5

5

5

y = 1
2
x + 1

Figure 3 is the least squares solution to the system Ax = b since it produces a line whose total

squared distances from the given points are minimal, as shown in Fig. 3. Finding the

line that best fits a set of data points is called linear regression.
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Least Squares Solutions

We now consider the general problem of finding a least squares solution to the m× n
linear system Ax = b. An exact solution exists if b is in col(A); moreover, the solution

is unique if the columns of A are linearly independent. In the case where b is not in

col(A), we look for a vector x in ⺢n that makes the error term ||b − Ax || as small

as possible. Using the standard inner product on ⺢m to define the length of a vector,

we have

|| b − Ax ||2 = (b − Ax) · (b − Ax)
= [b1 − (Ax)1]2 + [b2 − (Ax)2]2 + · · · + [bm − (Ax)m]2

This equation gives the rationale for the term least squares solution.

To find the least squares solution *x to the linear system Ax = b, we let W =
col(A). As W is a finite dimensional subspace of ⺢m, by Theorem 9 of Sec. 6.4, the

vector b can be written uniquely as

b = w1 + w2

where w1 is the orthogonal projection of b onto W and w2 is the component of b

orthogonal to W , as shown in Fig. 4.

b

w1

w2

col(A)

W⊥

Figure 4 We now show that the orthogonal projection minimizes the error term ||b − Ax ||,
for all x in col(A). First, we have

||b − Ax ||2 = ||w1 + w2 − Ax ||2
=  w2 + (w1 − Ax),w2 + (w1 − Ax) 
=  w2,w2 + 2  w2,w1 − Ax +  w1 − Ax,w1 − Ax 

Since w1 and Ax are in W and w2 is in W⊥, the middle term vanishes, giving

||b − Ax ||2 =  w2,w2 +  w1 − Ax,w1 − Ax 
= ||w2 ||2 + ||w1 − Ax ||2

The quantity on the right-hand side is minimized if x is any solution to

Ax = w1

Since w1 is in col(A), this linear system is consistent. We call any vector *x in ⺢n such

that Ax = w1 a least squares solution of Ax = b. Moreover, the solution is unique

if the columns of A are linearly independent.

Occasionally, as was the case for the example at the beginning of this section,

it is possible to find w1 directly. The least squares solution can then be found by

solving Ax = w1. In most cases, however, the vector w1 is hard to obtain. Solving

the normal equation

AtAx = Atb

circumvents this difficulty.
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THEOREM 11 Let A be an m× n matrix and b a vector in ⺢m. A vector *x in ⺢n is a solution to

the normal equation

AtAx = Atb

if and only if it is a least squares solution to Ax = b.

Proof From the discussion just before the theorem, we know that a least squares

solution *x to Ax = b exists. By Theorem 9 of Sec. 6.4, there are unique vectors

w1 in W = col(A) and w2 in W⊥ such that b = w1 + w2.

First assume that *x is a least squares solution. Since w2 is orthogonal to

the columns of A, then Atw2 = 0. Moreover, since *x is a least squares solution,

A*x = w1. Therefore,

AtA*x = Atw1 = At(b − w2) = Atb

so that *x is a solution to the normal equation.

Conversely, we now show that if *x is a solution to AtAx = Atb, then it is also

a least squares solution to Ax = b. Suppose that AtA*x = Atb, or equivalently,

At(b − A*x) = 0

Consequently, the vector b − A*x is orthogonal to each row of At and hence to

each column of A. Since the columns of A span W, the vector b − A*x is in W⊥.

Hence, b can be written as

b = A*x + (b − A*x)
where A*x is inW = col(A) and b − A*x is inW⊥. Again, by Theorem 9 of Sec. 6.4,

this decomposition of the vector b is unique and hence A*x = w1. Therefore, *x is

a least squares solution.

EXAMPLE 1 Let

A =
 −2 3

1 −2

1 −1

 and b =
 1

−1

2


a. Find the least squares solution to Ax = b.

b. Find the orthogonal projection of b onto W = col(A) and the decomposition

b = w1 + w2, where w1 is in W and w2 is in W⊥.

Solution a. Since the linear system Ax = b is inconsistent, the least squares solution is

the best approximation we can find. By Theorem 11, the least squares solution

can be found by solving the normal equation

AtAx = Atb

In this case the normal equation becomes −2 1 1

3 −2 −1

  −2 3

1 −2

1 −1

 x
y

 
=
 −2 1 1

3 −2 −1

  1

−1

2


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which simplifies to  
6 −9

−9 14

  
x

y

 
=
 −1

3

 
The matrix on the left-hand side is invertible, so that 

x

y

 
= 1

3

 
14 9

9 6

  −1

3

 
The least squares solution is then given by

*x =
 
x

y

 
=
+

13
3

3

,
b. To find the orthogonal projection w1 of b onto col(A), we use the fact that

w1 = A*x. So

w1 =
 −2 3

1 −2

1 −1

+ 13
3

3

,
= 1

3

 1

−5

4


We now find w2 from the equation w2 = b − w1, so that

w2 = b − w1 =
 1

−1

2

 − 1

3

 1

−5

4

 = 2

3

 1

1

1


The decomposition of b is then given by

b = w1 + w2 = 1

3

 1

−5

4

 + 2

3

 1

1

1


Note that w2 is orthogonal to each of the columns of A.

Linear Regression

Example 2 illustrates the use of least squares approximation to find trends in data sets.

EXAMPLE 2 The data in Table 1, which are also shown in the scatter plot in Fig. 5, give the

average temperature, in degree celsius (oC), of the earth’s surface from 1975 through

2002.∗ Find the equation of the line that best fits these data points.

∗Worldwatch Institute, Vital Signs 2006–2007. The trends that are shaping our future, W. W. Norton and
Company, New York London, 2006.
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Table 1

Average Global Temperatures 1975–2002

1975 13.94 1985 14.03 1994 14.25

1976 13.86 1986 14.12 1995 14.37

1977 14.11 1987 14.27 1996 14.23

1978 14.02 1988 14.29 1997 14.40

1979 14.09 1989 14.19 1998 14.56

1980 14.16 1990 14.37 1999 14.32

1981 14.22 1991 14.32 2000 14.31

1982 14.04 1992 14.14 2001 14.46

1983 14.25 1993 14.14 2002 14.52

1984 14.07 Year 

T
em

p
er

at
u

re
 

Figure 5

Solution Denote the data points by (xi, yi), for i = 1, 2, . . . , 28, where xi is the year starting

with x1 = 1975 and yi is the average global temperature for that year. A line with

equation y = mx + b will pass through all the data points if the linear system
m(1975)+ b = 13.94

m(1976)+ b = 13.86
...

m(2002)+ b = 14.52

has a solution. In matrix form, this linear system becomes
1975 1

1976 1
...

2002 1


 
m

b

 
=


13.94

13.86
...

14.52


Since the linear system is inconsistent, to obtain the best fit of the data we seek

values for m and b such that x =
 
m

b

 
is a least squares solution. The normal

equation for this system is given by

 
1975 · · · 2002

1 · · · 1

  1975 1
...

2002 1

 m
b

 
=
 

1975 · · · 2002

1 · · · 1

  13.94
...

14.52


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which simplifies to 
110,717,530 55,678

55,678 28

  
m

b

 
=
 

791,553.23

398.05

 

The least squares solution is 
m

b

 
=
 

0.0168609742

−19.31197592

 
The line that best fits the data is then given by y = 0.0168609742x − 19.31197592,

as shown in Fig. 6.

Year 

T
em

p
er

at
u

re
 

Figure 6

The procedure used in Example 2 can be extended to fit data with a polynomial

of any degree n ≥ 1. For example, if n = 2, to find the best-fit parabola of the form

y = ax2 + bx + c for a set of data points requires finding the least squares solution

to an n× 3 linear system. See Exercise 6.

Fourier Polynomials

A trigonometric polynomial of degree n is an expression in cosines and sines of

the form

a0 + a1 cos x + b1 sin x + a2 cos 2x + b2 sin 2x + · · · + an cos nx + bn sinnx

where the coefficients a0, a1, b1, a2, b2, . . . , an, bn are real numbers. Let PC[−π,π]

denote the vector space of piecewise continuous functions on the interval [−π,π].

The vector space PC[−π,π] is an inner product space with inner product defined by

 f, g =
 

π

−π

f (x)g(x) dx

Suppose now that given a piecewise continuous function f defined on [−π,π], which

may or may not be a trigonometric polynomial, we wish to find the trigonometric

polynomial of degree n that best approximates the function.
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To solve this problem using linear algebra, let W be the subspace of PC[−π,π]

of trigonometric polynomials. Let f0(x) = 1/
√

2π, and for k ≥ 1, let

fk(x) = 1√
π

cos kx and gk(x) = 1√
π

sin kx

Define the set B by

B = {f0, f1, f2, . . . , fn, g1, g2, . . . , gn}

=
-

1√
2π
, 1√

π
cos x, 1√

π
cos 2x, . . . , 1√

π
cos nx, 1√

π
sin x, 1√

π
sin 2x, . . . , 1√

π
sin nx

.
It can be verified that relative to the inner product above, B is an orthonormal basis

for W . Now let f be a function in PC[−π,π]. Since W is finite dimensional, f has

the unique decomposition

f = fW + fW⊥

with fW in W and fW⊥ in W⊥. Since B is already an orthonormal basis for W , then

fW can be found by using the formula for the orthogonal projection given in the proof

of Theorem 9 in Sec. 6.4. In this case we have

fW =  f, f0 f0 +  f, f1 f1 + · · · +  f, fn fn +  f, g1 g1 + · · · +  f, gn gn
We now claim that fW , defined in this way, is the best approximation for f in W .

That is,

|| f − fW || ≤ || f − w || for all w ∈ W
To establish the claim, observe that

|| f − w ||2 =
    fW + fW⊥ − w

    2
=
    fW⊥ + (fW − w)

    2
=  

fW⊥ + (fW − w), fW⊥ + (fW − w)
 

=  
fW⊥, fW⊥

 + 2
 
fW⊥, fW − w

 +  fW − w, fW − w 
The middle term of the last equation is zero since fW⊥ and fW − w are orthogonal.

So

|| f − w ||2 =
    fW⊥

    2 + || fW − w ||2
Observe that the right-hand side is minimized if w = fW , that is, if we choose w to

be the orthogonal projection of f onto W . The function fW is called the Fourier

polynomial of degree n for f.

EXAMPLE 3 Let

f (x) =
 −1 −π ≤ x < 0

1 0 < x ≤ π

Find the Fourier polynomial for f of degree n = 5.
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Solution The graph of y = f (x) is shown in Fig. 7. Since f (x) is an odd function and

fk(x) is an even function for k ≥ 0, the product f (x)fk(x) is also an odd function.

Hence, the integral on any symmetric interval about the origin is 0, and we have

 f, fk = 0 for k ≥ 0

Now for k ≥ 1, we have

 f, gk =
 

π

−π

f (x)gk(x) dx

= − 1√
π

 0

−π

sin kx dx + 1√
π

 
π

0

sin kx dx

= 1

k
√
π

[2 − 2 cos kπ]

=
(

0 if k is even
4
k
√
π

if k is odd

x 

y 

1

π

−1

−π

Figure 7 Therefore, the Fourier polynomial of degree 5 that best approximates the function

f on the interval [−π,π] is

p(x) = 4

π
sin x + 4

3π
sin 3x + 4

5π
sin 5x

In Fig. 8 we see the function and its Fourier approximations for n = 1, 3, and 5.

x 

y 

p1(x) = 4
π

sin x

x 

y 

p3(x) = 4
π

sin x + 4
3π

sin 3x

x 

y 

p3(x) = 4
π

sin x + 4
3π

sin 3x + 4
5π

sin 5x

Figure 8

Exercise Set 6.5

1. Let

A =
 1 3

1 3

2 3

 and b =
 4

1

5


a. Find the least squares solution to Ax = b.

b. Find the orthogonal projection of b onto

W = col(A) and the decomposition of the

vector b = w1 + w2, where w1 is in W and w2

is in W⊥.
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2. Let

A =
 2 2

1 2

1 1

 and b =
 −2

0

1


a. Find the least squares solution to Ax = b.

b. Find the orthogonal projection of b onto

W = col(A) and the decomposition of the

vector b = w1 + w2, where w1 is in W and w2

is in W⊥.

3. The table gives world hydroelectricity use in

thousands of terawatthours.

1965 927 1990 2185

1970 1187 1995 2513

1975 1449 2000 2713

1980 1710 2004 2803

1985 2004

a. Sketch a scatter plot of the data.

b. Find the linear function that is the best fit to

the data.

4. The table gives world infant mortality rates in

deaths per 1000 live births.

1955 157 1985 78

1960 141 1990 70

1965 119 1995 66

1970 104 2000 62

1975 93 2005 57

1980 87

a. Sketch a scatter plot of the data.

b. Find the linear function that is the best fit to

the data.

5. The table gives world population in billions.

1950 2.56

1960 3.04

1970 3.71

1980 4.46

1990 5.28

2000 6.08

a. Sketch a scatter plot of the data.

b. Find the linear function that is the best fit to

the data.

6. The table gives the worldwide cumulative HIV

infections in millions.

1980 0.1 1995 29.8

1982 0.7 1997 40.9

1985 2.4 2000 57.9

1987 4.5 2002 67.9

1990 10 2005 82.7

1992 16.1

a. Sketch a scatter plot of the data.

b. Find a curve of the form y = ax2 + bx + c
that best fits the data.

7. Let f (x) = x on the interval −π ≤ x ≤ π.

a. Find the Fourier polynomials for f of degrees

n = 2, 3, 4, and 5.

b. Sketch y = f (x) along with the polynomials

found in part (a).

8. Let

f (x) =
 
x if 0 ≤ x ≤ π

x + π if −π ≤ x < 0
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a. Find the Fourier polynomials for f of degrees

n = 2, 3, 4, and 5.

b. Sketch y = f (x) along with the polynomials

found in part (a).

9. Let f (x) = x2 on the interval −π ≤ x ≤ π.

a. Find the Fourier polynomials for f of degrees

n = 2, 3, 4, and 5.

b. Sketch y = f (x) along with the polynomials

found in part (a).

10. Let A be an m× n matrix with rank(A) = n, and

suppose A = QR is a QR factorization of A.

(See Exercise 9, Review Exercises for Chapter 6.)

Show that the best least squares solution to the

linear system Ax = b can be found by back

substitution on the upper triangular system

Rx = Qtb.

6.6

ß

Diagonalization of Symmetric Matrices

In Sec. 5.2 a methodology was given for diagonalizing a square matrix. A charac-

terization was also provided to determine which n× n matrices were diagonalizable.

Recall, specifically, from Theorem 2 of Sec. 5.2 that an n× n matrix is diagonaliz-

able if and only if it has n linearly independent eigenvectors. As we have seen, the

application of this theorem requires finding all eigenvectors of a matrix. In certain

cases, however, we can tell by inspection if a matrix is diagonalizable. An example of

such a case was given in Example 4 of Sec. 5.2, where it was shown that any 2 × 2

real symmetric matrix is diagonalizable with real eigenvalues. That this is the case in

general is the subject of this section.

In the remarks preceding Example 8 of Sec. 3.1, we defined the set of com-

plex numbers ⺓. The proof of our main result requires that the reader be familiar

with some of the terminology and notation from complex variables. In particular, if

z = a + bi is a complex number, then the conjugate of z, denoted by z, is given by

z = a − bi.
Two complex numbers are equal if and only if their real and imaginary parts are

equal. From this we know that a complex number z = z if and only if z is a real

number. To see this, first suppose that z = z. Then bi = −bi or 2bi = 0 and hence

b = 0. We therefore have z = a + 0i and z is a real number. Conversely, if z is a real

number, then z = a + 0i = a and z = a − 0i = a so that z = z.

We can also define this bar notation for vectors and matrices. So if v is a vector

with complex components and M is a matrix with complex entries, then

v =


v1

v2
...

vn

 and M =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 a12 . . . amn


We are now ready to state our main result.
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THEOREM 12 The eigenvalues of an n× n real symmetric matrix A are all real numbers.

Proof Let v be an eigenvector of A corresponding to the eigenvalue λ. To show

that λ is a real number, we will show that λ = λ. We first consider the matrix

product (vtAv)t , which by Theorem 6 of Sec. 1.3 can be written as

(vtAv)t = vtAtv

Since A is symmetric, At = A. Also since A has real entries, then A = A.

Therefore,

vtAtv = vtAv = vtAv = vtAv

Now as v is an eigenvector of A corresponding to the eigenvalue λ, then Av = λv,

so that

vtAv = vtλv = vtλv = λvtv

Alternatively, the original expression can be evaluated by

(vtAv)t = (vtλv)t = vtλv = λvtv

Equating these results gives

λvtv = λvtv that is (λ − λ)vtv = 0

Since v is an eigenvector of A, and therefore nonzero, so is vtv. By an extension

to the complex numbers of Theorem 2 (part 4) of Sec. 3.1, we have λ − λ = 0;

hence λ = λ, establishing that λ is a real number.

One consequence of Theorem 12 is that the eigenvectors of a real symmetric

matrix have real components. To see this, let A be a symmetric matrix with real

entries and v an eigenvector corresponding to the real eigenvalue λ = a. Observe that

v is a vector in the null space of the real n× n matrix A− aI . By Theorem 7 of

Sec. 3.2, N(A− aI) is a subspace of ⺢n. Thus, v being a vector in ⺢n, has real

components as claimed.

EXAMPLE 1 Let A be the symmetric matrix defined by

A =
 2 0 2

0 0 −2

2 −2 1


Verify that the eigenvalues and corresponding eigenvectors of A are real.
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Solution The characteristic equation of A is

det(A− λI ) = −λ
3 + 3λ2 + 6λ − 8 = 0

After factoring the characteristic polynomial we obtain

(λ − 1)(λ + 2)(λ − 4) = 0

Thus, the eigenvalues of A are λ1 = 1, λ2 = −2, and λ3 = 4.

To find eigenvectors corresponding to λ = 1, we find the null space of A− I .

To do this, we see that

A− I =
 1 0 2

0 −1 −2

2 −2 0

 reduces to

 1 0 2

0 1 2

0 0 0


Thus, an eigenvector corresponding to λ1 = 1 is v1 =

 −2

−2

1

. In a similar way

we have that eigenvectors corresponding to λ2 = −2 and λ3 = 4 are, respectively,

v2 =
 1

−2

−2

 and v3 =
 −2

1

−2

.

Orthogonal Diagonalization

In Sec. 6.1 we showed that two vectors u and v in ⺢n are orthogonal if and only if their

dot product u · v = 0. An equivalent formulation of this condition can be developed

by using matrix multiplication. To do this, observe that if u and v are vectors in ⺢n,

then vtu is a matrix with a single entry equal to u · v. Hence, we know that u and v

are orthogonal if and only if vtu = 0.

Theorem 13 shows that eigenvectors which correspond to distinct eigenvalues of

a real symmetric matrix are orthogonal.

THEOREM 13 Let A be a real symmetric matrix and v1 and v2 be eigenvectors corresponding,

respectively, to the distinct eigenvalues λ1 and λ2. Then v1 and v2 are orthogonal.

Proof We have already shown that v1 and v2 are vectors in ⺢n. To show that

they are orthogonal, we show that vt1v2 = 0. Now, since λ2 is an eigenvalue of A,

then Av2 = λ2v2, so that

vt1Av2 = vt1λ2v2 = λ2v
t
1v2
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Also since At = A,

vt1Av2 = vt1A
tv2 = (Av1)

tv2 = λ1v
t
1v2

Equating the two expressions for vt1Av2, we obtain

(λ1 − λ2)v
t
1v2 = 0

Since λ1  = λ2 then λ1 − λ2  = 0. Hence, by Theorem 2, part 4, of Sec. 3.1, we

have vt1v2 = 0, which, by the remarks preceding this theorem, gives that v1 is

orthogonal to v2.

EXAMPLE 2 Let A be the real symmetric matrix given by

A =
 1 0 0

0 0 1

0 1 0


Show that the eigenvectors corresponding to distinct eigenvalues of A are

orthogonal.

Solution The characteristic equation of A is

det(A− λI ) = −(λ − 1)2(λ + 1) = 0

so the eigenvalues are λ1 = 1 and λ2 = −1. Then the eigenspaces (see Sec. 5.1)

are given by

Vλ1
= span


 1

0

0

,
 0

1

1

 and Vλ2
= span


 0

−1

1


Since every vector in Vλ1

is a linear combination of u =
 1

0

0

 and v =
 0

1

1

,
and w =

 0

−1

1

 is orthogonal to both u and v, then by Proposition 5 of Sec. 6.4,

w is orthogonal to every eigenvector in Vλ1
. Hence, every eigenvector in Vλ2

is

orthogonal to every eigenvector in Vλ1
.

In Example 2, we showed that every vector in the eigenspace Vλ1
is orthogonal

to every vector in the eigenspace Vλ2
. Notice, moreover, that the vectors within Vλ1

are orthogonal to one another. In this case, the matrix has a special factorization. We

normalize the spanning vectors of the eigenspaces to obtain 1

0

0




0
1√
2

1√
2

 and

 0

− 1√
2

1√
2


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Using these vectors, we construct the matrix

P =


1 0 0

0 1√
2

− 1√
2

0 1√
2

1√
2


which is then used to diagonalize A. That is,

P−1AP =


1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2


 1 0 0

0 0 1

0 1 0


 1 0 0

0 1√
2

− 1√
2

0 1√
2

1√
2

 =
 1 0 0

0 1 0

0 0 −1



Observe in this case that the diagonalizing matrix P has the special property that

PP t = I, so that P−1 = P t . This leads to Definition 1.

DEFINITION 1 Orthogonal Matrix A square matrix P is called an orthogonal matrix if it is

invertible and P−1 = P t .

One important property of orthogonal matrices is that the column (and row)

vectors of an n× n orthogonal matrix are an orthonormal basis for ⺢n. That is, the

vectors of this basis are all mutually orthogonal and have unit length.

As we mentioned at the beginning of this section, one particularly nice fact about

symmetric matrices is that they are diagonalizable. So by Theorem 2 of Sec. 5.2 a

real symmetric matrix has n linearly independent eigenvectors. For the matrix A of

Example 2, the eigenvectors are all mutually orthogonal. Producing an orthogonal

matrix P to diagonalize A required only that we normalize the eigenvectors. In many

cases there is more to do. Specifically, by Theorem 2, eigenvectors corresponding

to distinct eigenvalues are orthogonal. However, if the geometric multiplicity of an

eigenvalue λ is greater than 1, then the vectors within Vλ (while linearly indepen-

dent), might not be mutually orthogonal. In this case we can use the Gram-Schmidt

process, given in Sec. 6.3, to find an orthonormal basis from the linearly independent

eigenvectors. The previous discussion is summarized in Theorem 14.

THEOREM 14 Let A be an n× n real symmetric matrix. Then there is an orthogonal matrix P

and a diagonal matrix D such that P−1AP = P tAP = D. The eigenvalues are the

diagonal entries of D.

The following steps can be used to diagonalize an n× n real symmetric

matrix A.
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1. Find the eigenvalues and corresponding eigenvectors of A.

2. Since A is diagonalizable, there are n linearly independent eigenvectors. If nec-

essary, use the Gram-Schmidt process to find an orthonormal set of eigenvectors.

3. Form the orthogonal matrix P with column vectors determined in Step 2.

4. The matrix P−1AP = P tAP = D is a diagonal matrix.

EXAMPLE 3 Let

A =
 0 1 1

1 0 1

1 1 0


Find an orthogonal matrix P such that P−1AP is a diagonal matrix.

Solution The characteristic equation for A is given by

det(A− λI ) = −λ
3 + 3λ + 2 = −(λ − 2)(λ + 1)2 = 0

Thus, the eigenvalues are λ1 = −1 and λ2 = 2. The corresponding eigenspaces are

Vλ1
= span


 −1

1

0

,
 −1

0

1

 and Vλ2
= span


 1

1

1


Let B be the set of vectors

B = {v1, v2, v3} =


 1

1

1

,
 −1

1

0

,
 −1

0

1


Since B is a linearly independent set of three vectors, by Theorem 2 of Sec. 5.2,

A is diagonalizable. To find an orthogonal matrix P which diagonalizes A, we use

the Gram-Schmidt process on B. This was done in Example 3 of Sec. 6.3, yielding

the orthonormal basis

B  =

 1√
3

 1

1

1

, 1√
2

 −1

1

0

, 1√
6

 −1

−1

2


Now let P be the matrix given by

P =


√

3
3

−
√

2
2

−
√

6
6√

3
3

√
2

2
−

√
6

6√
3

3
0

√
6

3


Observe that P is an orthogonal matrix with P−1 = P t . Morevover,

P tAP =
 2 0 0

0 −1 0

0 0 −1


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Fact Summary

Let A be an n× n real symmetric matrix.

1. The eigenvalues of A are all real numbers.

2. The eigenvectors corresponding to distinct eigenvalues of A are orthogonal.

3. The matrix A is diagonalizable.

4. There is an orthogonal matrix P such that D = P−1AP = P tAP, where D

is a diagonal matrix with diagonal entries the eigenvalues of A.

Exercise Set 6.6

In Exercises 1–4, verify that the eigenvalues of the

symmetric matrix are all real numbers.

1. A =
 

1 2

2 1

 

2. A =
 −1 3

3 −1

 

3. A =
 1 2 0

2 −1 2

0 2 1



4. A =
 1 1 −2

1 −1 2

−2 2 1


In Exercises 5–8, verify that the eigenvectors of the

symmetric matrix corresponding to distinct

eigenvalues are orthogonal.

5. A =
 

1 2

2 −2

 
6. A =

 −3 2

2 −3

 

7. A =
 1 2 0

2 −1 −2

0 −2 1


8. A =

 1 0 −2

0 −1 0

−2 0 1



In Exercises 9–12, find the eigenspaces of the n× n
symmetric matrix, and verify that the sum of the

dimensions of the eigenspaces is n.

9. A =
 1 0 2

0 −1 0

2 0 1



10. A =
 1 0 1

0 −1 0

1 0 1



11. A =


2 1 1 1

1 −2 1 1

1 1 −1 0

1 1 0 −1



12. A =


1 0 0 0

0 −2 0 0

0 0 −1 0

0 0 0 1


In Exercises 13–16, determine whether the matrix is

orthogonal.

13. A =
+ √

3
2

1
2

− 1
2

√
3

2

,

14. A =
+

−1 −
√

5
5

0 − 2
√

5
5

,
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15. A =


√

2
2

√
2

2
0

−
√

2
2

√
2

2
0

0 0 1



16. A =


2
3

2
3

1
3

− 2
3

2
3

1
3

1
3

0 1


In Exercises 17–22, for the given matrix A find an

orthogonal matrix P and a diagonal matrix D such

that D = P−1AP.

17. A =
 

3 4

4 3

 

18. A =
 

5 2

2 5

 

19. A =
 −1 3

3 −1

 

20. A =
 

1 2

2 −2

 

21. A =
 1 −1 1

−1 −1 1

1 1 1



22. A =
 1 0 −1

0 −1 0

−1 0 1


23. Show that if A and B are orthogonal

matrices, then AB and BA are orthogonal

matrices.

24. Show that if A is an orthogonal matrix, then

det(A) = ±1.

25. Show that if A is an orthogonal matrix, then At is

an orthogonal matrix.

26. Show that if A is an orthogonal matrix, then A−1

is an orthogonal matrix.

27. a. Show that the matrix

A =
 

cos θ − sin θ

sin θ cos θ

 
is orthogonal.

b. Suppose that A is a 2 × 2 orthogonal matrix.

Show that there is a real number θ such that

A =
 

cos θ − sin θ

sin θ cos θ

 
or

A =
 

cos θ sin θ

sin θ − cos θ

 
(Hint : Consider the equation AtA = I.)

c. Suppose that A is an orthogonal 2 × 2 matrix

and T : ⺢2 → ⺢2 is a linear operator defined

by T (v) = Av. Show that if det(A) = 1, then

T is a rotation and if det(A) = −1, then T is a

reflection about the x axis followed by a

rotation.

28. Matrices A are B are orthogonally similar if there

is an orthogonal matrix P such that B = P tAP.

Suppose that A and B are orthogonally similar.

a. Show that A is symmetric if and only if B is

symmetric.

b. Show that A is orthogonal if and only if B is

orthogonal.

29. Suppose that A is an n× n matrix such that there

exists a diagonal matrix D and an orthogonal

matrix P such that D = P tAP. (Matrix A is

called orthogonally diagonalizable.) Show that A

is symmetric.

30. Suppose A is invertible and orthogonally

diagonalizable. Show that A−1 is orthogonally

diagonalizable. (See Exercise 29.)

31. Let A be an n× n skew-symmetric matrix.

a. If v is in ⺢n, expand vtv in terms of the

components of the vector.

b. Show that the only possible real eigenvalue of

A is λ = 0. [Hint : Consider the quantity

vt (λv).]
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6.7

ß

Application: Quadratic Forms

When working with complicated algebraic expressions, mathematicians will often

attempt to simplify problems by applying transformations designed to make these

expressions easier to interpret, or at least better suited to the task at hand. In this

section we show how certain transformations of the coordinate axes in ⺢2 can be

used to simplify equations that describe conic sections, that is, equations in x and

y whose graphs are parabolas, hyperbolas, circles, and ellipses. As an illustration,

consider the equation

x2 − 4x + y2 − 6y − 3 = 0

To simplify this equation, we complete the square on x2 − 4x and y2 − 6y to obtain

(x2 − 4x + 4)+ (y2 − 6y + 9) = 3 + 4 + 9

that is,

(x − 2)2 + (y − 3)2 = 16

x 

y 

⫺10

⫺10

10

10

x' 

y' 

⫺10

⫺10

10

10

Figure 1

This last equation describes a circle of radius 4 centered at the point (2, 3). The graph

is shown in Fig. 1. To further simplify this equation, we can translate the coordinate

axes by means of the equations

x  = x − 2 and y  = y − 3

The equation of the circle then becomes#
x  $2 + #

y  $2 = 16

This is the equation of the circle in standard position in the x  y  plane with center at

the origin.

Rotation of Axes

The most general quadratic equation in two variables has the form

ax2 + bxy + cy2 + dx + ey + f = 0
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where a, b, c, d, e, and f are real numbers such that at least one of a, b, or c is

not zero. The graph of a quadratic equation in x and y is a conic section (including

possible degenerate cases), the particular one being dependent on the values of the

coefficients. When b  = 0, the conic section is rotated from standard position. The

expression

ax2 + bxy + cy2

is called the associated quadratic form. For example, the quadratic equation

2x2 + 5xy − 7y2 + 2x − 4y + 1 = 0

has an associated quadratic form given by

2x2 + 5xy − 7y2

The quadratic equation

ax2 + bxy + cy2 + dx + ey + f = 0

is also given in matrix form by setting

x =
 
x

y

 
A =

+
a b

2

b
2

c

,
and b =

 
d

e

 
Then the quadratic equation above is equivalent to

xtAx + btx + f = 0

The quadratic form (in matrix form) is then given by

xtAx

As an illustration, the quadratic equation 2x2 + 5xy + y2 + 3x − y + 1 = 0 in matrix

form is given by

[x y]

+
2 5

2
5
2

1

, 
x

y

 
+ [3 − 1]

 
x

y

 
+ 1 = 0

The associated quadratic form is

[x y]

+
2 5

2
5
2

1

, 
x

y

 
Observe that the matrix A, for any quadratic equation in two variables, is symmetric;

that is, At = A. This fact enables us to develop a transformation that we can use

to simplify the equation. Specifically, the map we desire will rotate the coordinate

axes by the precise angle needed to situate the conic section in standard position with

respect to a new coordinate system.

To produce such a mapping, first recall from Theorem 14 of Sec. 6.6 that if A is a

real symmetric matrix, then there exists an orthogonal matrix P and a diagonal matrix

D such that A = PDP−1 = PDP t . Next, we need to examine which orthogonal 2 × 2

matrices are rotations.
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Now by Exercise 27(b) of Sec. 6.6, a real orthogonal 2 × 2 matrix has the form

B =
 

cos θ − sin θ

sin θ cos θ

 
or B  =

 
cos θ sin θ

sin θ − cos θ

 
Next, recall from Sec. 4.6 that B is the matrix representation, relative to the standard

basis for ⺢2, of a linear operator which rotates a vector in the plane by θ rad. The

matrix B  is not a rotation (relative to any basis). To see this, let Q = {v1, v2} be a

basis for ⺢2 and θ = 0. Then

B  =
 

1 0

0 −1

 
Relative to the basis Q, this matrix produces a reflection through the line spanned by

v1. For example, if Q is the standard basis for ⺢2, then B  is a reflection through the

x axis. These results are summarized in Theorem 15.

THEOREM 15 Let B be a real orthogonal 2 × 2 matrix. The change of coordinates given by 
x  

y  

 
= B

 
x

y

 
is a rotation if and only if det(B) = 1.

We are now in a position to analyze quadratic equations in two variables. Start

with C a conic section with equation

xtAx + btx + f = 0

Let P be the orthogonal matrix that diagonalizes A, so that

A = PDP t where D =
 
λ1 0

0 λ2

 
with λ1 and λ2 being the eigenvalues of A. As P is orthogonal, by the above remarks

on the form of P, its determinant is either +1 or −1. If det(P ) = −1, then interchange

the column vectors of P , along with the diagonal entries of D. Since 
sin θ cos θ

− cos θ sin θ

 
=
+

cos
#
π

2
− θ

$
sin

#
π

2
− θ

$
− sin

#
π

2
− θ

$
cos

#
π

2
− θ

$
,

a rearrangement of the column vectors of P is a rotation. To obtain the equation for C

in the x  y  coordinate system, substitute x = P x into xtAx + btx + f = 0 to obtain#
P x $t A #P x $ + btP x + f = 0

By Theorem 6 of Sec. 1.3, if the product of A and B is defined, then (AB)t = BtAt ,

and since matrix multiplication is associative, we have

(x )tP tAP x + btP x + f = 0 that is, (x )tDx + btP x + f = 0

Let btP =
 
d  

e 

 
. The last equation can now be written as

λ1(x
 )2 + λ2(y

 )2 + d  x  + e y  + f = 0
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This equation gives the conic section C in standard position in the x  y  coordinate

system. The type of conic section depends on the eigenvalues. Specifically, C is

1. An ellipse if λ1 and λ2 have the same sign

2. A hyperbola if λ1 and λ2 have opposite signs

3. A parabola if either λ1 or λ2 is zero

EXAMPLE 1 Let C be the conic section whose equation is x2 − xy + y2 − 8 = 0.

a. Transform the equation to x  y  coordinates so that C is in standard position

with no x  y  term.

b. Find the angle of rotation between the standard coordinate axes and the x  y  

coordinate system.

Solution a. The matrix form of this equation is given by

xtAx − 8 = 0 with A =
 

1 − 1
2

− 1
2

1

 
The eigenvalues of A are λ1 = 1

2
and λ2 = 3

2
, with corresponding (unit) eigen-

vectors

v1 = 1√
2

 
1

1

 
and v2 = 1√

2

 −1

1

 
Then the orthogonal matrix

P = 1√
2

 
1 −1

1 1

 
diagonalizes A. Moreover, since det(P ) = 1, then by Theorem 15, the coordi-

nate transformation is a rotation. Making the substitution x = P x in the matrix

equation above gives #
x $t P tAP x − 8 = 0

that is,

(x )tDx − 8 = 0 where D =
 

1
2

0

0 3
2

 
This last equation can now be written as

[x  y  ]
 

1
2

0

0 3
2

  
x  

y  

 
− 8 = 0

so that the standard form for the equation of the ellipse in the x  y  coordinate

system is
(x  )2

16
+ 3(y  )2

16
= 1
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This is the equation of an ellipse with x  as the major axis and y  as the minor

axis, as shown in Fig. 2.

x 

y 

⫺5

⫺5

5

5

x'
 

y'
 

⫺

5
⫺

5

5 5

(x  )2 + 3(y  )2 = 16

45
◦

Figure 2

b. To find the angle between the original axes and the x  y  coordinate system,

observe that the eigenvector v1 points in the direction of the x  axis. Now

using Definition 3 of Sec. 6.1, the cosine of the angle between e1 and v1 is

given by

cos θ = e1 · v1

|| e1 || || v1 || = 1√
2

so that θ = π

4

An alternative way to find the angle between the axes is to note that the matrix

P , which is the transition matrix from x  y  coordinates to xy coordinates, can

be written as

P =
+

1√
2

− 1√
2

1√
2

1√
2

,
=
 

cos θ − sin θ

sin θ cos θ

 
with θ = π

4

Example 2 involves a rotation and a translation.

EXAMPLE 2 Describe the conic section C whose equation is

2x2 − 4xy − y2 − 4x − 8y + 14 = 0

Solution The equation for C has the form xtAx + btx + f = 0 given by

[x y]

 
2 −2

−2 −1

  
x

y

 
+ [−4 − 8]

 
x

y

 
+ 14 = 0

The eigenvalues of A =
 

2 −2

−2 −1

 
are λ1 = −2 and λ2 = 3, with corresponding

(unit) eigenvectors

v1 = 1√
5

 
1

2

 
and v2 = 1√

5

 −2

1
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Since the eigenvalues have opposite sign, the conic section C is a hyperbola. To

describe the hyperbola, we first diagonalize A. Using the unit eigenvectors, the

orthogonal matrix that diagonalizes A is

P = 1√
5

 
1 −2

2 1

 
with

 −2 0

0 3

 
= P tAP

Making the substitution x = P x in the equation xtAx + btx + f = 0 gives

[x  y  ]
 −2 0

0 3

  
x  

y  

 
+ [−4 − 8]

+
1√
5

−2√
5

2√
5

1√
5

, 
x  

y  

 
+ 14 = 0

After simplification of this equation we obtain

−2(x  )2 − 4
√

5x  + 3(y  )2 + 14 = 0

that is,

−2[(x  )2 + 2
√

5(x  )] + 3(y  )2 + 14 = 0

After completing the square on x  , we obtain

−2[(x  )2 + 2
√

5(x  )+ 5] + 3(y  )2 = −14 − 10

that is,
(x +

√
5)2

12
− (y  )2

8
= 1

This last equation describes a hyperbola with x  as the major axis. An additional

transformation translating the x  axis allows us to simplify the result even further.

If we let

x   = x  +
√

5 and y   = y  

then the equation now becomes

(x   )2

12
− (y   )2

8
= 1

The graph is shown in Fig. 3.

x 

y 

⫺10

⫺10

10

10

x'
 

y'
 

⫺

10

⫺

10

10

10

Figure 3
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Quadric Surfaces

The graph of a quadratic equation in three variables of the form

ax2 + bxy + cxz+ dy2 + eyz+ f z2 + gx + hy + iz+ j = 0

is an ellipsoid, a hyperboloid, a paraboloid, or a cone. As in the two-dimensional case,

the terms gx, hy, and iz produce translations from standard form, while the mixed

terms xy, xz, and yz produce rotations. The quadratic form

ax2 + bxy + cxz+ dy2 + eyz+ f z2

can be written in matrix form as

xtAx = [x y z]

 a b
2

c
2

b
2
d e

2
c
2

e
2
f


 x

y

z


As before, a rotation developed from the eigenvectors of A can be used to transform

the quadric surface to one in standard form

λ1(x
 )2 + λ2(y

 )2 + λ3(z
 )2 + j = 0

where λ1,λ2, and λ3 are the eigenvalues of A. We omit the details.

EXAMPLE 3 Write the quadratic equation

5x2 + 4y2 − 5z2 + 8xz = 36

in standard form by eliminating the xz term.

Solution Let

A =
 5 0 4

0 4 0

4 0 −5


Then the quadratic equation can be written as

[x y z]

 5 0 4

0 4 0

4 0 −5

 x

y

z

 = 36

The eigenvalues of the matrix A are

λ1 =
√

41 λ2 = −
√

41 λ3 = 4

Hence, the quadric surface, in standard position, has the equation
√

41(x  )2 −
√

41(y  )2 + 4(z )2 = 36

Figure 4 The graph of the surface, which is a hyperboloid of one sheet, is shown in Fig. 4.
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Exercise Set 6.7

In Exercises 1–6, let C denote the conic section given

by the equation. Transform the equation to x  y  

coordinates so that C is in standard position with no

x  y  term.

1. 27x2 − 18xy + 3y2 + x + 3y = 0

2. 2x2 − 8xy + 8y2 + 2x + y = 0

3. 12x2 + 8xy + 12y2 − 8 = 0

4. 11x2 − 6xy + 19y2 + 2x + 4y − 12 = 0

5. −x2 − 6xy − y2 + 8 = 0

6. xy = 1

7. Let C denote the conic section in standard

position given by the equation 4x2 + 16y2 = 16.

a. Write the quadratic equation in matrix form.

b. Find the quadratic equation that describes the

conic C rotated by 45
◦
.

8. Let C denote the conic section in standard

position given by the equation x2 − y2 = 1.

a. Write the quadratic equation in matrix form.

b. Find the quadratic equation that describes the

conic C rotated by −30
◦
.

9. Let C denote the conic section in standard

position given by the equation 16x2 + 4y2 = 16.

a. Find the quadratic equation for the conic

section obtained by rotating C by 60
◦
.

b. Find the quadratic equation that describes the

conic found in part (a) after a translation

3 units to the right and 2 units upward.

10. Let C denote the conic section in standard

position given by the equation x2 − y = 0.

a. Find the quadratic equation for the conic

section obtained by rotating C by 30
◦
.

b. Find the quadratic equation that describes the

conic found in part (a) after a translation 2

units to the right and 1 unit downward.

6.8

ß

Application: Singular Value Decomposition

In earlier sections we have examined various ways to write a given matrix as a product

of other matrices with special properties. For example, with the LU factorization of

Sec. 1.7, we saw that an m× n matrix A could be written as A = LU with L being an

invertible lower triangular matrix and U an upper triangular matrix. Also in Sec. 1.7,

we showed that if A is invertible, then it could be written as the product of elementary

matrices. In Sec. 5.2 it was shown that an n× n matrix A with n linearly independent

eigenvectors can be written as

A = PDP−1

where D is a diagonal matrix of eigenvalues of A. As a special case, if A is symmetric,

then A has the factorization

A = QDQt

where Q is an orthogonal matrix.

In this section we consider a generalization of this last result for m× n matrices.

Specifically, we introduce the singular value decomposition, abbreviated as SVD,

which enables us to write any m× n matrix as

A = U V t

where U is an m×m orthogonal matrix, V is an n× n orthogonal matrix, and  is

an m× n matrix with numbers, called singular values, on its diagonal.
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Singular Values of anm× nMatrix

To define the singular values of an m× n matrix A, we consider the matrix AtA.

Observe that since A is an m× n matrix, At is an n×m matrix, so the product AtA

is a square n× n matrix. This new matrix is symmetric since (AtA)t = AtAtt = AtA.

Hence, by Theorem 14 of Sec. 6.6, there is an orthogonal matrix P such that

P t(AtA)P = D

where D is a diagonal matrix of the eigenvalues of AtA given by

D =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 · · · · · · λn


Since by Exercise 39 of Sec. 6.3 the matrix AtA is positive semidefinite, we also

have, by Exercise 41 of Sec. 6.3, that λi ≥ 0 for 1 ≤ i ≤ n. This permits us to make

the following definition.

DEFINITION 1 SingularValues Let A be an m× n matrix. The singular values of A, denoted

by σi for 1 ≤ i ≤ n, are the positive square roots of the eigenvalues λ1, . . . ,λn of

AtA. That is,

σi =
 
λi for 1 ≤ i ≤ n

It is customary to write the singular values of A in decreasing order

σ1 ≥ σ2 ≥ · · · ≥ σn

As mentioned in Sec. 5.2, this can be accomplished by permuting the columns of the

diagonalizing matrix P .

EXAMPLE 1 Let A be the matrix given by

A =
 1 1

0 1

1 0


Find the singular values of A.

Solution The singular values of A are found by first computing the eigenvalues of the square

matrix

AtA =
 

1 0 1

1 1 0

  1 1

0 1

1 0

 =
 

2 1

1 2
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The characteristic equation, in this case, is given by

det(AtA− λI ) = (λ − 3)(λ − 1) = 0

The eigenvalues of AtA are then λ1 = 3 and λ2 = 1, so that the singular values

are σ1 =
√

3 and σ2 = 1.

We have already seen that orthogonal bases are desirable and the Gram-Schmidt

process can be used to construct an orthogonal basis from any basis. If A is an

m× n matrix and v1, . . . , vr are the eigenvectors of AtA, then we will see that

{Av1, . . . , Avr} is an orthogonal basis for col(A). We begin with the connection

between the singular values of A and the vectors Av1, . . . , Avr .

THEOREM 16 Let A be an m× n matrix and let B = {v1, v2, . . . , vn} be an orthonormal basis

of ⺢n consisting of eigenvectors of AtA, with corresponding eigenvectors λ1,

λ2, . . . ,λn. Then

1. ||Avi || = σi for each i = 1, 2, . . . , n.

2. Avi is orthogonal to Avj for i  = j.

Proof For the first statement recall from Sec. 6.6 that the length of a vector v in

Euclidean space can be given by the matrix product || v || =
√
vtv. Therefore,

||Avi ||2 = (Avi )
t (Avi ) = v ti (A

tA)vi = v tiλivi = λi || vi || = λi

The last equality is due to the fact that vi is a unit vector. Part 1 is established

by noting that σi = √
λi = ||Avi ||. For part 2 of the theorem, we know that (as in

Sec. 6.6) the dot product of two vectors u and v in Euclidean space can be given

by the matrix product u · v = utv. Thus, since B is an orthonormal basis of ⺢n, if

i  = j , then

(Avi ) · (Avj ) = (Avi )
t (Avj ) = vti (A

tA)vj = vtiλjvi = λjv
t
ivj = 0

In Theorem 16, the set of vectors {Av1, Av2, . . . , Avn} is shown to be orthogonal.

In Theorem 17 we establish that the eigenvectors of AtA, after multiplication by A,

are an orthogonal basis for col(A).

THEOREM 17 Let A be anm× nmatrix and B = {v1, v2, . . . , vn} an orthonormal basis of ⺢n con-

sisting of eigenvectors of AtA. Suppose that the corresponding eigenvalues satisfy

λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = · · ·λn = 0, that is, AtA has r nonzero eigenval-

ues. Then B  = {Av1, Av2, . . . , Avr} is an orthogonal basis for the column space

of A and rank(A) = r .
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Proof First observe that since σi = √
λi are all nonzero for 1 ≤ i ≤ r; then by

Theorem 16, part 1, we have Av1, Av2, . . . , Avr are all nonzero vectors in col(A).

By part 2 of Theorem 16, we have B  = {Av1, Av2, . . . , Avr} is an orthogonal set
of vectors in ⺢m. Hence, by Theorem 5 of Sec. 6.2, B  is linearly independent. Now
to show that these vectors span the column space of A, let w be a vector in col(A).

Thus, there exists a vector v in ⺢n such that Av = w. Since B = {v1, v2, . . . , vn}
is a basis for ⺢n, there are scalars c1, c2, . . . , cn such that

v = c1v1 + c2v2 + · · · + cnvn

Multiplying both sides of the last equation by A, we obtain

Av = c1Av1 + c2Av2 + · · · + cnAvn

Now, using the fact that Avr+1 = Avr+2 = · · · = Avn = 0, then

Av = c1Av1 + c2Av2 + · · · + crAvr

so that w = Av is in span{Av1, Av2, . . . , Avr}. Consequently, B  =
{Av1, Av2, . . . , Avr} is an orthogonal basis for the column space of A, and

the rank of A is equal to the number of its nonzero singular values.

EXAMPLE 2 Let A be the matrix given by

A =

 1 1

0 1

1 0




Find the image of the unit circle under the linear transformation T : ⺢2 → ⺢
3

defined by T (v) = Av.

Solution From Example 1, the eigenvalues of AtA are λ1 = 3 and λ2 = 1, with eigenvectors

v1 =
 
1/

√
2

1/
√
2

 
and v2 =

 −1/
√
2

1/
√
2

 

respectively. The singular values of A are then σ1 =
√
3 and σ2 = 1. Let C(t) be

the unit circle given by cos(t)v1 + sin(t)v2 for 0 ≤ t ≤ 2π. The image of C(t)

under T is given by

T (C(t)) = cos (t)Av1 + sin (t)Av2

By Theorem 17, B  =
 

1
σ1
Av1,

1
σ2
Av2

 
is a basis for the range of T . Hence, the

coordinates of T (C(t)) relative to B  are x  = σ1 cos t =
√
3 cos t and

y  = σ2 sin t = sin t. Observe that 
x  

√
3

 2
+ (y  )2 = (x  )2

3
+ (y  )2 = cos2 t + sin2 t = 1

which is an ellipse with the length of the semimajor axis equal to σ1 and length of

the semiminor axis equal to σ2, as shown in Fig. 1.
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x 

y 

2

2

⫺2

⫺2

σ1

σ2

y 
x 

z 

x 

y Multiplication by

A

Figure 1

For certain matrices, some of the singular values may be zero. As an illustration,

consider the matrix A =
 

1 2

3 6

 
. For this matrix, we have col(A) = span

 
1

3

 
.

The reduced row echelon form for A is the matrix

 
1 2

0 0

 
, which has only one

pivot column. Hence, the rank of A is equal to 1. The eigenvalues of AtA are λ1 = 50

and λ2 = 0 with corresponding unit eigenvectors

v1 =
 

1/
√

5

2/
√

5

 
and v2 =

 −2/
√

5

1/
√

5

 
The singular values of A are given by σ1 = 5

√
2 and σ2 = 0. Now, multiplying v1

and v2 by A gives

Av1 =
 √

5

3
√

5

 
and Av2 =

 
0

0

 
Observe that Av1 spans the one dimensional column space of A. In this case, the

linear transformation T : ⺢2 −→ ⺢2 defined by T (x) = Ax maps the unit circle to the

line segment  
t

 √
5

3
√

5

     − 1 ≤ t ≤ 1

 
as shown in Fig. 2.

Singular Value Decomposition (SVD)

We now turn our attention to the problem of finding a singular value decomposition

of an m× n matrix A.

THEOREM 18 SVD Let A be an m× n matrix of rank r , with r nonzero singular values

σ1, σ2, . . . , σr . Then there exists an m× n matrix  , an m×m orthogonal matrix
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x 

y 

2 x 

y 

T

Figure 2

U, and an n× n orthogonal matrix V such that

A = U V t

Proof Since AtA is an n× n symmetric matrix, by Theorem 14 of Sec. 6.6 there

is an orthonormal basis {v1, . . . , vn} of ⺢n, consisting of eigenvectors of AtA. Now

by Theorem 17, {Av1, . . . ,Avr} is an orthogonal basis for col(A). Let {u1, . . . , ur}
be the orthonormal basis for col(A), given by

ui = 1

||Avi ||Avi = 1

σi
Avi for i = 1, . . . , r

Next, extend {u1, . . . , ur} to the orthonormal basis {u1, . . . , um} of ⺢m. We can

now define the orthogonal matrices V and U , using the vectors {v1, . . . , vn} and

{u1, . . . , um}, respectively, as column vectors, so that

V = [ v1 v2 · · · vn ] and U = [ u1 u2 · · · um ]

Moreover, since Avi = σiui , for i = 1, . . . , r, then

AV =
 Av1 · · · Avr 0 · · · 0

 =
 σ1u1 · · · σrur 0 · · · 0


Now let  be the m× n matrix given by

 =



σ1 0 . . . 0 0 . . . 0

0 σ2 . . . 0 0 . . . 0
...

...
. . .

...
...

...
...

0 · · · · · · σr 0 . . . 0

0 . . . . . . 0 0 . . . 0
...

...
...

...

0 . . . . . . 0 0 . . . 0


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Then

U =
 u1 u2 · · · um

 
=
 σ1u1 · · · σrur 0 · · · 0


= AV

Since V is orthogonal, then V t = V −1, and hence, A = U V t .

EXAMPLE 3 Find a singular value decomposition of the matrix

A =
 −1 1

−1 1

2 −2


Solution A procedure for finding an SVD of A is included in the proof of Theorem 18. We

present the solution as a sequence of steps.

Step 1. Find the eigenvalues and corresponding orthonormal eigenvectors of AtA

and define the matrix V .

The eigenvalues of the matrix

AtA =
 

6 −6

−6 6

 
in decreasing order are given by λ1 = 12 and λ2 = 0. The corresponding orthonor-

mal eigenvectors are

v1 =
 −1/

√
2

1/
√

2

 
and v2 =

 
1/

√
2

1/
√

2

 
Since the column vectors of V are given by the orthonormal eigenvectors of AtA,

the matrix V is given by

V =
 −1/

√
2 1/

√
2

1/
√

2 1/
√

2

 
Step 2. Find the singular values of A and define the matrix  .

The singular values of A are the square roots of the eigenvalues of AtA, so that

σ1 = √
λ1 = 2

√
3 and σ2 = √

λ2 = 0

Since  has the same dimensions as A, then  is 3 × 2. In this case,

 =
 2

√
3 0

0 0

0 0


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Step 3. Define the matrix U.

The matrix A has one nonzero singular value, so by Theorem 17 the rank of A is 1.

Therefore, the first column of U is

u1 = 1

σ1

Av1 =
 1/

√
6

1/
√

6

−2/
√

6


Next we extend the set {u1} to an orthonormal basis for ⺢3 by adding to it the

vectors

u2 =
 2/

√
5

0

1/
√

5

 and u3 =
 −1/

√
2

1/
√

2

0


so that

U =
 1/

√
6 2/

√
5 −1/

√
2

1/
√

6 0 1/
√

2

−2/
√

6 1/
√

5 0


The singular value decomposition of A is then given by

A = U V t =
 1/

√
6 2/

√
5 −1/

√
2

1/
√

6 0 1/
√

2

−2/
√

6 1/
√

5 0

 2
√

3 0

0 0

0 0

 −1/
√

2 1/
√

2

1/
√

2 1/
√

2

 

=
 −1 1

−1 1

2 −2



In Example 3, the process of finding a singular value decomposition of A was

complicated by the task of extending the set {u1, . . . , ur} to an orthogonal basis for

⺢m. Alternatively, we can use AtA to find V and AAt to find U. To see this, note

that if A = U V t is an SVD of A, then At = V tUt . After multiplying A on the

left by its transpose, we obtain

AtA = V tUtU V t = VD1V
t

where D1 is an n× n diagonal matrix with diagonal entries the eigenvalues of AtA.

Hence, V is an orthogonal matrix that diagonalizes AtA. On the other hand,

AAt = U V tV tUt = UD2U
t

where D2 is an m×m diagonal matrix with diagonal entries the eigenvalues of AAt

and U is an orthogonal matrix that diagonalizes AAt . Note that the matrices AtA and

AAt have the same eigenvalues. (See Exercise 22 of Sec. 5.1.) Therefore, the nonzero

diagonal entries of D1 and D2 are the same. The matrices U and V found using this
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procedure are not unique. We also note that changing the signs of the column vectors

in U and V also produces orthogonal matrices that diagonalize AAt and AtA. As a

result, finding an SVD of A may require changing the signs of certain columns of U

or V.

In Example 4 we use this idea to find an SVD for a matrix.

EXAMPLE 4 Find a singular value decomposition of the matrix

A =
 

1 1

3 −3

 
Solution First observe that

AtA =
 

1 3

1 −3

  
1 1

3 −3

 
=
 

10 −8

−8 10

 
By inspection we see that v1 = 1√

2

 
1

−1

 
is a unit eigenvector of AtA with

corresponding eigenvalue λ1 = 18, and v2 = 1√
2

 
1

1

 
is a unit eigenvector of

AtA with corresponding eigenvalue λ2 = 2. Hence,

V = 1√
2

 
1 1

−1 1

 

The singular values of A are σ1 = 3
√

2 and σ2 =
√

2 so that

 =
 

3
√

2 0

0
√

2

 
To find U , we compute

AAt =
 

1 1

3 −3

  
1 3

1 −3

 
=
 

2 0

0 18

 
Observe that a unit eigenvector corresponding to λ1 = 18 is u1 =

 
0

1

 
and a unit

eigenvector corresponding to λ2 = 2 is u2 =
 

1

0

 
. Thus,

U =
 

0 1

1 0

 
A singular value decomposition of A is then given by

A = U V t =
 

0 1

1 0

  
3
√

2 0

0
√

2

  1√
2

−1√
2

1√
2

1√
2

 =
 

1 1

3 −3
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The Four Fundamental Subspaces

In this subsection we show how the matrices U and V, which give the singular value

decomposition of A, provide orthonormal bases for the four fundamental subspaces

of A, introduced in Sec. 6.4. To develop this idea, let A be an m× n matrix of rank

r ≤ n and B = {v1, . . . , vn} be an orthonormal basis of eigenvectors of AtA with

corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = · · · = λn = 0. First, from

the proof of Theorem 17 if σ1, · · · , σr are the nonzero singular values of A, then

C  =
 

1

σ1

Av1, . . . ,
1

σr
Avr

 
= {u1, . . . , ur}

is a basis for col(A). Next, the remaining columns of U are defined by extending

C  to an orthonormal basis C = {u1, . . . , ur , ur+1, . . . , um} for ⺢m. We claim that

C   = {ur+1, . . . , um} is an orthonormal basis for N(At). To see this, observe that each

vector of C  is orthogonal to each vector of C   . Hence, by Proposition 5 of Sec. 6.4

and the fact that dim(⺢m) = m, we have span{ur+1, . . . , um} = col(A)⊥. By Theorem

10, part 2, of Sec. 6.4, span{ur+1, . . . , um} = N(At), so that C   = {ur+1, . . . , um} is a

basis for N(At) as claimed. We now turn our attention to the matrix V. From the proof

of Theorem 16, we have Avr+1 = · · · = Avn = 0. Consequently, span{vr+1, . . . , vn}
is contained in N(A). Now by Theorem 5 of Sec. 4.2,

dim(N(A))+ dim(col(A)) = n

so that dim(N(A)) = n− r. Since B   = {vr+1, . . . , vn} is an orthogonal, and hence

linearly independent, set of n− r vectors in N(A), by Theorem 12, part (1), of

Sec. 3.3, B   is a basis for N(A). Finally, since B = {v1, . . . , vn} is an orthonormal

basis for ⺢n, each vector of B   is orthogonal to every vector in B  = {v1, . . . , vr}.
Hence,

span{v1, . . . , vr} = N(A)⊥ = col(At ) = row(A)

so that B  is a basis for row(A).

To illustrate the ideas of this discussion, consider the matrix A of Example 3 and

its SVD. By the above discussion, we have

row(A) = span

  −1

1

  
col(A) = span


 1

1

−2


N(A) = span

  
1

1

  
N(At) = span


 2

0

1

,
 −1

1

0


The four fundamental subspaces are shown in Fig. 3.

u1

u2

Av1

N(A)

N(At)

v1

u3

A

row(A)

col(A)

Figure 3

Data Compression

An important application that involves the singular value decomposition is data com-

pression. As a preliminary step, suppose that a matrix A of rank r (with r nonzero



402 Chapter 6 Inner Product Spaces

singular values) has the SVD A = U V t . That is,

A = U V t =
 σ1u1 · · · σrur 0 · · · 0

V t
= σ1u1v

t
1 + σ2u2v

t
2 + · · · + σrurv

t
r

= σ1

 
1

σ1

Av1

 
vt1 + σ2

 
1

σ2

Av2

 
vt2 + · · · + σr

 
1

σr
Avr

 
vtr

= (Av1)v
t
1 + (Av2)v

t
2 + · · · + (Avr )vtr

Observe that each of the terms Aviv
t
i is a matrix of rank 1. Consequently, the sum

of the first k terms of the last equation is a matrix of rank k ≤ r, which gives an

approximation to the matrix A. This factorization of a matrix has application in many

areas.

As an illustration of the utility of such an approximation, suppose that A is the

356 × 500 matrix, where each entry is a numeric value for a pixel, of the gray scale

image of the surface of Mars shown in Fig. 4. A simple algorithm using the method

above for approximating the image stored in the matrix A is given by the following:

Figure 4
1. Find the eigenvectors of the n× n symmetric matrix AtA.

2. Compute Avi , for i = 1, . . . , k, with k ≤ r = rank(A).

3. The matrix (Av1)v
t
1 + (Av2)v

t
2 + · · · + (Avk)vtk is an approximation of the orig-

inal image.

To transmit the kth approximation of the image and reproduce it back on earth

requires the eigenvectors v1, . . . , vk of AtA and the vectors Av1, . . . , Avk.

The images in Fig. 5 are produced using matrices of ranks 1, 4, 10, 40, 80, and

100, respectively.

Figure 5

The storage requirements for each of the images are given in Table 1.
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Table 1

Image Storage Requirement Percent of Original Rank

Original 356 × 500 = 178, 000 100%

Approximation 1 2 × 500 = 1, 000 0.6 1

Approximation 2 8 × 500 = 4, 000 1 4

Approximation 3 20 × 500 = 10, 000 1 10

Approximation 4 80 × 500 = 40, 000 22 40

Approximation 5 160 × 500 = 80, 000 45 80

Approximation 6 200 × 500 = 100, 000 56 100

Exercise Set 6.8

In Exercises 1–4, find the singular values for the

matrix.

1. A =
 −2 −2

1 1

 

2. A =
 −1 −2

1 −2

 

3. A =
 1 0 2

2 −1 −1

−2 1 1



4. A =
 1 −1 0

0 0 1

−1 1 0


In Exercises 5–8, find a singular value decomposition

for the matrix.

5. A =
 

5 3

3 5

 

6. A =
 

2 2

4 −1

 

7. A =
 

1 0 0

0 1 1

 

8. A =
 −2 1 −1

0 1 1

 
In Exercises 9 and 10, the condition number of a

matrix A is the ratio σ1/σr , of the largest to the

smallest singular value. The condition number

provides a measure of the sensitivity of the linear

system Ax = b to perturbations to A or b. A linear

system is ill-conditioned when the condition number

is too large and called singular when the condition

number is infinite (the matrix is not invertible).

9. Let A =
 

1 1

1 1.000000001

 
.

a. Solve the linear system

Ax =
 

2

2

 
b. Solve the linear system

Ax =
 

2

2.000000001

 
c. Find the condition number for A.

10. Let b =
 1

3

−4

.
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a. Let

A =
 −2 −1 0

−2 −1 −2

0 −2 1


Solve the linear system Ax = b.

b. Let

B =
 −2.00001 −1.001 0

−2.01 −0.87 −2

0 −2 1


Solve the linear system Bx = b.

c. Find the condition number for A.

Review Exercises for Chapter 6

1. Let V be the inner product space ⺢3 with the

standard inner product and let

B =


 1

0

1

,
 1

0

0

,
 2

1

0


a. Verify that B is a basis for ⺢3.

b. Use B to find an orthonormal basis for ⺢3.

c. Let W = span


 1

0

1

,
 1

0

0

 and

v =
 −2

1

−1

. Find projW v. (Hint : First use

the Gram-Schmidt process to find an

orthogonal basis for W ; then refer to Exercise

16 of Sec. 6.4.)

2. Let

W = span




−1

2

2

−2

,


−3

0

0

0

,


3

−2

−1

1

,


0

0

−1

1




be a subspace of ⺢4 with the standard inner

product.

a. Find a basis for W.

b. Find W⊥.
c. Find an orthonormal basis for W.

d. Find an orthonormal basis for W⊥.
e. Verify that dim(⺢4) = dim(W)+ dim(W⊥).

f. Find the orthogonal projection of v =


−2

0

3

−1


onto W.

3. Let a, b, and c be real numbers and

W =


 x

y

z

 ∈ ⺢3

      ax + by + cz = 0


where ⺢3 is given the standard inner product.

a. Show that

 a

b

c

 is in W⊥.

b. Describe W⊥.

c. Let v =
 x1

x2

x3

. Find projW⊥ v.

d. Find
    projW⊥ v

    .
4. Define on P2 an inner product by

 p, q =
 1

−1

p(x)q(x) dx

Let p(x) = x and q(x) = x2 − x + 1.
a. Find  p, q .
b. Find the distance between p and q.

c. Are p and q orthogonal? Explain.

d. Find the cosine of the angle between p and q.

e. Find projq p.

f. Let W = span{p}. Find W⊥.
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5. Let V be the inner product space C(0)[−π,π]

with inner product defined by

 f, g =
 

π

−π

f (x)g(x) dx

Let W = span{1, cos x, sin x}.
a. Verify that the set {1, cos x, sin x} is

orthogonal.

b. Find an orthonormal basis for W.

c. Find projW x
2.

d. Find
    projW x

2
    .

6. Let B = {v1, . . . , vn} be an orthonormal basis for

an inner product space V , and let v be a vector

in V.

a. Find the coordinate


c1

c2
...

cn

 of v relative to B.

b. Show that civi = projviv for each

i = 1, 2, . . . , n.

c. Let

B =

 1√
2

 1

1

0

, 1√
2

 1

−1

0

, 1√
6

 1

1

−2


be an orthonormal basis for ⺢3, with the

standard inner product, and let

v =


1√
2

+ 1√
3

1√
2

− 1√
3

1√
3

. Find the coordinate


c1

c2
...

cn

 of v relative to B.

7. Show that if B is an orthonormal basis for ⺢n,

with the standard inner product, and

[v]B =


c1

c2
...

cn

 , then

|| v || =
 
c2

1 + c2
2 + · · · + c2

n

Give a similar formula for || v || if B is an

orthogonal basis, not necessarily orthonormal.

8. Let {v1, . . . , vm} be an orthonormal subset of ⺢n,

with the standard inner product, and let v be any

vector in ⺢n. Show that

|| v ||2 ≥
m 
i=1

(v · vi )
2

(Hint : Expand
    v − /m

i=1  v, vi vi
    2.)

9. (QR factorization) Let A be an m× n matrix

with linearly independent column vectors. In this

exercise we will describe a process to write

A = QR, where Q is an m× n matrix whose

column vectors form an orthonormal basis for

col(A) and R is an n× n upper triangular matrix

that is invertible. Let

A =


1 0 −1

1 −1 2

1 0 1

1 −1 2


a. Let B = {v1, v2, v3} be the set of column

vectors of the matrix A. Verify that B is

linearly independent and hence forms a basis

for col(A).

b. Use the Gram-Schmidt process on B to find an

orthogonal basis B1 = {w1,w2,w3}.
c. Use B1 to find an orthonormal basis

B2 = {q1, q2, q3}.
d. Define the matrix Q = [q1 q2 q3]. Define the

upper triangle matrix R for i = 1, 2, 3 by

rij =
(

0 if i > j

vj · qi if i ≤ j, j = i, . . . , 3

e. Verify that A = QR.

10. Let B = {v1, v2, . . . , vn} be an orthogonal basis

for an inner product space V and c1, c2, . . . , cn
arbitrary nonzero scalars. Show that

B1 = {c1v1, c2v2, . . . , cnvn}

is an orthogonal basis for V. How can the scalars

be chosen so that B1 is an orthonormal basis?
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Chapter 6: Chapter Test

In Exercises 1–40, determine whether the statement is

true or false.

1. If u is orthogonal to both v1 and v2, then u is

orthogonal span{v1, v2}.
2. If W is a subspace of an inner product space V

and v ∈ V, then v − projWv ∈ W⊥.

3. If W is a subspace of an inner product space V,

then W ∩W⊥ contains a nonzero vector.

4. Not every orthogonal set in an inner product

space is linearly independent.

In Exercises 5–10, let

v1 =


2

1

−4

3

 v2 =


−2

1

2

1


be vectors in ⺢4 with inner product the standard dot

product.

5. || v1 || = 30

6. The distance between the vectors v1 and v2 is

2
√

14.

7. The vector u = 1√
30
v1 is a unit vector.

8. The vectors v1 and v2 are orthogonal.

9. The cosine of the angle between the vectors

v1 and v2 is − 4
15

√
10.

10. projv1
v2 =


−8/15

−4/15

−16/15

−12/15


In Exercises 11–16, let

v1 =
 1

0

1

 v2 =
 −1

1

1


v3 =

 2

4

−2



be vectors in ⺢3 with inner product the standard dot

product.

11. The set {v1, v2, v3} is orthogonal.

12. The set {v1, v2, v3} is a basis for ⺢3.

13. If W = span{v1, v2} and u =
 1

1

1

, then

projW u = v1 + 1
3
v2.

14. If W = span{v1, v2, v3}, then W⊥ = {0}.
15. If W = span{v1, v2}, then W⊥ = {0}.
16. W = span{v1, v2, v3}, then projWv = v for any

vector v ∈ ⺢3.

In Exercises 17–23, use the inner product defined on

P2 defined by

 p, q =
 1

−1

p(x)q(x) dx

17.
    x2 − x

    = 4√
15

18. The polynomials p(x) = x and q(x) = x2 − 1 are

orthogonal.

19. The polynomials p(x) = 1 and q(x) = x2 − 1 are

orthogonal.

20. The set {1, x, x2 − 1
3
} is orthogonal.

21. The vector p(x) = 1
2

is a unit vector.

22. If W = span{1, x}, then dim(W⊥) = 1.

23. If W = span{1, x2}, then a basis for W⊥

is {1, x}.
24. An n× n symmetric matrix has n distinct real

eigenvalues.

25. If u and v are vectors in ⺢2, then

 u, v = 3u1v2 − u2v1 defines an inner product.

26. For any inner product

 2u, 2v + 2w = 2  u, v + 2  u,w 
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27. If W = span{1, x2} is a subspace of P2 with

inner product

 p, q =
 1

0

p(x)q(x) dx

then a basis for W⊥ is {x}.
28. If {u1, . . . , uk} is a basis for a subspace W of an

inner product space V and {v1, . . . , vm} is a basis

for W⊥, then {u1, . . . , uk, v1, . . . , vm} is a basis

for V.

29. If A is an n× n matrix whose column vectors

form an orthogonal set in ⺢n with the standard

inner product, then col(A) = ⺢n.

30. In ⺢2 with the standard inner product, the

orthogonal complement of y = 2x is y = 1
2
x.

31. In ⺢3 with the standard inner product, the

orthogonal complement of −3x + 3z = 0 is

span


 −3

0

3

.
32. Every finite dimensional inner product space has

an orthonormal basis.

33. If

W = span


 1

2

1

,
 0

1

−1


then a basis for W⊥ is also a basis for the null

space of

A =
 1 0

2 1

1 −1



34. If

W = span


 1

0

1

,
 −1

1

0


then dim(W⊥) = 2.

35. If

W = span


 0

1

1

,
 1

0

1


then

W⊥ = span


 −1

−1

1


36. In ⺢5 with the standard inner product there exists

a subspace W such that dim(W) = dim(W⊥).

37. If A is an n× n matrix whose column vectors are

orthonormal, then AAtv is the orthogonal

projection of v onto col(A).

38. If u and v are orthogonal, w1 is a unit vector in

the direction of u, and w2 is a unit vector in the

opposite direction of v, then w1 and w2 are

orthogonal.

39. If u and v are vectors in ⺢n and the vector

projection of u onto v is equal to the vector

projection of v onto u, then u and v are linearly

independent.

40. If A is an m× n matrix, then AAt and AtA have

the same rank.





A P P E N D I X

Preliminaries

A.1

ß

Algebra of Sets

The notion of a set is a fundamental concept in mathematics allowing for the grouping

and analysis of objects with common attributes. For example, we can consider the

collection of all even numbers, or the collection of all polynomials of degree 3. A set

is any well-defined collection of objects. By this we mean that a clear process exists

for deciding whether an object is contained in the set. The colors of the rainbow—red,

yellow, green, blue, and purple—can be grouped in the set

C = {red, yellow, green, blue, purple}
The objects contained in a set are called members, or elements, of the set. To indicate

that x is an element of a set S, we write x ∈ S. Since green is one of the colors of the

rainbow, we have that green ∈ C. The color orange, however, is not one of the colors

of the rainbow and therefore is not an element of C. In this case we write orange /∈ C.

There are several ways to write a set. If the number of elements is finite and

small, then all the elements can be listed, as we did with the set C, separated by

commas and enclosed in braces. Another example is

S = {−3,−2, 0, 1, 4, 7}
If a pattern exists among its elements, a set can be described by specifying only a

few of them. For example,

S = {2, 4, 6, . . . , 36}
is the set of all even numbers between 2 and 36, inclusive. The set of all even whole

numbers can be written

T = {2, 4, 6, . . .}
Special sets of numbers are often given special symbols. Several common ones

are described here. The set of natural numbers, denoted by ⺞, is the set

⺞ = {1, 2, 3, . . .}
The set of integers, denoted by ⺪, is given by

⺪ = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

409
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We use the symbol⺡ to denote the set of rational numbers, which can be described as

⺡ =
�
p

q

����p, q ∈ ⺪, q  = 0

�

Finally, the set of real numbers, denoted by ⺢, consists of all rational and irrational

numbers. Examples of irrational numbers are
√

2 and π.

In many cases, the set we wish to consider is taken from a larger one. For example,

S = {x ∈ ⺢ | −1 ≤ x < 4}
is the set of all real numbers greater than or equal to −1 and less than 4. In general,

the notation

{x ∈ L | restriction on x}
translates to “the set of all x in L such that x satisfies the restriction.” In some cases

L is omitted if a universal set is implied or understood.

Sets can be compared using the notion of containment. Denote two sets by A and

B. The set A is contained in B if each element of A is also in B. When this happens,

we say that A is a subset of B and write A ⊆ B. For example, let

A = {1, 2} B = {1, 2, 3} and C = {2, 3, 4}
Since every element of A is also in B, we have A ⊆ B. However, A is not a subset

of C since 1 ∈ A but 1 /∈ C. In this case we write A � C. For the sets of natural

numbers, integers, rational numbers, and real numbers, we have

⺞ ⊆ ⺪ ⊆ ⺡ ⊆ ⺢
The set with no elements is called the empty set, or null set, and is denoted by φ.

One special property of the empty set φ is that it is a subset of every set.

Two sets A and B are equal if they have the same elements. Alternatively, A and

B are equal if A ⊆ B and B ⊆ A. In this case we write A = B.

Operations on Sets

Elements can be extracted from several sets and placed in one set by using the oper-

ations of intersection and union. The intersection of two sets A and B, denoted by

A ∩ B, is the set of all elements that are in both A and B, that is,

A ∩ B = {x | x ∈ A and x ∈ B}
The union of two sets A and B, denoted by A ∪ B, is the set of all elements that are

in A or B, that is,

A ∪ B = {x | x ∈ A or x ∈ B}

As an illustration, let A = {1, 3, 5} and B = {1, 2, 4}. Then

A ∩ B = {1} and A ∪ B = {1, 2, 3, 4, 5}
A graphical device, called a Venn diagram, is helpful for visualizing set operations.

The Venn diagrams for the intersection and union of two sets are shown in Fig. 1.



A.1 Algebra of Sets 411

AA BB

A ∩ B A ∪ B
Figure 1

EXAMPLE 1 Define two intervals of real numbers by A = [−3, 2) and B = [−7, 1). Find A ∩ B
and A ∪ B.

Solution Since the intervals overlap with −7 < −3 < 1 < 2, the intersection is the interval

A ∩ B = [−3, 1)

and the union is the interval

A ∪ B = [−7, 2)

Notice that x /∈ A ∩ B if and only if x /∈ A or x /∈ B, and x /∈ A ∪ B if and only

if x /∈ A and x /∈ B.

The complement of the set A relative to the set B, denoted by B\A, consists of all

elements of B that are not elements of A. In set notation this complement is given by

B\A = {x ∈ B | x /∈ A}
For example, let A and B be the intervals given by A = [1, 2] and B = [0, 5]. Then

B\A = [0, 1) ∪ (2, 5]

If A is taken from a known universal set, then the complement of A is denoted

by Ac. To illustrate, let A = [1, 2] as before. Then the complement of A relative to

the set of real numbers is

⺢\A = Ac = (−∞, 1) ∪ (2,∞)
Another operation on sets is the Cartesian product. Specifically, the Cartesian

product of two sets A and B, denoted by A× B, is the set of all ordered pairs whose

first component comes from A and whose second component comes from B. So

A× B = {(x, y) | x ∈ A and y ∈ B}
For example, if A = {1, 2} and B = {10, 20}, then

A× B = {(1, 10), (1, 20), (2, 10), (2, 20)}
This last set is a subset of the Euclidean plane, which can be written as the Cartesian

product of ⺢ with itself, so that

⺢
2 = ⺢× ⺢ = {(x, y) | x, y ∈ ⺢}
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EXAMPLE 2 Let A = [−3, 2) and B = (−2, 1]. Describe the set A× B.

Solution Since A× B consists of all ordered pairs whose first component comes from A and

second from B, we have

−3 ≤ x < 2 and − 2 < y ≤ 1

The points that satisfy these two conditions lie in the rectangular region shown in

Fig. 2.
x 

y 

⫺5

⫺5

5

5

[−3, 2)× (−2, 1]

Figure 2 Example 3 shows that operations on sets can be combined to produce results

similar to the arithmetic properties of real numbers.

EXAMPLE 3 Verify that if A,B, and C are sets, then A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Solution The Venn diagrams in Fig. 3 show that although the two sets are computed in

different ways, the result is the same. The quantities inside the parentheses are

carried out first. Of course, the picture alone does not constitute a proof. To establish

the fact, we must show that the set on the left-hand side of the equation above is

a subset of the set on the right, and vice versa.

AA

BB CC

A ∩ (B ∪ C) (A ∩ B) ∪ (A ∩ C)
Figure 3

Indeed, if x ∈ A ∩ (B ∪ C), then x ∈ A and x ∈ B ∪ C. This is equivalent to

the statement x ∈ A and (x ∈ B or x ∈ C), which in turn is also equivalent to

(x ∈ A and x ∈ B) or (x ∈ A and x ∈ C)
Hence, x ∈ (A ∩ B) ∪ (A ∩ C), and we have shown that

A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C)
On the other hand, let x ∈ (A ∩ B) ∪ (A ∩ C), which can also be written as

x ∈ (A ∩ B) or x ∈ (A ∩ C)
This gives

x ∈ A and x ∈ B or x ∈ A and x ∈ C
In either case, x ∈ A and, in addition, x ∈ B or x ∈ C, so that

x ∈ A ∩ (B ∪ C)
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Therefore,

(A ∩ B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C)

Since each set is a subset of the other, we have

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Theorem 1 includes the result given in Example 3 along with other properties of

set operations. The verifications of the remaining properties are left as exercises.

THEOREM 1 Let A,B, and C be sets contained in a universal set U.

1. A ∩A = A, A ∪A = A
2. (Ac)c = A
3. A ∩Ac = φ, A ∪ Ac = U

4. A ∩ B = B ∩ A, A ∪ B = B ∪A
5. (A ∩ B) ∩ C = A ∩ (B ∩ C), (A ∪ B) ∪ C = A ∪ (B ∪ C)
6. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

THEOREM 2 DeMorgan’s Laws Let A,B, and C be sets. Then

1. A\(B ∪ C) = (A\B) ∩ (A\C)
2. A\(B ∩ C) = (A\B) ∪ (A\C)
Proof (1) We need to verify that the set on the left-hand side of the equation is a

subset of the set on the right, and vice versa. We begin by letting x ∈ A\(B ∪ C).
This means that x ∈ A and x /∈ B ∪ C. This is equivalent to the statement

x ∈ A and (x /∈ B and x /∈ C)
which is then equivalent to

x ∈ A and x /∈ B and x ∈ A and x /∈ C
This last pair of statements gives

x ∈ (A\B) ∩ (A\C) so that A\(B ∪ C) ⊆ (A\B) ∩ (A\C)
To show containment in the other direction, we let x ∈ (A\B) ∩ (A\C). Rewriting

this in equivalent forms, we have

x ∈ (A\B) and x ∈ (A\C)
x ∈ A and x /∈ B and x ∈ A and x /∈ C

x ∈ A and x /∈ B and x /∈ C
x ∈ A and x /∈ (B ∪ C)
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Therefore,

(A\B) ∩ (A\C) ⊆ A\(B ∪ C)
(2) The proof is similar to the one given in part 1 and is left as an exercise.

Exercise Set A.1

In Exercises 1–6, let the universal set be ⺪ and let

A = {−4,−2, 0, 1, 2, 3, 5, 7, 9}
B = {−3,−2,−1, 2, 4, 6, 8, 9, 10}

Compute the set.

1. A ∩ B
2. A ∪ B
3. A× B
4. (A ∪ B)c

5. A\B
6. B\A

In Exercises 7–14, use the sets

A = (−11, 3] B = [0, 8] C = [−9,∞)
Compute the set.

7. A ∩ B
8. (A ∪ B)c

9. A\B
10. C\A
11. A\C
12. (A ∪ B)c ∩ C
13. (A ∪ B)\C
14. B\(A ∩ C)
In Exercises 15–20, use the sets

A = (−2, 3] B = [1, 4] C = [0, 2]

to sketch the specified set in the plane.

15. A× B
16. B × C

17. C × B
18. (A× B)\[C × (B ∩ C)]
19. A× (B ∩ C)
20. (A× B) ∩ (A× C)
In Exercises 21–26, let

A = {1, 2, 3, 5, 7, 9, 11}
B = {2, 5, 10, 14, 20}
C = {1, 5, 7, 14, 30, 37}

Verify that the statement holds.

21. (A ∩ B) ∩ C = A ∩ (B ∩ C)
22. (A ∪ B) ∪ C = A ∪ (B ∪ C)
23. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
24. A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
25. A\(B ∪ C) = (A\B) ∩ (A\C)
26. A\(B ∩ C) = (A\B) ∪ (A\C)
In Exercises 27–34, show that the statement holds for

all sets A,B, and C.

27. (Ac)c = A
28. The set A ∪ Ac is the universal set.

29. A ∩ B = B ∩ A
30. A ∪ B = B ∪ A
31. (A ∩ B) ∩ C = A ∩ (B ∩ C)
32. (A ∪ B) ∪ C = A ∪ (B ∪ C)
33. A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
34. A\(B ∩ C) = (A\B) ∪ (A\C)
35. If A and B are sets, show that

A\B = A ∩ Bc
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36. If A and B are sets, show that

(A ∪ B) ∩Ac = B\A

37. If A and B are sets, show that

(A ∪ B)\(A ∩ B) = (A\B) ∪ (B\A)

38. If A and B are sets, show that

(A ∩ B) = A\(A\B)

39. If A,B, and C are sets, show that

A× (B ∩ C) = (A× B) ∩ (A× C)

40. The symmetric difference operation  on two sets

A and B is defined by

A B = (A\B) ∪ (B\A)
Show that

A B = (A ∪ B)\(A ∩ B)

A.2

ß

Functions

The sets we described in Sec. A.1 along with functions are two of the fundamental

objects of modern mathematics. Sets act as nouns defining objects and functions as

verbs describing actions to be performed on the elements of a set. Functions connect

each element of one set to a unique element of another set. The functions that are

studied in calculus are defined on sets of real numbers. Other branches of mathematics

require functions that are defined on other types of sets. The following definition is

general enough for a wide variety of abstract settings.

DEFINITION 1 Function A function f from a set ⺨ to a set ⺩ is a rule of correspondence

that associates with each element of ⺨ exactly one element of ⺩.

Before continuing with a description of functions, we note that there are other

ways of associating the elements of two sets. A relation is a rule of correspondence

that does not (necessarily) assign a unique element of ⺩ for each element of ⺨.

A function, then, is a relation that is well defined with a clear procedure that associates

a unique element of ⺩ with each element of ⺨. A common metaphor for a function

is a machine that produces a unique output for each input.

A function f is also called a mapping from ⺨ to ⺩ and is written f : ⺨ −→ ⺩.

If x ∈ ⺨ is associated with y ∈ ⺩ via the function f , then we call y the image of x

under f and write y = f (x). The set ⺨ is called the domain of f and is denoted by

dom(f ). The range of f , denoted by range(f ), is the set of all images of f . That is,

range(f ) = {f (x) | x ∈ dom(f )}
If A is a subset of the domain, then the image of A is defined by

f (A) = {f (x) | x ∈ A}
Using this notation, we have range(f ) = f (⺨).

There are many ways of describing functions. The pictures shown in Fig. 1, give

us one way while providing an illustration of the key idea distinguishing relations

from functions.
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x1
y1

y2

y3

x2

x3

x4

x1
y1

y2

x2

x3
y3

y4

A function Not a function

f g

y4

⺨⺨
⺩⺩

Figure 1

The relation f , shown in Fig. 1, is a function since it is well defined with each

element of the set ⺨ corresponding to a unique element of the set ⺩. Notice that more

than one element in the domain of the function f can be associated with the same

element in the range. In this case x3 and x4 both map to y3. However, the relation

g, also shown in Fig. 1, is not a function since x3 corresponds to both y3 and y4.

Notice in this example that f (⺨) is not equal to ⺩, since y4 is not in the range of

f . In general, for the mapping f : ⺨ −→ ⺩, the set ⺨ is always the domain, but

range(f ) ⊆ ⺩.

The graph of a function f : ⺨ −→ ⺩ is a subset of the Cartesian product ⺨× ⺩
and is defined by

graph(f ) = {(x, y) | x ∈ ⺨ and y = f (x) ∈ range(f )}
For a function f : ⺢ −→ ⺢ the graph is a subset of ⺢2, the Cartesian plane.

x 

y 

⫺5

⫺5

5

5

Figure 2 A familiar function is f : ⺢ −→ ⺢ defined by the rule

f (x) = x2 − 4x + 3 = (x − 2)2 − 1

Since the rule describing the function is defined for all real numbers, we have

dom(f ) = ⺢. For the range, since the vertex of the parabola is (2,−1), then

range(f ) = [−1,∞). These sets are also evident from the graph of the function,

as shown in Fig. 2. Also the image of x = 0 is f (0) = 3. Notice that in this example

it is also the case that f (4) = 3, so {0, 4} is the set of all real numbers with image

equal to 3. The set {0, 4} is called the inverse image of the set {3}. This motivates the

next concept.

If f : ⺨ −→ ⺩ is a function and B ⊆ ⺩, then the inverse image of B, denoted

by f−1(B), is the set of all elements of the domain that are mapped to B. That is,

f−1(B) = {x ∈ ⺨ | f (x) ∈ B}

x 

y 

1

−1
π 2π

Figure 3 The set f−1(B) is also called the set of preimages of the set B. As another illustration

let f : [0, 2π] −→ [−1, 1] be defined by f (x) = sin x. The graph is shown in Fig. 3.

We see from the graph that

f −1([0, 1]) = [0,π] and f−1([−1, 0]) = [π, 2π]
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EXAMPLE 1 Let f : ⺢ −→ ⺢ be the function defined by f (x) = x2 − 4x + 3. Define the sets

A = [0, 3] B = [1, 4] C = [−1, 3] D = [0, 3]

a. Compare the sets f (A ∩ B) and f (A) ∩ f (B).
b. Compare the sets f (A ∪ B) and f (A) ∪ f (B).
c. Compare the sets f−1(C ∩D) and f−1(C) ∩ f−1(D).

d. Compare the sets f−1(C ∪D) and f−1(C) ∪ f−1(D).

Solution a. Since A ∩ B = [1, 3], we see from Fig. 2 that f (A ∩ B) = [−1, 0]. Again

using the graph of f , we have f (A) = f ([0, 3]) = [−1, 3] and f (B) =
f ([1, 4]) = [−1, 3], so that f (A) ∩ f (B) = [−1, 3]. Hence, we have shown

that

f (A ∩ B) ⊆ f (A) ∩ f (B) with f (A ∩ B)  = f (A) ∩ f (B)
b. Since A ∪ B = [0, 4], we have f (A ∪ B) = [−1, 3]. Also f (A) = [−1, 3] =
f (B), so that f (A) ∪ f (B) = [−1, 3]. Therefore,

f (A ∪ B) = f (A) ∪ f (B)
c. Since C ∩D = [0, 3], we have

f−1(C ∩D) = {x ∈ ⺢ | f (x) ∈ [0, 3]}
= {x ∈ ⺢ | 0 ≤ f (x) ≤ 3}
= {x ∈ ⺢ | 0 ≤ (x − 2)2 − 1 ≤ 3}

We see from Fig. 2

f−1(C ∩D) = [0, 1] ∪ [3, 4]

On the other hand,

f−1(C) = [0, 4]

The inverse image of the set D is

f−1(D) = [0, 1] ∪ [3, 4]

Finally,

f−1(C) ∩ f −1(D) = f−1(C ∩D)
d. Since C ∪D = [−1, 3], we have from the results in part (c)

f−1(C ∪D) = f−1(C) ∪ f −1(D)

Theorem 3 summarizes several results about images of sets and inverse images

of sets including the observations made in Example 1.
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THEOREM 3 Let f : ⺨ −→ ⺩ be a function, and suppose A and B are subsets of ⺨ and C and

D are subsets of ⺩. Then

1. f (A ∩ B) ⊆ f (A) ∩ f (B)
2. f (A ∪ B) = f (A) ∪ f (B)
3. f −1(C ∩D) = f −1(C) ∩ f−1(D)

4. f −1(C ∪D) = f −1(C) ∪ f−1(D)

5. A ⊆ f −1(f (A))

6. f (f−1(C)) ⊆ C
Proof (1) Let y ∈ f (A ∩ B). Then there is some x ∈ A ∩ B such that y = f (x).
This means that y ∈ f (A) and y ∈ f (B), and hence y ∈ f (A) ∩ f (B). Therefore,

f (A ∩ B) ⊆ f (A) ∩ f (B).
(3) To show that the sets are equal, we show that each set is a subset of the other.

Let x ∈ f −1(C ∩D), so that f (x) ∈ C ∩D, which is equivalent to the statement

f (x) ∈ C and f (x) ∈ D. Therefore, x ∈ f−1(C) and x ∈ f−1(D), and we have

f−1(C ∩D) ⊆ f−1(C) ∩ f −1(D).

Now let x ∈ f−1(C) ∩ f−1(D), which is equivalent to the statement x ∈
f−1(C) and x ∈ f−1(D). Then f (x) ∈ C and f (x) ∈ D, so that f (x) ∈ C ∩D.

Therefore, x ∈ f −1(C ∩D) and hence f−1(C) ∩ f−1(D) ⊆ f −1(C ∩D).
(5) If x ∈ A, then f (x) ∈ f (A), and hence x ∈ f −1(f (A)). This gives

A ⊆ f−1(f (A)).

The proofs of parts 2, 4, and 6 are left as exercises.

Example 1(a) provides a counterexample to show that the result in Theorem 3,

part 1, cannot be replaced with equality.

Inverse Functions

An inverse function of a function f , when it exists, is a function that reverses the action

of f . Observe that if g is an inverse function of f and f (a) = b, then g(b) = a. For

example, if f (x) = 3x − 1 and g(x) = (x + 1)/3, then f (2) = 5 and g(5) = 2. One

of the most important function-inverse pairs in mathematics and science is f (x) = ex
and g(x) = ln x.

For a function to have an inverse function, the inverse image for each ele-

ment of the range of the function must be well defined. This is often not the case.

For example, the function f : ⺢ −→ ⺢ defined by f (x) = x2 cannot be reversed as a

function since the inverse image of the set {4} is the set {−2, 2}. Notice that the inverse

image of a set in the range of a function is always defined, but the function may not

have an inverse function. A function that has an inverse is called invertible. Later

in this section we show that if a function is invertible, then it has a unique inverse.

This will justify the use of the definite article and the symbol f −1 when referring to

the inverse of the function f . Functions that have inverses are characterized by the
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property called one-to-one. The function described in Fig. 1 is not one-to-one, since

both x3 and x4 are sent to the same element of ⺩. This cannot occur for a one-to-one

function.

DEFINITION 2 One-to-One Function Let f : ⺨ −→ ⺩ be a function. Then f is called one-

to-one, or injective, if for all x1 and x2 with x1  = x2, then f (x1)  = f (x2).

Alternatively, f is one-to-one if whenever f (x1) = f (x2), then x1 = x2. For a

function f : ⺢ −→ ⺢, this condition is met if every horizontal line intersects the graph

of f in at most one point. When this happens, f passes the horizontal line test and

is thus invertible. This test is similar to the vertical line test used to determine if

f is a function. The inverse of f is denoted by f−1 with f−1: range(f ) −→ ⺨.

Theorem 4 gives a characterization of functions that are invertible. We omit the

proof.

THEOREM 4 Let ⺨ and ⺩ be nonempty sets and f : ⺨ −→ ⺩ be a function. The function f has

an inverse function if and only if f is one-to-one.

As an illustration, let f : ⺢ −→ ⺢ be defined by y = f (x) = 3x + 1. Since the

graph, which is a straight line, satisfies the horizontal line test, the function is one-

to-one and hence has an inverse function. To find the inverse in this case is an easy

matter. We can solve for x in terms of y to obtain

x =
y − 1

3

The inverse function is then written using the same independent variable, so that

f−1(x) =
x − 1

3

It is also possible to show that a function has an inverse even when it is difficult to

find the inverse.

EXAMPLE 2 Show the function f : ⺢ −→ ⺢ defined by f (x) = x3 + x is invertible.

Solution By Theorem 4, to show that f is invertible, we show that f is one-to-one. Suppose

that x1  = x2 with x1 < x2. We wish to show that f (x1)  = f (x2). Since the cubing

function is strictly increasing for all x, we have

x1 < x2 and x3
1 < x

3
2

Therefore,

f (x1) = x
3
1 + x1 < x

3
2 + x2 = f (x2) so that f (x1)  = f (x2)
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The graph of an invertible function can be used to describe the graph of the

inverse function. To see how, suppose that (a, b) is a point on the graph of y = f (x).

Then b = f (a) and a = f −1(b). Consequently, the point (b, a) is on the graph of

y = f −1(x). Since the point (b, a) is the reflection of (a, b) through the line y = x,

the graphs of f and f−1 are also reflections through y = x. The graph of the function

and its inverse in Example 2 are shown in Fig. 4.

x 

y 

⫺5

⫺5

5

5

f (x) = x3 + x

y = f−1(x)

Figure 4

When f : ⺨ −→ ⺩ is a function such that the set of images is all of ⺩, that is,

f (⺨) = ⺩, we call the function onto.

DEFINITION 3 Onto Function The function f : ⺨ −→ ⺩ is called onto, or surjective, if

range(f ) = ⺩.

For example, the function of Example 2 is onto since the range of f is all of ⺢.

See Fig. 4. A function is called bijective if it is both one-to-one and onto.

Notice that the function f : ⺢ −→ ⺢ with f (x) = x2 is not onto since range (f ) =

[0,∞). Of course, every function is a mapping onto its range. So the function

f : ⺢ −→ [0,∞) defined by f (x) = x2 is onto. This new version of the original

function is not one-to-one, but by restricting the domain to [0,∞), we can define a

version that is one-to-one and onto. That is, the function f : [0,∞) −→ [0,∞) defined

by f (x) = x2 is a bijection. The function defined in Example 2 is also bijective. Notice

also that a function has an inverse if and only if it is bijective.

Composition of Functions

Functions can be combined in a variety of ways to create new functions. For example,

if f : ⺨1 −→ ⺩1 and g: ⺨2 −→ ⺩2 are real-valued functions of a real variable, then

the standard arithmetic operations on functions are defined by

(f + g)(x) = f (x)+ g(x)

(f − g)(x) = f (x)− g(x)

(fg)(x) = f (x)g(x)�
f

g

�
(x) =

f (x)

g(x)



A.2 Functions 421

The domains of these functions are given by dom(f + g) = dom(f − g) =
dom(fg) = ⺨1 ∩ ⺨2 and dom(f/g) = (⺨1 ∩ ⺨2)\{x | g(x) = 0}. Another method of

combining functions is through the composition of two functions. In the compo-

sition of two functions f and g, the output of one function is used as the input

to the other. For example, if f (x) = √x and g(x) = x2 − x − 2, then f (g(3)) =
f (4) = 2 is the composition of f with g evaluated at the number 3 and is denoted

by (f ◦g)(3).

DEFINITION 4 Composition Let A, B, and C be nonempty sets and f : B −→ C and g: A −→ B

be functions. The composition f ◦g: A −→ C is defined by

(f ◦g)(x) = f (g(x))
The domain of the composition is dom(f ◦g) = {x ∈ dom(g) | g(x) ∈ dom(f )}.

A function and its inverse undo each other relative to composition. For example,

let f (x) = 2x − 1. Since f is one-to-one, it is invertible with f−1(x) = (x + 1)/2.

Notice that

(f−1◦f )(x) = f−1(f (x)) = f (x)+ 1

2
= 2x − 1+ 1

2
= x

and

(f ◦f −1)(x) = f (f−1(x)) = 2

�
x + 1

2

�
− 1 = x + 1− 1 = x

THEOREM 5 Suppose that f : ⺨ −→ ⺩ is a bijection. Then

1. (f −1◦f )(x) = x for all x ∈ ⺨
2. (f ◦f−1)(x) = x for all x ∈ ⺩

As mentioned earlier, when an inverse function exists, it is unique. To see this,

let f : ⺨ −→ ⺩ be an invertible function and f −1 an inverse function. Suppose that

g: ⺩ −→ ⺨ is another inverse function for f . Let I⺨ be the identity function on ⺨

and I⺩ the identity function on ⺩. That is, I⺨(x) = x for all x ∈ ⺨ and I⺩(y) = y for

all y ∈ ⺩. If y is in ⺩, then

g(y) = g◦I⺩(y) = g◦(f ◦f −1)(y)

= g(f (f−1(y))) = (g◦f )◦f−1(y)

= I⺨(f−1(y)) = f−1(y)

Since this holds for all y in ⺩, then g = f−1. Consequently, when it exists, the inverse

function is unique. This justifies the use of the symbol f −1 for the inverse of f , when

it exists.
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THEOREM 6 Let f : ⺨ −→ ⺩ be a bijection. Then

1. f −1: ⺩ −→ ⺨ is also a bijection,

2. (f −1)−1 = f

THEOREM 7 Let A,B, and C be nonempty sets and f : B −→ C and g: A −→ B be functions.

1. If f and g are injections, then f ◦g is an injection.

2. If f and g are surjections, then f ◦g is a surjection.

3. If f and g are bijections, then f ◦g is a bijection.

4. If f ◦g is an injection, then g is an injection.

5. If f ◦g is a surjection, then f is a surjection.

Proof (1) Suppose that x1 and x2 are in A and (f ◦g)(x1) = (f ◦g)(x2). Then by

the definition of composition, we have

f (g(x1)) = f (g(x2))

Since f is an injection, g(x1) = g(x2). But since g is also an injection, we have

x1 = x2. Therefore, f ◦g is an injection.

(5) Let c ∈ C. Since f ◦g: A −→ C is a surjection, there is some a ∈ A such that

(f ◦g)(a) = c. That is, f (g(a)) = c. But g(a) ∈ B, so there is an element of B

with image under f equal to c. Since c was chosen arbitrarily, we know that f is

a surjection.

The proofs of parts 2, 3, and 4 are left as exercises.

THEOREM 8 Let A,B, and C be nonempty sets and f : B −→ C and g: A −→ B be functions. If

f and g are bijections, then the function f ◦g has an inverse function and (f ◦g)−1 =
g−1◦f−1.

Proof By Theorem 7, the composition f ◦g: A −→ C is a bijection; hence by

Theorem 4, the inverse function (f ◦g)−1: C −→ A exists. Moreover, the function

g−1◦f−1 also maps C to A. For each c ∈ C we will show that (f ◦g)−1(c) =
(g−1◦f−1)(c). Let c ∈ C. Since f is onto, there is b ∈ B such that f (b) = c, so

that b = f−1(c). Next, since g is onto, there is an a ∈ A such that g(a) = b, which

is equivalent to a = g−1(b). Taking compositions gives (f ◦g)(a) = f (g(a)) = c,
and hence (f ◦g)−1(c) = a. We also have g−1(f−1(c)) = (g−1◦f−1)(c) = a. Since

this holds for all c ∈ C, the functions (f ◦g)−1 and g−1◦f−1are identical, that is,

(f ◦g)−1 = g−1◦f−1.
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Exercise Set A.2

In Exercises 1–10, let

⺨ = {1, 2, 3, 4, 5, 6}
⺩ = {−2,−1, 3, 5, 9, 11, 14}

and define f : ⺨ −→ ⺩ by the set of ordered pairs

{(1,−2), (2, 3), (3, 9), (4,−2), (5, 11), (6,−1)}
1. Explain why f is a function.

2. Is f a one-to-one function? Explain.

3. Is f an onto function? Specify range(f ).

4. Let A = {1, 2, 4}. Find f (A).

5. Find f−1({−2}).
6. Find f−1(f ({1})).
7. Does f have an inverse function? Explain.

8. Is it possible to define a function with domain ⺨

that is onto ⺩? Explain.

9. Define a function g: ⺨ −→ ⺩ that is one-to-one.

10. Is it possible to define a function g: ⺩ −→ ⺨ that

is onto? Explain.

In Exercises 11–14, use the function f : ⺢→ ⺢

defined by

f (x) = x2

11. Let A = (−3, 5) and B = [0, 7). Verify that

f (A ∪ B) = f (A) ∪ f (B)
12. Let C = [1,∞) and D = [3, 5]. Verify that

f−1(C ∪D) = f−1(C) ∪ f −1(D)

13. Let A = [−2, 0] and B = [0, 2]. Verify that

f (A ∩ B) ⊂ f (A) ∩ f (B)
and the sets are not equal.

14. Define a function g by the rule g(x) = x2, but

with the domain restricted to the interval [0,∞).
If A = [0, 5) and B = [2, 7), verify that

g(A ∩ B) = g(A) ∩ g(B)
What property does g have that f does not?

15. Define a function f : ⺢→ ⺢ by f (x) = ax + b,

where a and b are real numbers with a  = 0. Find

the inverse function of f .

16. Define a function f : ⺢→ ⺢ by f (x) = x5 + 2x.

Show that the inverse function of f exists.

17. Given a function f , define for each positive

integer n

f n(x) = (f ◦f ◦ · · · ◦f )(x)
where the composition is taken n− 1 times. If c

is a fixed real number and f (x) = −x + c, find

f n(c) for all n.

18. Define a function f : ⺢→ ⺢ by

f (x) =
�

2x if 0 ≤ x ≤ 1
2

2− 2x if 1
2
< x ≤ 1

Sketch the graphs of y = f (x) and y = (f ◦f )(x).
19. Define a function f : ⺢→ ⺢ by

f (x) = e2x−1

a. Show that f is one-to-one.

b. Is f onto? Justify your answer.

c. Define a function g with the same rule and

domain as f but that is onto.

d. Find the inverse function for the g defined in

part (c).

20. Define a function f : ⺢→ ⺢ by

f (x) = e−x2

Show the function is not one-to-one.

21. Define a function f : ⺞→ ⺞ by

f (n) = 2n

a. Show that f is one-to-one.

b. Is f onto? Explain.

c. If E denotes the set of even positive integers

and O the odd positive integers, find f−1(E)

and f −1(O).
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22. Define a function f : ⺪→ ⺪ by

f (n) =

�
n+ 1 if n is even

n− 3 if n is odd

Let E denote the set of even integers and O the

set of odd integers. Find f (E) and f (O).

23. Define a function f : ⺪× ⺪→ ⺪ by

f ((m, n)) = 2m+ n

a. Let A = {(p, q) | p and q are odd}. Find

f (A).

b. Let B = {(p, q) | q is odd}. Find f (B).

c. Find f −1({0}).

d. Let E denote the set of even integers. Find

f −1(E).

e. Let O denote the set of odd integers. Find

f −1(O).

f. Show that f is not one-to-one.

g. Show that f is onto.

24. Define a function f : ⺢2 → ⺢
2 by

f ((x, y)) = (2x, 2x + 3y)

a. Show that f is one-to-one.

b. Is f onto? Justify your answer.

c. Let A be the set of all points that lie on the

line y = x + 1. Find f (A).

In Exercises 25–27, f : ⺨→ ⺩ is a function, A and B

are subsets of ⺨, and C and D are subsets of ⺩. Prove

the statements.

25. f (A ∪ B) = f (A) ∪ f (B)

26. f−1(C ∪D) = f−1(C) ∪ f−1(D)

27. f (f−1(C)) ⊆ C

In Exercises 28–30, f : B → C and g: A→ B are

functions. Prove the statements.

28. If f and g are surjections, then f ◦g is a

surjection.

29. If f and g are bijections, then f ◦g is a bijection.

30. If f ◦g is an injection, then g is an injection.

31. If f : ⺨→ ⺩ is a function and A and B are

subsets of ⺨, show that

f (A)\f (B) ⊆ f (A\B)

32. If f : ⺨→ ⺩ is a function and C and D are

subsets of ⺩, show that

f−1(C\D) = f−1(C)\f−1(D)

A.3

ß

Techniques of Proof

Mathematics is built on facts. A few of these, called axioms, are accepted as self-

evident and do not require justification. Every other statement of fact requires proof.

A proof is the process of establishing the validity of a statement. Results in math-

ematics that require proof are called theorems and are made up of two parts. The

first part, called the hypothesis, is a set of assumptions. The second part, called the

conclusion, is the statement that requires proof. It is customary to use the letter P to

denote the hypotheses (or hypothesis if there is only one) and the letter Q to denote

the conclusion. A theorem is symbolized by

P  ⇒ Q

which we read as “if P , then Q” or “P implies Q” or “P is sufficient for Q.” The

converse of a theorem is symbolized by

Q  ⇒ P



A.3 Techniques of Proof 425

read as “Q implies P ” or “P is necessary for Q.” For example, let P be the statement

Mary lives in Iowa and Q the statement that Mary lives in the United States. Then

certainly P  ⇒ Q is a theorem since every resident of Iowa is a resident of the

United States. But Q  ⇒ P is not a theorem since, for example, if Mary is a

resident of California, then she is a resident of the United States but not a resident of

Iowa. So the statement Q  ⇒ P is not always true given that Q is true. In terms

of sets, if A is the set of residents of Iowa and B is the set of residents of the United

States, then the statement P is Mary is in A and Q is Mary is in B. Then Mary is in A

implies Mary is in B. It is also clear that if Mary is in B\A, then Mary is in B does

not imply that Mary is in A.

A statement that is equivalent to the theorem P  ⇒ Q is the contrapositive

statement ∼Q  ⇒ ∼P , that is, not Q implies not P. In the example above, if Mary is

not a resident of the United States, then Mary is not a resident of Iowa. An equivalent

formulation of the statement, in the terminology of sets, is that if Mary /∈ B, then it

implies Mary /∈ A.

There are other statements in mathematics that require proof. Lemmas are pre-

liminary results used to prove theorems, propositions are results not as important as

theorems, and corollaries are special cases of a theorem. A statement that is not yet

proven is called a conjecture. One of the most famous conjectures is the celebrated

Riemann hypothesis. A single counterexample is enough to refute a false conjec-

ture. For example, the statement All lions have green eyes is rendered invalid by the

discovery of a single blue-eyed lion.

In this section we briefly introduce three main types of proof. A fourth type,

called mathematical induction, is discussed in Sec. A.4.

Direct Argument

In a direct argument, a sequence of logical steps links the hypotheses P to the

conclusion Q. Example 1 provides an illustration of this technique.

EXAMPLE 1 Prove that if p and q are odd integers, then p + q is an even integer.

Solution To prove this statement with a direct argument, we assume that p and q are odd

integers. Then there are integers m and n such that

p = 2m+ 1 and q = 2n+ 1

Adding p and q gives

p + q = 2m+ 1+ 2n+ 1

= 2(m+ n)+ 2

= 2(m+ n+ 1)

Since p + q is a multiple of 2, it is an even integer.
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Contrapositive Argument

The contrapositive statement of the statement P  ⇒ Q is the statement

∼Q  ⇒ ∼P . The notation ∼Q denotes the negation of the statement Q. A state-

ment and the contrapositive statement are equivalent, so that if one holds, then the

other also holds. In a contrapositive argument the hypothesis is ∼Q, and we proceed

with a direct argument to show that ∼P holds.

EXAMPLE 2 If p2 is an even integer, then p is an even integer.

Solution In a direct argument we assume that p2 is even, so that we can write p2 = 2k for

some integer k. Then

p =
√

2k =
√

2
√
k

which does not allow us to conclude that p is even.

To use a contrapositive argument, we assume that p is not an even integer.

That is, we assume that p is an odd integer. Then there is an integer k such that

p = 2k + 1. Squaring both sides of equation p = 2k + 1 gives

p2 = (2k + 1)2

= 4k2 + 4k + 1

= 2(2k2 + 2k)+ 1

and hence p2 is an odd integer. Therefore, the original statement holds.

Contradiction Argument

In a contradiction argument to show that a statement holds, we assume the contrary

and use this assumption to arrive at some contradiction. For example, to prove that

the set of natural numbers ⺞ is infinite, we would assume the set of natural numbers is

finite and argue that this leads to a contradiction. A contrapositive argument is a form

of contradiction where to prove P  ⇒ Q, we assume that P holds and ∼Q holds

and arrive at the conclusion that ∼P holds. Since both P and ∼P cannot be true, we

have a contradiction. In certain cases the contradiction may be hard to recognize.

EXAMPLE 3 Prove that
√

2 is an irrational number.

Solution To use a contradiction argument, we assume that
√

2 is not irrational. That is, we

assume that there are integers p and q such that
√

2 = p
q
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where p and q have no common factors. We will arrive at a contradiction by

showing that if
√

2 = p/q, then p and q do have a common factor. Squaring both

sides of the last equation gives

2 = p
2

q2
so that p2 = 2q2

Hence, p2 is even. Since p2 is an even integer, then by Example 2 so is p. Thus,

there is an integer k such that p = 2k. Substituting 2k for p in the equation 2q2 = p2

gives

2q2 = p2 = (2k)2 = 4k2 so that q2 = 2k2

Hence, q is also an even integer. Since p and q are both even, they have a common

factor of 2, which contradicts the assumption that p and q are chosen to have no

common factors.

Quantifiers

Often statements in mathematics are quantified using the universal quantifier for

all, denoted by the symbol ∀, or by the existential quantifier there exists, denoted

by the symbol ∃. If P (x) is a statement that depends on the parameter x, then the

symbols

∀x, P (x)
are read for all x, P (x). To prove that the statement is true, we have to verify that the

statement P (x) holds for every choice of x. To prove that the statement is false, we

need to find only one x such that P (x) is false, that is, we need to find a counterex-

ample. To prove that a statement of the form

∃x, P (x)

holds requires finding at least one x such that P (x) holds. The statement is false if

the statement

∼(∃x, P (x))
holds. When we negate a statement involving quantifiers, ∼∃ becomes ∀ and ∼∀
becomes ∃. So the statement

∼(∃x, P (x)) is equivalent to ∀x,∼P (x)
and the statement

∼(∀x, P (x)) is equivalent to ∃x,∼P (x)
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Exercise Set A.3

1. Prove that in an isosceles right triangle, the

hypotenuse is
√

2 times the length of one of the

equal sides.

2. Prove that if ABC is an isosceles right triangle

with C the vertex of the right angle and sides

opposite the vertices a, b, and c, respectively, then

the area of the triangle is c2/4.

3. Prove that in an equilateral triangle the area of the

triangle is
√

3/4 times the square of the length of

a side.

4. Prove that if s and t are rational numbers with

t  = 0, then s/t is a rational number.

5. Prove that if a, b, and c are integers such that a

divides b and b divides c, then a divides c.

6. Prove that if m and n are even integers, then

m+ n is an even integer.

7. Prove that if n is an odd integer, then n2 is an odd

integer.

8. Prove that if n is in ⺞, then n2 + n+ 3 is odd.

9. Prove that if a and b are consecutive integers,

then (a + b)2 is an odd integer.

10. Prove that if m and n are odd integers, then mn is

an odd integer.

11. Show that the statement if m and n are two

consecutive integers, then 4 divides m2 + n2 is

false.

12. Let f (x) = (x − 1)2 and g(x) = x + 1. Prove

that if x is in the set S = {x ∈ ⺢ | 0 ≤ x ≤ 3},
then f (x) ≤ g(x).

13. Prove that if n is an integer and n2 is odd, then n

is odd.

14. Prove that if n is an integer and n3 is even, then n

is even.

15. Prove that if p and q are positive real numbers

such that
√
pq  = (p + q)/2, then p  = q.

16. Prove that if c is an odd integer, then the equation

n2 + n− c = 0 has no integer solution for n.

17. Prove that if x is a nonnegative real number such

that x <  , for every real number  > 0, then x = 0.

18. Prove that if x is a rational number and x + y is

an irrational number, then y is an irrational

number.

19. Prove that
3
√

2 is irrational.

20. Prove that if n in ⺞, then

n

n+ 1
>

n

n+ 2

21. Suppose that x and y are real numbers with

x < 2y. Prove that if 7xy ≤ 3x2 + 2y2, then

3x ≤ y.

22. Define a function f : ⺨→ ⺩ and sets A and B in

⺨ that is a counterexample to show the statement

If f (A) ⊆ f (B), then A ⊂ B
is false.

23. Define a function f : ⺨→ ⺩ and sets C and D in

⺩ that is a counterexample to show the statement

If f−1(C) ⊆ f−1(D), then C ⊂ D
is false.

In Exercises 24–30, f : ⺨→ ⺩ is a function, A and B

are subsets of ⺨, and C and D are subsets of ⺩. Prove

the statements.

24. If A ⊆ B, then f (A) ⊆ f (B).
25. If C ⊆ D, then f−1(C) ⊆ f −1(D).

26. If f is an injection, then for all A and B

f (A ∩ B) = f (A) ∩ f (B)

27. If f is an injection, then for all A and B

f (A\B) = f (A)\f (B)

28. If f is an injection, then for all A

f−1(f (A)) = A

29. If f is a surjection, then for all C

f (f−1(C)) = C
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A.4

ß

Mathematical Induction

Throughout mathematics there are statements that depend on natural numbers and

where the aim is to determine whether the statement is true or false for all natural

numbers. Some simple examples are the following three statements, the third being a

well-known puzzle, called the Tower of Hanoi puzzle.

1. For every natural number n, the sum of the first n natural numbers is given by

1+ 2+ 3+ · · · + n = n(n+ 1)

2

2. The expression 6n+ 1 is a prime number for every natural number n.

3. Given three pegs, labeled 1, 2, and 3, and a stack of n disks of decreasing

diameters on peg–1, the disks can be moved to peg–3 in 2n − 1 moves. This is

under the restriction that a disk can be placed on top of another disk only when

it has smaller diameter.

When we are considering a statement involving natural numbers to provide

insight, a useful first step is to substitute specific numbers for n and determine whether

the statement is true. If the statement is false, often a counterexample is found quickly,

allowing us to reject the statement. For example, in the second statement above, for

n = 1, 2, and 3 the expression 6n+ 1 has values 7, 13, and 19, respectively, all of

which are prime numbers. However, if n = 4, then 6(4)+ 1 = 25, which is not a

prime number, and the statement is not true for all natural numbers n.

In the case of the first statement, the data in Table 1 provide more convincing

evidence that the formula may indeed hold for all natural numbers. Of course, to

establish the fact for all n requires a proof, which we postpone until Example 1.

For the Tower of Hanoi puzzle, when n = 1, the number of steps required is 1,

and when n = 2, it is also easy to see a solution requiring 3 steps. A solution for

n = 3 is given by the moves

D3 −→ P 3,D2 −→ P 2,D3 −→ P 2,D1 −→ P 3,D3 −→ P 1,

D2 −→ P 3,D1 −→ P 3

Table 1

1+ 2+ 3+ · · · + n
n(n+1)

2

1 (1)(2)
2
= 1

1+ 2 = 3 (2)(3)
2
= 3

1+ 2+ 3 = 6 (3)(4)
2
= 6

1+ 2+ 3+ 4 = 10 (4)(5)
2
= 10

1+ 2+ 3+ 4+ 5 = 15 (5)(6)
2
= 15

1+ 2+ 3+ 4+ 5+ 6 = 21 (6)(7)
2
= 21

1+ 2+ 3+ 4+ 5+ 6+ 7 = 28 (7)(8)
2
= 28
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where D1,D2, and D3 represent the three disks of decreasing diameters and P 1, P 2,

and P 3 represent the three pegs. So for n = 3, we have a solution with 7 = 23 − 1

moves. Again, the evidence is leading toward the result being true, but we have not

given a satisfactory proof. Let’s push this example a bit further. How can we use the

result for three disks to argue that this result holds for four disks? The same sequence

of steps we gave for the solution of the three-disk problem can be used to move the

stack from P 1 to either P 2 or P 3. Now, suppose that there are four disks on P 1.

Since the bottom disk is the largest, P 1 can be used as before to move the top three

disks. So as a first step, move the top three disks to P 2, which requires 23 − 1 = 7

moves. Next, move the remaining (largest) disk on P 1 to P 3, which requires 1 move.

Now, using the same procedure as before, move the three-disk stack on P 2 over to

P 3, requiring another 23 − 1 = 7 moves. The total number of moves is now

2(23 − 1)+ 1 = 24 − 2+ 1 = 24 − 1 = 15

This approach contains the essentials of mathematical induction. We start with an

initial case, called the base case, that we can argue holds. The next step, called the

inductive hypothesis, provides a mechanism for advancing from one natural number

to the next. In the Tower of Hanoi example, the base case is the case for n = 1, and

one disk on P 1 requires only 1 = 21 − 1 move to transfer the disk to P 3 or P 2.

The inductive hypothesis is to assume that the result holds when there are n disks on

P 1. We are required to argue the result holds for n+ 1 disks on P 1. We did this for

n = 3.

Theorem 9 provides a formal statement of the principle of mathematical induction.

The proof of this statement, which we omit, is based on the axiomatic foundations of

the natural numbers. Specifically, the proof uses the well-ordering principle, which

states that every nonempty subset of ⺞ has a smallest element.

THEOREM 9 The Principle of Mathematical Induction

Let P be a statement that depends on the natural number n. Suppose that

1. P is true for n = 1 and

2. When P is true for a natural number n, then P is true for the successor n+ 1

Then the statement P is true for every natural number n.

The principle of mathematical induction is also referred to as mathematical induc-

tion, or simply induction.

An analogy to describe the process of mathematical induction is an infinite row

of dominoes that are toppled one domino at a time, starting with the first domino. If

the dominoes are set up so that whenever a domino falls its successor will fall (the

inductive hypothesis), then the entire row of dominoes will fall once the first domino

is toppled (base case).
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The principle of mathematical induction is used to prove a statement holds for

all natural numbers, or for all natural numbers beyond a fixed natural number. This

is illustrated in the following examples.

EXAMPLE 1 Prove that for every natural number n,

n�
k=1

k = 1+ 2+ 3+ · · · + n = n(n+ 1)

2

Solution To establish the base case when n = 1, notice that

1 = (1)(2)
2

The inductive hypothesis is to assume that the statement is true for some fixed

natural number n. That is, we assume

1+ 2+ 3+ · · · + n = n(n+ 1)

2

Next, add n+ 1 to both sides of the last equation to obtain

1+ 2+ 3+ · · · + n+ (n+ 1) = (1+ 2+ 3+ · · · + n)+ (n+ 1)

and we apply the inductive hypothesis to conclude

1+ 2+ 3+ · · · + n+ (n+ 1) = (1+ 2+ 3+ · · · + n)+ (n+ 1)

= n(n+ 1)

2
+ (n+ 1)

= (n+ 1)(n+ 2)

2

The last equality agrees with the stated formula for the successor of n, that is, for

n+ 1. Therefore, by induction the statement holds for all natural numbers.

EXAMPLE 2 Prove that for every natural number n, the number 3n − 1 is divisible by 2.

Solution In Table 2 we have verified that for n = 1, 2, 3, 4, and 5 the number 3n − 1 is

divisible by 2.

In particular, if n = 1, then 3n − 1 = 2, which is divisible by 2. Next, we

assume that the statement 3 n − 1 is divisible by 2 holds. To complete the proof,

we must verify that the number 3n+1 − 1 is also divisible by 2. Since 3n − 1 is
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divisible by 2, then there is a natural number q such that
Table 2

n 3n − 1

1 2

2 8

3 26

4 80

5 242

3n − 1 = 2q which gives 3n = 2q + 1

Next, we rewrite the expression 3n+1 − 1 to include 3n in order to use the inductive

hypothesis. This gives

3n+1 − 1 = 3(3n)− 1

= 3(2q + 1)− 1

= 6q + 2

= 2(3q + 1)

Therefore, the expression 3n+1 − 1 is also divisible by 2.

Recall that factorial notation is used to express the product of consecutive natural

numbers. Several examples are

1! = 1

2! = 1 · 2 = 2

3! = 1 · 2 · 3 = 6

4! = 1 · 2 · 3 · 4 = 24

...

20! = 2, 432, 902, 008, 176, 640, 000

For a natural number n, the definition of n factorial is the positive integer

n! = n(n− 1)(n− 2) · · · 3 · 2 · 1
We also define 0! = 1.

EXAMPLE 3 Verify that for every natural number n,

n! ≥ 2n−1

Solution For n = 1 the statement is true, since n! = 1! = 1 and 2n−1 = 20 = 1. Now assume

that the statement n! ≥ 2n−1 holds. Next, we consider

(n+ 1)! = (n+ 1)n!

which we need to show is greater than or equal to 2n. Applying the inductive

hypothesis to n! gives the inequality

(n+ 1)! ≥ (n+ 1)2n−1
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Since for every natural number n ≥ 1 it is also the case that n+ 1 ≥ 2, we have

(n+ 1)! ≥ (n+ 1)2n−1 ≥ 2 · 2n−1 = 2n

Consequently, the statement n! ≥ 2n−1 is true for every natural number n.

EXAMPLE 4 For any natural number n, find the sum of the odd natural numbers from 1 to

2n− 1.

Solution The first five cases are given in Table 3.

Table 3

n 2n − 1 1+ 3+ · · · + (2n − 1)

1 1 1

2 3 1+ 3 = 4

3 5 1+ 3+ 5 = 9

4 7 1+ 3+ 5+ 7 = 16

5 9 1+ 3+ 5+ 7+ 9 = 25

The data in Table 3 suggest that for each n ≥ 1,

1+ 3+ 5+ 7+ · · · + (2n− 1) = n2

Starting with the case for n = 1, we see that the left-hand side is 1 and the

expression on the right is 12 = 1. Hence, the statement holds when n = 1. Next,

we assume that 1+ 3+ 5+ · · · + (2n− 1) = n2. For the next case when the index

is n+ 1, we consider the sum

1+ 3+ 5+ · · · + (2n− 1)+[2(n+ 1)−1] =1+ 3+ 5+ · · · + (2n− 1)+ (2n+ 1)

Using the inductive hypothesis, we get

1+ 3+ 5+ · · · + (2n− 1)� �� �
n2

+[2(n+ 1)− 1] = n2 + (2n+ 1)

= n2 + 2n+ 1

= (n+ 1)2

Therefore, by induction the statement holds for all natural numbers.
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EXAMPLE 5 Let P1, P2, . . . , Pn be n points in a coordinate plane with no three points collinear

(in a line). Verify that the number of line segments joining all pairs of points is

n2 − n
2

Solution In Fig. 1 is a picture for the case with five points. The number of line segments

connecting pairs of points is 10 = (52 − 5)/2.

P1

P2

P3

P4

P5

Figure 1

If one additional point is added to the graph in Fig. 1, the result is the graph

shown in Fig. 2. Moreover, adding the one additional point requires adding five

additional line segments, one to connect the new point to each of the five original

points. In general, an additional n line segments are required to move from a graph

with n points to one with n+ 1 points.

P1

P2

P3

P4

P5

Figure 2

These observations lead to the following proof by induction.

If there is only one point, then the graph contains no line segments. Also since

(12 − 1)/2 = 0, the statement holds for n = 1. Next, assume the number of line

segments needed to join n points in a coordinate plane is (n2 − n)/2. If there is one

additional point, that is, n+ 1 points, then n additional line segments are required.

Hence, by the inductive hypothesis, the total number of line segments required for
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n+ 1 points is

n2 − n
2

+ n = n
2 − n+ 2n

2

= n
2 + 2n+ 1− 1− n

2

= (n+ 1)2 − (n+ 1)

2

Therefore, by induction the statement holds for all natural numbers.

Binomial Coefficients and the Binomial Theorem

In Fig. 3 are the first eight rows of Pascal’s triangle. Notice that each element can

be obtained from the sum of the two elements to the immediate left and right in the

row above.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

Figure 3

In Fig. 4 are the expansions for (a + b)n for n = 0, 1, 2, 3, . . . , 7. The coefficients

of the expansions are exactly the numbers in Pascal’s triangle.

(a + b)0 1

(a + b)1 a + b
(a + b)2 a2 + 2ab + b2

(a + b)3 a3 + 3a2b + 3ab2 + b3

(a + b)4 a4 + 4a3b + 6a2b2 + 4ab3 + b4

(a + b)5 a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

(a + b)6 a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6

(a + b)7 a7 + 7a6b + 21a5b2 + 35a4b3 + 35a3b4 + 21a2b5 + 7ab6 + b7

Figure 4

The numbers in Pascal’s triangle or the coefficients of an expansion of the form

(a + b)n are called the binomial coefficients. Notice that the number 20, in Fig. 3, is
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located in row 6 (starting with a row 0) and column 3 (starting with a column 0). In

addition, using factorials, we have the formula

6!

3!(6− 3)!
= 1 · 2 · 3 · 4 · 5 · 6
(1 · 2 · 3)(1 · 2 · 3)

= 4 · 5 · 6
1 · 2 · 3

= 20

DEFINITION 1 BinomialCoefficient For n ≥ 0 and 0 ≤ r ≤ n, the binomial coefficient

�
n

r

�
is defined by �

n

r

�
= n!

r!(n− r)!

We observed above that entries in Pascal’s triangle can be obtained from the sum

of the two elements to the immediate left and right in the row above. The next identity

is the equivalent statement about binomial coefficients.

PROPOSITION 1 If k and r are natural numbers such that 0 ≤ r ≤ k, then�
k

r

�
=
�
k − 1

r − 1

�
+
�
k − 1

r

�

Proof First observe that

r! = r(r − 1)! and (k − r)! = (k − r)(k − r − 1)!

Expanding the binomial coefficients using factorials gives�
k − 1

r − 1

�
+
�
k − 1

r

�
= (k − 1)!

(r − 1)![(k − 1)− (r − 1)]!
+ (k − 1)!

r!(k − 1− r)!

= (k − 1)!

�
1

(r − 1)!(k − r)! +
1

r!(k − r − 1)!

�

= (k − 1)!

(r − 1)!(k − r − 1)!

�
1

k − r +
1

r

�

= (k − 1)!

(r − 1)!(k − r − 1)!

�
r + (k − r)
r(k − r)

�

= (k − 1)!

(r − 1)!(k − r − 1)!

�
k

r(k − r)

�

= k!

r!(k − r)!

=
�
k

r

�
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THEOREM 10 Binomial Theorem If a and b are any numbers and n is a nonnegative integer,

then

(a + b)n =
�
n

0

�
an +

�
n

1

�
an−1b +

�
n

2

�
an−2b2

+ · · · +
�
n

r

�
an−rbr + · · · +

�
n

n− 1

�
abn−1 +

�
n

n

�
bn

Proof The proof is by induction on the exponent n. If n = 1, then (a + b)n =
a + b, and �

n

0

�
a1 +

�
n

1

�
b1 =

�
1

0

�
a +
�

1

1

�
b = a + b

Therefore, the statement holds for the case n = 1. Next assume that the statement

(a + b)n =
�
n

0

�
an +

�
n

1

�
an−1b + · · · +

�
n

n− 1

�
abn−1 +

�
n

n

�
bn

holds. For the next case, we consider (a + b)n+1 = (a + b)(a + b)n and apply the

inductive hypothesis. This gives

(a + b)n+1 = (a + b)(a + b)n

= (a + b)
��

n

0

�
an +

�
n

1

�
an−1b + · · · +

�
n

n− 1

�
abn−1 +

�
n

n

�
bn
�

= a
��

n

0

�
an +

�
n

1

�
an−1b + · · · +

�
n

n− 1

�
abn−1 +

�
n

n

�
bn
�

+ b
��

n

0

�
an +

�
n

1

�
an−1b + · · · +

�
n

n− 1

�
abn−1 +

�
n

n

�
bn
�

=
�
n

0

�
an+1 +

�
n

1

�
anb + · · · +

�
n

n− 1

�
a2bn−1 +

�
n

n

�
abn

+
�
n

0

�
anb +

�
n

1

�
an−1b2 + · · · +

�
n

n− 1

�
abn +

�
n

n

�
bn+1

Now, combine the terms with the same exponents on a and b to obtain

(a + b)n+1 =
�
n

0

�
an+1 +

��
n

0

�
+
�
n

1

��
anb +

��
n

1

�
+
�
n

2

��
an−1b2

+ · · · +
��

n

n− 1

�
+
�
n

n

��
abn +

�
n

n

�
bn+1
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Finally by repeated use of Proposition 1, we have

(a + b)n+1 =
�
n+ 1

0

�
an+1 +

�
n+ 1

1

�
anb +

�
n+ 1

2

�
an−1b2

+ · · · +
�
n+ 1

n

�
abn +

�
n+ 1

n+ 1

�
bn+1

Therefore, by induction the statement holds for all natural numbers.

Exercise Set A.4

In Exercises 1–10, use mathematical induction to

show that the summation formula holds for all natural

numbers.

1. 12 + 22 + 32 + · · · + n2 = n(n+1)(2n+1)
6

2. 13 + 23 + 33 + · · · + n3 = n2(n+1)2

4

3. 1+ 4+ 7+ · · · + (3n− 2) = n(3n−1)
2

4. 3+ 11+ 19+ · · · + (8n− 5) = 4n2 − n

5. 2+ 5+ 8+ · · · + (3n− 1) = n(3n+1)
2

6. 3+ 7+ 11+ · · · + (4n− 1) = n(2n+ 1)

7. 3+ 6+ 9+ · · · + 3n = 3n(n+1)
2

8. 1 · 2+ 2 · 3+ 3 · 4
+ · · · + n(n+ 1) = n(n+1)(n+2)

3

9.
�n
k=1 2k = 2n+1 − 2

10.
�n
k=1 k · k! = (n+ 1)!− 1

11. Find a formula for all natural numbers n for the

sum

2+ 4+ 6+ 8+ · · · + 2n

Verify your answer, using mathematical induction.

12. Find a formula for all natural numbers n for the

sum
n�
k=1

(4k − 3)

13. Show that for all natural numbers n ≥ 5, the

inequality 2n > n2 holds. First show the inequality

holds for n = 5, and then proceed to the second

step when using mathematical induction.

14. Show that for all natural numbers n ≥ 3, the

inequality n2 > 2n+ 1 holds. First show that the

inequality holds for n = 3, and then proceed to the

second step when using mathematical induction.

15. Show that for all natural numbers n the

expression n2 + n is divisible by 2.

16. Show that for all natural numbers n the

expression xn − yn is divisible by x − y. Note

that x2 − y2 is divisible by x − y since

x2 − y2 = (x + y)(x − y).

17. Use mathematical induction to show that for a

real number r and all natural numbers n,

1+ r + r2 + r3 + · · · + rn−1 = r
n − 1

r − 1

18. Let fn denote the nth Fibonacci number.

a. Determine the sum of the first n Fibonacci

numbers for n = 2, 3, 4, and 5. That is,

determine f1 + f2, f1 + f2 + f3, f1 + f2 +
f3 + f4, and f1 + f2 + f3 + f4 + f5.

b. Find a formula for the sum of the first n

Fibonacci numbers.

c. Show that the formula found in part (b) holds

for all natural numbers.
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19. Let A,B1, B2, . . . be sets. Prove that for every

natural number n,

A ∩ (B1 ∪ B2 ∪ · · · ∪ Bn)
= (A ∩ B1) ∪ · · · ∪ (A ∩ Bn)

20. Show that for every natural number n, a 2n × 2n

grid of squares with one square removed can be

covered with copies of the shape

as shown in the figure.

21. Verify that if 0 ≤ r ≤ n, then

�
n

r

�
=
�

n

n− r
�

22. Verify that

�
n

r − 1

�
+
�
n

r

�
=
�
n+ 1

r

�

23. Show that

n�
k=0

�
n

k

�
= 2n

24. Show that

n�
k=0

(−1)k
�
n

k

�
= 0
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Chapter 1

Section 1.1

1. x1 = 3, x2 = 8, x3 = −4

3. x1 = 2 − 3x4, x2 = 1 − x4, x3 = −1 − 2x4, x4 ∈ ⺢
5. x = 0, y = − 2

3

7. x = 1, y = 0

9. S =   
2t+4

3
, t
   t ∈ ⺢ 

11. x = 0, y = 1, z = 0

13. S =   −1 − 5t , 6t + 1
2
, t
   t ∈ ⺢ 

15. S =   −t + 2
3
,− 1

2
, t
   t ∈ ⺢ 

17. S =   
3 − 5

3
t ,−s − 4

3
t + 3, s , t

   s , t ∈ ⺢ 
19. x = −2a + b, y = −3a + 2b

21. x = 2a + 6b − c, y = a + 3b, z = −2a − 7b + c
23. Consistent if a = −1

25. Consistent if b = −a
27. Consistent for all a, b, and c such that c − a − b = 0

29. Inconsistent if a = 2

31. Inconsistent for a  = 6

33. y =  
x − 3

2

 2 − 2; vertex:
 

3
2
,−2

 
35. y = − (x − 2)2 + 3; vertex: (2, 3)

37. a. (2, 3)

b.

x 

y 

⫺5

⫺5

5

5

39. a.

 
x + y = 2

x − y = 0

b.

 
x + y = 1

2x + 2y = 2

c.

 
x + y = 2

3x + 3y = −6

41. a. S = {(3 − 2s − t , 2 + s − 2t , s , t ) | s , t ∈ ⺢}
b. S = {(7 − 2s − 5t , s ,−2 + s + 2t , t ) | s , t ∈ ⺢}

43. a. k = 3

b. k = −3

c. k  = ±3

Section 1.2

1.

 
2 −3 5

−1 1 −3

 

3.

 2 0 −1 4

1 4 1 2

4 1 −1 1


5.

 
2 0 −1 4

1 4 1 2

 

7.

 2 4 2 2 −2

4 −2 −3 −2 2

1 3 3 −3 −4


9. x = −1, y = 1

2
, z = 0

11. x = −3 − 2z , y = 2 + z , z ∈ ⺢
13. x = −3 + 2y , z = 2, y ∈ ⺢
15. Inconsistent

17. x = 3 + 2z − 5w , y = 2 + z − 2w , z ∈ ⺢,w ∈ ⺢
19. x = 1 + 3w , y = 7 + w , z = −1 − 2w ,w ∈ ⺢
21. In reduced row echelon form

23. Not in reduced row echelon form

25. In reduced row echelon form

27. Not in reduced row echelon form

29.

 
1 0

0 1

 

31.

 1 0 0

0 1 0

0 0 1


33.

 
1 0 −1

0 1 0

 
440
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35.

 1 0 0 −2

0 1 0 −1

0 0 1 0


37. x = −1, y = 2

39. x = 1, y = 0, z = 1
3

41. Inconsistent

43. x1 = − 1
2
− 2x3, x2 = − 3

4
+ 3

2
x3, x3 ∈ ⺢

45. x1 = 1 − 1
2
x4, x2 = 1 − 1

2
x4, x3 = 1 − 1

2
x4, x4 ∈ ⺢

47. x1 = 1 + 1
3
x3 + 1

2
x4, x2 = 2 + 2

3
x3 + 3

2
x4, x3 ∈ ⺢,

x4 ∈ ⺢
49. a. c − a + b = 0

b. c − a + b  = 0

c. Infinitely many solutions.

d. a = 1, b = 0, c = 1; x = −2, y = 2, z = 1

51. a. a + 2b − c = 0

b. a + 2b − c  = 0

c. Infinitely many solutions

d. a = 0, b = 0, c = 0; x = 4
5
, y = 1

5
, z = 1

Section 1.3

1. A+ B =
 

1 0

2 6

 
= B + A

3. (A+ B) + C =
 

2 1

7 4

 
= A+ (B + C )

5. (A− B) + C =
 −7 −3 9

0 5 6

1 −2 10


2A+ B =

 −7 3 9

−3 10 6

2 2 11


7. AB =

 
7 −2

0 −8

 
;BA =

 
6 2

7 −7

 
9. AB =

 −9 4

−13 7

 

11. AB =
 5 −6 4

3 6 −18

5 −7 6


13. A(B + C ) =

 
1 3

12 0

 
15. 2A(B − 3C ) =

 
10 −18

−24 0

 

17. 2At − Bt =
 7 5

−1 3

−3 −2



19. ABt =
 −7 −4

−5 1

 

21. (At + Bt )C =
 −1 7

6 8

4 12


23. (AtC )B =

 0 20 15

0 0 0

−18 −22 −15


25. AB = AC =

 −5 −1

5 1

 
27. A has the form

 
1 0

0 1

 
,

 
1 b

0 −1

 
,

 −1 b

0 1

 
,

or

 −1 0

0 −1

 
29. A =

 
1 1

0 0

 
,B =

 −1 −1

1 1

 
31. a = b = 4

33. A20 =
 1 0 0

0 1 0

0 0 1


35. If AB = BA, then A2B = AAB = ABA = BAA = BA2.

37. If x =


1

0
.
.
.

0

, then Ax = 0 implies the first column of

A has all 0 entries. Then let x =


0

1
.
.
.

0

 and so on, to

show that each column of A has all 0 entries.

39. The only matrix is the 2 × 2 zero matrix.

41. Since (AAt )t = (At )t At = AAt , the matrix AAt is

symmetric. Similarly, (AtA)t = At (At )t = AtA.

43. If At = −A, then the diagonal entries satisfy aii = −aii
and hence aii = 0 for each i .

Section 1.4

1. A−1 = 1

5

 −1 2

−3 1

 
3. The matrix is not invertible.

5. A−1 =
 3 1 −2

−4 −1 3

−5 −1 3


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7. The matrix is not invertible.

9. A−1 =


1
3

−1 −2 1
2

0 1 2 −1

0 0 −1 1
2

0 0 0 − 1
2



11. A−1 = 1
3


3 0 0 0

−6 3 0 0

1 −2 −1 0

1 1 1 1


13. The matrix is not invertible.

15. A−1 =


0 0 −1 0

1 −1 −2 1

1 −2 −1 1

0 −1 −1 1


17. AB + A =

 
3 8

10 −10

 
= A(B + I )

AB + B =
 

2 9

6 −3

 
= (A+ I )B

19. a. Since A2 =
 −3 4

−4 −3

 
and

−2A =
 −2 −4

4 −2

 
, then A2 − 2A+ 5I = 0.

b. A−1 = 1

5

 
1 −2

2 1

 
= 1

5
(2I − A)

c. If A2 − 2A+ 5I = 0, then A2 − 2A = −5I , so that

A
 

1
5
(2I − A)

 = 2
5
A− 1

5
A2 = − 1

5
(A2 − 2A) =

− 1
5
(−5I ) = I .

21. If λ = −2, then the matrix is not invertible.

23. a. If λ  = 1, then the matrix is invertible.

b.

 − 1
λ−1

λ
λ−1

− λ
λ−1

1
λ−1

− 1
λ−1

1
λ−1

0 0 1


25. The matrices

A =
 

1 0

0 0

 
and B =

 
0 0

0 1

 
are not invertible, but A+ B =

 
1 0

0 1

 
is invertible.

27. (A+ B)A−1(A− B) = (AA−1 + BA−1)(A− B)

= (I + BA−1)(A− B)

= A− B + B − BA−1B

= A− BA−1B

Similarly, (A− B)A−1(A+ B) = A− BA−1B .

29. a. If A is invertible and AB = 0, then

A−1(AB) = A−10, so that B = 0.

b. If A is not invertible, then Ax = 0 has infinitely

many solutions. Let x1, . . . , xn be solutions of

Ax = 0 and B be the matrix with nth column vector

xn . Then AB = 0.

31. (AB)t = BtAt = BA = AB
33. If AB = BA, then B−1AB = A, so B−1A = AB−1. Now

(AB−1)t = (B−1)t At = (Bt )−1At = B−1A = AB−1.

35. If At = A−1 and Bt = B−1, then

(AB)t = BtAt = B−1A−1 = (AB)−1.
37. a. (ABC )(C−1B−1A−1) = (AB)CC−1(B−1A−1)

= ABB−1A−1

= AA−1 = I
b. Case 1, k = 2: (A1A2)−1 = A−1

2 A
−1
1

Case 2: Suppose that

(A1A2 · · ·Ak )−1 = A−1
k A

−1
k−1 · · ·A−1

1

Then

(A1A2 · · ·AkAk+1)−1 = ([A1A2 · · ·Ak ]Ak+1)−1

= A−1
k+1[A1A2 · · ·Ak ]−1

= A−1
k+1A

−1
k A

−1
k−1 · · ·A−1

1

39. If A is invertible, then the augmented matrix [A|I ] can

be row-reduced to [I |A−1]. If A is upper triangular, then

only terms on or above the main diagonal can be

affected by the reduction process, and hence the inverse

is upper triangular. Similarly, the inverse for an

invertible lower triangle matrix is also lower

triangular.

41. a.

 
ax1 + bx3 ax2 + bx4

cx1 + dx3 cx2 + dx4

 
=
 

1 0

0 1

 
b. From part (a), we have the two linear systems 

ax1 + bx3 = 1

cx1 + dx3 = 0
and

 
ax2 + bx4 = 0

cx2 + dx4 = 1

so
(ad − bc)x3 = d and (ad − bc)x4 = −b

If ad − bc = 0, then b = d = 0.
c. From part (b), both b = 0 and d = 0. Notice that if

in addition either a = 0 or c = 0, then the matrix is

not invertible. Also from part(b), we have that

ax1 = 1, ax2 = 0, cx1 = 0, and cx2 = 1. If a and c

are not zero, then these equations are inconsistent

and the matrix is not invertible.

Section 1.5

1. A =
 

2 3

−1 2

 
, x =

 
x

y

 
, and b =

 −1

4
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3. A =
 2 −3 1

−1 −1 2

3 −2 −2

, x =
 xy
z

, and

b =
 −1

−1

3



5. A =
 4 3 −2 −3

−3 −3 1 0

2 −3 4 −4

, x =


x1

x2

x3

x4

, and

b =
 −1

4

3


7.

 
2x − 5y = 3

2x + y = 2

9.


− 2y = 3

2x − y − z = 1

3x − y + 2z = −1

11.

 
2x1 + 5x2 − 5x3 + 3x4 = 2

3x1 + x2 − 2x3 − 4x4 = 0

13. x =
 1

4

−3



15. x =


9

−3

−8

7


17. x = 1

10

 −16

9

 

19. x =
 −11

4

12



21. x = 1

3


0

0

1

−1


23. a. x = 1

5

 
7

−3

 
b. x = 1

5

 −7

8

 
25. The general solution is

S =
  −4t

t

     t ∈ ⺢ 
with a particular nontrivial solution of x = −4 and

y = 1.

27. A =
 1 2 1

1 2 1

1 2 1


29. From the fact that Au = Av, we have A(u − v) = 0. If

A is invertible, then u − v = 0, that is, u = v, which

contradicts the statement that u  = v.

31. a. x =
 

1

−1

 

b. C = 1

3

 
1 −1 0

1 2 0

 

c. Cb = 1

3

 
1 −1 0

1 2 0

  1

−2

−1

 =
 

1

−1

 

Section 1.6

1. The determinant is the product of the terms on the

diagonal and equals 24.

3. The determinant is the product of the terms on the

diagonal and equals −10.

5. Since the determinant is 2, the matrix is invertible.

7. Since the determinant is −6, the matrix is invertible.

9. a–c. det(A) = −5

d. det

 −4 1 −2

3 −1 4

2 0 1

 = 5

e. Let B denote the matrix in part (d) and B  denote

the new matrix. Then det(B  ) = −2 det(B) =
−10. Then det(A) = 1

2
det(B  ).

f. Let B   denote the new matrix. The row operation

does not change the determinant, so

det(B   ) = det(B  ) = −10.

g. Since det(A)  = 0, the matrix A does have an

inverse.

11. Determinant: 13; invertible

13. Determinant: −16; invertible

15. Determinant: 0; not invertible

17. Determinant: 30; invertible

19. Determinant: −90; invertible

21. Determinant: 0; not invertible

23. Determinant: −32; invertible

25. Determinant: 0; not invertible

27. det(3A) = 33 det(A) = 270

29. det((2A)−1) = 1

det(2A)
= 1

23 det(A)
= 1

80
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31. Since the determinant of the matrix is −5x2 + 10x =
−5x (x − 2), the determinant is 0 if and only if x = 0 or

x = 2.

33. y = b2−a2
b1−a1

x + b1a2−a1b2
b1−a1

35. a. A =
 1 −1 −2

−1 2 3

2 −2 −2


b. det(A) = 2

c. Since the coefficient matrix is invertible, the linear

system has a unique solution.

d. x =
 3

8

−4


37. a. A =

 −1 0 −1

2 0 2

1 −3 −3


b. det(A) = 0

c. Since the determinant of the coefficient matrix is 0,

A is not invertible. Therefore, the linear system has

either no solutions or infinitely many solutions.

d. No solutions

39. a.         
y2 x y 1

4 −2 −2 1

4 3 2 1

9 4 −3 1

        
=− 29y2 + 20x − 25y + 106 = 0

b.

x 

y 

⫺5

⫺5

5

5

41. a.           
x2 y2 x y 1

0 16 0 −4 1

0 16 0 4 1

1 4 1 −2 1

4 9 2 3 1

          
=136x2 − 16y2 − 328x + 256 = 0

b.

x 

y 

⫺5

⫺5

5

5

43. a.             

x2 xy y2 x y 1

1 0 0 −1 0 1

0 0 1 0 1 1

1 0 0 1 0 1

4 4 4 2 2 1

9 3 1 3 1 1

            
= −12 + 12x2 − 36xy + 42y2 − 30y = 0

b.

x 

y 

⫺5

⫺5

5

5

45. x =

      7 −5

6 −3

            5 −5

2 −3

      
= −9

5
, y =

    5 7

2 6

        5 −5

2 −3

    = −16

5

47. x =

      3 −4

−10 5

            −9 −4

−7 5

      
= 25

73
, y =

    −9 3

−7 −10

        −9 −4

−7 5

    
= −111

73

49. x =

      4 −3

3 4

            −1 −3

−8 4

      
= −25

28
, y =

    −1 4

−8 3

        −1 −3

−8 4

    = −29

28

51. x = − 160
103

, y = 10
103

, z = 42
103

53. Expansion of the determinant of A across row one

equals the expansion down column one of At , so

det(A) = det(At ).
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Section 1.7

1. a. E =
 1 0 0

2 1 0

0 0 1



b. EA =
 1 2 1

5 5 4

1 1 −4



3. a. E =
 1 0 0

0 1 0

0 −3 1



b. EA =
 1 2 1

3 1 2

−8 −2 −10


5. a. I = E3E2E1A

=
 

1 −3

0 1

  
1 0

0 1
10

  
1 0

2 1

 
A

b. A = E−1
1 E−1

2 E−1
3

=
 

1 0

−2 1

  
1 0

0 10

  
1 3

0 1

 
7. a. I = E5E4E3E2E1A

E1 =
 1 0 0

−2 1 0

0 0 1

 E2 =
 1 0 0

0 1 0

−1 0 1


E3 =

 1 −2 0

0 1 0

0 0 1

 E4 =
 1 0 11

0 1 0

0 0 1



E5 =
 1 0 0

0 1 −5

0 0 1


b. A = E−1

1 E−1
2 E−1

3 E−1
4 E−1

5

9. a. I = E6 · · ·E1A

E1 =
 0 1 0

1 0 0

0 0 1

 E2 =
 1 −2 0

0 1 0

0 0 1


E3 =

 1 0 0

0 1 0

0 −1 1

 E4 =
 1 0 0

0 1 1

0 0 1


E5 =

 1 0 1

0 1 0

0 0 1

 E6 =
 1 0 0

0 1 0

0 0 −1



b. A = E−1
1 E−1

2 · · ·E−1
6

11. A = LU =
 

1 0

−3 1

  
1 −2

0 1

 

13. A = LU =
 1 0 0

2 1 0

−3 0 1

 1 2 1

0 1 3

0 0 1



15. A = LU =
 1 0 0

1 1 0

−1 − 1
2

1

 1 1
2

−3

0 1 4

0 0 3


17. • LU factorization:

L =
 

1 0

−2 1

 
U =

 −2 1

0 1

 

• y = U x =
 −2x1 + x2

x2

 

• Solve Ly =
 −1

5

 
: y1 = −1, y2 = 3

• Solve U x = y: x1 = 2, x2 = 3

19. • LU factorization:

L =
 1 0 0

−1 1 0

2 0 1

 U =
 1 4 −3

0 1 2

0 0 1



• y = U x =
 x1 + 4x2 − 3x3

x2 + 2x3

x3



• Solve Ly =
 0

−3

1

: y1 = 0, y2 = −3, y3 = 1

• Solve U x = y: x1 = 23, x2 = −5, x3 = 1

21. • LU factorization:

L =


1 0 0 0

1 1 0 0

2 0 1 0

−1 −1 0 1



U =


1 −2 3 1

0 1 2 2

0 0 1 1

0 0 0 1


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• y = U x =


x1 − 2x2 + 3x3 + x4

x2 + 2x3 + 2x4

x3 + x4

x4



• Solve Ly =


5

6

14

−8

 :

y1 = 5, y2 = 1, y3 = 4, y4 = −2

• Solve U x = y: x1 = −25, x2 = −7, x3 = 6, x4 = −2

23. A = PLU

=
 0 1 0

1 0 0

0 0 0

 1 0 0

2 5 0

0 1 − 1
5

 1 −3 2

0 1 − 4
5

0 0 1


25. A = LU =

 
1 0

−3 1

  
1 4

0 1

 
A−1 = U−1L−1 =

 
1 −4

0 1

  
1 0

3 1

 
=
 −11 −4

3 1

 

27. A = LU =
 1 0 0

1 1 0

1 1 1

 2 1 −1

0 1 −1

0 0 3


A−1 = U−1L−1

=


1
2

− 1
2

0

0 1 1
3

0 0 1
3


 1 0 0

−1 1 0

0 −1 1



=

 1 − 1
2

0

−1 2
3

1
3

0 − 1
3

1
3


29. Suppose  

a 0

b c

  
d e

0 f

 
=
 

0 1

1 0

 
This gives the system of equations ad = 0, ae = 1,

bd = 1, be + cf = 0. The first two equations are

satisfied only when a  = 0 and d = 0. But this is

incompatible with the third equation.

31. If A is invertible, there are elementary matrices

E1, . . . ,Ek such that I = Ek · · ·E1A. Similarly, there are

elementary matrices D1, . . . ,D such that

I = D · · ·D1B . Then A = E−1
k · · ·E−1

1 D · · ·D1B , so A

is row equivalent to B .

Section 1.8

1. x1 = 2, x2 = 9, x3 = 3, x4 = 9

3. Let x5 = 3. Then x1 = x5 = 3, x2 = 1
3
x5 = 1, x3 =

1
3
x5 = 1, x4 = x5 = 3.

5. Let x1, x2, . . . , x7 be defined as in the figure.

300

800

700

500

300

x1

x2

x3

x4

x5

x6

x7

Then x1 = 1000 − x4 − x7, x2 = 800 − x6, x3 =
1000 − x4 + x6 − x7, x5 = 300 + x6 − x7

Since the network consists of one-way streets, the

individual flows are nonnegative. As a sample solution

let x4 = 200, x6 = 300, x7 = 100; then x1 = 700,

x2 = 500, x3 = 1000, x5 = 500.

7. x1 = 150 − x4, x2 = 50 − x4 − x5, x3 = 50 + x4 + x5.

As a sample solution let x4 = x5 = 20; then

x1 = 130, x2 = 10, x3 = 90

9. x1 = 1.4, x2 = 3.2, x3 = 1.6, x4 = 6.2

11. a. A =
 0.02 0.04 0.05

0.03 0.02 0.04

0.03 0.3 0.1


b. The internal demand vector is

A

 300

150

200

 =
 22

20

74

. The total external demand

for the three sectors is 300 − 22 = 278, 150 − 20 =
130, and 200 − 74 = 126, respectively.

c. (I − A)−1 ≈
 1.02 0.06 0.06

0.03 1.04 0.05

0.05 0.35 1.13


d. X = (I − A)−1D

=
 1.02 0.06 0.06

0.03 1.04 0.05

0.05 0.35 1.13

 350

400

600



=
 418.2

454.9

832.3


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13. a.

0

200

400

600

800

1000

1200

1400

1
9
6
5

1
9
7
0

1
9
7
5

1
9
8
0

1
9
8
5

1
9
9
0

1
9
9
5

2
0
0
0

b.


3, 880, 900a + 1970b + c = 80

3, 920, 400a + 1980b + c = 250

3, 960, 100a + 1990b + c = 690

c. a = 27
20

, b = − 10,631
2

, c = 5, 232, 400

d.

0

200

400

600

800

1000

1200

1400

1
9
6
5

1
9
7
0

1
9
7
5

1
9
8
0

1
9
8
5

1
9
9
0

1
9
9
5

2
0
0
0

e. The model gives an estimate, in billions of dollars,

for health care costs in 2010 at

27

20
(2010)2 − 10, 631

2
(2010) + 5, 232, 400 = 2380

15. a. A =
 

0.9 0.08

0.1 0.92

 
b. A

 
1, 500, 000

600, 000

 
=
 

1, 398, 000

702, 000

 
c. A2

 
1, 500, 000

600, 000

 
=
 

1, 314, 360

785, 640

 
d. An

 
1, 500, 000

600, 000

 
17. The transition matrix is

A =
 0.9 0.2 0.1

0.1 0.5 0.3

0 0.3 0.6


so the numbers of people in each category after

1 month are given by

A

 20, 000

20, 000

10, 000

 =
 23, 000

15, 000

12, 000



after 2 months by

A2

 20, 000

20, 000

10, 000

 =
 24, 900

13, 400

11, 700


and after 1 year by

A12

 20, 000

20, 000

10, 000

 ≈
 30, 530

11, 120

8, 350


19. a. I1 + I3 = I2

b.

 
4I1 + 3I2 = 8

3I2 + 5I3 = 10

c.


I1 − I2 + I3 = 0

4I1 + 3I2 = 8

3I2 + 5I3 = 10

Solution: I1 ≈ 0.72, I2 ≈ 1.7, I3 ≈ 0.98

21. Denote the average temperatures of the four points by

a, b, c, and d clockwise, starting with the upper left

point. The resulting linear system is
4a − b − d = 50

−a + 4b − c = 55

− b − d = 45

−a − c + 4d = 40

The solution is a ≈ 24.4, b ≈ 25.6, c ≈ 23.1, d ≈ 21.9.

Review Exercises Chapter 1

1. a. A =


1 1 2 1

−1 0 1 2

2 2 0 1

1 1 2 3


b. det(A) = −8

c. Since the determinant of the coefficient matrix is not

0, the matrix is invertible and the linear system is

consistent and has a unique solution.

d. The only solution is the trivial solution.

e. From part (b), since the determinant is not zero, the

inverse exists.

A−1 = 1

8


−3 −8 −2 7

5 8 6 −9

5 0 −2 −1

−4 0 0 4


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f. x = A−1


3

1

−2

5

 = 1
4


11

−17

7

4


3. a = 0, c = 0, b = 0; a = 0, c = 1, b ∈ ⺢;

a = 1, c = 0, b ∈ ⺢; a = 1, b = 0, c = 1

5. a. If

A =
 
a1 b1

c1 d1

 
B =

 
a2 b2

c2 d2

 
then the sum of the diagonal entries is

(a1a2 + b1c2) − (a1a2 + b2c1)

+ (b2c1 + d1d2) − (b1c2 + d1d2) = 0

b.  a b

c −a
  

a b

c −a
 
=
 
a2 + bc 0

0 a2 + bc
 

= (a2 + bc)I

c. Let M = AB − BA. By part (a), M 2 = kI for some

k . Then

(AB − BA)2C = M 2C

= (kI )C = C (kI )

= CM 2 = C (AB − BA)2

7. a. Since det(A) = 1, then A is invertible.

b. Six 1s can be added, making 21 the maximum

number of entries that can be 1 and the matrix is

invertible.

9. a. Bt = (A+ At )t = At + (At )t = At + A = B ;

C t = (A− At )t = At − (At )t = At − A = −C
b. A = 1

2
(A+ At ) + 1

2
(A− At )

Chapter Test: Chapter 1

1. T 2. F

3. F 4. T

5. F 6. T

7. F 8. T

9. T 10. T

11. T 12. T

13. T 14. T

15. F 16. T

17. F 18. T

19. F 20. T

21. F 22. T

23. T 24. T

25. T 26. T

27. F 28. T

29. F 30. T

31. T 32. T

33. F 34. T

35. F 36. T

37. T 38. F

39. T 40. T

41. T 42. F

43. T 44. F

45. T

Chapter 2

Section 2.1

1. u + v =
 −1

2

3

 = v + u

3. u − 2v + 3w =
 11

−7

0



5. −3(u + v) − w =
 1

−7

−8



7.


−17

−14

9

−6



9. (x1 + x2)u = (x1 + x2)


1

−2

3

0



=


x1 + x2

−2x1 − 2x2

3x1 + 3x2

0



=


x1

−2x1

3x1

0

+


x2

−2x2

3x2

0


= x1u + x2v
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11. v = 2e1 + 4e2 + e3

13. v = 3e2 − 2e3

15. w =


7
2

1

−1


17.

 
c1 + 3c2 = −2

−2c1 − 2c2 = −1

Solution: c1 = 7
4
, c2 = − 5

4

The vector

 −2

−1

 
is a combination of

 
1

−2

 
and 

3

−2

 
.

19.

 
c1 − c2 = 3

2c1 − 2c2 = 1

Solution: The linear system is inconsistent.

The vector

 
3

1

 
cannot be written as a combination

of

 
1

2

 
and

 −1

−2

 
.

21.


−4c1 − 5c3 = −3

4c1 + 3c2 + c3 = −3

3c1 − c2 − 5c3 = 4

Solution: c1 = 87
121

, c2 = − 238
121

, c3 = 3
121

The vector

 −3

−3

4

 is a combination of the three

vectors.

23.


−c1 − c2 + c3 = −1

c2 − c3 = 0

c1 + c2 − c3 = 2

Solution: The linear system is inconsistent

The vector

 −1

0

2

 cannot be written as a

combination of the other vectors.

25. All 2 × 2 vectors. Moreover, c1 = 1
3
a − 2

3
b,

c2 = 1
3
a + 1

3
b

27. All vectors of the form

 
a

−a
 

such that a ∈ ⺢.

29. All 3 × 3 vectors. Moreover, c1 = 1
3
a − 2

3
b + 2

3
c,

c2 = − 1
3
a + 2

3
b + 1

3
c, c3 = 1

3
a + 1

3
b − 1

3
c

31. All vectors of the form

 a

b

2a − 3b

 such that

a, b ∈ ⺢.

Section 2.2

1.

 
1 −2 −4

1 3 11

 
−→

 
1 0 2

0 1 3

 
; yes

3.

 −2 3 1

4 −6 1

 
−→

 
1 − 3

2
0

0 0 1

 
; no

5. Yes  −2 1 −3

3 4 10

4 2 10

 −→
 1 0 2

0 1 1

0 0 0


7. Yes 2 3 −2 2

−2 0 0 8

0 −3 −1 2

 −→
 1 0 0 −4

0 1 0 2
3

0 0 1 −4


9. No 1 −1 0 −1

2 −1 1 1

−1 3 2 5

 −→
 1 0 0 0

0 1 1 0

0 0 0 1


11. Yes

2 1 −1 3

−3 6 −1 −17

4 −1 2 17

1 2 3 7

 −→


1 0 0 3

0 1 0 −1

0 0 1 2

0 0 0 0


13. Infinitely many ways

c1 = 1 + 1
3
c3, c2 = 1 + 7

3
c3, c3 ∈ ⺢

15. Infinitely many ways

c1 = 3 + 6c4, c2 = −2 − c4, c3 = 2 + 2c4, c4 ∈ ⺢
17. Yes

1 −2 −1 −2

2 3 3 4

1 1 2 4

−1 4 1 0

 −→


1 0 0 −1

0 1 0 −1

0 0 1 3

0 0 0 0


19. No

2 3 3 2

2 −1 −1 1

−1 2 2 −1

3 −2 2 2

 −→


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


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21. Ax = 2

 
1

−2

 
−
 

3

1

 

23. (AB)1 = 3

 −1

3

 
+ 2

 −2

4

 
,

(AB)2 = 2

 −1

3

 
+ 5

 −2

4

 
25. Not possible.

27. x3 − 2x + 1 = 1
2
(1 + x ) + 2(−x ) + 0(x2 + 1)+

1
2
(2x3 − x + 1)

29. All vectors

 ab
c

 such that 3a − b + c = 0.

31. v = 2v1 − v2 + 4v3

33. Since c1  = 0, v1 = − c2
c1

v2 − · · · − cn
c1

vn .

35. Let v ∈ S1. Since c  = 0, then v = c1v1 + · · · + ck
c

(cvk ),

so v ∈ S2. If v ∈ S2, then v = c1v1 + · · · + (cck )vk , so

v ∈ S1. Therefore, S1 = S2.

37. If A3 = cA1, then det(A) = 0. Since the linear system

is assumed to be consistent, it must have infinitely

many solutions.

Section 2.3

1. Since

    −1 2

1 −3

    = 1, the vectors are linearly

independent.

3. Since

    1 −2

−4 8

    = 0, the vectors are linearly

dependent.

5. Since

 −1 2

2 2

1 3

 −→
 −1 2

0 6

0 0

, the vectors are

linearly independent.

7. Since

      
−4 −5 3

4 3 −5

−1 3 5

      = 0, the vectors are linearly

dependent.

9. Since


3 1 3

−1 0 −1

−1 2 0

2 1 1

 −→


3 1 3

0 1
3

0

0 0 1

0 0 0

, the

vectors are linearly independent.

11. Since 
3 0 1

3 1 −1

2 0 −1

1 0 −2

 −→


3 0 1

0 1 −2

0 0 − 5
3

0 0 0


the matrices are linearly independent.

13. Since 
1 0 −1 1

−2 −1 1 1

−2 2 −2 −1

−2 2 2 −2



−→


1 0 −1 1

0 −1 −1 3

0 0 −6 7

0 0 0 11
3


the matrices are linearly independent.

15. v2 = − 1
2
v1

17. Any set of vectors containing the zero vector is linearly

dependent.

19. a. A2 = −2A1

b. A3 = A1 + A2

21. a  = 6

23. a. Since

      
1 1 1

1 2 1

1 3 2

      = 1, the vectors are linearly

independent.

b. c1 = 0, c2 = −1, c3 = 3

25. Since

      
1 2 0

−1 0 3

2 1 2

      = 13, the matrix is invertible so

Ax = b has a unique solution for every vector b.

27. Linear independent

29. Linearly dependent

31. If x = 0, then c1 = 0, and if x = 1
2
, then c2 = 0.

33. Let x = 0, then c3 = 0. Now letting x = 1 and x = −1,

c1 = c2 = c3 = 0.

35. If u and v are linearly dependent, then there are scalars

a and b, not both 0, such that au + bv = 0. If a  = 0,

then u = −(b/a)v. On the other hand, if there is a

scalar c such that u = cv, then u − cv = 0.

37. Setting a linear combination of w1, w2, w3 to 0, we have

0 = c1w1 + c2w2 + c3w3

= c1v1 + (c1 + c2 + c3)v2 + (−c2 + c3)v3

if and only if c1 = 0, c1 + c2 + c3 = 0, and

−c2 + c3 = 0 if and only if c1 = c2 = c3 = 0.



Answers to Odd-Numbered Exercises 451

39. Consider c1v1 + c2v2 + c3v3 = 0, which is true if and

only if c3v3 = −c1v1 − c2v2. If c3  = 0, then v3 would

be a linear combination of v1 and v2 contradicting the

hypothesis that it is not the case. Therefore, c3 = 0.

Now since v1 and v2 are linearly independent

c1 = c2 = 0.

41. Since A1, A2, . . . , An are linearly independent, if

Ax = x1A1 + · · · + xnAn = 0

then x1 = x2 = · · · = xn = 0.

Review Exercises Chapter 2

1. Since

    a b

c d

    = ad − bc  = 0, the column vectors

are linearly independent. If ad − bc = 0, then the

column vectors are linearly dependent.

3. The determinant

      
a2 0 1

0 a 0

1 2 1

      = a3 − a  = 0 if and

only if a  = ±1, and a  = 0. So the vectors are linearly

independent if and only if a  = ±1, and a  = 0.

5. a. Since the vectors are not scalar multiples of each

other, S is linearly independent.

b. Since 1 1 a

0 1 b

2 1 c

→
 1 1 a

0 1 b

0 0 −2a + b + c


the linear system is inconsistent for −2a + b+
c  = 0. If a = 1, b = 1, c = 3, then the system is

inconsistent and v =
 1

1

3

 is not a linear

combination of the vectors.

c. All vectors

 ab
c

 such that −2a + b + c = 0

d. Linearly independent

e. All vectors in ⺢3

7. a. Let A =


1 1 2 1

−1 0 1 2

2 2 0 1

1 1 2 3

, x =


x

y

z

w

, and

b =


3

1

−2

5

.

b. det(A) = −8

c. Yes, since the determinant of A is nonzero.

d. Since the determinant of the coefficient matrix is

nonzero, the matrix A is invertible, so the linear

system has a unique solution.

e. x = 11
4

, y = − 17
4

, z = 7
4
,w = 1

9. a.

x1

 1

2

1

+ x2

 3

−1

1

+ x3

 2

3

−1

 =
 b1

b2

b3


b. Since det(A) = 19, the linear system has a unique

solution equal to x = A−1b.

c. Yes

d. Yes, since the determinant of A is nonzero, A−1

exists and the linear system has a unique solution.

Chapter Test: Chapter 2

1. T 2. F

3. T 4. T

5. F 6. F

7. F 8. T

9. F 10. F

11. T 12. T

13. F 14. T

15. F 16. T

17. T 18. F

19. T 20. T

21. F 22. F

23. F 24. F

25. T 26. F

27. T 28. F

29. T 30. F

31. T 32. F

33. T

Chapter 3

Section 3.1
1. Since  x1

y1

z1

⊕
 x2

y2

z2

 =
 x1 − x2

y1 − y2

z1 − z2


and  x2

y2

z2

⊕
 x1

y1

z1

 =
 x2 − x1

y2 − y1

z2 − z1


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do not agree for all pairs of vectors, the operation ⊕ is

not commutative, so V is not a vector space.

3. The operation ⊕ is not associative, so V is not a vector

space.

7. Since

(c + d )  
 
x

y

 
=
 
x + c + d

y

 
does not equal

c  
 
x

y

 
+ d  

 
x

y

 

=
 
x + c
y

 
+
 
x + d
y

 

=
 

2x + c + d
2y

 

for all vectors

 
x

y

 
, then V is not a vector space.

9. Since the operation ⊕ is not commutative, V is not a

vector space.

11. The zero vector is given by 0 =
 

0

0

 
. Since this

vector is not in V , then V is not a vector space.

13. a. Since V is not closed under vector addition, V is not

a vector space.

b. Each of the 10 vector space axioms are satisfied

with vector addition and scalar multiplication

defined in this way.

15. Yes, V is a vector space.

17. No, V is not a vector space. Let A = I and B = −I .
Then A+ B is not invertible and hence not in V .

19. Yes, V is a vector space.

21. a. The additive identity is 0 =
 

1 0

0 1

 
, and the

additive inverse of A is A−1.

b. If c = 0, then cA is not in V .

23. a. The additive identity is 0 =
 1

2

3

. Let

u =
 1 + a

2 − a
3 + 2a

. Then the additive inverse is

−u =
 1 − a

2 + a
3 − 2a

.

b. Each of the 10 vector space axioms is satisfied.

c. 0  
 1 + t

2 − t
3 + 2t

 =
 1 + 0t

2 − 0t

3 + 2(0)t

 =
 1

2

3


25. Each of the 10 vector space axioms is satisfied.

27. Each of the 10 vector space axioms is satisfied.

29. Since ( f + g)(0) = f (0) + g(0) = 1 + 1 = 2, then V is

not closed under addition and hence is not a vector

space.

31. a. The zero vector is given by f (x + 0) = x3 and

−f (x + t ) = f (x − t ).
b. Each of the 10 vector space axioms is satisfied.

Section 3.2

1. The set S is a subspace of ⺢2.

3. The set S is not a subspace of ⺢2. If u =
 

2

−1

 
and

v =
 −1

3

 
, then u + v =

 
1

2

 
/∈ S .

5. The set S is not a subspace of ⺢2. If u =
 

0

−1

 
and

c = 0, then cv =
 

0

0

 
/∈ S .

7. Since  x1

x2

x3

+ c
 y1

y2

y3

 =
 x1 + cy1

x2 + cy2

x3 + cy3


and (x1 + cy1) + (x3 + cy3) = −2(c + 1) = 2 if and

only if c = −2, so S is not a subspace of ⺢3.

9. Since  s − 2t

s

t + s

+ c
 x − 2y

x

y + x


=
 (s + cx ) − 2(t + cy)

s + cx
(t + cy) + (s + cx )


is in S, then S is a subspace.

11. Yes, S is a subspace.

13. No, S is not a subspace.

15. Yes, S is a subspace.

17. Yes, S is a subspace.

19. No, S is not a subspace since x3 − x3 = 0, which is not

a polynomial of degree 3.

21. Yes, S is a subspace.
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23. No, S is not a subspace.

25. Since 1 −1 −1 1

1 −1 2 −1

0 1 0 1

→
 1 −1 −1 1

0 1 0 1

0 0 3 −2


the vector v is in the span.

27. Since
1 0 1 −2

1 1 −1 1

0 2 −4 6

−1 1 −3 5

→


1 0 1 −2

0 1 −2 3

0 0 0 0

0 0 0 0


the vector v is in the span.

29. Since

c1(1 + x ) + c2(x2 − 2) + c3(3x ) = 2x2 − 6x − 11

implies c1 = −7, c2 = 2, c3 = 1
3
, the polynomial is in

the span.

31. span(S ) =


 ab
c

      a + c = 0


33. span(S ) =

  
a b

a+b
3

2a−b
3

     a , b ∈ ⺢
 

35. span(S ) =  
ax2 + bx + c

  a − c = 0
 

37. a. span(S ) =


 a

b
b−2a

3

      a, b ∈ ⺢


b. Yes, S is linearly independent.

39. a. span(S ) = ⺢
3

b. Yes, S is linearly independent.

41. a. span(S ) = ⺢
3

b. No, S is linearly dependent.

c. span(T ) = ⺢
3; T is linearly dependent.

d. span(H ) = ⺢
3; H is linearly independent.

43. a. span(S ) = P2

b. No, S is linearly dependent.

c. 2x2 + 3x + 5 = 2(1) − (x − 3) + 2(x2 + 2x )

d. T is linearly independent; span(T ) = P3

45. a–b Since −s
s − 5t

2s + 3t

 = s
 −1

1

2

+ t
 0

−5

3



then S = span


 −1

1

2

,

 0

−5

3

.

Therefore, S is a subspace.

c. Yes, the vectors are linearly independent.

d. S  = ⺢
3

47. Since A(x + cy) =
 

1

2

 
+ c

 
1

2

 
=
 

1

2

 
if and

only if c = 0, then S is not a subspace.

49. Let B1,B2 ∈ S . Since

A(B1 + cB2) = AB1 + cAB2

= B1A+ c(B2A)

= (B1 + cB2)A

then B1 + cB2 ∈ S and S is a subspace.

Section 3.3

1. The set S has only two vectors, while dim(⺢3) = 3.

3. Since the third vector can be written as the sum of the

first two, the set S is not linearly independent.

5. Since the third polynomial is a linear combination of

the first two, the set S is not linearly independent.

7. The set S is a linearly independent set of two vectors

in ⺢2.

9. The set S is a linearly independent set of three vectors

in ⺢3.

11. The set S is a linearly independent set of four vectors

in M2×2. Since dim (M2×2) = 4, then S is a basis.

13. The set S is a linearly independent set of three vectors

in ⺢3 and so is a basis.

15. The set S is linearly dependent and is therefore not a

basis for ⺢4.

17. The set S is a linearly independent set of three vectors

in P2 so S is a basis.

19. A basis for S is B =


 1

−1

0

,

 2

1

1

 and

dim(S ) = 2.

21. A basis for S is

B =
  

1 0

0 0

 
,

 
0 1

1 0

 
,

 
0 0

0 1

  
and dim(S ) = 3.

23. A basis for S is B =  
x , x2

 
and dim(S ) = 2.

25. The set S is already a basis for ⺢3 since it is a linearly

independent set of three vectors in ⺢3.
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27. A basis for the span of S is given by

B =


 2

−3

0

,

 0

2

2

,

 −1

−1

0

. Observe that

span(S ) = ⺢
3.

29. A basis for the span of S is given by

B =


 2

−3

0

,

 0

2

2

,

 4

0

4

. Observe that

span(S ) = ⺢
3.

31. A basis for ⺢3 containing S is

B =


 2

−1

3

,

 1

0

2

,

 1

0

0


33. A basis for ⺢4 containing S is

B =




1

−1

2

4

,


3

1

1

2

,


1

0

0

0

,


0

0

1

0




35. A basis for ⺢3 containing S is

B =


 −1

1

3

,

 1

1

1

,

 1

0

0


37. B = {eii | 1 ≤ i ≤ n}
43. dim(W ) = 2

Section 3.4

1. [v]B =
 

2

−1

 

3. [v]B =
 2

−1

3


5. [v]B =

 5

2

−2



7. [v]B =


−1

2

−2

4


9. [v]B1

=
 

− 1
4
1
8

 
; [v]B2

=
 

1
2

− 1
2

 

11. [v]B1
=
 1

2

−1

; [v]B2
=
 1

1

0


13. [I ]

B2
B1

=
 

1 −1

1 1

 
[v]B2

= [I ]
B2
B1

[v]B1
=
 −1

5

 

15. [I ]
B2
B1

=

 3 2 1

−1 − 2
3

0

0 − 1
3

0


[v]B2

= [I ]
B2
B1

[v]B1
=
 −1

1

0


17. [I ]

B2
B1

=
 0 0 1

1 0 0

0 1 0


[v]B2

= [I ]
B2
B1

[v]B1
=
 5

2

3


19.

 ab
c


B

=
 −a − b + c

a + b
a + 2b − c


21. a. [I ]

B2
B1

=
 0 1 0

1 0 0

0 0 1


b. [v]B2

= [I ]
B2
B1

 1

2

3

 =
 2

1

3


23. a. [I ]BS =

 
1 1

0 2

 
b.

 
1

2

 
B

=
 

3

4

  
1

4

 
B

=
 

5

8

 
 

4

2

 
B

=
 

6

4

  
4

4

 
B

=
 

8

8

 
c.
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d.

25. a. [I ]
B2
B1

=
 −1 −1 0

2 2 −1

0 −1 1



b. [2u1 − 2u2 + u3]B2
= [I ]

B2
B1

 2

−3

1

 =
 1

−3

4


Section 3.5

1. a. y1 = e2x , y2 = e3x

b. W [y1, y2](x ) =
     e2x e3x

2e2x 3e3x

     = e5x > 0 for all x .

c. y(x ) = C1e
2x + C2e

3x

3. a. y1 = e−2x , y2 = xe−2x

b. W [y1, y2](x ) =
     e−2x xe−2x

−2e−2x e−2x − 2xe−2x

     =
e−4x > 0 for all x .

c. y(x ) = C1e
−2x + C2xe

−2x

5. y(x ) = ex + 2xex

7. a. yc(x ) = C1e
3x + C2e

x

b. a = 1, b = 3, c = 4

9. y(x ) = 1
4

cos (8x)

Review Exercises Chapter 3

1. k  = 69

3. a. Since S is closed under vector addition and scalar

multiplication, S is a subspace of M2×2.

b. Yes, let a = 3, b = −2, c = 0.

c. B =
  

1 1

0 1

 
,

 −1 0

1 0

 
,

 
0 0

1 −1

  

d. The matrix

 
0 1

2 1

 
is not in S .

5. a. The set T is a basis since it is a linearly independent

set of three vectors in the three-dimensional vector

space V .

b. The set W is not a basis for V since it is not linearly

independent.

7. Since v1 can be written as

v1 =
 −c2

c1

 
v2 +

 −c3

c1

 
v3 + · · · +

 −cn
c1

 
vn

then

V = span{v2, v3, . . . , vn }

9. a. The set B = {u, v} is a basis for ⺢2 since it is

linearly independent. To see this, consider

au + bv = 0

Now take the dot product of both sides with first u,

then v, to show that a = b = 0.

b. If [w]B =
 

α

β

 
, then

α =

    x v1

y v2

        u1 v1

u2 v2

    =
xv2 − yv1

u1v2 − v1u2

and

β =

    u1 x

u2 y

        u1 v1

u2 v2

    =
yu1 − xu2

u1v2 − v1u2

.

Chapter Test: Chapter 3

1. F 2. T

3. F 4. F

5. T 6. F

7. F 8. F

9. T 10. T

11. T 12. T

13. T 14. T

15. T 16. F

17. F 18. F

19. T 20. T

21. T 22. T

23. T 24. T

25. T 26. F

27. T 28. T

29. T 30. F

31. T 32. F

33. T 34. F

35. T
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Chapter 4

Section 4.1

1. T is linear.

3. T is not linear.

5. T is linear.

7. Since T (x + y)  = T (x ) + T (y) for all real numbers x

and y , T is not linear.

9. Since T (cu)  = cT (u), T is not linear.

11. Since T (0)  = 0, T is not linear.

13. T is linear.

15. Since T (cA) = c2T (A)  = cT (A) for all scalars c, T is

not linear.

17. a. T (u) =
 

2

3

 
; T (v) =

 −2

−2

 
b. Yes

c. Yes

19. a. T (u) =
 

0

0

 
; T (v) =

 
0

−1

 
b. No. T (u + v) =

 −1

−1

 
; T (u) + T (v) =

 
0

−1

 
c. No, by part (b).

21. T

  
1

−3

  
=
 

5

−9

 
23. T (−3 + x − x2) = −1 − 4x + 4x2

25. T

  
3

7

  
=
 

22

−11

 
27. a. No. The polynomial 2x2 − 3x + 2 cannot be written

as a linear combination of x2, −3x , and −x2 + 3x .

b. Yes. T (3x2 − 4x ) = 4
3
x2 + 6x − 13

3

29. a. A =
 −1 0

0 −1

 
b. T (e1) =

 −1

0

 
and T (e2) =

 
0

−1

 
. Observe

that these are the column vectors of A.

31. T

 0

0

z

 =
 

0

0

 
, for all z ∈ ⺢

33. a. The zero vector is the only vector in ⺢3 such that

T

 xy
z

 =
 

0

0

 

b. T

 1

−2

2

 =
 7

−6

−9



35. T (cv + w) =
 
cT1(v) + T1(w)

cT2(v) + T2(w)

 
= c

 
T1(v)

T2(v)

 
+
 
T1(w)

T2(w)

 
= cT (v) + T (w)

37. T (kA+ C ) = (kA+ C )B − B(kA+ C )

= kAB − kBA+ CB − BC
= kT (A) + T (C )

39. a. T (cf + g) =
! 1

0

 
cf (x ) + g(x )

 
dx

=
! 1

0

cf (x ) dx +
! 1

0

g(x ) dx

= c
! 1

0

f (x ) dx +
! 1

0

g(x ) dx

= cT ( f ) + T (g)

b. T (2x2 − x + 3) = 19
6

41. Since neither v nor w is the zero vector, if either

T (v) = 0 or T (w) = 0, then the conclusion holds. Now

assume that T (v) and T (w) are linearly dependent and

not zero; then there exist scalars a0 and b0, not both 0,

such that a0T (v) + b0T (w) = 0. Since v and w are

linearly independent, then a0v + b0w  = 0 and since T

is linear, then T (a0v + b0w) = 0.

43. Let T (v) = 0 for all v in ⺢3.

Section 4.2

1. Since T (v) =
 

0

0

 
, v is in N (T ).

3. Since T (v) =
 −5

10

 
, v is not in N (T ).

5. Since T (p(x )) = 2x , p(x ) is not in N (T ).

7. Since T (p(x )) = −2x , p(x ) is not in N (T ).

9. Since T

 −1

2

1

 = v, v is in R(T ).

11. The vector v is not in R(T ).

13. The matrix A is in R(T ) with a = 1, b = 0, c = −2,

d = −1.

15. The matrix A is not in R(T ).

17.

  
0

0

  

19.


 −2

1

1


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21.


 2

1

0

,

 1

0

1


23.

 
x , x2

 
25.


 1

0

2

,

 1

1

0

,
 2

−1

1


27.


 1

0

0

,

 0

1

0


29.

 
1, x , x2

 
31. a. No,

 −6

5

0

 is not in R(T ).

b.


 −2

1

1

,

 0

1

−1


c. Since dim(N (T )) + dim(R(T )) = dim(⺢3) = 3 and

dim(R(T )) = 2, then dim(N (T )) = 1.

33. a. The polynomial 2x2 − 4x + 6 is not in R(T ).

b.
 −2x + 1, x2 + x =  

T (x ),T (x2)
 

35. T

 xy
z

 =
 
x

y

 
37. a. The range R(T ) is the subspace of Pn consisting of

all polynomials of degree n − 1 or less.

b. dim(R(T )) = n
c. dim(N (T )) = 1

39. a. dim(R(T )) = 2

b. dim(N (T )) = 1

41.

  
1 0

0 0

 
,

 
0 0

0 1

  
43. a. The range of T is the set of symmetric matrices.

b. The null space of T is the set of skew-symmetric

matrices.

45. If the matrix A is invertible, then R(T ) = Mn×n .

Section 4.3

1. T is one-to-one.

3. T is one-to-one.

5. T is one-to-one.

7. T is onto ⺢2.

9. T is onto ⺢3.

11. Is a basis

13. Is a basis

15. Is a basis

17. Is a basis
19. Is a basis

21. a. Since det(A) = det

  
1 0

−2 −3

  
= −3  = 0,

then T is an isomorphism.

b. A−1 = − 1
3

 −3 0

2 1

 

c. A−1T

  
x

y

  
=
 

1 0

− 2
3

− 1
3

  
x

−2x − 3y

 
=
 
x

y

 
23. a. Since

det(A) = det

 −2 0 1

1 −1 −1

0 1 0


= −1  = 0

then T is an isomorphism.

b. A−1 =
 −1 −1 −1

0 0 1

−1 −2 −2



c. A−1T

 xy
z


=
 −1 −1 −1

0 0 1

−1 −2 −2

 −2x + z
x − y − z

y


=
 xy
z


25. T is an isomorphism.

27. T is an isomorphism.

29. Since T (cA+ B) = (cA+ B)t = cAt + Bt = cT (A)

+T (B), T is linear. Since T (A) = 0 implies that A = 0,

T is one-to-one. If B is a matrix in Mn×n and A = Bt ,
then T (A) = T (Bt ) = (Bt )t = B , so T is onto. Hence,

T is an isomorphism.

31. Since T (kB + C ) = A(kB + C )A−1 = kABA−1+
ACA−1 = kT (B) + T (C ), T is linear. Since T (B) =
ABA−1 = 0 implies that B = 0, T is one-to-one. If C is
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a matrix in Mn×n and B = A−1CA, then

T (B) = T (A−1CA) = A(A−1CA)A−1 = C , so T is onto.

Hence, T is an isomorphism.

33.

T



a

b

c

d


 = ax3 + bx2 + cx + d

35. Since

V =


 x

y

x + 2y

      x , y ∈ ⺢


define T : V → ⺢

2 by

T

 x

y

x + 2y

 =
 
x

y

 

37. Let v be a nonzero vector in ⺢3. Then a line L through

the origin can be given by

L = {tv| t ∈ ⺢}
Now, let T : ⺢3 −→ ⺢

3 be an isomorphism. Since T is

linear, T (tv) = tT (v). Also, by Theorem 8, T (v) is

nonzero. Hence, the set

L = {tT (v)| t ∈ ⺢}
is also a line in ⺢3 through the origin. The proof for a

plane is similar with the plane being given by

P = {su + tv| s , t ∈ ⺢}
for two linearly independent vectors u and v in ⺢3.

Section 4.4

1. a. [T ]B =
 

5 −1

−1 1

 

b. T

 
2

1

 
=
 

9

−1

 
;

T

 
2

1

 
=
 

5 −1

−1 1

  
2

1

 
=
 

9

−1

 

3. a. [T ]B =
 −1 1 2

0 3 1

1 0 −1



b. T

 1

−2

3

 =
 3

−3

−2

 = [T ]B

 1

−2

3



5. a. [T ]B
 
B =

 −3 −2

3 6

 

b. T

 −1

−2

 
=
 −3

−3

 
;

T

 −1

−2

 
=
 −3 −2

3 6

  −1

−2

 
B

=
 −3 −2

3 6

  
2

− 3
2

 
=
 −3

−3

 

7. a. [T ]B
 
B =

 
− 2

3
2
3

13
6

− 5
3

 

b. T

 −1

−3

 
=
 −2

−4

 
;

 
T

 −1

−3

  
B  

= [T ]B
 
B

 −1

−3

 
B

= [T ]B
 
B

 
2

1

 

=
 

− 2
3

8
3

 

T

 −1

−3

 
= −2

3

 
3

−2

 
+ 8

3

 
0

−2

 
=
 −2

−4

 

9. a. [T ]B
 
B =

 1 1 1

0 −1 −2

0 0 1


b. T (x2 − 3x + 3) = x2 − 3x + 3; 

T (x2 − 3x + 3)
 
B  = [T ]B

 
B [x2 − 3x + 3]B

= [T ]B
 
B

 1

1

1

 =
 3

−3

1


T (x2 − 3x + 3) = 3 − 3x + x2

11. If A =
 
a b

c −a
 

, then T (A) =
 

0 −2b

2c 0

 
.

a. [T ]B =
 0 0 0

0 −2 0

0 0 2


b. T

  
2 1

3 −2

  
=
 

0 −2

6 0

 
;

 
T

  
2 1

3 −2

   
B

= [T ]B

 2

1

3

 =
 0

−2

6


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T

  
2 1

3 −2

  
= 0

 
1 0

0 −1

 
− 2

 
0 1

0 0

 
+ 6

 
0 0

1 0

 
=
 

0 −2

6 0

 
13. a. [T ]B =

 
1 2

1 −1

 
b. [T ]B  =

1

9

 
1 22

11 −1

 
c. [T ]B

 
B = 1

9

 
5 −2

1 5

 
d. [T ]B

B  =
1

3

 
5 2

−1 5

 
e. [T ]B

 
C = 1

9

 −2 5

5 1

 
f. [T ]B

 
C  =

1

9

 
22 1

−1 11

 

15. a. [T ]B
 
B =

 0 0

1 0

0 1
2


b. [T ]B

 
C =

 0 0

0 1
1
2

0


c. [T ]C

 
C =

 0 1

0 0
1
2

0


d. [S ]B

B  =
 

0 1 0

0 0 2

 
e. [S ]B

B  [T ]B
 
B =

 
1 0

0 1

 

[T ]B
 
B [S ]B

B  =
 0 0 0

0 1 0

0 0 1


f. The function S ◦ T is the identity map; that is,

(S ◦ T )(ax + b) = ax + b so S reverses the action

of T .

17. [T ]B =
 

1 0

0 −1

 
The transformation T reflects a vector across the x -axis.

19. [T ]B = cI

21. [T ]B
 
B = [1 0 0 1]

23. a. [2T + S ]B = 2[T ]B + [S ]B =
 

5 2

−1 7

 
b.

 −4

23

 
25. a. [S ◦ T ]B = [S ]B [T ]B =

 
2 1

1 4

 
b.

 −1

10

 

27. a. [−3T + 2S ]B =
 3 3 1

2 −6 −6

3 −3 −1


b.

 3

−26

−9


29. a. [S ◦ T ]B =

 4 −4 −4

1 −1 −1

−1 1 1


b.

 −20

−5

5



31. [T ]B =


0 0 0 6 0

0 0 0 0 24

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



[T (p(x )]B =


−12

−48

0

0

0


T (p(x )) = p    (x ) = −12 − 48x

33. [S ]B
 
B =


0 0 0

1 0 0

0 1 0

0 0 1



[D]B
 
B =

 0 1 0 0

0 0 2 0

0 0 0 3



[D]B
 
B [S ]B

 
B =

 1 0 0

0 2 0

0 0 3

 = [T ]B
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35. If A =
 
a b

c d

 
, then the matrix representation for

T is

[T ]S =


0 −c b 0

−b a − d 0 b

c 0 d − a −c
0 c −b 0



37. [T ]B =



1 1 0 0 . . . . . . 0 0

0 1 1 0 . . . . . . 0 0

0 0 1 1 . . . . . . 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 0 0 . . . 1 0

0 0 0 0 0 . . . 1 1

0 0 0 0 0 . . . 0 1


Section 4.5

1.
[T ]B1

[v]B1
=
 

1 2

−1 3

  
4

−1

 
=
 

2

−7

 
[T ]B2

[v]B2
=
 

2 1

−1 2

  −1

−5

 
=
 −7

9

 
To show the results are the same, observe that

−7

 
1

1

 
+ (−9)

 −1

0

 
=
 

2

−7

 
.

3. a. [T ]B1
=
 

1 1

1 1

 
; [T ]B2

=
 

2 0

0 0

 
b.

[T ]B1
[v]B1

=
 

1 1

1 1

  
3

−2

 
=
 

1

1

 
[T ]B2

[v]B2
=
 

2 0

0 0

  1
2

− 5
2

 
=
 

1

0

 
To show the results are the same, observe that

1

 
1

1

 
+ 0

 −1

1

 
=
 

1

1

 

5. a. [T ]B1
=
 1 0 0

0 0 0

0 0 1


[T ]B2

=
 1 −1 0

0 0 0

0 1 1


b.

[T ]B1
[v]B1

=
 1 0 0

0 0 0

0 0 1

 1

2

−1

 =
 1

0

−1



[T ]B2
[v]B2

=
 1 −1 0

0 0 0

0 1 1

 3

2

−4

 =
 1

0

−2


To show that the results are the same, observe that

1

 1

0

1

+ 0

 −1

1

0

+ (−2)

 0

0

1

 =
 1

0

−1


7. P = [I ]

B1
B2

=
 

3 −1

−1 1

 
[T ]B2

= P−1[T ]B1
P

= 1

2

 
1 1

1 3

  
1 1

3 2

  
3 −1

−1 1

 

=
 9

2
− 1

2

23
2

− 3
2


9. P = [I ]

B1
B2

=
 

1
3

1

1
3

−1

 
[T ]B2

= P−1[T ]B1
P

=
 3

2
3
2

1
2

− 1
2

 1 0

0 −1

  1
3

1

1
3

−1

 

=
 

0 3
1
3

0

 
11. P = [I ]

B1
B2

=
 

2 1

3 2

 
[T ]B2

= P−1[T ]B1
P

=
 

2 −1

−3 2

  
2 0

0 3

  
2 1

3 2

 
=
 −1 −2

6 6

 

13. [T ]B1
=
 

1 −1

−2 1

 
P = [I ]

B1
B2

=
 −1 −1

2 1

 
[T ]B2

= P−1[T ]B1
P

=
 

1 1

−2 −1

  
1 −1

−2 1

  −1 −1

2 1

 
=
 

1 1

2 1
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15. [T ]B1
=
 0 1 0

0 0 2

0 0 0


[T ]B2

=
 0 2 0

0 0 1

0 0 0


If

P = [I ]
B1
B2

=
 1 0 −2

0 2 0

0 0 1


then [T ]B2

= P−1[T ]B1
P .

17. Since A and B are similar, there is an invertible matrix

P such that B = P−1AP . Also since B and C are

similar, there is an invertible matrix Q such that

C = Q−1BQ . Therefore, C = Q−1P−1APQ =
(PQ)−1A(PQ) so that A and C are also similar.

19. For any square matrices A and B the trace function

satisfies the property tr(AB) = tr(BA). Now, since A

and B are similar matrices, there exists an invertible

matrix P such that B = P−1AP . Hence,

tr(B) = tr(P−1AP) = tr(APP−1) = tr(A)

21. Since A and B are similar matrices, there exists an

invertible matrix P such that B = P−1AP . Hence,

Bn = (P−1AP)n = P−1AnP

Thus, An and Bn are similar.

Section 4.6

1. a.

 
1 0

0 −1

 
b.

 −1 0

0 1

 
c.

 
1 0

0 3

 
3. a. [T ]S =

 
3 0

0 − 1
2

 
b.

x 

y 

⫺10

⫺10

10

10

c. [T ]−1
S =

 
1
3

0

0 −2

 
5. a. [T ]S =

 −
√

2/2
√

2/2

−
√

2/2 −
√

2/2

 
b.

x 

y 

⫺5

⫺5

5

5

c. [T ]−1
S =

 −
√

2/2 −
√

2/2√
2/2 −

√
2/2

 

7. a.


√

3/2 −1/2
√

3/2 − 1/2

1/2
√

3/2
√

3/2 + 1/2

0 0 1


b.

x 

y 

⫺5

⫺5

5

5

c.


√

3/2 1/2 −1

−1/2
√

3/2 −1

0 0 1


9. a.

  
0

0

  
B

=
 

0

0

 
  

2

2

  
B

=
 

2

0

 
  

0

2

  
B

=
 

1

1

 
b. [T ]SB =

 
1 1

1 −1

 
c.

 
1 1

1 −1

  
0

0

 
=
 

0

0

 
 

1 1

1 −1

  
2

0

 
=
 

2

2
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1 1

1 −1

  
1

1

 
=
 

2

0

 

x 

y 

⫺5

⫺5

5

5

The original triangle is reflected across the line

y = x .

d.

 
0 1

1 0

  
0

0

 
=
 

0

0

 
 

0 1

1 0

  
2

2

 
=
 

2

2

 
 

0 1

1 0

  
0

2

 
=
 

2

0

 

Review Exercises Chapter 4

1. a. The vectors are not scalar multiples, so S is a basis.

b. T

 
x

y

 
=


x

x + y
x − y

2y


c. N (T ) = {0}
d. Since N (T ) = {0}, T is one-to-one.

e.




1

1

1

2

,


0

1

−1

2




f. No, T is not onto since dim(R(T )) = 2 and

dim(⺢4) = 4. Also


a

b

c

d

 is in R(T ) if and only

if c + b − 2a = 0.

g.




1

0

1

1

,


−1

1

0

1

,


1

0

0

0

,


0

1

0

0




h. [T ]CB =


−1 2

5 −4

7 −5

−2 4



i.

 
A

 
x

y

  
C

=


−1 2

5 −4

7 −5

−2 4

  xy
  
B

=


−1 2

5 −4

7 −5

−2 4


 

1
3
x + 1

3
y

2
3
x − 1

3
y

 

=


x − y

−x + 3y

−x + 4y

2x − 2y



This implies that A

 
x

y

 
=


x

x + y
x − y

2y

.

3. a. S

 
x

y

 
=
 

x

−y
 
;T

 
x

y

 
=
 −x

y

 
b. [S ]B =

 
1 0

0 −1

 
; [T ]B =

 −1 0

0 1

 
c. [T ◦ S ]B =

 −1 0

0 −1

 
= [S ◦ T ]B

The linear operators S ◦ T and T ◦ S reflect a vector

through the origin.

5. a. [T ]B =
 

0 1

1 0

 

b. [T ]B
 
B =

 
1 0

0 1

 

7. a. [T ]B =
 1 0 0

0 0 1

0 1 0



b.

T
 −1

2

1


B

=
 −1

1

2

 = T
 −1

2

1



c. N (T ) =


 0

0

0


d. R(T ) = ⺢

3
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e. [Tn ]B =
 1 0 0

0 0 1

0 1 0

n

9. Since T 2 − T + I = 0,T − T 2 = I . Then

(T ◦ (I − T ))(v) = T ((I − T )(v)) = T (v − T (v))

= T (v) − T 2(v) = I (v) = v

Chapter Test: Chapter 4

1. F 2. F

3. T 4. T

5. T 6. F

7. F 8. F

9. T 10. F

11. T 12. F

13. T 14. T

15. T 16. T

17. T 18. T

19. T 20. T

21. F 22. F

23. T 24. F

25. T 26. F

27. F 28. T

29. F 30. T

31. F 32. F

33. T 34. F

35. F 36. T

37. T 38. T

39. F 40. T

Chapter 5

Section 5.1

1. λ = 3

3. λ = 0

5. λ = 1

7. a. λ2 + 5λ = 0

b. λ1 = 0, λ2 = −5

c. v1 =
 

1

1

 
, v2 =

 −2

3

 

d.
 −2 2

3 −3

  
1

1

 
=
 

0

0

 
= 0

 
1

1

 
; −2 2

3 −3

  −2

3

 
=
 

10

−15

 
= −5

 −2

3

 
9. a. (λ− 1)2 = 0

b. λ1 = 1

c. v1 =
 

1

0

 
d.

 
1 −2

0 1

  
1

0

 
=
 

1

0

 
= 1

 
1

0

 
11. a. (λ+ 1)2(λ− 1) = 0

b. λ1 = −1, λ2 = 1

c. v1 =
 1

0

0

, v2 =
 1

2

2


d.
 −1 0 1

0 1 0

0 2 −1

 1

0

0

 =
 −1

0

0

 = −1

 1

0

0


 −1 0 1

0 1 0

0 2 −1

 1

2

2

 =
 1

2

2

 = 1

 1

2

2


13. a. (λ− 2)(λ− 1)2 = 0

b. λ1 = 2, λ2 = 1

c. v1 =
 1

0

0

, v2 =
 −3

1

1


d.

 2 1 2

0 2 −1

0 1 0

 1

0

0

 =
 2

0

0

 = 2

 1

0

0


 2 1 2

0 2 −1

0 1 0

 −3

1

1

 =
 −3

1

1

 = 1

 −3

1

1


15. a. (λ+ 1)(λ− 2)(λ+ 2)(λ− 4) = 0

b. λ1 = −1, λ2 = 2, λ3 = −2, λ4 = 4

c. v1 =


1

0

0

0

, v2 =


0

1

0

0

, v3 =


0

0

1

0

,

v4 =


0

0

0

1


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d.


−1 0 0 0

0 2 0 0

0 0 −2 0

0 0 0 4




1

0

0

0

 =


−1

0

0

0



= −1


1

0

0

0


The other cases are similar.

17. Let A =
 
a b

c d

 
. The characteristic equation is

(a − λ)(d − λ) − bc = 0, which simplifies to

λ2 − (a + d )λ+ (ad − bc) = 0. Observe that the

coefficient of λ is −(a + d ), which is equal to −tr(A).

Also, the constant term ad − bc is equal to det(A).

19. Suppose A is not invertible. Then the homogeneous

equation Ax = 0 has a nontrivial solution x0. Observe

that x0 is an eigenvector of A corresponding to the

eigenvalue λ = 0 since Ax0 = 0 = 0x0. On the other

hand, suppose that λ = 0 is an eigenvalue of A. Then

there exists a nonzero vector x0 such that Ax0 = 0, so A

is not invertible.

21. Let A be such that A2 = A, and let λ be an eigenvalue

of A with corresponding eigenvector v so that Av = λv.

Then A2v = λAv, so Av = λ2v. The two equations

Av = λv and Av = λ2v

imply that λ2v = λv, so that (λ2 − λ)v = 0. Since

v  = 0, then λ(λ− 1) = 0, so that either λ = 0 or λ = 1.

23. Let A be such that An = 0 for some n, and let λ be an

eigenvalue of A with corresponding eigenvector v, so

that Av = λv. Then A2v = λAv = λ2v. Continuing in

this way, we see that Anv = λnv. Since An = 0, then

λnv = 0. Since v  = 0, then λn = 0, so that λ = 0.

25. If A is invertible, then

det(AB − λI ) = det(A−1(AB − λI )A)

= det(BA− λI )

27. Since

det(A− λI ) = (λ− a11)(λ− a22) · · · (λ− ann )

the eigenvalues are the diagonal entries.

29. Let λ be an eigenvalue of C with corresponding

eigenvector v. Let C = B−1AB . Since Cv = λv, then

B−1ABv = λv. Then A(Bv) = λ(Bv). Therefore, Bv is

an eigenvector of A corresponding to λ.

31. Let T

 
x

y

 
=
 

x

−y
 

. The eigenvalues are λ = 1

and λ = −1 with corresponding eigenvectors

 
1

0

 
and

 
0

1

 
, respectively.

33. If θ  = 0 or θ  = π, then T can only be described as a

rotation. Hence, T

 
x

y

 
cannot be expressed by scalar

multiplication as this only performs a contraction or a

dilation. When θ = 0, then T is the identity map

T

 
x

y

 
=
 
x

y

 
. In this case every vector in ⺢2 is an

eigenvector with corresponding eigenvalue equal to 1.

Also, if θ = π, then T

 
x

y

 
=
 −1 0

0 −1

  
x

y

 
.

In this case every vector in ⺢2 is an eigenvector with

eigenvalue equal to −1.

35. a. [T ]B =

 − 1
2

1
2

0

− 1
2

1
2

0

−1 −1 1


b. [T ]B  =

 1 1 0

−1 −1 0

−1 0 1


c. The characteristic polynomial for the matrices in

parts (a) and (b) is given by p(x ) = x3 − x2. Hence,

the eigenvalues are the same.

Section 5.2

1. P−1AP =
 

1 0

0 −3

 

3. P−1AP =
 0 0 0

0 −2 0

0 0 1


5. Eigenvalues: −2,−1; A is diagonalizable since there

are two distinct eigenvalues.

7. Eigenvalues: −1 with multiplicity 2; eigenvectors: 
1

0

 
; A is not diagonalizable.

9. Eigenvalues: 1,0; A is diagonalizable since there are

two distinct eigenvalues.

11. Eigenvalues: 3, 4, 0; A is diagonalizable since there are

three distinct eigenvalues.
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13. Eigenvalues: −1 and 2 with multiplicity 2;

eigenvectors:

 1

−5

2

,
 −1

−1

1

; A is not

diagonalizable since there are only two linearly

independent eigenvectors.

15. Eigenvalues: 1 and 0 with multiplicity 2; eigenvectors: −1

1

1

,

 0

1

0

,

 0

0

1

; A is diagonalizable since

there are three linearly independent eigenvectors.

17. Eigenvalues: −1, 2, 0 with multiplicity 2;

eigenvectors:


0

−1

1

0

,


0

1

2

3

,


0

−1

0

1

,


−1

0

1

0

;

A is diagonalizable since there are four linearly

independent eigenvectors.

19. P =
 −3 0

1 1

 
; P−1AP =

 
2 0

0 −1

 

21. P =
 0 2 0

1 1 1

1 3 2



P−1AP =
 −1 0 0

0 1 0

0 0 0



23. P =
 2 0 0

1 1 0

0 0 1


P−1AP =

 −1 0 0

0 1 0

0 0 1



25. P =


−1 0 −1 1

0 1 0 0

0 0 1 1

1 0 0 0



P−1AP =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 2


27. By induction. If k = 1, then Ak = A = PDP−1 =

PDkP−1. Suppose the result holds for a natural number

k . Then

Ak+1 = (PDP−1)k+1

= (PDP−1)k (PDP−1)

= (PDkP−1)(PDP−1)

= (PDk )(P−1P)(DP−1)

= PDk+1P−1

29. P =
 1 0 1

1 −2 2

1 1 0

; D =
 0 0 0

0 1 0

0 0 1

;

Ak = PDkP−1 =
 3 −1 −2

2 0 −2

2 −1 −1


31. Since A is diagonalizable, there is an invertible P and

diagonal D such that A = PDP−1. Since B is similar to

A, there is an invertible Q such that B = Q−1AQ . Then

D = P−1QBQ−1P = (Q−1P)−1B(Q−1P)

33. If A is diagonalizable with an eigenvalue of multiplicity

n, then A = P(λI )P−1 = (λI )PP−1 = λI . On the other

hand, if A = λI , then A is a diagonal matrix.

35. a. [T ]B1
=
 0 1 0

0 0 2

0 0 0


b. [T ]B2

=
 1 1 2

−1 −1 0

0 0 0


c. The only eigenvalue of A and B is λ = 0, of

multiplicity 3.

d. The only eigenvector corresponding to λ = 0 is −1

1

0

, so T is not diagonalizable.

37. If B is the standard basis for ⺢3, then

[T ]B =
 2 2 2

−1 2 1

1 −1 0


The eigenvalues are λ1 = 1, multiplicity 2, and λ2 = 2

with corresponding eigenvectors

 0

−1

1

 and 1

−1

1

, respectively. Since there are only two

linearly independent eigenvectors, T is not

diagonalizable.
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39. Since A and B are matrix representations for the same

linear operator, they are similar. Let A = Q−1BQ . The

matrix A is diagonalizable if and only if D = P−1AP

for some invertible matrix P and diagonal matrix D .

Then

D = P−1(Q−1BQ)P = (QP)−1B(QP)

so B is diagonalizable. The proof of the converse is

identical.

Section 5.3
1. y1(t ) = [y1(0) + y2(0)]e−t − y2(0)e−2t

y2(t ) = y2(0)e−2t

3. y1(t ) = 1

2
[y1(0) − y2(0)]e4t

+ 1

2
[y1(0) + y2(0)]e−2t

y2(t ) = 1

2
[−y1(0) + y2(0)]e4t

+ 1

2
[y1(0) + y2(0)]e−2t

5. y1(t ) = [2y1(0) + y2(0) + y3(0)]e−t

+ [−y1(0) − y2(0) − y3(0)]e2t

y2(t ) = [−2y1(0) − y2(0) − 2y3(0)]et

+ 2[y1(0) + y2(0) + y3(0)]e2t

y3(t ) = [−2y1(0) − y2(0) − y3(0)]e−t

+ [2y1(0) + y2(0) + 2y3(0)]et

7. y1(t ) = e−t , y2(t ) = −e−t
9. a. y  1(t ) = − 1

60
y1 + 1

120
y2,

y  2(t ) = 1
60
y1 − 1

120
y2

y1(0) = 12, y2(0) = 0

b. y1(t ) = 4 + 8e−
1

40
t , y2(t ) = 8 − 8e−

1
40
t

c. limt→∞ y1(t ) = 4, limt→∞ y2(t ) = 8

The 12 lb of salt will be evenly distributed in a ratio

of 1:2 between the two tanks.

Section 5.4

1. a. T =
 

0.85 0.08

0.15 0.92

 
b. T 10

 
0.7

0.3

 
≈
 

0.37

0.63

 
c.

 
0.35

0.65

 

3. T =
 0.5 0.4 0.1

0.4 0.4 0.2

0.1 0.2 0.7


T 3

 0

1

0

 ≈
 0.36

0.35

0.29


T 10

 0

1

0

 ≈
 0.33

0.33

0.33


5. T =

 0.5 0 0

0.5 0.75 0

0 0.25 1


The steady-state probability vector is

 0

0

1

, and

hence the disease will not be eradicated.

7. a. T =


0.33 0.25 0.17 0.25

0.25 0.33 0.25 0.17

0.17 0.25 0.33 0.25

0.25 0.17 0.25 0.33



b. T


1

0

0

0

 =


0.5(0.16)n + 0.25

0.25

−0.5(0.16)n + 0.25

0.25



c.


0.25

0.25

0.25

0.25


9. Eigenvalues of T : λ1 = −q + p + 1, λ2 = 1, with

corresponding eigenvectors

 −1

1

 
and

 
q/p

1

 
.

The steady-state probability vector is

1

1 + q/p

 
q/p

1

 
=
 

q
p+q
p
p+q

 
.

Review Exercises Chapter 5

1. a.
 
a b

b a

  
1

1

 
=
 
a + b
a + b

 
= (a + b)

 
1

1

 
b. λ1 = a + b, λ2 = a − b

c. v1 =
 

1

1

 
, v2 =

 −1

1
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d. P =
 

1 −1

1 1

 
,D =

 
a + b 0

0 a − b
 

3. a. λ1 = 0, λ2 = 1

b. No conclusion can be drawn from part (a) about the

diagonalizability of A.

c. λ1 = 0: v1 =


0

0

0

1

 v2 =


−1

0

1

0



λ2 = 1: v3 =


0

1

0

0


d. The eigenvectors {v1, v2, v3} are linearly

independent.

e. A is not diagonalizable as it is a 4 × 4 matrix with

only three linearly independent eigenvectors.

5. a. det(A− λI ) =

      
−λ 1 0

0 −λ 1

−k 3 −λ

      
= λ3 − 3λ+ k = 0

b.

k = 0

k = −4

k = −3

k = −2.5

k = 2.5

k = 3

k = 4

c. −2 < k < 2

7. a. Let v =


1

1

.

.

.

1

. Then

Av =


λ

λ

.

.

.

λ

 = λ


1

1
.
.
.

1


so λ is an eigenvalue of A corresponding to the

eigenvector v.

b. Yes, since A and At have the same eigenvalues.

Chapter Test: Chapter 5

1. F 2. F

3. F 4. T

5. T 6. T

7. T 8. T

9. T 10. T

11. F 12. F

13. F 14. T

15. F 16. T

17. T 18. T

19. T 20. F

21. T 22. T

23. F 24. F

25. T 26. T

27. T 28. T

29. T 30. F

31. T 32. T

33. T 34. F

35. T 36. T

37. T 38. T

39. T 40. T

Chapter 6

Section 6.1

1. 5

3. −11

5.
√

26

7.
1√
26

 
1

5

 

9.
10√

5

 
2

1

 
11.

√
22

13.
1√
22

 −3

−2

3



15.
3√
11

 1

1

3


17. c = 6
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19. v1⊥v2; v1⊥v4; v1⊥v5; v2⊥v3; v3⊥v4; v3⊥v5

21. Since v3 = −v1, the vectors v1 and v3 are in opposite

directions.

23. w =
 

2

0

 

x 

y 

⫺5

⫺5

5

5

u

vw

25. w = 3

2

 
3

1

 

x 

y 

⫺5

⫺5

5

5

u

v
w

27. w = 1

6

 5

2

1



u

v

w

29. Let u be a vector in span{u1, u2, · · · , un }. Then there

exist scalars c1, c2, · · · , cn such that

u = c1u1 + c2u2 + · · · + cnun

Then

v·u = v·(c1u1 + c2u2 + · · · + cnun )

= c1v·u1 + c2v·u2 + · · · + cnv·un

= c1(0) + c2(0) + · · · + cn (0) = 0

31. Consider the equation

c1v1 + c2v2 + · · · + cnvn = 0

Since

v1·(c1v1 + c2v2 + · · · + cnvn ) = v1 · 0
so

c1v1·v1 + c2v1·v2 + · · · + cnv1·vn = 0

Since S is an orthogonal set of vectors, this equation

reduces to

c1||v1||2 = 0

and since ||v1||  = 0, then c1 = 0. In a similar way we

have c2 = c3 = · · · = cn = 0. Hence, S is linearly

independent.

33. Since ||u||2 = u·u,

||u + v||2 + ||u − v||2 = (u + v)·(u + v)

+ (u − v)·(u − v)

= u·u + 2u·v + v·v

+ u·u − 2u·v + v·v

= 2||u||2 + 2||v||2

35. If the column vectors of A form an orthogonal set, then

the row vectors of At are orthogonal to the column

vectors of A. Consequently,

(AtA)ij = 0 if i  = j
On the other hand, if i = j , then (AtA)ii = ||Ai ||2.

Thus,

AtA =


||A1||2 0 · · · 0

0 ||A2||2 0
.
.
.

.

.

. 0
. . . 0

0 · · · 0 ||An ||2


37. Suppose that (Au)·v = u·(Av) for all u and v in ⺢n . By

Exercise 36,

u·(Av) = (Atu)·v

and by hypothesis

u·(Av) = (Au)·v
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for all u and v in ⺢n . Thus,

(Atu)·v = (Au)·v

for all u and v in ⺢n . Let u = ei and v = ej , so

(At )ij = Aij . Hence At = A, so A is symmetric.

For the converse, suppose that A = At . Then by

Exercise 36,

u·(Av) = (Atu)·v = (Au)·v

Section 6.2

1. Since  u, u = 0 when u1 = 3u2 or u1 = u2, V is not an

inner product space.

3. Since  u + v, w and  u, v +  v, w are not equal for all

u, v, and w, V is not an inner product space.

5. Yes, V is an inner product space.

7. Yes, V is an inner product space.

9. Yes, V is an inner product space.

11. ! π

−π

sin x dx =
! π

−π

cos x dx

=
! π

−π

cos x sin x dx = 0

13.
$ 1

0
(2x − 1) dx = 0$ 1

0

 −x2 + x − 1
6

 
dx = 0$ 1

0

 −2x3 + 3x2 − 4
3
x + 1

6

 
dx = 0

15. a.  −3 + 3x − x2  =
%

370
10

b. cos θ = − 5
168

√
105

17. a.  x − ex  =
%

1
2
e2 − 13

6

b. cos θ = 2
√

3√
2e2−2

19. a.  2x2 − 4  = 2
√

5

b. cos θ = − 2
3

21. a.  A− B  =
&

tr

 
2 −5

−5 17

 
=

√
19

b. cos θ = 3

5
√

6

23. a.  A− B  =

'((()tr

 8 0 8

0 3 4

8 4 14

 =
√

25 = 5

b. cos θ = 26√
38

√
39

25.

  
x

y

     2x + 3y = 0

 

27.


 xy
z

      2x − 3y + z = 0


29. a.

*
x2, x3

+ = $ 1

0
x5 dx = 1

6

b.
*
ex , e−x

+ = $ 1

0
dx = 1

c.  1  =
%$ 1

0
dx = 1

 x  =
%$ 1

0
x2 dx =

√
3

3

d. cos θ = 3

2
√

3

e.  1 − x  =
√

3
3

31. If f is an even function and g is an odd function, then

fg is an odd function. Then! a

−a
f (x )g(x ) dx = 0

so f and g are orthogonal.

33.  c1u1, c2u2 = c1  u1, c2u2 
= c1c2  u1, u2 

= 0

Section 6.3

1. a. projv u =
 

− 3
2

3
2

 

b. u − projv u =
 

1
2

1
2

 

v·(u − projvu) =
 −1

1

 
·

 
1
2

1
2

 
= 0

3. a. projv u =
 

− 3
5

− 6
5

 

b. u − projv u =
 

8
5

− 4
5

 

v·(u − projv u) =
 

1

2

 
·

 
8
5

− 4
5

 
= 0

5. a. projv u =

 − 4
3

4
3

4
3


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b. u − projv u =


1
3

5
3

− 4
3



v·(u − projv u) =
 1

−1

−1

 ·


1
3

5
3

− 4
3

 = 0

7. a. projv u =
 0

0

−1



b. u − projv u =
 1

−1

0



v·(u − projv u) =
 0

0

1

·

 1

−1

0

 = 0

9. a. projq p = 5
4
x − 5

12

b. p − projq p = x2 − 9
4
x + 17

12*
q , p − projq p

+
=
! 1

0

(3x − 1)

 
x2 − 9

4
x + 17

12

 
dx = 0

11. a. projq p = − 7
4
x2 + 7

4

b. p − projq p = 15
4
x2 − 3

4*
q , p − projq p

+
=
! 1

0

(x2 − 1)

 
15

4
x2 − 3

4

 
dx = 0

13.

 
1√
2

 
1

−1

 
,

1√
2

 −1

−1

  

15.

 1√
2

 1

0

1

,
1√
6

 1

2

−1

,
1√
3

 1

−1

−1


17.

,√
3(x − 1), 3x − 1, 6

√
5(x2 − x + 1

6
)
-

19.

 1√
3

 1

1

1

,
1√
6

 2

−1

−1



21.


1√
6


−1

−2

0

1

, 1√
6


−2

1

−1

0

,
1√
6


1

0

−2

1




23.
,√

3x , −3x + 2
-

25.


1√
3


1

0

1

1

,
1√
3


0

1

−1

1




27. Let

v = c1u1 + c2u2 + · · · + cnun
Then

|| v ||2 = v · v
= c2

1 (u1·u1) + c2
2 (u2·u2) + · · · + c2

n (un ·un )

= c2
1 + c2

2 + · · · + c2
n

= |v·u1|2 + · · · + |v·un |2

29. Since

n.
k=1

aki akj =
/

0 if i  = j
1 if i = j =  

AtA
 
ij

then AtA = I .
31. Since ||Ax|| =

√
Ax·Ax and

Ax·Ax = xt ·(AtAx) = x·x

then ||Ax||2 = x·x = ||x||2 so ||Ax|| = ||x||.
33. By Exercise 32, Ax·Ay = x·y. Then Ax·Ay = 0 if and

only if x·y = 0

35. Let

W = {v | v·ui = 0 for all i = 1, 2, . . . ,m}

If c is a real number and x and y are vectors in W , then

(x + cy)·ui = x·ui + cy·ui = 0 + c(0) = 0

for all i = 1, 2, . . . , n.

37. vt Av = [x y]

 
3 1

1 3

  
x

y

 
= 3x2 + 2xy + 3y2

≥ (x + y)2 ≥ 0

39. xtAtAx = (Ax)t Ax = (Ax)·(Ax)

= ||Ax||2 ≥ 0
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41. Since Ax = λx, then xt Ax = λ||x||2. Since A is positive

definite and x is not the zero vector, then xtAx > 0, so

λ > 0.

Section 6.4

1. W ⊥ = span

  
1
1
2

  

3. W ⊥ = span


 1

−2

0

,
 0

1

1


5. W ⊥ = span




2
3

− 1
3

1




7. W ⊥ = span




− 1
6

− 1
2

1

0

,


2
3

−1

0

1




9.


 − 1

3

− 1
3

1




11.




1
2

− 3
2

1

0

,


− 1

2

1
2

0

1




13.
 

50
9
x2 − 52

9
x + 1

 

15.




1

1

1

1




17. An orthogonal basis is

B =


 2

0

0

,

 0

−1

0


projW v =

 1

2

0



19. projW v =
 0

0

0



21. An orthogonal basis is

B =




3

0

−1

2

,


−5

21

−3

6




projW v = 4
73


−5

21

−3

6


23. a. W ⊥ = span

  
1

3

  

b. projW v = 1

10

 −3

1

 

c. u = v − projW v = 1

10

 
3

9

 

d.
1

10

 
3

9

 
·

 −3

1

 
= 0

e.

x 

y 

⫺5

⫺5

5

5

W

W ⊥

v

projW v

25. Notice that the vectors v1 and v2 are not orthogonal.

Using the Gram-Schmidt process orthogonal vectors

with the same span are 1

1

−1

  0

3

3



a. W ⊥ = span


 2

−1

1


b. projW v = 1

3

 2

5

1



c. u = v − projW v = 1

3

 4

−2

2


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d. Since u is a scalar multiple of

 2

−1

1

, then u is

in W ⊥.

e. W

W ⊥

v

projW v

27. Let w ∈ W ⊥
2 , so  w, u = 0 for all u ∈ W2. Since

W1 ⊆ W2, then  w, u = 0 for all u ∈ W1. Hence

w ∈ W ⊥
1 , so W ⊥

2 ⊆ W ⊥
1 .

29. a. Let A =
 
d e

f g

 
and B =

 
a b

b c

 
. Then

 A,B = tr

  
a b

b c

  
d e

f g

  

= tr

 
ad + bf ae + bg
bd + cf be + cg

 
So A ∈ W ⊥ if and only if ad + bf + be + cg = 0

for all real numbers a, b, and c. This implies

A =
 

0 e

−e 0

 
. That is, A is skew-symmetric.

b.

 
a b

c d

 
=
 

a b+c
2

b+c
2

d

 
+
 

0 b−c
2

− b−c
2

0

 
Section 6.5

1. a. 0x =
 

5
2

0

 

b. w1 = A0x =


5
2

5
2

5



w2 = b − w1 =


3
2

− 3
2

0



3. a.

b. y = 653,089
13,148

x − 317,689,173
3287

5. a.

b. y = 0.07162857143x − 137.2780952

7. a.
p2(x ) = 2 sin x − sin 2x

p3(x ) = 2 sin x − sin 2x + 2

3
sin 3x

p4(x ) = 2 sin x − sin 2x + 2

3
sin 3x

− 1

2
sin 4x

p5(x ) = 2 sin x − sin 2x + 2

3
sin 3x

− 1

2
sin 4x + 2

5
sin 5x

b.

9. a.

p2(x ) = 1

3
π2 − 4 cos x + cos 2x

p3(x ) = 1

3
π2 − 4 cos x + cos 2x − 4

9
cos 3x

p4(x ) = 1

3
π2 − 4 cos x + cos 2x − 4

9
cos 3x

+ 1

4
cos 4x
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p5(x ) = 1

3
π2 − 4 cos x + cos 2x − 4

9
cos 3x

+ 1

4
cos 4x − 4

25
cos 5x

b.

Section 6.6

1. λ1 = 3, λ2 = −1

3. λ1 = 1, λ2 = −3, λ3 = 3

5. λ1 = −3 with eigenvector v1 =
 −1

2

 
; λ2 = 2 with

eigenvector v2 =
 

2

1

 
. Observe that v1·v2 = 0.

7. λ1 = 1 with eigenvector v1 =
 1

0

1

; λ2 = −3 with

eigenvector v2 =
 −1

2

1

; λ3 = 3 with eigenvector

v3 =
 −1

−1

1

. Observe that v1·v2 = v1·v3 =

v2·v3 = 0.

9. V3 = span


 1

0

1


V−1 = span


 −1

0

1

,

 0

1

0


dim (V3)+ dim (V−1) = 1 + 2 = 3

11. V3 = span




3

1

1

1




V−3 = span




0

−2

1

1




V−1 = span




−1

1

2

0

,


0

0

−1

1




dim (V3)+ dim (V−3)+ dim (V−1)

= 1 + 1 + 2 = 4

13. Yes. √
3/2 1/2

−1/2
√

3/2

  √
3/2 −1/2

1/2
√

3/2

 
=
 

1 0

0 1

 

15. Yes.
√

2/2
√

2/2 0

−
√

2/2
√

2/2 0

0 0 1


√

2/2 −
√

2/2 0√
2/2

√
2/2 0

0 0 1



=
 1 0 0

0 1 0

0 0 1


17. P =

 −1/
√

2 1/
√

2

1/
√

2 1/
√

2

 
;D =

 −1 0

0 7

 

19. P =
 −1/

√
2 1/

√
2

1/
√

2 1/
√

2

 
;D =

 −4 0

0 2

 

21. P =
 −1/

√
3 1/

√
2 −1/

√
6

1/
√

3 0 −2/
√

6

1/
√

3 1/
√

2 1/
√

6



D =
 1 0 0

0 2 0

0 0 −2


23. Since AAt = BBt = I , then

(AB)(AB)t = AB(BtAt )

= A(BBt )At = AIAt

= AAt = I

Similarly, (BA)(BA)t = I .
25. Since AAt = I , At is the inverse of A so AtA = I and

hence At is also orthogonal.
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27. a. Since cos2 θ+ sin2 θ = 1, then 
cos θ − sin θ

sin θ cos θ

  
cos θ sin θ

− sin θ cos θ

 
=
 

1 0

0 1

 
29. If D = PtAP , then

Dt = (PtAP)t = PtAtP
Since D is a diagonal matrix, then Dt = D , so

D = PtAP and hence PtAP = PtAtP . Then

P(PtAP)Pt = P(PtAtP)Pt , so A = At .
31. a. vtv = v2

1 + · · · + v2
n

b. The transpose of both sides of the equation Av = λv

gives vt At = λvt . Since A is skew-symmetric,

vt (−A) = λvt . Now, right multiplication of both

sides by v gives vt (−Av) = λvtv, so vt (−λv) =
λvtv. Then 2λvtv = 0 so 2λ(v2

1 + · · · + v2
n ) = 0 and

this gives λ = 0.

Section 6.7

1. 30(y  )2 +
√

10x  = 0

3. 2(x  )2 + (y  )2 = 1

5. (x  )2
2

− (y  )2
4

= 1

7. a. [x y]

 
4 0

0 16

  
x

y

 
− 16 = 0

b. 10x2 − 12xy + 10y2 − 16 = 0

9. a. 7x2 + 6
√

3xy + 13y2 − 16 = 0

b. 7(x − 3)2 + 6
√

3(x − 3)(y − 2) + 13(y − 2)2−
16 = 0

Section 6.8

1. σ1 =
√

10, σ2 = 0

3. σ1 = 2
√

3, σ2 =
√

5, σ3 = 0

5. A =
 1√

2

1√
2

1√
2

− 1√
2

  
8 0

0 2

  1√
2

1√
2

1√
2

− 1√
2

 

7. A =
 

0 1

1 0

  √
2 0 0

0 1 0

  0 1√
2

1√
2

1 0 0

0 − 1√
2

1√
2


9. a. x1 = 2, x2 = 0 b. x1 = 1, x2 = 1

c. σ1/σ2 ≈ 6, 324, 555

Review Exercises Chapter 6

1. a.

 1 1 2

0 0 1

1 0 0

 −→
 1 0 0

0 1 0

0 0 1


b.


 0

1

0

,


√

2/2

0

−
√

2/2

,


√

2/2

0√
2/2


c. projW v =

 −2

0

−1


3. a. If

 xy
z

 ∈ W , then

 xy
z

·
 ab
c

 = ax + by + cz = 0

so

 ab
c

 is in W ⊥.

b. W ⊥ = span


 ab
c


That is, W ⊥ is the line in the direction of

 ab
c


and which is perpendicular (the normal vector) to

the plane ax + by + cz = 0.

c. projW⊥ v = ax1+bx2+cx3
a2+b2+c2

 ab
c


d.  projW⊥ v  = |ax1+bx2+cx3|√

a2+b2+c2

Note: This gives the distance from the point (x1, x2, x3)

to the plane.
5. a.  1, cos x = $ π

−π
cos x dx = 0

 1, sin x = $ π

−π
sin x dx = 0

 cos x , sin x = $ π

−π
cos x sin x dx = 0

b.
,

1√
2π

, 1√
π

cos x , 1√
π

sin x
-

c. projW x
2 = 1

3
π2 − 4 cos x

d.  projW x
2  = 1

3

√
2π5 + 144π
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7. Using the properties of an inner product and the fact

that the vectors are orthonormal,

 v  = √
v·v

=
%
c2

1  v1, v1 + · · · + c2
n  vn , vn  

=
%
c2

1 + · · · + c2
n

If the basis is orthogonal, then

 v  =
%
c2

1  v1, v1 + · · · + c2
n  vn , vn  

9. a.


1 0 −1

1 −1 2

1 0 1

1 −1 2

 −→


1 0 0

0 1 0

0 0 1

0 0 0



b. B1 =




1

1

1

1

,


1
2

− 1
2

1
2

− 1
2

,


−1

0

1

0




c. B2 =




1
2

1
2

1
2

1
2

,


1
2

− 1
2

1
2

− 1
2

,


−

√
2

2

0√
2

2

0




d. Q =


1
2

1
2

−
√

2
2

1
2

− 1
2

0

1
2

1
2

√
2

2

1
2

− 1
2

0



R =
 2 −1 2

0 1 −2

0 0
√

2


e. A = QR

Chapter Test: Chapter 6

1. T 2. T

3. F 4. F

5. F 6. T

7. T 8. F

9. F 10. F

11. T 12. T

13. T 14. T

15. F 16. T

17. T 18. T

19. F 20. T

21. F 22. T

23. F 24. F

25. F 26. F

27. T 28. T

29. T 30. F

31. T 32. T

33. F 34. F

35. T 36. F

37. T 38. T

39. F 40. T

Appendix A

Section A.1

1. A ∩ B = {−2, 2, 9}

3. A× B = {(a, b) | a ∈ A, b ∈ B}
There are 9 × 9 = 81 ordered pairs in A× B .

5. A\B = {−4, 0, 1, 3, 5, 7}
7. A ∩ B = [0, 3]

9. A\B = (−11, 0)

11. A\C = (−11,−9)

13. (A ∪ B)\C = (−11,−9)

15.

x 

y 

⫺5

⫺5

5

5



476 Answers to Odd-Numbered Exercises

17.

x 

y 

⫺5

⫺5

5

5

19.

x 

y 

⫺5

⫺5

5

5

21. (A ∩ B) ∩ C = {5} = A ∩ (B ∩ C )

23. A ∩ (B ∪ C ) = {1, 2, 5, 7} = (A ∩ B) ∪ (A ∩ C )

25. A\(B ∪ C ) = {3, 9, 11} = (A\B) ∩ (A\C )

Section A.2

1. Since for each first coordinate there is a unique second

coordinate, f is a function.

3. Since there is no x such that f (x ) = 14, the function is

not onto. The range of f is the set {−2,−1, 3, 9, 11}.
5. f −1({−2}) = {1, 4}
7. Since f is not one-to-one, f does not have an inverse.

9. {(1,−2), (2,−1), (3, 3), (4, 5), (5, 9), (6, 11)}
11. f (A ∪ B) = f ((−3, 7)) = [0, 49)

f (A) ∪ f (B) = [0, 25] ∪ [0, 49] = [0, 49]

13. f (A ∩ B) = f ({0}) = {0}
f (A) ∩ f (B) = [0, 4] ∩ [0, 4] = [0, 4]

Therefore, f (A ∩ B) ⊂ f (A) ∩ f (B), but

f (A ∩ B)  = f (A) ∩ f (B).

15. f −1(x ) = x−b
a

17. If n is odd, then f (n)(x ) = −x + c. If n is even, then

f (n)(x ) = x .

19. a. To show that f is one-to-one, we have

e2x1−1 = e2x2−1

⇔ 2x1 − 1 = 2x2 − 1

⇔ x1 = x2

b. Since the exponential function is always positive,

f is not onto ⺢.

c. Define g : ⺢→ (0,∞) by g(x ) = e2x−1.

d. g−1(x ) = 1
2
(1 + ln x ).

21. a. To show that f is one-to-one, we have 2n1 = 2n2 if

and only if n1 = n2.

b. Since every image is an even number, the range of f

is a proper subset of ⺞.

c. f −1(E ) = ⺞; f −1(O) = φ

23. a. f (A) = {2k + 1 | k ∈ ⺪}
b. f (B) = {2k + 1 | k ∈ ⺪}
c. f −1({0}) = {(m, n) | n = −2m}
d. f −1(E ) = {(m, n) | n is even}
e. f −1(O) = {(m, n) | n is odd}
f. Since f ((1,−2)) = 0 = f ((0, 0)), then f is not

one-to-one.

g. If z ∈ ⺪, let m = 0 and n = z , so that f (m, n) = z .

Section A.3

1. If the side is x , then h2 = x2 + x2 = 2x2, so

h =
√

2x .

3. If the side is x , then the height is h =
√

3
2
x , so the area

is A = 1
2
x
√

3
2
x =

√
3

4
x2.

5. If a divides b, there is some k such that ak = b; and if

b divides c, there is some  such that b = c. Then

c = b = (ak ) = (k )a, so a divides c.

7. If n is odd, there is some k such that n = 2k + 1. Then

n2 = (2k + 1)2 = 2(2k2 + k ) + 1, so n2 is odd.

9. If b = a + 1, then (a + b)2 = (2a + 1)2 =
2(2a2 + 2a) +1, so (a + b)2 is odd.

11. Let m = 2 and n = 3. Then m2 + n2 = 13, which is

not divisible by 4.

13. Contrapositive: Suppose n is even, so there is some k

such that n = 2k . Then n2 = 4k2, so n2 is even.

15. Contrapositive: Suppose p = q . Then√
pq =

1
p2 = p = (p + q)/2.

17. Contrapositive: Suppose x > 0. If  = x/2 > 0, then

x >  .

19. Contradiction: Suppose
3
√

2 = p/q such that p and q

have no common factors. Then 2q3 = p3, so p3 is even

and hence p is even. This gives that q is also even,

which contradicts the assumption that p and q have no

common factors.

21. If 7xy ≤ 3x2 + 2y2, then 3x2 − 7xy + 2y2 =
(3x − y)(x − 2y) ≥ 0. There are two cases: either both

factors are greater than or equal to 0, or both are less



Answers to Odd-Numbered Exercises 477

than or equal to 0. The first case is not possible since

the assumption is that x < 2y . Therefore, 3x ≤ y .

23. Define f :⺢→ ⺢ by f (x ) = x2. Let C = [−4, 4],

D = [0, 4]. Then f −1(C ) = [−2, 2] = f −1(D) but

C � D .

25. If x ∈ f −1(C ), then f (x ) ∈ C . Since C ⊂ D , then

f (x ) ∈ D . Hence, x ∈ f −1(D).

27. If y ∈ f (A\B), there is some x such that y = f (x ) with

x ∈ A and x /∈ B . So y ∈ f (A)\ f (B), and

f (A\B) ⊂ f (A)\ f (B). Now suppose y ∈ f (A)\ f (B). So

there is some x ∈ A such that y = f (x ). Since f is

one-to-one, this is the only preimage for y , so x ∈ A\B .

Therefore, f (A)\ f (B) ⊂ f (A\B).

29. By Theorem 3 of Sec. A.2, f (f −1(C )) ⊂ C . Let y ∈ C .

Since f is onto, there is some x such that y = f (x ). So

x ∈ f −1(C ), and hence y = f (x ) ∈ f (f −1(C )).

Therefore, C ⊂ f (f −1(C )).

Section A.4

1. Base case: n = 1 : 12 = 1(2)(3)
6

Inductive hypothesis: Assume the summation formula

holds for the natural number n.

Consider

12 + 22 + 32 + · · · + n2 + (n + 1)2

= n(n + 1)(2n + 1)

6
+ (n + 1)2

= n + 1

6
(2n2 + 7n + 6)

= n + 1

6
(2n + 3)(n + 2)

= (n + 1)(n + 2)(2n + 3)

6

3. Base case: n = 1 : 1 = 1(3−1)
2

Inductive hypothesis: Assume the summation formula

holds for the natural number n.

Consider

1 + 4 + 7 + · · · + (3n − 2) + [3(n + 1) − 2]

= n(3n − 1)

2
+ (3n + 1)

= 3n2 + 5n + 2

2

= (n + 1)(3n + 2)

2

5. Base case: n = 1 : 2 = 1(4)
2

Inductive hypothesis: Assume the summation formula

holds for the natural number n.

Consider

2 + 5 + 8 + · · · + (3n − 1) + [3(n + 1) − 1]

= 1

2
(3n2 + 7n + 4)

= (n + 1)(3n + 4)

2

= (n + 1)(3(n + 1) + 1)

2

7. Base case: n = 1 : 3 = 3(2)
2

Inductive hypothesis: Assume the summation formula

holds for the natural number n.

Consider

3 + 6 + 9 + · · · + 3n + 3(n + 1)

= 1

2
(3n2 + 9n + 6)

= 3

2
(n2 + 3n + 2)

= 3(n + 1)(n + 2)

2

9. Base case: n = 1 : 21 = 22 − 2

Inductive hypothesis: Assume the summation formula

holds for the natural number n.

Consider

n+1.
k=1

2k =
n.
k=1

2k + 2n+1

= 2n+1 − 2 + 2n+1

= 2n+2 − 2

11. From the data in the table

n 2 + 4 + · · · + 2n

1 2 = 1(2)

2 6 = 2(3)

3 12 = 3(4)

4 40 = 4(5)

5 30 = 5(6)

we make the conjecture that

2 + 4 + 6 + · · · + (2n) = n(n + 1)
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Base case: n = 1 : 2 = 1(2)

Inductive hypothesis: Assume the summation formula

holds for the natural number n.

Consider

2 + 4 + 6 + · · · + 2n + 2(n + 1)

= n(n + 1) + 2(n + 1)

= (n + 1)(n + 2)

13. Base case: n = 5 : 32 = 25 > 25 = 52

Inductive hypothesis: Assume 2n > n2 holds for the

natural number n.

Consider 2n+1 = 2(2n ) > 2n2. But since 2n2−
(n + 1)2 = n2 − 2n − 1 = (n − 1)2 − 2 > 0, for all

n ≥ 5, we have 2n+1 > (n + 1)2.

15. Base case: n = 1 : 12 + 1 = 2, which is divisible by 2.

Inductive hypothesis: Assume n2 + n is divisible by 2.

Consider (n + 1)2 + (n + 1) = n2 + n + 2n + 2. By the

inductive hypothesis, n2 + n is divisible by 2, so since

both terms on the right are divisible by 2, then

(n + 1)2 + (n + 1) is divisible by 2. Alternatively,

observe that n2 + n = n(n + 1), which is the product of

consecutive integers and is therefore even.

17. Base case: n = 1 : 1 = r−1
r−1

Inductive hypothesis: Assume the formula holds for the

natural number n.

Consider

1 + r + r2 + · · · + rn−1 + rn

= rn − 1

r − 1
+ rn

= rn − 1 + rn (r − 1)

r − 1

= rn+1 − 1

r − 1

19. Base case: n = 2 : A ∩ (B1 ∪ B2) = (A ∩ B1) ∪ (A ∩ B2),

by Theorem 1 of Sec. A.1

Inductive hypothesis: Assume the formula holds for the

natural number n.

Consider

A∩(B1 ∪ B2 ∪ · · · ∪ Bn ∪ Bn+1)

= A ∩ [(B1 ∪ B2 ∪ · · · ∪ Bn ) ∪ Bn+1]

= [A ∩ (B1 ∪ B2 ∪ · · · ∪ Bn )] ∪ (A ∩ Bn+1)

= (A ∩ B1) ∪ (A ∩ B2) ∪ · · · ∪ (A ∩ Bn ) ∪ (A ∩ Bn+1)

21.
 
n

r

 
= n!

r!(n − r)!

= n!

(n − r)!(n − (n − r))!

=
 
n

n − r

 
23. By the binomial theorem,

2n = (1 + 1)n =
n.
k=0

 
n

k
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A

Abel’s formula, 190

Addition

linear transformations and, 209–210

matrix, 27–29

of real numbers, 28

of vectors, 95–99, 129

Additive identity, 98

Additive inverse, 97, 98, 136

Aerodynamic forces, 199

Algebra, matrix, 26–37. See also

Matrix algebra

Angles, between vectors,

327–330

Arguments

contradiction, 426–427

contrapositive, 426

direct, 425

Associated quadratic form, 386

Associative property, 97, 98

Augmented matrix

for consistent linear systems, 22

explanation of, 15, 16

facts about, 23

as solution to linear systems, 16–17

Axioms, 424

B

Back substitution, 4

Balance law, 310

Balancing chemical equations, 79

Basis

change of, 177–181

explanation of, 149

facts about, 171

method for finding, 166–170

ordered, 174–176

orthogonal, 339–340

orthonormal, 342–352

standard, 159, 162, 163

for vector space, 159–164

Best-fit line, 322

Bijective functions, 420, 422

Bijective mapping, 226

Bilinear inner product, 333

Binary vectors, 127–128

Binomial coefficients, 435–436

Binomial theorem, 437–438

Brin, Sergey, 276

C

Cartesian product, of two sets, 411

Cauchy-Schwartz inequality, 326–327,

336, 337

Characteristic equation, 279

Characteristic polynomials, 279

Check matrix, 128

Chemical equation balancing

application, 1, 79

Circle, equation of, 385

Codewords, 127–129

Coefficient matrix, 15

Cofactors, of matrices, 56

Column rank, 221, 222

Column space, 152

Column vectors, 27

Commutative operation, 28

Commutative property, 97, 129

Commute, matrices that, 32, 33

Complement, of sets, 411

Complementary solution, 193

Complex numbers

conjugate of, 377

equality and, 377

imaginary part, 144

real part, 144

set of, 134

Components, of vectors, 27, 95

Composition, of functions,

420–422

Computer graphics applications

explanation of, 255

projection, 265–268

479
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Computer graphics applications (continued)

reflection, 260, 261

reversing graphics operations, 261–262

rotation, 264–265

scaling and shearing, 256–259

translation, 262–264

types of, 199

Conclusions, 424

Condition number, 403

Conic sections

eigenvalues and, 388–390

explanation of, 61, 386

simplifying equations that

describe, 385

Conservation of mass law, 1

Contained sets, 410

Continuous signals, 93

Contraction, 257

Contradiction argument, 426–427

Contrapositive argument, 426

Contrapositive statement, 425, 426

Converse, of theorems, 424–425

Convex, set on ⺢2 as, 272

Corollaries, 425

Cosine, of angle between vectors,

328, 337

Counter example, 425

Cramer’s rule, 62–64

D

Damping coefficient, 192

Data compression, 401–403

Data sets, least squares approximation

to find trends in, 371–373

Demand vectors, 83

DeMorgan’s laws, 413–414

Determinants

facts about, 64–65

to find equation of conic sections, 61

linear independence and, 118–119

method to find, 55–56

properties of, 57–62

to solve linear systems, 62–64

of square matrices, 56

of 3 x 3 matrix, 54–55

of triangular matrices, 56–57

of 2 x 2 matrix, 54, 55

Diagonalization

conditions for matrix, 291–292

eigenvalues and, 293

eigenvectors and, 282

examples of, 289–291, 293

explanation of, 287–289, 377

facts about, 297–298

linear operators and, 295–297

orthogonal, 379–382

similar matrices and, 293–294

of symmetric matrices, 377–383

symmetric matrices and, 293

systems of linear differential equations

and, 302–309

of transition matrices, 312–313

Diagonal matrix, 56. See also

Diagonalization

Differential equations

applications for, 185, 191–193

explanation of, 185

first-order, 186

fundamental sets of solutions

and, 188–193

general solution of, 186

second-order with constant coefficients,

186–188, 191–193

Digraphs, 79–80

Dilation, 257

Dimension

of column space, 221

explanation of, 164–165

of vector space, 165–166

Direct argument, 425

Directed graphs, 79–80

Direction field, of systems of differential

equations, 302

Direct sum, 360–361

Discrete signals, 93

Distance formula, 323

Domain, 415

Dot product

on Euclidean n-space (⺢n), 323–331, 333

inner product that is not, 335

properties of, 326

of vectors, 29–32, 323

Dynamical systems, 300

E

Echelon form

definition of, 19

of matrices, 17–21

Economic input-output models, 82–84

Eigenfunctions, 284
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Eigenspaces

algebraic multiplicity of, 281

corresponding to eigenvalues,

280–281

dimension of, 281–282

explanation of, 279–280

geometric multiplicity of, 282

Eigenvalues

as complex numbers, 282–283

diagonalization and, 287–298

explanation of, 276

facts about, 284–285

geometric interpretation of, 278–279

of linear operators, 283–284

Markov chains and

method to find, 310–314

of square triangular matrices, 283

systems of linear differential equations

and, 302–309

transition matrix and, 312, 313

of triangular matrices, 283

for 2x2 matrices, 277–278

Eigenvectors

definition of, 276–277

diagonalization and, 287–298

explanation of, 276

facts about, 284–285

geometric interpretation of,

278–279

of linear operators, 283–284

Markov chains and

method to find, 310–314

orthogonal, 379–380

probability, 313

of real symmetric matrices, 378

systems of linear differential equations

and, 300–309

transition matrix and, 312, 313

for 2x2 matrices, 277–278

Elementary matrix

definition of, 69

explanation of, 69–71

inverse of, 71–72

Elements, of sets, 409

Empty sets, 410

Equal matrix, 27

Equations, matrix, 48–51

Equivalent linear systems, 4, 5

Equivalent triangular systems, 6–7,

10, 14

Euclidean n-space (⺢n)

definition of, 95

dot product on, 323–331, 333

properties of norm in, 329

vectors in, 94–99, 108, 119,

323–331

Euclidean space

dot product and, 323–331

geometry of, 7

Euclidean vector spaces, 130

Existential quantifiers, 427

Exponential model, 186

F

Factorials, 432

Finite dimensional vector spaces

explanation of, 165

isomorphisms and, 230

linear operators and, 243–244

linear transformations between,

236, 237

Forward substitution, 68–69

Fourier polynomials, 373–375

Free variables, 9

Frequency, of wave, 93

Functions

composition of, 420–422

explanation of, 415–418

inverse, 418–421

one-to-one, 419

onto, 420

relations vs., 415, 416

vector space of real-valued,

133–134

Fundamental frequency,

93–94

Fundamental sets of solutions

superposition principle and, 188–189

theorem of, 190–191

Wronskian and, 189–191

G

Gaussian elimination

explanation of, 4

to solve linear systems, 6–11,

14, 15, 68

Gauss-Jordan elimination, 19

General solution, 3

Goodness of fit, measurement of, 366

Google, 276
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Gram-Schmidt process

examples of, 349–352

explanation of, 344, 347–348, 394

geometric interpretation of,

348–349

Graphics operations in ⺢2

reflection, 260, 261

reversing, 261–262

rotation, 264–265

scaling and shearing, 256–259

translation, 262–264

Graphs

of conic sections, 61

of functions, 416

H

Hamming, Richard, 127

Hamming’s code, 127, 129

Homogeneous coordinates, 262–264

Homogeneous linear systems,

49–51, 113

Horizontal line test, 419

Horizontal scaling, 256, 257

Horizontal shear, 258

Hypothesis

explanation of, 424

inductive, 430

I

Identity matrix, 39

Images

explanation of, 415, 418

inverse, 416, 418

Imaginary part, complex

numbers, 134

Inconsistent linear systems

explanation of, 2, 10

reduced matrix for, 21–22

Independence, linear. See Linear

independence

Inequality, Cauchy-Schwartz, 326–327

Infinite dimensional vector space, 165

Initial point, vector, 95

Initial probability vectors, 275

Initial-value problems,

186, 192–193

Injective mapping. See One-to-one mapping

Injective functions, 419

Inner product

examples of, 334–336

explanation of, 333

that is not dot product, 335

Inner product spaces

diagonalization of symmetric matrices

and, 377–383

explanation of, 333–334

facts about, 340

least squares approximation and,

366–375

orthogonal complements and, 355–364

orthogonal sets and, 338–340

orthonormal bases and, 342–352

properties of norm in, 336–337

quadratic forms and, 385–391

singular value decomposition and,

392–403

subspaces of, 355

Input-output matrix, 83

Integers, set of, 409

Internal demand, 83

Intersection, of sets, 410, 411

Inverse functions

explanation of, 418–420

unique nature of, 421

Inverse images, 416, 418

Inverse of elementary matrix, 71–72

Inverse of square matrix

definition of, 40

explanation of, 40–45

facts about, 45

Inverse transformations, 230–231

Invertible functions, 418–420

Invertible matrix

elementary matrices and, 72

explanation of, 41, 54

inverse of product of, 44–45

square, 60–61

Isomorphisms

definition of, 229

explanation of, 226

inverse and, 230–231

linear transformations as,

229–231

one-to-one and onto mappings

and, 226–230

vector space, 232–233

K

Kepler, Johannes, 61

Kirchhoff’s laws, 88
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L
Law of conservation of mass, 1

Leading variables, 10

Least squares approximation

background of, 366–368

to find trends in data sets, 371–373

Fourier polynomials and, 373–375

linear regression and, 371–373

Least squares solutions, 369–371

Lemmas, 425

Length, of vectors, 95

Leontief input-output model, 82

Linear codes, 129

Linear combinations

definition of, 102, 146

of elements of fundamental

set, 94

matrix multiplication and, 107

of vectors, 102–106, 146

Linear dependence

definition of, 111, 157

explanation of, 111, 157

of vectors, 112, 158

Linear equations, in n variables, 3

Linear independence

definition of, 111, 157

determinants and, 118–119

explanation of, 111–112

of vectors, 112–117, 158

Linear operators

diagonalizable, 295–297

eigenvalues and eigenvectors of, 283–284

explanation of, 202, 237

similarity and, 249–252

Linear regression, 368, 371–373

Linear systems

augmented matrices to solve, 16–17, 22

consistent, 2, 117

converted to equivalent triangular

systems, 6–7, 10, 14

Cramer’s rule to solve, 62–64

definition of, 3

discussion of, 3–4

elimination method to solve, 4–11,

14, 15

equivalent, 4, 5

explanation of, 2–3

facts about, 11–12

with four variables, 2, 8–9

homogeneous, 49–51, 113

ill-conditioned, 403

inconsistent, 2, 10, 21–22

linear independence and, 117–118

LU factorization to solve, 75–76

matrix form of, 48

nullity of matrices and, 222–223

in terms of geometric structure of

Euclidean space, 363–364

3 x, 3, 7–8

triangular form of, 4, 6, 10

with two variables, 2–3

vector form of, 106–107

vector form of solution to,

48–50

Linear systems applications

balancing chemical equations, 79

economic input-output models, 82–84

network flow, 79–81

nutrition, 81–82

Linear transformations

computer graphics and, 199,

255–268

definition of, 202, 235

explanation of, 200–202, 235–236

from geometric perspective,

203–204

inverse of, 230

as isomorphisms, 229–231

isomorphisms as, 226–233

matrices and, 202–203, 221–222,

235–245

null space and range and, 214–223

operations with, 209–210

similarity and, 249–253

Lower triangular matrix

examples of, 57

explanation of, 56, 73

LU factorization

facts about, 77

of matrices, 69, 72–75, 392

solving linear systems using, 75–76

M

Mapping

bijective, 226

explanation of, 200–201, 415

linear transformations and, 201–202,

205–207, 241–242

one-to-one, 226–230

onto, 226, 227
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Markov chains

applications of, 310–314

explanation of, 275–276

Markov process, 310

Mathematical induction

base case, 430

binomial coefficients and binomial

theorem and, 435–438

examples of, 431–435

inductive hypothesis, 430

introduction to, 429–430

principle of, 430–431

Matrices

addition of, 27–29

augmented, 15–17, 22, 23

check, 128

coefficient, 15

condition number of, 403

definition of, 14

determinants of, 54–65

diagonal, 56

discussion of, 14–15

echelon form of, 17–21

elementary, 69–72

finding singular value decomposition

of, 398–402

identity, 39

input-output, 83

inverse of product of invertible, 44–45

inverse of square, 39–45

linear independence of, 114

linear transformations and, 202–203,

221–222, 235–245

LU factorization of, 69, 72–75

minors and cofactors of, 56

nullity of, 221–223

null space of, 152–153

orthogonal, 381–382

permutation, 76–77

positive definite, 354

positive semidefinite, 354

rank of, 222

scalar multiplication, 27

singular values of, 393–396

stochastic, 275, 311, 314

subspaces and, 362

symmetric, 36

that commute, 32, 33

transition, 177–182, 275, 276,

311–313

transpose of, 35–36

triangular, 15, 56–57, 283

vector spaces of, 130

Matrix addition, 27–29

Matrix algebra

addition and scalar multiplication,

27–29

explanation of, 26–27

facts about, 36–37

matrix multiplication, 29–35

symmetric matrix, 36

transpose of matrix, 35–36

Matrix equations, 48–51

Matrix form, of linear systems, 48

Matrix multiplication

definition of, 32

explanation of, 29–35, 210

linear combinations and, 107

linear transformations between finite

dimensional vector spaces and,

236–237

properties of, 35

to write linear systems in terms of

matrices and vectors, 48–51

Members, of sets, 409

Minors, of matrices, 56

Multiplication. See Matrix multiplication;

Scalar multiplication,

Multiplicative identity, 39

Multivariate calculus, 322

N

Natural numbers. See also Mathematical

induction,

set of, 409

statements involving,

429–434

Network flow application,

79–81

Newton, Isaac, 61

Nilpotent, 299

Noninvertible matrix, 41

Normal equation, least squares solution

to, 369–370

Nullity, of matrices, 221–223

Null sets, 410

Null space,

of linear transformations, 214–221

of matrices, 152–153, 221

Nutrition application, 81–82
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O

One-parameter family, of

solutions, 9

One-to-one functions, 419

One-to-one mapping, 226–230

Onto functions, 420

Onto mapping, 226, 227

Ordered basis, 174–176

Ordinary differential equation, 185

Orthogonal basis

construction of, 347–348

of finite dimensional inner product space,

346–347

singular values and, 394

vectors that form, 355

Orthogonal complement

definition of, 357

examples of, 358–360

explanation of, 355–358

facts about, 364

inner product spaces and, 356

linear systems and, 363–364

matrices and, 362

projection theorem and, 361–362

subspaces and, 358

Orthogonal diagonalization, 379–382

Orthogonal matrix, 381–382

Orthogonal projection

explanation of, 343–345, 360, 362

Gram-Schmidt process and,

347, 348

Orthogonal sets

explanation of, 338

properties of, 338–340

Orthogonal vectors

explanation of, 328–329, 337

in inner product spaces, 338 (See also

Inner product spaces)

subspaces of inner product spaces and,

355–360

Orthonormal basis

Gram-Schmidt process and,

347–352

for inner product space, 345–347

ordered, 339–340, 342

orthogonal matrices and, 381

orthogonal projections and,

343–345

Orthonormal vectors, 338

P
Page, Larry, 276

Page range algorithm (Google),

276

Parabolas, general form of, 11

Parallelogram rule, 96

Parallel projection, 266

Parametric equations, 266

Pascal’s triangle, 435

Past plane, 301–302

Period, of wave, 93

Periodic motion, 93

Periodic signals, 93

Permutation matrix, 76–77

Phase portrait, 302–304, 306

Photosynthesis application, 1–2

Pitch, 199

Pivot, 18, 19

Pixels, 255

PLU factorization, 76–77

Polynomials

characteristic, 279

of degree n, 132

derivative of constant, 217

Fourier, 373–375

trigonometric, 373–374

use of Gram-Schmidt process on space

of, 350–351

vector space of, 132–133,

163, 334

zero, 132

Positive definite matrix, 354

Positive semidefinite matrix, 354

Predator-prey model, 300

Preimages, 416

Principle of mathematical induction.

See Mathematical induction,

Probability vectors, 311

Production vectors, 83

Product matrix, 30–31

Projection

example of, 266–268

explanation of, 265

orthogonal, 343

parallel, 266

Projection theorem, 361–362

Proofs

contradiction argument, 426–427

contrapositive argument, 426

direct argument, 425
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Proofs (continued)

explanation of, 424–425

quantifiers, 427

Propositions, 425

Q

Quadratic equations

in three variables, 391

in two variables, 385–388

Quadratic forms

applications for, 385

associated, 386

rotation of axes and,

385–390

Quadratic surfaces, 391

Quantifiers, 427

R

Range

explanation of, 415

of linear transformations,

214–221

Rank of a matrix, 222

Rational numbers, set of, 410

Real numbers

addition of, 28

set of, 410

signals representing, 93

Real part, complex numbers, 134

Real-valued fuctions, 133–134

Reduced matrix, for inconsistent linear

systems, 21–22

Reduced row echelon form

explanation of, 18, 19, 23

transforming matrices to equivalent,

22–23

Reflection, 260, 261

Relations

explanation of, 415

functions vs., 415, 416

Riemann integral, 334

Roll, 199

Rotation, 264–265

Rotation of axes, 385–390

Row echelon form

explanation of, 17, 19

reduced, 18–21

Row equivalent, 16

elementary matrices and, 72

Row operations, 16, 58

Row rank, of matrices, 222

Row vectors, 27

S
Scalar multiplication

explanation of, 27–29

linear transformations and, 209–210

of vectors, 95–99, 129, 161

Scalar product

of matrices, 27

of vectors, 96

Scalar projection, 343

Scaling, 96, 256–258

Scatterplots, 321

Second-order differential equations, with

constant coefficients, 186–188,

191–193

Sets,

empty, 410

explanation of, 409–410

null, 410

operations on, 410–414

orthogonal, 338–340

solution, 3

Shearing, 258–259

Signals, 93

Similar matrix

background of, 249–251

explanation of, 252, 253

Singular value decomposition (SVD)

data compression and,

401–403

explanation of, 392

four fundamental subspaces and, 401

method for, 398–400

theorem of, 396–398

Singular values, 392

definition of, 393

of m x n matrix, 393–396

Solutions, to linear systems with

n variables, 3

Solution set, 3

Span, of set of vectors, 146–152

Square matrix

determinant of, 56

inverse of, 39–45

invertibility of, 60

trace of, 142–143

Standard basis

explanation of, 162, 163
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matrix representation relative to, 235–237

polynomials of, 163

Standard position, of vectors, 95

State vectors, Markov chains and, 311–312

Steady-state vectors

explanation of, 276

Markov chain and, 313–314

Stochastic matrix, 275, 311, 314

Subsets, 410, 412

Subspaces

closure criteria for, 144

definition of, 140

examples of, 142–143

explanation of, 140–142

facts about, 153

four fundamental, 401

of inner product spaces, 355–360,

362

null space and column space of matrix

and, 152–153

span of set of vectors and, 146–152

trivial, 142

of vector spaces, 140, 145, 146

Substitution

back, 4

forward, 68–69

Superposition principle, 188–189

Surjective functions, 420

Surjective mapping. See Onto mapping,

Symmetric matrix

diagonalization of,

377–383

explanation of, 36

Syndrome vectors , 128

Systems of linear differential equations

diagonalization and, 302–309

explanation of, 300

to model concentration of salt in

interconnected tanks,

307–309

phase plane and, 301–302

uncoupled, 300–301

Systems of linear equations. See

Linear systems

T

Terminal point, vector, 95

Theorems

converse of, 424–425

explanation of, 424

Tower of Hanoi puzzle,

429–430

Trace, of square matrices,

142–143

Trajectories, 301–302

Transformation, 199–200. See also Linear

transformations

Transition matrix

diagonalizing the, 312–313

example of, 275, 276

explanation of, 177–180

inverse of, 181–182

Markov chains and,

311–312

Translation, 262–264

Transpose, of matrices, 35–36

Triangular form

of linear systems, 4, 6–7, 10

matrices in, 15

Triangular matrix

determinant of, 57, 58

eigenvalues of, 283

explanation of, 56–57

Trigonometric polynomials, 373–374

Trivial solution, to homogeneous systems,

49, 50

Trivial subspaces, 142

U

Uncoupled systems, 300–301

Uniform scaling, 257

Union, of sets, 410

Unit vectors, 325

Universal quantifiers, 427

Universal set, 410

Upper triangular matrix

examples of, 57

explanation of, 56, 68, 74

V

Vector addition, 95–99, 129

Vector form

of linear systems, 106–107

of solution to linear systems, 48–50

Vectors

addition and scalar multiplication of,

95–99

algebraic properties of, 97–98

angle between, 327–330

applications for, 94
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Vectors (continued)

binary, 127–128

components of, 27, 95

demand, 83

distance between, 324, 336

dot product of, 29–32, 323

equal, 95

in Euclidean n-space (⺢n), 94–99, 108,

119, 323–331

explanation of, 27, 94

length of, 95, 323–325, 336

linear combinations of, 102–106, 146

linear independence of, 112–117

orthogonal, 328–329, 337

orthonormal, 338

probability, 311

production, 83

span of set of, 146–152

standard position of, 95

state, 311–312

steady-state, 276, 313–314

syndrome, 128

unit, 325

zero, 97

Vector space isomorphism, 229, 232–233

Vector spaces,

abstract, 136–137

basis for, 159–164, 166–170, 174–182

of complex numbers, 134–135

definition of, 129–130

dimension of, 165–166

Euclidean, 130

examples of, 130–135

expanding set of vectors in, 169–170

facts about, 137

finite dimensional, 165, 230, 236, 237

infinite dimensional, 165

isomorphic, 229, 232–233

linear transformations and, 204–208,

211, 220

of matrices, 130

or real-valued functions, 133–134

of polynomials, 132–133, 163, 334

subspaces of, 140, 145, 146

Venn diagrams

example of, 411, 412

explanation of, 410–411

Vertical line test, 419

Vertical scaling, 257

Vertical shear, 259

W

Waveform, of signal, 93

Waves, period of, 93

Wronskian, 189–191

Y

Yaw, 199

Z

Zero polynomials, 132

Zero vectors, 97
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