
 Jeffrey L. Whitten
 Professor

 Lonnie D. Bentley
 Professor

 Both at Purdue University
West Lafayette, IN

 With contributions by
 Gary Randolf

 Purdue University
 and

 Shana Dardan
 Susquehanna University

FIRST EDITION

Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis

Bangkok Bogotá Caracas Kuala Lumpur Lisbon London Madrid Mexico City

Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

Introd
uction to System

s A
na

lysis a
nd

 D
esig

n

 INTRODUCTION TO SYSTEMS ANALYSIS AND DESIGN

Published by McGraw-Hill/Irwin, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the

Americas, New York, NY, 10020. Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved.

No part of this publication may be reproduced or distributed in any form or by any means, or stored in a

database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including,

but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the

United States.

This book is printed on acid-free paper.

 1 2 3 4 5 6 7 8 9 0 QPD/QPD 0 9 8 7 6

 ISBN 978-0-07-340294-9

 MHID 0-07-340294-X

 Editorial director: Brent Gordon

 Executive editor: Paul Ducham

 Developmental editor II: Trina Hauger

 Editorial assistant: Elizabeth Hughes

 Marketing manager: Sankha Basu

 Media producer: Greg Bates

 Project manager: Kristin Bradley

 Lead production supervisor: Michael R. McCormick

 Designer: Jillian Lindner

 Photo research coordinator: Lori Kramer

 Lead media project manager: Brian Nacik

 Typeface: 10/12 Garamond Light

 Compositor: GTS – New Delhi, India Campus

Printer: Quebecor World Dubuque Inc.

 Library of Congress Cataloging-in-Publication Data

Whitten, Jeffrey L.

 Introduction to systems analysis and design / Jeffrey L. Whitten, Lonnie D. Bentley;

 with contributions by Gary Randolf and Shana Dardan. -- 1st ed.

 p. cm.

 Includes index.

 ISBN-13: 978-0-07-340294-9 (pbk. alk. paper)

 ISBN-10: 0-07-340294-X

 1. System design. 2. System analysis. 3. Information technology. I. Bentley, Lonnie

 D. II. Title

 QA76.9.S88W4785 2008

 003--dc22

 2006047146

 www.mhhe.com

 To my lovely wife Cheryl and my children Robert, Heath, and Coty.

 – Lonnie

 To my father. You instilled in me the work ethic, perseverance, and curiosity for

knowledge that has made this book possible.

 – Jeff

 D
e
d
ic

a
tio

n

P
re
fa
c
e

> Intended Audience

 Introduction to Systems Analysis and Design is intended to support a fi rst course in

information systems development for information systems majors and other business

majors.

 We recommend that students take a computer or information systems literacy course

before using this text. Introduction to Systems Analysis and Design does not assume

students have taken a programming course, although some knowledge of programming

can signifi cantly enhance the learning experience provided by this textbook.

> The Need for This Book

 Systems Analysis and Design Methods, 7e is the most widely-adopted textbook

on the subject. It continues to be the book of choice for those faculty teaching a

comprehensive systems analysis and design course with a balanced coverage of

systems concepts, tools, and techniques.

 Introduction to Systems Analysis and Design will meet the needs of the many

faculty and students who have told us over the years that they want a complete, but

more concise text with just enough emphasis on systems concepts.

> Pedagogical Use of Color

 The book uses color applied to an adaptation of Zachman’s Framework for Informa-

tion Systems Architecture. The color mappings are displayed in the inside front cover

of the textbook.

 The information systems building blocks matrix uses these colors to introduce

recurring concepts. System models then reinforce those concepts with a consistent

use of the same colors.

> Organization

 Introduction to Systems Analysis and Design is divided into four parts. The text’s

organization is fl exible enough to allow instructors to omit and resequence chapters

according to what they feel is important to their audience. Every effort has been

made to decouple chapters from one another as much as possible to assist in

resequencing the material—even to the extent of reintroducing selected concepts

and terminology.

 Part One, “The Context of Systems Development Projects,” presents the information

systems development scenario and process. Chapters 1 through 3 introduce the student

to systems analysts, other project team members (including users and management),

information systems building blocks (based on the Zachman framework), a

contemporary systems development life cycle, and project management. Part One can

be covered relatively quickly. Some readers may prefer to omit project management or

delay it until the end of the book.

 Part Two, “Systems Analysis Methods,” covers the front-end life-cycle activities, tools,

and techniques for analyzing business problems, specifying business requirements

for an information system, and proposing a business and system solution. Coverage

in Chapters 4 through 10 includes requirements gathering, use cases, data modeling

with entity-relationship diagrams, process modeling with data fl ow diagrams, object-

oriented analysis, and solution identifi cation and the system proposal.

 Part Three, “Systems Design Methods,” covers the middle life-cycle activities, tools,

and techniques. Chapters 11 through 17 include coverage of both general and detailed

design, with a particular emphasis on application architecture, rapid development and

prototyping, external design (inputs, outputs, and interfaces), internal design (e.g.,

database and software engineering), and object-oriented design.

iv

 Part Four, “Beyond Systems Analysis and Design,” is a capstone unit that places sys-

tems analysis and design into perspective by surveying the back-end life-cycle activi-

ties. Specifi cally, Chapter 18 examines systems construction and implementation.

> Supplements and Instructional Resources

 It has always been our intent to provide a complete course, not just a textbook. We are

especially excited about this book’s comprehensive support package. It includes Web-

hosted support, software bundles, and other resources for both the student and the

instructor. The supplements for Introduction to Systems Analysis and Design include

the following components.

 Web Site/OLC
 A completely redesigned Web site provides easy-to-fi nd resources for instructors and

students.

v

Information Systems Framework
Color is used consistently throughout the text’s frame-

work to introduce recurring concepts.

represents methods

represents data and/or knowledge

represents process

represents communication/interface

represents people

vi

 For the Instructor

 Web Site/OLC

 The book’s Web site at www.mhhe.com/whitten provides resources for instructors and

students using the text. The Online Learning Center (OLC) builds on the book’s pedagogy

and features with self-assessment quizzes, extra material not found in the text, Web links,

and other resources. The instructor side of the site offers a secure location for download-

ing the latest supplemental resources.

 Instructor’s Manual with PowerPoint Presentations

 The instructor’s manual is offered on the Instructor’s CD-ROM, as well as on the

book’s Web site. This manual includes course planning materials, teaching guidelines

and PowerPoint slides, templates, and answers to end-of-chapter problems, exercises,

and minicases.

 The PowerPoint presentations on the CD-ROM include over 400 slides. All slides

are complete with instructor notes that provide teaching guidelines and tips. Instruc-

tors can (1) pick and choose the slides they wish to use, (2) customize slides to their

own preferences, and (3) add new slides. Slides can be organized into electronic pre-

sentations or be printed as transparencies or transparency masters.

 Test Bank

 The Instructor’s CD-ROM also includes an electronic test bank covering all the

chapters. Computerized/Network Testing with Brownstone Diploma software is fully

networkable for LAN test administration. Each chapter offers questions in the follow-

ing formats: true/false, multiple choice, sentence completion, and matching. The test

bank and answers are cross-referenced to the page numbers in the textbook. Each

question is assigned a level of diffi culty and followed by the chapter learning objec-

tive that it addresses.

> Packages

 System Architect Student Edition Version 8

 An optional package combines the textbook, Student Resource CD, and a student

version of System Architect. System Architect is a powerful, repository-based enter-

prise modeling tool which supports a comprehensive set of diagramming techniques

and features, including all nine UML diagram types, business enterprise modeling, data

modeling, business modeling with IDEFO and IDEF3 notations, plus many more.

 Visible Analyst Workbench

 Another optional package combines the textbook, Student Resource CD, and

Visible Analyst Workbench. This tool integrates business function analysis, data model-

ing and database design, process modeling, and object modeling in one easy-to-use

package. Print versions of each case can be ordered through McGraw-Hill’s Custom

Publishing group by visiting www.primiscontentcenter.com. A build your own proj-

ect model is retained for instructors and students who want to maximize value by

leveraging students’ past and current work experience or for use with a live-client

project.

Primis Content Center

 Primis Online

 Print versions of projects and cases, as well as other MIS content, can be ordered

through McGraw-Hill’s Custom Publishing Group.

vii

 Theresa Steinbach, DePaul University

 Isak Taksa, Bernard M. Baruch College

Peter Tarasewich, Northeastern University

 M. Shane Tomblin, Marshall University

 Henry Torres, Arkansas State University

 Ozgur Turetken, Temple University

 Kathleen Voge, University of Alaska-

Anchorage

 Merrill Warkentin, Mississippi State University

 Bruce White, Quinnipiac University

 John Wee, University of Mississippi

 Heinz Weistroffer, Virginia Commonwealth

University

 Roger Wilson, Fairmont State University

 Barbara Wolff, Hudson Valley Community

College

 Yi Zhang, California State University-

Fullerton

 Steve Zeltmann, University of Central

Arkansas

 A special thank-you is extended to the following

contributors for their work reviewing and edit-

ing the supplemental materials for this text.

 Bassam Hasan, University of Toledo

 Solomon Negash, Kennesaw State University

 Rodger Oren, Macon State College

 Lara Preiser-Houy, California Polytechnic

State University

 Srinivasan Raghunathan, University of

Texas-Dallas

 Nima Zahadat, Northern Virginia

Community College

 Finally, we acknowledge the contributions,

encouragement, and patience of the staff at

McGraw-Hill. Special thanks to Brent Gordon,

publisher; Paul Ducham, sponsoring editor;

Trina Hauger, developmental editor; Eliza-

beth Hughes, editorial assistant; SankhazBasu,

marketing manager; Kristin Bradley, project

manager; and Jillian Lindner, designer. We

also thank Rose Hepburn, production super-

visor; Lori Kramer, photo research coordina-

tor; Greg Bates, media producer; Rose Range,

media project manager; and Tammy Eirmann,

advertising copywriter.

 Jeffrey L. Whitten

Lonnie D. Bentley

We are indebted to many individuals who

contributed to the development of Introduc-

tion to Systems Analysis and Design:

 Barry Andrews, Mt. San Antonio Community

College

 Linda Bailey, University of Texas-Austin

 Meral Binbasioglu, Hofstra University

 Glenn Booker, Drexel University

 Amy Burns, Blackhawk Technical College

 Marvin Daugherty, Ivy Tech Community

College of Indiana

 Tom Dillon, James Madison University

 Richard Egan, New Jersey Institute of

Technology

 Jerry Fjermestad, New Jersey Institute of

Technology

 Terry Fox, Baylor University

 Candace Garrod, Red Rocks Community

College

 Carol Gossett, University of North Alabama

 Jeff Harper, Indiana State University

 Adam Huarng, California State University,

Los Angeles

 Andrea Houston, Louisiana State University

 Bandula Jayatilaka, Bringhamton University

 Ravinder S. Kang, Highline Community

College

 Bruce Lo, University of Wisconsin-Eau Claire

 Beata Lovelace, Pulaski Technical College

 Alisha Malloy, University of Alabama,

Tuscaloosa

 Gerald Marquis, Tennessee State University

 Abe Miller, Rutgers University

 Daniel Mittleman, DePaul University

 Michael Murray, Appalachian State University

 Makoto Nakayama, DePaul University

 David Olsen, Utha State University

 A. Graham Peace, West Virginia University

 James J. Pomykalski, Susquehanna University

 Joseph Rottman, University of Missouri, St.

Louis

 Silvia Salas, Florida International University

 Shannon Scanlon, Henry Ford Community

College

 Thomas Schambach, Illinois State University

 Carolyn Seaman, University of Maryland-

Baltimore

 Paul Seibert, North Greenville University

 Teresa Shaft, University of Oklahoma

 Sheryl Starkey, Columbia Southern University

A
ckno

w
led

g
em

ents

Brief Contents

Preface iv

 PART ONE

 The Context of Systems
Development Projects 3

 1 The Context of Systems Analysis and

Design Methods 4

 2 Information Systems Development 34

 3 Project Management 78

 PART TWO

 Systems Analysis Methods 115

 4 Systems Analysis 116
 5 Fact-Finding Techniques for

Requirements Discovery 154

 6 Modeling System Requirements with
Use Cases 183

 7 Data Modeling and Analysis 206

 8 Process Modeling 249

 9 Object-Oriented Analysis and Modeling
Using the UML 293

 10 Feasibility Analysis and the System

Proposal 334

 PART THREE

 Systems Design Methods 363

 11 Systems Design 364

 12 Application Architecture and

Modeling 391

 13 Database Design 429

 14 Output Design and

Prototyping 454

 15 Input Design and

Prototyping 483

 16 User Interface Design 513

 17 Object-Oriented Design and Modeling

Using the UML 544

 PART FOUR

 Beyond Systems Analysis
and Design 567

 18 Systems Construction and
Implementation 568

 Photo Credits 584

 Glossary/Index 585

 Preface iv
 P A R T O N E

 The Context of Systems Development
Projects 3

 1 THE CONTEXT OF SYSTEMS

ANALYSIS AND DESIGN

METHODS 4

 Introduction 5
 The Product—Information System 5
 The People—System Stakeholders 7

 Systems Owners 7

 Systems Users 7

 Systems Designers 9

 Systems Builders 9

 Systems Analysts 10

 External Service Providers 10

 The Project Manager 10

 Business Drivers for Today’s Information
Systems 11

 Globalization of the Economy 11

 Electronic Commerce and Business 11

 Security and Privacy 14

 Collaboration and Partnership 14

 Knowledge Asset Management 15

 Continuous Improvement and Total Quality

Management 15

 Business Process Redesign 16

 Technology Drivers for Today’s Information
Systems 16

 Networks and the Internet 16

 Mobile and Wireless Technologies 18

 Object Technologies 18

 Collaborative Technologies 19

 Enterprise Applications 19

 The Process—System Development Process 23

 System Initiation 25

 System Analysis 25

 System Design 26

 System Implementation 26

 System Support and Continuous

Improvement 27

 2 INFORMATION SYSTEMS

DEVELOPMENT 00

 Introduction 35
 The Process of Systems Development 35

 The Capability Maturity Model 35

 Life Cycle versus Methodology 37

 Underlying Principles for Systems

Development 38

 A Systems Development Process 41

 Where Do Systems Development Projects Come

 From? 41

 The Systems Development Phases 43

 Cross Life-Cycle Activities 52

 Sequential versus Iterative

Development 54

 Alternative Routes and Strategies 54

 The Model-Driven Development

Strategy 57

 The Rapid Application Development

Strategy 60

 The Commercial Application Package

Implementation Strategy 62

 Hybrid Strategies 65

 System Maintenance 65

 Automated Tools and Technology 68

 Computer-Assisted Systems Engineering 68

 Application Development Environments 71

 Process and Project Managers 71

 3 PROJECT MANAGEMENT 78

 Introduction 79
 What Is Project Management? 79

 The Causes of Failed Projects 80

 The Project Management Body of

Knowledge 83

 The Project Management Life Cycle 87

 Activity 1—Negotiate Scope 89

 Activity 2—Identify Tasks 89

 Activity 3—Estimate Task Durations 91

 Activity 4—Specify Intertask

Dependencies 93

 Contents

 Activity 5—Assign Resources 94

 Activity 6—Direct the Team Effort 98

 Activity 7—Monitor and Control Progress 99

 Activity 8—Assess Project Results and

Experiences 107

 P A R T T W O

 Systems Analysis Methods 115

 4 SYSTEMS ANALYSIS 116

 Introduction 117
 What Is Systems Analysis? 117
 Systems Analysis Approaches 118

 Model-Driven Analysis Approaches 118

 Accelerated Systems Analysis Approaches 120

 Requirements Discovery Methods 122

 Business Process Redesign Methods 123

 Systems Analysis Strategies 123

 The Scope Defi nition Phase 123

 Task 1.1—Identify Baseline Problems and

Opportunities 124

 Task 1.2—Negotiate Baseline Scope 127

 Task 1.3—Assess Baseline Project

Worthiness 127

 Task 1.4—Develop Baseline Schedule and

Budget 128

 Task 1.5—Communicate the

Project Plan 128

 The Problem Analysis Phase 129

 Task 2.1—Understand the Problem

Domain 129

 Task 2.2—Analyze Problems and

Opportunities 133

 Task 2.3—Analyze Business Processes 133

 Task 2.4—Establish System Improvement

Objectives 135

 Task 2.5—Update or Refi ne the Project

Plan 135

 Task 2.6—Communicate Findings and

Recommendations 136

 The Requirements Analysis Phase 137

 Task 3.1—Identify and Express System

Requirements 138

 Task 3.2—Prioritize System Requirements 139

 Task 3.3—Update or Refi ne the Project

Plan 140

 Task 3.4—Communicate the Requirements

Statement 140

 Ongoing Requirements Management 140

 The Logical Design Phase 140

 Task 4.1a—Structure Functional

Requirements 141

 Task 4.1b—Prototype Functional Requirements

(alternative) 142

 Task 4.2—Validate Functional

Requirements 142

 Task 4.3—Defi ne Acceptance Test Cases 142

 The Decision Analysis Phase 143

 Task 5.1—Identify Candidate Solutions 143

 Task 5.2—Analyze Candidate Solutions 144

 Task 5.3—Compare Candidate Solutions 146

 Task 5.4—Update the Project Plan 146

 Task 5.5—Recommend a System Solution 147

 5 FACT-FINDING TECHNIQUES FOR

REQUIREMENTS DISCOVERY 154

 Introduction 155
 An Introduction to Requirements Discovery 155
 The Process of Requirements Discovery 157

 Problem Discovery and Analysis 157

 Requirements Discovery 158

 Documenting and Analyzing

Requirements 158

 Requirements Management 159

 Fact-Finding Techniques 160

 Sampling of Existing Documentation, Forms,

and Files 160

 Research and Site Visits 162

 Observation of the Work Environment 163

 Questionnaires 164

 Interviews 166

 How to Conduct an Interview 167

 Discovery Prototyping 171

 Joint Requirements Planning 172

 A Fact-Finding Strategy 176

 6 MODELING SYSTEM REQUIREMENTS

WITH USE CASES 183

 Introduction 184
 An Introduction to Use-Case Modeling 184
 System Concepts for Use-Case Modeling 185

 Use Cases 186

 Actors 186

 Relationships 187

xi

 The Process of Requirements Use-Case
Modeling 190

 Step 1: Identify Business Actors 190

 Step 2: Identify Business Requirements Use

Cases 190

 Step 3: Construct Use-Case Model

Diagram 194

 Step 4: Document Business Requirements

Use-Case Narratives 195

 Use Cases and Project Management 199

 Ranking and Evaluating Use Cases 199

 Identifying Use-Case Dependencies 200

 7 DATA MODELING AND

ANALYSIS 206

 Introduction 207
 What Is Data Modeling? 207
 System Concepts for Data Modeling 208

 Entities 208

 Attributes 209

 Relationships 212

 The Process of Logical Data Modeling 220

 Strategic Data Modeling 220

 Data Modeling during Systems

Analysis 222

 Looking Ahead to Systems Design 222

 Automated Tools for Data Modeling 223

 How to Construct Data Models 225

 Entity Discovery 225

 The Context Data Model 226

 The Key-Based Data Model 228

 Generalized Hierarchies 231

 The Fully Attributed Data Model 231

 Analyzing the Data Model 234

 What Is a Good Data Model? 234

 Data Analysis 235

 Normalization Example 235

 Mapping Data Requirements to
Locations 243

 8 PROCESS MODELING 249

 Introduction 250
 An Introduction to Process Modeling 250
 System Concepts for Process Modeling 252

 External Agents 252

 Data Stores 253

 Process Concepts 253

 Data Flows 258

 The Process of Logical Process
Modeling 266

 How to Construct Process Models 269

 The Context Data Flow Diagram 270

 The Functional Decomposition

Diagram 271

 The Event-Response or Use-Case List 272

 Event Decomposition Diagrams 275

 Event Diagrams 276

 The System Diagram(s) 278

 Primitive Diagrams 279

 Completing the Specifi cation 279

 9 OBJECT-ORIENTED ANALYSIS

AND MODELING USING

THE UML 293

 An Introduction to Object-Oriented
Modeling 294

 System Concepts for Object
Modeling 294

 Objects, Attributes, Methods, and

Encapsulation 294

 Classes, Generalization, and

Specialization 296

 Object Class Relationships 299

 Messages and Message Sending 300

 Polymorphism 303

 The UML Diagrams 304
 The Process of Object Modeling 306

 Modeling the Functional Description of the

System 306

 Constructing the Analysis Use-Case

Model 306

 Modeling the Use-Case Activities 309

 Guidelines for Constructing Activity

Diagrams 314

 Drawing System Sequence

Diagrams 317

 Guidelines for Constructing System Sequence

Diagrams 319

 Finding and Identifying the Business

Objects 319

 Organizing the Objects and Identifying Their

Relationships 324

xii

 10 FEASIBILITY ANALYSIS AND THE

SYSTEM PROPOSAL 334

 Introduction 335
 Feasibility Analysis and the System

Proposal 335

 Feasibility Analysis—A Creeping Commitment

Approach 335

 Systems Analysis—Scope Defi nition

Checkpoint 337

 Systems Analysis—Problem Analysis

Checkpoint 337

 Systems Design—Decision Analysis

Checkpoint 337

 Six Tests for Feasibility 338

 Operational Feasibility 338

 Technical Feasibility 338

 Schedule Feasibility 339

 Economic Feasibility 339

 Cost-Benefi t Analysis Techniques 339

 How Much Will the System Cost? 339

 What Benefi ts Will the System Provide? 340

 Is the Proposed System Cost-Effective? 342

 Feasibility Analysis of Candidate Systems 346

 Candidate Systems Matrix 346

 Feasibility Analysis Matrix 349

 The System Proposal 351

 Written Report 351

 Formal Presentation 352

 P A R T T H R E E

 Systems Design Methods 363

 11 SYSTEMS DESIGN 364

 Introduction 365
 What Is Systems Design? 365
 Systems Design Approaches 365

 Model-Driven Approaches 366

 Rapid Application Development 370

 Systems Design Strategies 370

 Systems Design for In-House Development—The
“Build” Solution 372

 Task 5.1—Design the Application

Architecture 372

 Task 5.2—Design the System Database(s) 372

 Task 5.3—Design the System Interface 376

 Task 5.4—Package Design

Specifi cations 377

 Task 5.5—Update the Project Plan 378

 Systems Design for Integrating Commercial
Software—The “Buy” Solution 378

 Task 4.1—Research Technical Criteria and

Options 381

 Task 4.2—Solicit Proposals or Quotes from

Vendors 382

 Task 5A.1—Validate Vendor Claims and

Performances 382

 Task 5A.2—Evaluate and Rank Vendor

Proposals 384

 Task 5A.3—Award (or Let) Contract and

Debrief Vendors 384

 Impact of Buy Decision on Remaining

Life-Cycle Phases 385

 12 APPLICATION ARCHITECTURE AND

MODELING 391

 Introduction 392
 Application Architecture 392

 Physical Data Flow Diagrams 393
 Physical Processes 393

 Physical Data Flows 396

 Physical External Agents 398

 Physical Data Stores 398

 Information Technology Architecture 399

 Distributed Systems 399

 Data Architectures—Distributed Relational

Databases 407

 Interface Architectures—Inputs, Outputs, and

Middleware 409

 Process Architectures—The Software

Development Environment 414

 Modeling the Application Architecture of an
Information System 416

 Drawing Physical Data Flow

Diagrams 416

 The Network Architecture 417

 Data Distribution and Technology

Assignments 418

 Process Distribution and Technology

Assignments 420

 The Person/Machine Boundaries 420

xiii

 13 DATABASE DESIGN 429

 Introduction 430
 Database Concepts for the Systems Analyst 430

 Fields 430

 Records 431

 Files and Tables 432

 Databases 432

 Prerequisite for Database Design—
Normalization 438

 Modern Database Design 438
 Goals and Prerequisites to Database

Design 439

 The Database Schema 439

 Data and Referential Integrity 444

 Roles 447

 Database Distribution and Replication 447

 Database Prototypes 448

 Database Capacity Planning 448

 Database Structure Generation 448

 14 OUTPUT DESIGN AND

PROTOTYPING 454

 Introduction 455
 Output Design Concepts and Guidelines 455

 Distribution and Audience of Outputs 455

 Implementation Methods for Outputs 458

 How to Design and Prototype Outputs 463

 Automated Tools for Output Design and

Prototyping 463

 Output Design Guidelines 466

 The Output Design Process 466

 Web-Based Outputs and E-Business 474

 15 INPUT DESIGN AND

PROTOTYPING 483

 Introduction 484
 Input Design Concepts and

Guidelines 484

 Data Capture, Data Entry, and Data

Processing 484

 Input Methods and Implementation 487

 System User Issues for Input Design 489

 Internal Controls—Data Editing for

Inputs 491

 GUI Controls for Input Design 492

 Common GUI Controls for Inputs 494

 Advanced Input Controls 498

 How to Design and Prototype Inputs 500

 Automated Tools for Input Design and

Prototyping 500

 The Input Design Process 501

 Web-Based Inputs and E-Business 507

 16 USER INTERFACE DESIGN 513

 Introduction 514
 User Interface Design Concepts and

Guidelines 514

 Types of Computer Users 514

 Human Factors 515

 Human Engineering Guidelines 516

 Dialogue Tone and Terminology 517

 User Interface Technology 517

 Operating Systems and Web

Browsers 517

 Display Monitor 518

 Keyboards and Pointers 518

 Graphical User Interface Styles and
Considerations 519

 Windows and Frames 519

 Menu-Driven Interfaces 520

 Instruction-Driven Interfaces 526

 Question-Answer Dialogues 527

 Special Considerations for User Interface

Design 529

 How to Design and Prototype a User
Interface 533

 Automated Tools for User Interface Design and

Prototyping 533

 The User Interface Design Process 533

 17 OBJECT-ORIENTED DESIGN

AND MODELING USING

THE UML 544

 Introduction 545
 The Design of an Object-Oriented System 545

 Entity Classes 545

 Interface Classes 545

 Control Classes 546

xiv

 Persistence Classes 546

 System Classes 546

 Design Relationships 547

 Attribute and Method Visibility 547

 Object Responsibilities 548

 The Process of Object-Oriented Design 549

 Refi ning the Use-Case Model 549

 Modeling Class Interactions, Behaviors,

and States That Support the Use-Case

Scenario 551

 Updating the Object Model to Refl ect the

Implementation Environment 560

 P A R T F O U R

 Beyond Systems Analysis and Design 567

 18 SYSTEMS CONSTRUCTION AND

IMPLEMENTATION 568

 Introduction 569
 What Is Systems Construction and

Implementation? 569

 The Construction Phase 569

 Task 6.1—Build and Test Networks

(if Necessary) 569

 Task 6.2—Build and Test Databases 572

 Task 6.3—Install and Test New Software

Packages (if Necessary) 572

 Task 6.4—Write and Test New Programs 573

 The Implementation Phase 574

 Task 7.1—Conduct System Test 574

 Task 7.2—Prepare Conversion Plan 574

 Task 7.3—Install Databases 577

 Task 7.4—Train Users 577

 Task 7.5—Convert to New System 578

 Photo Credits 584

 Glossary/Index 585

xv

Part One
The Context of Systems Development Projects

This is a practical book about infor-

mation systems development meth-

ods. All businesses and organizations

develop information systems. You

can be assured that you will play

some role in the systems analysis and

design for those systems—either as

a customer or user of those systems

or as a developer of those systems.

Systems analysis and design is about

business problem solving and com-

puter applications. The methods you

will learn in this book can be applied

to a wide variety of problem domains,

not just those involving the computer.

Before we begin, we assume

you've completed an introductory

course in computer-based informa-

tion systems. Many of you have also

completed one or more programming

courses (using technologies such as

Access, Java, C/C , or Visual

Basic). That will prove helpful, since

systems analysis and design precedes

and/or integrates with those activities.

But don't worry—we'll review all the

necessary principles on which sys-

tems analysis and design is based.

Part One focuses on the big pic-

ture. Before you learn about specifi c

activities, tools, techniques, methods,

and technology, you need to under-

stand this big picture. As you explore

the context of systems analysis and

design, we will introduce many ideas,

tools, and techniques that are not

explored in great detail until later in

the book. Try to keep that in mind as

you explore the big picture.

Systems development isn't

magic. There are no secrets for suc-

cess, no perfect tools, techniques, or

methods. To be sure, there are skills

that can be mastered. But the com-

plete and consistent application of

those skills is still an art.

We start in Part One with funda-

mental concepts, philosophies, and

trends that provide the context of sys-

tems analysis and design methods—

in other words, the basics! If you

understand these basics, you will be

better able to apply, with confi dence,

the practical tools and techniques you

will learn in Parts Two through Four.

You will also be able to adapt to new

situations and methods.

Three chapters make up this part.

Chapter 1, “The Context of Systems

Analysis and Design Methods,” intro-

duces you to the participants in sys-

tems analysis and design with special

emphasis on the modern systems

analyst as the facilitator of systems

work. You'll also learn about the rela-

tionships between systems analysts,

end users, managers, and other infor-

mation systems professionals. Finally,

you'll learn to prepare yourself for a

career as an analyst (if that is your

goal). Regardless, you will under-

stand how you will interact with this

important professional.

Chapter 2, “Information Systems

Development,” introduces a high-

level (meaning general) process for

information systems development.

This is called a systems development

life cycle. We will present the life

cycle in a form in which most of you

will experience it—a systems devel-

opment methodology. This method-

ology will be the context in which

you will learn to use and apply the

systems analysis and design methods

taught in the remainder of the book.

Chapter 3, “Project Management,”

introduces project management

techniques. All systems projects are

dependent on the principles that are

surveyed. This chapter introduces

two modeling techniques for proj-

ect management: Gantt and PERT.

These tools help you schedule ac-

tivities, evaluate progress, and adjust

schedules.

1The Context of Systems
Analysis and Design Methods

Chapter Preview and Objectives

This is a book about systems analysis and design as applied to information systems and

computer applications. No matter what your chosen occupation or position in any busi-

ness, you will likely participate in systems analysis and design. Some of you will become

systems analysts, the key players in systems analysis and design activities. The rest of

you will work with systems analysts as projects come and go in your organizations. This

chapter introduces you to information systems from four different perspectives. You will

understand the context for systems analysis and design methods when you can:

❚ Defi ne information system and name seven types of information system applications.

❚ Identify different types of stakeholders who use or develop information systems, and

give examples of each.

❚ Defi ne the unique role of systems analysts in the development of information systems.

❚ Describe current business drivers that infl uence information systems development.

❚ Describe current technology drivers that infl uence information systems development.

❚ Briefl y describe a simple process for developing information systems.

The Context of Systems Analysis and Design Methods Chapter One 5

 Introduction

 It is Bob Martinez’s fi rst week at work as an analyst/programmer. Fresh out of college
with a degree in computer information systems technology, Bob is eager to work
with information systems in the real world. His employer is SoundStage Entertainment
Club, one of the fastest-growing music and video clubs in America. SoundStage is just
beginning systems analysis and design work on a reengineering of their member ser-
vices information system. Bob has been appointed to the project team.

 This morning was the kickoff meeting for the project, a meeting that included the
vice president of member services, director of the audio club, director of the game
club, director of marketing, director of customer services, and director of warehouse
operations. With that lineup Bob was glad to mainly keep silent at the meeting and
rely on his boss, Sandra Shepherd, a senior systems analyst. He was amazed at how
well Sandra was able to speak the language of each of the participants and to explain
the plans for the new information system in terms they could understand and with
benefi ts they could appreciate. Bob had thought that being just out of college he
would know more about cutting-edge technology than most of his co-workers. But
Sandra seemed to understand everything about e-commerce and using mobile tech-
nologies plus many things of which Bob was only vaguely aware. He made a note to
read up on ERP systems as that had come up in the discussion. By the end of the meet-
ing Bob had a new appreciation for the job of systems analyst and of all the things he
had yet to learn.

 The Product—Information System

 This is a book about systems analysis and design essentials. Ultimately, this is a
book about “analyzing” business requirements for information systems and “design-
ing” information systems that fulfi ll those business requirements. In other words,
the product of systems analysis and design is an information system. That product
is visually represented in the visual framework as the large rectangle in the center
of the picture.

 A system is a group of interrelated components that function together to achieve
a desired result. For instance, you may own a home theater system made up of a DVD
player, receiver, speakers, and display monitor.

 Information systems (IS) in organizations capture and manage data to produce
useful information that supports an organization and its employees, customers, sup-
pliers, and partners. Many organizations consider information systems to be essential
to their ability to compete or gain competitive advantage. Most organizations have
come to realize that all workers need to participate in the development of informa-
tion systems. Therefore, information systems development is a relevant subject to you
regardless of whether or not you are studying to become an information systems
professional.

 Information systems come in all shapes and sizes. They are so interwoven into
the fabric of the business systems they support that it is often diffi cult to distinguish
between business systems and their support information systems. Suffi ce it to say that
information systems can be classifi ed according to the functions they serve. Transac-

tion processing systems (TPSs) process business transactions such as orders, time
cards, payments, and reservations. Management information systems (MISs) use
the transaction data to produce information needed by managers to run the busi-
ness. Decision support systems (DSSs) help various decision makers identify and
choose between options or decisions. Executive information systems (EISs) are
tailored to the unique information needs of executives who plan for the business
and assess performance against those plans. Expert systems capture and reproduce

system a group of inter-

related components that

function together to achieve a

desired result.

information system (IS)
an arrangement of people,

data, processes, and informa-

tion technology (IT) that

interact to collect, process,

store, and provide as output

the information needed to sup-

port an organization.

information technology
(IT) a contemporary term

that describes the combina-

tion of computer technology

(hardware and software) with

telecommunications technol-

ogy (data, image, and voice

networks).

transaction processing
system (TPS) an informa-

tion system that captures and

processes data about busi-

ness transactions.

management informa-
tion system (MIS) an infor-

mation system that provides

for management-oriented

reporting based on transaction

processing and operations of

the organization.

6 Part One The Context of Systems Development Projects

THE “PROCESS”THE “PRODUCT”—AN INFORMATION SYSTEM “PEOPLE”

SYSTEM OWNERS’ VIEW OF THE INFORMATION SYSTEM

System owners pay for the system to be built and operated and set

the vision and priorities for the system. Hence, they view an

information system in terms of costs and benefits to solve problems

and exploit opportunities.

B U S I N E S S D R I V E R S

T E C H N O L O G Y D R I V E R S

S
Y

S
T

E
M

 O
W

N
E

R
S

S
Y

S
T

E
M

S

A
N

A
L

Y
S

T
S

a

n
d

P

R
O

J
E

C
T

M

A
N

A
G

E
R

S

S
Y

S
T

E
M

A
N

A
L

Y
S

IS
S

Y
S

T
E

M

IN
IT

IA
T

IO
N

S
Y

S
T

E
M

D
E

S
IG

N
S

Y
S

T
E

M

IM
P

L
E

M
E

N
T

A
T

IO
N

SYSTEM USERS’ VIEW OF THE INFORMATION SYSTEM

System users define the business requirements and expectations

for the system. Hence, they view an information system in terms of

the functionality provided to their jobs, ease-of-learning, or ease-of-use.

SYSTEM DESIGNERS’ VIEW OF THE INFORMATION SYSTEM

System designers translate the business requirements into a

feasible technical solution. Hence, they view an information system

in terms of a design blueprint to guide the construction of the final

system.

SYSTEM BUILDERS’ VIEW OF THE INFORMATION SYSTEM

System builders construct, deploy, and maintain the information

system. Hence, they tend to view an information system in terms of

the actual working hardware and software to implement the system.

S
Y

S
T

E
M

 U
S

E
R

S
S

Y
S

T
E

M
 D

E
S

IG
N

E
R

S
S

Y
S

T
E

M
 B

U
IL

D
E

R
S

P
R

O
J

E
C

T

a
n

d

P
R

O
C

E
S

S

M
A

N
A

G
E

M
E

N
T

F I G U R E 1 - 1 Stakeholders’ Perspective of an Information System

the knowledge of an expert problem solver or decision maker and then simulate the
“thinking” of that expert. Communications and collaboration systems enhance
communication and collaboration between people, both internal and external to the
organization. Finally, offi ce automation systems help employees create and share
documents that support day-to-day offi ce activities.

decision support system
(DSS) an information system

that either helps to identify

decision-making opportuni-

ties or provides information to

help make decisions.

The Context of Systems Analysis and Design Methods Chapter One 7

 As illustrated in Figure 1-1 , information systems can be viewed from various per-
spectives, including:

 • The people in the information system (the “team”).
 • The business drivers infl uencing the information system.
 • The technology drivers used by the information system.
 • The process used to develop the information system.

Let’s examine each of these perspectives in the remaining sections of the chapter.

 The People—System Stakeholders

 Let’s assume you are in a position to help build an information system. Who are the
 stakeholders in this system? Stakeholders for information systems can be broadly
classifi ed into the fi ve groups shown on the left-hand side of Figure 1-1 . Notice that
each stakeholder group has a different perspective of the same information system.
The systems analyst is a unique stakeholder in Figure 1-1 . The systems analyst serves
as a facilitator or coach, bridging the communications gap that can naturally develop
between the nontechnical system owners and users and the technical system design-
ers and builders.

 All the above stakeholders have one thing in common—they are what the U.S.
Department of Labor calls information workers . The livelihoods of informa-
tion workers depend on decisions made based on information. Today, more than
60 percent of the U.S. labor force is involved in producing, distributing, and us-
ing information. Let’s examine the five groups of information workers in greater
detail.

 > Systems Owners

 For any information system, large or small, there will be one or more system own-

ers. System owners usually come from the ranks of management. For medium to
large information systems, system owners are usually middle or executive manag-
ers. For smaller systems, system owners may be middle managers or supervisors.
System owners tend to be interested in the bottom line—how much will the sys-
tem cost? How much value or what benefi ts will the system return to the busi-
ness? Value and benefi ts can be measured in different ways, as noted in the margin
checklist.

 > Systems Users

 System users make up the vast majority of the information workers in any in-
formation system. Unlike system owners, system users tend to be less concerned
with costs and benefi ts of the system. Instead, as illustrated in Figure 1-1 , they
are concerned with the functionality the system provides to their jobs and the
system’s ease of learning and ease of use. Although users have become more tech-
nology-literate over the years, their primary concern is to get the job done. Con-
sequently, discussions with most users need to be about business requirements
as opposed to technical requirements. Much of this book is dedicated to teaching
you how to effectively identify and communicate business requirements for an
information system.

 There are many classes of system users. Each class should be directly involved in
any information system development project that affects them. Let’s briefl y examine
these classes.

executive information
system (EIS) an informa-

tion system that supports the

planning and assessment

needs of executive managers.

expert system an informa-

tion system that captures the

expertise of workers and then

simulates that expertise to the

benefi t of nonexperts.

system owner an informa-

tion system’s sponsor and

executive advocate, usually

responsible for funding the

project of developing, operat-

ing, and maintaining the

information system.

information worker any

person whose job involves

creating, collecting, process-

ing, distributing, and using

information.

stakeholder any person

who has an interest in an ex-

isting or proposed information

system. Stakeholders may

include both technical and

nontechnical workers. They

may also include both internal

and external workers.

offi ce automation sys-
tem an information system

that supports the wide range

of business offi ce activities

that provide for improved

work fl ow between workers.

communications and
collaboration system an

information system that

enables more effective com-

munications between work-

ers, partners, customers, and

suppliers to enhance their

ability to collaborate.

8 Part One The Context of Systems Development Projects

 Internal System Users Internal system users are employees of the businesses for
which most information systems are built. Internal users make up the largest percent-
age of information system users in most businesses. Examples include:

 • Clerical and service workers —perform most of the day-to-day transaction
processing in the average business. They process orders, invoices, payments, and
the like. They type and fi le correspondence. They fi ll orders in the warehouse.
And they manufacture goods on the shop fl oor. Most of the fundamental data in
any business is captured or created by these workers, many of whom perform
manual labor in addition to processing data.

 • Technical and professional staff —consists largely of business and industrial
specialists who perform highly skilled and specialized work. Examples include
lawyers, accountants, engineers, scientists, market analysts, advertising designers,
and statisticians. Because their work is based on well-defi ned bodies of knowl-
edge, they are sometimes called knowledge workers .

 • Supervisors, middle managers, and executive managers —are the decision
makers. Supervisors tend to focus on day-to-day problem solving and decision
making. Middle managers are more concerned with tactical (short-term) opera-
tional problems and decision making. Executive managers are concerned with
strategic (long-term) planning and decision making.

 External System Users The Internet has allowed traditional information system
boundaries to be extended to include other businesses or direct consumers as system
users. These external system users make up an increasingly large percentage of system
users for modern information systems. Examples include:

 • Customers —any organizations or individuals who purchase our products and
services. Today, our customers can become direct users of our information sys-
tems when they can directly execute orders and sales transactions that used to
require intervention by an internal user. For example, if you purchased a com-
pany’s product via the Internet, you became an external user of that business’s
sales information system. (There was no need for a separate internal user of the
business to input your order.)

 • Suppliers —any organizations from which our company may purchase supplies
and raw materials. Today, these suppliers can interact directly with our com-
pany’s information systems to determine our supply needs and automatically
create orders to fi ll those needs. There is no longer always a need for an internal
user to initiate those orders to a supplier.

 • Partners —any organizations from which our company purchases services
or with which it partners. Most modern businesses contract or outsource
a great number of basic services such as grounds maintenance and net-
work management. And businesses have learned that partnering with other
businesses more quickly leverages strengths to build better products more
rapidly.

 • Employees —those employees who work on the road or who work from home.
For example, sales representatives usually spend much of their time on the
road. Also, many businesses permit workers to telecommute (meaning “work
from home”) to reduce costs and improve productivity. As mobile or remote
users, these employees require access to the same information systems that are
needed by internal users.

 External system users are increasingly referred to as remote users and mobile

users. They connect to our information systems through laptop computers, handheld
computers, and smart phones—either wired or wireless. Designing information sys-
tems for these devices presents some of the most contemporary of challenges that we
will address in this book.

POSSIBLE VALUES
AND BENEFITS OF
INFORMATION
SYSTEMS

Increased Business Profi t
Reduced Business Costs

Greater Costs and Benefi ts
of the System

Increased Market Share

Improved Customer
Relations

Increased Effi ciency

Improved Decision Making

Better Compliance with
Regulations

Fewer Mistakes

Improved Security

Greater Capacity

system user a “customer”

who will use or is affected by

an information system on a

regular basis—capturing, vali-

dating, entering, responding

to, storing, and exchanging

data and information.

knowledge worker any

worker whose responsibilities

are based on a specialized

body of knowledge.

remote user a user who

is not physically located

on the premises but who still

requires access to information

systems.

mobile user a user whose

location is constantly chang-

ing but who requires access

to information systems from

any location.

The Context of Systems Analysis and Design Methods Chapter One 9

 > Systems Designers

 System designers are technology specialists for information systems. As Figure 1-1
shows, system designers are interested in information technology choices and in the
design of systems that use chosen technologies. Today’s system designers tend to fo-
cus on technical specialties. Some of you may be educating yourselves to specialize in
one of these technical specialties, such as:

 • Database administrators —specialists in database technologies who design and
coordinate changes to corporate databases.

 • Network architects —specialists in networking and telecommunications
technologies who design, install, confi gure, optimize, and support local and
wide area networks, including connections to the Internet and other exter-
nal networks.

 • Web architects —specialists who design complex Web sites for organizations,
including public Web sites for the Internet, internal Web sites for organiza-
tions (called intranets), and private business-to-business Web sites (called
 extranets).

 • Graphic artists —relatively new in today’s IT worker mix, specialists in graphics
technology and methods used to design and construct compelling and easy-to-
use interfaces to systems, including interfaces for PCs, the Web, handhelds, and
smart phones.

 • Security experts —specialists in technology and methods used to ensure data
and network security (and privacy).

 • Technology specialists —experts in the application of specifi c technologies
that will be used in a system (e.g., a specifi c commercial software package or a
 specifi c type of hardware).

 > Systems Builders

 System builders (see Figure 1-1) are another category of technology specialists for
information systems. Their role is to construc t the system according to the system de-
signers’ specifi cations. In small organizations or with small information systems, system
designers and system builders are often the same people. But in large organizations and
information systems they often handle separate job responsibilities. Some of you may
be educating yourselves to specialize in one of their technical specialties, such as:

 • Applications programmers —specialists who convert business requirements
and statements of problems and procedures into computer languages. They
develop and test computer programs to capture and store data and to locate and
retrieve data for computer applications.

 • Systems programmers —specialists who develop, test, and implement op-
erating systems–level software, utilities, and services. Increasingly, they also
develop reusable software “components” for use by applications program-
mers (above).

 • Database programmers —specialists in database languages and technology
who build, modify, and test database structures and the programs that use and
maintain them.

 • Network administrators —specialists who design, install, troubleshoot, and opti-
mize computer networks.

 • Security administrators —specialists who design, implement, troubleshoot, and
manage security and privacy controls in a network.

 • Webmasters —specialists who code and maintain Web servers.
 • Software integrators —specialists who integrate software packages with hard-

ware, networks, and other software packages.

system designer a techni-

cal specialist who translates

system users’ business

requirements and constraints

into technical solutions. She

or he designs the computer

databases, inputs, outputs,

screens, networks, and soft-

ware that will meet the system

users’ requirements.

system builder a techni-

cal specialist who constructs

information systems and com-

ponents based on the design

specifi cations generated by

the system designers.

10 Part One The Context of Systems Development Projects

 Although this book is not directly intended to educate the system builder, it is
intended to teach system designers how to better communicate design specifi cations
to system builders.

 > Systems Analysts

 As you have seen, system owners, users, designers, and builders often have very
different perspectives on any information system to be built and used. Some are in-
terested in generalities, while others focus on details. Some are nontechnical, while
others are very technical. This presents a communications gap that has always ex-
isted between those who need computer-based business solutions and those who
understand information technology. The systems analyst bridges that gap. You can
(and probably will) play a role as either a systems analyst or someone who works with
systems analysts.

 As illustrated in Figure 1-1 , their role intentionally overlaps the roles of all
the other stakeholders. For the system owners and users, systems analysts identify
and validate business problems and needs. For the system designers and builders,
systems analysts ensure that the technical solution fulfi lls the business needs and
integrate the technical solution into the business. In other words, systems analysts
 facilitate the development of information systems through interaction with the
other stakeholders.

 There are several legitimate, but often confusing, variations on the job title we are
calling “systems analyst.” A programmer/analyst (or analyst/programmer) includes
the responsibilities of both the computer programmer and the systems analyst. A busi-

ness analyst focuses on only the nontechnical aspects of systems analysis and design.
Other synonyms for “systems analyst” are systems consultant, business analyst, systems
architect, systems engineer, information engineer, information analyst, and systems
integrator.

 Some of you will become systems analysts. The rest of you will routinely work
with systems analysts who will help you solve your business and industrial prob-
lems by creating and improving your access to the data and information needed to
do your job.

 > External Service Providers

 Those of you with some computing experience may be wondering where consultants
fi t in our taxonomy of stakeholders. They are not immediately apparent in our visual
framework. But they are there! Any of our stakeholder roles may be fi lled by internal
or external workers. Consultants are one example of an external service provider

(ESP) . Most ESPs are systems analysts, designers, or builders who are contracted to
bring special expertise or experience to a specifi c project. Examples include tech-
nology engineers, sales engineers, systems consultants, contract programmers, and
systems integrators.

 > The Project Manager

 We’ve introduced most of the key players in modern information systems de-
velopment—systems owners, users, designers, builders, and analysts. We should
conclude by emphasizing the reality that these individuals must work together
as a team to successfully build information systems and applications that will
benefit the business. Teams require leadership. For this reason, usually one or
more of these stakeholders takes on the role of project manager to ensure that
systems are developed on time, within budget, and with acceptable quality. As
 Figure 1-1 indicates, most project managers are experienced systems analysts.
But in some organizations, project managers are selected from the ranks of what

external service provider
(ESP) a systems analyst,

system designer, or system

builder who sells his or her

expertise and experience

to other businesses to help

those businesses purchase,

develop, or integrate their

information systems solu-

tions; may be affi liated with

a consulting or services

organization.

project manager an

experienced professional

who accepts responsibil-

ity for planning, monitoring,

and controlling projects with

respect to schedule, budget,

deliverables, customer satis-

faction, technical standards,

and system quality.

systems analyst a special-

ist who studies the problems

and needs of an organization

to determine how people,

data, processes, and informa-

tion technology can best

accomplish improvements for

the business.

The Context of Systems Analysis and Design Methods Chapter One 11

we have called “system owners.” Regardless, most organizations have learned that
project management is a specialized role that requires distinctive skills and
experience.

 Business Drivers for Today’s Information Systems

 Another way to look at our information system product is from the perspective
of business drivers. Using Figure 1-2 , let’s now briefl y examine the most important
business trends that are impacting information systems. Many trends quickly become
fads, but here are some business trends we believe will infl uence systems develop-
ment in the coming years. Many of these trends are related and integrated such that
they form a new business philosophy that will impact the way everyone works in the
coming years.

 > Globalization of the Economy

 Since the 1990s, there has been a signifi cant trend of economic globalization. Compe-
tition is global, with emerging industrial nations offering lower-cost or higher-quality
alternatives to many products. American businesses fi nd themselves with new inter-
national competitors. On the other hand, many American businesses have discovered
new and expanded international markets for their own goods and services. The bot-
tom line is that most businesses were forced to reorganize to operate in this global
economy.

 How does economic globalization affect the players in the systems game? First,
information systems and computer applications must be internationalized. They
must support multiple languages, currency exchange rates, international trade reg-
ulations, and different business cultures and practices. Second, most information
systems ultimately require information consolidation for performance analysis and
decision making. The aforementioned language barriers, currency exchange rates,
transborder information regulations, and the like, complicate such consolidation.
Finally, there exists a demand for players who can communicate, orally and in writ-
ing, with management and users that speak different languages, dialects, and slang.
Opportunities for international employment of systems analysts should continue to
expand.

 > Electronic Commerce and Business

 In part due to the globalization of the economy, and in part because of the perva-
siveness of the Internet, businesses are changing or expanding their business model
to implement electronic commerce (e-commerce) and electronic business

(e-business). The Internet is fundamentally changing the rules by which business
is conducted. We live in a world where consumers and businesses will increasingly
expect to conduct commerce (business transactions) using the Internet. But the
impact is even more substantive. Because people who work in the business world
have become so comfortable with “surfi ng the Web,” organizations are increasingly
embracing the Web interface as a suitable architecture for conducting day-to-day
business within the organization.

 There are three basic types of e-commerce- and e-business-enabled information
systems applications:

 • Marketing of corporate image, products, and services is the simplest form of
electronic commerce application. The Web is used merely to “inform” customers
about products, services, and policies.

electronic commerce
(e-commerce) the buying

and selling of goods and ser-

vices by using the Internet.

electronic business
(e-business) the use of

the Internet to conduct and

support day-to-day business

activities.

12 Part One The Context of Systems Development Projects

 • Business-to-consumer (B2C) electronic commerce attempts to offer new,
Web-based channels of distribution for traditional products and services. You,
as a typical consumer, can research, order, and pay for products directly via the
Internet. Examples include Amazon.com (for books and music) and E-trade.com
(for stocks and bonds). Both companies are businesses that were created on
the Web. Their competition, however, includes traditional businesses that have

I N F O R M A T I O N

S Y S T E M S

 √ Globalization of the economy

 √ Electronic commerce and business

 √ Security and privacy

 √ Collaboration and partnership

 √ Knowledge asset management

 √ Continuous improvement

 √ Total quality management

 √ Business process redesign

THE “PEOPLE”

S
Y

S
T

E
M

 O
W

N
E

R
S

S
Y

S
T

E
M

 U
S

E
R

S
S

Y
S

T
E

M
 D

E
S

IG
N

E
R

S
S

Y
S

T
E

M
 B

U
IL

D
E

R
S

S
Y

S
T

E
M

S

A
N

A
L

Y
S

T
S

a
n

d

P

R
O

J
E

C
T

M

A
N

A
G

E
R

S

T H E T E C H N O L O G Y D R I V E R S

T H E B U S I N E S S D R I V E R S

THE “PRODUCT” THE “PROCESS”
S

Y
S

T
E

M

A
N

A
L

Y
S

IS
S

Y
S

T
E

M

IN
IT

IA
T

IO
N

S
Y

S
T

E
M

D
E

S
IG

N
S

Y
S

T
E

M

IM
P

L
E

M
E

N
T

A
T

IO
N

P
R

O
J

E
C

T

a
n

d

P
R

O
C

E
S

S

M
A

N
A

G
E

M
E

N
T

F I G U R E 1 - 2 Business Drivers for an Information System

The Context of Systems Analysis and Design Methods Chapter One 13

added Web-based electronic commerce front ends as an alternative consumer
option (such as Barnes and Noble and Merrill Lynch). Figure 1-3 illustrates a
 typical B2C Web storefront.

 • Business-to-business (B2B) electronic commerce is the real future. This
is the most complex form of electronic commerce and could ultimately
evolve into electronic business—the complete, paperless, and digital pro-
cessing of virtually all business transactions that occur within and between
businesses.

 One example of B2B electronic commerce is electronic procurement. All
businesses purchase raw materials, equipment, and supplies—frequently tens or
hundreds of millions of dollars worth per year. B2B procurement allows employ-
ees to browse electronic storefronts and catalogs, initiate purchase requisitions
and work orders, route requisitions and work orders electronically for expendi-
ture approvals, order the goods and services, and pay for the delivered goods
and completed services—all without the traditional time-consuming and costly
paper fl ow and bureaucracy. Largely due to the trend toward these e-business and
e-commerce applications, most new information systems applications are being
designed for an Internet architecture. Figure 1-4 illustrates a sample Web-based
procurement storefront.

F I G U R E 1 - 3 An Electronic Commerce Storefront

14 Part One The Context of Systems Development Projects

 > Security and Privacy

 As the digital economy continues to evolve, citizens and organizations alike have de-
veloped a heightened awareness of the security and privacy issues involved in today’s
economy. Security issues tend to revolve around business continuity; that is, “How will
the business continue in the event of a breach or disaster—any event that causes a
disruption of business activity?” Additionally, businesses must ask themselves, “How
can the business protect its digital assets from outside threats?” It is true that these
questions ultimately come down to technology; however, the concerns have become
fundamental business concerns.

 Related to security is the issue of privacy. Consumers are increasingly demanding
privacy in the digital economy. Governments are regulating privacy issues, and the
regulations will likely become more stringent as the digital economy continues to
evolve. Go to your favorite commercial Web sites. Almost every business now has a
privacy policy. Consumer groups are beginning to analyze and monitor such privacy
policies, holding companies accountable and lobbying governments for stricter regu-
lations and enforcement.

 > Collaboration and Partnership

 Collaboration and partnership are signifi cant business trends that are infl uencing
information systems applications. Within organizations, management is emphasiz-
ing the need to break down the walls that separate the organization’s departments
and functions. Management speaks of “cross-functional” teams that collaborate to ad-
dress common business goals from interdisciplinary perspectives. For example, new

F I G U R E 1 - 4 An Electronic Commerce Procurement Storefront.

The Context of Systems Analysis and Design Methods Chapter One 15

product design used to be the exclusive domain of engineers. Today, new product
design typically involves a cross-functional team of representatives from many organi-
zational units, such as engineering, marketing, sales, manufacturing, inventory control,
distribution, and, yes, information systems.

 Similarly, the trend toward collaboration extends beyond the organization to in-
clude other organizations—sometimes even competitors. Organizations choose to
directly collaborate as partners in business ventures that make good business sense.
Microsoft and Oracle sell competitive database management systems. But Microsoft
and Oracle also partner to ensure that Oracle applications will operate on a Microsoft
database. Both companies benefi t fi nancially from such cooperation. In a similar vein,
businesses have learned that it can be benefi cial for their information systems to in-
teroperate with one another.

 > Knowledge Asset Management

 What is knowledge? Knowledge is the result of a continuum of how we process raw
data into useful information. Information systems collect raw data by capturing busi-
ness facts (about products, employees, customers, and the like) and processing busi-
ness transactions. Data gets combined, fi ltered, organized, and analyzed to produce
 information to help managers plan and operate the business. Ultimately, information
is refi ned by people to create knowledge and expertise. Increasingly, organizations
are asking themselves, “How can the company manage and share knowledge for com-
petitive advantage? And as workers come and go, how can the workers’ knowledge
and expertise be preserved within the organization?”

 The need for knowledge asset management impacts information systems on a va-
riety of fronts. Although we have captured (and continue to capture) a great amount
of data and information in information systems, they are loosely integrated in most
organizations—indeed, redundant, and contradictory data and information are com-
mon in information systems. As new information systems are built, we will increas-
ingly be expected to focus on integration of the data and information that can create
and preserve knowledge in the organizations for which we work. This will greatly
complicate systems analysis and design. In this book, we plan to introduce you to
many tools and techniques that can help you integrate systems for improved knowl-
edge management.

 > Continuous Improvement and
Total Quality Management

 Information systems automate and support business processes . In an effort to con-
tinuously improve a business process, continuous process improvement (CPI)
examines a business process to implement a series of small changes for improvement.
These changes can result in cost reductions, improved effi ciencies, or increased value
and profi t. Systems analysts are both affected by continuous process improvements
and expected to initiate or suggest such improvements while designing and imple-
menting information systems.

 Another ongoing business driver is total quality management (TQM) . Busi-
nesses have learned that quality has become a critical success factor in competition.
They have also learned that quality management does not begin and end with the
products and services sold by the business. Instead, it begins with a culture that rec-
ognizes that everyone in the business is responsible for quality. TQM commitments
require that every business function, including information services, identify quality
indicators, measure quality, and make appropriate changes to improve quality.

 Information systems, and hence systems analysts, are part of the TQM require-
ment. Our discussions with college graduate recruiters suggest that an “obsessive” at-
titude toward quality management will become an essential characteristic of successful

data raw facts about people,

places, events, and things

that are of importance in an

organization. Each fact is, by

itself, relatively meaningless.

information data that has

been processed or reorga-

nized into a more meaningful

form for someone. Information

is formed from combinations

of data that hopefully have

meaning to the recipient.

knowledge data and infor-

mation that are further refi ned

based on the facts, truths,

beliefs, judgments, experi-

ences, and expertise of the

recipient. Ideally information

leads to wisdom.

business processes tasks

that respond to business

events (e.g., an order).

Business processes are the

work, procedures, and rules

required to complete the

business tasks, independent

of any information technology

used to automate or support

them.

continuous process
improvement (CPI) the

continuous monitoring of busi-

ness processes to effect small

but measurable improve-

ments in cost reduction and

value added.

total quality
management (TQM) a

comprehensive approach

to facilitating quality

improvements and managem

ent within a business.

16 Part One The Context of Systems Development Projects

systems analysts (and all information technology professionals). Throughout this book,
continuous process improvement and total quality management will be an underlying
theme.

 > Business Process Redesign

 As stated earlier, many information systems support or automate business processes.
Many businesses are learning that those business processes have not changed sub-
stantially in decades and that those business processes are grossly ineffi cient and/or
costly. Many business processes are overly bureaucratic, and all their steps do not truly
contribute value to the business. Unfortunately, information systems have merely au-
tomated many of these ineffi ciencies. Enter business process redesign!

 Business process redesign (BPR) involves making substantive changes to busi-
ness processes across a larger system. In effect, BPR seeks to implement more sub-
stantial changes and improvements than does CPI. In a BPR, business processes are
carefully documented and analyzed for timeliness, bottlenecks, costs, and whether or
not each step or task truly adds value to the organization (or, conversely, adds only
bureaucracy). Business processes are then redesigned for maximum effi ciency and
lowest possible costs.

 Technology Drivers for Today’s Information Systems

 Advances in information technology can also be drivers for information systems (as
suggested in Figure 1-5). In some cases, outdated technologies can present signifi cant
problems that drive information system development projects. In other cases, newer
technologies present business opportunities. Let’s examine several technologies that
are infl uencing today’s information systems.

 > Networks and the Internet

 Scott McNealy, Sun Computer’s charismatic CEO, is often cited as stating, “The net-
work has become the computer.” Few would argue that today’s information systems
are installed on a network architecture consisting of local and wide area networks.
These networks include mainframe computers, network servers, and a variety of
desktop, laptop, and handheld client computers. But today, the most pervasive net-
working technologies are based on the Internet. Some of the more relevant Internet
technologies that you need to become aware of, if not develop some basic skill with,
are described in the following list.

 • xHTML and XML are the fundamental languages of Web page authoring and
Internet application development. Extensible Hypertext Markup Language
(xHTML) is the emerging second-generation version of HTML, the language used
to construct Web pages. Extensible Markup Language (XML) is the language
used to effectively transport data content along with its proper interpretation
over the Internet.

 • Scripting languages are simple programming languages designed specifi cally
for Internet applications. Examples include Perl, VBScript, and JavaScript.
These languages are increasingly taught in college Web development and pro-
gramming courses.

 • Web-specifi c programming languages such as Java and Cold Fusion have
emerged to specifi cally address construction of complex, Web-based applica-
tions that involve multiple servers and Web browsers.

 • Intranets are essentially private Internet designed for use by employees of an
organization. They offer the look and feel of the Internet; however, security and
fi rewalls restrict their use to employees.

business process re-
design (BPR) the study,

analysis, and redesign

of fundamental business

processes to reduce costs

and/or improve value added

to the business.

The Context of Systems Analysis and Design Methods Chapter One 17

 • Extranets, like intranets, are private Internets. But extranets are for use between
specifi c organizations. Only the employees of those identifi ed businesses can
access and use the extranet.

 • Portals (in corporations) are “home pages” that can be customized to the spe-
cifi c needs of different individuals who use them. For example, portal technol-
ogy can defi ne Web pages that provide appropriate information and applications
for different roles in the same company. Each individual’s role determines which
information and applications that person can use from her or his Web page.

 • Web services are reusable, Web-based programs that can be called from any
other Internet program.

I N F O R M A T I O N

S Y S T E M S

 Networks and the Internet Mobile and wireless technologies Object technologies Collaborative technologies Enterprise applications

THE “PEOPLE”

S
Y

S
T

E
M

 O
W

N
E

R
S

S
Y

S
T

E
M

 U
S

E
R

S
S

Y
S

T
E

M
 D

E
S

IG
N

E
R

S
S

Y
S

T
E

M
 B

U
IL

D
E

R
S

S
Y

S
T

E
M

S

A
N

A
L

Y
S

T
S

a
n

d

P

R
O

J
E

C
T

M

A
N

A
G

E
R

S

T H E T E C H N O L O G Y D R I V E R S

T H E B U S I N E S S D R I V E R S

THE “PRODUCT” THE “PROCESS”

S
Y

S
T

E
M

A
N

A
L

Y
S

IS
S

Y
S

T
E

M

IN
IT

IA
T

IO
N

S
Y

S
T

E
M

D
E

S
IG

N
S

Y
S

T
E

M

IM
P

L
E

M
E

N
T

A
T

IO
N

P
R

O
J

E
C

T

a
n

d

P
R

O
C

E
S

S

M
A

N
A

G
E

M
E

N
T

F I G U R E 1 - 5 Technology Drivers for an Information System

18 Part One The Context of Systems Development Projects

 These are but a few of the network and Internet technologies that you should
seek out during your education. But you must recognize the volatility of the Internet
and accept that these and other technologies will emerge and disappear frequently
in the near future.

 > Mobile and Wireless Technologies

 Mobile and wireless technologies are poised to signifi cantly change the next gen-
eration of information systems. Handheld computers, or personal data assistants
(PDAs, such as the HP iPaq, Palm, and RIM BlackBerry ®), have become common
in the ranks of information workers. These devices are increasingly including wire-
less capabilities (see margin photo) that provide Web access and e-mail. Cell phones
are also increasingly featuring Internet and e-mail capabilities. And now, integrated
devices such as smart phones are emerging that integrate the capabilities of PDAs
and cell phones into a single device (see margin photo). For those who prefer sepa-
rate devices, technologies like Bluetooth are emerging to allow the separate devices
to interoperate as one logical device while preserving each one’s form factors and
advantages.

 Additionally, laptop computers are increasingly equipped with wireless and mo-
bile capabilities to allow information workers to more easily move between locations
while preserving connectivity to information systems. All of these technical trends
will signifi cantly impact the analysis and design of new information systems. Increas-
ingly, wireless access must be assumed. And the limitations of mobile devices and
screen sizes must be accommodated in an information system’s design. This textbook
will teach and demonstrate tools and techniques to deal with the design of emerging

mobile applications.

 > Object Technologies

 Today, most contemporary information systems are built using object technologies .
Today’s pervasive programming languages are object-oriented. They include C ,
 Java, Smalltalk, and Visual Basic .NET . Object technologies allow programmers to
build software from software parts called objects. (We will get into more specifi cs
about objects later in this book.) Object-oriented software offers two fundamental ad-
vantages over nonobject software. First, objects are reusable. Once they are designed
and built, objects can be reused in multiple information systems and applications. This
reduces the time required to develop future software applications. Second, objects are
extensible. They can be changed or expanded easily without adversely impacting any
previous applications that used them. This reduces the lifetime costs of maintaining
and improving software.

 The impact of object technology is signifi cant in the world of systems analysis and
design. Accordingly, object-oriented analysis and design methods have emerged
as the preferred approach for building most contemporary information systems. For
this reason, we will integrate object-oriented and classical analysis and design tools
and techniques throughout this book to give you a competitive advantage in tomor-
row’s job market. We will advocate both and teach you when and how to combine
classical (structured) and object-oriented tools and techniques for systems analysis
and design. As we write this chapter, this approach—called agile development —is
gaining favor among experienced analysts who have become weary of overly pre-
scriptive methods that usually insist that you use only one methodology’s tools and
processes. At the risk of oversimplifying agile methods, think of it as assembling a
toolbox of different tools and techniques—structured, object-oriented, and others—
and then selecting the best tool or technique for whatever problems or needs you
encounter as a systems analyst.

Smart Phone

Wireless Handheld

object technology a soft-

ware technology that defi nes

a system in terms of objects

that consolidate data and

behavior (into objects). Ob-

jects become reusable and

extensible components for the

software developers.

object-oriented analysis
and design a collection

of tools and techniques for

systems development that

will utilize object technologies

to construct a system and its

software.

The Context of Systems Analysis and Design Methods Chapter One 19

 > Collaborative Technologies

 Another signifi cant technology trend is the use of collaborative technologies. Collabora-
tive technologies are those that enhance interpersonal communications and teamwork.
Four important classes of collaborative technologies are e-mail, instant messaging, group-
ware, and work fl ow.

 Everybody knows what e-mail is. But e-mail’s importance in information systems
development is changing. Increasingly, modern information systems are e-mail-enabled;
that is, e-mail capabilities are built right into the application software. There is no need to
switch to a dedicated e-mail program such as Outlook. The application merely invokes
the user’s or organization’s default e-mail program to enable relevant messages to be sent
or received.

 Related to e-mail technology is instant messaging (e.g., AOL’s Instant Messenger
and Microsoft’s MSN Messenger Service). Instant messaging was popularized in pub-
lic and private “chat rooms” on the Internet. But instant messaging is slowly being
incorporated into enterprise information systems applications as well. For example,
instant messaging can implement immediate response capabilities into a help system
for a business application. Imagine being able to instantly send and receive messages
with the corporate help desk when using a business application. The productivity
and service-level implications are signifi cant.

 Finally, groupware technology allows teams of individuals to collaborate on proj-
ects and tasks regardless of their physical location. Examples of groupware technolo-
gies include Lotus’s SameTime and Microsoft’s NetMeeting. Using such groupware
allows multiple individuals to participate in meetings and share software tools across
a network. As with e-mail and instant messaging, groupware capabilities can be built
into appropriate business applications.

 Clearly, systems analysts and system designers must build these innovative col-
laborative technologies into their applications.

 > Enterprise Applications

 Virtually all organizations, large and small, require a core set of enterprise applica-
tions to conduct business. As shown in Figure 1-6 , for most businesses the core ap-
plications include fi nancial management, human resource management, marketing
and sales, and operations management (inventory and/or manufacturing control). At
one time, most organizations custom-built most or all of these core enterprise appli-
cations. But today, these enterprise applications are frequently purchased, installed,
and confi gured for the business and integrated into the organization’s business pro-
cesses. Why? Because these core enterprise applications in different organizations or
industries tend to be more alike than they are different.

 Today, these “internal” core applications are being supplemented with other en-
terprise applications that integrate an organization’s business processes with those of
its suppliers and customers. These applications, called customer relationship man-

agement and supply chain management, are also illustrated in Figure 1-6 .
 The trend toward the use of purchased enterprise applications signifi cantly im-

pacts systems analysis and design. Purchased and installed enterprise applications are
never suffi cient to meet all of the needs for information systems in any organization.
Thus, systems analysts and other developers are asked to develop value-added ap-
plications to meet additional needs of the business. But the purchased and installed
enterprise applications become a technology constraint. Any custom application must
properly integrate with and interface to the purchased enterprise applications. This
is often called systems integration, and this is the business and systems environ-
ment into which most of you will graduate. Let’s briefl y explore some of the more
common enterprise applications and describe their implications for systems analysis
and design.

agile development a sys-

tems development strategy

wherein the system develop-

ers are given the fl exibility to

select from a variety of appro-

priate tools and techniques to

best accomplish the tasks at

hand. Agile development is

believed to strike an optimal

balance between productiv-

ity and quality for systems

development.

systems integration the

process of building a uni-

fi ed information system out

of diverse components of

purchased software, custom-

built software, hardware, and

networking.

20 Part One The Context of Systems Development Projects

 Enterprise Resource Planning (ERP) As previously noted, the core business in-
formation system applications in most businesses were developed in-house incre-
mentally over many years. Each system had its own fi les and databases with loose
and awkward integration of all applications. During the 1990s, businesses tried very
hard to integrate these legacy information systems, usually with poor results. Orga-
nizations would have probably preferred to redevelop these core business applica-
tions (see Figure 1-6 again) from scratch as a single integrated information system.
Unfortunately, few if any businesses had enough resources to attempt this. Recog-
nizing that the basic applications needed by most businesses were more similar
than different, the software industry developed a solution— enterprise resource

planning (ERP) applications. An ERP solution is built around a common database
shared by common business functions. Examples of ERP software vendors are listed
in the margin.

 An ERP solution provides the core information system functions for the entire
business. But usually an organization must redesign its business processes to fully
exploit and use an ERP solution. Most organizations must still supplement the ERP
solution with custom software applications to fulfi ll business requirements that are
unique to the industry or business. For most organizations, an ERP implementa-
tion and integration represents the single largest information system project ever
undertaken by the organization. It can cost tens of millions of dollars and require
a small army of managers, users, analysts, technical specialists, programmers, and
consultants.

 ERP applications are signifi cant to systems analysts for several reasons. First, sys-
tems analysts may be involved in the decision to select and purchase an ERP solution.

C O R E B U S I N E S S F U N C T I O N S

ENTERPRISE RESOURCE PLANNING

(E R P)

CUSTOMERS
SUPPLIERS

DISTRIBUTORS

MARKETING

& SALES

(an enterprise

application)

OPERATIONS

MANAGEMENT

(an enterprise

application)

HUMAN

RESOURCE

MANAGEMENT

(an enterprise

application)

FINANCIAL

MANAGEMENT

(an enterprise

application)

CUSTOMER

RELATIONSHIP

MANAGEMENT

(C R M)

SUPPLY CHAIN

MANAGEMENT

(S C M)

F I G U R E 1 - 6 Enterprise Applications

REPRESENTATIVE
SCM VENDORS

i2 Technologies

Manugistics

SAP

SCT

REPRESENTATIVE
ERP VENDORS

SSA

Oracle/PeopleSoft

SAP AG (the Market Leader)

The Context of Systems Analysis and Design Methods Chapter One 21

Second, and more common, systems analysts are frequently involved in the customiza-
tion of the ERP solution, as well as the redesign of business processes to use the ERP
solution. Third, if custom-built applications are to be developed within an organization
that uses an ERP core solution, the ERP system’s architecture signifi cantly impacts the
analysis and design of the custom application that must coexist and interoperate with
the ERP system.

 Supply Chain Management Today, many organizations are expending effort on
enterprise applications that extend support beyond their core business functions.
Companies are extending their core business applications to interoperate with
their suppliers and distributors to more effi ciently manage the fl ow of raw mate-
rials and products between their respective organizations. These supply chain

management (SCM) applications use the Internet as a means for integration and
communications.

 For example, Figure 1-7 demonstrates a logical supply chain ending at restaurants
belonging to a franchise (e.g., Outback, Red Lobster, Wendy’s). Notice that this sup-
ply chain includes many businesses and carriers to achieve its fi nal result—ensuring
that the restaurants have adequate food supplies to do business. Any delays or prob-
lems in any single link of this supply chain will adversely affect one and all. For that
reason, several of these businesses will implement supply chain management using

enterprise resource
planning (ERP) a software

application that fully inte-

grates information systems

that span most or all of the

basic, core business func-

tions (including transaction

processing and management

information for those business

functions).

Freight Companies
Food Processing Plants

The Restaurants

The Farms

Distribution Centers
Freight Companies

F I G U R E 1 - 7 Supply Chain

supply chain manage-
ment (SCM) a software

application that optimizes

business processes for raw

material procurement through

fi nished product distribu-

tion by directly integrating

the logistical information

systems of organizations with

those of their suppliers and

distributors.

22 Part One The Context of Systems Development Projects

SCM software technology to plan, implement, and manage the chain. Examples of
supply chain management vendors are listed in the margin. (It should be noted that
several ERP application vendors are extending ERP software applications to include
SCM capabilities. The SCM market is due for a shakeout because there are too many
vendors for all to succeed.)

 SCM applications are signifi cant to systems analysts for the same reasons as stated
for ERP applications. As an analyst, you may be involved in the evaluation and selec-
tion of an SCM package. Or you may be expected to implement and perhaps custom-
ize such packages to meet the organization’s needs. And again, you may expect to
participate in redesigning existing business processes to work appropriately with the
SCM solution.

 Customer Relationship Management Many companies have discovered that
highly focused customer relationship management can create loyalty that results in
increased sales. Thus, many businesses are implementing customer relationship

management (CRM) solutions that enable customer self-service via the Internet.
The theme of all CRM solutions is a focus on the “customer.” CRM is concerned with
not only providing effective customer inquiry responses and assistance but also
helping the business better profi le its customer base for the purpose of improving
customer relations and marketing. Examples of CRM vendors are listed in the mar-
gin. As was the case with SCM technologies, many ERP vendors are developing or

C O R E B U S I N E S S F U N C T I O N S

CUSTOMER

RELATIONSHIP

MANAGEMENT

(C R M)

SUPPLY CHAIN

MANAGEMENT

(S C M)

CUSTOMERS SUPPLIERS

DISTRIBUTORS

ENTERPRISE RESOURCE PLANNING

APPLICATIONS

(E R P : See Figure 1.6)

ENTERPRISE APPLICATION

INTEGRATION

(E A I)

Other

Custom-Built

Application

Other

Custom-Built

Application

Other

Purchased

Application

Other

Purchased

Application

F I G U R E 1 - 8 Enterprise Application Integration

customer relationship
management (CRM) a

software application that pro-

vides customers with access

to a business’s processes

from initial inquiry through

postsale service and support.

REPRESENTATIVE
CRM VENDORS

BroadVision

E.piphany

Kana

Amdocs

Oracle/PeopleSoft

Siebel (the Market Leader)

SAP

The Context of Systems Analysis and Design Methods Chapter One 23

acquiring CRM capabilities to complement and extend their ERP solutions. And as
with SCM, the larger number of players will likely be reduced through acquisition
and attrition.

 CRM technology impacts systems analysts in precisely the same ways as those we
described for ERP and SCM technology. In many businesses, new applications must
interface with a core, CRM enterprise application.

 Enterprise Application Integration Many companies face the signifi cant challenge
of integrating their existing legacy systems with new applications such as ERP, SCM,
and CRM solutions. Any company that wants to do business across the Internet will
also have to meet the challenge of integrating its systems with those of other orga-
nizations and their different systems and technologies. To meet this challenge, many
organizations are looking at enterprise application integration software. Enterprise

application integration (EAI) involves linking applications, whether purchased
or developed in-house, so that they can transparently interoperate with one another.
This is illustrated conceptually in Figure 1-8 . Some vendors offering EAI tools are
listed in the margin.

 Today, as any new information system is developed, it must be integrated with
all the information systems that preceded it. These “legacy” information systems may
have been purchased or built in-house. Regardless, systems analysts and other devel-
opers must consider application integration for any new information system to be
developed. And EAI technologies are at the core of the integration requirements.

 The Process—System Development Process

 Thus far you have learned about different types of information systems, the players
involved in developing those systems, and several business and technology drivers
that infl uence the development of information systems. In this section you will learn
about another information system perspective, the “process” for developing an infor-
mation system.

 Most organizations have a formal system development process consisting
of a standard set of processes or steps they expect will be followed on any system
development project. While these processes may vary greatly for different organizations,
a common characteristic can be found: Most organizations’ system development
process follows a problem-solving approach. That approach typically incorporates the
following general problem-solving steps:

 Our Simplifi ed System

Development Process General Problem-Solving Steps

 System initiation 1. Identify the problem. (Also plan for the solution

of the problem.)

 System analysis 2. Analyze and understand the problem.

 3. Identify solution requirements and expectations.

 System design 4. Identify alternative solutions and choose the

best course of action.

 5. Design the chosen solution.

 System implementation 6. Implement the chosen solution.

 7. Evaluate the results. (If the problem is not

solved, return to step 1 or 2 as appropriate.)

system development
process a set of activities,

methods, best practices,

deliverables, and automated

tools that stakeholders use to

develop and maintain infor-

mation systems and software.

REPRESENTATIVE
EAI VENDORS

BEA Systems

IBM (MQSeries)

Mercator Software

TIBCO Software

enterprise application
integration (EAI) the pro-

cess and technologies used

to link applications to support

the fl ow of data and informa-

tion between those applica-

tions. EAI solutions are usually

based on middleware.

middleware software (usu-

ally purchased) used to trans-

late and route data between

different applications.

24 Part One The Context of Systems Development Projects

THE “PROCESS”THE "PRODUCT"— AN INFORMATION SYSTEM

SYSTEM INITIATION DELIVERABLES

System initiation produces a business problem statement project

plan that establishes scope, goals, schedule, and budget for solving

the problem with a technical solution.

B U S I N E S S D R I V E R S

T E C H N O L O G Y D R I V E R S

SYSTEM ANALYSIS DELIVERABLES

System analysis produces a statement of the system users’

business requirements, expectations, and priorities for a solution to

the business problem.

SYSTEM DESIGN DELIVERABLES

System design produces a technical blueprint and specifications for

a solution that fulfills the business requirements.

SYSTEM IMPLEMENTATION DELIVERABLES

System implementation produces the technical hardware and

software solution for the business problem according to the technical
architecture and specifications.

P
R

O
J

E
C

T

a
n

d

P
R

O
C

E
S

S

M
A

N
A

G
E

M
E

N
T

THE “PEOPLE”

S
Y

S
T

E
M

 O
W

N
E

R
S

S
Y

S
T

E
M

 U
S

E
R

S
S

Y
S

T
E

M
 D

E
S

IG
N

E
R

S
S

Y
S

T
E

M
 B

U
IL

D
E

R
S

S
Y

S
T

E
M

S

A
N

A
L

Y
S

T
S

a
n

d

P

R
O

J
E

C
T

M

A
N

A
G

E
R

S

S
Y

S
T

E
M

A
N

A
L

Y
S

IS

S
Y

S
T

E
M

IN
IT

IA
T

IO
N

S
Y

S
T

E
M

D
E

S
IG

N
S

Y
S

T
E

M

IM
P

L
E

M
E

N
T

A
T

IO
N

F I G U R E 1 - 9 Systems Development and Problem Solving

 Figure 1-9 adds a system development process perspective that we will use (with
appropriate refi nements) throughout this book as we study the development process,
tools, and techniques. For the sake of simplicity our initial problem-solving approach
establishes four stages or phases that must be completed for any system development
project—system initiation, system analysis, system design, and system implementa-
tion. The table on the previous page shows the correlation between the above general
problem-solving steps and our process.

The Context of Systems Analysis and Design Methods Chapter One 25

 It is important to note that any system development process must be managed
on a project-by-project basis. You learned earlier that at least one stakeholder accepts
responsibility as the project manager for ensuring that the system is developed on
time, within budget, and with acceptable quality. The activity of managing a project
is referred to as project management . Accordingly, in Figure 1-9 we have added
a process for project management. Also, to ensure that all projects are managed
according to the same development process, we have included process management
as an ongoing activity. Notice that project and process management overlap all of the
process phases.

 Let’s briefl y examine our system development process in Figure 1-9 to expand
your understanding of each phase and activity in the process. Given a problem to be
solved or a need to be fulfi lled, what will we do during system initiation, analysis, de-
sign, and implementation? Also, who will be involved in each phase?

 > System Initiation

 Information system projects are usually complicated. They require signifi cant time,
effort, and economic investment. The problems to be solved are frequently stated
vaguely, which means that the initial envisioned solution may be premature. For these
reasons, system projects should be carefully planned. System initiation establishes
project scope and the problem-solving plan. Thus, as shown in Figure 1-9 , we see that
 system initiation establishes the project scope, goals, schedule, and budget required
to solve the problem or opportunity represented by the project. Project scope defi nes
the area of the business to be addressed by the project and the goals to be achieved.
Scope and goals ultimately impact the resource commitments, namely, schedule and
budget, that must be made to successfully complete the project. By establishing a
project schedule and budget against the initial scope and goals, you also establish a
 baseline against which all stakeholders can accept the reality that any future changes
in scope or goals will impact the schedule and budget.

 Figure 1-9 also shows that project managers, system analysts, and system owners
are the primary stakeholders in a system analysis. This book will teach you many tools
and techniques for initiating a system project and establishing a suitable project plan.

 > System Analysis

 The next step in our system development process is system analysis. System anal-
ysis is intended to provide the project team with a more thorough understanding of
the problems and needs that triggered the project. As such, the business area (scope
of the project—as defi ned during system initiation) may be studied and analyzed
to gain a more detailed understanding of what works, what doesn’t, and what’s
needed. As depicted in Figure 1-9 , the system analysis requires working with system
users to clearly defi ne business requirements and expectations for any new system
that is to be purchased or developed. Also, business priorities may need to be estab-
lished in the event that schedule and budget are insuffi cient to accomplish all that
is desired.

 Recall the business drivers discussed earlier in the chapter. These (and future)
business drivers most closely affect system analysis, which often defi nes business re-
quirements in response to the business drivers. For example, we discussed a current
trend toward e-business and e-commerce. This business driver may infl uence the busi-
ness requirement for any information system, leading us to establish project goals to
conduct all business transactions on the Web.

 The completion of a system analysis often results in the need to update many of
the deliverables produced earlier, during system initiation. The analysis may reveal
the need to revise the business scope or project goals—perhaps we now feel the
scope of the project is too large or too small. Accordingly, the schedule and budget

system initiation the

initial planning for a project to

defi ne initial business scope,

goals, schedule, and budget.

project management the

activity of defi ning, planning,

directing, monitoring, and

controlling a project to de-

velop an acceptable system

within the allotted time and

budget.

process management the

ongoing activity that defi nes,

improves, and coordinates

the use of an organization’s

chosen methodology (the

“process”) and standards

for all system development

projects.

system analysis the study

of a business problem domain

to recommend improvements

and specify the business

requirements and priorities for

the solution.

26 Part One The Context of Systems Development Projects

for the project may need to be revised. Finally, the feasibility of the project itself
becomes questionable. The project could be canceled or could proceed to the next
phase.

 As shown in Figure 1-9 , project managers, system analysts, and system users
are the primary stakeholders in a system analysis. Typically, results must be summa-
rized and defended to the system owners, who will pay to design and implement
an information system to fulfi ll the business requirements. This book will teach you
many tools and techniques for performing a system analysis and documenting user
requirements.

 > System Design

 Given an understanding of the business requirements for an information system, we
can now proceed to system design . During system design we will initially need
to explore alternative technical solutions. Rarely is there only one solution to any
problem. For example, today most companies need to choose between purchasing a
solution that is good enough and building a custom solution in-house. (We’ll explore
options such as this throughout this book.)

 Once a technical alternative is chosen and approved, the system design phase
develops the technical blueprints and specifi cations required to implement the fi nal
solution. These blueprints and specifi cations will be used to implement required data-
bases, programs, user interfaces, and networks for the information system. In the case
where we choose to purchase software instead of build it, the blueprints specify how
the purchased software will be integrated into the business and with other informa-
tion systems.

 Recall the technology drivers discussed in the last section of the chapter. These
(and future) technology drivers most closely impact the system design process and
decisions. Many organizations defi ne a common information technology architecture
based on these technology drivers. Accordingly, all system designs for new informa-
tion systems must conform to the standard IT architecture.

 As depicted in Figure 1-9 , project managers, system analysts, and system designers
are the primary stakeholders in a system design. This book will teach you many tools
and techniques for performing a system design.

 > System Implementation

 The fi nal step in our simple system development process is system implementa-

tion. As shown in Figure 1-9 , system implementation constructs the new information
system and puts it into operation. It is during system implementation that any new
hardware and system software are installed and tested. Any purchased application
software and databases are installed and confi gured. And any custom software and da-
tabases are constructed using the technical blueprints and specifi cations developed
during system design.

 As system components are constructed or installed, they must be individually
tested. And the complete system must also be tested to ensure that it works prop-
erly and meets user requirements and expectations. Once the system has been fully
tested, it must be placed into operation. Data from the previous system may have to
be converted or entered into start-up databases, and system users must be trained
to properly use the system. Finally, some sort of transition plan from older business
processes and information systems may have to be implemented.

 And once again, as depicted in Figure 1-9 , project managers, system analysts,
and system builders are the primary stakeholders in a system implementation. While
this book will teach you some of the tools and techniques for performing a system

system design the speci-

fi cation or construction of a

technical, computer-based

solution for the business

requirements identifi ed in

a system analysis. (Note:

Increasingly, the design

takes the form of a working

prototype.)

system implementation
the construction, installation,

testing, and delivery of a sys-

tem into production (meaning

day-to-day operation).

 1. Information systems in organizations capture
and manage data to produce useful information
that supports an organization and its employees,
customers, suppliers, and partners.

 2. Information systems can be classifi ed according
to the functions they serve, including:

a. Transaction processing systems that process
business transactions such as orders, time
cards, payments, and reservations.

b. Management information systems that use
transaction data to produce information
needed by managers to run the business.

c. Decision support systems that help various
decision makers identify and choose between
options or decisions.

d. Executive information systems that are sys-
tems tailored to the unique information needs
of executives who plan for the business and
assess performance against the plans.

e. Expert systems that are systems that capture
and reproduce the knowledge of an expert
problem solver or decision maker and then
simulate the “thinking” of that expert.

f. Communication and collaboration systems
that enhance communication and collabo-
ration between people, both internal and
external to the organization.

g. Offi ce automation systems that help em-
ployees create and share documents that sup-
port day-to-day offi ce activities.

 3. Information systems can be viewed from vari-
ous perspectives, including from the perspec-
tive of the “people,” the “business drivers”
infl uencing the information system, the “tech-
nology drivers” used by the information system,
and the “process” used to develop the informa-
tion system.

Summary

The Context of Systems Analysis and Design Methods Chapter One 27

implementation, most of these methods are taught in programming, database, and
networking courses. This book emphasizes system initiation, analysis, and design
skills, but it will also teach you the unique system implementation tools and tech-
niques that are most commonly performed by systems analysts and, therefore, are
not typically covered in these other information technology courses.

 > System Support and Continuous Improvement

 We would be remiss not to briefl y acknowledge that implemented information sys-
tems face a lifetime of support and continuous improvement. But where is that shown
in Figure 1-9 ? It is there! But it is subtle.

 Implemented information systems are rarely perfect. Your users will fi nd errors
(bugs) and you will discover, on occasion, design and implementation fl aws that re-
quire attention and fi xes. Also, business and user requirements constantly change.
Thus, there will be a need to continuously improve any information system until the
time it becomes obsolete. So where does system support and change fi t into our de-
velopment process?

 A change made for system support or improvement is merely another project,
sometimes called a maintenance or enhancement project. Such a project should
follow the exact same problem-solving approach defi ned for any other project. The
only difference is the effort and budget required to complete the project. Many of the
phases will be completed much more quickly, especially if the original stakeholders
properly documented the system as initially developed. Of course, if they did not,
a system improvement project can quickly consume much greater time, effort, and
money. Much of what we will teach you in this book is intended to help you appro-
priately document information systems to signifi cantly reduce lifetime costs of sup-
porting and improving your information systems.

 4. Information workers are the stakeholders in in-
formation systems. Information workers include
those people whose jobs involve the creation,
collection, processing, distribution, and use of
information. They include:

a. System owners, the sponsors and chief
advocates of information systems.

b. System users, the people who use or are im-
pacted by the information system on a regular
basis. Geographically, system users may be
internal or external.

c. System designers, technology specialists who
translate system users’ business requirements
and constraints into technical solutions.

d. System builders, technology specialists who
construct the information system based on the
design specifi cations.

e. Systems analysts, who facilitate the develop-
ment of information systems and computer
applications. They coordinate the efforts of
the owners, users, designers, and builders.
Frequently, they may play one of those roles
as well. Systems analysts perform systems
analysis and design.

 5. Any stakeholder role may be fi lled by an internal
or external worker referred to as an external ser-
vice provider (ESP). Most ESPs are systems ana-
lysts, designers, or builders who are contracted
to bring special expertise or experience to a
specifi c project.

 6. Most information systems projects involve
working as a team. Usually one or more of the
stakeholders (team members) takes on the role
of project manager to ensure that the system
is developed on time, within budget, and with
acceptable quality. Most project managers are
experienced systems analysts.

 7. Business drivers infl uence information systems.
Current business drivers that will continue to in-
fl uence the development of information systems
include:

 a. Globalization of the economy.
 b. Electronic commerce and business.
 c. Security and privacy.
 d. Collaboration and partnership.
 e. Knowledge asset management.
 f. Continuous improvement and total quality

management.
 g. Business process redesign.

 8. Information technology can be a driver of infor-
mation systems. Outdated technologies can pres-
ent problems that drive the need to develop new
systems. Newer technologies such as the follow-
ing are infl uencing today’s information systems:

a. Networks and the Internet:

 i) xHTML and XML are the fundamental lan-
guages of Web page authoring and Inter-
net application development. Extensible
Hypertext Markup Language (xHTML) is
the emerging second-generation version
of HTML, the language used to construct
Web pages. Extensible Markup Language
(XML) is the language used to effectively
transport data content along with its
proper interpretation over the Internet.

 ii) Scripting languages are simple program-
ming languages designed specifi cally for
Internet applications.

 iii) Web-specifi c programming languages
such as Java and Cold Fusion have
emerged to specifi cally address construc-
tion of complex, Web-based applications
that involve multiple servers and Web
browsers.

 iv) Intranets are essentially private Internets
designed for use by employees of an
organization. They offer the look and feel
of the Internet; however, security and
fi rewalls restrict their use to employees.

 v) Extranets, like intranets, are private Inter-
nets. But extranets are for use between
specifi c organizations. Only the employ-
ees of those identifi ed businesses can
access and use the extranet.

 vi) Portals (in corporations) are “home
pages” that can be customized to the spe-
cifi c needs of different individuals who
use them. For example, portal technol-
ogy can defi ne Web pages that provide
appropriate information and applications
for different roles in the same company.
Each individual’s role determines which
information and applications that person
can use from her or his Web page.

 vii) Web services are reusable, Web-based
programs that can be called from any
other Internet program.

b. Mobile and wireless technologies—Increas-
ingly, wireless access must be assumed. And
the limitations of mobile devices and screen
sizes must be accommodated in an information
system’s design. All of the following technical
trends will signifi cantly impact the analysis and
design of new information systems:

 i) Handheld computers, or personal data

assistants (such as the HP iPaq, Palm,
and RIM BlackBerry) have become com-
mon in the ranks of information workers.

28 Part One The Context of Systems Development Projects

These devices are increasingly including
wireless capabilities that provide Web ac-
cess and e-mail

 ii) Cell phones are also increasingly featuring
Internet and e-mail capabilities.

 iii) Integrated devices such as smart phones
are emerging that integrate the capabili-
ties of PDAs and cell phones into a single
device.

 iv) Technologies like Bluetooth are emerging
to allow separate devices to interoperate
as one logical device while preserving
each one’s form factors and advantages.

c. Object technologies—Most contemporary
information systems are built using object
technologies. Object technologies allow
programmers to build software from software
parts called objects. Object-oriented software
offers the advantage of reusability and extensi-
bility.

d. Collaborative technologies—Collaborative
technologies are those that enhance interper-
sonal communications and teamwork. Four
important classes of collaborative technolo-
gies are e-mail, instant messaging, groupware,
and work fl ow.

e. Enterprise applications—Virtually all organiza-
tions, large and small, require a core set of en-
terprise applications to conduct business. For
most businesses the core applications include
fi nancial management, human resource man-
agement, marketing and sales, and operations
management (inventory and/or manufacturing
control). At one time, most organizations
custom-built most or all of these core enter-
prise applications. But today, these enter-
prise applications are frequently purchased,
installed, and confi gured for the business and
integrated into the organization’s business
processes. These “internal” core applications
are being supplemented with other enterprise
applications that integrate an organization’s
business processes with those of its suppliers
and customers. These applications are called
customer relationship management (CRM) and
supply chain management (SCM). Enterprise
application integration (EAI) involves linking
applications, whether purchased or developed

in-house, so that they can transparently inter-
operate with one another.

 9. Many organizations have a formal systems devel-
opment process consisting of a standard set of
processes or steps they expect will be followed
on any systems development project. Systems
development processes tend to mirror general
problem-solving approaches. This chapter pre-
sented a simplifi ed system development process
that is composed of the following phases:

a. System initiation—the initial planning for a
project to defi ne initial business scope, goals,
schedule, and budget.

b. System analysis—the study of a business
process domain to recommend improvements
and specify the business requirements and
priorities for the solution.

c. System design—the specifi cation or construc-
tion of a technical, computer-based solution
for the business requirements identifi ed in
system analysis.

d. System implementation—the construction,
installation, testing, and delivery of a system
into operation.

10. Information systems face a lifetime of support
and continuous improvement. A change made
for system support or improvement is merely
another project, sometimes called a maintenance
or enhancement project. These projects follow
the exact same problem-solving approach defi ned
for any other project, but they require less effort
and budget.

11. Sequential development requires that each de-
velopment process (phase) be completed—one
after the other. This approach is referred to as
the waterfall approach. An alternative devel-
opment approach is iterative (or incremental)
development. This approach requires complet-
ing enough analysis, design, and implementa-
tion as is necessary to fully develop a part of the
new system. Once that version of the system is
implemented, the strategy is to then perform
some additional analysis, design, and implemen-
tation in order to release the next version of the
system. These iterations continue until all parts
of the entire information system have been
developed.

The Context of Systems Analysis and Design Methods Chapter One 29

30 Part One The Context of Systems Development Projects 1. Why are information systems (IS) essential in
organizations?

 2. Who do systems analysts need to know who the
stakeholders are in the organization?

 3. Who are the typical stakeholders in an
information system? What are their roles?

 4. Please explain what the consequences are if an
information system lacks a system owner.

 5. What are the differences between internal users
and external users? Give examples.

 6. What are the differences between the role of
system analysts and the role of the rest of the
stakeholders?

 7. In addition to the business and computing
knowledge that system analysts should possess,

what are the other essential skills that they need
to effectively complete their jobs?

 8. What are some of the business drivers for today’s
information systems?

 9. What are the diferences between electronic
commerce (e-commerce) and electronic business
(e-business)?

10. What are the differences between information
and knowledge?

11. What are the most important technology drivers
for today’s information systems?

12. What are the four steps in a system development
process? What happens in each step?

13. Why is system initiation essential in the system
development process?

Review Questions
1

2

 1. Assume you are a systems analyst who will
be conducting a requirements analysis for an
individually owned brick-and-mortar retail
store with a point-of-sale system. Identify who
the typical internal and external users might
include.

 2. Assume you are a systems analyst for a consult-
ing company and have been asked to assist the
chief executive offi cer (CEO) of a regional bank.
The bank recently implemented a plan to reduce
the number of staff, including loan offi cers, as a
strategy to maintain profi tability. Subsequently,
the bank has experienced chronic problems with
backlogged loan requests because of the limited
number of loan offi cers who are able to review
and approve or disapprove loans. The CEO of the
bank is interested in solutions that would allow
the approval process to move faster without
increasing the number of loan offi cers and has
engaged your company to come up with sugges-
tions. What is one type of system that you might
recommend to the bank?

 3. How do communication and collaboration sys-
tems improve effi ciency and effectiveness? What
are some of the communication and collabora-
tion systems that are being used by an increasing
number of organizations?

 4. Identify the type of information system that cleri-
cal workers in an organization would typically
use and why.

 5. As information systems increase in complexity and
comprehensiveness, ethical issues regarding ac-
cessing and using data from these systems are also
increasing. What are some of these ethical issues?

 6. What are business to consumer (B2C) and busi-
ness to business (B2B) Web applications, and
what are some examples of each type?

 7. While system development processes and meth-
odologies can vary greatly, identify and briefl y
 explain the “generic” phases of the system
development process that are described in the
textbook and which must be completed for any
project. You are a contractor with a systems
 integration company.

 8. Your company has a contract with a local fi rm to
link all of their systems so they can transparently
work together. Their applications include a num-
ber of existing legacy systems, which were built
at different times by different developers using
a variety of languages and platforms, as well as
several newer contemporary applications. What
is the term for this type of linking? What type
of tool would you most likely use, and what are
some examples of the tool?

 9. Your company has asked you to develop a new
Web-based system to replace its existing legacy
system. There will be very little change in busi-
ness requirements and functionality from the
existing legacy system. Suggest which system
development process you might use and why.

Problems and Exercises

30 Part One The Context of Systems Development Projects

Projects and Research

1. Research the average and/or median salaries for IT
professionals. You can use a variety of methods to
fi nd this information, such as searching the Web for
online sites that publish the results of salary surveys
for IT professionals. You can also look at classifi ed
ads in newspapers, trade magazines, and/or online.

a. Is there a signifi cant difference between typical
salaries for system analysts, designers and
developers?

b. Roughly, what is the difference in the typical
salaries for these different groups?

c. What do you think are the reasons for the
difference?

d. Is there a gender gap in the salaries of IT
professionals? Discuss any trends that you
found and the implications.

2. Contact the chief information offi cers (CIOs)
or top IT managers of several local or regional
organizations. Ask them about the process or
methodology they use for system development
in their organizations, and why they use that
particular approach.

a. Describe and compare the different approaches
that you have found.

b. Which approach do you believe to be the most
effective approach?

c. Why?

3. Career choices and personal skills:

a. At this point in your education, if you had to
choose between becoming a systems analyst,
systems designer, or systems builder, which
one would you choose?

b. Why?
c. Now divide a piece of paper into two columns.

On one side, list the personal skills and traits
you think are most important for each of these
three groups of systems analysts, designers,
and builders. In the second column, list at least
fi ve skills and traits that you feel to be your
strongest ones, then map them to the skills and
traits you listed for each of the three groups.
With which group do you have the most skills
and traits in common?

d. Is this group the same one as the one you
would choose in Question 3a? Why do you
think this is (or is not) the case?

4. Your school library should have journals and
periodicals dating back at least several decades
or may subscribe to online research services
which do. Look at several recent articles in
information technology journals regarding
systems analysis, as well as several articles from
at least 25 years ago.

a. Compare the recent articles to the older ones.
Do there appear to be signifi cant differences in
the typical knowledge, skills, abilities, and/or
experience that systems analysts needed 25
years ago compared to now?

b. If you found some differences, what are the
ones that you consider most important?

c. What do you think are some of the reasons for
these changes?

d. Now get out your crystal ball and look into the
future 25 years from now. What differences do
you predict between the systems analysts of
today and those in 25 years?

10. You recently joined a retail sales company which
has recently bought out and assimilated a com-
mercial industrial supply house. You have been
asked to lead a project to develop a consolidated
inventory-tracking system. Suggest which system
development process you might use and why.

11. Your company president sits down beside you
just before a meeting is to begin and tells you that
people keep saying the customer needs to install
a CRM, but doesn’t really know what it is. The
company president then asks you to explain it in
nontechnical terms in the next 30 seconds.

12. Industry studies indicate that mobile and wireless
technology has become one of the major technol-
ogy drivers for designing new information sys-
tems. Why is this the case and what is the impact?

13. Briefl y explain the impact of Web services on
Web development. Give some examples of Web
services.

14. Identify in which phase of the development pro-
cess the following activities belong:

a. Development of the technical blueprint or
design document.

b. Project scheduling.
c. Integration testing.
d. Interviewing system users to defi ne business

requirements.

15. What are the two most important advantages
of object-oriented software technologies over
structured software technologies?

The Context of Systems Analysis and Design Methods Chapter One 31

Team and Individual Exercises

1. Get together into small groups of two. The fi rst
person will decide on a task that he/she wishes
to be completed—for instance, sharpen a pencil
or write down the name of the professor. It
should be simple and straightforward. That
person is to communicate on paper using only
diagrams and no words (verbal or written) what
he/she wishes to be done, and give it to person
number two. Person number two should then
complete the requested task.

2. What did you discover from this exercise? How
long did it take until the second person under-

stood what the fi rst person was asking for? Was
there miscommunication? Write down your
thoughts and observations, and share them with
the class.

3. Individual exercise: Imagine a really cool technol-
ogy. The sky is the limit, and anything is possible.
How does this technology impact your life? Does
it impact business?

4. Individual exercise: Think back on the last time
someone told you something couldn’t be done.
What was it? Did you listen to them? Why or
why not?

32 Part One The Context of Systems Development Projects

Minicases

1. What do you think will be possible technologically
10 years from now? How about 20 or 30 years
from now? Research a new and interesting tech-
nology that is in the research and development
stage. Prepare a presentation using a movie clip
and PowerPoint on this technology and present it
to the class. Submit a short paper on the impacts
this new technology might have on society and/or
businesses.

2. Consider outsourcing: It is many times the case
that at least part of the development process is
outsourced. In fact, project leaders today must be
capable of handling geographically diverse teams
as well as timeline and resource constraints. Out-
sourcing brings to the table increased effi ciency and
economic gains to the societies that are interacting.
However, these gains are not quickly realized, and
the negative impacts on a society that is outsourcing
can be signifi cant from a jobs perspective. Dr.
Mankiw, as an economic advisor to President Bush,
publicly touted the benefi ts of outsourcing and was
deeply criticized for his stance. Do you think that it
is good or bad for a business to outsource work? Do
you think there are ethical dilemmas for companies

who outsource? Find at least two articles on the im-
pacts of outsourcing, and bring them to share with
the class.

3. You are a network administrator, and as part of
your job, you monitor employee e-mails. You dis-
cover that your boss is cutting corners on a system
that your company is developing in order to fi nish
the project more quickly and to stay under budget.
There is a fl aw in the system as a result, and this
fl aw will cause a network crash if more than 20
people are on the network at a time. The client
expects approximately 12 people on the network
at any given time. You are sure, as apparently your
boss is, that the customer will not fi nd out until
well after the project is accepted (if ever). What do
you do?

4. A systems analyst must be both technically
profi cient and capable of successful customer
communication. Developing a good system
requires a complete understanding of user
requirements. Many times, users don’t know what
is available (technologically) or even what they
would like from a system. What are characteristics
of good communication?

5. Search the Web or business periodicals in your
library such as Forbes magazine for information
on three or four chief information offi cers of large
companies or organizations.

a. Which industry sector, companies, and CIOs
did you fi nd?

b. For each CIO that you researched, what
was their predominant experience prior to
becoming a CIO; that is, did they have an

information technology background, a business
background, or both?

c. For each CIO, what is their level of education?
d. How many years has each been a CIO, and for

approximately how many different companies
has each one worked?

e. Based upon your research, what knowledge and
skills does a CIO need in order to be successful?
Why?

Suggested Readings

Ambler, Scott. Agile Modeling: Effective Practices for eXtreme

Programming and the Unifi ed Process. New York: John

Wiley & Sons, 2002. This book has signifi cantly shaped

our thinking about the software development process.

Those of you who are critical of the “extreme-program-

ming” movement need not fear that our enthusiasm for

this suggested reading indicates an endorsement of ex-

treme programming. We simply like the sanity that Scott

brings to the process of systems and software develop-

ment through the use of fl exible methods within the con-

text of an iterative process. We will reference this book in

several chapters.

Ernest, Kallman; John Grillo; and James Linderman. Ethical

Decision Making and Information Technology: An In-

troduction with Cases, 2nd ed. Burr Ridge, IL: McGraw-

Hill/Irwin, 1995. This is an excellent textbook for teaching

ethics in an MIS curriculum. It is a collection of case

studies that can complement a systems analysis and de-

sign course.

Gartner Group IT Symposium and Expo (annual). Our

university’s management information unit has long sub-

scribed to the Gartner Group’s service that reports on

industry trends, the probabilities for success of trends

and technologies, and suggested strategies for informa-

tion technology transfer. Gartner research has played a

signifi cant, ongoing role in helping us to chart business

and technology drivers as described in this chapter. We

have also been fortunate to be able to attend Gartner’s

annual IT symposium. Gartner Group reports and sym-

posiums have infl uenced each edition of the book. For

more information about the Gartner Group, see www.

gartner.com.

Gause, Donald, and Gerald Weinberg. Are Your Lights On?

How to Figure Out What the Problem REALLY Is. New

York: Dorset House Publishing, 1990. Yes, this is not a re-

cent book, but neither are the fundamentals of problem

solving. Here’s a short and easy-to-read book about gen-

eral problem solving. You can probably read the entire

book in one night, and it could profoundly improve your

problem-solving potential as a systems analyst (or, for that

matter, in any other profession).

Levine, Martin. Effective Problem Solving, 2nd ed. Engle-

wood Cliffs, NJ: Prentice Hall, 1994. This is another older

book, but as we stated before, problem-solving methods

are timeless. At only 146 pages, this title can serve as an

excellent professional reference.

Weinberg, Gerald. Rethinking Systems Analysis and Design.

New York: Dorset House Publishing, 1988. Don’t let the

date fool you. This is one of the best and most impor-

tant books on this subject ever written. This book may

not teach any of the popular systems analysis and design

methods of our day, but it challenges the reader to leap be-

yond those methods to consider something far more im-

portant—the people side of systems work. Dr. Weinberg’s

theories and concepts are presented in the context of

dozens of delightful fables and short experiential stories.

We are grateful to him for our favorite systems analysis

fable of all time, “The Three Ostriches.”

The Context of Systems Analysis and Design Methods Chapter One 33

34 Part One The Context of Systems Development Projects

2Information Systems
Development

 Chapter Preview and Objectives

 This chapter more closely examines the systems development process that was fi rst

introduced in Chapter 1. Successful systems development is governed by some

fundamental, underlying principles that we introduce in this chapter. We also introduce

a basic, representative systems development methodology as a disciplined approach to

developing information systems. Although such an approach will not guarantee success,

it will greatly improve the chances of success. You will know that you understand

information systems development when you can:

❚ Describe the motivation for a standard systems development process in terms of the

Capability Maturity Model (CMM) for quality management.

❚ Differentiate between the system life cycle and a system development methodology.

❚ Describe 10 basic principles of systems development.

❚ Defi ne problems, opportunities, and directives—the triggers for systems development

projects.

❚ Describe the PIECES framework for categorizing problems, opportunities, and

directives.

❚ Describe the essential phases of systems development. For each phase, describe its

purpose, inputs, and outputs.

❚ Describe cross life-cycle activities that overlap multiple system development phases.

❚ Describe typical, alternative “routes” through the essential phases of systems

development. Describe how routes may be combined or customized for different types

of projects.

❚ Describe various automated tools for systems development.

 Introduction

 Work is getting underway at SoundStage Entertainment Club for the systems analysis

and design of their member services information system. But the more Bob Martinez

learns about the system, the more confused he gets. Bob can recall some of his pro-

gramming assignments in college. Most of them were just a page or two of bulleted

points listing required features. It was pretty easy to get your head around that. But

the new SoundStage system will involve tracking member contacts and purchase

requirements, promotions, sales, shipments, inventory, multiple warehouses, Web

sites, and more. Bob wonders how they will even list all the requirements, let alone

keep them straight. How will they know what data they need to track? How will they

know what every piece of programming needs to do? He mentioned that to his boss,

Sandra. She said it was all about following “the methodology.” He remembered some-

thing about methodology from a systems analysis class. At the time it seemed like a lot

of unnecessary work. But he is starting to see now that on a large project, following

an established method may be the only path that is safe to travel.

 The Process of Systems Development

 This chapter introduces a focus on information systems development. We will ex-

amine a systems development process . Notice we did not say “the” process—

there are as many variations on the process as there are experts and authors. We will

present one representative process and use it consistently throughout this book.

 Increasingly, organizations have no choice but to adopt and follow a standard-

ized systems development process. First, using a consistent process for systems de-

velopment creates effi ciencies that allow management to shift resources between

projects. Second, a consistent methodology produces consistent documentation

that reduces lifetime costs to maintain the systems. Finally, the U.S. government has

mandated that any organization seeking to develop software for the government

must adhere to certain quality management requirements. A consistent process pro-

motes quality. And many other organizations have aggressively committed to total

quality management goals in order to increase their competitive advantage. In order

to realize quality and productivity improvements, many organizations have turned

to project and process management frameworks such as the Capability Maturity

Model, discussed in the next section.

> The Capability Maturity Model

 It has been shown that as an organization’s information system development process

matures, project timelines and cost decrease while productivity and quality increase.

The Software Engineering Institute at Carnegie Mellon University has observed and

measured this phenomenon and developed the Capability Maturity Model (CMM)

to assist all organizations to achieve these benefi ts. The CMM has developed a wide

following, both in industry and government. Software evaluation based on CMM is

being used to qualify information technology contractors for most U.S. federal gov-

ernment projects.

 The CMM framework for systems and software is intended to help organizations

improve the maturity of their systems development processes. The CMM is organized

into fi ve maturity levels (see Figure 2-1):

• Level 1—Initial: This is sometimes called anarchy or chaos. At this level, system

development projects follow no consistent process. Documentation is sporadic or

not consistent from one project to the next, thus creating problems for those who

must maintain a system over its lifetime. Almost all organizations start at Level 1.

 systems development
process a set of activities,

methods, best practices,

deliverables, and automated

tools that stakeholders (from

Chapter 1) use to develop

and continuously improve

information systems and

 software (from Chapter 1).

 systems development
process a set of activities,

methods, best practices,

deliverables, and automated

tools that stakeholders (from

Chapter 1) use to develop

and continuously improve

information systems and

 software (from Chapter 1).

 Capability Maturity
Model (CMM) a standard-

ized framework for assessing

the maturity level of an

organization’s information

systems development and

management processes and

products. It consists of fi ve

levels of maturity.

 Capability Maturity
Model (CMM) a standard-

ized framework for assessing

the maturity level of an

organization’s information

systems development and

management processes and

products. It consists of fi ve

levels of maturity.

Information Systems Development Chapter Two 35

36 Part One The Context of Systems Development Projects

Level

5

OPTIMIZED

(continuous

process

improvement)
Level

4

MANAGED

(process

managed

and

measured)

Level

3

DEFINED

(consistent

process

used)
Level

2

REPEATABLE

(consistent

project

management)

RISK

COMPETITIVENESS

Level

1

INITIAL

(inconsistent

methods)

 F I G U R E 2 - 1

 The Capability
Maturity Model
(CMM)

• Level 2—Repeatable: At this level, project management processes and practices

are established to track project costs, schedules, and functionality. The focus is

on project management. A system development process is always followed, but

it may vary from project to project.

• Level 3—Defi ned: In this level, a standard system development process

(sometimes called a methodology) is purchased or developed. As a result of

using the standardized process for all projects, each project results in consistent

and high-quality documentation and deliverables. The process is stable,

predictable, and repeatable.

• Level 4—Managed: In this level, measurable goals for quality and productivity

are established. Detailed measures of the standard system development

process and product quality are routinely collected and stored in a database.

There is an effort to improve individual project management based on this

collected data. Thus, management seeks to become more proactive than

reactive to systems development problems (such as cost overruns, scope

creep, schedule delays, etc.).

• Level 5—Optimizing: In this level, the standardized system development

process is continuously monitored and improved based on measures and data

analysis established in Level 4. Lessons learned are shared across the organization,

with a special emphasis on eliminating ineffi ciencies in the system development

process while sustaining quality.

It is very important to recognize that each level is a prerequisite for the next level.

 Currently, many organizations are working hard to achieve at least CMM Level 3

(sometimes driven by a government or organizational mandate). A central theme to

achieving Level 3 (Defi ned) is the use of a standard process or methodology to build

or integrate systems. As shown in Table 2-1 , an organization can realize signifi cant

 system development
methodology a formal-

ized approach to the systems

development process; a

standardized process that

includes the activities,

methods, best practices,

deliverables, and automated

tools to be used for informa-

tion systems development.

 system development
methodology a formal-

ized approach to the systems

development process; a

standardized process that

includes the activities,

methods, best practices,

deliverables, and automated

tools to be used for informa-

tion systems development.

improvements in schedule and cost by institutionalizing CMM Level 3 process

improvements. 1

 > Life Cycle versus Methodology

 The terms system life cycle and system development methodology are frequently

and incorrectly interchanged. Most system development processes are derived from

a natural system life cycle. The system life cycle just happens. Figure 2-2 illustrates

two life-cycle stages. Notice that there are two key events that trigger a change from

one stage to the other:

• When a system cycles from development to operation and maintenance, a

 conversion must take place.

• At some point in time, obsolescence occurs (or is imminent) and a system cycles

from operation and maintenance to redevelopment.

 system life cycle the

factoring of the lifetime of an

information system into two

stages, (1) systems develop-

ment and (2) systems opera-

tion and maintenance—fi rst

you build it; then you use and

maintain it. Eventually, you

cycle back to redevelopment

of a new system.

 system life cycle the

factoring of the lifetime of an

information system into two

stages, (1) systems develop-

ment and (2) systems opera-

tion and maintenance—fi rst

you build it; then you use and

maintain it. Eventually, you

cycle back to redevelopment

of a new system.

 1 White Paper, “Rapidly Improving Process Maturity: Moving Up the Capability Maturity Model through Outsourcing”

(Boston: Keane, 1997, 1998, p.11).

T A B L E 2 - 1 Impact of System Development “Process” on Quality

 CMM Project Statistics for a Project Resulting in 200,000 Lines of Code

 Organization’s Project Project Number Median Lowest Highest
 CMM Duration Person- of Defects Cost Cost Cost
 Level (months) Months Shipped ($ millions) ($ millions) ($ millions)

 1 30.0 600 61 5.5 1.8 100⫹

 2 18.5 143 12 1.3 0.96 1.7

 3 15.0 80 7 0.728 0.518 0.933

Source: Master Systems, Inc.

Lifetime

of a

System

LIFE-CYCLE STAGE

A System

Development

Process

Ideal ly using a

System Development

Methodology

The “Systems

Development

Process” and

various System
Development

Methodologies

are the focus of
this chapter and

textbook.

LIFE-CYCLE STAGE

System

Operat ion

and

Maintenance

Using the system’s

chosen informat ion

technology

Conversion

Obsolescence

 F I G U R E 2 - 2

The System Life
Cycle

Information Systems Development Chapter Two 37

38 Part One The Context of Systems Development Projects

 REPRESENTATIVE
SYSTEM
DEVELOPMENT
METHODOLOGIES

 Architected Rapid
Application Development
(Architected RAD)

 Dynamic Systems
Development Methodology
(DSDM)

 Joint Application
Development (JAD)

 Information Engineering (IE)

 Rapid Application
Development (RAD)

 Rational Unifi ed Process
(RUP)

 Structured Analysis and
Design (old, but still
occasionally encountered)

 eXtreme Programming (XP)

 Note: There are many
commercial methodologies
and software tools
(sometimes called
 methodware) based on
the above general
methodologies.

Actually, a system may be in more than one stage at the same time. For example, one

version may be in operation and support while the next version is in development.

 So how does this contrast with a systems development methodology? A systems

development methodology “executes” the systems development stage of the system

life cycle. Each individual information system has its own system life cycle. The meth-

odology is the standard process to build and maintain that system and all other infor-

mation systems through their life cycles.

 Methodologies can be purchased or homegrown. Examples of system develop-

ment methodologies are listed in the margin on the following page. You should be

able to research most of them on the Web. Many of their underlying methods will be

taught in this textbook.

> Underlying Principles for Systems Development

 Before we examine the methodology we will use throughout this book, let’s in-

troduce some general principles that should underlie all systems development

methodologies.

 Principle 1: Get the System Users Involved Think of systems development as

a partnership between system users, analysts, designers, and builders. The analysts,

designers, and builders are responsible for systems development, but they must en-

gage their owners and users, insist on their participation, and seek agreement from all

stakeholders concerning decisions that may affect them.

 Miscommunication and misunderstandings continue to be a signifi cant problem

in many systems development projects. However, owner and user involvement and

education minimize such problems and help to win acceptance of new ideas and

technological change. Because people tend to resist change, information technology

is often viewed as a threat. The best way to counter that threat is through constant

and thorough communication with owners and users.

 Principle 2: Use a Problem-Solving Approach A system development meth-

odology is, fi rst and foremost, a problem-solving approach to building systems. The

term problem is broadly used throughout this book to include (1) real problems,

(2) opportunities for improvement, and (3) directives from management. Systems

analysts should approach all projects using some variation of a problem-solving

approach.

 Inexperienced or unsuccessful problem solvers tend to eliminate or abbreviate

one or more of the above steps. For example, they fail to completely understand

the problem, or they prematurely commit to the fi rst solution they think of. The

result can range from (1) solving the wrong problem, to (2) incorrectly solving the

problem, (3) picking the wrong solution, or (4) picking a less-than-optimal solution.

A methodology’s problem-solving process, when correctly applied, can reduce or

eliminate these risks.

 Principle 3: Establish Phases and Activities All methodologies prescribe phases

and activities. The number and scope of phases and activities vary from author to

 author, expert to expert, methodology to methodology, and business to business.

 The phases are: scope defi nition, problem analysis, requirements analysis, logical

design, decision analysis, physical design and integration, construction and testing,

and installation and delivery. Each of these phases will be discussed later in this

chapter. These phases are not absolutely sequential; they tend to overlap one an-

other, as illustrated in Figure 2-3 . Also, the phases may be customized to the special

needs of a given project (e.g., deadlines, complexity, strategy, resources). In this

chapter, we will describe each customization as alternative routes through the meth-

odology and problem-solving process.

 Principle 4: Document throughout Development In medium to large organiza-

tions, system owners, users, analysts, designers, and builders come and go. Some will

be promoted; some will have extended medical leaves; some will quit the organiza-

tion; and still others will be reassigned. To promote good communication between

constantly changing stakeholders, documentation should be a working by-product of

the entire systems development effort.

 Documentation enhances communications and acceptance. Documentation re-

veals strengths and weaknesses of the system to multiple stakeholders. It stimulates

user involvement and reassures management about progress. At the same time, some

methodologies have been criticized for expecting too much documentation that adds

little value to the process or resulting system. Our methodology advocates a balance

between the value of documentation and the effort to produce it. Experts call this

 agile modeling.

 Principle 5: Establish Standards Systems integration has become critical to the

success of any organization’s information systems. To achieve or improve systems

integration, organizations turn to standards. In many organizations, these standards

take the form of enterprise information technology architecture. An IT architecture

sets standards that serve to direct technology solutions and information systems to a

common technology vision or confi guration.

 In the absence of an IT architecture, each information system and application

may be built using radically different technologies. Not only does this make it diffi cult

to integrate applications, but it creates resource management problems—IT organi-

zations cannot as easily move developers between projects as priorities change or

emergencies occur because different teams are staffed with technical competencies

based on the various technologies that had been used and are being used to develop

information systems. Creating an enterprise IT architecture and driving projects and

teams to that architecture make more sense.

 As new technologies emerge, an IT architecture must change. But that change

can be managed. The chief technology offi cer (CTO) in an organization is frequently

charged with technology exploration and IT architecture management. Given that

architecture, all information systems projects are constrained to implement new sys-

tems that conform to the architecture (unless otherwise approved by the CTO).

 Principle 6: Manage the Process and Projects Most organizations have a system

development process or methodology, but they do not always use it consistently

on projects. Both the process and the projects that use it must be managed. Pro-

cess management ensures that an organization’s chosen process or management

is used consistently on and across all projects. Process management also defi nes and

process management

an ongoing activity that

documents, teaches, over-

sees the use of, and improves

an organization’s chosen

methodology (the “process”)

for systems development.

Process management is

concerned with phases,

activities, deliverables, and

quality standards that should

be consistently applied to

all projects.

process management

an ongoing activity that

documents, teaches, over-

sees the use of, and improves

an organization’s chosen

methodology (the “process”)

for systems development.

Process management is

concerned with phases,

activities, deliverables, and

quality standards that should

be consistently applied to

all projects.

 F I G U R E 2 - 3 Overlap of System Development Phases and Activities

ID Phase Name

Jun 2004 Jul 2004 Aug 2004 Sep 2004 Oct 2004 Nov 2004 Dec 2004 Jan 2005

5/23 5/30 6/6 6/13 6/20 6/27 7/4 7/11 7/18 7/25 8/1 8/8 8/15 8/22 8/29 9/5 9/12 9/19 9/26 10/3 10/10 10/17 10/24 10/31 11/7 11/14 11/21 11/28 12/5 12/12 12/19 12/26 1/2 1/9 1/16

1 Project Management

3 Problem Analysis

4 Requirements Definition

5 Logical Design

6 Decision Analysis

7 Physical Design

8 Construction & Testing

9 Installation & Delivery

10 Process Management

 2 Scope Definition 1

1

4

2

3

3

3

2

2

Information Systems Development Chapter Two 39

40 Part One The Context of Systems Development Projects

improves the chosen process or methodology over time. Project management en-

sures that an information system is developed at minimum cost, within a specifi ed

time frame, and with acceptable quality (using the standard system development pro-

cess or methodology).

 Process management and project management are infl uenced by the need for

quality management. Quality standards are built into a process to ensure that the

activities and deliverables of each phase will contribute to the development of a

high-quality information system. They reduce the likelihood of missed problems

and requirements, as well as fl awed designs and program errors (bugs). Standards

also make the IT organization more agile. As personnel changes occur, staff can be

 relocated between projects with the assurance that every project is following an

 understood and accepted process.

 Principle 7: Justify Information Systems as Capital Investments Information

systems are capital investments, just like a fl eet of trucks or a new building. System

owners commit to this investment. Notice that the initial commitment occurs early

in a project, when system owners agree to sponsor and fund the project. Later

(during the phase called decision analysis), system owners recommit to the more

costly technical decisions. In considering a capital investment, two issues must be

addressed:

1. For any problem, there are likely to be several possible solutions. The systems

analyst and other stakeholders should not blindly accept the fi rst solution

suggested. The analyst who fails to look at alternatives may be doing the business

a disservice.

2. After identifying alternative solutions, the systems analyst should evaluate

each possible solution for feasibility, especially for cost-effectiveness. Cost-

effectiveness is measured using a technique called cost-benefi t analysis.

 Like project and process management, cost-benefi t analysis is performed throughout

the system development process.

 A signifi cant advantage of the phased approach to systems development is that

it provides several opportunities to reevaluate cost-effectiveness, risk, and feasi-

bility. There is often a temptation to continue with a project only because of the

investment already made. In the long run, canceled projects are usually much less

costly than implemented disasters. This is extremely important for young analysts

to remember.

 Principle 8: Don’t Be Afraid to Cancel or Revise Scope There is an old saying:

“Don’t throw good money after bad.” In other words, don’t be afraid to cancel a

project or revise scope, regardless of how much money has been spent so far—cut

your losses. To this end, we advocate a creeping commitment approach to systems

development. 2 With the creeping commitment approach, multiple feasibility check-

points are built into any systems development methodology. At each checkpoint fea-

sibility is reassessed. All previously expended costs are considered sunk (meaning not

recoverable). They are, therefore, irrelevant to the decision. Thus, the project should

be reevaluated at each checkpoint to determine if it remains feasible to continue

investing time, effort, and resources into the project. At each checkpoint, the analyst

should consider the following options:

• Cancel the project if it is no longer feasible.

• Reevaluate and adjust the costs and schedule if project scope is to be increased.

• Reduce the scope if the project budget and schedule are frozen and not

suffi cient to cover all project objectives.

 project management the

process of scoping, planning,

staffi ng, organizing, directing,

and controlling a project to

develop an information

system at minimum cost,

within a specifi ed time frame,

and with acceptable quality.

 project management the

process of scoping, planning,

staffi ng, organizing, directing,

and controlling a project to

develop an information

system at minimum cost,

within a specifi ed time frame,

and with acceptable quality.

 cost-effectiveness the

result obtained by striking

a balance between the

lifetime costs of developing,

maintaining, and operating

an information system and

the benefi ts derived from that

system. Cost-effectiveness

is measured by cost-benefi t

analysis.

 cost-effectiveness the

result obtained by striking

a balance between the

lifetime costs of developing,

maintaining, and operating

an information system and

the benefi ts derived from that

system. Cost-effectiveness

is measured by cost-benefi t

analysis.

 creeping commitment
 a strategy in which feasibility

and risks are continuously

reevaluated throughout a

project. Project budgets

and deadlines are adjusted

accordingly.

 creeping commitment
 a strategy in which feasibility

and risks are continuously

reevaluated throughout a

project. Project budgets

and deadlines are adjusted

accordingly.

 2 Thomas Gildersleeve, Successful Data Processing Systems Analysis, 2nd ed. (Englewood Cliffs, NJ: Prentice Hall,

1985), pp. 5–7.

Information Systems Development Chapter Two 41

The concept of sunk costs is more or less familiar to most fi nancial analysts, but it

is frequently forgotten or not used by the majority of systems analysts, most system

users, and even many system owners.

 In addition to managing feasibility throughout the project, we must manage risk.

 Risk management seeks to balance risk and reward. Different organizations are

more or less averse to risk, meaning that some are willing to take greater risks than

others in order to achieve greater rewards.

 Principle 9: Divide and Conquer Whether you realize it or not, you learned the

divide-and-conquer approach throughout your education. Since high school, you’ve

been taught to outline a paper before you write it. Outlining is a divide-and-conquer

approach to writing. A similar approach is used in systems development. We divide a

system into subsystems and components in order to more easily conquer the problem

and build the larger system. In systems analysis, we often call this factoring. By re-

peatedly dividing a larger problem (system) into more easily managed pieces (subsys-

tems), the analyst can simplify the problem-solving process. This divide-and-conquer

approach also complements communication and project management by allowing

different pieces of the system to be communicated to different and the most appro-

priate stakeholders.

 The building blocks of your information system framework provide one basis

for dividing and conquering an information system’s development. We will use this

framework throughout the book.

 Principle 10: Design Systems for Growth and Change Businesses change over

time. Their needs change. Their priorities change. Accordingly, information systems

that support a business must change over time. For this reason, good methodologies

should embrace the reality of change. Systems should be designed to accommodate

both growth and changing requirements. In other words, well-designed information sys-

tems can both scale up and adapt to the business. But regardless of how well we design

systems for growth and change, there will always come a time when they simply cannot

support the business.

 System scientists describe the natural and inevitable decay of all systems over time

as entropy. As described earlier in this section, after a system is implemented it enters

the operations and maintenance stage of the life cycle. During this stage the analyst

encounters the need for changes that range from correcting simple mistakes, to rede-

signing the system to accommodate changing technology, to making modifi cations to

support changing user requirements. Such changes direct the analyst and programmers

to rework formerly completed phases of the life cycle. Eventually, the cost of main-

taining the current system exceeds the costs of developing a replacement system—the

current system has reached entropy and becomes obsolete.

 We have presented 10 principles that should underlie any methodology. These prin-

ciples are summarized in the margin and can be used to evaluate any methodology.

 A Systems Development Process

 In this section we’ll examine a logical process for systems development. We’ll begin

by studying types of system projects and how they get started. Then we’ll introduce

an eight-phased approach. Finally, we’ll examine alternative variations, or “routes”

through the phases, for different types of projects and development strategies.

 > Where Do Systems Development Projects Come From?

 System owners and system users initiate most projects. The impetus for most projects

is some combination of problems, opportunities, and directives. To simplify this

discussion, we will frequently use the term problem to collectively refer to problems,

 risk management the

process of identifying, evalu-

ating, and controlling what

might go wrong in a project

before it becomes a threat to

the successful completion of

the project or implementation

of the information system.

Risk management is driven by

risk analysis or assessment.

 risk management the

process of identifying, evalu-

ating, and controlling what

might go wrong in a project

before it becomes a threat to

the successful completion of

the project or implementation

of the information system.

Risk management is driven by

risk analysis or assessment.

problem an undesirable

situation that prevents the

organization from fully

achieving its mission, vision,

goals, and/or objectives.

 opportunity a chance to

improve the organization even

in the absence of an identifi ed

problem.

problem an undesirable

situation that prevents the

organization from fully

achieving its mission, vision,

goals, and/or objectives.

 opportunity a chance to

improve the organization even

in the absence of an identifi ed

problem.

 PRINCIPLES
OF SYSTEMS
DEVELOPMENT

 Get the System Users
Involved.

 Use a Problem-Solving
Approach.

 Establish Phases and
Activities.

 Document throughout
Development.

 Establish Standards.

 Manage the Process and
Projects.

 Justify Information
Systems as Capital
Investments.

 Don’t Be Afraid to Cancel
or Revise Scope.

 Divide and Conquer.

 Design Systems for Growth
and Change.

42 Part One The Context of Systems Development Projects

The PIECES Problem-Solving Framework and Checklist

The following checklist for problem, opportunity, and directive identification uses Wetherbeís PIECES framework.
Note that the categories of PIECES are not mutually exclusive; some possible problems show up in multiple lists.
Also, the list of possible problems is not exhaustive. The PIECES framework is equally suited to analyzing both
manual and computerized systems and applications.

PERFORMANCE

A. Throughput – the amount of work performed
over some period of time.

B. Response times – the average delay between
a transaction or request, and a response to that
transaction or request.

INFORMATION (and Data)

A. Outputs
1. Lack of any information
2. Lack of necessary information
3. Lack of relevant information
4. Too much information – “information

overload”
5. Information that is not in a useful format
6. Information that is not accurate
7. Information that is difficult to produce
8. Information is not timely to its subsequent use

B. Inputs
1. Data is not captured
2. Data is not captured in time to be useful
3. Data is not accurately captured – contains

errors
4. Data is difficult to capture
5. Data is captured redundantly – same data

captured more than once
6. Too much data is captured
7. Illegal data is captured

C. Stored data

B. Profits

1. Data is stored redundantly in multiple files
and/or databases

2. Same data items have different values in
different files (poor data integration)

3. Stored data is not accurate
4. Data is not secure to accident or vandalism
5. Data is not well organized
6. Data is not flexible – not easy to meet new

information needs from stored data
7. Data is not accessible

ECONOMICS

A. Costs
1. Costs are unknown
2. Costs are untraceable to source
3. Costs are too high

1. New markets can be explored
2. Current marketing can be improved
3. Orders can be increased

CONTROL (and Security)

A. Too little security or control
1. Input data is not adequately edited
2. Crimes (e.g., fraud, embezzlement) are (or

can be) committed against data
3. Ethics are breached on data or information

– refers to data or information getting to
unauthorized people

4. Redundantly stored data is inconsistent in
different files or databases

5. Data privacy regulations or guidelines are
being (or can be) violated

6. Processing errors are occurring (either by
people, machines, or software)

7. Decision-making errors are occurring
B. Too much control or security

1. Bureaucratic red tape slows the system
2. Controls inconvenience customers or

employees
3. Excessive controls cause processing delays

EFFICIENCY

A. People, machines, or computers waste time
1. Data is redundantly input or copied
2. Data is redundantly processed
3. Information is redundantly generated

B. People, machines, or computers waste materials
and supplies

C. Effort required for tasks is excessive
D. Material required for tasks is excessive

SERVICE

A. The system produces inaccurate results
B. The system produces inconsistent results
C. The system produces unreliable results
D. The system is not easy to learn
E. The system is not easy to use
F. The system is awkward to use
G. The system is inflexible to new or exceptional

situations
H. The system is inflexible to change
I. The system is incompatible with other systems

 F I G U R E 2 - 4 The PIECES Framework for Problem Identifi cation

Information Systems Development Chapter Two 43

opportunities, and directives. Accordingly, problem solving refers to solving prob-
lems, exploiting opportunities, and fulfi lling directives.

 There are far too many potential system problems to list them all in this book.
However, James Wetherbe developed a useful framework for classifying problems. 3
He calls it PIECES because the letters of each of the six categories, when put together,
spell the word “pieces.” The categories are:

 P the need to correct or improve performance.
 I the need to correct or improve information (and data).
 E the need to correct or improve economics, control costs, or increase profi ts.
 C the need to correct or improve control or security.
 E the need to correct or improve effi ciency of people and processes.
 S the need to correct or improve service to customers, suppliers, partners,

employees, and so on.

Figure 2-4 expands on each of the PIECES categories.
 The categories of the PIECES framework are neither exhaustive nor mutually

exclusive—they overlap. Any given project is usually characterized by one or more
categories, and any given problem or opportunity may have implications with respect
to more than one category. But PIECES is a practical framework, not just an academic
exercise. We’ll revisit PIECES several times in this book.

 Projects can be either planned or unplanned. The number of unplanned-project
proposals can easily overwhelm the largest information systems organization; there-
fore, they are frequently screened and prioritized by a steering committee of system
owners and IT managers to determine which requests get approved. Those requests
that are not approved are backlogged until resources become available (which some-
times never happens).

 Both planned and unplanned projects go through the same essential system devel-
opment process. Let’s now examine the project phases in somewhat greater detail.

 > The Systems Development Phases

 Most methodologies consist of phases. The number of phases will vary from one
methodology to another. In Chapter 1 you were introduced to the four classic phases
of the system development life cycle. The methodology we introduce here employs
eight phases to better defi ne periodic milestones and the deliverables. We will use
this methodology throughout this book as we learn about systems development tools
and techniques.

 Figure 2-5 illustrates the phases of our methodology. Each phase produces de-
liverables that are passed to the next phase. And documentation accumulates as you
complete each phase. Notice that we have included an iconic representation of the
building blocks to symbolize this accumulation of knowledge and work-in-process ar-
tifacts during system development. Notice also that a project starts with some combi-
nation of PROBLEMS , OPPORTUNITIES , and DIRECTIVES from the user community (the green
arrow) and fi nishes with a WORKING BUSINESS SOLUTION (the red arrow) for the user
community.

 Figure 2-6 shows our methodology from the perspective of your information
system building blocks that you learned in Chapter 1. The phases are on the right-
hand side. The deliverables are built around the building blocks for knowledge, pro-
cesses, and communications. The stakeholders are on the left-hand side. Notice how
we have expanded and duplicated some stakeholders to refl ect their involvement
opposite the phases in which they primarily participate.

 3 James Wetherbe and Nicholas P. Vitalari, Systems Analysis and Design: Traditional, Best Practices, 4th ed. (St. Paul,

MN: West Publishing, 1994), pp. 196–199. James Wetherbe is a respected information systems educator, researcher, and

consultant.

 directive a new requirement

that’s imposed by manage-

ment, government, or some

external infl uence.

 steering committee an

administrative body of system

owners and information

technology executives that

prioritizes and approves

candidate system develop-

ment projects.

 backlog a repository of

project proposals that cannot

be funded or staffed because

they are a lower priority

than those that have been

 approved for system develop-

ment. Note that priorities

change over time; therefore, a

backlogged project might be

approved at some future date.

�
�

�
�

�
�

�

�
�

�
�
�

�
��

�

�
�

�
�

��
�

�
�

�
�

�

�
�

�
�
�

�
��

�

�
�

�
��

�
�

�
�

�
��

�

�

�
�

�
��

��
�

�
�

�
�
�

�
��

�

�
�

�
�

��
�

�

�
�

�
��

�

�

��
�

�
�

�
�

�
��

�

�

�
�

�
�

�
�

�
�

�
��

�

�

�
�

�
�

��
�

�

��
�

�
�

�
�

�
�

��
�

�

�
�

�
��

�
�

�

�

�
�

�
�

�

�
�

�
��

��
��

�

� �
�
�
�
�

�
�
��

��
�
�

�
�
�
�
�

�
�
��

��
�
�

�
�
�
�
�

�
�
��

��
�
�

�
�
�
�
�

�
�
��

��
�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
�

�

�
�

��
�

�
�

�
�

�
�

�
��

�
��

�
�

��
��

��
�

�

�
��
�
��
�

�
��
��
�
�
�
�

�
�
�
��
�

��
�
��
�
�
�
�
�
�

�
�
��
�
��
�
�
�

�
�
�
��
�
�
�

�
�
�
�
��
�
�
�
�
��

�
��
��
�
�
�
�

�
�
�
��
�
�
��
�
�

�
��
�
��
�
�
��
��

�
�
�
�
��
�
�

�
�
�
��
�
��
�
�
�
��
��
�
��
�
�
�

�
�
�
�
��
�
�
�
�

�
�
�
��
�

�
�
�
��
��
�
�
�
�

�
�
�
��
�

�
��
��
�
�

�
�
��
��
�

�
�
�
��
�
�
�

�
�
��
��
�
�

�
�
�
�
�
�

�
��
�
��
�
�
��
�
�
�
�
��
�
�
��
��
�
�

�
��
�
�
��
�
�
�
��
�
�
�
�
��
�
��
��
�

�
�
�
��
��
��
�

�
�
�
��
�
�

�
�
�
��
�

�
�
�
�
�

�
�
��

��
�
�

�
�
�
�
�

�
�
��

��
�
�

�
�
�
�
�

�
�
��

��
�
�

�
�
�
�
�

�
�
��

��
�
�

�
��

�
��

��
�
��

��
��

�
�
�
��
�
�
�
��
�
�
�
�
�
��
�

�
��
��
�
�
�
�

�
��
�
�
��

�
�
�
�
�
��
��
��
��
�

�
�
�
��
�

�
��
�
�
�
�
�

�
�
�
��
�

�
��
��
��
�
�
�

�
��
��
��
�

�
�
��
��
�
��

�
�
�
��
�
�
�
��

�
�
�
��
�

�
�
�
�
�
��
�
�
�

�
�
�
��
�
�
�

�
��
�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��
�
�
�
�
��
�
��

������������ ����������� ��������������� ��������������

���������������������������������

�
�
�
�
��
�
�
�
�
�

� �

������

��������

������

����������
������

������

������

��������������

�
�
�
��

��
�

�
�

�
�

�
�

�
��

�
�

�

�
�

�
�

�
�

�
�

�

�
�
�
��

��
�

�
�

�
�

�
�

�
��

�
�

�

�
�

�
�

�
�

�
�

�

�
�
�
��

��
�

�
�

�
�

�
�

�
��

�
�

�

�
�

�
�

�
�

��
�
�

��
�

�

��
�

�
�

�
�
�

��
�

�
�

�
�

�

�

�
��

��
�

�
�

�
�

�
��

�
�

�

�
�

�
�

�

�

�
��

��
�

�
�

�
�

�
�

��
�
�

��
�

�

�
�

�
�

�

�

�
��

��
�

�
�

�
��

�
�

�

�
�

�
�

�
�

�

�
�

�
�

��
�

�
�

�
�

�

�
�

�
��

�
�

�

�
�
�
�

�
�

�
�

��
�

�
�

�
�

�

�
�

�
��

�
�

�

��
�

�
�

�
�

�
�

�
�

�
�

��
�

�
�

�
�

�

�
�
�
�

�
�

�
�

�
�

�
��

�

�
�

�
��

�
�

�

�
�

�
�

�
�

�

�
�

�
��

�

�
�

�
�

�
�

�
�

�
�

�
��

�

��
�

�
�

�
�

�
�

�
�

�
��

�

�
�

�
�

�
�

�
��

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
��
��

�

�
�

�
�

�
�

��
�

��
�

�
�

�
�
��

�
�

��
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
��

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�

��
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�

��
�

�
�

�
�

�
�

�
�

�
�

�
��

�

�
�

�
�

�
�

�
��

�
�

�
�

�
�
�

�
��

�

�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
��
�
�
�
��
�
�
�
�

 F
I
G

U
R

E

2

-
5

 P

ro
ce

ss
 V

ie
w

 o
f

S
y

st
em

 D
ev

el
o

p
m

en
t

44

Information Systems Development Chapter Two 45

D E S I G N S P E C I F I C A T I O N S D E S I G N P R O T O T Y P E S

F U N C T I O N A L S Y S T E M T R A I N I N G M A T E R I A L S

O P E R A T I O N A L S Y S T E M P O S T- A U D I T R E V I E W

B U S I N E S S R E Q U I R E M E N T S S T A T E M E N T

Strategic Enterprise Plan Strategic Information Systems Plan

Strategic Enterprise Information Technology Architecture

S
Y

S
T

E
M

O
W

N
E

R
S

S
Y

S
T

E
M

 D
E

S
IG

N
E

R
S

S
Y

S
T

E
M

 B
U

IL
D

E
R

S

P
R

O
J
E

C
T

 M
A

N
A

G
E

R
S

 a

n
d

 S

Y
S

T
E

M
S

 A
N

A
L
Y

S
T

S

Goal:

Improve Business

PROCESSES

Goal:

Improve Business

KNOWLEDGE

Goal:

Improve Business

COMMUNICATIONS

BUSINESS

PROCESS

REQUIREMENTS

LOGICAL

PROCESS

MODELS

BUSINESS

DATA

REQUIREMENTS

LOGICAL

DATA

MODELS

BUSINESS & SYSTEM

INTERFACE

REQUIREMENTS

LOGICAL

INTERFACE

MODELS

Constraint:

APPROVED

PROCESS

TECHNOLOGIES

Constraint:

APPROVED

DATABASE

TECHNOLOGIES

Constraint:

APPROVED

INTERFACE

TECHNOLOGIES

Constraint: APPROVED NETWORK TECHNOLOGIES

P
R

O
J
E

C
T

 a
n

d
 P

R
O

C
E

S
S

 M
A

N
A

G
E

M
E

N
T

F
E

A
S

IB
IL

IT
Y

 A
N

A
L
Y

S
IS

 a
n

d
 R

IS
K

 M
A

N
A

G
E

M
E

N
T

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

L
O

G
IC

A
L

D
E

S
IG

N

R
E

Q
U

IR
E

M
E

N
T

S
A

N
A

L
Y

S
IS

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

P
H

Y
S

IC
A

L

D
E

S
IG

N

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

IN
S

T
A

L
L

A
T

IO
N

&
 D

E
L

IV
E

R
Y

S
C

O
P

E

D
E

F
IN

IT
IO

N

S T A T E M E N T O F W O R K

P R O B L E M S T A T E M E N T (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M I M P R O V E M E N T O B J E C T I V E S (u s i n g t h e P I E C E S f r a m e w o r k)

S Y S T E M P R O P O S A L (o r R E Q U E S T F O R S Y S T E M P R O P O S A L S)

A P P L I C A T I O N A R C H I T E C T U R E

INFORMATION

SCOPE

&

VISION

FUNCTIONAL

SCOPE

&

VISION

COMMUNICATIONS

SCOPE

&

VISION

S
Y

S
T

E
M

O
W

N
E

R
S

COMMERCIAL

SOFTWARE

PACKAGES

CUSTOM-BUILT

APPLICATION

SOFTWARE

DATABASES

USER

INTERFACES

SYSTEM

INTERFACESM
ID

D
L

E
W

A
R

E

M
ID

D
L

E
W

A
R

E

S
Y

S
T

E
M

 U
S

E
R

S

PHYSICAL

DATABASE

DESIGN

SPECIFICATIONS

PHYSICAL BUSINESS

PROCESS DESIGN

PHYSICAL

SOFTWARE DESIGN

SPECIFICATIONS

PHYSICAL

USER & SYSTEM

INTERFACE

DESIGN

SPECIFICATIONS

F I G U R E 2 - 6 Building Blocks View of System Development

46 Part One The Context of Systems Development Projects NOTE: The remainder of this section briefl y describes each of the eight basic
phases. Throughout this discussion, we will be referring to the process fl owchart
in Figure 2-5 , as well as the building blocks view of the process in Figure 2-6 .
Also throughout the discussion, all terms printed in SMALL CAPS refer to phases,
prerequisites (inputs), and deliverables (outputs) shown in Figures 2-5 and 2-6 .

 Scope Defi nition The fi rst phase of a typical project is SCOPE DEFINITION . The pur-
pose of the scope defi nition phase is twofold. First, it answers the question, “Is this
problem worth looking at?” Second, and assuming the problem is worth looking at, it
establishes the size and boundaries of the project, the project vision, any constraints
or limitations, the required project participants, and, fi nally, the budget and schedule.

 In Figure 2-6 , we see that the participants in the scope defi nition phase primarily
include SYSTEM OWNERS , PROJECT MANAGERS , and SYSTEM ANALYSTS . System users are gener-
ally excluded because it is too early to get into the level of detail they will eventually
bring to the project.

 In Figure 2-5 , we see that the scope defi nition phase is triggered by some com-
bination of PROBLEMS , OPPORTUNITIES , and DIRECTIVES (to which we will add CONSTRAINTS
and vision). There are several deliverables or outcomes of a scope defi nition. One
important outcome is a PROBLEM STATEMENT , a succinct overview of the problems, op-
portunities, and/or directives that triggered the project. The PIECES framework pro-
vides an excellent outline for a problem statement. The goal here is not to solve the
problems, opportunities, and directives but only to catalog and categorize them. We
should also identify any constraints that may impact the proposed project. Exam-
ples of constraints include budget limits, deadlines, human resources available or not
available, business policies or government regulations, and technology standards.

 Given a basic understanding of problems, opportunities, directives, constraints,
and vision, we need to establish initial scope. Thus, an initial SCOPE STATEMENT is an-
other important outcome of this phase. Scope defi nes how big we think the project
is. Your information system building blocks provide a useful framework for defi ning
scope. Figure 2-6 illustrates that scope and vision can be defi ned in terms of INFOR-
MATION , FUNCTIONS , and INTERFACES . Scope can, and frequently does, change during a
project. But by documenting initial scope, you establish a baseline for controlling
 scope creep on both the budget and the schedule.

 Given the initial problem and scope statements for the project, the analyst can
staff the project team, estimate the budget for system development, and prepare a
schedule for the remaining phases. Ultimately, this phase concludes with a “go or
no-go” decision from system owners. Either the system owners agree with the pro-
posed scope, budget, and schedule for the project, or they must reduce scope (to
reduce costs and time) or cancel the project. This feasibility checkpoint is illustrated
in Figure 2-5 as a diamond.

 The fi nal and most important deliverable is a STATEMENT OF WORK . A statement of

work is a contract or agreement to develop the information system. It consolidates
the problem statement, scope statement, and schedule and budget for all parties who
will be involved in the project.

 Problem Analysis There is always an existing system, regardless of whether it cur-
rently uses information technology. The PROBLEM ANALYSIS phase studies the existing
system and analyzes the fi ndings to provide the project team with a more thorough un-
derstanding of the problems that triggered the project. The analyst frequently uncovers
new problems and answers the most important question, “Will the benefi ts of solving
these problems exceed the costs of building the system to solve these problems?”

 Once again, Figure 2-6 provides a graphical overview of the problem analysis
phase in terms of your information system building blocks. Notice that the partici-
pants still include the SYSTEM OWNERS but that this phase begins to actively involve the
 SYSTEM USERS as well. The system users are the business subject matter experts in any
project. (Notice the intentional expansion of the system users’ perspective to overlap

 problem statement a

statement and categorization

of problems, opportunities,

and directives; may also

include constraints and an

initial vision for the solution.

Synonyms include preliminary

study and feasibility

assessment.

 constraint any factor,

limitation, or restraint that may

limit a solution or the problem-

solving process.

 scope creep a common

phenomenon wherein the

 requirements and expecta-

tions of a project increase,

often without regard to the im-

pact on budget and schedule.

 statement of work a

contract with management

and the user community to

develop or enhance an infor-

mation system; defi nes vision,

scope, constraints, high-level

user requirements, schedule,

and budget. Synonyms

include project charter,

project plan, and service-level

agreement.

Information Systems Development Chapter Two 47

many phases—remember principle 1: “Get the system users involved.”) Of course,
 PROJECT MANAGERS and SYSTEM ANALYSTS are always involved in all phases of a project.

 As shown in Figure 2-5 , the prerequisites for the problem analysis phase are the
 SCOPE and PROBLEM STATEMENTS as defi ned and approved in the scope defi nition phase.
The deliverable of the problem analysis phase is a set of SYSTEM IMPROVEMENT OBJECTIVES
derived from a thorough understanding of the business problems. Think of system
improvement objectives as the grading criteria for evaluating any new system that
you might eventually design and implement. System improvement objectives may
be presented to system owners and users as a written recommendation or an oral
presentation.

 Every existing system has its own terminology, history, culture, and nuances.
Learning those aspects of the system is an important by-product of this phase. From
all of the information gathered, the project team gains a better understanding of the
existing system’s problems and opportunities. After reviewing the fi ndings, the system
owners will either agree or disagree with the recommended system improvement
objectives. And consistent with the creeping commitment principle, we include
 another go or no-go feasibility checkpoint (the red diamond) at the end of the phase.
The project can be either:

 • Canceled if the problems are deemed no longer worth solving.
 • Approved to continue to the next phase.
 • Reduced or expanded in scope (with budget and schedule modifi cations) and

then approved to continue to the next phase.

 Requirements Analysis Given system owner approval to continue from the problem
analysis phase, now you can design a new system, right? No, not yet! What capabilities
should the new system provide for its users? What data must be captured and stored?
What performance level is expected? Careful! This requires decisions about what the
system must do, not how it should do those things. The REQUIREMENTS ANALYSIS phase de-
fi nes and prioritizes the business requirements. Simply stated, the analyst approaches
the users to fi nd out what they need or want out of the new system, carefully avoiding
any discussion of technology or technical implementation. This is perhaps the most
important phase of systems development. Errors and omissions in requirements anal-
ysis result in user dissatisfaction with the fi nal system and costly modifi cations.

 Returning again to Figure 2-6 , notice that the participants primarily include both
 SYSTEM USERS (which may include owners who will actually use the system) and SYSTEMS
ANALYSTS. PROJECT MANAGERS are also involved. SYSTEM DESIGNERS are omitted from this
phase in order to prevent premature attention to technology solutions. The building
blocks can themselves provide the framework for defi ning many business require-
ments, including BUSINESS DATA REQUIREMENTS , BUSINESS PROCESS REQUIREMENTS , and BUSINESS
AND SYSTEM INTERFACE REQUIREMENT . Because the business requirements are intended to
solve problems, the PIECES framework can also provide a useful outline, this time for
a requirements statement.

 In Figure 2-5 , we see that the SYSTEM IMPROVEMENT OBJECTIVES from the problem
analysis phase are the prerequisite to the requirements analysis phase. The deliver-
able is a BUSINESS REQUIREMENTS STATEMENT . Again, this requirements statement does not
specify any technical possibilities or solutions. The requirements statement may be
a document as small as a few pages, or it may be extensive with a page or more of
documentation per requirement.

 To produce a business requirements statement, the systems analyst works closely
with system users to identify needs and priorities. This information is collected by
way of interviews, questionnaires, and facilitated meetings. The challenge to the team
is to validate those requirements. The system improvement objectives provide the
“grading key” for business requirements:

 Typically, requirements must also be prioritized. Priorities serve two purposes.
First, if project timelines become stressed, requirements priorities can be used to

48 Part One The Context of Systems Development Projects

rescope the project. Second, priorities can frequently be used to defi ne iterations of
design and construction to create staged releases or versions of the fi nal product.

 The requirements analysis phase should never be skipped or shortchanged. One
of the most common complaints about new systems and applications is that they
don’t really satisfy the users’ needs. This usually happens when system designers and
builders become preoccupied with a technical solution before fully understanding
the business needs. System designers and builders are dependent on competent sys-
tems analysts to work with users to defi ne and document complete and accurate
business requirements before applying any technology.

 Logical Design Business requirements (above) are usually expressed in words. Sys-
tems analysts have found it useful to translate those words into pictures called system

models to validate the requirements for completeness and consistency. (Figure 2-5 is
an example of a common system model called a data fl ow diagram.) System modeling
implements a timeless concept:” A picture is worth a thousand words.”

 The LOGICAL DESIGN PHASE translates business requirements into system models. The
term logical design should be interpreted as “technology independent,” meaning the
pictures illustrate the system independent of any possible technical solution—hence,
they model business requirements that must be fulfi lled by any technical solution we
might want to consider.

 Different methodologies require or recommend different amounts and degrees
of system modeling or logical design. Prescriptive methodologies like structured

analysis and design, information engineering, and the Rational Unifi ed Process

(RUP) usually require that many types and/or instances of system models be drawn
in various levels of detail. Fortunately, computer-automated tools are available to as-
sist the systems analyst in these drawing tasks. Alternatively, agile methodologies like
 architected rapid application development and extreme programming recommend
“just enough modeling.” This so-called agile modeling seeks to prevent the project
from degenerating into a condition called analysis paralysis. This textbook leans to-
ward agile methods but recognizes that complex problems may best be solved using
more prescriptive approaches.

 In Figure 2-6 , we see that the participants include SYSTEM ANALYSTS (who draw
the models) and SYSTEM USERS (who validate the models). PROJECT MANAGERS are al-
ways included to ensure that modeling meets standards and does not deter overall
project progress. We can draw (1) LOGICAL DATA MODELS that depict data and informa-
tion requirements, (2) LOGICAL PROCESS MODELS that depict business processes require-
ments, and (3) LOGICAL INTERFACE MODELS that depict business and system interface
requirements.4

 In Figure 2-5 , we see that the prerequisite to logical design is the BUSINESS REQUIRE-
MENTS STATEMENT from the previous phase. In practice, the requirements analysis and
logical design phases almost always have considerable overlap. In other words, as
business requirements are identifi ed and documented, they can be modeled. The de-
liverables of logical design are the LOGICAL SYSTEM MODELS AND SPECIFICATIONS themselves.
Depending on the methodology used, the level of detail in the specifi cations will
vary. For example, we may defi ne a business rule that specifi es the legitimate values
for a data attribute such as Credit Rating or a rule that specifi es the business policy
for a Credit Check.

 Decision Analysis Given business requirements and the logical system models,
there are usually numerous alternative ways to design a new information system to
fulfi ll those requirements.

 system model a picture

of a system that represents

reality or a desired reality.

System models facilitate

improved communication

 between system users,

system analysts, system

 designers, and system

builders.

 system model a picture

of a system that represents

reality or a desired reality.

System models facilitate

improved communication

 between system users,

system analysts, system

 designers, and system

builders.

 logical design the

translation of business user

requirements into a system

model that depicts only the

business requirements and

not any possible technical

design or implementation of

those requirements. Common

synonyms include conceptual

design and essential design,

the latter of which refers to

modeling the “essence” of

a system, or the “essential

requirements” independent of

any technology. The antonym

of logical design is physical

design (defi ned later in this

chapter).

 logical design the

translation of business user

requirements into a system

model that depicts only the

business requirements and

not any possible technical

design or implementation of

those requirements. Common

synonyms include conceptual

design and essential design,

the latter of which refers to

modeling the “essence” of

a system, or the “essential

requirements” independent of

any technology. The antonym

of logical design is physical

design (defi ned later in this

chapter).

 analysis paralysis a

 satirical term coined to

describe a common project

condition in which excessive

system modeling dramatically

slows progress toward imple-

mentation of the intended

system solution.

 analysis paralysis a

 satirical term coined to

describe a common project

condition in which excessive

system modeling dramatically

slows progress toward imple-

mentation of the intended

system solution.

 4 Those of you already familiar with object-oriented modeling should note that object models tend to blur the boundaries

of our framework somewhat, but the framework can still be applied since the problem to be solved is still driven by the

three fundamental business goals illustrated in our framework. This will be demonstrated in the object-oriented analysis

and design chapters of this book.

Information Systems Development Chapter Two 49

 The purpose of the DECISION ANALYSIS phase is to (1) identify candidate technical
solutions, (2) analyze those candidate solutions for feasibility, and (3) recommend a
candidate system as the target solution to be designed.

 In Figure 2-6 , we see that the decision analysis phase is positioned halfway
through the development process. Half the building blocks are positioned higher, and
half are positioned lower. This is consistent with the decision analysis phase’s role as
a transition from analysis to design—and from business concerns of SYSTEM USERS to
those of SYSTEM DESIGNERS (and, ultimately, system builders). Designers (the technical
experts in specifi c technologies) begin to play a role here along with system users
and SYSTEM ANALYSTS . Analysts help to defi ne and analyze the alternatives. Decisions are
made regarding the technologies to be used as part of the application’s architecture.
Ultimately, SYSTEM OWNERS will have to approve or disapprove the approved decisions
since they are paying for the project.

 Figure 2-5 shows that a decision analysis is triggered by validated business
require ments plus any logical system models and specifi cations that expand on those
require ments. The project team solicits ideas and opinions for technical design and
implementation from a diverse audience, possibly including IT software vendors.
Candidate solutions are identifi ed and characterized according to various criteria.
It should be noted that many modern organizations have information technology
and architecture standards that constrain the number of candidate solutions that
might be considered and analyzed. (The existence of such standards is illustrated at
the bottom of your information system building blocks model in Figure 2-6 .) After
the candidate solutions have been identifi ed, each one is evaluated by the following
criteria:

 • Technical feasibility —Is the solution technically practical? Does our staff have
the technical expertise to design and build this solution?

 • Operational feasibility —Will the solution fulfi ll the user’s requirements? To
what degree? How will the solution change the user’s work environment? How
do users feel about such a solution?

 • Economic feasibility —Is the solution cost-effective (as defi ned earlier in the
chapter)?

 • Schedule feasibility —Can the solution be designed and implemented within an
acceptable time period?

 The project team is usually looking for the most feasible solution—the solution
that offers the best combination of technical, operational, economic, and schedule
feasibility. Different candidate solutions may be most feasible on a single criterion;
however, one solution will usually prove most feasible based on all of the criteria.

 The key deliverable of the decision analysis phase is a SYSTEM PROPOSAL . This pro-
posal may be written and/or presented verbally. Several outcomes are possible. The
creeping commitment feasibility checkpoint (again, the red diamond) may result in
any one of the following options:

 • Approve and fund the system proposal for design and construction (possibly in-
cluding an increased budget and timetable if scope has signifi cantly expanded).

 • Approve or fund one of the alternative candidate solutions.
 • Reject all the candidate solutions and either cancel the project or send it back

for new recommendations.
 • Approve a reduced-scope version of the proposed solution.

 Optionally, the decision analysis phase may also produce an APPLICATION ARCHITECTURE
for the approved solution. Such a model serves as a high-level blueprint (like a simple
house fl oor plan) for the recommended or approved proposal.

 Before we move on, you may have noticed in Figure 2-6 a variation on the SYSTEM
PROPOSAL deliverable called a REQUEST FOR SYSTEM PROPOSALS (or RFP). This variation is for
a recommendation to purchase the hardware and/or software solution as opposed to
building it in-house. We’ll defer any further discussion of this option until later in the

50 Part One The Context of Systems Development Projects

chapter when we discuss the commercial package integration variation of our basic
process.

 Physical Design and Integration Given approval of the SYSTEM PROPOSAL from the
decision analysis phase, you can fi nally design the new system. The purpose of the
 PHYSICAL DESIGN AND INTEGRATION phase is to transform the business requirements (rep-
resented in part by the LOGICAL SYSTEM MODELS) into PHYSICAL DESIGN SPECIFICATIONS that
will guide system construction. In other words, physical design addresses greater de-
tail about how technology will be used in the new system. The design will be con-
strained by the approved ARCHITECTURAL MODEL from the previous phase. Also, design
requires adherence to any internal technical design standards that ensure complete-
ness, usability, reliability, performance, and quality.

 Physical design is the opposite of logical design. Whereas logical design dealt
exclusively with business requirements independent of any technical solution,
physical design represents a specifi c technical solution. Figure 2-6 demonstrates the
physical design phase from the perspective of your building blocks. Notice that the
design phase is concerned with technology-based views of the system: (1) PHYSICAL
DATABASE DESIGN SPECIFICATIONS , (2) PHYSICAL BUSINESS PROCESS and SOFTWARE DESIGN SPECIFI-
CATIONS , and (3) PHYSICAL USER AND SYSTEM INTERFACE SPECIFICATIONS . The SYSTEM DESIGNER
and SYSTEM ANALYST (possibly overlapping roles for some of the same individuals) are
the key participants; however, certain aspects of the design usually have to be shared
with the SYSTEM USERS (e.g., screen designs and work fl ow). You may have already had
some exposure to physical design specifi cations in either programming or database
courses.

 There are two extreme philosophies of physical design.

 • Design by specifi cation —Physical system models and detailed specifi cations
are produced as a series of written (or computer-generated) blueprints for
 construction.

 • Design by prototyping —Incomplete but functioning applications or subsystems
(called prototypes) are constructed and refi ned based on feedback from users
and other designers.

In practice, some combination of these extremes is usually performed.
 No new information system exists in isolation from other existing information

systems in an organization. Consequently, a design must also refl ect system inte-
gration concerns. The new system must be integrated both with other information
systems and with the business’s processes themselves. Integration is usually refl ected
in physical system models and design specifi cations.

 In summary, Figure 2-5 shows that the deliverables of the physical design and in-
tegration phase include some combination of PHYSICAL DESIGN MODELS AND SPECIFICATIONS ,
 DESIGN PROTOTYPES , and REDESIGNED BUSINESS PROCESSES . Notice that we have included one
fi nal go or no-go feasibility checkpoint for the project (the red diamond). A project is
rarely canceled after the design phase unless it is hopelessly over budget or behind
schedule. On the other hand, scope could be decreased to produce a minimum ac-
ceptable product in a specifi ed time frame. Or the schedule could be extended to
build a more complete solution in multiple versions. The project plan (schedule and
budget) would need to be adjusted to refl ect these decisions.

 It should be noted that in modern methodologies, there is a trend toward merging
the design phase with our next phase, construction. In other words, the design and
construction phases usually overlap.

 Construction and Testing Given some level of PHYSICAL DESIGN MODELS AND SPEC-
IFICATIONS (and/or DESIGN PROTOTYPES), we can begin to construct and test system
components for that design. Figure 2-5 shows that the primary deliverable of the
 CONSTRUCTION AND TESTING phase is a FUNCTIONAL SYSTEM that is ready for implemen-
tation. The purpose of the construction and testing phase is twofold: (1) to build

 physical design the

translation of business

user requirements into a

system model that depicts a

technical implementation of

the users’ business require-

ments. Common synonyms

include technical design

or, in describing the output,

 implementation model. The

antonym of physical design is

 logical design (defi ned earlier

in this chapter).

 physical design the

translation of business

user requirements into a

system model that depicts a

technical implementation of

the users’ business require-

ments. Common synonyms

include technical design

or, in describing the output,

 implementation model. The

antonym of physical design is

 logical design (defi ned earlier

in this chapter).

Information Systems Development Chapter Two 51

and test a system that fulfi lls business requirements and physical design specifi ca-
tions, and (2) to implement the interfaces between the new system and existing
systems. Additionally, FINAL DOCUMENTATION (e.g., help systems, training manuals, help
desk support, production control instructions) will be developed in preparation for
training and system operation. The construction phase may also involve installation
of purchased software.

 Your information system framework (Figure 2-6) identifi es the relevant building
blocks and activities for the construction phase. The focus is on the last row of
building blocks. The project team must construct or install:

 • DATABASES —Databases may include online transaction processing (OLTP)
databases to support day-to-day business transactions, operational data stores
(ODS) to support day-to-day reporting and queries, and data warehouses to
support data analysis and decision support needs.

 • COMMERCIAL SOFTWARE PACKAGES and/or CUSTOM-BUILT SOFTWARE —Packages are
installed and customized as necessary. Application programs are constructed
 according to the physical design and/or prototypes from the previous phase.
Both packages and custom software must be thoroughly tested.

 • USER AND SYSTEM INTERFACES —User interfaces (e.g., Windows and Web interfaces)
must be constructed and tested for usability and stability. System-to-system inter-
faces must be either constructed or implemented using application integration
technologies. Notice that MIDDLEWARE (a type of system software) is often used
to integrate disparate database, software, and interface technologies. We’ll talk
more about middleware in the design unit of this book.

 Figure 2-6 also identifi es the participants in this phase as SYSTEM BUILDERS , SYSTEM ANA-
LYSTS , SYSTEM USERS , and PROJECT MANAGERS . SYSTEM DESIGNERS may also be involved to
clarify design specifi cations. As components are constructed, they are typically dem-
onstrated to users in order to solicit feedback.

 One of the most important aspects of construction is conducting tests of both in-
dividual system components and the overall system. Once tested, a system (or version
of a system) is ready for INSTALLATION AND DELIVERY .

 Installation and Delivery What’s left to do? New systems usually represent a de-
parture from the way business is currently done; therefore, the analyst must provide
for a smooth transition from the old system to the new system and help users cope
with normal start-up problems. Thus, the INSTALLATION AND DELIVERY phase serves to
deliver the system into operation (sometimes called production).

 In Figure 2-5 , the FUNCTIONAL SYSTEM from the construction and testing phase is
the key input to the INSTALLATION AND DELIVERY phase. The deliverable is an OPERATIONAL
SYSTEM. SYSTEM BUILDERS install the system from its development environment into the
production environment. SYSTEM ANALYSTS must train SYSTEM USERS , write various user
and production control manuals, convert existing fi les and databases to the new data-
bases, and perform fi nal system testing. Any problems may initiate rework in previous
phases thought to be complete. System users provide continuous feedback as new
problems and issues arise. Essentially, the installation and delivery phase considers
the same building blocks as the construction phase.

 To provide a smooth transition to the new system, a conversion plan should be
prepared. This plan may call for an abrupt cutover, where the old system is termi-
nated and replaced by the new system on a specifi c date. Alternatively, the plan may
run the old and new systems in parallel until the new system has been deemed ac-
ceptable to replace the old system.

 The installation and delivery phase also involves training individuals who will use
the fi nal system and developing documentation to aid the system users. The imple-
mentation phase usually includes some form of POST-AUDIT REVIEW to gauge the success
of the completed systems project. This activity promotes continuous improvement of
the process and future project management.

52 Part One The Context of Systems Development Projects

 System Operation and Maintenance Once the system is placed into operation,

it will require ongoing system support for the remainder of its useful, productive

lifetime. System support consists of the following ongoing activities:

 • Assisting users —Regardless of how well the users have been trained and how

thorough and clear the end-user documentation is, users will eventually require

additional assistance as unanticipated problems arise, new users are added, and

so forth.

 • Fixing software defects (bugs) —Software defects are errors that slipped

through the testing of software. These are inevitable, but they can usually be

resolved, in most cases, by knowledgeable support.

 • Recovering the system —From time to time, a system failure may result in a

program “crash” and/or loss of data. Human error or a hardware or software

failure may cause this. The systems analyst or technical support specialists may

then be called on to recover the system—that is, to restore a system’s fi les and

databases and to restart the system.

 • Adapting the system to new requirements —New requirements may include

new business problems, new business requirements, new technical problems, or

new technology requirements.

Eventually, we expect that the user feedback and problems, or changing business

needs, will indicate that it is time to start over and reinvent the system. In other

words, the system has reached entropy, and a new project to create an entirely new

system development process should be initiated.

 > Cross Life-Cycle Activities

 System development also involves a number of cross life-cycle activities. These ac-

tivities, listed in the margin defi nition, are not explicitly depicted in Figure 2-5 , but they

are vital to the success of any project. Let’s briefl y examine each of these activities.

 Fact-Finding There are many occasions for fact-fi nding during a project. Fact-

fi nding is most crucial to the early phases of a project. It is during these phases that

the project team learns about a business’s vocabulary, problems, opportunities, con-

straints, requirements, and priorities. But fact-fi nding is also used during the deci-

sion analysis, physical design, construction and testing, and installation and delivery

phases—only to a lesser extent. It is during these latter phases that the project team

researches technical alternatives and solicits feedback on technical designs, standards,

and working components.

 Documentation and Presentation Communication skills are essential to the suc-

cessful completion of any project. In fact, poor communication is frequently cited as

the cause of project delays and rework. Two forms of communication that are common

to systems development projects are documentation and presentation .

 Clearly, documentation and presentation opportunities span all the phases. In

 Figure 2-7 , the black arrows represent various instances of documentation of a phase.

The red arrows represent instances where presentations are frequently required.

 Finally, the green arrows represent the storage of documentation and other artifacts

of systems development in a repository. A repository saves documentation for reuse

and rework as necessary.

 Feasibility Analysis Consistent with our creeping commitment approach to sys-

tems development, feasibility analysis is a cross life-cycle activity. Different measures

of feasibility are applicable in different phases of the methodology. These measures

include technical, operational, economic, schedule, and risk feasibility, as described

when we introduced the decision analysis phase. Feasibility analysis requires good

 estimation techniques.

 system support the

ongoing technical support

for users of a system, as well

as the maintenance required

to deal with any errors, omis-

sions, or new requirements

that may arise.

 cross life-cycle activity
 any activity that overlaps

multiple phases of the system

development process. Ex-

amples include fact-fi nding,

documentation, presentation,

estimation, feasibility analysis,

project and process manage-

ment, change management,

and quality management.

 fact-fi nding the formal

process of using research,

interviews, meetings, ques-

tionnaires, sampling, and

other techniques to collect

information about system

problems, requirements, and

preferences. It is also called

 information gathering or data

collection.

 documentation the

ongoing activity of recording

facts and specifi cations for a

system for current and future

reference.

 presentation the ongoing

activity of communicating

fi ndings, recommendations,

and documentation for review

by interested users and man-

agers. Presentations may be

either written or verbal.

 repository a database

and/or fi le directory where

system developers store all

documentation, knowledge,

and artifacts for one or more

information systems or proj-

ects. A repository is usually

automated for easy informa-

tion storage, retrieval, and

sharing.

 feasibility analysis the

activity by which feasibility is

measured and assessed.

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

2

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

3

L
O

G
IC

A
L

D
E

S
IG

N

4

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

5

P
H

Y
S

IC
A

L

D
E

S
IG

N

&

IN
T

E
G

R
A

T
IO

N

6

C
O

N
S

T
R

U
C

T
IO

N

&

T
E

S
T

IN
G

7

IN
S

T
A

L
L

A
T

IO
N

&

D
E

L
IV

E
R

Y

8

S
C

O
P

E

D
E

F
IN

IT
IO

N

1 D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

&

M
A

IN
T

E
N

A
N

C
E

L
if

e
-C

y
c

le
 S

ta
g

e

P
ro

b
le

m

S
ta

te
m

e
n

t

S
y
s
te

m

Im
p

ro
v
e
m

e
n

t

O
b

je
c
ti

v
e
s

B
u

s
in

e
s
s

R
e
q

u
ir

e
m

e
n

ts

S
ta

te
m

e
n

t

A
p

p
li
c
a
ti

o
n

A
rc

h
it

e
c
tu

re

P
h

y
s
ic

a
l
D

e
s
ig

n

M
o

d
e
ls

 &
 S

p
e
c
if

ic
a
ti

o
n

s

F
u

n
c
ti

o
n

a
l

S
y
s
te

m

O
p

e
ra

ti
o

n
a
l

S
y
s
te

m

F
IN

IS
H

:

W
o

rk
in

g

B
u

s
in

e
s
s

S
o

lu
ti

o
n

S
T
A

R
T

:

P
ro

b
le

m
s
,
O

p
p

o
rt

u
n

it
ie

s
,

D
ir

e
c
ti

v
e
s
,
C

o
n

s
tr

a
in

ts
,

a
n

d
 V

is
io

n

L
o

g
ic

a
l

D
e
s
ig

n

M
o

d
e
ls

a
n

d

S
p

e
c
if

ic
a
ti

o
n

s

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

B
U

S
IN

E
S

S
 C

O
M

M
U

N
IT

Y

S
ta

te
m

e
n

t

o
f
W

o
rk

S
c
o

p
e
 &

 V
is

io
n

S
y
s
te

m

P
ro

p
o

s
a
l

D
e
s
ig

n

P
ro

to
ty

p
e
s

F
in

a
l

D
o

c
u

m
e
n

ta
ti

o
n

P
o

s
t-

A
u

d
it

R
e
v
ie

w

R
e
d

e
s
ig

n
e
d

B
u

s
in

e
s
s

P
ro

c
e
s
s
e
s

V
a
li
d

a
te

d

B
u

s
in

e
s
s

R
e
q

u
ir

e
m

e
n

ts

R
e
p
o
s
it
o
ry

S
Y

S
T

E
M

O

W
N

E
R

S
 A

N
D

 X
T

R
A

 U
S

E
R

S

 F
I
G

U
R

E

2

-
7

S

y
st

em
 D

ev
el

o
p

m
en

t
D

o
cu

m
en

ta
ti

o
n

, R
ep

o
si

to
ry

, a
n

d
 P

re
se

n
ta

ti
o

n

53

54 Part One The Context of Systems Development Projects

 Process and Project Management Recall that the CMM considers systems de-

velopment to be a process that must be managed on a project-by-project basis. For

this reason and others, process management and project management are ongoing,

cross life-cycle activities. Both types of management were introduced earlier, but their

defi nitions are repeated in the margin for your convenience. Process management

defi nes the methodology to be used on every project—think of it as the recipe for

building a system. Project management is concerned with administering a single

instance of the process as applied to a single project.

 Failures and limited successes of systems development projects often outnumber

successful projects. Why is that? One reason is that many systems analysts are un-

familiar with, or undisciplined in how to properly apply, tools and techniques of

systems development. But most failures are attributed to poor leadership and manage-

ment. This mismanagement results in unfulfi lled or unidentifi ed requirements, cost

overruns, and late delivery.

 > Sequential versus Iterative Development

 The above discussion of phases might lead you to assume that systems development

is a naturally sequential process, moving in a one-way direction from phase to phase.

Such sequential development is, in fact, one alternative. This approach is depicted in

part (a) of Figure 2-8 . In the fi gure we have used the four classic phases rather than

the eight phases in the interest of simplicity. This strategy requires that each phase be

“completed” one after the other until the information system is fi nished. In reality, the

phases may somewhat overlap one another in time. For example, some system design

can be started prior to the completion of system analysis. Given its waterfall-like visual

appearance, this approach is often called the waterfall development approach .

 The waterfall approach has lost favor with most modern system developers. A more

popular strategy, shown in part (b) of Figure 2-8 , is commonly referred to as the iterative

development approach , or incremental development process. This approach requires

completing enough analysis, design, and implementation to be able to fully develop a

 part of the new system and place it into operation as quickly as possible. Once that

version of the system is implemented, the strategy is to then perform some additional

analysis, design, and implementation to release the next version of the system. These it-

erations continue until all parts of the entire information system have been implemented.

The popularity of this iterative and incremental process can be explained simply: System

owners and users have long complained about the excessive time required to develop

and implement information systems using the waterfall approach. The iterative approach

allows versions of useable information to be delivered in regular and shorter time frames.

This results in improved customer (system owner and user) satisfaction.

 Alternative Routes and Strategies

 So far, we’ve described a basic set of phases that comprise our methodology. At one

time, a “one size fi ts all” methodology was common for most projects; however,

today a variety of types of projects, technologies, and development strategies exist—

one size no longer fi ts all projects! Like many contemporary methodologies, ours

provides alternative routes and strategies to accommodate different types of projects,

technology goals, developer skills, and development paradigms.

 In this section, we will describe several routes and strategies. Before we do so,

examine Figure 2-9 on the following page. The fi gure illustrates a taxonomy or clas-

sifi cation scheme for methodological strategies. Notice the following:

 • Methodologies and routes can support the option of either building software

solutions in-house or buying a commercial software solution from a software

vendor. Generally, many of the same methods and techniques are applicable to

both options.

 feasibility a measure of

how benefi cial the develop-

ment of an information system

would be to an organization.

 estimation the calculated

prediction of the costs and

effort required for system

development. A somewhat

facetious synonym is guess-

timation, usually meaning

that the estimation is based

on experience or empirical

evidence but is lacking in

rigor—in other words, a

 guess .

 process management
 an ongoing activity that

 documents, teaches, over-

sees the use of, and improves

an organization’s chosen

methodology (the “process”)

for systems development.

Process management is

concerned with phases,

activities, deliverables, and

quality standards that should

be consistently applied to all

projects.

 project management
 the process of scoping,

planning, staffi ng, organizing,

directing, and controlling a

project to develop an informa-

tion system at minimum cost,

within a specifi ed time frame,

and with acceptable quality.

 waterfall development
approach an approach to

systems analysis and design

that completes each phase

one after another and

only once.

Complete

System

Initiation

Complete

System

Implementation

Complete

System

Design

Complete

System

Analysis

Complete

System

Initiation

Some

System

Analysis

Some

System

Design

Some

System

Implementation

More

System

Analysis

More

System

Design

More

System

Implementation

Still more

System

Analysis

Still more

System

Design

Still more

System

Implementation

The entire
information

systemResults

in

A part

of the

system

Another

part of

the

system

Yet another

part of

the

system

Repeat until no additional

iterations needed

Results
in

Results

in

Results

in

I T E R A T I O N # 1

I T E R A T I O N # 2

I T E R A T I O N # 3

(a) The Sequential or “Waterfall” Strategy

(b) The Iterative or Incremental Strategy

 F I G U R E 2 - 8 Sequential versus Iterative Systems Development Approach

Information Systems Development Chapter Two 55

56 Part One The Context of Systems Development Projects

Methodology uses a

prescriptive

process

continuum

Methodology uses a

Model-Driven Process

software development

using pictures

Process-

Centric

Models

Data-

Centric

Models

Object-

Oriented

Models

moving to moving to Codeversus

Agile

Methods

The decision to “buy”

software instead of “build”

software does not

eliminate

the opportunity to use

“make”

methods and techniques

for package evaluation

and integration into the

business.

It simply adds tools for

interacting with software

vendors.

choice

continuum

SYSTEM

DEVELOPMENT

METHODOLOGIES

a taxonomy

TO BUILD

SOFTWARE

SOLUTIONS

TO BUY

SOFTWARE

SOLUTIONS

Methodology uses a

Product-Driven Process

software development

by writing code

Prototypes

Methodology uses an

adaptive

process

 F I G U R E 2 - 9 A Taxonomy for System Development Methodologies and Strategies

Information Systems Development Chapter Two 57

 • Methodologies may be either very prescriptive (“Touch all the bases; follow all
the rules”) or relatively adaptive (“Change as needed within certain guidelines”).

 • Methodologies can also be characterized as model-driven (“Draw pictures of the
system”) or product-driven (“Build the product and see how the users react”).

 • Model-driven methodologies are rapidly moving to a focus on the object-

 oriented technologies being used to construct most of today’s systems (more
about this later). Earlier model-driven approaches emphasized either process
modeling or data modeling.

 • Finally, product-driven approaches tend to emphasize either rapid prototyping
or writing program code as soon as possible (perhaps you’ve heard the term
 extreme programming).

 So many strategies! Which should you choose? A movement is forming known
as agile methods. In a nutshell, advocates of agile methods suggest that system ana-
lysts and programmers should have a tool box of methods that include tools and
techniques from all of the above methodologies. They should choose their tools and
techniques based on the problem and situation. The eight-phased approach we are
using throughout this book is an agile methodology. It advocates the integrated use of
tools and techniques from many methodologies, applied in the context of repeatable
processes (as in CMM Level 3). That said, let’s examine some of the route variations
and strategies. As we navigate through each route, we will use red typefaces and ar-
rows to highlight those aspects of the route that differ from the basic route you’ve
already learned.

 > The Model-Driven Development Strategy

 One of the oldest and most commonly used approaches to analyzing and designing
information systems is based on system modeling. As a reminder, a system model is a
picture of a system that represents reality or a desired reality. System models facilitate
improved communication between system users, system analysts, system designers,
and system builders. In our methodology, system models are used to illustrate and
communicate the KNOWLEDGE , PROCESS , or INTERFACE building blocks of information sys-
tems. This approach is called model-driven development .

 The model-driven development route is illustrated in Figure 2-10 . The model-
driven approach does not vary much from the basic phases we described earlier. We
call your attention to the following notes that correspond to the numbered bullets:

 1 System models may exist from the project that created the current system. Be
careful! These models are notorious for being out of date. But they can still be
useful as a point of departure.

 2 Earlier you learned that it is important to defi ne scope for a project. One of the
simplest ways to communicate scope is by drawing MODELS THAT SHOW SCOPE
DEFINITION . Scope models show which aspects of a problem are within scope and
which aspects are outside scope. This is sometimes called a context diagram or
context model.

 3 Some system modeling techniques call for extensive MODELS OF THE EXISTING
SYSTEM to identify problems and opportunities for system improvement. This is
sometimes called the as-is system model. Modeling of the current system has
waned in popularity today. Many project managers and analysts view it as coun-
terproductive or of little value added. The exception is modeling of as-is busi-
ness processes for the purpose of business process redesign.

 4 The requirements statement is one of the most important deliverables of sys-
tem development. It sometimes includes MODELS THAT DEPICT HIGH-LEVEL BUSINESS
REQUIREMENTS . One of the most popular modeling techniques today is called use

case (introduced in Chapter 6). Use cases identify requirements and track their
fulfi llment through the life cycle.

 model-driven develop-
ment a system development

strategy that emphasizes the

drawing of system models to

help visualize and analyze

problems, defi ne business

requirements, and design

information systems.

 model-driven develop-
ment a system development

strategy that emphasizes the

drawing of system models to

help visualize and analyze

problems, defi ne business

requirements, and design

information systems.

 iterative development
approach an approach to

systems analysis and design

that completes the entire

information system in succes-

sive iterations. Each iteration

does some analysis, some

design, and some construc-

tion. Synonyms include

 incremental and spiral .

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

2

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

3

L
O

G
IC

A
L

D
E

S
IG

N

4

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

5

P
H

Y
S

IC
A

L

D
E

S
IG

N

&

IN
T

E
G

R
A

T
IO

N

6

C
O

N
S

T
R

U
C

T
IO

N

&

T
E

S
T

IN
G

7

IN
S

T
A

L
L

A
T

IO
N

&

D
E

L
IV

E
R

Y

8

S
C

O
P

E

D
E

F
IN

IT
IO

N

1 D
o

c
u

m
e

n
ta

ti
o

n
D

o
c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

S
c

o
p

e

D
e

fi
n

it
io

n

a
s

 p
re

fa
c

e
 t

o

S
y

s
te

m
 I

m
p

ro
v

e
m

e
n

t

O
b

je
c

ti
v

e
s

R
e

q
u

ir
e

m
e

n
ts

S
ta

te
m

e
n

t

A
p

p
li

c
a

ti
o

n

A
rc

h
it

e
c

tu
re

P
h

y
s

ic
a

l
D

e
s

ig
n

S
p

e
c

if
ic

a
ti

o
n

s

F
u

n
c

ti
o

n
a

l

S
y

s
te

m

O
p

e
ra

ti
o

n
a

l
S

y
s

te
mT
H

E
 U

S
E

R
 C

O
M

M
U

N
IT

Y

F
IN

IS
H

:

W
o

rk
in

g

B
u

s
in

e
s

s

S
o

lu
ti

o
n

S
T
A

R
T

:

P
ro

b
le

m
s

,

O
p

p
o

rt
u

n
it

ie
s

,

a
n

d

D
ir

e
c

ti
v

e
s

L
o

g
ic

a
l

S
y

s
te

m

M
o

d
e

ls
 a

n
d

S
p

e
c

if
ic

a
ti

o
n

s

D
o

c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n
D

o
c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

S
ta

te
m

e
n

t

o
f
W

o
rk

P
ro

b
le

m

S
ta

te
m

e
n

t

S
y

s
te

m

P
ro

p
o

s
a

l
R

e
d

e
s

ig
n

e
d

B
u

s
in

e
s

s

P
ro

c
e

s
s

e
s

D
e

s
ig

n

P
ro

to
ty

p
e

s

T
ra

in
in

g
 M

a
te

ri
a

ls

P
o

s
t-

A
u

d
it

R
e
v

ie
w

M
o

d
e

ls
 t

h
a

t

s
h

o
w

M
o

d
e

ls
 o

f
th

e

e
x

is
ti

n
g

 s
y

s
te

m

m
a
y

 i
n

c
lu

d
e

m
o

d
e

ls
 t

h
a

t

d
e

p
ic

t
h

ig
h

-

le
v

e
l

b
u

s
in

e
s

s

re
q

u
ir

e
m

e
n

ts

M
o

d
e

ls
 t

h
a

t
d

e
p

ic
t

M
o

d
e

ls
 t

h
a

t
d

e
p

ic
t

m
a
y

 i
n

c
lu

d
e

m
o

d
e

ls
 t

h
a

t

d
e

p
ic

t
s

o
ft

w
a

re

a
s

 c
o

n
s

tr
u

c
te

d

m
a
y

 i
n

c
lu

d
e

 m
o

d
e

ls

th
a

t
d

e
p

ic
t

o
p

e
ra

ti
o

n
a

l

fl
o

w
 a

n
d

 p
ro

c
e

d
u

re
s

th
a

t
d

e
p

ic
t

d
e

p
ic

t

m
o

re

d
e

ta
il

e
d

u
s

e
r

re
q

u
ir

e
m

e
n

ts

 M
o

d
e

ls
 o

f

m
a
y

 i
n

c
lu

d
e

 m
o

d
e

ls

R
e

p
o

s
it

o
ry

o
f

S
y
s
te

m

K
n

o
w

le
d

g
e

“C
u

rr
e

n
t”

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

&

M
A

IN
T

E
N

A
N

C
E

L
if

e
-C

y
c

le
 S

ta
g

e

1

1
0

9

7

8
6

4

5

3

2

S
Y

S
T

E
M

O

W
N

E
R

S
 A

N
D

 X
T

R
A

 U
S

E
R

S

 F
I
G

U
R

E

2

-
1

0

T
h

e
M

o
d

el
-D

ri
v

en
 S

y
st

em
 D

ev
el

o
p

m
en

t
S

tr
at

eg
y

58

Information Systems Development Chapter Two 59

 5 Most model-driven techniques require that analysts document business require-

ments with logical models (defi ned earlier). Business requirements are fre-

quently expressed in LOGICAL MODELS THAT DEPICT MORE DETAILED USER REQUIREMENTS .

They show only what a system must be or must do. They are implementation

 in dependent; that is, they depict the system independent of any possible techni-

cal implementation. Hence, they are useful for depicting and validating business

requirements.

 6 As a result of the decision analysis phase, the analyst may produce system MODELS

TAHT DEPICT APPLICATION ARCHITECTURE . Such models illustrate the planned technical

implementation of a system.

 7 Many model-driven techniques require that analysts develop MODELS THAT DEPICT

PHYSICAL DESIGN SPECIFICATIONS (defi ned earlier in this chapter). Recall that physi-

cal models show not only what a system is or does but also how the system

is implemented with technology. They are implementation de pendent because

they refl ect technology choices and the limitations of those technology choices.

Examples include database schemas, structure charts, and fl owcharts. They serve

as a blueprint for construction of the new system.

 8 New information systems must be interwoven into the fabric of an organiza-

tion’s business processes. Accordingly, the analyst and users may develop MODELS

OF REDESIGNED BUSINESS PROCESSES .

 9 Construction translates the physical system models into software. In some cases,

automated tools exist to automatically translate software into PHYSICAL MODELS

THAT DEPICT SOFTWARE CONSTRUCTED . This is called reverse engineering.

 10 Finally, the operational system may modelinclude MODELS THAT DEPICT FLOW AND

PROCEDURE . For example, system models may document backup and recovery

procedures.

 In summary, system models can be produced as a portion of the deliverables

for most phases. Model-driven approaches emphasize system modeling. Once imple-

mented, the system models serve as documentation for any changes that might be

needed during the operation and support stage of the life cycle.

 There are several different model-driven techniques. They differ primarily in

terms of the types of models that they require the systems analyst to draw and vali-

date. Let’s briefl y examine three of the most popular model-driven development tech-

niques that will be taught in this book. Please note that we are introducing only the

techniques here, not the models. We’ll teach the models themselves later, in the

“how to” chapters.

 Process Modeling Process modeling was founded in the structured analysis and

design methodologies in 1978. While structured analysis and design has lost favor as

a methodology, process modeling remains a viable and important technique. Recall

that your information system building blocks include several possible focuses: KNOWL-

EDGE , PROCESSES , and INTERFACES . Process modeling focuses on the PROCESS column of

building blocks. Flowcharts are one type of process model (used primarily by SYSTEM

BUILDERS) that you may have encountered in a programming course. Process modeling

has enjoyed something of a renaissance with the emergence of business process re-

design (introduced in Chapter 1).

 Data fl ow diagrams and structure charts have contributed signifi cantly to reducing

the communications gap that often exists between nontechnical system owners and

users and technical system designers and builders. Process modeling is taught in this

book.

 Data Modeling Recall that KNOWLEDGE improvement is a fundamental goal and set

of building blocks in your framework. Knowledge is the product of information,

which in turn is the product of data. Data modeling methods emphasize the knowl-

edge building blocks, especially data. In the data modeling approach, emphasis is

 logical model a pictorial

representation that depicts

 what a system is or does.

Synonyms include essential

model, conceptual model,

and business model.

 logical model a pictorial

representation that depicts

 what a system is or does.

Synonyms include essential

model, conceptual model,

and business model.

 physical model a tech-

nical pictorial representation

that depicts what a system is

or does and how the system

is implemented. Synonyms

include implementation model

and technical model.

 physical model a tech-

nical pictorial representation

that depicts what a system is

or does and how the system

is implemented. Synonyms

include implementation model

and technical model.

 process modeling a

process-centered technique

popularized by the struc-

tured analysis and design

methodology that used

models of business process

requirements to derive effec-

tive software designs for a

system. Structured analysis

introduced a modeling tool

called the data fl ow diagram

to illustrate the fl ow of data

through a series of business

processes. Structured design

converted data fl ow diagrams

into a process model called

 structure charts to illustrate a

top-down software struc-

ture that fulfi lls the business

requirements.

 data modeling a data-

centered technique used

to model business data

requirements and design

database systems that fulfi ll

those requirements. The most

frequently encountered data

models are entity relationship

diagrams.

 process modeling a

process-centered technique

popularized by the struc-

tured analysis and design

methodology that used

models of business process

requirements to derive effec-

tive software designs for a

system. Structured analysis

introduced a modeling tool

called the data fl ow diagram

to illustrate the fl ow of data

through a series of business

processes. Structured design

converted data fl ow diagrams

into a process model called

 structure charts to illustrate a

top-down software struc-

ture that fulfi lls the business

requirements.

 data modeling a data-

centered technique used

to model business data

requirements and design

database systems that fulfi ll

those requirements. The most

frequently encountered data

models are entity relationship

diagrams.

60 Part One The Context of Systems Development Projects

placed on diagrams that capture business data requirements and translate them into

database designs. Arguably, data modeling is the most widely practiced system mod-

eling technique. Hence, it will be taught in this book.

 Object Modeling Object modeling is the result of technical advancement. Today,

most programming languages and methods are based on the emergence of object tech-

nology. While the concepts of object technology are covered extensively throughout

this book, a brief but oversimplifi ed introduction is appropriate here.

 For the past 30 years, techniques like process and data modeling deliberately sep-

arated the concerns of PROCESSES from those of DATA . In other words, process and data

models were separate and distinct. Because virtually all systems included processes

 and data, the techniques were frequently used in parallel and the models had to be

carefully synchronized. Object techniques are an attempt to eliminate the separation

of concerns, and hence the need for synchronization of data and process concerns.

This has given rise to object modeling methods.

 Business objects correspond to real things of importance in the business such

as customers and the orders they place for products. Each object consists of both

the data that describes the object and the processes that can create, read, update,

and delete that object. With respect to your information system building blocks, ob-

ject-oriented analysis and design (OOAD) signifi cantly changes the paradigm. The

 DATA and PROCESS columns (and, arguably, the INTERFACE column as well) are essentially

merged into a single OBJECT column. The models then focus on identifying objects,

building objects, and assembling appropriate objects, as with Legos, into useful infor-

mation systems. This book extensively integrates the most popular object modeling

techniques to prepare you for systems analysis and design that ultimately produces

today’s object-based information systems and applications.

 > The Rapid Application Development Strategy

 In response to the faster pace of the economy in general, rapid application devel-

opment (RAD) has become a popular route for accelerating systems development.

The basic ideas of RAD are:

 • To more actively involve system users in the analysis, design, and construction

activities.

 • To organize systems development into a series of focused, intense workshops

jointly involving SYSTEM OWNERS , USERS , ANALYSTS , DESIGNERS , and BUILDERS .

 • To accelerate the requirements analysis and design phases through an iterative

construction approach.

 • To reduce the amount of time that passes before the users begin to see a

 working system.

The basic principle behind prototyping is that users know what they want when

they see it working. In RAD, a prototype eventually evolves into the fi nal informa-

tion system. The RAD route is illustrated in Figure 2-11 . Again, the red text and fl ows

indicate the deviations from the basic process. We call your attention to the following

notes that correspond to the numbered bullets:

 1 The emphasis is on reducing time in developing applications and systems;

therefore, the initial problem analysis, requirements analysis, and decision

analysis phases are consolidated and accelerated. The deliverables are typically

abbreviated, again in the interest of time. The deliverables are said to be INITIAL ,

meaning “expected to change” as the project progresses.

 After the above initial analysis, the RAD uses an iterative approach, as dis-

cussed earlier in the chapter. Each iteration emphasizes only enough new func-

tionality to be accomplished within a few weeks.

 object modeling a tech-

nique that attempts to merge

the data and process con-

cerns into singular constructs

called objects. Object models

are diagrams that document a

system in terms of its objects

and their interactions. Object

modeling is the basis for

 object-oriented analysis and

design methodologies.

 object modeling a tech-

nique that attempts to merge

the data and process con-

cerns into singular constructs

called objects. Object models

are diagrams that document a

system in terms of its objects

and their interactions. Object

modeling is the basis for

 object-oriented analysis and

design methodologies.

 rapid application
development (RAD) a

system development strategy

that emphasizes speed of de-

velopment through extensive

user involvement in the rapid,

iterative, and incremental

construction of a series of

functioning prototypes of

a system that eventually

evolves into the fi nal system

(or a version).

 prototype a small-scale,

representative, or working,

model of the users’ require-

ments or a proposed design

for an information system.

Any given prototype may omit

certain functions or features

until such time as the proto-

type has suffi ciently evolved

into an acceptable implemen-

tation of requirements.

S
C

O
P

E

D
E

F
IN

IT
IO

N

1

(f
ro

m
 F

ig
u

re
 2

-5
)

P
R

O
B

L
E

M
 A

N
A

LY
S

IS

R
E

Q
U

IR
E

M
E

N
T

S
 A

N
A

LY
S

IS

D
E

C
IS

IO
N

 A
N

A
LY

S
IS

2
 +

 3
 +

 5

 (
fr

o
m

 F
ig

u
re

 2
-5

)

P
ro

b
le

m

S
ta

te
m

e
n

t

a
n

d

S
c

o
p

e
 &

V
is

io
n

S
o

m
e

D
e

s
ig

n
 P

ro
to

ty
p

e
s

a
n

d
/o

r

P
a

rt
ia

l

F
u

n
c

ti
o

n
a

l
 S

y
s

te
m

R
e

fi
n

e
d

 S
y

s
te

m
 I

m
p

ro
v

e
m

e
n

t

O
b

je
c

ti
v

e
s

 a
n

d
/o

r

B
u

s
in

e
s

s
 R

e
q

u
ir

e
m

e
n

ts

In
it

ia
l

S
y
s
te

m
 I
m

p
ro

v
e
m

e
n

t
O

b
je

c
ti

v
e
s

In
it

ia
l

B
u

s
in

e
s
s
 R

e
q

u
ir

e
m

e
n

ts
 S

ta
te

m
e
n

t

In
it

ia
l

S
y
s
te

m
 P

ro
p

o
s
a
l

In
it

ia
l

A
p

p
li
c
a
ti

o
n

 A
rc

h
it

e
c
tu

re

R
e

fi
n

e
d

A
p

p
li

c
a

ti
o

n

A
rc

h
it

e
c

tu
re

a
n

d
/o

r

D
e

s
ig

n
 C

h
a

n
g

e
s

D
E

L
IV

E
R

Y

o
f

a
 v

e
rs

io
n

7

(f
ro

m
 F

ig
u

re
 2

-5
)

C
a

n
d

id
a

te

R
e

le
a

s
e

V
e

rs
io

n

o
f

th
e

F
u

n
c

ti
o

n
a

l

S
y

s
te

m

P
o

s
t-

A
u

d
it

 R
e
v

ie
w

O
p

e
ra

ti
o

n
a

l
S

y
s

te
m

 V
e

rs
io

n
 #

.#
T
ra

in
in

g
 M

a
te

ri
a

ls

B
u

s
in

e
s

s

F
e

e
d

b
a

c
k

s
o

m
e

C
O

N
S

T
R

U
C

T
IO

N

&
 T

E
S

T
IN

G

7
 (

fr
o

m
 F

ig
u

re
 2

-5
)

s
o

m
e

 m
o

re

R
E

Q
T

S
.

&
 D

E
C

IS
IO

N

A
N

A
LY

S
IS

3
 +

 4
 +

 5

(f
ro

m
 F

ig
u

re
 2

-5
)

R
E

V
IE

W

T
H

E

S
Y

S
T

E
M

N
E

W

R
e

p
o

s
it

o
ry

o
f

S
y
s
te

m

K
n

o
w

le
d

g
e

D
o

c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o
n

D
o

c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

“C
u

rr
e

n
t”

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

&

M
A

IN
T

E
N

A
N

C
E

L
if

e
-C

y
c

le
 S

ta
g

e

S
Y

S
T

E
M

 O
W

N
E

R
S

 A
N

D
 U

S
E

R
S

T
H

E
 U

S
E

R
 C

O
M

M
U

N
IT

Y

F
IN

IS
H

:

W
o

rk
in

g

B
u

s
in

e
s

s

S
o

lu
ti

o
n

S
T
A

R
T

:

P
ro

b
le

m
s

,

O
p

p
o

rt
u

n
it

ie
s

,

a
n

d

D
ir

e
c

ti
v

e
s

S

ta
te

m
e

n
t

o
f

W
o

rk

S
o

m
e

 R
e

d
e

s
ig

n
e

d

B
u

s
in

e
s

s
 P

ro
c

e
s

s
e

s

S
o

m
e

L
o

g
ic

a
l

a
n

d
/o

r

P
h

y
s

ic
a

l
D

e
s

ig
n

S
p

e
c

if
ic

a
ti

o
n

s

T
e

c
h

n
ic

a
l

fe
e

d
b

a
c
k

1

7

8

5 6

9

4

2

3

s
o

m
e

D
E

S
IG

N
(l

o
g

ic
a

l
a

n
d

/o
r

p
h

y
s
ic

a
l)

4
 +

 6

(f
ro

m
 F

ig
u

re
 2

-5
)

++

 F
I
G

U
R

E

2

-
1

1

T
h

e
R

ap
id

 A
p

p
li

ca
ti

o
n

 D
ev

el
o

p
m

en
t

(R
A

D
)

S
tr

at
eg

y

61

62 Part One The Context of Systems Development Projects

 2 LOGICAL AND PHYSICAL DESIGN SPECIFICATIONS are usually signifi cantly abbreviated

and accelerated. In each iteration of the cycle, only some design specifi cations will

be considered. While some system models may be drawn, they are selectively chosen

and the emphasis continues to be on rapid development. The assumption is that errors

can be caught and fi xed in the next iteration.

 3 In some, but rarely all, iterations, some business processes may need to be rede-

signed to refl ect the likely integration of the evolving software application.

 4 In each iteration of the cycle, SOME DESIGN PROTOTYPES or SOME PARTIAL FUNCTIONAL

SYSTEM elements are constructed and tested. Eventually, the completed application

will result from the fi nal iteration through the cycle.

 5 After each prototype or partial functional subsystem is constructed and tested, sys-

tem users are given the opportunity to experience working with that prototype. The

expectation is that users will clarify requirements, identify new requirements, and

provide BUSINESS FEEDBACK on design (e.g., ease of learning, ease of use) for the next

iteration through the RAD cycle.

 6 After each prototype or functioning subsystem is constructed and tested, system

analysts and designers will review the application architecture and design to provide

 TECHNICAL FEEDBACK and direction for the next iteration through the RAD cycle.

 7 Based on the feedback, systems analysts will identify REFINED SYSTEM IMPROVEMENT

OBJECTIVES and/or BUSINESS REQUIREMENTS . This analysis tends to focus on revising

or expanding objectives and requirements and identifying user concerns with the

design.

 8 Based on the feedback, systems analysts and system designers will identify a REFINED

APPLICATION ARCHITECTURE and/or DESIGN CHANGES .

 9 Eventually, the system (or a version of the system) will be deemed worthy of

implementation. This CANDIDATE RELEASE VERSION OF THE FUNCTIONAL SYSTEM is system

tested and placed into operation. The next version of the system may continue

iterating through the RAD cycle.

 Although not a rigid requirement for RAD, the duration of the prototyping loop can be

limited using a technique called timeboxing. Timeboxing seeks to deliver an opera-

tional system to users and management on a regular, recurring basis. Advocates of time-

boxing argue that management and user enthusiasm for a project can be enhanced and

sustained because a working version of the system is implemented on a regular basis.

 RAD is most popular for small- to medium-size projects. We will demonstrate pro-

totyping and RAD techniques in appropriate chapters of this book.

 > The Commercial Application Package
Implementation Strategy

 Sometimes it makes more sense to buy an information system solution than to build

one in-house. In fact, many organizations increasingly expect to build software in-

house only when there is a competitive advantage to be gained. And for many core

applications such as human resources, fi nancials, procurement, manufacturing, and

distribution, there is little competitive value in building your own system—hence

a commercial application package is purchased. Accordingly, our methodology

includes a commercial software package route.

 The ultimate commercial solution is enterprise resource planning, or ERP (defi ned

in Chapter 1). ERP solutions provide all of the core information system applications

for an entire business. For most organizations, an ERP implementation represents the

single largest information system project ever undertaken by the organization. It can

cost tens or hundreds of millions of dollars and require a small army of managers,

users, analysts, technical specialists, programmers, consultants, and contractors.

 Our methodology’s route for commercial application package integration is

not really intended for ERP projects. Indeed, most ERP vendors provide their

 timeboxing the imposition

of a nonextendable period of

time, usually 60 to 90 days,

by which the fi rst (or next)

version of a system must be

delivered into operation.

 timeboxing the imposition

of a nonextendable period of

time, usually 60 to 90 days,

by which the fi rst (or next)

version of a system must be

delivered into operation.

 commercial application
package a software applica-

tion that can be purchased

and customized (within limits)

to meet the business require-

ments of a large number of

organizations or a specifi c

industry. A synonym is com-

mercial off-the-shelf (COTS)

system.

 commercial application
package a software applica-

tion that can be purchased

and customized (within limits)

to meet the business require-

ments of a large number of

organizations or a specifi c

industry. A synonym is com-

mercial off-the-shelf (COTS)

system.

Information Systems Development Chapter Two 63

own implementation methodology (and consulting partners) to help their cus-

tomers implement such a massive software solution. Instead, our methodology

provides a route for implementing all other types of information system solu-

tions that may be purchased by a business. For example, an organization might

purchase a commercial application package for a single business function such

as accounting, human resources, or procurement. The package must be selected,

installed, customized, and integrated into the business and its other existing in-

formation systems.

 The commercial application package implementation route is illustrated in Fig-

 ure 2-12 . Once again, the red typeface and arrows indicate differences from the basic

process. We call your attention to the following notes that correspond to the numbered

bullets:

 1 It should be noted that the decision to purchase a package is determined in

the problem analysis phase. The red diamond represents the “make versus buy”

decision. The remainder of this discussion assumes that a decision to buy has

been approved.

 2 Problem analysis usually includes some initial TECHNOLOGY MARKET RESEARCH to

identify what package solutions exist, what features are in the software, and

what criteria should be used to evaluate such application packages. This re-

search may involve software vendors, IT research services (such as the Gartner

Group), or consultants.

 3 After defi ning business requirements, the requirements must be communicated

to the software vendors who offer viable application solutions. The business

(and technical) requirements are formatted and communicated to candidate

software vendors as either a REQUEST FOR PROPOSAL (RFP) or a REQUEST FOR

 QUOTATION (RFQ) . The double-ended arrow implies that there may need to be

some clarifi cation of requirements and criteria.

 4 Vendors submit PROPOSALS or QUOTATIONS for their application solutions. These

proposals are evaluated against the business and technical requirements speci-

fi ed in the RFP. The double-ended arrow indicates that claimed features and

capabilities must be validated and in some instances clarifi ed. This occurs during

the decision analysis phase.

 5 A CONTRACT AND ORDER is negotiated with the winning vendor for the software

and possibly for services necessary to install and maintain the software.

 6 The vendor provides the BASELINE COMMERCIAL APPLICATION software and documen-

tation. Services for installation and implementation of the software are frequently

provided by the vendor or its service providers (certifi ed consultants).

 7 When an application package is purchased, the organization must nearly

always change its business processes and practices to work effi ciently with

the package. The need for REDESIGNED BUSINESS PROCESSES is rarely greeted with

enthusiasm, but they are usually necessary. In many cases, the necessary

changes are not wrong—they are just different and unfamiliar. System users

tend to be uncomfortable with changing the way they have always done

something.

 8 An application package rarely meets all business requirements upon installa-

tion. Typically, a gap analysis must be performed to determine which business

 requirements are not fulfi lled by the package’s capabilities and features.

 9 The BASELINE COMMERCIAL APPLICATION is installed and tested. Allowable changes

based on options, preferences, and parameters are completed and tested.

Note: These customizations within the limits specifi ed by the software vendor

will typically carry forward to version upgrades. In most instances the vendor

has provided for this level of CUSTOMIZED COMMERCIAL APPLICATION .

 10 Any add-on (or add-in) software changes are designed and constructed to meet

additional business requirements. The system is subsequently tested and placed

into operation using the same activities described in the basic process.

 request for proposal
(RFP) a formal document

that communicates business,

technical, and support re-

quirements for an application

software package to vendors

that may wish to compete for

the sale of that application

package and services.

 request for quotation
(RFQ) a formal document

that communicates busi-

ness, technical, and support

requirements for an applica-

tion software package to a

single vendor that has been

determined as being able

to supply that application

package and services.

 gap analysis a comparison

of business and technical

requirements for a com-

mercial application package

against the capabilities and

features of a specifi c com-

mercial application package

for the purpose of defi ning

the requirements that cannot

be met.

P
R

O
B

L
E

M

A
N

A
LY

S
IS

2

(f
ro

m
 F

ig
u

re
 2

-5
)

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
LY

S
IS

3

(f
ro

m
 F

ig
u

re
 2

-5
)

D
E

C
IS

IO
N

A
N

A
LY

S
IS

5

(f
ro

m
 F

ig
u

re
 2

-5
)

B
U

S
IN

E
S

S

P
R

O
C

E
S

S

D
E

S
IG

N

N
E

W

to
 t

h
is

 R
o

u
te

(r
e

p
la

c
e

s
 #

4
 o

n
 F

ig
 2

-5
)

IN
S

T
A

L
L

A
T

IO
N

&

C
U

S
T

O
M

IZ
A

T
IO

N

N
E

W
 t

o
 t

h
is

 R
o

u
te

P
H

Y
S

IC
A

L

D
E

S
IG

N

&

IN
T

E
G

R
A

T
IO

N

6

(f
ro

m
 F

ig
u

re
 2

-5
)

D
E

L
IV

E
R

Y

8

(f
ro

m
 F

ig
u

re
 2

-5
)

S
C

O
P

E

D
E

F
IN

IT
IO

N

1

(f
ro

m
 F

ig
u

re
 2

-5
)

R
e

p
o

s
it

o
ry

o
f

S
y

s
te

m

K
n

o
w

le
d

g
e

D
o

c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

“C
u

rr
e

n
t”

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

&

M
A

IN
T

E
N

A
N

C
E

L
if

e
-C

y
c

le
 S

ta
g

e
P

ro
b

le
m

S
ta

te
m

e
n

t

S
y

s
te

m

Im
p

ro
v

e
m

e
n

t

O
b

je
c

ti
v

e
s

F
u

n
c

ti
o

n
a

l

S
y

s
te

m

O
p

e
ra

ti
o

n
a

l
S

y
s

te
m

&

P
o

s
t-

A
u

d
it

 R
e
v

ie
w

F
IN

IS
H

:

W
o

rk
in

g

B
u

s
in

e
s

s

S
o

lu
ti

o
n

S
T
A

R
T

:

P
ro

b
le

m
s

,

O
p

p
o

rt
u

n
it

ie
s

,

a
n

d

D
ir

e
c

ti
v

e
s

D
o

c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n
D

o
c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

S
Y

S
T

E
M

O

W
N

E
R

S
 A

N
D

 U
S

E
R

S

T
H

E
 U

S
E

R
 C

O
M

M
U

N
IT

Y
T

E
C

H
N

O
L

O
G

Y
 I

N
D

U
S

T
R

Y

S
A

L
E

S

R

E
P

R
E

S
E

N
T
A

T
IV

E
S

 A
N

D

T
E

C
H

N
O

L
O

G
Y

X

T
R

A
 I

N
T

E
G

R
A

T
O

R
S

C
O

N
S

T
R

U
C

T
IO

N

&

T
E

S
T

IN
G

7
-b

(f

ro
m

 F
ig

u
re

 2
-5

)
P

h
y

s
ic

a
l

D
e

s
ig

n

S
p

e
c

if
ic

a
ti

o
n

s

D
o

c
u

m
e

n
ta

ti
o

n

B
u

s
in

e
s

s

R
e

q
u

ir
e

m
e

n
ts

S
ta

te
m

e
n

t

R
e

d
e

s
ig

n
e

d
 B

u
s

in
e

s
s

 P
ro

c
e

s
s

e
s

S
ta

te
m

e
n

t

o
f
W

o
rk

S
c

o
p

e
 &

 V
is

io
n

T
ra

in
in

g

M
a

te
ri

a
ls

D
e

s
ig

n
 P

ro
to

ty
p

e
s

T
e

c
h

n
o

lo
g

y
 M

a
rk

e
t

R
e

s
e

a
rc

h

P
ro

p
o

s
a

l

o
r

Q
u

o
ta

ti
o

n

C
o

n
tr

a
c

t

a
n

d

O
rd

e
r

R
F

P o
r

R
F

Q

B
a

s
e

li
n

e
 C

o
m

m
e

rc
ia

l
A

p
p

li
c

a
ti

o
n

F
e

a
tu

re
s

a
n

d

C
a

p
a

b
il

it
ie

s
A

d
d

-o
n

/-
in

S
o

ft
w

a
re

 R
e

q
u

ir
e

m
e

n
ts

C
u

s
to

m
iz

a
ti

o
n

R
e

q
u

ir
e

m
e

n
ts

C
u

s
to

m
iz

e
d

 C
o

m
m

e
rc

ia
l

A
p

p
li

c
a

ti
o

n

2

1

3

4

5

7

6

8

9

1
0

 F
I
G

U
R

E

2

-
1

2

T
h

e
C

o
m

m
er

ci
al

 A
p

p
li

ca
ti

o
n

 P
ac

k
ag

e
Im

p
le

m
en

ta
ti

o
n

 S
tr

at
eg

y

64

Information Systems Development Chapter Two 65

 Regardless, the trend toward purchased commercial application packages cannot

be ignored. Today, many businesses require that a package alternative be considered

prior to engaging in any type of in-house development project. Some experts estimate

that by the year 2005 businesses will purchase 75 percent of their new information

system applications. For this reason, we will teach systems analysis tools and tech-

niques needed by system analysts to function in this environment.

> Hybrid Strategies

 Routes are not mutually exclusive. Any given project may elect to or be required to

use a combination of, or variation of, more than one route. The route to be used is

always selected during the scope defi nition phase and is negotiated as part of the

 statement of work. One strategy that is commonly applied to both model-driven and

rapid application development routes is an incremental strategy. Figure 2-13 illus-

trates one possible implementation of an incremental strategy in combination with

rapid application development. The project delivers the information system into op-

eration in four stages. Each stage implements a version of the fi nal system using a RAD

route. Other variations on routes are possible.

 > System Maintenance

 All routes ultimately result in placing a new system into operation. System mainte-

nance is intended to guide projects through the operation and support stage of their

life cycle—which could last decades! Figure 2-14 places system maintenance into

perspective. System maintenance is not really a unique route. As illustrated in the

fi gure, it is merely a smaller-scale version of the same process (or route) that was used

to originally develop the system. The fi gure demonstrates that the starting point for

system maintenance depends on the problem to be solved. We call your attention to

the following numbered bullets in the fi gure:

 1 Maintenance and reengineering projects are triggered by some combination

of user and technical feedback. Such feedback may identify new problems,

opportunities, or directives.

 2 The maintenance project is initiated by a SYSTEM CHANGE REQUEST that indicates

the problems, opportunities, or directives.

 3 The simplest fi xes are SOFTWARE BUGS (errors). Such a project typically jumps

right into a re CONSTRUCTION AND re TESTING phase and is solved relatively quickly.

 4 Sometimes a DESIGN FLAW in the system becomes apparent after implementation.

For example, users may frequently make the same mistake due to a confusing

screen design. For this type of maintenance project, the PHYSICAL DESIGN AND INTE-

GRATION phase would need to be revisited, followed of course by the construc-

tion and delivery phases.

 In some cases a BUSINESS PROCESS ISSUE may become apparent. In this case, only

the business process needs to be redesigned.

 5 On occasion, NEW TECHNICAL REQUIREMENTS might dictate a change. For example,

an organization may standardize on the newest version of a particular database

management system such as SQL Server or Oracle. For this type of project, the

 DECISION ANALYSIS phase may need to be revisited to fi rst determine the risk and

feasibility of converting the existing, operational database to the new version. As

appropriate, such a project would subsequently proceed to the physical design,

construction, and delivery phases as necessary.

 6 Businesses constantly change; therefore, business requirements for a system also

change. One of the most common triggers for a reengineering project is a NEW (or

revised) BUSINESS REQUIREMENT . Given the requirement, the REQUIREMENTS ANALYSIS phase

must be revisited with a focus on the impact of the new requirement on the exist-

ing system. Based on requirements analysis, the project would then proceed to the

logical design, decision analysis, physical design, construction, and delivery phases.

66

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

&

M
A

IN
T

E
N

A
N

C
E

V
e
rs

io
n
 #

.#

V
E

R
S

IO
N

 1

O
F

 S
Y

S
T

E
M

V
E

R
S

IO
N

 2

O
F

 S
Y

S
T

E
M

V
E

R
S

IO
N

 3

O
F

 S
Y

S
T

E
M

V
E

R
S

IO
N

 4

O
F

 S
Y

S
T

E
M

IT
E

R
A
T

IO
N

 #
1

IT
E

R
A
T

IO
N

 #
3

IT
E

R
A
T

IO
N

 #
4

IT
E

R
A
T

IO
N

 #
2

 F
I
G

U
R

E

2

-
1

3

A
n

 I
n

cr
em

en
ta

l
Im

p
le

m
en

ta
ti

o
n

 S
tr

at
eg

y

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

2

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

3

L
O

G
IC

A
L

D
E

S
IG

N

4

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

5

P
H

Y
S

IC
A

L

D
E

S
IG

N

&

IN
T

E
G

R
A

T
IO

N

6

C
O

N
S

T
R

U
C

T
IO

N

&

T
E

S
T

IN
G

7

IN
S

T
A

L
L

A
T

IO
N

&

D
E

L
IV

E
R

Y

8

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

&

M
A

IN
T

E
N

A
N

C
E

L
if

e
-C

y
c

le
 S

ta
g

e

S
y
s
te

m

Im
p

ro
v
e
m

e
n

t

O
b

je
c
ti

v
e
s

B
u

s
in

e
s
s

R
e
q

u
ir

e
m

e
n

ts

S
ta

te
m

e
n

t

A
p

p
li
c
a
ti

o
n

A
rc

h
it

e
c
tu

re

P
h

y
s
ic

a
l

D
e
s
ig

n
 S

p
e
c
if

ic
a
ti

o
n

s

F
u

n
c
ti

o
n

a
l

S
y
s
te

m

O
p

e
ra

ti
o

n
a
l

S
y
s
te

m

S
T
A

R
T

:

F
e
e
d

b
a
c
k

L
o

g
ic

a
l

D
e
s
ig

n

B
U

S
IN

E
S

S
 C

O
M

M
U

N
IT

Y

S
ta

te
m

e
n

t

o
f
W

o
rk

S
y
s
te

m

P
ro

p
o

s
a
l

D
e
s
ig

n

P
ro

to
ty

p
e
s

T
ra

in
in

g

M
a
te

ri
a
ls

P
o

s
t-

A
u

d
it

R
e
v
ie

w

R
e
d

e
s
ig

n
e
d

B
u

s
in

e
s
s

P
ro

c
e
s
s
e
s

F
IN

IS
H

:

U
p

d
a
te

d
 o

r

Im
p

ro
v
e
d

O
p

e
ra

ti
o

n
a
l

S
y
s
te

m

S
C

O
P

E

D
E

F
IN

IT
IO

N

1

1

8

2

7

3

4

5

6

S
y
s
te

m

C
h

a
n

g
e

R
e
q

u
e
s
t

N
e
w

B
u

s
in

e
s
s

P
ro

b
le

m
s

N
e
w

 B
u

s
in

e
s
s
 R

e
q

u
ir

e
m

e
n

ts

N
e
w

 T
e
c
h

n
ic

a
l

R
e
q

u
ir

e
m

e
n

ts

D
e
s
ig

n

F
la

w

o
r

B
u

s
in

e
s
s

P
ro

c
e
s
s

Is
s
u

e

S
o

ft
w

a
re

“
B

u
g

”

 F
I
G

U
R

E

2

-
1

4

A
 S

y
st

em
 M

a
in

te
n

a
n

ce
 P

er
sp

ec
ti

v
e

67

68 Part One The Context of Systems Development Projects

 7 Again, as businesses change, signifi cant NEW BUSINESS PROBLEMS , opportunities, and

constraints can be encountered. In this type of project, work begins with the

 PROBLEM ANALYSIS phase and proceeds as necessary to the subsequent phases.

 8 In all cases, the fi nal result of any type of maintenance or reengineering project

is an updated operational business system that delivers improved value to the

system users and owners. Updates may include revised programs, databases,

interfaces, or business processes.

 That completes our introduction to the systems development methodology and

routes. Before we end this chapter, we should introduce the role of automated tools

that support systems development.

 REPRESENTATIVE
CASE TOOLS

 Computer Associates’ Erwin

Or acle’s Designer 2000

Popkin’s System Architect
Rational ROSE

 Visible Systems’ Visible
Analyst

 Automated Tools and Technology

 You may be familiar with the old fable of the cobbler (shoemaker) whose own

 children had no shoes. That situation is not unlike the one faced by some systems

developers. For years we’ve been applying information technology to solve our

users’ business problems; however, we’ve sometimes been slow to apply that same

technology to our own problem—developing information systems. In the not-too-

distant past, the principal tools of the systems analyst were paper, pencil, and fl ow-

chart template.

 Today, entire suites of automated tools have been developed, marketed, and in-

stalled to assist systems developers. While system development methodologies do

not always require automated tools, most methodologies do benefi t from such tech-

nology. Some of the most commonly cited benefi ts include:

 • Improved productivity—through automation of tasks.

 • Improved quality—because automated tools check for completeness, consis-

tency, and contradictions.

 • Better and more consistent documentation—because the tools make it easier to

create and assemble consistent, high-quality documentation.

 • Reduced lifetime maintenance—because of the aforementioned system quality

improvements combined with better documentation.

 • Methodologies that really work—through rule enforcement and built-in

 expertise.

 Let’s briefl y examine each of these classes of automated tools.

 > Computer-Assisted Systems Engineering

 Systems developers have long aspired to transform information systems and soft-

ware development into engineering-like disciplines. The terms systems engi-

neering and software engineering are based on a vision that systems and software

development can and should be performed with engineering-like precision and

rigor. Such precision and rigor are consistent with the model-driven approach to

systems development. To help systems analysts better perform system modeling,

the industry developed automated tools called computer-assisted software en-

gineering (CASE) tools. Think of CASE technology as software that is used to

design and implement other software. This is very similar to the computer-aided

design (CAD) technology used by most contemporary engineers to design prod-

ucts such as vehicles, structures, and machines. Representative modeling products

are listed in the margin. Most modeling products run on personal computers, as

depicted in Figure 2-15 .

 computer-assisted
software engineering
(CASE) the use of auto-

mated software tools that

support the drawing and

analysis of system models

and associated specifi ca-

tions. Some CASE tools also

provide prototyping and code

generation capabilities.

 computer-assisted
software engineering
(CASE) the use of auto-

mated software tools that

support the drawing and

analysis of system models

and associated specifi ca-

tions. Some CASE tools also

provide prototyping and code

generation capabilities.

 CASE Repositories At the center of any true CASE tool’s architecture is a devel-

oper’s database called a CASE repository . The repository concept was introduced

earlier (see Figure 2-7).

 Around the CASE repository is a collection of tools, or facilities, for creating

system models and documentation.

 CASE Facilities To use the repository, the CASE tools provide some combination of

the following facilities, illustrated in Figure 2-16 :

 • Diagramming tools are used to draw the system models required or recom-

mended in most system development methodologies. Usually, the shapes on

one system model can be linked to other system models and to detailed descrip-

tions (see next item below).

 • Dictionary tools are used to record, delete, edit, and output detailed documenta-

tion and specifi cations. The descriptions can be associated with shapes appear-

ing on system models that were drawn with the diagramming tools.

 • Design tools can be used to develop mock-ups of system components such as

inputs and outputs. These inputs and outputs can be associated with both the

aforementioned system models and the descriptions.

 • Quality management tools analyze system models, descriptions and specifi ca-

tions, and designs for completeness, consistency, and conformance to accepted

rules of the methodologies.

 CASE repository a system

developers’ database where

developers can store system

models, detailed descriptions

and specifi cations, and other

products of systems develop-

ment. Synonyms include data

 dictionary and encyclopedia.

 CASE repository a system

developers’ database where

developers can store system

models, detailed descriptions

and specifi cations, and other

products of systems develop-

ment. Synonyms include data

 dictionary and encyclopedia.

 F I G U R E 2 - 1 5 Screen Capture of System Architect CASE Tool

Information Systems Development Chapter Two 69

70 Part One The Context of Systems Development Projects

CASE

Repository

Diagramming

Tools

Dictionary

Tools

Design

Tools

Quality

Management

Tools

Documentation

Tools

Design and

Code

Generator

Tools

CASE

Workstation

and

Software

system

models

design models test results

and and

program code test scripts

system

descriptions

and

specif ications

project and

system

documentation

system

prototypes

quality

reports

PrinterSystems Analysts

CASE repositories

are usually stored

on servers so that

they may be shared

by multiple projects

and par ticipants.

Testing

Tools

 F I G U R E 2 - 1 6 CASE Tool Architecture

Information Systems Development Chapter Two 71

 • Documentation tools are used to assemble, organize, and report on system

models, descriptions and specifi cations, and prototypes that can be reviewed by

system owners, users, designers, and builders.

 • Design and code generator tools automatically generate database designs and

application programs or signifi cant portions of those programs.

 • Testing tools simulate transactions and data traffi c, measure performance, and

provide confi guration management of test plans and test scripts.

 Forward and Reverse Engineering As previous stated, CASE technology auto-

mates system modeling. Today’s CASE tools provide two distinct ways to develop

system models— forward engineering and reverse engineering . Think of reverse

engineering as allowing you to generate a fl owchart from an existing program and of

forward engineering as allowing you to generate a program directly from a fl owchart.

CASE tools that allow for bidirectional, forward, and reverse engineering are said to

provide for “round-trip engineering.” For example, you reverse engineer a poorly

designed system into a system model, edit and improve that model, and then forward

engineer the new model into an improved system.

 > Application Development Environments

 The emphasis on speed and quality in software development has resulted in RAD ap-

proaches. The potential for RAD has been amplifi ed by the transformation of program-

ming language compilers into complete application development environments

(ADEs) . ADEs make programming simpler and more effi cient. Indeed, most program-

ming language compilers are now integrated into an ADE. Examples of ADEs (and the

programming languages they support, where applicable) are listed in the margin.

 Application development environments provide a number of productivity and

quality management facilities. The ADE vendor provides some of these facilities.

Third-party vendors provide many other facilities that can integrate into the ADE.

 • Programming languages or interpreters are the heart of an ADE. Powerful

debugging features and assistance are usually provided to help programmers

quickly identify and solve programming problems.

 • Interface construction tools help programmers quickly build the user interfaces

using a component library.

 • Middleware is software that helps programmers integrate the software being

developed with various databases and computer networks.

 • Testing tools are used to build and execute test scripts that can consistently and

thoroughly test software.

 • Version control tools help multiple programmer teams manage multiple ver-

sions of a program, both during development and after implementation.

 • Help authoring tools are used to write online help systems, user manuals, and

online training.

 • Repository links permit the ADE to integrate with CASE tool products as well as

other ADEs and development tools.

 > Process and Project Managers

 A third class of automated tools helps us manage the system development method-

ology and projects that use the methodology. While CASE tools and ADEs are in-

tended to support analysis, design, and construction of new information systems and

software, process manager application and project manager application tools

are intended to support cross life-cycle activities. Microsoft’s Project and Niku’s Open

Workbench and Project Manager are examples of automated project management

tools. You’ll learn more about these automated tools in the next chapter on process

and project management.

 forward engineering a

CASE tool capability that can

generate initial software or

database code directly from

system models.

 reverse engineering a

CASE tool capability that can

automatically generate initial

system models from software

or database code.

 forward engineering a

CASE tool capability that can

generate initial software or

database code directly from

system models.

 reverse engineering a

CASE tool capability that can

automatically generate initial

system models from software

or database code.

 application development
environment (ADE) an

integrated software develop-

ment tool that provides all the

facilities necessary to develop

new application software

with maximum speed and

quality. A common synonym

is integrated development

environment (IDE).

 process manager appli-
cation an automated tool

that helps to document and

manage a methodology and

routes, its deliverables, and

quality management stan-

dards. An emerging synonym

is methodware.

 project manager applica-
tion an automated tool that

helps to plan system develop-

ment activities (preferably

using the approved method-

ology), estimate and assign

resources (including people

and costs), schedule activities

and resources, monitor prog-

ress against schedule and

budget, control and modify

schedule and resources, and

report project progress.

 application development
environment (ADE) an

integrated software develop-

ment tool that provides all the

facilities necessary to develop

new application software

with maximum speed and

quality. A common synonym

is integrated development

environment (IDE).

 process manager appli-
cation an automated tool

that helps to document and

manage a methodology and

routes, its deliverables, and

quality management stan-

dards. An emerging synonym

is methodware.

 project manager applica-
tion an automated tool that

helps to plan system develop-

ment activities (preferably

using the approved method-

ology), estimate and assign

resources (including people

and costs), schedule activities

and resources, monitor prog-

ress against schedule and

budget, control and modify

schedule and resources, and

report project progress.

 REPRESENTATIVE
ADEs

 IBM’s Websphere (Java)

 Borland’s J Builder (Java)

 Macromedia’s Cold

 Fusion Microsoft’s Visual

Studio . NET (VB .NET, C#,

C⫹⫹ . NET)

 Oracle’s Developer

 Sybase’s Powerbuilder

 1. A systems development process is a set of
activities, methods, best practices, deliverables,
and automated tools that stakeholders use to
develop and continuously improve information
systems and software.

 2. The Capability Maturity Model (CMM) is a
framework for assessing the maturity level of an
organization’s information systems development
and management processes and products. It
defi nes the need for a system development
process.

 3. A system life cycle divides the life of an
information system into two stages, systems

development and systems operation and

maintenance.

 4. A systems development methodology is a process
for the system development stage. It defi nes a set
of activities, methods, best practices, deliverables,
and automated tools that systems developers
and project managers are to use to develop and
maintain information systems and software.

 5. The following principles should underlie all
systems development methodologies:

a. Get the system users involved.
b. Use a problem-solving approach.
c. Establish phases and activities
d. Document throughout development.
e. Establish standards
f. Manage the process and projects.
g. Justify information systems as capital

investments.
h. Don’t be afraid to cancel or revise scope.
i. Divide and conquer.
j. Design systems for growth and change.

 6. System development projects are triggered by
problems, opportunities, and directives:

a. Problems are undesirable situations that
prevent the organization from fully achieving
its purpose, goals, and/or objectives.

b. Opportunities are chances to improve the
organization even in the absence of specifi c
problems.

c. Directives are new requirements that are
imposed by management, government, or
some external infl uence.

 7. Wetherbe’s PIECES framework is useful for
categorizing problems, opportunities, and
directives. The letters of the PIECES acronym
correspond to Performance, Information,
Economics, Control, Effi ciency, and Service.

 8. Traditional, basic systems development phases
include:

a. Scope defi nition
b. Problem analysis
c. Requirements analysis
d. Logical design
e. Decision analysis
 f. Physical design and integration
g. Construction and testing
h. Installation and delivery

 9. Cross life-cycle activities are activities that overlap
many or all phases of the methodology. They may
include:

a. Fact-fi nding, the formal process of using
research, interviews, meetings, questionnaires,
sampling, and other techniques to collect
information about systems, requirements, and
preferences.

b. Documentation, the activity of recording facts
and specifi cations for a system for current and
future reference. Documentation is frequently
stored in a repository, a database where
systems developers store all documentation,
knowledge, and products for one or more
information systems or projects.

c. Presentation, the activity of communicating
fi ndings, recommendations, and
documentation for review by interested users
and managers. Presentations may be either
written or verbal.

d. Feasibility analysis, the activity by which
feasibility, a measure of how benefi cial the
development of an information system
would be to an organization, is measured and
assessed.

e. Process management, the ongoing activity that
documents, manages the use of, and improves
an organization’s chosen methodology (the
“process”) for systems development.

f. Project management, the activity of defi ning,
planning, directing, monitoring, and
controlling a project to develop an acceptable
system within the allotted time and budget.

10. There are different routes through the basic
systems development phases. An appropriate
route is selected during the scope defi nition
phase. Typical routes include:

a. Model-driven development strategies, which
emphasize the drawing of diagrams to
help visualize and analyze problems, defi ne

Summary

72 Part One The Context of Systems Development Projects

 business requirements, and design information
systems. Alternative model-driven strategies
include:

 i) Process modeling
 ii) Data modeling
iii) Object modeling

b. Rapid application development (RAD)
strategies, which emphasize extensive user
involvement in the rapid and evolutionary
construction of working prototypes of a
system to accelerate the system development
process.

c. Commercial application package
implementation strategies, which focus on
the purchase and integration of a software
package or solution to support one or more
business functions and information systems.

d. System maintenance, which occurs after a
system is implemented and lasts throughout
the system’s lifetime. Essentially, system
maintenance executes a smaller-scale version
of the development process with different
starting points depending on the type of
problem to be solved.

11. Automated tools support all systems development
phases:

a. Computer-aided systems engineering (CASE)
tools are software programs that automate or
support the drawing and analysis of system
models and provide for the translation of
system models into application programs.

 i) A CASE repository is a system developers’
database. It is a place where developers
can store system models, detailed
descriptions and specifi cations, and other
products of systems development.

 ii) Forward engineering requires that the
systems analyst draw system models,
either from scratch or from templates.
The resulting models aresubsequently
transformed into program code.

 iii) Reverse engineering allows a CASE
tool to read existing program code and
transform that code into a representative
system model that can be edited and
refi ned by the systems analyst.

 b. Application development environments
(ADEs) are integrated software development
tools that provide all the facilities necessary
to develop new application software with
maximum speed and quality.

 c. Process management tools help us document
and manage a methodology and routes,
its deliverables, and quality management
standards.

 d. Project management tools help us plan
system development activities (preferably
using the approved methodology), estimate
and assign resources (including people and
costs), schedule activities and resources,
monitor progress against schedule and
budget, control and modify schedule and
resources, and report project progress.

.

 1. Explain why having a standardized system
development process is important to an
organization.

 2. How are system life cycle and system
development methodology related?

 3. What are the 10 underlying principles for systems
development?

 4. Why is documentation important throughout the
development process?

 5. Why are process management and project
management necessary?

 6. What is risk management? Why is it necessary?
 7. Which stakeholders initiate most projects? What

is the impetus for most projects?
 8. Who are the main participants in the scope

defi nition? What are their goals in the scope
defi nition?

 9. What are the three most important deliverables in
scope defi nition?

 10. Who are the main participants in the
requirements analysis phase? Why are they the
main participants?

 11. What feasibility analyses are made in the decision
analysis?

 12. What is model-driven development?
 13 . Why is model-driven development popular?
 14. What is rapid application development (RAD)?
 15. What benefi ts can RAD bring to the system

development process?
 16. What is computer-assisted software engineering

(CASE)? List some examples of CASE.

Review Questions
1

2

Information Systems Development Chapter Two 73

 1. The Capability Maturity Model (CMM) was
developed by the Software Engineering Institute
at Carnegie Mellon and is widely used by both
the private and public sectors. What is the
purpose of the CMM framework, and how does it
achieve this?

 2. List the fi ve maturity levels, and briefl y describe
each of them.

 3. Table 2-1 in the textbook illustrates the difference
in a typical project’s duration, person-months,
quality, and cost, depending upon whether an
organization’s system development process is at
CMM level 1, 2, or 3. Between which two CMM
levels does an organization gain the greatest
benefi t in terms of percentage of improvement?
What do you think is the reason for this?

 4. Systems development methodology and system

life cycle are two terms that are frequently
used and just as frequently misused. What is the
difference between the two terms?

 5. Describe how using a systems development
methodology is in line with CMM goals and can
help an organization increase its maturity level.

 6. A number of underlying principles are common
to all systems development methodologies.
Identify these underlying principles and explain
them.

 7. The PIECES framework was developed by James
Wetherbe as a means to classify problems.
Identify the categories, then categorize the
following problems using the PIECES framework:

 a. Duplicate data is stored throughout the
system.

 b. There is a need to port an existing application
to PDA devices.

 c. Quarterly sales reports need to be generated
automatically.

 d. Employees can gain access to confi dential
portions of the personnel system.

 e. User interfaces for the inventory system are
diffi cult and confusing, resulting in a high
frequency of incorrect orders.

 8. Each phase of a project includes specifi c
deliverables that must be produced and delivered
to the next phase. Using the textbook’s eight-
phased methodology, what are the deliverables
for the requirements analysis, logical design, and
physical design/integration phases?

 9. Scope defi nition is the fi rst phase of the chapter’s
methodology, and it is either the fi rst phase or

part of the fi rst phase of most methodologies.
What triggers the scope phase, which
stakeholders are involved in this phase, what two
essential questions need to be answered, and
what three important deliverables come out of
this phase?

 10. The requirements analysis phase is an essential
part of a system development methodology.
According to our methodology, which
stakeholders typically participate in this phase?
What is the primary focus of requirements
analysis? What is not the focus? How should each
proposed requirement be evaluated? What critical
error must be avoided?

 11. In our methodology, as well as most system
methodologies, system owners and system
designers do not participate in the requirements
analysis phase. What do you think the reason is
for this?

 12. What is the essential purpose of the logical
design phase? How does it accomplish this? How
are technological solutions incorporated in this
phase? What are some common synonyms for this
phase used by other methodologies? Who are the
typical participants in this phase? What is agile
modeling and what is its purpose? What are the
deliverables coming out of this phase? In terms
of the development team, what critical transition
takes place by the end of this phase?

 13. What is the essential purpose of the physical
design phase? Who must be involved in this
phase, and who may be involved? What are the
two philosophies of physical design on the
different ends of the continuum, and how are
they different? Is this a likely phase in which
a project might be canceled? With what other
phase is there likely to be overlap, and what do
you think is the reason for this?

 14. A customer has engaged your software
development company to develop a new order-
processing system. However, the time frames are
very tight and infl exible for delivery of at least
the basic part of the new system. Further, user
requirements are sketchy and unclear. What are
two system development strategies that might be
advantageous to use in this engagement?

 15. What is the potential downside to using the
strategies described in the preceding question?

Problems and Exercises

74 Part One The Context of Systems Development Projects

Projects and Research

Information Systems Development Chapter Two 75

 1. The Software Engineering Institute (SEI) at
Carnegie Mellon University has developed a series
of related Capability Maturity Models (CMMs). You
can read about these different CMM products at
SEI’s Web site (http://www.sei.cmu.edu).

 a. Identify the current CMM products being
maintained or developed by SEI.

 b. What are their differences and similarities?
 c. If you were to rate your organization, or an

organization with which you are familiar, using
the CMM described in the textbook, at which
level would it be? Why?

 d. What steps would you recommend that your
organization take in order to advance to the
next CMM level?

 e. Do you feel that the time, cost, and resources to
advance to the next level would be worth the
perceived benefi ts for your organization? Why
or why not?

 2. You are a new project manager and have
been assigned responsibility for an enterprise
information systems project that touches
every division in your organization. The chief
executive offi cer stated at project initiation that
successfully implementing this project was the
number 1 priority of your organization. The
project is in midst of the requirements analysis
phase. While it is on schedule, you notice that
attendance of the system users and owners at
meetings on requirements has been dropping. A
more experienced project manager has told you
not to worry, that this is normal. Should you be
concerned?

 3. There are many different systems development
methodologies in use, each with its own
terminology, and number and scope of phases.
Search the Web for information on two or three of
these other systems development methodologies,
then do the following:

 a. Note the systems development methodologies
that you found. When, by whom, and why were
they developed?

 b. What phases and terminology do they employ?
 c. Draw a matrix comparing their phases to the

textbook’s eight-phased methodology.
 d. What signifi cant differences did you fi nd?
 e. Do you see any advantages or disadvantages in any

of the methodologies that you found compared to
the chapter’s eight-phased methodology?

 4. The PIECES framework, which was developed by
James Wetherbe and is described in the textbook,
is intended to be a framework for classifying
problems, opportunities, and directives.

 Contact one of the systems analysts for your
organization, your school, and/or another organization.
Ask them about the information systems used in their
organization and to describe what the problems are
in general terms. Select three of these systems:

 a. Describe the systems you selected, their
problems, and the organizations that use them.

 b. Use the PIECES framework in the textbook to
categorize each system’s problems.

 c. Describe the PIECES category or categories
you found for each problem. Did each problem
generally have one or more categories
associated with it?

 d. For the systems used by different organizations,
what commonality did you fi nd in the
categories of problems? If you found a great
deal of commonality of categories, do you think
this is signifi cant or just coincidental?

 e. Where in the systems development life cycle do
you think the PIECES framework would be of
the greatest value?

 5. Computer-assisted software engineering (CASE)
tools can signifi cantly help developers improve
productivity, quality, and documentation. Conduct
an informal survey of about a dozen information
technology departments regarding whether they
use CASE tools, and if so, what type. Also, fi nd out
how long they have been using the CASE tools and
whether they are used for all or just some projects.
Add any other questions you may fi nd meaningful.
Try to split your survey between public and
private sector agencies, and/or large and small
organizations.

 a. What types of organizations did you survey?
 b. What did you ask?
 c. What were the results?
 d. Given the limited and informal nature of this

survey, were you able to fi nd any patterns or
trends?

 e. Based upon your readings and your survey, what
are your feelings regarding the use of CASE tools?

 6. Projects at times are canceled or abandoned,
sometimes by choice, sometimes not. Research
the Web for articles on project abandonment
strategies, and select two of them.

Minicases

 1. Interview at least two project managers. What are
their experiences with scope creep?

 2. George is the CEO of a major corporation that has
been trying to develop a program that captures
the keystrokes of employees on their computers.
The project is currently $100,000 over budget
and behind schedule and will require at least
another $50,000 and six months to complete. The
CEO wants to continue the project because so
much has already been invested in it. What is your
recommendation? Why?

 3. Beatrice is an excellent manager—she is very
capable of managing the bureaucratic process and
following the business rules in her corporation.

She is a “by the book” person who can always be
counted on to do things “right.” Will Beatrice make
a good project manager? Why or why not?

 4. A company is trying to decide between using
an off-the-shelf program or developing a custom
program for inventory management. The off-
the-shelf product is less expensive than the
custom solution and still has most of the needed
functionality. The CEO believes that the missing
capability can be addressed through tweaking
the program once it is purchased. As the CIO
of the company, what are your concerns and
recommendations to the CEO?

Team and Individual Exercises

 1. (Team) Hold team meetings using different
communications mediums. Examples: phone,
e-mail, virtual environment. What did you notice
about the impact of the technology on the
meeting? Was the productivity of the meetings the
same for each medium? How did the team feel
about the impact of the technologies on the team
relationships?

 2. (Individual) The analysis and design of an
information system, done well, often eliminates
jobs in a company. Economic theory strongly

supports the creation of new jobs when this
happens, but generally there is a time lag between
the structural loss of jobs and the creation of new
jobs. How do you feel about that?

 3. (Team or Individual) Visit a neonatal intensive care
unit at a highly regarded medical center (such as
UC San Francisco). Write a short paper on your
thoughts of the involved technology and the
impact it has on people’s lives. At the professor’s
discretion, share with the class.

 Ambler, Scott. Agile Modeling: Effective Practices for eXtreme

Programming and the Unifi ed Process. New York: John

Wiley & Sons, 2002.This is the defi nitive book on agile

methods and modeling.

 Application Development Trends (monthly periodical).

Framingham, MA: Software Productivity Group, Inc. This

is our favorite periodical for keeping up with the latest

trends in methodology and automated tools. Each month

features several articles on different topics and products.

 DeMarco, Tom. Structured Analysis and System Specifi cation.

Englewood Cliffs, NJ: Prentice Hall, 1978. This is the classic

book on structured systems analysis, a process-centered,

model-driven methodology.

 Gane, Chris. Rapid Systems Development. Englewood Cliffs,

NJ: Prentice Hall, 1989.This book presents a nice overview

of RAD that combines model-driven development and

prototyping in the correct balance.

Suggested Readings

76 Part One The Context of Systems Development Projects

 a. What articles did you select?
 b. What are their central themes, fi ndings,

and recommendations regarding project
abandonment?

 c. Compare and contrast their fi ndings and their
recommendations. Which strategy would you
choose, if any?

 d. Do you think that abandoning a project is always
avoidable and/or always represents a failure?

 Gildersleeve, Thomas. Successful Data Processing Systems

Analysis, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1985. We

are indebted to Gildersleeve for the creeping commitment

approach. The classics never become obsolete.

 Jacobson, Ivar; Grady Booch; and James Rumbaugh. The

Unifi ed Software Development Process. Reading, MA:

Addison-Wesley, 1999. The Rational Unifi ed Process is

a currently popular example of a model-driven, object-

oriented methodology.

 McConnell, Steve. Rapid Development. Redmond, WA:

Microsoft Press, 1996. Chapter 7 of this excellent reference

book provides what may be the defi nitive summary of

system development life cycle and methodology variations

that we call “routes” in our book.

 Orr, Ken. The One Minute Methodology. New York: Dorsett

House, 1990. Must reading for those interested in exploring

the need for methodology. This very short book can be read

in one sitting. It follows the satirical story of an analyst’s

quest for the development silver bullet, “the one minute

methodology.”

 Paulk, Mark C.; Charles V. Weber; Bill Curtis; and Mary Beth

Chrissis. The Capability Maturity Model: Guidelines for

Improving the Software Process. Reading, MA: Addison-

Wesley, 1995. This book fully describes version 1.1 of

the Capability Maturity Model. Note that version 2.0 was

under development at the time we were writing this

chapter.

 Wetherbe, James. Systems Analysis and Design: Best Practices,

4th ed. St. Paul, MN: West, 1994. We are indebted to Wetherbe

for the PIECES framework.

Information Systems Development Chapter Two 77

78 Part One The Context of Systems Development Projects

 Chapter Preview and Objectives

 Project management skills are greatly in demand in the information technology

community. Project management is a natural extension of the previous chapter’s

introduction to system development. This chapter provides a process-centric survey of key

project management tools and techniques as they apply to systems analysis and design.

You will know that you understand the basics of project management when you can:

❚ Defi ne the terms project and project management and differentiate between project

and process management.

❚ Describe the causes of failed information systems and technology projects.

❚ Describe the basic competencies required of project managers.

❚ Describe the basic functions of project management.

❚ Differentiate between PERT and Gantt charts as project management tools.

❚ Describe the role of project management software as it relates to project management tools.

❚ Describe eight activities in project management.

❚ Defi ne joint project planning and its role in project management.

❚ Defi ne scope and write a statement of work to document scope.

❚ Use a work breakdown structure to decompose a project into tasks.

❚ Estimate tasks’ durations and specify intertask dependencies on a PERT chart.

❚ Assign resources to a project and produce a project schedule with a Gantt chart.

❚ Assign people to tasks and direct the team effort.

❚ Use critical path analysis to adjust schedule and resource allocations in response to

schedule and budget deviations.

❚ Manage user expectations of a project and adjust project scope.

3Project Management

 Introduction

 Bob Martinez was in the offi ce of his boss, Sandra Shepherd, discussing the Sound-
Stage Member Services system project.

 “This sure is a big project,” Bob said, “bigger than anything I’ve ever worked on
before. How will you make sure it stays on track?”

 “Well, fi rst we have to get consensus on the scope of the project and document as-
sumptions and constraints,” Sandra answered. “We also have to negotiate the project
budget and schedule. Then we identify all the tasks that need to be performed. The
methodology is our template, but we always customize it for each project. We have
to plan each task and analyze how its work and its own schedule fi t in with the overall
project. Then we assign people and other resources to each task. As the project goes
on we have to manage the process to make sure everything stays on schedule.”

 “Wow!” Bob replied. “On some of the semester group projects I did in college,
we just kind of dived right in with the work. If we got behind we just pulled a couple
of all-nighters.”

 “Believe me,” Sandra said, “you don’t want to be around when the fi nger pointing
starts on a real systems project that is behind schedule or over budget. That’s some-
thing a couple of all-nighters won’t fi x. We have a long road ahead of us, and we want
to plan this as carefully as possible.”

 What Is Project Management?

Most of you are familiar with Murphy’s Law, which suggests, “If anything can go
wrong, it will.” Murphy has motivated numerous pearls of wisdom about projects,
machines, people, and why things go wrong. This chapter will teach you strategies,
tools, and techniques for project management as applied to information systems
projects.

 The demand for project managers in the information systems community is
strong. Typically, IS project managers come from the ranks of experienced IS devel-
opers such as systems analysts. While it is unlikely that your fi rst job responsibilities
will include project management, you should immediately become aware of project
management processes, tools, and techniques. Eventually you will combine this
knowledge with development experience plus your own observation of project man-
agers to form the basis for your own career opportunities in project management.

 Before we can defi ne project management, we should fi rst defi ne project. There
are as many defi nitions as there are authors, but we like the defi nition put forth by
Wysocki, Beck, and Crane:

 A project is a [temporary] sequence of unique, complex, and connected activities
that have one goal or purpose and that must be completed by a specifi c time,
within budget, and according to specifi cation. 1

The keywords are underlined to draw your attention to some key aspects of the defi -
nition. As applied to information system development, we note the following:

• A system development process or methodology defi nes a sequence of activities,
mandatory and optional.

• Every system development project is unique; that is, it is different from every
other system development project that preceded it.

Project Management Chapter Three 79

 project a sequence of activ-

ities that must be completed

on time, within budget, and

according to specifi cation.

 1 Robert K. Wysocki, Robert Beck, Jr., and David B. Crane, Effective Project Management: How to Plan, Manage, and

Deliver Projects on Time and within Budget (New York: John Wiley & Sons, 1995), p. 38.

 project manager the

person responsible for

supervising a systems project

from initiation to conclusion.

Successful project man-

agers possess a wide range

of technical, management,

leadership, and communica-

tion skills.

80 Part One The Context of Systems Development Projects80 Part One The Context of Systems Development Projects

• The activities that comprise system development are relatively complex. They
require the skills that you are learning in this book, and they require that you
be able to adapt concepts and skills to changing conditions and unanticipated
events.

• By now, you’ve already learned that the phases and activities that make up a
system development methodology are generally sequential. While some tasks
may overlap, many tasks are dependent on the completion of other tasks.

• The development of an information system represents a goal. Several objectives
may need to be met to achieve that goal.

• Although many information system development projects do not have absolute
deadlines or specifi ed times (there are exceptions), they are notoriously
completed later than originally projected. This is becoming less acceptable to
upper management given the organizationwide pressures to reduce cycle times
for products and business processes.

• Few information systems are completed within budget. Again, upper management
is increasingly rejecting this tendency.

• Information systems must satisfy the business, user, and management expec-
tations according to specifi cations (which we call requirements throughout
this book).

 For any systems development project, effective project management is neces-
sary to ensure that the project meets the deadline, is developed within an accept-
able budget, and fulfi lls customer expectations and specifi cations. You learned in
Chapter 2 that project management is a cross life-cycle activity because it overlaps all
phases of any systems development methodology.

 The prerequisite for good project management is a well-defi ned system de-
velopment process. In Chapter 2, we introduced the Capability Maturity Model
(CMM) as a framework for quality management that is based on a sound systems
development process. In Chapter 2 we differentiated between project and process
management. Project management was defi ned above. Process management is
an ongoing activity that documents, manages the use of, and improves an organiza-
tion’s chosen methodology (the “process”) for systems development. Process man-
agement is concerned with the activities, deliverables, and quality standards to be
applied to all projects. The scope of process management is all projects, whereas
the scope of project management is a single project. This chapter will focus on
project management.

> The Causes of Failed Projects

What causes a project to succeed or fail? Chapter 2 introduced 10 basic principles of
systems development that are critical success factors for all projects. See Chapter 2
for a review of those principles. From a project management perspective, a project
is considered a success if:

• The resulting information system is acceptable to the customer.
• The system is delivered “on time.”
 The system is delivered “within budget.”
• The system development process had a minimal impact on ongoing business

operations.

Not all projects meet these criteria, and as a result, not all projects are suc-
cessful. Failures and limited successes far outnumber successful information sys-
tems. Project mismanagement can undermine the best application of the systems
analysis and design methods taught in this book. We can develop an apprecia-
tion for the importance of project management by studying the mistakes of some

 project management the

process of scoping, planning,

staffi ng, organizing, directing,

and controlling the develop-

ment of an acceptable system

at a minimum cost within a

specifi ed time frame.

 process management the

activity of documenting,

managing, and continually

improving the process of

systems development.

project managers. Let’s examine some project mismanagement problems and
consequences:

• Failure to establish upper-management commitment to the project —Sometimes
commitment changes during a project.

• Lack of organization’s commitment to the system development methodology —
Many system development methodologies do little more than collect dust.

• Taking shortcuts through or around the system development methodology —
Project teams often take shortcuts for one or more of the following reasons:

 — The project gets behind schedule, and the team wants to catch up.
 — The project is over budget, and the team wants to make up costs by

skipping steps.
 — The team is not trained or skilled in some of the methodology’s activities

and requirements, so it skips them.

• Poor expectations management —All users and managers have expectations
of the project. Over time, these expectations may change. This can lead to two
undesirable situations:

 — Scope creep is the unexpected growth of user expectations and business
requirements for an information system as the project progresses. The
schedule and budget can be adversely affected by such changes.

— Feature creep is the uncontrolled addition of technical features to a sys-
tem under development without regard to schedule or budget.

• Premature commitment to a fi xed budget and schedule —You can rarely make
accurate estimates of project costs and schedule before completing a detailed
problem analysis or requirements analysis. Premature estimates are inconsistent
with the creeping commitment approach introduced in Chapter 2.

• Poor estimating techniques —Many systems analysts estimate by making a
best-calculated estimate and then doubling that number. This is not a scientifi c
approach.

• Overoptimism —Systems analysts and project managers tend to be optimists.
As project schedules slip, they respond, “No big deal. We can make it up later.”
They fail to recognize that certain tasks are dependent on other tasks. Because
of these dependencies, a schedule slip in one phase or activity will cause
corresponding slips in many other phases and activities, thus contributing to
cost overruns.

• The mythical man-month 2 —As the project gets behind schedule, project
leaders frequently try to solve the problem by assigning more people to the
team. It doesn’t work! There is no linear relationship between time and number
of personnel. The addition of personnel usually creates more communication
problems, causing the project to get even further behind schedule.

• Inadequate people management skills —Managers tend to be thrust into
management positions and are not prepared for management responsibilities.
This problem is easy to identify. No one seems to be in charge; customers
don’t know the status of the project; teams don’t meet regularly to discuss and
monitor progress; team members aren’t communicating with one another; the
project is always said to be “95 percent complete.”

• Failure to adapt to business change —If the project’s importance changes
during the project, or if the management or the business reorganizes, projects
should be reassessed for compatibility with those changes and their importance
to the business.

 2 Fred Brooks, The Mythical Man-Month (Reading, MA: Addison-Wesley, 1975).

Project Management Chapter Three 81

 scope creep the unex-

pected and gradual growth

of requirements during an

information systems project.

 feature creep the uncon-

trolled addition of technical

features to a system.

82 Part One The Context of Systems Development Projects

T A B L E 3 - 1 Project Manager Competencies

 Competency Explanation How to Obtain?

 Business Achievement Competencies

 Business Ties every systems project to the mission, vision, and goals of the Business experience
awareness organization.

 Business partner Keeps managers and users involved throughout a systems project. Business experience
orientation

 Commitment to Ensures that every systems project contributes to the quality Business experience
quality expectation of the organization as a whole.

 Problem-Solving Competencies

 Initiative Demonstrates creativity, calculated risks, and persistence necessary Business experience
 to get the job done.

 Information Skillfully obtains the factual information necessary to analyze, design, Chapter 5 in this book
gathering and implement the information system. plus business experience

 Analytical Can assess and select appropriate system development processes This chapter
thinking and use project management tools to plan, schedule, and budget for
 system development.

 Can solve problems through the analytical approach of Chapters 7, 8, and 10
 decomposing systems into their parts and then reassembling the in this book plus business
 parts into improved systems. experience

 Conceptual Understands systems theory and applies it to systems analysis and Chapters 1 and 4–10
thinking design of information systems. in this book

 Infl uence Competencies

 Interpersonal Understands, recognizes, and reacts to interpersonal motivations and Can be learned in courses
awareness behaviors. but requires business
 experience

 Organizational Understands the politics of the organization and how to use them in a Business experience
awareness project.

 Anticipation Understands implications of project decisions and manages Introduced in this chapter
of impact expectations and risk. but requires business
 experience

 Resourceful use Skillfully obtains cooperation and consensus of managers, users, and Business experience
of infl uence technologists to solutions.

 People Management Competencies

 Motivating Coaches and directs individuals to overcome differences and achieve Business experience
others project goals as a team.

 Communication Communicates effectively, both orally and in writing, in the context of Can be learned in courses
skills meetings, presentations, memos, and reports. but usually requires
 business experience

 Developing Ensures that project team members receive suffi cient training, Business experience
others assignments, supervision, and performance feedback required to
 complete projects.

 Monitoring and Develops the project plan, schedule, and budget and continuously Tools and techniques
controlling monitors progress and makes adjustments when necessary. taught in this chapter, but
 requires project experience

 Self-Management Competencies

 Self-confi dence Consistently makes and defends decisions with a strong personal Business experience
 confi dence in the process and/or facts.

 Stress Works effectively under pressure or adversity. Business experience
management

Project Management Chapter Three 83

• Insuffi cient resources —This could be due to poor estimating or to other
priorities, or it could be that the staff resources assigned to a project do not
possess the necessary skills or experience.

• Failure to “manage to the plan” —Various factors may cause the project
manager to become sidetracked from the original project plan.

 Ultimately, the major cause of project failure is that most project managers were
not educated or trained to be project managers. Just as good programmers don’t always
go on to become good systems analysts, good systems analysts don’t automatically
perform well as project managers. To be a good project manager, you should be edu-
cated and skilled in the “art of project management.”

 > The Project Management Body of Knowledge

 The Project Management Institute was created as a professional society to guide the
development and certifi cation of professional project managers. The institute cre-
ated the Project Management Body of Knowledge (PMBOK) for the education and
certifi cation of professional project managers. This chapter’s content was greatly in-
fl uenced by the PMBOK.

 Project Manager Competencies Good project managers possess a core set of
competencies. Table 3-1 summarizes these competencies. Some of these competen-
cies can be taught in courses, books, and professional workshops; however, some
come only with professional experience in the fi eld. There are two basic premises of
project management competencies: First, individuals cannot manage a process they
have never used. Second, managers must have an understanding of the business and
culture that provides a context for the project.

 Project Management Functions The basic functions of a project manager have
been studied and refi ned by management theorists for many years. These functions
include scoping, planning, staffi ng, organizing, scheduling, directing, controlling, and
closing:

• Scoping —Scope defi nes the boundaries of the project. A project manager must
scope project expectations and constraints in order to plan activities, estimate
costs, and manage expectations.

• Planning —Planning identifi es the tasks required to complete the project.
This is based on the manager’s understanding of the project scope and the
methodology used to achieve the goal.

• Estimating —Each task that is required to complete the project must be
estimated. How much time will be required? How many people will be needed?
What skills will be needed? What tasks must be completed before other tasks

 Source: Adapted from Robert K. Wysocki, Robert Beck, Jr., and David B. Crane, Effective Project Management: How to Plan, Manage, and Deliver Projects on Time and

within Budget (New York: John Wiley & Sons, 1995).

T A B L E 3 - 1 (Continued)

 Competency Explanation How to Obtain?

 Concern for Consistently and honestly delivers on promises and solutions. Business experience
credibility Maintains technical or business currency in the fi eld as appropriate.

 Flexibility Capable of adjusting process, management style, or decision making Business experience
 based on situations and unanticipated problems.

84 Part One The Context of Systems Development Projects

are started? Can some of the tasks overlap? How much will it cost? These are
all estimating issues. Some of these issues can be resolved with the project
modeling tools that will be discussed later in this chapter.

• Scheduling —Given the project plan, the project manager is responsible for
scheduling all project activities. The project schedule should be developed with
an understanding of the required tasks, task duration, and task prerequisites.

• Organizing —The project manager should make sure that members of the
project team understand their own individual roles and responsibilities as well
as their reporting relationship to the project manager.

• Directing —Once the project has begun, the project manager must direct the
team’s activities. Every project manager must demonstrate people management
skills to coordinate, delegate, motivate, advise, appraise, and reward team members.

5-3-2001 5-12-2001

5-3-2001 5-11-2001

Problem Analysis

5-12-2001 6-12-2001

5-12-2001 6-14-2001

Requirements Analysis

5-28-2001 7-15-2001

5-30-2001 7-18-2001

Logical Design

6-13-2001 7-30-2001

6-13-2001 8-3-2001

Decision Analysis

9-10-2001 12-14-2001

TBD TBD

Implementation & Delivery

7-19-2001 11-13-2001

7-20-2001 In Progress

Construction & Testing

7-3-2001 9-25-2001

7-5-2001 10-9-2001

Physical Design

5-3-2001 N/A

5-3-2001 N/A

Scope Definition

Scheduled

Start

Scheduled

Finish

Actual Start
Actual

Finish

Task

Scheduled

Start

Scheduled

Finish

Actual Start
Actual

Finish

Task

intertask

dependency

Legend

 F I G U R E 3 - 1 A PERT Chart

• Controlling —Perhaps the manager’s most diffi cult and important function
is controlling the project. Few plans will be executed without problems and
delays. The project manager must monitor and report progress against goals,
schedule, and costs and make appropriate adjustments when necessary.

• Closing —Good project managers always assess successes and failures at the
conclusion of a project. They learn from their mistakes and plan for continuous
improvement of the systems development process.

 All the above functions are dependent on ongoing interpersonal communication
among the project manager, the team, and other managers.

 Project Management Tools and Techniques—PERT and Gantt Charts The
PMBOK includes tools and techniques that support project managers. Two such tools
are PERT and Gantt charts.

 PERT, which stands for Project Evaluation and Review Technique, was devel-
oped in the late 1950s to plan and control large weapons development projects for
the U.S. Navy. A PERT chart is a graphical network model that depicts a project’s
tasks and the relationships between those tasks. A sample PERT chart is illustrated in
 Figure 3-1 . PERT was developed to make clear the interdependence between project
tasks before those tasks are scheduled. The boxes represent project tasks (we used
phases from Chapter 2). (The content of the boxes can be adjusted to show various
project attributes such as schedule and actual start and fi nish times.) The arrows indi-
cate that one task is dependent on the start or completion of another task.

 The Gantt chart, fi rst conceived by Henry L. Gantt in 1917, is the most com-
monly used project scheduling and progress evaluation tool. A Gantt chart is a
simple horizontal bar chart that depicts project tasks against a calendar. Each bar rep-
resents a named project task. The tasks are listed vertically in the left-hand column.
The horizontal axis is a calendar time line. Figure 3-2 illustrates a phase-level Gantt
chart, once again based on Chapter 2. We used the same project that was illustrated
in Figure 3-1 .

Information Systems Development Chapter Two 85

 PERT chart a graphical

network model used to depict

the interdependencies be-

tween a project’s tasks.

 Gantt chart a bar chart

used to depict project tasks

against a calendar.

 F I G U R E 3 - 2 A Gantt Chart

Incomplete task

Complete task

Legend

ID

1

2

3

4

5

6

7

Problem Analysis

Requirements Analysis

Logical Design

Decision Analysis

Physical Design

Construction & Testing

Implementation & Delivery

May Jun Jul Aug Sep Oct Nov Dec

2001

Task Name

Today

 PROJECT
MANAGEMENT
SOFTWARE

 Niku’s Project Manager

 Artemis International

 Solutions Corporation’s

9000

 Computer Associates’
 AllFusion Process

Management Suite

 Microsoft’s Project

 Primavera’s Project Planner
and Project Manager

 C/S Solutions’ Risk .

86 Part One The Context of Systems Development Projects

 F I G U R E 3 - 3 Microsoft Project Gantt and PERT Charts

1

2

3

4

5

(a)

(b)

Project Management Chapter Three 87

 Gantt charts offer the advantage of clearly showing overlapping tasks, that is,
tasks that can be performed at the same time. The bars can be shaded to clearly in-
dicate percentage completion and project progress. The fi gure demonstrates which
phases are ahead of and behind schedule at a glance. The popularity of Gantt charts
stems from their simplicity—they are easy to learn, read, prepare, and use.

 Gantt and PERT charts are not mutually exclusive. Gantt charts are more effec-
tive when you are seeking to communicate schedule. PERT charts are more effective
when you want to study the relationships between tasks.

 Project Management Software Project management software is routinely used to
help project managers plan projects, develop schedules, develop budgets, monitor prog-
ress and costs, generate reports, and effect change. Representative automated project
management tools are listed in the margin.

 We will teach you project modeling and management techniques in the context
of project management software. We used Microsoft Project because that tool is fre-
quently available to students and institutions at special academic prices through their
college bookstore. Microsoft Project, like most project management software tools,
supports both PERT and Gantt charts.

 Figure 3-3 (a) illustrates one possible Microsoft Project Gantt chart for the Sound-
Stage Member Services project. We call your attention to the following numbered
bullets:

 1 The black bars are summary tasks that represent project phases that are
further broken down into other tasks.

 2 The red bars indicate tasks that have been determined to be critical to the
schedule, meaning that any extension to the duration of those tasks will
delay other tasks and the project as a whole. We’ll talk more about critical
tasks later.

 3 The blue bars indicate tasks that are not critical to the schedule, meaning they
have some slack time during which delays will not affect other tasks and the
project as a whole.

 4 The red arrows indicate prerequisites between two critical tasks. (The blue
arrows indicate prerequisites between two noncritical tasks.)

 5 The teal diamonds indicate milestones—events that have no duration. They
signify the end of some signifi cant task or deliverable.

 Figure 3-3 (b) shows a Microsoft Project PERT chart based on the same project
plan that was illustrated in the Gantt chart. The contents of each cell in the task rect-
angles are able to be customized in Microsoft Project.

 The Project Management Life Cycle

 Recall from Chapter 2 that the Capability Maturity Model defi nes a framework for as-
sessing the quality of an organization’s information systems development activities.
CMM Level 1 is defi ned as “initial” and is characterized by the lack of any consistent
project or process management function. The fi rst stage of maturity improvement is
to implement a consistent project management function—called CMM Level 2. In this
section we introduce a project management life cycle representative of CMM Level
2 maturity.

 Figure 3-4 illustrates a project management process or life cycle. Recall that project
management is a cross life-cycle activity; that is, project management activities overlap
all the system development phases that were introduced in Chapter 2. The illustrated
project management activities correspond to classic management functions: scoping,
planning, estimating, scheduling, organizing, directing, controlling, and closing.

88 Part One The Context of Systems Development Projects

NEGOTIATE

SCOPE

(SCOPING)

1

IDENTIFY

TASKS

(PLANNING)

2

ESTIMATE

TASK

DURATIONS

(ESTIMATING)

3

SPECIFY

INTERTASK

DEPENDENCIES

(SCHEDULING)

4

ASSIGN

RESOURCES

(ORGANIZING)

5

DIRECT THE

TEAM EFFORT

(DIRECTING)

6

MONITOR AND

CONTROL

PROGRESS

(CONTROLLING)

7

Statement
of Work

Work
Breakdown

Task
Durations

Resource
Assignments
and Budget

Milestone
Completion

Scheduled
Tasks

time
constraints

Project
Assignment

project charter
and

team
building

experiences,
observations,

and
suggestions

delegation
and direction

resource
commitments

estimates
and

opinions

methodology
experience

SYSTEM OWNERS, USERS, DESIGNERS,
BUILDERS, AND ANALYSTS

THE PROJECT TEAM

methodology or process standards

(external)
Progress
Reports

MANAGERS NOT ON THE

PROJECT TEAM

MANAGEMENT

METHODOLOGY AND

AUTOMATED TOOL EXPERTS

CENTERS OF EXCELLENCE

ASSESS PROJECT

RESULTS AND

EXPERIENCES

(CLOSING)

8

Completed
Project

Experiences

Process and Project
Management
Improvements

Next
Milestone
Revision

Structure

task
progress

and
analysis

 F I G U R E 3 - 4 A Project Management Life Cycle

 The project management process shown in Figure 3-4 incorporates a joint project
planning (JPP) technique. 3 Joint project planning (JPP) is a strategy wherein all
stakeholders in a project (meaning system owners, users, analysts, designers, and
builders) participate in a one- to three-day project management workshop, the result
of which is consensus on project scope, schedule, resources, and budget. (Subsequent

 3 Wysocki, Beck, and Crane, Effective Project Management: How to Plan, Manage, and Deliver Projects on Time and

within Budget, p. 38.

 joint project planning
(JPP) a strategy in which

all stakeholders attend an

intensive workshop aimed

at reaching consensus on

project decisions.

Project Management Chapter Three 89

workshops or meetings may be required to adjust scope, budget, and schedule.) Notice
that in JPP, the project team is actively involved in all inputs and deliverables of all
project management activities.

 In the following subsections, we will review each of the illustrated project man-
agement activities and discuss how to use appropriate project management tools and
techniques.

 > Activity 1—Negotiate Scope

 Perhaps the most important prerequisite to effective project management occurs at
the beginning. All parties must agree to the project scope before any attempt is made
to identify and schedule tasks or to assign resources (people) to those tasks. Scope
defi nes the expectations of a project, and expectations ultimately determine satisfac-
tion and degrees of success. Accordingly, the negotiation of project scope is a neces-
sary activity in the project management life cycle. What is scope? Scope defi nes the
boundaries of a project—the parts of the business that are to be studied, analyzed,
designed, constructed, implemented, and ultimately improved. Scope also defi nes
the aspects of a system that are considered outside the project. The answers to fi ve
basic questions infl uence the negotiation of project scope:

• Product —What do you want?
• Quality —How good do you want it to be?
• Time —When do you want it?
• Cost —How much are you willing to pay for it?
• Resources —What resources are you willing or able to bring to the table?

 Negotiation of the above factors is a give-and-take activity that includes much
iteration. The deliverable is an agreed-on statement of work that describes the
work to be performed during the project. In consulting engagements, the state-
ment of work has become a commonly used contract between the consultant
and client. This approach works equally well for internal system development
projects to establish a contract between business management and the project
manager and team.

 An outline for a typical statement-of-work document is shown in Figure 3-5 . The
size of the document will vary in different organizations. It may be as small as one to
two pages, or it may run several pages.

 > Activity 2—Identify Tasks

 Given the project scope, the next activity is to identify project tasks. Tasks identify
the work to be done. Typically, this work is defi ned in a top-down, outline manner.
In Chapter 2, you learned about system development routes and their phases. But
phases are too large and complex for planning and scheduling a project. We need
to break them down into activities and tasks until each task represents a manage-
able amount of work that can be planned, scheduled, and assigned. Some experts
advocate decomposing tasks until the tasks represent an amount of work that can be
completed in two weeks or less.

 Ultimately, the project manager will determine the level of detail in the outline;
however, most system development methodologies decompose phases for you—into
suggested activities and tasks. These activities and tasks are not necessarily carved in
stone; that is, most methodologies allow for some addition, deletion, and changing of
activities and tasks based on the unique nature of each project. One popular tool used
to identify and document project activities and tasks is a work breakdown structure.
A work breakdown structure (WBS) is a hierarchical decomposition of the project
into phases, activities, and tasks.

 scope the boundaries of a

project—the areas of a busi-

ness that a project may

(or may not) address.

 statement of work a nar-

rative description of the work

to be performed as part of a

project. Common synonyms

include scope statement,

project defi nition, project

overview, and document of

understanding.

 work breakdown struc-
ture (WBS) a graphical tool

used to depict the hierar-

chical decomposition of a

project into phases, activities,

and tasks.

90 Part One The Context of Systems Development Projects

 Work breakdown structures can be drawn using top-down hierarchy charts sim-
ilar to organization charts (Figure 3-6). In Microsoft Project, a WBS is depicted using
a simple outline style, indentation of activities and tasks on the Gantt chart “view” of
the project. Microsoft Project also offers a military numbering scheme to represent
hierarchical decomposition of a project as follows:

 1. Phase 1 of the project
 1.1 Activity 1 of Phase 1
 1.1.1 Task 1 of Activity 1 in Phase 1
 1.1.2 Task 2 of Activity 1 in Phase 1
 1.2 Activity 2 of Phase 1 …
 2. Phase 2 of the project …

 If you reexamine Figure 3-3 (a), you will notice that Microsoft Project provides a col-
umn for the WBS in the Gantt chart. Also notice its use of the indentation and num-
bering to differentiate between tasks and subtasks.

STATEMENT OF WORK

I. Purpose

II. Background

 A. Problem, opportunity, or directive statement

 B. History leading to project request

 C. Project goal and objectives

 D. Product description

III. Scope
 (notice the use of the information system building blocks)

 A. Stakeholders

 B. Knowledge

 C. Processes

 D. Communications

IV. Project Approach

 A. Route

 B. Deliverables

V. Managerial Approach

 A. Team-building considerations

 B. Manager and experience

 C. Training requirements

 D. Meeting schedules

 E. Reporting methods and frequency

 F. Conflict management

 G. Scope management

VI. Constraints

 A. Start date

 B. Deadlines

 C. Budget

 D. Technology

VII. Ballpark Estimates

 A. Schedule

 B. Budget

VIII. Conditions of Satisfaction

 A. Success criteria

 B. Assumptions

 C. Risks

IX. Appendixes

 F I G U R E 3 - 5

An Outline for a
Statement of Work

Project Management Chapter Three 91

 We may want to include in a WBS special tasks called milestones . These are
events that signify the accomplishment or completion of major deliverables during
a project. In information systems projects, an example of a milestone might be the
completion of all the tasks associated with producing a major project deliverable
such as a requirements statement (see Chapter 2). It might be useful to distinguish
milestones from other tasks in a WBS by using special formatting, such as italics.

 > Activity 3—Estimate Task Durations

 Given a work breakdown structure with a suitable level of detail, the project manager
must estimate duration for each task. Duration of any task is a random variable subject
to factors such as the size of the team, number of users, availability of users, aptitudes
of users, complexity of the business system, information technology architecture,
experience of team personnel, time committed to other projects, and experience
with other projects.

 Most system development methodologies not only defi ne tasks but also provide
baseline estimates for task duration. The project manager must adjust these baselines
into reasonable estimates for each unique project.

 In Microsoft Project, all phases, activities, and tasks of a methodology are simply
called tasks. The work breakdown structure then consists of both summary and primi-
tive tasks. A summary task is one that consists of other tasks (such as phases and activ-
ities). A primitive task is one that does not consist of any other tasks. It is the primitive
tasks for which the project manager must estimate duration. (Like most project man-
agement software, Microsoft Project will automatically calculate the duration of all
summary tasks based on the estimated durations of their component primitive tasks.)

PROJECT

GOAL

0

PHASE

2

PHASE

3

PHASE

1

ACTIVITY

2.2

ACTIVITY

2.1

ACTIVITY

2.3

TASK

2.2.2

TASK

2.2.1

TASK

2.2.3

 F I G U R E 3 - 6

A Graphical Work
Breakdown
Structure

 milestone an event sig-

nifying the completion of a

major project deliverable.

92 Part One The Context of Systems Development Projects

 For those primitive tasks that are not milestones, we must estimate duration.
In estimating task duration, it is important to understand the concept of elapsed

time. Elapsed time takes into consideration two important factors with respect to
people:

• Effi ciency —No worker performs at 100 percent effi ciency. Most people take
coffee breaks, lunch breaks, restroom breaks, and time to read their e-mail,
check their calendars, participate in nonproject work, and even engage in idle
conversation. Experts differ on just how productive the average worker is, but
one commonly used fi gure is 75 percent.

• Interruptions —People experience phone calls, visitors, and other unplanned
interruptions that increase the time required for project work. This is variable
for different workers. Interruptions can consume as little as 10 percent of a
worker’s day or as much as 50 percent.

 Why is this important? Given a task that could be completed in 10 hours with 100 per-
cent effi ciency and no interruptions, and assuming a worker effi ciency of 75 percent
and 15 percent interruptions, the true estimate for the task would be

10 hours 0.75 effi ciency 13.3 hours (1.00 0.15 interruptions)

 15.7 hours

 There are many techniques for estimating task duration. For the sake of demon-
stration, we offer the following classic technique:

 1. Estimate the minimum amount of time it would take to perform the task.
We’ll call this the optimistic duration (OD) . The optimistic duration assumes
that even the most likely interruptions or delays, such as occasional employee
illnesses, will not happen.

 2. Estimate the maximum amount of time it would take to perform the task.
We’ll call this the pessimistic duration (PD) . The pessimistic duration assumes
that nearly anything that can go wrong will go wrong. All possible interruptions
or delays, such as labor strikes, illnesses, inaccurate specifi cation of requirements,
equipment delivery delays, and underestimation of the system’s complexity, are
assumed to be inevitable.

 3. Estimate the expected duration (ED) that will be needed to perform the task.

Don’t just take the median of the optimistic and pessimistic durations. Attempt to
identify interruptions or delays that are most likely to occur, such as occasional
employee illnesses, inexperienced personnel, and occasional training .

 4. Calculate the most likely duration (D) , as follows:

D
 (1 OD) (4 ED) (1 PD)

 6

 where 1, 4, and 1 are default weights used to calculate a weighted average of the
three estimates.

 Developing OD, PD, and ED estimates can be tricky and require experience. Sev-
eral techniques are used in estimating. Three of the most common techniques are:

• Decomposition —a simple technique wherein a project is decomposed into
small, manageable pieces that can be estimated based on historical data of past
projects and similarly complex pieces.

• COCOMO (pronounced like “Kokomo”)—a model-based technique wherein
standard parameters based on prior projects are applied to the new project to
estimate duration of a project and its tasks.

• Function points —a model-based technique wherein the “end product” of a proj-
ect is measured based on number and complexity of inputs, outputs, fi les, and
queries. The number of function points is then compared to projects that had a
similar number of function points to estimate duration.

 optimistic duration (OD)
 the estimated minimum

amount of time needed to

complete a task.

 pessimistic duration
(PD) the estimated max-

imum amount of time needed

to complete a task.

 expected duration (ED)
 the estimated amount of time

required to complete a task.

 most likely duration (D)
 an estimated amount of time

required to complete a task,

based on a weighted average

of optimistic, pessimistic, and

expected durations.

Project Management Chapter Three 93

 Milestones (as defi ned in the previous subsection) have no duration. They simply
happen. In Microsoft Project, milestones are designated by setting the duration to
 zero. (In the Gantt chart, those zero-duration tasks change from bars to diamonds.)

 > Activity 4—Specify Intertask Dependencies

 Given the duration estimates for all tasks, we can now begin to develop a project
schedule. The project schedule depends not only on task durations but also on intertask
dependencies. In other words, the start or completion of individual tasks may depend on
the start or completion of other tasks. There are four types of intertask dependencies:

• Finish-to-start (FS) —The fi nish of one task triggers the start of another task.
• Start-to-start (SS) —The start of one task triggers the start of another task.
• Finish-to-fi nish (FF) —Two tasks must fi nish at the same time.
• Start-to-fi nish (SF) —The start of one task signifi es the fi nish of another task.

 Intertask dependencies can be established and depicted in both Gantt and PERT
charts. Figure 3-7 illustrates how to enter intertask dependencies in the Gantt chart
view in Microsoft Project. We call your attention to the following annotated bullets:

1 Intertask dependencies may be entered in the Gantt chart view in the Predece-

ssors column by entering the dependent tasks’ row numbers. Note that a task
can have zero, one, or many predecessors.

 2 Intertask dependencies may also be entered (or modifi ed) by opening the Task

Information dialogue box for a given task.
3 The type of dependency can be entered in the Task Information dialogue box

for any given dependent task.
 4 Intertask dependencies are graphically illustrated in the Gantt chart as arrows

between the bars that represent each task. Arrows may begin or terminate on
the left side (to indicate a “start” dependency) or right side (to indicate a “fi nish”
dependency).

 F I G U R E 3 - 7 Entering Intertask Dependencies in Microsoft Project

94 Part One The Context of Systems Development Projects

 Milestones (as defi ned earlier) almost always have several predecessors to signify
those tasks that must be completed before the milestone has been achieved.

 Given the start date for a project, the tasks to be completed, the task durations,
and the intertask dependencies, the project can now be scheduled. There are two
approaches to scheduling:

• Forward scheduling establishes a project start date and then schedules
forward from that date. Based on the planned duration of required tasks, their
interdependencies, and the allocation of resources to complete those tasks, a
projected project completion date is calculated.

• Reverse scheduling establishes a project deadline and then schedules back-
ward from that date. Tasks, their duration, interdependencies, and resources must
be considered to ensure that the project can be completed by the deadline.

 Each task can be given its own start and fi nish dates. Like most project manage-
ment tools, Microsoft Project actually builds the schedule for you as you enter the
task durations and intertask dependencies (predecessors). On the Gantt chart, the
task bars are expanded to refl ect duration and shifted left and right to refl ect start and
end dates. Microsoft Project can also produce a traditional calendar view of the fi nal
schedule, as shown in Figure 3-8 .

 > Activity 5—Assign Resources

 The previous steps resulted in “a” schedule, but not “the” schedule! We have
yet to consider the allocation of resources to the project. Resources include the

 forward scheduling a

project scheduling approach

that establishes a project

start date and then schedules

forward from that date.

 reverse scheduling a

project scheduling strategy

that establishes a project

deadline and then schedules

backward from that date.

 F I G U R E 3 - 8 The Project Schedule in Calendar View

Project Management Chapter Three 95

 following categories:

• People —includes all the system owners, users, analysts, designers, builders,
external agents, and clerical help that will be involved in the project in any way.

• Services —includes services such as a quality review that may be charged on a
per-use basis.

• Facilities and equipment —includes all rooms and technology that will be
needed to complete the project.

• Supplies and materials —includes everything from pencils, paper, and note-
books to toner cartridges, and so on.

• Money —includes a translation of all of the above into budgeted dollars!

 Most system development methodologies identify people resources required for
each task in the form of roles. A role is not the same as a job title. Think of a role as a “hat”
that someone wears because he or she possesses a certain skill(s). Any given individual
may be capable of wearing many hats (thus playing many roles). Also, many people may
possess the skills required to play a given role. The project manager’s task is either to
assign specifi c people to fi ll roles or to gain commitments from management to provide
people to fi ll roles. Representative roles from our methodology are listed in the margin.

 In Microsoft Project, roles and assignments are specifi ed in the Resource Sheet
view, as shown in Figure 3-9 (a). Predefi ned roles and resources may be available in
the chosen methodology and route templates.

1 The project manager enters the names or titles of people (roles) in the Resource

Name column. Resources may also include specifi c services, facilities, equip-
ment, supplies, materials, and so forth.

 2 Notice that the Resource Sheet provides a column for establishing what per-
centage of a resource will be allocated to the project. For example, a database
administrator might be allocated one-quarter time (25 percent) to a project.
Allocations greater than 100 percent indicate a need for more than one person
to fi ll a given role in the project. By setting Max. Units to 250 percent for that
resource, there would be a need for the equivalent of 2½ full-time programmers.

3 Project also allows the project manager to estimate the cost of each resource.
These costs can be estimated based on company history, consulting contracts, or
internal cost accounting standards. Notice that both standard and overtime costs
can be estimated. These costs are usually based on standards to protect informa-
tion about anyone’s actual salary.

4 Each resource has a calendar that considers the standard workweek and
holidays, as well as individual vacations and other commitments.

 Given the resources, they now can be specifi cally assigned to tasks, as shown
in Figure 3-9 (b). As resources are assigned to the tasks, the project manager would
specify the units of that resource that will be required to complete each assigned task.
(This may be a percentage of a person’s time needed for that task.)

 As these resources are formally assigned, the schedule will be adjusted (which
happens automatically in tools such as Project). If you enter the cost of resources,
tools such as Microsoft Project will automatically calculate and maintain a budget
based on the resources and schedule. Assigning People to Tasks Recruiting the right team members can make or break
a project. The following are guidelines for selecting and recruiting the team:

• Recruit talented, highly motivated people. Highly skilled and motivated team
members are more likely to overcome project obstacles unaided and are more
likely to meet project deadlines and produce quality work.

• Select the best task for each person. All workers have strengths and weaknesses.
Effective project managers learn to exploit the strengths of team members and
avoid assigning tasks to team members not skilled in those areas.

 REPRESENTATIVE
ROLES IN A PROJECT

 Auditor

 Business Analyst

 Business Subject Matter

 Expert

 Database Administrator

 Executive Sponsor

 Information Systems

 Manager

 JAD Facilitator

 JAD Scribe

 Management Sponsor

 Network Administrator

 Programmer

 Project Manager

 System Modeler

96 Part One The Context of Systems Development Projects

 F I G U R E 3 - 9 Defi ning and Assigning Project Resources

(a)

(b)

Project Management Chapter Three 97

• Promote team harmony. Project managers should select team members who
will work well together.

 • Plan for the future. Junior personnel with potential to be mentored by project
leaders must be considered. Although junior personnel might not be as produc-
tive as the seasoned veterans, project managers will need them and have to rely
on them on future projects.

• Keep the team size small. By limiting the team size, communication overhead
and diffi culties will be reduced. A 2-person team has only 1 communication
path; a 4-person team has 6 communication paths; and a 50-person team has at
least 1,200 communication paths. The more communication paths there are, the
greater the probability that there will be increased communication problems. By
the same token the teams should be large enough to provide adequate backup
and coverage in key skills if a team member is lost.

 Resource Leveling So far, we have identifi ed tasks, task durations, and intertask
dependencies and assigned resources to each task to produce the project schedule. It
is common to overallocate resources when assigning resources to tasks. Overallocate

refers to the act of assigning more resources than are available.
 For example, during a specifi c period in the project (day, week, etc.), a project

manager may have assigned a specifi c person to work on multiple tasks that add up
to more hours than the person has available to work during that period. This renders
the overall schedule infeasible because the overallocated resource cannot reasonably
complete all assigned tasks according to schedule. To correct this problem, project
managers must use a technique called resource leveling. Resource leveling is a
strategy used to correct resource overallocations by some combination of delaying or
splitting tasks. Let’s briefl y explain both approaches.

 Delaying tasks is based on the concepts of critical path and slack time. When it
comes to the project schedule, some tasks are more sensitive to schedule delays than
others. For this reason, project managers must become aware of the critical path for a
project. The critical path for a project is the sequence of dependent tasks that have
the largest sum of most likely durations. The critical path determines the earliest pos-
sible completion date of the project. (We previously described how to estimate most

likely duration for a task.) The critical path tasks have no slack time available—thus,
any delay in completion of any of the tasks on the critical path will cause an overall
delay in the completion of the entire project. The opposite of a critical task is one that
has some slack time. The slack time available for any noncritical task is the amount
of delay that can be tolerated between the starting time and the completion time of a
task without causing a delay in the completion date of the entire project. Tasks that
have slack time can get behind schedule by an amount less than or equal to the slack
time without having any impact on the project’s fi nal completion date. The avail-
ability of slack time in certain tasks provides an opportunity to delay the start of the
tasks to level resources while not affecting the project completion date. Of course, it
may be necessary to delay a critical path task to level resources, unless you can split
the task.

 Splitting tasks involves breaking a task into multiple tasks to assign alternate
resources to the tasks. Thus, a single task for which a resource was overallocated is
now apportioned to two or more resources that are (presumably) not overallocated.
Splitting tasks requires identifying and assigning new resources such as analysts, con-
tractors, or consultants.

 Resource leveling will be an ongoing activity because the schedule and resource
assignments are likely to change over the course of a project.

 Schedule and Budget Given a schedule based on leveled resources and given the
cost of each resource (e.g., cost per hour of a systems analyst or database adminis-
trator) the project manager can produce a printed (or Web-based) document that
communicates the project plan to all concerned parties. Project management tools

 resource leveling a

strategy for correcting re-

source overallocations.

 critical path the sequence

of dependent tasks that deter-

mines the earliest completion

date for a project.

 slack time the amount of

delay that can be tolerated

between the starting time and

the completion time of a task

without causing a delay in the

completion date of a project.

98 Part One The Context of Systems Development Projects

will provide multiple views of a project such as calendars, Gantt chart, PERT chart,
resource and resource leveling reports, and budget reports. All that remains is to di-
rect resources to the completion of project tasks and deliverables.

 Communication The statement of work, timetable for major deliverables, and
overall project schedule should be communicated to all parties involved in the
project. This communication must also include a plan for reporting progress, both
orally and in writing, the frequency of such communications, and a contact person
and method for parties to submit feedback and suggestions. A corporate intranet can
be an effective way to keep everyone informed of project progress and issues. > Activity 6—Direct the Team Effort

 All the preceding project management activities led to a master plan for the project.
It’s now time to execute that plan. There are several dimensions to directing the team
effort. Tom Demarco states in his book The Deadline: A Novel about Project Man-

agement that the hardest job in management is people.
 Few new project managers are skilled at supervising people. Most learn supervi-

sion through their own experiences as subordinates—things they liked and disliked
about those who supervised them. This topic could easily take up an entire chapter.
In the margin checklist, we provide a classic list of project supervision recommenda-
tions from The People Side of Systems, by Keith London.

 As noted by Graham McLeod and Derek Smith, “Individuals brought together in a
systems development team do not form a close-knit unit immediately.” McLeod and Smith
explain that teams go through stages of team development, as shown in Figure 3-10 .

 10 HINTS
FOR PROJECT
LEADERSHIP

 Be Consistent.

 Provide Support.

 Don’t Make Promises You
Can’t Keep.

 Praise in Public; Criticize
in Private.

 Be Aware of Morale Danger
Points.

 Set Realistic Deadlines.

 Set Perceivable Targets.

 Explain and Show, Rather
Than Do.

 Don’t Rely Just on Status
Reports.

 Encourage a Good Team
Spirit.

Establish structure and rules•
Clarify team member relationships
Identify responsibilities
Develop a plan to achieve goals

•
•
•

•
•
•
•

•
•
•

ORIENTATION STAGE

Resolve interpersonal conflict
Further clarify rules and goals
Develop a participative climate

INTERNAL PROBLEM-SOLVING STAGE

Direct team activity toward goals

•
•
•
•

Provide and get feedback
Share ideas—growing cohesion
Individuals feel good about each other

GROWTH AND PRODUCTIVITY STAGE

More feedback and evaluation
Adherence to team norms
Roles of team strengthened
Strong team motivation to share goals

EVALUATION AND CONTROL STAGE

FORMING

STORMING

NORMING

PERFORMING

 F I G U R E 3 - 1 0

Stages of Team
Maturity
 Source: Adapted from Graham

McLeod and Derek Smith,

 Managing Information Technol-

ogy Projects (Cambridge, MA:

Course Technology, 1996).

Project Management Chapter Three 99

 In The One Minute Manager, by Kenneth Blanchard and Spencer Johnson, a
classic and indispensable aid to anyone managing people for the fi rst time, the au-
thors share the simple secrets of managing people and achieving success through the
actions of subordinates. > Activity 7—Monitor and Control Progress

 While executing the project, the project manager must control the project, that is,
monitor its progress against the scope, schedule, and budget. The manager must re-
port progress and, when necessary, adjust scope, schedule, and resources. Progress Reporting Progress reporting should be frequent enough to establish ac-
countability and control, but not so frequent as to become a burden and impediment
to real project progress. For example, Keane, Inc., a consulting fi rm, recommends
that progress reports or meetings occur every two weeks—consistent with the fi rm’s
project-planning strategy that decomposes projects into tasks that produce deliver-
ables that require no more than 80 work hours.

 Project progress reports can be verbal or written. Figure 3-11 illustrates a tem-
plate for a written progress report. Project progress reports (or presentations) should

PROJECT PROGRESS REPORT

I. Cover page

 A. Project name or identification

 B. Project manager

 C. Date of report

II. Summary of progress

 A. Schedule analysis

 B. Budget analysis

 C. Scope analysis (describe any changes that may have an impact on future progress) D. Process analysis (describe any problems encountered with strategy or methodology)

 E. Gantt progress chart(s)

III. Activity analysis

 A. Tasks completed since last report

 B. Current tasks and deliverables

 C. Short-term future tasks and deliverables

IV. Previous problems and issues

 A. Action item and status

 B. New or revised action items

 1. Recommendation

 2. Assignment of responsibility

 3. Deadline

V. New problems and issues

 A. Problems (actual or anticipated) B. Issues (actual or anticipated)

 C. Possible solutions

 1. Recommendation

 2. Assignment of responsibility

 3. Deadline

VI. Attachments (include relevant printouts from project management software)

 F I G U R E 3 - 1 1

Outline for a
Progress Report

100 Part One The Context of Systems Development Projects

be honest and accurate, even if the news is less than good. Project progress reports
should report successes but should clearly identify problems and concerns such that
they can be addressed before they escalate unto major issues or catastrophes.

 As tasks are completed, progress can be recorded in Microsoft Project (see
 Figure 3-12). We call your attention to the following Gantt progress items:

1 All the tasks in the preliminary investigation phase are complete as indicated
by the yellow lines that run the full length of each task bar. Notice that because
all these tasks are complete, they are no longer critical—the bars have changed
from red to blue.

2 In the problem analysis phase, only the fi rst task, “Analyze the current system,” is
100 percent complete.

3 Notice that the “Establish system improvement objectives” task bar has a partial
yellow line running 60 percent of its length. This indicates the task is about
60 percent complete. The task bar is still red because any delay in completing
the task will threaten the project completion date.

4 All remaining tasks shown in the displayed chart have not been started. Actual
progress will be recorded when the task is started, in process, or completed.

5 Progress for any given task is recorded in the task information dialogue box
for that task. In this example, the project manager is recording 10 percent
completion of the named task.

 Microsoft Project also provides a number of preconfi gured and customizable reports
that can present useful project status information.

 Change Management It is not uncommon for scope to grow out of control even
when a properly completed statement of work was agreed on early in the planning

 F I G U R E 3 - 1 2 Progress Reporting on a Gantt Chart

Project Management Chapter Three 101

process. We refer to scope growth as “change.” As noted by Keane, Inc., “Change is
frequently a point of contention between the customer and the information systems
organization, because they disagree on whether a particular function is a change or a
part of the initial agreement.” The inevitability of scope change necessitates that we
have a formal strategy and process to deal with change and its impact on schedule
and budget. Change management is intended to protect the project manager and
team from being held accountable for schedule and budget overruns that were driven
by changes in scope.

 A change management system results in a collection of procedures for docu-
menting a change request and defi nes the steps necessary to consider the change
based on the expected impact of the change. Most change management systems re-
quire that a change request form be initiated by one or more project stakeholders
(e.g., system owners, users, analysts, designers, or builders). Ideally, change requests
are considered by a change control board (CCB), which is responsible for approving
or rejecting all change requests. The CCB’s composition typically includes members
of the project team as well as outsiders who may have an interest or stake in the
project. The CCB’s decision should be based on impact analysis.

 Feasibility impact analysis should assess the importance of the change to the busi-
ness, the impact of the change on the project schedule, and the impact of the change
on the project budget and long-term operating costs.

 Ultimately, change management boils down to managing the expectations of the
stakeholders. In the next section, we introduce a simple but conceptually sound frame-
work for managing expectations and their impact on project schedule and budget.

 Expectations Management Experienced project managers often complain that
managing system owners’ and users’ expectations of a project is more diffi cult than
managing cost, schedule, people, or quality. In this section we introduce a simple
tool that we’ll call an expectations management matrix that can help project man-
agers deal with this problem.

 Every project has goals and constraints when it comes to cost, schedule, scope,
and quality. In an ideal world, each of these parameters could be optimized. Manage-
ment often has that expectation. Reality suggests, however, that you can’t optimize
them all—you must strike a balance that is both feasible and acceptable to manage-
ment. That is the purpose of the expectations management matrix. An expectations

management matrix is a rule-driven tool for helping management understand the
dynamics and impact of changing project parameters such as cost, schedule, scope,
and quality.

 The basic matrix, shown in Figure 3-13 , consists of three rows and three columns
(plus headings). The rows correspond to the measures of success in any project: cost,

 change management a

formal strategy wherein a

process is established to

facilitate changes that o ccur

during a project.

 expectations manage-
ment matrix a tool used

to understand the dynamics

and impact of changing the

parameters of a project.

PRIORITIES

 MEASURES OF SUCCESS

Max or Min Constrain Accept

Cost

Schedule

Scope and/or Quality

 F I G U R E 3 - 1 3

A Management
Expectations Matrix

102 Part One The Context of Systems Development Projects

schedule, and scope and/or quality. The columns correspond to priorities: fi rst, second,
and third. To establish expectations, we assign names to the priorities as follows:

• Maximize or minimize —the measure of success that is determined to be the
most important for a given project.

• Constrain —the second most important of the three measures of success in a
project.

• Accept —the least important of the three measures in a project.

 Most managers would, ideally, like to give equal priority to all three measures;
experience suggests that the three measures tend to balance themselves naturally.
For example, if you increase scope or quality requirements, the project will take more
time and/or money. If you try to get any job done faster, you generally have to reduce
scope or quality requirements or pay more money to compensate. The management
expectations matrix helps (or forces) management to understand this through three
simple rules:

 1 . For any project, you must record three Xs within the nine available cells.
 2 . No row may contain more than one X. In other words, a single measure of suc-

cess must have one and only one priority.
 3. No column may contain more than one X. In other words, there must be a fi rst,

second, and third priority.

 Let’s illustrate the tool using an example. In 1961 President John F. Kennedy estab-
lished a major project—land a man on the moon and return him safely before the end
of the decade. Figure 3-14 shows the realistic expectations of the project. Let’s walk
through the example:

 1 . The system owner (the public) had both scope and quality expectations. The scope
(or requirement) was to successfully land a man on the moon. The quality measure
was to return the man (or men) safely. Because the public would expect no less from
the new space program, this had to be made the fi rst priority. In other words, we had
to maximize safety and minimize risk as a fi rst priority. Hence, we record the X in
column 1, row 3.

 2 . At the time of the project’s inception, the Soviet Union was ahead in the race to
space. This was a matter of national pride; therefore, the second priority was to get
the job done by the end of the decade. We call this the project constraint—there
is no need to rush the deadline, but we don’t want to miss the deadline. Thus, we
record the second X in column 2, row 2.

x

x

x

Max or Min Constrain Accept

Cost

• $20 billion (estimated)

Schedule

• Dec 31, 1969 (deadline)

Scope and/or Quality

• Land a man on the moon

• Get him back safely

PRIORITIES

 MEASURES OF SUCCESS

 F I G U R E 3 - 1 4

Management of
Expectations for
the Lunar Landing
Project

Project Management Chapter Three 103

 3 . By default, the third priority had to be cost (estimated at $20 billion in 1961). By
making cost the third priority, we are not stating that cost will not be controlled.
We are merely stating that we may have to accept cost overruns to achieve the
scope and quality requirement by the constrained deadline. We record the third X in
column 3, row 1.

 History records that we achieved the scope and quality requirement, and did so
in 1969. The project actually cost well in excess of $30 billion, more than a 50 per-
cent cost overrun. Did that make the project a failure? On the contrary, most people
perceived the project as a grand success. The government managed the public’s ex-
pectations of the project in realizing that maximum safety and minimum risk, plus
meeting the deadline (beating the Soviets), was an acceptable trade-off for the cost
overrun. The government brilliantly managed public opinion. Systems development
project managers can learn a valuable lesson from this balancing act.

 At the beginning of any project, the project manager should consider introducing
the system owner to the expectations matrix concept and should work with the
system owner to complete the matrix. For most projects, it would be diffi cult to
record all the scope and quality requirements in the matrix. Instead, they would be
listed in the statement of work. The estimated costs and deadlines could be recorded
directly in the matrix.

 Let’s assume the management expectations matrix that conforms to the afore-
mentioned rules. How does this help a project manager manage expectations? During
the course of the average systems development project, priorities are not stable. Var-
ious factors such as the economy, government, and company politics can change the
priorities. Budgets may become more or less constrained. Deadlines may become
more or less important. Quality may become more important. And, most frequently,
requirements increase. As already noted, these changing factors affect all the mea-
sures in some way. The trick is to manage expectations despite the ever-changing
project parameters.

 The technique is relatively straightforward. Whenever the “max/min measure”
or the “constrain measure” begins to slip, it can result in a potential management ex-
pectations problem. For example, consider a project manager who is faced with the
following priorities (see Figure 3-15):

 1. Explicit requirements and quality expectations were established at the start of a
project and given the highest priority.

 2. An absolute maximum budget was established for the project.
 3. The project manager agreed to shoot for the desired deadline, but the system

owner(s) accepted the reality that if something must slip, it should be schedule.

Max or Min Constrain Accept

Cost x

Schedule x

Scope and/or Quality x

PRIORITIES

 MEASURES OF SUCCESS

 F I G U R E 3 - 1 5

A Typical Initial
Expectations Matrix

104 Part One The Context of Systems Development Projects

 Now suppose that during systems analysis, signifi cant and unanticipated business prob-
lems are identifi ed. The analysis of these problems has placed the project behind schedule.
Furthermore, solving the new business problems substantially expands the user require-
ments for the new system. How does the project manager react? There should be no
overreaction to the schedule slippage—schedule slippage was the “accept” priority in
the matrix. The scope increase (in the form of several new requirements) is the more sig-
nifi cant problem because the added requirements will increase the cost of the project.
Cost is the constrained measure of success. As it stands, an expectations problem exists.
The project manager needs to review the matrix with the system owner.

 First, the system owner needs to be made aware of which measure or measures
are in jeopardy and why. Then together, the project manager and system owner can
discuss courses of action. Several courses of action are possible:

• The resources (cost and/or schedule) can be reallocated. Perhaps the system
owner can fi nd more money somewhere. All priorities would remain the same
(noting, of course, the revised deadline based on schedule slippages already
encountered during systems analysis).

• The budget might be increased, but it would be offset by additional planned
schedule slippages. For instance, by extending the project into a new fi scal year,
additional money might be allocated without taking any money from existing
projects or uses. This solution is shown in Figure 3-16 .

• The user requirements (or quality) might be reduced through prioritizing those
requirements and deferring some of those requirements until version 2 of the
system. This alternative would be appropriate if the budget cannot be increased.

• Finally, measurement priorities can be changed.

 Only the system owner may initiate priority changes. For example, the system
owner may agree that the expanded requirements are worth the additional cost. He or
she may allocate suffi cient funds to cover the requirements but may migrate priorities
such that minimizing cost now becomes the highest priority (see Figure 3-17 , step 1).
But now the matrix violates a rule—there are two Xs in column 1. To compensate,
we must migrate the scope and/or quality criterion to another column, in this case,

Max or Min Constrain Accept

Cost

Adjusted budget

X+

Increase
budget

Schedule

Adjusted deadline

X-

Extend
deadline

Scope and/or Quality

Adjusted scope

X+

Accept
expanded

requirements

•

•

•

PRIORITIES

 MEASURES OF SUCCESS

 F I G U R E 3 - 1 6

Adjusting
Expectations
(a sample)

Project Management Chapter Three 105

the constrain column (see Figure 3-17 , step 2). Expectations have been adjusted.
In effect, the system owner is freezing growth of requirements and still accepting
schedule slippage.

 There are three fi nal comments about priority changes. First, priorities may
change more than once during a project. Expectations can be managed through any
number of changes as long as the matrix is balanced (meaning it conforms to our
rules). Second, expectation management can be achieved through any combination
of priority changes and resource adjustments. Finally, system owners can initiate pri-
ority changes even if the project is on schedule. For example, government regula-
tion might force an uncompromising deadline on an existing project. That would
suddenly migrate our “accept” schedule slippages to “max constraint.” The other Xs
would have to be migrated to rebalance the matrix.

 While the management expectations matrix is a simple tool, it may be one of the
most effective.

 Schedule Adjustments—Critical Path Analysis When it comes to the project
schedule, some tasks are more sensitive to schedule delays than others. For this
reason, project managers must become aware of the critical path and slack times for
a project.

 Understanding the critical path and slack time in a project is indispensable to
the project manager. Knowledge of such project factors infl uences the people man-
agement decisions to be made by the project manager. Emphasis can and should be
placed on the critical path tasks, and if necessary, resources might be temporarily
diverted from tasks with slack time to help get critical tasks back on schedule.

 The critical path and slack time for a project can be depicted on both Gantt and
PERT charts; however, PERT charts are generally preferred because they more clearly
depict intertask dependencies that defi ne the critical path. Most project management
software, including Microsoft Project, automatically calculates and highlights the
critical path based on intertask dependencies combined with durations. It is useful,
however, to understand how the critical path and slack times are calculated.

 Consider the following hypothetical example. A project consists of the nine
primitive tasks shown in Figure 3-18 . The most likely duration (in days) for each task
is recorded. There are four distinct sequences of tasks in a project. They are:

 Path 1: A → B → C → D → I
 Path 2: A → B → C → E → I
 Path 3: A → B → C → F → G → I
 Path 4: A → B → C → F → H → I

Max or Min Constrain Accept

Cost x x

Schedule x

Scope and/or Quality x x

Step 1

Step 2

PRIORITIES

 MEASURES OF SUCCESS

 F I G U R E 3 - 1 7

Changing Priorities

 F
I
G

U
R

E

3

-
1

8

 C
ri

ti
ca

l
P

at
h

 A
n

al
y

si
s

106

Project Management Chapter Three 107

 The total of most likely duration times for each path is calculated as follows:

 Path 1: 3 2 2 7 5 19
 Path 2: 3 2 2 6 5 18
 Path 3: 3 2 2 3 2 5 17
 Path 4: 3 2 2 3 1 5 16

 In this example, path 1 is the critical path at 19 days. (Note: You can have mul-
tiple critical paths if they have the same total duration.)

 In this example, tasks E, F, and G are not on the critical path; they each have
some slack time. For example, task E is included in a path that has one day less
duration than the critical path; therefore, task E can get behind by as much as
one day without adversely affecting the project completion date. Similarly, tasks F
and G can combine for a maximum slack of two days without delaying the entire
schedule.

 In Figure 3-18 , the critical path is shown in red. The tasks that have slack capacity
are shown in black. Similarly, project management software also uses color to differ-
entiate critical path tasks in a Gantt or PERT chart. > Activity 8—Assess Project Results and Experiences

 Project managers must learn from their mistakes! They should embrace continuous
process improvement. This fi nal activity involves soliciting feedback from project
team members (including customers) concerning their project experiences and sug-
gestions aimed at improving the project and process management of the organiza-
tion. Project review(s) should be conducted to answer the following fundamental
questions:

• Did the fi nal product meet or exceed user expectations?
• Did the project come in on schedule?
• Did the project come in under budget?

 The answers to these questions should be followed up with the basic question
“Why or why not?” Subsequently, and based on the responses to the above questions,
changes should be made to improve the system development and project manage-
ment methods that will be used on future projects. Suggestions for improvements
are communicated to “Centers for Excellence,” which can modify standards and pro-
cesses, as well as share useful ideas and experiences with other project teams that
may solicit their help or expertise. Project assessments often contribute improve-
ments to specifi c project deliverables (milestones), processes or tasks that created
the deliverables, and the overall management of the project.

 1 . A project is a (temporary) sequence of unique,
complex, and connected activities that have one
goal or purpose and that must be completed by
a specifi c time, within budget, and according to
specifi cation.

 2 . Project management is the process of scoping,
planning, staffi ng, organizing, directing, and
controlling the development of an acceptable
system at a minimum cost within a specifi ed time
frame.

 3 . Process management is an ongoing activity that
documents, manages the use of, and improves an
organization’s chosen methodology (the “process”)
for systems development.

 4 . From a project management perspective, a project
is considered a success if the resulting information
system is acceptable to the customer, the system
is delivered “on time” and “within budget,” and the
system development process had a minimal impact
on ongoing business operations.

Summary

108 Part One The Context of Systems Development Projects

 5 . The Project Management Institute has created the
Project Management Body of Knowledge (PMBOK)
for the education and certifi cation of professional
project managers. It addresses:

a. Project manager competencies.
b. Project management functions
c. Tools and techniques such as:

 i) PERT charts, graphical network models
that depict a project’s tasks, and the
relationships between those tasks.

 ii) Gantt charts, simple horizontal bar charts
that depict project tasks against a calendar.

 d. Project management software.

 6 . Project management is a cross life-cycle activity;
that is, project management tasks overlap all
the system development phases. A project
management process is essential to achieving CMM
Level 2 maturity.

 7. Joint project planning (JPP) is a strategy wherein
all stakeholders in a project participate in a one-
to three-day project management workshop, the
result of which is consensus agreement on project
scope, schedule, resources, and budget.

 8 . The tasks of project management include:

 a. Negotiate scope. Scope defi nes the boundaries
of a project and is included in the statement of
work, a narrative description of the work to be
performed as part of a project.

 b. Identify tasks. A work breakdown structure
(WBS) is a hierarchical decomposition of the
project into its tasks and subtasks. Some tasks
represent the completion of milestones or
the completion of major deliverables during a
project.

 c. Estimate task durations. There are many
techniques and tools for estimating task
durations.

 d. Specify intertask dependencies. The start
or completion of individual tasks may be
dependent on the start or completion of
other tasks. These dependencies impact the
completion of any project.

e. Assign resources. The following resources may
impact a project schedule: people, services,
facilities and equipment, supplies and materials,
and money.

 i) Such resources must be assigned to tasks
to develop a schedule.

 ii) Resource leveling is a strategy used to
correct resource overallocations by some
combination of delaying or splitting tasks.
Resource leveling requires knowledge of:

 (1) The critical path—that sequence of de-
pendent tasks that has the largest sum
of most likely durations. The critical
path determines the earliest possible
completion date of the project.

 (2) Slack time—the amount of delay that
can be tolerated between the starting
time and completion time of a task
without causing a delay in the comple-
tion date of the entire project.

 f. Direct the team effort. One of the most
important dimensions of directing the team
effort is the supervision of people.

g. Monitor and control progress. During the
project, the project manager must monitor
project progress against the scope, schedule,
and budget and, when necessary, make
adjustments to scope, schedule, and resources.

 i) Progress reporting is an essential control
process that uses communication to keep
a project within scope, on time, and within
budget.

 ii) A complete project plan provides
mechanisms and a process to manage
requests for changes to scope. This is called
change management.

 iii) Change management frequently requires
that a project manager manage the
expectations of management and users
themselves. An expectations management
matrix is a rule-driven tool for helping
management understand the dynamics and
impact of changing project parameters
such as cost, schedule, scope, and quality.

 iv) Schedule adjustments are required when
a project’s scope changes or when other
factors drive schedule or budget out of the
projected range.

 h. Assess project results and experiences. This
fi nal activity involves soliciting feedback from
project team members (including customers)
concerning their project experiences and
suggestions aimed at improving the project and
process management of the organization.

 1 . What is a project?
 2 . Of the many different reasons that projects fail,

what is the major cause of project failure?
 3 . What is the difference between scope creep and

feature creep?
 4 . What are the fi ve main categories of competencies

that a project manager should have?
 5 . Why are business achievement competencies

important?
 6 . What are the basic project management functions?
 7 . What are PERT and Gantt charts? How do we

decide which one to use?
 8 . What are the eight major activities in the project

management life cycle?

 9 . Why is negotiating scope important? What is the
deliverable in the process of negotiating the scope?

 10 . What is a popular tool used to identify tasks in
the project management life cycle?

 11 . What are the factors to consider in estimating
task durations?

 12 . What are the differences between forward
scheduling and reverse scheduling?

 13 . What are the categories of resources to be
allocated to the project?

 14 . What should project managers do to manage
changes that occur and/or are requested during a
project?

 15 . Why is critical path analysis important?

Review Questions
1

2

Project Management Chapter Three 109

 1 . Assume you are a systems analyst and a proud
member of a project team that has just completed
a major project that spanned several years and
that touched almost every business unit in your
organization. The project w as completed ahead
of schedule and well within budget. Development
and implementation went very smoothly with
virtually no disruption of business operations.
A postimplementation survey indicates that
system users have been able to use the system
with minimal training, although there have been
some comments from the more vocal users that it
wasn’t quite what they expected and doesn’t do
some of the things they thought it would. Should
the project be considered a success?

 2 . Executive management is concerned that some
users are less than satisfi ed with the new system
described in the preceding question and have
assigned you to lead a postimplementation work
group to determine the cause. Of the dozen
project mismanagement problems described in
the textbook, which ones do you think were most
likely to have contributed to user dissatisfaction?

 3 . As a newly appointed project manager, you are
eager to get started on your fi rst project. What
should your fi rst activity be? How important is
it? Who is typically involved? What questions do
you need to make sure are answered? What’s the
ultimate outcome from this activity, and what is
included in this deliverable?

 4 . You are the project manager of a medium-size
project that is scheduled to take 10 months from
project initiation on September 1st through

delivery on June 30th. It is now April 1st, seven
months since the project began, and the project
is slightly behind schedule, by perhaps a week.
Draw a Gantt chart (you may use the style shown
in Figure 3-2 or another Gantt chart style if you
prefer). Assume that project phases can overlap.

 5 . You are the project manager for a company
that is building a behavioral health system for
some of the counties in your state. The project is
slightly ahead of schedule and there haven’t been
any signifi cant problems to date. In reviewing
some of the screens under construction, you
are surprised to fi nd a number of features that
were not part of the design. The system builder
was one of your most talented and creative
programmers. When you ask about these features,
the builder proudly tells you that they add to the
functionality of the system without taking any
additional programming time, and that they were
intended to be a surprise. You can see that the
features defi nitely do add to the functionality of
the system. The code has already been written for
them—should you allow them to be included in
the system, even though they were not part of
the approved technical design?

 6 . The methodology used in your organization calls
for change requests to be considered by a change
control board (CCB). After some refl ection and a
discussion with the programmer, you have decided
to submit a change request to the CCB to add the
new features. In your presentation to the CCB, what
reason might you give for the change request, and
what things should you take into consideration?

Problems and Exercises

 7 . The CEO of your organization was so impressed
with your last project that you have been given
responsibility with a larger, even more important
project. The CEO calls you in for a discussion
regarding the importance of the project, and tells
you that the very survival of the organization may
hinge upon completing this project and rolling
out the new system to customers before a certain
date when a competitor is expected to complete
a similar project. The company can afford to
budget only up to a certain maximum, although if
other, less critical projects in progress are delayed,
there may be some additional funding available
if absolutely necessary. Finally, in order to be
a competitive product in the market, the new
system must contain at least a certain minimum
feature set, although more would be desirable,
and the quality must be of the highest level.
At the conclusion of this discussion, the CEO
shakes your hand and wishes you good luck. Use
the priorities set by the CEO to create an initial
management expectations matrix.

 8 . Now suppose that during the course of this
project, it becomes apparent that costs were
signifi cantly underestimated and the budget is
rapidly becoming depleted. In addition, the head
of marketing has picked up a trade magazine and
read that your organization’s main competitor
is adding some really exciting features to their
product without changing their release date.
The budget overage is not the major problem;
you know additional money can be allocated,
although it may delay other projects. But you also
know that your marketing stakeholders will be
demanding that similar features be added to the
system you are developing while keeping to the
original schedule. This presents an expectations
confl ict since scope is the constrained measure of
success. What should you do at this point?

 9 . Suppose the CEO decides that no matter what,
the new features absolutely must be added in
order for the new system to be competitive. What
issues does this raise, and how would this be
refl ected in the expectations matrix?

 10 . You are working on the schedule for the system
design phase and are trying to estimate the
duration of a complex design task. From breaking
this task down into smaller tasks similar to
ones that you’ve had experience with on other
projects, you estimate the task should normally
take an expected duration (ED) of three workdays,
given a typical 75 percent worker effi ciency rate
and 15 percent interruption factor. But you also
know of some instances where absolutely nothing
went right, and it took up to two full workweeks,

or a pessimistic duration (PD) of 80 hours, to
complete the design task. Using the classic
technique described in the textbook, calculate the
most likely duration of the task.

 11 . In the preceding question, what technique did
you use to estimate the expected duration of
the design task? Describe some of the other
techniques you could use to estimate task
duration.

 12 . During one phase of the project, you review the
project schedule and realize that a member of
your project team has been assigned multiple
tasks that add up to more hours than the person
has available to work during that period. What
technique could you use to resolve this?

 13 . You have been asked to complete a project in
shortest time possible. The project tasks, most
likely duration (in days), and predecessors are
shown below. What are the different paths
(sequence of tasks) and the number of days for
each? What is the critical path, that is, the shortest
time in which the project can be completed? Is
it actually important in the business world for
project managers to understand critical path
analysis, or is this just theoretical knowledge?

 Tasks Duration Predecessors

 A 2 None

 B 2 None

 C 1 None

 D 4 A

 E 5 B

 F 1 C, D

 G 6 A, E

 H 4 F

 I 7 G, H

 14 . As a new project manager in a rapidly growing
organization, you have been asked to lead a project
team for an important project. The scope of the
project is not too broad, project time frames are
somewhat on the tight side but defi nitely doable,
and the budget is more than generous. In fact, you
have been given the authority to hire as many
people as you want for your project team. You
estimate that 5 people would be about right for
this type of project, 8 would provide a healthy
amount of backup, and 10 could give you the
resources to deliver an outstanding system in
record time. What is something you might want to
keep in mind before making your decision on how
many people to hire?

110 Part One The Context of Systems Development Projects

Project Management Chapter Three 111

 1. Projects fail, sometimes spectacularly. Search
the Web for articles on major project failures;
numerous articles should be readily available. Find
and review articles on approximately 10 major
project failures during the past decade, then do the
following:

 a. List the project failures that you found, and
describe them.

 b. What was the cost of each project failure?
 c. What were the consequences of each project

failure?
 d. Categorize the reason(s) for each project’s failure

based upon the causes listed in this chapter.
 e. What were the most common causes for the

project failures?
 f. In hindsight, how many of the project failures

were avoidable?
 g. What is the most important lesson that new

systems analysts can learn from these project
failures?

 2. The Project Management Institute (PMI) is one
of the leading and perhaps the leading project
management organization in the world. PMI
created and maintains the “Project Management
Body of Knowledge” (PMBOK), which is a de facto
standard for project managers. PMI also certifi es
a project manager who passes its knowledge and
experience requirements as a “Project Management
Professional” (PMP).

 a. Go to the PMI Web site (www.pmi.org). What
are the requirements to become certifi ed as a
PMP?

 b. Based upon your readings and experience, how
important do you think the PMP certifi cation
is for the project manager? Do you think it is
worth the investment?

 c. What about the organization that employs
a PMP? Is the certifi cation an assurance that
the organization’s projects will be completed
successfully. How much more should an
organization pay a project manager with
a PMP certifi cation?

 d. Professionals in many fi elds, such as medicine,
engineering, accountancy, and law, are required
to be licensed or certifi ed. Do you think
professional certifi cation should be required
before someone can manage a large project?

 3. You work in the information technology division
of a large law fi rm with offi ces throughout the
state. One of the vice presidents of the company
has asked you to manage the development of an
automated case-tracking system for your company.

The project, which is just beginning, is the fi rst
large project you have been asked to manage. You
take your duties very seriously and want to do an
exemplary job on this project.

 a. You are meeting with the vice president of the
company to discuss the scope of the project.
In your meeting, what questions need to be
answered and negotiated in order to be able to
determine the scope of the project?

 b. Once you have fi nished negotiating scope,
the vice president has asked you to write a
Statement of Work. What does the Statement
of Work represent in this situation? How long
should it be?

 c. Write a Statement of Work, using the outline
shown in Figure 3-5 as an example. Assume that
the vice president has given you carte blanche
(although that will probably never happen in
real life).

 4. Project management software, such as Microsoft
 Project, has become commonplace. Many of them
incorporate traditional tools, such as PERT and
Gantt charts, which were developed decades ago.

 a. Conduct an informal survey of about a dozen
project managers in industry. How many of
them use project management software?

 b. For those who don’t use project management
software, what are their reasons for not using it?

 c. For those who do use project management
software, which ones do they use? What are
their opinions regarding the software they use?

 d. Search on the Web for different project
management programs. Which ones did you
fi nd?

 e. Review their features and specifi cations. Do any
of them appear to have unique features? Which
one do you think is the most popular, or at least
the one most widely used? Which one would
you pick if cost was not a consideration?

 5 . You are managing the development of a case-
tracking system project for your large law fi rm.
The requirements phase of the project is almost
complete, and preliminary design work has
begun. The project is running several days behind
schedule, which you don’t consider serious, and
it is within budget, but barely. Quality, in terms
of requirements analysis, has generally been
acceptable so far in your opinion, but some of
the project team members have mentioned that
they are not sure if certain issues have been fully
resolved. Based upon this information, write a
Project Progress Report, using the outline in

Projects and Research

Minicases

 1 . You are on a team that is developing a Web site
for a local business, Custom Car Care. There is
a set schedule of four months for requirements
analysis, development, and successful deployment.
The team is on schedule, in week 8, and has just
shown Debbie, the CEO of Custom Car Care, the
prototype. Debbie is very happy with your work so
far, but has some additional capabilities she would
like added to the site. Although the additions are
not in the previous time or cost estimate, she
requires that you stay on schedule and within
current budget. What do you do?

 2 . Alicia and John are a team coding a diffi cult
and sizable program in Java. They have some
experience with the language, but will have
to learn a signifi cant amount “on the fl y.” They
have estimated that the project will take two
months as the optimistic estimate, three months
as the expected estimate, and four months as the
pessimistic estimate. You are their project manager
and must develop a contract for completion with

the client for the code development. How much
time should you allow in the contract for this
deliverable?

 3 . Develop both a forward and backward schedule
of tasks and timelines for a major project you
are completing for a class. If there is discrepancy
between the two schedules, err on the side of
front-loading your tasks. Monitor your project
timeline and keep track of the milestones as you
complete the project. At the end of the project,
submit your timeline and project notes to your
professor, along with a copy of the class project.
Did the schedule development and management
of the project help you? Share with your class your
experience.

 4 . In an interview with a project manager, fi nd out
how often personnel issues affect the successful
(and on-time) completion of a project. How does
this project manager deal with personal or family
problems that distract or remove key members of
a team?

112 Part One The Context of Systems Development Projects

Team and Individual Exercises

 1 . For the professor to direct: Create teams of four
and designate one as the project manager. Assign
them a challenging task with a short deadline. It
should be doable for the class, but certainly not
easy. Midway through the project, exchange one
member per team so that each team has lost one
member and gained one new member. Do not
allow the team to converse with the member that
was “hired away.”
 Have the project manager document how
they handled the situation, what problems arose,
and how they would handle a team differently

in the future (knowing that they could lose a
teammate at any time and without any notice).

 2 . (Team or Individual) For each of the class
projects, develop a Rolling Wave timeline for
completion. Write down everything you can think
of that could go wrong and a contingency project
plan. Advice: Front-load each project.

 3 . As a team, go out to lunch or dinner. Share some
aspect of your life that your team may not know
about. Find out something you didn’t know about
each of your teammates.

 Figure 3-11 as an example and following the
guidelines described in Activity 7 in this chapter.

 6. As part of continuous improvement, it is important
for project managers and project teams to assess
the results and their experiences once a project
has been completed. There are numerous methods
and techniques for doing this. Search on the Web
for pertinent articles, using phrases such as project
assessment, project postimplementation reports,
and the like.

 a. What articles did you fi nd?
 b. Describe the methods and techniques they

suggest.
 c. Select the ones you feel are the most valuable,

and explain why.
 d. Do you think that assessing project results can

make a signifi cant difference in the quality of
future projects?

Project Management Chapter Three 113

 Blanchard, Kenneth, and Spencer Johnson. The One Minute

Manager. New York: Berkley Publishing Group, 1981,

1982. Arguably, this is one of the best people management

books ever written. Available in most bookstores, it can

be read overnight and used for discussion material for

the lighter side of project management (or any kind of

management). This is must reading for all college students

with management aspirations.

Blanchard, Kenneth; William Oncken, Jr.; and Hal Burrows. The

One Minute Manager Meets the Monkey. New York: Simon

& Schuster, 1988. A sequel to The One Minute Manager,

this book effectively looks at the topic of delegation and

time management. The monkey refers to Oncken’s classic

article, “Managing Management Time: Who’s Got the

Monkey?” as printed in the Harvard Business Review in

1974. The book teaches managers how to achieve results

by helping their staff (their monkeys) solve their own

problems.

 Brooks, Fred. The Mythical Man-Month. Reading, MA.: Addison-

Wesley, 1975. This is a classic set of essays on software

engineering (also known as systems analysis, design, and

implementation). Emphasis is on managing complex

projects.

 Catapult, Inc. Microsoft Project 98: Step by Step. Redmond,

WA: Microsoft Press, 1997. An update for Project 2000 is

expected.

 Demarco, Tom. The Deadline: A Novel about Project

Management. New York: Dorset House Publishing, 1997.

This would be an excellent companion to a project

management text, especially for a graduate-level course.

It demonstrates the “good, bad, and ugly” of project

management, told as a story.

 Duncan, William R., Director, and Standards Committee. A

Guide to the Project Management Body of Knowledge.

Upper Darby, PA: Project Management Institute, 1996. This

is a concise overview of the generally accepted Project

Management Body of Knowledge and practices used for

certifi cation of project managers.

 Friedlander, Phillip. “Ensuring Software Project Success with

Project Buyers,” Software Engineering Tools, Techniques,

and Practices 2, no. 6 (March/April 1992), pp. 26–29.

We adapted our expectations management matrix from

Dr. Friedlander’s work.

 Kernzer, Harold. Project Management: A Systems Approach

to Planning, Scheduling, and Controlling, 4th ed. New

York: Van Nostrand Reinhold, 1989. Many experts consider

this book to be the defi nitive work in the fi eld of project

management. Dr. Kernzer’s seminars and courses on the

subject are renowned.

 London, Keith. The People Side of Systems. New York: McGraw-

Hill, 1976. This is a timeless classic about various people

aspects of systems work. Chapter 8, “Handling a Project

Team,” does an excellent job of teaching the leadership

aspects of project management.

 McLeod, Graham, and Derek Smith. Managing Information

Technology Projects. Cambridge, MA: Course Technology,

1996. If you are looking for a good academic book for

a course or independent study project to expand your

knowledge of IT project and process management, this

is it! The book provides a comprehensive treatment

of virtually all dimensions of IT project and process

management.

 Roetzheim, William H., and Reyna A. Beasley. Software Project

Cost and Schedule Estimating: Best Practices. Upper

Saddle River, NJ: Prentice Hall, 1998. This is one of the more

complete books on the subject of estimating techniques.

Better still, the book includes evaluation copies of

 Cost·Xpert, Risk·Xpert, and Strategy·Xpert (™ of Marotz,

Inc.), software tools for estimating.

 Wysocki, Robert K; Robert Beck, Jr; and David B. Crane.

 Effective Project Management: How to Plan, Manage,

and Deliver Projects on Time and within Budget, 2nd ed.

New York: John Wiley & Sons, 2000. Buy this book! This is

our new benchmark for introducing project management.

It is easy to read and worth its weight in gold. We were

surprised how compatible the book is with past editions

of our book, and our project management directions

continue to be infl uenced by this work.

Suggested Readings

Part Two
Systems Analysis Methods

The fi ve chapters in Part Two intro-

duce you to systems analysis activities

and methods. Chapter 4, “Systems

Analysis,” provides the context for all

the subsequent chapters by introduc-

ing the activities of systems analysis.

Systems analysis is the most critical

phase of a project. During systems

analysis we learn about the existing

business system, come to understand

its problems, defi ne objectives for

improvement, and defi ne the detailed

business requirements that must be

fulfi lled by any subsequent techni-

cal solution. Clearly, any subsequent

system design and implementation of

a new system depends on the quality

of the preceding systems analysis.

Systems analysis is often short-

changed in a project because (1) many

analysts are not skilled in the concepts

and logical modeling techniques to

be used, and (2) many analysts do not

understand the signifi cant impact of

those shortcuts. Chapter 5 introduces

you to systems analysis and its overall

importance in a project. Subsequent

chapters teach you specifi c systems

analysis skills with an emphasis on

logical system modeling.

Chapter 5, “Fact-Finding Tech-

niques for Requirements Discovery,”

teaches various fact-fi nding tech-

niques and strategies used to solicit

user requirements for a new system.

In Chapter 6, “Modeling Sys-

tem Requirements with Use Cases,”

you will learn about the tools and

techniques necessary to perform use-

case modeling to document system

 requirements.

In Chapter 7, “Data Modeling

and Analysis,” we teach you data

modeling, a technique for organiz-

ing and documenting the stored data

 requirements for a system. You will

learn to draw entity relationship

 diagrams as a tool for structuring

business data that will eventually be

designed as a database. These models

will capture the business associations

and rules that must govern the data.

Chapter 8, “Process Modeling,”

introduces the subject and explains

how data fl ow diagrams can be used

to depict the essential business pro-

cesses in a system, the fl ow of data

through a system, and policies and

procedures to be implemented by

processes. If you’ve done any pro-

gramming, you recognize the impor-

tance of understanding the business

processes for which you are trying to

write the programs.

Chapter 9, “Object-Oriented

Analysis and Modeling with UML,”

teaches you about the object-oriented

approach to performing systems

analysis using UML tools.

Chapter 10, “Feasibility

Analysis and the System Proposal,”

teaches you how to brainstorm

 possible system solutions, analyze

those solutions for feasibility, select

the best overall solution, and then

present your recommendation in the

form of a written and oral proposal

to management.

116 Part Two Systems Analysis Methods

4Systems Analysis

Chapter Preview and Objectives

 In this chapter you will learn more about the systems analysis phases in a systems devel-

opment project—namely, the scope defi nition, problem analysis, requirements analysis,

and decision analysis phases. The fi rst three phases are collectively referred to as systems

analysis. The latter phase provides transition between systems analysis and systems de-

sign. You will know that you understand the process of systems analysis when you can:

 ❚ Defi ne systems analysis and relate the term to the scope defi nition, problem analysis,

requirements analysis, logical design, and decision analysis phases of this book’s

systems development methodology.

 ❚ Describe a number of systems analysis approaches for solving business system

problems.

 ❚ Describe the scope defi nition, problem analysis, requirements analysis, logical design,

and decision analysis phases in terms of your information system building blocks.

 ❚ Describe the scope defi nition, problem analysis, requirements analysis, logical

design, and decision analysis phases in terms of purpose, participants, inputs, outputs,

techniques, and steps.

 ❚ Identify the chapters in this textbook that can help you learn specifi c systems analysis

tools and techniques.

 NOTE: Although some of the tools and techniques of systems analysis are previewed in

this chapter, it is not the intent of this chapter to teach those tools and techniques. This

chapter teaches only the process of systems analysis. The tools and techniques will be

taught in the subsequent six chapters.

Systems Analysis Chapter Four 117

 Introduction

 Bob Martinez remembers learning in college that systems analysis defines what an
information system needs to do while system design defines how it needs to do it. At
the time, it sounded like a simple two-step process. Now, as he begins working on the
SoundStage Member Services system project, he sees that there are multiple phases
and several steps within systems analysis and system design.

 The SoundStage project is at the beginning of systems analysis, in what Sandra, his
boss, calls the scope definition phase. After that they’ll do problem analysis, require-
ments analysis, and decision analysis. It sounds like a lot of work just to understand
 what the system needs to do. But this is a complicated system. As Sandra says, would
you build a house without a good set of plans? What Is Systems Analysis?

 In Chapter 2 you learned about the systems development process. In that chapter
we purposefully limited our discussion to only briefly examining each phase. In this
chapter, we take a much closer look at those phases that are collectively referred to as
 systems analysis . Formally defined in the margin, systems analysis is the study of a
system and its components. It is a prerequisite to systems design , the specification
of a new and improved system. This chapter will focus on systems analysis. Chapter 11
will do the same for systems design.

 Moving from this classic definition of systems analysis to something a bit more
contemporary, we see that systems analysis is a term that collectively describes the
early phases of systems development. Figure 4-1 uses color to identify the systems
analysis phases in the context of the full classic route for our methodology (from
Chapter 2). There has never been a universally accepted definition of systems anal-
ysis. In fact, there has never been universal agreement on when information systems
analysis ends and when information systems design begins. For the purpose of this
book, information systems analysis emphasizes business issues, not technical or
implementation concerns.

 Systems analysis is driven by the business concerns of SYSTEM OWNERS and SYSTEM
USERS . Hence, it addresses the KNOWLEDGE, PROCESS , and COMMUNICATIONS building blocks
from SYSTEM OWNERS ’ and SYSTEM USERS ’ perspectives. The SYSTEMS ANALYSTS serve as facili-
tators of systems analysis.

 The documentation and deliverables produced by systems analysis tasks are typi-
cally stored in a repository. A repository may be created for a single project or shared
by all projects and systems. A repository is normally implemented as some combina-
tion of the following:

 • A network directory of word processing, spreadsheet, and other computer-
generated fi les that contain project correspondence, reports, and data.

 • One or more CASE tool dictionaries or encyclopedias (as discussed in
Chapter 2).

 • Printed documentation (such as that stored in binders and system libraries).
 • An intranet Web site interface to the above components (useful for

communication).

 Hereafter, we will refer to these components collectively as the repository .
 This chapter examines each of our five systems analysis phases in greater detail.

But first, let’s examine some overall strategies for systems analysis.

 systems analysis a

 problem-solving technique

that decomposes a system

into its component pieces

for the purpose of studying

how well those component

parts work and interact to

 accomplish their purpose.

 systems design a comple-

mentary problem-solving tech-

nique (to systems analysis)

that reassembles a system’s

component pieces back into a

complete system—hopefully,

an improved system. This may

involve adding, deleting, and

changing pieces relative to the

original system.

 information systems
analysis those develop-

ment phases in an informa-

tion systems development

project that primarily focus

on the business problem and

requirements, independent

of any technology that can or

will be used to implement a

solution to that problem.

 repository a location (or

set of locations) where sys-

tems analysts, systems de-

signers, and system builders

keep all of the documentation

associated with one or more

systems or projects.

118 Part Two Systems Analysis Methods

 Fundamentally, systems analysis is about problem solving. There a re many approaches
to problem solving; therefore, it shouldn’t surprise you that there are many approaches
to systems analysis. These approaches are often viewed as competing alternatives. In
reality, certain combinations can and should actually complement one another. This
was characterized in Chapter 2 as agile methods. Let’s briefly examine the varied
approaches.

 NOTE: The intent here is to develop a high-level understanding only. Subsequent
chapters in this unit will actually teach you the underlying techniques. > Model-Driven Analysis Approaches

 Structured analysis, information engineering, and object-oriented analysis are exam-
ples of model-driven analysis . Model-driven analysis uses pictures to communicate

PROBLEM

ANALYSIS

2

REQUIREMENTS

ANALYSIS

3

LOGICAL

DESIGN

4

5

DECISION

ANALYSIS

PHYSICAL

DESIGN

&

INTEGRATION

6

CONSTRUCTION

&

TESTING

7

INSTALLATION

&

DELIVERY

8

SCOPE

DEFINITION

1

SYSTEM

OPERATION

&

MAINTENANCE

Life-Cycle Stage

Problem

Statement

System

Improvement

Objectives

Business

Requirements

Statement

Application

Architecture

Physical

Design Specifications

Functional

System

Operational

System

FINISH:

Working

Business

Solution

START:

Problems, Opportunities,

Directives, Constraints,

and Vision

Logical

Design

Documentation Documentation

SYSTEM OWNERS AND USERS

BUSINESS COMMUNITY

Statement

of Work

Scope & Vision

System

Proposal

Design

Prototypes

Training

Materials

Post-Audit

Review

Redesigned

Business

Processes

Documentation

Documentation Documentation

Documentation Documentation

Documentation

F I G U R E 4 - 1 The Context of Systems Analysis

 model-driven analysis a

problem-solving approach

that emphasizes the drawing

of pictorial system models to

document and validate exist-

ing and/or proposed systems.

Ultimately, the system model

becomes the blueprint for

designing and constructing

an improved system.

 Systems Analysis Approaches

Systems Analysis Chapter Four 119

business problems, requirements, and solutions. Examples of models with which
you may already be familiar include flowcharts, structure or hierarchy charts, and
organization charts.

 Model-driven analysis approaches are featured in the model-driven methodolo-
gies and routes that were introduced in Chapter 2. Let’s briefly examine today’s three
most popular model-driven analysis approaches.

 Traditional Approaches Various traditional approaches to system analysis and
design were developed beginning in the 1970s. One of the fi rst formal approaches,
which is still widely used today, is structured analysis. Structured analysis focuses
on the fl ow of data through business and software processes. It is said to be process-

centered. By process-centered, we mean that the emphasis is on the PROCESS building
blocks in your information system framework.

 One of the key tools used to model processes is the data flow diagram (Figure 4-2),
which depicts the existing and/or proposed processes in a system along with their
inputs, outputs, and data. The models show the flow of data between and through
processes and show the places where data is stored. Ultimately these process models
serve as blueprints for business processes to be implemented and software to be pur-
chased or constructed.

 The practice of structured analysis for software design has greatly diminished in
favor of object-oriented methods. However, process modeling is enjoying something
of a revival thanks to the renewed emphasis on business process redesign, which is
discussed later in this chapter.

 Another traditional approach, called information engineering (IE) , focuses on
the structure of stored data in a system rather than on processes. Thus, it was said to
be data-centered, emphasizing the analysis of KNOWLEDGE (or data) requirements. The

model a representation of

either reality or vision. Since

“a picture is worth a thousand

words,” most models use

pictures to represent the

 reality or vision.

 structured analysis a

model-driven, PROCESS -

centered technique used to

either analyze an existing

system or defi ne business

requirements for a new

system, or both. The models

are pictures that illustrate the

system’s component pieces:

processes and their associ-

ated inputs, outputs, and fi les.

 information engineering
(IE) a model-driven and

 DATA -centered, but PROCESS -

sensitive, technique for

planning, analyzing, and de-

signing information systems.

IE models are pictures that

illustrate and synchronize the

system’s data and processes.

Club

Member

Club

Member

Warehouse

Accounts

Orders

Process

Automatic

Orders

Process

Bonus

Orders

Process

Member

Orders

Member order response

Credit rating and limit

Credit rating

and limit
Credit

rating

and

limit

Order to be

filled
Order to be filled

Revised automatic orderExisting order details

Bonus

Order

Order

to be

filled

 F I G U R E 4 - 2

A Simple Process
Model (Also Called
a Data Flow
Diagram)

120 Part Two Systems Analysis Methods

key tool to model data requirements is the entity relationship diagram (Figure 4-3).
Entity relationship diagrams are still widely used in designing relational databases.

 Originally, information engineering was seen as a competing approach to struc-
tured analysis. But over time many people made them as complementary: using data
flow diagrams to model a system’s processes and entity relationship diagrams to
model a system’s data.

 Object-Oriented Approach Traditional approaches deliberately separated the con-
cerns of KNOWLEDGE (data) from those of PROCESSES . Although most systems analysis
methods attempted to synchronize data and process models, the attempt did not al-
ways work well in practice. Object technologies have since emerged to eliminate
this artifi cial separation of data and processes. The object-oriented approach views
information systems not as data and processes but as a collection of objects that en-
capsulate data and processes. Objects can contain data attributes. However, the only
way to create, read, update, or delete an object’s data is through one of its embedded
processes (called methods). Object-oriented programming languages, such as Java,

C , and the .NET languages, are becoming increasingly popular.
 The object-oriented approach has a complete suite of modeling tools known

as the Unified Modeling Language (UML). One of the UML diagrams, an object class
diagram, is shown in Figure 4-4 . Some of the UML tools have gained acceptance for
systems projects even when the information system will not be implemented with
object-oriented technologies. > Accelerated Systems Analysis Approaches

 Discovery prototyping and rapid architected development are examples of acceler-
ated systems analysis approaches that emphasize the construction of prototypes to
more rapidly identify business and user requirements for a new system. Most such
approaches derive from some variation on the construction of prototypes , working
but incomplete samples of a desired system. Prototypes cater to the “I’ll know what I
want when I see it” way of thinking that is characteristic of many users and managers.
By “incomplete,” we mean that a prototype will not include the error checking, input
data validation, security, and processing completeness of a finished application. Nor will
it be as polished or offer the user help as in a final system. But because it can be de-
veloped quickly, it can quickly identify the most crucial of business-level requirements.
Sometimes, prototypes can evolve into the actual, completed information systems and
applications.

 These accelerated approaches are common in the rapid application develop-
ment (RAD) methodologies and routes that were introduced in Chapter 2. RAD ap-
proaches require automated tools. While some repository-based CASE tools include
very simple RAD facilities, most analysts use true RAD programming environments

Member Agreement
is enrolled under;

applies to

Club

established by;

establishes

Member

Order

Product Promotion
sponsors;

is sponsored by
is featured in;

features

generates;

generated by

sells;

is sold on

placed by;

places
 F I G U R E 4 - 3

A Simple Data
Model (Also Called
an Entity
Relationship
Diagram)

 object the encapsulation of

the data (called properties)

that describes a discrete

person, object, place, event,

or thing, with all of the pro-

cesses (called methods) that

are allowed to use or update

the data and properties.

The only way to access or

update the object’s data is to

use the object’s predefi ned

processes.

 object-oriented
approach a model-driven

technique that integrates data

and process concerns into

constructs called objects.

Object models are pictures

that illustrate the system’s

objects from various perspec-

tives, such as the structure,

behavior, and interactions of

the objects.

 prototype a small-scale,

incomplete but working

sample of a desired system.

Systems Analysis Chapter Four 121

such as Sybase Powerbuilder, Microsoft Access, Microsoft Visual Basic .NET, or IBM
 Websphere Studio for Application Development (Java -based).

 Let’s briefly examine two popular accelerated analysis approaches.

 Discovery Prototyping Discovery prototyping uses rapid development tech-
nology to help users discover their business requirements. For example, it is very
common for systems analysts to use a simple development tool like Microsoft Access
to rapidly create a simple database, user input forms, and sample reports to solicit
user responses as to whether the database, forms, and reports truly represent busi-
ness requirements. The intent is usually to develop the fi nal new system in a more
sophisticated application development tool and language, but the simpler tool allows
the analyst to more quickly prototype the user’s requirements.

 In discovery prototyping, we try to discourage users from becoming preoccupied
with the final “look and feel” of the system prototypes—that can be changed during
system design! Therein lies the primary criticism of prototyping—software templates
exist in prototyping tools to quickly generate some very elegant and visually appealing
prototypes. Unfortunately, this can encourage a premature focus on, and commitment
to, design represented in the prototype. Users can also be misled to believe (1) that
the completed system can be built just as rapidly or (2) that tools like Access can be
used to build the final system.

 Regardless, discovery prototyping is a preferred and recommended approach.
Unfortunately, some systems analysts and developers are using discovery proto-
typing to completely replace model-driven design, only to learn what true engineers
have known for years: you cannot prototype without some amount of more formal
design . . . enter rapid architected analysis.

 Rapid Architected Analysis Rapid architected analysis is an accelerated analy-
sis approach that also builds system models. Rapid architecture analysis is made
possible by reverse-engineering technology that is included in many automated
tools such as CASE and programming languages (as introduced in Chapter 2). Reverse-
engineering tools generate system models from existing software applications or

+Admit()

+Register for Classes()

+Withdraw()

+Change Address()

+Calculate GPA()

+Graduate()

-ID Number

-Name

-Grade Point Average

STUDENT

+Create a Course()

+Delete from Course Master()

+Change in Course Master()

-Subject

-Number

-Title

-Credit

COURSE

+Add()

+Drop()

+Complete()

+Change Grade()

-Semester

-Division

-Grade

TRANSCRIPT COURSE

has record for>0..*

0..*

 rapid architected
analysis an approach that

attempts to derive system

models (as described

earlier in this section) from

existing systems or discovery

prototypes.

 reverse engineering the

use of technology that reads

the program code for an

existing database, applica-

tion program, and/or user

interface and automatically

generates the equivalent

system model.

 F I G U R E 4 - 4

An Object Model
(Using the Unifi ed
Modeling Language
Standard)

 discovery prototyping a

technique used to identify the

users’ business requirements

by having them react to a

quick-and-dirty implementa-

tion of those requirements.

122 Part Two Systems Analysis Methods

system prototypes. The resulting system models can then be edited and improved
by systems analysts and users to provide a blueprint for a new and improved system.
It should be apparent that rapid architected analysis is a blending of model-driven
and accelerated analysis approaches.

 There are two different techniques for applying rapid architected analysis:

 • Most systems have already been automated to some degree and exist as legacy
information systems. Many CASE tools can read the underlying database struc-
tures and/or application programs and reverse engineer them into various
system models. Those models serve as a point of departure for defi ning model-
driven user requirements analysis.

 • If prototypes have been built into tools like Microsoft Access or Visual Basic,
those prototypes can sometimes be reverse engineered into their equivalent
system models. The system models usually better lend themselves to analyzing
the users’ requirements for consistency, completeness, stability, scalability, and
fl exibility to future change. Also, the system models can frequently be forward
engineered by the same CASE tools and ADEs (application development envi-
ronments) into databases and application templates or skeletons that will use
more robust enterprise-level database and programming technology.

 Both techniques address the previous issue that engineers rarely prototype in the
total absence of a more formal design, and, at the same time, they preserve the advan-
tages of accelerating the systems analysis phases.

 > Requirements Discovery Methods

 Both model-driven and accelerated systems analysis approaches attempt to express
user requirements for a new system, either as models or as prototypes. But both ap-
proaches are, in turn, dependent on the more subtle need to actually identify and
manage those requirements. Furthermore, the requirements for systems are depen-
dent on the analysts’ ability to discover the problems and opportunities that exist
in the current system—thus, analysts must become skilled in identifying problems,
opportunities, and requirements! Consequently, all approaches to systems analysis
require some form of requirements discovery . Let’s briefly survey a couple of
common requirements discovery approaches. Fact-Finding Techniques Fact-fi nding is an essential skill for all systems ana-
lysts. The fact-fi nding techniques covered in this book (in fact, in the next chapter)
include:

 • Sampling of existing documentation, reports, forms, fi les, databases, and memos.
 • Research of relevant literature, benchmarking of others’ solutions, and site visits.
 • Observation of the current system in action and the work environment.
 • Questionnaires and surveys of the management and user community.
 • Interviews of appropriate managers, users, and technical staff.

 Joint Requirements Planning The fact-fi nding techniques listed above are invalu-
able; however, they can be time-consuming in their classic forms. Alternatively, re-
quirements discovery and management can be signifi cantly accelerated using joint

 requirements planning (JRP) techniques. A JRP-trained or -certifi ed analyst usually
plays the role of facilitator for a workshop that will typically run from three to fi ve
full working days. This workshop can replace weeks or months of classic fact-fi nding
and follow-up meetings.

 JRP provides a working environment in which to accelerate all systems analysis
tasks and deliverables. It promotes enhanced SYSTEM OWNER and SYSTEM USER participa-
tion in systems analysis. But it also requires a facilitator with superior mediation and
negotiation skills to ensure that all parties receive appropriate opportunities to con-
tribute to the system’s development.

 requirements discovery
 the process, used by systems

analysts, of identifying or ex-

tracting system problems and

solution requirements from the

user community.

 fact-fi nding the process of

collecting information about

system problems, opportuni-

ties, solution requirements,

and priorities. Also called

 information gathering.

 joint requirements
planning (JRP) the use of

facilitated workshops to bring

together all of the system

owners, users, and analysts

and some systems design-

ers and builders to jointly

perform systems analysis.

JRP is generally considered a

part of a larger method called

 joint application development

(JAD), a more comprehensive

application of the JRP tech-

niques to the entire systems

development process.

Systems Analysis Chapter Four 123

 JRP is typically used in conjunction with the model-driven analysis approaches
we described earlier, and it is typically incorporated into rapid application develop-
ment (RAD) methodologies and routes (which were introduced in Chapter 2).

 > Business Process Redesign Methods

 One of the most interesting contemporary applications of systems analysis methods is
 business process redesign (BPR) . The interest in BPR was driven by the discovery
that most current information systems and applications have merely automated ex-
isting and inefficient business processes. Automated bureaucracy is still bureaucracy;
automation does not necessarily contribute value to the business, and it may actually
subtract value from the business. Introduced in Chapter 1, BPR is one of many types
of projects triggered by the trends we call total quality management (TQM) and
 continuous process improvement (CPI).

 Some BPR projects focus on all business processes, regardless of their automa-
tion. Each business process is thoroughly studied and analyzed for bottlenecks, value
returned, and opportunities for elimination or streamlining. Process models, such as
data flow diagrams (discussed earlier), help organizations visualize their processes.
Once the business processes have been redesigned, most BPR projects conclude by
examining how information technology might best be applied to the improved busi-
ness processes. This may create new information system and application development
projects to implement or support the new business processes.

 BPR is also applied within the context of information system development proj-
ects. It is not uncommon for IS projects to include a study of existing business pro-
cesses to identify problems, bureaucracy, and inefficiencies that can be addressed in
requirements for new and improved information systems and computer applications.

 BPR has also become common in IS projects that will be based on the purchase and
integration of commercial off-the-shelf (COTS) software. The purchase of COTS software
usually requires that a business adapt its business processes to fit the software. An analysis
of existing business processes during systems analysis is usually a part of such projects.

 > Systems Analysis Strategies

 Like most commercial methodologies, our hypothetical methodology used in the
book does not impose a single approach on systems analysts. Instead, it integrates all
the popular approaches introduced in the preceding paragraphs into a collection of
 agile methods . The SoundStage case study will demonstrate these methods in the
context of a typical first assignment for a systems analyst. The systems analysis tech-
niques will be applied within the framework of information systems building blocks,
methodology phases, and tasks to implement a phase.

 Given this context for studying systems analysis, we can now explore the systems
analysis phases and tasks.

 The Scope Defi nition Phase

 Recall from Chapter 2 that the scope definition phase is the first phase of the classic
systems development process. In other methodologies this might be called the prelimi-

nary investigation phase, initial study phase, survey phase, or planning phase. The
scope definition phase answers the question, “Is this project worth looking at?” To an-
swer this question, we must define the scope of the project and the perceived problems,
opportunities, and directives that triggered the project. Assuming the project is deemed
worth looking at, the scope definition phase must also establish the project plan in
terms of scale, development strategy, schedule, resource requirements, and budget. 1

 business process rede-
sign (BPR) the application

of systems analysis methods

to the goal of dramatically

changing and improving

the fundamental business

processes of an organization,

independent of information

technology.

agile method the integra-

tion of various approaches of

systems analysis and design

for application as deemed

appropriate to the problem

being solved and the system

being developed.

 1 If your course or reading has already included Chapter 3, you should recognize these planning elements as part of project

management. Chapter 3 surveyed and demonstrated the process used by project managers to develop a project plan.

124 Part Two Systems Analysis Methods

 Figure 4-5 is the first of five task diagrams we will introduce in this chapter to take
a closer look at each systems analysis phase. A task diagram shows the work (tasks)
that should be performed to complete a phase. Our task diagrams do not mandate any
specific methodology, but we will describe in the accompanying paragraphs the ap-
proaches, tools, and techniques you might want to consider for each task. Figure 4-5
shows the tasks required for the scope definition phase. It is important to remember
that these task diagrams are only templates. The project team and project manager may
expand on or alter these templates to reflect the unique needs of any given project.

 As shown in Figure 4-5 , the final deliverable for the preliminary investigation
phase is completion of a PROJECT CHARTER . (Such major deliverables are indicated in
each task diagram in all-capital letters.) A project charter defines the project scope,
plan, methodology, standards, and so on. Completion of the project charter represents
the first milestone in a project.

 The scope definition phase is intended to be quick. The entire phase should not
exceed two or three days for most projects. Let’s now examine each of these tasks in
greater detail.

 > Task 1.1—Identify Baseline Problems and
Opportunities

 One of the most important tasks of the scope definition phase is establishing an
initial baseline of the problems, opportunities, and/or directives that triggered the
project. Each problem, opportunity, and directive is assessed with respect to urgency,

Identify

baseline

problems and

opportunities

1.1

Negotiate

baseline

scope

1.2

Develop

baseline

schedule &

budget

1.4

Communicate

the project

plan

1.5

Preliminary

Problem

Statement

Baseline Project

Plan and Schedule

PROJECT
CHARTER

Project Request

or Assignment

Repository

problem

statements

(PIECES)

problem

statements

and scope

statements of

project scope

statement of work

project schedule

and resource

assignments

Assess

baseline

worthiness

1.3

Preliminary Problem

Statement with Scope

problem

statements

with scope

SYSTEM OWNERS AND USERS

(OR STEERING COMMITTEE)

THE BUSINESS COMMUNITY

(project is worthy)

 F I G U R E 4 - 5

Tasks for the Scope
Defi nition Phase of
Systems Analysis

 scope the boundaries of a

project—the areas of a busi-

ness that a project may (or

may not) address.

Systems Analysis Chapter Four 125

visibility, tangible benefits, and priority. Any additional, detailed analysis is not relevant
at this stage of the project. It may, however, be useful to list any perceived constraints
(limits) on the project, such as deadlines, maximum budget, or general technology.

 A senior systems analyst or project manager usually leads this task. Most of the
other participants are broadly classified as SYSTEM OWNERS . This includes the executive
sponsor(s), the highest-level manager(s) who will pay for and support the project. It
also includes managers of all organizational units that may be impacted by the system
and possibly includes information systems managers. SYSTEM USERS, SYSTEM DESIGNERS ,
and SYSTEM BUILDERS are not typically involved in this task.

 As shown in Figure 4-5 , a PROJECT REQUEST OR ASSIGNMENT triggers the task. This
trigger may take one of several alternative forms. It may be as simple as a memorandum
of authority from an information systems steering body. Or it may be a memorandum
from a business team or unit requesting systems development. Some organizations
require that all project requests be submitted on some standard request-for-service
form, such as that presented in Figure 4-6 .

SoundStage Entertainment Club
Information System Services

Phone: 494-0666 Fax: 494-0999

Internet: http://www.soundstage.com

Intranet: http://www.soundstage.com/iss

Member Services, Warehouse, Shipping

SUBMITTED BY (key user contact)

 Name Sarah Hartman

 Title Business Analyst, Member Services

 Office B035

 Phone 494-0867

REQUEST FOR

INFORMATION

SYSTEM SERVICES

DATE OF REQUEST SERVICE REQUESTED FOR DEPARTMENT(S)

January 9, 2003

EXECUTIVE SPONSOR (funding authority)

 Name Galen Kirkhoff

 Title Vice President, Member Services

 Office G242

 Phone 494-1242

TYPE OF SERVICE REQUESTED:

 Information Strategy Planning Existing Application Enhancement

 Business Process Analysis and Redesign Existing Application Maintenance (problem fix)

 New Application Development Not Sure

 Other (please specify)

BRIEF STATEMENT OF PROBLEM, OPPORTUNITY, OR DIRECTIVE (attach additional documentation as necessary)

The information strategy planning group has targeted member services, marketing, and order fulfillment (inclusive

of shipping) for business process redesign and integrated application development. Currently serviced by separate

information systems, these areas are not well integrated to maximize efficient order services to our members. The

current systems are not adaptable to our rapidly changing products and services. In some cases, separate systems

exist for similar products and services. Some of these systems were inherited through mergers that expanded our

products and services. There also exist several marketing opportunities to increase our presence to our members.

One example includes Internet commerce services. Finally, the automatic identification system being developed for

the warehouse must fully interoperate with member services.

BRIEF STATEMENT OF EXPECTED SOLUTION

We envision completely new and streamlined business processes that minimize the response time to member

orders for products and services. An order shall not be considered fulfilled until it has been received by the

member. The new system should provide for expanded club and member flexibility and adaptability of basic

business products and services.

 We envision a system that extends to the desktop computers of both employees and members, with appropriate

shared services provided across the network, consistent with the ISS distributed architecture. This is consistent with

strategic plans to retire the AS/400 central computer and replace it with servers.

ACTION (ISS Office Use Only)

 Feasibility assessment approved Assigned to Sandra Shepherd

 Feasibility assessment waived Approved Budget $ 450,000

 Start Date ASAP Deadline ASAP

 Request delayed Backlogged until date:

 Request rejected Reason:

Authorized Signatures:

Chair, ISS Executive Steering Body Project Executive Sponsor

FORM ISS-100-RFSS (Last revised December, 1999)

 F I G U R E 4 - 6

A Request for
Systems Services

126 Part Two Systems Analysis Methods

 The key deliverable of this task, the PRELIMINARY PROBLEM STATEMENT , consists of the
problems, opportunities, and directives that were identified. The PROBLEM STATEMENTS
are stored in the repository for later use in the project. Figure 4-7 is a sample docu-
ment that summarizes problems, opportunities, and directives in terms of:

 • Urgency —In what time frame must/should the problem be solved or the oppor-
tunity or directive be realized? A rating scale could be developed to consistently
answer this question.

 • Visibility —To what degree would a solution or new system be visible to
customers and/or executive management? Again, a rating scale could be
developed for the answers.

 • Benefi ts —Approximately how much would a solution or new system increase
annual revenues or reduce annual costs? This is often a guess, but if all partici-
pants are involved in that guess, it should prove suffi ciently conservative.

 • Priority —Based on the above answers, what are the consensus priorities for
each problem, opportunity, or directive? If budget or schedule becomes a
problem, these priorities will help to adjust project scope.

 • Possible solutions (OPT)—At this early stage of the project, possible solutions
are best expressed in simple terms such as (a) leave well enough alone, (b) use
a quick fi x, (c) make a simple to moderate enhancement of the existing system,
(d) redesign the existing system, or (e) design a new system. The participants
listed for this task are well suited to an appropriately high-level discussion of
these options.

 The PIECES framework that was introduced in Chapter 2 can be used as a framework
for categorizing problems, opportunities, directives, and constraints. For example,
Problem 1 in Figure 4-7 could be classified according to PIECES as P.B.—Performance,
Response Times. (See Figure 2-4 in Chapter 2.) Problem 4 in Figure 4-7 could be clas-
sified as I.A.2—Information, Outputs, Lack of necessary information.

 The primary techniques used to complete this task include fact-finding and meet-
ings with SYSTEM OWNERS . These techniques are taught in Chapter 5.

Project: Member services information system

Created by: Sandra Shepherd

Date created: January 9, 2003

Problem Statements

Project manager: Sandra Shepherd

Last updated by: Robert Martinez

Date last updated: January 15, 2003

Brief Statements of Problem,

Opportunity, or Directive

Priority

or Rank

Proposed

SolutionUrgency

Annual

BenefitsVisibility

ASAP

6 months

High

Med

$175,000

75,000

2

2

Order response time as measured from

time of order receipt to time of cus-

tomer delivery has increased to an

average of 15 days.

The recent acquisitions of Private

Screenings Video Club and Game-

Screen will further stress the through-

put requirements for the current system.

1.

2.

New development

New development

 F I G U R E 4 - 7 Sample Problem Statements

Systems Analysis Chapter Four 127 > Task 1.2—Negotiate Baseline Scope

 Scope defines the boundary of the project—those aspects of the business that will
and will not be included in the project. Scope can change during the project; however,
the initial project plan must establish the preliminary or baseline scope. Then if the
scope changes significantly, all parties involved will have a better appreciation for
why the budget and schedule have also changed. This task can occur in parallel with
the prior task.

 Once again, a senior systems analyst or project manager usually leads this task.
Most of the other participants are broadly classified as SYSTEM OWNERS . This includes
the executive sponsor, managers of all organizational units that may be impacted by
the system, and possibly information systems managers. SYSTEM USERS, SYSTEM DESIGNERS ,
and SYSTEM BUILDERS are not typically involved in this task.

 As shown in Figure 4-5 , this task uses the PRELIMINARY PROBLEM STATEMENT produced
by the previous task. It should make sense that those problems, opportunities, and
directives form the basis for defining scope. The STATEMENTS OF PROJECT SCOPE are added
to the repository for later use. These statements are also formally documented as the
task deliverable, PRELIMINARY PROBLEM STATEMENT WITH SCOPE .

 Scope can be defined easily within the context of your information system
building blocks. For example, a project’s scope can be described in terms of:

 • What types of DATA describe the system being studied? For example, a sales infor-
mation system may require data about such things as CUSTOMERS, ORDERS, PRODUCTS ,
and SALES REPRESENTATIVES .

 • What business PROCESSES are included in the system being studied? For example,
a sales information system may include business processes for CATALOG
MANAGEMENT, CUSTOMER MANAGEMENT, ORDER ENTRY, ORDER FULFILLMENT, ORDER
MANAGEMENT , and CUSTOMER RELATIONSHIP MANAGEMENT .

 • How must the system INTERFACE with users, locations, and other systems? For ex-
ample, potential interfaces for a sales information system might include CUSTOM-
ERS, SALES REPRESENTATIVES, SALES CLERKS AND MANAGERS, REGIONAL SALES OFFICES , and
the ACCOUNTS RECEIVABLE and INVENTORY CONTROL INFORMATION SYSTEMS .

 Once again, the primary techniques used to complete this task are fact-finding
and meetings. Many analysts prefer to combine this task with both the previous and
the next tasks and accomplish them within a single meeting. > Task 1.3—Assess Baseline Project Worthiness

 This is where we answer the question, “Is this project worth looking at?” At this
early stage of the project, the question may actually boil down to a “best guess”:
Will solving the problems, exploiting the opportunities, or fulfilling the directives
return enough value to offset the costs that we will incur to develop this system? It
is impossible to do a thorough feasibility analysis based on the limited facts we’ve
collected to-date.

 Again, a senior systems analyst or project manager usually leads this task. But the
 SYSTEM OWNERS , inclusive of the executive sponsor, the business unit managers, and the
information systems managers, should make the decision.

 As shown in Figure 4-5 , the completed PRELIMINARY PROBLEM STATEMENT WITH SCOPE
triggers the task. This provides the level of information required for this preliminary
assessment of worth. There is no physical deliverable other than the GO OR NO-GO DECI-
SION . There are actually several alternative decisions. The project can be approved or
canceled, and project scope can be renegotiated (increased or decreased!). Obviously,
the remaining tasks in the preliminary investigation phase are necessary only if the
project has been deemed worthy and approved to continue.

128 Part Two Systems Analysis Methods > Task 1.4—Develop Baseline Schedule and Budget

 If the project has been deemed worthy to continue, we can now plan the project in
depth. The initial project plan should consist of at least the following:

 • A preliminary master plan that includes schedule and resource assignments
for the entire project. This plan will be updated at the end of each phase of the
project. It is sometimes called a baseline plan.

 • A detailed plan and schedule for completing the next phase of the project (the
problem analysis phase).

 The task is the responsibility of the project manager. Most project managers
find it useful to include as much of the project team, including SYSTEM OWNERS, USERS,
DESIGNERS , and BUILDERS , as possible. Chapter 3 coined the term joint project planning
to describe the team approach to building a project plan.

 As shown in Figure 4-5, this task is triggered by the GO OR NO-GO DECISION to con-
tinue the project. This decision represents a consensus agreement on the project’s
scope, problems, opportunities, directives, and worthiness. (This “worthiness” must
still be presented and approved.) The PROBLEM STATEMENTS WITH SCOPE are the key input
(from the repository). The deliverable of this task is the BASELINE PROJECT PLAN AND
SCHEDULE . The STATEMENT OF WORK (see Chapter 3) and PROJECT SCHEDULE AND RESOURCE
ASSIGNMENTS are also added to the repository for continuous monitoring and, as appro-
priate, updating. The schedule and resources are typically maintained in the reposi-
tory as a project management software file.

 The techniques used to create a project plan were covered in depth in Chapter 3.
Today, these techniques are supported by project management software such as Micro-
soft Project. Chapter 3 also discussed the detailed steps for completing the plan.

 > Task 1.5—Communicate the Project Plan

 In most organizations, there are more potential projects than resources to staff and
fund those projects. Unless our project has been predetermined to be of the highest
priority (by some sort of prior tactical or strategic planning process), then it must
be presented and defended to a steering body for approval. Most organizations
use a steering body to approve and monitor projects and progress. The majority
of any steering body should consist of non–information systems professionals or
managers. Many organizations designate vice presidents to serve on a steering body.
Other organizations assign the direct reports of vice presidents to the steering body.
And some organizations use two steering bodies, one for vice presidents and one for
their direct reports. Information systems managers serve on the steering body only
to answer questions and to communicate priorities back to developers and project
managers.

 Ideally, the executive sponsor should jointly facilitate the task with the chosen
project manager. The visibility of the executive sponsor establishes instant credibility
and priority to all who participate in the kickoff meeting. Other kickoff meeting par-
ticipants should include the entire project team, including assigned SYSTEM OWNERS,
USERS, ANALYSTS, DESIGNERS , and BUILDERS . Ideally, the kickoff meeting should be open
to any and all interested staff from the business community. This builds community
awareness and consensus while reducing both the volume and the consequences of
rumor and misinformation. For the intranet component, a Webmaster or Web author
should be assigned to the project team.

 As shown in Figure 4-5 , this task is triggered by the completion of the BASELINE
PROJECT PLAN AND SCHEDULE . The PROBLEM STATEMENTS AND SCOPE are available from the
repository. The deliverable is the PROJECT CHARTER . The project charter is usually a docu-
ment. It includes various elements that define the project in terms of participants,
problems, opportunities, and directives; scope; methodology; statement of work to be
completed; deliverables; quality standards; schedule; and budget. The project charter

 steering body a committee

of executive business and sys-

tem managers that studies and

prioritizes competing project

proposals to determine which

projects will return the most

value to the organization and

thus should be approved for

continued systems develop-

ment. Also called a steering

committee.

Systems Analysis Chapter Four 129

should be added to the project Web site for all to see. Elements of the project charter
may also be reformatted as slides and handouts (using software such as Microsoft
 PowerPoint) for inclusion in the project kickoff event.

 Effective interpersonal and communications skills are the keys to this task. These in-
clude principles of persuasion, selling change, business writing, and public speaking.

 This concludes our discussion of the scope definition phase. The participants in
the scope definition phase might decide the project is not worth proposing. It is also
possible the steering body may decide that other projects are more important. Or
the executive sponsor might not endorse the project. In each of these instances, the
project is terminated. Little time and effort have been expended. On the other hand,
with the blessing of all the system owners and the steering committee, the project can
now proceed to the problem analysis phase. The Problem Analysis Phase

 There is an old saying, “Don’t try to fix it unless you understand it.” That statement aptly
describes the problem analysis phase of systems analysis . There is always a current
or existing system, regardless of the degree to which it is automated with information
technology. The problem analysis phase provides the analyst with a more thorough
understanding of the problems, opportunities, and/or directives that triggered the
project. The problem analysis phase answers the questions, “Are the problems really
worth solving?” and “Is a new system really worth building?” In other methodologies,
the problem analysis phase may be known as the study phase, study of the current

system, detailed investigation phase, or feasibility analysis phase.
 Can you ever skip the problem analysis phase? Rarely! You almost always need

 some level of understanding of the current system. But there may be reasons to ac-
celerate the problem analysis phase. First, if the project was triggered by a strategic
or tactical plan, the worthiness of the project is probably not in doubt—the problem
analysis phase would be reduced to understanding the current system, not analyzing
it. Second, a project may be initiated by a directive (such as compliance with a govern-
mental directive and deadline). Again, in this case project worthiness is not in doubt.
Finally, some methodologies and organizations deliberately consolidate the problem
analysis and requirements analysis phases to accelerate systems analysis.

 The goal of the problem analysis phase is to study and understand the problem
domain well enough to thoroughly analyze its problems, opportunities, and con-
straints. Some methodologies encourage a very detailed understanding of the current
system and document that system in painstaking detail using system models such as
data flow diagrams.

 Figure 4-8 is the task diagram for the problem analysis phase. The final phase deliv-
erable and milestone is producing SYSTEM IMPROVEMENT OBJECTIVES that address problems,
opportunities, and directives. Depending on the size of the system, its complexity, and
the degree to which project worthiness is already known, the illustrated tasks may
consume one to six weeks. Most of these tasks can be accelerated by JRP-like sessions.
Let’s now examine each of these tasks in greater detail.

 > Task 2.1—Understand the Problem Domain

 During the problem analysis phase, the team initially attempts to learn about the
current system. Each SYSTEM OWNER, USER , and ANALYST brings a different level of under-
standing to the system—different detail, different vocabulary, different perceptions,
and different opinions. A well-conducted study can prove revealing to all parties,
including the system’s own management and users. It is important to study and
 understand the problem domain, that domain in which the business problems, op-
portunities, directives, and constraints exist.

130 Part Two Systems Analysis Methods

Repository

SYSTEM OWNERS AND USERS

(OR STEERING COMMITTEE)

THE BUSINESS COMMUNITY

(approval to continue project—
from preliminary investigation)

Project Charter

Understand

the problem

domain

2.1

Problem Domain

and

Business Vocabulary

Analyze

problems and

opportunities

2.2

problem statements,

cause/effect analyses

problem domain,

process models,

process analysis

Analyze

business

processes

2.3 (opt)

Establish

system

improvement

objectives

2.4

Update or

refine the

project plan

2.5

Updated

Project

Plan

Communicate

findings and

recommenda-

tions

2.6

SYSTEM
IMPROVEMENT
OBJECTIVES

System

Improvement

Objectives

current system

documentation,

system models

problem analyses,

system models,

and system

improvement

objectives

project

plan
problem analyses,

system improvement objectives,

and constraints

 F I G U R E 4 - 8

Tasks for the
Problem Analysis
Phase of Systems
Analysis

 This task will be led by the project manager but facilitated by the lead systems
analyst. It is not uncommon for one individual to play both roles (as Sandra does in
the SoundStage case). Other SYSTEMS ANALYSTS may also be involved since they con-
duct interviews, scribe for meetings, and document findings. A comprehensive study
should include representative SYSTEM OWNERS and USERS from all business units that
will be supported or impacted by the system and project. It is extraordinarily impor-
tant that enough users be included to encompass the full scope of the system being
studied. In some organizations, one or more experienced users are “loaned” to the
project full-time as business analysts; however, it is rare that any one user can fully
represent the interests of all users. Business analysts can, however, serve as facilita-
tors to get the right people involved and sustain effective communication back to
the business units and management. SYSTEM DESIGNERS and BUILDERS are rarely involved
in this task unless they are interviewed to determine any technical limitations of the
current system.

 In Figure 4-8 , this task is triggered by APPROVAL TO CONTINUE THE PROJECT —from
the scope definition phase. (The dashed line indicates this approval is an event or
trigger, not a data or information flow.) The approval comes from the SYSTEM OWNERS
or steering committee. The key informational input is the PROJECT CHARTER and any CUR-
RENT SYSTEM DOCUMENTATION that may exist in the repository and program libraries for
the current system. Current system documentation doesn’t always exist. And when
it does exist, it must be carefully checked for currency—most such documentation

Systems Analysis Chapter Four 131

is notoriously out of date because analysts and programmers are not always diligent
about updating that documentation as changes occur throughout the lifetime of a
system.

 The deliverables of this task are an understanding of the PROBLEM DOMAIN AND
BUSINESS VOCABULARY . Your understanding of the existing problem domain should be
documented so that it can be verified that you truly understand it. There are several
ways to document the problem domain. Certainly, drawing SYSTEM MODELS of the cur-
rent system can help, but they can lead to a phenomenon called “analysis paralysis,”
in which the desire to produce perfect models becomes counterproductive to the
schedule. Another approach might be to use your information system building blocks
as a framework for listing and defining the system domain:

 • KNOWLEDGE —List all the “things” about which the system currently stores data
(in fi les, databases, forms, etc.). Defi ne each thing in business terms. For example,
“An ORDER is a business transaction in which a customer requests to purchase
products.”

 Additionally, we could list all the reports produced by the current system and
describe their purpose or use. For example, “The open orders report describes
all orders that have not been fi lled within one week of their approval to be fi lled.
The report is used to initiate customer relationship management through personal
contact.”

 • PROCESSES —Defi ne each business event for which a business response (process)
is currently implemented. For example, “A customer places a new order,” or “A
customer requests changes to a previously placed order,” or “A customer cancels an
order.”

 • COMMUNICATIONS —Defi ne all the locations that the current system serves and
all of the users at each of those locations. For example, “The system is cur-
rently used at regional sales offi ces in San Diego, Dallas, St. Louis, Indianapolis,
Atlanta, and Manhattan. Each regional sales offi ce has a sales manager, assistant
sales manager, administrative assistant, and 5 to 10 sales clerks, all of whom use
the current system. Each region is also home to 5 to 30 sales representatives
who are on the road most days but who upload orders and other transactions
each evening.”

 Another facet of interfaces is system interfaces—that is, interfaces that
exist between the current information system and other information sys-
tems and computer applications. These can be quickly listed and described
by the information systems staff.

 Ultimately, the organization’s systems development methodology and project plan
will determine what types and level of documentation are expected.

 The business vocabulary deliverable is all too often shortchanged. Understanding
the business vocabulary of the system is an excellent way of understanding the system
itself. It bridges the communication gap that often exists or develops between busi-
ness and technology experts.

 Several other techniques and skills are useful for developing an understanding
of an existing system. Obviously, fact-finding techniques (taught in the next chapter)
are critical to learning about any existing system. Also, joint requirements planning, or
JRP, techniques (also taught in the next chapter) can accelerate this task. Finally, the
ability to clearly communicate back to users what you’ve learned about a system is
equally crucial.

 Context Diagram The purpose of a context diagram is to analyze how the sys-
tem interacts with the world around it and to specify in general terms the system
inputs and outputs. Context diagrams can be drawn in various ways. Chapter 8
presents the traditional format, which was done as the fi rst step in drawing data
fl ow diagrams. Chapter 6 shows a different format for a context diagram. The

132 Part Two Systems Analysis Methods

 context diagram shown in Figure 4-9 employs a hybrid approach. It employs use
case symbols as use cases are becoming a generally accepted tool of the require-
ments analysis phase.

 The system itself is shown as a “black box” in the middle of the diagram. We are
not yet ready to look inside the box. For now we just want to see how everyone will
use the box. The stick figures around the outside of the diagram are the persons,
organizations, and other information systems that will interact with the system. In
use cases, these are called “actors,” and we can call them that here. In traditional data
flow diagrams, they are called “external agents.” In Chapters 6 and 8 you will learn
that once you look inside the system box, other things such as time or devices like
sensors can also be actors or external agents. But for a context diagram they are
rarely shown.

 The lines indicate the inputs (arrows pointing to the system) provided by actors
to the system and the outputs (arrows pointing to the actors) created by the system.
Each input and output is identified with a noun phrase that describes it.

Potential Member

Promotion, Subscription,

and Member Reports

Member Order
Club Member

Past Member

Member Services

Member

Reports

New Program

Warehouse

Marketing Department

Accounts Receivable

Member Credit

Status

Member

Services

System

Packing Order

Various Inquiry Responses

Promotion

Subscription Offer

New Subscription

Subscription

Renewal

Subscription

Program

Resubscription

Offer

 F I G U R E 4 - 9 Context Diagram

Systems Analysis Chapter Four 133

 To build a context diagram ask the users what business transactions the system
must respond to; these are the inputs. Also ask the users what reports, notifica-
tions, and other outputs must be produced by the system. A system can have many
reports that can quickly clutter the diagram; consolidate them as needed to keep
the diagram readable. During other phases in the process they will be analyzed
separately.

 We certainly couldn’t build an information system from a context diagram. But it
is a solid first step. From this simple diagram we know what inputs the system must
respond to and what outputs it must produce. In other words, it helps us understand
the problem domain. We will see in Chapter 6 how to detect use cases from a context
diagram. That will be the first step in cracking open the “black box.”

 > Task 2.2—Analyze Problems and Opportunities

 In addition to learning about the current system, the project team must work with
system owners and system users to analyze problems and opportunities. You might
be asking, “Weren’t problems and opportunities identified earlier, in the preliminary
investigation phase?” Yes, they were. But those initial problems may be only symp-
toms of other problems, perhaps problems not as well known or understood by the
users. Besides, we haven’t yet really analyzed any of those problems in the classic
sense.

 True problem analysis is a difficult skill to master, especially for inexperienced
systems analysts. Experience suggests that most new systems analysts (and many
system owners and users) try to solve problems without truly analyzing them. They
might state a problem like this: “We need to . . .” or “We want to . . .” In doing so, they
are stating the problem in terms of a solution. More effective problem solvers have
learned to truly analyze the problem before stating any possible solution. They analyze
each perceived problem for causes and effects . In practice, an effect may actually
be a symptom of a different, more deeply rooted or basic problem. That problem must
also be analyzed for causes and effects, and so on, until such a time as the causes and
effects do not yield symptoms of other problems. Cause-and-effect analysis leads to
true understanding of problems and can lead to not-so-obvious but more creative and
valuable solutions.

 SYSTEMS ANALYSTS facilitate this task; however, all SYSTEMS OWNERS and USERS should
actively participate in the process of cause-and-effect analysis. They are the problem
domain experts. SYSTEM DESIGNERS and BUILDERS are not usually involved in this process
unless they are called on to analyze technical problems that may exist in the current
system.

 As shown in Figure 4-8 , the team’s understanding of the SYSTEM DOMAIN AND
BUSINESS VOCABULARY triggers this task. This understanding of the problem domain is
crucial because the team members should not attempt to analyze problems unless
they understand the domain in which those problems occur. The other informa-
tional input to this task is the initial PROBLEM STATEMENTS (from the scope definition
phase). The deliverables of this task are the updated PROBLEM STATEMENTS and the
 CAUSE-EFFECT ANALYSIS for each problem and opportunity. Figure 4-10 illustrates one
way to document a cause-and-effect analysis.

 Once again, fact-finding and JRP techniques are crucial to this task. These tech-
niques, as well as cause-and-effect analysis, are taught in the next chapter.

 > Task 2.3—Analyze Business Processes

 This task is appropriate only to business process redesign (BPR) projects or system
development projects that build on or require significant business process rede-
sign. In such a project, the team is asked to examine its business processes in much
greater detail to measure the value added or subtracted by each process as it relates
to the total organization. Business process analysis can be politically charged. System

cause-and-effect analysis
 a technique in which problems

are studied to determine their

causes and effects.

134 Part Two Systems Analysis Methods

owners and users alike can become very defensive about their existing business pro-
cesses. The analysts involved must keep the focus on the processes, not the people
who perform them, and constantly remind everyone that the goal is to identify op-
portunities for fundamental business change that will benefit the business and ev-
eryone in the business.

 One or more systems analysts or business analysts facilitate the task. Ideally, the
 ANALYSTS should be experienced, trained, or certified in BPR methods. The only other
participants should be appropriate SYSTEM OWNERS and USERS . Business process analysis
should avoid any temptation to focus on information technology solutions until well

PROBLEMS, OPPORTUNITIES, OBJECTIVES, AND CONSTRAINTS MATRIX

Project: Member Services Information System

Created by: Robert Martinez

Date Created: January 21, 2003

Project Manager: Sandra Shepherd

Last Updated by: Robert Martinez

Date Last Updated: January 31, 2003

Order response time

is unacceptable.

1. 1.

2.

3.

4.

5.

1.

2.

3.

4.

Throughput has increased

while number of order

clerks was downsized.

Time to process a single

order has remained

relatively constant.

System is too keyboard-

dependent. Many of the

same values are keyed for

most orders. Net result is

(with the current system)

each order takes longer to

process than is ideal.

Data editing is performed

by the AS/400. As that

computer has approached

its capacity, order edit

responses have slowed.

Because order clerks are

trying to work faster to

keep up with the volume,

the number of errors has

increased.

Warehouse picking tickets

for orders were never

designed to maximize the

efficiency of order fillers.

As warehouse operations

grew, order filling delays

were inevitable.

Decrease the time

required to process a

single order by 30%.

Eliminate keyboard data

entry for as much as 50%

of all orders.

For remaining orders,

reduce as many key-

strokes as possible by

replacing keystrokes with

point-and-click objects

on the computer display

screen.

Move data editing from a

shared computer to the

desktop.

Replace existing picking

tickets with a paperless

communication system

between member

services and the

warehouse.

1.

2.

3.

There will be no increase

in the order processing

workforce.

Any system developed

must be compatible with

the existing Windows 95

desktop standard.

New system must be

compatible with the

already approved

automatic identification

system (for bar coding).

CAUSE-AND-EFFECT ANALYSIS SYSTEM IMPROVEMENT OBJECTIVES

Problem or

Opportunity Causes and Effects System Objective System Constraint

 F I G U R E 4 - 1 0 A Sample Cause-and-Effect Analysis

Systems Analysis Chapter Four 135

after the business processes have been redesigned for maximum efficiency. Some
analysts find it useful to assume the existence of “perfect people” and “perfect tech-
nology” that can make anything “possible.” They ask, “If the world were perfect, would
we need this process?”

 As depicted in Figure 4-8 , a business process analysis task is dependent only on
some PROBLEM DOMAIN knowledge (from Task 2.1). The deliverables of this task are busi-
ness “as is” PROCESS MODELS and PROCESS ANALYSES . The process models can look very
much like data flow diagrams (Figure 4-2) except they are significantly annotated to
show (1) the volume of data flowing through the processes, (2) the response times of
each process, and (3) any delays or bottlenecks that occur in the system. The process
analysis data provides additional information such as (a) the cost of each process, (b)
the value added by each process, and (c) the consequences of eliminating or stream-
lining the process. Based on the as-is models and their analysis, the team develops “to
be” models that redesign the business processes to eliminate redundancy and bureau-
cracy and increase efficiency and service.

 Several techniques are applicable to this task. Once again, fact-finding techniques
and facilitated team meetings (Chapter 5) are invaluable. Also, process modeling tech-
niques (Chapter 8) are critical to BPR success. > Task 2.4—Establish System Improvement Objectives

 Given our understanding of the current system’s scope, problems, and opportunities,
we can now establish system improvement objectives. The purpose of this task is to
establish the criteria against which any improvements to the system will be measured
and to identify any constraints that may limit flexibility in achieving those improve-
ments. The criteria for success should be measured in terms of objectives . Objectives
represent the first attempt to establish expectations for any new system. In addition
to identifying objectives, we must also identify any known constraints. Constraints
place limitations or delimitations on achieving objectives. Deadlines, budgets, and re-
quired technologies are examples of constraints.

 The SYSTEMS ANALYSTS facilitate this task. Other participants include the same SYSTEM
OWNERS and USERS who have participated in other tasks in this problem analysis phase.
Again, we are not yet concerned with technology; therefore, SYSTEM DESIGNERS and
 BUILDERS are not involved in this task.

 This task is triggered by the PROBLEM ANALYSES completed in Tasks 2.2 and 2.3. For
each verified and significant problem, the analysts and users should define specific
 SYSTEM IMPROVEMENT OBJECTIVES . They should also identify any CONSTRAINTS that may limit
or prevent them from achieving the system improvement objectives.

 System improvement objectives should be precise, measurable statements of busi-
ness performance that define the expectations for the new system. The last two columns
of Figure 4-10 document typical system improvement objectives and constraints. > Task 2.5—Update or Refi ne the Project Plan

 Recall that project scope is a moving target. Based on our baseline schedule and
budget from the scope definition phase, scope may have grown or diminished in size
and complexity. (Growth is much more common!) Now that we’re approaching the
completion of the problem analysis phase, we should reevaluate project scope and
 update or refine the project plan accordingly.

 The project manager, in conjunction with SYSTEM OWNERS and the entire project
team, facilitates this task. The SYSTEMS ANALYSTS and SYSTEM OWNERS are the key individ-
uals in this task. The analysts and owners should consider the possibility that not all
objectives may be met by the new system. Why? The new system may be larger than
expected, and they may have to reduce the scope to meet a deadline. In this case the
system owner will rank the objectives in order of importance. Then, if the scope must
be reduced, the higher-priority objectives will tell the analyst what’s most important.

 objective a measure of suc-

cess. It is something that you

expect to achieve, if given

suffi cient resources.

 constraint something that

will limit your fl exibility in de-

fi ning a solution to your objec-

tives. Essentially, constraints

cannot be changed.

136 Part Two Systems Analysis Methods

 As shown in Figure 4-8 , this task is triggered by completion of the SYSTEM IMPROVE-
MENT OBJECTIVES . The initial PROJECT PLAN is another key input, and the UPDATED PROJECT
PLAN is the key output. The updated plan should now include a detailed plan for the
requirements analysis phase that should follow. The techniques and steps for updating
the project plan were taught in Chapter 3, “Project Management.” > Task 2.6—Communicate Findings and

Recommendations

 As with the scope definition phase, the problem analysis phase concludes with a
communication task. We must communicate findings and recommendations to the

F I G U R E 4 - 1 1 An Outline for a System Improvement Objectives and
Recommendations Report

Analysis of the Current ________________ System

 I. Executive summary (approximately 2 pages)

 A. Summary of recommendation

 B. Summary of problems, opportunities, and directives

 C. Brief statement of system improvement objectives

 D. Brief explanation of report contents

 II. Background information (approximately 2 pages)

 A. List of interviews and facilitated group meetings conducted

 B. List of other sources of information that were exploited

 C. Description of analytical techniques used

 III. Overview of the current system (approximately 5 pages)

 A. Strategic implications (if the project is part of or impacts an existing information
systems strategic plan)

 B. Models of the current system

 1. Interface model (showing project scope)

 2. Data model (showing project scope)

 3. Geographic models (showing project scope)

 4. Process model (showing functional decomposition only)

 IV. Analysis of the current system (approximately 5–10 pages)

 A. Performance problems, opportunities, and cause-effect analysis

 B. Information problems, o–pportunities, and cause-effect analysis

 C. Economic problems, opportunities, and cause-effect analysis

 D. Control problems, opportunities, and cause-effect analysis

 E. Effi ciency problems, opportunities, and cause-effect analysis

 F. Service problems, opportunities, and cause-effect analysis

 V. Detailed recommendations (approximately 5–10 pages)

 A. System improvement objectives and priorities

 B. Constraints

 C. Project plan

 1. Scope reassessment and refi nement

 2. Revised master plan

 3. Detailed plan for the defi nition phase

VI. Appendixes

 A. Any detailed system models

 B. Other documents as appropriate

Systems Analysis Chapter Four 137

business community. The project manager and executive sponsor should jointly fa-
cilitate this task. Other meeting participants should include the entire project team,
including assigned SYSTEM OWNERS, USERS, ANALYSTS, DESIGNERS , and BUILDERS . And, as usual,
the meeting should be open to any and all interested staff from the business commu-
nity. Also, if an intranet Web site was established for the project, it should have been
maintained throughout the problem analysis phase to ensure continuous communica-
tion of project progress.

 This task is triggered by the completion of the UPDATED PROJECT PLAN . Informational
inputs include the PROBLEM ANALYSES , any SYSTEM MODELS , the SYSTEM IMPROVEMENT OBJEC-
TIVES , and any other documentation that was produced during the problem analysis
phase. Appropriate elements are combined into the SYSTEM IMPROVEMENT OBJECTIVES , the
major deliverable of the problem analysis phase. The format may be a report, a verbal
presentation, or an inspection by an auditor or peer group (called a walkthrough). An
outline for a written report is shown in Figure 4-11 .

 Interpersonal and communications skills are essential to this task. Systems ana-
lysts should be able to write a formal business report and make a business presenta-
tion without getting into technical issues or alternatives.

 This concludes the problem analysis phase. One of the following decisions must
be made after the conclusion of this phase:

 • Authorize the project to continue, as is, to the requirements analysis phase.
 • Adjust the scope, cost, and/or schedule for the project and then continue to the

requirements analysis phase.
 • Cancel the project due to (1) lack of resources to further develop the system,

(2) realization that the problems and opportunities are simply not as important
as anticipated, or (3) realization that the benefi ts of the new system are not
likely to exceed the costs.

 With some level of approval from the SYSTEM OWNERS , the project can now proceed to the
requirements analysis phase. The Requirements Analysis Phase

 Many inexperienced analysts make a critical mistake after completing the problem
analysis phase. The temptation at that point is to begin looking at alternative solu-
tions, particularly technical solutions. One of the most frequently cited errors in
new information systems is illustrated in the statement, “Sure the system works,
and it is technically impressive, but it just doesn’t do what we needed it to do.”
The requirements analysis phase defines the business requirements for a new
system.

 Did you catch the key word in the quoted sentence? It is “what,” not “how”! Ana-
lysts are frequently so preoccupied with the technical solution that they inadequately
define the business requirements for that solution. The requirements analysis phase
answers the question, “What do the users need and want from a new system?” The
requirements analysis phase is critical to the success of any new information system.
In different methodologies the requirements analysis phase might be called the defi-

nition phase or logical design phase.
 Can you ever skip the requirements analysis phase? Absolutely not! New systems

will always be evaluated, first and foremost, on whether or not they fulfill business ob-
jectives and requirements, regardless of how impressive or complex the technological
solution might be!

 It should be acknowledged that some methodologies integrate the problem anal-
ysis and requirements analysis phases into a single phase.

138 Part Two Systems Analysis Methods

 Figure 4-12 illustrates the typical tasks of the requirements analysis phase. The
final phase deliverable and milestone is producing a BUSINESS REQUIREMENTS STATEMENT
that will fulfill the system improvement objectives identified in the previous phase.
One of the first things you may notice in this task diagram is that most of the tasks
are not as sequential as those in previous task diagrams. Instead, many of these tasks
occur in parallel as the team works toward the goal of completing the requirements
statement. Let’s now examine each of these tasks in greater detail. > Task 3.1—Identify and Express System Requirements

 The initial task of the requirements analysis phase is to identify and express require-

ments. While this may seem to be an easy or trivial task, it is often the source of many
errors, omissions, and conflicts. The foundation for this task was established in the
problem analysis phase when we identified system improvement objectives. Minimally,
this task translates those objectives into an outline of functional and nonfunctional

requirements that will be needed to meet the objectives. Functional requirements
are frequently identified in terms of inputs, outputs, processes, and stored data that
are needed to satisfy the system improvement objectives. Examples of nonfunctional

 functional requirement
 a description of activities

and services a system must

provide.

 nonfunctional require-
ment a description of other

features, characteristics,

and constraints that defi ne

a satisfactory system.

Prioritize
system

requirements

3.2

Repository

system improvement objectives,

functional and nonfunctional

requirements

validated

requirements

with priorities

SYSTEM OWNERS AND USERS

THE BUSINESS COMMUNITY

(approval to continue

the project—from

problem analysis phase)

Update or
refine the

project plan

3.3

project

plan

Completed

Requirements

and Priorities

BUSINESS
REQUIREMENTS

STATEMENT

Draft

Functional

and

Nonfunctional

Requirements

Communicate
requirements

statement

3.4

final

requirements

and priorities

Revised Plan Completed

Identify and
express

requirements

3.1

 F I G U R E 4 - 1 2

Tasks for the
Requirements
Analysis Phase of
Systems Analysis

Systems Analysis Chapter Four 139

requirements include performance (throughput and response time); ease of learning
and use; budgets, costs, and cost savings; timetables and deadlines; documentation and
training needs; quality management; and security and internal auditing controls.

 SYSTEMS ANALYSTS facilitate the task. They also document the results. Obviously,
 SYSTEM USERS are the primary source of business requirements. Some SYSTEM OWNERS may
elect to participate in this task since they played a role in framing the system improve-
ment objectives that will guide the task. SYSTEM DESIGNERS and BUILDERS should not be
involved because they tend to prematurely redirect the focus to the technology and
technical solutions.

 As shown in Figure 4-12 , this task (and phase) is triggered by the APPROVAL TO
CONTINUE THE PROJECT FROM THE PROBLEM ANALYSIS PHASE . The key input is the SYSTEM IM-
PROVEMENT OBJECTIVES from the problem analysis phase (via the repository). Of course,
any and all relevant information from the problem analysis phase is available from the
repository for reference as needed.

 The only deliverable of this task is the DRAFT FUNCTIONAL AND NONFUNCTIONAL REQUIRE-
MENTS . Various formats can work. In its simplest format, the outline could be divided
into four logical sections: the original list of system improvement objectives and, for
each objective, a sublist of (a) inputs, (b) processes, (c) outputs, and (d) stored data
needed to fulfill the objective. Increasingly, however, system analysts are expressing
functional requirements using a modeling tool called use cases . Use cases model
business scenarios and events that must be handled by a new system. They are intro-
duced in Chapter 6 and used throughout this book.

 The PIECES framework that was used earlier to identify problems, opportunities,
and constraints can also be used as a framework for defining draft requirements.

 Several techniques are applicable to this task. Joint requirements planning (JRP)
is the preferred technique for rapidly outlining business requirements. Alternatively,
the analysts could use other fact-finding methods such as surveys and interviews. Both
JRP and fact-finding are taught in the next chapter.

 > Task 3.2—Prioritize System Requirements

 We stated earlier that the success of a systems development project can be measured
in terms of the degree to which business requirements are met. But not all require-
ments are created equal. If a project gets behind schedule or over budget, it may
be useful to recognize which requirements are more important than others. Thus,
given the validated requirements, system owners and users should prioritize system

requirements.
 Prioritization of requirements can be facilitated using a popular technique called

 timeboxing . Timeboxing attempts to divide requirements into “chunks” that can be
implemented within a period of time that does not tax the patience of the user and
management community. Timeboxing forces priorities to be clearly defined.

 SYSTEMS ANALYSTS facilitate the prioritization task. SYSTEM OWNERS and USERS establish
the actual priorities. SYSTEM DESIGNERS and BUILDERS are not involved in the task. The task is
triggered by the VALIDATED REQUIREMENTS . It should be obvious that you cannot adequately
prioritize an incomplete set of requirements. The deliverable of this task is the REQUIRE-
MENTS WITH PRIORITIES . Priorities can be classified according to their relative importance:

 • A mandatory requirement is one that must be fulfi lled by the minimal system,
version 1.0. The system is useless without it. Careful! There is a temptation to
label too many requirements as mandatory. A mandatory requirement cannot
be ranked because it is essential to any solution. In fact, if an alleged mandatory
requirement can be ranked, it is actually a desirable requirement.

 • A desirable requirement is one that is not absolutely essential to version 1.0.
It may still be essential to the vision of some future version. Desirable require-
ments can and should be ranked. Using version numbers as the ranking scheme
is an effective way to communicate and categorize desirable requirements.

 use case a business

scenario or event for which

the system must provide a

defi ned response. Use cases

evolved out of object-oriented

analysis; however, their use

has become common in

many other methodologies for

systems analysis and design.

 timeboxing a technique

that delivers information

systems functionality and

requirements through version-

ing. The development team

selects the smallest subset of

the system that, if fully imple-

mented, will return immediate

value to the system owners

and users. That subset is

developed, ideally with a time

frame of six to nine months or

less. Subsequently, value-

added versions of the system

are developed in similar time

frames.

140 Part Two Systems Analysis Methods

 > Task 3.3—Update or Refi ne the Project Plan

 Here again, recall that project scope is a moving target. Now that we’ve identified the
business system requirements, we should step back and redefine our understanding
of the project scope and update our project plan accordingly. The team must consider
the possibility that the new system may be larger than originally expected. If so, the
team must adjust the schedule, budget, or scope accordingly. We should also secure
approval to continue the project into the next phase. (Work may have already started
on the design phases; however, the decisions still require review.)

 The project manager, in conjunction with SYSTEM OWNERS and the entire project
team, facilitates this task. As usual, the project manager and SYSTEM OWNERS are the key
individuals in this task. They should consider the possibility that the requirements
now exceed the original vision that was established for the project and new system.
They may have to reduce the scope to meet a deadline or increase the budget to get
the job done.

 As shown in Figure 4-12 , this task is triggered by completion of the COMPLETED
REQUIREMENTS AND PRIORITIES . The up-to-date PROJECT PLAN is the other key input, and it is
updated in the repository as appropriate. The tools, techniques, and steps for mainte-
nance of the project plan were covered in Chapter 3, “Project Management.”

 > Task 3.4—Communicate the Requirements Statement

 Communication is an ongoing task of the requirements analysis phase. We must com-
municate requirements and priorities to the business community throughout the
phase. Users and managers will frequently lobby for requirements and priority con-
sideration. Communication is the process through which differences of opinion must
be mediated. The project manager and executive sponsor should jointly facilitate this
task. Today, a project intranet or portal is frequently used to communicate require-
ments. Some systems allow users and managers to subscribe to requirements docu-
ments to ensure they are notified as changes occur. Interpersonal, communications,
and negotiation skills are essential to this task.

 > Ongoing Requirements Management

 The requirements analysis phase is now complete. Or is it? It was once popular to
freeze the business requirements before beginning the system design and construc-
tion phases. But today’s economy has become increasingly fast-paced. Businesses are
measured on their ability to quickly adapt to constantly changing requirements and
opportunities. Information systems can be no less responsive than the business itself.
Thus, requirements analysis really never ends. While we quietly transition to the re-
maining phases of our project, there remains an ongoing need to continuously manage
requirements through the course of the project and the lifetime of the system.

 Requirements management defines a process for system owners, users, analysts,
designers, and builders to submit proposed changes to requirements for a system. The
process specifies how changes are to be requested and documented, how they will
be logged and tracked, when and how they will be assessed for priority, and how they
will eventually be satisfied (if they are ever satisfied). The Logical Design Phase

 Not all projects embrace model-driven development, but most include some amount
of system modeling. A logical design further documents business requirements using
system models that illustrate data structures, business processes, data flows, and user

Systems Analysis Chapter Four 141

interfaces (increasingly using object models, as introduced earlier in the chapter). In a
sense, they validate the requirements established in the previous phase.

 Figure 4-13 illustrates the typical tasks of the logical design phase. The final phase
deliverable and milestone is producing a BUSINESS REQUIREMENTS STATEMENT that will ful-
fill the system improvement objectives identified in the previous phase. One of the
first things you may notice in this task diagram is that most of the tasks are not as se-
quential as in previous task diagrams. Instead, many of these tasks occur in parallel as
the team works toward the goal of completing the requirements statement. Let’s now
examine each of these tasks in greater detail. > Task 4.1a—Structure Functional Requirements

 One approach to logical design is to structure the functional requirements. This
means that, using agile methods, you should draw or update one or more system
models to illustrate the functional requirement. These may include any combination
of data, process, and object models that accurately depict the business and user re-
quirements (but not any technical solution). System models are not complete until

Structure
functional

requirement

4.1a

Prototype
functional

requirement

4.1b

system models and specifications

functional

prototype

THE BUSINESS

COMMUNITY

Each Functional

Requirement

Define
acceptance

tests

4.3 (rec)

system improvement objectives

and

acceptance test cases

System Models

and/or

Prototypes

Validate
functional

requirement

4.2

work-in-process

models and

prototypes

System

Models

SYSTEM OWNERS AND USERS

Repository

 F I G U R E 4 - 1 3

Tasks for the Logical
Design Phase of
Systems Analysis

142 Part Two Systems Analysis Methods

all appropriate functional requirements have been modeled. Models are frequently
supplemented with detailed logical specifications that describe data attributes, busi-
ness rules and policies, and the like.

 SYSTEMS ANALYSTS facilitate the task. They also document the results. Obviously,
 SYSTEM USERS are the primary source of factual details needed to draw the models.
As shown in Figure 4-13 , this task (and phase) is triggered by each FUNCTIONAL
REQUIREMENT . The outputs are the actual SYSTEM MODELS AND DETAILED SPECIFICATIONS .
The level of detail required depends on the methodology being followed. Agile
methods usually require “just enough” documentation. How much is enough? That
is arguable, but agile methodologists hold that every deliverable should be essen-
tial to the forthcoming design and programming phases. This textbook will teach
you a variety of different system modeling tools and techniques to apply to logical
design. > Task 4.1b—Prototype Functional

Requirements (alternative)

 Prototyping is an alternative (and sometimes a prerequisite) to system modeling.
Sometimes users have difficulty expressing the facts necessary to draw adequate
system models. In such a case, an alternative or complementary approach to system
modeling is to build discovery prototypes. Prototyping is typically used in the re-
quirements analysis phase to build sample inputs and outputs. These inputs and out-
puts help to construct the underlying database and the programs for inputting and
outputting the data to and from the database. Although discovery prototyping is op-
tional, it is frequently applied to systems development projects, especially in cases
where the users are having difficulty stating or visualizing their business require-
ments. The philosophy is that the users will recognize their requirements when they
see them.

 SYSTEMS BUILDERS facilitate this analysis task. SYSTEM ANALYSTS document and analyze
the results. As usual, SYSTEM USERS are the primary source of factual input to the task.
 Figure 4-13 demonstrates that this task is dependent on one or more FUNCTIONAL RE-
QUIREMENTS that have been identified by the users. The system builders and analysts
respond by constructing the PROTOTYPES . As described earlier in this chapter, it may
be possible to reverse engineer some SYSTEM MODELS directly from the prototype data-
bases and program libraries. > Task 4.2—Validate Functional Requirements

 Both SYSTEM MODELS and PROTOTYPES are representations of the users’ requirements.
They must be validated for completeness and correctness. SYSTEMS ANALYSTS facilitate
the prioritization task by interactively engaging system users to identify errors and
omissions or make clarifications. > Task 4.3—Defi ne Acceptance Test Cases

 While not a required task, most experts agree that it is not too early to begin plan-
ning for system testing. System models and prototypes very effectively define the pro-
cessing requirements, data rules, and business rules for the new system. Accordingly,
these specifications can be used to define TEST CASES that can ultimately be used to test
programs for correctness. Either SYSTEM ANALYSTS or SYSTEM BUILDERS can perform this
task and validate the test cases with the SYSTEM USERS .

 Recall that SYSTEM IMPROVEMENT OBJECTIVES were defined earlier in the project. Test
cases can be defined to test these objectives as well.

Systems Analysis Chapter Four 143 The Decision Analysis Phase

 Given the business requirements for an improved information system, we can
finally address how the new system—including computer-based alternatives— might
be implemented with technology. The purpose of the decision analysis phase is to
identify candidate solutions, analyze those candidate solutions, and recommend a
target system that will be designed, constructed, and implemented. Chances are that
someone has already championed a vision for a technical solution. But alternative
solutions, perhaps better ones, nearly always exist. During the decision analysis phase,
it is imperative that you identify options, analyze those options, and then sell the best
solution based on the analysis.

 Figure 4-14 illustrates the typical tasks of the decision analysis phase. The final
phase deliverable and milestone is producing a SYSTEM PROPOSAL that will fulfill the
business requirements identified in the previous phase. Let’s now examine each of
these tasks in greater detail.

 > Task 5.1—Identify Candidate Solutions

 Given the business requirements established in the definition phase of systems anal-
ysis, we must first identify alternative candidate solutions. Some candidate solutions

Identify
candidate
solutions

5.1

Analyze
candidate
solution

5.2

Update
the project

plan

5.4

SYSTEM
PROPOSAL

business requirements,
candidate solutions

target
system
solution

feasibility
analysis

project schedule
and resource
assignments

SYSTEM OWNERS AND USERS

(OR STEERING COMMITTEE)

THE BUSINESS COMMUNITY TECHNOLOGY INDUSTRY

TECHNOLOGY INDUSTRY

Compare
candidate
solutions

5.3

all candidates'

feasibility
analyses

(no more
candidates)

Recommend
a system
solution

5.5

Internal
Ideas and
Opinions

Scope Changes

External
Ideas and
Opinions

(each)
Candidate
Solution

Solution(s)
to be

Recommended

Updated
Project Plan

(approval to

continue project

—from require-

ments analysis)

Repository

 F I G U R E 4 - 1 4

Tasks for the
Decision Analysis
Phase of Systems
Analysis

144 Part Two Systems Analysis Methods

will be posed by design ideas and opinions from SYSTEM OWNERS and USERS . Others
may come from various sources including SYSTEMS ANALYSTS, SYSTEMS DESIGNERS , technical
consultants, and other IS professionals. And some technical choices may be limited
by a predefined, approved technology architecture. It is the intent of this task not to
evaluate the candidates but, rather, simply to define possible candidate solutions to
be considered.

 The SYSTEMS ANALYSTS facilitate this task. SYSTEM OWNERS and USERS are not normally
directly involved in this task, but they may contribute ideas and opinions that start the
task. For example, an owner or user may have read an article about, heard about, or
learned how some competitor’s or acquaintance’s similar system was implemented.
In any case, it is politically sound to consider the ideas. SYSTEM DESIGNERS and BUILDERS
such as database administrators, network administrators, technology architects, and
programmers are also a source of ideas and opinions.

 As shown in Figure 4-14 , this task is formally triggered by the APPROVAL TO CONTINUE
THE PROJECT FROM THE REQUIREMENTS ANALYSIS phase. In reality, ideas and opinions have
been generated and captured since the preliminary investigation phase—it is human
nature to suggest solutions throughout any problem-solving process. Notice that, in
addition to coming from the project team itself, IDEAS AND OPINIONS can be generated
from both internal and external sources. Each idea generated is considered to be a
 CANDIDATE SOLUTION to the BUSINESS REQUIREMENTS .

 The amount of information describing the characteristics of any one candidate
solution may become overwhelming. A candidate matrix, such as Figure 4-15 , is a
useful tool for effectively capturing, organizing, and comparing the characteristics of
different candidate solutions.

 As has been the case throughout this chapter, fact-finding and group facilita-
tion techniques like JRP are the principal techniques used to research candidate
system solutions. Fact-finding and group facilitation techniques are taught in the
next chapter. Also, Chapter 10, “Feasibility Analysis and the System Proposal,” will
teach you how to actually generate candidate system solutions and document them
in the matrix.

 > Task 5.2—Analyze Candidate Solutions

 Each candidate system solution must be analyzed for feasibility. This can occur as each
candidate is identified or after all candidates have been identified. Feasibility analysis
should not be limited to costs and benefits. Most analysts evaluate solutions against at
least four sets of criteria:

 • Technical feasibility —Is the solution technically practical? Does our staff have
the technical expertise to design and build this solution?

 • Operational feasibility —Will the solution fulfi ll the user’s requirements? To
what degree? How will the solution change the user’s work environment? How
do users feel about such a solution?

 • Economic feasibility —Is the solution cost-effective?
 • Schedule feasibility —Can the solution be designed and implemented within an

acceptable time period?

 When completing this task, the analysts and users must take care not to make
comparisons between the candidates. The feasibility analysis is performed on each in-
dividual candidate without regard to the feasibility of other candidates. This approach
discourages the analyst and users from prematurely making a decision concerning
which candidate is the best.

 Again, the SYSTEMS ANALYSTS facilitate the task. Usually SYSTEMS OWNERS and USERS
analyze operational, economic, and schedule feasibility. SYSTEMS DESIGNERS and BUILDERS
usually contribute to the analyses and play the critical role in analyzing technical
feasibility.

F I G U R E 4 - 1 5 A Candidate Systems Matrix

 Characteristics Candidate 1 Candidate 2 Candidate 3 Candidate . . .

Portion of System
Computerized

Brief description of that portion of
the system that would be
computerized in this candidate.

Benefi ts

Brief description of the business
benefi ts that would be realized for
this candidate.

Servers and Workstations

A description of the servers and
workstations needed to support
this candidate.

Software Tools Needed

Software tools needed to design and
build the candidate (e.g., database
management system, emulators,
operating systems, languages, etc.).
Not generally applicable if
applications software packages
are to be purchased.

Application Software

A description of the software to be
purchased, built, accessed, or some
combination of these techniques.

Method of Data Processing

Generally some combination of
online, batch, deferred batch,
remote batch, and real time.

Output Devices and
Implications

A description of output devices that
would be used, special output
requirements (e.g., network,
preprinted forms, etc.), and output
considerations (e.g., timing
constraints).

Input Devices and
Implications

A description of input methods to be
used, input devices (keyboard,
mouse, etc.), special input
requirements (e.g., new or revised
forms from which data would be
input), and input considerations
(e.g., timing of actual inputs).

Storage Devices and
Implications

Brief descriptions of what data
would be stored, what data would
be accessed from existing stores,
what storage media would be used,
how much storage capacity would
be needed, and how data would be
organized.

Same as candidate 2.

Same as candidate 2.

Same as candidate 1.

MS Visual Basic 5.0
System Architect 3.1
Internet Explorer

Same as candidate 2.

Same as candidate 1.

Same as candidate 2.

Same as candidate 2.

Same as candidate 1.

COTS package Platinum
Plus from Entertainment
Software Solutions would
be purchased and
customized to satisfy
Member Services required
functionality.

This solution can be
implemented quickly
because it’s a purchased
solution.

Technically, architecture
dictates Pentium Pro, MS
Windows NT class servers
and Pentium, MS Windows
NT 4.0 workstations
(clients).

MS Visual C and MS
Access for customization
of package to provide
report writing and
integration.

Package solution.

Client/server.

(2) HP4MV department
laser printers.

(2) HP5SI LAN laser
printers.

Keyboard & mouse.

MS SQL Server DBMS
with 100GB arrayed
capability.

Member Services and
warehouse operations in
relation to order fulfi llment.

Fully supports user’s required
business processes for
SoundStage Inc. Plus more
effi cient interaction with
member accounts.

Same as candidate 1.

MS Visual Basic 5.0
System Architect 3.1
Internet Explorer

Custom solution

Same as candidate 1.

(2) HP4MV department
laser printers.

(2) HP5SI LAN laser printers.

(1) PRINTRONIX bar code
printer (includes software &
drivers).
Web pages must be
designed to VGA
resolution. All internal
screens will be designed
for SVGA resolution.

Apple “Quick Take” digital
camera and software.

(15) PSC Quickscan laser
bar code scanners.

(1) HP Scanjet 4C fl atbed
scanner.

Keyboard & mouse.

Same as candidate 1.

146 Part Two Systems Analysis Methods

 Figure 4-14 shows that the task is triggered by the completion of each candidate
solution; however, it is acceptable to delay the task until all candidate solutions have
been identified. Input to the actual feasibility analyses comes from the various team
participants; however, it is not uncommon for external experts (and influences) to
also provide data. The feasibility analysis for each candidate is saved in the repository
for later comparison to other candidates.

 Fact-finding techniques, again, play a role in this systems analysis task. But
the ability to perform a feasibility analysis on a candidate system solution is es-
sential. That technique is taught in Chapter 10, “Feasibility Analysis and the System
Proposal.”

 > Task 5.3—Compare Candidate Solutions

 Once the feasibility analysis has been completed for each candidate solution, we
can compare the candidates and select one or more solutions to recommend to
the SYSTEM OWNERS and USERS . At this point, any infeasible candidates are usually
eliminated from further consideration. Since we are looking for the most feasible
solution of those remaining, we will identify and recommend the candidate that of-
fers the best overall combination of technical, operational, economic, and schedule
feasibilities. It should be noted that in selecting such a candidate, it is rare that
a given candidate is found to be the most operational, technical, economic, and
schedule feasible.

 Once again, the SYSTEMS ANALYSTS facilitate the task. SYSTEM DESIGNERS and BUILDERS
should be available to answer any technical feasibility questions. But ultimately,
the SYSTEMS OWNERS and USERS should be empowered to drive the final analysis and
recommendation.

 In Figure 4-14 , this task is triggered by the completion of the feasibility analysis
of all candidate solutions (NO MORE CANDIDATE SOLUTIONS). The input is ALL OF THE CANDI-
DATES’ FEASIBILITY ANALYSES . Once again, a matrix can be used to communicate the large
volume of information about candidate solutions. The feasibility matrix in Figure 4-16
allows a side-by-side comparison of the different feasibility analyses for a number of
candidates.

 The deliverable of this task is the SOLUTION(S) TO BE RECOMMENDED . If more than one
solution is recommended, priorities should be established.

 Again, feasibility analysis techniques (and the matrix) will be taught in Chapter 9,
“Feasibility Analysis and the System Proposal.” > Task 5.4—Update the Project Plan

 Hopefully, you noticed a recurring theme throughout this chapter. We are continually
updating our project plan as we learn more about a system, its problems, its require-
ments, and its solutions. We are adjusting scope accordingly. Thus, based on our recom-
mended solution(s), we should once again reevaluate project scope and update the

project plan accordingly.
 The project manager, in conjunction with SYSTEM OWNERS and the entire project

team, facilitates this task. The SYSTEMS ANALYSTS and system owners are the key indi-
viduals in this task. But because we are transitioning into technical system design,
we need to begin involving the SYSTEM DESIGNERS and BUILDERS in the project plan
updates.

 As shown in Figure 4-14 , this task is triggered by completion of the SOLUTION(S)
TO BE RECOMMENDED . The latest PROJECT SCHEDULE AND RESOURCE ASSIGNMENTS must be re-
viewed and updated. The UPDATED PROJECT PLAN is the key output. The updated plan
should now include a detailed plan for the system design phase that will follow. The
techniques and steps for updating the project plan were taught in Chapter 3, “Project
Management.”

Systems Analysis Chapter Four 147

 > Task 5.5—Recommend a System Solution

 As with the preliminary investigation and problem analysis phases, the decision anal-
ysis phase concludes with a communication task. We must recommend a system solu-

tion to the business community.
 The project manager and executive sponsor should jointly facilitate this task. Other

meeting participants should include the entire project team, including assigned SYSTEM
OWNERS, USERS, ANALYSTS, DESIGNERS , and BUILDERS . As usual, the meeting should be open
to any and all interested staff from the business community. Also, if an intranet Web
site was established for the project, it should have been maintained throughout the
problem analysis phases to ensure continuous communication of project progress.

 Feasibility Criteria Weight Candidate 1 Candidate 2 Candidate 3 Candidate . . .

Operational Feasibility 30% Only supports Member Fully supports user’s Same as candidate 2.
 Services requirements, required functionality.
Functionality. A description and current business
of to what degree the processes would have
candidate would benefi t the to be modifi ed to take
organization and how well advantage of software
the system would work. functionality.

Political. A description of
how well received this
solution would be from user
management, user, and
organization perspectives.

 Score: 60 Score: 100 Score: 100

Technical Feasibility 30% Current production release of Although current technical Although current technical
 Platinum Plus package is staff has only Powerbuilder staff is comfortable with
Technology. An assessment version 1.0 and has been experience, the senior Powerbuilder, management
of the maturity, availability on the market for only 6 weeks. analysts who saw the MS is concerned with recent
(or ability to acquire), and Maturity of product is a risk, Visual Basic demonstration acquisition of Powerbuilder
desirability of the computer and company charges an and presentation have by Sybase Inc. MS SQL
technology needed to additional monthly fee for agreed the transition will be Server is a current company
support this candidate. technical support. simple and fi nding standard and competes
 experienced VB programmers with SYBASE in the client/
Expertise. An assessment Required to hire or train C will be easier than fi nding server DBMS market.
of the technical expertise expertise to perform Powerbuilder programmers Because of this we have
needed to develop, operate, modifi cations for integration and at a much cheaper cost. no guarantee future
and maintain the candidate requirements. versions of Power-
system. MS Visual Basic 5.0 is a builder will “play well”
 mature technology based with our current version
 on version number. SQL Server.

 Score: 50 Score: 95 Score: 60

Economic Feasibility 30%

Cost to develop: Approximately $350,000. Approximately $418,040. Approximately $400,000.

Payback period
(discounted): Approximately 4.5 years. Approximately 3.5 years. Approximately 3.3 years.

Net present value: Approximately $210,000. Approximately $306,748. Approximately $325,500.

Detailed calculations: See Attachment A. See Attachment A. See Attachment A.

 Score: 60 Score: 85 Score: 90

Schedule Feasibility 10% Less than 3 months. 9–12 months. 9 months.
An assessment of how long
the solution will take to design
and implement.

 Score: 95 Score: 80 Score: 85

 Ranking 100% 60.5 92 83.5

F I G U R E 4 - 1 6 A Feasibility Analysis Matrix

148 Part Two Systems Analysis Methods

 This task is triggered by the completion of the UPDATED PROJECT PLAN . The TARGET
SYSTEM SOLUTION (from Task 4.3) is reformatted for presentation as a SYSTEM PROPOSAL . The
format may be a report, a verbal presentation, or an inspection by an auditor or peer
group (called a walkthrough). An outline for a written report is shown in Figure 4-17 .

 Interpersonal and communications skills are essential to this task. Soft skills such
as salesmanship and persuasion become important. (Many schools offer speech and
communications courses on these subjects.) Systems analysts should be able to write
a formal business report and make a business presentation without getting into tech-
nical issues or alternatives.

 This concludes the decision analysis phase. And it also concludes our coverage of
systems analysis.

F I G U R E 4 - 1 7 An Outline for a Typical System Proposal

 I. Introduction

 A. Purpose of the report

 B. Background of the project leading to this report

 C. Scope of the project

 D. Structure of the report

 II. Tools and techniques used

 A. Solution generated

 B. Feasibility analysis (cost-benefi t)

 III. Information systems requirements

 IV. Alternative solutions and feasibility analysis

 V. Recommendations

 VI. Appendixes

 Summary

 1. Formally, systems analysis is the dissection of a
system into its component pieces. As a problem-
solving phase, it precedes systems design. With
respect to information systems development,
systems analysis is the preliminary investigation of
a proposed project, the study and problem analysis
of the existing system, the requirements analysis of
business requirements for the new system, and the
decision analysis for alternative solutions to fulfi ll
the requirements.

 2. The results of systems analysis are stored in a
 repository for use in later phases and projects.

 3. There are several popular or emerging strategies
for systems analysis. These techniques can be used
in combination with one another.

 a. Model-driven analysis techniques emphasize
the drawing of pictorial system models that rep-
resent either a current reality or a target vision
of the system.

 i) Structured analysis is a technique that
focuses on modeling processes.

 ii) Information engineering is a technique that
focuses on modeling data.

 iii) Object-oriented analysis is a technique that
focuses on modeling objects that encap-
sulate the concerns of data and processes
that act on that data.

 b. Accelerated analysis approaches emphasize the
construction of working models of a system in
an effort to accelerate systems analysis.

 i) Discovery prototyping is a technique that
focuses on building small-scale, functional
subsystems to discover requirements.

 ii) Rapid architected analysis attempts to
automatically generate system models from
either prototypes or existing systems. The
automatic generation of models requires
reverse engineering technology.

 c. Both model-driven and accelerated system
analysis approaches are dependent on require-
ments discovery techniques to identify or ex-
tract problems and requirements from system
owners and users.

 i) Fact-fi nding is the formal process of using
research, interviews, questionnaires,
sampling, and other techniques to collect
information.

 ii) Joint requirements planning (JRP)
techniques use facilitated workshops to
bring together all interested parties and
accelerate the fact-fi nding process.

 d. Business process redesign is a technique that
focuses on simplifying and streamlining fun-
damental business processes before applying
information technology to those processes.

 4. Each phase of systems analysis (preliminary inves-
tigation, problem analysis, requirements analysis,
and decision analysis) can be understood in the
context of the information system building blocks:
 KNOWLEDGE, PROCESSES , and COMMUNICATIONS .

 5. The purpose of the preliminary investigation phase
is to determine the worthiness of the project
and to create a plan to complete those projects
deemed worthy of a detailed study and analysis. To
accomplish the preliminary investigation phase,
the systems analyst will work with the system own-
ers and users to: (a) list problems, opportunities,
and directives; (b) negotiate preliminary scope;
 (c) assess project worth; (d) plan the project, and
 (e) present the project to the business community.
The deliverable for the preliminary investigation
phase is a project charter that must be approved
by system owners and/or a decision-making body,
commonly referred to as the steering committee.

 6. The purpose of the problem analysis phase is to
answer the questions, Are the problems really
worth solving, and is a new system really worth
building? To answer these questions, the problem
analysis phase thoroughly analyzes the alleged
problems and opportunities fi rst identifi ed in the
preliminary investigation phase. To complete the
problem analysis phase, the analyst will continue
to work with the system owner, system users, and
other IS management and staff. The systems analyst
and appropriate participants will (a) study the
problem domain; (b) thoroughly analyze problems
and opportunities; (c) optionally, analyze busi-
ness processes; (d) establish system improvement
objectives and constraints; (e) update the project
plan; and (f) present the fi ndings and recommen-

dations. The deliverable for the problem analysis
phase is the system improvement objectives.

 7. The purpose of the requirements analysis phase is
to identify what the new system is to do without
the consideration of technology—in other words,
to defi ne the business requirements for a new
system. As in the preliminary investigation and
problem analysis phases, the analyst actively works
with system users and owners as well as other IS
professionals. To complete the requirements analy-
sis phase, the analyst and appropriate participants
will (a) defi ne requirements, (b) analyze func-
tional requirements using system modeling and/or
discovery prototyping, (c) trace and complete the
requirements statement, (d) prioritize the require-
ments, and (e) update the project plan and scope.
The deliverable of the requirements analysis phase
is the business requirements statement. Because
requirements are a moving target with no fi naliza-
tion, requirements analysis also includes the ongo-
ing task of managing changes to the requirements.

 8. The purpose of the logical design phase is to docu-
ment business requirements using system models
for the proposed system. These system models can,
depending on the methodology, be any combina-
tion of process models, data models, and object
models. The models depict various aspects of our
building blocks. Alternatively, prototypes could be
built to “discover requirements.” Some discovery
prototypes can be reverse engineered into system
models. The systems analyst and appropriate par-
ticipants will (a) structure or prototype functional
requirements, (b) validate functional requirements,
and (c) defi ne acceptance test cases. These tasks
are not necessarily sequential; they can occur
in parallel. The deliverable for the logical design
phase is the business requirements statement.

 9. The purpose of the decision analysis phase is to
transition the project from business concerns to
technical solutions by identifying, analyzing, and
recommending a technical system solution. To
complete the decision analysis phase, the analyst
and appropriate participants will (a) defi ne candi-
date solutions; (b) analyze candidate solutions for
feasibility (technical, operational, economic, and
schedule feasibility); (c) compare feasible candi-
date solutions to select one or more recommended
solutions; (d) update the project plan based on the
recommended solution; and (e) present and defend
the target solution. The deliverable of the decision
analysis phase is the system proposal.

Systems Analysis Chapter Four 149

 1. What are the business factors that are driving
systems analysis? Based on these factors, what
should systems analysis address?

 2. What is model-driven analysis? Why is it used?
Give several examples.

 3. What is the major focus of structured analysis?
 4. What is the major focus of information

engineering?
 5. Why has object-oriented analysis become

popular? What problems does it solve?
 6. What are the fi ve phases of systems analysis?
 7. What is the goal of the scope defi nition phase?
 8. What are the fi ve tasks that you do in the scope

defi nition phase?
 9. What is the trigger for communicating the

project plan, and who is the audience? Why is
communicating the project plan important?

 10. Why do many new systems analysts fail to
effectively analyze problems? What can they do to
become more effective?

 11. What is a popular tool used to identify and
express the functional requirements of a system?

 12. What is a commonly used technique for
prioritizing system requirements?

 13. When could prototyping be used instead of
system modeling for determining functional
requirements?

 14. Why is the decision analysis phase needed?
 15. What are some ways to identify candidate

solutions?

 Review Questions
1

2

 Problems and Exercises
 1. There are many different approaches to systems

analysis. Despite these different approaches, what
is the universally accepted defi nition of systems
analysis? What is the general consensus as to
when systems analysis begins and when it ends?
As a project manager, what is important to know
regarding the defi nition of systems analysis, and
what is important to ensure in your organization
regarding the defi nition?

 2. As a systems analyst, you will be exposed to
and use many different approaches to systems

analysis throughout your career. It is important
that you understand the conceptual basis of
each type of approach, and their essential differ-
ences, strengths and weaknesses. Consider the
differences in structured analysis, information
 engineering and data modeling, and object-
 oriented analysis, all of which represent model-
driven analysis, and fi ll in the matrix shown
below.

150 Part Two Systems Analysis Methods

 CENTRICITY

(data, process, etc.)

 TYPE OF

MODELS USED

 ESSENTIAL

DIFFERENCES

 STRUCTURED

ANALYSIS

 INFORMATION

ENGINEERING

AND DATA

MODELING

 OBJECT-

ORIENTED

ANALYSIS

Systems Analysis Chapter Four 151

 3. Accelerated systems analysis approaches are
based on the premise that prototypes can help
reveal the most important business requirements
faster than other methods. Describe the two
most commonly used approaches to accelerated
analysis. What do they do and how do they do
it? What is one of the criticisms of prototyping?
Do the accelerated systems analysis approaches
completely replace more formal approaches, such
as structured analysis?

 4. During the scope defi nition phase, what is one
question that you should never lose sight of? And
how do you answer this question? What fi ve tasks
should occur during the scope defi nition phase?

 5. You are a new systems analyst and eager to
prove your abilities on your fi rst project. You are
at a problem analysis meeting with the system
owners and users and fi nd yourself saying, “We
need to do this to solve the problem.” Into what
common trap are you in danger of falling? What
technique could you use to avoid this trap?

 6. Your project team has completed the scope
defi nition phase and is now at the point in the
problem analysis phase for establishing system
improvement objectives. As the systems analyst
on the project team, you are the facilitator of
a brainstorming session to defi ne the system
improvement objectives. Since several of the
project owners and users have never done this
before, describe the characteristics of good sys-
tem improvement objectives and provide some
examples. Members of the project team suggest
the following objectives:

 a. Reduce the time required to process the order.
 b. The new system must use Oracle to store data.
 c. The data input screens must be redesigned so

they are more user-friendly.
 d. The customer satisfaction rate with the

online ordering process must be increased by
10 percent.

 Are these examples of good system improvement
objectives? Why or why not? If not, how could
they be reworded? Also, objectives frequently
have constraints that are tied to them; what, if any,
do you think the matching constraint might be
for each of these objectives?

 7. You’ve made it through the problem analysis
phase of the project and are now beginning the
requirements analysis phase. During the fi rst
meeting on the business requirements, one of
the other analysts on the project team asks the
system users, “How should the new system meet

your needs?” What common mistake is the analyst
making? What are often the consequences of
making this mistake?

 8. What is the difference between functional and
nonfunctional requirements, and what is the pur-
pose of categorizing them into these categories?
What are two formats that an analyst can use to
document the functional system requirements?

 9. Is it important to prioritize system requirements,
and if so, when should the requirements be pri-
oritized? What is one technique that can be used,
and what is the difference between mandatory
and desirable requirements? What is one way to
test whether a mandatory requirement is truly a
mandatory requirement?

 10. Once the system requirements are identifi ed and
prioritized, shouldn’t everything be frozen to pre-
vent scope or feature creep? Doesn’t updating the
project plan or allowing stakeholders to continue
to request changes just delay system design and
construction, and maybe even project completion
itself?

 11. Why should acceptance test cases be defi ned dur-
ing the logical design phase? After all, the techni-
cal design hasn’t been done yet, let alone building
the system. Shouldn’t testing activities at least
wait until construction is actually underway?

 12. How is the logical design phase different from
the requirements analysis phase?

 13. Let’s say you are on the project team of a project
that had a great deal of diffi culty during the re-
quirements analysis phase and fell several weeks
behind schedule. The project manager wants to
try to catch up by either skipping or abbreviat-
ing some of the tasks in the logical design phase.
After all, the project manager reasons, we really
have a clear idea of the requirements now, the
designers and builders are really experienced, and
they don’t really need the logical design in order
to do the technical design. Is this a legitimate
method to get back on schedule? What are the
possible consequences?

 14. In identifying and defi ning possible candidate
solutions, what are the typical roles of the various
stakeholders who are involved in the project?

 15. You are a systems analyst and have been asked
to facilitate the analysis and evaluation of several
candidate system solutions for their feasibility.
What sets of criteria would you typically use?
Who do you involve in this task? Should you
compare the candidate solutions against each
other at this point? Why or why not? What is the
typical deliverable coming out of this task?

152 Part Two Systems Analysis Methods

 Projects and Research
 1. Select an information system with which you are

familiar, and which you feel needs to be improved,
based upon your experiences as an employee,
customer, other system user, or system owner.
Switch roles and perspectives as necessary to
perform or answer the following:

 a. Describe the nature of the information system
you have selected.

 b. Describe the organization that owns and
maintains the information system.

 c. Identify the baseline problems and
opportunities, per Task 1.1.

 d. Develop a preliminary problem statement, using
the format shown in Figure 4-7 .

 2. Assume you are the now a systems analyst on
the project described in the preceding question.
Executive management was extremely impressed
by your work on the problem statement. As a re-
sult, they have given the project the go-ahead, the
baseline schedule and budget have been devel-
oped, and the project plan has been approved by
the executive steering committee. As the systems
analyst, you now have been tasked to do the fol-
lowing:

 a. Develop and document your understanding of
the problem domain and business vocabulary,
using the textbook’s information system build-
ing blocks framework as described in Task 2.1.

 b. Analyze problems and opportunities using
cause-and-effect analysis (Task 2.2).

 c. Analyze business processes and develop
process models (Task 2.3).

 d. Establish system improvement objectives
(Task 2.4).

 e. Prepare a Problems, Opportunities, Objectives,
and Constraints Matrix, using Figure 4-10 as an
example.

 3. Communicating fi ndings and recommendations
is the fi nal task in the problem analysis phase. As
a systems analyst on the project, you have been
tasked with preparing the System Improvement
Objectives and Recommendations Report. For this
exercise, prepare only the Executive Summary
portion of the report, using the format shown in
 Figure 4-11 . The executive steering committee will

use this summary to make its decisions regarding
the recommendations.

 4. Your strong work on the project to date has
continued to impress executive management. You
have received a pay increase and have been tasked
with conducting the requirements analysis phase.
Specifi cally:

 a. Identify the system requirements, and prepare
an outline of functional and nonfunctional
requirements, per Task 3.1. Since your
organization uses structured analysis and
does not employ use case modeling, list each
system improvement objective, and the inputs,
processes, outputs, and stored data needed to
meet each objective.

 b. Assume that the requirements you identifi ed
in the preceding step have been validated.
Prioritize the requirements according to
their relative importance, using the method
described in Task 3.2.

 5. Your work has helped keep the project well
ahead of schedule, so executive management
gives you a couple of weeks of paid vacation.
When you return, the project is moving into the
decision analysis phase. Your next task is to identify
candidate solutions.

 a. Describe the process for identifying candidate
solutions. What should you be careful not to do
at this point?

 b. Develop a candidate systems matrix, using the
format in Figure 4-15 as an example, and include
three possible solutions.

 6. After identifying candidate solutions, the next step
is to analyze these solutions.

 a. Describe the process for analyzing candidate
solutions. What should the project team not do
in completing this task?

 b. Develop a Feasibility Analysis Matrix, based
upon the candidate solutions identifi ed in
the preceding question, and using the format
shown in Figure 4-16 as an example. Determine
what your weighting factors should be.

Minicases

 1. You are the CIO of a major retailer. Recently, you
read “Spying on the Sales Floor” in the Wall Street

Journal on December 21, 2004. You see that your
competitors are using video mining to analyze
consumer behavior. Should your company also
adopt this tool (video mining)? What are the
strategic implications to your company of your
competitors’ move? What opportunities have been
created? Threats?

 2. Read “Human Reengineering,” by Cooper and
Markus, in the Sloan Management Review,
Summer 1995. In this article, Okuno works on
instituting a positive attitude toward change. How
does he do this? Discuss the importance of change
acceptance by employees to the success of a
technology implementation.

 3. Refer to Minicase 1. You, as the CIO, believe that
the business gains for implementing video mining
in your retail stores will outweigh any negative
customer perceptions. Your company is Baby’s R
Us, a child company of Toys R Us. Do an economic
feasibility study for this investment. Be sure to
include a listing of intangible costs and benefi ts, as
well as an argument for your chosen discount rate.
What is the ROI of the video mining? Try to keep
your analysis to under 15 pages.

 4. Develop a project plan and schedule feasibility
study for the video-mining investment into Baby’s
R Us. Be sure to include a Gantt and PERT/CPM
chart, as well as a clear discussion of all tasks that
need to be completed.

 Team and Individual Exercises
 1. How often do you think legal issues play a role

in project success? Think of an example of a
potentially good information system or program
that was constrained or not feasible due to legal
requirements.

 2. As a team, brainstorm some ways to enhance
employee change acceptance of new information
systems or business processes.

 3. Think of an example when business process
improvement is more appropriate than business
process reengineering. Share with the class.

 Suggested Readings

 Application Development Trends (monthly periodical).

Natick, MA: Software Productivity Group, a ULLO Interna-

tional company. This is our favorite systems development

periodical. It follows systems analysis and design strate-

gies, methodologies, CASE, and other relevant trends. Visit

its Web site at www.adtmag.com.

 Gause, Donald C., and Gerald M. Weinberg. Are Your Lights

On? How to Figure Out What the Problem REALLY Is.

New York: Dorset House Publishing, 1990. Here’s a title

that should really get you thinking, and the entire book

addresses one of the least published aspects of systems

analysis: problem solving.

 Hammer, Mike. “Reengineering Work: Don’t Automate, Oblit-

erate.” Harvard Business Review, July–August 1990, pp.

104–11. Dr. Hammer is a noted expert on business pro-

cess redesign. This seminal paper examines some classic

cases where the technique dramatically added value to

businesses.

 Wetherbe, James. Systems Analysis and Design: Best Prac-

tices, 4th ed. St. Paul, MN: West Publishing, 1994. We are

indebted to Dr. Wetherbe for the PIECES framework.

 Wood, Jane, and Denise Silver. Joint Application Design: How

to Design Quality Systems in 40% Less Time. New York:

John Wiley & Sons, 1989. This book provides an excellent

in-depth presentation of joint application development

(JAD).

 Yourdon, Edward. Modern Structured Analysis. Englewood

Cliffs, NJ: Yourdon Press, 1989. This update to the classic

DeMarco text on the same subject defi nes the current

state of the practice for the structured analysis approach.

 Zachman, John A. “A Framework for Information System Archi-

tecture.” IBM Systems Journal 26, no. 3 (1987). This article

presents a popular conceptual framework for information

systems surveys and the development of an information

architecture.

Systems Analysis Chapter Four 153

154 Part Two Systems Analysis Methods

5Fact-Finding Techniques for
Requirements Discovery

Chapter Preview and Objectives

 Effective fact-fi nding techniques are crucial to the development of systems projects.

In this chapter you will learn about techniques to discover and analyze information

system requirements. You will learn how to use various fact-fi nding techniques to gather

information about the system’s problems, opportunities, and directives. You will know

that you understand fact-fi nding techniques and requirements discovery when you can:

 ❚ Defi ne system requirements and differentiate between functional and nonfunctional

requirements.

 ❚ Understand the activity of problem analysis and be able to create an Ishikawa

(fi shbone) diagram to aid in problem solving.

 ❚ Understand the concept of requirements management.

 ❚ Identify seven fact-fi nding techniques and characterize the advantages and

disadvantages of each.

 ❚ Understand the importance of effective listening.

 ❚ Understand what body language and proxemics are and why a systems analyst

should care.

 ❚ Characterize the typical participants in a JRP session and describe their roles.

 ❚ Complete the planning process for a JRP session, including selecting and equipping

the location, selecting the participants, and preparing an agenda to guide the JRP

session.

 ❚ Describe several benefi ts of using JRP as a fact-fi nding technique.

 ❚ Describe a fact-fi nding strategy that will make the most of your time with end users.

Fact-Finding Techniques for Requirements Discovery Chapter Five 155

 Introduction

 Bob Martinez has spent most of the week reading. He started with memos related to
the proposed Member Services System to better understand the problem. He then re-
viewed SoundStage’s procedures manual for any policies related to member services
and promotions. He studied nearly 100 member order forms selected at random,
noting the kinds of data recorded in each blank and which blanks were always, some-
times, and never used. He read the documentation for the present member services
system. He reviewed data and process diagrams from the prior member service sys-
tems development project, noting things that would probably need to be changed
in the new system. It was grueling work. But in the end he really felt like he was
beginning to understand the system. He produced a report for Sandra, his boss, of
the key issues and questions that would need to be answered at the upcoming joint
requirements planning meeting.

 An Introduction to Requirements Discovery

 In Chapter 2 we discussed several phases of systems development. Each phase is
important and necessary in order to effectively design, construct, and ultimately im-
plement a system to meet the users’ (stakeholders’) needs. But to develop such a
system, we must fi rst be able to correctly identify, analyze, and understand what the
users’ requirements are or what the users want the system to do. The process and
techniques that a systems analyst uses to identify, analyze, and understand system re-
quirements is referred to as requirements discovery . As suggested by the chapter’s
home page, requirements discovery primarily involves systems analysts working with
system users and owners during the earlier system development phases to obtain a
detailed understanding of the business requirements of an information system.

 What are system requirements? System requirements specify what the infor-
mation system must do or what property or quality the system must have. System
requirements that specify what the information system must do are frequently re-
ferred to as functional requirements . System requirements that specify a prop-
erty or quality the system must have are frequently referred to as nonfunctional

requirements .
 The PIECES framework (Table 5-1), introduced in Chapter 2, provides an excellent

tool for classifying system requirements. The benefi t of classifying the various types
of requirements is the ability to group requirements for reporting, tracking, and vali-
dation purposes. Plus doing so aids in identifying possible overlooked requirements.

 Essentially, the purpose of requirements discovery and management is to cor-
rectly identify the KNOWLEDGE , PROCESS , and COMMUNICATION requirements for the users
of a new system. Failure to correctly identify system requirements may result in nu-
merous problems. The impact in terms of cost can be staggering. Take, for example,
 Table 5-2 , by Barry W. Boehm, a noted expert in information technology economics. 1
He studied several software development projects to determine the costs of errors in
requirements that weren’t discovered until later in the development process.

 Based on Boehm’s fi ndings, an erroneous requirement that goes undetected and
unfi xed until the operation phase may cost 1,000 times more than it would if it were
detected and fi xed in the requirements phase. This can be a time-consuming, diffi cult,
and frustrating process that often leads organizations and individuals to take shortcuts
to save time and money. But this shortsightedness often leads to the problems men-
tioned before. Now that we understand our goal, lets look at the process.

 requirements discovery
 the process and techniques

used by systems analysts

to identify or extract system

problems and solution

requirements from the user

community.

 system requirement
something that the information

system must do or a property

that it must have. Also called

a business requirement.

 functional requirement
something the information

system must do.

 nonfunctional require-
ment a property or quality

the system must have. Ex-

amples include security, ease-

of-use, performance, etc.

 1 Donald C. Gause and Gerald M. Weinberg, Exploring Requirements: Quality before Design (New York: Dorset House

Publishing, 1989), pp. 17–18.

156 Part Two Systems Analysis Methods

T A B L E 5 - 1 PIECES Classifi cation of System Requirements

Nonfunctional
Requirement Type Explanation

 Performance Performance requirements represent the performance the system is required to exhibit to
meet the needs of users.

 • What is the acceptable throughput rate?

 • What is the acceptable response time?

 Information Information requirements represent the information that is pertinent to the users in terms of
content, timeliness, accuracy, and format.

 • What are the necessary inputs and outputs? When must they happen?

 • What is the required data to be stored?

 • How current must the information be?

 • What are the interfaces to external systems?

 Economy Economy requirements represent the need for the system to reduce costs or increase profi ts.

 • What are the areas of the system where costs must be reduced?

 • How much should costs be reduced or profi ts be increased?

 • What are the budgetary limits?

 • What is the timetable for development?

 Control (and security) Control requirements represent the environment in which the system must operate, as well
as the type and degree of security that must be provided.

 • Must access to the system or information be controlled?

 • What are the privacy requirements?

 • Does the criticality of the data necessitate the need for special handling (backups, off-site
storage, etc.) of the data?

 Effi ciency Effi ciency requirements represent the system’s ability to produce outputs with minimal waste.

 • Are there duplicate steps in the process that must be eliminated?

 • Are there ways to reduce waste in the way the system uses it resources?

 Service Service requirements represent needs in order for the system to be reliable, fl exible, and
expandable.

 • Who will use the system, and where are they located?

 • Will there be different types of users?

 • What are the appropriate human factors?

 • What training devices and training materials are to be included in the system?

 • What training devices and training materials are to be developed and maintained
separately from the system, such as stand-alone computer-based training (CBT) programs
or databases?

 • What are the reliability/availability requirements?

 • How should the system be packaged and distributed?

 • What documentation is required?

Fact-Finding Techniques for Requirements Discovery Chapter Five 157

T A B L E 5 - 2 Relative Costs of Fixing an Error

 Phase in which
Error Discovered Cost Ratio

 Requirements 1

 Design 3–6

 Coding 10

 Development Testing 15–40

 Acceptance Testing 30–70

 Operation 40–1,000

 The Process of Requirements Discovery

 The process of requirements discovery consists of the following activities:

 • Problem discovery and analysis.
 • Requirements discovery.
 • Documenting and analyzing requirements.
 • Requirements management.

 Let’s now examine each one of these activities in detail.

 > Problem Discovery and Analysis

 As previously stated, requirements solve problems. For systems analysts to be successful,
they must be skilled in the activity of problem analysis. One of the most common mis-
takes inexperienced systems analysts make when trying to analyze problems is identi-
fying a symptom as a problem. As a result, they may design and implement a solution
that more than likely doesn’t solve the real problem or that may cause new problems. A
popular tool used by development teams to identify, analyze, and solve problems is an
 Ishikawa diagram . The fi shbone-shaped diagram is the brainchild of Kaoru Ishikawa,
who pioneered quality management processes in the Kawasaki shipyards of Japan and,
in the process, became one of the founding fathers of modern management.

 Drawing the fi shbone diagram begins with the name of the problem of interest entered
at the right of the diagram (or the fi sh’s head). The possible causes of the problem are then
drawn as bones off the main backbone, each on an arrow pointing to the backbone. Typi-
cally, these “bones” are labeled as four basic categories: materials, machines, manpower,
and methods (the four Ms). Other names can be used to suit the problem at hand. Alterna-
tive or additional categories include places, procedures, policies, and people (the four Ps)
or surroundings, suppliers, systems, and skills (the four Ss).

 The key is to have three to six main categories that encompass all possible areas
of causes. Brainstorming techniques (defi ned later in the chapter) are commonly per-
formed to add causes to the main bones. When the brainstorming is complete, the
fi shbone depicts a complete picture of all the possibilities about what could be the
root cause for the designated problem. The development team can then use the dia-
gram to decide and agree on what the most likely causes of the problem are and how
they should be acted on. Figure 5-1 is an example of a fi shbone diagram depicting the
SoundStage problem of members defaulting on contracts. In the diagram, notice that
the problem to be solved is in the box at the far right. The fi ve areas that have been
identifi ed as categories of causes (People-Members, Methods, Contracts, Materials,
and Policies) are listed in boxes above and below the fi sh’s skeleton and connected
by arrows (bones) pointing to the fi sh’s backbone. The actual causes of the problem
for each category are depicted as arrows pointing to the category arrow (bone).

 Ishikawa diagram a

graphical tool used to identify,

explore, and depict problems

and the causes and effects

of those problems. It is often

referred to as a cause-and-

effect diagram or a fi shbone

diagram (because it resem-

bles the skeleton of a fi sh).

158 Part Two Systems Analysis Methods

 > Requirements Discovery

 Given an understanding of problems, the systems analyst can start to defi ne require-
ments. For today’s systems analysts to be successful in defi ning system requirements,
they must be skilled in effective methods for gathering information—fact-fi nding.
 Fact-fi nding is a technique that is used across the entire development cycle, but it
is extremely critical in the requirements analysis phase. Once fact-fi nding has been
completed, tools such as use cases, data models, process models, and object models
will be used to document facts, and conclusions will be drawn from the facts. You
will learn about these tools and how to document requirements derived from fact-
fi nding in subsequent chapters of this textbook.

 Facts are in the domain of the business application and its end users. Therefore, the
analyst must collect those facts in order to effectively apply the documentation tools and
techniques. During systems analysis phases, the analyst learns about the vocabulary, prob-
lems, opportunities, constraints, requirements, and priorities of a business and a system.

 What types of facts must be collected? It would certainly be benefi cial if we had a
framework to help us determine what facts need to be collected, no matter what project
we are working on. Fortunately, we have such a framework. As it turns out, the facts that
describe any information system also correspond nicely with the building blocks. Fact-
fi nding techniques are used in the early systems development phases to identify informa-
tion, functional, and communication scopes and visions, as well as to identify business
knowledge process, and communication requirements for the system.

 > Documenting and Analyzing Requirements

 When the systems analyst is performing fact-fi nding activities, it is important that the
analyst assemble or document the gathered information (or draft requirements) in an
organized, understandable, and meaningful way. These initial documentsº will provide
direction for the modeling techniques the systems analyst will use to analyze the require-
ments and determine the correct requirements for the project. Once those have been
identifi ed, the systems analyst formalizes the requirements by presenting them in a docu-
ment that will be reviewed and approved by the users.

 Documenting the Draft Requirements Systems analysts use various tools to docu-
ment their initial fi ndings in draft form. They write use cases to describe the system func-
tions from the external users’ perspective and in a manner and terminology the users
understand. Decision tables are used to document an organization’s complex business

Member

Contract

Defaults

Materials

Methods

Policies

Unreasonable

pricing

People-Members

Member unhappiness

Member not aware Fraud

Financial

problems

No automatic

default solution

No reminders

warning customers

Insufficient

incentives

No progress

tracking

Lack of

enforcement

Policies

inadequate

Contracts

Enforcement

too costly

Lack of

flexibility

F I G U R E 5 - 1 Sample Fishbone Diagram

 fact-fi nding the formal

process of using research,

meetings, interviews, ques-

tionnaires, sampling, and

other techniques to collect

information about system

problems, requirements, and

preferences. It is also called

 information gathering or data

collection.

Fact-Finding Techniques for Requirements Discovery Chapter Five 159

policies and decision-making rules, and requirements tables are used to document each
specifi c requirement. Each of these tools is examined in more detail later in the chapter.

 Analyzing Requirements More often than not, fact-fi nding activities produce require-
ments that are in confl ict with one another. This is because requirements are solicited
from many different sources and each person has his or her own opinions and desires for
the functionality and features of the new system. The goal of the requirements analysis
activity is to discover and resolve the problems with the requirements and reach agree-
ment on any modifi cations to satisfy the stakeholders. The process is concerned with
the “initial” requirements gathered from the stakeholders. These requirements are usually
incomplete and documented in an informal way in instruments such as use cases, tables,
and reports. The focus at this stage is on reaching agreement on the stakeholder’s needs;
in other words, the analysis should answer the question, “Do we have the right system
requirements for the project?” Inevitably, the draft requirements contain many problems,
such as:

 • Missing requirements
 • Confl icting requirements
 • Infeasible requirements
 • Overlapping requirements
 • Ambiguous requirements

 These types of requirements problems are very common in many of the requirement
documents written today. If left unresolved, they can be extremely costly to fi x later in
the development cycle.

 This chapter focuses primarily on the business side of requirements, or, in other
words, the logical requirements, but it is important to note that additional technical re-
quirements exist that are physical in nature. Examples of technical requirements include
specifying a required software package or hardware platform. These types of require-
ments will be discussed in depth in Chapter 10.

 Formalizing Requirements System requirements are usually documented in a formal
way to communicate the requirements to the key stakeholders of the system. This docu-
ment serves as the contract between the system owners and the development team on
what is going to be provided in terms of a new system. Thus, it may go through many revi-
sions and reviews before everyone agrees and authorizes its contents. There is no standard
name or format for this document. In fact, many organizations use different names such
as requirements statement, requirements specifi cation, requirements defi nition, functional
specifi cation, and the like, and the format is usually tailored to the organization’s needs.
Companies that provide information systems and software to the U.S. government must
use the format and naming conventions specifi ed in the government’s published standards
document MIL-STD-498. 2 Many organizations have created their own standards adapted
from MIL-STD-498 because of its thoroughness and because many people are already fa-
miliar with it. In this book we will use the term requirements defi nition document ,
and Figure 5-2 provides a sample outline of one. Please note that this document will be
consolidated with other project information to form the requirements statement, which
is the fi nal deliverable of the requirements analysis phase.

 > Requirements Management

 Over the lifetime of the project it is very common for new requirements to emerge and
existing requirements to change after a requirements defi nition document has been ap-
proved. Some studies have shown that over the life of a project as much as 50 percent or

 requirements defi nition
document a formal docu-

ment that communicates the

requirements of a proposed

system to key stakeholders

and serves as a contract for

the systems project. Syn-

onyms include requirements

statement, requirements

specifi cation, and functional

specifi cation.

 2 MIL-STD-498 is a standard that merges DOD-STD-2167A and DOD-STD-7935A to defi ne a set of activities and documen-

tation suitable for the development of both weapon systems and automated information systems.

160 Part Two Systems Analysis Methods

more of the requirements will change before the system is put into production. Obviously,
this can be a major headache for the development team. To help alleviate the many prob-
lems associated with changing requirements, it is necessary to perform requirements

management . Requirements management encompasses the policies, procedures, and
processes that govern how a change to a requirement is handled. In other words, it speci-
fi es how a change request should be submitted, how it is analyzed for impact to scope,
schedule, and cost, how it is approved or rejected, and how the change is implemented
if approved.

REQUIREMENTS DEFINITION DOCUMENT

3.1. Functional Requirements

3.2. Nonfunctional Requirements

4. Conclusion

3. Requirements and Constraints

2.1. Functional Requirements

2. General Project Description

1. Introduction

4.1. Outstanding Issues

1.2. Background

1.3. Scope

1.1. Purpose

1.4. Definitions, Acronyms, and Abbreviations

1.5. References

Appendix (optional)

F I G U R E 5 - 2

 Sample
Requirements
Defi nition Outline

 requirements
management the process

of managing change to the

requirements.

 Fact-Finding Techniques

 In this section we present seven common fact-fi nding techniques:

 • Sampling of existing documentation, forms, and databases.
 • Research and site visits.
 • Observation of the work environment.
 • Questionnaires.
 • Interviews.
 • Prototyping.
 • Joint requirements planning.

 An analyst usually applies several of these techniques during a single systems
project. To be able to select the most suitable technique for use in any given situa-
tion, systems analysts need to learn the advantages and disadvantages of each of the
fact-fi nding techniques.

 > Sampling of Existing Documentation, Forms, and Files

 When studying an existing system, systems analysts develop a pretty good feel for the
system by studying existing documentation, forms, and fi les. A good analyst always
knows to get facts fi rst from existing documentation rather than from people.

 Collecting Facts from Existing Documentation What kind of documents can
teach you about a system? The fi rst document the analyst may wish to seek out is the
organization chart. An organization chart serves to identify key individual owners
and users for a project and their reporting relationships. The analyst may also want to

Fact-Finding Techniques for Requirements Discovery Chapter Five 161

trace the history that led to the project. To accomplish this, the analyst should collect
and review documents that describe the problem. These include:

 • Interoffi ce memoranda, studies, minutes, suggestion box notes, customer com-
plaints, and reports that document the problem area.

 • Accounting records, performance reviews, work measurement reviews, and
other scheduled operating reports.

 • Information systems project requests—past and present.

 In addition to documents that describe the problem, there are usually documents that de-
scribe the business function being studied or designed. These documents may include:

 • The company’s mission statement and strategic plan.
 • Formal objectives for the organization subunits being studied.
 • Policy manuals that may place constraints on any proposed system.
 • Standard operating procedures (SOPs), job outlines, or task instructions for spe-

cifi c day-to-day operations.
 • Completed forms that represent actual transactions at various points in the pro-

cessing cycle.
 • Samples of manual and computerized databases.
 • Samples of manual and computerized screens and reports.

 Also, analysts often check for documentation of previous system studies and designs per-
formed by former systems analysts and consultants. This documentation may include:

 • Various types of fl owcharts and diagrams.
 • Project dictionaries or repositories
 • Design documentation, such as inputs, outputs, and databases.
 • Program documentation.
 • Computer operations manuals and training manuals.

 All documentation collected should be analyzed to determine whether or not the
information is current. Outdated documentation should not be discarded; however,
analysts should keep in mind that additional fact-fi nding will be needed to verify or
update the facts collected. What is the analyst looking for in all this material? Things
that can be gleaned from these documents include:

 • The symptoms and (possibly) causes of the problem.
 • What persons in the organization have an understanding of the problem.
 • The business functions that support the present system.
 • The type of data that needs to be collected and reported by the system.
 • Things in the documentation that the analyst does not understand and so need

to be covered in interviews.

 Document and File Sampling Techniques Because it would be impractical to
study every occurrence of every form or record in a fi le or database, system analysts
normally use sampling techniques to get a large-enough cross section to determine
what can happen in the system. The systems analyst should seek to sample enough
forms to represent the full nature and complexity of the data. Experienced analysts
avoid the pitfalls of sampling blank forms—blank forms tell little about how the form
is actually used, when it is not used, or how it is often misused. When studying docu-
ments or records from a database table, analysts should study enough samples to
identify all the possible processing conditions and exceptions. Statistical sampling
techniques can be used to determine if the sample size is large enough to be repre-
sentative of the total population of records or documents.

 There are many sampling issues and factors, and this is a good reason for taking
an introductory statistics course. One simple and reliable formula for determining
sample size is

Sample size 0.25 (Certainty factor/Acceptable error)2

 sampling the process of

collecting a representative

sample of documents, forms,

and records.

162 Part Two Systems Analysis Methods

 The certainty factor is a value that can simply be looked up in statistical tables
based on the desired certainty that the sample selected will be representative of the
total population. See Table 5-3 for a partial example.

 Suppose an analyst wants to be 90-percent certain that a sample of invoices will
contain no unsampled variations. The sample size, SS, is calculated as follows:

SS 0.25(1.645/0.10)2 68

 The analyst will need to sample 68 invoices to get the desired accuracy. If a
higher level of certainty is desired, a larger number of invoices are needed.

 If the analyst knows from experience that 1 in every 10 invoices varies from the
norm, then he or she can replace the heuristic 0.25 with p (1 − p) where p is the pro-
portion of invoices with variances:

SS p(1 p)(1.645/0.10)2

 By using this formula, the analyst can reduce the number of samples required to
get the desired accuracy:

SS 0.10(1 0.10)(1.645/0.10)2 25

 How are the 25 invoices chosen? Two commonly used sampling techniques are
randomization and stratifi cation. Randomization involves randomly, or without con-
cern, selecting sample data. Therefore, we just randomly choose 25 invoices based
on the sample size calculated above. Stratifi cation is a thoughtful and systematic
approach aimed at reducing the variance of the sample data. For computerized fi les,
stratifi cation sampling can be executed by writing a simple computer program. For
instance, suppose our invoices are in a database that has a volume of approximately
250,000 invoices. Recall that our sample size needs to include 25 invoices. We will
simply write a program that prints every 10,000th record (250,000/25). For manual
fi les and documents, we could execute a similar scheme.

 > Research and Site Visits

 A second fact-fi nding technique is thoroughly researching the problem domain.
Most problems are not completely unique. Other people have solved them be-
fore us. Many times organizations contact or perform site visits with companies
they know have previously experienced similar problems. If these companies are
“willing to share,” valuable information can be obtained that may save tremen-
dous time and cost in the development process.

 Computer trade journals and reference books are a good source of informa-
tion. They can provide information on how others have solved similar problems.
With recent advances in cyberspace, analysts rarely have to leave their desks to do
research. Exploring the Internet and intranet via personal computer can provide
immeasurable amounts of information.

 A similar type of research involves visiting other companies or departments that
have addressed similar problems. Memberships in professional societies such as the
Association for Information Technology Professionals (AITP) or Association for Infor-
mation Systems (AIS), among others, can provide a network of useful contacts.

T A B L E 5 - 3 Partial Table of Certainty Factors

 Desired Certainty Certainty Factor

 95% 1.960

 90 1.645

 80 1.281

 randomization a sampling

technique characterized by

having no predetermined

pattern or plan for selecting

sample data.

 stratifi cation a systematic

sampling technique that at-

tempts to reduce the variance

of estimates by spreading out

the sampling—for example,

choosing documents or

records by formula—and by

avoiding very high or very low

estimates.

Fact-Finding Techniques for Requirements Discovery Chapter Five 163

 > Observation of the Work Environment

 Observation is one of the most effective data-collection techniques for learning
about a system. Observation involves the systems analyst becoming an observer
of people and activities in order to learn about the system. This technique is often
used when the validity of data collected through other methods is in question or
when the complexity of certain aspects of the system prevents a clear explanation
by the end users.

 Collecting Facts by Observing People at Work Observation can be a very useful
and benefi cial fact-fi nding technique provided that you have the ability to observe
all aspects of the work being performed by the users and that the work is being per-
formed in the usual manner. You should become aware of the pros and cons of the
technique of observation. Advantages and disadvantages include:

 observation a fact-fi nding

technique wherein the sys-

tems analyst either partici-

pates in or watches a person

perform activities to learn

about the system.

 Advantages
 • Data gathered based on observation

can be very reliable. Sometimes,
observations are conducted to check
the validity of data obtained directly
from individuals.

 • The systems analyst is able to see
exactly what is being done. Complex
tasks are sometimes diffi cult to
clearly explain in words. Through
observation, the systems analyst can
identify tasks that have been missed
or inaccurately described by other
fact-fi nding techniques. Also, the
analyst can obtain data describing the
physical environment of the task (e.g.,
physical layout, traffi c, lighting, noise
level).

 • Observation is relatively inexpensive
compared with other fact-fi nding
techniques. Other techniques usually
require substantially more employee
release time and copying expenses.

 • Observation allows the systems
analyst to do work measurements.

 Disadvantages

 • Because people usually feel
uncomfortable when being watched,
they may unwittingly perform
differently when being observed.

 • The work being observed may not
involve the level of diffi culty or
volume normally experienced during
that time period.

 • Some systems activities may take
place at odd times, causing a
scheduling inconvenience for the
systems analyst.

 • The tasks being observed are subject
to various types of interruptions.

 • Some tasks may not always be
performed in the manner in which
they are observed by the systems
analyst. For example, the systems
analyst might have observed how
a company fi lled several customer
orders. However, the procedures the
systems analyst observed may have
been the steps used to fi ll a number
of regular customer orders. If any of
those orders had been special orders
(e.g., an order for goods not normally
kept in stock), the systems analyst
would have observed a different set
of procedures being executed.

 • If people have been performing
tasks in a manner that violates
standard operating procedures, they
may temporarily perform their jobs
correctly while you are observing
them. In other words, people may let
you see what they want you to see.

 Guidelines for Observation How does the systems analyst obtain facts through
observation? Does one simply arrive at the observation site and begin recording
everything that’s viewed? No. Much preparation should take place in advance. The

164 Part Two Systems Analysis Methods

analyst must determine how data will actually be captured. Will it be necessary to
have special forms on which to quickly record data? Will the individuals being ob-
served be bothered by having someone watch and record their actions? When are the
low, normal, and peak periods of operations for the task to be observed? The systems
analyst must identify the ideal time to observe a particular aspect of the system.

 An analyst should plan to observe a site when there is a typical workload. Once a
typical workload has been observed, observations can be made during peak periods
to gather information for measuring the effects caused by the increased volume. As
part of the analyst’s observation, he or she should obtain samples of documents or
forms used by those being observed.

 The sampling techniques discussed earlier are also useful for observation. In this
case, the technique is called work sampling , wherein a large number of observa-
tions may be conducted at random intervals. This technique is less threatening to
the people being observed because the observation period is not continuous. When
using work sampling, an analyst needs to predefi ne the operations of the job to be
observed. A sample size then needs to be calculated as was done for document and
fi le sampling. The analyst should make many random observations, being careful to
observe activities at different times of the day. By counting the number of occur-
rences of each operation during the observations, the analyst will get a feel for how
employees spend their days.

 Living the System In this type of observation the systems analyst actively performs
the role of the user for a short period of time. This is one of the most effective ways
to learn about problems and requirements of the system. By fi lling the user’s “shoes,” a
systems analyst quickly gains an appreciation for what the user experiences and what
she or he has to do to perform the job. This type of role playing gives the systems
analyst a fi rsthand education in the business processes and functions, as well as the
problems and challenges associated with them.

 > Questionnaires

 Another fact-fi nding technique is conducting surveys through questionnaires . The
document can be mass-produced and distributed to respondents, who can then com-
plete the questionnaire on their own time. Questionnaires allow the analyst to collect
facts from a large number of people while maintaining uniform responses. When
dealing with a large audience, no other fact-fi nding technique can tabulate the same
facts as effi ciently.

 Collecting Facts by Using Questionnaires Systems analysts have often criticized
the use of questionnaires. Many systems analysts claim that the responses lack reliable
and useful information. Nevertheless, questionnaires can be an effective means of
fact gathering, and many of these criticisms can be attributed to the inappropriate or
ineffective use of the questionnaires. Before using questionnaires, an analyst should
understand the pros and cons associated with their use:

 work sampling a fact-

fi nding technique that

involves a large number of

observations taken at random

intervals.

 questionnaire a document

that allows the analyst to col-

lect information and opinions

from respondents.

 Advantages
 • Most questionnaires can be answered

quickly. People can complete and
return questionnaires at their
convenience.

 • Questionnaires are a relatively
inexpensive means of gathering data
from a large number of individuals.

 • Questionnaires allow individuals
to maintain anonymity. Therefore,
individuals are more likely to provide

 Disadvantages
 • The number of respondents is

often low.
 • There’s no guarantee that an

individual will answer or expand on
all of the questions.

 • Questionnaires tend to be infl exible.
There’s no opportunity for the systems
analyst to obtain voluntary information
from individuals or to reword questions
that may have been misinterpreted.

Fact-Finding Techniques for Requirements Discovery Chapter Five 165

 Types of Questionnaires There are two formats for questionnaires: free format
and fi xed format. Free-format questionnaires are designed to allow the users to
exercise more freedom or latitude in their answers to each question.

 Here are two examples of free-format questions:

 • What reports do you currently receive and how are they used?
 • Are there any problems with these reports (e.g., are they inaccurate, is there insuf-

fi cient information, or are they diffi cult to read and/or use)? If so, please explain.

 The second type of questionnaire is fi xed-format. Fixed-format questionnaires
are more rigid, requiring that the user select an answer from a predefi ned set of pos-
sible answers. Given any question, the respondent must choose from the available
answers. This makes the results much easier to tabulate. On the other hand, the re-
spondent cannot provide additional information that might prove valuable.

 There are three types of fi xed-format questions:

 1. For multiple-choice questions, the respondent is given several answers from which
to choose. The respondent should be told if more than one answer can be selected.
Some multiple-choice questions allow for very brief free-format responses when
none of the standard answers apply. Examples of multiple-choice fi xed-format
questions are:

 Do you feel that backorders occur too frequently?
 ❏ YES ❏ NO

 Is the current accounts receivable report that you receive useful?
 ❏ YES ❏ NO

 If no, please explain.

 2. For rating questions, the respondent is given a statement and asked to use
supplied responses to state an opinion. To prevent built-in bias, there should be
an equal number of positive and negative ratings. The following is an example of
a rating fi xed-format question:

 The implementation of quantity discounts would cause an increase in customer
orders.

 ❏ Strongly agree
 ❏ Agree
 ❏ No opinion
 ❏ Disagree
 ❏ Strongly disagree

 3. For ranking questions, the respondent is given several possible answers, which
are to be ranked in order of preference or experience. An example of a ranking
fi xed-format question is:

 Rank the following transactions according to the amount of time you spend
processing them:

 _________ new customer orders
 _________ order cancellations
 _________ order modifi cations
 _________ payments

the real facts, rather than telling you

what they think their boss would
want them to.

 • Responses can be tabulated and
analyzed quickly.

 • It’s not possible for the systems

analyst to observe and analyze the
respondent’s body language.

 • There is no immediate opportunity to
clarify a vague or incomplete answer
to any question.

 • Good questionnaires are diffi cult to
prepare.

 free-format question-
naire a questionnaire de-

signed to offer the respondent

greater latitude in the answer.

A question is asked, and

the respondent records the

answer in the space provided

after the question.

 fi xed-format question-
naire a questionnaire

containing questions that

require selecting an answer

from predefi ned available

responses.

166 Part Two Systems Analysis Methods

 Developing a Questionnaire Good questionnaires can be diffi cult to develop. The
following procedure can prove helpful in developing an effective questionnaire:

 1. Determine what facts and opinions must be collected and from whom you
should get them. If the number of people is large, consider using a smaller,
randomly selected group of respondents.

 2. Based on the facts and opinions sought, determine whether free- or fi xed-format
questions will produce the best answers. A combination format that permits
optional free-format clarifi cation of fi xed-format responses is often used.

 3. Write the questions. Examine them for construction errors and possible
misinterpretations. Make sure that the questions don’t reveal your personal bias
or opinions. Edit the questions.

 4. Test the questions on a small sample of respondents. If your respondents had
problems with them or if the answers were not useful, edit the questions.

 5. Duplicate and distribute the questionnaire.

 > Interviews

 The personal interview is generally recognized as the most important and most often
used fact-fi nding technique. Personal interviews involve soliciting requirements
through direct, face-to-face interaction. Interviewing can be used to achieve any or all
of the following goals: fi nd facts, verify facts, clarify facts, generate enthusiasm, get
the end user involved, identify requirements, and solicit ideas and opinions. There are
two roles assumed in an interview. The systems analyst is the interviewer, respon-
sible for organizing and conducting the interview. The system user or system owner
is the interviewee, who is asked to respond to a series of questions.

 There may be one or more interviewers and/or interviewees. In other words,
interviews may be conducted one-on-one or many-to-many. Unfortunately, many sys-
tems analysts are poor interviewers. In this section you will learn how to conduct
proper interviews.

 Collecting Facts by Interviewing Users People are the most important element
of an information system. More than anything else, people want to be in on things. No
other fact-fi nding technique places as much emphasis on people as interviews. But
people have different values, priorities, opinions, motivations, and personalities. There-
fore, to use the interviewing technique, a systems analyst must possess good human
relations skills for dealing effectively with different types of people. As with other fact-
fi nding techniques, interviewing isn’t the best method for all situations. Interviewing
has its advantages and disadvantages, which should be weighed against those of other
fact-fi nding techniques for every fact-fi nding situation:

 Advantages Disadvantages

 interview a fact-fi nding

technique whereby the sys-

tems analyst collects informa-

tion from individuals through

face-to-face interaction.

 • Interviews give the analyst an
opportunity to motivate the
interviewee to respond freely and
openly to questions.

 • Interviews allow the systems analyst
to probe for more feedback from the
interviewee.

 • Interviews permit the systems analyst
to adapt or reword questions for each
individual.

 • Interviews give the analyst
an opportunity to observe
the interviewee’s nonverbal
communication.

 • Interviewing is a very time-
consuming, and therefore a costly,
fact-fi nding approach.

 • Success of interviews is highly
dependent on the systems analyst’s
human relations skills.

 • Interviewing may be impractical due
to the location of interviewees.

Fact-Finding Techniques for Requirements Discovery Chapter Five 167

 Interview Types and Techniques There are two types of interviews, unstructured
and structured. Unstructured interviews are characterized as involving general
questions that allow the interviewee to direct the conversation. This type of interview
frequently gets off track, and the analyst must be prepared to redirect the interview
back to the main goal or subject. For this reason, unstructured interviews don’t usu-
ally work well for systems analysis and design. Structured interviews involve the
interviewer asking specifi c questions designed to elicit specifi c information from the
interviewee. Depending on the interviewee’s responses, the interviewer will direct
additional questions to obtain clarifi cation or amplifi cation. Some of these questions
may be planned and others spontaneous.

 Unstructured interviews tend to involve asking open-ended questions . Such
questions give the interviewees signifi cant latitude in their answers. An example of
an open-ended question is “Why are you dissatisfi ed with the report of uncollectable
accounts?” Structured interviews tend to involve asking more closed-ended ques-

tions that are designed to elicit short, direct responses from the interviewee. Exam-
ples of such questions are “Are you receiving the report of uncollectable accounts on
time?” and “Does the report of uncollectable accounts contain accurate information?”
Realistically, most questions fall between the two extremes.

 > How to Conduct an Interview

 A systems analyst’s success is at least partially dependent on the ability to interview.
A successful interview will involve selecting appropriate individuals to interview,
preparing extensively for the interview, conducting the interview properly, and fol-
lowing up on the interview. Here we examine each of these steps in more detail. Let’s
assume that the analyst has identifi ed the need for an interview and has determined
exactly what kinds of facts and opinions are needed.

 Select Interviewees The systems analyst should interview the end users of the
information system being studied. A formal organization chart will help identify these
individuals and their responsibilities. The analyst should attempt to learn as much as
possible about each individual prior to the interview, such as the person’s strengths,
fears, biases, and motivations. The interview can then be geared to take the character-
istics of the individual into account.

 The analyst should make an appointment with the interviewee and never just
drop in. The appointment should be limited to somewhere between a half hour and
an hour. The higher the management level of the interviewee, the less time should be
scheduled. If the interviewee is a clerical, service, or blue-collar worker, the analyst
must get the supervisor’s permission before scheduling the interview. It is also impor-
tant to ensure that the location for the interview will be available during the time it
is scheduled. Interviews should never be conducted in the presence of the analyst’s
offi cemates or the interviewee’s peers.

 Prepare for the Interview Preparation is the key to a successful interview. An
interviewee can easily detect when an interviewer is unprepared and may resent
the lack of preparation because it wastes valuable time. When the appointment is
made, the interviewee should be notifi ed about the subject of the interview. To ensure
that all pertinent aspects of the subject are covered, the analyst should prepare an
 interview guide. The interview guide is a checklist of specifi c questions the inter-
viewer will ask the interviewee. The interview guide may also contain follow-up ques-
tions that will be asked only if the answers to other questions warrant the additional
answers. A sample interview guide is presented in Figure 5-3 . Notice that the agenda
is carefully laid out with the specifi c time allocated to each question. Time should also
be reserved for asking follow-up questions and redirecting the interview. Questions
should be carefully chosen and phrased. Most questions begin with the standard who,

 unstructured interview
 an interview that is conducted

with only a general goal or

subject in mind and with few,

if any, specifi c questions.

The interviewer counts on

the interviewee to provide

a framework and direct the

conversation.

 structured interview an

interview in which the

interviewer has a specifi c

set of questions to ask of the

interviewee.

 open-ended question a

question that allows the inter-

viewee to respond in any way

that seems appropriate.

 closed-ended question a

question that restricts

answers to either specifi c

choices or short, direct

responses.

168 Part Two Systems Analysis Methods

Time

Allocated

Interviewer

Question or Objective

Interviewee

Response

1 to 2 min.

Interviewee: Jeff Bentley, Accounts Receivable Manager

Date: January 19, 2003

Time: 1:30 P.M.

Place: Room 223, Admin. Bldg.

Subject: Current Credit-Checking Policy

Objective

Open the interview:

• Introduce ourselves.

• Thank Mr. Bentley for his valuable time.

• State the purpose of the interview—to obtain an understanding of the

existing credit-checking policies.

5 min. Question 1

What conditions determine whether a customer’s order is approved for credit?

Follow-up

5 min. Question 2

What are the possible decisions or actions that might be taken once these

conditions have been evaluated?

Follow-up

3 min. Question 3

How are customers notified when credit is not approved for their order?

Follow-up

1 min. Question 4

After a new order is approved for credit and placed in the file containing orders

that can be filled, a customer might request that a modification be made to the

order. Would the order have to go through credit approval again if the new total

order cost exceeds the original cost?

Follow-up

1 min. Objective

Conclude the interview:

• Thank Mr. Bentley for his cooperation and assure him that he will be

receiving a copy of what transpired during the interview.

1 min. Question 5

Who are the individuals who perform the credit checks?

Follow-up

1 to 3 min. Question 6

May I have permission to talk to those individuals to learn specifically how they

carry out the credit-checking process?

Follow-up

If so: When would be an appropriate time to meet with each of them?

21 minutes Time allotted for questions and objectives

9 minutes Time allotted for follow-up questions and redirection

30 minutes

General Comments and Notes:

Time allotted for interview (1:30 p.m.–2:00 p.m.)

F I G U R E 5 - 3 Sample Interview Guide

Fact-Finding Techniques for Requirements Discovery Chapter Five 169

what, when, where, why, and how much type of wording. The following types of ques-
tions should be avoided:

 • Loaded questions, such as “Do we have to have both of these columns on the
report?” The question conveys the interviewee’s personal opinion on the issue.

 • Leading questions, such as “You’re not going to use this OPERATOR CODE, are
you?” The question leads the interviewee to respond, “No, of course not,” regard-
less of actual opinion.

 • Biased questions, such as “How many codes do we need for FOOD CLASSIFI-
CATION in the INVENTORY FILE? I think 20 ought to cover it.” These types of
biased questions will infl uence an interviewee.

 Interviewers should always avoid threatening or critical questions. The purpose
of the interview is to investigate, not to evaluate or criticize. Additional guidelines for
questions include:

 • Use clear and concise language.
 • Don’t include your opinion as part of the question.
 • Avoid long or complex questions.
 • Avoid threatening questions.
 • Don’t use “you” when you mean a group of people.

 Conduct the Interview Respect your interviewee and his or her time. Dress to
match the interviewee. That generally means that you will dress differently to inter-
view managers than you will to interview workers on the loading dock. If the inter-
view will be held in a meeting room other than the interviewee’s offi ce, arrive early
to make sure it is set up appropriately.

 Open the interview by thanking the interviewee in advance. State the purpose
and length of the interview and how the gathered data will be used. Then monitor the
time so you will keep your promise.

 Ask follow-up questions. Probe until you understand the system requirements.
Ask especially about exception conditions. As what-if questions, such as “What if the
check doesn’t clear?” or “What happens if a product is not in stock?”

 Listen closely, observe the interviewee, and take notes concerning both verbal
and nonverbal responses from the interviewee. It’s very important to keep the inter-
view on track; this means anticipating the need to adapt the interview, if necessary.
Questions can often be bypassed if they have been answered earlier or they can be
deleted if determined to be irrelevant, based on previous answers.

 Here is a set of rules that an interviewer should follow:

 Do Avoid
 • Dress appropriately.
 • Be courteous.
 • Listen carefully.
 • Maintain control of the interview.
 • Probe.
 • Observe mannerisms and nonverbal

communication.
 • Be patient.
 • Keep the interviewee at ease.
 • Maintain self-control.
 • Finish on time.

 • Assuming an answer is fi nished or
leading nowhere.

 • Revealing verbal and nonverbal
clues.

 • Using jargon.
 • Revealing your personal biases.
 • Talking instead of listening.
 • Assuming anything about the topic or

the interviewee.
 • Tape recording—a sign of poor

listening skills.

 Conclude the interview by expressing appreciation and providing answers to any
questions posed by the interviewee. The conclusion is very important for maintaining
rapport and trust with the interviewee.

170 Part Two Systems Analysis Methods

 Follow Up on the Interview To help maintain good rapport and trust with inter-
viewees, the interviewer should send them a memo that summarizes the interview.
This memo should remind the interviewees of their contributions to the systems
project and allow them the opportunity to clarify any misinterpretations that the in-
terviewer may have derived during the interview. In addition, the interviewees should
be given the opportunity to offer additional information they may have failed to bring
out during the interview.

 Listening When most people talk about communication skills, they think of speaking
and writing. The skill of listening is rarely mentioned, but it may be the most impor-
tant skill during the interviewing process. In order to conduct a successful interview,
the interviewer must make a distinction between hearing and listening: “To hear is to
recognize that someone is speaking, to listen is to understand what the speaker wants
to communicate.” 3

 We have actually been conditioned most of our lives not to listen. Take, for ex-
ample, how we can ignore our quarreling brothers and sisters while we enjoy our
favorite CD or, as students, how we learn to study by blocking out distractions such
as noisy roommates. We have learned not to listen, but we can also learn how to listen
effectively and productively.

 When working with users trying to solve their problems, analysts may fi nd that
getting the users to communicate can be diffi cult. The following can help open the
lines of communication:

 • Approach the session with a positive attitude.
 • Set the other person at ease.
 • Let the other person know you are listening.
 • Ask questions.
 • Don’t assume anything.

 Body Language and Proxemics What is body language, and why should a sys-
tems analyst care about it during the interviewing process? Body language is all
the nonverbal information being communicated by an individual. Body language
is a form of nonverbal communication that we all use and of which we are usually
unaware.

 Studies have determined a startling fact: Of a person’s total feelings, only 7 per-
cent are communicated verbally (in words), whereas 38 percent are communicated
by the tone of voice used and 55 percent are communicated by facial and body
expressions. If you only listen to someone’s words, you are missing most of what
the person has to say.

 For this discussion, we will focus on just three aspects of body language: facial
disclosure, eye contact, and posture. Facial disclosure means you can sometimes
understand how a person feels by watching the expressions on his or her face.
Many common emotions have easily recognizable facial expressions associated
with them. However, the face is one of the most controlled parts of the body. Some
people who are aware that their expressions often reveal what they are thinking are
very good at disguising these expressions.

 Another form of nonverbal communication is eye contact. Eye contact is the least
controlled aspect of facial expression. A continual lack of eye contact may indicate
uncertainty. A normal glance is usually from three to fi ve seconds in length; however,
direct-eye-contact time should increase with distance. Analysts need to be careful
not to use excessive eye contact with users who seem threatened so that they won’t
further intimidate them. Direct eye contact can cause strong feelings, either positive
or negative, in other people.

 3 Thomas R. Gildersleeve, Successful Data Processing Systems Analysis (Englewood Cliffs, NJ: Prentice Hall, 1978), p. 93.

 body language the

nonverbal information we

communicate.

Fact-Finding Techniques for Requirements Discovery Chapter Five 171

 Posture is the least controlled aspect of the body. As such, body posture holds
a wealth of information for the astute analyst. Members of a group who are in agree-
ment tend to display the same posture. A good analyst will watch the audience for
changes in posture that could indicate anxiety, disagreement, or boredom. An analyst
should normally maintain an “open” body position, signaling approachability, accep-
tance, and receptiveness. In special circumstances, the analyst may choose to use a
confrontation angle of head-on or at a 90-degree angle to another person in order to
establish control and dominance.

 In addition to the information communicated by body language, individuals
also communicate via proxemics. Proxemics , the relationship between people and
the space around them, is a factor in communications that can be controlled by the
knowledgeable analyst.

 People still tend to be very territorial about their space. Observe where your
classmates sit in one of your courses that does not have assigned seats. Or the next
time you are involved in a conversation with someone, deliberately move much closer
or farther away from the person and see what happens. A good analyst is aware of
spatial zones.

 > Discovery Prototyping

 Another type of fact-fi nding technique is prototyping. Prototyping was introduced in
Chapter 2 for use in rapid application development (RAD). As you should recall, the
concept behind prototyping is building a small working model of the users’ require-
ments or a proposed design for an information system. This type of prototyping is
usually a design technique, but the approach can be applied earlier in the system de-
velopment life cycle to perform fact-fi nding and requirements analysis. The process
of building a prototype for the purpose of identifying requirements is referred to as
 discovery prototyping .

 Discovery prototyping is frequently applied to systems development projects,
especially in cases where the development team is having problems defi ning the
system requirements. The philosophy is that the users will recognize their require-
ments when they see them. It is important that the prototype be developed quickly
so that it can be used during the development process. Usually, only the areas where
the requirements are not clearly understood are prototyped. This means that a lot
of desired functionality may be left out and quality assurance may be ignored. Also,
nonfunctional requirements such as performance and reliability may be less stringent
than they would be for the fi nal product. Technologies other than the ones used for
the fi nal software are frequently used to build the discovery prototypes. In these
cases, the prototypes are most likely discarded when the system is fi nished. This
“throwaway” approach is primarily used to gather information and develop ideas for
the system concept. Many areas of a proposed system may not be clearly understood,
or some features may be a technical challenge for the developers. Creating discovery
prototypes enables the developers as well as the users to better understand and refi ne
the issues involved with developing the system. This technique helps minimize the
risk of delivering a system that doesn’t meet the user’s needs or that can’t fulfi ll the
technical requirements.

 Discovery prototyping has its advantages and disadvantages, which should
be weighed against those of other fact-fi nding techniques for every fact-fi nding
situation:

 Advantages Disadvantages

 proxemics the relationship

between people and the

space around them.

 discovery prototyping
 the act of building a small-

scale representative or

working model of the users’

requirements in order to

discover or verify those

requirements.

 • Allows users and developers to
experiment with the software and
develop an understanding of how
the system might work.

 • Developers may need to be trained in
the prototyping approach.

 • Users may develop unrealistic
expectations based on the

172 Part Two Systems Analysis Methods

 • Aids in determining the feasibility
and usefulness of the system before
high development costs are incurred.

 • Serves as a training mechanism for
users.

 • Aids in building system test plans
and scenarios to be used last in the
system testing process.

 • May minimize the time spent on fact-
fi nding and help defi ne more stable
and reliable requirements.

 > Joint Requirements Planning

 Many organizations are using the group work session as a substitute for numerous
and separate interviews. One example of the group work session approach is joint

requirements planning (JRP) , wherein highly structured group meetings are con-
ducted for the purpose of identifying and analyzing problems and defi ning system re-
quirements. This and similar techniques generally require extensive training to work
as intended. However, they can signifi cantly decrease the time spent on fact-fi nding
in one or more phases of the life cycle. JRP is becoming increasingly common in
systems planning and systems analysis to obtain group consensus on problems, objec-
tives, and requirements. In this section, you will learn about the participants of a JRP
session and their roles. We will also discuss how to go about planning and conducting
a JRP session, the tools and techniques that are used during a JRP session, and the
benefi ts to be achieved through JRP.

 JRP Participants Joint requirements planning sessions include a wide variety of
participants and roles. Each participant is expected to attend and actively participate
for the entire JRP session. Let’s examine the different types of individuals involved in
a typical JRP session and their roles:

 • Sponsor —Any successful JRP session requires a single person, called the spon-

sor, to serve as its champion. This person is normally an individual who is in top
management (not IT or IS management) and who has authority that spans the
different departments and users who are to be involved in the systems project.
The sponsor gives full support to the systems project by encouraging desig-
nated users to willingly and actively participate in the JRP session. Recalling the
“creeping commitment” approach to systems development, it is the sponsor
(system owner) who usually makes fi nal decisions regarding the go or no-go
direction of the project.

 • Facilitator —JRP sessions involve a single individual who plays the role of the
leader or facilitator. The JRP facilitator is usually responsible for leading all
sessions that are held for a systems project. This individual is someone who has
excellent communication skills, possesses the ability to negotiate and resolve
group confl icts, has a good knowledge of the business, has strong organizational
skills, is impartial to decisions that will be addressed, and does not report to any
of the JRP session participants.
 The role of the JRP facilitator is to plan the JRP session, conduct the session,
and follow through on the results. During the session, the facilitator is respon-
sible for leading the discussion, encouraging the attendees to actively partici-
pate, resolving issue confl icts that may arise, and ensuring that the goals and
objectives of the meeting are fulfi lled. It is the JRP facilitator’s responsibility to
establish the ground rules that will be followed during the meeting and ensure
that the participants abide by these rules.

 joint requirements
planning (JRP) a process

whereby highly structured

group meetings are conducted

for the purpose of analyzing

problems and defi ning

requirements.

performance, reliability, and features
of the prototype. Prototypes can only
simulate system functionality and are
incomplete in nature. Care must be
taken to educate the users about this
fact and not to mislead them.

 • Doing prototyping may extend the
development schedule and increase
the development costs.

Fact-Finding Techniques for Requirements Discovery Chapter Five 173

 • Users and managers —Joint requirements planning includes a number of
participants from the user and management sectors of an organization who
are given release time from their day-to-day jobs to devote themselves to active
involvement in the JRP sessions. These participants are normally chosen by the
project sponsor, who must be careful to ensure that each person has the busi-
ness knowledge to contribute during the fact-fi nding sessions. The project spon-
sor must exercise authority and encouragement to ensure that these individuals
will be committed to actively participating.
 A typical JRP session may involve anywhere from a relatively small number
of user/management people to a dozen or more. The role of the users during
a JRP session is to effectively communicate business rules and requirements,
review design prototypes, and make acceptance decisions. The role of the
managers during a JRP session is to approve project objectives, establish project
priorities, approve schedules and costs, and approve identifi ed training needs
and implementation plans.

 • Scribe(s) —A JRP session also includes one or more scribes, who are responsible
for keeping records pertaining to everything discussed in the meeting. These
records are published and disseminated to the attendees immediately follow-
ing the meeting in order to maintain the momentum that has been established
by the JRP session and its members. The need to quickly publish the records is
refl ected by the fact that scribes are increasingly using CASE tools to capture
many facts (documented using data and process models) that are communi-
cated during a JRP session. Thus, it is advantageous for scribes to possess strong
knowledge of systems analysis and design and be skilled with using CASE tools.
Systems analysts frequently play this role.

 • IT staff —A JRP session may also include a number of IT personnel who primar-
ily listen and take notes regarding issues and requirements voiced by the users
and managers. Normally, IT personnel do not speak up unless invited to do so.
Rather, any questions or concerns they have are usually directed to the JRP fa-
cilitator immediately after or before the JRP session. It is the JRP facilitator who
initiates and facilitates discussion of issues by users and managers.
 The IT staff in the JRP session usually consists of members of the project
team. These members may work closely with the scribe to develop models and
other documentation related to facts communicated during the meeting. Special-
ists may also be called on to gain information regarding special technical issues
and concerns that may arise. When the situation warrants, the JRP facilitator may
prompt an IT professional to address the technical issue.

 How to Plan JRP Sessions Most JRP sessions span three to fi ve days and occasion-
ally last up to two weeks. The success of any JRP session depends on properly plan-
ning and effectively carrying out the plan. Some preparation is necessary well before
the JRP session can be performed. Before planning a JRP session, the analyst must
work closely with the executive sponsor to determine the scope of the project that is
to be addressed through JRP sessions. It is also important that the high-level require-
ments and expectations of each JRP session be determined. This normally involves
interviewing selected individuals who are responsible for departments or functions
that are to be addressed by the systems project. Finally, before planning the JRP ses-
sion, the analyst must ensure that the executive sponsor is willing to commit people,
time, and other resources to the session.

 Planning for a JRP session involves three steps: selecting a location for the JRP
session, selecting JRP participants, and preparing an agenda to be followed during the
JRP session. Let’s examine each of these planning steps in detail:

 1. Selecting a location for JRP sessions —When possible, JRP sessions should be
conducted away from the company workplace. Most local hotels or universities
have facilities designed to host group meetings. By holding the JRP session at

174 Part Two Systems Analysis Methods

an off-site location, the attendees can concentrate on the issues and activities
related to the JRP session and avoid interruptions and distractions that would
occur at their regular workplace. Regardless of the location of the JRP session, all
attendees should be required to attend and be prohibited from returning to their
regular workplaces.
 The conference or main meeting room should comfortably hold all the
attendees. The room should be fully equipped with tables, chairs, and other items
that meet the needs of all attendees. Figure 5-4 depicts a typical room layout for
a JRP session. Typical visual aids for a JRP room should include a whiteboard,
smartboard, or blackboard; one or more fl ipcharts; and one or more projectors.
 The room should also include computer equipment needed by scribes to
record facts and issues communicated during the session. The computer itself
should include software packages to support the various types of records or
documentation to be captured and later published by the scribes. Such software
may include CASE tool, word processing, spreadsheet, presentation package,
prototyping software, printer, copier (or quick access), and computer projection
capability. As a guideline, computer equipment (except that used for prototyping)
should be located at the rear of the room so that it doesn’t interfere or become
a distraction for the JRP participants. Personal interaction of the participants, not
technology, should be the focus of the session.
 Finally, the room should be equipped for teleconferencing so that users at
distant locations can participate. The room should include notepads and pencils
for users, managers, and other attendees. Attendees should also be provided with

Flipchart

IT Professionals & Other Observers

Users

and
Managers

JRP

Facilitator

Scribe

Workstation

(for CASE tool)

Printer

Smartboard
Overhead Projector

Computer

Projection
Device

Food & Refreshments

IT Professionals & Other Observers

Workstation
(for prototyping tool)

Scribe

Scribe

Whiteboard

3
0

' -
 0

"

41' - 0"

F I G U R E 5 - 4 Typical Room Layout for JRP Session

Fact-Finding Techniques for Requirements Discovery Chapter Five 175

nametags, place cards, snacks, and drinks so that they will be as comfortable as
possible. Creature comforts are very important since JRP sessions are very intensive
and often run the entire day.

 2. Selecting JRP participants —As mentioned earlier, participants selected include
the JRP facilitator, scribe(s), and representatives from the user community. The
users should be key individuals who are knowledgeable about their business area.
Unfortunately, managers are often very dependent on these individuals to run
their business areas and are often hesitant to release them from their duties. Thus,
the analyst must ensure that management is committed to the JRP project and
willing to not only permit but also require these key individuals to participate.
 Various IT professionals may also be selected to be involved in the JRP session.
Usually all IT individuals assigned to the project team are involved in the JRP
session. Other IT specialists may also be assigned to address specifi c technical
issues pertaining to the project.

 3. Preparing a JRP session agenda —Preparation is the key to a successful JRP
session. The JRP facilitator must prepare documentation to brief the participants
about the scope and objectives of the sessions. In addition, an agenda for each
JRP session should be prepared and distributed before each session. The agenda
dictates issues to be discussed during the session and the amount of time allotted
to each item.
 The agenda should contain three parts: the opening, body, and conclusion.
The opening is intended to communicate the expectations of the session, to
communicate the ground rules, and to infl uence or motivate the attendees to
participate. The body is intended to detail the topics or issues to be addressed in
the JRP session. Finally, the conclusion represents the time set aside to summarize
the day’s session and to remind the attendees of unresolved issues (to be carried
forward).

 How to Conduct a JRP Session The JRP session begins with opening remarks,
introductions, and a brief overview of the agenda and objectives for the session. The
JRP facilitator will direct the session by following the prepared script. To successfully
conduct the session, the facilitator should follow these guidelines:

 • Do not unreasonably deviate from the agenda.
 • Stay on schedule (agenda topics are allotted specifi c times).
 • Ensure that the scribe is able to take notes (this may mean having the users and

managers restate their points more slowly or clearly).
 • Avoid the use of technical jargon.
 • Apply confl ict resolution skills.
 • Allow for ample breaks.
 • Encourage group consensus.
 • Encourage user and management participation without allowing individuals to

dominate the session.
 • Make sure that attendees abide by the established ground rules for the session.

 One of the goals of a JRP session is to generate possible ideas to solve a problem.
One approach is brainstorming. Brainstorming involves encouraging participants
to generate as many ideas as possible, without analyzing the validity of the ideas.

 As mentioned earlier, the success of a JRP session is highly dependent on plan-
ning and the skills of the JRP facilitator and scribes. These skills improve through
proper training and experience. Therefore, JRP sessions are usually concluded with
an evaluation questionnaire for the participants to complete. The responses will help
ensure the likelihood of future JRP successes.

 The end product of a JRP session is typically a formal written document. This
document is usually created by the JRP facilitator and scribes. It is essential for con-
fi rming the specifi cations agreed on during the session by all participants. The content
and organization of the specifi cations are obviously dependent on the objectives of

 brainstorming a tech-

nique for generating ideas

by encouraging participants

to offer as many ideas as

possible in a short period

of time without any analysis

until all the ideas have been

exhausted.

176 Part Two Systems Analysis Methods

the JRP session. The analyst may provide a different set of specifi cations to different
participants based on their role—for example, a manager may receive more of a sum-
mary version of the document provided to the user participants (especially in cases in
which the system owners had minimal actual involvement in the JRP session).

 Benefi ts of JRP Joint requirements planning offers many benefi ts as an alternative
fact-fi nding and development approach. More and more companies are beginning to
realize its advantages and are incorporating JRP into their existing methodologies. An
effectively conducted JRP session offers the following benefi ts:

 • JRP actively involves users and management in the development project (en-
couraging them to take “ownership” in the project).

 • JRP reduces the amount of time required to develop systems. This is achieved by
replacing traditional, time-consuming one-on-one interviewing of each user and
manager with group meetings. The group meetings allow for more easily obtain-
ing consensus among the users and managers, as well as resolving confl icting
information and requirements.

 • When JRP incorporates prototyping as a means for confi rming requirements and
obtaining design approvals, the benefi ts of prototyping are realized.

 Achieving a successful JRP session depends on the JRP facilitator and his or her
ability to plan and facilitate the JRP session.

 A Fact-Finding Strategy

 An analyst needs an organized method for collecting facts. Inexperienced analysts will
frequently jump right into interviews. They believe, “Go to the people. That’s where
the real facts are!” Wrong! This approach fails to recognize an important fact of life:
People must complete their day-to-day jobs. You may be thinking, “But I thought
you’ve been saying that the system is for people and that direct end-user involvement
in systems development is essential. Aren’t you contradicting yourselves?”

 Not at all. Time is money. To waste end users’ time is to waste their company’s
money. To make the most of the time spent with end users, analysts should not jump
right into interviews. Analysts should fi rst collect all the facts they can by using other
methods. Consider the following step-by-step strategy:

 1. Learn from existing documents, forms, reports, and fi les. Analysts can learn a lot
without any people contact.

 2. If appropriate, observe the system in action.
 3. Given all the facts already collected, design and distribute questionnaires to clear

up things that aren’t fully understood.
 4. Conduct interviews (or group work sessions). Because most of the pertinent facts

have already been collected by low-user-contact methods, interviews can be used
to verify and clarify the most diffi cult issues and problems. (Alternatively, consider
using JRP techniques to replace or complement interviews.)

 5. (Optional). Build discovery prototypes for any functional requirements that are
not understood or for requirements that need to be validated.

 6. Follow up. Use appropriate fact-fi nding techniques to verify facts (usually
interviews or observation).

 The strategy is not sacred. Although a fact-fi nding strategy should be developed
for every pertinent phase of systems development, every project is unique. Some-
times observation and questionnaires may be inappropriate. But the idea should al-
ways be to collect as many facts as possible before using interviews.

 1. The process and techniques that a systems analyst
uses to identify, analyze, and understand system
requirements are referred to as requirements
discovery.

 2. System requirements specify what the information
system must do or what property or quality the
system must have.

 3. The process of requirements discovery consists of
the following activities:

 a. Problem discovery and analysis.
 b. Requirements discovery.
 c. Documenting and analyzing requirements.
 d. Requirements management.

 4. Fact-fi nding is a technique that is used across
the entire development cycle, but it is extremely
critical in the requirements analysis phase.

 5. A popular tool used by development teams to
identify, analyze, and solve problems is an Ishikawa
diagram.

 6. There are seven common fact-fi nding techniques:

 a. The sampling of existing documents and fi les
can provide many facts and details with little
or no direct personal communication being
necessary. The analyst should collect historical
documents, business operations manuals and
forms, and information systems documents.

 b. Research is an often-overlooked technique
based on the study of other similar applications.
It now has become more convenient with the
Internet and World Wide Web (WWW). Site
visits are a special form of research.

 c. Observation is a fact-fi nding technique in which
the analyst studies people doing their jobs.

 d. Questionnaires are used to collect similar facts
from a large number of individuals.

 e. Interviews are the most popular but the most
time-consuming fact-fi nding technique. When
interviewing, the analyst meets individually
with people to gather information.

 i) When most people talk about communication
skills, they think of speaking and writing.
The skill of listening hardly gets mentioned
at all, but it may be the most important,
especially during the interviewing process.

 ii) Research studies have determined a
startling fact: Of a person’s total feelings,
only 7 percent are communicated verbally
(in words), whereas 38 percent are
communicated by the tone of voice used

and 55 percent are communicated by facial
and body expressions. If you only listen to
someone’s words, you are missing most of
what the person has to say. Experienced
systems analysts pay close attention to body
language and proxemics.

 f. Discovery prototyping is frequently applied
to systems development projects, especially in
cases where the development team is having
problems defi ning the system requirements.
The philosophy is that the users will recognize
their requirements when they see them. It is
important that the prototype be developed
quickly so that it can be used during the
development process.

 g. Many analysts fi nd fl aws with interviewing—
separate interviews often lead to confl icting
facts, opinions, and priorities. The end result is
numerous follow-up interviews and/or group
meetings. For this reason, many organizations
are using a group work session known as
the joint requirements planning session as a
substitute for interviews.

 i) Joint requirements planning sessions include
a wide variety of participants and roles.
Each participant is expected to attend and
actively participate for the entire duration of
the JRP session.

 ii) An effective JRP session involves extensive
planning. Planning for a JRP session involves
three steps: selecting a location for the
JRP session, selecting JRP participants, and
preparing an agenda to be followed during
the JRP session.

 7. To help alleviate the many problems associated
with changing requirements, it is necessary to
perform requirements management. Requirements
management encompasses the policies,
procedures, and processes that govern how a
change to a requirement is handled.

 8. Because “time is money,” it is wise and practical for
the systems analyst to use a fact-fi nding strategy
to maximize the value of time spent with the end
users.

 a. Learn from existing documents, forms, reports,
and fi les. Analysts can learn a lot without any
people contact.

Summary

Fact-Finding Techniques for Requirements Discovery Chapter Five 177

178 Part Two Systems Analysis Methods

 b. If appropriate, observe the system in action.
 c. Given all the facts already collected, design and

distribute questionnaires to clear up things that
aren’t fully understood.

 d. Conduct interviews (or group work sessions).
Because most of the pertinent facts have
already been collected by low-user-contact
methods, interviews can be used to verify and
clarify the most diffi cult issues and problems.

(Alternatively, consider using JRP techniques
to replace or complement interviews.)

 e. (Optional.) Build discovery prototypes for any
functional requirements that are not understood
or for requirements that need to be validated.

 f. Follow up. Use appropriate fact-fi nding
techniques to verify facts (usually interviews
or observation).

Review Questions
1

2

 1. What is the importance of conducting the
requirements discovery process?

 2. What are the possible consequences if you fail
to identify system requirements correctly and
completely?

 3. What are some of the criteria deemed to be
critical in defi ning system requirements?

 4. The requirements discovery process consists of
what activities?

 5. Briefl y describe the purpose and component
parts of an Ishikawa diagram.

 6. What technique is commonly used in the
requirements discovery phase? Why is it
important?

 7. Why is analyzing requirements essential?
 8. When collecting facts from existing

documentation, what kind of documents should
system analysts review?

 9. What are some of the drawbacks of collecting
facts by observing employees in their work
environment? How can systems analysts deal with
these drawbacks?

 10. What are the types of survey questionnaires that
systems analysts can use to collect information
and opinions?

 11. What are some of the ways that you can use
to help open the lines of communication in an
interview?

 12. What is joint requirements planning (JRP)?
 13. Why has JRP become popular?
 14. Why is the facilitator in JRP so important?
 15. What is the main concern in selecting a location

for JRP sessions?

Problems and Exercises

 1. You are managing a project that was postponed
twice because its funding was diverted to higher-
priority projects. The system owners do not want
that to happen again, so they are very anxious to
get the new system started and built as quickly as
possible. They are putting a great deal of pressure
on you to spend no more than a couple of days
on requirements discovery. If anything is missed,
they tell you, it can be fi xed later on. You really
want to make them happy, but a little voice
of caution is going off. What are the potential
consequences and costs of rushing through the
requirements discovery process?

 2. What common error does a new systems analyst
often make when analyzing a problem? What are
the potential consequences of this error? What
tool can be used to help avoid this problem?

 3. System developers use fact-fi nding techniques
in every project phase. Is fact-fi nding more

important during the requirements analysis phase
than for other phases? Why or why not?

 4. What are some of the common tools and
techniques a systems analyst can use to
document the initial fi ndings? Should the systems
analyst expect the requirements to be complete
and correct at this point? If not, what are the
common problems? What should be the focus of
the project team at this point?

 5. What is the deliverable that is created once
requirements analysis is completed? Why is this
deliverable needed, and what does it include?
Who are the audience and/or users of this
deliverable, and for what reasons?

 6. You are a systems analyst in a software
development company that has been hired to
do the requirements analysis phase for a large
organization. What are three categories of existing
documentation that you should collect during

requirement discovery? What are some examples
of each of these three types of documentation?
What should the systems analyst watch out for in
collecting documentation?

 7. Suppose that you are a systems analyst on a
project that involves modifying the sales order
process. Since your company receives in the
neighborhood of 2,500 sales orders per day,
how many do you need to sample if you want
95 percent certainty that you have covered all
variations? What if the number of sales orders per
day was 25,000 orders?

 8. Surveys and questionnaires are frequently used
to gather facts. What are some of the advantages
and disadvantages of questionnaires? When might
you choose free-format questionnaires over fi xed-

format questionnaires? What is one method of
determining the effectiveness of a questionnaire?

 9. What are some of the reasons to use joint
requirements planning (JRP) as a fact-fi nding
technique? What should be the basis for selecting
which users and managers will participate in
the JRP session, and who generally selects them?
What skills should the facilitator and scribe
possess? What is the role of IT staff during JRP
sessions? What is the typical duration of the JRP
sessions?

 10. Provide at least fi ve of the critical success factors
for JRP sessions.

 11. What one thing should an analyst not do
when beginning the fact-fi nding portion of
requirements discovery, no matter how tempting?

Projects and Research

 1. Systems analysts must have expertise in problem
analysis. When systems analysts are starting
out, they often fi nd it diffi cult to differentiate
symptoms from problems and to identify the
actual causes of the problem. One tool that can
help analysts learn to do this is the Ishikawa, or
fi shbone, diagram.

 a. Find and select a problem that your
organization, school, or other organization is
currently attempting to resolve. Describe this
problem.

 b. Follow the process described in this chapter
and create an Ishikawa diagram.

 c. Which categories did you start with in the
diagram, and which categories did you add
during the process?

 d. Did this diagram help in fi nding the actual
cause(s) of the problem? Did the cause(s)
turn out to be what you originally thought, or
something different?

 2. Observing the work environment is a technique
that predates the information age, but that can still
be highly effective. Although not applicable for
every situation, observing what people actually
do and how they do it can be in some cases
much more accurate than asking them! Select a
system—whether hypothetical or real—and do the
following:

 a. Provide an overview of the system and what
you are trying to learn about the system for a
project.

 b. Develop a work observation plan using the
guidelines in this chapter. The format is up to
you, but it generally should not need more than
1–2 pages.

 c. Develop a work-sampling plan, and describe the
sampling procedures you will use.

 d. What are your thoughts about this method
compared to other fact-fi nding methods?

 3. You are a systems analyst working on a project
to develop an intranet for a large organization
with several thousand employees working in
offi ces throughout the United States. This will be
the organization’s fi rst intranet, and executive
management wants it to help increase employee
effi ciency and commitment to the organization.
As part of fact-fi nding, information needs to be
gathered from employees of the organization
regarding intranet content and functionality. Due
to the size and geographic distribution of the
organization, as well as project time constraints,
there is insuffi cient time and resources for
personal interviews, so you have decided that a
questionnaire is needed.

 a. What facts and opinions do you need to collect?
 b. Should all employees in the organization be

surveyed? Why or why not? If not all employees
should be surveyed, how would you select the
employees to be surveyed?

 c. What format do you think would work best for
this survey questionnaire? If fi xed format, what
type(s) of fi xed-format questions should be used?

Fact-Finding Techniques for Requirements Discovery Chapter Five 179

180 Part Two Systems Analysis Methods

 d. How long should the survey questionnaire be in
order to get the necessary information without
discouraging employees from fi lling it out?

 e. Create the survey questionnaire, using the
question-writing guidelines given in this
chapter.

 4. Based upon the responses to your intranet survey,
you feel that it would be helpful to interview
someone in another organization who has had
experience in developing and/or maintaining
company intranets.

 a. What type of interview do you think would
be most appropriate in this situation—
unstructured or structured? Why?

 b. Make an appointment with the intranet
administrator in your organization or another
organization or school to discuss her or his
experiences in developing and/or maintaining
an intranet. Describe the organization and its
intranet.

 c. Prepare an interview guide using the format
of Figure 5-3 as an example, ensuring that
questions are free of the problems discussed in
this chapter.

 d. Conduct the interview, and record the
responses.

 e. What do you feel worked well in the interview,
and what would you do differently next time?

 5. Body language is an extremely important part
of communication, as described in the textbook.
Analysts need to be aware of not only what is
being communicated through the body language
of the interviewee but also the impact that their
own body language may have upon the interview
process. Make an appointment with several co-
workers or fellow students to interview regarding
the features they would like to see in an intranet;
if possible, select interviewees you know well and
those that you don’t. Prepare for the interviews
following the same steps as in the prior question.

 a. Describe the interviewees you selected and the
questions you asked.

 b. During each interview, observe the facial
expressions of the interviewee. What did you
observe? Were the facial expressions always
consistent with the responses?

 c. During each interview, observe the eye contact.
How long did it last? Observe and describe
what happened when you made eye contact
for more than three to fi ve seconds with the
interviewee.

 d. Try changing your spatial zone during the
interview. Did the interviewee show any signs
of being uncomfortable? At what point did that
occur?

 e. Did you note any differences in body language
between those you knew well and those you
didn’t?

 f. What did you do that was the most successful
and the least successful in eliciting information?

 6. Analysts typically have access to confi dential or
sensitive data during the requirements discovery
phase of a project, particularly during fact-fi nding.
Analysts need to be aware of situations where
there may be a breach of professional ethics,
whether by acts of commission or omission, and
the possible consequences. Search on the Web
and/or in business periodicals in your school
library for articles on incidents involving breaches
of professional ethics.

 a. What articles did you fi nd?
 b. What was the nature of each of these incidents?
 c. What were the consequences?
 d. What was the analyst’s personal responsibility

in each incident?
 e. What could have been done at the

organizational and/or individual level to prevent
the incident or to reduce its severity?

Minicases

 1. In Chapter 4, you developed feasibility studies
for a project. Economic feasibility assessments
are impacted signifi cantly by intangibles, whose
value is obtained in part by interviews and
questionnaires. Develop interview questions
to determine the value to employees of
telecommuting.

 a. Begin with unstructured questions posed to
one group of employees to determine what

matters to the employees and how they view
telecommuting.

 b. Once you know what issues surround employee
perceptions of telecommuting and why they
might like/dislike it, create open-ended, but
structured, questions on those issues, and
interview a second set of employees. Why are
we using two different groups of employees for
this process?

 2. Develop a questionnaire for mass employee
distribution based on your fi ndings from the
previous interviews. Why are we completing the
analysis with an anonymous survey?

 3. You are in charge of developing a new online class
registration system for your school. Develop a set
of interview questions to determine issues and
needs of students, registration staff, and faculty for
an online registration system.

 4. Discuss the impact that biased or leading questions
may have on an analysis. Create one nonbiased
interview question and one biased or leading
question. Pose each of those questions to fi ve
people. What kind of responses did you get? Were
they what you expected?

Team and Individual Exercises

 1. Create a biased, leading, or loaded set of interview
questions. Pose them to another student in the
class. The other student, instead of answering the
questions, should tell you how you are biased and
what response you are looking for.

 2. Class exercise: Create as unbiased a set of
interview questions as you can on a particular
topic. Pose the questions to the class. However,
wear a shirt, pins, and so on, that lead the class
to respond in a particular way. Have fun, and
experiment with visual aids, props, and the like.

 3. It has been found in past research studies that
employees who are allowed to telecommute
actually work approximately three extra unpaid
hours a week. But telecommuting is often used
as a negotiating tool by an employer—in order
to telecommute, employees must accept a lower
salary, typically 10 percent. What do you think
about this?

Suggested Readings

 Andrews, D. C., and N. S. Leventhal. Fusion Integrating IE,

CASE and JAD: A Handbook for Reengineering the

Systems Organization. Englewood Cliffs, NJ: Prentice

Hall, 1993.

 Berdie, Douglas R., and John F. Anderson. Questionnaires:

Design and Use. Metuchen, NJ: Scarecrow Press, 1974.

A practical guide to the construction of questionnaires.

Particularly useful because of its short length and

illustrative examples.

 Davis, William S. Systems Analysis and Design. Reading,

MA: Addison-Wesley, 1983. Provides useful pointers for

preparing and conducting interviews.

 Dejoie, Roy; George Fowler; and David Paradice. Ethical Issues

in Information Systems. Boston, MA: Boyd and Fraser,

1991. Focuses on the impact of computer technology on

ethical decision making in today’s business organizations.

 Fitzgerald, Jerry; Ardra F. Fitzgerald; and Warren D. Stallings,

Jr. Fundamentals of Systems Analysis, 2nd ed. New York:

John Wiley & Sons, 1981. A useful survey text for the

systems analyst. Chapter 6, “Understanding the Existing

System,” does a good job of presenting fact-fi nding

techniques in the study phase.

 Gane, C. Rapid Systems Development. New York: Rapid

Systems Development, Inc., 1987. This book provides

a good discussion on how to lead a group meeting/

interview.

 Gause, Donald C., and Gerald M. Weinberg. Exploring

Requirements: Quality before Design. New York: Dorset

House Publishing, 1989. An excellent book describing the

techniques of requirements discovery.

 Gildersleeve, Thomas R. Successful Data Processing System

Analysis. Englewood Cliffs, NJ: Prentice Hall, 1978.

Chapter 4, “Interviewing in Systems Work,” provides a

comprehensive look at interviewing specifi cally for the

systems analyst. A thorough sample interview is scripted

and analyzed in this chapter.

 London, Keith R. The People Side of Systems. New York:

McGraw-Hill, 1976. Chapter 5, “Investigation versus

Inquisition,” provides a very good people-oriented look at

fact-fi nding, with considerable emphasis on interviewing.

 Lord, Kenniston W., Jr., and James B. Steiner. CDP Review

Manual: A Data Processing Handbook, 2nd ed. New York:

Van Nostrand Reinhold, 1978. Chapter 8, “Systems Analysis

and Design,” provides a comprehensive comparison of the

merits and demerits of each fact-fi nding technique. This

material is intended to prepare data processors for the

Certifi cate in Data Processing examinations, one of which

covers systems analysis and design.

 Miller, Irwin, and John F. Freund. Probability and Statistics

for Engineers. Englewood Cliffs, NJ: Prentice Hall, 1965.

Introductory college textbook on probability and statistics.

 Mitchell, Ian; Norman Parrington; Peter Dunne; and John

Moses. “Practical Prototyping, Part One,” Object Currents,

May 1996. First of a three-part series of articles that

explores prototyping and how you can benefi t from it.

Prototyping is an integral part of JRP.

Fact-Finding Techniques for Requirements Discovery Chapter Five 181

 Robertson, Suzanne, and James Robertson. Mastering the

Requirements Process. Reading, MA: ACM Press/Addison-

Wesley, 1999. This book contains an in-depth coverage of

step-by-step procedures for requirements discovery.

 Salvendy, G., ed. Handbook of Industrial Engineering.

New York: John Wiley & Sons, 1974. A comprehensive

handbook for industrial engineers; systems analysts are, in

a way, a type of industrial engineer. Excellent coverage on

sampling and work measurement.

 Stewart, Charles J., and William B. Cash, Jr. Interviewing:

Principles and Practices, 2nd ed. Dubuque, IA: Brown,

1978. Popular college textbook that provides broad

exposure to interviewing techniques, many of which are

applicable to systems analysis and design.

 Walton, Donald. Are You Communicating? You Can’t Manage

without It. New York: McGraw-Hill, 1989. This book is an

easy-to-use guidebook on the process of communications

and a must for anyone who must work with people and

infl uence them.

 Weinberg, Gerald M. Rethinking Systems Analysis and

Design. Boston: Little, Brown and Company, 1982. A book

created to stimulate a new way of thinking.

 Wood, Jane, and Denise Silver. Joint Application Design.

New York: John Wiley & Sons, 1989. This book provides

a comprehensive overview of IBM’s joint application

design technique.

182 Part Two Systems Analysis Methods

 Chapter Preview and Objectives

In this chapter you will learn about the tools and techniques necessary to perform use-

case modeling to document system requirements. Capturing and documenting system

requirements have proved to be critical factors in the outcome of a successful information

systems development project. Documenting the requirements from the perspective of the

users in a manner that they can understand promotes user involvement, which greatly

enhances the probability for the success of the project. You will know that you understand

requirements use-case modeling when you can:

❚ Describe the benefi ts of use-case modeling.

❚ Defi ne actors and use cases and be able to identify them from context diagrams and

other sources.

❚ Describe the four types of actors.

❚ Describe the relationships that can appear on a use-case model diagram.

❚ Describe the steps for preparing a use-case model.

❚ Describe how to construct a use-case model diagram.

❚ Describe the various sections of a use-case narrative and be able to prepare one.

❚ Defi ne the purpose of the use-case ranking and priority matrix and the use-case

dependency diagram.

6Modeling System
Requirements with Use Cases

184 Part Two Systems Analysis Methods

 Following the joint requirements planning (JRP) meeting that was held as one task
of the requirements analysis phase, the SoundStage Member Services system project
team has built a list of use cases that specify all the required functionality of the
system. At first, each use case was just a simple verb phrase (such as “Place New
Order”) that described something one or more users wanted to do with the system.
Next, each use case was documented with a narrative describing in detail the desired
interaction between the user and the system. Then Bob Martinez and other systems
analysts held a series of interviews with users to verify those use-case narratives. Fi-
nally they are analyzing which use cases are the highest priority to the system. Bob’s
boss, Sandra, says that will identify for them what functionality has to be included in
the first build cycle of the system. The plan is to take those highest-priority use cases
into the logical design and later phases and implement a working version 1.0 of the
system on schedule and within budget.

 1 The Standish Group International, Inc., “CHAOS: A Recipe for Success” (electronic version), 1999. Retrieved December 5,

2002, from www.pm2go.com/sample_research/chaos1998.pdf. The Standish Group is best known for its independent

primary research and analysis of the IT industry.

 user-centered
development a process of

systems development based

on understanding the needs

of the stakeholders and the

reasons why the system

should be developed.

 use-case modeling the

process of modeling a

system’s functions in terms

of business events, who

initiated the events, and how

the system responds to those

events.

 Introduction

 An Introduction to Use-Case Modeling

 One of the primary challenges of vital importance to any information systems devel-
opment team, and especially the systems analyst, is the ability to elicit the correct and
necessary system requirements from the stakeholders and specify them in a manner
that is understandable to the stakeholders in order for those requirements to be veri-
fied and validated.

 The information technology community has always had problems trying to
specify requirements, especially functional requirements, to users. In the past we
have used tools such as data models, process models, prototypes, and requirements
specifications that we understood and were comfortable with, but they were hard
to understand for any user who wasn’t educated in software development practices.
Because of this, many development projects were and still are plagued with scope
creep, cost overruns, and schedule creep problems. Very often systems are devel-
oped and deployed that really don’t satisfy the user’s needs. Some are shelved and not
used at all, and a large percentage are canceled even before the development effort
is complete. A very well known research firm, the Standish Group, studied 23,000
IT applications in 1994, 1996, and 1998. 1 As shown in Figure 6-1 , the 1998 study
found that only a little more than a quarter of the projects in 1998 were successful
(on budget, on time, and included all features). More than a quarter of them failed
(canceled before completion). A little less than half were what Standish considered
challenged—the project was complete and operational, but it was completed either
over budget, over the time estimate, or without all the features specified by the users.
The good news reflected in these studies and others is that the ways and means we
are using to develop information systems are improving. The software development
industry has learned that in order to successfully plan, analyze, design, construct, and
deploy an information system, the systems analyst first must understand the needs of
the stakeholders and the reasons why the system should be developed—a concept
called user-centered development . By focusing on the users of the system, the ana-
lyst can concentrate on how the system will be used and not how it will be constructed.
 Use-case modeling is an approach that facilitates usage-centered development.

 Use-case modeling was originally conceived by Dr. Ivar Jacobson in 1986 and
gained popularity after he published his book, Object-Oriented Software Engineering,

Modeling System Requirements with Use Cases Chapter Six 185

in 1992. Dr. Jacobson used use-case modeling as the framework for his objectory meth-
odology, which he successfully used for developing object-oriented information sys-
tems. It is now widely recognized as a best practice for the defining, documenting,and
understanding of an information system’s functional requirements.

 System Concepts for Use-Case Modeling

 There are two primary artifacts involved when performing use-case modeling. The fi rst
is the use-case diagram , which graphically depicts the system as a collection of use cas-
es, actors (users), and their relationships. This diagram communicates at a high level the
scope of the business events that must be processed by the system. An example of a use-
case diagram is shown in Figure 6-2 . It shows each system function, or business event (in
the ellipses), and the actors, or system users, who interact with those functions. As you
can see in Figure 6-2 , actors can be placed on either side of the set of use-case fi gures and
can interact with one or more use cases. The use-case diagram is extremely simple. But
it begins an important process called functional decomposition , the act of breaking a
system apart into its subcomponents. It is impossible to understand the entire system at
once, but it is possible to understand and specify each part of the system.

 The second artifact, called the use-case narrative , fills in the details of each
business event and specifies how the users interact with the system during that event.
The use-case narrative will be discussed in detail later in the chapter.

Project Success Rate

Year

100%

80%

60%

40%

20%

0%
1994 1996 1998

Succeeded

Challenged

Failed

31%

53%

16%

40%

33%

27%

28%

46%

26%

 F I G U R E 6 - 1

Project Success
Rates as Reported
by the Standish
Group

 Source: The Standish Group Inter-

national, Inc., “Chaos: A Recipe for

Success” (electronic version), 1999,

www.pm2go.com/sample_research/

chaos1998.pdf.

 F I G U R E 6 - 2

Sample Use-Case
Model Diagram

Use Case 3

Use Case 1

System

Use Case 2
Actor 1

Actor 3

Actor 2

 use-case diagram a

diagram that depicts the

inter-actions between the

system and external systems

and users. In other words, it

graphically describes who will

use the system and in what

ways the user expects to

interact with the system.

 functional
decomposition the act

of breaking a system into

subcomponents.

186 Part Two Systems Analysis Methods

 > Use Cases

 Use-case modeling identifies and describes the system functions by using a tool called
 use cases . Use cases describe the system functions from the perspective of external
users and in a manner and terminology they understand. To accurately and thorough-
ly accomplish this demands a high level of user involvement and a subject-matter
expert who is knowledgeable about the business process or event.

 Use cases are represented graphically by a horizontal ellipse with the name of the
use case appearing above, below, or inside the ellipse. A use case represents a single
goal of the system and describes a sequence of activities and user interactions in try-
ing to accomplish the goal. The creation of use cases has proved to be an excellent
technique to better understand and document system requirements. A use case itself
is not considered a functional requirement, but the story (scenario) the use case tells
consists of one or more requirements.

 Use cases are initially defined during the requirements stages of the life cycle and
will be additionally refined throughout the life cycle. During requirements discovery,
use cases are used to capture the essence of the business problems and to model
(at a high level) the functionality of the proposed system. Additionally, they are the
starting point for identifying the data entities (covered in Chapter 7) or objects of
the system (covered in Chapter 10). During requirements analysis the use cases are
refined to model usage of the system in more detail. In other words, they are updated
to specify what the users are trying to accomplish and why. These use cases aid in
the definition of any prototypes or user interfaces. During design the use cases are
refined to model how the users will actually use the system with regard to any inter-
face and system constraints (covered in Chapter 17). These types of use cases aid in
identifying object or system behavior and in designing interface and code specifica-
tions, as well as serve as the plan for testing the system. In construction, use cases
aid developers in programming and testing. These use cases also serve as the baseline
for preparing any user and system documentation, plus they serve as tools for user
training. And, because use cases contain an enormous amount of system functionality
detail, they will be a constant resource for validating the system.

 > Actors

 Use cases are initiated or triggered by external users called actors . An actor initiates
system activity, a use case, for the purpose of completing some business task that
produces something of measurable value. Let’s use the example of a college student
enrolling for the fall semester’s courses. The actor would be the student, and the
business event, or use case, would be Enrolling in Course. An actor represents a role
fulfilled by a user interacting with the system and is not meant to portray a single
individual or job title. In fact, an actor doesn’t have to be human. It can be an organi-
zation, another information system, an external device such as a heat sensor, or even
the concept of time (which will be discussed a little later). An actor is represented
graphically as a stick figure labeled with the name of the role the actor plays.

 It is important to note that there are primarily four types of actors:

• Primary business actor —the stakeholder that primarily benefi ts from the
execution of the use case by receiving something of measurable or observable
value. The primary business actor may or may not initiate the business event.
For example, in the business event of an employee receiving a paycheck (some-
thing of measurable value) from the payroll system each Friday, the employee
does not initiate the event but is the primary recipient of the something of value.

• Primary system actor —the stakeholder that directly interfaces with the system
to initiate or trigger the business or system event. Primary system actors may
interact with primary business actors for the purpose of using the actual system.
They facilitate the event through the direct use of the system for the benefi t of

 actor anything that needs

to interact with the system to

exchange information.

Actor Symbol

 use-case narrative a

textual description of the

business event and how the

user will interact with the

system to accomplish the

task.

 use case a behaviorally

related sequence of steps (a

scenario), both automated

and manual, for the purpose

of completing a single

business task.

Use Case

Symbol

Modeling System Requirements with Use Cases Chapter Six 187

the primary business actor. Examples include a grocery store clerk who scans
the items for the customer buying groceries, a telephone operator who gives
directory assistance to a customer, and a bank teller who processes a banking
transaction. The primary business actor and primary system actor may be the
same person for events where the business actor interfaces with the system
directly—for example, a person reserving a rental car via a Web site.

• External server actor —the stakeholder that responds to a request from the use
case (e.g., a credit bureau authorizing the charging by a credit card).

• External receiver actor —the stakeholder that is not the primary actor but
receives something of measurable or observable value (output) from the use
case (e.g., a warehouse receiving a packing order to prepare a shipment after a
customer has placed an order).

 In many information systems there are business events triggered by the calendar
or the time on a clock. Consider the following examples:

• The billing system for a credit card company automatically generates its bills
on the 5th day of the month (billing date).

• A bank reconciles its check transactions every day at 5 P.M.
• On a nightly basis a report is automatically generated listing which courses

have been closed to enrollment (no open seats available) and which courses
are still open.

 These events are examples of temporal events . Who would be the actor? All of the
events listed above were performed (or triggered) automatically—when it became a
certain date or time. Because of that we say the actor of a temporal event is time.

 > Relationships

 A relationship is depicted as a line between two symbols on the use-case diagram.
The meaning of the relationships may differ depending on how the lines are drawn
and what types of symbols they connect. In the following sections we will define the
different relationships found on a use-case diagram.

 Associations A relatvionship between an actor and a use case exists whenever the
use case describes an interaction between them. This relationship is referred to as
an association . As indicated in Figure 6-3 , an association is modeled as a solid line
connecting the actor and the use case. An association that contains an arrowhead
on the end touching the use case (1) indicates the use case was imitated by the
actor on the other end of the line. Associations without arrowheads (2) indicate an
interaction between the use case and an external server or receiver actor. When any
actor is associated with a use case, we say the actor communicates with the use case.
Associations may be bidirectional or unidirectional. Extends A use case may contain complex functionality consisting of several steps
making the use-case logic diffi cult to understand. For the purpose of simplifying the
use case and making it more easily understood, we can extract the more complex
steps into their own use case. The resulting use case is called an extension use

case in that it extends the functionality of the original use case. The relationship
between the extension use case and the use case it is extending is called an extends

relationship. A use case may have many extends relationships, but an extension use

 temporal event a system

event that is triggered by

time.

Place New

Member Order

Club Member Distribution Center

1 2

 F I G U R E 6 - 3

Example of an
Association
Relationship

 association a relationship

between an actor and a use

case in which an interaction

occurs between them.

 extension use case a use

case consisting of steps

extracted from a more

complex use case in order to

simplify the original case and

thus extend its functionality.

The extension use case

 extends the functionality of

the original use case.

188 Part Two Systems Analysis Methods

case can be invoked only by the use case it is extending. As depicted in Figure 6-4 , the
extends relationship is represented as an arrowheaded line (either solid or dashed)
beginning at the extension use case and pointing to the use case it is extending. Each
extends relationship line is labeled “<<extends>>.” Generally extension use cases are
not identifi ed in the requirements phase but in the analysis phase.

 Uses (or Includes) Very commonly, you may discover two or more use cases that
perform steps of identical functionality. It is best to extract these common steps into
their own separate use case called an abstract use case . An abstract use case represents
a form of “reuse” and is an excellent tool for reducing redundancy among use cases. An
abstract use case is available for referencing (or use) by any other use case that requires
its functionality. The relationship between the abstract use case and the use case that
uses it is called a uses relationship (some use-case modeling tools refer to it as an
 includes relationship). The uses relationship as presented in Figure 6-5 is depicted as an
arrowheaded line (either solid or dashed) beginning at the original use case and pointing
to the use case it is using. Each uses relationship line is labeled “<<uses>>.” Generally
abstract use cases are not identifi ed in the requirements phase but in the analysis phase.

 Depends On As the project manager or lead developer, it is very helpful to know
which use cases have a dependency on other use cases in order to determine the
sequence in which use cases need to be developed. Using the banking business
as an example, the use case Make a Withdrawal cannot be performed until the use
case Make a Deposit has been executed, and that use case cannot execute until the
use case Establish Bank Account has occurred. Because of these dependencies the
development team will most likely choose to develop the use case Establish Bank
Account fi rst, the Make a Deposit use case second, and the Make a Withdrawal use
case third for usability and testing purposes. A use-case diagram modeling the system’s

 abstract use case a use

case that reduces redundancy

among two or more other

use cases by combining the

common steps found in those

cases. Another use case uses

or includes the abstract use

case.

Submit Change

of Postal Address

Revise Postal

Address

Place New Member

Order

Abstract
Use Case

<<uses>>

<<uses>>

 F I G U R E 6 - 5

Example of a
Uses Relationship

Generate Warehouse

Packing Order

Calculate Order

Subtotal & Sales Tax

Place New Member

Order

Extension Use
Case

<<extends>> <<extends>>

 F I G U R E 6 - 4

Example of an
Extends
Relationship

Modeling System Requirements with Use Cases Chapter Six 189

use-case dependencies using the depends on relationship provides a model that is
an excellent tool for planning and scheduling purposes. The depends on relationship,
as presented in Figure 6-6 , is depicted as an arrowheaded line (either solid or dashed)
beginning at one use case and pointing to a use case it is dependent on. The depends
on relationship line is labeled “<<depends on>>.”

 Inheritance When two or more actors share common behavior—in other words,
they can initiate the same use case—it is best to extrapolate this common behavior
and assign it to a new abstract actor in order to reduce redundant communication
with the system. For example, a library patron is a card-carrying member who is
authorized to “Search library inventory” as well as “Check out books” from the
library. Since many libraries are public institutions, they welcome visitors to use their
services onsite such as “Search library inventory,” but the visitors are not allowed
the extended services (such as “Check out books”) that are reserved for the patrons.
By creating an abstract actor called customer, from which patron and visitor will
inherit, we have to model only once the relationship initiating the use case Search
Library Inventory. In the use-case diagram the inheritance relationship is depicted
by the type of arrow shown in the “After” section of Figure 6 -7 .

Make a Withdrawal

Make a Deposit

Establish Bank

Account

<<depends on>>

<<depends on>>

 F I G U R E 6 - 6

Example of a
Depends On
Relationship

 depends on a relationship

between use cases indicating

that one use case cannot be

performed until another use

case has been performed.

Apply for

membership

Apply for

membership

Search library

inventory

Search library

inventory

Check out

books
Check out

books

Abstract
Actor

Inheritance
relationship

AfterBefore

Customer

VisitorPatron

Visitor

Patron

 F I G U R E 6 - 7

Example of an
Inheritance
Relationship

 inheritance in use cases,

a relationship between

actors created to simplify the

drawing when an abstract

actor inherits the role of

multiple real actors.

190 Part Two Systems Analysis Methods

 The objective of constructing the requirements use-case model is to elicit and analyze
enough requirements information to prepare a model that communicates what is re-
quired from a user perspective but is free of specific details about how the system will
be built and implemented. Following this approach will later produce a design that is
more robust and less likely to be impacted by change. But to effectively estimate and
schedule the project, the model may need to include preliminary “system implemen-
tation assumptions” to aid in those activities. It is critical that the analyst does not slip
into a state of analysis paralysis when preparing this model. Speed is the key. Not
all of the facts will be learned during this phase of the life cycle, but by utilizing itera-
tive and incremental development, the methodology allows the introduction of new
requirements later in the project without seriously impacting the deployment of the
final solution. Let’s examine the steps required to produce this model.

 > Step 1: Identify Business Actors

 Why identify actors first? By focusing on the actors, you can concentrate on how the
system will be used and not how it will be built. Focusing on the actors helps to refine
and further define the scope and boundaries of the system. Actors also determine
the completeness of the system requirements. 2 A benefit of identifying actors first is
that doing so identifies candidates we can later interview and observe to complete
the use-case modeling effort. Plus, those same individuals can be used to verify and
validate the use cases when they are finished.

 Where do you look for potential actors? The following references are excellent
sources:

• A context diagram that identifi es the scope and boundaries of the system.
• Existing system documentation and user manuals.
• Minutes of project meetings and workshops.
• Existing requirements documents, project charter, or statement of work.

 When looking for actors, ask the following questions:

• Who or what provides inputs to the system?
• Who or what receives outputs from the system?
• Are interfaces required to other systems?
• Are there any events that are automatically triggered at a predetermined time?
• Who will maintain information in the system?

 Actors should be named with a noun or noun phrase.
 When you identify an actor, create a textual definition of that actor according to

the users’ perspective and using their terms. Figure 6 - 8 is a template of an actor glos-
sary that can be used to document actors. This example contains a partial listing of
the SoundStage Member Services System’s actors.

 > Step 2: Identify Business Requirements Use Cases

 A typical information system may consist of dozens of use cases. During requirements
analysis we strive to identify and document only the most critical, complex, and im-
portant ones, often referred to as essential use cases because of time and cost consid-
erations. A business requirements use case captures the interactions with the user
in a manner that is free of technology and implementation details. Since a use case

 2 Frank Armour and Granville Miller, Advance Use Case Modeling (Boston: Addison-Wesley, 2001).

 The Process of Requirements Use-Case Modeling

 business requirements
use case a use case created

during requirements analysis

to capture the interactions

between a user and the

system free of technology and

implementation details; also

called an essential use case.

Modeling System Requirements with Use Cases Chapter Six 191

describes how a real-world actor interacts with the system, an excellent technique for
finding business requirements use cases is to examine actors and how they will use
the system. When looking for use cases, ask the following questions:

• What are the main tasks of the actor?
• What information does the actor need from the system?
• What information does the actor provide to the system?
• Does the system need to inform the actor of any changes or events that have

occurred?
• Does the actor need to inform the system of any changes or events that have

occurred?

 Again, a context diagram is an excellent source for finding potential use cases.
Context diagrams were discussed in Chapter 4. They come from traditional process
modeling (Chapter 8) but are useful even for projects that take an object-oriented ap-
proach. Let’s examine the SoundStage Member Services System’s context diagram in
 Figure 6-9 . We can identify potential use cases by looking at the diagram and identify-
ing the primary inputs and outputs of the system and the external parties that sub-
mit and receive them. The primary inputs that trigger business events (for example,
 Submit Member Order) within the organization are considered use cases, and the
external parties that provide those inputs are considered actors (for example, Club
Member). It is important to note that inputs that are the result of system requests do
not indicate a separate use case—such as a credit card company responding to an
authorization request or, as presented in Figure 6-9 , the Accounts Receivable actor
responding with Member Credit Status Information.

 Use cases are named with a verb phrase specifying the goal of the actor, such as
 Submit Subscription Order. Use cases that are temporal events are usually identified
as a result of analyzing the key outputs of the system. For example, any output that
is generated on the basis of time or a date, such as monthly or annual reports, is con-
sidered a use case, and the actor, as you recall, is time. In Figure 6-9 let’s assume that

 F I G U R E 6 - 8

Partial List of
SoundStage
Member Services
System’s Actors

Term Synonym Description

Actor Glossary

Potential

member

An individual or corporation that submits a subscription

order in order to join the club.

Club member An individual or corporation that has joined the club via

an agreement.

Past member A type of member that has fulfilled the agreement

obligation but has not placed an order within the last

six months but is still in good standing.

Marketing Organization responsible for creating promotion and

subscription programs and generating sales for the

company.

Member

services

Organization responsible for providing point of contact

for SoundStage Entertainment customers in terms of

agreements and orders.

Distribution

center

Entity that houses and maintains SoundStage

Entertainment product inventory and processes

customer shipments and returns.

Organization responsible for processing customer

payments and billing as well as maintaining customer

account information.

Actor concept responsible for triggering temporal events.

Member

Inactive

member

Warehouse

Accounts

receivable

Time

1.

2.

3.

4.

5.

6.

7.

8.

192 Part Two Systems Analysis Methods

one of the various reports that Member Services receives is a 10-30-60-day default

agreement report that is automatically generated on a daily basis. Since the genera-
tion of the report is triggered by time, a use case is required to process the event, and
we would name it Generate Daily 10-30-60-Day Default Agreement Report. It is im-
portant to note that many times individual reports are not listed on a context diagram

Send Promotion Offer

Submit Member Order

Club Member Marketing

Sales

Submit Promotion Information

Send Packing Order

Inquire Account (order & payment history)

Submit Subscription Order
(apply for membership)

Potential Club
Member

Member Services Context

Diagram

Submit Subscription
Program

Generate Various
Sales Reports

Accounts
Receivable

Submit Member
Credit Status

Response

Generate Various
Member Reports

Member Services

Generate Inquiry Responses

Send Subscription Offer

Past Member

Send
Resubscription

Offer

Submit Subscription
Renewal

Generate Various
Promotion Reports

Generate Various
Subscription Reports

Distribution
Center

(Warehouse)

Member
Services
System

 F I G U R E 6 - 9 SoundStage Member Services System Context Diagram

Modeling System Requirements with Use Cases Chapter Six 193

because they are too numerous and would clutter the diagram and make it hard to
read. It is the system analyst’s responsibility to research with the appropriate stake-
holders the type of outputs they receive and their characteristics, in terms of volume,
frequency, and triggering mechanism, in order to identify “hidden use cases.”

 Figure 6-10 is a template of a use-case glossary that can be used to document
use cases. This example contains a partial listing of the SoundStage Member Services
System’s use cases and actors identified from the context diagram as well as from
other sources.

F I G U R E 6 - 1 0 Partial List of SoundStage Member Services System’s Use Cases

Use-Case Glossary

Use-Case Name

Submit Subscription
Order

Submit Subscription
Renewal Order

Submit Member
Profi le Changes

Place New Order

Revise Order

Cancel Order

Make Product Inquiry

Make Purchase
History Inquiry

Use-Case Description

This use case describes the event of a
potential member requesting to join the
club by subscribing. (“Take any 12 CDs
for one penny and agree to buy 4 more at
regular prices within two years”.)

This use case describes the event of a past
member requesting to rejoin the club by
subscribing. (“Take any 12 CDs for one
penny and agree to buy 4 more at regular
prices within two years.”)

This use case describes the event of a club
member submitting changes to his or her
profi le for such things as postal address,
e-mail address, privacy codes, and order
preferences.

This use case describes the event of a
club member submitting an order for
SoundStage products.

This use case describes the event of a
club member revising an order previously
placed. (Order must not have shipped.)

This use case describes the event of a club
member canceling an order previously
placed. (Order must not have shipped.)

This use case describes the event of
a club member viewing products for
possible purchase. (Driven by Web access
requirement.)

This use case describes the event of a club
member viewing her or his purchasing
history. (Three-year time limit.)

Participating Actors and Roles

• Potential member (primary business)

• Distribution Center (external receiver)

• Past member (primary business)

• Distribution Center (external receiver)

• Club member (primary business)

• Club member (primary business)

• Distribution Center (external receiver)

• Accounts Payable/Receivable (external server)

• Club member (primary business)

• Distribution Center (external receiver)

• Accounts Payable/Receivable (external server)

• Club member (primary business)

• Distribution Center (external receiver)

• Accounts Payable/Receivable (external server)

• Club member (primary business)

• Club member (primary business)

continued

194 Part Two Systems Analysis Methods

 > Step 3: Construct Use-Case Model Diagram

 Once the use cases and actors have been identified, a use-case model diagram can be
used to graphically depict the system scope and boundaries. The use-case diagram for
the use cases listed in Figure 6-10 is shown in Figure 6-11 . It was created using Popkin
Software’s System Architect and represents the relationships between the actors and
the use cases. In addition, the use cases have been grouped into business subsystems.
The subsystems (UML’s package symbol) represent logical functional areas of busi-
ness processes. The portioning of system behavior into subsystems is very important
in understanding the system architecture and is a key to defining your development
strategy—which use cases will be developed first and by whom. We have labeled
the associations between the actors and the use cases “initiates” because the tool did
not support lines with arrowheads at the time. We also didn’t include the external
server and receiver actors because of space limitations. To model all the use cases of
a particular system may require the creation of several use-case model diagrams—as

 *Considered primary because it receives something of measurable value.

F I G U R E 6 - 1 0 Concluded

Use-Case Name

Establish New
Member
Subscription Program

Submit Subscription
Program Changes

Establish Past Member
Resubscription
Program

Submit Member
Profi le Changes

Revise Promotion

Generate Daily
10-30-60-Day Default
Agreement Report

Use-Case Description

This use case describes the event of the
marketing department establishing a new
membership subscription plan to entice
new members.

This use case describes the event of
the marketing department changing a
subscription plan for club members (e.g.,
extending the fulfi llment period).

This use case describes the event of the
marketing department establishing a
resubscription plan to lure back former
members.

This use case describes the event of the
marketing department establishing a
new promotion plan to entice active and
inactive members to order the product.
[Note: A promotion features specifi c titles,
usually new, that the company is trying to
sell at a special price. These promotions
are integrated into a catalog sent (or
communicated) to all members.]

This use case describes the event of the
marketing department revising a promotion.

This use case describes the event of a
report that is generated on a daily basis
to list the members who have not fulfi lled
their agreement by purchasing the required
number of products outlined when they
subscribed. This report is sorted by members
who are 10 days past due, 30 days past
due, and 60 days past due.

Participating Actors and Roles

• Marketing (primary business)

• Marketing (primary business)

• Marketing (primary business)

• Marketing (primary business)

• Marketing (primary business)

• Time (initiating actor)

• Member Services (primary*—external
receiver)

Modeling System Requirements with Use Cases Chapter Six 195

you recall, a system may contain dozens of use cases. In that event you may want to
create a separate use-case model diagram for each subsystem.

 > Step 4: Document Business Requirements
Use-Case Narratives

 When you are preparing the narratives, it is wise to first document them at a high

level to quickly obtain an understanding of the events and magnitude of the system.
Then return to each use case and expand it to a fully documented business require-
ment narrative. Figure 6-12 represents a requirements use-case narrative for the Mem-
ber Services System’s Place New Order use case. Notice that it tersely describes the
event, which includes the following items:

 1 Author —The names of the individuals who contributed to the writing of the
use case and who provide a point of contact for anyone requiring additional
information about the use case.

 2 Date —The date the use case was last modifi ed.
 3 Version —The current version of the use case (e.g., 1.0).
 4 Use-case name —The use-case name should represent the goal that the use case

is trying to accomplish. The name should begin with a verb (e.g., Enter New
Member Order).

 5 Use-case type —In performing use-case modeling, business requirements use
cases, which focus on the strategic vision and goals of the various stakeholders,
are constructed fi rst. This type of use case is business-oriented and refl ects a
high-level view of the desired behavior of the system. It is free from technical

Place New
Order

Revise
Promotion

Submit New
Promotion

Establish
New Member
Subscription

Program

Submit
Subscription

Renewal Order

Establish Past
Member

Resubscription
Program

Submit
Subscription

Program Changes

Submit Member
Profile Changes

Submit
Subscription Order

Revise Order

Cancel Order

Make Product
Inquiry

Make Purchase
History inquiry

Generate Daily10-
30-60-Day Default
Agreement Report

Operations Subsystem

Order Subsystem

Promotion Subsystem

Subscription Subsystem

Time M a r k e t i n g

Past Member

Club Member

Potential Member

initiates

initiates

initiates

initiates

initiatesinitiates

initiates

initiates

initiates

initiates

initiates

initiates

initiates

initiates

 F I G U R E 6 - 1 1 SoundStage Member Services System’s Use-Case Model Diagram

196 Part Two Systems Analysis Methods

details and may include manual activities as well as the activities that will be
automated. Business requirements use cases provide a general understanding of
the problem domain and scope but don’t include the necessary detail to com-
municate to developers what the system should do.

 6 Use-case ID —An identifi er that uniquely identifi es the use case.
 7 Priority —The priority communicates the importance of the use case in terms

of high, medium, or low.
 8 Source —The source defi nes the entity that triggered the creation of the use

case. This could be a requirement, a specifi c document, or a stakeholder.
 9 Primary business actor —The primary business actor is the stakeholder that

primarily benefi ts from the execution of the use case by receiving something of
measurable or observable value.

 10 Other participating actors —Other actors that participate in the use case to ac-
complish its goal include initiating actors, facilitating actors, server/receiver actors,
and secondary actors. Always include the manner in which the actor participates.

 11 Interested stakeholder(s) —A stakeholder is anybody who has a stake in the
development and operation of the software system. An interested stakeholder is a
person (other than an actor) who has a vested interest in the goal of the use case.

 12 Description —A short summary description that consists of a couple of
sentences outlining the purpose of the use case and its activities.

 Documenting the Use-Case Course of Events For each high-level use case
identifi ed, we must now expand it to include the use case’s typical course of events
and its alternate courses. A use case’s typical course of events is a step-by-step
description starting with the actor initiating the use case and continuing until the
end of the business event. In this section we include only the major steps that occur
the majority of the time (its typical course). The alternate course documents the
exceptions or the conditional branching of the use case. Figure 6-13 represents a

 F I G U R E 6 - 1 2 High-Level Version of Place New Order Use-Case Narrative

Member Services System

Author (s): Date:

Version:

Use-Case Name: Place New Order Use-Case Type

Use-Case ID: MSS-BUC002.00 Business Requirements: √

Priority: High

Source: Requirement — MSS-R1.00

Primary Business
Actor:

Club member

Other
Participating
Actors:

•
•

Warehouse (external receiver)

Accounts Receivable (external server)

Other
Interested
Stakeholders:

•
•
•

Marketing — Interested in sales activity in order to plan new promotions.

Procurement — Interested in sales activity in order to replenish inventory.

Management — Interested in order activity in order to evaluate company performance and

customer (member) satisfaction.

Description: This use case describes the event of a club member submitting a new order for SoundStage products.

The member’s demographic information as well as his or her account standing is validated. Once the

products are verified as being in stock, a packing order is sent to the warehouse for it to prepare the

shipment. For any product not in stock, a back order is created. On completion, the member will be sent

an order confirmation.

21

4

6

57

8

9

10

11

12

3

Modeling System Requirements with Use Cases Chapter Six 197

Member Services System

Author (s): Date:

Version:

Use-Case Name: Place New Order Use-Case Type

Use-Case ID: MSS-BUC002.00 Business Requirements: √

Priority: High

Source: Requirement — MSS-R1.00

Primary Business
Actor:

Club member

Other
Participating
Actors:

•
•

Warehouse (external receiver)

Accounts Receivable (external server)

Other
Interested
Stakeholders:

•
•
•

Marketing — Interested in sales activity in order to plan new promotions.

Procurement — Interested in sales activity in order to replenish inventory.

Management — Interested in order activity in order to evaluate company performance and

customer (member) satisfaction.

Description: This use case describes the event of a club member submitting a new order for SoundStage products.

The member’s demographic information as well as his or her account standing is validated. Once the

products are verified as being in stock, a packing order is sent to the warehouse for it to prepare the

shipment. For any product not in stock, a back order is created. On completion, the member will be

sent an order confirmation.

The party (individual or company) submitting the order must be a member.Precondition:

This use case is initiated when a new order is submitted.Trigger:

Actor Action System Response

Step 2: The system responds by verifying that all required

information has been provided.

Step 3: The system verifies the club member’s demographic

information against what has been previously recorded.

Step 4: For each product ordered, the system validates the

product identity.

Step 5: For each product ordered, the system verifies the product

availability.

Step 6: For each available product, the system determines the

price to be charged to the club member.

Step 7: Once all ordered products are processed, the system

determines the total cost of the order.

Step 8: The system checks the status of the club member’s account.

Step 9: The system validates the club member’s payment if

provided.

Step 10: The system records the order information and then

releases the order to the appropriate distribution center

(warehouse) to be filled.

Step 11: Once the order is processed, the system generates an

order confirmation and sends it to the club member.

Step 1: The club member

provides his or her demographic

information as well as order and

payment information.

Typical Course
of Events:

2

1

3

 F I G U R E 6 - 1 3 Expanded Version of Place New Order Use-Case Narrative

198 Part Two Systems Analysis Methods

requirements use-case narrative for the Member Services System’s Place New Order
use case. Notice that it includes the following additional items:

 1 Precondition —A precondition is a constraint on the state of the system before
the use case can be executed. Typically this refers to another use case that must
be previously executed.

 2 Trigger —The trigger is the event that initiated the execution of the use case.
This often is a physical action, such as a customer walking up to a sales counter
or a check arriving in the mail. Time can also trigger use cases.

 3 Typical course of events —The typical course of events is the normal sequence
of activities performed by the actor(s) and the system in order to satisfy the goal
of the use case. These include the interactions between the system and the actor
and the activities performed by the system in response to the interactions. Note
that the actions of the actor are recorded in the left-hand column while the ac-
tions of the systems are recorded in the right-hand column.

 4 Alternate courses —Alternate courses document the behaviors of the use case if
an exception or variation to the typical course occurs. This can happen when a
decision point occurs within the use case or an exception occurs that requires
additional steps outside the scope of the typical course.

 5 Conclusion —The conclusion specifi es when the use case successfully ends—in
other words, when the primary actor receives something of measurable value.

 6 Postcondition —A postcondition is a constraint on the state of the system after
the use case has been successfully executed. This could be data recorded in a
database or a receipt delivered to a customer.

•

•

•

The club member responding to a promotion or a member using credits may affect the price of

each ordered item.

Cash or checks will not be accepted with the orders. If provided, they will be returned to the

club member.

The club member is billed for products only when they are shipped.

Alt-Step 2: The club member has not provided all the information necessary to process the order. The

club member is notified of the discrepancy and prompted to resubmit.

Alt-Step 3: If the club member information provided is different from what was previously recorded,

verify what was recorded is current, then update the club member information accordingly.

Alt-Step 4: If the product information the club member provided does not match any of SoundStage’s

products, notify the club member of the discrepancy and request clarification.

Alt-Step 5: If the quantity ordered of the product is not available, a back order is created.

Alt-Step 8: If the status of the club member’s account is not in good standing, record the order

information and place it in hold status. Notify the club member of the account status and the reason the

order is being held. Terminate use case.

Alt-Step 9: If the payment the club member provided (credit card) cannot be validated, notify the club

member and request an alternative means of payment. If the club member cannot provide an alternate

means, cancel the order and terminate the use case.

Alternate
Courses:

This use case concludes when the club member receives a confirmation of the order.Conclusion:

Procurement will be notified of back orders by a daily report (separate use case).Assumptions:

The order has been recorded and if the ordered products were available, they were released. For any

product not available a back order has been created.

Postcondition:

Business Rules:

• GUI to be provided for Member Services associate, and Web screen to be provided for club

member.

Implementation
Constraints and
Specifications: 8

5

10

7

4

9

6

1. Need to determine how distribution centers are assigned.Open Issues:

 F I G U R E 6 - 1 3 Concluded

Modeling System Requirements with Use Cases Chapter Six 199

 7 Business rules —Business rules specify policies and procedures of the business
that the new system must abide by. This could include the calculation of ship-
ping charges or rules for granting credit terms.

 8 Implementation constraints and specifi cations —Implementation constraints
and specifi cations specify any nonfunctional requirements that may impact
the realization of the use case and may be helpful in any architectural planning
and scoping. Items that may be included are security specifi cations, interface
requirements, and so on.

 9 Assumptions —Any assumptions that were made by the creator when docu-
menting the use case.

 10 Open issues —Any questions or issues that need to be resolved or investigated
before the use case can be fi nalized.

 Business requirements use cases are excellent tools in that they describe the
events the organization must process and respond to, but they lack information re-
garding the interfaces and the activities that are targeted to be automated by informa-
tion technology. Later, in Chapter 10, you will learn how to evolve the use case to
include technical and implementation details. Use Cases and Project Management

 As you recall, one of the benefits of use-case modeling is that the use-case model can
be used to drive the entire system development effort. Once the business requirements
use-case model is complete, the project manager or systems analyst uses the business
requirements use cases to plan (estimate and schedule) the build cycles of the project.
This is especially crucial when applying the iterative and incremental approach to soft-
ware development. A build cycle, which consists of the system analysis, design, and con-
struction activities, is scoped on the basis of the importance of the use case and the time
it takes to implement the use case. In other words, one or more use cases will be devel-
oped in each build cycle. For a use case that is too large or complex to be completed in
one build cycle, a simplified version will be implemented initially, followed by the full
version in the next build cycle. To determine the importance of the use cases, the proj-
ect manager or systems analyst will complete a use-case ranking and evaluation matrix
and construct a use-case dependency diagram with input from the stakeholders and the
development team. You will learn how to use these tools in the following sections. > Ranking and Evaluating Use Cases

 In most software development projects the most important use cases are developed first.
In order to determine the priority of the use cases, the project manager uses a tool called
the use-case ranking and priority matrix . This matrix is completed with input from
the stakeholders and the development team. This matrix, adapted from Craig Larman’s
work, 3 evaluates use cases on a scale of 1 to 5 against six criteria. They are as follows:

 1. Signifi cant impact on the architectural design.
 2. Easy to implement but contains signifi cant functionality.
 3. Includes risky, time-critical, or complex functions.
 4. Involves signifi cant research or new or risky technology.
 5. Includes primary business functions.
 6. Will increase revenue or decrease costs.

 Once each category has been scored, the individual scores are tallied, resulting in the
use case’s final score. The use cases with the highest scores are assigned the highest
priority and should be developed first.

 3 Craig Larman, Applying UML Patterns (Upper Saddle River, NJ: Prentice Hall, 1998).

 use-case ranking and
priority matrix a tool

used to evaluate use cases

and determine their priority.

200 Part Two Systems Analysis Methods

 Figure 6-14 is a partial use-case ranking and priority matrix for the Member Ser-
vices System. Based on the results of the analysis, the use case Submit Subscription
Order should be developed first. But we can’t be sure until we analyze the use-case
dependencies. > Identifying Use-Case Dependencies

 Some use cases may be dependent on other use cases, with one use case leaving the
system in a state that is a precondition for another use case. For example, a precondi-
tion of sending a club promotion is that the promotion must first be created. We use
a diagram called the use-case dependency diagram to model such dependencies.
The use-case dependency diagram provides the following benefits:

• The graphical depiction of the system’s events and their states enhances the
understanding of system functionality.

• It helps to identify missing use cases. A use case with a precondition that is not
satisfi ed by the execution of any other use case may indicate a missing use case.

• It helps facilitate project management by depicting which use cases are more
critical (have the most dependencies) and thus need to have a higher priority.

 Figure 6-15 is the use-case dependency diagram for the use cases listed in Figure 6-14 .
The use cases that are dependent on each other are connected with a dashed line la-
beled “Depends on.” In Figure 6-15 , the use case Submit Subscription Order has a de-
pendency (precondition) on the use case Establish New Member Subscription Program.
Because of this dependency the use case Establish New Member Subscription Program
should be developed first even though Submit Subscription Order had a higher score
as reflected in Figure 6-14 .

 use-case dependency
diagram a graphical

depiction of the dependencies

among use cases.

Place New Order

Generate Daily 10-
30-60 Day Default
Agreement Report

Establish New
Member Subscription

Program

Submit
Subscription Order

Revise Order

Make Product
Inquiry

Depends on Depends on Depends on

Depends on

 F I G U R E 6 - 1 5

Sample Use-Case
Dependency
Diagram

Use-Case Name Ranking Criteria, 1 to 5
Total
Score Priority

Build
Cycle

Submit Subscription Order

1 2 3 4 5 6

5 5 5 4 5 5

4 4 5 4 5 5

1 1 1 1 1 1

4 5 5 3 5 5

1 1 1 1 1 1

2 2 3 3 4 4

29

27

6

27

6

18

1

2

3

1

3

2

High

High

Low

High

Low

Medium

Place New Order

Make Product Inquiry

Establish New Member
Subscription Program

Generate Daily 10-30-60-Day
Default Agreement Report

Revise Order

 F I G U R E 6 - 1 4 Partial Use-Case Ranking and Priority Matrix

1. There are two primary artifacts involved when
performinguse-case modeling. The fi rst is the use-
case diagram, which graphically depicts the system
as a collection of use cases, actors (users), and
their relationships. Details of each business event
and how the users interact with the system are
described in the second artifact, called the use-case
narrative, which is the textual description of the
business event and how the user will interact with
the system to accomplish the task.

2. Use-case modeling utilizes two constructs: actors
and use cases. An actor represents anything
that needs to interact with the system to ex-
change information. An actor is a user, a role,
which could be an external system as well as a
person. A use case is a behaviorally related se-
quence of steps (a scenario), both automated and
manual, for the purpose of completing a single
business task.

3. There are primarily four types of actors:

a. Primary business actor —The stakeholder that
primarily benefi ts from the execution of the use
case by receiving something of measurable or
observable value.

b. Primary system actor —The stakeholder that
directly interfaces with the system to initiate or
trigger the business or system event.

c. External server actor —The stakeholder that
responds to a request from the use case.

d. External receiver actor —The stakeholder that
is not the primary actor but receives something
of measurable or observable value (output)
from the use case.

4. Temporal events are business events that are per-
formed (or triggered) automatically—when it be-

comes a certain date or time. Because of that, we
say the actor of a temporal event is time.

5. A relationship is depicted as a line between two
symbols on the use-case diagram.

a. An association is a relationship between an
actor and a use case.

b. The relationship between the extension use
case and the use case it is extending is called an
extends relationship.

c. The relationship between the abstract use case
and the use case that uses it is called a uses
relationship.

d. The inheritance relationship occurs when an
actor inherits the ability to initiate a use case
from another.

e. The depends-on relationship indicates a
dependency between use cases. In other words,
the precondition of one use case is dependent
on the postcondition of another use case.

6. The steps required to produce a requirements use-
case model are the following:

a. Identify business actors.
b. Identify business requirements use cases.
c. Construct use-case model diagram.
d. Document business requirements use-case

narratives.

7. The use-case ranking and priority matrix and the
use-case dependency diagram are tools used by
project managers for prioritizing and scheduling
use-case development.

Summary

.

 1. What is user-centered development and why is it
critical to the success of the system development
process?

 2. How is use-case modeling related to user-cen-
tered development?

 3. In addition to encouraging user involvement,
use-case modeling provides numerous other
benefi ts. List the benefi ts that use-case modeling
provides.

 4. Use-case modeling uses two primary artifacts—
the use-case diagram and the use-case narrative.
How are these two artifacts used, and what are
their differences?

 5. Use case diagrams consist of three components.
What are these three components, and what is
their purpose?

 6. How are use cases used throughout the entire
system development life cycle?

 7. Of the four primary categories of actors, who is
the primary system actor?

 8. What are the different types of relationships em-
ployed in a use-case diagram, and what are their
purpose?

 9. What is the objective of constructing the require-
ments use-case model, and what steps are to be
followed?

Review Questions
1

2

Modeling System Requirements with Use Cases Chapter Six 201

 10. Why is identifying the actors the fi rst step in use-
case modeling?

 11. What should we be aware of when we are
looking for business requirements use cases?

 12. What is a use case’s typical course of events?
 13. Why is ranking and evaluating of use cases

essential?

 14. What are the six criteria in the use-case ranking
and priority matrix?

 15. What is the use-case dependency diagram, and
why do we use it?

 1. According to author Fred Brooks, what is the
single most diffi cult thing to do in systems
development? How does use-case modeling help
in this area?

 2. In use case modeling, what two main artifacts
does the systems analyst use? Describe each of
these artifacts, and explain their purpose.

 3. What should a systems analyst always keep in
mind in identifying and developing use cases
regarding their purpose? Since requirements
fact-fi nding has been completed previously, is
it really necessary to spend much time with
users at this point? Just what should a use case
represent? Is a use case the same as a functional
requirement?

 4. During what part of the development life cycle
are use cases fi rst defi ned? When are they used
during the development life cycle and for what
purpose?

 5. Match the following stakeholders and external
users with the correct actor. What is a temporal
event? Who or what is considered to be the actor
in a temporal event, and why?.

Stakeholders and

external users Actor

• United States Postal Primary business
 Service actor
• Computerized door Primary system actor

lock with key pad
• Rental car agent External server actor
• Sales manager External receiver
 generating regional actor
 sales report
• Sales manager Time
 receiving regional
 sales report
• Automatic lawn
 sprinkler system
• Driver purchasing
 gasoline with
 ATM card
• Bank loan authori-

zation service

 6. What is the type of relationship for each of the
following examples?

• The relationship between the use case “Print
Form” and several other use cases that involve
printing different types of forms.

• The relationship between a motorcycle offi cer
and a handheld citation writing device.

• The relationship between a customer and a
sales clerk who can each query the inventory
system to see if an item is in stock, and an actor
created specifi cally to minimize duplicative
system communication.

• The relationship between the use case “Cal-
culate GPA” and the lengthy use case “Create
Transcript.”

• The relationship between the use case “Ship
Order” and the use case “Submit Order.”

 7. Y&J Cookbooks is a fi ctional small business
owned and operated by a retired couple. Up
to this time, Y&J Cookbooks has sold its books
by mail order only. The owners now want to
develop an online system to sell rare and out-
of-print cookbooks over the Internet. Visitors
will be able to browse a variety of cookbooks,
but they will have to create a customer account
before being able to make a purchase. Payments
will be accepted only online with a major
credit card, and the credit card will be verifi ed
before the order can be approved. Based upon
this information, identify the main business
actors.

 8. In use-case modeling, once you identify the
business actors, what perspective and language
should you use in defi ning them? Use that
perspective and language to construct an actor
glossary using Figure 6-8 as an example.

 9. A context diagram can help tremendously in
identifying different use cases. Prepare a high-
level context diagram for the Y&J Cookbooks
Web site, using Figure 6-9 as an example.

 10. The next step in requirements use-case
modeling is to identify the business

Problems and Exercises

202 Part Two Systems Analysis Methods

Projects and Research

 1. At the beginning of Chapter 6, there is a quote
taken from an article by Frederick P. Brooks Jr.,
who is generally considered to be one of the
leading authors and contributors to the fi eld of
project management and software development.
Search the Web for this article and for other
articles by and/or about Fred Brooks.

 a. In conducting your search, how many
references to the author did you fi nd?

 b. Based upon the information presented in the
previous chapters, explain Brooks’s statement
that “the hardest single part of building a software
system is deciding precisely what to build.”

 c. What was the name of the article in which
Brooks made the preceding statement, and what
was the article’s main theme?

 d. What is Brooks’s best-known book that is still in
print and widely read decades after its original
publication? What was the main theme of this
book?

 e. What do you consider to be Brookes’s greatest
contribution to date? Why?

 2. The Standish Group, which was mentioned in
Chapter 6, is an independent research group
that studies changes and trends in information
technology. In 1994, the Standish Group
published its groundbreaking CHAOS Report,
which “expose[d] the overwhelming failure of
IT application development projects in today’s
MIS environment.” Since that time, the Standish
Group has published periodic updates to their
original report. Go to their Web site at
 www.standishgroup.com, and follow the links

to their public access area, where you can fi nd a
summary of their latest CHAOS research report, as
well as the original 1994 report itself.

 a. What criteria does the Standish Group use to
determine whether a project succeeded, was
challenged, or failed?

 b. Based upon the latest research report, what per-
centage of projects succeeded, were challenged,
or failed?

 c. How do these latest rates compare to the
project success, challenge, and failure rates
shown in Figure 6-1 of the textbook? How
would you describe the overall trends, if any?

 d. Based upon your reading and experience, what
do you believe to be the reason(s) for the changes
in project success, challenge, and failure rates?

 e. Do you think that current project management
and system development methodologies will
remain essentially the same but continue to
be refi ned, or do you foresee the emergence
of dramatically different methodologies for
managing projects and developing systems over
the next decade?

 3. Select an information system used in your
organization or in your school. Interview a systems
analyst or designer who is familiar with the system.
Based upon the information provided, do the
following:

 a. Describe the information system and
organization you selected.

 b. Create a context diagram of the system.
 c. Identify the business actors.

Modeling System Requirements with Use Cases Chapter Six 203

requirements use cases. What should each use
case capture? What effective technique can you
use to identify use cases? What questions might
you ask in order to identify use cases? What
is the difference between a use case and an
essential use case?

 11. The third step in use-case modeling is to
construct the use-case model diagrams. Based
upon the Y&J Cookbooks actor glossary and
context diagram, create a high-level use-case
model diagram, showing the interactions
between the shopper/customer actor and the
system, including searching and browsing for
books, purchasing, and managing the customer
account. Make sure to show the relationships
between the actor and each of these use cases.

 12. The next step is creating use-case narratives to
document the business requirements. Why is
preparation of the narratives generally done in a
two-step process, and what are these two steps?
Based upon the preceding high-level use-case
model diagram, create an expanded narrative,
using Figure 6-13 as an example.

 13. What is the relationship of use-case modeling
to project management? Why is this important?
Why are use cases ranked, and what tool is used
to rank them? Who provides the input for ranking
them? What criteria are used for ranking? Explain
why use-case dependencies need to be identifi ed,
and provide an example. What tool is used to
identify dependencies?

 d. Create an actor glossary.
 e. Identify the business requirements essential

use cases.
 f. Create a use case glossary.

 4. Based upon the information provided regarding
the system you selected in the preceding question:

 a. Construct a use-case model diagram that
includes all major subsystems.

 b. Prepare expanded use-case narratives for three
of the essential use cases.

 c. Prepare a use-case ranking and priority matrix,
then use it to rank and evaluate the use cases.

 d. Identify use-case dependencies.
 e. Prepare a use-case dependency diagram.

 5. Search the Web or professional journals in your
school library for research articles on new and
emerging developments in use-case modeling.
Select two articles, then do the following:

 a. Provide a bibliography for each article. (Use the
format used by your school.)

 b. Create an abstract in your own words for each
article.

 c. Compare and contrast the methodologies
described in each article. Describe which one
you feel is more viable and/or signifi cant, and
explain why.

 6. Conduct interviews with several developers
regarding their views on use-case modeling. If
possible, try to fi nd developers from different
organizations and/or with different lengths of

experience, as well as different types of experience
(i.e., a developer who has experience mostly as a
systems analyst, one mostly as a designer, and one
as a builder).

 a. Describe the developers that you interviewed
in terms of their experience. For example, how
long have they worked in IT, what is their area
of expertise, and how familiar are they are with
use-case modeling?

 b. What is the nature of their organization(s)?
 c. What questions did you ask?
 d. What are the viewpoints of each developer

regarding the importance and value of use-case
modeling?

 e. Do these developers actually employ use-case
modeling in their current organization? Why or
why not?

 f. If they were CIOs of their organization for a day,
would they change their organization’s IT archi-
tecture regarding use-case modeling? If so, how?

 g. Using the capability maturity model, how would
you rate the maturity level of their organization?
Why?

 h. What conclusions, if any, can you draw from the
interviews regarding the practical application of
use-case modeling?

 i. What were your views regarding the impor-
tance and value of use-ease modeling before
the interviews? Did your views change any as
a result of the interviews? If so, how did they
change and why?

Minicases

 1. In a mincase for Chapter 5, you interviewed
stakeholders for an online class registration
system. In that exercise, you were to develop
an understanding of any issues and needs those
stakeholders had in regards to the system. Review
your fi ndings from those interviews.

 a. Visit other school registration systems. Is there
any functionality or ease of use differences?
Are there any features that you think the
stakeholders would particularly like/dislike?
Make notes and create screen dump examples
of other systems.

 b. Create a follow-up interview with those stake-
holders you previously spoke to and determine
specifi c functionality and ease-of-use require-
ments for your school.

 2. Create a use-case description for at least one of the
functionality requirements you found in the previous
problem. Follow the example shown in Figure 6-10 .

 3. Identify all of the actors for the school registration
system. Which uses cases will each initiate?

 4. Using your answer to the previous problem, draw a
use-case diagram of the school registration system.

204 Part Two Systems Analysis Methods

 Ambler, Scott W. The Object Primer. New York: Cambridge

University Press, 2001. Very good information about

documenting use cases and their use.

 Armour, Frank, and Granville Miller. Advance Use Case

Modeling. Boston: Addison-Wesley, 2001. This book

presents excellent coverage of the use-case modeling

process.

 Brooks, Jr., F.P., 1987. “No SilverBullet—Essence and Accidents

of Software Engineering.” Computer 20(4), April, 10–19.

 proc. IFIP Congress, Dublin, Ireland, 1986

 Jacobson, Ivar; Magnus Christerson; Patrik Jonsson; and Gunnar

Overgaard. Object-Oriented Software Engineering — A Use

Case Driven Approach. Workingham, England: Addison-

Wesley, 1992. This book presents detailed coverage of

how to identify and document use cases.

 Larman, Craig. Applying UML and Patterns. Upper Saddle

River, NJ: Prentice Hall, 1998. This book provides a

comprehensive overview of a use-case modeling process.

Suggested Readings

 1. Roundtable discussion: Do you think people are
always absolutely truthful in their responses to
interview questions?

 2. Watch a silent movie. Roundtable discussion: What
communication is taking place other than words?

 3. Roundtable discussion: When you determine
requirements for a system through a method such

as an interview, you assume that the person you
are interviewing and collecting information from
 wants the system to be successful. Is this always
the case? How can you handle requirements
gathering if it is not?

Team and Individual Exercises

Modeling System Requirements with Use Cases Chapter Six 205

7Data Modeling
and Analysis

Chapter Preview and Objectives

 In this chapter you will learn how to use a popular data-modeling tool, entity relationship

diagrams, to document the data that must be captured and stored by a system,

independently of showing how that data is or will be used—that is, independently

of specifi c inputs, outputs, and processing. You will also learn about a data analysis

technique called normalization that is used to ensure that a data model is a “good” data

model. You will know data modeling and data analysis as systems analysis tools and

techniques when you can:

 ❚ Defi ne systems modeling, and differentiate between logical and physical system

models.

 ❚ Defi ne data modeling, and explain its benefi ts.

 ❚ Recognize and understand the basic concepts and constructs of a data model.

 ❚ Read and interpret an entity relationship data model.

 ❚ Explain when data models are constructed during a project and where the models are

stored.

 ❚ Discover entities and relationships.

 ❚ Construct an entity relationship context diagram.

 ❚ Discover or invent keys for entities, and construct a key-based diagram.

 ❚ Construct a fully attributed entity relationship diagram, and describe all data structures

and attributes to the repository or encyclopedia.

 ❚ Normalize a logical data model to remove impurities that can make a database

unstable, infl exible, and nonscalable.

 ❚ Describe a useful tool for mapping data requirements to business operating locations.

Data Modeling and Analysis Chapter Seven 207

 Introduction

 As the SoundStage Member Services system project moves from requirements anal-
ysis into logical design, the fi rst task according to their methodology is to analyze the
data requirements for the new system. Bob Martinez remembers a favorite professor
in college who always said, “Get the data right and the system will be able to elegantly
support all your present requirements and even requirements users don’t yet envi-
sion; get the data wrong and it will be a pain in the neck to meet requirements today,
tomorrow, and forever.”

 Bob enjoyed his database classes in college and always did well in them. Of course,
the member services system is larger and more detailed than any data project he did
in school. Fortunately, he has the database from the previous version of the system
to start with, plus forms and reports from the previous system, plus notes from user
interviews, plus use-case narratives created during the requirements analysis phase.
Sandra has asked Bob to take the fi rst shot at pulling it all together into a logical data
model. He’s determined to impress her.

 What Is Data Modeling?

 Systems models play an important role in systems development. This chapter will
present data modeling as a technique for defi ning business requirements for a data-
base. Data modeling is sometimes called database modeling because a data model is
eventually implemented as a database.

 Figure 7-1 is an example of a simple data model called an entity relationship dia-

gram, or ERD. This diagram makes the following business assertions:

 • We need to store data about CUSTOMERS, ORDERS, and INVENTORY PRODUCTS.
 • The value of CUSTOMER NUMBER uniquely identifi es one and only one CUSTOMER.

The value of ORDER NUMBER uniquely identifi es one and only one ORDER. The value
of PRODUCT NUMBER uniquely identifi es one and only one INVENTORY PRODUCT.

 • For a CUSTOMER we need to know the CUSTOMER NAME, SHIPPING ADDRESS, BILLING
ADDRESS, and BALANCE DUE. For an ORDER we need to know ORDER DATE and ORDER
TOTAL COST. For an INVENTORY PRODUCT we need to know PRODUCT NAME, PRODUCT
UNIT OF MEASURE, and PRODUCT UNIT PRICE.

 data modeling a technique

for organizing and docu-

menting a system’s data;

sometimes called database

modeling.

ORDER

Order Number (Primary Key)

Order Date

Order Total Cost

Customer Number (Foreign Key)

has placed

sold

has been

sold as

CUSTOMER

Customer Number (Primary Key)

Customer Name

Shipping Address

Billing Address

Balance Due

INVENTORY PRODUCT

Product Number (Primary Key)

Product Name

Product Unit of Measure

Product Unit Price

ORDERED PRODUCT

Ordered Product ID (Primary Key)

.Order Number (Foreign Key)

.Product Number (Foreign Key)

Quantity Ordered

Unit Price at Time of Order

 F I G U R E 7 - 1

An Entity
Relationship Data
Model

208 Part Two Systems Analysis Methods

 • A CUSTOMER has placed zero, one, or more current or recent ORDERS.
 • An ORDER is placed by exactly one CUSTOMER. The value of CUSTOMER NUMBER (as

recorded in ORDER) identifi es that CUSTOMER .
 • An ORDER sold one or more ORDERED PRODUCTS. Thus, an ORDER must contain at

least one ORDERED PRODUCT.
 • An INVENTORY PRODUCT may have been sold as zero, one, or more ORDERED PRODUCTS .
 • An ORDERED PRODUCT identifi es a single INVENTORY PRODUCT on a single ORDER . The

 ORDER NUMBER (for an ORDERED PRODUCT) identifi es the ORDER , and the PRODUCT
NUMBER (for an ORDERED PRODUCT) identifi es the INVENTORY PRODUCT . Together, they
identify one and only one ORDERED PRODUCT .

 • For each ORDERED PRODUCT we need to know QUANTITY ORDERED and UNIT PRICE AT
TIME OF ORDER.

 After you study this chapter, you will be able to read data models and construct them.

 entity relationship dia-
gram (ERD) a data model

utilizing several notations to

depict data in terms of the

entities and relationships

described by that data.

 entity a class of persons,

places, objects, events, or

concepts about which we

need to capture and store

data.

STUDENT

An Entity

 System Concepts for Data Modeling

 There are several notations for data modeling. The actual model is frequently called an
 entity relationship diagram (ERD) because it depicts data in terms of the entities
and relationships described by the data. There are several notations for ERDs. Most
are named after their inventor (e.g., Chen, Martin, Bachman, Merise) or after a pub-
lished standard (e.g., IDEF1X). These data modeling “languages” generally support
the same fundamental concepts and constructs. We have adopted the Martin (infor-
mation engineering) notation because of its widespread use and CASE tool support.

 Let’s explore some basic concepts that underlie all data models.

 > Entities

 All systems contain data—usually lots of data! Data describes “things.” Consider a
school system. A school system includes data that describes things such as STUDENTS,
TEACHERS, COURSES, and CLASSROOMS. For any of these things, it is not diffi cult to imagine
some of the data that describes any given instance of the thing. For example, the data
that describes a particular student might include NAME, ADDRESS, PHONE NUMBER, DATE OF
BIRTH, GENDER, RACE, MAJOR, and GRADE POINT AVERAGE, to name a few.

 We need a concept to abstractly represent all instances of a group of similar
things. We call this concept an entity. An entity is something about which the busi-
ness needs to store data. In system modeling, we fi nd it useful to assign each abstract
concept to a shape. In this book, an entity will be drawn as a rectangle with rounded
corners (see margin). This shape represents all instances of the named entity. For ex-
ample, the entity STUDENT represents all students in the system. Thus, an entity identi-
fi es specifi c classes of entities and is distinguishable from the other entities.

 Categories of entities (and examples) include:

 Persons: AGENCY, CONTRACTOR, CUSTOMER, DEPARTMENT, DIVISION, EMPLOYEE,
INSTRUCTOR, STUDENT, SUPPLIER. Notice that a person entity class can
represent individuals, groups, or organizations.

 Places: SALES REGION, BUILDING, ROOM, BRANCH OFFICE, CAMPUS.
 Objects: BOOK, MACHINE, PART, PRODUCT, RAW MATERIAL, SOFTWARE LICENSE, SOFTWARE

PACKAGE, TOOL, VEHICLE MODEL, VEHICLE. An object entity can represent
actual objects (such as a specifi c software license) or specifi cations
for a type of object (such as specifi cations for different software
packages).

 Events: APPLICATION, AWARD, CANCELLATION, CLASS, FLIGHT, INVOICE, ORDER,
REGISTRATION, RENEWAL, REQUISITION, RESERVATION, SALE, TRIP.

 Concepts: ACCOUNT, BLOCK OF TIME, BOND, COURSE, FUND, QUALIFICATION, STOCK.

Data Modeling and Analysis Chapter Seven 209

 It is important to distinguish between an entity and its instances. An entity instance
is a single occurrence of an entity. For example, the entity STUDENT may have multiple
instances: Mary, Joe, Mark, Susan, Cheryl, and so forth. In data modeling, we do not
concern ourselves with individual students because we recognize that each student is
described by similar pieces of data.

 > Attributes

 If an entity is something about which we want to store data, then we need to identify
what specifi c pieces of data we want to store about each instance of a given entity.
We call these pieces of data attributes . As noted at the beginning of this section,
each instance of the entity STUDENT might be described by the following attributes:
 NAME, ADDRESS, PHONE NUMBER, DATE OF BIRTH, GENDER, RACE, MAJOR, GRADE POINT AVERAGE,
and others.

 We can now extend our graphical abstraction of the entity to include attributes by
recording those attributes inside the entity shape along with the name (see margin).

 Some attributes can be logically grouped into superattributes called compound

attributes . For example, a student’s NAME is actually a compound attribute that con-
sists of LAST NAME, FIRST NAME, and MIDDLE INITIAL. In the margin, we demonstrate one
possible notation for compound attributes. Notice that a period is placed at the begin-
ning of each primitive attribute that is included in the composite attribute.

 Domains When analyzing a system, we should defi ne those values for an attribute
that are legitimate or that make business sense. The values for each attribute are de-
fi ned in terms of three properties: data type, domain, and default.

 The data type for an attribute defi nes what type of data can be stored in that
attribute. For purposes of systems analysis and business requirements defi nition, it is
useful to declare logical (nontechnical) data types for business attributes. For the sake
of argument, we will use the logical data types shown in Table 7-1 .

 An attribute’s data type constrains its domain. The domain of an attribute de-
fi nes what values the attribute can legitimately take on. Table 7-2 demonstrates how
logical domains might be expressed for each data type.

 data type a property of an

attribute that identifi es what

type of data can be stored in

the attribute.

 domain a property of an

attribute that defi nes what

values the attribute can

legitimately take on.

 T A B L E 7 - 1 Representative Logical Data Types for Attributes

Logical Data Type Logical Business Meaning

 NUMBER Any number, real or integer.

TEXT A string of characters, inclusive of numbers. When numbers
are included in a TEXT attribute, it means we do not expect
to perform arithmetic or comparisons with those numbers.

 MEMO Same as TEXT but of an indeterminate size. Some business
systems require the ability to attach potentially lengthy notes
to a given database record.

 DATE Any date in any format.

 TIME Any time in any format.

 YES/NO An attribute that can assume only one of these two values.

 VALUE SET A fi nite set of values. In most cases, a coding scheme would
be established (e.g., FR ⫽ freshman, SO ⫽ sophomore,
 JR ⫽ junior, SR ⫽ senior, etc.).

 IMAGE Any picture or image.

 entity instance a single

occurrence of an entity.

 attribute a descriptive

property or characteristic of

an entity. Synonyms include

 element, property, and fi eld.

STUDENT

Name

.Last Name

.First Name

.Middle Initial

Address

.Street Address

.City

.State or Province

.Country

.Postal Code

Phone Number

.Area Code

.Exchange Number

.Number Within Exchange

Date of Birth

Gender

Race

Major

Grade Point Average

Attributes and

Compound Attributes

 compound attribute an

attribute that consists of

other attributes. Synonyms

in different data modeling

languages are numerous:

 concatenated attribute,

composite attribute, and data

structure.

210 Part Two Systems Analysis Methods

 Finally, every attribute should have a logical default value that represents the
value of an attribute if its value is not specifi ed by the user. Table 7-3 shows possible
default values for an attribute. Notice that NOT NULL is a way to specify that each in-
stance of the attribute must have a value, while NULL is a way to specify that some
instances of the attribute may be optional, or not have a value.

 Identifi cation An entity has many instances, perhaps thousands or millions. There
exists a need to uniquely identify each instance based on the data value of one or
more attributes. Thus, every entity must have a key . For example, each instance of the
entity STUDENT might be uniquely identifi ed by the key STUDENT NUMBER attribute. No
two students can have the same STUDENT NUMBER.

 Sometimes more than one attribute is required to uniquely identify an instance of
an entity. A key consisting of a group of attributes is called a concatenated key . For

 T A B L E 7 - 2 Representative Logical Domains for Logical
Data Types

 Data Type Domain Examples

NUMBER For integers, specify the range: {10–99}
 {minimum–maximum}

 For real numbers, specify the range and precision: {1.000–799.999}
 {minimum. precision–maximum. precision}

TEXT TEXT (maximum size of attribute) TEXT (30)

 Actual values are usually infi nite; however, users
 may specify certain narrative restrictions.

 MEMO Not applicable . There are no logical restrictions Not applicable.
 on size or content.

 DATE Variation on the MMDDYYYY format. To MMDDYYYY
 accommodate the year 2000, do not
 abbreviate year to YY.

 Formatting characters are rarely stored; MMYYYY
 therefore, do not include hyphens or slashes. YYYY

 TIME For AM/PM times: HHMMT HHMMT

 or

 For military times: HHMM HHMM

 YES/NO { YES, NO } { YES, NO } { ON, OFF }

 VALUE SET {value#1, value#2, . . . value#n} { FRESHMAN, SOPHO-

 or MORE, JUNIOR, SENIOR }

 {table of codes and meanings} { FR ⫽ FRESHMAN

 SO ⫽ SOPHOMORE

 JR ⫽ JUNIOR

 SR ⫽ SENIOR }

 IMAGE Not applicable; however, any known Not applicable.
 characteristics of the images will eventually
 prove useful to designers.

 default value the value that

will be recorded if a value is

not specifi ed by the user.

 key an attribute, or a group

of attributes, that assumes a

unique value for each entity

instance. It is sometimes

called an identifi er.

 concatenated key a group

of attributes that uniquely

identifi es an instance of an

entity. Synonyms include

 composite key and com-

pound key.

Data Modeling and Analysis Chapter Seven 211

 example, each DVD entity instance in a video store might be uniquely identifi ed by the
concatenation of TITLE NUMBER plus COPY NUMBER. T ITLE NUMBER by itself would be inad-
equate because the store may own many copies of a single title. C OPY NUMBER by itself
would also be inadequate since we presumably have a copy #1 for every title we own.
We need both pieces of data to identify a specifi c tape (e.g., copy #7 of Star Wars: Re-

venge of the Sith). In this book, we will give a name to the group as well as the individual
attributes. For example, the concatenated key for DVD would be recorded as follows:

 DVD ID
 .TITLE NUMBER
 .COPY NUMBER

 Frequently, an entity may have more than one key. For example, the entity
 EMPLOYEE may be uniquely identifi ed by SOCIAL SECURITY NUMBER, or company-assigned
 EMPLOYEE NUMBER, or E-MAIL ADDRESS. Each of these attributes is called a candidate key. A
 candidate key is a “candidate to become the primary key” of instances of an entity. It
is sometimes called a candidate identifi er. (A candidate key may be a single attribute
or a concatenated key.) A primary key is that candidate key that will most com-
monly be used to uniquely identify a single entity instance. The default for a primary
key is always NOT NULL because if the key has no value, it cannot serve its purpose to
identify an instance of an entity. Any candidate key that is not selected to become the
primary key is called an alternate key . A common synonym is secondary key. In the
margin, we demonstrate our notation for primary and alternate keys. All candidate
keys must be either primary or alternate; therefore, we do not use a separate nota-
tion for candidate keys. All attributes that are not part of the primary key are called
nonkey attributes.

 Sometimes, it is also necessary to identify a subset of an entity’s instances as
opposed to a single instance. For example, we may require a simple way to identify
all male students and all female students. A subsetting criteria is an attribute (or
concatenated attribute) whose fi nite values divide all entity instances into useful sub-
sets. This is sometimes referred to as an inversion entry. In our STUDENT entity, the
attribute GENDER divides the instances of STUDENT into two subsets: male students and
female students. In general, subsetting criteria are useful only when an attribute has
a fi nite (meaning “limited”) number of legitimate values. For example, GRADE POINT
AVERAGE would not be a good subsetting criteria because there are 999 possible values
between 0.00 and 4.00 for that attribute. The margin art demonstrates a notation for
subsetting criteria.

 T A B L E 7 - 3 Permissible Default Values for Attributes

 Default Value Interpretation Examples

 A legal value from the
domain (as described
above)

 For an instance of the attribute, if the
user does not specify a value, then
use this value.

 0
 1.00
 FR

 NONE or NULL For an instance of the attribute, if the
user does not specify a value, then
leave it blank.

 NONE
 NULL

 REQUIRED or NOT NULL For an instance of the attribute,
requires that the user enter a legal
value from the domain. (This is used
when no value in the domain is
common enough to be a default but
some value must be entered.)

 REQUIRED
 NOT NULL

 candidate key one of a

number of keys that may

serve as the primary key of an

entity. Also called candidate

identifi er.

 primary key a candidate

key that will most commonly

be used to uniquely identify a

single entity instance.

 alternate key a candidate

key that is not selected to

become the primary key. A

synonym is secondary key.

 subsetting criteria an

attribute(s) whose fi nite

values divide entity instances

into subsets. Sometimes

called inversion entry.

212 Part Two Systems Analysis Methods

 > Relationships

 Conceptually, entities and attributes do not exist in isolation. The things they rep-
resent interact with and impact one another to support the business mission. Thus,
we introduce the concept of a relationship. A relationship is a natural business as-
sociation that exists between one or more entities. The relationship may represent
an event that links the entities or merely a logical affi nity that exists between the
entities. Consider, for example, the entities STUDENT and CURRICULUM. We can make the
following business assertions that link students and courses:

 • A current STUDENT IS ENROLLED IN one or more CURRICULA .
 • A CURRICULUM IS BEING STUDIED BY zero, one, or more STUDENTS .

 The underlined verb phrases defi ne business relationships that exist between the two
entities.

 We can graphically illustrate this association between STUDENT and CURRICULUM as
shown in Figure 7-2 . The connecting line represents a relationship. Verb phrases de-
scribe the relationship. Notice that all relationships are implicitly bidirectional, meaning
they can be interpreted in both directions (as suggested by the above business asser-
tions). Data modeling methods may differ in their naming of relationships—some in-
clude both verb phrases and others include a single verb phrase.

 Cardinality Figure 7-2 also shows the complexity or degree of each relationship. For
example, if we know how to read it, Figure 7-2 can answer the following questions:

 • Must there exist an instance of STUDENT for each instance of CURRICULUM ? No!
 • Must there exist an instance of CURRICULUM for each instance of STUDENT ? Yes!
 • How many instances of CURRICULUM can exist for each instance of STUDENT? Many!
 • How many instances of STUDENT can exist for each instance of CURRICULUM ? Many!

 We call this concept cardinality. Cardinality defi nes the minimum and maximum
number of occurrences of one entity that may be related to a single occurrence of the
other entity. Because all relationships are bidirectional, cardinality must be defi ned in
both directions for every relationship. A popular graphical notation for cardinality is
shown in Figure 7-3 . Sample cardinality symbols were demonstrated in Figure 7-2 .

 Conceptually, cardinality tells us the following rules about the data entities shown
in Figure 7-2 :

 • When we insert a STUDENT instance in the database, we must link (associate)
that STUDENT to at least one instance of CURRICULUM . In business terms, “a student
cannot be admitted without declaring a major.” (Most schools would include an
instance of CURRICULUM called “undecided” or “undeclared.”)

 • A STUDENT can study more than one CURRICULUM, and we must be able to store
data that indicates all CURRICULA for a given STUDENT.

 • We must insert a CURRICULUM before we can link (associate) STUDENTS to that
 CURRICULUM. That is why a CURRICULUM can have zero students—no students have
yet been admitted to that CURRICULUM.

 • Once a CURRICULUM has been inserted into the database, we can link (associate)
many STUDENTS with that CURRICULUM.

 Degree Another measure of the complexity of a data relationship is its degree. The
 degree of a relationship is the number of entities that participate in the relationship.

 relationship a natural

business association between

one or more entities.

 cardinality the minimum

and maximum number of

occurrences of one entity that

may be related to a single

occurrence of the other entity.

STUDENT

Student Number
 (Primary Key)

Social Security Number

 (Alternate Key)
Name

.Last Name

.First Name

.Middle Initial

Address

.Street Address

.City

.State or Province

.Country

.Postal Code

Phone Number

.Area Code

.Exchange Number

.Number Within Exchange

Date of Birth

Gender (Subsetting Criteria 1)

Race (Subsetting Criteria 2)

Major (Subsetting Criteria 3)

Grade Point Average

Keys and Subsetting

Criteria

CURRICULUMSTUDENT is enrolled in is being studied by

 F I G U R E 7 - 2

A Relationship
(Many-to-Many)

 degree the number of

entities that participate in a

relationship.

Data Modeling and Analysis Chapter Seven 213

All the relationships we’ve explored so far are binary (degree ⫽ 2). In other words,
two different entities participated in the relationship.

 Relationships may also exist between different instances of the same entity.
We call this a recursive relationship (degree ⫽ 1). For example, in your school a
course may be a prerequisite for other courses. Similarly, a course may have several
other courses as its prerequisite. Figure 7-4 demonstrates this many-to-many recursive
relationship.

 Relationships can also exist between more than two different entities. These are
sometimes called N -ary relationships. An example of a 3-ary, or ternary, relationship
is shown in Figure 7-5 . An N -ary relationship is illustrated with a new entity construct
called an associative entity. An associative entity is an entity that inherits its primary
key from more than one other entity (called parents). Each part of that concatenated
key points to one and only one instance of each of the connecting entities.

Exactly one

(one and only one)

CARDINALITY

INTERPRETATION

MINIMUM

INSTANCES

MAXIMUM

INSTANCES

GRAPHIC

NOTATION

1 1

– or –

Zero or one 0 1

One or more 1 many (>1)

Zero, one, or more 0 many (>1)

More than one >1 >1

 F I G U R E 7 - 3

 Cardinality
Notations

 associative entity an entity

that inherits its primary key

from more than one other

entity.

COURSE

Course ID (Primary Key)

.Subject Abbreviation

.Course Number

Course Title

Course Credit

is a prerequisite for

has as a prerequisite

 F I G U R E 7 - 4

A Recursive
Relationship

 recursive relationship a

relationship that exists

between instances of the

same entity.

214 Part Two Systems Analysis Methods

 In Figure 7-5 the associative entity ASSIGNMENT (notice the unique shape) matches
an EMPLOYEE, a LOCATION, and a PROJECT. For each instance of ASSIGNMENT, the key indi-
cates which EMPLOYEE ID, which LOCATION NUMBER, and which PROJECT NUMBER are com-
bined to form that assignment.

 Also as shown in Figure 7-5 , an associative entity can be described by its own
nonkey attributes. In addition to the primary key, an ASSIGNMENT is described by the
attributes BEGIN DATE and END DATE. If you think about it, none of these attributes
describes an EMPLOYEE, LOCATION, or PROJECT —they describe a single instance of the
relationship between an instance of each of those entities.

 Foreign Keys A relationship implies that instances of one entity are related to in-
stances of another entity. We should be able to identify those instances for any given
entity. The ability to identify specifi c related entity instances involves establishing for-
eign keys. A foreign key is a primary key of one entity that is contributed to (dupli-
cated in) another entity to identify instances of a relationship. A foreign key (always in
a child entity) always matches the primary key (in a parent entity). In Figure 7-6 (a),
we demonstrate the concept of foreign keys with our simple data model. Notice that
the maximum cardinality for DEPARTMENT is “one,” whereas the maximum cardinality
for CURRICULUM is “many.” In this case, DEPARTMENT is called the parent entity and
 CURRICULUM is the child entity. The primary key is always contributed by the parent
to the child as a foreign key. Thus, an instance of CURRICULUM now has a foreign key

 F I G U R E 7 - 5

A Ternary
Relationship

 foreign key a primary

key of an entity that is used

in another entity to identify

instances of a relationship.

 child entity a data

entity that derives one or

more attributes from another

entity, called the parent. In

a one-to-many relationship

the child is the entity on the

“many” side.

 parent entity a data

entity that contributes one

or more attributes to another

entity, called the child. In a

one-to-many relationship the

parent is the entity on the

“one” side.

EMPLOYEE

Employee ID (Primary Key)

Employee Name

.Last Name

.First Name

.Middle Initial

LOCATION

Location Number (Primary Key)

Address

.Street

.City

.State

.Zipcode

PROJECT

Project Number (Primary Key)

Description

Projected Start Date

Projected End Date

ASSIGNMENT

Assignment ID (Primary Key)

.Project Number

.Employee ID

.Location Number

Begin Date

End Date

offers

requires is given

Data Modeling and Analysis Chapter Seven 215

 DEPARTMENT NAME whose value points to the instance of DEPARTMENT that offers that cur-
riculum. (Foreign keys are never contributed from child to parent.)

 In our example, the relationship between CURRICULUM and DEPARTMENT is referred to
as a nonidentifying relationship. Nonidentifying relationships are those in which
each of the participating entities has its own independent primary key. In other words,
none of the primary-key attributes is shared. The entities CURRICULUM and DEPARTMENT
are also referred to as strong or independent entities because neither depends on any
other entity for its identifi cation. Sometimes, however, a foreign key may participate
as part of the primary key of the child entity. For example, in Figure 7-6 (b) the parent
entity BUILDING contributes its key to the entity ROOM. Thus, BUILDING NAME serves as a

CURRICULUM

 Program of Study Code (Primary Key)

 Title of Program

 Type of Degree Awarded (Subsetting Criteria 1)

 Department Number (Foreign Key)

DEPARTMENT

Department Number (Primary Key)

Department Name

offers is offered by

PARENT

ENTITY
CHILD

ENTITY(MAXIMUM CARDINALITY = 1) (MAXIMUM CARDINALITY = MANY)

(a)

ROOM

 Room ID (Primary Key)

 .Building Name (Foreign Key)

 .Room Number

BUILDING

Building Name (Primary Key)

is

located

in

contains

(b)

.

Identifying relationships have the

foreign key participating as part of

the child entity's primary key.

A parent always has

a maximum cardinality of

"many" children.

 F I G U R E 7 - 6 Foreign Keys

nonidentifying
 relationship a relationship

in which each participating

entity has its own independent

primary key.

216 Part Two Systems Analysis Methods

foreign key to relate a ROOM and BUILDING and in conjunction with ROOM ID to uniquely
identify a given instance of ROOM. In those situations the relationship between the
parent entity and the child entity is referred to as an identifying relationship. Identi-

fying relationships are those in which the parent entity contributes its primary key
to become part of the primary key of the child entity. The child entity of any identi-
fying relationship is frequently referred to as a weak entity because its identifi cation is
dependent on the parent entity’s existence.

 Most popular CASE tools and data modeling methods use different notations to
distinguish between identifying and nonidentifying relationships and between strong
and weak entities. In Figure 7-7 , we use a dashed line notation to represent the non-
identifying relationship between PASSENGER and SEAT ASSIGNMENT. Because part of the
primary key of SEAT ASSIGNMENT is the foreign key FLIGHT NUMBER from the parent entity
 FLIGHT, the relationship is an identifying relationship and is represented using a solid

line. Finally, seat assignment is a weak entity because it receives the primary key of
fl ight to compose its own primary key. A weak entity is represented using a symbol
composed of a rounded rectangle within a rounded rectangle.

 NOTE: To reinforce the above concepts of identifying and nonidentifying
relationships and strong versus weak entities and to be consistent with most
popular data modeling methods and most widely used CASE tools, the authors
use the above modeling notations on all subsequent data modeling examples
presented in the book.

 What if you cannot differentiate between parent and child? For example, in
 Figure 7-8 (a) on page 217 we see that a CURRICULUM enrolls zero, one, or more STUDENTS.
At the same time, we see that a STUDENT is enrolled in one or more CURRICULA. The
maximum cardinality on both sides is “many.” So, which is the parent and which
is the child? You can’t tell! This is called a nonspecifi c relationship. A nonspecifi c

relationship (or many-to-many relationship) is one in which many instances of one
entity are associated with many instances of another entity. Such relationships are
suitable only for preliminary data models and should be resolved as quickly as possible.

 nonspecifi c relationship
 a relationship where many

instances of an entity are as-

sociated with many instances

of another entity. Also called

 many-to-many relationship.

PASSENGER

Passenger-ID (Primary Key)

Passenger-Name

(other attributes of PASSENGER)

FLIGHT

Flight-Number (Primary Key)

Flight-Date-Of-Departure

(other attributes of FLIGHT)

SEAT ASSIGNMENT

Seat-ID (Primary Key)

.Seat-Number

.Flight-Number (Foreign Key)

Passenger-ID (Foreign Key)

holds

has

WEAK

ENTITY

STRONG

ENTITY

STRONG

ENTITY

NONIDENTIFYING

RELATIONSHIP

IDENTIFYING

RELATIONSHIP

 F I G U R E 7 - 7

 Notations for
Weak Entity and
Nonidentifying
Relationship

 identifying relationship
 a relationship in which the

parent entity’s key is also part

of the primary key of the child

entity.

Data Modeling and Analysis Chapter Seven 217

 Many nonspecifi c relationships can be resolved into a pair of one-to-many rela-
tionships. As illustrated in Figure 7-8 (b), each entity becomes a parent. A new, asso-

ciative entity is introduced as the child of each parent. In Figure 7-8 (b), each instance
of MAJOR represents one STUDENT ’s enrollment in one CURRICULUM. If a student is pur-
suing two majors, that student will have two instances of the entity MAJOR.

 Study Figure 7-8 (b) carefully. For associative entities, the cardinality from child
to parent is always one and only one. That makes sense because an instance of MAJOR
must correspond to one and only one STUDENT and one and only one CURRICULUM. The
cardinality from parent to child depends on the business rule. In our example, a STU-
DENT must declare one or more MAJORS . Conversely, a CURRICULUM is being studied by
zero, one, or more MAJORS —perhaps it is new and no one has been admitted to it yet.
An associative entity can also be described by its own nonkey attributes (such as DATE
ENROLLED and CURRENT CANDIDATE FOR DEGREE ?). Finally, associative entities inherit the
primary keys of the parents; thus, all associative entities are weak entities.

 Not all nonspecifi c relationships can and should be automatically resolved as de-
scribed above. Occasionally nonspecifi c relationships result from the failure of the ana-
lyst to identify the existence of other entities. For example, examine the relationship

 F I G U R E 7 - 8 Resolving Nonspecifi c Relationships with an Associative Entity

MAJOR

Major ID (Primary Key)

.Student Number

.Program of Study Code

Date Enrolled

Current Candidate for

Degree?

STUDENT

Student Number (Primary Key)

Name (Alternate Key)

Address

Phone Number

Date of Birth

Gender

Race

Grade Point Average

CURRICULUM

Program of Study Code (Primary Key)

Title of Program

Type of Degree Awarded

is enrolled

in

CURRICULUM

Program of Study Code (Primary Key)

Title of Program

Type of Degree Awarded

declared

(b)

(a)

STUDENT

Student Number (Primary Key)

Name (Alternate Key)

Address

Phone Number

Date of Birth

Gender

Race

Grade Point Average

has

replaced byreplaced by

Many-to-Many Relationship

218 Part Two Systems Analysis Methods

 F I G U R E 7 - 9 Resolving Nonspecifi c Relationships by Recognizing a Fundamental
Business Entity

CUSTOMER

Customer ID (Primary Key)

etc.

PRODUCT

orders

PRODUCT

places

(b)

(a)

CUSTOMER

contains

Many-to-Many Relationship

ORDER

Order Number (Primary Key)

etc.

The verb or verb phrase of a many-to-many

relationship sometimes suggests other entities. In this

example the many-to-many is resolved by recognizing

that the verb "orders" actually suggests an event entity

called ORDER that relates CUSTOMERs to

PRODUCTs. Notice that the new many-to-many

relationship between ORDER and PRODUCT would

need to be resolved.

ORDER

Order Number (Primary Key)

etc.

PRODUCT

Product Number (Primary

Key) etc.

ORDERED PRODUCT

ORDERED PRODUCT ID (Primary Key)

.Order Number

.Product Number
contains appears

 as

(c)

CUSTOMER

Customer ID (Primary Key)

etc.
places

Can be resolved with an associative entity.

Customer ID (Primary Key)

etc.

Product Number (Primary Key)

etc.

Product Number (Primary Key)

etc.

Data Modeling and Analysis Chapter Seven 219

between CUSTOMER and PRODUCT in Figure 7-9 (a). Recognize that the relationship “orders”
between CUSTOMER and PRODUCT suggests an event about which a user might want to
store data. That event represents an event entity called ORDER depicted in Figure 7-9 (b).
In reality, CUSTOMER and PRODUCT do not have a natural and direct relationship as was de-
picted in Figure 7-9 (a). Rather, they are related indirectly, by way of an ORDER. Thus, our
many-to-many relationship was replaced by separate relationships between CUSTOMER,
ORDER, and PRODUCT. Notice that the relationship between ORDER and PRODUCT is a many-
to-many relationship. That relationship would need to be resolved by replacing it with
an associative entity and two one-to-many relationships, as is illustrated in Figure 7-9 (c).

 Finally, some nonspecifi c relationships can be resolved by introducing sepa-
rate relationships. Notice the many-to-many relationship between TRANSFER and BANK
ACCOUNT shown in Figure 7-10 (a). While it is true that a TRANSFER transaction involves
many BANK ACCOUNTS and a BANK ACCOUNT may be involved in many TRANSFER transactions,
we must be careful! Data modeling notations can sometimes mislead us. Technically,
a single TRANSFER transaction involves two BANK ACCOUNT s. When we know the specifi c
maximum number of occurrences of a many-to-many relationship, it often suggests that
our original relationship is weak or too general. Notice in Figure 7-10 (b) that our rela-
tionship “involves” was replaced by two separate one-to-many relationships that more
accurately describe the business relationships between a TRANSFER and BANK ACCOUNTS .

BANK ACCOUNT
TRANSFER

(b)

(a)
Many-to-Many Relationship

deposits

to

involves

TRANSFER

Transaction Number (Primary Key)

etc.

withdraws

from

While the above relationship is a many-to-many, the many

on the BANK ACCOUNT side is a known maximum of

“2.” This suggests that the relationship may actually

represent multiple relationships . . . in this case two

separate relationships.

Transaction Number (Primary Key)

etc.

Account Number ID (Primary Key)

etc.

BANK ACCOUNT

Account Number ID (Primary Key)

etc.

 F I G U R E 7 - 1 0 Resolving Nonspecifi c Relationships by Recognizing Separate Relationships

220 Part Two Systems Analysis Methods

 Generalization Most people associate the concept of generalization with modern
object-oriented techniques. In reality, the concepts have been applied by data mod-
elers for many years. Generalization is an approach that seeks to discover and exploit
the commonalities between entities. Generalization is a technique wherein the at-
tributes that are common to several types of an entity are grouped into their own
entity. Consider, for example, a typical school. A school enrolls STUDENTS and employs
 EMPLOYEES (in a university, a person could be both). There are several attributes that
are common to both entities; for example, NAME, GENDER, RACE, MARITAL STATUS, and pos-
sibly even a key based on SOCIAL SECURITY NUMBER. We could consolidate these common
attributes into an entity supertype called PERSON. An entity supertype is an entity
whose instances store attributes that are common to one or more entity subtypes.

 The entity supertype will have one or more one-to-one relationships to entity sub-

types. These relationships are sometimes called “is a” relationships (or “was a,” or “could
be a”) because each instance of the supertype “is also an” instance of one or more sub-
types. An entity subtype is an entity whose instances inherit some common attributes
from an entity supertype and then add other attributes that are unique to an instance of
the subtype. In our example, “a PERSON is an employee, or a student, or both.” The top
half of Figure 7-11 illustrates this generalization 1 as a hierarchy. Notice that the subtypes
 STUDENT and EMPLOYEE have inherited attributes from PERSON, as well as adding their own.

 Extending the metaphor, we see that an entity can be both a supertype and a sub-
type. Returning to Figure 7-11 , we see that a STUDENT (which was a subtype of PERSON)
has its own subtypes. In the diagram, we see that a STUDENT 2 is either a PROSPECT, or
a CURRENT STUDENT, or a FORMER STUDENT (having left for any reason other than gradua-
tion), and 3 a STUDENT could be an ALUMNUS. These additional subtypes inherit all the
attributes from STUDENT as well as those from PERSON. Finally, notice that all subtypes
are weak entities.

 Through inheritance, the concept of generalization in data models permits us to
reduce the number of attributes through the careful sharing of common attributes. The
subtypes not only inherit the attributes but also the data types, domains, and defaults of
those attributes. This can greatly enhance the consistency with which we treat attributes
that apply to many different entities (e.g., dates, names, addresses, currency, etc.).

 In addition to inheriting attributes, subtypes also inherit relationships to other
entities. For instance, all EMPLOYEES and STUDENTS inherit the relationship 4 between
 PERSON and ADDRESS. But only EMPLOYEES inherit the relationship 5 with CONTRACT S. And
only an ALUMNUS can be related to 6 an AWARDED DEGREE.

 generalization a concept

wherein the attributes that

are common to several types

of an entity are grouped into

their own entity.

 supertype an entity whose

instances store attributes that

are common to one or more

entity subtypes.

 subtype an entity whose

instances may inherit

common attributes from its

entity supertype.

 The Process of Logical Data Modeling

 Now that you understand the basic concepts of data models, we can examine the
process of data modeling. When do you do it? How many data models may be drawn?
What technology exists to support the process?

 Data modeling may be performed during various types of projects and in multiple
phases of projects. Data models are progressive; there is no such thing as the “fi nal”
data model for a business or application. Instead, a data model should be considered
a living document that will change in response to a changing business. Data models
should ideally be stored in a repository so that they can be retrieved, expanded, and
edited over time. Let’s examine how data modeling may come into play during sys-
tems planning and analysis.

 > Strategic Data Modeling

 Many organizations select application development projects based on strategic infor-
mation systems plans. Strategic planning is a separate project. This project produces
an information systems strategy plan that defi nes an overall vision and architecture
for information systems. Almost always, this architecture includes an enterprise data

model. Information engineering is a methodology that embraces this approach.

Data Modeling and Analysis Chapter Seven 221

 An enterprise data model typically identifi es only the most fundamental of enti-
ties. The entities are typically defi ned (as in a dictionary), but they are not described
in terms of keys or attributes. The enterprise data model may or may not include rela-
tionships (depending on the planning methodology’s standards and the level of detail

desired by executive management). If relationships are included, many of them will
be nonspecifi c (a concept introduced earlier in the chapter).

PERSON

Personal ID Number (Primary Key 1)

Name

.Last Name

.First Name

.Middle Initial

Gender (Subsetting Criteria 1)

Race (Subsetting Criteria 2)

Marital Status (Subsetting Criteria 3)

can be

contacted at

CONTRACT

(attributes omitted)

AWARDED DEGREE

(attributes omitted)
has earned

is bound by

is a is a

is a

is a

is a

could be a

CURRENT STUDENT

all attributes from PERSON and STUDENT plus

Number of Credits Earned

Grade Point Average

Encumbrance Status

Financial Aid Eligibility Status

PROSPECT

all attributes from PERSON and STUDENT plus

First Contact Date

Last Contact Date

Has Visited Campus?

EMPLOYEE

Personal ID Number = Social Security Number

 (Primary Key 1)

all attributes from PERSON plus

Pension Plan Code

Life Insurance Plan Code

Medical Insurance Plan Code

Vacation Days Accumulated

Sick Days Accumulated

STUDENT

Personal ID Number = Student Number

 (Primary Key 1)

all attributes from PERSON

ALUMNUS

all attributes from PERSON and STUDENT plus

Member of Alumni Association?

Job in Field of Study?

Last Known Salary

FORMER STUDENT

all attributes from PERSON and STUDENT plus

Reason for Withdrawal

Plans to Return?

ADDRESS

(attributes omitted)

1

2

3

6

5

4

 F I G U R E 7 - 1 1 A Generalization Hierarchy

222 Part Two Systems Analysis Methods

 The enterprise data model is usually stored in a corporate repository. When the
application development project is started, the subset of the enterprise data model (as
well as the other models) is exported from the corporate repository into a project re-
pository. Once the project team completes systems analysis and design, the expanded
and refi ned data models are imported back into the corporate repository.

 > Data Modeling during Systems Analysis

 In systems analysis and in this chapter, we will focus on logical data modeling as a part
of systems analysis. The data model for a single information system is usually called an
 application data model .

 Data models are rarely constructed during the scope defi nition phase of systems
analysis. The short duration of that phase makes them impractical. If an enterprise
data model exists, the subset of that model that is applicable to the project might be
retrieved and reviewed as part of the phase requirement to establish context. Alterna-
tively, the project team could identify a simple list of entities, the things about which
team members think the system will have to capture and store data.

 A problem analysis phase model includes only entities and relationships, but no at-
tributes—it is called a context data model . The intent is to refi ne our understanding
of scope, not to get into details about the entities and business rules. Many relation-
ships may be nonspecifi c.

 The requirements analysis results in a logical data model that is developed in
stages as follows:

 1. We begin by constructing the context data model to establish the project scope.
If a context data model was already developed during problem analysis, that
model may be revised to refl ect new requirements and project scope.

 2. Next, a key-based data model will be drawn. This model will eliminate non-
specifi c relationships, add associative entities, and include primary and alternate
keys. The key-based model will also include precise cardinalities and any general-
ization hierarchies.

 3. Next, a fully attributed data model will be constructed. The fully attributed
model includes all remaining descriptive attributes and subsetting criteria. Each at-
tribute is defi ned in the repository with data types, domains, and defaults (in what
is sometimes called a fully described data model).

 4. The completed data model is analyzed for adaptability and fl exibility through
a process called normalization. The fi nal analyzed model is referred to as a
 normalized data model.

 This data requirements model requires a team effort that includes systems analysts,
users and managers, and data analysts. A data administrator often sets standards for
and approves all data models.

 Finally, data models cannot be constructed without appropriate facts and infor-
mation as supplied by the user community. These facts can be collected through a
number of techniques such as sampling of existing forms and fi les, research of similar
systems, surveys of users and management, and interviews of users and management.
The fastest method of collecting facts and information and simultaneously constructing
and verifying the data models is joint requirements planning. JRP uses a carefully
 facilitated group meeting to collect the facts, build the models, and verify the models—
usually in one or two full-day sessions. Fact-fi nding and information-gathering tech-
niques were fully explored in Chapter 5. Table 7-4 summarizes some questions that may
be useful for fact-fi nding and information gathering as it pertains to data modeling.

 > Looking Ahead to Systems Design

 During system design, the logical data model will be transformed into a physical data
model (called a database schema) for the chosen database management system.

 application data model a

data model for a complete,

single information system.

 context data model a

data model that includes enti-

ties and relationships but no

attributes.

 key-based data model a

data model that includes

entities and relationships with

precise cardinalities resolving

nonspecifi c relationships

into associative entities, and

also including primary and

alternate keys.

 fully attributed data
model a data model that

includes all entities, attri-

butes, relationships, subset-

ting criteria, and precise

cardinalities.

Data Modeling and Analysis Chapter Seven 223

This model will refl ect the technical capabilities and limitations of that database tech-
nology, as well as the performance tuning requirements suggested by the database
administrator. Any further discussion of database design is deferred until Chapter 13.

 > Automated Tools for Data Modeling

 Data models are stored in a repository. In a sense, the data model is metadata —
that is, data about the business’s data. Computer-aided systems engineering (CASE)

 TA B L E 7 - 4 JRP and Interview Questions for Data Modeling

 Purpose Candidate Questions

 Discover the system entities What are the subjects of the business? In other words,
what types of persons, organizations, organizational
units, places, things, materials, or events are used in
or interact with this system about which data must be
captured or maintained? How many instances of each
subject exist?

 Discover the entity keys What unique characteristic (or characteristics)
distinguishes an instance of each subject from other
instances of the same subject? Are there any plans to
change this identifi cation scheme in the future?

 Discover entity subsetting Are there any characteristics of a subject that divide
criteria all instances of the subject into useful subsets? Are

there any subsets of the above subjects for which you
have no convenient way to group instances?

 Discover attributes and What characteristics describe each subject? For
domains each of these characteristics, (1) what type of data is

stored? (2) who is responsible for defi ning legitimate
values for the data? (3) what are the legitimate values
for the data? (4) is a value required? and (5) is there
any default value that should be assigned if you don’t
specify otherwise?

 Discover security and control Are there any restrictions on who can see or use
needs the data? Who is allowed to create the data? Who is

allowed to update the data? Who is allowed to delete
the data?

 Discover data timing needs How often does the data change? Over what period
of time is the data of value to the business? How long
should we keep the data? Do you need historical data
or trends? If a characteristic changes, must you know
the former values?

 Discover generalization Are all instances of each subject the same? That is,
hierarchies are there special types of each subject that are

described or handled differently? Can any of the data
be consolidated for sharing?

 Discover relationships and What events occur that imply associations between
degrees subjects? What business activities or transactions

involve handling or changing data about several
different subjects of the same or a different type?

 Discover cardinalities Is each business activity or event handled the same
way, or are there special circumstances? Can an event
occur with only some of the associated subjects, or must
all the subjects be involved?

 metadata data about data.

224 Part Two Systems Analysis Methods

 technology, introduced in Chapter 2, provides the repository for storing the data
model and its detailed descriptions. Most CASE products support computer-assisted
data modeling and database design. Some CASE products (such as Logic Works’
 ERwin) only support data modeling and database design. CASE takes the drudgery
out of drawing and maintaining these models and their underlying details.

 Using a CASE product, you can easily create professional, readable data models
without the use of paper, pencil, erasers, and templates. The models can be easily
modifi ed to refl ect corrections and changes suggested by end users—you don’t have
to start over! Also, most CASE products provide powerful analytical tools that can
check your models for mechanical errors, completeness, and consistency. Some CASE
products can even help you analyze the data model for consistency, completeness,
and fl exibility. The potential time and quality savings are substantial.

 As mentioned earlier, some CASE tools support reverse engineering of existing
fi le and database structures into data models. The resulting data models represent
“physical” data models that can be revised and reengineered into a new fi le or da-
tabase, or they may be translated into their equivalent “logical” model. The logical
data model could then be edited and forward engineered into a revised physical data
model, and subsequently a fi le or database implementation.

 CASE tools do have their limitations. Not all data modeling conventions are
supported by all CASE products. And different CASE tools adopt slightly different
notations for the same data-modeling methods. Therefore, it is very likely that any
given CASE product may force a company to adapt its methodology’s data-modeling
symbols or approach so that it is workable within the limitations of the CASE tool.

 F I G U R E 7 - 1 2 Screen Capture of System Architect CASE Tool

Data Modeling and Analysis Chapter Seven 225

 All the SoundStage data models in the next section of this chapter were created
with Popkin Systems and Software’s CASE tool, System Architect 2001. For the case
study, we provide you with the printouts exactly as they came off our printers. We
did not add color. The only modifi cations by the artist were the bullets that call your
attention to specifi c items of interest on the printouts. All of the entities, attributes,
and relationships on the SoundStage data models were automatically cataloged into
 System Architect’ s project repository (which it calls an encyclopedia). Figure 7-12
illustrates some of System Architect’ s screens as used for data modeling.

 How to Construct Data Models

 You now know enough about data models to read and interpret them. But as a systems
analyst or knowledgeable end user, you must learn how to construct them. We will use
the SoundStage Entertainment Club project to teach you how to construct data models.

 NOTE: This example teaches you to draw the data model from scratch. In reality,
you should always look for an existing data model. If such models exist, the data
management or data administration group usually maintains them. Alternatively,
you could reverse engineer a data model from an existing database.

 > Entity Discovery

 The fi rst task in data modeling is relatively easy. You need to discover the funda-
mental entities in the system that are or might be described by data. You should not
restrict your thinking to entities about which the end users know they want to store
data. There are several techniques that may be used to identify entities:

• During interviews or JRP sessions with system owners and users, pay attention
to key words in their discussion. For example, during an interview with an
individual discussing SoundStage’s business environment and activities, a
user may state, “We have to keep track of all our members and their bound
agreements . ” Notice that the key words in this statement are MEMBERS and
 AGREEMENTS. Both are entities!

• During interviews or JRP sessions, specifi cally ask system owners and users
to identify things about which they would like to capture, store, and produce
information. Those things often represent entities that should be depicted on
the data model.

• Another technique for identifying entities is to study existing forms, fi les,
and reports. Some forms identify event entities. Examples include ORDERS,
 REQUISITIONS, PAYMENTS, DEPOSITS, and so forth. Studying the computerized
registration system’s computer fi les, databases, or outputs could also discover
these same entities.

• If use-case narratives have been written during the requirements analysis phase,
they can be a source of data attributes and entities. Scan each use-case narrative
for nouns. Every noun is a potential data attribute or entity. Chapter 9 explains
how to do this, taking an object-oriented approach to build a list of objects and
their attributes. You can use a very similar approach to discover data entities and
their attributes.

• Technology may also help you identify entities. Some CASE tools can reverse
engineer existing fi les and databases into physical data models. The analyst must
usually clean up the resulting model by replacing physical names, codes, and
comments with their logical, business-friendly equivalents.

 As entities are discovered, give them simple, meaningful, business-oriented names.
Entities should be named with nouns that describe the person, event, place, object,
or thing about which we want to store data. Try not to abbreviate or use acronyms.

226 Part Two Systems Analysis Methods

Names should be singular so as to distinguish the logical concept of the entity from the
actual instances of the entity. Names may include appropriate adjectives or clauses to
better describe the entity—for instance, an externally generated CUSTOMER ORDER must
be distinguished from an internally generated STOCK ORDER.

 For each entity, defi ne it in business terms. Don’t defi ne the entity in technical
terms, and don’t defi ne it as “data about . . .” Try this: Use an English dictionary to
create a draft defi nition, and then customize it for the business at hand. Your entity
names and defi nitions should establish an initial glossary of business terminology that
will serve both you and future analysts and users for years.

 Our SoundStage management and users initially identifi ed the entities listed in
 Table 7-5 . Notice how the defi nitions contribute to establishing the vocabulary of
the system.

 > The Context Data Model

 The next task in data modeling is to construct the context data model. The context
data model should include the fundamental business entities that were previously
discovered as well as their natural relationships.

 Relationships should be named with verb phrases that, when combined with the
entity names, form simple business sentences or assertions. Some CASE tools, such
as System Architect, let you name the relationships in both directions. Otherwise,
always name the relationship from parent to child.

 We have completed this task in Figure 7-13 . This fi gure represents a data model
created in System Architect. Once we begin mapping attributes, new entities and rela-
tionships may surface. The numbers below reference the same numbers in Figure 7-13 .

 T A B L E 7 - 5 Fundamental Entities for the SoundStage Project

 Entity Name Business Defi nition

 AGREEMENT A contract whereby a member agrees to purchase a certain
number of products within a certain time. After fulfi lling that
agreement, the member becomes eligible for bonus credits that
are redeemable for free or discounted products.

 MEMBER An active member of one or more clubs.

 Note: A target system objective is to reenroll inactive members
as opposed to deleting them.

 MEMBER ORDER An order generated for a member as part of a monthly
promotion, or an order initiated by a member.

 Note: The current system only supports orders generated from
promotions; however, customer-initiated orders have been
given a high priority as an added option in the proposed
system.

 TRANSACTION A business event to which the Member Services System must
respond.

 PRODUCT An inventoried product available for promotion and sale to
members.

 Note: System improvement objectives include (1) compatibility
with new bar code system being developed for the warehouse,
and (2) adaptability to a rapidly changing mix of products.

 PROMOTION A monthly or quarterly event whereby special product offerings
are made available to members.

7

4

5

1

3

2

6

 F
I
G

U
R

E

7

-
1

3

 T
h

e
S

o
u

n
d

S
ta

g
e

C
o

n
te

x
t

D
at

a
M

o
d

el

227

228 Part Two Systems Analysis Methods

The ERD communicates the following:

 1 An AGREEMENT binds one or more MEMBERS . While relationships may be named in
only one direction (parent to child), the other direction is implicit. For example,
it is implicit that a MEMBER is bound to one and only one AGREEMENT.

 2 A MEMBER has conducted zero, one, or more TRANSACTIONS . Implicitly, a given TRANS-
ACTION was conducted by one and only one MEMBER.

 3 A MEMBER ORDER is a TRANSACTION . In fact, a given MEMBER ORDER may correspond to
many TRANSACTIONS (for example, a new member order, a canceled member order,
a changed member order, etc.). But a given TRANSACTION may or may not repre-
sent a MEMBER ORDER.

 4 A PROMOTION features one or more PRODUCTS . Implicitly, a PRODUCT is featured in
zero, one, or more PROMOTIONS . For example, a CD that appeals to both country/
western and light-rock audiences might be featured in the promotion for both.
Since products greatly outnumber promotions, most products are never featured
in a promotion.

 5 A PROMOTION generates many MEMBER ORDERS . Implicitly, a MEMBER ORDER is generated
for zero or one PROMOTION. Why zero? In the new system, a member will be able to
initiate his or her own order.

 6 It is permissible for more than one relationship to exist between the same two
entities if the separate relationships communicate different business events or
associations. Thus, a MEMBER responds to zero, one, or more MEMBER ORDERS . This
relationship supports the promotion-generated orders. A MEMBER places zero, one,
or more MEMBER ORDERS. This relationship supports member-initiated orders. In
both cases, a MEMBER ORDER is placed by (is responded to by) exactly one MEMBER.
 Although we didn’t need it for this double relationship, some CASE tools (in-
cluding System Architect) provide a symbol for recording Boolean relationships
(such as AND, OR). Thus, for any two relationships, a Boolean symbol could be
used to establish that instances of the relationships must be mutually exclusive
(⫽ OR) or mutually contingent (⫽ AND).

 7 A member order sells one or more products . Implicitly, a product is sold on zero,
one, or more member orders . Note that this is a nonspecifi c relationship, which
will later be resolved.

 If you read each of the preceding items carefully, you probably learned a great
deal about the SoundStage system. Data models have become increasingly popular as
a tool for describing the business context for system projects.

 > The Key-Based Data Model

 The next task is to identify the keys of each entity. The following guidelines are sug-
gested for keys: 1

 1. The value of a key should not change over the lifetime of each entity instance.
For example, NAME would be a poor key since a person’s last name could change
by marriage or divorce.

 2. The value of a key cannot be null.
 3. Controls must be installed to ensure that the value of a key is valid. This can

be accomplished by precisely defi ning the domain and using the database
management system’s validation controls to enforce that domain.

 4. Some experts (Bruce) suggest you avoid intelligent keys . An intelligent key is a
business code whose structure communicates data about an entity instance (such
as its classifi cation, size, or other properties). A code is a group of characters and/or

1Adapted from Thomas A. Bruce, Designing Quality Databases with IDEF1X Information Models. Copyright © 1992

by Thomas A. Bruce. Reprinted by permission of Dorset House Publishing, 353 W. 12th St., New York, NY 10014

(212-620-4053/1-800-DH-BOOKS/ www.dorsethouse.com). All rights reserved.

 intelligent key a business

code whose structure

communicates data about an

entity instance.

Data Modeling and Analysis Chapter Seven 229

digits that identifi es and describes something in the business system. Some experts
argue that because those characteristics can change, it violates rule 1 above.

 We disagree. Business codes can return value to the organization because
they can be quickly processed by humans without the assistance of a computer.
 a. There are several types of codes. They can be combined to form effective

means for entity instance identifi cation.
 (1) Serial codes assign sequentially generated numbers to entity instances.

Many database management systems can generate and constrain serial
codes to a business’s requirements.

 (2) Block codes are similar to serial codes except that block numbers are
divided into groups that have some business meaning. For instance, a
satellite television provider might assign 100–199 as PAY PER VIEW channels,
200–299 as CABLE channels, 300–399 as SPORT channels, 400–499 as ADULT
PROGRAMMING channels, 500–599 as MUSIC-ONLY channels, 600–699 as INTER-
ACTIVE GAMING channels, 700–799 as INTERNET channels, 800–899 as PREMIUM
CABLE channels, and 900–999 as PREMIUM MOVIE AND EVENT channels.

 (3) Alphabetic codes use fi nite combinations of letters (and possibly numbers)
to describe entity instances. For example, each STATE has a unique two-
 character alphabetic code. Alphabetic codes must usually be combined
with serial or block codes to uniquely identify instances of most entities.

 (4) In signifi cant position codes, each digit or group of digits describes a
measurable or identifi able characteristic of the entity instance. Signifi cant
digit codes are frequently used to code inventory items. The codes you see
on tires and lightbulbs are examples of signifi cant position codes. They tell
us about characteristics such as tire size and wattage, respectively.

 (5) Hierarchical codes provide a top-down interpretation for an entity
 instance. Every item coded is factored into groups, subgroups, and so
forth. For instance, we could code employee positions as follows:
 — First digit identifi es classifi cation (clerical, faculty, etc.).
 — Second and third digits indicate level within classifi cation.
 — Fourth and fi fth digits indicate calendar of employment.

 b. The following guidelines are suggested when creating a business coding scheme:
 (1) Codes should be expandable to accommodate growth.
 (2) The full code must result in a unique value for each entity instance.
 (3) Codes should be large enough to describe the distinguishing characteris-

tic but small enough to be interpreted by people without a computer.
 (4) Codes should be convenient. A new instance should be easy to create.

 5. Consider inventing a surrogate key instead to substitute for large concatenated
keys of independent entities. This suggestion is not practical for associative
entities because each part of the concatenated key is a foreign key that must
precisely match its parent entity’s primary key.

 Figure 7-14 is the key-based data model for the SoundStage project. Notice that
the primary key is specifi ed for each entity.

 1 Many entities have a simple, single-attribute primary key.

 2 We resolved the nonspecifi c relationship between MEMBER ORDER and PRODUCT
by introducing the associative entity MEMBER ORDERED PRODUCT. Each associative
entity instance represents one product on one member order. The parent entities
contributed their own primary keys to comprise the associative entity’s concate-
nated key. System Architect places a “PK1” next to ORDER NUMBER to indicate that it
is “part one” of the concatenated primary key and a “PK2” beside PRODUCT NUMBER
to indicate that it is “part two” of the concatenated key. Also notice that each
 attribute in that concatenated key, by itself, is a foreign key that points back to
the correct parent entity instance.

 Likewise, the nonspecifi c relationship between PRODUCT and PROMOTION was
resolved using an associative entity, TITLE PROMOTION, that also inherits the keys of
the parent entities.

2

1 2

1

1

1

1

1

 F
I
G

U
R

E

7

-
1

4

 T
h

e
S

o
u

n
d

S
ta

g
e

K
ey

-B
as

ed
 D

at
a

M
o

d
el

230

Data Modeling and Analysis Chapter Seven 231

 When developing this model, look out for a couple of things. If you cannot defi ne
keys for an entity, it may be that the entity doesn’t really exist—that is, multiple oc-
currences of the so-called entity do not exist. Thus, assigning keys is a good quality
check before fully attributing the data model. Also, if two or more entities have iden-
tical keys, they are in all likelihood the same entity.

 > Generalized Hierarchies

 At this time, it would be useful to identify any generalization hierarchies in the busi-
ness domain. The SoundStage project at the beginning of this chapter identifi ed at
least one supertype/subtype structure. Subsequent discussions did uncover a general-
ization hierarchy. Thus, our key-based model was revised as shown in Figure 7-15 . We
had to lay out the model somewhat differently because of the hierarchy; however, the
relationships and keys that were previously defi ned have been retained. We call your
attention to the following:

 1 The SoundStage CASE tool automatically draws a dashed box around a
generalization hierarchy.

 2 The subtypes inherit the keys of the supertypes.
 3 We disconnected PROMOTION from PRODUCT as it was shown earlier and recon-

nected it to the subtype TITLE. This was done to accurately assert the business
rule that MERCHANDISE is never featured on a PROMOTION— only TITLES.

 > The Fully Attributed Data Model

 It may seem like a trivial task to identify the remaining data attributes; however,
analysts not familiar with data modeling frequently encounter problems. To accom-
plish this task, you must have a thorough understanding of the data attributes for the
system. These facts can be discovered using top-down approaches (such as brain-
storming) or bottom-up approaches (such as form and fi le sampling). If an enterprise
data model exists, some (perhaps many) of the attributes may have already been
identifi ed and recorded in a repository.

 The following guidelines are offered for attribution:

• Many organizations have naming standards and approved abbreviations. The
data administrator usually maintains such standards.

• Choose attribute names carefully. Many attributes share common base names
such as NAME, ADDRESS, DATE. Unless the attributes can be generalized into a super-
type, it is best to give each variation a unique name such as:

 CUSTOMER NAME CUSTOMER ADDRESS ORDER DATE
 SUPPLIER NAME SUPPLIER ADDRESS INVOICE DATE
 EMPLOYEE NAME EMPLOYEE ADDRESS FLIGHT DATE

 Also, remember that a project does not live in isolation from other projects, past
or future. Names must be distinguishable across projects.

 Some organizations maintain reusable, global templates for these common
base attributes.This promotes consistent data types, domains, and defaults across
all applications.

• Physical attribute names on existing forms and reports are frequently abbrevi-
ated to save space. Logical attribute names should be clearer—for example,
translate the order form’s attribute COD into its logical equivalent, AMOUNT TO
COLLECT ON DELIVERY; translate QTY into QUANTITY ORDERED; and so forth.

• Many attributes take on only YES or NO values. Try naming these attributes as
questions. For example, the attribute name CANDIDATE FOR A DEGREE ? suggests the
values are YES and NO .

 Each attribute should be mapped to only one entity. If an attribute truly describes
different entities, it is probably several different attributes. Give each a unique name.

232

2 2

1

3

 F
I
G

U
R

E

7

-
1

5

 T
h

e
S

o
u

n
d

S
ta

g
e

K
ey

-B
as

ed
 D

at
a

M
o

d
el

 w
it

h
 a

 G
en

er
al

iz
at

io
n

 H
ie

ra
rc

h
y

Data Modeling and Analysis Chapter Seven 233

 F I G U R E 7 - 1 6 The SoundStage Fully Attributed Data Model

• Foreign keys are the exception to the nonredundancy rule—they identify
 associated instances of related entities.

• An attribute’s domain should not be based on logic. For example, in the
 SoundStage case we learned that the values of MEDIA were dependent on the
type of product. If the product type is a video, the media could be VHS tape,
8mm tape, laserdisc, or DVD. If the product type is audio, the media could
be cassette tape, CD, or MD. The best solution would be to assign separate
 attributes to each domain: AUDIO MEDIA and VIDEO MEDIA.

 Figure 7-16 provides the mapping of data attributes to entities for the defi nition
phase of our SoundStage systems project. While the fully attributed model identifi es

234 Part Two Systems Analysis Methods

 Analyzing the Data Model

all the attributes to be captured and stored in our future database, the descriptions for
those attributes are incomplete; they require domains. Most CASE tools provide ex-
tensive facilities for describing the data types, domains, and defaults for all attributes
to the repository. Additionally, each attribute should be defi ned for future reference.

 While a data model effectively communicates database requirements, it does not
necessarily represent a good database design. It may contain structural character-
istics that reduce fl exibility and expansion or create unnecessary redundancy.
Therefore, we must prepare our fully attributed data model for database design and
implementation.

 This section will discuss the characteristics of a quality data model—one that will
allow us to develop an ideal database structure. We’ll also present the process used to
analyze data model quality and make necessary modifi cations before database design.

 > What Is a Good Data Model?

 What makes a data model good? We suggest the following criteria:

• A good data model is simple. As a general rule, the data attributes that describe
any given entity should describe only that entity. Consider, for example, the
 following entity defi nition:

 COURSE REGISTRATION ⫽ COURSE REGISTRATION NUMBER (PRIMARY KEY) ⫹
 COURSE REGISTRATION DATE ⫹
 STUDENT ID NUMBER (A FOREIGN KEY) ⫹
 STUDENT NAME ⫹
 STUDENT MAJOR ⫹
 One or more COURSE NUMBERS

 Do STUDENT NAME and STUDENT MAJOR really describe an instance of course registra-
tion? Or do they describe a different entity, say, STUDENT? The same argument
could be applied to STUDENT ID NUMBER, but on further inspection, that attribute is
needed to “point” to the corresponding instance of the STUDENT entity. Another
aspect of simplicity is stated as follows: Each attribute of an entity instance can
have only one value. Looking again at the previous example, we see that COURSE
NUMBER can have as many values for one COURSE REGISTRATION as the student elects.

• A good data model is essentially nonredundant. This means that each data
attribute, other than foreign keys, describes at most one entity. In the prior
example, it is not diffi cult to imagine that STUDENT NAME and STUDENT MAJOR
might also describe a STUDENT entity. We should choose. Based on the previ-
ous bullet, the logical choice would be the STUDENT entity. There may also exist
subtle redundancies in a data model. For example, the same attribute might be
recorded more than once under different names (synonyms).

• A good data model should be fl exible and adaptable to future needs. In the
absence of this criterion, we would tend to design databases to fulfi ll only
today’s business requirements. Then, when a new requirement becomes known,
we can’t easily change the databases without rewriting many or all of the pro-
grams that used those databases. While we can’t change the reality that most
projects are application-driven, we can make our data models as application-
 independent as possible to encourage database structures that can be extended
or modifi ed without impact to current programs.

 So how do we achieve the above goals? How can you design a database that can
adapt to future requirements that you cannot predict? The answer lies in data analysis.

Data Modeling and Analysis Chapter Seven 235

 > Data Analysis

 The technique used to improve a data model in preparation for database design is
called data analysis. Data analysis is a process that prepares a data model for imple-
mentation as a simple, nonredundant, fl exible, and adaptable database. The specifi c
technique is called normalization. Normalization is a data analysis technique that
organizes data attributes such that they are grouped to form nonredundant, stable,
fl exible, and adaptive entities. Normalization is a three-step technique that places the
data model into fi rst normal form, second normal form, and third normal form. 2 Don’t
get hung up on the terminology—it’s easier than it sounds. For now, let’s establish an
initial understanding of these three formats:

• Simply stated, an entity is in fi rst normal form (1NF) if there are no attributes
that can have more than one value for a single instance of the entity. Any attri-
butes that can have multiple values actually describe a separate entity, possibly
an entity and relationship.

• An entity is in second normal form (2NF) if it is already in 1NF and if the val-
ues of all non-primary-key attributes are dependent on the full primary key—
not just part of it. Any nonkey attributes that are dependent on only part of the
primary key should be moved to any entity where that partial key is actually the
full key. This may require creating a new entity and relationship on the model.

• An entity is in third normal form (3NF) if it is already in 2NF and if the values
of its non-primary-key attributes are not dependent on any other non-primary-
key attributes. Any nonkey attributes that are dependent on other nonkey attri-
butes must be moved or deleted. Again, new entities and relationships may have
to be added to the data model.

 > Normalization Example

 There are numerous approaches to normalization. We have chosen to present a
nontheoretical and nonmathematical approach. We’ll leave the theory, relational al-
gebra, and detailed implications to the database courses and textbooks.

 As usual, we’ll use the SoundStage case study to demonstrate the steps. Let’s
begin by referring to the fully attributed data model that was developed earlier (see
 Figure 7-16). Is it a normalized data model? No. Let’s identify the problems and walk
through the steps of normalizing our data model.

 First Normal Form The fi rst step in data analysis is to place each entity into 1NF.
In Figure 7-16 , which entities are not in 1NF?

 You should fi nd two— MEMBER ORDER and PROMOTION. Each contains a repeating

group, that is, a group of attributes that can have multiple values for a single instance
of the entity {denoted by the brackets}. These attributes repeat many times “as a
group.” Consider, for example, the entity MEMBER ORDER. A single MEMBER ORDER may
contain many products; therefore, the attributes ORDERED PRODUCT NUMBER, ORDERED
PRODUCT DESCRIPTION, ORDERED PRODUCT TITLE, QUANTITY ORDERED, QUANTITY SHIPPED, QUAN-
TITY BACKORDERED, PURCHASED UNIT PRICE, and EXTENDED PRICE may (and probably do)
repeat for each instance of MEMBER ORDER.

 Similarly, since a PROMOTION may feature more than one PRODUCT TITLE, the PRODUCT
NUMBER and TITLE OF WORK attributes may repeat. How do we fi x these anomalies in
our model?

 Figures 7-17 and 7-18 demonstrate how to place these two entities into 1NF. The
original entity is depicted on the left side of the page. The 1NF entities are on the

 2 Database experts have identifi ed additional normal forms. Third normal form removes most data anomalies. We leave a

discussion of advanced normal forms to database textbooks and courses.

 data analysis a technique

used to improve a data model

for implementation as a

database.

normalization a data anal-

ysis technique that organizes

data into groups to form non-

redundant, stable, fl exible,

and adaptive entities.

 fi rst normal form
(1NF) an entity whose attri-

butes have no more than one

value for a single instance of

that entity.

second normal form
(2NF) an entity whose non-

primary-key attributes are

dependent on the full primary

key.

third normal form
(3NF) an entity whose non-

primary-key attributes are not

dependent on any other non-

primary-key attributes.

236 Part Two Systems Analysis Methods

PRODUCT (1NF)

Product-Number (Primary Key)

Universal-Product-Code (Alternate Key)
Quantity-in-Stock

Product-Type

Suggested-Retail-Price

Default-Unit-Price

Current-Special-Unit-Price

Current-Month-Units-Sold

Current-Year-Units-Sold

Total-Lifetime-Units-Sold

CORRECTION

sells

sold

as

MEMBER ORDERED PRODUCT (1NF)

Order-Number (Primary Key 1 and Foreign Key)

PRODUCT-NUMBER (PRIMARY KEY 2 AND FOREIGN KEY)
ORDERED-PRODUCT-DESCRIPTION

ORDERED-PRODUCT-TITLE

QUANTITY-ORDERED

PURCHASED-UNIT-PRICE

EXTENDED-PRICE

QUANTITY-SHIPPED

QUANTITY-BACKORDERED

MEMBER ORDER (unnormalized)

Order-Number (Primary Key)

Order-Creation-Date

Order-Fill-Date
Member-Number (Foreign Key)

Member-Name
Member-Address

Shipping-Address
Shipping Instructions

Promotion-Number (Foreign Key)

0 {ORDERED-PRODUCT-DESCRIPTION } N

0 {ORDERED-PRODUCT-TITLE } N
1 {QUANTITY-ORDERED } N

1 {PURCHASED -UNIT-PRICE } N

1 {EXTENDED-PRICE } N
Order-Sub-Total-Cost

Order-Sales-Tax
Ship-Via-Method

Shipping-Charge
Order-Status

Prepaid-Amount
Prepaid-Method

1 {QUANTITY-BACKORDERED } N
1 {QUANTITY-SHIPPED } N

Member-Number-2 (Foreign Key)

1 {ORDERED-PRODUCT-NUMBER } N

MEMBER ORDER (1NF)

Order-Number (Primary Key)

Order-Creation-Date

Order-Automatic-Fill-Date

Member-Number (Foreign Key)

Member-Name

Member-Address

Shipping-Address

Shipping Instructions

Order-Sub-Total-Cost

Order-Sales-Tax

Ship-Via-Method

Shipping-Charge

Order-Status

Prepaid-Amount

Member-Number-2 (Foreign Key)

Promotion-Number (Foreign Key)

Prepaid-Method

 F I G U R E 7 - 1 7 First Normal Form (1NF)

Data Modeling and Analysis Chapter Seven 237

right side of the page. Each fi gure shows how normalization changed the data model
and attribute assignments. For your convenience, the attributes that are affected are
in boldface type and in small capital letters.

 In Figure 7-17 , we fi rst removed the attributes that can have more than one value
for an instance of the MEMBER ORDER entity. That alone places MEMBER ORDER in 1NF. But
what do we do with the removed attributes? We can’t remove them entirely from the
model—they are part of the business requirements! Therefore, we moved the entire
group of attributes to a new entity, MEMBER ORDERED PRODUCT. Each instance of these
attributes describes one PRODUCT on a single MEMBER ORDER. Thus, if a specifi c order
contains fi ve PRODUCTS, there will be fi ve instances of the MEMBER ORDERED PRODUCT
entity. Each entity instance has only one value for each attribute; therefore, the new
entity is also in fi rst normal form.

generated for

TITLE PROMOTION (1NF)

Promotion-Number (Primary Key 1 & Foreign Key)

PRODUCT-NUMBER (PRIMARY KEY 2 &FOREIGN KEY)

TITLE-OF-WORK

CORRECTION

generates

PROMOTION (unnormalized)

Promotion-Number (Primary Key)
Promotion-Release-Date
Promotion-Status
Promotion-Type
1 { PRODUCT-NUMBER } N
1 { TITLE-OF-WORK } N

PROMOTION (1NF)

Promotion-Status
Promotion-Type

Promotion-Number (Primary Key)
Promotion-Release-Date

TITLE (1NF)

Product-Number (Primary Key)
Title-of-Work
Title-Cover
Catalog-Description
Copyright-Date
Entertainment-Category
Credit-Value

 F I G U R E 7 - 1 8 First Normal Form (1NF)

238 Part Two Systems Analysis Methods

 Another example of 1NF is shown in Figure 7-18 for the PROMOTION entity. As
 before, we moved the repeating attributes to a different entity, TITLE PROMOTION.

 All other entities are already in 1NF because they do not contain any repeating
groups.

 Second Normal Form The next step of data analysis is to place the entities into
2NF. Recall that it is required that you have already placed all entities into 1NF.
Also recall that 2NF looks for an attribute whose value is determined by only part of
the primary key—not the entire concatenated key. Accordingly, entities that have
a single-attribute primary key are already in 2NF. That takes care of PRODUCT (and
its subtypes), MEMBER ORDER, MEMBER, PROMOTION, AGREEMENT, and TRANSACTION. Thus,
we need to check only those entities that have a concatenated key— MEMBER ORDERED
PRODUCT and TITLE PROMOTION.

 First, let’s check the MEMBER ORDERED PRODUCT entity. Most of the attributes are
dependent on the full primary key. For example, QUANTITY ORDERED makes no sense
unless you have both an ORDER NUMBER and a PRODUCT NUMBER. Think about it! By itself,
 ORDER NUMBER is inadequate since the order could have as many quantities ordered
as there are products on the order. Similarly, by itself, PRODUCT NUMBER is inadequate
since the same product could appear on many orders. Thus, QUANTITY ORDERED re-
quires both parts of the key and is dependent on the full key. The same could be said
of QUANTITY SHIPPED, QUANTITY BACKORDERED, PURCHASE UNIT PRICE, and EXTENDED PRICE.

 But what about ORDERED PRODUCT DESCRIPTION and ORDERED PRODUCT TITLE? Do we
really need ORDER NUMBER to determine a value for either? No! Instead, the values of
these attributes are dependent only on the value of PRODUCT NUMBER . Thus, the attri-
butes are not dependent on the full key; we have uncovered a partial dependency
anomaly that must be fi xed. How do we fi x this type of normalization error?

 Refer to Figure 7-19 on the next page. To fi x the problem, we simply move the
nonkey attributes, ORDERED PRODUCT DESCRIPTION and ORDERED PRODUCT TITLE, to an entity
that has only PRODUCT NUMBER as its key. If necessary, we would have to create this
entity, but the PRODUCT entity with that key already exists. But we have to be careful
because PRODUCT is a supertype. Upon inspection of the subtypes, we discover that
the attributes are already in the MERCHANDISE and TITLE entities, albeit under a synonym.
Thus, we didn’t actually have to move the attributes from the MEMBER ORDERED PRODUCT
entity; we just deleted them as redundant attributes.

 Next, let’s examine the TITLE PROMOTION entity. The concatenated key is the com-
bination of PROMOTION NUMBER and PRODUCT NUMBER. T ITLE OF WORK is dependent on
the PRODUCT NUMBER portion of the concatenated key. Thus, TITLE OF WORK is removed
from TITLE PROMOTION (see Figure 7-20). Notice that TITLE OF WORK already existed in the
entity TITLE, which has a product number as its primary key.

 Third Normal Form We can further simplify our entities by placing them into 3NF.
Entities are required to be in 2NF before beginning 3NF analysis. Third normal form
analysis looks for two types of problems, derived data and transitive dependencies.
In both cases, the fundamental error is that nonkey attributes are dependent on other
nonkey attributes.

 The fi rst type of 3NF analysis is easy—examine each entity for derived attributes.
 Derived attributes are those whose values can be either calculated from other attributes
or derived through logic from the values of other attributes. If you think about it, storing
a derived attribute makes little sense. First, it wastes disk storage space. Second, it com-
plicates what should be simple updates. Why? Every time you change the base attributes,
you must remember to reperform the calculation and also change its result.

 For example, look at the MEMBER ORDERED PRODUCT entity in Figure 7-21 . The at-
tribute EXTENDED PRICE is calculated by multiplying QUANTITY ORDERED by PURCHASED UNIT
PRICE. Thus, EXTENDED PRICE (a nonkey attribute) is not dependent on the primary key
as much as it is dependent on the nonkey attributes, QUANTITY ORDERED and PURCHASED
UNIT PRICE. Thus, we correct the entity by deleting EXTENDED PRICE.

 derived attribute an

 attribute whose value can

be calculated from other

attributes or derived from the

values of other attributes.

Data Modeling and Analysis Chapter Seven 239

sold as

is a

MEMBER ORDERED PRODUCT (1NF)

Order-Number (Primary Key 1 and Foreign Key)

Product-Number (Primary Key 2 and Foreign Key)

ORDERED-PRODUCT-DESCRIPTION

ORDERED-PRODUCT-TITLE

Quantity-Ordered

Purchased-Unit-Price

Extended-Price

Quantity-Backordered

Quantity-Shipped

CORRECTION

MEMBER ORDERED PRODUCT (2NF)

Order-Number (Primary Key 1 and Foreign Key)

Product-Number (Primary Key 2 and Foreign Key)

Quantity-Ordered

Purchased-Unit-Price

Extended-Price

Quantity-Backordered

Quantity-Shipped

PRODUCT (2NF)

Product-Number (Primary Key)

Universal-Product-Code (Alternate Key)

Quantity-in-Stock

Product-Type

Suggested-Retail-Price

Default-Unit-Price

Current-Special-Unit-Price

Current-Month-Units-Sold

Current-Year-Units-Sold

Total-Lifetime-Units-Sold

MERCHANDISE (2NF)

Product-Number (Primary Key)

Merchandise-Name

MERCHANDISE-DESCRIPTION

Merchandise-Type
Unit-of-Measure

TITLE (2NF)

Product-Number (Primary Key)

TITLE-OF-WORK

Title-Cover

Catalog-Description

Copyright-Date

Entertainment-Category

Credit-Value

is a

 F I G U R E 7 - 1 9 Second Normal Form (2NF)

 Sounds simple, right? Well, not always! There is disagreement on how far you
take this rule. Some experts argue that the rule should be applied only within a single
entity. Thus, these experts would not delete a derived attribute if the attributes re-
quired for the derivation were assigned to different entities. We agree based on the
argument that a derived attribute that involves multiple entities presents a greater
danger for data inconsistency caused by updating an attribute in one entity and for-
getting to subsequently update the derived attribute in another entity.

240 Part Two Systems Analysis Methods

 Another form of 3NF analysis checks for transitive dependencies. A transitive

dependency exists when a nonkey attribute is dependent on another nonkey at-
tribute (other than by derivation). This error usually indicates that an undiscovered
entity is still embedded within the problem entity. Such a condition, if not corrected,
can cause future fl exibility and adaptability problems if a new requirement eventually
requires that we implement that undiscovered entity as a separate database table.

MEMBER ORDERED PRODUCT (2NF)

Order-Number (Primary Key 1 and Foreign Key)

Product-Number (Primary Key 2 and Foreign Key)

Quantity-Ordered

Purchased-Unit-Price

EXTENDED-PRICE

Quantity-Backordered

Quantity-Shipped

CORRECTION

MEMBER ORDERED PRODUCT (3NF)

Order-Number (Primary Key 1 and Foreign Key)

Product-Number (Primary Key 2 and Foreign Key)

Quantity-Ordered

Purchased-Unit-Price

EXTENDED-PRICE

Quantity-Backordered

Quantity-Shipped

 F I G U R E 7 - 2 1 Third Normal Form (3NF)

 F I G U R E 7 - 2 0 Second Normal Form (2NF)

TITLE PROMOTION (2NF)

Promotion-Number (Primary Key 1 & Foreign Key)

Product-Number (Primary Key 2 & Foreign Key)

TITLE-OF-WORK

CORRECTION

generates

TITLE (2NF)

Product-Number (Primary Key)
Title-of-Work
Title-Cover
Catalog-Description
Copyright-Date
Entertainment-Category
Credit-Value

TITLE PROMOTION (1NF)

Promotion-Number (Primary Key 1 & Foreign Key)

Product-Number (Primary Key 2 & Foreign Key)

TITLE-OF-WORK

 transitive dependency
 when the value of a nonkey

attribute is dependent on the

value of another nonkey attri-

bute other than by derivation.

Data Modeling and Analysis Chapter Seven 241

 Transitive analysis is performed only on entities that do not have a concatenated
key. In our example, this includes PRODUCT, MEMBER ORDER, PROMOTION, AGREEMENT,
MEMBER, and TRANSACTION. For the entity PRODUCT, all the nonkey attributes are depen-
dent on the primary key and only the primary key. Thus, PRODUCT is already in third
normal form. A similar analysis of PROMOTION, AGREEMENT, and TRANSACTION reveals that
they are also in third normal form.

 But look at the entity MEMBER ORDER in Figure 7-22 . In particular, examine the attri-
butes MEMBER NAME and MEMBER ADDRESS. Are these attributes dependent on the primary
key, ORDER NUMBER? No! The primary key ORDER NUMBER in no way determines the value
of MEMBER NAME and MEMBER ADDRESS. On the other hand, the values of MEMBER NAME and

places responds to

CORRECTION

MEMBER ORDER (3NF)

Order-Number (Primary Key)

Order-Creation-Date

Order-Fill-Date

Member Number (Foreign Key)

MEMBER-NAME

MEMBER-ADDRESS

Shipping-Address

Shipping Instructions

Order-Sub-Total-Cost

Order-Sales-Tax

Ship-Via-Method

Shipping-Charge

Order-Status

Prepaid-Amount

Promotion Number (Foreign Key)

Prepaid-Method

Member-Number-2 (Foreign Key)

MEMBER ORDER (2NF)

Order-Number (Primary Key)

Order-Creation-Date

Order-Fill-Date

Member Number (Foreign Key)

MEMBER-NAME

MEMBER-ADDRESS

Shipping-Address

Shipping Instructions

Order-Sub-Total-Cost

Order-Sales-Tax

Ship-Via-Method

Shipping-Charge

Order-Status

Prepaid-Amount

Promotion Number (Foreign Key)

Prepaid-Method

Member-Number-2 (Foreign Key)

MEMBER (2NF)

Member-Number (Primary Key)
Member-Name
Member-Status
Member-Street-Address
Member-Daytime-Phone-Number
Date-of-Last-Order
Member-Balance-Due
Member-Bonus-Balance-Available
Member-Credit-Card-Information
Agreement-Number (Foreign Key)
Taste-Code
Audio-Category-Preference
Audio-Media-Preference
Game-Category-Preference
Game-Media-Preference
Video-Category-Preference
Video-Media-Preference
Date-Enrolled
Expiration-Date
Number of Credits-Earned
Privacy-Code
Email-Address

 F I G U R E 7 - 2 2 Third Normal Form (3NF)

 F
I
G

U
R

E

7

-
2

3

 S
o

u
n

d
S

ta
g

e
L

o
g

ic
al

 D
at

a
M

o
d

el
 i

n
 T

h
ir

d
 N

o
rm

al
 F

o
rm

 (
3N

F
)

242

Data Modeling and Analysis Chapter Seven 243

 MEMBER ADDRESS are dependent on the value of another non- primary key in the entity,
 MEMBER NUMBER.

 How do we fi x this problem? M EMBER NAME and MEMBER ADDRESS need to be moved
from the MEMBER ORDER entity to an entity whose primary key is just MEMBER NUMBER.
If necessary, we would create that entity, but in our case we already have a MEMBER
entity with the required primary key. As it turns out, we don’t need to really move
the problem attributes because they are already assigned to the MEMBER entity. We did,
however, notice that MEMBER ADDRESS was a synonym for MEMBER STREET ADDRESS. We
elected to keep the latter term in MEMBER.

 Several normal forms beyond 3NF exist. Each successive normal form makes the
data model simpler, less redundant, and more fl exible. However, systems analysts
(and most database experts) rarely take data models beyond 3NF. Consequently, we
will leave further discussion of normalization to database textbooks.

 The fi rst few times you normalize a data model, the process will appear slow
and tedious. However, with time and practice, it becomes quick and routine. Many
experienced modelers signifi cantly reduce the modeling time and effort by doing
normalization during attribution (they are able to do normalization at the time they
are developing the fully attributed data model). It may help to always remember the
following ditty (source unknown), which nicely summarizes fi rst, second, and third
normal forms:

 An entity is said to be in third normal form if every non-primary-key attribute
is dependent on the primary key, the whole primary key, and nothing but the
primary key.

 Simplifi cation by Inspection Normalization is a fairly mechanical process. But it
is dependent on naming consistencies in the original data model (before normaliza-
tion). When several analysts work on a common application, it is not unusual to
create problems that won’t be taken care of by normalization. These problems are
best solved through simplifi cation by inspection, a process wherein a data entity in
3NF is further simplifi ed by such efforts as addressing subtle data redundancy.

 The fi nal, normalized data model is presented in Figure 7-23 on the next page.

 CASE Support for Normalization Many CASE tools claim to support normaliza-
tion concepts. They read the data model and attempt to isolate possible normaliza-
tion errors. On close examination, most CASE tools can normalize only to fi rst normal
form. They accomplish this in one of two ways. They look for many-to-many rela-
tionships and resolve those relationships into associative entities. Or they look for
attributes specifi cally described as having multiple values for a single entity instance.
(One could argue that the analyst should have recognized that as a 1NF error and not
described the attributes as such.)

 It is exceedingly diffi cult for a CASE tool to identify second and third normal form
errors. That would require that the CASE tool have the intelligence to recognize par-
tial and transitive dependencies. In reality, such dependencies can be discovered only
through less-than-routine examination by the systems analysts or database experts.

 Mapping Data Requirements to Locations

 While a logical data model is effective for describing what data is to be stored for
a new system, it does not communicate the requirements on a business operating
location basis. We need to identify what data and access rights are needed at which
locations. Specifi cally, we might ask the following business questions:

• Which subsets of the entities and attributes are needed to perform the work at
each location?

• What level of access is required?

244 Part Two Systems Analysis Methods

 data-to-location-CRUD
matrix a matrix that is used

to map data requirements to

locations.

Entity . Attribute

Lo
c
a
ti

o
n

Customer

 .Customer Number

 .Customer Name

 .Customer Address

 .Customer Credit Rating

 .Customer Balance Due

Order

 .Order Number

 .Order Date

 .Order Amount

Ordered Product

 .Quantity Ordered

 .Ordered Item Unit Price

Product

 .Product Number

 .Product Name

 .Product Description

 .Product Unit of Measure

 .Product Current Unit Price

 .Product Quantity on Hand

INDV

R

RU

RU

X

R

INDV

SRD

SRD

SRD

INDV

SUD

SUD

ALL

R

R

R

R

R

X

ALL

R

R

R

ALL

R

R

ALL

CRUD

CRUD

CRUD

CRUD

CRUD

CRUD

CRUD

CRUD

CRUD

CRUD

ALL

R

R

RU

R

R

R

R

R

SS

R

R

SS

R

ALL

R

R

R

R

RU

ALL

CRUD

CRUD

CRUD

R

R

ALL

CRUD

CRUD

CRUD

ALL

CRUD

CRUD

ALL

R

R

R

R

R

R

ALL

R

R

R

RU

RU

R

R

R

R

R

SS

CRUD

CRUD

CRUD

R

R

SS

CRUD

CRUD

CRUD

SS

CRUD

CRUD

ALL

R

R

R

R

R

R

SS

R

R

R

SS

R

R

R

SS

ALL

R

R

R

R

R

RU

SS

CRUD

CRUD

CRUD

R

R

SS

CRUD

CRUD

CRUD

SS

CRUD

CRUD

ALL

R

R

R

R

R

R

SS

R

R

R

SS

R

R

R

SS

ALL

R

R

R

R

R

RU

INDV ⫽ individual ALL ⫽ ALL SS ⫽ subset

C ⫽ createS ⫽ submit R ⫽ read U ⫽ update D ⫽ delete

X ⫽ no access

C
u
st

o
m

e
rs

K
an

sa
s

C
it
y

.
M

ar
ke

ti
n
g

.
A

d
ve

rt
is

in
g

.
W

ar
e
h
o

u
se

.
W

ar
e
h
o

u
se

.
W

ar
e
h
o

u
se

.
S
al

e
s

.
S
al

e
s

.
S
al

e
s

.
A

/R

B
o

st
o

n

S
an

 F
ra

n
c

is
c
o

S
an

 D
ie

g
o

 F I G U R E 7 - 2 4 Data-to-Location-CRUD Matrix

• Can the location create instances of the entity?
• Can the location read instances of the entity?
• Can the location delete instances of the entity?
• Can the location update existing instances of the entity?

 Systems analysts have found it useful to defi ne these logical requirements in
the form of a data-to-location-CRUD matrix. A data-to-location-CRUD matrix is
a table in which the rows indicate entities (and possible attributes); the columns
indicate locations; and the cells (the intersection of rows and columns) document
level of access where C ⫽ create, R ⫽ read, U ⫽ update or modify, and D ⫽ delete
or deactivate. Figure 7-24 illustrates a typical data-to-location-CRUD matrix. The deci-
sion to include or not include attributes is based on whether locations need to be
restricted as to which attributes they can access. Figure 7-24 also demonstrates the
ability to document that a location requires access only to a subset (designated SS)
of entity instances. For example, each sales offi ce might need access only to those
customers in its region.

 In some methodologies and CASE tools, you can defi ne views of the data model
for each location. A view includes only the entities and attributes to be accessible for
a single location. If views are defi ned, they must also be kept in sync with the master
data model. (Most CASE tools do this automatically.)

Summary

Data Modeling and Analysis Chapter Seven 245

 1. Data modeling is a technique for organizing and
documenting a system’s DATA. Data modeling is
sometimes called database modeling because a
data model is usually implemented as a database.

 2. There are several notations for data modeling.
The actual model is frequently called an entity
relationship diagram (ERD) because it depicts
data in terms of the entities and relationships
described by the data.

 3. An entity is something about which the business
needs to store data. Classes of entities include
persons, places, objects, events, and concepts.

 4. An entity instance is a single occurrence of an
entity class.

 5. Pieces of data we want to store about each
instance of a given entity are called attributes. An
attribute is a descriptive property or characteristic
of the entity. Some attributes can be logically
grouped into superattributes called compound
attributes.

 6. When analyzing a system, we should defi ne those
values for an attribute that are legitimate or that
make business sense. The values for each attribute
are defi ned in terms of three properties—data
type, domain, and default:

 a. The data type defi nes what class of data can
be stored in the attribute.

 b. The domain of an attribute defi nes what
values an attribute can legitimately take on.

 c. The default value for an attribute is the value
that will be recorded if not specifi ed by the
user.

 7. Every entity must have an identifi er or key. A
key is an attribute, or a group of attributes, that
assumes a unique value for each entity instance.

 a. A group of attributes that uniquely
identifi es an instance of an entity is called a
concatenated key.

 b. A candidate key is a “candidate to become the
primary identifi er” of instances of an entity.

 c. A primary key is the candidate key that will
most commonly be used to uniquely identify a
single entity instance.

 d. Any candidate key that is not selected to
become the primary key is called an alternate
key.

 e. Sometimes, it is also necessary to identify a
subset of entity instances as opposed to a single
instance. A subsetting criteria is an attribute (or
concatenated attribute) whose fi nite values
divide all entity instances into useful subsets.

 8. A relationship is a natural business association
that exists between one or more entities. The
relationship may represent an event that links
the entities or merely a logical affi nity that
exists between the entities. All relationships are
implicitly bidirectional, meaning they can be
interpreted in both directions.

 9. Cardinality defi nes the minimum and maximum
number of occurrences of one entity for a
single occurrence of the related entity. Because
all relationships are bidirectional, cardinality
must be defi ned in both directions for every
relationship.

 10. The degree of a relationship is the number of
entity classes that participate in the relationship.
Not all relationships are binary. Some relationships
may be recursive relationships, wherein the
relationship exists between different instances
of the same entity. Relationships can also exist
between more than two different entities, as in
the case of a 3-ary, or ternary, relationship.

 11. An associative entity is an entity that inherits its
primary key from more than one other entity
(parents). Each part of that concatenated key
points to one and only one instance of each of
the connecting entities.

 12. A foreign key is a primary key of one entity that
is contributed to (duplicated in) another entity
to identify instances of a relationship. A foreign
key (always in a child entity) always matches the
primary key (in a parent entity).

 13. Nonidentifying relationships are those in which
each of the participating entities has its own
independent primary key, of which none of the
primary-key attributes is shared. The entities in
a nonidentifying relationship are referred to as
 strong or independent entities because neither
depends on any other entity for its identifi cation.
Identifying relationships are those in which
the parent entity contributes its primary key
to become part of the primary key of the
child entity. The child entity of any identifying
relationship is referred to as a weak entity
because its identifi cation is dependent on the
existence of the parent entity’s existence.

 14. A nonspecifi c relationship (or many-to-many
relationship) is one in which many instances of
one entity are associated with many instances
of another entity. Such relationships are suitable
only for preliminary data models and should be
resolved as quickly as possible.

 1. What is a reasonable domain for the data attribute
for a student’s last name?

 2. What default value would you choose for a
student’s last name?

 3. What default value would you choose for gender?
 4. The student table you are working with contains

the attributes: STUDENT ID, NAME, PHONE NUMBER , and
 MAJOR. Normalize to 3NF.

 5. What attributes would you have in a table to
describe a movie?

 6. A many-to-many relationship (also called a
nonspecifi c relationship) can and generally
should be resolved into a pair of one-to-many
relationships with an associative entity. When is
this not the case?

 7. Give an example of a many-to-many relationship.
Resolve using an entity or an associative entity.
Which did you use? Why?

 8. Describe each of the fi rst three normal forms.
Give an example of each.

 9. A customer goes to a shoe store and purchases
several pairs of shoes. Diagram this relationship.

 10. Give an example each of ternary, identifying, and
nonidentifying relationships.

 11. On the surface, data modeling appears not to
require much creativity. Why is this incorrect?

 12. Can a well-designed database give a business a
strategic advantage? How?

Problems and Exercises

 15. Generalization is an approach that seeks to
discover and exploit the commonalities between
entities. It is a technique wherein the attributes
are grouped to form entity supertypes and
subtypes.

 16. A logical data model is developed in the following
stages:

 a. Entities are discovered and defi ned.
 b. A context data model is built. A context data

model contains only business entities and
relationships identifi ed by the system owners
and users.

 c. A key-based data model is built. The key-based
model eliminates nonspecifi c relationships
and adds associative entities. All entities in the
model are given keys.

 d. A fully attributed model is built. This model
shows all the attributes to be stored in the
system.

 e. A fully described model is built. Each attribute
is defi ned in the dictionary and described
in terms of properties such as domain and
security.

 f. The completed data model is then analyzed for
adaptability and fl exibility through a process
called normalization . The fi nal analyzed model
is referred to as a third normal form data
model.

 17. A logical data model does not communicate data
requirements on a business operating location
basis. Systems analysts have found it useful to
defi ne these requirements in the form of a data-to-
location–CRUD matrix.

 1. What is the difference between logical and
physical models?

 2. Why is it important to create an implementation-
independent model of a system?

 3. Why is it necessary to create an implementation-
dependent model of a system?

 4. What is an entity? What are entity instances?

 5. A relationship is a natural business association
between entities. What is the relationship between
student and teacher? Does it depend on how many
classes a student can take or how many classes a
teacher can teach?

 6. What is cardinality? Give an example.

Review Questions
1

2

246 Part Two Systems Analysis Methods

Projects and Research

 1. Go to the school library. Ask the librarian at
the circulation desk to print out a copy of the
information they keep on you. What types of data
are being stored? Is there anything that surprises
you or seems irrelevant to checking out books? If
so, ask why the information is collected.

 2. Create a list of attributes for the student entity
from the information you found in the previous
problem. Normalize to third normal form.

 3. Go to a grocery store and make a purchase. What
type of data would a good information system
maintain on a transaction? What does a good
information system do for a business?

 4. Compare your answer from the above question
(grocery store) to that of at least one other student.
How were your answers different?

 5. What legal and privacy issues are related to
databases used by grocery stores? Go to
 http://www.fi ndlaw.com and research some
recent court cases on the topic. Present your
work in a short (fi ve-page) paper to your class.

 6. How can databases, and the information kept in
databases, be used by businesses for a strategic
advantage? In a small group, go to a business of
your choosing. Brainstorm to create a database that
offers that company either a solution to an existing
problem or exploits an existing opportunity in
business. Remember to be creative.

Minicases

 1. Consider a fi ctitious online grocery store called
Wow Munchies. This is a national franchise,
complete with marketing, accounting, shipping,
and customer service departments. The CIO has
decided to update the database corresponding
to the Web store so that it collects pertinent
transaction and shopping information for the
different departments. She is undecided what
software or hardware will support this database.

 Step l. How will you determine what data is
important to collect and maintain in the
new database? Be specifi c.

 Step 2. Create surveys, questionnaires, and the
like, and administer them to appropriate
personnel in the affected departments.
Review the forms that each department
uses.

 Step 3. What kind of responses did you get? Go
to an online grocery store, and see what
data is being collected by “rival” companies.
Did you miss anything? Did any of the
responses you get require a secondary
meeting with department personnel? If
so, revise your surveys and questions and
reinterview.

 Step 4. Utilize the methods you outlined in the
above question, and ascertain the entities
and attributes you will need to include in
your data.

 Step 5. Draft the relationships and cardinality
between the entities. What kind of data

model are you using? Implementation
specifi c or nonspecifi c? Why?

 Step 6. Revise your data model so that there are
no many-to-many relationships, and the
model is normalized to third normal form.

 Step 7. Submit all questionnaires, surveys, forms,
and responses to your professor, along with
your fi nal data model draft. Include a short
explanation as to how you derived your
entities and attributes and the relationships
and any assumptions or limitations your
data model may have.

 2. Research a car rental agency and create a data
model for its database for car rentals. What
departments are affected by the rental of a car?
Review any forms publicly available and create
surveys and interviews as necessary to help you
determine what your database should contain.
Be sure to normalize to third normal form and to
resolve any many-to-many relationships. Submit
your data model and all supporting documents to
your professor.

 3. Consider the Mafi a. Assuming that organized crime
groups maintain databases to evade capture and to
run their businesses, what information would they
keep? Why?

 4. What legal, ethical, and privacy issues are
associated with databases used in crime fi ghting?
Research and present a short paper (10 pages or
less) to your class.

Data Modeling and Analysis Chapter Seven 247

Team and Individual Exercises

 1. Project management in a geographically and
culturally dispersed team is diffi cult. For each
team member, assign the member to a country
with a different time zone and different languages.
Assume all members share one common language,
although that language will not be a fi rst language
for all members. Example countries: USA, India,
Israel, China, Pakistan, Iran, France, Peru, and Japan.

 2. Individual exercise: It is said that the boundaries
of our own creativity are ourselves and our
experiences. That is, the very things that make us

who we are also constrain us. What does it mean to
be creative? How do you become creative and to
think freely?

 3. Individual or team exercise: Reengineer a common
life process. If the “sky was the limit,” how would you
change this process? Identify each of the steps in the
old process and then each step in the new process
(e.g., putting on makeup, cleaning the house, going
to the grocery store, going to class). Bring your notes
to class for a roundtable discussion.

 Bruce, Thomas A. Designing Quality Databases with IDEF1X

Information Models. New York: Dorset House Publishing,

1992. We actually use this book as a textbook in our data-

base analysis and design course. IDEF1X is a rich, standard-

ized syntax for data modeling (which Bruce calls informa-

tion modeling). The graphical language looks different, but

it communicates the same system concepts presented in

our book. The language is supported by at least two CASE

tools: Logic Works’ ERwin and Popkin’s System Architect.

The book includes two case studies.

 Hay, David C. Data Model Patterns: Conventions of Thought.

New York: Dorset House Publishing, 1996. What a novel

book! This book starts with the premise that most busi-

ness data models are derivatives of some basic, repeatable

patterns. CASE vendors, how about including these pat-

terns in CASE tools as reusable templates?

 Martin, James, and Clive Finkelstein. Information Engineer-

ing, 3 vols. New York: Savant Institute, 1981. Information

engineering is a formal, database, and fourth-generation

language-oriented methodology. The graphical data model-

ing language of information engineering is virtually identi-

cal to ours. Data modeling is covered in Volumes I and II.

 Reingruber, Michael, and William Gregory. The Data Modeling

Handbook. New York: John Wiley & Sons, 1994. This is an

excellent book on data modeling and is particularly help-

ful in ensuring the quality and accuracy of data models.

 Schlaer, Sally, and Stephen J. Mellor. O bject-Oriented Systems

Analysis: Modeling the World in Data. Englewood Cliffs,

NJ: Yourdon Press, 1988. Forget the title! “Object-oriented”

means something different today than it did in 1988, but

the book is still one of the easiest-to-read books on the

subject of data modeling.

 Teorey, Toby J. Database Modeling & Design: The Fundamen-

tal Principles, 2nd ed. San Francisco: Morgan Kaufman

Publishers, 1994. This book is somewhat more conceptual

than the others in the list, but it provides useful insights

into the practice of data modeling.

Suggested Readings

248 Part Two Systems Analysis Methods

8Process Modeling

Chapter Preview and Objectives

 In this chapter you will learn how to draw data fl ow diagrams, a popular process model

that documents a system’s proceses and their data fl ows. You will know process modeling

as a systems analysis tool when you can:

 ❚ Defi ne process modeling and explain its benefi ts.

 ❚ Recognize and understand the basic concepts and constructs of a process model.

 ❚ Read and interpret a data fl ow diagram.

 ❚ Explain when to construct process models and where to store them.

 ❚ Construct a context diagram to illustrate a system’s interfaces with its environment.

 ❚ Identify use cases and external and temporal business events for a system.

 ❚ Perform event partitioning and organize events in a functional decomposition diagram.

 ❚ Draw event diagrams and then merge those event diagrams into system diagrams.

 ❚ Draw primitive data fl ow diagrams and describe the elementary data fl ows and

processes in terms of data structures and procedural logic (Structured English and

decision tables), respectively.

250 Part Two Systems Analysis Methods

 Introduction

 Bob Martinez has been working on the SoundStage Member Services system for sev-
eral weeks. He understands the system pretty well, but it is still easy to get confused
and to forget details.

 “The problem,” Bob said to his boss, Sandra Shepherd, “is that the system is too big
to keep it all in your head at one time.”

 “I’m glad you said that,” Sandra answered, “because your next assignment is to
break the system down into parts that you can get your head around. Each part is
called a process, and you’ll need to defi ne the inputs and outputs to that process plus
who or what each input and output comes from or goes to. And, by the way, you’ll
need to specify the logic for the process.”

 “I thought the use cases did all that,” Bob replied.
 “They aren’t specifi c enough,” Sandra stated. “Would you like to turn a project

over to a programmer located across the country with no more specifi cs than what a
use case has? Who knows what you’d end up with? Welcome to the world of process
modeling, Bob. Get to work.”

 An Introduction to Process Modeling

 process modeling a

technique used to organize

and document a system’s

processes.

 Process modeling is a technique for organizing and documenting the structure and
fl ow of data through a system’s PROCESSES and/or the logic, policies, and procedures to
be implemented by a system’s PROCESSES. In the context of information system building
blocks, logical process models are used to document an information system’s PROCESS
focus from the system owners’ and users’ perspective (the intersection of the PROCESS
column with the system owner and system user rows). Also notice that one special
type of process model, called a context diagram, illustrates the COMMUNICATION focus
from the system owners’ and users’ perspective. In this chapter, we’ll focus on a sys-
tems analysis process model, data fl ow diagrams.

 A data fl ow diagram (DFD) is a tool that depicts the fl ow of data through
a system and the work or processing performed by that system. Synonyms include
 bubble chart, transformation graph, and process model. We’ll also introduce a DFD
planning tool called decomposition diagrams. Finally, we’ll also study context dia-

grams, a processlike model that actually illustrates a system’s interfaces to the busi-
ness and outside world, including other information systems. 1

 A simple data fl ow diagram is illustrated in Figure 8-1 . In the design phase, some of
these business processes might be implemented as computer software (either built in-
house or purchased from a software vendor). If you examine this data fl ow diagram, you
should fi nd it easy to read, even before you complete this chapter—that has always been
the advantage of DFDs. There are only three symbols and one connection:

 • The rounded rectangles represent processes or work to be done. Notice that they
are illustrated in the PROCESS color from your information system framework.

 • The squares represent external agents —the boundary of the system. Notice that
they are illustrated in the INTERFACE color from your information system framework.

 • The open-ended boxes represent data stores, sometimes called fi les or
databases. If you have already read Chapter 7, these data stores correspond
to all instances of a single entity in a data model. Accordingly, they have been
illustrated with the DATA color from your information systems framework.

 • The arrows represent data fl ows, or inputs and outputs, to and from the processes.

 data fl ow diagram
(DFD) a process model

used to depict the fl ow of

data through a system and

the work or processing

performed by the system.

Synonyms are bubble chart,

transformation graph, and

 process model.

 1 In classic structured analysis, context diagrams are considered to be another type of process model. But in object-

oriented analysis, they illustrate scope and interfaces. In this edition, we have chosen the latter defi nition.

 Author’s Note: there are

several competing symbol

sets for DFDs. Throughout

this chapter, the authors have

chosen to use the Gane and

Sarson notation because of its

wide popularity.

Process Modeling Chapter Eight 251

Reconcile

Account

Balances

Pay

a

Bill

Withdraw

Funds from

an Account

Deposit Funds

into an

Account

Bank

Creditor

Employer

Other

Income

Source

Bank

Account

Transactions

Bank Accounts

Account

Transactions

Bill

Payment

Monthly

Statement

Account

Balance

Transaction

Prior Monthly

Statement

New or Modified

Monthly Statement

Credit

Pay

Reimbursement

Withdraw or Transfer

Deposit

Payment

Credit

Current

Balance

Debit

Monthly Account

Statements

* Data store duplicated only to prevent crossing lines

F I G U R E 8 - 1 A Simple Data Flow Diagram

252 Part Two Systems Analysis Methods

 There is sometimes a tendency to confuse data fl ow diagrams with fl owcharts
because program design frequently involves the use of fl owcharts. However, data fl ow
diagrams are very different. Let’s summarize the differences.

 Data fl ow diagrams have been popular for more than 20 years, but the interest in
DFDs has been recently renewed because of their applicability in business process

redesign (BPR). As businesses have come to realize that most data processing systems
have merely automated outdated, ineffi cient, and bureaucratic business processes,
there is renewed interest in streamlining the business processes. This is accomplished
by fi rst modeling the business processes for the purpose of analyzing, redesigning,
and/or improving them. Subsequently, information technology can be applied to the
improved business processes in creative ways that maximize the value returned to the
business. We’ll revisit this trend at the end of the chapter.

 external agent an outside

person, organization unit,

system, or organization that

interacts with a system. Also

called external entity.

 System Concepts for Process Modeling

 > External Agents

 All information systems respond to events and conditions in the system’s environ-
ment. The environment of an information system includes external agents that form
the boundary of the system and defi ne places where the system interfaces with its en-
vironment. An external agent defi nes a person, an organization unit, another system,
or another organization that lies outside the scope of the project but that interacts
with the system being studied. External agents provide the net inputs into a system
and receive net outputs from a system. A common synonym is external entity (not to
be confused with data entity as introduced in Chapter 7).

 The term external means “external to the system being analyzed or designed.” In
practice, an external agent may actually be outside of the business (such as government
agencies, customers, suppliers, and contractors), or it may be inside the business but out-
side the project and system scope (such as other departments, other business functions,
and other internal information systems). An external agent is represented by a square on
the data fl ow diagram. The DeMarco/Yourdon equivalent is a rectangle (see margin).

 It is important to recognize that work and activities are occurring inside the external
agent, but that work and those activities are said to be “out of scope” and not subject
to change. Thus, the data fl ows between your system and these boundaries should not
cause substantive change to the work or activities performed by the external agents.

 External agents on a logical data fl ow diagram may include people, business units,
other internal systems with which a system must interact, and external organizations.
Their inclusion on the logical DFD means that your system interacts with these agents.
They are almost always one of the following:

 • An offi ce, department, division, or individual within your company that pro-
vides net inputs to that system, receives net outputs from that system, or both.

 • An organization, agency, or individual that is outside your company but that pro-
vides net inputs to, or receives net outputs from, your system. Examples include
 CUSTOMERS, SUPPLIERS, CONTRACTORS, BANKS, and GOVERNMENT AGENCIES.

 • Another business or information system—possibly, though not necessarily,
computer-based—that is separate from your system but with which your system
must interface. It is becoming common to interface information systems with
those of other businesses.

 • A system’s end users or managers. In this case, the user or manager is either a
net source of data to be input to a system and/or a net destination of outputs to
be produced by a system.
 External agents should be named with descriptive, singular nouns, such as REG-

ISTRAR, SUPPLIER, MANUFACTURING SYSTEM, or FINANCIAL INFORMATION SYSTEM. External agents
represent fi xed, physical systems; therefore, they can have physical names or acro-
nyms—even on a logical DFD. For example, an external agent representing our school’s

External

Agent

Gane and Sarson shape

External

Agent

DeMarco/Yourdon shape

 External Agent
Symbols

Process Modeling Chapter Eight 253

fi nancial management information system would be called FMIS . If an external agent
describes an individual, we recommend job titles or role names instead of proper
names (for example, use ACCOUNT CLERK, not Mary Jacobs).

 To avoid crossing data fl ow lines on a DFD, it is permissible to duplicate external
agents on DFDs. But as a general rule, external agents should be located on the perim-
eters of the page, consistent with their defi nition as a system boundary.

 > Data Stores

 Most information systems capture data for later use. The data is kept in a data store,
the last symbol on a data fl ow diagram. It is represented by the open-end box (see
margin). A data store is an “inventory” of data. Synonyms include fi le and database
(although those terms are too implementation-oriented for essential process mod-
eling). If data fl ows are data in motion, think of data stores as data at rest.

 Ideally, essential data stores should describe “things” about which the business
wants to store data. These things include:

 Persons: AGENCY, CONTRACTOR, CUSTOMER, DEPARTMENT, DIVISION, EMPLOYEE, INSTRUCTOR,
OFFICE, STUDENT, SUPPLIER. Notice that a person entity can represent either
individuals, groups, or organizations.

 Places: SALES REGION, BUILDING, ROOM, BRANCH OFFICE, CAMPUS.
 Objects: BOOK, MACHINE, PART, PRODUCT, RAW MATERIAL, SOFTWARE LICENSE, SOFTWARE

PACKAGE, TOOL, VEHICLE MODEL, VEHICLE. An object entity can represent actual
objects (such as SOFTWARE LICENSE) or specifi cations for a type of object (such
as SOFTWARE PACKAGE).

 Events: APPLICATION, AWARD, CANCELLATION, CLASS, FLIGHT, INVOICE, ORDER, REGISTRATION,
RENEWAL, REQUISITION, RESERVATION, SALE, TRIP.

 Concepts: ACCOUNT, BLOCK OF TIME, BOND, COURSE, FUND, QUALIFICATION, STOCK.

 NOTE: If the above list looks familiar, it should: A data store represents all occur-

rences of a data entity—defi ned in Chapter 7 as something about which we want
to store data. As such, the data store represents the synchronization of a system’s
process model with its data model.

 If data modeling is done before process modeling, identifi cation of most data
stores is simplifi ed by the following rule:

 There should be one data store for each data entity on an entity relationship diagram.
(We even include associative and weak entity data stores on our models.)

 If, on the other hand, process modeling is done before data modeling, data store
discovery tends to be more arbitrary. In that case, our best recommendation is
to identify existing implementations of fi les or data stores (e.g., computer fi les
and databases, fi le cabinets, record books, catalogs) and then rename them to refl ect
the logical “things” about which they store data. Consistent with information engi-
neering strategies, we recommend that data models precede the process models.

 Generally, data stores should be named as the plural of the corresponding data
model entity. Thus, if the data model includes an entity named CUSTOMER, the process
models will include a data store named CUSTOMERS. This makes sense because the data
store, by defi nition, stores all instances of the entity. Avoid physical terms such as fi le,

database, fi le cabinet, fi le folder, and the like.
 As was the case with boundaries, it is permissible to duplicate data stores on a

DFD to avoid crossing data fl ow lines. Duplication should be minimized.

 > Process Concepts

 Recall from Chapter 1 that a fundamental building block of information systems is PRO-
CESSES. All information systems include processes—usually many of them. Information

 data store stored data

intended for later use.

 Synonyms are fi le and

 database.

Data Store

Gane and Sarson shape

DeMarco/Yourdon shape

Data Store

 Data Store Symbols

254 Part Two Systems Analysis Methods

system processes respond to business events and conditions and transform DATA (an-
other building block) into useful information. Modeling processes helps us to under-
stand interactions with the system’s environment, other systems, and other processes.

 A System Is a Process We have used the word system throughout this book to
describe almost any orderly arrangement of ideas or constructs. People speak of edu-
cational systems, computer systems, management systems, business systems, and, of
course, information systems. In the oldest and simplest of all system models, a system
 is a process.

 In systems analysis, models are used to view or present a system. As shown in
 Figure 8-2 , the simplest process model of a system is based on inputs, outputs, and the
system itself—viewed as a process. The process symbol defi nes the boundary of the
system. The system is inside the boundary; the environment is outside that boundary.
The system exchanges inputs and outputs with its environment. Because the environ-
ment is always changing, well-designed systems have a feedback and control loop to
allow the system to adapt itself to changing conditions.

 Consider a business as a system. It operates within an environment that includes
customers, suppliers, competitors, other industries, and the government. Its inputs
include materials, services, new employees, new equipment, facilities, money, and or-
ders (to name but a few). Its outputs include products and/or services, waste mate-
rials, retired equipment, former employees, and money (payments). It monitors its
environment to make necessary changes to its product line, services, operating proce-
dures, competitors, and the economy.

 A rounded rectangle (the Gane and Sarson notation) is used throughout this
chapter to represent a process (see margin). A process is work performed on, or in
response to, incoming data fl ows or conditions. A synonym is transform. Different
process modeling notations use a circle (the DeMarco/Yourdon notation) or a rect-
angle (the SSADM/IDEF0 notation). The choice is often dependent on your method-
ology and CASE tool features.

 Although processes can be performed by people, departments, robots, ma-
chines, or computers, we once again want to focus on what work or action is being

 process work performed

by a system in response

to incoming data fl ows or

 conditions. A synonym is

 transform.

F I G U R E 8 - 2

The Classic Process
Model of a System

The System's Environment

(constantly changing)

The

System as

a Process

input

input

input

output

output

output

Feedback and

Control Loop

Process name

Gane & Sarson shape;

used throughout

this book

Process Modeling Chapter Eight 255

performed (the logical process), not on who or what is doing that work or activity
(the physical process). For instance, in Figure 8-1 we included the logical process
 WITHDRAW FUNDS FROM AN ACCOUNT. We did not indicate how this would be done. Intui-
tively, we can think of several physical implementations such as using an ATM, using a
bank’s drive-through service, or actually going inside the bank.

 Process Decomposition A complex system is usually too diffi cult to fully under-
stand when viewed as a whole (meaning as a single process). Therefore, in systems
analysis we separate a system into its component subsystems, which are decomposed
into smaller subsystems, until we have identifi ed manageable subsets of the overall
system (see Figure 8-3). We call this technique decomposition. Decomposition is
the act of breaking a system into its component subsystems, processes, and subpro-
cesses. Each level of abstraction reveals more or less detail (as desired) about the
overall system or a subset of that system. You have already applied decomposition in
various ways. Most of you have outlined a term paper—this is a form of decomposi-
tion. Many of you have partitioned a medium- to large-size computer program into
subprograms that could be developed and tested independently before they are inte-
grated. This is also decomposition.

 In systems analysis, decomposition allows you to partition a system into logical
subsystems of processes for improved communication, analysis, and design. A diagram
similar to Figure 8-3 can be a little diffi cult to construct when dealing with all but the
smallest of systems. Figure 8-4 demonstrates an alternative layout that is supported by
many CASE tools and development methodologies. It is called a decomposition dia-

gram. We’ll use it extensively in this chapter. A decomposition diagram , also called
a hierarchy chart, shows the top-down functional decomposition and structure of a
system. A decomposition diagram is essentially a planning tool for more detailed pro-
cess models, namely, data fl ow diagrams. The following rules apply:

 • Each process in a decomposition diagram is either a parent process, a child

process (of a parent), or both.
 • A parent must have two or more children—a single child does not make sense

because that would not reveal any additional detail about the system.

 decomposition the act

of breaking a system into

subcomponents.

0

The System

1

A Function of the System

2

Another Function of the System

Task 1.1.3

Task 1.1.1 Task 1.1.2

1.1

Activity of the Function

Task 1.2.2

Task 1.2.1

1.2

Another Activity of the Function

Task 2.2.3

Task 2.2.1 Task 2.2.2

Task 2.1.3 Task 2.1.4

Task 2.1.1 Task 2.1.2

2.1

Activity of This Function

2.2

Another Activity of This Function

F I G U R E 8 - 3

A System Consists
of Many
Subsystems and
Processes

 decomposition diagram
 a tool used to depict the

 decomposition of a system.

Also called hierarchy chart.

256 Part Two Systems Analysis Methods

 • In most decomposition diagramming standards, a child may have only one parent.
 • Finally, a child of one parent may be the parent of its own children.

 The upper and lower halves of the decomposition diagram in Figure 8-4 demon-
strate two styles for laying out the processes and connections. You may use either or
both as necessary to present an uncluttered model. Some models may require mul-
tiple pages for maximum clarity.

0

The System

1

A Function

2

Another

Function

1.1

Activity of the

Function

1.2

Another Activity

of the Function

Task 1.2 .2

Task 2.1 .1Task 1.1 .1

Task 1.1 .2

Task 1.1 .3

Task 1.2 .1

2.2

Another Activity

of This Function

2.1

Activity of This

Function

Task 2.1 .2

Task 2.1 .3

Task 2.1 .4

Task 2.2 .1

Task 2.2 .2

Task 2.2 .3

F I G U R E 8 - 4 A Decomposition Diagram (for Figure 8-3)

Process Modeling Chapter Eight 257

 The connections on a decomposition diagram do not contain arrowheads be-
cause the diagram is meant to show structure, not fl ow. Also, the connections are not
named. Implicitly they all have the same name— CONSISTS OF— since the sum of the
child processes for a parent process EQUALS the parent process.

 Logical Processes and Conventions Logical processes are work or actions that
must be performed no matter how you implement the system. Naming conventions
for logical processes depend on where the process is in the decomposition diagram/
data fl ow diagram and the type of process depicted. There are three types of logical
processes: functions, events, and elementary processes.

 A function is a set of related and ongoing activities of the business. A function
has no start or end; it just continuously performs its work as needed. For example, a
manufacturing system may include the following functions (subsystems): PRODUCTION
PLANNING, PRODUCTION SCHEDULING, MATERIALS MANAGEMENT, PRODUCTION CONTROL, QUALITY
MANAGEMENT, and INVENTORY CONTROL. Each of these functions may consist of dozens or
hundreds of more discrete processes to support specifi c activities and tasks. Function
names are nouns that describe the entire function. Additional examples are ORDER
ENTRY, ORDER MANAGEMENT, SALES REPORTING, CUSTOMER RELATIONS, and RETURNS AND REFUNDS.

 An event is a logical unit of work that must be completed as a whole. An event is
triggered by a discrete input and is completed when the process has responded with
appropriate outputs. Events are sometimes called transactions. Functions consist of
processes that respond to events. For example, the MATERIALS MANAGEMENT function may
respond to the following events: TEST MATERIAL QUALITY, STOCK NEW MATERIALS, DISPOSE OF
DAMAGED MATERIALS, DISPOSE OF SPOILED MATERIALS, REQUISITION MATERIALS FOR PRODUCTION,
RETURN UNUSED MATERIALS FROM PRODUCTION, ORDER NEW MATERIALS, and so on. Each of these
events has a trigger and response that can be defi ned by its inputs and outputs.

 Using modern structured analysis techniques such as those advocated by
McMenamin, Palmer, Yourdon, and the Robertsons (see the Suggested Readings at the
end of the chapter), analysts decompose system functions into business events. Each
business event is represented by a single process that will respond to that event. Event
process names tend to be very general. We will adopt the convention of naming event
processes as follows: PROCESS , RESPOND TO , or GENERATE

, where the blank would be the name of the event (or its corresponding
input). Sample event process names are PROCESS CUSTOMER ORDER, PROCESS CUSTOMER
ORDER CHANGE, PROCESS CUSTOMER CHANGE OF ADDRESS, RESPOND TO CUSTOMER COMPLAINT, RE-
SPOND TO ORDER INQUIRY, RESPOND TO PRODUCT PRICE CHECK, GENERATE BACK-ORDER REPORT,
GENERATE CUSTOMER ACCOUNT STATEMENT, and GENERATE INVOICE.

 An event process can be further decomposed into elementary processes that il-
lustrate in detail how the system must respond to an event. Elementary processes
are discrete, detailed activities or tasks required to complete the response to an event.
In other words, they are the lowest level of detail depicted in a process model. A
common synonym is primitive process. Elementary processes should be named with
a strong action verb followed by an object clause that describes what the work is
performed on (or for). Examples of elementary process names are VALIDATE CUSTOMER
IDENTIFICATION, VALIDATE ORDERED PRODUCT NUMBER, CHECK PRODUCT AVAILABILITY, CALCULATE
ORDER COST, CHECK CUSTOMER CREDIT, SORT BACK ORDERS, GET CUSTOMER ADDRESS, UPDATE CUS-
TOMER ADDRESS, ADD NEW CUSTOMER, and DELETE CUSTOMER.

 Logical process models omit any processes that do nothing more than move or
route data, thus leaving the data unchanged. Thus, you should omit any process that
corresponds to a secretary or clerk receiving and simply forwarding a variety of docu-
ments to the next processing location. In the end, you should be left only with logical
processes that:

 • Perform computations (calculate grade point average).
 • Make decisions (determine availability of ordered products).
 • Sort, fi lter, or otherwise summarize data (identify overdue invoices).
 • Organize data into useful information (generate a report or answer a question).

 function a set of related

and ongoing activities of a

business.

 event a logical unit of work

that must by completed as a

whole. Sometimes called a

 transaction.

 elementary process
 discrete, detailed activity or

task required to complete the

response to an event. Also

called primitive process.

 • Trigger other processes (turn on the furnace or instruct a robot).
 • Use stored data (create, read, update, or delete a record).

 Be careful to avoid three common mechanical errors with processes (illustrated
in Figure 8-5):

 • Process 3.1.2 has inputs but no outputs. We call this a black hole because data
enters the process and then disappears. In most cases, the modeler simply for-
got the output.

 • Process 3.1.3 has outputs but no input. In this case, the input fl ows were likely
forgotten.

 • In Process 3.1.1 the inputs are insuffi cient to produce the output. We call this a
 gray hole. There are several possible causes, including (1) a misnamed process,
(2) misnamed inputs and/or outputs, or (3) incomplete facts. Gray holes are the
most common errors—and the most embarrassing. Once handed to a program-
mer, the input data fl ows to a process (to be implemented as a program) must
be suffi cient to produce the output data f lows.

 > Data Flows

 Processes respond to inputs and generate outputs. Thus, at a minimum, all processes
have at least one input and one output data fl ow. Data fl ows are the communications

3.1.2

Create a new

member account

3.1.1

Generate an

employee bank

statement

3.1.3

Freeze member

account number

Accounts

Receivable

Department

Employee

Member Accounts Employees

Existing account

New account status

Employee

status

Frozen account notification

Employee address

Bank statement

Membership

application

This process has

no inputs.

This process has

no outputs.

Where will the

accounting data come from?

F I G U R E 8 - 5 Common Errors on Data Flow Diagrams

258 Part Two Systems Analysis Methods

Process Modeling Chapter Eight 259

between processes and the system’s environment. Let’s examine some of the basic
concepts and conventions of data fl ows.

 Data in Motion A data fl ow is data in motion. The fl ow of data between a system
and its environment or between two processes inside a system is communication.
Let’s study this form of communication.

 A data fl ow represents an input of data to a process or the output of data (or
information) from a process. A data fl ow is also used to represent the creation, reading,
deletion, or updating of data in a fi le or database (called a data store on the DFD).
Think of a data fl ow as a highway down which packets of known composition travel.
The name implies what type of data may travel down that highway. This highway is
depicted as a solid line with arrow (see margin).

 The packet concept is critical. Data that should travel together should be shown
as a single data fl ow, no matter how many physical documents might be included. The
packet concept is illustrated in Figure 8-6 , which shows the correct and incorrect
ways to show a logical data fl ow packet.

 The known composition concept is equally important. A data fl ow is composed
of either actual data attributes (also called data structures —more about them later)
or other data fl ows. A composite data fl ow is a data fl ow that consists of other data
fl ows. They are used to combine similar data fl ows on high-level data fl ow diagrams to
make those diagrams easier to read. For example, in Figure 8-7 (a), a high-level DFD con-
solidates all types of orders into a composite data fl ow called ORDER. In Figure 8-7 (b),
a more detailed data fl ow diagram shows specifi c types of orders: STANDING ORDER, RUSH
ORDER, and STANDARD ORDER. These different orders require somewhat different pro-
cessing. (The small, black circle is called a junction. It indicates that any given ORDER
is an instance of only one of the order types.)

 Another common use of composite data fl ows is to consolidate all reports and in-
quiry responses into one or two composite fl ows. There are two reasons for this. First,
these outputs can be quite numerous. Second, many modern systems provide exten-
sive user-defi ned reports and inquiries that cannot be predicted before the system’s
implementation and use.

 Some data fl ow diagramming methods also recognize nondata fl ows called con-

trol fl ows. A control fl ow represents a condition or nondata event that triggers
a process. Think of it as a condition to be monitored while the system works. When
the system realizes that the condition meets some predetermined state, the pro-
cess to which it is input is started. The classic information system example is time.
For example, a report generation process may be triggered by the temporal event
 END-OF-MONTH. In real-time systems, control fl ows often represent real-time conditions such
as TEMPERATURE and ALTITUDE. In most methodologies that distinguish between data and
control fl ows, the control fl ow is depicted as a dashed line with arrow (see margin).

 Typically, information systems analysts have dealt mostly with data fl ows; how-
ever, as information systems become more integrated with real-time systems (such as

 data fl ow data that is input

or output to or from a process.

Telephone

Service

Provider

Pay

phone

bill

Itemized

calls

and

invoice

Itemized calls

Invoice

Correct use of the

packet concept

Incorrect use of

the packet concept

F I G U R E 8 - 6

The Data Flow
Packet Concept

 composite data fl ow a

data fl ow that consists of

other data fl ows.

 control fl ow a condition or

nondata event that triggers a

process.

 Data Flow Symbol

 Control Flow
Symbol

Data flow name

Control flow name

260 Part Two Systems Analysis Methods

manufacturing processes and computer-integrated manufacturing), the need to distin-
guish the concept of control fl ows becomes necessary.

 Logical Data Flows and Conventions While we recognize that data fl ows can
be implemented a number of ways (e.g., telephone calls, business forms, bar codes,
memos, reports, computer screens, and computer-to-computer communications), we
are interested only in logical data fl ows. Thus, we are only interested that the fl ow is
needed (not how we will implement that fl ow). Data fl ow names should discourage
premature commitment to any possible implementation.

 Data fl ow names should be descriptive nouns and noun phrases that are singular,
as opposed to plural (ORDER —not ORDERS). We do not want to imply that occurrences
of the fl ow must be implemented as a physical batch.

 Data fl ow names also should be unique. Use adjectives and adverbs to help to de-
scribe how processing has changed a data fl ow. For example, if an input to a process
is named ORDER, the output should not be named ORDER. It might be named VALID ORDER,
APPROVED ORDER, ORDER WITH VALID PRODUCTS, ORDER WITH APPROVED CREDIT, or any other
more descriptive name that refl ects what the process did to the original order.

F I G U R E 8 - 7 Composite and Elementary Data Flows

(b) More Detailed DFD

(a) High-Level DFD

Process

orderCustomer
...Order

Accepted

Order

Process

order

Customer

Process

standard

order

Order

Standing

Order

Standard

Order
...

...
Accepted

Standing

Order

Process

rush

order

Rush

Order
...

Accepted

Rush

Order

Accepted

Standard

Order

standing

F I G U R E 8 - 7 Composite and Elementary Data Flows

Process Modeling Chapter Eight 261

 Logical data fl ows to and from data stores require special naming considerations
(see Figure 8-8). (Data store names are plural, and the numbered bullets match the
note to the fi gure.)

 • Only the net data fl ow is shown. Intuitively, you may realize that you have to
get a record to update it or delete it. But unless data is needed for some other
purpose (e.g., a calculation or decision), the “read” action is not shown. This
keeps the diagram uncluttered.

 1 A data fl ow from a data store to a process indicates that data is to be “read” for
some specifi c purpose. The data fl ow name should clearly indicate what data is
to be read. This is shown in Figure 8-8 .

 2 A data fl ow from a process to a data store indicates that data is to be created,
deleted, or updated in/from that data store. Again, as shown in Figure 8-8 , these
data fl ows should be clearly named to refl ect the specifi c action performed
(such as NEW CUSTOMER, CUSTOMER TO BE DELETED, or UPDATED ORDER ADDRESS).

 Notice that the names suggest the classic actions that can be performed on a fi le,
namely, CREATE, READ, UPDATE, and DELETE (CRUD). In a real DFD, we would not actually
record these action names on the diagram.

 No data fl ow should ever go unnamed. Unnamed data fl ows are frequently the result
of fl owchart thinking (step 1, step 2, etc.). If you can’t give the data fl ow a reasonable
name, it probably does not exist. Consistent with our goal of logical modeling, data fl ow
names should describe the data fl ow without describing how the fl ow is or could be
implemented. Suppose, for example, that end users explain their system as follows: “We

fi ll out Form 23 in triplicate and send it to . . . ” The logical name for the “Form 23” data

2

2

2

1

Orders

Process

Order

Cancel

Order

Change

Order

Address

Summarize

Unfilled

Orders

Order Canceled Order

Change of Address

New

Order

Address

Unfilled

Order

New

Order

Order

to Be

Deleted

Summary of

Unfilled Orders

“create”

“delete”

“update”

“read”

F I G U R E 8 - 8

Data Flows to and
from Data Stores

262 Part Two Systems Analysis Methods

fl ow might be COURSE REQUEST. This logical name eliminates physical, implementation bi-
ases—the idea that we must use a paper form and the notion that we must use carbon
copies. Ultimately, this will free us to consider other physical alternatives such as Touch-
Tone phone responses, online registration screens, or even e-business Internet pages.

 Finally, all data fl ows must begin and/or end at a process because data fl ows are
the inputs and outputs of a process. Consequently, all the data fl ows on the left side of
 Figure 8-9 are illegal. The corrected diagrams are shown on the right side.

 Data Flow Conservation For many years we have tried to improve business pro-
cesses by automating them. It hasn’t always worked or worked well because the busi-
ness processes were designed to process data fl ows in a precomputing era. Consider
the average business form. It is common to see the form divided into sections that are
designed for different audiences. The fi rst recipient completes his part of the form, the
next recipient completes her part, and so forth. At certain points in this processing
sequence, a copy of the form might even be detached and sent to another recipient
who initializes a new multiple-part form that requires transcribing much of the same

DS1

DS2

DS1

B1 B2 B1 B1

B1 B1

B1 B1

DS2

a process is

needed to

exchange data

flows between

a process is

needed to

update (or

use) a data

store

a process is

needed to

present data

from a data

store

a process is

needed to

move data

from one data

store to

another

DS1

Illegal

data

flows

Corrected

data

flows

external

agents

DS1DS1

DS1

F I G U R E 8 - 9 Illegal Data Flows

Process Modeling Chapter Eight 263

data from the initial form. In our own university, we’ve seen examples where poor form
design requires that the same data be typed a dozen times.

 Now, if the fl ow of current data is computerized based on the current business
forms and processes, the resulting computer programs will merely automate these
ineffi ciencies. This is precisely what has happened in most businesses! Today, a new
emphasis on business process redesign encourages management, users, and systems
analysts to identify and eliminate these ineffi ciencies before designing any new infor-
mation system. We can support this trend in logical data fl ow diagrams by practicing
data conservation. Data conservation , sometimes called “starving the processes,”
requires that a data fl ow contain only the data that is truly needed by the receiving
process. By ensuring that processes receive only as much data as they really need, we
simplify the interface between those processes. To practice data conservation, we
must precisely defi ne the data composition of each (noncomposite) data fl ow. Data
composition is expressed in the form of data structures.

 Data Structures Ultimately, a data fl ow contains data items called attributes. A data

attribute is the smallest piece of data that has meaning to the end users and the busi-
ness. (This defi nition also applies to attributes as they were presented in Chapter 7.)
Sample attributes for the data fl ow ORDER might include ORDER NUMBER, ORDER DATE,
CUSTOMER NUMBER, SHIPPING ADDRESS (which consists of attributes such as STREET ADDRESS,
CITY, and ZIP CODE), ORDERED PRODUCT NUMBERS, QUANTITY (IES) ORDERED, and so on. Notice
that some attributes occur once for each instance of ORDER, while others may occur
several times for a single instance of ORDER.

 The data attributes that comprise a data fl ow are organized into data structures .
Data fl ows can be described in terms of the following types of data structures:

 • A sequence or group of data attributes that occur one after another.
 • The selection of one or more attributes from a set of attributes.
 • The repetition of one or more attributes.

 The most common data structure notation is a Boolean algebraic notation that is
required by many CASE tools. Other CASE tools and methodologies support propri-
etary, but essentially equivalent, notations. A sample data structure for the data fl ow
 ORDER is presented in Figure 8-10 . This algebraic notation uses the following symbols:

 Means “consists of” or “is composed of.”
 Means “and” and designates sequence.
 […] Means “only one of the attributes within the brackets may be present”—

designates selection. The attributes in the brackets are separated by commas.
 {…} Means that the attributes in the braces may occur many times for one

instance of the data fl ow—designates repetition. The attributes inside the
braces are separated by commas.

 (…) Means the attribute(s) in the parentheses are optional—no value—for
some instances of the data fl ow.

 In our experience, all data fl ows can be described in terms of these fundamental
constructs. Figure 8-11 demonstrates each of the fundamental constructs using ex-
amples. Returning to Figure 8-10 , notice that the constructs are combined to describe
the data content of the data fl ow.

 The importance of defi ning the data structures for every data fl ow should be ap-
parent—you are defi ning the business data requirements for each input and output!
These requirements must be determined before any process could be implemented
as a computer program. This standard notation provides a simple but effective means
for communicating between end users and programmers.

 Domains An attribute is a piece of data. In analyzing a system, it makes sense that
we should defi ne those values for an attribute that are legitimate, or that make sense.
The values for each attribute are defi ned in terms of two properties: data type and

 data conservation the

practice of ensuring that a

data fl ow contains only data

needed by the receiving

process.

 data attribute the smallest

piece of data that has

meaning to the users and the

business.

 data structure a specifi c

arrangement of data

 attributes that defi ne a single

instance of a data fl ow.

264 Part Two Systems Analysis Methods

domain. The data type for an attribute defi nes what class of data can be stored in
that attribute, whereas the domain of an attribute defi nes what values an attribute
can legitimately take on. The concepts of data type and domain were introduced in
Chapter 7. See that discussion and Tables 7-1 and 7-2 for a more complete description
of data type and domain.

 Divergent and Convergent Flows It is sometimes useful to depict diverging or
converging data fl ows on a data fl ow diagram. A diverging data fl ow is one that
splits into multiple data fl ows. Diverging data fl ows indicate that all or parts of a
single data fl ow are routed to different destinations. 2 A converging data fl ow is the
merger of multiple data fl ows into a single data fl ow. Converging data fl ows indicate
that data fl ows from different sources can (must) come together as a single packet for
subsequent processing.

 data type a class of data

that can be stored in an

attribute.

 domain the legitimate

values for an attribute.

 diverging data fl ow a

data fl ow that splits into

multiple data fl ows.

 converging data fl ow the

merger of multiple data fl ows

into a single data fl ow.
 2 Some experts suggest that diverging data fl ows should be used only when all data in the fl ow is routed to all destinations.

We prefer the classic DeMarco defi nition that allows all or parts of the fl ow to be routed to different processes.

 Data Structure English Interpretation

 ORDER

 ORDER NUMBER

 ORDER DATE

 [PERSONAL CUSTOMER NUMBER,

 CORPORATE ACCOUNT NUMBER]

 SHIPPING ADDRESS ADDRESS

 (BILLING ADDRESS ADDRESS)

 1 { PRODUCT NUMBER

 PRODUCT DESCRIPTION

 QUANTITY ORDERED

 PRODUCT PRICE

 PRODUCT PRICE SOURCE

 EXTENDED PRICE} N

 SUM OF EXTENDED PRICES

 PREPAID AMOUNT

 (CREDIT CARD NUMBER EXPIRATION
DATE)

 (QUOTE NUMBER)

 A DDRESS

 (POST OFFICE BOX NUMBER)

 STREET ADDRESS

 C ITY

 [STATE MUNICIPALITY]

 (COUNTRY)

 POSTAL CODE

 An instance of ORDER consists of:

 ORDER NUMBER and

 ORDER DATE and

 Either PERSONAL CUSTOMER NUMBER

 or CORPORATE ACCOUNT NUMBER

 and SHIPPING ADDRESS (which is equivalent

 to ADDRESS)

 and optionally: BILLING ADDRESS (which is
 equivalent to ADDRESS)

 and one or more instances of:

 PRODUCT NUMBER and

 PRODUCT DESCRIPTION and

 QUANTITY ORDERED and

 PRODUCT PRICE and

 PRODUCT PRICE SOURCE and

 EXTENDED PRICE

 and SUM OF EXTENDED PRICES and

 PREPAID AMOUNT and

 optionally: both CREDIT CARD NUMBER and

 EXPIRATION DATE

 and optionally: QUOTE NUMBER

 An instance of ADDRESS consists of:
 optionally: POST OFFICE BOX NUMBER and

 STREET ADDRESS and

 CITY and

 Either STATE OR MUNICIPALITY

 and optionally: COUNTRY

 and POSTAL CODE

F I G U R E 8 - 1 0 A Data Structure for a Data Flow

F
I
G

U
R

E

8

-
1

1

 D
at

a
S

tr
u

ct
u

re
 C

o
n

st
ru

ct
s

 D
a
ta

 S
tr

u
ct

u
re

 Fo

rm
a
t

b
y
 E

x
a
m

p
le

(r

el
ev

a
nt

 p
o
rt
io

n
is
 b

o
ld

fa
ce

d
)

 E
n
g
li
sh

 I
n
te

rp
re

ta
ti
o
n

(r
el

ev
a
nt

 p
o
rt
io

n
is
 b

o
ld

fa
ce

d
)

 S
e
q
u
e
n
ce

 o
f

A
tt

ri
b
u
te

s —
Th

e
se

q
ue

nc
e

d
a
ta

st

ru
ct

ur
e

in
d
ic

a
te

s
o
ne

 o
r

m
o
re

 a
ttr

ib
ut

es
 th

a
t m

a
y

(o
r

m
us

t)
b
e

in
cl

ud
ed

 i
n

a
 d

a
ta

 fl
 o

w
.

 W
A

G
E

A
N

D
 T

A
X
 S

TA
TE

M
EN

T

 TA

X
P
A
Y

ER
 I

D
EN

TI
FI

C
A

TI
O

N
 N

U
M

B
ER

 ⴙ

 TA

X
P
A
Y

E
R
0
 N

A
M

E
 ⴙ

 TA
X

P
A
Y

E
R
 A

D
D

R
E
S
S
 ⴙ

 W
A

G
ES

,
TI

P
S
,

A
N

D
 C

O
M

P
EN

S
A

TI
O

N
 ⴙ

 FE
D

E
R
A

L
TA

X
 W

IT
H

H
E
LD

 ⴙ
 .
 .
 .

 A
n

in
st

a
nc

e
o
f
 W

A
G

E
A

N
D
 T

A
X
 S

TA
TE

M
EN

T
co

ns
is

ts
 o

f:

 TA

X
P
A
Y

E
R
 I

D
E
N

TI
FI

C
A

TI
O

N
 N

U
M

B
E
R
 a

n
d

 TA
X

P
A
Y

E
R
 N

A
M

E
 a

n
d

 TA
X

P
A
Y

E
R
 A

D
D

R
E
S
S
 a

n
d

 W
A

G
E
S
,

TI
P
S
,

A
N

D
 C

O
M

P
E
N

S
A

TI
O

N
 a

n
d

 FE
D

E
R
A

L
TA

X
 W

IT
H

H
E
LD

 a
n
d
 .
 .

 .

 S
e
le

ct
io

n
 o

f
A

tt
ri

b
u
te

s —
Th

e
se

le
ct

io
n

d
a
ta

 s
tr
uc

tu
re

a
llo

w
s

yo
u

to
 s

ho
w

 s
itu

a
tio

ns
 w

he
re

 d
iff

er
en

t s
et

s
o
f

a
ttr

ib
ut

es
 d

es
cr

ib
e

d
iff

er
en

t i
ns

ta
nc

es
 o

f
th

e
d
a
ta

 fl
 o

w
.

 O
RD

ER

(P
E
R
S
O

N
A

L
C
U

S
TO

M
E
R
 N

U
M

B
E
R
 ,

 CO
R
P
O

R
A

TE
 A

C
C
O

U
N

T
N

U
M

B
E
R
)
ⴙ

 O
RD

ER
 D

A
TE

 .
 .
 .

 A
n

in
st

a
nc

e
o
f
 O

RD
ER

 c
o
ns

is
ts

 o
f:

 E
 it
h
e
r

 PE
R
S
O

N
A

L
C
U

S
TO

M
E
R
 N

U
M

B
E
R
 o

r

 CO
R
P
O

R
A

TE
 A

C
C
O

U
N

T
N

U
M

B
E
R
;

a
nd

 O
RD

ER
 D

A
TE

 a
nd

 .
 .

 .

 R
e
p
e
ti
ti
o
n
 o

f
A

tt
ri

b
u
te

s —
Th

e
re

p
et

iti
o
n

d
a
ta

st

ru
ct

ur
e

is
 u

se
d
 to

 s
et

 o
ff

a
 d

a
ta

 a
ttr

ib
ut

e
o
r

g
ro

up
 o

f
d
a
ta

 a
ttr

ib
ut

es
 th

a
t m

a
y

(o
r

m
us

t)
re

p
ea

t t
he

m
se

lv
es

 a

sp
ec

ifi
ed

 n
um

b
er

 o
f
tim

es
 f
o
r

a
 s

in
g
le

 i
ns

ta
nc

e
o
f
th

e
d
a
ta

 fl
 o

w
.

 Th
e

m
in

im
um

 n
um

b
er

 o
f
re

p
et

iti
o
ns

 i
s

us
ua

lly
 z

er
o

o
r

 o
ne

 .

 Th
e

m
a
xi

m
um

 n
um

b
er

 o
f
re

p
et

iti
on

s
m

a
y

b
e

sp
ec

ifi
ed

a
s

“n
”

m
ea

ni
ng

 “
m

a
ny

”
w

he
re

 th
e

a
ct

ua
l n

um
b
er

 o
f

in
st

a
nc

es
 v

a
ri
es

 f
o
r

ea
ch

 i
ns

ta
nc

e
o
f
th

e
d
a
ta

 fl
 o

w
.

 CL
A

IM

 PO
LI
C

Y
 N

U
M

B
ER

 PO

LI
C

Y
H

O
LD

ER
 N

A
M

E

 PO
LI
C

Y
H

O
LD

ER
 A

D
D

RE
S
S

 0
 {

 D
E
P
E
N

D
E
N

T
N

A
M

E
 ⴙ

 D

E
P
E
N

D
E
N

T’
S
 R

E
LA

TI
O

N
S
H

IP
 }

 N
 ⴙ

 1
 {

 EX
P
E
N

S
E
 D

E
S
C
R
IP

TI
O

N
 ⴙ

 SE

R
V

IC
E
 P

R
O

V
ID

E
R
 ⴙ

 EX

P
E
N

S
E
 A

M
O

U
N

T }
 N

 A
n

in
st

a
nc

e
o
f
 CL

A
IM

 c
o
ns

is
ts

 o
f:

 PO
LI
C

Y
 N

U
M

B
ER

 a
nd

 PO
LI
C

Y
H

O
LD

ER
 N

A
M

E
a
nd

 PO
LI
C

Y
H

O
LD

ER
 A

D
D

RE
S
S
 a

nd

 z
e
ro

 o
r

m
o
re

 i
n
st

a
n
ce

s
o
f:

 D

E
P
E
N

D
E
N

T
N

A
M

E
 a

n
d

 D

E
P
E
N

D
E
N

T’
S
 R

E
LA

TI
O

N
S
H

IP
 a

n
d

 o
n
e
 o

r
m

o
re

 i
n
st

a
n
ce

s
o
f:

 EX

P
E
N

S
E
 D

E
S
C
R
IP

TI
O

N
 a

n
d

 SE

R
V

IC
E
 P

R
O

V
ID

E
R
 a

n
d

 EX

P
E
N

S
E
 A

C
C
O

U
N

T

 O
p
ti
o
n
a
l
A

tt
ri

b
u
te

s —
Th

e
o
p
tio

na
l n

o
ta

tio
n

in
d
ic

a
te

s
th

a
t a

n
a
ttr

ib
ut

e,
 o

r
g
ro

up
 o

f
a
ttr

ib
ut

es
 i
n

a
 s

eq
ue

nc
e

o
r

se
le

ct
io

n
d
a
ta

 s
tr
uc

tu
re

,
m

a
y

no
t b

e
in

cl
ud

ed
 i
n

a
ll

in
st

a
nc

es
 o

f
a
 d

a
ta

 fl
 o

w
.

N
ot

e:
 F

or
 th

e
re

p
et

iti
on

 d
a
ta

 s
tru

ct
ur

e,
 a

 m
in

im
um

 o
f “

ze
ro

”
is

 th
e

sa
m

e
a
s

m
a
ki

ng
 th

e
en

tir
e

re
p
ea

tin
g
 g

ro
up

 “
op

tio
na

l.”

 CL
A

IM

 PO
LI
C

Y
 N

U
M

B
ER

 PO

LI
C

Y
H

O
LD

ER
 N

A
M

E

 PO
LI
C

Y
H

O
LD

ER
 A

D
D

RE
S
S

 (S
P
O

U
S
E
 N

A
M

E
 ⴙ

 D

A
TE

 O
F

B
IR

TH
)
ⴙ

 .
 .
 .

 A
n

in
st

a
nc

e
o
f
 CL

A
IM

 c
o
ns

is
ts

 o
f:

 PO
LI
C

Y
 N

U
M

B
ER

 a
nd

 PO
LI
C

Y
H

O
LD

ER
 N

A
M

E
a
nd

 PO
LI
C

Y
H

O
LD

ER
 A

D
D

RE
S
S
 a

nd

 o
p
ti
o
n
a
ll
y

 ,
 SP

O
U

S
E
 N

A
M

E
 a

n
d

 D
A

TE
 O

F
B
IR

TH
 a

n
d
 .
 .

 .

 R
e
u
sa

b
le

 A
tt

ri
b
u
te

s —
Fo

r
g
ro

up
s

o
f
a
ttr

ib
ut

es
 th

a
t a

re

co
nt

a
in

ed
 i
n

m
a
ny

 d
a
ta

 fl
 o

w
s,

 i
t i

s
d
es

ir
a
b
le

 to
 c

re
a
te

 a

se
p
a
ra

te
 d

a
ta

 s
tr
uc

tu
re

 th
a
t c

a
n

b
e

re
us

ed
 i
n

o
th

er
 d

a
ta

st

ru
ct

ur
es

.

 DA
TE

 M

O
N

TH

 DA
Y

 YE
A

R

 Th
en

,
th

e
re

us
a
b
le

 s
tr
uc

tu
re

s
ca

n
b
e

in
cl

ud
ed

 i
n

o
th

er
 d

a
ta

fl o

w
 s

tr
uc

tu
re

s
a
s

fo
llo

w
s:

 O
RD

ER

 O
RD

ER
 N

U
M

B
ER

 .
 .
 .

 D

A
TE

 IN

V
O

IC
E

 IN

V
O

IC
E

N
U

M
B
ER

 .
 .
 .

 D

A
TE

 PA

Y
M

EN
T

 C

U
S
TO

M
ER

 N
U

M
B
ER

 .
 .
 .

 D

A
TE

265

266 Part Two Systems Analysis Methods

 Diverging and converging data fl ows are depicted as shown in Figure 8-12 . Notice
that we do not include a process to “route” the fl ows. The fl ows simply diverge from
or converge to a common fl ow. The following notations, not supported by all CASE
tools, are used in this book:

 1 The small square junction means “and.” This means that each time the process
is performed, it must input (or output) all the diverging or converging data
fl ows. (Some DFD notations simply place a between the data fl ows.)

 2 The small black junction means “exclusive or.” This means that each time the
process is performed, it must input (or output) only one of the diverging or
converging data fl ows. (Some DFD notations simply place an * between the

data fl ows.)
 3 In the absence of one diverging or converging data fl ow, the reader should

assume an “inclusive or.” This means that each time the process is performed,
it may input any or all of the depicted data fl ows.

 With the above rules, the most complex of business process and data fl ow combina-
tions can be depicted.

2

33

1

2

1

3 Process

data flow A

data flow B

data flow C

converging

data flow

A + B + C

data flow D

data flow E

data flow F

converging

data flow

D or E or F

diverging

data flow

U + V + W

diverging

data flow

X or Y or Z

data flow U

data flow V

data flow W

data flow X

data flow Y

data flow Z

data flow H

data flow J

data flow R

data flow T

data flow I data flow S3

F I G U R E 8 - 1 2 Diverging and Converging Data Flows

 The Process of Logical Process Modeling

 In systems analysis and in this chapter, we focus exclusively on logical process mod-
eling as a part of business requirements analysis. In your information system frame-
work, logical process models have a process focus and a SYSTEM OWNER and/or SYSTEM
USER perspective. They are typically constructed as deliverables of the requirements
analysis phase of a project. While logical process models are not concerned with
implementation details or technology, they may be constructed (through reverse

engineering) from existing application software, but this technology is much less
mature and reliable than the corresponding reverse data engineering technology.

Process Modeling Chapter Eight 267

 In the heyday of the original structured analysis methodologies, process mod-
eling was also performed in the problem analysis phase of systems analysis. Analysts
would build a physical process model of the current system, a logical model of the

current system, and a logical model of the target system. Each model would be built
top-down—from very general models to very detailed models. While conceptually
sound, this approach led to modeling overkill and signifi cant project delays, so much
so that even structured techniques guru Ed Yourdon called it “analysis paralysis.”

 Today, most modern structured analysis strategies focus exclusively on the
 logical model of the target system being developed. Instead of being built either
top-down or bottom-up, they are organized according to a commonsense strategy
called event partitioning. Event partitioning factors a system into subsystems
based on business events and responses to those events. This strategy for event-
driven process modeling is illustrated in Figure 8-13 and described as follows:

 1 A system context data fl ow diagram is constructed to establish initial project
scope. This simple, one-page data fl ow diagram shows only the system’s main
interfaces with its environment.

 2 A functional decomposition diagram is drawn to partition the system into
logical subsystems and/or functions. (This step is omitted for very small systems.)

 3 An event-response or use-case list is compiled to identify and confi rm the
business events to which the system must provide a response. The list will also
describe the required or possible responses to each event.

 4 One process, called an event handler , is added to the decomposition diagram for
each event. The decomposition diagram now serves as the outline for the system.

 5 Optionally, an event diagram is constructed and validated for each event. This
simple data fl ow diagram shows only the event handler and the inputs and out-
puts for each event.

 6 One or more system diagrams are constructed by merging the event diagrams.
These data fl ow diagrams show the “big picture” of the system.

 7 Primitive diagrams are constructed for event processes that require additional
processing details. These data fl ow diagrams show all the elementary processes,
data stores, and data fl ows for single events. 8 The logic of each elementary
process and 9 the data structure of each elementary data fl ow are described
using the tools described earlier in the chapter.

 The above process models collectively document all the business processing require-
ments for a system. We’ll demonstrate the technique in our SoundStage case study.

 The logical process model from systems analysis describes business processing
requirements of the system, not technical solutions. Recall from Chapter 4 that the
purpose of the decision analysis phase is to determine the best way to implement
those requirements with technology. In practice, this decision may have already been
standardized as part of an application architecture. For example, the SoundStage appli-
cation architecture requires that the development team fi rst determine if an accept-
able system can be purchased. If not, the current application architecture specifi es
that software built in-house be written in either Microsoft’s Visual Basic .NET or C# .

 Like all system models, process models are stored in the repository. Computer-aided
systems engineering (CASE) technology, introduced in Chapter 2, provides the repository
for storing the process model and its detailed descriptions. Most CASE products support
computer-assisted process modeling. Most support decomposition diagrams and data
fl ow diagrams. Some support extensions for business process analysis and redesign.

 Using a CASE product, you can easily create professional, readable process models
without using paper, pencil, eraser, and templates. The models can be easily modifi ed
to refl ect corrections and changes suggested by end users. Also, most CASE products
provide powerful analytical tools that can check your models for mechanical errors,
completeness, and consistency. Some CASE products can even help you analyze the
data model for consistency, completeness, and fl exibility. The potential time savings
and quality are substantial.

 event partitioning a

structured analysis strategy

in which a system is factored

into subsystems based on

business events and re-

sponses to those events.

 context data fl ow dia-
gram a diagram that shows

the system as a “black box”

and its main interfaces with its

environment.

 functional decomposi-
tion diagram a diagram

that partitions the system into

logical subsystems and/or

functions.

 event-response list a

list of the business events

to which the system must

provide a response similar to

a use-case list.

 event handler a process

that handles a given event in

the event-response list.

 event diagram a data fl ow

diagram for a single event

handler and the agents and

data stores that provide

inputs or receive outputs.

 system diagram a data

fl ow diagram that merges

event diagrams for the entire

system or part of the system.

 primitive diagram a data

fl ow diagram that depicts the

elementary processes, data

stores, and data fl ows for a

single event.

268 Part Two Systems Analysis Methods

 CASE tools do have their limitations. Not all process model conventions are
supported by all CASE products. Therefore, any given CASE product may force the
company to adapt its methodology’s process modeling symbols or approach so that it
is workable within the limitations of its CASE tool.

 All the SoundStage process models in the next section of this chapter were cre-
ated with Popkin’s CASE tool, System Architect 2001. For the case study, we provide

F I G U R E 8 - 1 3 Event-Driven Process Modeling Strategy

31

7

6

5

4

2

. . .

. . .

.

Task

2.2

Task

2.1
Task

2.4

Task

2.3

Use Cases List

event 1 response

event 2 response

event 3 response

event 4 response

 ...

response

response

response

. . .

The

System

The

System

Function 1 Function n

Event 1 Event 2 Event 3 Event 4 Event 5 Event n-2 Event n-1 Event n

Function 2

Event 1 Event 5 Event n

Event 3

Event 4

Event n-2

Event n-1

Event 2

Event n

Event 5

Event 1

Structured

English and/or

Decision Table

Data

Structure

8

9

Context DFD

Decomposition Diagram

Event Diagram Event Diagram Event Diagram

System Diagram

Primitive Diagram

Process Modeling Chapter Eight 269

you with the printouts exactly as they came off our printers. We did not add color. The
only modifi cations by the artist were the occasional bullets that call your attention to
specifi c items of interest on the printouts. All the processes, data fl ows, data stores,
and boundaries on the SoundStage process models were automatically cataloged into
 System Architect’ s project repository (which it calls an encyclopedia). Figure 8-14
 illustrates some of System Architect’ s screens as used for data modeling.

 How to Construct Process Models

 As a systems analyst or knowledgeable end user, you must learn how to draw decom-
position and data fl ow diagrams to model business process requirements. We will use
the SoundStage Entertainment Club project to teach you how to draw these process
models.

 Let’s assume the preliminary investigation and problem analysis phases of the
project have been completed and the project team understands the current system’s
strengths, weaknesses, limitations, problems, opportunities, and constraints. The team
has also already built the data model (in Chapter 7) to document business data re-
quirements for the new system. Team members will now build the corresponding
process models.

F I G U R E 8 - 1 4 CASE for Process Modeling (using System Architect 2001 by Popkin
Software & Systems

270 Part Two Systems Analysis Methods

 > The Context Data Flow Diagram

 First, we need to document the initial project scope. All projects have scope.
A project’s scope defi nes what aspect of the business a system or application is sup-
posed to support and how the system being modeled must interact with other sys-
tems and the business as a whole. In your information system framework, scope is
defi ned as the COMMUNICATION focus from the SYSTEM OWNERS’ perspective. It is docu-
mented with a context data fl ow diagram . Because the scope of any project is
always subject to change, the context diagram is also subject to constant change. A
synonym is environmental model [Yourdon, 1990].

 The context data fl ow diagram contains one and only one process (see Figure 8-15).
Sometimes, this process is identifi ed by the number “0”; however, our CASE tool did not
allow this. External agents are drawn around the perimeter. Data fl ows defi ne the inter-
actions of your system with the boundaries and with the external data stores.

 As shown in the context data fl ow diagram, the main purpose of the system is to
process NEW SUBSCRIPTIONS in response to SUBSCRIPTION OFFERS, create NEW PROMOTIONS for
products, and respond to MEMBER ORDERS by sending PACKING ORDERS to the warehouse
to be fi lled. (Notice that we made all data fl ow names singular.) Management has also
emphasized the need for VARIOUS REPORTS. Finally, the Web extensions to this system

F I G U R E 8 - 1 5 The Context Data Flow Diagram (created with System Architect 2001)

 context data fl ow
di agram a process model

used to document the scope

for a system. Also called

 environmental model.

Process Modeling Chapter Eight 271

1

2 2 2

3 3 3

F I G U R E 8 - 1 6 A Functional Decomposition Diagram (created with System Architect 2001)

require that the system provide members with VARIOUS INQUIRY RESPONSES regarding
orders and accounts.

 > The Functional Decomposition Diagram

 Recall that a decomposition diagram shows the top-down functional decomposition
or structure of a system. It also provides us with the beginnings of an outline for
drawing our data fl ow diagrams.

 Figure 8-16 is the functional decomposition diagram for the SoundStage project.
Let’s study this diagram. First, notice that the processes are depicted as rectangles, not
rounded rectangles. This is merely a limitation of our CASE tool’s implementation of
decomposition diagrams—you also may have to adapt to your CASE tool.

 The following is an item-by-item discussion of the decomposition diagram. The
circled numbers correspond to specifi c points of interest on the diagram.

 1 The root process corresponds to the entire system.
 2 The system is initially factored into subsystems and/or functions. These subsys-

tems and functions do not necessarily correspond to organization units on an
organization chart. Increasingly, analysts and users are being asked to ignore
organizational boundaries and to build cross-functional systems that streamline
processing and data sharing.

272 Part Two Systems Analysis Methods

 3 We like to separate the operational and reporting aspects of a system. Thus, we
factored each subsystem accordingly. Later, if this structure doesn’t make sense,
we can change it.

 Larger systems might have fi rst been factored into subsystems and functions. There
is no limit to the number of child processes for a parent process. Many authors used to
recommend a maximum of fi ve to nine processes per parent, but any such limit is too
artifi cial. Instead, structure the system such that it makes sense for the business!

 Factoring a parent process into a single child process doesn’t make sense. It
would provide no additional detail. Therefore, if a process is to be factored, it should
be factored into at least two child processes.

 > The Event-Response or Use-Case List

 After constructing the decomposition diagram, we next determine what business
events the system must respond to and what responses are appropriate. Events are
not hard to fi nd. Some of the inputs on the context diagram are associated with events,
but the context diagram rarely shows all the events. Essentially, there are three types
of events:

 • External events are so named because they are initiated by external agents.
When these events happen, an input data fl ow occurs for the system. For ex-
ample, the event CUSTOMER PLACES A NEW ORDER is recognized in the form of the
input data fl ow ORDER from the external agent CUSTOMER.

 • Temporal events trigger processes on the basis of time, or something that
merely happens. When these events happen, an input control fl ow occurs.
Examples of temporal events include TIME TO REMIND CUSTOMERS TO PAY PAST
INVOICES or END OF MONTH.

 • State events trigger processes based on a system’s change from one state or
condition to another. Like temporal events, state events will be illustrated as an
input control fl ow.

 Information systems usually respond mostly to external and temporal events. State
events are usually associated with real-time systems such as elevator or robot control.

 One of the more popular and successful approaches for fi nding and identifying
events and responses is a technique called use cases (Chapter 6) developed by
Dr. Ivar Jacobson. This technique is rooted in object-oriented analysis but is easily
adapted to structured analysis and data fl ow diagramming. Use-case analysis is the
process of identifying and modeling business events, who initiated them, and how
the system responds to them.

 Use cases identify and describe necessary system processes from the perspective
of users. Each use case is initiated by users or external systems called actors. An actor
is anything that needs to interact with the system to exchange information and so is
analogous to external agents in DFDs.

 The context data fl ow diagram identifi es the key actors as external agents. It
also identifi es some of the use cases. The key word is “some.” Recall that the context
diagram shows only the main inputs and outputs of a system. There are almost always
more inputs and outputs than are depicted—usually many more. Some of the inputs
and outputs depicted are really composites of many types of and variations on those
inputs and outputs (e.g., the “various reports” on our context diagram). Also, the con-
text diagram may not illustrate the many exception inputs and outputs such as errors,
inquiries, and follow-ups.

 A partial table of use cases for the SoundStage project is illustrated in Figure 8-17
(pages 273–274). For each use case, you will fi nd:

 • The actor that initiates the event (which will become an external agent on our
DFDs).

 • The event (which will be handled by a process on our DFDs).

 use case an analysis tool

for fi nding and identifying

business events and

responses.

Process Modeling Chapter Eight 273

F I G U R E 8 - 1 7 A Partial Use-Case Table

Actor/External Agent Event (or Use Case) Trigger Responses

 Marketing Establishes a new
membership subscription
plan to entice new
members.

 NEW MEMBER
SUBSCRIPTION PROGRAM

 Generate SUBSCRIPTION
PLAN CONFIRMATION.

 Create AGREEMENT in the
database.

 Marketing Establishes a new
membership resubscrip-
tion plan to lure back
former members.

 PAST MEMBER
RESUBSCRIPTION
PROGRAM

 Generate SUBSCRIPTION
PLAN CONFIRMATION.

 Create AGREEMENT in the
database.

 Marketing Changes a subscription
plan for current members
(e.g., extending the
fulfi llment period).

 SUBSCRIPTION PLAN
CHANGE

 Generate AGREEMENT
CHANGE CONFIRMATION.

 Update AGREEMENT in the
database.

 (time) A subscription plan
expires.

 (current date) Generate AGREEMENT
CHANGE CONFIRMATION.

 Logically Delete (void)
AGREEMENT in the
database.

 Marketing Cancels a subscription
plan before its planned
expiration date.

 SUBSCRIPTION PLAN
CANCELLATION

 Generate AGREEMENT
CHANGE CONFIRMATION.

 Logically Delete (void)
AGREEMENT in the
database.

 Member Joins the club by
subscribing. (“Take any 12
CDs for one penny
and agree to buy 4 more
at regular prices within
two years.”)

 NEW SUBSCRIPTION Generate MEMBER
DIRECTORY UPDATE
CONFIRMATION.

 Create MEMBER in the
database.

 Create fi rst MEMBER
ORDER and MEMBER
ORDERED PRODUCTS in the
database.

 Member Changes address
(including e-mail and
privacy code).

 CHANGE OF ADDRESS Generate MEMBER
DIRECTORY UPDATE
CONFIRMATION.

 Update MEMBER in the
database.

 Accounts Receivable Changes member’s credit
status.

 CHANGE OF CREDIT

STATUS
 Generate CREDIT
DIRECTORY UPDATE
CONFIRMATION.

 Update MEMBER in the
database.

274 Part Two Systems Analysis Methods

F I G U R E 8 - 1 7 (Concluded)

Actor/External Agent Event (or Use Case) Trigger Responses

 (time) 90 days after Marketing
decides to no longer sell a
product.

 (current date) Generate CATALOG
CHANGE CONFIRMATION.

 Logically Delete
(deactivate) PRODUCT
in the database.

 Member Wants to pick products for
possible purchase. (Logical
requirement is driven by
vision of Web-based access
to information.)

 PRODUCT INQUIRY Generate CATALOG
DESCRIPTION.

 Member Places order. NEW MEMBER ORDER Generate MEMBER ORDER
CONFIRMATION.

 Create MEMBER ORDER
and MEMBER ORDERED
PRODUCT in the
database.

 Member Revises order. MEMBER ORDER

CHANGE REQUEST
 Generate MEMBER ORDER
CONFIRMATION.

 Update MEMBER ORDER
and/or MEMBER ORDERED
PRODUCTS in the
database.

 Member Cancels order. MEMBER ORDER

CANCELLATION
 Generate MEMBER ORDER
CONFIRMATION.

 Logically Delete MEMBER
ORDER and MEMBER
ORDERED PRODUCTS in the
database.

 (time) 90 days after the order. (current date) Physically Delete MEMBER
ORDER and MEMBER
ORDERED PRODUCTS in the
database.

 Member Inquires about his or her
purchase history (three-year
time limit).

 MEMBER PURCHASE

INQUIRY
 Generate MEMBER
PURCHASE HISTORY.

 (each) Club (end of month). (current date) Generate MONTHLY SALES
ANALYSIS.

 Generate MONTHLY
MEMBER AGREEMENT
EXCEPTION ANALYSIS.

 Generate MEMBERSHIP
ANALYSIS REPORT.

Process Modeling Chapter Eight 275

F I G U R E 8 - 1 8 A Partial Event Decomposition Diagram (created with System Architect 2001)

 • The input or trigger (which will become a data or control fl ow on our DFDs).
 • All outputs and responses (which will also become data fl ows on our DFDs).

Notice that we used parentheses to denote temporal events.
 • Outputs (but be careful not to imply implementation). When we used the term

 report we were not necessarily implying a paper-based document. Notice that
our responses include changes to stored data about entities from the data model.
These include create new instances of the entity, update existing instances of
the entity, and delete instances of the entity.

 The number of use cases for a system is usually quite large. This is necessary to
ensure that the system designers build a complete system that will respond to all the
business events. As a fi nal step, consider assigning each event to one of the subsystems
and functions identifi ed in the decomposition diagram (drawn in the previous step).

 > Event Decomposition Diagrams

 To further partition our functions in the decomposition diagram, we simply add event
handling processes (one per use case) to the decomposition (see Figure 8-18). If the
entire decomposition diagram will not fi t on a single page, add separate pages for

276 Part Two Systems Analysis Methods

subsystems or functions. The root process on a subsequent page should be duplicated
from an earlier page to provide a cross-reference. Figure 8-18 shows only the event
processes for the MEMBERSHIPS subsystem. Events for the PROMOTIONS and ORDERS func-
tions would be on separate pages.

 There is no need to factor the decomposition diagram beyond the events and
reports. That would be like outlining down to the fi nal paragraphs or sentences in a
paper. The decomposition diagram, as constructed, will serve as a good outline for the
later data fl ow diagrams.

 > Event Diagrams

 Using our decomposition diagram as an outline, we can draw one event diagram for
each event process. This is an optional, but useful, step. An event diagram is a con-
text diagram for a single event. It shows the inputs, outputs, and data store interactions
for the event. By drawing an event diagram for each process, users do not become
overwhelmed by the overall size of the system. They can examine each use case as its
own context diagram.

 Before drawing any event diagrams, you may fi nd it helpful to have a list of all the
data stores available. Because SoundStage already completed the data model for this
project, team members simply created a list of each entity name on that data model
(see margin). It is useful to review the defi nition and attributes for each entity/data
store on the list.

 Most event diagrams contain a single process—the same process that was named
to handle the event on the decomposition diagram. For each event, illustrate the
following:

 • The inputs and their sources. Sources are depicted as external agents. The data
structure for each input should be recorded in the repository.

 • The outputs and their destinations. Destinations are depicted as external agents.
The data structure for each output should be recorded in the repository.

 • Any data stores from which records must be “read” should be added to the event
diagram. Data fl ows should be added and named to refl ect what data is read by
the process.

 • Any data stores in which records must be created, deleted, or updated should be
included in the event diagram. Data fl ows to the data stores should be named to
refl ect the nature of the update.

 The simplicity of event diagramming makes the technique a powerful communication
tool between users and technical professionals.

 DATA STORES
(ENTITIES)

 AGREEMENTS

 MEMBERS

 MEMBER ORDERS

 MEMBER ORDERED PRODUCTS

 PRODUCTS

 PROMOTIONS

 TITLE PROMOTIONS

F I G U R E 8 - 1 9 A Simple External Event Diagram (created with System Architect 2001)

 event diagram a data

fl ow diagram that depicts the

context for a single event.

Process Modeling Chapter Eight 277

 A complete set of event diagrams for the SoundStage case study would double
the length of this chapter without adding substantive educational value. Thus, we will
demonstrate the model with three simple examples.

 Figure 8-19 illustrates a simple event diagram for an external event. Most systems
have many such simple event diagrams because all systems must provide for routine
maintenance of data stores.

 Figure 8-20 depicts a somewhat more complex external event, one for the busi-
ness transaction MEMBER ORDER. Notice that business transactions tend to use and up-
date more data stores and have more interactions with external agents.

 Can an event diagram have more than one process on it? The answer is maybe.
Some event processes may trigger other event processes. In this case, the combination
of events should be shown on a single event diagram. In our experience, most event
diagrams have one process. An occasional event diagram may have two or perhaps
three processes. If the number of processes exceeds three, you are probably drawing
what is called an activity diagram (prematurely), not an event diagram—in other
words, you’re getting too involved with details. Most event processes do not directly
communicate with one another. Instead, they communicate across shared data stores.
This allows each event process to do its job without worrying about other processes
keeping up.

F I G U R E 8 - 2 0 A More Complex External Event Diagram (created with System Architect 2001)

278 Part Two Systems Analysis Methods

 Figure 8-21 shows an event diagram for a temporal event. We added an external
entity CALENDAR or TIME to serve as a source for this control fl ow.

 > The System Diagram(s)

 The event diagrams serve as a meaningful context to help users validate the accuracy
of each event to which the system must provide a response. But these events do
not exist in isolation. They collectively defi ne systems and subsystems. It is, therefore,
useful to construct one or more system diagrams that show all the events in the
system or a subsystem.

 The system diagram is said to be “exploded” from the single process that we cre-
ated on the original context diagram (Figure 8-15). The system diagram shows either
(1) all the events for the system on a single diagram or (2) all the events for a single
subsystem on a single diagram. Depending on the size of the system, a single diagram
may be too large.

 While the SoundStage project is moderate in size, it still responds to too many
events to squeeze all those processes onto a single diagram. Instead, Bob Martinez
elected to draw a subsystem diagram for each of the major subsystems. Figure 8-22
(pages 280–281) shows the subsystem diagram for the ORDERS SUBSYSTEM . It consoli-
dates all the transaction and report-writing events for that subsystem onto a single
diagram. (The reporting events may be omitted or consolidated into composites if the
diagram is too cluttered.) Notice that the system diagram demonstrates how event
processes communicate using shared data stores.

 We now have a set of event diagrams (one per business event) and one or
more system/subsystem diagrams. The event diagram processes are merged into
the system diagrams. It is very important that each of the data fl ows, data stores,
and external agents that were illustrated on the event diagrams be represented on
the system diagrams. Notice that we duplicate data stores and external agents to
minimize crossing of lines. Most CASE tools include facilities to check for balancing
errors.

F I G U R E 8 - 2 1 A Temporal Event Diagram (created with System Architect 2001)

Process Modeling Chapter Eight 279

 Before we leave this topic, we should introduce the concept of balancing.
 Balancing is the synchronizing of data fl ow diagrams at different levels of detail to
preserve consistency and completeness of the models. Balancing is a quality assur-
ance technique. Balancing requires that, if you explode a process to another DFD
to reveal more detail, you must include the same data fl ows and data stores on the
child diagram that you included in the parent diagram’s original process (or their
logical equivalents).

 > Primitive Diagrams

 Some event processes on the system diagram may be exploded into a primitive data
fl ow diagram to reveal more detail. This is especially true of the more complex busi-
ness transaction processes (e.g., order processing). Other events, such as generation
of reports, are simple enough that they do not require further explosion.

 Event processes with more complex event diagrams should be exploded into a
more detailed, primitive data fl ow diagram such as that illustrated in Figure 8-23 on
page 282. This primitive DFD shows detailed processing requirements for the event.
This DFD shows several elementary processes for the event process. Each elementary
process is cohesive—that is, it does only one thing. On a primitive diagramming it is
permissable to have fl ows connecting the elementary processes.

 When Bob drew this primitive data fl ow diagram, he had to add new data fl ows be-
tween the processes. In doing so, he tried to practice good data conservation, making
sure each process has only the data it truly needs. The data structure for each data fl ow
had to be described in his CASE tool’s repository. Also notice that he used data fl ow
junctions to split and merge appropriate data fl ows on the diagram.

 Note that the primitive DFD contains some new exception data fl ows that were
 not introduced in Figure 8-22 . It should not be hard to imagine a computer program
structure when examining this DFD.

 The combination of the context diagram, system diagram, event diagrams, and
primitive diagrams completes our process models. Collectively, this is the process
model. A well-crafted and complete process model can effectively communicate
business requirements between end users and computer programmers, elimi-
nating much of the confusion that often occurs in system design, programming,
and implementation.

 > Completing the Specifi cation

 The data fl ow diagrams are complete. Where do you go from here? That depends
on your choice of methodology. If you are practicing the pure structured analysis
methodology (from which data fl ow diagramming was derived), you must com-
plete the specifi cation. To do so, each data fl ow, data store, and elementary process
(meaning one that is not further exploded into a more detailed DFD) must be
described to the encyclopedia or data dictionary. CASE tools provide facilities for
such descriptions.

 Data fl ows are described by data structures, as explained earlier in this chapter.
 Figure 8-24 (page 283) demonstrates how System Architect 2001, the SoundStage
CASE tool, can be used to describe a data fl ow. Notice that this CASE tool uses an
algebraic notation for data structures, as described in this chapter. Ultimately, each
data element or attribute should also be described in the data dictionary to specify
data type, domain, and default value (as was described in Chapter 7). Data stores
correspond to all instances of a data entity from our data model. Thus, they are best
described in the data dictionary that corresponds to each entity and its attributes, as
was taught in Chapter 7. Some analysts like to translate each data store’s content into
a relational data structure similar to that used in Figure 8-24 to describe data fl ows.
We consider this to be busywork—let the entity descriptions from the data model
describe the contents of a data store. Besides, defi ning data structures for data stores

 balancing a concept

that requires that data fl ow

diagrams at different levels of

detail refl ect consistency and

completeness.

F I G U R E 8 - 2 2 A System Diagram (created with System Architect 2001)

280 Part Two Systems Analysis Methods

Process Modeling Chapter Eight 281

282 Part Two Systems Analysis Methods

F I G U R E 8 - 2 3 A Primitive Diagram (created with System Architect 2001)

Process Modeling Chapter Eight 283

could lead to synchronization errors between the data and process models—if you
would make any changes to an entity in the data model, you would be forced to
remember to make those same changes in the corresponding data store’s data struc-
ture. This requires too much effort (unless you have a CASE tool capable of doing it
automatically for you).

 Process Logic Decomposition diagrams and data fl ow diagrams will prove very ef-
fective tools for identifying processes, but they are not good at showing the logic in-
side those processes. Eventually, we will need to specify detailed instructions for the
elementary processes on a data fl ow diagram. Consider, for example, an elementary
process named CHECK CUSTOMER CREDIT. By itself, the named process is insuffi cient to
explain the logic needed to CHECK CUSTOMER CREDIT. We need an effective way to model
the logic of an elementary process. Ideally, our logic model should be equally effective
for communicating with users (who must verify the business accuracy of the logic)
and programmers (who may have to implement the business logic in a programming
language).

 To address this problem, we require a tool that marries some of the advantages of
natural English with some of the rigor of programming logic tools. Structured English

F I G U R E 8 - 2 4 A Data Flow (created with System Architect 2001)

 Structured English a

language syntax for speci-

fying the logic of a process.

284 Part Two Systems Analysis Methods

is a language and syntax, based on the relative strengths of structured programming
and natural English, for specifying the underlying logic of elementary processes on
process models (such as data fl ow diagrams). An example of Structured English is
shown in Figure 8-25 . (The numbers and letters at the beginning of each statement
are optional. Some end users like them because they further remove the programming
“look and feel” from the specifi cation.)

 Structured English is not pseudocode. It does not concern itself with declarations,
initialization, linking, and such technical issues. It does, however, borrow some of the
logical constructs of structured programming to overcome the lack of structure and
precision in the English language. Think of it as the marriage of natural English lan-
guage with the syntax of structured programming.

 The overall structure of a Structured English specifi cation is built using the fun-
damental constructs that have governed structured programming for nearly three de-
cades. These constructs are summarized in Figure 8-26 .

 Structured English should be precise enough to clearly specify the required busi-
ness procedure to a programmer or user. Yet it should not be so infl exible that a pro-
grammer or user spends hours arguing over syntax.

 Many processes are governed by complex combinations of conditions that are not
easily expressed with Structured English. This is most commonly encountered in busi-
ness policies. A policy is a set of rules that governs some process in the business.

 In most fi rms, policies are the basis for decision making. For instance, a credit
card company must bill cardholders according to various policies that adhere to re-
strictions imposed by state and federal governments (maximum interest rates and
minimum payments, for instance). Policies consist of rules that can often be translated
into computer programs if the users and systems analysts can accurately convey those
rules to the computer programmer.

 There are ways to formalize the specifi cation of policies and other complex com-
binations of conditions. One such logic modeling tool is a decision table . While
people who are unfamiliar with them tend to avoid them, decision tables are very
useful for specifying complex policies and decision-making rules. Figure 8-27 illus-
trates the three components of a simple decision table:

 • Condition stubs (the upper rows) describe the conditions or factors that will
affect the decision or policy.

 • Action stubs (the lower rows) describe, in the form of statements, the possible
policy actions or decisions.

 • Rules (the columns) describe which actions are to be taken under a specifi c
combination of conditions.

 The fi gure depicts a check-cashing policy that appears on the back of a check-
cashing card for a grocery store. This same policy has been documented with a decision

1. For each CUSTOMER NUMBER in the data store CUSTOMERS:

 a. For each LOAN in the data store LOANS that matches the above CUSTOMER NUMBER:

 1) Keep a running total of NUMBER OF LOANS for the CUSTOMER NUMBER.

 2) Keep a running total of ORIGINAL LOAN PRINCIPAL for the CUSTOMER NUMBER.

 3) Keep a running total of CURRENT LOAN BALANCE for the CUSTOMER NUMBER.

 4) Keep a running total of AMOUNTS PAST DUE for the CUSTOMER NUMBER.

 b. If the TOTAL AMOUNTS PAST DUE for the CUSTOMER NUMBER is greater than 100.00 then

 1) Write the CUSTOMER NUMBER and data in the data flow LOANS AT RISK.

 Else

 1) Exclude the CUSTOMER NUMBER and data from the data flow LOANS AT RISK.

F I G U R E 8 - 2 5

Using Structured
English to
Document an
Elementary Process

 decision table a tabular

form of presentation that

specifi es a set of conditions

and their corresponding

actions.

 policy a set of rules that

governs how a process is to

be completed.

Process Modeling Chapter Eight 285

Structured English Procedural Structures

Construct Sample Template

Sequence of steps—Unconditionally perform a

sequence of steps.

Simple condition steps—If the specified condition is

true, then perform the first set of steps. Otherwise,

perform the second set of steps.

Use this construct if the condition has only two

possible values.

(Note: The second set of conditions is optional.)

Complex condition steps—Test the value of the

condition and perform the appropriate set of steps.

Use this construct if the condition has more than two

values.

One-to-many iteration—Repeat the set of steps until

the condition is false.

Use this construct if the set of steps must be performed

at least once, regardless of the conditionís initial value.

Zero-to-many iteration—Repeat the set of steps until

the condition is false.

Use this construct if the set of steps is conditional

based on the condition’s initial value.

Multiple conditions—Test the value of multiple

conditions to determine the correct set of steps.

Use a decision table instead of nested if-then-else

Structured English constructs to simplify the

presentation of complex logic that involves

combinations of conditions.

A decision table is a tabular presentation of complex

logic in which rows represent conditions and possible

actions and columns indicate which combinations of

conditions result in specific actions.

[Step 1]

[Step 2]

…

[Step n]

If [truth condition]

 then

 [sequence of steps or other conditional steps]

else

 [sequence of steps or other conditional steps]

End If

Do the following based on [condition]:

 Case 1: If [condition] = [value] then

 [sequence of steps or other conditional steps]

Case 2: If [condition] = [value] then

 [sequence of steps or other conditional steps]

…

 Case n: If [condition] = [value] then

 [sequence of steps or other conditional steps]

End Case

Repeat the following until [truth condition]:

 [sequence of steps or conditional steps]

End Repeat

Do while [truth condition]:

 [sequence of steps or conditional steps]

End Do

 - OR -

For [truth condition]:

 [sequence of steps or conditional steps]

End For

Although it isn’t a Structured English construct, a decision

table can be named, and referenced within a Structured English

procedure.

DECISION TABLE

[Condition]

[Condition]

[Condition]

[Sequence of steps or

conditional steps]

[Sequence of steps or

conditional steps]

[Sequence of steps or

conditional steps]

 Rule Rule Rule Rule

 value value value value

 value value value value

 value value value value

X

X X

X

F I G U R E 8 - 2 6 Structured English Constructs

286 Part Two Systems Analysis Methods

table. Three conditions affect the check-cashing decision: the type of check, whether
the amount of the check exceeds the maximum limit, and whether the company that
issued the check is accredited by the store. The actions (decisions) are either to cash
the check or to refuse to cash the check. Notice that each combination of conditions
defi nes a rule that results in an action, denoted by an x.

 Both decision tables and Structured English can describe a single elementary pro-
cess. For example, a legitimate statement in a Structured English specifi cation might
read DETERMINE WHETHER OR NOT TO CASH THE CHECK USING THE DECISION TABLE, LMART CHECK
CASHING POLICY.

 Elementary processes can be described by Structured English and/or decision
tables. Because they are “elementary,” they should be described in one page or less
of either tool. Figure 8-28 , demonstrates how System Architect 2001 can be used to
describe an elementary process. Like many CASE tools, System Architect does not sup-
port decision table construction. Fortunately, decision tables are easily constructed
using the table features in most word processors and spreadsheets.

A SIMPLE POLICY STATEMENT

CHECK CASHING IDENTIFICATION CARD

A customer with check cashing privileges is entitled to cash

personal checks of up to $75.00 and payroll checks from companies

pre-approved by LMART. This card is issued in accordance with the

terms and conditions of the application and is subject to change

without notice. This card is the property of LMART and shall be

forfeited upon request of LMART.

SIGNATURE

EXPIRES May 31, 2006

THE EQUIVALENT POLICY DECISION TABLE

Conditions and Actions

C1: Type of check

C2: Check amount less than or equal to $75.00

C3: Company accredited by LMART

A1: Cash the check

A2: Don’t cash the check

Rule 1

personal

yes

doesn’t

matter

X

Rule 2

payroll

doesn’t

matter

yes

X

Rule 3

personal

no

doesn’t

matter

X

Rule 4

payroll

doesn’t

matter

no

X

Condition
Stubs

Action
Stubs

Rules

F I G U R E 8 - 2 7 A Sample Decision Table

Process Modeling Chapter Eight 287

F I G U R E 8 - 2 8 An Elementary Process (created with System Architect 2001)

 1. Process modeling is a technique for organizing and
documenting the process requirements and design
for a system. This chapter focused on a process
model called a data fl ow diagram, which depicts
the fl ow of data through a system’s processes.

 2. External agents are entities that are outside the
scope of a system and project but that provide
net inputs to or net outputs from a system. As
such, they form the boundary of the system.

 3. Data stores present fi les of data to be used and
maintained by the system. A data store on a pro-
cess model corresponds to all instances of an
entity on a data model.

 4. A system is a process. A process is work per-
formed on, or in response to, inputs and
conditions.

 5. Just as systems can be recursively decomposed
into subsystems, processes can be recursively
decomposed into subprocesses. A decom-
position diagram shows the functional de-
composition of a system into processes and
subprocesses. It is a planning tool for subse-
quent data fl ow diagrams.

 6. Logical processes show essential work to be per-
formed by a system without showing how the
processes will be implemented. There are three
types of logical processes: functions (very high
level), events (middle level of detail), and elemen-
tary processes (very detailed).

 7. Elementary processes are further described by
procedural logic. Structured English is a tool for
expressing this procedural logic. Structured

 Chapter Review

English is a derivative of structured programming
logic constructs married to natural English.

 8. Complex elementary processes may be described
by policies that are expressed in decision tables,
which show complex combinations of conditions
that result in specifi c actions.

 9. Data fl ows are the inputs to and the outputs from
processes. They also illustrate data store accesses
and updates.

 10. All data fl ows consist of either other data fl ows or
discrete data structures that include descriptive
attributes. A data fl ow should contain only the
amount of data needed by a process; this is called
data conservation.

 11. Process modeling may be used in different types
of projects, including business process redesign
and application development. For application de-
velopment projects, this chapter taught an event-
driven data fl ow diagramming strategy as follows:

 a. Draw a context data fl ow diagram that shows
how the system interfaces to other systems,
the business, and external organizations.

 b. Draw a functional decomposition diagram that
shows the key subsystems and/or functions
that comprise the system.

 c. Create an event list that identifi es the external
and temporal events to which the system must

provide a response. External events are triggered
by the external agents of a system. Temporal
events are triggered by the passing of time.

 d. Update the decomposition diagram to include
processes to handle the events (one process
per event).

 e. For each event, draw an event diagram that
shows its interactions with external entities,
data stores, and, on occasion, other triggers to
other events.

 f. Combine the event diagrams into one or more
system diagrams.

 g. For each event on the system diagram,
either describe it as an elementary process
using Structured English or explode it
into a primitive data fl ow diagram that
includes elementary processes that must
be subsequently described by either
Structured English or decision tables, or by
both. When processes are exploded on data
fl ow diagrams to reveal greater detail, it is
important to maintain consistency between
the different types of diagrams; this is called
synchronization.

 12. Most computer-aided software engineering tools
support both decomposition diagramming and
data fl ow diagramming.

288 Part One The Context of Systems Development Projects

 1. Why are logical models valuable tools for systems
analysts?

 2. What is a data fl ow diagram, and what are its
common synonyms?

 3. How is a data fl ow diagram different from a
fl owchart?

 4. Why is a system considered a process?
 5. What is decomposition, and why is it

needed? What is the tool used to depict the
decomposition of a system?

 6. What are the three types of logical processes?
 7. What are the common mechanical errors when

depicting processes on a data fl ow diagram and
other process models?

 8. What is Structured English, and why is it used
when constructing process logic?

 9. What are the naming conventions of logical data
fl ows?

 10. What is data conservation and why is it needed?
 11. What are external agents and why can the

external agents of an information system change?
 12. What are some examples of the event-driven

modeling used in systems analysis?
 13. What process model is used to document the

scope for an information system, and what is
depicted in this process model?

Review Questions

 1. You are working as a student assistant for an engi-
neering fi rm and are paid by the hour. Every two
weeks, you turn in a time sheet to your supervisor,
and three workdays later, your paycheck is direct

deposited into your checking account. List the
different entities or objects, logical processes, data
fl ows, and data stores that are involved, starting
from the time you submit your time sheet.

Problems and Exercises

288 Part Two Systems Analysis Methods

1

2

 2. Match the terms in the fi rst column with the
defi nitions or examples in the second column:

 1. Structured English A. Disassembling a system
into its components

 2. Process B. Logical unit of
work that must be
completed as a whole

 3. Primitive process C. Tool for logic modeling
 4. Policy D. Set of business

activities that are
related and ongoing

 5. DFD E. Technique for organi-
zing and documenting
a system’s processes

 6. Decision table F. Procedure
specifi cation language

 7. Decomposition G. Depiction of system
data fl ow

 8. Event H. Depiction of system
decomposition

 9. Function I. Work performed by
system in response to
incoming data fl ows

 10. Hierarchy chart J. Detailed, separate
activity/task needed
to complete event
response

 11. Process modeling K. Process completion
rules

 3. In a decomposition diagram, how do you show
one child for a parent, and how do you show
more than one parent for a child? Why don’t the
connections on a decomposition diagram show
arrowheads, like most other diagrams? Why aren’t
the connections named?

 4. Consider carpool lanes in Sacramento, California.
Between the hours of 6:00 a.m. and 10:00 a.m. and
3:00 p.m. and 7:00 p.m., Monday through Friday,
they are restricted to passenger vehicles with
two or more people of any age, motorcycles, and
hybrid (gas/electric) vehicles with one or more
persons. For all other vehicles or conditions, the
driver is subject to a traffi c citation. Outside those
time periods, there are no restrictions as to their
usage. Based upon this information, write a policy
decision table for use by highway patrol offi cers.

 5. You work in the headquarters offi ce of the
investigation division of a law enforcement
agency and are developing an automated case-
tracking system for your headquarters offi ce
to replace the current manual system. Cases
are opened when a request-for-investigation
form is received from other divisions in your
agency; no cases are initiated internally. A new
case folder is created, containing any criminal

record information based upon checking
various criminal justice databases, then sent
to the appropriate fi eld investigation offi ce.
When the case is completed, headquarters
receives an investigation report from the fi eld
offi ce, the case is closed, and a copy of the
completed investigation report is sent to the
originating offi ce. Every week, a listing showing
cases opened, completed, and in progress is
sent to each fi eld offi ce. What are some of the
strategies you might use for setting the scope and
boundaries of the system?

 6. Based upon the preceding question, what did you
determine are the system’s:

 a. Net inputs
 b. Net outputs
 c. External agents
 d. External stores

 7. Now that you have your net inputs, net outputs,
external agents, and external stores, draw a
context data fl ow diagram.

 8. You are now modeling the logic of each
elementary process for the case-tracking system
and have decided to write it in Structured English
in order to communicate effectively with both
users and programmers. For the Open/Closed/In
Progress Case Listing Report to Field Offi ce, write
a Structured English statement to document
the process of keeping a running total of cases
opened, closed, and in progress. Additionally,
you want to add another column to the report
showing the number of cases still in progress that
are over six months old.

 9. You are now ready to create the functional
decomposition diagram for the case-tracking
system. What is the root process for the function
decomposition diagram? What subsystems would
you typically include? What processes would you
show, and to what subsystem would they belong?
Use this information to create a functional
decomposition diagram.

 10. Your next step, after drawing the decomposition
diagram, is creating the event-response or use-
case list. There should be a use case for each
event initiated by an external agent. Temporal
events should also be shown. For each external
agent, there should be at least one use case. Start
a partial use-case table that includes the events
 OTHER DIVISION SENDS REQUEST FOR INVESTIGATION and
 FIELD OFFICE SENDS COMPLETED INVESTIGATION REPORT.
Also include the event GENERATE OPEN/CLOSED/IN
PROGRESS CASE LISTING REPORT.

 11. An event diagram is equivalent to a context
diagram for one event. The event diagram
includes the inputs, outputs, and data store

Process Modeling Chapter Eight 289

Projects and Research

 1. Suppose you are starting work on a project for
an organization that has never used any modeling
techniques or tools in designing a system. (Yes, it is
hard to imagine, but it does exist.) Your manager is
reluctant to change from the way they have always
done things. Write a one - to two-page issue paper
(or a PowerPoint presentation as an alternative)
on why systems modeling is worth the time and
resources involved.

 2. The textbook uses the Gane and Sarson process
modeling notations and compares them to the
notations used by the DeMarco/Yourdon and
SSADM/IDEF0 process modeling methodologies.
Research at least two of these or other process
modeling methodologies, then compare and
contrast them.

 a. What other process modeling methodologies
did you fi nd?

 b. What, if any, are the signifi cant differences in
their process modeling methodologies, other
than in their notation methods?

 c. What are their similarities?
 d. Which notation method does your organization

use?
 e. If you were asked to recommend one of these

methodologies for your organization, which one
would you choose? Why?

 3. Until fairly recently, magazines and periodicals
were available in printed versions only. Publishers

are now offering an increasing number of
periodicals in either the traditional printed version
or in a digital format that can be downloaded over
the Internet. Consider the processes involved in
these two methods and:

 a. Create a high-level data fl ow diagram describing
the typical traditional methods of renewing a
subscription via mail to the print version of a
magazine.

 b. Create another high-level data fl ow diagram
describing the processes for renewing a
subscription via the Internet to the digital
format version of a magazine.

 c. What, if any, are the essential differences
between the two diagrams?

 d. Based upon the data fl ow diagrams, which
format is more effi cient in renewing a magazine
subscription? Do you think the same holds true
from the perspective of the subscriber? What
about from the perspective of the publisher?

 e. What about receiving and reading the
magazine? From your own perspective, what are
the advantages and disadvantages of a magazine
published in digital format versus the traditional
print version?

 4. In 1978, Tom DeMarco wrote what is considered to
be the classic text on structured systems analysis
methodology— Structured Analysis and System

Specifi cation. James Wetherbe is considered by the

290 Part Two Systems Analysis Methods

 A. Smallest meaningful
data segment

 B. Combination of data
fl ows that are similar

 C. Expressed in
the form of data
structures

 D. Condition to be
monitored

 E. An attribute’s
legitimate values

 1. Domain

 2. Junction

 3. External agent

 4. Event partitioning

 5. Composite data
fl ow

interactions related to that specifi c event. Its
purpose is to help users focus on a single event
without becoming overwhelmed or confused by
a picture of the entire system. Select one of the
events from the case-tracking system, and draw
an event diagram.

 12. Match the defi nitions or examples in the fi rst
column with the terms in the second column:

 F. “Starving the
processes”

 G. Output of data from
a process or input to
the process

 H. Data class that can
be stored in an
attribute

 I. Arrangement of
data attributes that
comprise a data fl ow

 J. Outside entity that
interacts with a
system

 K. Symbol that given
data fl ow is instance
of only one type

 L. Data at rest
 M. System broken into

subsystems based on
business events

 6. Control fl ow

 7. Data composition

 8. Data attribute

 9. Data conservation

10. Data fl ow

 11. Data structure

12. Data type
 13. Data store

authors of the textbook to be “one of the strongest
advocates of system concepts and system thinking
as part of the discipline of systems analysis and
design” and has written numerous articles and books
on “systems think.” Edward Yourdon is another
widely acknowledged leader in systems design and
is noted for formalizing the event-driven approach
methodology in his 1989 book, Modern Structured

Analysis. Search the Internet for their Web sites, if
any, and for recent articles and/or books by these
three leaders in systems analysis and design.

 a. What articles and/or Web sites did you fi nd?
 b. Describe some of their more recent work.
 c. Compare and contrast each of these authors

in terms of their perspective on systems
analysis and design; specifi cally, do you see their
approaches as complementary or opposed?

 d. What emerging changes or trends in systems
analysis and design do they foresee?

 e. Do you feel that they still represent the leading
thinkers in systems analysis and design? Why or
why not?

 5. Look at the different information systems used in
your school or organization. Find a system with
incomplete and/or outdated documentation (this
should not be hard to do in most organizations!).
Update and complete the documentation for this
system using data fl ow diagrams, data structures, and
other process models described in this chapter. Use
the Gane and Sarson notation method, unless your
organization supports a different notation method.

Minicases

 1. Go to a small company of your choice. What does
the business do? Write a one- to two-page paper
describing the business and its existing system.
Then draw a context-level diagram and a system-
level diagram for the existing system. Do you see
any ineffi ciencies or weaknesses in the current
system? Describe.

 2. In the previous case, you documented (at a high
level) an existing information system at a business
of your choice. Now describe the system you think
is appropriate for this business. Consider effi ciency,
fl ow of information from one department to
another, and so forth. Is there pertinent information
that the previous system did not utilize? How
can your new system offer a business advantage?
Document this advantage in a two-page paper, as
well as in a context- and system-level diagram.

 3. In Chapter 1 you addressed the following problem:
Government service departments are deeply
burdened by the amount of data that they hold
and process. Interview someone from a service
department and draft a short essay. Example
service departments that must sift through
vast amounts of data are those that deal with,
for example, missing persons, child protective

services, DMV, and tracking of persons on
probation following a crime. You should include,
but are not limited to topics such as:

 • What is the department (or person’s) job?
 • What kind of data do they collect and analyze?
 • What kind of analyses do they do on the data?
 • How much information do they collect and

from whom, and what programs do they use?

 In this exercise, utilize the information you
gathered from your interview and draft a complete
DFD of the existing information system for
that department. You may need to go back and
reinterview your contact or get forms, reports, and
so on, so that you have a complete picture of the
fl ow of data.

 4. In the previous case, you documented the existing
information system of a government department.
Now think about what the fl ow of information
 should be like. Discuss in a short paper the
existing fl ow of information, and what type of
information you think should be in the system.
Is there a big difference between what you think
they should have and what they do have?

 1. Individual/class roundtable discussion: It has
been said that information is power and that the
separation between the economically well-off
nations, individuals, companies, and the like, and

those that are not (economically well-off) is the
use and control of information. What is the value
of information? How does it affect the viability and
competitiveness of nations or companies? How does

Team and Individual Exercises

Process Modeling Chapter Eight 291

Suggested Readings

 Copi, I. R. Introduction to Logic. New York: Macmillan, 1972.

Copi provides a number of problem-solving illustrations

and exercises that aid in the study of logic. The poker chip

problem in our exercises was adapted from one of Copi’s

reasoning exercises.

 DeMarco, Tom. Structured Analysis and System Specifi cation.

Englewood Cliffs, NJ: Prentice Hall, 1978. This is the classic

book on the structured systems analysis methodology,

which is built heavily around the use of data fl ow

diagrams. The progression through (1) current physical

system DFDs, (2) current logical system DFDs, (3) target

logical system DFDs, and (4) target physical system DFDs

is rarely practiced anymore, but the essence of DeMarco’s

pioneering work lives on in event-driven structured

analysis. DeMarco created the data structure and logic

notations used in this book.

 Gildersleeve, T. R. Successful Data Processing Systems

Analysis. Englewood Cliffs, NJ: Prentice Hall, 1978. The

fi rst edition of this book includes an entire chapter on

the construction of decision tables. Gildersleeve does an

excellent job of demonstrating how narrative process

descriptions can be translated into condition and action

entries in decision tables. Unfortunately, the chapter was

deleted from the second edition.

 Harmon, Paul, and Mark Watson. Understanding UML: The

Developers Guide. San Francisco: Morgan Kaufman

Publishers, 1998. This book does an excellent job of

introducing use cases.

 Martin, James, and Carma McClure. Action Diagrams:

Towards Clearly Specifi ed Programs. Englewood Cliffs,

NJ: Prentice Hall, 1986. This book describes a formal

grammar of Structured English that encourages the natural

progression of a process (program) from Structured

English to code. Action diagrams are supported directly in

some CASE tools.

 Matthies, Leslie H. The New Playscript Procedure. Stamford,

CT: Offi ce Publications, 1977. This book provides a

thorough explanation and examples of the weaknesses

of the English language as a tool for specifying business

procedures.

 McMenamin, Stephen M., and John F. Palmer. Essential

Systems Analysis. New York: Yourdon Press, 1984. This

was the fi rst book to suggest event partitioning as a

formal strategy to improve structured analysis. The book

also strengthened the distinction between logical and

physical process models and the increased importance of

the logical models (which they called essential models).

 Robertson, James, and Suzanne Robertson. Complete Systems

Analysis (Vols. 1 and 2). New York: Dorset House Publishing,

1994. This is the most up-to-date and comprehensive

book on the event-driven approach to structured analysis,

even though we feel it still overemphasizes the current

system and physical models more than the Yourdon book

described below.

 Seminar notes for Process Modeling Techniques. Atlanta:

Structured Solutions, Inc., 1991. You probably can’t get a

copy of these notes, but we wanted to acknowledge the

instructors of the AD/Method methodology course that

stimulated our thinking and motivated our departure from

classical structured analysis techniques to the event-driven

structured analysis techniques taught in this chapter.

Structured Solutions was acquired by Protelicess, Inc.

 Wetherbe, James, and Nicholas P. Vatarli. Systems Analysis

and Design: Best Practices, 4th ed. St. Paul, MN: West

Publishing, 1994. Jim Wetherbe has always been one of

the strongest advocates of system concepts and system

thinking as part of the discipline of systems analysis and

design. Jim has shaped many minds, including our own.

The authors provide a nice chapter on system concepts

in this book—and the rest of the book is must reading for

those of you who truly want to learn to “systems think.”

 Yourdon, Edward. Modern Structured Analysis. Englewood

Cliffs, NJ: Yourdon Press, 1989. This was the fi rst

mainstream book to abandon classic structured analysis’s

overemphasis on the current physical system models

and to formalize McMenamin and Palmer’s event-driven

approach.

your access to and use of information affect your
ability to be successful in a work-related setting?

 2. Individual/class roundtable discussion: Suppose
a software company is hired to create a very
complex and groundbreaking software package for a
company. The company would like to own the rights
(including modifi cation and sale) of that software,
but the software company also wants the rights to
the software. Find an example of this situation in
real life. Who do you think should own the software?
Why? Whose side does the law take? Why?

 3. Roundtable discussion: Tech start-ups were known
in the late 1990s for having a culture of extended
workdays. That is, many times programmers would
be expected to work 60–80 hours a week without
overtime pay. Find out about the labor laws in
your state and then discuss in a class roundtable
format the impact of labor laws and corporate
culture on tech employees.

292 Part Two Systems Analysis Methods

9
 Chapter Preview and Objectives

 This is the fi rst of two chapters on object-oriented tools and techniques for systems

development. This chapter focuses on object modeling during systems analysis. You

will know object modeling as a systems analysis technique when you can:

❚ Defi ne object modeling and explain its benefi ts.

❚ Recognize and understand the basic concepts and constructs of object modeling.

❚ Defi ne the UML and its various types of diagrams.

❚ Evolve a business requirements use-case model into a system analysis use-case model.

❚ Construct an activity diagram.

❚ Discover objects and classes and their relationships.

❚ Construct a class diagram.

Object-Oriented Analysis and
Modeling Using the UML

294 Part Two Systems Analysis Methods

 An Introduction to Object-Oriented Analysis

 object-oriented analysis
(OOA) an approach used

to (1) study existing objects

to see if they can be reused

or adapted for new uses and

(2) defi ne new or modifi ed

objects that will be combined

with existing objects into a

useful business computing

application.

 object modeling a

technique for identifying

objects within the systems

environment and identifying

the relationships between

those objects.

 Unifi ed Modeling
 Language (UML) a set of

modeling conventions that is

used to specify or describe

a software system in terms

of objects.

 Let’s suppose that SoundStage had a policy that all new information systems would be
developed using object-oriented technologies. After all, object-oriented programming
languages, such as Java and the .NET languages, are growing in popularity. The reason
is because object-oriented programming can promote better code reuse to hold down
programming costs. Also, an object-oriented approach is more appropriate for proj-
ects where geographically separated groups of programmers have to collaborate to
produce an integrated system. Each team can be responsible for developing indepen-
dent pieces of programming code to implement one or more objects with a defi ned
interface. We’ll learn more about objects later.

 An object-oriented (OO) approach to programming requires techniques for object-

oriented analysis (OOA) and object-oriented design (OOD). Some of the object- oriented
diagrams, such as class diagrams (taught in this chapter) and sequence diagrams (taught
in Chapter 17) would be inappropriate except when the system will be implemented in
an object-oriented environment. Other diagrams developed for object-oriented analysis
and design can be used in any kind of environment. Use cases, for example, are now used
in both object-oriented and traditional, structured analysis. Activity diagrams (taught in
this chapter) and deployment diagrams (Chapter 17), though developed for object-ori-
ented analysis and design, can be used in any kind of methodology.

 So if the SoundStage Member Services system project took an OO approach, how
would Bob’s path be different? Would Bob have done traditional process modeling
(Chapter 8)? Probably not. Information systems developed with OO technologies
have processes like all information systems. But those processes (called behaviors in
OOA) would be designed as part of the object classes rather than separately and often
not until the systems design phase (Chapter 17). Would Bob have done traditional data
modeling (Chapter 7)? Perhaps, but not in the same way. During the systems analysis
phase, Bob would have analyzed and documented the data attributes of the system
 using a class diagram (as taught in this chapter) instead of an ERD. If the system data
was to be stored in a relational database, then during the systems design phase, Bob
would translate the class diagram into an ERD and follow the steps for data design
taught in Chapter 13. But with either approach, Bob would have still followed the
same phases of requirements analysis, systems analysis, and so on. Regardless of the
tools and techniques, systems analysis and design is still systems analysis and design.

 System Concepts for Object Modeling

 The object-oriented approach is centered around a technique referred to as object

modeling . The object modeling technique prescribes the use of methodologies and
diagramming notations that are completely different from the ones used for data mod-
eling and process modeling. Object-oriented analysis is concerned with defi ning the
static structure and dynamic behavior models of the information system instead of
defi ning data and process models, which is the goal of traditional development ap-
proaches. The most popular approach today utilizes a standard object modeling lan-
guage called Unifi ed Modeling Language (UML) .

 > Objects, Attributes, Methods, and Encapsulation

 The object-oriented approach to system development is based on the concept of
objects that exist within a system’s environment. Objects are everywhere. Let’s con-
sider your environment. Look around. What are some of the objects present within
your environment? Perhaps you see a door, a window, or the room itself. What about
this book—it’s an object, as is the very page you are reading. Perhaps you also have a

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 295

student workbook, which is also an object. If there are other individuals in the room,
they are objects too. You may also see a phone, a chair, and perhaps a table. All these
are objects that may be clearly visible within your immediate environment.

 Consider the Webster’s Dictionary defi nition of object: “something that is or is
capable of being seen, touched, or otherwise sensed.”

 The objects mentioned above are those that one would be able to see or touch.
What about objects that you might sense? Perhaps you are waiting for a phone call.
That phone call is something that you are sensing. You may be waiting for a meeting.
Once again, that meeting is something that you can identify, relate to, and anticipate
even though you can’t actually see the meeting. Thus, according to Webster’s Diction-

ary, an anticipated phone call or meeting may be considered an object.
 The previous examples pertain to objects that may exist within your immedi-

ate environment. Similarly, in the object-oriented approach to systems development,
it is important to identify the objects that exist within a system’s environment. In
 object-oriented approaches to systems development, the defi nition of an object is as
presented in the margin.

 Three aspects of this defi nition need to be examined closely. First, let’s consider
the term something, which can be characterized as a type of object much like the
objects that we identifi ed within your current environment. The types of objects may
include a person, place, thing, or event. An employee, customer, instructor, and stu-
dent are examples of person objects. A particular warehouse, regional offi ce, building,
and room are examples of place objects. Examples of thing objects include a product,
a vehicle, a computer, a videotape, or a window appearing on a user’s display moni-
tor. Finally, examples of event objects include an order, payment, invoice, application,
registration, and reservation.

 Now let’s consider the data aspect of our defi nition. In object-oriented circles,
this part of our defi nition refers to what are called attributes .

 For example, we might be interested in the following attributes for an object
called “customer”: CUSTOMER NUMBER, FIRST NAME, LAST NAME, HOME ADDRESS, WORK ADDRESS,
TYPE OF CUSTOMER, HOME PHONE, WORK PHONE, CREDIT LIMIT, AVAILABLE CREDIT, ACCOUNT BAL-
ANCE, and ACCOUNT STATUS. In reality, there may be many customer objects for which
we would be interested in these attributes. Each individual customer is referred to
as an object instance . For example, for each customer the attributes would assume
values specifi c to that customer—such as 412209, Lonnie, Bentley, 2625 Darwin Drive,
West Lafayette, Indiana, 47906, and so forth. Let’s consider your current environment.
Perhaps there’s another person in the room. Each of you represents an instance of a
person object. Each of you can be described according to some common attributes
such as LAST NAME, SOCIAL SECURITY NUMBER, PHONE NUMBER, and ADDRESS.

 Let’s now consider the last aspect of our defi nition for an object—the behavior
of an object. This represents a substantially different way of viewing objects. When
you look at the door object within your environment, you may simply see a motionless
object that is incapable of thinking—much less carrying out some action. In object-
 oriented approaches to systems development, that door can be associated with behav-
ior that it is assumed can be performed. For example, the door can open, it can shut, it
can lock, or it can unlock. All of these behaviors are associated with the door and are
accomplished by the door and no other object.

 Consider another object—a telephone. What behaviors can be associated with a
phone? With advances in technology we actually have phones that are voice-activated
and can answer, dial, hang up, and carry out other behaviors. Thus, object-oriented
approaches to systems development simply require an adjustment to how we com-
monly perceive objects.

 Another important object-oriented principle is that an object is solely responsible
for carrying out any functions or behaviors that act on its own data (or attributes). For
example, only YOU (an object) may CHANGE (behavior) your LAST NAME and HOME ADDRESS
(attributes about you). This leads us to an important concept in understanding objects:
 encapsulation . Applied to an object, both attributes and behavior of the object are

 object something that is

or is capable of being seen,

touched, or otherwise sensed

and about which users store

data and associate behavior.

 attribute the data that

represents characteristics of

interest about an object.

 object instance each

specifi c person, place, thing,

or event, as well as the values

for the attributes of that

object. Sometimes referred to

simply as an object.

 behavior the set of things

that an object can do and that

correspond to functions that

act on the object’s data (or

attributes). In object-oriented

circles, an object’s behavior

is commonly referred to as a

 method, operation, or service

(we may use the terms inter-

changeably throughout our

discussion).

 encapsulation the

 packaging of several items

together into one unit.

296 Part Two Systems Analysis Methods

packaged together. They are considered part of that object. The only way to access or
change an object’s attributes is through that object’s specifi c behaviors.

 In object-oriented development, models depicting objects are often drawn. Let’s
examine the modeling notation (signs and symbols) used to represent an object in
these object models. Figure 9-1 (a) shows two object instances, each drawn using a
rectangle with the name of the object instance. The name consists of the value of the
attribute that uniquely identifi es it, followed by a colon, and then the name of the
class in which the object has been categorized. The entire name phrase is centered
in the rectangle and is also underlined. In Figure 9-1 (a) the attribute CUSTOMER NUMBER,
whose value is 412209, uniquely identifi es that instance of CUSTOMER. Thus, 412209
is the name of the object instance and CUSTOMER is its classifi cation. Optionally, the
object instance can also be drawn as shown in Figure 9-1 (b). The attribute values for
the object instance are recorded within the symbol and are separated from the object
name by a line.

 > Classes, Generalization, and Specialization

 Another important concept of object modeling is the concept of categorizing objects
into object classes . Let’s consider some of the objects within your current environ-
ment. It would be natural for you to classify both your Systems Analysis and Design

Methods textbook and another textbook, such as Introduction to Programming, as
 BOOK s [see Figure 9-2 (a)]. Both these object instances have some similar attributes and
behavior. For example, similar attributes might be ISBN NUMBER, TITLE, COPYRIGHT DATE,
EDITION, and so on. Likewise, they have similar behavior, such as being able to OPEN and
 CLOSE. There may be several other objects within your environment that could be clas-
sifi ed because of their similarities. For example, you and other individuals in the room
might be classifi ed as PERSON.

 How are object classes represented in object modeling using the UML notation?
As depicted in Figure 9-2 (b), they are drawn very similar to an object instance, except
that the values of the attributes are omitted and the name of the class is not under-
lined. In addition, the class symbol may include a list of behaviors. Also, as shown in
 Figure 9-2 (b), to simplify the appearance of diagrams containing numerous object
class symbols, sometimes the object classes are drawn without the list of behaviors

 object class a set of object

instances that share the same

attributes and behaviors.

Often referred to simply as a

class.

 F I G U R E 9 - 1

Object Instances

customerNumber = 412209

lastName = Bentley

firstName = Lonnie

homePhone = 765-463-9593

street = 2625 Darwin Dr.

city = West Lafayette

state = Indiana

zipcode = 47906

etc.

412209 : Customer

orderNumber = 3221345

orderDate = 10/28/2002

shippingMethod = fedex

shippingCost = 12.75

totalCost = 574.35

etc.

3221345 : Order

(a)
412209 : Customer 3221345 : Order

(b)

A “CUSTOMER”

Object Instance

An “ORDER”

Object Instance

inheritance the concept

wherein methods and/or

attributes defi ned in an object

class can be inherited or

reused by another object

class.

generalization/
specialization a technique

wherein the attributes and

behaviors that are common

to several types of object

classes are grouped (or

abstracted) into their own

class, called a supertype.

The attributes and methods

of the supertype object class

are then inherited by those

object classes (subtypes).

Sometimes abbreviated as

gen/spec.

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 297

and attributes. Most object modeling tools allow you to do this in order to customize
the model to your liking.

 We can also recognize subclasses of objects [see Figure 9-3 (a)]. For example, some
of the individuals in the room might be classifi ed as STUDENTS and others as TEACHERS.
Thus, STUDENT and TEACHER object classes are members of the object class PERSON. When
levels of object classes are identifi ed, the concept of inheritance is applied.

 The approach that seeks to discover and exploit the commonalities between
object classes is referred to as generalization/specialization . In examining Fig-
ure 9-3 (b), you notice that the object classes STUDENT and TEACHER contain attributes
and behaviors which are unique to them (making them more specialized) but that
they also have access to the generalized attributes and behaviors of the PERSON object
class via inheritance.

 In our example, the object class PERSON is referred to as a supertype (or generaliza-
tion class) whereas STUDENT and TEACHER are referred to as subtypes (or specialization
classes). The object class supertype will have one or more one-to-one relationships
to object class subtypes because, in our example, any one person (object instance)
will be at most one teacher or one student or possibly both. Also, any one teacher
will be only one person. These relationships are sometimes called “ is a ” relationships

because of how you express the relationship in a sentence. For example, “A STUDENT is
a type of PERSON ” or “A TEACHER is a type of PERSON. ”

 In object-oriented systems development, objects are categorized according to
classes and subclasses. Identifying classes realizes numerous benefi ts. For example,

 F I G U R E 9 - 2 Representing Object Classes in the UML

(a)

(b)

A "Book"
Object Instance

ISBN = 0-07-231-539-3

title = Systems Analysis and Design Methods

copyrightDate = 2001

edition = 5th

0-07-231539-3 : Book

-ISBN

-title

-copyrightDate

-edition

Book

ISBN = 0-09-425685-4

title = Introduction to Programming

copyrightDate = 2001

edition = 2nd

0-09-425685-4 : Book

A "Book"
Object Instance

A "Book"
Object Class

Book

+open()

+close()

-ISBN

-title

-copyrightDate

-edition

Book

(Displaying name only)

(Displaying name and

attributes)

(Displaying name,

attributes, and

behaviors)

 supertype an entity that

contains attributes and

behaviors that are common to

one or more class subtypes.

Also referred to as abstract or

 parent class.

 subtype an object class

that inherits attributes and

 behaviors from a supertype

class and then may contain

other attributes and behaviors

that are unique to it. Also

referred to as child class and,

if it exists at the lowest level of

the inheritance hierarchy, as

concrete class.

298 Part Two Systems Analysis Methods

consider the fact that a new attribute of interest, called GENDER, needs to be added to
both the teacher and the student object classes. Because the attribute is common to
both, the attribute could be added once, to the class PERSON —implying that both the
teacher and the student object classes will inherit that attribute. Looking down the
road toward program maintenance, we note that the implication is substantial. Program
maintenance is enhanced by the need to simply make modifi cations in one place. For
example, let’s assume the attribute LAST NAME currently had a fi eld size of 15 characters.

 F I G U R E 9 - 3 Supertype and Subtype Relationships between Object Classes

Person Class

(supertype)

Student Class

(subtype)

Teacher Class

(subtype)

Student A Student B Student C Teacher A Teacher B

(a)

(b)

walk

jump

talk

sleep

eat

last name

first name

birthdate

gender

Person

walk

jump

talk

sleep

eat

last name

first name

birthdate

gender

Person

enroll

display GPA

GPA

classification

Student

enroll

display GPA

GPA

classification

Student

lecture

rank

Teacher

lecture

rank

Teacher

Inheritable

Attributes

and

Behaviors

walk

jump

talk

sleep

eat

last name

first name

birthdate

gender

walk

jump

talk

sleep

eat

last name

first name

birthdate

gender

walk

jump

talk

sleep

eat

last name

first name

birthdate

gender

walk

jump

talk

sleep

eat

last name

first name

birthdate

gender

+ +

Generalization Specialization

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 299

Let’s also assume that through analysis of our data we found many last names that were
more than 15 characters. Because of this we need to change the LAST NAME attribute
fi eld size to 25 to be able to hold the entire values of all last names. By taking advantage
of inheritance, we have to make that change only once in the PERSON class. Without
inheritance, we would have had to make a change to both the STUDENT and the TEACHER
classes. The preceding example is fairly simple, but considering that a large application
may contain dozens of classes with hundreds of attributes and behaviors, the time and
money saved by having to make modifi cations in only one place is considerable.

 How is generalization/specialization (supertype, subtype classes) depicted using
the UML notation? Figure 9-4 illustrates how to depict the supertype-subtype relation-
ship between the PERSON, STUDENT, and TEACHER object classes. All the attributes and
behaviors of the PERSON object class are inherited by the STUDENT and TEACHER object
classes. The attributes and behaviors that uniquely apply to a STUDENT or TEACHER are
recorded directly in the subtype class symbol.

 > Object Class Relationships

 Conceptually, objects do not exist in isolation. The things that they represent interact
with and impact one another to support the business mission. Thus an object class

relationship is inevitable. You, for example, interact with this textbook by reading it,
a telephone by using it, and perhaps other individuals in the room by communicating
with them. Similarly, objects interact with other objects within a systems environment.
Consider, for example, the object classes CUSTOMER and ORDER that may exist in a typical
information system. We can make the following business assertions about how custom-
ers and orders are associated (or interact):

 • A CUSTOMER PLACES zero or more ORDERS.
 • An ORDER IS PLACED BY one and only one CUSTOMER.

 object class relationship
 a natural business associa-

tion that exists between one

or more objects and classes.

 F I G U R E 9 - 4

Representing a
Generalization/
Specialization
Relationship Using
the UML

walk()

jump()

talk()

sleep()

eat()

etc.()

lastName

firstName

birthdate

gender

Person

enroll()

displayGPA()

GPA

classification

Student

lecture()

rank

Teacher

Arrowhead indicates

generalization/specialization

relationship

300 Part Two Systems Analysis Methods

 We can graphically illustrate this association between CUSTOMER and ORDERS as
shown in Figure 9-5 (a). The connecting line represents a relationship between the
classes. UML refers to this line as an association, and we will use this term through
the remaining parts of this chapter. The verb phrase describes the association. All re-
lationships are implicitly bidirectional, meaning that they can be interpreted in both
directions (as suggested by the above business assertions).

 Figure 9-5 (a) also shows the complexity or degree of each association. For exam-
ple, for the above business assertions, we must also answer the following questions:

 • Must there exist an instance of CUSTOMER for each instance of ORDER? (Yes)
 • Must there exist an instance of ORDER for each instance of CUSTOMER? (No)
 • How many instances of ORDER can exist for each instance of CUSTOMER? (Many)
 • How many instances of CUSTOMER can exist for each instance of ORDER? (One)

 We call this concept multiplicity . Because all associations are by default bidi-
rectional, meaning the CUSTOMER class “knows about” the ORDER class and the ORDER
class “knows about” the CUSTOMER class, multiplicity must be defi ned in both directions
for every association. The possible UML graphical notation for multiplicity between
classes is shown in Figure 9-5 (b). If you have learned data modeling in Chapter 7, you
will realize that multiplicity is essentially the same concept as cardinality. The notations
are different, but the relationships are nearly the same.

 Some objects are made up of other objects. For example if you buy something
over the Internet, your one order could be composed of multiple items (a CD, a DVD, a
book, etc.). Other examples include a club, which is made up of several club members,
and a computer contains a case, CPU, motherboard, power supply, and so on. This
kind of relationship is called aggregation . This relationship is characterized by the
phrases “whole-part” and “is part of.”

 Composition is a stronger form of aggregation. Think of the word component for
composition. In composition the “whole” is completely responsible for the creation
and destruction of its parts, and each “part” is associated to only one “whole” object.
The relationship between club and club member would not be composition, because
members have a life outside the club and can, in fact, belong to multiple clubs. But the
Internet order and order items would be composition. If you cancel the order, then all
the items on that order will get canceled with it. A behavior performed on the whole
will also be performed on all its parts. For example, if we printed the order, each order
item would be automatically printed also.

 In earlier versions of UML, aggregation was drawn with a hollow diamond, with
the diamond connected to the “whole” object class, as shown in Figure 9-6 (a). Notice
that multiplicity must be specifi ed for both sides of the relationship.

 Composition is drawn with a fi lled diamond, as shown in Figure 9-6 (b). Because
each “part” can belong to only one “whole,” multiplicity needs to be specifi ed only for
the “part.” Figure 9-6 (b) also illustrates multilevel composition. A book is composed of
chapters, which are each composed of pages, and so forth.

 In UML 2.0 the notation for aggregation has been dropped. Why? While the com-
position relationship has defi nite distinctions that play out in programming, aggrega-
tion has always been more indistinct. For example, couldn’t the relationship between
club and club member simply be a one-or-more association between independent
object classes? Because of this, some practitioners consider aggregation (the weaker
form) to be essentially meaningless in any practical sense.

 > Messages and Message Sending

 Object classes interact or “communicate” with one another by passing messages .
Recall the concept of encapsulation, wherein an object is a package of attributes and
behavior. Only that object can perform its behavior and act on its data.

 Let’s consider the CUSTOMER and ORDER objects mentioned earlier. A CUSTOMER object
checking the current status of an ORDER sends a message to an ORDER object by invoking

 multiplicity the minimum

and maximum number of

occurrences of one object

class for a single occurrence

of the related object class.

 aggregation a relationship

in which one larger “whole”

class contains one or more

smaller “parts” classes.

Conversely, a smaller “part”

class is part of a “whole”

larger class.

 composition an aggrega-

tion relationship in which the

“whole” is responsible for the

creation and destruction of

its “parts.” If the “whole” were

to die, the “part” would die

with it.

 message communication

that occurs when one object

invokes another object’s

method (behavior) to request

information or some action.

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 301

 F I G U R E 9 - 5 Object/Class Associations and Multiplicity Notations

(a)

(b)

Multiplicity

UML

Multiplicity

Notation

Association with Multiplicity
Association

Meaning

1

— or —

— or —

leave blank

DepartmentEmployee
1Works for

DepartmentEmployee

Works for

 0..1

SpouseEmployee
0..1Has

0..*

*

PaymentCustomer

Makes 0..*

PaymentCustomer

Makes *

 1..*

CourseUniversity

Offers 1..*

Exactly 1

Zero or 1

Zero or

more

1 or more

Specific

range
7..9

GameTeam
7..9

Has

scheduled

An employee

works for one

and only one

department.

An employee has

either one or no

spouse.

A customer can

make no payment

up to many

payments.

A university

offers at least 1

course up to

many courses.

A team has either

7, 8, or 9 games

scheduled.

0..*
Customer Order

Places

302 Part Two Systems Analysis Methods

 F I G U R E 9 - 6 Aggregation Relationships

Book

Cover Table of Contents Chapter Index

Page

Paragraph

Word

1 1..*0..1 0..1

1..*

0..*

1..*

(a)

Team

Player

0..*

12..18

(b)

Solid diamond indicates

composition aggregation

relationship.

Hollow diamond indicates

basic aggregation

relationship. UML 1.X notation.

(Whole)

(Part)

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 303

the ORDER object’s display status behavior (a behavior that accesses and displays the
 ORDER STATUS attribute).

 The object sending a message does not need to know how the receiving object is
organized internally or how the behavior is to be accomplished, only that it responds to
the request in a predefi ned way. This concept of messaging is illustrated in Figure 9-7 .
A message can be sent only between two objects that have an association. Chapter 17
presents a discussion on how to document and specify messages.

 > Polymorphism

 An important concept that is closely related to messaging is polymorphism . Let’s
consider the WINDOW and DOOR objects within your environment. Both objects have
a common behavior that they may perform; they may both close. How a DOOR object
carries out that behavior may differ substantially from the way in which a WINDOW
carries out that behavior. A DOOR “swings shut”; a WINDOW “slides downward.” Thus, the
behavior close may take on two different forms. Once again, let’s consider the WINDOW
object. Not all WINDOWS would actually accomplish the close behavior in the same way.
Some WINDOW objects, like DOOR objects, swing shut! Thus, the close behavior takes on
different forms for a given object class.

 Polymorphism is applied in object-oriented applications when a behavior in
the supertype needs to be overridden by a behavior in the subtype. Examine the
 generalization/specialization relationship in Figure 9-8 . The EMPLOYEE class contains
a behavior called “compute pay” to calculate how much each EMPLOYEE will be paid.
Because FULL-TIME EMPLOYEES and PART-TIME EMPLOYEES get paid differently (full-time em-
ployees receive an annual salary in 52-week increments, and part-time employees get
paid only for the hours they work), two behaviors that perform different calculations
are required. But because of polymorphism, the behaviors can be named the same to
simplify message sending. The subtype that requires the unique behavior will contain
in its behavior list the same behavior that is listed for its parent (supertype). When
the PART-TIME EMPLOYEE object receives a message to “compute pay,” it will automatically
use the compute-pay behavior in its own behavior list because it overrides what it
inherits from its parent. Polymorphism is very useful when making enhancements to
an existing system, because adding new classes to an existing generalization/special-
ization relationship in order to satisfy new business rules or requirements may not be
possible or practical.

 So how is polymorphism related to message sending? Once again, the request-
ing object knows what service (or behavior) to request and from which object.
However, the requesting object does not need to worry about how a behavior is
accomplished.

 polymorphism literally

meaning “many forms,” the

concept that different objects

can respond to the same

message in different ways.

 override a technique

whereby a subclass (subtype)

uses an attribute or behavior of

its own instead of an attribute

or behavior inherited from the

class (supertype).

 F I G U R E 9 - 7

Messaging

Customer
addOrder

modifyOrder

deleteOrder

displayStatus

etc.

orderNumber

orderDate

orderStatus

etc.

Order

display order status

of order 23161

MESSAGE

REQUEST
(containing name of requested behavior

plus criteria needed by ORDER)

304 Part Two Systems Analysis Methods

 F I G U R E 9 - 8

Overriding
Behaviors

computePay()

employeeID

lastName

firstName

birthdate

gender

Employee

computeTaxDeduction

annualSalary

Full-Time Employee

computePay(hours)

hourlyWage

Part-Time Employee

 The UML Diagrams

 Think of the UML diagrams as if they were blueprints for constructing a house. Where
a set of blueprints typically provides the builder with perspectives for plumbing, elec-
tricity, heating, air conditioning, and the like, each UML diagram provides the develop-
ment team with a different perspective on the information system.

 Figure 9-9 describes the 13 diagrams of UML 2.0. This list is organized not alpha-
betically but in an order that allows the description of each diagram to build on the
descriptions of those above it. It would take an entire college course to cover each
diagram in depth. As we study an overview of the systems analysis life cycle, three
chapters will delve into the core UML diagrams:

 Chapter 6—Requirements analysis phase.
 • Use-case diagrams.

 Chapter 9—Logical design phase.
 • Activity diagrams.
 • System sequence diagrams (a high-level kind of sequence diagram).
 • Class diagrams.

 Chapter 17—Physical design phase.
 • Sequence diagrams.
 • Class diagrams (with more detail).
 • State machine diagrams.
 • Communication diagrams.
 • Component diagrams.
 • Deployment diagrams.

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 305

F I G U R E 9 - 9 UML 2.0 Diagrams

 Diagram Description

 Use case Depicts the interactions between the system and external systems and users. In other
words, it graphically describes who will use the system and in what ways the user expects
to interact with the system. The use-case narrative is used, in addition, to textually de-
scribe the sequence of steps of each interaction.

 Activity Depicts the sequential fl ow of activities of a use-case or business process. It can also be
used to model logic with the system.

 Class Depicts the system’s object structure. It shows object classes that the system is composed
of as well as the relationships between those object classes.

 Object Similar to a class diagram, but instead of depicting object classes, it models actual object
instances with current attribute values. The object diagram provides the developer with a
snapshot of the system’s object at one point in time.

 State machine Models how events can change the state of an object over its lifetime, showing both the
various states that an object can assume and the transitions between those states.

 Composite structure Decomposes the internal structure of a class, component, or use case.

 Sequence Graphically depicts how objects interact with each other via messages in the execution
of a use case or operation. It illustrates how messages are sent and received between
objects and in what sequence.

 Communication Called a collaboration diagram in UML 1.X, it depicts the interaction of objects via
messages. Thus, it is similar to a sequence diagram. But while a sequence diagram
focuses on the timing or sequence of messages, a communication diagram focuses on the
structural organization of objects in a network format.

 Interaction overview Combines features of sequence and activity diagrams to show how objects interact within
each activity of a use case.

 Timing Another interaction diagram that focuses on timing constraints in the changing state of a
single object or group of objects. A timing diagram is especially useful when designing
embedded software for devices.

 Component Depicts the organization of programming code divided into components and how the
components interact.

 Deployment Depicts the confi guration of software components within the physical architecture of the
system’s hardware “nodes.”

 Package Depicts how classes or other UML constructs are organized into packages (corresponding to
 Java packages or C⫹⫹ and .NET namespaces) and the dependencies of those packages.

306 Part Two Systems Analysis Methods

 As mentioned earlier, in performing object-oriented analysis (OOA), as with any other
systems analysis method, the purpose is to gain a better understanding of the system and
its functional requirements. In other words, OOA requires that we identify the required
system functionality from the user’s perspective and identify the objects, along with
their data attributes, associated behavior, and relationships, which support the required
system functionality. In Chapter 6 you were introduced to use-case modeling, which is
used to identify required system functionality. In this chapter you will learn to refi ne the
use-case model created in Chapter 6, learn to document complex use cases with activ-
ity diagrams, and learn to perform object modeling to document the identifi ed objects
and the data and behavior they encapsulate, plus their relationships with other objects.

 There are three general activities in performing object-oriented analysis:

 1. Modeling the functions of the system.
 2. Finding and identifying the business objects.
 3. Organizing the objects and identifying their relationships.

 > Modeling the Functional Description of the System

Recall that in Chapter 6 you were taught the process of use-case modeling to docu-
ment functional system requirements using business requirements use cases. During
this activity the use cases were documented to contain only general information about
the business event. The goal was to quickly document all of the business events (use
 cases) in order to defi ne and validate requirements. In performing object- oriented
analysis, each previously defi ned use case will be refi ned to include more and more
detail based on the facts we learned throughout the development process, such as user
interface requirements. To prepare to perform object modeling, we need to evolve the
business requirements use-case model into the analysis use-case model.

 > Constructing the Analysis Use-Case Model

In object-oriented analysis we evolve the requirements use-case model into the analysis
use-case model by performing the following steps:

 1. Identify, defi ne, and document new actors.
 2. Identify, defi ne, and document new use cases.
 3. Identify any reuse possibilities.
 4. Refi ne the use-case model diagram (if necessary).
 5. Document system analysis use-case narratives.

 Step 1: Identify, Defi ne, and Document New Actors Between the time the
business requirements use-case model was created and the time it is subsequently
 approved by the system owners, the systems analyst and the rest of the development
team, through talking with stakeholders and researching project artifacts, continue
to learn more about what is required in order for the system to be successful. During
these efforts it is possible that additional actors may be discovered and thus need to
be defi ned and documented. For example, when analyzing the Place New Order use
case (see Figure 6-13) initiated by the CLUB MEMBER, we identifi ed the need for the CLUB
MEMBER to be able to enter the order information via the Internet, but the member
could also submit orders by mail. For the order information to be input into the sys-
tem, someone else would have to interact with the system to accomplish this, thus
the need for another actor. The newly identifi ed actor named Member Services Associ-

ate, along with any other new actors, would need to be defi ned in the actor glossary
 previously prepared (Figure 6-8).

 The Process of Object Modeling

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 307

 Step 2: Identify, Defi ne, and Document New Use Cases The new actor MEMBER
SERVICES ASSOCIATE , discovered in step 1, leads to a new interaction with the system—thus
a new use case. As a general rule of thumb, each type of user interface used to process a
business event will require its own use case. Using the banking industry as an example,
the use case of making a deposit at an ATM machine will be different from the use case
of making a deposit using a bank teller. The goal of the process is the same and many of
the steps will be the same, but the actual system user may be different or how the user
interacts with the system using a specifi c technology (ATM machine versus a worksta-
tion with a GUI designed for a bank teller) may be different. The newly identifi ed use
cases would need to be defi ned in the use-case actor glossary previously prepared.

 Step 3: Identify Any Reuse Possibilities As stated in step 2 above, when you have
two use cases that have the same business goal but the interface technology or the
 actual system user may be different, both use cases may share common steps. As you
recall from Chapter 6, to eliminate redundant steps, we can extract these common
steps into their own separate use case called an abstract use case. In addition, when
we analyze the use cases and fi nd a use case that contains complex functionality con-
sisting of several steps, making it diffi cult to understand, we can extract the more com-
plex steps into their own use case called an extension use case. These new use cases
would also be defi ned in the use-case glossary previously prepared.

 Step 4: Refi ne the Use-Case Model Diagram (if Necessary) With the discov-
ery of new actors and/or use cases, we now would update the use-case model dia-
gram previously constructed (see Figure 6-10) to include these items. Figure 9-10

 F I G U R E 9 - 10 Revised Member Services System Use-Case Model Diagram

Determine
Distribution Center

& Release

Enter New
Member Order

Revise
Promotion

Submit New
Promotion

Establish
New Member
Subscription

Program

Submit
Subscription

Renewal Order

Establish Past
Member

Resubscription
Program

Submit
Subscription

Program Changes

Submit Member
Profile Changes

Submit
Subscription Order

Revise Order Place New Order

Cancel Order

Make Product
Inquiry

Make Purchase
History inquiry

Generate Daily 10-
30-60-Day Default
Agreement Report

Operations Subsystem

Order Subsystem

Promotion Subsystem

Subscription Subsystem

Time
M a r k e t i n g

Past Member

Club

Member

Member Services

Associate

Potential Member

initiates

initiates

initiates

initiates

initiatesinitiates

initiates

initiates

initiates

initiates

initiates

initiates

initiates

initiates

<<uses>>

<<uses>>

initiates

308 Part Two Systems Analysis Methods

is the revised use-case model diagram, which includes the newly identifi ed actor
 MEMBER SERVICES ASSOCIATE and the newly identifi ed use cases Enter New Member

Order and Determine Appropriate Distribution Center and Release Order to Be

Filled.

 Step 5: Document System Analysis Use-Case Narratives Once all business
 requirements use cases have been reviewed and approved by the users, each use case
will be refi ned to include more information in order to specify the system functional-
ity in detail. The resulting use cases are called system analysis use cases and still
should be free of most implementation details except high-level information describ-
ing the means (Windows GUI, Internet browser, telephony, etc.) the system user will
use to interact with the system. System analysis use cases include a narrative from the
perspective of the system user and are more conversational (with the system) in na-
ture than business requirements use cases. Figures 9-11 and 9-12 are evolutions of the
business requirements use case Place New Order. Figure 9-11 depicts the CLUB MEMBER
as the primary system actor, using the system to enter the order, and Figure 9-12 de-
picts the MEMBER SERVICES ASSOCIATE using the system to enter the order from the infor-
mation received from the club member.

 System analysis use cases will be further refi ned during the design phases of the
life cycle to specify the how or implementation specifi cs. It is important that all open
issues and to be determines (TBDs) be resolved before going forward into design be-
cause such decisions may impact the nature of the design. Please note the additional
elements found in system analysis use cases.

 1 Use-case type —In performing use-case modeling, the fi rst cases to be
constructed are business requirements use cases, which focus on the strategic
vision and goals of the various stakeholders. This type of use case is business-
oriented and refl ects a high-level view of the desired behavior of the system.
It is free from technical details and may include both manual activities and
the activities that will be automated. Business requirements use cases provide
a general understanding of the problem domain and scope, but they don’t
include the necessary detail to communicate to developers what the system
should do.

 To refl ect implementation details such as user interface constraints, tactical
use cases, called system use cases, are derived from the business use cases. One
or more system analysis use cases may evolve from a single business use case.
Developers use this type of use case to specify detailed requirements, assist in
estimating and planning, communicate programming requirements, and form
the basis for user documentation. Each system use case corresponds to a test
case that will be executed to verify that the system satisfi es the customer’s
requirements.

 System use cases continue to be refactored throughout the systems
development life cycle. In following an iterative approach to development,
it is wise to track where each use case is in terms of its evolution from the
requirements level through analysis and on to design.

 2 Primary system actor —The primary system actor is the stakeholder that
actually uses and interfaces with the system. It is for this stakeholder that the
interface must be designed.

 3 Abstract use case —Example of calling an abstract use case.

 Documenting Abstract and Extension Use-Case Narratives Documenting the
narratives of extension and abstract use cases is very similar to documenting regular
use cases, but there are a few major differences. Abstract and extension use cases
are not initiated by actors; they are invoked by other use cases. Also, abstract and
extension use cases tend to be much shorter and don’t require as many data fi elds.

 system analysis use case
 a use case that documents

the interaction between the

system user and the system.

It is highly detailed in describ-

ing what is required but is

free of most implementation

details and constraints.

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 309

 Figure 9-13 is an example of an abstract use case. Please note the differences in ele-
ments of the narrative.

 1 Use-case type —An abstract use case is used when it’s invoked by two or more
use cases. An extension use case is used when it extends the functionality of
a single use case.

 2 Invoked by —The IDs or names of the use cases that invoke this particular
use case.

 Please be aware that an abstract use case can invoke other abstract and/or exten-
sion use cases and that an extension use case can invoke other abstract and/or exten-
sion use cases—thus providing many avenues for use-case reusability.

 After the system analysis use cases have been defi ned, they contain a level of detail
that is adequate for the objects involved in the use cases to be realistically identifi ed.
These objects represent things or entities in the business domain—things of interest
about which we would like to capture information. At this point, we will concentrate
on describing these objects with a sentence or two. Later, we will expand our defi ni-
tions to contain more detailed facts that we learn about each object.

 > Modeling the Use-Case Activities

 The UML offers an additional diagram called an activity diagram to model the
 process steps or activities of the system. They are similar to fl owcharts in that they
graphically depict the sequential fl ow of activities of either a business process or
a use case. They are different from fl owcharts in that they provide a mechanism to
depict activities that occur in parallel. Because of this they are very useful to model
actions that will be performed when an operation is executing as well as the results
of those actions—such as modeling the events that cause windows to be displayed
or closed. Activity diagrams are fl exible in that they can be used during both analysis
and design. Figure 9-14 is an example of an activity diagram constructed on the use
case Enter New Member Order. At least one activity diagram can be constructed for
each use case. More than one can be constructed if the use case is long or contains
complex logic. System analysts use activity diagrams to better understand the fl ow
and sequencing of the use-case steps.

 Figure 9-14 illustrates the following activity diagram notations:

 1 Initial node —the solid circle representing the start of the process.
 2 Actions —the rounded rectangles representing individual steps. The sequence of

actions makes up the total activity shown by the diagram.
 3 Flow —the arrows on the diagram indicating the progression through the actions.

Most fl ows do not need words to identify them unless coming out of decisions.
 4 Decision —the diamond shapes with one fl ow coming in and two or more fl ows

going out. The fl ows coming out are marked to indicate the conditions.
 5 Merge —the diamond shapes with two or more fl ows coming in and one fl ow

going out. This combines fl ows that were previously separated by decisions.
Processing continues with any one fl ow coming into the merge.

 6 Fork —a black bar with one fl ow coming in and two or more fl ows going out.
Actions on parallel fl ows beneath the fork can occur in any order or concurrently.

 7 Join —a black bar with two or more fl ows coming in and one fl ow going out,
noting the end of concurrent processing. All actions coming into the join must
be completed before processing continues.

 8 Activity fi nal —the solid circle inside the hollow circle representing the end of
the process.

 The activity diagram shown in Figure 9-14 graphically illustrates the steps of the
use case, but it does not specify who is doing those steps. That may not be a problem.
Often you draw an activity diagram just to get a handle on the logic. But if you want to
specify who does what, you can divide the activity diagram into partitions showing

 activity diagram a

diagram that can be used to

graphically depict the fl ow of

a business process, the steps

of a use case, or the logic of

an object behavior (method).

310 Part Two Systems Analysis Methods

Member Services System
Author(s): K. Dittman 11/01/06

1.00

Date:

Version:

Use Case Name: Place New Order Use Case Type

Use Case ID: MSS-SUC002.00 Business Requirements:

Priority: High

Source: Requirement—MSS-R1.00

Requirements Use Case—MSS-BUC002.00

Primary Business
Actor:

Primary System
Actor:

Club Member (Alias—Active Member, Member)

Club Member (Alias—Active Member, Member)

Other
Participating
Actors:

•
•

Warehouse (Alias—Distribution Center) (external receiver)

Accounts Receivable (external server)

Other
Interested
Stakeholders:

•
•
•

Marketing—Interested in sales activity in order to plan new promotions.

Procurement—Interested in sales activity in order to replenish inventory.

Management—Interested in order activity in order to evaluate company performance and

customer (member) satisfaction.

Description: This use case describes the event of a club member submitting a new order for SoundStage products via

the World Wide Web. The member selects the items he or she wishes to purchase. Once the member

has completed shopping, the member’s demographic information as well as account standing will be

validated. Once the products are verified as being in stock, a packing order is sent to the warehouse for

it to prepare the shipment. For any product not in stock, a back order is created. On completion, the

member will be sent an order confirmation.

The individual submitting the order must be an active club member.

The member must log in to the system (provide identification) to enter an order.

Precondition:

This use case is initiated when the member selects the option to enter a new order.Trigger:

Actor Action System Response

Step 2: The system responds by displaying the catalog of the

SoundStage products.

Step 4: Once the member has completed the selections, the

system retrieves from file and presents the member’s demographic

information (shipping and billing addresses).

Step 6: For each product ordered, the system verifies the product

availability and determines an expected ship date, determines the

price to be charged to the member, and determines the cost of the

total order. If an item is not immediately available, it indicates the

product is back-ordered or that it has not been released for shipping

(for preorders). If an item is no longer available, that is indicated also.

The system then displays a summary of the order to the member for

verification.

Step 7: The member verifies the

order. If no changes are necessary,

the member responds accordingly

(to continue).

Step 8: The system checks the status of the member’s account. If

satisfactory, the system prompts the member to select the desired

payment option (to be billed later or pay immediately with a credit

card).

Step 9: The member responds by

selecting the desired payment

option.

Step 10: The system displays a summary of the order, including the

desired payment option, to the member for verification.

Step 12: The system records the order information (including back

orders if necessary).

Step 13: Invoke abstract use case MSS-AUC001.00, Determine

Appropriate Distribution Center and Release Order to Be Filled.

Step 14: Once the order is processed, the system generates an

order confirmation and displays it to the member as well as sending

it to the member via e-mail.

Step 1: The member requests the

option to enter a new order.

Step 11: The member verifies the

order. If no changes are necessary,

the member responds accordingly

(to continue).

Step 3: The member browses

the available items and selects

the ones he or she wishes to

purchase, along with the quantity.

Step 5: The member verifies

demographic information

(shipping and billing addresses).

If no changes are necessary, the

member responds accordingly

(to continue).

Typical Course
of Events:

System Analysis: √
1

2

3

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 311

 F I G U R E 9 - 11 Place New Order Use Case

•
•

Member must have a valid e-mail address to submit online orders.

Member is billed for products only when they are shipped.

•
•
•
•

Product can be transferred among distribution centers to fill orders.

Procurement will be notified of back orders by a daily report (separate use case).

The member responding to a promotion or using credits may affect the price of each ordered item.

The member can cancel the order at any time.

Alt-Step 3: The member enters search criteria to retrieve a specific item or to display a reduced list of

items to browse and order from.

Alt-Step 12: If all items ordered are on back order, the order is not released to the distribution center.

Alt-Step 11: If the order requires changes, the member can delete any item no longer wanted or change

the order quantity. Once the member has completed the order changes, the system reprocesses the

order (go to step 6). If the member requests to do additional shopping, go to step 3. If the member

needs to change the demographic information, go to step 5.

Alt-Step 5: If changes are required, the member updates the appropriate shipping, billing, or e-mail

addresses and tells the system to store them accordingly. The system will validate the changes and, if

successful, will store the new information to file.

Alt-Step 7: If the order requires changes, the member can delete any item no longer wanted or change

the order quantity. Once the member has completed the order changes, the system reprocesses the

order (go to step 6). If the member requests to do additional shopping, go to step 3. If the member

needs to change the demographic information, go to step 5.

Alt-Step 8: If the member’s account is not in good standing, display to the member the account status,

the reason the order is being held, and what actions are necessary to resolve the problem. In addition,

an e-mail is sent to the member with the same information. The system prompts the member to hold the

order for later processing or cancel the order. If the member wishes to hold the order, the system records

the order information and places it in hold status and then displays the SoundStage main page. If the

member chooses to cancel the order, the system clears the inputted information and then displays the

SoundStage main page. Terminate the use case.

Alt-Step 10: If the member selects the option to pay by credit card, the system prompts the member to

enter the credit card information (number and expiration date) and reminds the member that the billing

address on file must match the billing address of the credit card provided. The member enters the

required information and requests that the system continue. The system validates the credit card account

provided. If the account cannot be validated, the system notifies the member and requests an alternative

means of payment. If the member cannot provide an alternative means at this time, he or she can choose

either to hold or to cancel the order. If the member wishes to hold the order, the system records

the order information and places it in hold status and then displays the SoundStage main page. If the

member chooses to cancel the order, the system clears the inputted information and then displays the

SoundStage main page. Terminate the use case.

Alternate
Courses:

This use case concludes when the member receives a confirmation of the order.Conclusion:

Assumptions:

The order has been recorded and, if the ordered products were available, released to the distribution

center. For any product not available a back order has been created.

Postcondition:

Business Rules:

•
•

Use case must be available to the member 24 ⫻ 7.

Frequency—It is estimated that this use case will be executed 3,500 times per day. It should

support up to 50 concurrent members.

Implementation
Constraints and
Specifications:

NoneOpen Issues:

312 Part Two Systems Analysis Methods

Member Services System
Author(s): K. Dittman 11/01/06

1.00

Date:

Version:

Use Case Name: Enter New Member Order Use Case Type

Use Case ID: MSS-SUC003.00 Business Requirements:

Priority: High

Source: Requirement—MSS-R1.00

Requirements Use Case—MSS-BUC002.00

Primary Business
Actor:

Primary System
Actor:

Club Member (Alias—Active Member, Member)

Member Services Associate (Alias—User)

Other
Participating
Actors:

•
•

Warehouse (Alias—Distribution Center) (external receiver)

Accounts Receivable (external server)

Other
Interested
Stakeholders:

•
•
•

Marketing—Interested in sales activity in order to plan new promotions.

Procurement—Interested in sales activity in order to replenish inventory.

Management—Interested in order activity in order to evaluate company performance and

customer (member) satisfaction.

Description: This use case describes the event of a Member Services Associate entering a new order for SoundStage

products that either has been submitted by mail by a member or is being telephoned in by a member.

The member’s demographic information as well as account standing will be validated. Once the products

are verified as being in stock, a packing order is sent to the distribution center for it to prepare the

shipment. For any product not in stock, a back order is created. On completion, the member will be

sent an order confirmation.

The individual submitting the order must be a member.

The Member Services Associate must be logged in to the system.

This use case is initiated when the Member Services Associate selects the option to enter a new order.Trigger:

Actor Action System Response

Step 2: The system responds by prompting the user to enter the ID or
name of the member submitting the order.

Step 4: The system retrieves the member’s demographic information
on file and displays it to the user. If there are multiple members who
match the criteria provided by the user, the system displays a list and
prompts the user to select the correct one.

Step 6: The system responds by prompting the user to enter the ID
and quantity of each item to be ordered.

Step 7: The Member Services
Associate enters the ID and
quantity of each item provided.

Step 8: For each product ordered, the system validates the product
identity.

Step 10: The Member Services
Associate verifies the order with
the information provided by the
member. If no changes are
necessary, the associate responds
accordingly (to continue).

Step 9: For each product ordered, the system verifies the product
availability and determines an expected ship date, determines the
price to be charged to the member, and determines the cost of the
total order. If an item is not immediately available, it indicates that the
product is back-ordered or that it has not been released for shipping
(for preorders). If an item is no longer available, that is indicated also.

The system then displays a summary of the order to the user for
verification.

Step 11: The system checks the status of the member’s account. If
satisfactory, the system prompts the user to select the desired payment
option (to be billed later or pay immediately with a credit card).

Step 1: The Member Services
Associate requests the option to
enter a new order.

Step 3: The Member Services
Associate provides the member
name or ID.

Step 5: The Member Services
Associate verifies demographic
information (shipping and billing
addresses). If no changes are
necessary, the associate responds
accordingly (to continue).

Typical Course
of Events:

System Analysis: √

Precondition:

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 313

 F I G U R E 9 - 12 Enter New Member Order Use Case

•
•

Member must have a valid e-mail address to submit online orders.

Member is billed for products only when they are shipped.

•
•
•
•

Product can be transferred among distribution centers to fill orders.

Procurement will be notified of back orders by a daily report (separate use case).

The member responding to a promotion or using credits may affect the price of each ordered item.

The member can cancel the order at any time.

Alt-Step 4: If the member cannot be found on file, notify user of discrepancy.

Alt-Step 4: If the order requires changes, the user can delete any item no longer wanted or change the
order quantity. Once the member has completed the order changes, the system reprocesses the order
(go to step 8)

Alt-Step 15: If all items ordered are on back order, the order is not released to the distribution center.

Alt-Step 14: If the order requires changes, the user can delete any item no longer wanted or change
the order quantity. Once the member has completed the order changes, the system reprocesses the
order (go to step 8).

Alt-Step 5: If changes are required, the member updates the appropriate shipping, billing, or e-mail
addresses and tells the system to store them accordingly. The system will validate the changes and, if
successful, will store the new information to file.

Alt-Step 8: If the product information the member provided does not match any of SoundStage”s
products, the system displays the discrepancy to the user and prompts the user for clarification.

(Member Services Associate may have to contact member to resolve at a later time; if so, order may have
to be placed in hold status.)

Alt-Step 11: If the member’s account is not in good standing, display to the user the member account
status, the reason the order is being held, and what actions are necessary to resolve the problem.
(The Member Services Associate may have to contact the member to resolve at a later time. In addition, an
e-mail is sent to the member with the same information if the member has a valid e-mail account on file.)
The system prompts the user to hold the order for later processing or cancel the order. If the user wishes
to hold the order, the system records the order information and places it in hold status. If the user chooses
to cancel the order, the system clears the inputted information. Terminate the use case.

Alt-Step 13: If the user selects the option to pay by credit card, the system prompts the member to
enter the credit card information (number and expiration date) provided by the member and reminds the
user that the billing address on file must match the billing address of the credit card provided. The user
enters the required information and requests that the system continue. The system validates the credit
card account provided. If the account cannot be validated, the system notifies the user and requests an
alternative means of payment. If the user cannot provide an alternative means at this time, the user can
choose either to hold or to cancel the order. If the user wishes to hold the order, the system records the
order information and places it in hold status. If the user chooses to cancel the order, the system clears
the inputted information. Terminate the use case.

Alternate
Courses:

This use case concludes when the member receives a confirmation of the order.Conclusion:

Assumptions:

The order has been recorded and, if the ordered products were available, released. For any product not

available a back order has been created.

Postcondition:

Business Rules:

•
•

Use case must be available to the Member Services Associate from 7:00 A.M. to 9:00 P.M. EST.

Frequency—It is estimated that this use case will be executed 4,500 times per day. It should

support up to 25 concurrent users.

Implementation
Constraints and
Specifications:

NoneOpen Issues:

Step 17: Once the order is processed, the system generates an
order confirmation and displays it to the Member Services Associate
as well as sending it to the member via e-mail or U.S. mail.

Step 16: Invoke abstract use case MSS-AUC001.00, Determine
Appropriate Distribution Center and Release Order to Be Filled.

Step 13: The system displays a final summary of the order, including
the desired payment option, to the user for verification.

Step 15: The system records the order information (including back
orders if necessary).

Step 12: The Member Services
Associate responds by selecting
the desired payment option
indicated by the member.

Step 14: The Member Services
Associate verifies the order. If no
changes are necessary they
respond accordingly
(to continue).

314 Part Two Systems Analysis Methods

the actions performed by a specifi c class or actor. Figure 9-15 is an activity diagram
for the Place New Order use case (Figure 9-11) with a simple one-dimensional parti-
tioning of actions by member and system. The partitions are often called swim lanes
because they resemble the lanes used by competition swimmers. An activity diagram
might have three or more swim lanes showing receiver actors. You could also parti-
tion an activity diagram into a two-dimensional grid.

 Figure 9-15 illustrates two additional features of activity diagrams:

 9 Subactivity indicator —the rake symbol in an action indicates that this action is
broken out in another separate activity diagram. This helps you keep the activity
diagram from becoming overly complex.

 10 Connector —A letter inside a circle gives you another tool for managing
complexity. A fl ow coming into a connector jumps to the fl ow coming out of a
connector with a matching letter.

 These two examples do not exhaust all the functionality of activity diagrams.
 Actions can be invoked by signals based on time or an outside process. Actions can
also send signals as well as receive them. You can even indicate the passing of param-
eters and other special kinds of information. But we have covered enough to get you
started in drawing activity diagrams.

 > Guidelines for Constructing Activity Diagrams

The following list presents an excellent process for constructing activity diagrams:

• Start with one initial node as a starting point.
• Add partitions if they are relevant to your analysis.

 F I G U R E 9 - 13 Example of an Abstract Use-Case Narrative

Member Services System

Author(s): K. Dittman 11/01/06

1.00

Date:

Version:

Use Case Name: Determine Appropriate Distribution Center and Release

Order to Be Filled.

Use Case Type

Use Case ID: MSS-AUC001.00

Abstract:

Priority: High

Source: MSS-SUC002.00

MSS-SUC003.00

Participating
Actors:

Warehouse (Alias — Distribution Center) (external receiver)•

Description: This use case describes the event of selecting the distribution center that services the shipping address

provided by the club member for a particular order. The order information (packing order) is then sent

(released) to that distribution center to be filled.

The order is ready to be released to the appropriate distribution center.Precondition:

Step 1: The system selects the appropriate distribution center based on the state and zip code of the

shipping address.

Step 2: Once the distribution center has been selected, a packing order containing the items to ship is

formatted.

Step 3: The packing order is transmitted to the distribution center (shipping and receiving system) to be

used to prepare the shipment.

Typical Course
of Events:

Alt-Step 1: If the shipping address is an international address, route the packing order to the

Indianapolis, IN, location.

Alternate
Courses:

The packing slip has been transmitted (released) to the appropriate distribution center.Postcondition:

Extension:

√

1

2

 F I G U R E 9 - 14 Activity Diagram of the Enter New Member Order Use Case

Receive New Member Order

Route to

Member Services Associate

Verify Club Member’s

Demographic Information

Update Club Member’s

Demographic Information

Record Ordered Product

Create Back Order

Contact Club Member

for Resolution

Finalize Order

Cancel Order
Send Order Confirmation Release Order to be Filled

Check Club Member’s

Account Status

[account status

not satisfactory]

[changes required]

[resolved]

[additional ordered

products to record]

[no changes required]

[product not in stock]

[problem not resolved]

2

1

3

4

5

6

7

8

 F I G U R E 9 - 15 Activity Diagram with Partitioning of the Place New Order Use Case

Request Option to

Enter New Order

Display Products Matching

Search Criteria

Display Catalog of Products

Selects Products to Purchase

and Enters Quantity

Enter Search Criteria

Select Payment Option

Display Account

Status

Enter Credit

Card Information

Approve Order

Record Order

Cancel Order

Hold Order

Change Order

Display Payment

Options

Prompt for Credit

Card Information

Display Final

Order

Invoke Use Case

MSS-AUC001.00

Generate Order

Confirmation

[no search criteria]

[more

shopping]

[no changes required]

[opt to hold order

until problem resolved]

[opt to cancel order]

[credit card]

[credit card

validation problem]

[unsatisfactory]

[satisfactory]

[change

demographic

information]

Enter Changes to

Demographic Information

Validate Changes and

Update Stored Information

Check Member

Account Status

Retrieve Member Demographic

Information from File

B

A

A

9

10

A

B

Member Computer System

Process Order Request

Validate Credit Card

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 317

• Add an action for each major step of the use case (or each major step an
actor initiates).

• Add fl ows from each action to another action, a decision point, or an end point. For
maximum precision of meaning, each action should have only one fl ow coming in
and one fl ow going out, with all forks, joins, decisions, and merges shown explicitly.

• Add decisions where fl ows diverge with alternating routes. Be sure to bring
them back together with a merge.

• Add forks and joins where activities are performed in parallel.

• End with a single notation for activity fi nal.

 > Drawing System Sequence Diagrams

 Another tool used by some OO methodologists in the logical design phase is the
 system sequence diagram . As discussed earlier, a sequence diagram depicts how
objects interact with each other via messages in the execution of a use case or opera-
tion. We have not yet started analyzing the individual object classes; that will come
next as we build our fi rst version of the class diagram. For now we are still thinking
about the system as a whole.

 As we have said, the object-oriented world is driven by messages sent between
objects. A system sequence diagram helps us begin to identify the high-level messages
that enter and exit the system. Later these messages will become the responsibility
of individual objects, which will fulfi ll those responsibilities by communicating with
other objects. We will save that for Chapter 17.

 Figure 9-16 shows a system sequence diagram for the Place New Order use case.
Note that the system sequence diagram does not include any of the alternative courses

 F I G U R E 9 - 16

System Sequence
Diagram for Place

New Order Use Case

 system sequence
 diagram a diagram that

 depicts the interaction

 between an actor and

the system for a use case

scenario.

itemSelections(items,quantities)

Shipping and Billing Address

verifyDemographic(shipAddr,billAddr)

: MemberServicesSystem

Member

Order Summary

verifyOrder()

Payment Options

selectPayment(pymtType,ccNum,ccExpireDate)

Final Order Summary

finalizeOrder()

Order Confirmation

5

2

1

3

4

6

318 Part Two Systems Analysis Methods

of the use case. It depicts a single scenario, a single path through the use case. So a full
set of system sequence diagrams might have several diagrams for a single use case.

 Figure 9-16 illustrates the following system sequence diagram notations:

 1 Actor —the initiating actor of the use case is shown with the use case actor symbol.
 2 System —the box indicates the system as a “black box” or as a whole. The colon

(:) is standard sequence diagram notation to indicate a running “instance” of the
system.

 3 Lifelines —the dashed vertical lines extending downward from the actor and
system symbols, which indicate the life of the sequence.

 4 Activation bars —the bars that are set over the lifelines indicate the period of
time when the participant is active in the interaction. Some methodologists
leave them off the system sequence diagram, but we have included them to be
consistent with the full sequence diagram.

 5 Input messages —horizontal arrows from the actor to the system indicate the
message inputs. The UML convention for messages is to begin the fi rst word with
a lowercase letter and append additional words with an initial uppercase letter
and no space. In parentheses include any parameters that you know at this point,
following the same naming convention and separating individual parameters with
commas. You might wonder how the user will pass these messages. The answer is
that the user will interact with the user interface, which will pass the messages for
the user in the appropriate format. We’ll say more about that in Chapter 17.

 6 Output messages —horizontal arrows from the system to the actor are shown as
dashed lines. Since these take the form of Web forms, reports, e-mails, etc., these
messages do not need to use the standard notation, though you can if you want.

 Figure 9-17 is a system sequence diagram for a login validation illustrating the fol-
lowing additional notations:

 7 Receiver Actor —other actors or external systems that receive messages from
the system can be included.

 F I G U R E 9 - 17 System Sequence Diagram for Login Validation

[numTries <= 3]

submitLogin(username,password)

[numTries > 3]

submitLogin(username,password)

failedAttempt(datetime,ip)

Invalid Login

: MemberServicesSystem

User

opt

opt

Sys Admin

7

8

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 319

 8 Frame —a box can enclose one or more messages to divide off a fragment of the
sequence. These can show loops, alternate fragments, or optional (opt) steps.
For an optional fragment, the condition shown in square brackets indicates the
conditions under which the steps will be performed.

 > Guidelines for Constructing System
Sequence Diagrams

• Identify which scenario of the use case you will depict. The purpose of the
diagram is to discover messages, not to model logic. So though you can include
optional and alternate messages for an entire use case, it is more important to
clearly communicate a single scenario.

• Draw a rectangle representing the system as a whole and extend a lifeline under it.
• Identify each actor who directly provides an input to the system or directly

receives an output from the system. Extend lifelines under the actor(s).
• Examine the use-case narrative to identify system inputs and outputs. Ignore

messages inside the system. Draw each external message as a horizontal arrow
from the actor’s lifeline to the system or from the system to the actor. Label
inputs according to UML convention, which will help identify behaviors and
attributes in business objects.

• Add frames to indicate optional messages with conditions. Frames can also
indicate loops and alternate fragments (these will be discussed in Chapter 17).

• Confi rm that the messages are shown in the proper sequence from top to bottom.

 > Finding and Identifying the Business Objects

 In trying to identify objects, many methodology experts recommend the technique
of searching the requirements document or other associated documentation and un-
derlining the nouns that may represent potential objects. This could be a monumental
task. There are just too many nouns. Use-case modeling provides a solution to this
problem by breaking down the entire scope of a system into use cases. This abridged
format simplifi es the technique and makes underlining the nouns more effi cient. Let’s
now examine the steps involved to identify and fi nd business objects for object mod-
eling during systems analysis.

 Step 1: Find the Potential Objects This step is accomplished by reviewing each
use case to fi nd nouns that correspond to business entities or events. For example,
 Figure 9-18 depicts the use case Place New Order with all the nouns highlighted. Each
noun that is found in reviewing the use case is added to a list of potential objects that
will be analyzed further (see Figure 9-19).

 Step 2: Select the Proposed Objects Not all of the candidates (nouns) on our list
represent useful business objects that are within the scope of our problem domain.
By analyzing each candidate and asking the following questions, we can determine
whether the candidate should stay or be removed from the list:

• Is the candidate a synonym of another object? In other words, is it really the
same object with a different name?

• Is the candidate outside the scope of the system?
• Is the candidate a role without unique behavior, or is it an external role?
• Is the candidate unclear and in need of focus?
• Is the candidate an action or an attribute that describes another object?

 If you answer yes to any of the questions above during the analysis of a candidate,
the candidate should be removed from the list. If you fi nd that any of the candidates
are attributes, make sure you record them on a separate list so that they won’t be

320 Part Two Systems Analysis Methods

 F I G U R E 9 - 18 Sample Use-Case Narrative with Nouns Highlighted

Member Services System
Author(s): Date:

Version:

Use Case Name: Use Case Type

Use Case ID: MSS-SUC002.00 Business Requirements:

Priority: High

Source: Requirement—MSS-R1.00

Requirements Use Case—MSS-BUC002.00

Primary Business
Actor:

Primary System
Actor:

Club Member (Alias—Active Member, Member)

Club Member (Alias—Active Member, Member)

Other
Participating
Actors:

•
•

Warehouse (Alias—Distribution Center) (external receiver)

Accounts Receivable (external server)

Other
Interested
Stakeholders:

•
•
•

Marketing—interested in sales activity in order to plan new promotions.

Procurement—interested in sales activity in order to replenish inventory.

Management—interested in order activity in order to evaluate company performance and

customer (member) satisfaction.

Description: This use case describes the event of a member submitting a new order for SoundStage products via the

World Wide Web. The member selects the items he or she wishes to purchase. Once the member has

completed shopping, the member’s demographic information as well as account standing will be

validated. Once the products are verified as being in stock, a packing order is sent to the distribution

center for it to prepare the shipment. For any product not in stock, a back order is created. On

completion, the member will be sent an order confirmation.

The individual submitting the order must be an active club member.

The member must log in to the system (provide identification) to enter an order.

Precondition:

This use case is initiated when the member selects the option to enter a new order.Trigger:

Actor Action System Response

Step 2: The system responds by displaying the catalog of the

SoundStage products.

Step 4: Once the member has completed the selections, the

system retrieves from file and presents the member’s demographic

information (shipping and billing addresses).

Step 6: For each product ordered, the system verifies the product

availability and determines an expected ship date, determines the

price to be charged to the member, and determines the cost of the

total order. If an item is not immediately available, it indicates the

product is back-ordered or that it has not been released for shipping

(for preorders). If an item is no longer available, that is indicated also.

The system then displays a summary of the order to the member for

verification.

Step 7: The member verifies the

order. If no changes are necessary,

the member responds accordingly

(to continue).

Step 8: The system checks the status of the member’s account. If

satisfactory, the system prompts the member to select the desired

payment option (to be billed later or pay immediately with a credit

card).

Step 9: The member responds by

selecting the desired payment

option.

Step 10: The system displays a summary of the order, including the

desired payment option, to the member for verification.

Step 12: The system records the order information (including back

orders if necessary).

Step 1: The member requests the

option to enter a new order.

Step 11: The member verifies the

order. If no changes are necessary,

the member responds accordingly

(to continue).

Step 3: The member browses

the available items and selects

the ones he or she wishes to

purchase, along with the quantity.

Step 5: The member verifies

demographic information

(shipping and billing addresses).

If no changes are necessary, the

member responds accordingly

(to continue).

Typical Course
of Events:

System Analysis: √

Place New Order

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 321

•
•

Member must have a valid e-mail address to submit online orders.

Member is billed for products only when they are shipped.

•
•
•
•

Product can be transferred among distribution centers to fill orders.

Procurement will be notified of back orders by a daily report (separate use case).

The member responding to a promotion or using credits may affect the price of each ordered item.

The member can cancel the order at any time.

Alt-Step 3: The member enters search criteria to retrieve a specific item or to display a reduced list of

items to browse and order from.

Alt-Step 12: If all items ordered are on back order, the order is not released to the distribution center.

Alt-Step 11: If the order requires changes, the member can delete any item no longer wanted or change

the order quantity. Once the member has completed the order changes, the system reprocesses the

order (go to step 6). If the member requests to do additional shopping, go to step 3. If the member

needs to change the demographic information, go to step 5.

Alt-Step 5: If changes are required, the member updates the appropriate shipping, billing, or e-mail

addresses and tells the system to store them accordingly. The system will validate the changes and, if

successful, will store the new information to file.

Alt-Step 7: If the order requires changes, the member can delete any item no longer wanted or change

the order quantity. Once the member has completed the order changes, the system reprocesses the

order (go to step 6). If the member requests to do additional shopping, go to step 3. If the member

needs to change the demographic information, go to step 5.

Alt-Step 8: If the member’s account is not in good standing, display to the member the account status,

the reason the order is being held, and what actions are necessary to resolve the problem. In addition,

an e-mail is sent to the member with the same information. The system prompts the member to hold the

order for later processing or cancel the order. If the member wishes to hold the order, the system records

the order information and places it in hold status and then displays the SoundStage main page. If the

member chooses to cancel the order, the system clears the inputted information and then displays the

SoundStage main page. Terminate the use case.

Alt-Step 10: If the member selects the option to pay by credit card, the system prompts the member to

enter the credit card information (number and expiration date) and reminds the member that the billing

address on file must match the billing address of the credit card provided. The member enters the

required information and requests that the system continue. The system validates the credit card account

provided. If the account cannot be validated, the system notifies the member and requests an alternative

means of payment. If the member cannot provide an alternative means at this time, he or she can choose

either to hold or to cancel the order. If the member wishes to hold the order, the system records

the order information and places it in hold status and then displays the SoundStage main page. If the

member chooses to cancel the order, the system clears the inputted information and then displays the

SoundStage main page. Terminate the use case.

Alternate
Courses:

This use case concludes when the member receives a confirmation of the order.Conclusion:

Assumptions:

The order has been recorded and, if the ordered products were available, released to the distribution

center. For any product not available a back order has been created.

Postcondition:

Business Rules:

•
•

Use case must be available to the member 24 ⫻ 7.

Frequency—It is estimated that this use case will be executed 3,500 times per day. It should

support up to 50 concurrent members.

Implementation
Constraints and
Specifications:

NoneOpen Issues:

Step 13: Invoke abstract use case MSS-AUC001.00, Determine

Appropriate Distribution Center and Release Order to Be Filled.

Step 14: Once the order is processed, the system generates an

order confirmation and displays it to the member as well as sending

it to the member via e-mail.

 F I G U R E 9 - 18 (Concluded)

322 Part Two Systems Analysis Methods

Potential Object Reason

 Accounts Receivable x Not relevant for current project

 Actions x Needs better focpus—probably will be a comments
attribute in MEMBER ORDER

 Active Member ✓ Type of MEMBER

 Available Items x Synonym of PRODUCT

 Back Order x Responsibility of Procurement system—Not relevant
for current project

 Back-Ordered x Responsibility of Procurement system—Not relevant
for current project

 Billing Addresses ✓ Type of ADDRESS

 Catalog x Same as PRODUCT. Potential Interface item to be
addressed in object-oriented design

 Club Member ✓ Type of MEMBER

 Company Performance x Not relevant for current project

 Credit Card ✓ CREDIT CARD ACCOUNT

 Credit Card Expiration Date x Attribute of CREDIT CARD ACCOUNT

 Credit Card Number x Attribute of CREDIT CARD ACCOUNT

 Credits x Attribute of MEMBER

 Customer Satisfaction x Not relevant for current project

 Daily report × Potential Interface item to be addressed in object-
oriented design

 Demographic Information x Attribute of MEMBER

 Distribution Center ✓ DISTRIBUTION CENTER

 E-Mail x Potential Interface item to be addressed in object-
oriented design

 E-Mail Addresses ✓ Type of ADDRESS

 Event x Not relevant for current project

 Expected Ship Date x Attribute of MEMBER ORDERED PRODUCT

 External Receiver x Not relevant for current project

 External Server x Not relevant for current project

 File x Not relevant for current project

 Hold Status x Attribute of MEMBER ORDER

 Identifi cation x Attribute of MEMBER

 In Stock x Attribute of PRODUCT

 Individual x Synonym of MEMBER

 Inventory x Attribute of PRODUCT

 Items x Synonym of PRODUCT

 List x Potential Interface item to be addressed in object-
oriented design

 Main Page x Potential Interface item to be addressed in object-
oriented design

 Management x Not relevant for current project

 Marketing x Not relevant for current project

 Member ✓ MEMBER

 Member Account Standing x Attribute of MEMBER

 Member’s Account Status x Attribute of MEMBER

 New Order ✓ MEMBER ORDER

 New Promotions ✓ PROMOTION

F I G U R E 9 - 19 Analyzing the Potential Object List

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 323

 Option x Potential Interface item to be addressed in object-
oriented design

 Order Activity x Potential Interface item to be addressed in object-
oriented design (report)

 Order Confi rmation x Potential interface item to be addressed in object-
oriented design

 Order Total Cost x Attribute of MEMBER ORDER

 Ordered Products ✓ MEMBER ORDERED PRODUCT

 Packing Order x Potential Interface item to be addressed in object-
oriented design

 Payment Option x Attribute of MEMBER ORDER

 Preorders ✓ Type of MEMBER ORDER

 Price to Be Charged x Attribute of MEMBER ORDERED PRODUCT

 Problem x Needs better focus—probably will be a comments
attribute in MEMBER ORDER

 Procurement x Not relevant for current project

 Product Availability x Attribute of PRODUCT

 Product Ordered x Synonym of MEMBER ORDERED PRODUCT

 Promotion ✓ PROMOTION

 Purchase x Synonym of MEMBER ORDER

 Quantity x Attribute of MEMBER ORDERED PRODUCT

 Reason x Needs better focus—probably will be a comments
attribute in MEMBER ORDER

 Requirement x Not relevant for current project

 Requirements Use Case x Not relevant for current project

 Sales Activity x Potential Interface item to be addressed in object-
oriented design (report)

 Search Criteria x Potential Interface item to be addressed in object-
oriented design

 Selections x Synonym of MEMBER ORDERED PRODUCT

 Shipment x Not relevant for current project—responsibility of
shipping and receiving

 Shipping Address ✓ Type of ADDRESS

 Shopping x Potential Interface item to be addressed in object-
oriented design

 SoundStage Products x Synonym of PRODUCT

 Summary of the Order x Potential interface item to be addressed in object-
oriented design

 System x Not relevant for current project

 Warehouse x Synonym of DISTRIBUTION CENTER

 World Wide Web x Potential Interface item to be addressed in object-
oriented design

F I G U R E 9 - 19 (Concluded)

forgotten. They are used later in the process to construct the class diagram. If you are
unsure about a particular candidate, it is better to leave the candidate on the list; it is
much easier to remove candidates later if we determine they are not objects than it
would be to add them back after the class diagram has been constructed.

 Figure 9-19 shows the process of cleaning up our list of candidate objects. An “ x ”
marks the candidates we are discarding, and a “✓” marks the candidates we are keep-

324 Part Two Systems Analysis Methods

ing as objects. Also listed is the explanation of why we are keeping or discarding each
candidate. Finally, Figure 9-20 presents the results of our cleaning-up process, as well
as other objects discovered from the other use cases.

 > Organizing the Objects and Identifying
Their Relationships

 Now that we have identifi ed the business objects of the system, it is time to organize
those objects and document any major conceptual relationships between the objects.
A class diagram is used to graphically depict the objects and their associations. On
this diagram we will also include multiplicity, generalization/specialization relation-
ships, and aggregation relationships.

 Step 1: Identifying Associations and Multiplicity In this step, we need to identify
associations that exist between object classes. Recall that an association between two
object classes is what one object “needs to know” about the other. This allows for one
object class to cross-reference another and to be able to send it messages. Once the
associations have been identifi ed, the multiplicity that governs the association must
be defi ned.

Proposed Object List

 ACTIVE MEMBER

 BILLING ADDRESS

 CLUB MEMBER

 CREDIT CARD ACCOUNT

 DISTRIBUTION CENTER

 E-MAIL ADDRESS

 MEMBER

 MEMBER ORDER

 PROMOTION

 MEMBER ORDERED PRODUCT

 PREORDER

 PRODUCT

 SHIPPING ADDRESS

 PLUS

 AGREEMENT

 AUDIO TITLE

 FORMER MEMBER

 GAME TITLE

 INACTIVE MEMBER

 MERCHANDISE

 RETURN

 TITLE

 TRANSACTION

 VIDEO TITLE

F I G U R E 9 - 20 Member Services System Proposed Object List

 class diagram a graphical

depiction of a system’s static

object structure, showing

object classes that the system

is composed of as well as the

relationships between those

object classes.

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 325

 F I G U R E 9 - 21 Sample Object Association Matrix

CLUB MEMBER MEMBER ORDER

MEMBER

ORDERED

PRODUCT

CLUB MEMBER

MEMBER ORDER

PRODUCT

MEMBER ORDERED

PRODUCT

PRODUCT

Places zero to

many

Is part of one and

only one

Is placed by one and

only one

Was purchased by one

and only one

Has purchased

zero to many

Contains one to

many

Sold as zero to

many

XX
Relates to one

and only one

XX

XXXX

It is very important that the analyst identify not only associations that are obvi-
ous or recognized by the users. One way to help ensure that possible relationships
are identifi ed is to use an object class matrix. This matrix lists the object classes as
column headings as well as row headings. The matrix can then be used as a checklist
to ensure that each object class appearing on a row is checked against each object
class appearing in a column for possible associations. The name of the association
and the multiplicity can be recorded directly in the intersection cell of the matrix.
 Figure 9-21 is a matrix that includes a sample of the proposed objects of the Member
Services System. To interpret the contents of the cells, start with the object on the left
(heading of row), read the contents of the cell, and then fi nish with the object at the
top of the column. For example:

• A CLUB MEMBER places zero to many MEMBER ORDER S.
• A CLUB MEMBER has purchased zero to many MEMBER ORDERED PRODUCTS .
• A CLUB MEMBER and PRODUCT have no association between them.
• A MEMBER ORDER is placed by one and only one CLUB MEMBER.
• And so on . . .

 Step 2: Identifying Generalization/Specialization Relationships Once we
have identifi ed the basic associations and their multiplicity, we must determine
if any generalization/specialization relationships exist. Recall that generalization/
specialization relationships, also known as classifi cation hierarchies or “is a” rela-
tionships, consist of supertype (abstract or parent) classes and subtype (concrete
or child) classes. The supertype class is general in that it contains the common
 attributes and behaviors of the hierarchy. The subtype class is specialized in that it
contains attributes and behaviors unique to the object but it inherits the supertype
class’s attributes and behaviors.

 Generalization/specialization relationships may be discovered by looking at
the class diagram. Do any associations exist between two classes that have a one-
to-one multiplicity? If so, can you say the sentence “Object X is a type of object Y”
and it be true? If it is true, you may have a generalization/specialization relation-
ship. Also look for classes that have common attributes and behaviors. It may be
possible to combine the common attributes and behaviors into a new supertype
class. Why do we want generalization/specialization relationships? They allow us to
take advantage of inheritance, which facilitates the reuse of objects and program-
ming code.

326 Part Two Systems Analysis Methods

Please draw your attention to Figure 9-22 . When analyzing the class diagram, we
identifi ed three generalization/specialization hierarchies:

 1 A PRODUCT hierarchy that allows us to keep track of all SoundStage products
that can be purchased and enables us to add different types of products in the
future, such as BOOK TITLES.

 2 A CUSTOMER hierarchy that allows us to keep track of all MEMBERS (past, present,
and potential). It allows us to send special promotions to inactive members to
encourage them to start ordering products again. It also allows us to identify
former members who terminated their membership or whose membership

 F I G U R E 9 - 22 Generalization/Specialization Hierarchies in the Member Services System

Product

Merchandise Title

Audio Title Video Title Game Title

Customer

Potential Member Club Member

Active Member Inactive Member Former member

Transaction

Member Order Return

Preorder

1 2

3

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 327

 1 The diagram was constructed using Popkin Software’s System Architect.

was terminated because their account was in bad standing, as in the case of
members who defaulted on their agreement. It also enables us to add different
types of customers in the future, such as corporate customers.

 3 A TRANSACTION hierarchy that allows us to keep track of the various transactions
 CUSTOMERS conduct. Currently, MEMBER ORDERS, PREORDERS, and RETURNS are recorded,
but the hierarchy could be modifi ed to include reservations of TITLES to be
released in the future.

 Step 3: Identifying Aggregation/Composition Relationships In this step, we
must determine if any basic aggregation or composition relationships exist. Recall that
aggregation is a unique type of relationship in which one object “is part of” another
object. It is often referred to as a whole/part relationship and can be read as “Object
A contains object B and object B is part of object A.” Aggregation relationships are
 asymmetric, in that object B is part of object A but object A is not part of object B.
These relationships do not imply inheritance, in that object B does not inherit behav-
ior or attributes from object A. However, behavior applied to the whole is automati-
cally applied to the parts. For example, if I want to send object A to a customer, object
B would be sent also.

 When analyzing the class diagram, we identifi ed one composition relationship,
the relationship between a MEMBER ORDER and the ORDERED PRODUCTS it contains.

 Step 4: Prepare the Class Diagram Figure 9-23 is a partial UML class diagram for
the Member Services System. 1 Notice that the model depicts business object classes
within the domain of the SoundStage Member Services system. The object/class nota-
tion on the model does not depict behaviors (methods). These will be identifi ed and
defi ned in Chapter 17.

 The model also refl ects the associations and multiplicity that were identifi ed
in step 1, three generalization/specialization relationships that were discovered in
step 2, and one aggregation/composition relationship discovered in step 3. Notice
at the bottom of each class the word persistent appears. Typically, this means that
the objects the class describes will be stored permanently in a database. All busi-
ness domain classes tend to be persistent. Objects that are created temporarily by
a software program are called transient objects . In an object-oriented program-
ming language, all code exists inside an object class. So there is class code for the
user interface and for controlling the system. These transient objects are created
while the program is running and discarded later when no longer needed. Transient
objects are usually modeled during object-oriented design, which we will cover in
Chapter 17.

 persistent class a class

that describes an object that

outlives the execution of the

program that created it.

 transient object class a

class that describes an object

that is created temporarily

by the program and lives

only during that program’s

execution.

328 Part Two Systems Analysis Methods

Customer

Potential Member

- StreetAddress

- City

- state

- zipCode

Address

- memberNumber

- memberLastName

- memberFirstName

- memberStatus

Club Member

- agreementNumber

- agreementExpireDate

- agreementActiveDate

- fulfillmentPeriod

- requiredNumberOfCredits

Agreement

- productNumber

- UPC

- quantityInStock

- productType

- suggestedRetailPrice

- defaultUnitPrice

- currentSpecialUnitPrice

- currentMonthUnitsSold

- currentYearUnitsSold

- totalLifetimeUnitsSold

Product

- merchandiseName

- merchandiseDescription

- merchandiseType

- unitOfMeasure

Merchandise

- artist

- audioSubCategory

- numberofUnitsInPackage

- audioMediaCode

- contentAdvisoryCode

Audio Title

- producer

- directory

- videoSubCategory

- closedCaptioned

- language

- runningTime

- videoMediaType

- videoEncoding

- screenAspect

- rating

Video Title

- manufacturer

- gameCategory

- gameSubCategory

- gamePlatform

- gameMediaType

- numberOfPlayers

- parentAdvisoryCode

Game Title

- titleOfWork

- titleCover

- catalogDescription

- copyrightDate

- entertainmentCompany

- creditValue

Title

- promotionNumber

- promotionReleaseDate

- promotionStatus

- promotionType

Promotion

- orderNumber

- orderCreationDate

- orderFillDate

- shippingInstructions

- orderSubTotal

- orderSalesTax

- orderShippingMethod

- orderShipping&HandlingCost

- orderStatus

- orderPrepaidAmount

- orderPrepaymentMethod

Member Order

- transactionReferenceNumber

- transactionDate

- transactionType

- transactionDescription

- transactionAmount

Transaction

features

is associated with

0...*1

1

1
1...*

1...*

1

Billing Address Email Address Shipping Address

Return

- memberDateOfLastOrder

- memberDaytimePhoneNumber

- memberBalanceDue

- memberBonusBalanceAvailable

- audioCategoryPreference

- dateEnrolled

- gameCategoryPreference

- gameMediaPreference

- numberOfCreditsEarned

- privacyCode

- videoCategoryPreference

- videoMediaPreference

Active Member

- expirationDate

Inactive Member

- terminationDate

- reason

Former Member

is billed to

binds

has purchased

is shipped to

0...*

0...* 0...*1

0...*

0...1

0...*

1

1

- quantityOrdered

- quantityShipped

- quantityBackordered

- purchaseUnitPrice

- creditsEarned

Member Ordered Product

0...*

0...1

1...*

1
contains

generates

places

 F I G U R E 9 - 23 Member Services System Class Diagram

 1. The approach of using object modeling during sys-
tems analysis and design is called object-oriented
analysis (OOA). Object-oriented analysis techniques
are used (1) to study existing objects to see if they
can be reused or adapted for new uses and (2) to
defi ne new or modifi ed objects that will be com-
bined with existing objects into a useful business
computing application.

 2. The object-oriented approach is centered around
a technique referred to as object modeling. Object
modeling is a technique for identifying objects
within the systems environment and identifying
the relationships between those objects.

 3. There are many underlying concepts for object
modeling, including:

 a. Systems consist of objects, where an object is
something that is or is capable of being seen,
touched, or otherwise sensed and about which
users store data and associate behavior. The
data, or attributes, represent characteristics of
interest about an object. The behavior of an
object refers to those things that the object
can do and that correspond to functions that
act on the object’s data (or attributes). Each
object encapsulates the attributes and behavior
together as a single unit.

 b. Objects can be categorized into classes. A class
is a set of objects that share common attributes
and behavior. Objects may be grouped into mul-
tiple levels of classes. The most general class in
the grouping is the supertype (or generalization
of the class). The more refi ned class is referred
to as the subtype class (or specialization class).
All subtype classes “inherit” the attributes and
behavior of the supertype class.

 c. Objects and classes have relationships. A rela-
tionship is a natural business association that
exists between one or more objects and classes.

The degree, or multiplicity, of a relationship
specifi es the business rules governing the re-
lationship. Some relationships are more “struc-
tural,” meaning that a class may be related to
another class in that one class may represent an
assembly of one or more other class types. This
type of relationship is referred to as an aggrega-
tion structure.

 d. Objects communicate by passing messages. A
message is passed when one object invokes an-
other object’s behavior to request information
or some action.

 e. A type of behavior may be completed differ-
ently for different objects/classes. This concept
is referred to as polymorphism.

 4. One of the most critical aspects of performing
 object-oriented development is correctly identify-
ing the objects and their relationships early in the
development process. Use-case modeling is a popu-
lar approach that assists in object identifi cation.

 5. In trying to identify objects, many methodology
experts recommend the technique of searching
the requirements document or other associated
documentation and underlining the nouns that
may represent potential objects. This could be a
monumental task! There are just too many nouns.
Use-case modeling provides a solution to this
problem by breaking down the entire scope of sys-
tem functionality into many smaller statements of
system functionality called use cases. This smaller
format simplifi es and makes more effi cient the
technique of underlining the nouns.

 6. Activity diagrams are used to better understand
the use-case logic in terms of the fl ow of steps and
their sequencing.

 7. A class diagram is used to organize the objects
found as a result of use-case modeling and to docu-
ment the relationships between the objects.

Chapter Review

 1. What is the most commonly accepted notation
standard for object modeling?

 2. Object is defi ned as “something that is or is
capable of being seen, touched or otherwise
sensed and about which users store data and
associate behavior.” Please explain what it
means by something, data, and behavior in this
defi nition.

 3. What is encapsulation?

 4. Consider that textbooks and cookbooks are both
objects belonging to the class of Book. Please
give an example of a class and its objects.

 5. What is the relationship between inheritance and
supertype/subtype?

 6. In object-oriented analysis and modeling, objects
and classes do not exist in isolation. Why is this?

 7. How should analysts show the object or class
relationship using UML?

 Review Questions
1

2

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 329

 8. In terms of aggregation relationships, what is the
difference between the use of a hollow diamond
and the use of a solid diamond?

 9. What is polymorphism, and when is it applied?
 10. What are the fi ve groups of UML diagrams?
 11. What are the differences between sequence

diagrams and collaboration diagrams?
 12. What are the three major activities in performing

object-oriented analysis?

 13. What is an activity diagram? When is the diagram
used?

 14. What are some ways to determine if a candidate
object is useful and should be kept, or whether it
should be discarded?

 15. What are the steps in organizing the objects and
identifying their relationships?

330 Part Two Systems Analysis Methods

 1. Since its inception in 1997, the Unifi ed Modeling
Language (UML) has quickly gained wide
acceptance and usage throughout the world.

 a. In terms of object modeling, what does UML
provide to designers? What doesn’t UML
provide?

 b. What was the reason that UML was
developed?

 c. What might object modeling look like today if
UML had not been developed?

 2. Object-oriented analysis (OOA) and object
modeling have become familiar terms in many
organizations, but their underlying concepts are
not always intuitive and can be diffi cult to under-
stand, especially by nontechnical users who are
involved in a systems development project.

 a. In nontechnical terms, explain what an
object is and what the object-oriented analysis
approach is.

 b. Also in nontechnical terms, explain the
technique of object modeling.

 c. What are the main differences between
object-oriented analysis and traditional
systems analysis in how they approach system
development?

 d. Do you think it would be easier to learn
object-oriented analysis methods if you were
a systems designer experienced in traditional
development methods, or if this was the fi rst
analysis method you were learning? Explain
your answer.

 3. Consider a movie DVD as an example of an object.

 a. Using the textbook’s terminology, what type of
object is a movie DVD?

 b. What are some of the attributes of a movie DVD?
 c. What is an object instance of a movie DVD?
 d. Represent the class of Movie DVD in an object

model using UML notation, as shown in Figure
9-2 . Include the class name, attributes, and
behaviors.

 e. Would the object class of Movie DVD be a con-
sidered a supertype or subtype? Give examples.

 4. For this exercise, consider a different example of
an object—a dog.

 a. What type of object is a dog?
 b. What are some of the attributes of a dog?
 c. Show an object instance of Dog, using

 Figure 9-1 as an example.
 d. What are some of the behaviors of the class

of Dog?
 e. Represent the class of Dog in the UML, using

 Figure 9-2 (b) as an example.

 5. Again, consider the class of Dog.

 a. Provide fi ve or six examples of the association
between the class of Dog and the class of
 Person.

 b. Show the object class associations and
multiplicity notations for the class of Dog.

 c. What type of aggregation relationships might
exist for the class of Dog?

 6. Objects and classes can send messages to each
other in order to interact.

 a. Give an example of a message request from
the object classes of Dog to Person, and the
return behavior of Person.

 b. In message sending, what doesn’t the sending
object need to know about the receiving
object?

 c. What needs to exist in order to be able to send
a message between the two objects?

 7. Polymorphism is a concept that is important to
understand in object-oriented analysis. You need
to explain the concept to the system users who
are on the project team. In nontechnical terms:

 a. Defi ne the concept of polymorphism.
 b. Explain how polymorphism is related to

messaging.
 c. Explain what overriding behaviors are.

 Problems and Exercises

 Projects and Research

 1. Since its introduction in 1997, the Unifi ed Modeling
Language (UML) has quickly become a commonly
accepted standard and a widely used tool for object
modeling. Go to www.omg.org, which is the Web
site of the Object Management Group (OMG), the
standards body for UML, and take a look at its UML
Resource Page, as well as its links to other sites
such as IBM and Popkin Software.

 a. What is the most current version of UML?

 b. What is the Object Management Group?
 c. In reviewing some of the historical articles on

the Web site, why do you think that UML became
a leading tool for object modeling so quickly?

 d. Review the specifi cations for UML 2.0 (they
are available for download or viewing free of
charge)—what did you fi nd most interesting
and/or valuable about the new version?

 e. Many languages used in information technology
have come and gone, but certain ones, such

 8. You are teaching an introductory class in object-
oriented analysis and design. Explain:

 a. The different groups of UML diagrams, and
what each group of diagrams depicts and/or
models.

 b. What use-case modeling identifi es.
 c. What the three major tasks are in conducting

object-oriented analysis.
 d. How and why business requirements use-case

models are refi ned and changed into analysis
use-case models.

 9. During the design phase, abstract and extension
use-case narratives are also developed.

 a. Why are different narratives used for abstract
and extension use cases?

 b. What are some of the differences in
documenting abstract and extension use-case
narratives compared to documenting regular
use cases?

 c. Can an abstract use case be invoked by a
single use case?

 d. Is an extension use case reusable?
 e. Can an extension use case be invoked by a

single use case?
 f. Can an abstract use case invoke a regular use

case?

 10. UML activity diagrams are used to model system
process activities and to help system analysts
visualize the fl ow and sequencing of use cases.

 a. How are they different from fl owcharts, and
how is this difference useful?

 b. How are they similar?
 c. What does the solid black bar in an activity

diagram represent?

 11. In object-oriented analysis and modeling, it is
extremely important to identify all potential ob-
jects. This can be accomplished, as suggested by a
number of experts, by going through the require-

ments documentation to fi nd all the nouns, since
each one can represent a possible object.

 a. What is the problem with this method?
 b. How does use-case modeling help identify

potential objects?
 c. Once potential (candidate) objects are

identifi ed, should each one become an actual
object?

 d. How should candidate objects be selected?
 e. What if a candidate object turns out to actually

be an attribute?

 12. The last step in conducting the object-oriented
analysis is organizing the objects and identifying
their relationships.

 a. Does a class diagram show the structure of a
system as dynamic or static?

 b. Why are associations between objects
identifi ed before defi ning multiplicity?

 c. What is the purpose of an object class matrix?
 d. If you have 72 objects and classes, how many

empty (null) cells will there be in the matrix?

 13. After identifying object class associations and
multiplicity, you must perform several other
steps before organization of the objects can be
considered to be complete.

 a. What are these other steps?
 b. Why are generalization/specialization

relationships important to identify during the
design phase?

 c. What are two techniques for identifying
possible generalization/specialization
relationships?

 d. What is the essential difference between
generalization/specialization relationships and
aggregation relationships.

 e. Can a business domain class contain a

transient object?

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 331

Minicases
 1. Take the information you have gathered and your

assessment of needs so far and suggest a system
to meet the department’s current needs, as well as
future needs and opportunities. Prepare a paper
that includes a situation background, an overview
of the system you are suggesting, and the specifi c
technological requirements of said system. Your
paper should be no more than 12 pages long (1.5
spacing).

 2. Prepare a full feasibility analysis, including
Economic, Operational, Schedule, Legal, and
Technical analyses for the system you are
suggesting in problem 1. Your analysis should be
no more than 30 pages long (1.5 spaced).

 3. Create the use-case descriptions and diagram(s) for
the system in problems 1 and 2. Be sure to create
your use cases so that they are complete and clear.

as COBOL, are still in wide use decades after
they were introduced. Based upon the articles
available on the Web site, what do you think will
be the life span for UML? Why?

 f. Does UML have any new or emerging
competitors at this time?

 2. Find and talk to a system designer who is
experienced in modeling with UML.

 a. What types of systems does the designer work
on with UML?

 b. Does the designer use UML via a CASE tool? If
so, which one?

 c. What does the designer like best about UML?
 d. What does the designer like least?
 e. If the designer could choose a modeling

language, would it be UML? Why or why not?
 f. What features would the designer like to see

added to UML?

 3. You are currently working as a freelance systems
designer and have been asked to do some of the
design work for a case-tracking information system
that is being developed for a local law fi rm which
specializes in civil cases. The business objective is
to implement a system that tracks a civil case from
the time that the law fi rm begins working on the
lawsuit through its fi nal adjudication.

 What are some of the main objects and
classes you would expect to fi nd in a law fi rm that
specializes in civil fi lings?

 a. Describe each these classes, including their name
and attributes, using Figure 9-2 as an example.

 b. Describe any generalization/specialization
relationships, using Figure 9-4 as an example.

 c. Identify the object/class associations, and create
an object/class association table, using Figure
9-5 as an example. Make sure to include the
multiplicity for each association.

 d. Identify the aggregation relationships, and
prepare an aggregation relationship table, using
 Figure 9-6 as an example.

 4. The law fi rm likes your work and wants to extend
your contract so you can continue designing its
case-tracking system. Assuming you negotiate an
acceptable rate, for your next tasks:

 a. Create at least two detailed use-case narratives,
using Figure 9-11 as an example.

 b. Create an abstract use-case narrative, using
 Figure 9-12 as an example.

 c. Create an activity diagram for each of these use
case narratives, using Figure 9-13 as an example.

 5. At this point, you want to make sure that you have
included everything and haven’t left anything out.
So for your next task:

 a. Find potential objects, using the techniques
described in the textbook.

 b. Create the potential (candidate) object list,
using Figure 9-16 as an example, and determine
whether each candidate should be kept or
discarded.

 c. Create a proposed object list, using Figure 9-17
as an example.

 d. Create an object association matrix, using
 Figure 9-18 as an example, and identify the
associations and multiplicity that exist between
objects and classes.

 e. Did you fi nd objects and classes that you had
not previously identifi ed?

 6. You are almost done with your object-oriented
analysis and modeling of the case-tracking system
for the law fi rm. Based upon your design work in
the preceding questions, your fi nal tasks are to:

 a. Create a generalization/specialization hierarchies
diagram, using Figure 9-19 as an example.

 b. Create a class diagram, using Figure 9-19 as an
example.

 c. At this point, if you could choose between using
object-oriented analysis and modeling with
UML, or a traditional structured design method,
which would you choose? Why?

332 Part Two Systems Analysis Methods

Team and Individual Exercises

 1. Roundtable discussion: There is a big difference
between can create or implement a technology
and should create or implement a technology.
How can we determine if we should implement or
create a technology (or information system)?

 2. Team exercise: As of the writing of this question,
the government is considering developing
and implementing a tracking system to follow
the college careers of anyone who receives

government grants or aid to go to college. What
are the ethical, economic, and technical issues
associated with this? Do you think the government
should do this?

 3. Team exercise: What are the legal, ethical, and
technical issues associated with videomining? Do
you think retail stores, such as The Gap (just an
example for discussion), should implement such a
system?

Suggested Readings

 Ambler, Scott W. The Object Primer. New York: Cambridge

University Press, 2001. Very good information about docu-

menting use cases and their use.

 Armour, Frank, and Granville Miller. Advance Use Case Mod-

eling. Boston: Addison-Wesley, 2001. This book presents

excellent coverage of the use-case modeling process.

 Booch, G. Object-Oriented Design with Applications. Menlo

Park, CA: Benjamin Cummings, 1994. Many Booch con-

cepts were integrated into the UML.

 Coad, P., and E. Yourdon. Object-Oriented Analysis, 2nd ed.

Englewood Cliffs, NJ: Prentice Hall, 1991. This book pro-

vides a very good overview of object-oriented concepts.

However, the object model techniques are somewhat

limited in comparison to UML and other object-oriented

modeling approaches.

 Eriksson, Hans-Erik, and Magnus Penker. UML Toolkit. New

York: John Wiley & Sons, 1998. This book provides de-

tailed coverage of the UML.

 Fowler, Martin, and Kendall Scott. UML Distilled — Applying

the Standard Object Modeling Language. Reading, MA:

Addison-Wesley, 1997. A good short guide introducing the

concepts and notation of the UML.

 Harman, Paul, and Mark Watson. Understanding UML — The

Developer’s Guide. San Francisco: Morgan Kaufmann Pub-

lishers, 1997. This is an excellent reference book. The ex-

amples were prepared using Popkin’s System Architect.

 Jacobson, Ivar; Magnus Christerson; Patrik Jonsson; and

Gunnar Overgaard. Object-Oriented Software Engi-

neering — A Use Case Driven Approach. Wokingham, Eng-

land: Addison-Wesley, 1992. This book presents detailed

coverage of how to identify and document use cases.

 Larman, Craig. Applying UML and Patterns — An Introduc-

tion to Object-Oriented Analysis and Design. Englewood

Cliffs, NJ: Prentice Hall, 1997. This is an excellent refer-

ence book explaining the concepts of OO development

utilizing the UML.

 Martin, J., and J. Odell. Object-Oriented Analysis and Design.

Englewood Cliffs, NJ: Prentice Hall, 1992.

 Rumbaugh, James; Michael Blaha; William Premerlani; Fred-

erick Eddy; and William Lorensen. Object-Oriented Mod-

eling and Design. Englewood Cliffs, NJ: Prentice Hall,

1991. This book presents detailed coverage of the object

modeling technique and its application throughout the

entire systems development life cycle. Many OMT con-

structs are now in the UML.

 Rumbaugh, James; Ivar Jacobson; and Grady Booch. The Uni-

fi ed Modeling Language Reference Manual. Reading, MA:

Addison-Wesley, 1999. This book presents detailed cov-

erage of the UML by the primary authors who created it.

 Rumbaugh, James; Ivar Jacobson; and Grady Booch. The Uni-

fi ed Modeling Language User’s Guide. Reading, MA: Ad-

dison-Wesley, 1999. This book presents detailed coverage

of the UML by the primary authors who created it.

 Taylor, David A. Object-Oriented Information Systems —

 Planning and Implementation. New York: John Wiley &

Sons, 1992. This book is a very good entry-level resource

for learning the concepts of object-oriented technology

and techniques.

Object-Oriented Analysis and Modeling Using the UML Chapter Nine 333

 Remember, in real life, the system analyst/designer
is often not the person who develops the system,
and, in fact, the teams rarely meet at all. Clarity and
completeness are essential.

 4. Prepare a presentation on the material from
problems 1–3 and present it to your class. Utilize
interesting presentation media (such as video,
sound, etc.).

10
 Chapter Preview and Objectives

 Good systems analysts thoroughly evaluate alternative solutions before proposing change.

In this chapter you will learn how to analyze and document those alternatives on the basis

of four feasibility criteria: operational, technical, schedule, and economic. You will also

learn how to make a system proposal in the form of a written report and a formal presen-

tation. You will know that you understand the feasibility analysis and recommendation

skills needed by the systems analyst when you can:

 ❚ Identify feasibility checkpoints in the system’s life cycle.

 ❚ Identify alternative system solutions.

 ❚ Defi ne and describe four types of feasibility and their respective criteria.

 ❚ Perform various cost-benefi t analyses using time-adjusted costs and benefi ts.

 ❚ Write suitable system proposal reports for different audiences.

 ❚ Plan for a formal presentation to system owners and users.

Feasibility Analysis and the
System Proposal

Feasibility Analysis and the System Proposal Chapter Ten 335

 Introduction

 As all the analysis has been going on for the SoundStage Member Services system proj-
ect, Bob Martinez has been getting more and more excited about it. The programmer
in Bob would like to jump in and start coding the information system. But Sandra, his
boss, had him research packaged solutions on the market. They were pricey. But then
Sandra ran the numbers for the labor costs of in-house programming. Bob realized that
the packaged solutions weren’t that expensive relatively and could be put in place a
whole lot faster. There would still be programming to do, because the packaged solu-
tions would need to be customized to meet all their requirements.

 The fi nal decision on which solution to select would be made by the steering com-
mittee that was overseeing the project. Sandra said the executives on the steering com-
mittee were currently very budget conscious. They would be scrutinizing the numbers
and would approve the project to continue only if it showed a solid return on invest-
ment. Bob would have a small part in the system proposal presentation. He rehearsed
and studied up on the facts to make sure he was ready for any question. He didn’t
want to blow it. He was surprised to realize he was now glad that some of his college
courses required him to dress in a business suit and make a formal presentation.

 Feasibility Analysis and the System Proposal

 In today’s business world, it is becoming increasingly apparent that analysts must
learn to think like business managers. Computer applications are expanding at a re-
cord pace. Now more than ever, management expects information systems to pay for
themselves. Information is a major capital investment that must be justifi ed, just as
marketing must justify a new product and manufacturing must justify a new plant or
equipment. Systems analysts are called on more than ever to help answer the follow-
ing questions: Will the investment pay for itself? Are there other investments that will
return even more on their expenditure?

 This chapter deals with feasibility analysis issues of interest to the systems analyst
and users of information systems. It also emphasizes the importance of making rec-
ommendations to management in the form of a system proposal that is a formal writ-
ten report and/or oral presentation. Feasibility analysis is appropriate to the systems
analysis phases but particularly important to the decision analysis phase. The system
proposal represents the deliverable and presents the technical KNOWLEDGE, PROCESS,
and COMMUNICATION solution.

 > Feasibility Analysis—A Creeping
Commitment Approach

 Let’s begin with a formal defi nition of feasibility and feasibility analysis. Feasibility is the
measure of how benefi cial or practical the development of an information system will be
to an organization. Feasibility analysis is the process by which feasibility is measured.

 Feasibility should be measured throughout the life cycle. In earlier chapters we
called this a creeping commitment approach to feasibility. The scope and complexity
of an apparently feasible project can change after the initial problems and opportuni-
ties are fully analyzed or after the system has been designed. Thus, a project that is
feasible at one point may become infeasible later.

 Figure 10-1 shows feasibility checkpoints during the systems analysis phases of
our life cycle. The checkpoints are represented by red diamonds. The diamonds in-
dicate that a feasibility reassessment and management review should be conducted
at the end of the prior phase (before the next phase). A project may be canceled or
revised at any checkpoint, despite whatever resources have been spent.

 feasibility the measure of

how benefi cial or practical an

information system will be to

an organization.

 feasibility analysis the

process by which feasibility is

measured.

336 Part Two Systems Analysis Methods

SCOPE

DEFINITION

1

PROBLEM

ANALYSIS

2

REQUIREMENTS

ANALYS IS

3

DECISION

ANALYSIS

5

PHYS ICAL

DES IGN &

INTEGRATION

6

CONSTRUCTION

&

TESTING

7

INSTALLATION

&

DELIVERY

8

Problem

Statement

Logical

Design

Design

Specs

Functional

System

Operational

System

Statement

of

Work

LOGICAL

DES IGN

4

Business

Requirements

Statement

System

Proposal

Scope & Vision

Problems,

Opportunities,

& Directives

System

Improvement

Objectives

Application

Architecture

 F I G U R E 1 0 - 1 Feasibility Checkpoints during Systems Analysis

Feasibility Analysis and the System Proposal Chapter Ten 337

 The idea of canceling a project is often diffi cult to face. A natural inclination
may be to justify continuing a project based on the time and money that has already
been spent. However, a fundamental principle of management is never to throw good
money after bad—cut your losses and move on to a more feasible project. Deciding
to cancel doesn’t mean the costs already spent are not important. Costs must eventu-
ally be recovered if the investment is ever to be considered a success. Let’s briefl y
 examine the checkpoints in Figure 10-1 .

 > Systems Analysis—Scope Defi nition Checkpoint

 The fi rst feasibility analysis is conducted during the scope defi nition phase. At this
early stage of the project, feasibility is rarely more than a measure of the urgency of
the problem and the fi rst-cut estimate of development costs. It answers the question,
Do the problems (or opportunities) warrant the cost of a detailed study and analysis
of the current system? Realistically, feasibility can’t be accurately measured until the
problems (and opportunities) and requirements are better understood.

 After estimating the benefi ts of solving the problems and opportunities, analysts
estimate the costs of developing the expected system. Experienced analysts routinely
increase these costs by 50 to 100 percent (or more) because experience tells them
the problems are rarely well defi ned and user requirements are typically understated.

 > Systems Analysis—Problem Analysis Checkpoint

 The next checkpoint occurs after a more detailed study and problem analysis of the
current system. Because the problems are better understood, the analysts can make
better estimates of development costs and of the benefi ts to be obtained from a new
system. The minimum value of solving a problem is equal to the cost of that problem.
For example, if inventory carrying costs are $35,000 over acceptable limits, then the
minimum value of an acceptable information system would be $35,000. It is hoped
an improved system will be able to do better than that; however, it must return this
minimum value.

 Development costs, at this point, are still just guesstimates. Analysts have yet to
fully defi ne user requirements or to specify a design solution to those requirements.

 If the cost estimates signifi cantly increase from the preliminary investigation
phase to the problem analysis phase, the likely culprit is scope. Scope has a tendency
to increase in many projects. If increased scope threatens feasibility, then scope might
be reduced.

 > Systems Design—Decision Analysis Checkpoint

 The decision analysis phase represents a major feasibility analysis activity since it
charts one of many possible implementations as the target for systems design.

 Problems and requirements should be known by now. During the decision analy-
sis phase, alternative solutions are defi ned in terms of their input/output methods,
data storage methods, computer hardware and software requirements, processing
methods, and people implications. The following list presents the typical range of
 options that can be evaluated by the analyst:

 • Do nothing. Leave the current system alone. Regardless of management’s opinion
or your own opinion, this option should be considered and analyzed as a baseline
option against which all others can and should be evaluated.

 • Reengineer the (manual) business processes, not the computer-based processes.
This may involve streamlining activities, reducing duplication and unnecessary
tasks, reorganizing offi ce layouts, and eliminating redundant and unnecessary
forms and processes, among others.

 • Enhance existing computer processes.

338 Part Two Systems Analysis Methods

 • Purchase a packaged application.
 • Design and construct a new computer-based system.

 After defi ning these options, each is analyzed for operational, technical, schedule,
and economic feasibility. One alternative is recommended to system owners for
 approval and the basis for general and detailed design.

 operational feasibility
 a measure of how well a

solution meets the identi-

fi ed system requirements to

solve the problems and take

advantage of the opportuni-

ties envisioned for the system.

 technical feasibility a

measure of the practicality

of a technical solution and

the availability of technical

resources and expertise.

 Six Tests for Feasibility

 So far, we’ve defi ned feasibility and feasibility analysis, and we’ve identifi ed feasibility
checkpoints during systems analysis. Feasibility can be viewed from multiple perspec-
tives. Below we present four categories of feasibility tests.

 • Operational feasibility is a measure of how well a solution meets the
 identifi ed system requirements to solve the problems and take advantage of the
 opportunities envisioned for the system.

 • Technical feasibility is a measure of the practicality of a specifi c technical solu-
tion and the availability of technical resources and expertise to implement and
maintain it.

 • Schedule feasibility is a measure of how reasonable the project timetable is.
 • Economic feasibility is a measure of the cost-effectiveness of a project or

 solution.

 Actually, few systems are infeasible. Instead, different solution options tend to be more
or less feasible than others. Let’s take a closer look at the four feasibility criteria.

 > Operational Feasibility

 Operational feasibility is the measure of how well a proposed system solves the
problems and takes advantage of the opportunities identifi ed during the scope defi ni-
tion and problem analysis phases and how well it satisfi es the system requirements
identifi ed in the requirements analysis phase. Operational feasibility also asks if, given
what is now known about the problem and the cost of the solution, the problem is
still worth solving. The PIECES framework (Chapter 2) can be used as the basis for
analyzing the urgency of a problem or the effectiveness of a solution.

 > Technical Feasibility

 Today, very little is technically impossible. Consequently, technical feasibility looks at
what is practical and reasonable. Technical feasibility addresses three major issues:

 1. Is the proposed technology or solution practical?
 2. Do we currently possess the necessary technology?
 3. Do we possess the necessary technical expertise?

 Is the Proposed Technology or Solution Practical? The technology for any defi ned
solution is normally available. The question is whether that technology is mature enough
to be easily applied to our problems. Some fi rms like to use state-of-the-art technology,
but most fi rms prefer to use mature and proven technology. A mature technology has a
larger customer base for obtaining advice concerning problems and improvements.

 Do We Currently Possess the Necessary Technology? Assuming the solution’s
required technology is practical, we must next ask ourselves, Is the technology avail-
able in our information systems shop? If the technology is available, we must ask if
we have the capacity. For instance, will our current printer be able to handle the new
reports and forms required of a new system?

Feasibility Analysis and the System Proposal Chapter Ten 339

 If the answer to either of these questions is no, then we must ask ourselves, Can
we get this technology? The technology may be practical and available, and, yes, we
need it. But we simply may not be able to afford it at this time. Although this argument
borders on economic feasibility, it is truly technical feasibility. If we can’t afford the
technology, then the alternative that requires the technology is not practical and is
technically infeasible!

 Do We Possess the Necessary Technical Expertise? This consideration of tech-
nical feasibility is often forgotten during feasibility analysis. Even if a company has the
technology, that doesn’t mean it has the skills required to properly apply that technol-
ogy. For instance, a company may have a database management system (DBMS). How-
ever, the analysts and programmers available for the project may not know that DBMS
well enough to properly apply it. True, all information systems professionals can learn
new technologies; however, that learning curve will impact the technical feasibility of
the project—specifi cally, it will impact the schedule.

 > Schedule Feasibility

 Given the available technical expertise, are the project deadlines reasonable—that
is, what is the schedule feasibility of the project? Some projects are initiated with
specifi c deadlines. It is necessary to determine whether the deadlines are mandatory
or desirable. For instance, a project to develop a system to meet new government
reporting regulations may have a deadline that coincides with when the new reports
must be initiated. Penalties associated with missing such a deadline may make meet-
ing it mandatory. If the deadlines are desirable rather than mandatory, the analyst can
propose alternative schedules.

 It is preferable (unless the deadline is absolutely mandatory) to deliver a properly
functioning information system two months late than to deliver an error-prone, useless
information system on time! While missing deadlines can be problematic, developing
inadequate systems can be disastrous. It’s a choice between the lesser of two evils.

 > Economic Feasibility

 The bottom line in many projects is economic feasibility . During the early phases of
the project, economic feasibility analysis amounts to little more than judging whether
the possible benefi ts of solving the problem are worthwhile. Costs are practically
impossible to estimate at that stage because the end user’s requirements and alter-
native technical solutions have not been identifi ed. However, as soon as specifi c re-
quirements and solutions have been identifi ed, the analyst can weigh the costs and
benefi ts of each alternative. This is called a cost-benefi t analysis. Cost-benefi t analysis
is discussed later in this chapter.

 schedule feasibility a

measure of how reasonable a

project timetable is.

 economic feasibility a

measure of the cost-

 effectiveness of a project or

solution.

 Cost-Benefi t Analysis Techniques

 Economic feasibility has been defi ned as a cost-benefi t analysis. How can costs and
benefi ts be estimated? How can those costs and benefi ts be compared to determine
economic feasibility? Most schools offer complete courses on these subjects—
courses on fi nancial management, fi nancial decision analysis, and engineering eco-
nomics and analysis. This section presents an overview of the techniques.

 > How Much Will the System Cost?

 Costs fall into two categories. There are costs associated with developing the system,
and there are costs associated with operating a system. The former can be estimated

340 Part Two Systems Analysis Methods

from the outset of a project and should be refi ned at the end of each phase of the
project. The latter can be estimated only after specifi c computer-based solutions have
been defi ned. Let’s take a closer look at the costs of information systems.

 The costs of developing an information system can be classifi ed according to the
phase in which they occur. Systems development costs are usually onetime costs that
will not recur after the project has been completed. Many organizations have standard
cost categories that must be evaluated. In the absence of such categories, the follow-
ing list should help:

 • Personnel costs —The salaries of systems analysts, programmers, consultants,
data entry personnel, computer operators, secretaries, and the like, who work
on the project make up the personnel costs. Because many of these individu-
als spend time on many projects, their salaries should be prorated to refl ect the
time spent on the projects being estimated.

 • Computer usage —Computer time will be used for one or more of the following
activities: programming, testing, conversion, word processing, maintaining a proj-
ect dictionary, prototyping, loading new data fi les, and the like. If a computing
center charges for usage of computer resources such as disk storage or report
printing, the cost should be estimated.

 • Training —If computer personnel or end users have to be trained, the training
courses may incur expenses. Packaged training courses may be charged out on a
fl at fee per site, a student fee (such as $395 per student), or an hourly fee (such
as $75 per class hour).

 • Supply, duplication, and equipment costs.
 • Cost of any new computer equipment and software.

 Sample development costs for a typical solution are displayed in Figure 10-2 .
When analysts are estimating development costs, it is important that money be set
aside for the possibility that a system will incur costs after it is operating. The lifetime
benefi ts must recover both the developmental and the operating costs. Unlike system
development costs, operating costs tend to recur throughout the lifetime of the sys-
tem. The costs of operating a system over its useful lifetime can be classifi ed as fi xed
or variable.

 Fixed costs occur at regular intervals but at relatively fi xed rates. Examples of
fi xed operating costs include:

 • Lease payments and software license payments.
 • Prorated salaries of information systems operators and support personnel (al-

though salaries tend to rise, the rise is gradual and tends not to change dramati-
cally from month to month).

 Variable costs occur in proportion to some usage factor. Examples include:

 • Costs of computer usage (e.g., CPU time used, terminal connect time used,
 storage used), which vary with the workload.

 • Supplies (e.g., preprinted forms, printer paper used, punched cards, fl oppy
disks, magnetic tapes, and other expendables), which vary with the workload.

 • Prorated overhead costs (e.g., utilities, maintenance, and telephone service),
which can be allocated throughout the lifetime of the system using standard
techniques of cost accounting.

 Sample operating cost estimates for a solution are also displayed in Figure 10-2 .

 > What Benefi ts Will the System Provide?

 Benefi ts normally increase profi ts or decrease costs, both highly desirable characteris-
tics of a new information system. As much as possible, benefi ts should be quantifi ed
in dollars and cents; they should also be classifi ed as tangible or intangible.

 fi xed cost a cost that

 occurs at a regular interval

and at a relatively fi xed rate.

 variable cost a cost that

occurs in proportion to some

usage factor.

Feasibility Analysis and the System Proposal Chapter Ten 341

 tangible benefi t a benefi t

that can be easily quantifi ed.

 F I G U R E 1 0 - 2 Costs for a Proposed Systems Solution

Estimated Costs for Client-Server System Alternative

DEVELOPMENT COSTS

Personnel:

2 Systems Analysts (400 hours/ea $50.00/hr) $40,000

4 Programmer/Analysts (250 hours/ea $35.00/hr) $35,000

1 GUI Designer (200 hours/ea $40.00/hr) $8,000

1 Telecommunications Specialist (50 hours/ea $50.00/hr) $2,500

1 System Architect (100 hours/ea $50.00/hr) $5,000

1 Database Specialist (15 hours/ea $45.00/hr) $675

1 System Librarian (250 hours/ea $15.00/hr) $3,750

Expenses:

4 Smalltalk training registration ($3,500.00/student) $14,000

New Hardware & Software:

1 Development Server $18,700

1 Server software (operating system, misc.) $1,500

1 DBMS server software $7,500

7 DBMS client software ($950.00 per client) $6,650

Total Development Costs: $143,275

PROJECTED ANNUAL OPERATING COSTS

Personnel:

2 Programmer/Analysts (125 hours/ea $35.00/hr) $8,750

1 System Librarian (20 hours/ea $15.00/hr) $300

Expenses:

1 Maintenance Agreement for server $995

1 Maintenance Agreement for server DBMS software $525

Preprinted forms (15,000/year @ .22/form) $3,300

Total Projected Annual Costs: $13,870

 Tangible benefi ts are those that can be easily quantifi ed. Tangible benefi ts are
usually measured in terms of monthly or annual savings or of profi t to the fi rm. For
example, consider the following scenario:

 While processing student housing applications, we discover that considerable
data is being redundantly typed and fi led. An analysis reveals that the same data is
typed seven times, requiring an average of 44 additional minutes of clerical work
per application. The offi ce processes 1,500 applications per year. That means a
total of 66,000 minutes or 1,100 hours of redundant work per year. If the average
salary of a secretary is $15 per hour, the cost of this problem and the benefi t of
solving the problem is $16,500 per year.

 Alternatively, tangible benefi ts might be measured in terms of unit cost savings or
profi t. For instance, an alternative inventory valuation scheme may reduce inventory
carrying cost by $0.32 per unit of inventory. Some examples of tangible benefi ts are
listed in the margin.

TANGIBLE BENEFITS

 Fewer Processing Errors

 Increased Throughput

 Decreased Response Time

 Elimination of Job Steps

 Increased Sales

 Reduced Credit Losses

 Reduced Expenses

342 Part Two Systems Analysis Methods

 Other benefi ts are intangible. Intangible benefi ts are those that are believed to
be diffi cult or impossible to quantify. Unless these benefi ts are at least identifi ed, it
is entirely possible that many projects would not be feasible. Examples of intangible
benefi ts are listed in the margin on the next page.

Unfortunately, if a benefi t cannot be quantifi ed, it is diffi cult to accept the validity
of an associated cost-benefi t analysis that is based on incomplete data. Some analysts
dispute the existence of intangible benefi ts. They argue that all benefi ts are quantifi -
able; some are just more diffi cult to quantify than others. Suppose, for example, that
improved customer goodwill is listed as a possible intangible benefi t. Can we quantify
goodwill? You might try the following analysis:

 1. What is the result of customer ill will? The customer will submit fewer (or no)
orders.

 2. To what degree will a customer reduce orders? A user may fi nd it diffi cult to
specifi cally quantify this impact, but you could try to have the end user estimate
the possibilities (or invent an estimate to which the end user can react). For
instance:
 a. There is a 50 percent (.50) chance that the regular customer would send a

few orders—fewer than 10 percent of all its orders—to competitors to test
their performance.

 b. There is a 20 percent (.20) chance that the regular customer would send as
many as half its orders (.50) to competitors, particularly those orders we are
historically slow to fulfi ll.

 c. There is a 10 percent (.10) chance that a regular customer would send us an
order only as a last resort. That would reduce that customer’s normal business
with us to 10 percent of its current volume (90 percent, or .90, loss).

 d. There is a 5 percent (.05) chance that a regular customer would choose not to
do business with us at all (100 percent or 1.00 loss).

 3. We can calculate an estimated business loss as follows:

Loss .50 (.10 loss of business)
 .20 (.50 loss of business)
 .10 (.90 loss of business)
 .50 (1.00 loss of business)

 .29
 .29% statistically estimated loss of business

 4. If the average customer does $40,000 per year of business, then we can expect to

lose 29 percent, or $11,600, of that business. If we have 500 customers, this can be

expected to amount to a total of $5,800,000.

 5. Present this analysis to management, and use it as a starting point for quantifying
the benefi t.

 > Is the Proposed System Cost-Effective?

 There are three popular techniques for assessing economic feasibility, also called cost-

effectiveness: payback analysis, return on investment, and net present value.
 The choice of techniques should consider the audiences that will use them. Virtu-

ally all managers who have come through business schools are familiar with all three
techniques. One concept that should be applied to each technique is the adjustment
of cost and benefi ts to refl ect the time value of money.

 The Time Value of Money A concept shared by all three techniques is the time

value of money —a dollar today is worth more than a dollar one year from now.
You could invest that dollar today and, through accrued interest, have more than one
 dollar a year from now. Thus, you’d rather have that dollar today than in one year.

 intangible benefi t a

benefi t that is believed to

be diffi cult or impossible to

quantify.

INTANGIBLE
BENEFITS

 Improved Customer
Goodwill

 Improved Employee Morale

 Better Service to
Community

 Better Decision Making

Feasibility Analysis and the System Proposal Chapter Ten 343

That’s why your creditors want you to pay your bills promptly—they can’t invest
what they don’t have. The same principle can be applied to costs and benefi ts before
a cost-benefi t analysis is performed.

 Some of the costs of a system will be accrued after implementation. Additionally,
all benefi ts of the new system will be accrued in the future. Before cost-benefi t analy-
sis, these costs should be brought back to current dollars. An example should clarify
the concept.

 Suppose we are going to realize a benefi t of $20,000 two years from now. What
is the current dollar value of that $20,000 benefi t? If the current return on invest-
ments is running about 10 percent, an investment of $16,528 today would give us
our $20,000 in two years (we’ll show you how to calculate this later). Therefore, the
current value of the estimated benefi t is $16,528—that is, we’d rather have $16,528
today than the promise of $20,000 two years from now.

 Because projects are often compared against other projects that have different
lifetimes, time-value analysis techniques have become the preferred cost-benefi t meth-
ods for most managers. By time-adjusting costs and benefi ts, you can improve the fol-
lowing cost-benefi t techniques.

 Payback Analysis The payback analysis technique is a simple and popular
method for determining if and when an investment will pay for itself. Because system
development costs are incurred long before benefi ts begin to accrue, it will take some
time for the benefi ts to overtake the costs. After implementation, you will incur ad-
ditional operating expenses that must be recovered. Payback analysis determines how
much time will elapse before accrued benefi ts overtake accrued and continuing costs.
This period of time is called the payback period .

 In Figure 10-3 we see an information system that will be developed at a cost of
$418,040. The estimated net operating costs for each of the next six years are also
recorded in the table. The estimated net benefi ts over the same six operating years are
also shown. What is the payback period?

 First, we need to adjust the costs and benefi ts for the time value of money (that
is, adjust them to current dollar values). Here’s how: The present value of a dollar in
year n depends on something typically called a discount rate. The discount rate is
a percentage similar to interest rates that you earn on your savings account. In most

 payback analysis a tech-

nique for determining if and

when an investment will pay

for itself.

 payback period the period

of time that will elapse before

accrued benefi ts overtake

accrued costs.

 F I G U R E 1 0 - 3

 Payback Analysis
for a Project

344 Part Two Systems Analysis Methods

cases the discount rate for a business is the opportunity cost of being able to invest
money in other projects, including the possibility of investing in the stock market,
money market funds, bonds, and the like. Alternatively, a discount rate could represent
what the company considers an acceptable return on its investments. This number
can be learned by asking any fi nancial manager, offi cer, or comptroller.

 Let’s say the discount rate for our sample company is 12 percent. The current
value, actually called the present value , of a dollar at any time in the future can be
calculated using the following formula:

PV
n
 1/(1 i)n.

 where PV
n
 is the present value of $1.00 n years from now and i is the discount rate.

Therefore, the present value of a dollar two years from now is

PV
2
 1/(1 .12)2 0.797

 Earlier we stated that a dollar today is worth more than a dollar a year from now.
But it looks as if it is worth less. This is an illusion. The present value is interpreted as
follows. If you have 79.7 cents today, it is better than having 79.7 cents two years from
now. How much better? Exactly 20.3 cents better since that 79.7 cents would grow
into one dollar in two years (assuming our 12 percent discount rate).

 To determine the present value of any cost or benefi t in year 2, you simply mul-
tiply 0.797 times the estimated cost or benefi t. For example, the estimated operating
expense in year 2 is $16,000. The present value of this expense is $16,000 0.797, or
$12,752 (rounded up). Fortunately, you don’t have to calculate discount factors. There
are tables similar to the partial one shown in Figure 10-4 that show the present value
of a dollar for different time periods and discount rates. Simply multiply this number
times the estimated cost or benefi t to get the present value of that cost or benefi t.
More detailed versions of this table can be found in many accounting and fi nance
books as well as in spreadsheet functions.

 Better still, most spreadsheets include built-in functions for calculating the pres-
ent value of any cash fl ow, be it cost or benefi t. All the examples in this module were
done with Microsoft Excel. The same tables can be prepared with Lotus 1-2-3. The
beauty of a spreadsheet is that once the rows, columns, and functions have been set
up, you simply enter the costs and benefi ts and let the spreadsheet discount the num-
bers to present value. (In fact, you can also program the spreadsheet to perform the
cost-benefi t analysis.)

 In Figure 10-3 , notice that we have brought all costs and benefi ts for our example
back to present value. Also notice that the discount rate for year 0 is 1.000. Why? The
present value of a dollar in year 0 is exactly $1. In other words, if you hold a dollar
today, it is worth exactly $1.

 Periods 8% 9% 10% 11% 12% 13% 14%

 1 0.926 0.917 0.909 0.901 0.893 0.885 0.877

 2 0.857 0.842 0.826 0.812 0.797 0.783 0.769

 3 0.794 0.772 0.751 0.731 0.712 0.693 0.675

 4 0.735 0.708 0.683 0.659 0.636 0.613 0.592

 5 0.681 0.650 0.621 0.593 0.567 0.543 0.519

 6 0.630 0.596 0.564 0.535 0.507 0.480 0.456

 7 0.583 0.547 0.513 0.482 0.452 0.425 0.400

 8 0.540 0.502 0.467 0.434 0.404 0.376 0.351

F I G U R E 1 0 - 4 Partial Table For Present Value of a Dollar

 present value the current

value of a dollar at any time in

the future.

Feasibility Analysis and the System Proposal Chapter Ten 345

 Now that we’ve discounted the costs and benefi ts, we can complete our payback
analysis. Look at the cumulative lifetime costs and benefi ts. The lifetime costs are grad-
ually increasing over the six-year period because operating costs are being incurred.
But also notice that the lifetime benefi ts are accruing at a much faster pace. Lifetime
benefi ts will overtake the lifetime costs between years 3 and 4. By charting the cumu-
lative lifetime time-adjusted costs and benefi ts, we can estimate that the break-even
point (when Costs + Benefi ts 0) will occur approximately 3.5 years after the system
begins operating.

 Is this information system a good or bad investment? It depends. Many companies
have a payback period guideline for all investments. In the absence of such a guide-
line, you need to determine a reasonable guideline before you determine the payback
period. Suppose that the guideline states that all investments must have a payback
period less than or equal to four years. Because our example has a payback period of
3.5 years, it is a good investment. If the payback period for the system were greater
than four years, the information system would be a bad investment.

 It should be noted that you can perform payback analysis without time-adjusting
the costs and benefi ts. The result, however, would show a 2.8-year payback that looks
more attractive than the 3.5-year payback that we calculated. Thus, non-time-adjusted
paybacks tend to be overly optimistic and misleading.

 Return-on-Investment Analysis The return-on-investment (ROI) analysis
technique compares the lifetime profi tability of alternative solutions or projects. The
ROI for a solution or project is a percentage rate that measures the relationship be-
tween the amount the business gets back from an investment and the amount invest-
ed. The lifetime ROI for a potential solution or project is calculated as follows:

Lifetime ROI (Estimated lifetime benefits Estimated lifetime costs) /
Estimated lifetime costs

 Let’s calculate the lifetime ROI for the same systems solution we used in our discus-
sion of payback analysis. Once again, all costs and benefi ts should be time-adjusted over
a period of six years. The time-adjusted costs and benefi ts were presented in rows 9 and
16 of Figure 10-3 . The estimated lifetime benefi ts minus estimated lifetime costs equal

$795,440 $488,692 $306,748

 Therefore, the lifetime ROI is

Lifetime ROI $306,748/$488,692 .628 63%

 This is a lifetime ROI, not an annual ROI. Simple division by the lifetime of the
system (63 6) yields an average ROI of 10.5 percent per year. This solution can be
compared with alternative solutions. The solution offering the highest ROI is the best
alternative. However, as was the case with payback analysis, the business may set
a minimum acceptable ROI for all investments. If none of the alternative solutions
meets or exceeds that minimum standard, then none of the alternatives is economi-
cally feasible. Once again, spreadsheets can greatly simplify ROI analysis through their
built-in fi nancial analysis functions.

 As with payback analysis, we could have calculated the ROI without time- adjusting
the costs and benefi ts. This would, however, result in a misleading 129.4 percent life-
time or a 21.6 percent annual ROI. Consequently, we recommend time-adjusting all
costs and benefi ts to current dollars.

 Net Present Value The net present value of an investment alternative is consid-
ered the preferred cost-benefi t technique by many managers, especially those who
have substantial business schooling. Once again, you initially determine the costs and
benefi ts for each year of the system’s lifetime. And once again, we need to adjust all
the costs and benefi ts back to present dollar values.

 return-on-investment
(ROI) analysis a technique

that compares the lifetime

profi tability of alternative

solutions.

 net present value an

analysis technique that com-

pares the annual discounted

costs and benefi ts of alterna-

tive solutions.

346 Part Two Systems Analysis Methods

 Figure 10-5 illustrates the net present value technique. Costs are represented by
negative cash fl ows, while benefi ts are represented by positive cash fl ows. We have
brought all costs and benefi ts for our example back to present value. Notice again
that the discount rate for year 0 (used to accumulate all development costs) is 1.000
because the present value of a dollar in year 0 is exactly $1.

 After discounting all costs and benefi ts, subtract the sum of the discounted costs
from the sum of the discounted benefi ts to determine the net present value. If it is
positive, the investment is good. If negative, the investment is bad. When comparing
multiple solutions or projects, the one with the highest positive net present value is the
best investment. (This works even if the alternatives have different lifetimes!) In our ex-
ample the solution being evaluated yields a net present value of $306,748. This means
that if we invest $306,748 at 12 percent for six years, we will make the same profi t that
we’d make by implementing this information systems solution. This is a good invest-
ment provided no other alternative has a net present value greater than $306,748.

 Once again, spreadsheets can greatly simplify net present value analysis through
their built-in fi nancial analysis functions.

 F I G U R E 1 0 - 5

 Net Present Value
Analysis for a
Project

 candidate systems
matrix a tool used to

document similarities

and differences between

candidate systems.

 Feasibility Analysis of Candidate Systems

 During the decision analysis phase of system analysis, the systems analyst identifi es
candidate system solutions and then analyzes those solutions for feasibility. We dis-
cussed the criteria and techniques for analysis in this chapter. In this section, we evalu-
ate a pair of documentation techniques that can greatly enhance the comparison and
contrast of candidate system solutions. Both use a matrix format. We have found these
matrices useful for presenting candidates and recommendations to management.

> Candidate Systems Matrix

 The fi rst matrix allows us to compare candidate systems on the basis of several char-
acteristics. The candidate systems matrix documents similarities and differences
between candidate systems; however, it offers no analysis.

 The columns of the matrix represent candidate solutions. Experienced analysts al-
ways consider multiple implementation options. At least one of those options should
be the existing system because it serves as a baseline for comparing alternatives.

 The rows of the matrix represent characteristics that differentiate the candidates.
For purposes of this book, we based some of the characteristics on the information
system building blocks. The breakdown is as follows:

• Stakeholders —Identify how the system will interact with people and other
systems.

Feasibility Analysis and the System Proposal Chapter Ten 347

• Knowledge —Identify how data stores will be implemented (e.g., conventional
fi les, relational databases, other database structures), how inputs will be
captured (e.g., online, batch, etc.), how outputs will be generated (e.g., on a
schedule, on demand, printed, on screen, etc.).

• Processes —Identify how (manual) business processes will be modifi ed, how
computer processes will be implemented. For the latter, we have numerous
options, including online versus batch processes and packaged versus built-in-
house software.

• Communications —Identify how processes and data will be distributed. Once
again, we might consider several alternatives—for example, centralized versus
decentralized versus distributed (or duplicated) versus cooperative (client/
server) solutions. Network distribution types and strategies will be discussed
in Chapter 12.

 The cells of the matrix document whatever characteristics help the reader un-
derstand the differences between options. Figure 10-6 illustrates the basic structure
of the matrix.

 Before considering any solutions, we must consider any constraints on solutions.
Solution constraints take the form of architectural decisions intended to bring order
and consistency to applications. For example, a technology architecture may restrict
solutions to relational databases or client/server networks.

 There are several approaches for identifying candidate solutions, including:

• Recognizing users’ ideas and opinions —Throughout a systems project, users
may suggesst manual or technology-related solutions. They should be given
consideration.

• Consulting methodology and architecture standards —Many organizations’
development methodology and architecture standards may dictate how technol-
ogy solutions are to be selected and what technology(ies) may be represented.

• Brainstorming possible solutions —Brainstorming is an effective technique for
identifying possible solutions. It is particularly effective when done using an
organized approach or framework, such as the IS building blocks or other IS
characteristics. Brainstorming should encompass solutions that represent buy,
build, and a combination of buy and build options.

• Seeking references —The analyst should solicit ideas and opinions from other
persons and organizations that have implemented similar systems.

• Browsing appropriate journals and periodicals —Such literature may feature
advertisements and articles concerning automation strategies, successes, fail-
ures, and technologies.

 A combination of the above approaches could be used independently by the
development team members to derive a number of possible alternative system
solutions.

 Candidate 1 Name Candidate 2 Name Candidate 3 Name

 Stakeholders

 Knowledge

 Processes

 Communications

F I G U R E 1 0 - 6 Candidate Systems Matrix Template

Portion of System
Computerized

Brief description of that portion of
the system that would be
computerized in this candidate.

Benefi ts

Brief description of the business
benefi ts that would be realized for
this candidate.

Servers and Workstations

A description of the servers and
workstations needed to support this
candidate.

Software Tools Needed

Software tools needed to design and
build the candidate (e.g., database
management system, emulators,
operating systems, languages). Not
generally applicable if applications
software packages are to be
purchased.

Application Software

A description of the software to be
purchased, built, accessed, or some
combination of these techniques.

Method of Data Processing

Generally some combination of
online, batch, deferred batch,
remote batch, and real time.

Output Devices and
Implications

A description of output devices that
would be used, special output
requirements (e.g., network,
preprinted forms, etc.), and output
considerations (e.g., timing
constraints).

Input Devices and
Implications

A description of input methods to be
used, input devices (keyboard,
mouse, etc.), special input
requirements (e.g., new or revised
forms from which data would be
input), and input considerations
(e.g., timing of actual inputs).

Storage Devices and
Implications

Brief descriptions of what data
would be stored, what data would
be accessed from existing stores,
what storage media would be used,
how much storage capacity would
be needed, and how data would
be organized.

Same as candidate 2.

Same as candidate 2.

Same as candidate 1.

MS Visual Basic 5.0
System Architect 2001
Internet Explorer

Same as candidate 2.

Same as candidate 1.

Same as candidate 2.

Same as candidate 2.

Same as candidate 1.

COTS package Platinum
Plus from Entertainment
Software Solutions would
be purchased and
customized to satisfy
Member Services required
functionality.

This solution can be
implemented quickly
because it’s a purchased
solution.

Technically, architecture
dictates Pentium III, MS
Windows 2000 class
servers and workstations
(clients).

MS Visual C and MS
Access for customization
of package to provide
report writing and
integration.

Package solution.

Client/server.

(2) HP4MV department
laser printers

(2) HP5SI LAN laser
printers

Keyboard & mouse

MS SQL Server DBMS
with 100GB arrayed
capability.

Member Services and
warehouse operations in
relation to order fulfi llment.

Fully supports user’s required
business processes for
SoundStage Inc. Plus more
effi cient interaction with
member accounts.

Same as candidate 1.

MS Visual Basic 5.0
System Architect 2001
Internet Explorer

Custom solution

Same as candidate 1.

(2) HP4MV department
laser printers
(2) HP5SI LAN laser printers
(1) PRINTRONIX bar code
printer (includes software &
drivers)
Web pages must be
designed to VGA
resolution. All internal
screens will be designed
for SVGA resolution.

Apple “Quick Take” digital
camera and software
(15) PSC Quickscan laser
bar code scanners
(1) HP Scanjet 4C fl atbed
scanner
Keyboard & mouse

Same as candidate 1.

F I G U R E 1 0 - 7 Sample Candidate Systems Matrix

 Characteristics Candidate 1 Candidate 2 Candidate 3 Candidate . . .

Feasibility Analysis and the System Proposal Chapter Ten 349

 A sample, partially completed candidate systems matrix listing three of the fi ve
candidates is shown in Figure 10-7 . In the fi gure, the matrix is used to provide over-
view characteristics concerning the portion of the system to be computerized, the
business benefi ts, and the software tools and/or applications needed. Subsequent
pages would provide additional details concerning other characteristics such as those
mentioned previously. Two columns can be similar except for their entries in one
or two cells. Multiple pages would be used if we were considering more than three
candidates. A simple word processing “table” template can be duplicated to create a
candidate systems matrix.

 > Feasibility Analysis Matrix

 The second matrix complements the candidate systems matrix with an analysis and
ranking of the candidate systems. It is called a feasibility analysis matrix .

 The columns of the matrix correspond to the same candidate solutions as shown
in the candidate systems matrix. Some rows correspond to the feasibility criteria pre-
sented in this chapter. Rows are added to describe the general solution and a ranking
of the candidates. The general format is shown in Figure 10-8 .

 The cells contain the feasibility assessment notes for each candidate. Each row
can be assigned a rank or score for each criterion (for operational feasibility, can-
didates can be ranked 1, 2, 3, etc.). After ranking or scoring all candidates on each
criterion, a fi nal ranking or score is recorded in the last row. Not all feasibility criteria
are necessarily equal in importance; consequently, before assigning fi nal rankings, can-
didates for which any criterion is deemed infeasible can be eliminated. In reality, this
doesn’t happen very often.

 A completed feasibility analysis matrix is presented in Figure 10-9 . In the fi gure,
the feasibility assessment is provided for each candidate solution. In this example, a
score is recorded directly in the cell for each candidate’s feasibility criteria assess-
ment. The weightings allow you to quantify the analysis. But be aware that any solu-
tion that is completely infeasible on any criteria should be eliminated. For instance, a
solution that could be implemented only by violating contracts with suppliers could
not be considered.

 feasibility analysis
matrix a tool used to rank

candidate systems.

F I G U R E 1 0 - 8 Feasibility Analysis Matrix Template

 Weighting Candidate 1 Candidate 2 Candidate 3

 Description

 Operational feasibility

 Technical feasibility

 Economic feasibility

Economic feasibility

 Schedule feasibility

 Weighted score

350 Part Two Systems Analysis Methods

F I G U R E 1 0 - 9 Sample Feasibility Analysis Matrix

 Wt Candidate 1 Candidate 2 Candidate 3

Description

Operational
Feasibility

Technical
Feasibility

Economic
feasibility

Cost to develop:

Payback
(discounted):

Net present
value:

Detailed
calculations:

Schedule
feasibility

Weighted
score

Write new opplication
in-house using new
company standare VB. NET
and SQL Server database

Fully supports user-required
funtionality.

Score: 100

Solution requires writing
applcation in VB. NET.
Although current ttechnical
staff has only Powerbuilder
experience, it should be
relatively easy to fi nd
programmers with VB. NET
experience.

Score: 95

Approx. $418,000

Approx. 3.5 years

Approx. $307,000

See Attachment A

Score: 85

9–12 months

 Score: 80

92

Purchase commercial
off-the-shelf package for
member service.

Supports only Member
Services requirements.
Current business process
would have to be modifi ed
to take advantage of
software functionality.
Also, there is concern about
security in the system.

Score: 60

Current production release
of Platinum Plus package is
version 1.0 and has been on
the market for only 6 weeks.
Maturity of product is a risk,
and company charges an
additional monthly fee for
technical support.

Required to hire or train
Java J2EE expertise to
perform modifi cations for
intergration requirements.

Score: 50

Approx. $350,000

Approx. 4.5 years

Approx. $210,000

See Attachment A

Score: 60

Less than 3 months

Score: 95

60.5

15%

20%

30%

10%

100%

Rewrite current in-house
application using Powerbuilder.

Fully supports user-required
functionality.

Score: 100

Although current technical
staff is comfortable with
Powerbuilder, management is
concerned about acquisition
of Powerbuilder by Sybase Inc.
MS SQL Server is the current
company standarad for database,
which competes with Sybase
DBMS. We have no guarantee
that future veresions of
Powerbuilder will “play well”
with our current verrsion
of SQL Server.

Score: 60

Approx. $400,000

Approx. 3.3 years

Approx. $325,000

See Attachment A

Score: 90

9 months

 Score: 85

83.5

Feasibility Analysis and the System Proposal Chapter Ten 351

 The System Proposal

 Recall from Chapter 4 that the decision analysis phase involves identifying candidate
solutions, analyzing those solutions, comparing and then selecting the best overall
solution, and then recommending a solution. We’ve just learned how to do the fi rst
three tasks. Let’s now learn about recommending a solution.

 Recommending a solution involves producing a system proposal . This deliver-
able is usually a formal written report or oral presentation intended for system own-
ers and users. Therefore, the systems analysts should be able to write a formal business
report and make a business presentation without getting into technical issues or alter-
natives. Let’s survey some important concepts of written reports and presentations.

 > Written Report

 The written report is the most abused method used by analysts to communicate with
system users. There is a tendency to generate large, voluminous reports that look
impressive. Sometimes such reports are necessary, but often they are not. If a manager
receives a 300-page technical report, the manager may skim it but not read it—and
you can be certain it won’t be studied carefully.

 Length of the Written Report Trial and error has taught us about report size. The
following are general guidelines on limiting report size:

 • To executive-level managers—one or two pages.
• To middle-level managers—three to fi ve pages.
• To supervisory-level managers—less than 10 pages.
• To clerk-level personnel—less than 50 pages.

 It is possible to organize a larger report to include subreports for managers who
are at different levels. These subreports are usually included as early sections in the
report and summarize the report, focusing on the bottom line.

 Organization of the Written Report There is a general pattern to organizing any
report. Every report consists of both primary and secondary elements. Primary ele-

ments present the actual information that the report is intended to convey. Examples
include the introduction and the conclusion.

 While the primary elements present the actual information, all reports also con-
tain secondary elements. Secondary elements package the report so that the reader
can easily identify the report and its primary elements. Secondary elements also add a
professional polish to the report.

 As indicated in Figure 10-10 , the primary elements can be organized in one of two
formats: factual and administrative. The factual format is traditional and best suited to

F I G U R E 1 0 - 1 0 Formats For Written Reports

 I. Introduction

 II. Methods and procedures

 III. Facts and details

 IV. Discussion and analysis of facts
and details

 V. Recommendations

 VI. Conclusion

 I. Introduction

 II. Conclusions and recommendations

 III. Summary and discussion of facts and
details

 IV. Methods and procedures

 V. Final conclusion

 VI. Appendixes with facts and details

 Factual Format Administrative Format

 system proposal a report

or presentation of a recom-

mended solution.

352 Part Two Systems Analysis Methods

readers who are interested in facts and details as well as conclusions. This is the format
we would use to specify detailed requirements and design specifi cations to system
users. But the factual format is not appropriate for most managers and executives.

 The administrative format is a modern, results-oriented format preferred by
many managers and executives. This format is designed for readers who are interested
in results, not facts. It presents conclusions or recommendations fi rst. Any reader can
read the report straight through, until the point at which the level of detail exceeds
the reader’s interest.

 Both formats include some common elements. The introduction should include
four components: purpose of the report, statement of the problem, scope of the
project, and a narrative explanation of the contents of the report. The methods

and procedures section should briefl y explain how the information contained in
the report was developed—for example, how the study was performed or how the
new system will be designed. The bulk of the report will be in the facts section. This
section should be named to describe the type of factual data presented (e.g., “Existing
Systems Description,” “Analysis of Alternative Solutions,” or “Design Specifi cations”).
The conclusion should briefl y summarize the report, verifying the problem statement,
fi ndings, and recommendations.

 Figure 10-11 shows the secondary, or packaging, elements of the report and their
relationship to the primary elements. Many of these elements are self-explanatory. We
briefl y discuss here those that may not be. No report should be distributed without
a letter of transmittal to the recipient. This letter should be clearly visible, not inside
the cover of the report. A letter of transmittal states what type of action is needed on
the report. It can also call attention to any features of the project or report that de-
serve special attention. In addition, it is an appropriate place to acknowledge the help
you’ve received from various people.

 The abstract or executive summary is a one- or two-page summary of the entire
report. It helps readers decide if the report contains information they need to know.
It can also serve as the highest-level summary report. Virtually every manager reads
these summaries. Most managers will read on, possibly skipping the detailed facts and
appendixes.

 Writing the Report Figure 10-12 illustrates the proper procedure for writing a for-
mal report. Here are some guidelines to follow:

• Paragraphs should convey a single idea. They should fl ow nicely, one to the next.
Poor paragraph structure can almost always be traced to outlining defi ciencies.

• Sentences should not be too complex. The average sentence length should
not exceed 20 words. Studies suggest that sentences longer than 20 words are
diffi cult to read and understand.

• Write in the active voice. The passive voice becomes wordy and boring when
used consistently.

F I G U R E 1 0 - 1 1 Secondary Elements for a Written Report

Letter of transmittal

 Title page

 Table of contents

 List of fi gures, illustrations, and tables

 Abstract or executive summary

 (The primary elements—the body of the report in either the factual or administrative
format—are presented in this portion of the report.)

 Appendixes

Feasibility Analysis and the System Proposal Chapter Ten 353

Check

Outline

• Headings
• Illustration titles

Initial preparation

• Define objectives, scope, and strategy
• Clarify material
• Define readership and method
 (length and standards)

Draft
illustrations

Draft text

Rewrite/
edit

Final type

Proofread

Reproduce/
bind

Distribute

 F I G U R E 10-12

 Steps in Writing a
Report

 Source: Copyright Keith London.

• Eliminate jargon, big words, and deadwood. For example, replace “DBMS”
with “database management system,” substitute “so” for “accordingly,” try “useful”
instead of “advantageous,” and use “clearly” instead of “it is clear that.”

 Every businessperson should have a copy of The Elements of Style by William
Strunk, Jr., and E. B. White. This classic paperback may set a record in value-to-cost
ratio. Barely bigger than a pocket-size book, it is a gold mine of information.

 > Formal Presentation

 To communicate information to the many different people involved in a systems de-
velopment project, a systems analyst is frequently required to make formal presenta-
tions. Formal presentations are special meetings used to sell new ideas and gain
approval for new systems. They may also be used for any of these purposes: sell a new
system, sell new ideas, sell change, head off criticism, address concerns, verify conclu-
sions, clarify facts, and report progress. In many cases, a formal presentation may set
up or supplement a more detailed written report.

 Effective and successful presentations require signifi cant preparation. The time
allotted to presentations is frequently brief; therefore, organization and format are
critical issues. You cannot improvise and expect acceptance.

 Presentations offer the advantage of impact through immediate feedback and
spontaneous responses. The audience can respond to the presenter, who can use em-
phasis, timed pauses, and body language to convey messages not possible with the

 formal presentation a

special meeting used to sell

new ideas and gain approval

for new systems.

354 Part Two Systems Analysis Methods

written word. The disadvantage to presentations is that the material presented is easily
forgotten because the words are spoken and the visual aids are transient. That’s why
presentations are often followed by a written report, either summarized or detailed.

 Preparing for the Formal Presentation Presenters must know their audience.
This is especially crucial when your presentation is trying to sell new ideas and a new
system. The systems analyst is frequently thought of as the dreaded agent of change in
an organization. As Machiavelli wrote in his classic book The Prince,

 There is nothing more diffi cult to carry out, nor more dangerous to handle, than
to initiate a new order of things. For the reformer has enemies in all who profi t by
the old order, and only lukewarm defenders in all those who would profi t from
the new order, this lukewarmness arising partly from fear of their adversaries—
and partly from the incredulity of mankind, who do not believe in anything new
until they have had actual experience of it. 1

 People tend to be opposed to change. There is comfort in the familiar way things
are today. Yet a substantial amount of the analyst’s job is to bring about change—in
methods, procedures, technology, and the like. A successful analyst must be an effective
salesperson. It is entirely appropriate (and strongly recommended) for an analyst to for-
mally study salesmanship. To effectively present and sell change, you must be confi dent
in your ideas and have the facts to back them up. Again, preparation is the key!

 First, defi ne expectations of the presentation—for instance, that the goal is to
seek approval to continue the project, that another goal is to confi rm facts, and so
forth. A presentation is a summary of ideas and proposals that is directed toward the
presenter’s expectations.

 Executives are usually put off by excessive detail. To avoid this, a presentation
should be carefully organized around the allotted time (usually 30 to 60 minutes).
Although each presentation differs, the organization and time allocation suggested
in Figure 10-13 provide an idea of how this works. This fi gure illustrates some typical
topics of an oral presentation and the amount of time to allow for each. Note that this

 1 Niccolo Machiavelli, The Prince and Discourses, trans. Luigi Ricci (New York: Random House, 1940, 1950). Reprinted by

permission of Oxford University Press.

F I G U R E 1 0 - 1 3 Typical Outline and Time Allocation for an
Oral Presentation

 I. Introduction (one-sixth of total time available)

 A. Problem statement

 B. Work completed to date

 II. Part of the presentation (two-thirds of total time available)

 A. Summary of existing problems and limitations

 B. Summary description of the proposed system

 C. Feasibility analysis

 D. Proposed schedule to complete project

 III. Questions and concerns from the audience (Time here is not to be included in the
time allotted for presentation and conclusion; it is determined by those asking the
questions and voicing their concerns.)

 IV. Conclusion (one-sixth of total time available)

 A. Summary of proposal

 B. Call to action (request for whatever authority you require to continue systems
development)

Feasibility Analysis and the System Proposal Chapter Ten 355

particular outline is for a systems analysis presentation. Other types of presentations
might be slightly different.

 What else can you do to prepare for the presentation? Because of the limited time,
use visual aids—predrawn fl ipcharts, overhead slides, Microsoft PowerPoint slides,
and the like—to support your position. Just like a written paragraph, each visual aid
should convey a single idea. When preparing pictures or words, use the guidelines
shown in Figure 10-14 .

 Microsoft PowerPoint contains software guides called wizards to assist the most
novice users with creating professional-looking presentations. The wizard steps the
user through the development process by asking a series of questions and tailoring
the presentation based on responses. To hold your audience’s attention, consider dis-
tributing photocopies of the visual aids at the start of the presentation. This way, the
audience doesn’t have to take as many notes.

 Finally, practice the presentation in front of the most critical audience you can
assemble. Play your own devil’s advocate, or, better yet, get somebody else to raise
criticisms and objections. Practice your responses to these issues.

WHEW!

not too much

END

?

not too little

not too many

4

HOURS?

BUY

OUR

SYSTEM!

not too few

IT'S NOT

MUCH, BUT

IT'S ALL

WE COULD

THINK OF.

not too small not too soon

YOUR NEW

SYSTEM WILL

COST £25K

AND TAKE

FIVE YEARS.

ANY

QUESTIONS?

not too late

IS

ANYONE

STILL

AWAKE?

not too fast

END-USER

EDUCATION

AND

TRAINING

CURSES

not too slow

TEMPORARY

FAULT

DO NOT

ADJUST

YOUR SET

IF YOU CAN READ

THIS, YOU'RE THE

ONLY ONE WHO

KNOWS OUR SECRET.

CONGRATULATIONS

 F I G U R E 10-14

Guidelines for
Visual Aids

 Source: Copyright Keith London.

356 Part Two Systems Analysis Methods

 Conducting the Formal Presentation A few additional guidelines may improve
the actual presentation:

• Dress professionally. The way you dress infl uences people. John T. Malloy’s
books, Dress for Success and The Woman’s Dress for Success Book, are excellent
reading for both wardrobe advice and the results of studies regarding the effects
of clothing on management.

• Avoid using the word “I” when making the presentation. Use “you” and “we”
to assign ownership of the proposed system to management.

• Maintain eye contact with the group and keep an air of confi dence. If you
don’t show management that you believe in your proposal, why should
management believe in it?

• Be aware of your own mannerisms. Some of the most common mannerisms
include using too many hand gestures, pacing, and repeatedly saying “you know”
or “OK.” Although mannerisms alone don’t contradict the message, they can
distract the audience.

 Sometimes while you are making a presentation, some members of the audience
may not be listening. This lack of attention may take several forms. Some people may
be engaged in competing conversations, some may be daydreaming, some may be
busy glancing at their watches, some who are listening may have puzzled expressions,
and some may show no expression. The following suggestions may prove useful for
keeping people listening:

• Stop talking. The silence can be deafening. The best public speakers know how
to use dramatic pauses for special emphasis.

• Ask a question, and let someone in the audience answer it. This involves
the audience in the presentation and is a very effective way of stopping a
competing conversation.

• Try a little humor. You don’t have to be a talented comedian. But everybody
likes to laugh. Tell a joke on yourself.

• Use props. Use some type of visual aid to make your point clearer. Draw on the
chalkboard, illustrate on the back of your notes, or create a physical model to
make the message easier to understand.

• Change your voice level. By making your voice louder or softer, you force the
audience to listen more closely or make it easier for the audience to hear. Either
way, you’ve made a change from what the audience was used to, and that is the
best way to get and hold attention.

• Do something unexpected. Drop a book; toss your notes; jingle your keys. Doing
the unexpected is almost always an attention grabber.

 A formal presentation will usually include time for questions from the audience.
This time is very important because it allows you to clarify any points that were unclear
and draw additional emphasis to important ideas. It also allows the audience to interact
with you. However, sometimes answering questions after a presentation may be diffi cult
and frustrating. We suggest the following guidelines when answering questions:

• Always answer a question seriously, even if you think it is a silly question.
Remember, if you make someone feel stupid for asking a “dumb” question, that
person will be offended. Also, other members of the audience won’t ask their
questions for fear of the same treatment.

• Answer both the individual who asked the question and the entire audience.
If you direct all your attention to the person who asked the question, the rest
of the audience will be bored. If you don’t direct enough attention to the
person who asked the question, that person won’t be satisfi ed. Try to achieve a
balance. If the question is not of general interest to the audience, answer it later
with that specifi c person.

• Summarize your answers. Be specifi c enough to answer the question, but don’t
get bogged down in details.

Feasibility Analysis and the System Proposal Chapter Ten 357

 1. Feasibility is a measure of how benefi cial the devel-
opment of an information system would be to an
organization. Feasibility analysis is the process by
which we measure feasibility. It is an ongoing evalu-
ation of feasibility at various checkpoints in the life
cycle. At any of these checkpoints, the project may
be canceled, revised, or continued. This is called a
creeping commitment approach to feasibility.

 2. There are four feasibility tests: operational, cultural/
political, technical, schedule, economic, and legal.

 a. Operational feasibility is a measure of problem
urgency or solution acceptability. It includes a
measure of how the end users and managers
feel about the problems or solutions.

 b. Technical feasibility is a measure of how prac-
tical solutions are and whether the technology
is already available within the organization.
If the technology is not available to the fi rm,
technical feasibility also looks at whether it can
be acquired.

 c. Schedule feasibility is a measure of how reason-
able the project schedule or deadline is.

 d. Economic feasibility is a measure of whether
a solution will pay for itself or how profi table
a solution will be. For management, economic
feasibility is the most important of our four
measures.

 3. To analyze economic feasibility, you itemize ben-
efi ts and costs. Benefi ts are either tangible (easy
to measure) or intangible (hard to measure). To
properly analyze economic feasibility, try to esti-
mate the value of all benefi ts. Costs fall into two
categories: development and operating.

 a. Development costs are onetime costs
associated with analysis, design, and
implementation of the system.

 b. Operating costs may be fi xed over time or
variable with respect to system usage.

 4. Given the costs and benefi ts, economic feasibil-
ity is evaluated by the techniques of cost-benefi t
analysis. Cost-benefi t analysis determines if a proj-
ect or solution will be cost-effective—if lifetime
benefi ts will exceed lifetime costs. There are three
popular ways to measure cost-effectiveness: pay-
back analysis, return-on-investment analysis, and
net present value analysis.

 a. Payback analysis defi nes how long it will take
for a system to pay for itself.

 b. Return-on-investment and net present value
analyses determine the profi tability of a system.

 c. Net present value analysis is preferred because it
can compare alternatives with different lifetimes.

 5. A candidate systems matrix is a useful tool for
documenting the similarities and differences be-
tween candidate systems being considered.

 6. A feasibility analysis matrix is used to evaluate
and rank candidate systems. Both the candidate
systems matrix and the feasibility analysis matrix
are useful for presenting the results of a feasibility
analysis as part of a system proposal.

 7. Written reports are the most common communi-
cations vehicle used by analysts. Reports consist
of both primary and secondary elements. Primary
elements contain factual information. Second-
ary elements package the report for ease of use.
Reports may be organized in either the factual or
administrative format. The factual format presents
the details before conclusions; the administra-
tive format reverses that order. Managers like the
administrative format because it is results-oriented
and gets right to the bottom-line question.

 8. Formal presentations are a special type of meeting
at which a person presents conclusions, ideas, or
proposals to an interested audience. Preparation is
the key to effective presentations.

 9. The system proposal may be a formal written
report or an oral presentation.

Summary

• Limit the amount of time you spend answering any one question. If
additional time is needed, wait until after the presentation is over.

• Be honest. If you don’t know the answer to a question, admit it. Never try to
bluff your way out of a question. The audience will eventually fi nd out, and you
will destroy your credibility. Instead, promise to fi nd out and report back. Or ask
someone in the audience to do some research and present the fi ndings later.

 Following Up the Formal Presentation As mentioned earlier, it is extremely im-
portant to follow up a formal presentation because the spoken word and impressive
visual aids used in a presentation often do not leave a lasting impression. For this
reason, most presentations are followed by written reports that provide the audience
with a more permanent copy of the information that was communicated.

358 Part Two Systems Analysis Methods

1

2Review Questions

 1. What does a creeping commitment approach to
feasibility analysis mean?

 2. What are the feasibility analysis checkpoints in the
development cycle? What should be done at each
checkpoint?

 3. What are the objectives of the operational
feasibility test?

 4. Why is it important to fi nd out how the end users
and managers feel about the problem solution that
the system analyst has identifi ed?

 5. When is usability analysis performed? What is the
objective of the usability analysis?

 6. What is the objective of the technical feasibility test?
 7. What are the characteristics of development costs

and operating costs? List three examples of each
kind of cost.

 8. List fi ve examples of tangible benefi ts.
 9. Why is the time-value-of-money concept an

essential consideration when assessing economic
feasibility?

 10. What are the most commonly used techniques to
determine the cost-effectiveness of a project?

 11. For what are the candidate systems matrix and
feasibility analysis matrix used?

 12. For written reports, what is the difference between
the factual format and the administrative format?

 13. What are the steps in writing a report?
 14. What are the advantages and disadvantages of

presentations?
 15. What should be done to follow up the formal

presentation?

 1. The textbook describes a creeping commitment
approach to feasibility.

 a. Explain this approach and why the textbook
recommends it.

 b. What are some of the changes or events
that might occur which make this approach
advisable?

 c. Should an organization cancel a project if it
becomes infeasible?

 2. The textbook describes three checkpoints for
measuring feasibility.

 a. What are these checkpoints?
 b. Typically, how accurately can feasibility be

determined at each checkpoint?
 c. Which checkpoint, if any, is the most critical

one?

 3. What are the four categories of feasibility tests,
and what is the criteria each of them uses to
 measure feasibility?

 4. You are a systems designer on a project which
is getting close to fi nishing the systems design
phase. A working prototype has been developed,
and you’ve been tasked with doing a usability
analysis. Draft a one- or two-page plan detail-
ing your approach to conducting the usability
analysis.

 5. You are a systems analyst working in the IT shop
of a medium-size organization with about 300
employees. The organization is in the system
design phase of a project to develop an elec-

tronic activity reporting system for all employ-
ees, replacing the current hard copy method. All
of the work is being done in-house except for
several consultants, who are providing ancillary
services, such as IV&V. The application will use
employees’ existing desktops, although several
dedicated servers will need to be acquired. The
user interface is very intuitive, but the project
calls for about a half day of training for all em-
ployees on policies and procedures for using the
new application. The system is not using any new
technology, and the IT technical staff have a great
deal of expertise. Create a worksheet, detailing
the estimated one-time development costs and
ongoing operating costs. By the way, in your orga-
nization, salary and benefi ts for systems analysts
average $40 per hour; you can use this as a basis
for estimating salary and benefi ts for other clas-
sifi cations involved in the project.

 6. In the project described above, it was noted that
the electronic activity reporting system will be
replacing the current manual system. Describe
the tangible benefi ts that might be expected. Take
a “best guess” approach, and calculate the annual
savings to the organization. Show your assump-
tions in the calculations.

 7. You are designing a Web-based system where your
regional offi ces can submit their sales reports
online instead of fi lling them out by hand and
mailing them in. Three candidate solutions have
been identifi ed. Their estimated lifetime benefi ts
and estimated lifetime costs are shown below. All

Problems and Exercises

 1. Steve McConnell is an author who has written
numerous books on software engineering and
development. In his book Rapid Development,
McConnell points out that in engineering, design
is usually a much smaller part of the total project
than the actual construction. He compares bridge-
building projects, where design is about 10 percent
of the total effort and construction about 90
percent, to software development projects, where
design is generally at least 50 percent of the total
project effort. Explore and expand on this theme
of the unique differences in software engineering
compared to other types of engineering, and
summarize your analysis and fi ndings in a one-
to two-page paper. What do other software
engineering leaders have to say on this topic?

 2. You work as a system analyst in the headquarters
of your state’s highway patrol, which has fi eld
offi ces throughout the state. Currently, traffi c
accident reports are handwritten in the fi eld by
the highway patrol offi cers, reviewed by their
sergeant, stored temporarily, then batched and sent

monthly to headquarters. Each one is entered into
a legacy mainframe system by key data operators,
then after the reports from the patrol offi ces in
each county have been input, a computer operator
runs the edit program using JCL.

Reports with major errors or omissions are
rejected and returned to the county highway
patrol offi ce of origin for correction. After the
edit program is completed for all the counties, an
update program is run adding the monthly batch
of traffi c accident reports to the master fi le of
reports. Statistical reports are generated quarterly
and yearly. The entire process from the time the
batches of reports are received to the point the
master fi le is updated generally takes about three
months. Executive management is interested in
replacing the system with something that is more
modern, less labor-intensive, more accurate, and
easier for users to access and that will reduce
turnaround time for preparing statistical reports.
Your assignment, as a member of the project team,
is to prepare the feasibility study report (FSR).

have been time-adjusted over the projected fi ve
year lifetime of each alternative.

 Estimated

Lifetime

Benefi ts

 Estimated

Lifetime

Costs

 Candidate Solution 1: $640,000 $172,000

 Candidate Solution 2: $640,000 $160,000

 Candidate Solution 3: $640,000 $185,000

 According to return-on-investment analysis,
which candidate solution offers the highest
ROI? If the organization sets a minimum lifetime
ROI of 80 percent, which of these solutions is
economically feasible?

 8. What are the different techniques or methods
for identifying candidate solutions? If you had to
choose just one of these methods, which would it
be and why?

 9. You are working as a system designer for a
company that manufactures heavy-duty power
tools used by contractors. Every month, your
regional sales and service centers batch together
the hard-copy repair orders for work performed
under warranty. They are sent to headquarters,
where they are run through a legacy mainframe
batch process. A report is then generated, which
the engineers analyze for signs of any problem
trends in the new models. The company’s CEO

has decided that this process is far too slow in
today’s highly competitive business environment
and wants to replace the legacy system as soon
as possible with something more contemporary.
Identify at least three candidate solutions, and
describe them in a candidate systems matrix, using
 Figure 10-7 as an example.

 10. Prepare a feasibility analysis matrix, using the
candidate solutions you identifi ed and described
in the preceding question. Use Figure 10-9 as
your template, but choose the weighting factors
that you feel would be most appropriate in this
situation. For purposes of this exercise, you may
provide an estimate of the economic feasibility.

 11. Once the feasibility analysis matrix has been
completed, it is time to write the feasibility report.
For this exercise, prepare a feasibility report to
 executive-level managers, using the appropriate
format shown in Figure 10-10 .

 12. You have been asked to present the feasibility
analysis and recommendation to the executive
managers of every department in your organiza-
tion at their weekly meeting. Prepare a set of
PowerPoint slides to be used as a visual aid during
your presentation.

 13. Name at least 10 things you should not do if
you want your presentation to be informative,
persuasive, and well-received.

 Projects and Research

Feasibility Analysis and the System Proposal Chapter Ten 359

 a. What are some of the options or alternatives
that you think should be considered? (Identify
at least three in addition to “do nothing” or
“maintain the status quo.”)

 b. Prepare a candidate systems matrix describing
the characteristics of each of these alternatives,
using the candidate systems matrix template
shown in Figure 10-6 .

 c. Expand the candidate systems matrix, using the
template shown in Figure 10-7 .

 d. Evaluate each of these alternatives for
operational, technical, and schedule feasibility,
using the techniques described in the textbook
and using the template shown in Figure 10-9 .

 3. Based upon the scenario described in the
preceding question:

 a. Prepare an estimated-costs worksheet for each
alternative, using the format shown in Figure 10-2 .

 b. Assess the economic feasibility of each
alternative, using one of the three techniques
described in the textbook. Which technique did
you use and why?

 c. Add the economic feasibility analysis to the
feasibility analysis matrix from the preceding
question.

 d. Compare and score each of these alternatives.
Use different weighting factors for each of
the feasibility criteria than those used in the
textbook.

 e. What weighting factors did you choose for
the different criteria in your feasibility analysis
matrix? Why?

 4. Management was impressed by your excellent
work on the feasibility analysis matrix and has

asked you to prepare the system proposal report.
Write a system proposal whose primary audience
will be the midlevel business and IT managers, but
which also will be read by the executive sponsor
and chief information offi cer. Use the appropriate
format shown in Figure 10-10 .

 5. Midlevel management was extremely impressed
by your system proposal. They now want you to
prepare and present a formal presentation to the
top management of the department.

 a. Describe the steps you should go through to
prepare for the formal presentation.

 b. Prepare a PowerPoint slide presentation, using
the guidelines suggested in the textbook, or in
other books and articles on the do’s and don’ts
of PowerPoint presentations.

 c. What do you consider to be the most critical
thing to know in preparing for the formal
presentation? Why?

 6. A wide variety of formats, templates, and methods
exist for preparing system proposals and feasibility
study reports. Search the Web to see what other
tools and techniques you can fi nd.

 a. Describe the formats that you found and their
sources.

 b. Compare the different formats that you found to
each other and to the one in the textbook. What
are some of the differences?

 c. Do you think there is one format with clear-cut
advantages over the others? If so, describe which
one, and why you feel it is better.

 d. Create what you believe to be the ideal FSR
template for your organization.

Minicases

 The grocery store, Wow Munchies, from an earlier
chapter is considering developing an online site for
customers to purchase food. The owner of the store
believes that this capability will enable the store to
grab market share from nearby Fast Food Co., which
has a Web site and delivers food to the customer.
This site will allow customers to purchase any item
that is currently in stock in the store. The store will
 not deliver the food, but will have the food bagged
and ready for pickup at the time designated by the
customer. Wow Munchies has a single storefront.

 1. Conduct an operational feasibility study. Do you
think the Web site will enable Wow Munchies to
gain market share, as is its purpose? What factors
will affect the operational success of this site?
Submit your paper, supporting documents, charts,
and any interviews you conducted.

 2. Conduct a technical feasibility study. What would
you recommend the company use in the creation
and maintenance of their site (e.g. languages,
specifi c host, encryption)? Why does your choice
affect the feasibility of said site? Submit your paper,
supporting documents, charts, and any interviews
you conducted.

 3. Conduct an economic feasibility study for the
investment into an e-commerce site. What discount
rate are you using? Why? Submit your paper,
supporting documents, charts, and any interviews
you conducted.

 4. Develop a timeline and schedule feasibility study
for completion of this Web site. Do you see any
mitigating factors that might cause a delay in the
timeline or deadline overrun? Submit both a short
paper and a Gantt chart.

360 Part Two Systems Analysis Methods

 Team and Individual Exercises

 1. Roundtable discussion: ROI analyses are often done
with a consideration of a technology “lifetime” of 3–5
years. Do you think that technology has an impact
on business after that time period? Why or why not?

 2. Individual: In the last chapter, you discussed (in a
roundtable format) the importance of knowledge
and information on economic success. Every year,
grants for college go unawarded because students
do not apply for them (possibly because they do

not know they exist). Research college grants
available to you, and apply for at least one.

 3. Team/class discussion: What does it mean to have an
attitude for success? Do you think that people’s belief
in their own capabilities can infl uence their actual
success? On the fl ip side, do you think that people’s
lack of belief in themselves will impact their ability to
be successful? What can you do to further develop/
enhance your own attitude for success?

 Suggested Readings

 Bovee, Courtland L., and John V. Thill. Business Communica-

tions Today, 2nd ed. New York: Random House, 1989.

 Gildersleeve, Thomas R. Successful Data Processing Systems

Analysis, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1985.

This book provides an excellent chapter on cost-benefi t

analysis techniques. Chapter 5 discusses presentations.

We are indebted to Gildersleeve for the creeping commit-

ment concept.

 Gore, Marvin, and John Stubbe. Elements of Systems

Analysis, 4th ed. Dubuque, IA: Brown, 1988. The feasibility

analysis chapter suggests an interesting matrix approach

to identifying, cataloging, and analyzing the feasibility of

alternative solutions for a system.

 Smith, Randi Sigmund. Written Communications for Data

Processing. New York: Van Nostrand Publishing, 1976.

 Stuart, Ann. Writing and Analyzing Effective Computer

System Documentation. New York: Holt, Rinehart and

Winston, 1984.

 Uris, Auren. The Executive Deskbook, 3rd ed. New York: Van

Nostrand Reinhold, 1988.

 Walton, Donald. Are You Communicating? You Can’t

Manage without It. New York: McGraw-Hill, 1989.

 Wetherbe, James. Systems Analysis and Design: Traditional,

Structured, and Advanced Concepts and Techniques,

2nd ed. St. Paul, MN: West, 1984. Wetherbe pioneered

the PIECES framework for problem classifi cation. In this

chapter we extended that framework to analyze opera-

tional feasibility of solutions.

Feasibility Analysis and the System Proposal Chapter Ten 361

Part Three
Systems Design Methods

The chapters in Part Three introduce

you to systems design methods.

Chapter 11, “Systems Design,”

provides the context for all the sub-

sequent chapters by introducing the

activities of systems design. Systems

design includes the preparation of

detailed computer-based specifi ca-

tions that will fulfi ll the requirements

specifi ed during systems analysis and

construction of system prototypes.

With respect to information systems

development, systems design consists

of the confi guration, procurement,

and design and integration phases.

Chapter 12, “Application Archi-

tecture and Modeling,” introduces

physical process and data design. It

specifi cally addresses design deci-

sions regarding distribution issues

for shared data and processes. This

results in an application architecture

that consists of design units that can

be assigned to different team mem-

bers for detailed design, construction,

and unit testing.

Chapter 13, “Database Design,”

introduces the design of physical data

stores from the data model developed

in Chapter 7.

Chapter 14, “Output Design and

Prototyping,” teaches output design

and prototyping. Different types,

formats, and media for outputs are

presented. The use of the most com-

mon types of graphs is discussed. The

chapter demonstrates how to design

and prototype printed and display

outputs.

Chapter 15, “Input Design and

Prototyping,” teaches input design

and prototyping. Formats, methods,

media, human factors, and internal

controls for inputs are stressed. The

proper usage of screen-based con-

trols for data input on graphical user

interface (GUI) screen designs is

discussed. The chapter also empha-

sizes prototyping as a way of fi nding,

documenting, and communicating

input design requirements.

Chapter 16, “User Interface

Design,” teaches user interface design

and prototyping. You will learn how

to develop a friendly and effective in-

terface for an application. The design

of the user interface is crucial be-

cause user acceptance of the system

is frequently dependent on a friendly,

easy-to-use interface. A GUI-based

interface for obtaining the inputs and

outputs designed in Chapters 14 and

15 is demonstrated.

Finally, Chapter 17, “Object-

Oriented Design and Modeling Using

the UML,” introduces you to tools

and techniques used to perform sys-

tems design using an object-oriented

approach to systems development.

364 Part Three Systems Design Methods

11Systems Design

Chapter Preview and Objectives

In this chapter you will learn more about the design phase of systems development. You

will know that you understand the process of systems design when you can:

❚ Describe the design phase in terms of your information building blocks.

❚ Identify and differentiate between several systems design strategies.

❚ Describe the design phase tasks in terms of a computer-based solution for an in-house

development project.

❚ Describe the design phase in terms of a computer-based solution involving

procurement of a commercial systems software solution.

Although some techniques of systems design are introduced in this chapter, it is not the

intent of this chapter to teach the techniques of systems design. This chapter teaches only

the process of systems design and introduces you to some techniques that will be taught

in later chapters.

Systems Design Chapter Eleven 365 Introduction

 The system proposal for the SoundStage Member Services system has been approved.
Now the systems project team is converting from logical design (specifying “what”
the system must do) to physical design (specifying “how” the system will work). There
are many tasks to do, including designing the database, specifying how the system
will work, and prototyping the user interface. Parts of the member services system are
being assembled from purchased components. That will save programming time but
add steps to the process to design and test how the components will interface with
components they write. Bob Martinez will be given several tasks during the process.
He is anxious to get started. The system is fi nally starting to take shape, if only on pa-
per and in prototypes. What Is Systems Design?

 In Chapter 2 you learned about the systems development process. In that chapter
we purposefully limited our discussion to only briefl y examining each phase. In this
chapter, we take a much closer look at the systems design phase that follows systems
analysis. Information systems design is defi ned as those tasks that focus on the speci-
fi cation of a detailed computer-based solution. It is also called physical design. Thus,
whereas systems analysis emphasized the business problem, systems design focuses
on the technical or implementation concerns of the system.

 Systems design is driven by the technical concerns of SYSTEM DESIGNERS. Hence, it
addresses the IS building blocks from the SYSTEM DESIGNERS’ perspective. The SYSTEMS
ANALYSTS serve as facilitators of systems design.

 Most of us defi ne the process of design too restrictively. We envision ourselves
drawing blueprints of the computer-based systems to be programmed and devel-
oped by ourselves or our own programmers. Thus, we design inputs, outputs, fi les,
databases, and other computer components. Recruiters of computer-educated
graduates refer to this restrictive defi nition as the “not-invented-here syndrome.”
In reality, many companies purchase more software than they write in-house. That
shouldn’t surprise you. Why reinvent the wheel? Many systems are suffi ciently ge-
neric that computer vendors have written adequate—but rarely, if ever, perfect—
software packages that can be bought and possibly modifi ed to fulfi ll end-user
requirements.

 This chapter examines systems design from the perspectives of both in-house
development, or “build,” projects and software procurement, or “buy,” projects. Let’s
begin our study by fi rst examining some overall strategies for systems design. Systems Design Approaches

 There are many strategies or techniques for performing systems design. They include
 modern structured design, information engineering, prototyping, JAD, RAD, and
 object-oriented design. These strategies are often viewed as competing alternative
approaches to systems design, but in reality certain combinations complement one
another. Let’s briefl y examine these strategies and the scope or goals of the projects
to which they are suited. The intent is to develop a high-level understanding only. The
subsequent chapters will teach you the actual techniques.

 NOTE: Recall from Chapter 2 that methodology “routes” are sometimes defi ned
for these approaches.

system design the specifi -

cation of a detailed computer-

based solution.

366 Part Three Systems Design Methods > Model-Driven Approaches

 Structured design, information engineering, and object-oriented design are examples
of model-driven approaches. Model-driven design emphasizes the drawing of picto-
rial system models to document the technical or implementation aspects of a new
system.

 The design models are often derived from logical models that were developed
earlier, in model-driven analysis (discussed in Chapter 4). Ultimately, the system design
models become the blueprints for constructing and implementing the new system.

 Today, model-driven approaches are almost always enhanced by the use of au-
tomated tools. Some designers draw system models with general-purpose graphics
software such as Visio Professional or Corel Flow. Other designers and organizations
require the use of repository-based CASE or modeling tools such as System Architect,

Microsoft Visio, Visible Analyst, or IBM’s Rational. CASE tools offer consistency and
completeness as well as rule-based error checking.

 Let’s briefl y examine the most commonly encountered model-driven design ap-
proaches. Model-driven design approaches are featured in the model-driven method-
ologies and routes (introduced in Chapter 2).

 Modern Structured Design Structured design techniques help developers deal
with the size and complexity of programs. Modern structured design is a
process-oriented technique for breaking up a large program into a hierarchy of mod-
ules, which results in a computer program that is easier to implement and maintain
(change). Synonyms (although technically inaccurate) are top-down program design
and structured programming .

 The concept is simple. Design a program as a top-down hierarchy of modules.
A module is a group of instructions—a paragraph, block, subprogram, or subroutine.
The top-down structure of these modules is developed according to various design
rules and guidelines. (Thus, merely drawing a hierarchy or structure chart for a pro-
gram is not structured design.)

 Structured design is considered a process-oriented technique because its empha-
sis is on the PROCESS building blocks in our information system—specifi cally, software
processes. Structured design seeks to factor a program into the top-down hierarchy of
modules that have the following properties:

 • Modules should be highly cohesive; that is, each module should accomplish
one and only one function. This makes the modules reusable in future
programs.

 • Modules should be loosely coupled; in other words, modules should be mini-
mally dependent on one another. This minimizes the effect that future changes
in one module will have on other modules.

 As will be discussed in Chapter 17, cohesion and coupling are important concepts
also in the objected-oriented world. The software model derived from structured de-
sign is called a structure chart (Figure 11-1). The structure chart is derived by studying
the fl ow of data through the program. Structured design is performed during systems
design. It does not address all aspects of design—for instance, structured design will
not help you design inputs, outputs, or databases.

 Structured design has lost some of its popularity with many of today’s applica-
tions that call for newer techniques that focus on event-driven and object-oriented

programming techniques. However, it is still a popular technique involving the de-
sign of mainframe-based application software and is used to address coupling and
cohesion issues at the “system” level.

 Information Engineering In Chapter 4 you learned that information engineering

(IE) is a model-driven and DATA -centered, but PROCESS -sensitive, technique for planing,
analyzing, and designing information systems. The primary tool of IE is a data model

model-driven design a

system design approach that

emphasizes drawing system

models to document technical

and implementation aspects

of a system.

modern structured
design a system design

technique that decomposes

the system’s processes into

manageable components.

Systems Design Chapter Eleven 367

diagram (see Figure 11-2). IE involves conducting a business area requirements analy-
sis from which information system applications are carved out and prioritized. The
applications identifi ed in IE become projects to which other systems analysis and
design methods are intended to be applied in order to develop the production sys-
tems. These methods may include some combination of modern structured analysis
(discussed in Chapter 4), modern structured design, prototyping, and object-oriented
analysis and design.

 Prototyping Traditionally, physical design has been a paper-and-pencil process.
Analysts drew pictures that depicted the layout or structure of outputs, inputs, and
databases and the fl ow of dialogue and procedures. This is a time-consuming process
that is prone to considerable errors and omissions. Frequently, the resulting paper
specifi cations were inadequate, incomplete, or inaccurate.

Past Member

Rejected
applications Members

Rejected

application

Rejected
application

New
member

details

New
member

details

Subscriber's
name

Standing and

time account

closed

Standing and
time account
closed

Standing and
time account
closed

Standing and

time account

closed

Acceptance

decision

Acceptance
decision

Reviewed

application

1.2

Approve

applicant

1.2.3

Record

reviewed

application

1.2.2

Determine

acceptance

1.2.1

Get past

member account

standing

1.2.3.1

Reject

applicant

1.2.3.2

Accept

applicant

F I G U R E 1 1 - 1 The End Product of Structured Design

368 Part Three Systems Design Methods

 Today many analysts and designers prefer prototyping, a modern engineering-
based approach to design. The prototyping approach is an iterative process involving
a close working relationship between the designer and the users. This approach has
several advantages:

 • Prototyping encourages and requires active end-user participation. This increases
end-user morale and support for the project. End users’ morale is enhanced
because the system appears real to them.

 • Iteration and change are a natural consequence of systems development—that
is, end users tend to change their minds. Prototyping better fi ts this natural situ-
ation because it assumes that a prototype evolves, through iteration, into the
required system.

 • It has often been said that end users don’t fully know their requirements until
they see them implemented. If so, prototyping endorses this philosophy.

 • Prototypes are an active, not passive, model that end users can see, touch, feel,
and experience.

 • An approved prototype is a working equivalent to a paper design specifi cation,
with one exception—errors can be detected much earlier.

 • Prototyping can increase creativity because it allows for quicker user feedback,
which can lead to better solutions.

 • Prototyping accelerates several phases of the life cycle, possibly bypassing the
programmer. In fact, prototyping consolidates parts of phases that normally
occur one after the other.

makes

owns

handles

can_make

is_reserved_by

Travel_Agent

Agency_Id

Agency_Name

Agent

Phone

YTD_Commission

INTEGER [PK1]

CHAR(30)

CHAR(30)

CHAR(20)

INTEGER

Owner

Owner_Id

Owner_Name

Balance_Due

Balance_Fwd

Owner_Tel_No

INTEGER [PK1]

CHAR(32)

INTEGER

INTEGER

CHAR(20)

Shift

Shift_Num

Date_Today

Sales_Clerk

Starting_Cash

Ending_Cash

INTEGER [PK1]

DATE

CHAR(3) [PK2]

INTEGER

INTEGER

Property

Property_Code

Unit_Type

Unit_Number

Owner_Id

CHAR(10) [PK1]

CHAR(10)

CHAR(5) [PK2]

INTEGER [PK1]

manages

Vehicle

Year

Make

Model

Registration_Num

Owner

CHAR(4)

CHAR(10)

CHAR(10)

CHAR(12)

CHAR(10) [PK1]

Guest

Guest_Number

Name

Title

Company

Address

City

Post_Code

Guest_Phone_No

Last_Stay

Rate

Number_Of_Nights

Number_Of_Stays

CHAR(10) [PK1]

CHAR(16)

CHAR(2)

CHAR(20)

CHAR(20)

CHAR(15)

CHAR(10)

CHAR(20)

DATE

CHAR(10)

INTEGER

INTEGER

Reservation

Code

Number_Of_Nights

Rate_Type

Discount

Deposit_Due

No_Of_Guests

Notes

Guarantee

Sales_Clerk

Shift_Num

Property_Code

Unit_Number

Guest_Number

Agency_Id

Checked_In

Paid

CHAR(20) [PK1]

INTEGER

CHAR(10)

CHAR(10)

CHAR(1)

INTEGER

CHAR(200)

CHAR(1)

CHAR(3) [FK]

INTEGER [FK]

CHAR(10) [FK]

CHAR(5) [FK]

CHAR(10) [FK]

INTEGER [FK]

CHAR(1)

CHAR(1)

F I G U R E 1 1 - 2 Sample Information Engineering Physical Entity Relationship Diagram

Systems Design Chapter Eleven 369

 There are also disadvantages or pitfalls to using the prototyping approach. Most
of these can be summed up in one statement: Prototyping encourages ill-advised
shortcuts through the life cycle. Fortunately, the following pitfalls can all be avoided
through proper discipline:

 • Prototyping encourages a return to the “code, implement, and repair” life cycle
that used to dominate information systems.

 • Prototyping does not negate the need for the systems analysis phases.
 • You cannot completely substitute any prototype for a paper specifi cation

Prototyping should be used to complement, not replace, other methodolo-
gies. The level of detail required of the paper design may be reduced, but it is
not eliminated.

 • Numerous design issues are not addressed by prototyping. These issues can be
inadvertently forgotten if you are not careful.

 • Prototyping often leads to premature commitment to a design (usually the fi rst
design that is developed).

 • During prototyping, the scope and complexity of the system can quickly
expand beyond original plans. This can easily get out of control.

 • Prototyping can reduce creativity in designs. The very nature of any implementa-
tion—for instance, a prototype of a report—can prevent analysts, designers, and
end users from looking for better solutions.

 • Prototypes often suffer from slower performance than their third-generation-
language counterparts (albeit this difference is rapidly becoming a nonissue).

 Prototypes can be quickly developed using many of the 4GLs and object-oriented
programming languages available today. Figure 11-3 depicts a prototype screen for
a system. Prototypes can be built for simple outputs, computer dialogues, key func-
tions, entire subsystems, or even the entire system. Each prototype system is reviewed
by end users and management, who make recommendations about requirements,
methods, and formats. The prototype is then corrected, enhanced, or refi ned to refl ect

F I G U R E 1 1 - 3 Sample Prototype Screen

370 Part Three Systems Design Methods

the new requirements. Prototyping technology makes such revisions in a relatively
straightforward manner. The revision and review process continues until the proto-
type is accepted. At that point, the end users are accepting both the requirements and
the design that fulfi lls those requirements.

 Object-Oriented Design Object-oriented design (OOD) is the newest design strat-
egy. The concepts behind this strategy (and technology) are covered extensively in
Chapter 17, “Object-Oriented Design and Modeling Using the UML,” but a simplifi ed
introduction is appropriate here. This technique is an extension of the object-oriented
analysis strategy presented in Chapter 9. Figure 11-4 shows one of the many diagrams
used in object-oriented design.

 Object technologies and techniques are an attempt to eliminate the separation
of concerns about DATA and PROCESS . OOD techniques are used to refi ne the object re-
quirements defi nitions identifi ed earlier during analysis and to defi ne design-specifi c
objects. > Rapid Application Development

 Another popular design strategy used today is rapid application development. Rapid

application development (RAD) is the merger of various structured techniques
(especially the data-driven information engineering) with prototyping techniques and
joint application development techniques to accelerate systems development.

 RAD calls for the interactive use of structured techniques and prototyping to
defi ne the users’ requirements and design the fi nal system. Using structured tech-
niques, the developer fi rst builds preliminary data and process models of the business
requirements. Prototypes then help the analyst and users to verify those requirements
and to formally refi ne the data and process models. The cycle of models, then proto-
types, then models, then prototypes, and so forth, ultimately results in a combined
business requirements and technical design statement to be used for constructing the
new system.

 The expedition of the design effort is enhanced through the emphasis on user
participation in joint application development sessions. Recall that joint application

development (JAD), introduced in Chapter 4 and discussed in more detail in Chapter 5,
is a technique that complements other systems analysis and design techniques by em-
phasizing participative development among SYSTEM OWNERS, USERS, DESIGNERS, and BUILD-
ERS. During the JAD sessions for systems design, the systems designer will take on the
role of facilitator for possibly several full-day workshops intended to address different
design issues and deliverables. JAD is an essential element contributing greatly to the
acceleration emphasis of RAD. > Systems Design Strategies

 Like most commercial methodologies, our methodology does not impose a single
approach on systems design. Instead, it integrates all the popular approaches intro-
duced in the preceding paragraphs. The SoundStage case study will demonstrate these
methods in the context of a typical fi rst assignment for a systems analyst. The systems
analysis techniques will be applied within the framework of:

 • Your information system building blocks (from Chapter 1).
 • The systems development phases (from Chapter 2).
 • The tasks that implement a phase (described in this chapter).

 Given this context, we can now study systems design. We will begin by studying
systems design as it relates to an in-house development, or “build,” project. Afterward,
we will examine how the systems design phases are affected when a decision has
been made to acquire, or “buy,” a commercial software package as a solution.

rapid application devel-
opment (RAD) a systems

design approach that utilizes

structured, prototyping, and

JAD techniques to quickly

develop systems.

S
y
st
e
m

B
o
rd
er

M
a
in

W
in
d
o
w

O
r
d
e
r

P
r
o
c
e
ss
o
r

O
r
d
e
r

P
r
o
c
e
ss
in
g

W
in
d
o
w

M
e
m
b
e
r

M
e
m
b
e
r

O
r
d
e
r

M
e
m
b
e
r

O
r
d
e
r
e
d

P
ro
d
u
ct

P
ro
d
u
ct

U
se

r
se

le
ct

s
“n

ew
 m

em
b
er

 o
rd

er
”

o
p
ti

o
n

D
o
 u

n
ti

l
n
o
 m

o
re

 m
em

b
er

 o
rd

er
s

U
se

r
en

te
rs

 m
em

b
er

 n
u
m

b
er

If
 m

em
b
er

 n
u
m

b
er

 v
al

id

G
et

 c
u
rr

en
t

m
em

b
er

 o
rd

er
 h

ea
d
er

D
o
 u

n
ti

l
n
o
 m

o
re

 o
rd

er
ed

 p
ro

d
u
ct

s

G
et

 o
rd

er
ed

 p
ro

d
u
ct

 i
n
fo

rm
at

io
n

G
et

 p
ro

d
u
ct

 i
n
fo

rm
at

io
n

D
is

p
la

y
 o

rd
er

E
ls

e

D
is

p
la

y
 e

rr
o
r

m
es

sa
g
e

C
le

ar
 m

es
sa
g
e

E
n
d
if

C
le

ar

D
is

p
la

y
 e

rr
o
r

m
es

sa
g
e

D
is

p
la

y
 o

rd
er

N
ew

 m
em

b
er

 n
u
m

b
er

R
eq
u
es

t
m

em
b
er

 n
u
m

b
er

S
ta

rt
 o

rd
er

p
ro

ce
ss

S
ta

rt

V
al

id
at

e
m

em
b
er

n
u
m

b
er

is
M

em
b
er

re
p
o
rt

O
rd

er
re

p
o
rt

O
rd

er
P

ro
d
u
ct

re
p
o
rt
P

ro
d
u
ct

F
I
G

U
R

E

1

1
-
4

S

am
p

le
 O

b
je

ct
-O

ri
en

te
d

 D
es

ig
n

 M
o

d
el

371

372 Part Three Systems Design Methods Systems Design for In-House Development—The “Build” Solution

 Let’s begin by placing systems design for in-house development projects into context
relative to the system life cycle. As is illustrated in Figure 11-5 , an approved system
proposal from the decision analysis phase triggers the design phase. The goal of the
design phase is twofold. First, the analyst seeks to design a system that both fulfi lls
requirements and will be friendly to its end users. Human engineering will play a piv-
otal role during design. Second, and still very important, the analyst seeks to present
clear and complete specifi cations to the computer programmers and technicians. As
is shown is Figure 11-5 , the approved physical design specifi cations will trigger the
construction phase of our in-house development project.

 Figure 11-6 is a task diagram depicting the work (= tasks) that should be per-
formed to complete the design phase. This task diagram does not mandate any specifi c
methodology, but we will describe in the accompanying paragraphs the approaches,
tools, and techniques you might want to consider for each design task. This task dia-
gram is only a template. The project team and project manager may expand on or alter
the template to refl ect the unique needs of any given project.

 Let’s now examine each systems design task in detail.

 > Task 5.1—Design the Application Architecture

 The purpose of this fi rst design task is to specify an application architecture. An
 application architecture defi nes the technologies to be used by (and used to
build) one, more, or all information systems in terms of their data, processes, inter-
faces, and network components. Thus, designing the application architecture involves
considering network technologies and making decisions on how the systems’ DATA,
PROCESSES, and INTERFACES are to be distributed among the business locations.

 This task is accomplished by analyzing the data models and process models that
were initially created during requirements analysis. Given the data models, process
models, and target solution, distribution decisions will need to be made. As decisions
on data, processes, and interfaces are made, they are documented. An example is the
 physical data fl ow diagram (PDFD) that is used to establish physical processes
and data stores (databases) across a network (see Figure 11-7). You will learn about
PDFDs to document application architecture in Chapter 12.

 To complete this activity, the analyst may involve a number of SYSTEM DESIGNERS
and SYSTEM USERS . System users may be involved in this activity to help address busi-
ness data, process, and location issues. Several different SYSTEM DESIGNER specialists may
be instrumental in the completion of this activity, including a data and database

administrator, network administrator and engineers, applications administrator,
and various other experts, as needed (e.g., an expert on automatic data capture for
addressing bar-coding technology and issues).

 The key inputs to this task are the facts, recommendations, and opinions that are so-
licited from various sources and the approved system proposal from the decision analysis
phase. The principal deliverable of the task is the application architecture and distribu-
tion analysis that serves as a blueprint for subsequent detailed design phase activities.

 > Task 5.2—Design the System Database(s)

 Typically the next system design task is to develop the corresponding database design
specifi cations. The design of data goes far beyond the simple layout of records. Da-
tabases are a shared resource. Many programs will typically use them. Future
programs may use databases in ways not originally envisioned. Consequently, the de-
signer must be especially attentive to designing databases that are adaptable to future
requirements and expansion.

application architec-
ture a specifi cation of the

technologies to be used

to implement information

systems.

physical data fl ow dia-
gram a process model used

to communicate the technical

implementation characteris-

tics of an information system.

P
R

O
B

L
E

M

A
N

A
L
Y

S
IS

2

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
L
Y

S
IS

3

L
O

G
IC

A
L

D
E

S
IG

N

4

D
E

C
IS

IO
N

A
N

A
L
Y

S
IS

5

P
H

Y
S

IC
A

L

D
E

S
IG

N

&

IN
T

E
G

R
A

T
IO

N

6

C
O

N
S

T
R

U
C

T
IO

N

&

T
E

S
T

IN
G

7

IN
S

T
A

L
L

A
T

IO
N

&

D
E

L
IV

E
R

Y

8

S
C

O
P

E

D
E

F
IN

IT
IO

N

1 D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

&

M
A

IN
T

E
N

A
N

C
E

L
if

e
-C

y
c

le
 S

ta
g

e

P
ro

b
le

m

S
ta

te
m

e
n

t

S
y
s
te

m

Im
p

ro
v
e
m

e
n

t

O
b

je
c
ti

v
e
s

B
u

s
in

e
s
s

R
e
q

u
ir

e
m

e
n

ts

S
ta

te
m

e
n

t

A
p

p
li
c
a
ti

o
n

A
rc

h
it

e
c
tu

re

P
h

y
s
ic

a
l

D
e
s
ig

n
 S

p
e
c
if

ic
a
ti

o
n

s

F
u

n
c
ti

o
n

a
l

S
y
s
te

m

O
p

e
ra

ti
o

n
a
l

S
y
s
te

m

F
IN

IS
H

:

W
o

rk
in

g

B
u

s
in

e
s
s

S
o

lu
ti

o
n

S
T
A

R
T

:

P
ro

b
le

m
s
,
O

p
p

o
rt

u
n

it
ie

s
,

D
ir

e
c
ti

v
e
s
,
C

o
n

s
tr

a
in

ts
,

a
n

d
 V

is
io

n

L
o

g
ic

a
l

D
e
s
ig

n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

S
Y

S
T

E
M

 O
W

N
E

R
S

 A
N

D
 U

S
E

R
S

B
U

S
IN

E
S

S
 C

O
M

M
U

N
IT

Y

S
ta

te
m

e
n

t

o
f
W

o
rk

S
c
o

p
e
 &

 V
is

io
n

S
y
s
te

m

P
ro

p
o

s
a
l

D
e
s
ig

n

P
ro

to
ty

p
e
s

T
ra

in
in

g

M
a
te

ri
a
ls

P
o

s
t-

A
u

d
it

R
e
v
ie

w

R
e
d

e
s
ig

n
e
d

B
u

s
in

e
s
s

P
ro

c
e
s
s
e
s

B
u

s
i

n
e

s
s

D

r
i

v
e

r
s

T
e

c
h

n
o

l
o

g
y

D

r
i

v
e

r
s

I
N

F
O

R
M

A
T

I
O

N

S
Y

S
T

E
M

S
ta

k
e

h
o

ld
e

rs

SYSTEMOWNERS SYSTEMUSERS SYSTEMDESIGNERS SYSTEMBUILDERS

SYSTEMSANALYSTSandPROJECTMANAGERS

D
e
v

e
lo

p
m

e
n

t

P R O J E C T a n d P R O C E S S M A N A G E M E N T

SYSTEM

ANALY SIS

SYSTEM

INITIATION

SYSTEM

DESIGN

SYSTEM

IM PLEM ENTATION

G
o

a
l:

IM
P

R
O

V
E

B
U

S
IN

E
S

S

P
R

O
C

E
S

S
E

S

G
o

a
l:

IM
P

R
O

V
E

B
U

S
IN

E
S

S

K
N

O
W

L
E

D
G

E

G
o

a
l:

IM
P

R
O

V
E

B
U

S
IN

E
S

S

C
O

M
M

U
N

IC
A
T

IO
N

S

IN
F

O
R

M
A
T

IO
N

S
C

O
P

E

&

V
IS

IO
N

F
U

N
C

T
IO

N
A

L

S
C

O
P

E

&

V
IS

IO
N

C
O

M
M

U
N

IC
A
T

IO
N

S

S
C

O
P

E

&

V
IS

IO
N

B
U

S
IN

E
S

S

P
R

O
C

E
S

S

R
E

Q
U

IR
E

M
E

N
T

S

B
U

S
IN

E
S

S

D
A
T
A

R
E

Q
U

IR
E

M
E

N
T

S

B
U

S
IN

E
S

S

IN
T

E
R

F
A

C
E

R
E

Q
U

IR
E

M
E

N
T

S

D
A
T
A

B
A

S
E

D
E

S
IG

N

B
U

S
IN

E
S

S

P
R

O
C

E
S

S

D
E

S
IG

N

S
O

F
T

W
A

R
E

D
E

S
IG

N

IN
T

E
R

F
A

C
E

D
E

S
IG

N

C
O

M
M

E
R

C
IA

L

S
O

F
T

W
A

R
E

P
A

C
K

A
G

E
S

a
n

d
 /

 o
r

C
U

S
T

O
M

 B
U

IL
T

A
P

P
L

IC
A
T

IO
N

P
R

O
G

R
A

M
S

D
A
T
A

B
A

S
E

S
O

L
U

T
IO

N

S
O

F
T

W
A

R
E

T
E

C
H

N
O

L
O

G
IE

S

D
A
T
A

B
A

S
E

T
E

C
H

N
O

L
O

G
IE

S

IN
T

E
R

F
A

C
E

T
E

C
H

N
O

L
O

G
IE

S

IN
T

E
R

F
A

C
E

S
O

L
U

T
IO

N

N
E

T
W

O
R

K
 T

E
C

H
N

O
L

O
G

IE
S

F
I
G

U
R

E

1

1
-
5

T

h
e

C
o

n
te

x
t

o
f

S
y

st
em

s
D

es
ig

n
 f

o
r

In
-H

o
u

se
 D

ev
el

o
p

m
en

t

373

374 Part Three Systems Design Methods

Design

the

Application

Architecture

5.1

Design

the

System

Database

5.2

Design

the

System

Interface

5.3

Package

Design

Specifications

5.4

Application Architecture

and Distribution Analysis

Database, Input, and Output Specifications

Revised

Project

Plan

Database Schemas

Approved System Proposal

Application Schema

Database

Schemas

User

Interface

Specifications

SYSTEM OWNERS AND USERS

(OR STEERING COMMITTEE)

THE BUSINESS AND

TECHNICAL COMMUNITY
(approval to continue project

after decision analysis phase)

Facts, Recommendations,

 and Opinions

System

Interface

Specifications

Update

Project

Plan

5.5

Revised Project Plan

Design Specifications

Design Complete

Repository

 The designer must also analyze how programs will access the data in order to im-
prove performance. You may already be somewhat familiar with various programming
data structures and their impact on performance and fl exibility. These issues affect
database organization decisions. Other issues to be addressed during database design
include record size and storage volume requirements. Finally, because databases are
shared resources, the designer must also design internal controls to ensure proper
security and disaster recovery techniques, in case data is lost or destroyed.

 The purpose of this task is to prepare technical design specifi cations for a data-
base that will be adaptable to future requirements and expansion. While the SYSTEMS

ANALYSTS who may participate in database modeling facilitate this task, the SYSTEM DE-
SIGNERS are responsible for the completion of this activity. The data administrator

F I G U R E 1 1 - 6 The Systems Design Tasks for In-House Development

V
e
ri
fy

 b
a
la

n
c
e
s

a
n
d
 t
ra

n
s
a
c
ti
o
n
s

(Y
o
u
)

B
e
g
in

n
in

g
 a

n
d
 E

n
d
in

g
 B

a
la

n
c
e

(W
in

d
o
w

s
 D

ia
lo

g
 B

o
x
)

C
re

d
it
o
r

P
a
y
 a

 b
ill

Y
o
u

Y
o
u

B
a
n
k

M
o
n
th

ly

S
ta

te
m

e
n
t

(P
ri
n
te

d
 F

o
rm

)

C
le

a
re

d

T
ra

n
s
a
c
ti
o
n
s

(W
in

d
o
w

 C
h
e
c
k
 B

o
x
e
s
)

R
e
v
is

e
d
 T

ra
n
s
a
c
ti
o
n
s

(C
re

a
te

,
D

e
le

te
,
U

p
d
a
te

)

T
ra

n
s
a
c
ti
o
n
s

a
n
d

B
a
la

n
c
e
s

(R
e
a
d
)

D
e
p
o
s
it
 S

lip

(F
o
rm

)

W
it
h
d
ra

w
a
l

(v
e
rb

a
l)

M
a
k
e
 a

 d
e
p
o
s
it
 o

r

w
it
h
d
ra

w
a
l
a
t
th

e

b
a
n
k

(Y
o
u
)

T
e
lle

r
R

e
c
e
ip

t

(P
ri
n
to

u
t
F

o
rm

)

R
e
c
o
rd

 d
e
p
o
s
it
 o

r

w
it
h
d
ra

w
a
l

T
ra

n
s
a
c
ti
o
n

(C
re

a
te

,

U
p
d
a
te

)

A
c
c
o
u
n
t
R

e
g
is

te
r

(Q
u
ic

k
e
n
 F

ile
)

R
e
c
o
n
c
ili

a
ti
o
n
 R

e
p
o
rt

(W
in

d
o
w

 a
n
d
/o

r
P

ri
n
te

d
 R

e
p
o
rt

)

T
h

is
 d

ia
g

ra
m

is
 i
n

te
n

ti
o

n
a

lly

in
c
o

m
p

le
te

 a
n

d

o
v
e

rs
im

p
lif

ie
d

B
ill

(P
a
p
e
r

In
v
o
ic

e
)

B
ill

(E
le

c
tr

o
n
ic

 I
n
v
o
ic

e
)

M
e
m

o
ri
z
e
d
 o

r
S

c
h
e
d
u
le

d
 T

ra
n
s
a
c
ti
o
n

(C
re

a
te

,
D

e
le

te
,
o
r

U
p
d
a
te

)

T
ra

n
s
a
c
ti
o
n

(C
re

a
te

,
D

e
le

te
,
o
r

U
p
d
a
te

)

D
ir
e
c
t

D
e
p
o
s
it

R
e
m

in
d
e
r

(r
e
a
d
)

A
T

M
 R

e
c
e
ip

t

(A
T

M
 p

ri
n
to

u
t)

M
a
k
e
 a

w
it
h
d
ra

w
a
l

(A
T

M
)

C
u
s
to

m
e
r

P
IN

 (
b
a
n
k
 c

a
rd

)

a
n
d

W
it
h
d
ra

w
a
l
In

fo
 (

k
e
y
p
a
d
)

P
a
id

 T
ra

n
s
a
c
ti
o
n

(U
p
d
a
te

)

T
ra

n
s
a
c
ti
o
n
 D

u
e

(R
e
a
d
)

T
im

e
 t
o
 p

a
y
 a

 b
ill

C
h
e
c
k

(H
a
n
d
)

C
h
e
c
k

(P
ri
n
te

d
)

C
h
e
c
k

(E
le

c
tr

o
n
ic

F
u
n
d
 T

ra
n
s
fe

r)

R
e
u
s
a
b
le

T
ra

n
s
a
c
ti
o
n

D
e
ta

ils

(R
e
a
d
)

M
e
m

o
ri
z
e
d
 a

n
d
 S

c
h
e
d
u
le

d

T
ra

n
s
a
c
ti
o
n
s

(Q
u
ic

k
e
n
 F

ile
)

C
le

a
re

d
 T

ra
n
s
a
c
ti
o
n
s

(U
p
d
a
te

)

R
e
c
o
n
c
ile

 a
c
c
o
u
n
t

b
a
la

n
c
e
s

(Q
u
ic

k
e
n
)

P
la

n
 p

a
y
m

e
n
t
o
f

th
e
 b

ill

(Y
o
u
)

S
c
h
e
d
u
le

 a

p
a
y
m

e
n
t

(Q
u
ic

k
e
n
)

F
I
G

U
R

E

1

1
-
7

A

 S
am

p
le

 P
h

y
si

ca
l

D
at

a
F

lo
w

 D
ia

g
ra

m

375

376 Part Three Systems Design Methods

may participate (or complete) the database design. Recognize that the new system
most likely uses some portion of an existing database. This is where the knowledge of
the database administrator is crucial. Finally, SYSTEM BUILDERS may also participate when
asked to build a prototype database for the project.

 As is illustrated in Figure 11-6 , a key input to this activity is the application archi-
tecture and distribution analysis decisions from the prior design task. The deliverable
of the task includes the resulting database schemas. An example of a database schema
was presented earlier, in Figure 11-2 . A database schema is the structural model for a
database. It is a picture or map of the records and relationships to be implemented by
the database. You will learn how to develop database schemas in Chapter 13.

 > Task 5.3—Design the System Interface

 Once the database has been designed and possibly a prototype built, the systems
designer can work closely with system users to develop input, output, and dialogue
specifi cations. Because end users and managers will have to work with inputs and
outputs, the designers must be careful to solicit their ideas and suggestions, especially
regarding format. Their ideas and opinions must also be sought regarding an easy-to-
learn and easy-to-use dialogue for the new system.

 Transaction outputs will frequently be designed as preprinted forms onto which
transaction details will be printed. Reports and other outputs are usually printed di-
rectly onto paper or displayed on a terminal screen. The precise format and layout of
the outputs must be specifi ed. Finally, internal controls must be specifi ed to ensure
that the outputs are not lost, misrouted, misused, or incomplete. Figure 11-8 is a sam-
ple output design. You will learn how to design outputs in Chapter 14.

 For inputs, it is crucial to design the data capture method to be used. For instance,
you may design a form on which data to be input will be initially recorded. You want
to make it easy for the data to be recorded on the form, but you also want to simplify
the entry of the data from the form into the computer or onto a computer-readable

F I G U R E 1 1 - 8

A Sample Output
Prototype Screen

Systems Design Chapter Eleven 377

medium. This is particularly true if the data is to be input by people who are not fa-
miliar with the business application. Also, any time you input data to the system, you
can make mistakes. We need to defi ne editing controls to ensure the accuracy of input
data. A sample input prototype screen was depicted earlier, in Figure 11-3 . You will
learn how to design inputs in Chapter 15.

 For interface or dialogue design, the design must consider such factors as ter-
minal familiarity, possible errors and misunderstandings that the end user may have
or may encounter, the need for additional instructions or help at certain points, and
screen content and layout. You are trying to anticipate every little error or keystroke
that an end user might make—no matter how improbable. Furthermore, you are try-
ing to make it easy for the end user to understand what the screen is displaying at any
given time. Figure 11-9 is a sample interface design. You will learn how to do interface
design in Chapter 16.

 SYSTEM USERS should be involved in this activity! The inputs, outputs, and interface
dialogues are what they will see and work with. The degree to which they are in-
volved is emphasized in design efforts that involve prototyping. They will be asked to
provide feedback regarding each input/output prototype. SYSTEM DESIGNERS are respon-
sible for the completion of this activity. They may draw on the expertise of systems
designers that specialize in graphical user interface design. In addition, SYSTEM BUILD-
ERS may construct the various screen designs for the users to review during design by
prototyping.

 As was illustrated in Figure 11-6 , the key input to this activity is the database
schema(s) from the previous task and the user and system interface specifi cations
that are available from the project’s repository. The deliverable of the design task is the
completed database, input, and output specifi cations.

 > Task 5.4—Package Design Specifi cations

 This fi nal design task involves packaging all the specifi cations from the previous
design tasks into a set of specifi cations that will guide the computer programmer’s
activities during the construction phase of the systems development methodology.

 There is more to this task than packaging, however. How much more depends on
two things: (1) where you draw the line between the system designer’s and computer

F I G U R E 1 1 - 9

A Sample Dialogue
Interface Prototype
Screen

378 Part Three Systems Design Methods

programmer’s responsibilities, and (2) whether the methodology and solution calls for
the design of the overall program structure. Most organizations have adopted acceler-
ated systems development approaches that do not require the latter. Program structure
dealt with quality issues that were of concern to developers of systems that used older
programming languages and tended to be mainframe-based applications.

 The SYSTEMS ANALYST, who may be aided by the SYSTEM DESIGNERS, usually completes
this task. Before proceeding with the packaging of the design specifi cations and the
construction phase, the systems design should be reviewed with all appropriate audi-
ences. While SYSTEM USERS have already seen and approved the outputs, inputs, and dia-
logue for the new system, the overall work and data fl ow for the new system should
get a fi nal walkthrough and approval. SYSTEM OWNERS should get a fi nal chance to ques-
tion the project’s feasibility and determine whether the project should be adjusted,
terminated, or approved to proceed to construction. At this stage of a project the
company’s audit staff may become heavily involved. The staff will pass judgment on
the internal controls in a new system.

 As was illustrated in Figure 11-6 , the inputs to this task are the various database,
input, and output specifi cations that were created earlier. Once these specifi cations
have been reviewed, approved, and organized as design specifi cations that are suit-
able for constructing the new system, they are made available to the team of system
builders via the project repository. It is more common for a project manager to make
design specifi cations available via a shared repository than to provide each individual
developer with a copy of a printed set of organized specifi cations. > Task 5.5—Update the Project Plan

 Now that we’re approaching the completion of the design phase, we should reevalu-
ate project feasibility and update the project plan accordingly. The project manager,
in conjunction with SYSTEM OWNERS and the entire project team, facilitate this task.
The SYSTEMS ANALYSTS and SYSTEM OWNERS are the key individuals in this task. The ana-
lysts and owners should consider the possibility that, based on the completed design
work, the overall project schedule, cost estimates, and other estimates may need to
be adjusted.

 As shown in Figure 11-6 , this task is triggered when the project manager deter-
mines that the design is complete. The key deliverable of the task is the updated proj-
ect plan. The updated plan should now include a detailed plan for the construction
phase that should follow. Recall that the techniques and steps for updating the project
plan were taught in Chapter 3, “Project Management.”

 Systems Design for Integrating Commercial Software—
The “Buy” Solution

 Let’s now examine systems design for solutions that involve acquiring a commercial
off-the-shelf (COTS) software product. The life cycle for projects that involve purchase,
or “buy,” solutions is illustrated in Figure 11-10 . Notice that the business requirements
statement (for software) and its integration as a business solution trigger a series of
phases absent from the in-house development process we just learned about. The
most notable differences between the buy and the in-house development projects is
the inclusion of a new procurement phase and a special decision analysis phase (pro-
cess labeled “5A”) to address software and services.

 When new software is needed, the selection of appropriate products is often dif-
fi cult. Decisions are complicated by technical, economic, and political considerations.
A poor decision can ruin an otherwise successful analysis and design. The systems
analyst is becoming increasingly involved in the procurement of software packages

Systems Design Chapter Eleven 379

SCOPE

DEFINITION

1

PROBLEM

ANALYSIS

2

REQUIREMENTS

ANALYSIS

3

DECISION

ANALYSIS

(FOR SOFTWARE

AND SERVICES)

5A

DESIGN

(AND

INTEGRATION)

6B

CONSTRUCTION

AND

TESTING

7

IMPLEMENTATION

(OF INTEGRATED

SYSTEM)

8

OPERATION

SYSTEM

AND

MAINTENANCE

STAGE

Functional

System

Problems,

Opportunities,

and Directives

SYSTEM OWNERS AND

USERS

THE USER

COMMUNITY

Problem

Statement

System

Improvement

Objectives

PROCUREMENT

(OF SOFTWARE

AND

SERVICES)

4
Business

Requirements

Statement

(for software)

IMPLEMENTATION

(OF SOFTWARE)

6A

SYSTEM OWNERS, USERS, DESIGNERS,

BUILDERS, AND ANALYSTS

(involved in all activities)

THE PROJECT TEAM

Request

for

Proposal

Proposal

or

Quotation

DECISION

ANALYSIS

(FOR

INTEGRATION)

5B

TECHNOLOGY INDUSTRY

TECHNOLOGY SALES REPRESENTATIVES

AND TECHNOLOGY INTEGRATORS

(involved in many activities)

market research

capabilities

integration problems

Design and Integration

Requirements

Business

Requirements

Statement

(for integration)

Redesigned

Business

Processes

Design and

Integration

Specifications

Installed

Software

technical specifications

Operational System

Business

Solution

Working

Software

and

Services

Contract

and

Order

F I G U R E 1 1 - 1 0 The Context of Systems Design for Commercial Off-the-Shelf Software Solution

380 Part Three Systems Design Methods

(as well as peripherals and computers to support specifi c applications being devel-
oped by that analyst).

 In this section we will examine the tasks involved in completing the procurement
and decision analysis phases for a buy solution. As is depicted in Figure 11-10 , a buy
solution affects how other phases in the life cycle are also completed (phases that are
impacted are shaded in light blue). After examining the procurement and decision
analysis phases, we will explore the impacts that a buy solution would have on how
those phases would be completed.

 Figure 11-11 is a task diagram depicting the work (= tasks) that should be per-
formed to complete the procurement and decision analysis phases for a buy project
solution. This task diagram does not mandate any specifi c methodology, but we will
describe in the accompanying paragraphs the approaches, tools, and techniques you
might want to consider for each design task. This task diagram is only a template.

AWARD

CONTRACT &

DEBRIEF

VENDORS

5A.3

RESEARCH

TECHNICAL

CRITERIA &

OPTIONS

4.1

VALIDATE VENDOR

CLAIMS &

PERFORMANCES

5A.1

Business

Requirements

Statement

(for software)

EVALUATE AND

RANK VENDOR

PROPOSALS

5A.2

TECHNOLOGY INDUSTRY

TECHNOLOGY SALES REPRESENTATIVES

SOLICIT

PROPOSALS (OR

QUOTES)

4.2

Repository

H/W & S/W

Requirements

Potential

Vendors, Options,

& Technical

Criteria

From the

Requirements

Analysis

Phase

Potential Vendors,

Options, & Technical

Criteria

RFP or RFQ and

Selection Criteria

RFP

or

RFQ

Proposal

and/or

Quotation

Validation Criteria

Validated

Proposals

Not Validated Proposals

TECHNOLOGY INDUSTRY

TECHNOLOGY SALES REPRESENTATIVES

H/W & S/W

Recommendations

H/W & S/W

Specifications Evaluation

Criteria

Contract & Order

or

Debrief of Proposal

F I G U R E 1 1 - 1 1 Tasks for the Procurement Phase

Systems Design Chapter Eleven 381

The project team and project manager may expand on or alter the template to refl ect
the unique needs of any given project.

 The fi rst two tasks (4.1 and 4.2) are procurement phase tasks, and the remaining
tasks (5A.1, 5A.2, and 5A.3) are decision analysis–related tasks. Let’s now examine
each task in detail.

 > Task 4.1—Research Technical Criteria and Options

 The fi rst task is to research technical alternatives. This task identifi es specifi cations
that are important to the software and/or hardware that is to be selected. The task
involves focusing on the software and/or hardware requirements established in the
requirements analysis phase. These requirements specify the functionality, features,
and critical performance parameters for our new software/hardware.

 Most analysts read appropriate magazines and journals and search the Internet to
help them identify the technical and business issues and specifi cations that will be-
come important to the selection decision. Other sources of information for conduct-
ing research include the following:

 • Internal standards may exist for hardware and software selection. Some compa-
nies insist that certain technology will be bought from specifi c vendors if those
vendors offer it. For instance, some companies have standardized on specifi c
brands of microcomputers, terminals, printers, database management systems,
network managers, data communications software, spreadsheets, and program-
ming languages. A little homework here can save you a lot of unnecessary
research.

 • Information services are primarily intended to constantly survey the market-
place for new products and advise prospective buyers on what specifi cations to
consider. They also provide information such as the number of installations and
general customer satisfaction with the products.

 • Trade newspapers and periodicals offer articles and experiences on various
types of hardware and software that you may be considering.

 The research should also identify potential vendors that supply the products to be
considered. After the analysts have completed their homework, they will initiate con-
tact with these vendors. Thus, the analysts will be better equipped to deal with vendor
sales pitches after doing their research!

 The purpose of this task is to research technical alternatives to specify important
criteria and options that will be important for the new hardware and/or software that
is to be selected. This task is facilitated by the project manager. SYSTEM DESIGNERS are
responsible for the completion of this task. The designer may seek input from various
technical experts, including data and database administrators, network administrators,
and applications administrators.

 As is illustrated in Figure 11-11 , a key input to this task is the business require-
ments statement (for software) established in the requirements analysis phase. The
designer will also obtain additional product and vendor facts from various sources.
Designers are careful not to get their information solely from a salesperson—not that
sales representatives are dishonest, but the number-one rule of salesmanship is to
emphasize the product’s strengths and deemphasize its weaknesses. The principal
deliverable of this task includes a list of potential vendors, product options, and tech-
nical criteria.

 To complete this task, designers must conduct extensive research to gain im-
portant facts concerning the hardware/software product and vendor. They must be
careful to screen their various sources. The sources are used to identify potential
vendors from which the products might be obtained. This step may be optional if
your company has a commitment or contract to acquire certain products from a
particular source. Finally, the designer must review the product, vendor, and sup-
plier fi ndings.

382 Part Three Systems Design Methods > Task 4.2—Solicit Proposals or Quotes from Vendors

 The next task is to solicit proposals or quotes from vendors. If your company is com-
mitted to buying from a single source (IBM, for example), the task is quite informal.
You simply contact the supplier and request price quotations and terms. But most
decisions offer numerous alternatives. In this situation, good business sense dictates
that you use the competitive marketplace to your advantage.

 The solicitation task requires the preparation of one of two documents: a request

for quotations (RFQ) or a request for proposals (RFP) . The request for quotations
is used when you have already decided on the specifi c product but that product can
be acquired from several distributors. Its primary intent is to solicit specifi c confi gura-
tions, prices, maintenance agreements, conditions regarding changes made by buyers,
and servicing. The request for proposals is used when several different vendors and/or
products are candidates and you want to solicit competitive proposals and quotes.
RFPs can be thought of as a superset of RFQs. Both defi ne selection criteria that will
be used in a later validation.

 The primary purpose of the RFP is to communicate requirements and desired fea-
tures to prospective vendors. Requirements and desired features must be categorized
as mandatory (must be provided by the vendor), extremely important (desired from
the vendor but can be obtained in-house or from a third-party vendor), or desirable
(can be done without). Requirements might also be classifi ed by two alternate criteria:
those that satisfy the needs of the systems and those that satisfy our needs from the
vendor (for example, service).

 This task is facilitated by the project manager. The SYSTEM DESIGNER is also respon-
sible for completing this activity and may seek the input from data and database

administrators, network administrators, and applications administrators when
writing the RFP or RFQ.

 The key input to this task is the potential vendors, options, and technical criteria
that resulted from previous research. The principal deliverable of this task is the RFP
or RFQ that is to be received by candidate vendors. The quality of an RFP has a signifi -
cant impact on the quality and completeness of the resulting proposals. A suggested
outline for an RFP is presented in Figure 11-12 , since an actual RFP is too lengthy to
include in this book.

 Many of the skills you developed in Part Two, such as process and data model-
ing, can be very useful for communicating requirements in the RFP. Vendors are very
receptive to these tools because they fi nd it easier to match products and options
and package a proposal that is directed toward your needs. Other important skills
include report writing (discussed in Chapter 10) and questionnaires (covered in
Chapter 5). > Task 5A.1—Validate Vendor Claims and Performances

 Soon after the RFPs or RFQs are sent to prospective vendors, you will begin receiv-
ing proposal(s) and/or quotation(s). Because proposals cannot and should not be
taken at face value, claims and performance must be validated. This task is per-
formed independently for each proposal; proposals are not compared with one
another.

 The purpose of this task is to validate requests for proposals and/or quotations
received from vendors. SYSTEM DESIGNERS are responsible for the completion of this
activity. Once again, the designer may involve the following individuals in validating
the proposals: data and database administrators, network administrators, and ap-

plications administrators.
 This task is triggered by the receipt of proposal(s) and/or quotation(s) from pro-

spective vendors. The key outputs of this task are those vendor proposals that proved
to be validated proposals or claims and others whose claims were not validated.

request for quotation
(RFQ) a formal document

that communicates busi-

ness, technical, and support

requirements for an applica-

tion software package to a

single vendor that has been

determined as being able to

supply that application pack-

age and services.

request for proposal
(RFP) a formal document

that communicates business,

technical, and support re-

quirements for an application

software package to vendors

that may wish to compete for

the sale of that application

package and services.

Systems Design Chapter Eleven 383

 To complete this task, the designer must collect and review all facts pertaining
to the product requirements and features. The designer must review the vendor
proposals and should eliminate any proposal that does not meet all the manda-
tory requirements. If the requirements were clearly specified, no vendor should
have submitted such a proposal. For proposals that cannot meet one or more
extremely important requirements, verify that the requirements or features can
be fulfilled by some other means. For each vendor proposal not eliminated, the
designer must validate the vendor claims and promises against validation criteria.
Claims about mandatory, extremely important, and desirable requirements and
features can be validated by completed questionnaires and checklists (included
in the RFP) with appropriate vendor-supplied references to user and technical
manuals. Promises can be validated only by ensuring that they are written into the
contract. Finally, performance is best validated by a demonstration, which is par-
ticularly important when you are evaluating software packages. Demonstrations
allow you to obtain test results and findings that confirm capabilities, features,
and ease of use.

F I G U R E 1 1 - 1 2 Request for Proposals

Request for Proposals (RFP)

 I. Introduction

 A. Background

 B. Brief summary of needs

 C. Explanation of RFP document

 D. Call for action on part of vendor

 II. Standards and instructions

 A. Schedule of events leading to contract

 B. Ground rules that will govern selection decision

 1. Who may talk with whom and when

 2. Who pays for what

 3. Required format for a proposal

 4. Demonstration expectations

 5. Contractual expectations

 6. References expected

 7. Documentation expectations

 III. Requirements and features

 A. Hardware

 1. Mandatory requirements, features, and criteria

 2. Essential requirements, features, and criteria

 3. Desirable requirements, features, and criteria

 B. Software

 1. Mandatory requirements, features, and criteria

 2. Essential requirements, features, and criteria

 3. Desirable requirements, features, and criteria

 C. Service

 1. Mandatory requirements

 2. Essential requirements

 3. Desirable requirements

 IV. Technical questionnaires

 V. Conclusion

384 Part Three Systems Design Methods

 > Task 5A.2—Evaluate and Rank Vendor Proposals

 The validated proposals can now be evaluated and ranked. The evaluation and ranking
is, in reality, another cost-benefi t analysis performed during systems development. The
evaluation criteria and scoring system should be established before the actual evalua-
tion occurs so as not to bias the criteria and scoring to subconsciously favor any one
proposal.

 The executive sponsor, ideally, should facilitate this task. SYSTEM DESIGNERS are
responsible for the completion of this activity. The designer may involve several ex-
perts in evaluating and ranking the proposals, including data and database adminis-

trators, network administrators, and applications administrators.
 The inputs to this task include validated proposals and the evaluation criteria to

be used to rank the proposals. The key deliverable of this task is the hardware and/or
software recommendations.

 The ability to perform a feasibility assessment is an extremely important skill
requirement for completing this task. Feasibility assessment techniques and skills
were covered in Chapter 10. To complete this task, designers must fi rst collect
and review all details concerning the validated proposals. They must then establish
an evaluation criteria and scoring system. There are many ways to go about this.
Some methods suggest that requirements be weighted on a point scale. Better ap-
proaches use dollars and cents! Monetary systems are easier to defend to manage-
ment than points. One such technique is to evaluate the proposals on the basis of
“hard” and “soft” dollars. Hard-dollar costs are the costs you will have to pay to the
selected vendor for the equipment or software. Soft-dollar costs are additional costs
you will incur if you select a particular vendor (for instance, if you select vendor
A, you may incur an additional expense to vendor B to overcome a shortcoming of
vendor A’s proposed system). This approach awards the contract to the vendor who
fulfi lls all essential requirements while offering the lowest total hard-dollar cost
plus soft-dollar penalties for desired features not provided (for a detailed explana-
tion of this method, see Isshiki, 1982, or Joslin, 1977, in the Suggested Readings).
Once the evaluation criteria and scoring system have been established, the last step
toward completing our task is to do the actual evaluation and ranking of the vendor
proposals.

 > Task 5A.3—Award (or Let) Contract and
Debrief Vendors

 Having ranked the vendor proposals, the next activity usually includes presenting
a recommendation to management for fi nal approval. Once again, communication
skills, especially salesmanship, are important if the analyst is to persuade manage-
ment to follow the recommendations. Given management’s approval of the recom-
mendation, a contract must then be drawn up and awarded to the winning vendor.
This activity often also includes debriefi ng losing vendors, being careful not to burn
bridges.

 The purpose of this activity is to negotiate a contract with the vendor who sup-
plied the winning proposal and to debrief the vendors that submitted losing propos-
als. Ideally, the executive sponsor who must approve recommendations and project
continuation should facilitate the activity. But it is the SYSTEM DESIGNER who must make
and defend the recommendation and award the contract. In doing so, the system
designer may involve a company lawyer in drafting the contract. Report writing and
presentation skills are important for completing this task.

 The key inputs include the hardware and software recommendation and the
nonvalidated proposals from the previous evaluation tasks. Pending the approval
of the executive sponsor, a contract order would subsequently be produced for the
winning vendor. A debriefi ng of proposals would be provided for the losing vendors.

Systems Design Chapter Eleven 385

 To complete this task, the designer must fi rst present a hardware and software
recommendation for fi nal approval. Once the fi nal hardware and software approval
decision is made, a contract must then be negotiated with the winning vendor. Certain
special conditions and terms may have to be written into the standard contract and
order. Ideally, no computer contract should be signed without the advice of a lawyer.
The analyst must be careful to read and clarify all licensing agreements. No fi nal deci-
sion should be approved without the consent of a qualifi ed accountant or manage-
ment. Purchasing, leasing, and leasing with a purchase option involve complex tax
considerations. Finally, out of common courtesy and to maintain good relationships,
provide a debriefi ng of proposals for losing vendors. The purpose of this meeting is
not to allow the vendors a second chance to be awarded the contract; rather, the brief-
ing is intended to inform the losing vendors of precise weaknesses in their proposals
and/or products. > Impact of Buy Decision on Remaining

Life-Cycle Phases

 It is not enough merely to purchase or build systems that fulfi ll the target system re-
quirements. The analyst must integrate or interface the new system to the myriad of
other existing systems that are essential to the business. Many of these systems may
use dramatically different technology, techniques, and fi le structures.

 The analyst must consider how the target system fi ts into the federation of sys-
tems of which it is a part. The integration requirements that are specifi ed are vital to
ensuring that the target system will work in harmony with those systems.

 As was depicted in Figure 11-10 , the decision to buy a commercial software
package solution can impact additional phases (denoted in light blue) of the life
cycle. Upon completion of the decision analysis (for software and services) phase
and its intensive evaluation of the commercial product, we have become knowl-
edgeable about the product’s capabilities (or shortcomings). During decision anal-
ysis for integration we will need to make revisions to refl ect this new knowledge
in our data and process models that comprised the business requirements state-
ment. When software and services are received from the vendor(s), the software
must be implemented. During implementation we may encounter integration prob-
lems that must also be refl ected in our business requirements statement. These
capabilities and integration problems are refl ected in the design and integration
requirements.

 Finally, given the design and integration requirements we must now complete the
design phase. Completion of the design phase involves many of the same tasks that
were discussed earlier in the chapter. The primary difference is that we are not simply
“developing” an entire system. Rather, we may be designing technical specifi cations
for developing a small subset of programs, software utilities, and other components
necessary for the business processes and the commercial software product to be in-
tegrated and work together properly. Let’s consider an example. Our existing business
system may use bar-coding technology to capture data. Yet our software product may
require that data be entered via the keyboard. We may need to customize the software
product to allow data to be entered via the keyboard or from a batch fi le containing
scanned data.

 1. Formally, information systems design is defi ned as
those tasks that focus on the specifi cations of a
detailed computer-based solution. Whereas systems
analysis emphasizes the business problem, systems
design focuses on the technical or implementation
concerns of the system.

 2. Systems design is driven by the technical concerns
of system designers. Therefore, with respect to the
information systems building blocks, systems design
addresses the information system building blocks
from the system designer’s perspective.

 3. Systems design differs for in-house development,
or “build” projects, versus “buy” projects, where a
systems software package is bought.

 4. There are many popular strategies or techniques
for performing systems design. These techniques
can be used in combination with one another.

 a. Modern structured design, a technique that
focuses on processes.

 b. Information engineering (IE), a technique that
focuses on data and strategic planning to pro-
duce application projects.

 c. Prototyping, a technique that is an iterative
process involving a close working relationship
between designers and users to produce a
model of the new system.

 d. Joint application development (JAD), a tech-
nique that emphasizes participative develop-
ment among system owners, users, designers,
and builders. During JAD sessions for systems
design, the system designer takes on the role of
the facilitator.

 e. Rapid application development (RAD), a tech-
nique that represents a merger of various struc-
tured techniques with prototyping and JAD to
accelerate systems development.

 f. Object-oriented design (OOD), a new design
strategy that follows up object-oriented analysis
to refi ne object requirement defi nitions and to
defi ne new design-specifi c objects.

 5. For in-house development (build) projects, the sys-
tems design involves developing technical design
specifi cations that will guide the construction and
implementation of the new system. To complete
the design phase, the system designer must com-
plete the following tasks:

 a. Design the application architecture.
 b. Design the system database(s).
 c. Design the system interface.
 d. Package the design specifi cations.
 e. Update the project plan.

 6. Systems design for solutions that involve acquir-
ing a commercial off-the-shelf (COTS) software
product include a procurement and decision
analysis phase that addresses software and services.
Completion of these phases involves the following
tasks:

 a. Research technical criteria and options.
 b. Solicit proposals (or quotes) from vendors.
 c. Validate vendor claims and performances.
 d. Evaluate and rank vendor proposals.
 e. Award (or let) contract and debrief vendors.

 7. It is not enough merely to purchase or build
systems that fulfi ll the target system requirements.
The analyst must integrate or interface the new
system to the myriad of other existing systems
that are essential to the business. Many of these
systems may use dramatically different technology,
techniques, and fi le structures.

Chapter Review

386 Part Three Systems Design Methods

386 Part One The Context of Systems Development Projects
 1. What is the essential difference between systems

analysis and systems design?
 2. What are some of the different model-driven

methodologies?
 3. What are some of the benefi ts of prototyping?
 4. What are the fi ve high-level tasks involved in

conducting system design for a development
project to be built in-house?

 5. Why is it necessary to design the application
architecture?

 6. In designing the system database(s), what should
designers always keep in mind?

 7. What is a database schema?
 8. What is the goal when designing the system

interface?
 9. What specifi c factors should system designers

focus on when designing the system interface?
10. What is the phase needed in systems design if

the software is being purchased instead of being
developed in-house? What is the purpose of this
additional phase?

11. What is a request for quotations (RFQ)?

Review Questions
1

2

Systems Design Chapter Eleven 387

 1. What is the primary target of systems design and
what phases are included in systems design? If the
systems analysis was poorly done or incomplete,
can a good systems design effort overcome that?

 2. Match the terms in the fi rst column with the defi -
nitions or examples in the second column.

 1. Information A. Information
 engineering engineering
 2. JAD B. Structured design

module properties
 3. Modern structured C. Participative develop-
 design ment emphasis
 4. Prototyping D. IBM’s Rational
 5. System design E. Derived model from

structured design
 6. Physical Entity F. Combined data and
 Relationship process
 7. Coupling and G. Model-driven,
 cohesion data-centered,
 process-sensitive
 technique
 8. RAD H. Pictorial system
 models emphasis
 9. Model-driven I. Functional incomplete
 design model built using RAD
 10. Code, implement, J. Process decomposition
 and repair technique
 11. Repository-based K. Computer-based
 CASE tool solution specifi cation
 tasks
 12. OOD L. Merger of JAD,
 prototyping, and
 structured techniques
 13. Structure chart M. Potential prototyping
 pitfall

 3. Prototyping has many strengths, but it also has a
number of weaknesses and hazards. Discuss some
of these weaknesses and hazards. What strategies
could be implemented to reduce the risk of their
occurring?

 4. Consider the issues raised by the preceding
question and write a one- or two-page policy and
procedures memorandum to all systems analysts
and designers in your organization regarding
prototyping.

 5. You are a systems designer in an organization.
One of the other designers on your team has
recently retired. Your manager comes to you
and asks you to sit in on the interviews to fi nd a
replacement. What qualities should you look for
when you do the interviews?

 6. You are designing a data interface screen for
a new system that is under development. The

purpose of this data interface screen is to enter
changes of address submitted by drivers to their
state’s DMV. Each key data operator will enter on
this screen from these hand-printed forms about
a thousand changes of address per day. What is
one very important principle to keep in mind?

 7. In your organization, it is traditional to give
everyone involved in the project a printed copy
of the design specifi cations after they have been
approved. It costs more, but management feels
this is one way to acknowledge everyone’s effort
on the project and to keep people committed. If
the organization doesn’t mind the cost, is there
anything wrong with this?

 8. Complete the following sentences:

 A critical part of designing the __________ is
deciding how to distribute the system’s data,
__________ and __________ to different
__________.

 Databases are a resource typically __________
by many __________ and they may be used by
future __________ not yet known for purposes
__________.

 In designing __________, the key is to make it
__________ for the __________ to understand
what to do next, and to anticipate every type of
__________ that a user could make.

 9. You are a systems designer who is responsible for
reviewing vendor proposals. A vendor who has
done satisfactory work for your company in the
past has submitted a proposal that does not meet
several critical requirements. What should you do?

10. Match the defi nitions or examples in the fi rst
column with the terms in the second column.

 A. Procurement phase 1. DBA
 B. Shows physical 2. Distribution
 processes and analysis
 databases across
 network
 C. Replaced text-based 3. Application
 display architecture
 D. Vendor evaluation 4. Database
 criteria and scoring schema
 system
 E. Competitive proposal 5. RFQ
 solicitation document
 F. Part of a blueprint for 6. Auditor
 detailed design phase
 activities
 G. Specialist responsible 7. COTS
 for database architecture

Problems and Exercises

388 Part Three Systems Design Methods

 H. Solicitation document 8. PDFD
 for specifi c product
 I. Specialist responsible 9. Hard dollar
 for internal controls costs
 J. Technologies used to 10. “Buy” solution
 build information system
 K. Structural model for 11. GUI
 database
 L. Commercial software 12. RFP
 product

11. The life cycle for a project that you are working
on involves a “buy” solution to purchase a com-
mercial off-the-shelf product for the company’s
marketing specialists. Your company wants to so-
licit competitive proposals. Use the format shown
in Figure 11–12 to prepare a request for proposal
(REP). (Note: For purposes of this exercise, it is not
necessary to develop a fully detailed RFP, but your
RFP should contain at least the high-level
details and information called for in each section.)

12. You work for a consulting company that has
been hired to do the systems design portion of
the project. The systems analysis portion was
done by another consulting company. During
systems design, you fi nd what you are defi nitely
sure is a mistake in the requirements. You are not
sure just how serious it is, but you know this for
sure: if this mistake, made by another company,
is pointed out to the project manager, systems
design work will have to be halted until the mis-
take is fi xed. This will put your company behind
schedule and either it will have to pay you and
its other consultants for sitting around while the
mistake is being fi xed, or it will lay all of you off.
What is your ethical obligation in this situation?

13. Data security and privacy are increasingly
important issues. What are some examples of
security and privacy issues that systems analysts,
system designers, and database administrators
need to be aware of in developing and
maintaining a relational database system?

Projects and Research

1. You are a systems analyst who has been working
for several years in the IT shop of a cabinet
manufacturing company. The company is known
for the quality of its products and for being an
industry leader. The former chief information
offi cer (CIO), who was from the “old school,”
recently retired and has just been replaced by
a new, more dynamic and progressive CIO. The
new CIO, in an effort to raise the maturity level
of the organization, is conducting a series of
brainstorming sessions to develop its fi rst IT
architecture plan. You and the other systems
analysts and designers have each been asked to
provide input on which systems design approach
or approaches the organization should adopt
as its approved standard. Use the information
in the textbook, your own experience, and any
supplemental research you conduct to write a
memo to your CIO that:

a. Provides relevant background regarding your
organization—for example, its vision, mission,
strategic goals objectives, level of maturity,
organizational structure, and culture.

b. Describes the different systems design
approaches.

c. Compares and contrasts their methods,
strengths, and weaknesses.

d. Recommends a specifi c approach or
combination of approaches for adoption
as the standard for your organization.

The recommendation should also include
a justifi cation for the basis of your
recommendation.

2. You are one of a large team of systems analysts
and designers on an enterprise-level project
that touches every part of your organization,
both in its headquarters offi ce and in regional
offi ces throughout the country. Following the
recommendation of its staff, executive management
has decided to do the systems design in-house.
Due to the scale of this project and the size of your
organization, this project involves the participation
of hundreds of system owners and users who are
located both in headquarters and in the regional
offi ces. For many of these system owners and users,
this is the fi rst time they have been involved in a
project of this nature. One of your responsibilities is
to make sure that they understand their respective
roles in this phase and its importance relative to the
overall success of the project.

a. Write an e-mail (or e-mails) to the system
owners and users in your organization
regarding the design phase and their roles in it,
using Tasks 5.1–5.5 as a guide. Your objective is
to ensure that they understand their roles and
are committed to the success of the project.

b. After you compose the e-mail(s), explain the
scenario to several people in your organization.
Have them read and critique your e-mail(s) for

Systems Design Chapter Eleven 389

clarity, completeness, and persuasiveness. What
were the results? If this were a real situation,
would they have understood their roles and
would your explanation have had a positive
impact upon their commitment?

3. In the fi rst question, you were asked to look at a
variety of approaches to systems design, including
prototyping. In the past several years, the number
of prototyping methodologies and application tools
appears to have increased exponentially. Research
on the Internet some of the different prototype
technologies that are available. In addition, talk with
several systems designers who use prototyping, and
ask them for their thoughts regarding the different
prototyping application tools on the market.
Prepare a written analysis describing your research
and reporting your fi ndings.

4. You work in the IT shop of a sales organization with
a half dozen satellite offi ces located in your state.
The organization wants to develop and implement
a Web-based information system so that its satellite
offi ces can submit their sales reports on a real-
time basis. But your IT shop is small, everyone
is already fully committed to maintenance and
support activities or to other projects, and besides,
no one has any experience in developing a Web-
based information system. So your management has
decided to outsource the design and development.
Your job is to do the following:

a. Interview IT vendors in your local community
regarding their experiences with requests for
proposals (RFPs); that is, fi nd out what common

defi ciencies they see in RFPs, and what key
things need to be included in order to prepare
an appropriate proposal. Prepare a short
memorandum to your management describing
the interviews.

b. Research some of the different RFP templates
that are available, including the template used in
Figure 11–12. Select one, and explain why you
chose the one that you did.

c. Using your selected template, write a request
for proposal.

5. Now that you have completed the request for
proposal in the preceding question, your next
assignment is to plan the systems design phase
of this project. Using what you have read to date
regarding systems design, prepare a high-level
project plan showing the major tasks, resources
and estimated hours required, time frames, and
dependencies (refer back to Chapter 3).

6. Numerous evaluation criteria and scoring systems
are used by organizations in the public and private
sectors to evaluate and rank vendor proposals. For
instance, California has an optional “best value”
approach that state agencies can use for vendor
ranking and selection. In addition, the textbook
references books on other methods in its list of
Suggested Readings. Research on the Internet
these and/or other approaches or methods used
by private and public sector agencies. Also, try to
interview the staff members in these organizations
who are responsible for evaluating and ranking
vendor proposals, as well as vendors that prepare
the proposals.

Minicases

1. In the previous chapter, you worked on designing
a system for a government department. Pick a
specifi c task in the creation of that system (e.g.
develop a Web site), and gather at least two
proposals from different vendors for it. Validate
claims and performances that the vendors submit
to you. Analyze your fi ndings and submit your
results and recommendations to your professor.

2. You are developing a complex system for a
large company. The code will be complex, and
the language is fairly new to the programming
team. Your boss has requested that you use an
evolutionary prototype in the development. Is this
the appropriate prototype model to use? If it is not,
how should you handle your boss’s request?

3. In Chapter 7, you researched a car rental agency
and created a data model for the rental of cars.
Utilize the work you previously did, as well as

preliminary interviews, to create a prototype for a
system that rents cars.

Note (to student): Why do you need to do
more interviews? This is so that you can develop
an interface as well as functionality that the user
wants and needs. Remember, aside from process
functionality, the user will determine the success
or failure of a system. What do they want the
interface to be and act like? What format do they
want to handle data in?

4. In the previous problem, you created a prototype
for a car rental system based on a previous
chapter’s work and preliminary interviews. Now
that you have created your prototype, return to
your client and present your prototype.

a. What is the client’s reaction? Does the client
like the functionality? What about the interface

design? Document the responses, as well as the
body language.

b. Rework your system to incorporate the client’s
suggestions and wishes. Is there anything
the client wanted that is unreasonable or not
feasible at this time? If there is, document it.

c. Submit your initial prototype, your revised
system prototype, and a paper discussing client
needs, their response to your prototype, how
you addressed their suggestions into your
revised system, and any additional background
information on your system.

Team and Individual Exercises

1. Create an exercise to improve creativity. It can
be something such as a puzzle, an art project, an
experience, and the like. Submit your idea to your
professor. The professor will then hand out the
creativity exercises to the class so that everyone
has an exercise but no one has their own exercise.
Complete the task you were given.

2. Visit a few Web sites, and document features and
interface characteristics that you particularly like
(and dislike). Bring this information to class and
share. Considering everyone’s experiences, what

do you think are particularly good characteristics
for a Web site to have? What shouldn’t it do (or
have)?

3. Suppose you are team-leader of a team that is
consistently falling behind schedule. Assume the
schedule slippage is due to poor planning and time
management, rather than to resource allocation
issues. Barring asking your manager to reorganize
the team, what can you do to encourage the team
members to meet their schedule?

Application Development Strategies (monthly periodical).

Arlington, MA: Cutter Information Corporation. This is our

favorite theme-oriented periodical that follows system

development strategies, methodologies, CASE, and other

relevant trends. Each issue focuses on a single theme.

Boar, Benard. Application Prototyping: A Requirements Defi -

nition Strategy for the 80s. New York: John Wiley & Sons,

1984. This is one of the fi rst books to appear on the sub-

ject of systems prototyping. It provides a good discussion

of when and how to do prototyping, as well as thorough

coverage of the benefi ts that may be realized through this

approach.

Coad, Peter, and Yourdon, Edward. Object-Oriented Design, 2nd

ed. Englewood Cliffs, NJ: Yourdon Press, 1991. Chapter 1 is

a great way to expose yourself to objects and the relation-

ship of object methods to everything that preceded them.

Connor, Denis. Information System Specifi cation and De-

sign Road Map. Englewood Cliffs, NJ: Prentice Hall, 1985.

This book compares prototyping with other popular

analysis and design methodologies. It makes a good case

for not prototyping without a specifi cation.

Gane, Chris. Rapid Systems Development. Englewood Cliffs:

NJ: Prentice Hall, 1989. This book presents a nice over-

view of RAD that combines model-driven development

and prototyping in the correct balance.

Isshiki, Koichiro R. Small Business Computers: A Guide to Eval-

uation and Selection. Englewood Cliffs, NJ: Prentice Hall,

1982. Although it is oriented toward small computers, this

book surveys most of the better-known strategies for evalu-

ating vendor proposals. It also surveys most of the steps of

the selection process, although they are not put in the per-

spective of the entire systems development life cycle.

Joslin, Edward O. Computer Selection, rev. ed. Fairfax Station,

VA: Technology Press, 1977. Although somewhat dated,

the concepts and selection methodology originally sug-

gested in this classic book are still applicable. The book

provides keen insights into vendor, customer, and end-

user relations.

Lantz, Kenneth E. The Prototyping Methodology. Englewood

Cliffs, NJ: Prentice Hall, 1986. This book provides excellent

coverage of the prototyping methodology.

Wood, Jane, and Denise Silver. Joint Application Design: How

to Design Quality Systems in 40% Less Time. New York:

John Wiley & Sons, 1989. This book provides an excellent

in-depth presentation of joint application development

(JAD).

Yourdon, Edward. Modern Structured Analysis. Englewood

Cliffs, NJ: Yourdon Press, 1989. Chapter 4, “Moving into De-

sign,” shows how modern structured design picks up from

modern structured analysis.

Zachman, John A. “A Framework for Information System Archi-

tecture,” IBM Systems Journal 26, no. 3 (1987). This article

presents a popular conceptual framework for information

systems design.

Suggested Readings

390 Part Three Systems Design Methods

12Application Architecture
and Modeling

Chapter Preview and Objectives

 This chapter teaches you techniques for designing the overall information system

application architecture with a focus on physical process models. Information

application architecture and physical process modeling include techniques for

distributing knowledge, processes, and communications to network locations in a

distributed computing environment. Physical data fl ow diagrams are used to document

the architecture and design in terms of design units—cohesive collections of data and

processes at specifi c locations—that can be designed, prototyped, or constructed in

greater detail and subsequently implemented as stand-alone subsystems. You will know

that you understand application architecture and process design when you can:

 ❚ Defi ne an information system’s architecture in terms of KNOWLEDGE, PROCESSES, and

COMMUNICATIONS—the building blocks of all information systems. Consistent with

modern trends, these building blocks will be distributed across a NETWORK.

 ❚ Differentiate between logical and physical data fl ow diagrams and explain how

physical data fl ow diagrams are used to model an information system’s architecture.

 ❚ Describe both centralized and distributed computing alternatives for information

system design, including various client/server and Internet-based computing options.

 ❚ Describe database and data distribution alternatives for information system design.

 ❚ Describe user and system interface alternatives for information system design.

 ❚ Describe various software development environments for information system design.

 ❚ Describe strategies for developing or determining the architecture of an information

system.

 ❚ Draw physical data fl ow diagrams for an information system’s architecture and

processes.

392 Part Three Systems Design Methods

application architecture
a specifi cation of the

technologies to be used

to implement information

systems.

 Introduction

 It had been decided that part of the SoundStage Member Services system would be
purchased and part of it would be programmed in-house. The question remained
of what the architecture would be for the programmed part of the system. Bob
Martinez had learned C# .NET in college and was a big fan. He pointed out that
using the same language and the same . NET framework, they could program both
a client/server desktop application for the in-house part of the application and a
Web application for the e -commerce part of the application. The two applications
could even share some components. And since the C# syntax was essentially the
same as JavaScript, the server-side and client-side Web application code would be
very similar.

 Bob convinced his boss, Sandra. However, as she pointed out, SoundStage’s ap-
proved application architecture was written before . NET was released and did not
include it as a development option. Sandra had Bob research and write up a variance
request for the technology committee. It took a couple of drafts, but he finally got
it written in a way she thought the committee would approve. She was right. Now
they could start designing “how” to implement the system, integrating the purchased
components with . NET .

 Application Architecture

 Chapter 11 presented a high-level overview of the entire systems design process.
You learned that early during system design you develop an architectural blueprint
that will serve as an outline for subsequent internal and external design. This chapter
focuses exclusively on that blueprint and current alternatives for application archi-
tecture. (Subsequent chapters focus on the detailed internal and external design of
each architectural component.) The architectural blueprint will communicate the
following design decisions:

 • The degree to which the information system will be centralized or distributed—
Most contemporary systems are distributed across networks, including both
intranets and the Internet.

 • The distribution of stored data across a network—Most modern databases are
either distributed or duplicated across networks, either in a client/server or
network computing pattern.

 • The implementation technology for all software to be developed in-house—
Which programming language and tools will be used?

 • The integration of any commercial off-the-shelf software—And the need for
customization of that software.

 • The technology to be used to implement the user interface—Including inputs
and outputs.

 • The technology to be used to interface with other systems.

 These considerations define the application architecture for the information
system. An application architecture specifies the technologies to be used to im-
plement one or more (possibly all) information systems. It serves as an outline for
 detailed design, construction, and implementation.

 In most chapters, we have initially taught concepts and principles before intro-
ducing tools and techniques. For this chapter, we are going to first introduce the
primary tool, physical data flow diagrams. This will work for two reasons. First, you
already know the system concepts and basic constructs of data flow diagrams from
Chapter 8. Second, the tool is an elegant and relatively simple way to introduce the
different types of application architecture that we want you to learn.

Application Architecture and Modeling Chapter Twelve 393

 Although you will learn a new technique in this chapter, physical data flow
diagrams, this is not as important as the application architecture concepts used to
partition an information system across a computer network.

 Data flow diagrams (DFDs) were introduced in Chapter 8 as a systems analysis tool for
modeling the business requirements of an information system. With just a few exten-
sions of the graphical language, DFDs can also be used as a systems design tool for
modeling the physical (meaning “technical”) architecture and design of an informa-
tion system. Physical data flow diagrams model the technical and human design
decisions to be implemented as part of an information system. They communicate
technical choices and other design decisions to those who will actually construct and
implement the system. In other words, physical DFDs serve as a technical blueprint
for system construction and implementation.

 Physical data flow diagrams were conceived by Gane, Sarson, and DeMarco as part
of a formal software engineering methodology called structured analysis and design.
This methodology was especially well suited to mainframe COBOL transaction-based
information systems and software. The methodology required rigorous and detailed
specification of both logical and physical representations of an information system.

 Today, the complete structured analysis and design methodology as described
above is rarely practiced—it is not as well suited to today’s object-oriented and com-
ponent-based software technologies—but data flow diagramming (both logical and
physical) remains a useful and much practiced legacy of the structured analysis and
design era of systems development.

 In this chapter, we will examine the graphical conventions for physical DFDs.
Physical DFDs use the same basic shapes and connections as logical DFDs (Chapter 8),
namely: (a) processes, (b) external agents, (c) data stores, and (d) data flows. A
sample physical DFD is shown in Figure 12-1 . For now, just notice that the physical
DFD primarily shows more technical and implementation detail than its logical DFD
equivalent.

 > Physical Processes

 Recall that processes are the key shapes on any DFD. That’s why they are called
 process models. Physical DFDs depict the planned, physical implementation of each
process. A physical process is either a processor, such as a computer or person, or
the technical implementation of specific work to be performed, such as a computer
program or manual process.

 Earlier in the project, during requirements analysis, we specified logical processes
needed to fulfill essential business requirements. These logical processes were mod-
eled in the logical data flow diagrams in Chapter 8. Now, during system design, we
must specify how these logical processes will be physically implemented. As implied
in the above definition for physical processes, there are two characteristics of physi-
cal data flow diagrams:

 • Logical processes are frequently assigned to specifi c physical processors
such as PCs, servers, mainframes, people, or other devices in a computer
network. To this end, we might draw a physical DFD to model the net-
work’s structure.

 • Each logical process must be implemented as one or more physical processes
as some logical processes must be split into multiple physical processes for
one or more of the following reasons:

 • To split the process into a portion to be performed by people and a portion
to be performed by the computer.

physical data fl ow
diagram a process model

used to communicate the

technical implementation

characteristics of an

information system.

Physical Data Flow Diagrams

394 Part Three Systems Design Methods

 • To split the process into a portion to be implemented with one technology
and a portion to be implemented with a different technology.

 • To show multiple but different implementations of the same logical process
(such as one process for paper orders and a different process for Internet
orders).

 • To add processes that are necessary to handle exceptions or to implement
security requirements and audit trails.

 In all cases, if you split a logical process into multiple physical processes, or add
additional physical processes, you have to add all necessary data flows to preserve the
essence of the original logical process. In other words, the physical processes must
still meet the logical process requirements.

 IDs are optional, but they can be useful for matching physical processes with
their logical counterparts (especially if the logical process is to be implemented with
multiple physical processes). Process names use the same action verb + noun/object
clause convention as the one we introduced in Chapter 8. This name is recorded in
the center of the shape (see margin). In the bottom of the shape, the implementation
is recorded. This convention may have to be adjusted depending on the capabilities

Bank

System

Clock

Customer

7

Verify

Transactions

and Balances

Customer

MS ACCESS

TABLE:

Account Register

PRINTED FORM:
Monthly

Statement

8

Reconcile

Account

Visual Basic

READ:

Balances

and

Transactions

UPDATE:

Cleared

Transactions

UPDATE: Balances

and Transactions

WIN 2000 GUI:

Cleared

Transaction

WIN 2000 GUI:

Reconcile

Dialogue

WIN 2000 GUI and

PRINTED REPORT:

Reconciliation Report

This diagram is

intentionally

incomplete and

oversimplified.

6

Record

Personal

Transaction

Visual Basic

CHECKBOOK:

Check Written

BANK FORM:

Deposit Receipt

PRINTED FORM:

Bank Machine

Receipt

6

Record

Scheduled

Transaction

Visual Basic

WIN 2000 GUI:

Scheduled

Transaction

MS ACCESS

TABLE:

Account Register

UPDATE:

Scheduled

Transaction

6

Record

Scheduled

Transaction SYSTEM BOOT:

Date and Time

UPDATE:

Post

Transaction

F I G U R E 1 2 - 1

A Sample Physical
Data Flow Diagram

ID (optional)

Action Verb

+

Noun or Object

Phrase

Implementation

Application Architecture and Modeling Chapter Twelve 395

of your CASE or automated diagramming tool. The following names demonstrate vari-
ous possible implementations of the same logical process:

Logical Process

Check

Customer

Credit

4.3 4.3

Check

Customer

Credit

Acct Clerk

4.3

Check

Customer

Credit

COBOL/CICS

4.3

Check

Customer

Credit

Visual Basic

4.3

Check

Customer

Credit

Quickbooks

Sample Physical Process Implementations

Logical Process

Check

Customer

Credit

Check

Customer

Credit

Visual Basic

Reconsider

Credit

Decision

Credit Mgr

Credit Rejection

Credit

Approval

4.3 4.3.A 4.3.B

Title or
Role

Name

Sample Physical Process Implementation

 We didn’t just change the manual process, RECONSIDER CREDIT DECISION, to an exter-
nal agent, CREDIT MANAGER, because the entire logical process, CHECK CUSTOMER CREDIT , is in
the project scope. For that reason, both aspects of the physical implementation are
also in the scope. The design is not complete until we specify the process for both
the automated and the manual aspects of the business requirement.

 For computerized processes, the implementation method is, in part, chosen from
one of the following possibilities:

 • A purchased application software package (e.g., Sap, an enterprise software appli-
cation, or Ariba, an Internet-based procurement/purchasing software application).

 • A system or utility program (e.g., Microsoft’s Exchange Server, an e-mail/messag-
ing system, or IBM’s WebSphere Commerce Business, an electronic commerce
framework).

 • An existing application program from a program library, indicated simply as
 LIBRARY or NAME of library.

 • A program to be written. Typically, the implementation method specifi es the
language or tool to be used to construct the program. Example implementation
methods include VB, . NET, C ⫹⫹ , JAVA, MS ACCESS, PERL, or, ORACLE DEVELOPER .

 If your CASE tool limits the size of names, you may have to develop and use a set
of abbreviations for the technology (and possibly abbreviate your action verbs and
object clauses).

 If a logical process is to be implemented partially by people and partially by soft-
ware, it must be split into separate physical processes, and appropriate data flows must
be added between the physical processes. The name of a physical process to be per-
formed by people, not software, should indicate who would perform that process. We
recommend you use titles or roles, not proper names. The following is an example:

396 Part Three Systems Design Methods

Logical Process

Check

Customer

Credit

4.3 4.3.A

CHK_CREDIT.COB

COBOL + CICS

4.3.B

appCheckCredit.vbx

Visual Basic

Sample Physical Process Implementations

 One final physical process construct should be introduced, the multiprocess (see
margin). The multiprocess indicates multiple implementations of the same physical
processor or process. For example, we can use this symbol to indicate multiple PCs,
the implementation of a named program on multiple PCs, or the implementation of
work to be performed by multiple people. Some CASE tools do not support this con-
struct. If they do not, you may need to resort to plural names to imply multiplicity of
a process or processor.

 Many designers prefer a more physical naming convention for computer pro-
cesses. Instead of a noun ⫹ verb phrase, they would substitute the file name of the
computer program’s physical source code. Consider the following examples:

ID (optional)

Action Verb

+

Noun/Object

Phrase

Implementation

 Many organizations have naming conventions and standards for program names.
 Again, the number of physical processes on a physical DFD will almost always be

greater than the number of logical processes on its equivalent logical DFD. For one
thing, processes may be added to reflect data collection, filtering, forwarding, prepa-
ration, or quality checks—all in response to the implementation vision that has been
selected. Also, some logical processes may be split into multiple physical processes to
reflect portions of a process to be done manually versus by a computer, to be imple-
mented with different technology, or to be distributed to clients, servers, or different
host computers. It is important that the final physical DFDs reflect all manual and
computer processes required for the chosen implementation strategy.

 > Physical Data Flows

 Recall that all processes on any DFD must have at least one input and one output data
flow. A physical data flow represents any of the following: (1) the planned imple-
mentation of an input to or output from a physical process; (2) a database command
or actions such as create, read, update, or delete; (3) the import of data from or the
export of data to another information system across a network; or (4) the flow of data
between two modules or subroutines within the same program.

 Physical data flows are named as indicated by the templates in the margin.
 Figure 12-2 demonstrates the application of one of these naming conventions as ap-
plied to several types of physical data flows.

 Physical DFDs must also indicate any data flows to be implemented as business
forms. For instance, FORM 23: COURSE REQUEST might be a one-part business form used
by students to register for classes. Business forms frequently use a multiple-copy (car-
bon or carbonless) implementation. At some point in processing, the different copies
are split and travel to different manual processes. This is shown on a physical DFD
as a diverging data flow (introduced in Chapter 8). Each copy should be uniquely
named. For example, at a restaurant, the customer receives FORM: CREDIT CARD VOUCHER
 (CUSTOMER COPY) and the merchant retains FORM: CREDIT CARD VOUCHER (MERCHANT COPY).

Implementation method:

data flow name

Data flow name

(implementation method)

OR

Application Architecture and Modeling Chapter Twelve 397

F I G U R E 1 2 - 2

Physical Data Flows

Logical Data Flow Implementation Sample Physical Data Flow

Order Computer Input

(Keyboard)
WIN 2000 GUI:

Order Form

Order Computer Input

(Internet)
HTML:

Order Form

Product

Sold
Computer Input

(Keyless)
BAR CODE:

Product UPC

Hours

Worked
Computer Input

(Batch File)

KEY-TO-DISK:

Hours Worked

Salary Equity

Analysis
Computer Output

(Printed)

PRINTOUT:

Salary Equity

Report

Account

History
Computer Output

(Online)

WIN 2000 GUI:

Account

History

Create

Order

Create a record

in a database
SQL Insert:

New Order

Unfilled

Orders
Read records

in a database

SQL Select:

Unfilled

Orders

Update

Credit Rating
Update a record

in a database

SQL Update:

Credit

Rating

Delete

Employee

Delete a record

in a database SQL Delete:

Employee

Insurance

Accident

Claim

Import a data file
IMAGE FILE:

Insurance

Accident

Claim

Schedule

of Classes Export a data file

Comma

Delimited

File:

Schedule

of Classes

Extended

Cost
Pass data between

modules of a program

Extended

Cost

Course

Request
Pass a manual form

Form 23:

Course

Request

 Most logical data flows are carried forward to the physical DFDs. Some may be
consolidated into single physical data flows that represent business forms. Others
may be split into multiple flows as a result of having split logical processes into mul-
tiple physical processes. Still others may be duplicated as multiple flows with differ-
ent technical implementations. For example, the logical data flow ORDER might be
implemented as all of the following: FORM: ORDER, PHONE: ORDER (verbal order taken
over the phone), HTML: ORDER (order submitted over the Internet), FAX: ORDER (order
received by fax), and MESSAGE: ORDER (an order submitted via e-mail).

398 Part Three Systems Design Methods

 > Physical External Agents

 External agents are carried over from the logical DFD to the physical DFD unchanged.
Why? By definition, external agents were classified during systems analysis as outside
the scope of the systems and therefore not subject to change. Only a change in re-
quirements can initiate a change in external agents.

 > Physical Data Stores

 From Chapter 8 you know that each data store on the logical DFD now represents all
instances of a named entity on an entity relationship diagram (from Chapter 8). Physi-
cal data stores implement the logical data stores. A physical data store represents the
 implementation of one of the following: (1) a database, (2) a table in a database, (3) a
computer file, (4) a tape or media backup of anything important, (5) any temporary file or
batch as needed by a program (e.g., TAX TABLES), or (6) any type of noncomputerized file.

 When most people think of data stores, they think of computer files and databases.
But many data stores are not computerized. File cabinets of paper records immediately
come to mind; however, most businesses are replete with more subtle forms of manual
data stores such as address cards, paper catalogs, cheat sheets of various important and
reusable information, standards manuals, standard operating procedures manuals, direc-
tories, and the like. Despite predictions about the demise of paper files, they will remain
a part of many systems well into the foreseeable future—if for no other reasons than (1)
there is psychological comfort in paper and (2) the government frequently requires it.

 The name of a physical data store uses the format indicated in the margin. Some
examples of physical data stores are shown in Figure 12-3 (see below).

Logical Data Store Implementation Physical Data Store

Human

Resources

A database

(multiple tables)

Oracle :

Human

Resources DB

Marketing
A database view

(subset of a database)

SQL Server:

Northeast

Marketing DB

Purchase Orders
A table in a database MS Access:

Purchase Orders

Accounts

Receivable

A legacy file VSAM File:

Accounts

Receivable

Tax Rates
Static data ARRAY:

Tax Table

Orders
An off-line archive TAPE Backup:

Closed Orders

Employees
A file of paper records File Cabinet:i

Personnel

Records

Faculty/Staff

Contact Data

A directory Handbook:

Faculty/Staff

Directory

Course

Enrollments

By Date

Archived reports

(for reuse and recall)
REPORT MGR:

Course

Enrollment

Reports

F I G U R E 1 2 - 3

Physical Data Stores

ID

(opt)

Implementation

Method:
Data Store Name

ID

(opt)

Data Store Name

(Implementation

Method)

Application Architecture and Modeling Chapter Twelve 399

distributed system
a system in which

components are distributed

across multiple locations and

computer networks.

 Some designs require that temporary files be created to act as a queue or buffer
between physical processes that have different timing. Such files are documented in
the same manner, except their names indicate their temporary status.

 Physical processes, data flows, external agents, and data stores make up the physical
data flow diagrams. And these physical DFDs model the proposed or planned architecture
of an information system application. We can subsequently use that physical model to de-
sign the internal and external details for each data store (Chapter 13) and data flow (Chap-
ters 14–16). Now that you understand the basic components of physical DFDs, let’s use
them to introduce some of today’s architectural choices for information system design.

 Information Technology Architecture

 Information technology (IT) architecture can be a complex subject worthy of its own
course and textbook. (See the Suggested Readings at the end of this chapter.) In this
section, we will attempt to summarize contemporary IT alternatives and trends that
are influencing design decisions as we go to press. It should be noted that new alter-
natives are continuously evolving. The best systems analysts will not only learn more
about these technologies but will also understand how they work and their limita-
tions. Such a level of detail is beyond the scope of this book. Systems analysts must
continuously read popular trade journals to stay abreast of the latest technologies and
techniques that will keep their customers and their information systems competitive.

 The information system framework provides one suitable framework for under-
standing IT architecture. Accordingly, our building blocks are being distributed or
duplicated across networks. We call the approach distributed systems architecture:

 • Architectural standards and/or technology constraints are represented in the bot-
tom row of the framework of this chapter’s home page. Notice that these standards
or decisions are determined either as part of a separate architecture project (pre-
ferred and increasingly common) or as part of each system development project.

 • The upward-pointing arrows indicate the technology standards that will infl u-
ence or constrain the design models.

 > Distributed Systems

 Today’s information systems are no longer monolithic, mainframe computer-based
systems. Instead, they are built on some combination of networks to form distributed
systems. A distributed system is one in which the components of an information
system are distributed to multiple locations in a computer network. Accordingly, the
processing workload required to support these components is also distributed across
multiple computers on the network.

 The opposite of distributed systems are centralized systems. In centralized

systems , a central, multiuser computer (usually a mainframe) hosts all components
of an information system. The users interact with this host computer via terminals
(or, today, a PC emulating a terminal), but virtually all of the actual processing and
work is done on the host computer.

 Figure 12-4 compares various distributed systems architectures. Conceptually,
any information system application can be mapped to five layers:

 • The presentation layer is the actual user interface—the presentation of inputs
and outputs to the user.

 • The presentation logic layer is any processing that must be done to generate the
presentation. Examples include editing input data and formatting output data.

 • The application logic layer includes all the logic and processing required to
support the actual business application and rules. Examples include credit
checking, calculations, data analysis, and the like.

 • The data manipulation layer includes all the commands and logic required to
store and retrieve data to and from the database.

 • The data layer is the actual stored data in a database.

centralized system
a system in which all

components are hosted by a

central, multiuser computer.

400 Part Three Systems Design Methods

 Figure 12-4 shows these conceptual layers as rows. The columns in the figure illus-
trate how the layers can be implemented in different distributed information system
architectures. There are three types of distributed systems architecture:

 • File server architecture.
 • Client/server architecture.
 • Internet-based architecture.

 Let’s discuss each in greater detail.

 File Server Architecture Today very few personal computers and workstations are
used to support stand-alone information systems. Organizations need to share data

Stored

on the

Database

Server

Stored

on the

Database

Server

Stored

on the

Database

Server

Stored

on the

Database

Server

Stored

on the

File

Server

DATA

LAYER

FILE

SERVER

SOLUTION DISTRIBUTED

PRESENTATION

(2 TIER)

DISTRIBUTED

DATA

(2 TIER)

DISTRIBUTED

DATA &

APPLICATION

(N TIER)

NETWORK

COMPUTING

SOLUTION

Executed

on the

Database

Server

Executed

on the

Database

Server

Executed

on the

Database

Server

Executed

on the

Database

Server

Executed

on the

Client

DATA

MANIPULATION

LAYER

Executed

on the

Client

Executed

on the

Application

Server

Executed

on the

Application

Server

Executed

on the

Server

Executed

on the

Client

APPLICATION

LOGIC

LAYER

Executed

on the

Client

Executed

on the

Client

Distributed

from the

Web

Server

Executed

on the

Client

Executed

on the

Client

PRESENTATION

LOGIC

LAYER

Displayed

on the

Client

Displayed

on the

Client

Displayed

on the

Client

Displayed

on the

Client

Displayed

on the

Client

PRESENTATION

LAYER

CLIENT / SERVER SOLUTIONS

F I G U R E 1 2 - 4 Types of Distributed Computing and Systems

Application Architecture and Modeling Chapter Twelve 401

F I G U R E 1 2 - 5

A File Server
Architecture

User Presentation,

Application,

and Data

Manipulation

Logic all

executed here

Client PC

File Server

Database

(e.g. MS Access)

Presentation

Only serves to

store data. No

service other

than storage and

transport

provided here

File Server

Entire

tables

Updated tables

Response

to request

returns

entire

tables

Request to

create,

read,

update,

or delete

1 or more

records

Table

locked

until

client

returns

table

Entire

tables

with any

updated

records
Unlock tables

1

2

3

4

5

6

7

8

client/server system a

distributed computing solution

in which the presentation,

presentation logic, application

logic, data manipulation, and

data layers are distributed

between client PCs and one

or more servers.

and services. Local area networks allow many PCs and workstations to be connected
to share resources and communicate with one another. A local area network

(LAN) is a set of client computers (usually PCs) connected to one or more servers
(usually a more powerful PC or larger computer) through either cable or wireless
connections over relatively short distances—for instance, in a single department or
in a single building.

 In the simplest LAN environments, a file server architecture is used to imple-
ment information systems. A file server system is a LAN-based solution in which
a server computer hosts only the data layer. All other layers of the information
system application are implemented on the client PC. (Note: File servers are also
typically used to share other nondatabase files across networks—examples include
word processing documents, spreadsheets, images and graphics, engineering draw-
ings, presentations, etc.) A file server architecture is illustrated in Figure 12-5 . This
architecture is typical of those used for many PC database engines such as Micro-
soft Access and FoxPro. While your Access database may be stored on a network
server, the actual Access program must be installed or executed from each PC that
uses the database.

 File server architectures are practical only for small database applications shared
by relatively few users because the entire file or table of records must be first down-
loaded to the client PC, where the data manipulation logic will be executed to read
a single desired record.

 Client/Server Architectures The prevailing distributed computing model of the
current era is called client/server computing (although it is rapidly giving way to
Internet-based models). A client /server system is a solution in which the presentation,
presentation logic, application logic, data manipulation, and data layers are distributed
between client PCs and one or more servers.

 The client computers may be any combination of personal computers or worksta-
tions, “sometimes connected” notebook computers, handheld computers (e.g., Palm
or Windows Mobile Platforms), Web TVs, or any devices with embedded processors
that could connect to the network (e.g., robots or controllers on a manufacturing
shop floor). Clients may be thin or fat. A thin client is a personal computer that does
not have to be very powerful (or expensive) in terms of processor speed and memory

local area network (LAN)
a set of client computers

connected over a relatively

short distance to one or

more servers.

fi le server system a LAN

in which a server hosts the

data of an information system.

thin client a personal

computer that does not have

to be very powerful.

402 Part Three Systems Design Methods

because it only presents the interface (screens) to the user—in other words, it acts
only as a terminal. Examples include Remote Desktop and X / Windows. In thin-client
computing, the actual application logic executes on a remote application server. A
 fat client is a personal computer, notebook computer, or workstation that is typi-
cally more powerful (and expensive) in terms of processor speed, memory, and stor-
age capacity. Almost all PCs are considered fat clients.

 A server in the client/server model must be more powerful and capable than a
server in the file server model. In fact, a mainframe computer can play the role of
server in a client/server solution. More typical, however, are network servers run-
ning client/server-capable operating systems such as UNIX, Windows Server 2003,
or Linux. Several types of servers may be used in a client/server solution. These may
reside on separate physical servers or be consolidated into fewer servers:

 • A database server hosts one or more shared databases (like a fi le server) but
also executes all database commands and services for information systems (un-
like a fi le server). Most database servers host an SQL database engine such as
 Oracle, Microsoft SQL Server, or IBM DB2 Universal Database.

 • A transaction server hosts services that ultimately ensure that all database
updates for a single business transaction succeed or fail as a whole. Examples
include IBM CICS and BEA.

 • An application server hosts application logic and services for an information
system. It must communicate on the front end with the clients (for presenta-
tion) and on the back end with database servers for data access and update. An
application server is often integrated with the transaction server. Most appli-
cation servers are based on either the CORBA object-sharing standard or the
Microsoft COM⫹ standard.

 • A messaging or groupware server hosts services for e-mail, calendaring, and
other work group functionality. This type of functionality can actually be inte-
grated into information system applications. Examples include Lotus Notes and
Microsoft Exchange Server.

 • A Web server hosts Internet or intranet Web sites. It communicates with fat
and thin clients by returning to them documents (in formats such as HTML)
and data (in formats such as XML). Some Web servers are specifi cally de-
signed to host e-commerce applications (e.g., IBM’s WebSphere Commerce

 Business).

 Client/server architecture itself comes in several types, each of which deserves
its own explanation. Each of these C/S types is also compared to the others in
 Figure 12-4 .

 Client/Server—Distributed Presentation Most centralized (or mainframe) compu-
ting applications use an older character user interface (CUI) that is cumbersome and
awkward when compared to today’s graphical user interfaces (GUIs) such as Microsoft
 Windows and UNIX X / Windows (not to mention Web browsers such as Mozilla
 Firefox and Microsoft Internet Explorer). As personal computers rapidly replaced
dumb terminals, users became increasingly comfortable with this newer technology.
And as they developed familiarity and experience with PC productivity tools such as
word processors and spreadsheets, they wanted their centralized, legacy computing
applications to have a similar look and feel using the GUI model.

 Enter distributed presentation. A distributed presentation client/server system
is a solution in which the presentation and presentation logic layers are shifted from
the server of a legacy system to reside on the client. The application logic, data ma-
nipulation, and data layers remain on the server (usually a mainframe). Sometimes
called the “poor person’s client/server,” this alternative builds on and enhances cen-
tralized computing applications. Essentially, the old CUIs are stripped from the legacy
applications and regenerated as GUIs that will run on the PC. In other words, only the
user interface (or presentation layer) is distributed to the client.

distributed presentation
a client/server system in

which presentation and

presentation logic are shifted

from the server to reside on

the client.

fat client a personal

computer, notebook

computer, or workstation that

is typically powerful.

database server a server

that hosts one or more

databases.

transaction server a

server that hosts services

which ensure that all database

updates for a transaction

succeed or fail as a whole.

application server a

server that hosts application

logic and services for an

information system.

messaging or groupware
server a server that hosts

services for groupware.

Web server a server that

hosts Internet or intranet Web

sites.

Application Architecture and Modeling Chapter Twelve 403

F I G U R E 1 2 - 6

Building a GUI from
a CUI

 Distributed presentation offers several advantages. First, it can be implemented
relatively quickly because most aspects of the legacy application remain unchanged.
Second, users get a fast, friendly, and familiar user interface to legacy systems—one
that looks at least somewhat familiar to their PC productivity tools. Finally, the useful
lifetime of legacy applications can be extended until resources warrant a wholesale
redevelopment of the application. The disadvantages are that the application’s func-
tionality cannot be significantly improved and the solution does not maximize the
potential of the client’s desktop computer by dealing only with the user interface.

 A class of CASE tools, sometimes called screen scrapers, automatically read the
CUI and generate a first-cut GUI that can be modified by a GUI editor. Figure 12-6
demonstrates this technology. Figure 12-7 shows a physical DFD for a distributed
presentation solution.

 Client/Server—Distributed Data This is the simplest form of true client/server
computing. A local area network usually connects the clients to the server. A
 distributed data client/server system is a solution in which the data and data
manipulation layers are placed on the server(s), and the application logic, presentation
logic, and presentation are placed on the clients. This is also called two-tiered client/

server computing. A two-tiered, distributed data client/server system is illustrated as
a physical DFD in Figure 12-8 .

distributed data a client/

server system in which the

data and data manipulation

layers are placed on servers

and other layers are placed

on clients. Also called

two-tiered client/server

computing.

404 Part Three Systems Design Methods

1

2

3

4

5

6

7

8

User
Presentation

and

Application,

Logic

 executed here

Client PC

C/S Database

stored here

Presentation

Data

Manipulation

Logic

executed here

Database Server

Read requested

rows and columns

only from the

tables

Updated tables

Response

to request

returns

only the

rows and

columns

needed

Request to

create,

read,

update,

or delete

1 or more

records

Records (only)

locked

until

client

releases

table

Application

returns only

any data to

be updated
Unlock records

F I G U R E 1 2 - 8

Client/Server
System: Distributed
Data (Two Tiers)

 It is important to understand the difference between file server systems and
 distributed data client/server systems. Both store their actual database on a server.
But only client/server systems execute all data manipulation commands (e.g., SQL
instructions to create, read, update, and delete records) on a server. Recall that in
file server systems, those data manipulation commands must be implemented on the
 client. Distributed data client/server solutions offer several advantages over file server
solutions:

 • There is much less network traffi c because only the database requests and the
database records that are needed are actually transported to and from the client
workstations.

 • Database integrity is easier to maintain. Only the records in use by a client must
typically be locked. Other clients can simultaneously work on other records in
the same table or database.

User
Presentation

Logic

only

executed here

Client PC

Conventional Files

(e.g., VSAM)

or

Database (e.g.,

Oracle)

Presentation

Legacy App

(e.g., COBOL)

Application and

Data

Manipulation

Logic executed

here

Mainframe

Reads

and/or

updates

Output and

Instructions

for

translation

to GUI

GUI:

input

and/or

commands

for

processing

F I G U R E 1 2 - 7

Client/Server
System: Distributed
Presentation

Application Architecture and Modeling Chapter Twelve 405

distributed data and
application a client/server

system in which the data

and manipulation layers are

placed on their own server(s),

the application logic is

placed on its own server,

and the presentation logic

and presentation are placed

on the clients. Also called

three-tiered, or n-tiered,

client/server computing.

partitioning the act of

determining how to best

distribute or duplicate

application components

across a network.

 The client workstation must still be fairly robust (“fat”) to provide the processing
for the application logic layer. This logic is usually written in a client/server program-
ming language such as Sybase Corporation’s PowerBuilder, Microsoft’s Visual Basic

.NET , or C# . Those programs must be compiled for and must execute on the client.
To improve application efficiency and reduce network traffic, some business logic
may be distributed to the database server in the form of stored procedures (discussed
in the next chapter).

 The database server is fundamental to this architecture. Database servers store
the database, but they also execute the database instructions directly on those serv-
ers. The clients merely send their database instructions to the server. The server re-
turns only the result of the database command processing—not entire databases or
tables. All high-end database engines such as Oracle and Microsoft SQL Server use
this approach. A distributed data architecture may involve more than one database
server. Data may be distributed across several database servers or duplicated on sev-
eral database servers.

 The key potential disadvantage to the two-tiered client/server is that the applica-
tion logic must be duplicated and thus maintained on all the clients, possibly hundreds
or thousands. The designer must plan for version upgrades and provide controls to
ensure that each client is running the most current release of the business logic, as
well as ensure that other software on the PC (purchased or developed in-house) does
not interfere with the business logic.

 Client/Server—Distributed Data and Application When the number of clients
grows, two-tiered systems frequently suffer performance problems associated with
the inefficiency of executing all the application logic on the clients. Also, in multiple-
user transaction processing systems (also called online application processing,
or OLAP), transactions must be managed by software to ensure that all the data
associated with the transaction is processed as a single unit. This generally requires
a distribution that uses a multitiered client/server approach. A distributed data

and application client/server system is a solution in which (1) the data and data
manipulation layers are placed on their own server(s), (2) the application logic
is placed on its own server, and (3) only the presentation logic and presentation
are placed on the clients. This is also called three-tiered, or n - tiered, client/server

computing.
 The three-tiered client/server solution uses the same database servers as those

in the two-tiered approach. Additionally, the three-tiered system introduces an ap-
plication and/or transaction server. By moving the application logic to its own server,
that logic now only needs to be maintained on the server. The three-tiered solution is
depicted as a physical data flow diagram in Figure 12-9 .

 Three-tiered client/server logic can be written and partitioned across multiple
servers using languages such as Microsoft Visual Basic . NET and C# in combination
with a transaction monitor. High-end tools such as Forté provide an even greater
opportunity to distribute application logic and data across a complex network. As
with the database server solution, some business logic could be distributed to the
database server in the form of stored procedures.

 In a three-tiered system, the clients execute a minimum of the overall system’s
components. Only the user interface and some relatively stable or personal applica-
tion logic need be executed on the clients. This simplifies client configuration and
management.

 The biggest drawback of the three-tiered client/server is its complexity in
design and development. The most difficult aspect of a three-tiered client/server
application design is partitioning. Partitioning is the act of determining how to
best distribute or duplicate application components across the network. Fortu-
nately, CASE tools are constantly improving to provide greater assistance with
partitioning.

406 Part Three Systems Design Methods

 Internet-Based Computing Architectures Some consider Internet-based system
architectures to be the latest evolution of client/server. We present Internet-based
computing alternatives in this section as a fundamentally different form of distributed
architecture that is rapidly reshaping the design thought processes of systems analysts
and information technologists.

 A network computing system is a multitiered solution in which the presenta-
tion and presentation logic layers are implemented in client-side Web browsers using
content downloaded from a Web server. The presentation logic layer then connects
to the application logic layer that runs on an application server, which subsequently
connects to the database server(s) on the backside. Think about it! All information
systems running in browsers—financials, human resources, operations—all of them!
Internet technologies are being used to reshape the internal information systems of
most businesses—we call it e-business (although that term is also subject to multiple
interpretations). Network computing is, in our view, a fundamental shift away from
what we just described as client/server.

 Very few new technologies have witnessed as explosive a growth in busi-
ness and society as the Internet or the World Wide Web. The Internet extends
the reach of our information and transaction processing systems to include po-
tential customers, customers, partners, remotely located employees, suppliers,
the government, and even competitors. During the late 1990s the Internet was
largely being used to establish a company’s presence in a virtual marketplace
and to disseminate public information about products and services and provide a

User

Presentation

Logic

only

executed here

Client PC

C/S Database

stored here

Presentation

Data

Manipulation

Logic

only

executed here

Database Server

Read requested

rows and columns

only from the

tables

Updated tables

Records (only)

locked

until

client

releases

table

Unlock records

Application

Logic

only

executed here

Application

Server

Request to create,

read, update, or

delete 1 or more records

Response to data

manipulation

request

Data

and

service

requests

Information

and

service

responses

F I G U R E 1 2 - 9

Client/Server
System: Distributed
Data and Application
(Three Tiers)

network computing
system a multitiered solution

in which the presentation and

presentation logic layers are

implemented in client-side

Web browsers using content

downloaded from a Web

server.

Application Architecture and Modeling Chapter Twelve 407

intranet a server

network that uses Internet

technology to integrate

desktop, work group, and

enterprise computing.

new foundation for customer-focused service. Today, however, most businesses
are focused on developing e-commerce solutions that will allow customers to di-
rectly interact with and conduct business on the Web (such as direct-to-consumer
shopping). We’ve even seen the invention of the virtual business, a business that
“does business”entirely on the Web, such as Amazon.com (books and media),
ETrade (stocks and bonds), eBay (auctions), and Buy.com (electronics and appli-
ances). One of the most intriguing debates is whether these “click-and-mortar”
virtual companies can turn a profit and actually compete with more traditional
“brick-and-mortar” companies—many of which are diversifying rapidly to enter
cybermarkets.

 But the greatest potential of this Internet technology may actually be its applica-
tion to traditional information systems applications and development on intranets. An
 intranet is a secure network, usually corporate, that uses Internet technology to in-
tegrate desktop, work group, and enterprise computing into a single cohesive frame-
work. Everything runs in (or at least from) a browser—your productivity applications
such as word processing and spreadsheets; any and all traditional information systems
applications you need for your job (financials, procurement, human resources, etc.);
all e-mail, calendaring, and work group services (allowing, for example, virtual meet-
ings and group editing of documents); and of course all of the external Internet links
that are relevant to your job.

 The appeal of this concept should not be hard to grasp. Each employee’s “start
page” is a portal into all computer information systems and services he or she needs
to do his or her entire job. Because everything runs in a Web browser, there is no lon-
ger a need to worry about, or develop for, multiple different computer architectures
(Intel versus Motorola versus RISC) or worry about different desktop operating sys-
tems. A physical data flow diagram for network computing is shown in Figure 12-10 .
Notice that a Web server is added to the prior three-tiered model. The DFD also
shows both e-commerce (business-to-consumer) and e-business (business-to-busi-
ness) dimensions of network computing.

 > Data Architectures—Distributed Relational Databases

 The underlying technology of client/server and network computing has made it
possible to distribute data without loss of control. This control is accomplished
through advances in distributed relational database technology. A relational data-

base stores data in a tabular form. Each file is implemented as a table. Each field is
a column in the table. Each record in the file is a row in the table. Related records
between two tables (e.g., CUSTOMERS and ORDERS) are implemented by intentionally
duplicating columns in the two tables (in this example, CUSTOMER NUMBER is stored
in both the CUSTOMERS and ORDERS tables). A distributed relational database dis-
tributes or duplicates tables to multiple database servers located in geographically
important locations (such as different sales regions). The software required to
implement distributed relational databases is called a distributed relational da-

tabase management system. A distributed relational database management

system (or distributed RDBMS) is a software program that controls access to
and maintenance of the stored data in the relational format. It also provides for
backup, recovery, and security. It is sometimes called a client/server database

management system.
 In a distributed RDBMS, the underlying database engine that processes all data-

base commands executes on the database server. This arrangement reduces the data
traffic on the network. This is a significant advantage for all but the smallest systems
(as measured in number of users). A distributed relational DBMS also provides more
sophisticated backup, recovery, security, integrity, and processing (although the dif-
ferences seem to erode with each new PC RDBMS release).

 Examples of distributed RDBMSs include Oracle Corporation’s Oracle, IBM’s DB 2
 Universal Database family, Microsoft’s SQL Server, and Sybase Corporation’s Sybase.

distributed relational
database management
system software that

implements distributed

relational databases.

408 Part Three Systems Design Methods

Most RDBMSs support two types of distributed data:

 • Data partitioning truly distributes rows and columns to specifi c database
 servers with little or no duplication between servers. Different columns can
be assigned to different database servers (vertical partitioning) or differ-
ent rows in a table can be allocated to different database servers (horizontal

 partitioning).
 • Data replication duplicates some or all tables (rows and columns) on more

than one database server. Entire tables can be duplicated on some database
servers, while subsets of rows in a table can be duplicated to other database
servers. The RDBMS with replication technology not only controls access to
and management of each database server database but also propagates up-
dates on one database server to any other database server where the data is
duplicated.

 For a given information system application, the data architecture must specify
the RDBMS technology and the degree to which data will be partitioned or replicated.
One way to document these decisions is to record them in the physical data stores as
shown below. Notice how we used the ID area to indicate codes for partitioning (P)

User

Authentication

Presentation

distributed

from here

Web Server

C/S Database

stored here

Presentation

Data

Manipulation

Logic

only

executed here

Database Server

Read requested

rows and columns

only from the

tables

Updated tables

Records (only)

locked

until

client

releases

table

Unlock records

Application

Logic

only

executed here

Application

Server

Request to create,

read, update, or

delete 1 or more records

Response to data

manipulation

request

Information

and

service

responses

Web browser

Only Java

applets and

Web scripts

executed here

Client PC

 (thin or fat)

Navigation commands

transaction data,

and service requests

HTML: Page Content

and

XML: Data Content

Data

and

service

requests

F I G U R E 12-10

Network
Computing System:
Internet/Intranet

Application Architecture and Modeling Chapter Twelve 409

 An application’s DATA architecture is selected based on the desired client/
server or network computing model and the database technology needed to sup-
port that model. Many organizations have standardized on both their PC RDBMS of
choice and their preferred distributed, enterprise RDBMS of choice. For example,
SoundStage has standardized on Microsoft Access and SQL Server. Generally, a quali-
fied database administrator should be included in any discussions about the data-
base technology to be used and the design implications for any databases that will
use that technology.

 > Interface Architectures—Inputs, Outputs,
and Middleware

 Another fundamental information technology decision must be made regarding in-
puts, outputs, and intersystem connectivity. The decision used to be simple—batch
inputs versus online inputs. Today we must consider modern alternatives such as
automatic identification, pen data entry, various graphical user interfaces, electronic
data interchange, imaging, and voice recognition, among others. Let’s briefly exam-
ine these alternatives and their physical DFD constructs.

 Batch Inputs or Outputs In batch processing, transactions are accumulated into
batches for periodic processing. The batch inputs are processed to update databases
and produce appropriate outputs. Most outputs tend to be generated to paper or
microfi che on a scheduled basis. Others might be produced on demand or within a
specifi ed time period (e.g., 24 hours).

 Contrary to popular belief, batch input technologies are not quite obsolete. You
rarely see punched cards and tape batches today, but some application requirements
lend themselves to batch processing. Perhaps the inputs arrive in natural batches (e.g.,
mail), or perhaps outputs are generated in natural batches (e.g., invoices). Many organi-
zations still collect and process time cards in batches. There is, however, a definite trend
away from batch input to online approaches. In the meantime, key-to-disk file is the most
common, and its physical data flow construct would look as shown below. First, notice
that the logical name is singular, but the batch name is plural. Also notice that the batch
goes into a temporary data store, which is read by a payroll process triggered by date.

Logical Data Store
Using Partitioning

Physical Data Stores
Using Replication

1 CUSTOMERS 1P.#

Oracle 7:

REGION 1

CUSTOMERS

1P.#

Oracle 7:

REGION 2

CUSTOMERS

Not applicable. Branch offices do not

need access to data about customers

outside of their own sales region.

2 PRODUCTS

Not applicable. All branch offices need

access to data for all products,

regardless of sales region.

2M

Oracle 8i:

PRODUCTS

(Master)

2R

Oracle 8i:

PRODUCTS

(Replicated Copy)

Physical Data Stores

and replication (M for the master copy and R for the replicated copy). In the case of
the former, we should specify which rows and/or columns are to be partitioned to
the physical database.

410 Part Three Systems Design Methods

 Batch output is quite another story. Many applications lend themselves to batch
output. Examples include generation of invoices, account statements, grade reports,
paychecks, W-2 tax forms, and many others. Batch outputs often share one common
physical characteristic, the use of a preprinted form. It should not be difficult for you
to envision a preprinted form to be loaded in the printer to produce any of the afore-
mentioned output examples. A physical data flow construct would look something
like the following. Again, note the plural name reflective of batch processing.

TIME CARD

KTD Batch:

TIME CARDS
batch

Comma delimited

file:TIMECARDS

KTD Batch:

TIME CARDS

End of Month

ⴚ1 day

Logical Data Flow (input)
(as batch input)

Physical Data Flow Implementation

 As older batch-based systems become candidates for replacement, other physical
implementation alternatives should be explored.

 Online Inputs and Outputs The majority of systems have slowly evolved from
batch processing to online or real-time processing. Online inputs and outputs provide
for a more conversational dialogue between the user and computer applications. They
also provide nearly immediate feedback in response to transactions, problems, and
inquiries. In today’s fast-paced economy, most business transactions and inquiries are
best processed as soon as possible. Errors are identifi ed and corrected more quickly
because there is no time lapse between data entry and input (as was the case in
batch processing). Furthermore, online methods permit greater human interaction in
decision making.

 Today most systems are being designed for online processing, even if the
data arrives in natural batches. Technically, all GUI and Web applications are
online or real-time, and since we’ve already learned that those architectures
are preferred in client/server and network computing, then we can expect that
most physical data flows will be implemented with some type of GUI technol-
ogy. The physical data flow constructs would look something like the follow-
ing. For the physical output, notice that two formats of the physical output are
possible. We could have added the junction symbols (Chapter 8) to make the
flows mutually contingent (both required) or mutually exclusive (either/or, but
not both).

Logical Data Flow (output)
(as batch output on preprinted forms)

PAYCHECK

Preprinted Form

Batch:

PAYCHECKS

Physical Data Flow Implementation

Application Architecture and Modeling Chapter Twelve 411

 Remote Batch Remote batch combines the best aspects of batch and online
inputs and outputs. Distributed online computers handle data input and editing.
Edited transactions are collected into a batch fi le for later transmission to host
computers that process the fi le as a batch. Results are usually transmitted as a batch
back to the original computers.

 Remote batch is hardly a new alternative, but personal computers have given the
option new life. For example, one of the authors’ colleagues uses a Microsoft Access
program to input and test the feasibility of a schedule of classes for his academic
department each semester. When finished, he generates a comma delimited file to
transmit to the academic scheduling unit for batch processing. The entire physical
input model looks something like this:

Logical Data Flow (input and output)
(as online input and output;

2 alternatives shown)

INSURANCE

CLAIM

Win 2000 Form:

INSURANCE

CLAIM

ORDER

CONFIRMATION

HTML Form:

ORDER CONFIRMATION

MAPI E-mail Message:

ORDER CONFIRMATION

Physical Data Flow Implementation

Access Form:

COURSE

ASSIGNMENT
Access Table:

SCHEDULED

COURSES

Read:

SCHEDULED

COURSES

(schedule

finished)

Access Form:

SCHEDULE

CONFLICT

Update:

SCHEDULED

COURSES

batch

Batch CDF:

SCHEDULED

COURSES

Create:

SCHEDULED

COURSES

Read:

SCHEDULED

COURSES

E-mail, CDF:

SCHEDULED

COURSES

 Remote batch using PCs should get another boost with the advances in
handheld and subnotebook computer technology. These four-ounce to four-pound
computers can be used to collect batches of everything from inventory counts to
mortgage applications. The inputs are remotely batched on the device for later
transmission as a batch.

 Keyless Data Entry (and Automatic Identifi cation) Keying in data has always
been a major source of errors in computer inputs (and inquiries). Any technology
that reduces or eliminates the possibility of keying errors should be considered for
system design. In batch systems, keying errors can be eliminated through optical

412 Part Three Systems Design Methods

 The real advances in keyless data entry are coming for online systems in the form
of auto-identification systems. For example, bar-coding schemes (such as the Universal
Product Codes that are common in the retail industry) are widely available for many
modern applications. For example, Federal Express creates a bar code–based label for
all packages when you take the package to a center for delivery. The bar codes can be
read and traced as the package moves across the country to its final destination. Bar
code technology is being constantly improved to compress greater amounts of data
into smaller labels. The physical data flow construct is shown below. (The receiving
physical process would be named for the function it performs.)

Logical Data Flow (input)
(optimal mark form batch input)

EXAMINATION

ANSWERS

Optimal Mark

Form Batch:

EXAMINATIONS'

ANSWERS

Physical Data Flow Implementation

Logical Data Flow (input)
(automatic ID input)

NEWLY STOCKED

PRODUCT

Bar code:

NEWLY STOCKED

PRODUCT

Physical Data Flow Implementation

 Pen Input As pen-based operating systems (e.g., the Palm OS and Microsoft’s
 Windows Mobile) become more widely available and used, and the tools for building
pen-based applications become available and standardized, we expect to see more
system designs that exploit this technology.

 Some businesses already use this technology for remote data collection. For ex-
ample, UPS uses pen-based notebook systems to help track packages through the
delivery system. The driver calls up the package tracking number on the special tablet
computer. The customer signs the pad in the designated area. When the driver re-
turns to the truck and places the tablet computer back in its docking cradle, the up-
dated delivery data is transmitted by cellular modem to the distribution center where
the package tracking system updates the database (ultimately enabling the shipper to
know that you have received the package via a simple Web inquiry).

Pen:

Customer

Signature

Pen:

Package

Delivery

Cellular:

Package Delivery

 Electronic Messaging and Work Group Technology Electronic mail has grown
up! No longer merely a way to communicate more effectively, information systems
are being designed to directly incorporate the technology. For example, Microsoft
 Exchange Server and IBM Lotus Notes allow for the construction of intelligent
electronic forms that can be integrated into any application. Basic messaging services
can also be integrated into applications.

 For example, any employee via an e-mail-based form could initiate travel re-
quests. The system takes the data submitted on the form and follows predefined rules

character reading (OCR) and optical mark reading (OMR) technology. Both are still
viable options for input design. The physical data fl ow construct is shown below.

Application Architecture and Modeling Chapter Twelve 413

to automatically route the request to the appropriate decision makers. For example,
less expensive travel requests might be routed directly to a business officer. More
expensive requests might be routed first to a department head for approval and then
to a business officer. Eventually, approved forms can be automatically input to the
appropriate reimbursement processing information system for normal processing.
And at each step, the messaging system automatically informs the initiator of prog-
ress via e-mail. A physical DFD that included an e-mail message implementation was
presented earlier.

 Electronic Data Interchange Businesses that operate in many locations and busi-
nesses that seek more effi cient exchange of transactions and data with other businesses
often utilize electronic data interchange. Electronic data interchange (EDI) is the
standardized electronic fl ow of business transactions or data between businesses.
Typically, many businesses must commit to a data format to make EDI feasible.

 With EDI, a business can eliminate its dependence on paper documents and mail.
For example, most colleges now accept SAT or ACT test scores via EDI from national
testing centers. This has been made possible because college registrars have agreed
to a standard format for these test scores.

 Imaging and Document Interchange Another emerging I/O technology is based
on image and document interchange. This is similar to EDI except that the actual
images of forms and data are transmitted and received. It is particularly useful in
applications in which the form images or graphics are required. For example, the
insurance industry has made great strides in electronically transmitting, storing,
and using claims images. Other imaging applications combine data with pictures or
graphs. For example, a law enforcement application can store, transmit, and receive
photographic images and fi ngerprints.

 Middleware Most of the above subsections focused on input and output—the user
interface. But many system designs require process-to-process physical data fl ows.
Earlier in this chapter, we described various client/server and network computing
scenarios that automatically include process-to-process data fl ows because clients
and servers must talk to one another. They do this through middleware. Middleware
is utility software that enables communication between different processors in
a system. It may be built into the respective operating systems or added through
purchased middleware products. Middleware products allow the programmers to
ignore underlying communication protocols.

 Middleware is said to be the “slash” in “client/server.” There are three classes of
middleware that happen to correspond to the middle three layers of our distributed
systems framework—presentation logic, application logic, and data manipulation logic:

 • Presentation middleware allows a programmer to build user interface com-
ponents that can talk to Web browsers or a desktop GUI. For example, HTTP
allows the programmer to communicate with a Web browser through a standard
application programmer interface (API).

 • Application middleware enables two programmer-written processes on
different processors to communicate with one another in whatever way is best
suited to the overall application. Application middleware is essential to multitier

electronic data
interchange (EDI) the

standardized electronic fl ow

of business transactions or

data between businesses.

STUDENT

APTITUDE

SCORE

EDI:

STUDENT

APTITUDE

SCORES

Logical Data Flow (input)
(automatic ID input)

Physical Data Flow Implementation

middleware utility software

that enables communication

between different processors

in a system.

414 Part Three Systems Design Methods

application development. Examples of application middleware are numerous:
remote procedure calls (RPCs), message queues, and object request brokers.

 • Database middleware allows a programmer to pass SQL commands to a data-
base engine for processing through a standard API.

 Another common type of middleware is ODBC (object database connectivity)
and JDBC (Javabean database connectivity), which automatically translate the SQL
commands of one database server for use on a different database server (for example,
 Oracle to SQL Server, or vice versa).

 On a physical data flow diagram, middleware can be depicted by specifying the
middleware class name on the physical data flow (e.g., ODBC).

 > Process Architectures—The Software
Development Environment

 The process architecture of an application is defined in terms of the software languag-
es and tools that will be used to develop the business logic and application programs
for that process. Typically, this is expressed as a menu of choices because different
software development environments are suited to different applications. A software

development environment (SDE) is a language and tool kit for constructing in-
formation system applications. One way to classify SDEs is according to the type of
client/server or network computing architecture they support.

 SDEs for Centralized Computing and Distributed Presentation Not that long
ago, the software development environment for centralized computing was very
simple. It consisted of the following:

 • An editor and compiler, usually COBOL, to write programs.
 • A transaction monitor, usually CICS, to manage any online transactions and ter-

minal screens.
 • A fi le management system, such as VSAM, or a database management system,

such as DB2, to manage stored data.

 That was it! Because all these tools executed on the mainframe, only that computer’s
operating system (more often than not, MVS) was critical.

 The personal computer brought many new COBOL development tools down to
the mainframe. A PC-based COBOL SDE such as the Micro Focus COBOL Workbench
usually provided the programmer with more powerful editors and testing and debug-
ging tools at the workstation level. A programmer could do much of the development
work at that level and then upload the code to the central computer for system testing,
performance tuning, and production. Frequently, the SDE could be interfaced with a
CASE tool and code generator to take advantage of process models developed during
systems analysis.

 Eventually, SDEs provided tools to develop distributed presentation client/server
systems. For example, the Micro Focus Dialog Manager provided COBOL Work-

bench users with tools to build Windows -based user interfaces that could cooperate
with the CICS transaction monitors and the mainframe COBOL programs.

 SDEs for Two-Tier Client/Server Today the typical SDE for two-tiered client/server
applications (also called distributed data) consists of a client-based programming
language with built-in SQL connectivity to one or more server database engines.
Typically, these SDEs provide the following:

 • Rapid application development (RAD) for quickly building the graphical user
interface that will be replicated and executed on all the client PCs.

 • Automatic generation of the template code for the above GUI and associated
system events (such as mouse-clicks, keystrokes, etc.) that use the GUI. The pro-
grammer only has to add the code for the business logic.

software development
environment (SDE) a

language and tool kit for

developing applications.

Application Architecture and Modeling Chapter Twelve 415

 • A programming language that is compiled for replication and execution on the
client PCs.

 • Connectivity (in the above language) for various relational database engines and
interoperability with those engines. Interoperability is achieved by including SQL data-
base commands (e.g., to create, read, update, delete, and sort records) that will be sent
to the database engine for execution on the server.

 • A sophisticated code testing and debugging environment for the client.
 • A system testing environment that helps the programmer develop, maintain, and

run a reusable test script of user data, actions, and events against the compiled
programs to ensure that code changes do not introduce new or unforeseen
 problems.

 • A report writing environment to simplify the creation of new end-user reports
off a remote database.

 • A help authoring system for the client PCs.

 Today most of these tools come in the bundled SDE, but independent software
tool vendors have emerged to produce replacement tools that often provide still
greater functionality and/or productivity than those provided in the basic SDE. To
learn more about such add-on tools, search the Internet for Programmers Paradise, a
software development tool Web storefront.

 Some of the process logic of any two-tiered client/server application can be off-
loaded to the database server in the form of stored procedures. In this case, stored
procedures are written in a superset of the SQL language. These procedures are
then “called” from the client for execution on the server. Different experts seem to
love or hate stored procedures. On the plus side, stored procedures can be made
to better enforce data integrity in database tables. They are reusable and verifiable.
On the negative side, they blur the distinction between the application and data
manipulation layers of our framework—they are application logic that executes on
the database servers. Many designers prefer a more cohesive design strategy called
 clean layering. Clean layering requires that the presentation, application, and data
layers of an application be physically separated. Clean layering is said to allow com-
ponents of each layer to be revised and enhanced without affecting other layers in
the system.

 SDEs for Multitier Client/Server The current state of the art in enterprise
application development is occurring in SDEs for three-tiered (and beyond) client/
server architectures. Unlike two-tiered applications, n -tiered applications must support
more than 100 users with mainframelike transaction response time and throughput,
with 100 gigabyte or larger databases. While the two-tiered SDEs described earlier
are trying to expand in this market, a different class of SDEs currently dominates
the market. Typically, the SDEs in this class must provide all the capabilities typically
associated with two-tiered SDEs plus the following:

 • Support for heterogeneous computing platforms, both client and server.
 • Code generation and programming for both clients and servers.
 • A strong emphasis on reusability using software application frameworks, tem-

plates, components, and objects.
 • Bundled minicase tools for analysis and design that interoperate with code gen-

erators and editors.
 • Tools that help analysts and programmers partition application components

between the clients and servers.
 • Tools that help developers deploy and manage the fi nished application to cli-

ents and servers. This generally includes security management tools.
 • The ability to automatically scale the application to larger and different plat-

forms, client and server.
 • Sophisticated software version control and application management.

clean layering a design

strategy that requires that

presentation, application,

and data layers be physically

separated.

416 Part Three Systems Design Methods

 Examples of n -tiered client/server SDEs include Dynasty’s Dynasty, and IBM’s
 VisualAge (a family of products). Again, a large number of independent software tool
vendors are building add-on and replacement tools for these SDEs.

 SDEs for Internet and Intranet Client/Server Rapid application development
tools are emerging to enable client/server Internet and intranet applications. Most of
these languages are built around four core standard technologies:

 HTML (hypertext markup language)—the language used to construct most
Internet and intranet page content and hyperlinks.

 XML (extensible markup language)—an extensible language for transporting
data and properties across the Web.

 CGI (Computer Gateway Interface)—a standard for publishing graphical World
Wide Web components, constructs, and links.

 Java —a general-purpose programming language for creating platform-
independent programs, servlets, and applets that can execute from within a
browser’s Java Virtual Machine.

 Examples of Java -specific SDEs include IBM’s WebSphere and Borland’s Jbuilder .
These SDEs can create Internet, intranet, and non-Internet/intranet applications. Vir-
tually all existing two-tiered and n -tiered SDEs are also evolving to support HTML,

XML, CGI, and Java.

 Modeling the Application Architecture of an Information System

 The use of logical DFDs to model process requirements is a fairly accepted prac-
tice. However, the transition from analysis-oriented logical DFDs to design-oriented
physical DFDs has historically been somewhat mysterious and elusive. We desire a
high-level general design that can serve as an application architecture for the system
and a general design for the processes that make up the system. At the same time,
we don’t want to get caught up in a counterproductive modeling exercise that slows
our progress in systems design and rapid application development. Simply stated, we
want a blueprint to guide us through detailed design and construction. The blueprint
will identify design units for detailed specification or rapid development, whichever
is most productive in our project.

 > Drawing Physical Data Flow Diagrams

The mechanics for drawing physical DFDs are virtually identical to those for logical
DFDs. The rules of correctness are also identical. An acceptable design results in:

 • A system that works.
 • A system that fulfi lls user requirements (specifi ed in the logical DFDs).
 • A system that provides adequate performance (throughput and response time).
 • A system that includes suffi cient internal controls (to eliminate human and

computer errors, ensure data integrity and security, and satisfy auditing
constraints).

 • A system that is adaptable to everchanging requirements and enhancements.

We could develop a single physical DFD for the entire system or a set of physical
DFDs for the target system. Our methodology suggests the following:

 • A physical data fl ow diagram should be developed for the network architecture.
Each process on this diagram is a physical process or (client or server) in the
system. Each server is its own processor; however, it is usually impractical to
show each client. Instead, each class of clients (e.g., an order entry clerk) is
 represented by a single processor.

Application Architecture and Modeling Chapter Twelve 417

 • For each processor on the above model, a physical data fl ow diagram should be
developed to show the event processes (see Chapter 8) that will be assigned to
that processor. It is possible that you would choose to duplicate some event pro-
cesses on multiple processors. For instance, orders may be processed on each
region’s servers and clients.

 • For all but the simplest event processes, they should be factored into design
units and modeled as a single physical data fl ow diagram. A design unit is a self-
contained collection of processes, data stores, and data fl ows that share similar
design attributes. A design unit serves as a subset of the total system whose
inputs, outputs, fi les and databases, and programs can be designed, constructed,
and unit tested as a single subsystem.

 An example would be a set of processes (one or more) to be designed as a single
program. The design unit could then be assigned to a single programmer (or team)
who (which) can work independently of other programmers and teams without ad-
versely affecting the work of the other programmers. The implemented units would
then be assembled into the final application system. Design units can also be priori-
tized for implementing versions of a system.

 > The Network Architecture

 The first physical DFD to be drawn is the network architecture DFD. A network ar-

chitecture DFD is a physical data flow diagram that allocates processors (clients and
servers) and devices (e.g., machines and robots) to a network and establishes (1) the
connectivity between the clients and the servers and (2) where users will interact
with the processors (usually only the clients).

 To identify the processors and their locations, the developer utilizes two resources:

 • If an enterprise information technology architecture exists, that architecture
likely specifi es the client/server vision that should be targeted.

 • The advice of competent network managers and/or specialists should be solic-
ited to determine what’s in place, what’s possible, and what impact the system
may have on the computer network.

 Network architecture DFDs (see Figure 12-11) need to be labeled to show some-
what different information than normal DFDs. They don’t show specific data flows
per se. Instead, they show highways over which data flows may travel in either direc-
tion. Also, network topology DFDs indicate the following:

 • Servers and their physical locations —Servers are not always located at the
sites indicated on a location connectivity diagram. Network staff access to serv-
ers is usually an issue. Some network management tasks can be accomplished
remotely, and some tasks also require hands-on access.

 • Clients and their physical locations —In this case, the location connectivity
diagram is useful in identifying “groups” of like users (e.g., ORDER CLERKS, SALES
REPRESENTATIVES, etc.) who will be serviced by similar clients. A single proces-
sor should represent the entire group at a single location. The same group may
be replicated in multiple locations. For example, you would expect each SALES
REGION to have similar types of employees.

 • Processor specifi cations —The repository descriptions of processors can be used
to defi ne processor specifi cations such as RAM , hard-disk capacity, and display.

 • Transport protocols —Connections are labeled with transport protocols (e.g.,
TCP/IP) and other relevant physical parameters.

 The network topology DFD can be used to either design a computer network or
document the design of an existing computer network. In either case, the network
is being modeled so that we can subsequently assign information system processes,
data stores, and data flows to servers on the network.

design unit
a self-contained collection of

processes, data stores, and

data fl ows that share similar

design attributes.

418 Part Three Systems Design Methods

 > Data Distribution and Technology Assignments

 The next step is to distribute data stores to the network processors. The required
logical data stores are already known from systems analysis—as data stores on
the logical DFDs (Chapter 8) or as entities on the logical ERDs (Chapter 7). We
need only determine where each will be physically stored and how they will be
implemented.

 To distribute the data and assign their implementation methods, the developers
utilize three resources:

 • If available, the data distribution matrices from systems analysis (Chapters 7
and 8) model the data needs at business locations from a technology indepen-
dent perspective.

 • If an enterprise information technology architecture exists, that architecture
likely specifi es the database vision and technologies that should be targeted.

 • The advice of data and database administrators should be solicited to determine
what’s in place, what’s possible, and what impact the database may have on the
overall system.

F I G U R E 1 2 - 1 1 Network Architecture DFD

Application Architecture and Modeling Chapter Twelve 419

F I G U R E 1 2 - 1 2 Data Distribution and Technology Assignments for SoundStage

 The distribution options were described earlier in the chapter and are summarized
as follows:

 • Store all data on a single server. In this case, the database (consisting of mul-
tiple tables) should be named, and that named database and its implementation
method (e.g., Oracle: dbmemberServices) should be added to the physical DFD
and connected to the appropriate processor.

 • Store specifi c tables on different servers. In this case, and for clarity’s sake, we
should record each table as a data store on the physical DFD and connect each
to the appropriate server.

 • Store subsets of specifi c tables on different servers. In this case we record the
tables exactly as above except that we indicate which tables are subsets of the
total set of records. For example, the label DB2: ORDERS TABLE (REG SUBSET) would
indicate that a subset of all orders for a region is stored in a DB2 database table.

 • Replicate (duplicate) specifi c tables or subsets on different servers. In this case,
replicated data stores are shown on the physical DFD. One copy of any replicated
table is designated as the master, and all other copies are designated as copy or
 repl icate.

 Why distribute data storage? There are many possible reasons. First, some data
instances are of local interest only. Second, performance can often be improved by
subsetting data to multiple locations. Finally, some data needs to be localized to as-
sign custodianship of that data. The data distribution and technology assignments for
the SoundStage case study are shown in Figure 12-12 .

 Data distribution decisions can be very complex—normally the decisions are
guided by data and database professionals and taught in data management courses

420 Part Three Systems Design Methods

and textbooks. In this book we want to consider only how to document the partition
and duplication decisions.

 > Process Distribution and Technology Assignments

 Information system processes can now be assigned to processors as follows:

 • For two-tiered client/server systems, all the logical event diagrams (Chapter 5)
are assigned to the client.

 • For three-tiered client/server and network computing systems, you must
closely examine each event’s primitive (detailed) data fl ow diagram. You need
to determine which primitive processes should be assigned to the client and
which should be assigned to an application server. In general, data capture and
editing are assigned to clients and other business logic is assigned to servers.
If you partition different aspects of a logical DFD to different clients and serv-
ers, you should draw separate physical DFDs for the portions on each client
and server.

 After partitioning, each physical DFD corresponds to a design unit for a given
business event. (Business events, or use cases, were discussed in Chapter 6.) For each
of these design units, you must assign an implementation method, the SDE that will
be used to implement that process. You must also assign implementation methods to
the data flows.

 SoundStage’s Member Services system will be implemented with a multitiered
client/server and network computing architecture. A sample DFD for one event to be
assigned to a client is shown in Figure 12-13 . Notice that the data stores are shown
even though we know they have been partitioned to a database server. This is for the
benefit of the programmers who must implement the DFD.

 > The Person/Machine Boundaries

 The last step of process design is to factor out any portion of the physical DFDs
that represent manual, not computerized, processes. This is sometimes called estab-
lishing a person/machine boundary. Establishing a person/machine boundary is not
difficult, but it is not as simple as you might first think. The difficulty arises when
the person/machine boundary cuts through a logical process—in other words, part
of the process is to be manual and part is to be computerized. This situation is com-
mon on logical DFDs because they are drawn without regard to implementation
alternatives.

 Figure 12-14 adds the person/machine boundary to a physical DFD. Notice that
our boundary cuts through several processes, including the CHECK MEMBER CREDIT
process. The solution to this process requires two steps:

 1. The manual process portions are pulled out as a separate design unit (see
 Figure 12-15). All these processes are completely manual. The interfaces of
the manual design units to the computerized processes (on Figure 12-14)
are depicted as external agents. Ultimately, the manual processes in the design
unit must be clearly described to those people who will have to perform
them.

 2. If necessary, the processes on the original diagram should be renamed to refl ect
only the computerized portion. (In practice, the processes were already named
that way.)

Application Architecture and Modeling Chapter Twelve 421

F I G U R E 1 2 - 1 3 A Physical DFD for an Event

422 Part Three Systems Design Methods

Performed
by

People

Performed by Computer

F I G U R E 1 2 - 1 4 The Person/Machine Boundary

Chapter Review

 1. Physical data fl ow diagrams model the technical
and human design decisions to be implemented as
part of an information system. They communicate
technical choices and other design decisions to
those who will actually construct and implement
the system.

 2. An information technology architecture defi nes the
technologies to be used by one, more, or all informa-
tion systems. There are four categories of technology
architectures: network, data, interface, and process.

 3. A distributed system is one in which the compo-
nents of an information system are distributed to
multiple locations in a computer network. The fi ve
layers of distributed systems architecture are (a)
presentation, (b) presentation logic, (c) application
logic, (d) data manipulation, and (e) data.

 4. A local area network is a set of client computers con-
nected to one or more servers through either cable or
wireless connections over relatively short distances.

 5. A fi le server system is a LAN-based solution in
which a server computer hosts only the data layer.
All other layers are implemented on the client.

 6. The prevailing computing model is currently
client/server in which the presentation, presenta-
tion logic, application logic, data manipulation, and
data layers are distributed between client PCs and
one or more servers. Clients are classifi ed by their
power as thin or fat. Servers are dedicated to func-
tions such as database, transactions, applications,
messaging or work group, or Web.

 7. Distributed presentation, distributed data, and dis-
tributed data and logic are types of client/server
systems.

 8. Network computing uses Internet technology to
build Internet or intranet applications.

 9. Data storage is typically implemented using dis-
tributed relational database technology that either
partitions data to different servers or replicates
data on multiple servers.

10. User interface options include batch, online, re-
mote batch, keyless data entry (including optical
character/mark and bar-coding methods), pen
input, electronic messaging, electronic data inter-
change, and imaging.

Application Architecture and Modeling Chapter Twelve 423

F I G U R E 1 2 - 1 5 A Manual Design Unit

 1. You are in the middle of the system design phase
for a project to develop a corporate intranet, and
the project team is holding a planning meeting.
One of the system users on the project, who has
said very little during the meeting, fi nally speaks
up and says, “All you techies keep talking about
the application architecture we’re going to be
designing. I don’t have a clue what you’re talking
about.” Defi ne and explain what application
architecture is to the nontechnical system users in
the group.

 2. What is the purpose of the physical data fl ow
diagram? In general, how are they different from
logical data fl ow diagrams? What basic shapes and
connections do physical DFDs use? Are physical
DFDs a legacy design tool, or are they still a viable
tool in today’s object-oriented world?

 3. You are working on a project to design a new
order system for a distributor of auto supplies. You
are developing the physical DFD, and one of the
logical processes is “Check Inventory in Stock.” If
this process is to be performed both by people
and by computer, how would you show this as a
physical process? (Note: Use the diagram formats
shown after Figure 12-1.) What if the process is

completely done by computer, but using different
technologies?

 4. Explain data replication and its purpose. In what
type of database system would you fi nd data
replication?

 5. Complete the following sentences:
 A __________ system is also called a distributed data

and application client/server system or .
The __________ resides on an __________, the
__________ resides on the client server, and the
data and __________ on the __________.

 A __________-tiered system is also called
__________, and the __________ resides on the
clients, and the data and data manipulation layers
on the server.

 A __________ client/server system please the
presentation and the presentation logic layers on
the __________, and the __________ on the server.

 6. What do fi le server systems and client/server
systems have in common? What is different? What
are the most important advantages of a client/
server solution?

 7. You are working in the IT shop of a rapidly
growing organization that is planning to
implement a new client/server system. Initially,

11. System interfacing is typically implemented using
middleware, software that enables processes to
communicate with one another.

12. Processes are implemented using highly integrated
tool kits called software development environments.

424 Part Three Systems Design Methods

Problems and Exercises

 1. In traditional structured analysis and design, what
system models are developed, and in what order?

 2. Why is the complete structured analysis and de-
sign methodology seldom employed anymore?

 3. When a logical process is divided into multiple
physical processes, or if more physical processes are
added, what is it important for designers to check?

 4. Why is the number of physical processes shown
on a physical DFD generally greater than the
number of the logical processes?

 5. What does a physical data fl ow represent?
 6. What type of data store is often overlooked by

designers in conducting systems design?
 7. Although centralized systems are less complex

and easier to implement, distributed systems have

pretty much taken over from centralized systems.
What were some of the reasons for this?

 8. What is the difference between the presentation
layer and the presentation logic layer?

 9. What is a fi le server system, and what kind of net-
work environment does it use?

10. What are some of the inherent limitations and
disadvantages of a fi le server system?

11. What is the difference between a thin client and a
fat client?

12. What is the network architecture used in e-com-
merce? Please explain how each layer is related.

13. What is the sequence of high-level tasks for mod-
eling the application architecture of an informa-
tion system?

Review Questions
1

2

Application Architecture and Modeling Chapter Twelve 425

there will be slightly fewer than 100 clients, with a
substantial amount of data input and data analysis
activity across the network. The business drivers
are to be able to get data in and to “crunch” it
quickly. The budget for the project is robust and
allows for the purchase of powerful workstations
and personal computers. The designers on the
team are pretty well evenly divided between
a two-tiered and three-tiered client/server
architecture. They are looking to you for advice.
What would you recommend? Why?

 8. Internet technology has grown at an explosive
rate over the past decade. In the view of many,
network computing architectures represents a
major move in a radically different direction away
from client/server architectures. Why is this?

 9. Match the terms in the fi rst column with the
defi nitions or examples in the second column.

 1. Thin client A. Patient Treatment
Records

 2. Logical Data Store B. Data input screen
 3. Groupware server C. SQL Insert: New

Account
 4. Processor D. Data terminal
 5. Transaction server E. SAS File: Waiting List

Report
 6. Mainframe F. CORBA
 7. Presentation Layer G. Report-formatting

application
 8. Physical data fl ow H. Distributed system
 9. Physical Data Store I. Centralized system

 10. Presentation Logic J. Microsoft Exchange
Layer

 11. Wide Area K. Tuxedo
Network (WAN)

 12. Object-sharing L. Customer
 standard

 13. Application logic M. Statistical analysis
 layer application

10. Batch processing has been in use since the 1950s
and many people consider batch processing to
be an obsolete method of processing data. But
if batch processing is obsolete, why then are

new batch processing applications still being
developed?

11. Match the terms in the fi rst column with the
defi nitions or examples in the second column.

 1. Two-tiered client/ A. HTTP
server SDE

 2. Design unit B. CICS
 3. EDI C. Physically separated

presentation, data,
and application layers

 4. Application D. Employee’s “start
middleware page”

 5. Multitier client/ E. Determining
SDE distribution

of application
components

 6. Virtual business F. Windows CE

 7. Intranet Client/ G. Allegris

 Server SDE
 8. Partitioning H. PowerBuilder

 9. Presentation I. Self-contained
middleware collection of data

fl ows, stores, and
processes

 10. Clean layering J. Object request
brokers

 11. Pen-input K. Online commercial
banking

 12. Intranet portal L. XML

 13. Transaction M. Amazon.com
monitor

12. You are working on a complex project to
implement an enterprise-level information system
in your organization. You are almost fi nished with
creating the physical data fl ow diagram from the
logical DFD and realize there are a number of
manual processes intertwined with computerized
processes. What caused this to occur? How should
you show the manual processes on the physical
DFD, or do you need to show them at all?

13. You have been given a set of physical DFDs for a new
system to review for acceptability. What questions
should you ask yourself when reviewing them?

Projects and Research

1. Although your friends tease you about it, you are
an unabashed collector of vintage folk songs from
the 1950s and 1960s. Your collection now totals
several thousand recordings in various formats. To
help keep better track of the recordings, you have

decided to develop a simple inventory system in
Microsoft Access. You want to be able to add new
recordings to the system, update information on
the ones that you have, search on multiple fi elds
for a particular recording or artist, and generate

426 Part Three System Design Methods

various reports. Design the system, using the
techniques learned to date, then draw a context
data fl ow diagram and logical data fl ow diagram.

2. Many organizations have implemented intranets.
Contact or visit several local organizations in the
public and private sector that have intranets. Find
the unit or person who is responsible for the
organization’s intranet, and discuss its application
architecture, features, policies, issues, and so on.

 a. Describe each of the organizations you
contacted.

 b. Describe each of their intranets and how they
are used by employees.

 c. Are they primarily informational intranets, or are
any of them being used as a portal where every-
thing—their desktop applications and any in-
formation system applications they use for their
job—runs from the intranet browser?

 d. Who “owns” the intranet in the organization,
and who is responsible for posting content or
keeping it current?

 e. Do your discussions make you feel that the orga-
nizations’ employees and intranet owners under-
stand the potential of their intranet and are using
it to its full potential? Explain your answer.

3. You are a consultant who has been hired by a
company to help update its IT architecture plan.
The company manufactures electric generators and
has sales offi ces and service facilities throughout
North America and Central America. One of your
tasks is to recommend a data distribution strategy
to the company. Although you are familiar with
the principles of application architectures and the
methods for documenting them, it has been a while
since you’ve been in a position of recommending
a data distribution approach. Research on the Web
or in your school library the questions you should
ask and the criteria to use in order to make an
appropriate recommendation regarding the data
distribution approach the company should take.

4. Mainframe computers once dominated information
technology, but have slipped into the shadow of
other technologies such as client/server systems.
Every so often there seems to be a spate of articles
reporting the fi nal death of the mainframe. But
just as often there seems to be another burst of
articles reporting the resurgence of the mainframe.
Research the topic of trends in mainframe
computing in your school library, on the Internet,
and/or with some experienced IT managers.

 a. Describe your research sources and their
positions.

 b. Were you able to fi nd “hard” information, such as
the number of sales per year of mainframes?

 c. Did you fi nd any differences in the usage of
mainframe computers between the public and
private sectors? Describe.

 d. On the basis of the information you found, what
conclusions would you draw about the state of
mainframe computing today?

 e. What about 10 years from now? What role, if
any, do you think that mainframe computing will
play in the public and private sectors? Support
your answer.

5. New development tools to enable client/server
Internet applications seem to be emerging almost
every day (a slight exaggeration). Research one
of these new development tools, and the core
technology, such as .NET or XML, around which
it is built. Then prepare an analysis for your chief
information offi cer (real or hypothetical) evaluating
this new tool and/or technology and the potential
for usage by your organization. Note: Since the
target audience for this analysis is an executive,
your document should touch on the salient points
at an appropriately high level, though references or
links to detailed technical documentation should
also be included.

6. Visit or study a large corporation or government
agency in your area, and ask about its
application architectures. See if you can obtain a
copy of its IT architecture plan or an equivalent
document.

 a. Describe the organization you studied.
 b. Describe its application architecture(s). What is

its predominant application architecture?
 c. What type of Internet-based computing

architecture(s) does it use? How large a role
does it play?

 d. Does the organization still use mainframe or
minicomputer technology? If so, describe how it
is currently used.

 e. What changes in application architecture tech-
nology does it envision will take place over
the next fi ve years. What is the organization’s
strategy for dealing with these technological
changes? Do you think its strategy will be
effective?

 f. Draw a high-level context diagram of its overall
information system architecture.

Application Architecture and Modeling Chapter Twelve 427

Team and Individual Exercises

1. What is the difference between a manager and a
leader? Find an example of someone who you think
is (or was) a truly great leader and an example of
someone you think is (was) an excellent manager.
What are that individual’s characteristics? Do you
think someone who is a great leader would also be
a great manager? Discuss in class.

2. Do you think that it is easier, harder, or about the
same level of diffi culty to hack a two-tiered versus a
three-tiered client server system? Find out specifi c

security vulnerabilities in each architecture, and
share with the class. (Note: We are not trying to
create hackers here. But it is diffi cult to create
a reasonable system and choose appropriate
architectures, languages, encryption standards,
software, etc., without being cognizant of security
threats and inherent weaknesses of the choices.)

3. Roundtable discussion: Do you think that there is
such a thing as ethical hacking? If there were, what
would it be?

Berstein, Phillip, and Eric Newcomer. Principles of Transaction

Processing: For the Systems Professional. San Francisco:

Morgan Kaufman Publishers, 1997. This book covers

virtually every transaction processing model, transaction

monitor, and transaction server currently implemented.

Gane, Chris, and Trish Sarson. Structured Systems Analysis:

Tools and Techniques. Englewood Cliffs, NJ: Prentice Hall,

1979. This classic on process modeling became the basis of

physical data fl ow diagrams.

Goldman, James. Applied Data Communications: A Business-

Oriented Approach, 2nd ed. New York: John Wiley &

Sons, 1998. Our colleague at Purdue has written an

excellent textbook for those seeking to learn about

data communications and networking from a business

perspective.

Goldman, James; Phillip Rawles; and Julie Mariga. Client/Server

Information Systems: A Business-Oriented Approach.

New York: John Wiley & Sons, 1999. Our colleagues have

Suggested Readings

1. Consider an e-commerce site that you previously
researched for Wow Munchies (the grocery
store). Make any necessary assumptions, and
conduct any new research that is needed. Create a
network computing architecture model for Wow
Munchies. State your assumptions, along with any
background research you have done, in a short
paper.

2. You will fi nd, as a systems analyst, that the person
who designs a system is often not the one who
develops the program for it. On page 416, the book
states that an acceptable design of a physical data
fl ow results in:

 a. A system that works
 b. A system that fulfi lls user requirements.
 c. A system that provides adequate performance.
 d. A system that includes suffi cient internal

controls.
 e. A system that is adaptable to everchanging

requirements.

 Find an example of a system DFD design
that seemed acceptable, but did not result in

a system that met the stated requirements.
Was the problem one of design or technical
complications? Did the programmers understand
what the analysts were requesting? Share with
the class.

3. You are on a team that has been directed to design
a system for VideoStore, a movie rental company.
This company rents movies only in stores (not
online) and has about 10 stores throughout the
state of Ohio. Discuss, step by step, how you
would go through the life-cycle process up to
and including the design phase to create this
system. Be as detailed as you can, and use specifi c
examples.

4. Return to the Chapter 5 material on PIECES and the
material in Chapter 10 on the candidate systems
matrix. What are the strengths of each? Utilize them
together to consider three potential systems for the
video rental store you researched in the previous
problem. How does using multiple-perspective
matrices give you a more thorough view of system
options?

Application Architecture and Modeling Chapter Twelve 427

Minicases

written an outstanding textbook that introduces students to

information technology architecture for information systems.

Kara, Dan. “Why Partition? Multitiered Application Architecture.”

In Application Development Trends. Natick, MA: Software

Productivity Group, May 1997, pp. 38–46. This article

stimulated our interest and research on the need to develop

and teach partitioning techniques as part of this book.

Kara, Daniel A., et al. “Enterprise Application Development:

Seminar Notes.” Chicago: Software Productivity Group,

November 12, 1996. This seminar and the writings of the

SPG have strengthened our understanding of two-tiered

and n-tiered software application development techniques

and technologies.

Orfali, Robert; Dan Harkey; and Jeri Edwards. Client/Server

Survival Guide, 3rd ed. New York: John Wiley & Sons, 1999.

This professional reference manual has served us well for

three editions of client/server technology and terminology

evolution.

Renaud, Paul. Introduction to Client/Server Systems, 2nd ed.

New York: John Wiley & Sons, 1996. This is another

reference book on the primary distributed computing

architecture of our time.

Smith, Patrick, and Steve Guengerich. Client/Server

Computing, 2nd ed. Indianapolis, IN: SAMS Publishing,

1994. This professional book has been used to teach the

basics of client/server technology and architecture to

our students at Purdue. Given the rapid evolution of this

technology, there may now exist a third edition. Check out

the technology case studies in the appendixes.

Theby, Stephen E. “Derived Design: Bridging Analysis

and Design.” McDonnell Douglas Professional

Services: Improved System Technologies, 1987. The

techniques described in this paper are the basis for a

phase in STRADIS (Structured Analysis, Design, and

Implementation of Information Systems), a systems

development methodology. The technique was altered

and simplifi ed to make it suitable to the level of this

textbook. As authors, we were quite impressed with

the full derived design technique as advocated in the

STRADIS methodology.

428 Part Three Systems Design Methods

13Database Design

Chapter Preview and Objectives

Data storage is a critical component of most information systems. This chapter teaches

the design and construction of physical databases. You will know that you have mastered

the tools and techniques of database design when you can:

❚ Defi ne and give examples of fi elds, records, fi les, and databases.

❚ Describe a modern data architecture that includes fi les, operational databases, data

warehouses, personal databases, and work group databases.

❚ Compare the roles of systems analyst, data administrator, and database administrator

as they relate to databases.

❚ Describe the architecture of a database management system.

❚ Describe how a relational database implements entities, attributes, and relationships

from a logical data model.

❚ Transform a logical data model into a physical, relational database schema.

❚ Generate SQL code to create the database structures in a schema.

430 Part Three Systems Design Methods

 In the decision analysis phase of the SoundStage Member Services system project it
was decided to implement the data for the system in SQL Server . Now in the physical
design phase, Bob Martinez has been working on the physical design of the database.

 To maximize throughput, the entire database will be replicated at each distribu-
tion center. Each instance of the database will be stored on a Dell PowerEdge server
with quad Xeon processors and RAID level 5 hard drives. Fortunately, SQL Server has
built-in capability to synchronize replicated data.

 Bob refi ned the normalized entity relationship diagram he created during the
logical design phase. Using the CASE tool, System Architect, he revised table and fi eld
names according to accepted SoundStage naming conventions. He created indexes
on all key fi elds as well as nonkey fi elds wth subsetting criteria requirements. He
created primary key and foreign key constraints on the tables. He also created other
constraints to implement business rules that require default values for some fi elds,
require non-null values in some fi elds, or limit fi eld entries to a certain domain of
values.

 System Architect automatically generated the SQL code that will be used to
construct the actual database. In the meantime, Bob used that SQL code to create
a desktop prototype of the database in the Microsoft Data Engine (MSDE), an SQL

Server -compatible development database engine. The prototype will give developers
something they can test their SQL and programs against.

 Introduction

 Database Concepts for the Systems Analyst

 We should begin with a disclaimer. Many of the concepts and issues that are impor-
tant to database design are also taught in database and data management courses.
Most information systems curricula include at least one such course. It is not our
intent in this chapter to replace that course. Students of information systems should
actively seek out courses that focus on data management and database techniques;
those courses will cover many more relevant technologies and techniques than we
can cover in this single chapter.

 That said, we will fi rst introduce (or, for some of you, review) the database concepts
and issues that are pertinent to the systems analyst’s responsibilities in information
system design. Although the chapter focus is on database design, experienced readers
will immediately notice that many of the concepts transcend the choice between fi les
and databases.

 All information systems create, read, update, and delete (sometimes abbreviated
 CRUD) data. This data is stored in fi les and databases. A fi le is a collection of similar
records. Examples include a CUSTOMER FILE, ORDER FILE, and PRODUCT FILE. A database
is a collection of interrelated fi les. The key word is interrelated . A database is not
merely a collection of fi les. The records in each fi le must allow for relationships
(think of them as “pointers”) to the records in other fi les. For example, a SALES data-
base might contain order records that are linked to their corresponding CUSTOMER
and PRODUCT records.

 > Fields

 Fields are common to both fi les and databases. A fi eld is the physical implementa-
tion of a data attribute (introduced in Chapter 7). Fields are the smallest unit of
 meaningful data to be stored in a fi le or database. There are four types of fi elds
that can be stored: primary keys, secondary keys, foreign keys, and descriptive

fi elds.

 fi le a collection of similar

records.

 database a collection of

interrelated fi les.

 fi eld the smallest unit of

meaningful data to be stored

in a fi le or database.

Database Design Chapter Thirteen 431

 A primary key is a fi eld whose values identify one and only one record in a data en-
tity. (This concept was introduced previously in Chapter 7.) For example, CUSTOMER NUM-
BER uniquely identifi es a single CUSTOMER record in a database, and ORDER NUMBER uniquely
identifi es a single ORDER record in a database. Also recall from Chapter 7 that a primary
key might be created by combining two or more fi elds (called a concatonated key).

 A secondary key is an alternate identifi er for a database. A secondary key’s value
may identify either a single record (as with a primary key) or a subset of all records
(such as all ORDERS that have the ORDER STATUS of back-ordered). A single fi le in a data-
base may have only one primary key, but it may have several secondary keys. To facili-
tate searching and sorting, an index is frequently created for keys.

 Foreign keys (also introduced in Chapter 7) are pointers to the records of a
different fi le in a database. Foreign keys enable the database to link the records of
one type to those of another type. For example, an ORDER RECORD contains the foreign
key CUSTOMER NUMBER to “identify” or “point to” the CUSTOMER record that is associated
with the ORDER. Notice that a foreign key in one fi le requires the existence of the
corresponding primary key in another table—otherwise, it does not point to any-
thing! Thus, the CUSTOMER NUMBER in an ORDERS fi le requires the existence of a CUSTOMER
 NUMBER in the CUSTOMERS fi le in order to link those fi les.

 A descriptive fi eld is any other (nonkey) fi eld that stores business data. For
example, given an EMPLOYEES fi le, some descriptive fi elds include EMPLOYEE NAME, DATE
HIRED, PAY RATE, and YEAR-TO-DATE WAGES.

 The business requirements for both keys and descriptors were defi ned when you
performed data modeling in systems analysis (Chapter 7).

 > Records

 Fields are organized into records. Records are common to both fi les and databases. A
 record is a collection of fi elds arranged in a predefi ned format. For example, a CUSTOMER
RECORD may be described by the following fi elds (notice the common notation):

 CUSTOMER (NUMBER, LAST-NAME, FIRST-NAME, MIDDLE-INITIAL, POST-OFFICE-BOX-NUMBER, STREET-
ADDRESS, CITY, STATE, COUNTRY, POSTAL-CODE, DATE-CREATED, DATE-OF-LAST-ORDER, CREDIT-
RATING, CREDIT-LIMIT, BALANCE, BALANCE-PAST-DUE …)

 During systems design, records will be classifi ed as either fi xed-length or variable-
length records. Most database technologies impose a fi xed-length record structure,
meaning that each record instance has the same fi elds, same number of fi elds, and
same logical size. Some database systems will, however, compress unused fi elds and
values to conserve disk storage space. The database designer must generally under-
stand and specify this compression in the database design.

 In your prior programming courses (especially COBOL), you may have encoun-
tered variable-length record structures that allow different records in the same fi le
to have different lengths. For example, a variable-length order record might contain
certain common fi elds that occur once for every order (e.g., ORDER NUMBER, ORDER DATE,
and CUSTOMER NUMBER) and other fi elds that repeat some number of times based on the
number of products sold on the order (e.g., PRODUCT NUMBER and QUANTITY ORDERED).
Database technologies typically disallow (or at least discourage) variable-length re-
cords. This is not a problem, as we’ll show later in the chapter.

 When a computer program reads a record from a database, it actually retrieves
a group or block (or page) of records at a time. This approach minimizes the num-
ber of actual disk accesses. A blocking factor is the number of logical records
included in a single read or write operation (from the computer’s perspective).
A block is sometimes called a physical record. Today, the blocking factor is usu-
ally determined and optimized by the chosen database technology, but a qualifi ed
database administrator may be allowed to fi ne-tune that blocking factor for perfor-
mance. Database tuning considerations are best deferred to a database course or
textbook.

 secondary key a fi eld that

identifi es a single record or a

subset of related records.

 foreign key a fi eld that

points to records in a different

fi le in a database.

 descriptive fi eld a nonkey

fi eld.

 record a collection of fi elds

arranged in a predetermined

format.

 blocking factor the

number of logical records

included in a single read or

write operation.

 primary key a fi eld or

group of fi elds that uniquely

identifi es a record.

432 Part Three Systems Design Methods

 > Files and Tables

 Similar records are organized into groups called fi les. In database systems, a fi le is fre-
quently called a table. A fi le is the set of all occurrences of a given record structure.
A table is the relational database equivalent of a fi le. Relational database technology
will be introduced shortly. Some types of conventional fi les and tables are:

• Master fi les or tables contain records that are relatively permanent. Thus, once
a record has been added to a master fi le, it remains in the system indefi nitely.
The values of fi elds for the record will change over its lifetime, but the individ-
ual records are retained indefi nitely. Examples of master fi les and tables include
 CUSTOMERS, PRODUCTS, and SUPPLIERS.

• Transaction files or tables contain records that describe business events. The
data describing these events normally has a limited useful lifetime. For instance,
an invoice record is ordinarily useful until the invoice has been paid or written
off as uncollectible. In information systems, transaction records are frequently
retained online for some period of time. Subsequent to their useful lifetime,
they are archived off-line. Examples of transaction files include ORDERS, INVOICES,
REQUISITIONS, and REGISTRATIONS.

• Document files and tables contain stored copies of historical data for easy
retrieval and review without the overhead of regenerating the document.

• Archival files and tables contain master and transaction file records that have
been deleted from online storage. Thus, records are rarely deleted; they are
merely moved from online storage to off-line storage. Archival requirements are
dictated by government regulation and the need for subsequent audit or
analysis.

• Table look-up files contain relatively static data that can be shared by
applications to maintain consistency and improve performance. Examples
include SALES TAX TABLES, ZIP CODE TABLES, and INCOME TAX TABLES.

• Audit files are special records of updates to other files, especially master and
transaction files. They are used in conjunction with archival files to recover “lost”
data. Audit trails are typically built into better database technologies.

 In the not-too-distant past, fi le design methods required that the analyst specify
precisely how the records in a database should be sequenced (called fi le organiza-

tion) and accessed (called fi le access). In today’s database environment, the database
technology itself usually predetermines and/or limits the fi le organization for all tables
contained in the database. Once again, a trained database administrator may be given
some control over organization, storage location, and access methods for the purpose
of performance tuning.

 > Databases

 Stand-alone, application-specifi c fi les were once the lifeblood of most information
systems; however, they are being slowly but surely replaced with databases. Recall
that a database may loosely be thought of as a set of interrelated fi les. By interrelated,
we mean that records in one fi le may be associated or linked with the records in a
different fi le.

 For example, a STUDENT record may be linked to all of that student’s COURSE records.
In turn, a COURSE record may be linked to the STUDENT records that indicate completion
of that course. This two-way linking and fl exibility allow us to eliminate most of the
need to redundantly store the same fi elds in the different record types. Thus, in a very
real sense, multiple fi les are consolidated into a single fi le—the database.

 The idea of relationships between different collections of data was introduced in
Chapter 7. In that chapter, you learned to discover a system’s data requirements and
model those requirements as entities and relationships. The database now provides
for the technical implementation of those entities and relationships.

 fi le the set of all

occurrences of a given record

structure.

 table the relational database

equivalent of a fi le.

 master fi le a table

containing records that are

relatively permanent.

 transaction fi le a table

containing records that

describe business events.

 document fi le a table

containing historical data.

 archival fi le a table

containing master and

transaction fi le records that

have been deleted from

online storage.

 table look-up fi le a table

containing relatively static

data that can be shared.

 audit fi le a table containing

records of updates to other

fi les.

Database Design Chapter Thirteen 433

 So many applications are now being built around database technology that data-
base design has become an important skill for the analyst. The history of information
systems has led to one inescapable conclusion:

 Data is a resource that must be controlled and managed!

 Data Architecture Data becomes a business resource in a database environment.
Information systems are built around this resource to give computer programmers
and end users fl exible access to data. A business’s data architecture defi nes how that
business will develop and use both fi les and databases to store all of the organization’s
data, which fi le and database technology is to be used, and what kind of administrative
structure will be set up to manage the data resource.

 Figure 13-1 illustrates the data architecture into which many companies have
evolved. As shown in the fi gure, most companies still have numerous conventional
fi le-based information system applications, most of which were developed before the
emergence of high-performance database technology. In many cases, the processing
effi ciency of these fi les or the projected cost of redesigning these fi les has slowed
conversion of the systems to database.

 As shown in Figure 13-1 , operational (or transactional) databases are devel-
oped to support day-to-day operations and business transaction processing for major

 data architecture a

defi nition of how fi les

and databases are to be

developed.

 operational database a

database that supports

day-to-day operations

and transactions for an

information system. Also

called transactional database.

A legacy
file-based

information
system

(built
in-house)

File

File
Information

System

(built
in-house)

Information
System

(built
in-house)

Operational

Database

File

File

Information System

(built in-house)

A legacy
file-based

information
system

(purchased)

File

File

File

Information
System

(purchased)

Operational

Database

Data

Warehouse

End-User
Tools

End-User
Applications

Personal

DB

Users and
Programmers

Users and
Programmers

Users and
Programmers

Users and
Programmers

Users

End-User
Work Group

Work Group

Database

F I G U R E 1 3 - 1 A Typical, Modern Data Architecture

434 Part Three Systems Design Methods

information systems. These systems are developed (or purchased) over time to replace
the conventional fi les that formerly supported applications. Access to these databases
is limited to computer programs that use the DBMS to process transactions, maintain
the data, and generate regularly scheduled management reports. Some query access
may also be provided.

 Many information systems shops hesitate to give end users access to operational
databases for queries and reports. The volume of unscheduled reports and queries
could overload the computers and hamper business operations that the databases
were intended to support. Instead, data warehouses are developed, possibly on sepa-
rate computers.

 Data warehouses store data extracted from the operational databases. Query
tools and decision support tools are then used to generate reports and analyses off
these data warehouses. These tools often allow users to extract data from both con-
ventional fi les and operational databases. This is sometimes called data mining.

 Figure 13-1 also shows personal and work group (or departmental) databases .
Personal computer and local network database technology has rapidly matured to
allow end users to develop personal and departmental databases. These databases
may contain unique data, or they may import data from conventional fi les, operational
databases, and/or data warehouses. Personal databases are built using PC database
technology such as Access, dBASE, and Visual FoxPro.

 Contemporary data architecture also allows for Internet-enabled database tech-
nology. For example, Oracle 10g provides special tools and facilities for Web-enabling
a database.

 Admittedly, this overall scenario is advanced, but many fi rms are currently using
variations of it. To manage the enterprisewide data resource, a staff of database special-
ists may be organized around the following administrators: A data administrator is
responsible for the data planning, defi nition, architecture, and management. One or
more database administrators (DBAs) are responsible for the database technology,
database design and construction consultation, security, backup and recovery, and
performance tuning. In smaller businesses, these roles may be combined or assigned
to one or more systems analysts.

 Database Architecture So far, we have made several references to the database

technology that makes the above data architecture possible. Database architecture
refers to the database technology, including the database engine, database utilities, data-
base CASE tools for analysis and design, and database application development tools.
The control center of a database architecture is its database management system.

 A database management system (DBMS) is specialized computer software,
available from computer vendors, that is used to create, access, control, and man-
age the database. The core of the DBMS is often called its database engine. The
engine responds to specifi c commands to create database structures and then
to create, read, update, and delete records in the database. The database manage-
ment system is purchased from a database technology vendor such as Oracle, IBM,
 Microsoft, or Sybase.

 Figure 13-2 depicts a typical database management system architecture. A systems
analyst or database analyst designs the structure of the data in terms of record types,
fi elds contained in those record types, and relationships that exist between record
types. These structures are defi ned to the database management system using its data
defi nition language. Data defi nition language (DDL) is used by the DBMS to physi-
cally establish those record types, fi elds, and structural relationships. Additionally, the
DDL defi nes views of the database. Views restrict the portion of a database that may
be used or accessed by different users and programs.

 Most database management systems store both user data and metadata —the data
(or specifi cations) about the data—such as record and fi eld defi nitions, synonyms, data
relationships, validation rules, help messages, and so forth. Some metadata is stored in
the actual database, while other metadata is stored in CASE tool repositories.

 data warehouse a

database that stores data

extracted from operational

databases.

 data administrator a

database specialist

responsible for data planning,

defi nition, architecture, and

management.

 database administrator a

specialist responsible for

database technology, design,

construction, security,

backup and recovery, and

performance tuning.

 database architecture the

database technology used to

support data architecture.

 database management
system (DBMS) special

software used to create,

access, control, and manage

a database.

 data defi nition language
(DDL) a language used by

a DBMS to defi ne a database

or a view of a database.

Database Design Chapter Thirteen 435

 To help design databases, CASE tools may be provided either by the database
technology vendor (e.g., Oracle’s Designer) or from a third-party CASE tool vendor
(Popkin’s System Architect, Microsoft’s Visio Enterprise, or Computer Associates’
 ERwin, etc.).

 The database management system also provides a data manipulation language to
access and use the stored data in applications. A data manipulation language (DML)
is used to create, read, update, and delete records in the database and to navigate be-
tween different records and types of records—for example, from a CUSTOMER record
to the ORDER records for that customer. The DBMS and DML hide the details concern-
ing how records are organized and allocated to the disk. In general, the DML is very
fl exible in that it may be used by itself to create, read, update, and delete records or
its commands may be “called” from a separate host programming language such as
 COBOL, Visual Basic, or Java.

 Many DBMSs don’t require the use of a DDL to construct the database or a DML
to access the database. Instead (or in addition), they provide their own proprietary

 data manipulation
language (DML) a DBMS

language used to create,

read, update, and delete

records.

DATABASE ENGINE

Data

Definition

Language

(DDL)

Data

Manipulation

Language

(DML)

Proprietary

Language

and

Tools

Transaction

Processing

(TP)

Monitor

USER

DATAMETADATA

Systems Analysts

and

Database Designers

Application

Programmers

End

Users

DBMS

Application

Development

Tools

PC-DBMS

and/or

Query Tools

CASE Tools

 F I G U R E 1 3 - 2

 A Typical Database
Management
System Architecture

436 Part Three Systems Design Methods

tools and commands to perform those tasks. This is especially true of PC-based DBMSs
such as Microsoft Access. Access provides a simple graphical user interface to create
the tables and both a form-based environment and scripting language (Visual Basic

for Applications) to access, browse, and maintain the tables.
 Many DBMSs also include proprietary report-writing and inquiry tools to allow

users to access and format data without directly using the DML. Many high-end
DBMSs are designed to interact with popular third-party transaction processing
monitors.

 All of the above technology is illustrated in Figure 13-2 . Today, almost all new da-
tabase development is using relational database technology.

 Relational Database Management Systems There are several types of database
management systems. They can be classifi ed according to the way they structure
records. Early database management systems organized records in hierarchies or
networks implemented with indexes and linked lists. Today, most successful database
management systems are based on relational technology. Relational databases
implement data in a series of two-dimensional tables that are “related” to one another
via foreign keys. Each table (sometimes called a relation) consists of named columns
(which are fi elds or attributes) and any number of unnamed rows (which correspond
to records).

 Figure 13-3 illustrates a logical data model. Figure 13-4 is the physical, relational
database implementation of that data model (called a schema). In a relational data-
base, fi les are seen as simple two-dimensional tables, also known as relations. The rows
are records. The columns correspond to fi elds.

 The following shorthand notation for tables is commonly encountered in systems
design and database books.

 CUSTOMERS (CUSTOMER-NUMBER, CUSTOMER-NAME, CUSTOMER-BALANCE, . . .)
 ORDERS (ORDER-NUMBER, CUSTOMER-NUMBER (FK), . . .)
 ORDERED-PRODUCTS (ORDER-NUMBER (FK), PRODUCT-NUMBER (FK), QUANTITY-ORDERED , . . .)
 PRODUCTS (PRODUCT-NUMBER, PRODUCT-DESCRIPTION, QUANTITY-IN-STOCK, . . .)

 Both the DDL and DML of most relational databases is called SQL (pronounced
“S-Q-L” by some and “sequel” by others). SQL supports complete database creation,
maintenance, and usage. To access data in tables and records, SQL provides the follow-
ing basic commands:

 • S ELECT specifi c records from a table based on specifi c criteria (e.g., SELECT
 CUSTOMER WHERE BALANCE > 500.00).

 • P ROJECT out specific fields from a table (e.g., PROJECT CUSTOMER TO INCLUDE ONLY
CUSTOMER-NUMBER, CUSTOMER-NAME, BALANCE).

 • J oin two or more tables across a common field—a primary and foreign key
(join customer and order using customer-number).

 When used in combination, these basic commands can address most database
requirements. A fundamental characteristic of SQL is that commands return a set of
records, not necessarily just a single record (as in nonrelational database and fi le tech-
nology). SQL databases also provide commands for creating, updating, and deleting
records, as well as sorting records.

 High-end relational databases also extend the SQL language to support triggers
and stored procedures. Triggers are programs embedded within a table that are auto-
matically invoked by updates to another table. For example, if a record is deleted from a
 PASSENGER AIRCRAFT table, a trigger can force the automatic deletion of all corresponding

 relational database a

database that implements

data as a series of two-

dimensional tables that are

related via foreign keys.

 trigger a program

embedded within a table and

is automatically invoked by

updates to another table.

sells sold on
Ordered

Product
Customer Order Productplaces F I G U R E 1 3 - 3

 A Simple, Logical
Data Model

Database Design Chapter Thirteen 437

records in a SEATS table for that aircraft. Stored procedures are programs embedded
within a table that can be called from an application program. For example, a data
validation algorithm might be embedded in a table to ensure that new and updated
records contain valid data before they are stored. Stored procedures are written in a
proprietary extension of SQL such as Microsoft’s Transact SQL or Oracle’s PL/SQL.

 Both triggers and stored procedures are reusable because they are stored with
the tables themselves (as metadata). This eliminates the need for application program-
mers to create the equivalent logic within each application that uses the tables.

 All high-end relational database management systems (e.g., Oracle, UDB/DB2,
and SQL Server) and many personal computer relational database management sys-
tems (such as Microsoft Access) support the SQL language standards.

 Examples of high-performance relational DBMSs include Oracle Corporation’s Or-

acle, IBM’s DB2, Microsoft’s SQL Server (being used in the SoundStage project), and
Sybase Corporation’s Sybase. Many of these databases run on mainframes, minicom-
puters, and network database servers. Additionally, most personal computer DBMSs
are relational (or at least partially so). Examples include Microsoft’s Access and Visual

Customers Table

Customer Name Customer

Balance

…

10112 Luck Star 1455.77

10113 Pemrose 12.14

10114 Hartman 0.00

10117 K-Jack Industries - 20.00

Orders

Table

Order Number Customer Number

(foreign key)

…

A633 10112

A634 10114

A635 10112

Ordered Products Table

Order Number Product Number

(foreign key)

Quantity

Ordered

…

A633 77F02 1

A633 77B12 500

A634 77B13 100

A634 77F01 5

A635 77B12 300

A635 77B15 15

Products Table

Product Description Quantity

in Stock

…

77B12 Widget 8000

77B13 Widget 0

77B15 Widget 52

77F01 Gadget 20

77F02 Gadget 2

Product Number

(primary key)

(primary key)

(foreign key)

Customer Number

(primary key)

 F I G U R E 1 3 - 4

 A Simple, Physical
Database Schema

 stored procedures a

program embedded in a table

that can be called from an

application program.

438 Part Three Systems Design Methods

Foxpro. These database engines can run on both stand-alone personal computers and
local area network fi le servers. Figure 13-5 illustrates a relational database manage-
ment system’s user interface.

 Prerequisite for Database Design—Normalization

 In Chapter 7 you learned how to model data requirements for an information system. That
model took the form of a fully attributed entity relationship diagram and a repository of
metadata. Chapter 7 also taught a technique called data analysis or normalization. This
technique was used to produce a data model that meets the following quality criteria:

 • A good data model is simple. As a general rule, the data attributes that describe
an entity should describe only that entity.

 • A good data model is essentially nonredundant. This means that each data
attribute, other than foreign keys, describes at most one entity.

 • A good data model should be flexible and adaptable to future needs. In the
absence of this criteria, we would tend to design databases to fulfill only today’s
business requirements.

 So how do we achieve the above goals? How can you design a database that can
adapt to future requirements that you cannot predict? The answer lies in data analysis.

 Recall that normalization is a three-step technique that places the data model into
fi rst normal form, second normal form, and third normal form. Database design should
proceed only if the underlying logical data model is in at least 3NF. For a more detailed
explanation, we encourage you to review Chapter 7.

 F I G U R E 1 3 - 5

 User/Designer
Interface for a
Relational PC DBMS
(Microsoft Access)

 Modern Database Design

 The design of any database will usually involve the DBA and database staff. They will
handle the technical details and cross-application issues. Still, it is useful for the sys-
tems analyst to understand the basic design principles for relational databases.

Database Design Chapter Thirteen 439

 The design rules presented here are, in fact, guidelines. We cannot cover every
idiosyncrasy. Also, because SoundStage has elected to use Microsoft’s SQL Server as
its database management system, our design will be constrained by that technology.
Each relational DBMS presents its own capabilities and constraints. Fortunately, the
guidelines presented here are fairly generic and applicable to most DBMS environ-
ments. Database courses and textbooks tend to cover a wider variety of technology
and issues.

 Computer-assisted systems engineering (CASE) has been a continuing theme
throughout this book. There are specifi c CASE products that address database analy-
sis and design (e.g., Computer Associates’ ERwin). Also, most general-purpose CASE
tools now include database design tools. In this example, we continued to use Pop-
kin’s System Architect CASE product for the SoundStage case study. Finally, most CASE
tools (including System Architect) can automatically generate SQL code to construct
the database structures for the most popular database management systems. This
code generation capability is an enormous time-saver.

 > Goals and Prerequisites of Database Design

 The goals of database design are as follows:

 • A database should provide for the effi cient storage, update, and retrieval of data.
 • A database should be reliable—the stored data should have high integrity to

promote user trust in the data.
 • A database should be adaptable and scalable to new and unforeseen

requirements and applications.
 • A database should support the business requirements of the information system.

 The system’s logical data model—in our case, a fully attributed and normal-
ized entity relationship diagram (ERD)—serves as the prerequisite. This model, from
Chapter 7, is reproduced in Figure 13-6 . Every attribute in that model must be de-
fi ned as to its data type, domain, and default. These properties were also covered in
Chapter 7.

 > The Database Schema

 The design of a database is depicted as a special model called a database schema. A
 database schema is the physical model or blueprint for a database. It represents
the technical implementation of the logical data model. (System Architect calls it a
 physical data model.)

 NOTE: We should acknowledge some potentially confusing terminology here. We
are using the terms logical and physical in a manner consistent with earlier chapters
in this book. Unfortunately, most database books use the terms conceptual (our
 logical) and logical (our physical). We apologize for this unavoidable industry
confusion.

 A relational database schema defi nes the database structure in terms of tables,
keys, indexes, and integrity rules. A database schema specifi es details based on the
capabilities, terminology, and constraints of the chosen database management system.
Each DBMS supports different data types, integrity rules, and so forth.

 The transformation of the logical data model into a physical relational database
schema is governed by some fairly generic rules and options. These rules and guide-
lines are summarized as follows:

 1. Each fundamental, associative, and weak entity is implemented as a separate
table. Table names may have to be formatted according to the naming rules and
size limitations of the DBMS. For example, a logical entity named MEMBER ORDERED
PRODUCT might be changed to a physical table named tblMemberOrdProd.

 database schema a model

or blueprint representing the

technical implementation of a

database.

440 Part Three Systems Design Methods

F I G U R E 1 3 - 6 SoundStage Logical Data Model in Third Normal Form

The prefi x and compression of spaces is consistent with contemporary naming
standards and guidelines in modern programming languages.

 a. The primary key is identifi ed as such and implemented as an index into the
table.

 b. Each secondary key is implemented as its own index into the table.
 c. An index should be created for any nonkey attributes that were identifi ed as

subsetting criteria requirements (Chapter 7).
 d. Each foreign key will be implemented as such. The inclusion of these foreign

keys implements the relationships on the data model and allows tables to be
joined in SQL and application programs.

 e. Attributes will be implemented with fi elds. These fi elds correspond to
columns in the table. The following technical details must usually be specifi ed
for each attribute. (These details may be automatically inferred by the CASE
tool from the logical descriptions in the data model.)

 Field names may have to be shortened and reformatted according to DBMS
constraints and internal rules. For example, in the logical data model, most
attributes might be prefaced with the entity name (e.g., MEMBER NAME). In the
physical database, we might simply use NAME.

 i. Data type. Each DBMS supports different data types and terms for those
data types. Figure 13-7 shows different physical data types for a few
different database management systems.

 ii. Size of the fi eld. Different DBMSs express precision of real numbers differ-
ently. For example, in SQL Server, a size specifi cation of NUMBER (3,2) sup-
ports a range from ⫺9.99 to 9.99.

 iii. NULL or NOT NULL. Must the fi eld have a value before the record can be com-
mitted to storage? Again, different DBMSs may require different reserved
words to express this property. By defi nition, primary keys can never be
allowed to have NULL values.

 iv. Domains. Many database management systems can automatically edit
data to ensure that fi elds contain legal data. This can be a great benefi t
to ensuring data integrity independent from the application programs. If
the programmer makes a mistake, the DBMS catches the mistake. But for
DBMSs that support data integrity, the rules must be precisely specifi ed in a
language that is understood by the DBMS.

 v. Default. Many database management systems allow a default value to be
automatically set in the event that a user or programmer creates a record
containing fi elds with no values. In some cases, NULL serves as the default.

 vi. Again, many of the above specifi cations were documented as part of a
complete logical data model. If that data model was developed with a
CASE tool, the CASE tool may be capable of automatically translating
the data model into the physical language of the chosen database
technology.

 2. Supertype/subtype entities present additional options as follows:
 a. Each supertype and subtype can be implemented with a separate table (all

having the same primary key).
 b. Alternatively, if the subtypes are of similar size and data content, a database

administrator may elect to collapse the subtypes into the supertype to
create a single table. This presents certain problems for setting defaults and
checking domains. In a high-end DBMS, these problems can be overcome
by embedding the default and domain logic into stored procedures for
the table.

 c. Alternatively, the supertype’s attributes could be duplicated in a table for each
subtype.

 d. Some combination of the above options could be used.

 3. Evaluate and specify referential integrity constraints (described in the next
section).

The SoundStage database schema was automatically generated from the logical
data model by our CASE tool System Architect. It is illustrated in Figure 13-8 . We call
your attention to the following numbered bullets on the fi gure:

 1 Each rounded rectangle defi nes a table. The named rows in the rectangle
actually correspond to the named columns that will be created for the table.

 2 SoundStage has defi ned a standard naming convention for tables and columns.
The conventions are based on the programming guidelines called Hungarian

Notation. Each object is named without spaces, dashes, or underscores. And
each object is given a prefi x that defi nes all similar objects. For database objects,
the following standards were used:

 tbl Indicates a database table.
 col Indicates a column in the table.

Database Design Chapter Thirteen 441

442 Part Three Systems Design Methods

 Logical Data Type
(to be stored in fi eld)

Physical Data Type
Microsoft Access

Physical Data Type
Microsoft SQL Server

 Physical Data Type
 Oracle

 Fixed-length character data
(use for fi elds with relatively
fi xed length character data)

 TEXT CHAR (size) or
character (size)

 CHAR (SIZE)

 Variable-length character data
(use for fi elds that require
character data but for which
size varies greatly—such as
 ADDRESS)

 TEXT VARCHAR (max size) or
character varying (max size)

 VARCHAR2 (max size)

 Very long character data (use
for long descriptions and
notes—usually no more than
one such fi eld per record)

 MEMO TEXT LONG VARCHAR or
 LONG VARCHAR2

 Integer number NUMBER INT (size) or
 integer or
 smallinteger or
 tinyinteger

 INTEGER or
 NUMBER (size) or
 smallint or
byte

 Decimal number NUMBER DECIMAL (size, decimal
places) or
 NUMERIC (size,
decimal places)

 DECIMAL (size,
decimal places) or
 NUMBER (size,
decimal places) or
 NUMBER

 Financial number CURRENCY MONEY or SMALLMONEY see decimal number

 Date (with time) DATE/TIME DATETIME or
 SMALLDATETIME
 Depending on precision
needed

 DATE

 Current time (use to store
the date and time from the
computer’s system clock)

 not supported TIMESTAMP TIMESTAMP

 Yes or No; or True or False YES/NO BIT use CHAR(1) and set a
yes or no domain

 Image OLE OBJECT IMAGE LONGRAW

 Hyperlink HYPERLINK VARBINARY RAW

 Can designer defi ne new data
types?

 NO YES YES

F I G U R E 1 3 - 7 Partial List of Physical Data Types for
Different Database Technologies

1

3

4

2

5

 F
I
G

U
R

E

1

3
-
8

In

it
ia

l
S

o
u

n
d

S
ta

g
e

P
h

y
si

ca
l

D
at

ab
as

e
S

ch
em

a

443

444 Part Three Systems Design Methods

 Although not depicted on the schema, other common database prefi xes may be
included in the schemas underlying data dictionary (repository) such that those pre-
fi xes may be used to generate correct code. Possibilities include:

 db Indicates the database itself.
 idx Indicates an index built for a table.
 dom Indicates a domain that can be applied to one or more fi elds.

 3 Logical relationships, both identifying and nonidentifying, are transformed in
 constraints that are implemented using the foreign keys.

 4 We elected to make each supertype and subtype entity in the logical, general-
ization hierarchy into its own physical table. (This was the default option for
 System Architect ’s physical data model generator.) 5 Notice that System Architect automatically inferred physical data types for each
fi eld based on (1) the selection of Microsoft SQL Server as the target database
management system and (2) the logical data types we had defi ned for each
entity’s attributes during systems analysis. The generated physical data types can
be changed to reduce storage space required, improve data integrity, or better
represent all the possible values included in the domain.

 Although not depicted on the database schema, the schema generator also creates an
index for each primary key indicated in the schema. You can add additional indexes for
unique secondary keys (such as the Universal Product Code, or UPC, fi eld in tblProduct)
or for any nonkey attribute that can be used to subset all records in a table (such as tbl-
Transaction.colType). These indexes can improve the performance of the fi nal database.

 Some CASE tools generate database schemas with considerably more detail than
our example. For example, some database schemas indicate for each fi eld whether or
not the fi eld must take on a value:

• NULL means the fi eld does not have to have a value.
• NOT NULL means the fi eld must have a value. Because primary keys are used

to uniquely access records, no PK fi eld may take on NULL values.

 Would you ever want to compromise the third normal form entities when design-
ing the database? For example, would you ever want to combine two third-normal-
form entities into a single table (that would, by default, no longer be in third normal
form)? Usually not! Although a database administrator may create such a compromise
to improve database performance, he or she should carefully weigh the advantag-
es and disadvantages. Although such compromises may mean greater convenience
through fewer tables or better overall performance, such combinations may also lead
to the possible loss of data independence—should future new fi elds necessitate re-
splitting the table into two tables, programs will have to be rewritten. As a general rule,
combining entities into tables is not recommended.

 > Data and Referential Integrity

 Database integrity is about trust. Can the business and its users trust the data stored in
the database? Data integrity provides necessary internal controls for the database. There
are at least three types of data integrity that must be designed into any database.

 Key Integrity Every table should have a primary key (which may be concatenated).
The primary key must be controlled such that no two records in the table have the
same primary-key value. (Note that for a concatenated key, the concatenated value
must be unique—not the individual values that make up the concatenation.)

 Also, the primary key for a record must never be allowed to have a NULL value. That
would defeat the purpose of the primary key, to uniquely identify the record.

 If the database management system does not enforce these rules, other steps
must be taken to ensure them. Most DBMSs do enforce key integrity.

 Domain Integrity Appropriate controls must be designed to ensure that no field
takes on a value that is outside the range of legal values. For example, if GRADE POINT

AVERAGE is defined to be a number between 0.00 and 4.00, then controls must be
implemented to prevent negative numbers and numbers greater than 4.00.

 Not long ago, application programs were expected to perform all data editing.
Today, most database management systems are capable of enforcing domain rules. For
the foreseeable future, the responsibility for data editing will continue to be shared
between the application programs and the DBMS.

 Referential Integrity The architecture of relational databases implements rela-
tionships between the records in tables via foreign keys. The use of foreign keys
increases the flexibility and scalability of any database, but it also increases the risk
of referential integrity errors. A referential integrity error exists when a foreign-
key value in one table has no matching primary-key value in the related table.
For example, an INVOICES table usually includes a foreign key, CUSTOMER NUMBER, to
“reference back to” the matching CUSTOMER NUMBER primary key in the CUSTOMERS
table. What happens if we delete a CUSTOMER record? There is the potential that we
may have INVOICE records whose CUSTOMER NUMBER has no matching record in the
 CUSTOMERS table. Essentially, we have compromised the referential integrity between
the two tables.

 How do we prevent referential integrity errors? One of two things should hap-
pen. When considering the deletion of CUSTOMER records, either we should automati-
cally delete all INVOICE records that have a matching CUSTOMER NUMBER (which doesn’t
make much business sense) or we should disallow the deletion of the CUSTOMER record
until we have deleted all INVOICE records.

 Referential integrity is specifi ed in the form of deletion rules as follows: 1

• No restriction —Any record in the table may be deleted without regard to any
records in any other tables.

 In looking at the final SoundStage data model, we could not apply this
rule to any table.

• Delete:Cascade —A deletion of a record in the table must be automatically
 followed by the deletion of matching records in a related table. Many relational
DBMSs can automatically enforce delete:cascade rules using triggers.

 In the SoundStage data model, an example of a valid delete:cascade rule
would be from MEMBER ORDER to MEMBER ORDERED PRODUCT. In other words, if we
delete a specific MEMBER ORDER, we should automatically delete all matching
 MEMBER ORDERED PRODUCTS for that order.

• Delete:Restrict —A deletion of a record in the table must be disallowed until any
matching records are deleted from a related table. Again, many relational DBMSs
can automatically enforce delete:restrict rules.

 For example, in the SoundStage data model, we might specify that we
should disallow the deletion of any PRODUCT as long as there exists MEMBER
 ORDERED PRODUCTS for that product.

• Delete:Set null —A deletion of a record in the table must be automatically
 followed by setting any matching keys in a related table to the value NULL.
Again, many relational DBMSs can enforce such a rule through triggers.

 The Delete:Set null option was not used in the SoundStage data model. It
is used only when you are willing to delete a master table record but you don’t
want to delete corresponding transaction table records for historical reasons.
By setting the foreign key to nul l , you are acknowledging that the record does
not point back to a corresponding master record, but at least you don’t have it
pointing to a nonexisting master record.

 The fi nal database schema, complete with referential integrity rules, is illustrated
in Figure 13-9 . This is the blueprint for writing the SQL code (or equivalent) to create
the tables and data structures.

 referential integrity the

assurance that a foreign-

key value in one table has a

matching primary-key value in

the related table.

 1 Knowledgeable database students know that there are also insertion and update rules for referential integrity. A full

discussion of these rules is deferred to database courses and textbooks.

Database Design Chapter Thirteen 445

D
:n

o
n
e D

:R

D
:R

D
:C

D
:C

D
:C

D
:C

D
:C

D
:C

D
:CD

:C

D
:C

D
:n

o
n
e

D
:n

o
n

e D
:S

N

D
:

n
o
n
e

D
:R

D
:n

o
n
e

D
:R

D
:R

D
:R

D
:R

D
:R

D
:R

D
:S

N

D
:R

D
:n

o
n
e

D
:R

 F
I
G

U
R

E

1

3
-
9

F

in
al

 S
o

u
n

d
S

ta
g

e
P

h
y

si
ca

l
D

at
ab

as
e

S
ch

em
a

446

 > Roles

 Some database standards insist that no two fi elds have exactly the same name. This
constraint simplifi es documentation, help systems, and metadata defi nitions. This pres-
ents an obvious problem with foreign keys. By defi nition, a foreign key must have a
corresponding primary key. During logical data modeling, using the same name suited
our purpose of helping the users understand that the foreign keys allow us to match
related records in different entities. But in a physical database, it is not always neces-
sary or even desirable to have these redundant fi eld names in the database.

 To fi x this problem, foreign keys can be given role names. A role name is an alter-
nate name for a foreign key that clearly distinguishes the purpose that the foreign key
serves in the table. For example, in the SoundStage database schema, PRODUCT_NUMBER
is a primary key for the PRODUCTS table and a foreign key in the MEMBER ORDERED PROD-
UCTS table. The name should not be changed in the PRODUCTS table. But it may make
sense to rename the foreign key to ORDERED_PRODUCT_NUMBER to more accurately re-
fl ect its role in the MEMBER ORDERED PRODUCTS table.

 The decision to require role names or not is usually established by the data or
database administrator.

 > Database Distribution and Replication

 In Chapter 7, “Data Modeling and Analysis,” we briefl y introduced the concept of logi-
cal data distribution analysis. Data distribution analysis establishes which business
locations need access to which logical data entities and attributes.

 We used a simple matrix in Chapter 7 to map entities and attributes to locations.
Many CASE tools, including System Architect, include facilities for building such a
matrix. We should give some consideration now to the impact of data distribution
analysis on database design.

 In today’s multitier, client/server, network-centric world, information systems and
databases are rarely centralized. Instead, they are distributed across a network that
may span many buildings, cities, states, or countries. Accordingly, we may need to par-
tition, distribute, or replicate all or part of a database design to different physical da-
tabase servers in different physical locations. Basically, we need to perform a physical
data base distribution analysis that takes into consideration what we learned during
our logical data distribution analysis.

 Essentially, we have a number of distribution options available to us:

• Centralization of the database. In other words, we would implement the
 database on a single server regardless of the number of physical locations
that may require access to it. This solution is simple and the easiest to mai-
ntain; however, it violates a data management rule that has become important
to many data administrators and users—data should be located as closely as
 possible to its users.

• Horizontal distribution of the data. In this option, each table (or entire rows
in a table) would be assigned to different database servers and locations. This
option results in efficient access and security because each location has only
those tables and rows required for that location. Unfortunately, data cannot
always be easily recombined for management analysis across sites.

• Vertical distribution of the data. In this option, specific columns of tables
are assigned to specific databases and servers. The advantages and disadva-
ntages are very similar to that of horizontal distribution.

• Replication of the data. Replication refers to the physical duplication of entire
tables to multiple locations. Most high-end, enterprise database management sys-
tems include replication technology that coordinates updates to the duplicated
tables and records to maintain data integrity. This solution offers performance
and accessibility advantages and reduces network traffic, but it also increases

 role name a foreign

key name that refl ects the

purpose it serves in a table.

Database Design Chapter Thirteen 447

448 Part Three Systems Design Methods

the complexity of data integrity and requires more physical storage capacity.
These alternatives are not mutually exclusive. The designer must carefully plan
degrees of data distribution and replication.

 Given our physical database schema, we can defi ne views that correspond to
specifi c geographic locations (and subviews for different users and applications). A
 database view may be very selective. It may include a specifi c subset of tables, a specifi c
subset of columns in tables, or even a specifi c subset of records in tables. Each view
must be carefully synchronized with the master database schema such that changes
to the master schema can, if appropriate, be propagated to the views. CASE tools can
be very helpful in defi ning views and keeping all views in sync.

 For the SoundStage project, we plan to replicate the entire database in each of
three cities. The data integrity for common tables will be implemented using SQL

Server’s replication technology. The systems analyst will not typically program the
replication rules. A qualifi ed database analyst or administrator will do that. Since we
will implement the entire physical database schema on each city’s server, there is no
need to defi ne views for our project.

 > Database Prototypes

 Prototyping is not an alternative to carefully thought-out database schemas. On the
other hand, once the schema is completed, a prototype database can usually be gener-
ated very quickly. Most modern DBMSs include powerful, menu-driven database gen-
erators that automatically create a DDL and generate a prototype database from that
DDL. A database can then be loaded with test data that will prove useful for prototyp-
ing and testing outputs, inputs, screens, and other systems components.

 > Database Capacity Planning

 A database is stored on disk. Ultimately, the database administrator will want an esti-
mate of disk capacity for the new database to ensure that suffi cient disk space is avail-
able. Database capacity planning can be calculated with simple arithmetic as follows.
This simple formula ignores factors such as packing, coding, and compression, but by
leaving out those possibilities, you are adding slack capacity.

 1. For each table, sum the fi eld sizes. This is the record size for the table. Avoid the
implications of compression, coding, and packing—in other words, assume that
each stored character and digit will consume one byte of storage. Note that
formatting characters (e.g., commas, hyphens, slashes) are almost never stored in
a database. Those formatting characters are added by the application programs
that will access the database and present the output to the users.

 2. For each table, multiply the record size times the number of entity instances to
be included in the table. It is recommended that growth be considered over a
reasonable time period (e.g., three years). This is the table size.

 3. Sum the table sizes. This is the database size.
 4. Optionally, add a slack capacity buffer (e.g., 10 percent) to account for

unanticipated factors or inaccurate estimates above. This is the anticipated

database capacity.

 > Database Structure Generation

 CASE tools are frequently capable of generating SQL code for the database directly from
a CASE-based database schema. This code can be exported to the DBMS for compilation.
Even a small database such as the SoundStage model can require 50 pages or more of
SQL data defi nition language code to create the tables, indexes, keys, fi elds, and triggers.
Clearly, a CASE tool’s ability to automatically generate syntactically correct code is an
enormous productivity advantage. Furthermore, it almost always proves easier to modify
the database schema and regenerate the code than to maintain the code directly.

 Chapter Review

 1. The data captured by an information system is
stored in fi les and databases. A fi le is a collection
of similar records. A database is a collection of
interrelated fi les.

 2. Database design is the process of translating
logical data models (Chapter 7) into physical data-
base schemas.

 3. The smallest unit of meaningful data that can be
stored is called a fi eld. There are four types of
fi elds:

 a. A primary key is a fi eld that uniquely identifi es
one and only one record in a fi le or table.

 b. A secondary key is a fi eld that may either
uniquely identify one and only one record in
a fi le or table or identify a set of records with
some common, meaningful characteristic.

 c. A foreign key is a fi eld that points to a related
record in a different table.

 d. All other fi elds are called descriptive fi elds.

 4. Fields are organized into records, and similar
records are organized into fi les or tables.

 5. A database is a collection of tables (fi les) with
logical pointers that relate records in one table to
records in a different table.

 6. The data architecture that has evolved in most
organizations includes conventional fi les, opera-
tional databases, data warehouses, and personal
and work group databases. To coordinate this
complex infrastructure, many organizations as-
sign a data administrator to plan and manage the
overall data resource and database administrators
to implement and manage specifi c databases and
database technologies.

 7. A database architecture is built around a database
management system (DBMS) that provides the
technology to defi ne the database structure and
then to create, read, update, and delete records
in the tables that make up that structure. A DBMS
provides a data language to accomplish this. That
language provides at least two components:

 a. A data defi nition language to create and
maintain the database structure and rules.

 b. A data manipulation language to create, read,
use, update, and delete records in the database.

 8. Today, relational database management systems
are used to support the development and reengi-
neering of the overwhelming number of informa-
tion systems. Relational databases store data in
a collection of tables that are related via foreign
keys.

 a. The data defi nition and manipulation languages
of most relational DBMSs are consolidated into
a standard language known as SQL.

 b. High-end relational database management
systems support triggers and stored
procedures, programs that are stored with
the tables and callable from other SQL-based
programs.

 9. Data analysis and normalization are techniques
for removing impurities from a data model as a
preface to designing the database. These impuri-
ties can make a database unreliable, infl exible, and
nonscalable.

 10. Distribution and replication decisions should be
made before database design. Each unique data-
base should be represented by its own logical
data submodel.

 11. A database schema is the physical model for a da-
tabase based on the chosen database technology.
The rules for transforming a logical data model
into a physical database schema are generalized

as follows:

 a. Each entity becomes a table.
 b. Each attribute becomes a fi eld (column in the

table).
 c. Each primary and secondary key becomes an

index into the table.
 d. Each foreign key implements a possible

relationship between instances of the table.

 12. Database integrity should be checked and, if nec-
essary, improved to ensure that the business and
its users can trust the stored data.

 a. Key integrity ensures that every record will
have a unique, non- NULL primary-key value.

 b. Domain integrity ensures that appropriate
fi elds will store only legitimate values from the
set of all possible values.

 c. Referential integrity ensures that no foreign-
key value points to a nonexistent primary-key
value. A deletion rule should be specifi ed for
every relationship with another table. The
deletion rules either cascade the deletion to
related records in other tables, disallow the
deletion until related records in other tables
are fi rst deleted, or allow the deletion but set
any foreign keys in related tables to NULL.

Database Design Chapter Thirteen 449

 1. What does the acronym CRUD represent?
 2. What is a common misconception about

databases?
 3. Why is storing data in a database riskier than

storing it in a fi le?
 4. What is a secondary key?
 5. What is a fi xed-length record structure?
 6. What are some common types of conventional

fi les and tables?
 7. In comparing operational databases and data

warehouses, which generally has fewer CRUD
activities? Why?

 8. What is a database engine?
 9. What is metadata? If database administrators need

to defi ne metadata, what kind of language should
they use (DDL or DML)? Why?

 10. What is a relational database?
 11. What is the difference between a relational data-

base schema and a database schema?
 12. What are the common deletion rules to enforce

referential integrity?

 Review Questions
1

2

 Problems and Exercises

 1. The textbook states that “data is a resource that
must be controlled and managed.” Explain this
statement, and indicate whether you agree or not,
and why.

 2. Consider a local car dealership that has been in
business for fi fteen years or so. In addition to selling
and leasing new and used cars, the dealership
has a parts department, service department, and
auto body department. It was one of the fi rst
car dealerships to automate in the mid-70s, and
while most of the information systems have been
periodically updated, a few of the original systems
are still in use, including some stand-alone systems.
About fi ve years ago, the dealership began to
gradually replace some of the traditional fi le-based
systems with a relational database system, but the
conversion is far from over. Last year, the owner
read in an airline magazine about data warehouses,
and hired a local systems integrator to install one,
which is in progress. The dealership has a couple
of jack-of-all-trades IT people on staff, but most of
the development work is contracted out. Given
this scenario, draw a high-level diagram of what the
dealership’s data architecture might look like; use
 Figure 13-1 as an example.

 3. One of the dealership’s legacy stand-alone
systems in the preceding exercise is the
salesperson work schedule system. This system
was developed in the 1980s on a single PC, using
 dBASE III, to keep track of each salesperson’s
daily and weekly work schedule. The dealership
plans to retire this antiquated system and
incorporate it into a relational database system.
What are two or three tables you might expect
to fi nd in a scheduling system? Using Figure
13-4 as an example, show these tables in a
simple, physical database schema. Include the

primary key, any foreign keys, one or two nonkey
attributes, and a few values for each object.

 4. Match the following terms in the fi rst column
with the defi nitions or examples in the second
column.

 1. DBMS a. Physical implemen-
tation of a database

 2. Transaction fi le b. Federal register of
country codes

 3. Data warehouse c. 5NF
 4. Primary key d. Microsoft Access
 5. SQL e. Delete:Set null
 6. CASE tool f. Sybase IQ
 7. Hungarian notation g. SSN
 8. Normalization h. Daily hospita admis-

sions fi le
 9. Table look-up fi le i. Oracle 10g
 10. Referential integrity j. Standard naming

convention for
tables

 11. Schema k. System Architect
 12. Personal database l. ALTER TABLE

 5. You are a systems designer and have a friend who
owns a small bookstore and mail-order business
specializing in rare books and fi rst editions. Total
sales average about a dozen books per day, store
and mail order combined. Your friend wants to
start selling books over the Web also, and has
come to you for advice. He has heard that he
should go with a relational database and that
 Oracle is the best one to get. Do you concur? If
not, what would you recommend?

 6. In transforming a logical data model into a
physical relational database schema, what options
does the database administrator have in how
supertype/subtype entities are implemented?

450 Part Three Systems Design Methods

Database Design Chapter Thirteen 451

 7. You need to calculate the anticipated database
capacity for constructing a database with four
tables, as shown below:

 Table 1 Table 2 Table 3 Table 4

 Field 1: 32 char Field 1: 5 char Field 1: 2 char Field 1: 16 char

 Field 2: 15 Field 2: 7 Field 2: 7 Field 2: 30

 Field 3: 7 Field 3: 13 Field 3: 8 Field 3: 12

 Field 4: 12 Field 4: 6 Field 4: 4 Field 4: 7

 Field 5: 9 Field 5: 4 Field 5: 54

 Field 6: 12 Field 6: 3

 Field 7: 6 Field 7: 1

 Field 8: 2

 Table 1 will be initially loaded with 200,000
records, Table 2 with 100,000 records, and the
other two tables with 40,000 records each. The
expected rate of growth in the number of records
is 20 percent each year for three years.

 According to the database capacity planning
steps described in the chapter, what is the
anticipated database capacity?

 8. You are studying the design documentation for
an extremely large information system used
by your organization. As expected, all entities
on the logical data model are in third normal
form. But in comparing the logical data model
to the physical database schema, you notice

that two tables shown separately on the logical
data model have been combined into one table
on the physical database schema. There are no
notes explaining this, and you can’t ask the
database administrator who signed off on the
design documents but is no longer with the
company. What might the reason have been for
compromising third normal form? What are the
potential consequences?

 9. Explain the concept of referential integrity, and
give an example. What is a referential integrity
error? Provide an example, and explain the
possible consequences of a referential integrity
error.

 10. The deletion rules for enforcing referential
integrity include both Delete:Cascade and Delete:
Restrict. In general, what criteria should a DBA use
in deciding whether to use a Delete:Cascade or
Delete:Restrict rule for deletion?

 11. Database centralization is one of a number of
distribution options, but it violates the rule that
data should be managed and stored in close
proximity to its users. Discuss the reasons why
many data administrators and users consider
this rule to be important. Given the growth of
Web-based applications and global information
systems, is this rule still important and/or
viable?

 Projects and Research

 1. More often than not, database environments in
an organization refl ect data structures that have
been developed over a period of years, sometimes
haphazardly, and that often refl ect a variety of
architectural styles and structures. Look at the
existing database environment in your organization
or school or in a local company.

 a. What is the age of the oldest information system
used in the organization?

 b. What is the age of the newest?
 c. Does the organization have both traditional fi le-

based systems and modern relational database
systems?

 d. What are the different user systems, end-user
tools, end-user applications? Any data ware-
houses? Any Web-based applications?

 e. Draw a data architecture diagram based upon
the diagram shown in Figure 13-1 .

 2. Modern databases require a high level of skill
and knowledge to be adequately supported. See
if you can interview the database administrators

in three or four local organizations which use
contemporary database systems:

 a. Describe the systems which are managed by the
database administrators you interviewed.

 b. On average, how much experience and training
did they have in information technology before
becoming database administrators?

 c. On average, how much time do they spend in
training, formal or informal, per year keeping
their skills current? Do they feel they receive
enough training?

 d. Compute the average cost of annual training
per database administrator. Include both direct
costs for training and indirect “lost opportunity”
costs. If actual costs are not known, use a direct
training cost of $500/day and average DBA
salary and benefi ts of $75 per hour.

 e. Do you think training costs for DBA administra-
tors are higher than for administrators of fl at fi le
systems? Why or why not?

452 Part Three Systems Design Methods

 3. After you talk to the database administrators
regarding training, also ask them about:

 a. Normalization—do they generally normalize to
third normal form? Higher?

 b. In general, how much time is spent on normal-
ization for a large or enterprise-level database?

 c. What are the three biggest chronic problems
faced by each of the database administrators?

 d. How often do they have to modify and/or up-
date the database schema? Do they have a formal
process for identifying and making updates, or is
it done on an ad hoc basis?

 e. If they were the CIO in their organization, what
would they change?

 4. CASE tools, such as System Architect, are used for
database development and support. Search on the
Web and in trade journals for some of the popular
CASE tools currently in use.

 a. What CASE tools did you fi nd, and who are their
manufacturers?

 b. What is the number of installed bases, or IT
shops, using each of these CASE tools?

 c. What is the range of cost for these CASE tools?
Do you think they are cost-effective?

 d. Compare and contrast these CASE tools in terms
of their features and capabilities.

 e. Which one would you use if you were a DBA
and cost was not a concern? Why?

 5. Currently, relational database technology is
probably the most prevalent database technology
used in modern information technology shops.
But database technology is an evolving fi eld and
new technologies are being developed constantly.
Search on the Web or in your school library for
articles on emerging database technologies, such
as object database management systems. Make sure
to include white papers from companies such as
Oracle, Sybase, IBM, and Microsoft.

 a. What articles and papers did you fi nd?
 b. What are some of the new database technologies

that are entering the market or that are currently
under development?

 c. Compare and contrast each of them with con-
temporary relational database technology.

 d. What infl uence does the growth of Internet ap-
plications have on these database technologies?

 e. Which one, if any, do you feel is a serious con-
tender to replace relational database technology?
Why?

Minicases

 With your professor’s help, liaison with a team
from either a systems analysis or computer
programming class at another school. Your
assignment, to complete together, is to build a
suitable Web page for a small business or nonprofi t
organization of your choosing. You will be graded
on completeness, functionality, professionalism,
and teamwork. A communication suggestion is to
utilize e-mail as much as possible.

 1. Meet the team at the other school via the phone,
virtual meeting environment, discussion board,
or e-mail per your professor’s instructions. If you
use a virtual meeting environment, you may need
to install and learn how to use the appropriate
software. Determine and establish team guidelines
and rules for:

• Deadlines—how will the team handle a slipped
deadline by one of the team members? Who will
be in charge of setting the time line?

• Communication—How will you communicate?
How often? Do some of your members
communicate better using one method over the
others (i.e., preferences)?

• Miscommunication of Personal Differences—
How will you address miscommunication among
members or arising personal differences?

• Expectations—What are the team’s expectations
for quality? Behavior? What will you do if
someone does not perform up to expectations?

 Submit to your professor an agreement, signed
by each of the team members, concerning how
these matters will be addressed.

 2. Meet local small business owners or
representatives of nonprofi t organizations. Find a
company or organization that will host your team
to produce a Web site for them (nonmonetarily,
of course). Find out from your school’s risk
management or legal department what paperwork
is necessary for you and your “client” to complete.
(Why is this necessary?)

 3. Determine the business’s or organization’s
requirements through interviews, forms, surveys,
JAD, and the like, and create the appropriate
models and studies for the Web site. Don’t forget to
consider costs, legal issues, and specifi c company
needs in your models and paper. You will be

Database Design Chapter Thirteen 453

graded on completeness, correctness, clarity, and
professionalism.

 4. Create the Web site using appropriate technologies,
getting a domain name, and so forth. Set up e-mail
with the domain name, as well. If it is appropriate

for the company to have shopping cart and online
payment capabilities, make sure that those are fully
functional. Stress test the site by exchanging URL’s
with another team before you submit it to your
professor or the client.

 Team and Individual Exercises

 1. Create a crossword puzzle using terms and
concepts you have learned in your class so far.
Then, exchange puzzles with a classmate. Each of
you should complete the other’s crossword puzzle.

 2. Individual: In the minicases for this chapter, you
completed a Web site project with a team from
another school. Comment on your experience in a
short paper to be submitted to your professor.

 3. Look in your local Yellow Pages phone book. Who
are the major advertisers for “Systems Analysis
and Design” in your area? Contact at least three
of them, and fi nd out what kind of services they
provide, their expertise/experience, and how
much they charge. What does this information
mean to you and your career? Bring your fi ndings
to class and share.

 Suggested Readings

 Bruce, Thomas. Designing Quality Databases with IDEF1X

Information Models. New York: Dorset House Publishing,

1992. This has rapidly become our favorite practical

database design book. Incidentally, the foreword was

written by John Zachman, whose Framework for

Information Systems Architecture inspired our own

information system building blocks framework.

 McFadden, Fred; Jeffrey Hoffer; and Mary Prescott. Modern

Database Management, 5th ed. Reading, MA: Addison-

Wesley, 1994. For those seeking to expand their overall

data management and database education, this is one of

the most popular introductory textbooks on the market

and our own favorite. These authors do a particularly

thorough job of explaining distributed database design (in

much greater detail than is possible in our book).

 Teorey, Toby. Database Modeling & Design: The Fundamental

Principles, 2nd ed. San Francisco: Morgan Kaufman

Publishers, 1990. This is our favorite database design

conceptual book. Appendix A provides a concise review

of the SQL language.

454 Part Three Systems Design Methods

 Chapter Preview and Objectives

 In this chapter you will learn how to design and prototype computer outputs. You will

know how to design and prototype outputs when you can:

❚ Distinguish among internal, external, and turnaround outputs.

❚ Differentiate among detailed, summary, and exception reports.

❚ Identify several output implementation methods.

❚ Differentiate among tabular, zoned, and graphic formats for presenting information.

❚ Distinguish among area, bar, column, pie, line, radar, donut, and scatter charts and

their uses.

❚ Describe several general principles that are important to output design.

❚ Design and prototype computer outputs.

 Output and input design represent something of a “chicken or egg” sequencing problem.

Which do you do fi rst? In this edition, we present output design fi rst. Classic system

design prefers this approach as something of a system validation test—design the outputs

and then make sure the inputs are suffi cient to produce the outputs. In practice, this

sequencing of tasks becomes less important because modern systems analysis techniques

suffi ciently predefi ne logical input and output requirements. You and your instructor may

safely swap Chapters 14 and 15 if you prefer.

 14 Output Design and
Prototyping

Output Design and Prototyping Chapter Fourteen 455

 Introduction

 Bob Martinez was glad that as part of the data design step he created a prototype

database in the Microsoft Data Engine (MSDE). It is really coming in handy now as he

designs reports for the system.

 Bob created a simple Microsoft Access database, connected it to the MSDE data-

base, and entered some sample data. Then working from discovery prototypes cre-

ated in the analysis phase and use-case narratives, he used the Access Report Wizards

to create a rough prototype for each printed report. With feedback from the users,

he refi ned the report designs through several iterations. For reports that called for

user-entered customization parameters, Bob created Access forms to simulate the cus-

tomization interface.

 Of course, the actual system will use neither Microsoft Access nor MSDE. But when

programmers eventually get into the actual system construction, these reports and forms

will guide their work and ensure that the actual system meets all user requirements.

 Output Design Concepts and Guidelines

 Outputs present information to system users. Outputs are the most visible component

of a working information system. As such, they are often the basis for the users’ and

management’s fi nal assessment of the system’s value. During requirements analysis,

you defi ned logical output requirements. During decision analysis, you may have

considered different physical implementation alternatives. In this chapter, you will

learn how to physically design the outputs.

 Today, most outputs are designed by rapidly constructing prototypes. These proto-

types may be simple computer-generated mock-ups with dummy data, or they may be

generated from prototype databases such as Microsoft Access, which can be rapidly con-

structed and populated with test data. These prototypes are rarely fully functional. They

won’t contain security features or optimized data access that will be necessary in the

fi nal version of a system. Furthermore, in the interest of productivity, we may not include

every button or control feature that would have to be included in a production system.

 During requirements analysis, outputs were modeled as data fl ows that consist

of data attributes. Even in the most thorough of requirements analysis, we will miss

requirements. Output design may introduce new attributes or fi elds to the system.

 We begin with a discussion of types of outputs. Outputs can be classifi ed ac-

cording to two characteristics: (1) their distribution and audience and (2) their im-

plementation method. Figure 14-1 illustrates this taxonomy. The characteristics are

discussed briefl y in the following sections.

 > Distribution and Audience of Outputs

 One way to classify outputs is according to their distribution inside or outside the

organization and the people who read and use them. Internal outputs are intended

for the system owners and system users within an organization. They only rarely

fi nd their way outside the organization. Internal outputs support either day-to-day

business operations or management monitoring and decision making. Figure 14-2

 illustrates three basic subclasses of internal outputs:

 • Detailed reports present information with little or no fi ltering or restrictions.

The example in Figure 14-2(a) is a listing of all purchase orders that were gener-

ated on a particular date. Other examples of detail reports would be a detailed

listing of all customer accounts, orders, or products in inventory. Some detailed

reports are historical. Other detailed reports are regulatory, that is, required

by government.

 internal output an output

for system owners and users

within an organization.

 detailed report an internal

output that presents informa-

tion with little or no fi ltering.

456 Part Three Systems Design Methods

F I G U R E 1 4 - 1 A Taxonomy for Computer-Generated Outputs

 Internal Output Turnaround Output External Output
 (reporting) (external; then internal) (transactions)

Printer

Screen

Point-of-sale
terminals

Multimedia
(audio or video)

E-mail

Hyperlinks

Microfi che

Business transactions printed on
business forms that conclude the
business transactions.

Common examples: paychecks and
bank statements

Business transactions displayed on
business forms that conclude the
business transactions

Examples: Web-based report
detailing banking transactions

Information printed or displayed on
special-purpose terminals dedicated
to customers.

Examples: account balances display
at an ATM machine or printout
of lottery tickets; also, account
information displayed via television
over cable or satellite

Information transformed into speech
for external users.

Examples: movie trailer for
prospective online buyers of DVDs
or telephone response to mortgage
payoff query

Messages related to business
transactions.

Examples: e-mail message
confi rmations of business transactions
conducted via e-commerce on the
Web

Web-based links incorporated into
Web-based transactions

Examples: hyperlinks to privacy
policy or an explanation of how to
interpret or respond to information in
a report or transaction

Not applicable unless there is an
internal need for copies of external
reports.

Examples: computer output on
microfi lm (COM)

Detailed, summary, or exception
information printed on hard-copy
reports for internal business use.

Common examples: management
reports

Detailed, summary, or exception
information displayed on monitors
for internal business use.

Reports may be tabular or
graphical.

Examples: online management
reports and responses to inquiries

Information printed or displayed
on special-purpose terminals
dedicated to specifi c internal
business functions. Includes
wireless communication
information transmission.

Examples: end-of-shift cash
register balancing report

Information transformed into
speech for internal users.

Not commonly implemented for
internal users

Displayed messages related to
internal business information.

Examples: e-mail messages
announcing availability of new
online business report

Web-based links to internal
information that is enabled via
HTML or XML formats.

Examples: integration of all
information system reports into a
Web-based archival system for
online archival and access

Internal management reports
archived to microfi lm that requires
minimal physical storage space.

Examples: computer output on
microfi lm (COM)

Business transactions printed on
business forms that will eventually
be returned as input business
transactions.

Common examples: phone bills and
credit card bills

Business transactions displayed on
monitors in forms or windows that
will also be used to input other data
to initiate a related transaction.

Examples: Web-based display of
stock prices with the point-and-click
purchase option

Information printed or displayed on
a special-purpose terminal for the
purpose of initiating a follow-up
business transaction.

Examples: grocery store monitor that
allows customer to monitor scanned
prices, to be followed by input
of debit or credit card payment
authorization

Information transformed into speech
for external users who respond with
speech or tone input data.

Examples: telephone touch-tone
class schedule as part of course
registration system

Displayed messages intended to
initiate business transaction.

Examples: e-mail messages whose
responses are required to continue
processing a business transaction

Web-based links incorporated into
Web-based input pages to provide
users with access to additional
information.

Examples: on a Web auction page,
hyperlinks into a seller’s performance
history with an invitation to add a
new comment

Not applicable unless there is an
internal need to archive turnaround
documents.

Examples: computer output on
microfi lm (COM)

Distribution

Delivery

Output Design and Prototyping Chapter Fourteen 457

(a) Detailed reports

(b) Summary reports

 F I G U R E 14-2a
a n d 14-2b

Levels of Report
Detail

458 Part Three Systems Design Methods

 • Summary reports categorize information for managers who do not want to wade

through details. The sample report in Figure 14-2(b) summarizes the month’s and

year’s total sales by product type and category. The data for summary reports is

typically categorized and summarized to indicate trends and potential problems.

The use of graphics (charts and graphs) on summary reports is also rapidly gaining

acceptance because they more clearly summarize trends at a glance.

 • Exception reports fi lter data before it is presented to the manager as

 information. Exception reports include only exceptions to some condition or

standard. The example in Figure 14-2(c) depicts the identifi cation of delinquent

member accounts. Another classic example of an exception report is a report

that identifi es items that are low in stock.
 The opposite of internal outputs is external outputs. External outputs leave the

organization. They are intended for customers, suppliers, partners, and regulatory agen-

cies. They usually conclude or report on business transactions. Examples of external

outputs are invoices, account statements, paychecks, course schedules, airline tickets,

boarding passes, travel itineraries, telephone bills, purchase orders, and mailing labels.

 Figure 14-3 illustrates a sample external output for SoundStage Entertainment Club.

This sample, like many external outputs, is initially created as a blank, preprinted form

that is designed and duplicated by forms manufacturers for use with computer printers.

 Some outputs are both external and internal. They begin as external outputs that

exit the organization but ultimately return (in part or in whole) as an internal input.

 Turnaround outputs are those external outputs that eventually reenter the system

as inputs. Figure 14-4 demonstrates a turnaround document. Notice that the invoice

has upper and lower portions. The top portion is to be detached and returned with

the customer payment as an input.

 > Implementation Methods for Outputs

 We assume you are familiar with different output devices, such as printers, plotters,

computer output on microfi lm (COM), and PC display monitors. These are standard

topics in most introductory information systems courses. In this chapter, we are more

concerned with the actual output than with the device. A good systems analyst will

consider all available options for implementing an output. Let’s briefl y examine im-

plementation methods and formats. You should continue to reference Figure 14-1 as

we complete this introduction to the output taxonomy.

(c) Exception reports
 F I G U R E 14-2c

Levels of Report
Detail

 external output an output

that leaves the organization.

 summary report an in-

ternal output that categorizes

information for managers.

 exception report an

internal output that fi lters data

to present information that

reports exceptions to some

condition or standard.

 turnaround output an

 external output that may

 reenter the system as an

input.

Output Design and Prototyping Chapter Fourteen 459

 Printed Output The most common medium for computer outputs is paper—printed

output. Currently, paper is the cheapest medium we will survey. Although the paper-

less offi ce has been predicted for many years, it has not yet become a reality. Perhaps

there is a psychological dependence on paper as a medium. In any case, paper output

will be with us for a long time.

 Printed output may be produced on impact printers, but increasingly it is printed

on laser printers, which have become increasingly cost-effective. Internal outputs

are typically printed on blank paper (called stock paper). External outputs and turn-

around documents are printed on preprinted forms. The layout of preprinted forms

(such as blank checks and W-2 tax forms) is predetermined, and the blank documents

are mass-produced. The preprinted forms are run through the printer to add the vari-

able business data (such as your paycheck and W-2 tax form).

 Perhaps the most common format for printed output is tabular. Tabular output

presents information as columns of text and numbers. Most of the computer programs

you’ve written probably generated tabular reports. The sample detailed, summary,

and exception reports illustrated earlier in the chapter (Figure 14-2) were all tabular.

 An alternative to tabular output is zoned output. Zoned output places text and

numbers into designated areas or boxes of a form or screen. Zoned output is often

SoundStage Entertainment Club
Fax 317-494-5222

The following number must appear on all related correspondence,
shipping papers, and invoices:
P.O. NUMBER: 712812

To: Ship To:
CBS Fox Video Distribution

26253 Rodeo Dr

Hollywood, CA

P.O. DATE REQUISITIONER SHIP VIA F.O.B. POINT TERMS

5-3-06 LDB UPS Net 30

QTY DESCRIPTION UNIT PRICE TOTAL

20000 Star Wars: Revenge of the Sith (VHS) 15.99 319,800.00

3000 Star Wars: Revenge of the Sith (DVD Dolby Digital) 19.9 59,970.00

500 Star Wars: Revenge of the Sith (DVD DTS) 24.99 12,495.00

8000 Star Wars: Revenge of the Sith (PlayStation II) 16.99 135,920.00

400 Star Wars: Revenge of the Sith Soundtrack (CD) 16.99 6,796.00

600 Star Wars: Revenge of the Sith Theater Poster 4.99 2,994.00

Subtotal 537,975.00

Tax 37,658.25

Total 575,633.25

1. Please send two copies of your invoice.

2. Enter this order in accordance with the prices, terms, delivery method, and
specifications listed above.

3. Please notify us immediately if you are unable to ship as specified.

Madge Worthy 5-4-06
Authorized by Date

SoundStage Entertainment Club

Shipping/Receiving Station

Building A

2630 Darwin Drive

Indianapolis, IN 45213

 F I G U R E 1 4 - 3

 Typical External
Document

 tabular output an output

that presents information as

columns of text and numbers.

 zoned output an output

that presents text and num-

bers in designated areas of a

form or screen.

460 Part Three Systems Design Methods

Invoice No. 301231

Name KATRINA SMITH Due Date 2/24/06
Address 3019 DURAC DR Order No. 346910
City LITTLE ROCK State AR ZIP 42653
Phone 502-430-4545 Payment Amt

Detach and return top portion with payment

Qty Description Unit Price TOTAL

1 EAGLES HELL FREEZES OVER (DVD DD) $19.99 $19.99
1 THE GRAMMY BOX (CD) ***COUNTS AS 3 CREDITS $21.99 $21.99
1 GONE WITH THE WIND DIRECTORS CUT (DVD DS) $17.99 $17.99
1 SIXTH SENSE (VHS) FREE SS CR $0.00
1 A BUG'S LIFE (VHS) FREE SS CR $0.00
1 NASCAR 2000 (VHS) *** CLOSEOUT (NO SS CR) $9.99 $9.99

10 SOUNDSTAGE CREDITS WERE USED TO PAY
FOR PART OF THIS PURCHASE

WE APPRECIATE THE FINE MANNER IN WHICH YOU
HAVE PAID ON YOUR ACCOUNT. IN APPRECIATION
WE HAVE ADDED 7 SOUNDSTAGE CREDITS TO
YOUR ACCOUNT

YOU CAN EARN 7 CREDITS BY PAYING THIS
INVOICE BY THE DUE DATE

SubTotal $69.96
Shipping & Handling $7.00

 Cash Taxes $2.95
 Check
 Credit Card TOTAL $79.91

Name
CC # Office Use Only

Expires

RETURN TOP PORTION WITH PAYMENT

SoundStage Entertainment
Club
2630 Darwin Drive - Bldg B
Indianapolis, IN 45213
317 496 0998 fax 317 494 0999 INVOICE

Payment Details

Customer

Please return top portion invoice with payment. Make checks payable to:
SoundStage Entertainment Club.

 F I G U R E 1 4 - 4 Typical Turnaround Document

Output Design and Prototyping Chapter Fourteen 461

used in conjunction with tabular output. For example, an order output contains zones

for customer and order data in addition to tables (or rows of columns) for ordered

products.
 Screen Output The fastest-growing medium for computer outputs is the online dis-

play of information on a visual display device, such as a CRT terminal or PC monitor.

The pace of today’s economy requires information on demand. Screen output is most

suited to this requirement.

 While screen output provides the system user with convenient access to informa-

tion, the information is only temporary. When the information leaves the screen, that

information is lost unless it is redisplayed. For this reason, printed output options are

usually added to screen output designs.

 Thanks to screen output technology, tabular reports—especially summary reports—

can be presented in graphical formats. Graphic output is the use of a pictorial chart

to convey information in ways that demonstrate trends and relationships not easily

seen in tabular output.

 To the system user, a picture can be more valuable than words. There are nu-

merous types and styles of charts for presenting information. Figure 14-5 summarizes

various types of charts that can be output with today’s technology. Report writing

technology and spreadsheet software can quickly transform tabular data into charts

that enable the reader to more quickly draw conclusions.

 The popularity of graphic output has also been stimulated by the availability of low-

cost, easy-to-use graphics printers and software, especially in the PC industry. Later in

this chapter we will show you an alternative graphic design for a SoundStage output.
 Point-of-Sale Terminals Many of today’s retail and consumer transactions are en-

abled or enhanced by point-of-sale (POS) terminals. The classic example is the auto-

mated teller machine (ATM). POS terminals are both input and output devices. In

this chapter, we are interested only in the output dimension. ATMs display account

balances and print transaction receipts. POS cash registers display prices and running

totals as bar codes are scanned, and they also produce receipts. Lottery POS terminals

generate random numbers and print tickets. All are examples of outputs that must be

designed.
 Multimedia Multimedia is a term coined to collectively describe any information

presented in a format other than traditional numbers, codes, and words. This includes

graphics, sound, pictures, and animation. It is usually presented as a contemporary

extension to screen output. Increasingly, multimedia output is being driven by the

transition of information systems applications to the Internet and intranets.

 We’ve already discussed graphical output. But other multimedia formats can be

integrated into traditional screen designs. Many information systems offer fi lm and

animation as part of the output mix. Product descriptions as well as installation and

maintenance instructions can be integrated into online catalogs using multimedia

tools. Sound bites can also be integrated.

 But multimedia output is not dependent on screen display technology. Sound,

in the form of telephone touch-tone–based systems, can be used to implement an

interesting output alternative. Many banks offer their customers touch-tone access to

a wide variety of account, loan, and transaction data.
 E-mail E-mail has transformed communications in the modern business world, if not

society as a whole. New information systems are expected to be message-enabled. How

does this impact output design? Transactional systems are increasingly Web-enabled.

When you purchase products over the Web, you almost always receive automated

e-mail output to confi rm your order. Follow-up e-mail may inform you of order

fulfi llment progress and initiate customer follow-up (a form of turnaround output).

 graphic output an output

that uses a pictorial chart to

convey information.

462 Part Three Systems Design Methods

SampleSample Selection CriteriaSelection Criteria

Line ChartLine Chart Line charts show one or more series of data over a period of
time. They are useful for summarizing and showing data at
regular intervals. Each line represents one series or category of
data.

Area ChartArea Chart Area charts are similar to line charts except that the focus is on
the area under the line. That area is useful for summarizing and
showing the change in data over time. Each line represents one
series or category of data.

Bar ChartBar Chart Bar charts are useful for comparing series or categories of data.
Each bar represents one series or category of data.

Column ChartColumn Chart Column charts are similar to bar charts except that the bars
are vertical. Also, a series of column charts may be used to
compare the same categories at different times or time intervals.
Each bar represents one series or category of data.

Pie ChartPie Chart Pie charts show the relationship of parts to a whole. They are
useful for summarizing percentages of a whole within a single
series of data. Each slice represents one item in that series of data.

Donut ChartDonut Chart Donut charts are similar to pie charts except that they can show
multiple series or categories of data, each as its own concentric
ring. Within each ring, a slice of that ring represents one item in
that series of data.

Radar ChartRadar Chart Radar charts are useful for comparing different aspects of more
than one series or category of data. Each data series is
represented as a geometric shape around a central point. Multiple
series are overlaid so that they can be compared.

Scatter ChartScatter Chart Scatter charts are useful for showing the relationship between
two or more series or categories of data measured at uneven
intervals of time. Each series is represented by data points using
either different colors or bullets.

 F I G U R E 1 4 - 5 Chart Types and Selection Criteria

Output Design and Prototyping Chapter Fourteen 463

 Internal outputs may also be e-mail–enhanced. For example, a system can push

notifi cation of the availability of new reports to interested users. Only those users

who truly need the report will access the report and print it. This can generate a sig-

nifi cant cost savings over mass distribution.
 Hyperlinks Many outputs are now Web-enabled. Many databases and consumer

ordering systems are now Web-enabled. Web hyperlinks allow users to browse lists of

records or search for specifi c records and retrieve various levels of detailed informa-

tion on demand. Obviously, this medium can and is extended to computer inputs.

 Technology exists to easily transform internal reports into HTML or XML formats

for distribution via intranets. This reduces dependence on printed reports and screen

reports that require a specifi c operating system or version (such as Windows). Es-

sentially, all the recipient requires is a current browser that can run on any computer

platform (Windows, Mac, Linux, or UNIX).

 But Web-enabled output goes beyond presenting traditional outputs via the Inter net

and intranets. Many businesses have invested in Web-based internal report systems that

consolidate weeks, months, and years of traditional internal reports into an organized

database from which the reports can be recalled and displayed or printed. These sys-

tems don’t create new outputs. They merely reformat previous reports for access via a

browser. Think of it as an on-demand, Web-enabled report archival system. Examples

of such reporting systems include DataWatch Monarch/ES and NSA Report.Web.
 Microfi lm Paper is bulky and requires considerable storage space. To overcome

the storage problem, many businesses use microfi lm as an output medium. The fi rst

fi lm medium is microfi lm. More commonly, they turn to microfi che, small sheets of

 microfi lm capable of storing dozens or hundreds of pages of computer output. The

use of fi lm presents its own problems; microfi che and microfi lm can be produced and

read only by special equipment.

 This completes our introduction to output concepts. If you study Figure 14-1

carefully, you can see that implementation and distribution options can be combined

to develop very creative, user-friendly, and exciting outputs.

 How to Design and Prototype Outputs

 In this section, we’ll discuss and demonstrate the process of output design and proto-

typing. We’ll introduce some tools for documenting and prototyping output design,

and we’ll also apply the concepts you learned in the last section. We will demonstrate

how automated tools can be used to design and prototype outputs and layouts to

system users and programmers. As usual, each step of the output design technique

will be demonstrated using examples drawn from our SoundStage Entertainment

Club case study.

 > Automated Tools for Output Design and Prototyping

 Before the availability of automated tools, analysts could sketch only rough drafts of

outputs to get a feel for how system users wanted outputs to look. With automated

tools, we can develop more realistic prototypes of these outputs. Perhaps the least

expensive and most overlooked prototyping tool is the common spreadsheet. Exam-

ples include Lotus 1-2-3 and Microsoft Excel. A spreadsheet’s tabular format is ideally

suited to the creation of tabular output prototypes. And most spreadsheets include

facilities to quickly convert tabular data into a variety of popular chart formats. Conse-

quently, spreadsheets provide an unprecedented way to quickly prototype graphical

output for system users.

464 Part Three Systems Design Methods

 Arguably, the most commonly used automated tool for output design is the PC-
database application development environment. Many of you have no doubt learned
Microsoft Access in either a PC literacy or database development course. While Access
is not powerful enough to develop most enterprise-level applications, you may be
surprised at how many designers use Access to prototype such applications. First, it
provides rapid development tools to quickly construct a single-user (or few-user) da-
tabase and test data. That data can subsequently feed the output design prototypes to
increase realism. Designers can use Access ’s report facility to lay out proposed output
designs and test them with users.

 Many CASE tools include facilities for report and screen layout and prototyping
using the project repository created during requirements analysis. System Architect’s
screen design facility is demonstrated in Figure 14-6 .

 The above automated tools have signifi cantly accelerated and enhanced the
output design process. But the ultimate output design process would not only pro-
totype the output’s design but also serve as the fi nal implementation of that output.
This more sophisticated solution is found in report writing output tools such as Busi-
ness Objects’ Crystal Reports and Actuate’s e.Reporting Suite. These products create
the actual “code” to be integrated in the operational information system. Figure 14-7
illustrates two screens from the Crystal Reports tool being used to create a Sound-
Stage report from a prototype database.

 F I G U R E 1 4 - 6 CASE Tool for Output Design

Output Design and Prototyping Chapter Fourteen 465

(a)

(b)

 F I G U R E 1 4 - 7

Report Writer Tool
for Report Design

466 Part Three Systems Design Methods

 > Output Design Guidelines

 Many issues apply to output design. Most are driven by human engineering concerns—

the desire to design outputs that will support the ways in which system users work.

The following general principles are important for output design:

 1. Computer outputs should be simple to read and interpret. These guidelines may

enhance readability:

 a. Every output should have a title.

 b. Every output should be dated and time-stamped. This helps the reader appreciate

the currency of information (or lack thereof).

 c. Reports and screens should include sections and headings to segment

information.

 d. In form-based outputs, all fi elds should be clearly labeled.

 e. In tabular-based outputs, columns should be clearly labeled.

 f. Because section headings, fi eld names, and column headings are sometimes

abbreviated to conserve space, reports should include or provide access to

legends to interpret those headings.

 g. Only required information should be printed or displayed. In online outputs,

use information hiding and provide methods to expand and contract levels of

detail.

 h. Information should never have to be manually edited to become usable.

 i. Information should be balanced on the report or display—not too crowded,

not too spread out. Also, provide suffi cient margins and spacing throughout

the output to enhance readability.

 j. Users must be able to easily fi nd the output, move forward and backward, and

exit the report.

 k. Computer jargon and error messages should be omitted from all outputs.

 2. The timing of computer outputs is important. Output information must reach

recipients while the information is pertinent to transactions or decisions. This

can affect how the output is designed and implemented.

 3. The distribution of (or access to) computer outputs must be suffi cient to

assist all relevant system users. The choice of implementation method affects

distribution.

 4. The computer outputs must be acceptable to the system users who will receive

them. An output design may contain the required information and still not be

acceptable to the system user. To avoid this problem, the systems analyst must

understand how the recipient plans to use the output.
 > The Output Design Process

 Output design is not a complicated process. Some steps are essential, and others are

dictated by circumstances. In the following subsections, we examine these steps and

illustrate a few examples from the SoundStage project.

 Step 1: Identify System Outputs and Review Logical Requirements Output

requirements should have been defi ned during requirements analysis. Physical data

fl ow diagrams (or design units, both described in Chapter 12) are a good starting

point for output design. Those DFDs identify both the net outputs of the system

 (process-to-external agent) and the implementation method.

 Depending on your system development methodology and standards, each of

these net output data fl ows may also be described as a logical data fl ow in a data

dictionary or repository (see data structures, Chapter 8). The data structure for a data

fl ow specifi es the attributes or fi elds to be included in the output. If those require-

ments are specifi ed in the relational algebraic notation, you can quickly determine

Output Design and Prototyping Chapter Fourteen 467

which fi elds repeat, which fi elds have optional values, and so on. Consider the fol-

lowing data structure:

Data Structure Defi ning Logical Requirements Comment

INVOICE INVOICE NUMBER

 INVOICE DATE

 CUSTOMER NUMBER

 CUSTOMER NAME

 CUSTOMER BILLING ADDRESS ADDRESS

 1 {SERVICE DATE

 SERVICE PROVIDED

 SERVICE CHARGE} N

 PREVIOUS BALANCE DUE

 PAYMENTS RECEIVED

 TOTAL NEW SERVICE CHARGES

 INTEREST CHARGES

 NEW BALANCE DUE

 MINIMUM PAYMENT DUE

 PAYMENT DUE DATE

 (DEFAULT CREDIT CARD NUMBER)

 ([CREDIT MESSAGE | PAYMENT MESSAGE])

← Unique identifi er of the output.

← One of many fi elds that must take on

 a value. Lack of parentheses indicates

 a value is required.

← Pointer to a related defi nition.

← Begins group of fi elds that repeats

 1 n times.

← More required fi elds with single values.

← Field does not have to have value.

← Field does not have to have value, but

if it does, it will provide only one of two

possible fi eld options.

 Without such precise requirements, discovery prototypes may exist that were

created during requirements analysis. In either case, a good requirements statement

should be available in some format.

 Step 2: Specify Physical Output Requirements Recall that the decision anal-

ysis phase should have established some expectation of how most output data

fl ows will eventually be implemented. Relative to outputs, the decisions were

made by determining the best medium and format for the design and implementa-

tion based on:

 • Type and purpose of the output.

 • Operational,technical, and economic feasibility.

 Because feasibility is important to more than just outputs, the techniques for

evaluating feasibility were covered separately (in Chapter 9). The fi rst set of criteria,

however, is described in the following list:

 • Is the output for internal or external use?

 • If it’s an internal output, is it a detailed, summary, or exception report?

 • If it’s an external report, is it a turnaround document?

 After assuring yourself that you understand what type of report the output is and how

it will be used, you need to address several design issues:

 1. What implementation method would best serve the output? Various methods

were discussed earlier in the chapter. You will have to understand the purpose

or use of the output to determine the proper method. You can select more

468 Part Three Systems Design Methods

than one method for a single output—for instance, screen output with optional
printout. Clearly, these decisions are best addressed with the system users.
 a. What would be the best format for the report? Tabular? Zoned? Graphic? Some

combination?
 b. If a printout is desired, you must determine what type of form or paper will

be used. Stock paper comes in three standard sizes (all specifi ed in inches):
81⁄2 11, 11 14, and 81⁄2 14 inches. You need to determine the capabilities
and limitations of the intended printer.

 c. For screen output, you need to understand the limitations of the users’ display
devices. Despite the increase in larger 19- and 21-inch high-resolution moni-
tors, most users still have 15- and 17-inch displays and have their screen
resolution set as low as 640 480 pixels (especially as you reach out directly
to consumers in e-commerce applications). It is still recommended that screen
outputs (including forms or pages within your application) be designed for
the lowest common denominator.

 d. Form images can be stored and printed with modern laser printers, thereby
eliminating the need for dealing with forms manufacturers in some businesses.

 2. How frequently is the output generated? On demand? Hourly? Daily? Monthly?
For scheduled outputs, when do system users need the report?
 a. Users generate many reports on demand. It can be helpful to use automated

e-mail to notify users that new versions are available.
 b. If reports are to be printed by the information services department, they must

be worked into the information systems operations schedule. For instance, a
report the system user needs by 9:00 A.M. on Thursday may have to be sched-
uled for 5:30 A.M. Thursday. No other time may be available.

 3. How many pages or sheets of output will be generated for a single copy of a
printed output? This information may be necessary to accurately plan paper and
forms consumption.

 4. Does the output require multiple copies? If so, how many?
 a. Impact printers are usually required to print all copies of a multicopy form at

the same time.
 b. Laser printers can print multiple copies of a form only one after the other. This

means that if the copies are different in color or fi elds, the preprinted forms
must be collated before fi nal printing.

 5. For printed outputs, have distribution controls been fi nalized? For online outputs,
access controls should be determined.

 These design decisions should be recorded in the data dictionary/project repository.
Let’s consider an example from our SoundStage Entertainment Club case.

 One output for SoundStage is the MEMBER RESPONSE SUMMARY REPORT. This report was re-
quested to provide internal management with information regarding customer responses
to the monthly promotional offers. The following design requirements were established:

 1. The manager will request the report from his or her own workstation. It was
determined that the information should be presented as a screen output in both
tabular and graphical formats (to be determined via prototypes).
 a. All managers have 17-inch or larger display monitors.
 b. Managers should have the option of obtaining a laser printer output via their

LAN confi guration. Printouts should be on 81⁄2- 11-inch stock paper.
 2. Managers must be able to display the report on demand. Managers have request-

ed automatic e-mail notifi cation of the availability of any newly generated version
of the report. A hyperlink to the latest version of the report should also be made
available in the standard home page of every Member Services manager, level 3
and above.

 3. Graphical output should be displayable in a single screen and printable on a
single page. Tabular data may be printed on one to two pages. The volume of
pages is not considered signifi cant for this report.

Output Design and Prototyping Chapter Fourteen 469

 4. The report must be restricted in access to managers whose network accounts

carry level-3 or higher account privileges. The report should include a “Confi den-

tial” watermark and a message that prohibits external distribution or information

sharing without the written permission of Internal Audit.
 Step 3: Design Any Preprinted Forms External and turnaround documents are

separated here for special consideration because they contain considerable constant

and preprinted information that must be designed before designing the fi nal output. In

most cases, the design of a preprinted form is subcontracted to a forms manufacturer.

The business, however, must specify the design requirements and carefully review

design prototypes. The design requirements address issues such as the following:

 • What preprinted information must appear on the form? This includes contact

information, headings, labels, and other common information to appear on all

copies of the form.

 • Should the form be designed for mailing? If so, address locations become impor-

tant based on whether or not windowed envelopes will be used.

 • How many forms will be required for printing each day? Week? Month? Year?

 • What will be the form’s size? Form size, along with volume (above), can impact

mailing costs.

 • Will the form be perforated to serve as a turnaround document? Also, for turn-

around documents the location of the address becomes more critical because

the return address for the external output becomes the mailing address for the

returned document.

 • What legends, policies, and instructions need to be printed on the form (both

front and back)?

 • What colors will be used, and for which copies?
 For external documents, there are also several alternatives. Carbon and chemical

carbon are the most common duplicating techniques. Selective carbons are a varia-

tion whereby certain fi elds on the master copy will not be printed on one or more of

the remaining copies. The fi elds to be omitted must be communicated to the forms

manufacturer. Two-up printing is a technique whereby two sets of forms, possibly

including carbons, are printed side by side on the printer.

 A SoundStage preprinted output form was previously displayed as Figure 14-3 .

 Step 4: Design, Validate, and Test Outputs After design decisions and details

have been recorded in the project repository, we must design the actual format of

the report. The format or layout of an output directly affects the system user’s ability

to read and interpret it. The best way to lay out the format is to sketch or, better still,

generate a sample of the report or document. We need to show that sketch or pro-

totype to the system user, get feedback, and modify the sample. It’s important to use

realistic or reasonable data and demonstrate all control breaks.

 The most important issue during the design step is format. Figure 14-8 summa-

rizes a number of design issues and considerations for printed and tabular reports.

Many of these considerations apply equally to screen outputs. Also, screen output

offers a number of special considerations that are summarized in Figure 14-9 .

 The SoundStage management expressed concern that the MEMBER RESPONSE SUMMARY

output could potentially become too lengthy. Often the manager is interested in seeing

only information pertaining to member responses for one or a few different product

promotions. Thus, it was decided that the manager needed the ability to “customize”

the output. The screens used to allow the manager to specify the customization desired

should be prototyped as well as the report and graph containing the actual information.

 Figure 14-10(a) shows the prototype of the screen the user can use to choose a particular

report (or graph) and customize its content. The following points should be noted:

 1 A tab dialogue box is used to allow the user to select between obtaining a

report and obtaining a graph. A tab control is used to present a series of related

470 Part Three Systems Design Methods

 F I G U R E 1 4 - 8 Tabular Report Design Principles

Design Issue Design Guideline Examples

Page size At one time, most reports were printed on
oversized paper. This required special binding
and storage. Today, the page sizes of choice
are standard (81兾2” 11”) and legal (81兾2”
14”). These sizes are compatible with the
predominance of laser printers in the modern
business.

Not applicable.

Page orientation Page orientation is the width and length of a
page as it is rotated. The portrait orientation
(e.g., 81兾2 W 11 L) is often preferred because
it is oriented the way we orient most books
and reports; however, landscape (e.g, 11W
 81兾2 L) is often necessitated for tabular
reports because more columns can be printed.

Page headings Page headers should appear on every page. At
a minimum, they should include a recognizable
report title, date and time, and page numbers.
Headers may be consolidated into one line or
use multiple lines.

JAN 4, 2001 PAGE 4 OF 6

OVERSUBSCRIPTIONS BY COURSE

Report legends A legend is an explanation of obbreviations,
colors, or codes used in a report.

In a printed report, a legend can be printed on
only the fi rst page or on every page.

On a display screen, a legend can be made
available as a pop-up dialogue box.

REPORT LEGEND

SEATS NUMBER OF SEATS IN THE CLASSROOM

LIM COURSE ENROLLMENT LIMIT

REQ NUMBER OF SEATS REQUESTED BY DEPARTMENT

RES NUMBER OF SEATS RESERVED FOR DEPARTMENT

USED NUMBER OF SEATS USED BY DEPARTMENT

AVL NUMBER OF SEATS AVAILABLE FOR DEPARTMENT

OVR NUMBER OF OVERSUBSCRIPTIONS FOR DEPARTMENT

Column
headings

Column headings should be short and
descriptive. If possible, avoid obbreviations.
Unfortunately, this is not always possible. If
abbreviations are used, include a legend (see
“Report legends”).

Self-explanatory.

Heading
alignments

The relationship of column headings to the
actual column data under those headings can
greatly affect readability. Alignment should be
tested with users for preferences, with a special
emphasis on the risk of misinterpretation of the
information.

See examples for possibilities (which can be
combined)

Left justifi cation (good for longer and variable-length fi elds):

 NAME

 XXXXXXXX X XXXXXXXXX XXXXXX

Right justifi cation (good for some numeric fi elds, especially
monetary fi elds); be sure to align decimal points:

 AMOUNT

$$$, $$$.¢¢

Center (good for fixed-length fields and some moderate-length
fields):

STATUS

XXXX

XXXX

portrait landscape

Output Design and Prototyping Chapter Fourteen 471

information. If the user clicks on the tab labeled “Graphs,” information would be

displayed for customizing the output as a graph.

 2 A drop-down list is used to select the desired report. The user can click on the

downward arrow to obtain a list of possible reports to choose from.

 3 The user is provided with a series of check boxes that correspond to general

options for customizing the selected report. The user simply “checks” the op-

tions he wishes to have on the report.

 4 A group of check boxes is also used to allow the user to select one or more

product categories she wishes to include on the report.

 5 Once again, a group of check boxes is used to allow the user to further

customize the report. Here the user is allowed to indicate the type of summary

information or totals desired for each product category.

 F I G U R E 1 4 - 8 Concluded

Design Issue Design Guideline Examples

Column spacing The spacing between columns impacts
readability. If the columns are too close, users
may not properly differentiate between the
columns. If they are spaced too far apart, the
user may have diffi culty following a single row
all the way across a page. As a general rule of
thumb, place 3–5 spaces between each column.

Self-explanatory.

Row headings The fi rst one or two columns should serve as the
identifi cation data that differentiates each row.

Rows should be sequenced in a fashion that
supports their use. Frequently rows are sorted
on a numerical key or alphabetically.

By number:

 STUDENT ID STUDENT NAME

 999–38–8476 MARY ELLEN KUKOW

 999–39–5857

By alpha:

 SERVICE CANCEL SUBSCR TOTAL

 HBO 45 345 7665

Formating Data is often stored without formatting characters
to save storage space. Outputs should reformat
that data to match the users’ norms.

As stored: As output:

 307877262 307–87–7262

 8004445454 (800) 444–5454

 02272000 Feb 27, 2000

Control breaks Frequently, rows represent groups of
meaningful data. Those groups should be
logically grouped in the report. The transition
from one group to the next is called a control
break and is frequently followed by subtotals
for the group.

RANK NAME SALARY

CPT JANEWAY, K 175,000

CPT KIRK, J 225,000

CPT PICARD, J 200,000

CPT SISKO, B 165,000

 CAPTAINS TOTAL 765,000 ☞ a control break

LTC CHAKOTAY 110,000

LTC DATA 125,000

LTC RIKER, W 140,000

LTC SPOCK, S 155,000

 EXEC OFFCR TOTAL 530,000

End of report The end of a report should be clearly indicated
to ensure that users have the entire report.

*** END OF REPORT ***

472 Part Three Systems Design Methods

F I G U R E 1 4 - 9 Screen Output Design Principles

Screen Design
Consideration Design Guidelines

Size Different displays support different resolutions. The designer should consider the “lowest common denominator.”

 The default window size should be less than or equal to the worst resolution display in the user community. For
instance, if some users have only a 640 480 pixel resolution display, don’t design windows to open at an
800 600 pixel resolution.

Scrolling Online outputs have the advantage of not being limited by the physical page. This can also be a disadvantage
if important information such as column headings scrolls off the screen. If possible, freeze important headings at
the top of a screen.

Navigation Users should always have a sense of where they are in a network of online screens. Given that, users also
require the ability to navigate between screens.

 WINDOWS: Outputs appear in windows called forms. A form may display one record or many. The scroll
bar should indicate where you are in the report. Buttons are frequently provided to move
forward and backward through records in the report and to exit the report.

 INTERNET: Outputs appear in windows called pages. A page may display one record or many. Buttons or
hyperlinks may be used to navigate through records. Custom search engines can also be used
to navigate to specifi c locations within a report.

Partitioning WINDOWS: Zones are forms within forms. Each form is independent of the other but can be related. The
zones can be independently scrollable. The Microsoft Outlook bar is one example. Zones can be
used for legends or control breaks that take the user to different sections within a report.

 INTERNET: Frames are pages within pages. Users can scroll independently within pages. Frames can
enhance reports in many ways. They can be used for a legend, table of contents, or summary
information.

Information hiding Online applications such as those that run under Windows or within an Internet browser offer capabilities to hide
information until it either is needed or becomes important. Examples of such information hiding include:

 • Drill-down controls that show minimal information and provide readers with simple ways to expand or
contract the level of detail displayed.

 — In Windows outputs, the use of a small plus or minus sign in a small box to the left of a data record
offers the option of expanding or contracting the record into more or less detail. All of this expansion
and contraction occurs within the output’s window.

 — In intranet applications, any given piece of summary information can be highlighted as a hyperlink to
expand that information into greater detail. Typically, the expanded information is opened in a separate
window so that the reader can use the browser’s forward and backward buttons to switch between levels of
detail.

 • Pop-up dialogue boxes may be triggered by information.

Highlighting Highlighting can be used in reports to call users’ attention to erroneous data, exception data, or specifi c
problems. Highlighting can also be a distraction if misused. Ongoing human factors research will continue to
guide our future use of highlighting. Examples of highlighting include:

 • Color (avoid colors that color-blind persons cannot distinguish).

 • Font and case (changing case can draw attention).

 • Justifi cation (left, right, or centered).

 • Hyphenation (not recommended in reports).

 • Blinking (can draw attention or become annoying).

 • Reverse video.

Printing For many users, there is still comfort in printed reports. Always provide users the option to print a permanent
copy of the report. For Internet use, reports may need to be made available in industry-standard formats such
as Adobe Acrobat, which allows users to open and read the reports using free and widely available software.

Output Design and Prototyping Chapter Fourteen 473

(a) Report customization prototype
 F I G U R E 14-10

Report
Customization and
Tabular Report
Prototypes

(b) Tabular report prototype

474 Part Three Systems Design Methods

 Let’s now look at a prototype of the report that will result from the previous re-

port customization dialogue. Figure 14-10(b) is a prototype of a screen output version

of the actual report. Examine the content and appearance of the tabular design. No-

tice that the user is allowed to scroll vertically and horizontally to view the entire

report. In addition, buttons are provided to allow the user to toggle forward and

backward to view different report pages.

 Finally, let’s look at a prototype of a graphic version of the MEMBER RESPONSE

 SUMMARY output (see Figure 14-11). Note the following:

 • The graph is clearly labeled along the vertical and horizontal axes.

 • A legend has been provided to aid in interpreting the graph bars.

 When you are prototyping outputs, it is important to involve the user to obtain

feedback. The user should be allowed to actually “exercise” or test the screens. Part of

that experience should involve demonstrating how the user may obtain appropriate

help or instructions, drill-down to obtain additional information, navigate through

pages, request different formats that are available, size the outputs, and perform test

customization capabilities. All features should be demonstrated or tested.

 Thus far, we have presented samples of only a tabular and a graphical report.

Another type of output is a record-at-a-time report. Users can browse forward and

backward through individual records in a fi le. A sample screen for a record-at-a-time

output is shown in Figure 14-12 . We call your attention to the following:

 1 Each fi eld is clearly labeled.

 2 Buttons have been added for navigation between records. The almost univer-

sally accepted buttons are for FIRST RECORD, NEXT RECORD, PREVIOUS RECORD, and

 LAST RECORD.

 3 We added buttons for the user to get a printed copy of the output, as well as to

exit the report when fi nished. (Consistent with prototyping, the programmer

will write the code for exiting later.)
 > Web-Based Outputs and E-Business

 The last output design considerations we want to address concern Web-based out-

puts. The SoundStage project will add various e-commerce and e-business capabilities

 F I G U R E 14-11

Graphical Report
Prototype

Output Design and Prototyping Chapter Fourteen 475

to the Member Services information system. Some of these capabilities will affect

output design.

 One logical output requirement for the project is catalog browsing. Members

should be able to browse and search catalogs, presumably as a preface to placing

orders. The catalog itself is the output. Figure 14-13 is a prototype screen for the

physical catalog output. Note the following:

 1 This output uses frames to allow the user to focus separately on navigation and

output.

 2 The screen uses hyperlinks to provide navigation through complex menu struc-

tures that are related to the output.

 3 Hyperlinks also allow the user to get additional information. This functionality

is referred to as “drill-down.”

 4 Shading is used to separate each detail line. This practice refl ects the more

 artistic approach used to design Web-based outputs. Also, the “BUY” buttons

have effectively transformed this output into a trigger for subsequent inputs.

This is the e-commerce virtual equivalent of a turnaround document!

 5 Most Web-based output screen designs require standard footers on the screen to

provide additional navigation.

 6 A picture can be a selectable object. In this case it represents another type of

drill-down where the user is able to obtain additional information.

 F I G U R E 14-12

Single Record
Output Prototype

476 Part Three Systems Design Methods

 Another output requirement is to allow members to play video trailers and audio

sound bites for products to preview candidate purchases. The preview will be trig-

gered by a hyperlink in the previous screen, and it will activate a multimedia player as

shown in Figure 14-14 on the previous page. Such output extensions are expected to

become the norm as Internet- and intranet-based applications grow in popularity.

 F I G U R E 1 4 - 1 3 Web Database Output

Output Design and Prototyping Chapter Fourteen 477

 F I G U R E 1 4 - 1 4 Windows Media Player Output

 1 Web-based outputs frequently use plug-ins. This output screen has the standard

buttons associated with a typical audio or video player.

 2 Web-based outputs also commonly provide appropriate plug-ins or plug-in ver-

sions needed for the session.

 Chapter Review

 1. Outputs can be classifi ed according to two
characteristics:

 a. Their distribution inside or outside the
organization and the people who read and
use them.

 b. Their implementation method.

 2. Internal outputs are intended for the system
owners and users within an organization. They
only rarely fi nd their way outside the organization.
There are three subclasses of internal outputs: a. Detailed reports—present information with

little or no fi ltering or restrictions.
 b. Summary reports—categorize information for

managers who do not want to wade through
details.

 c. Exception reports—fi lter data before it is
presented to the manager as information.

 3. External outputs leave the organization. They are
intended for customers, suppliers, partners, and
regulatory agencies. They usually conclude or
report on business transactions.

 4. Some outputs are both external and internal. They
begin as external outputs that exit the organization
but return in part or in whole.

 5. Turnaround outputs are those external outputs
that eventually reenter the system as inputs.

 6. A good systems analyst will consider all available
options for implementing an output. Several
methods and formats exist: a. The most common medium for computer

outputs is paper—printed output. Internal
outputs are typically printed on blank paper
(called stock paper). External outputs and
turnaround documents are printed on
preprinted forms.

 i) Perhaps the most common format for printed
output is tabular. Tabular output presents
information as columns of text and numbers.

 ii) An alternative to tabular output is zoned
output. Zoned output places text and
numbers into designated areas or boxes of a
form or screen.

 b. Screen output is most suited to the pace of
today’s economy, which requires information
on demand. Screen output technology allows
reports to be presented in graphical formats.
Graphic output is the use of a pictorial chart to
convey information in ways that demonstrate
trends and relationships not easily seen in
tabular output.

 c. Many of today’s retail and consumer
transactions are enabled or enhanced by point-
of-sale (POS) terminals.

 d. Multimedia is a term coined to collectively
describe any information presented in a format
other than traditional numbers, codes, and
words. This includes graphics, sound, pictures,
and animation.

 e. E-mail is becoming a very popular output
medium as a means of reaching large audiences
and generating signifi cant cost savings.

 f. Web hyperlinks allow users to browse lists of
records or search for specifi c records and retrieve
various levels of detailed information on demand.

 g. Paper requires considerable storage space. To
overcome the storage problem, many businesses
use microfi lm as an output medium.

 7. The most commonly used automated tool for
output design is the PC-database application
development environment. Many CASE tools also
include facilities for report and screen layout and
prototyping using the project repository created
during requirements analysis.

 8. The following general principles are important for
output design: a. Computer outputs should be simple to read and

interpret.
 b. The timing of computer outputs is important—

their recipients must receive output
information while the information is pertinent
to transactions or decisions.

 c. The distribution of (or access to) computer
outputs must be suffi cient to assist all relevant
system users.

 d. The computer outputs must be acceptable to
the system users who will receive them.

 9. Output design is not a complicated process. Some
steps are essential, and others are dictated by
circumstances. The steps are:

 a. Identify system outputs and review logical
requirements.

 b. Specify physical output requirements.
 c. As necessary, design any preprinted external

forms.
 d. Design, validate, and test outputs using some

combination of:

 i) Layout tools (e.g., hand sketches, printer/
display layout charts, or CASE).

 ii) Prototyping tools (e.g., spreadsheet, PC
DBMS, 4GL).

 iii) Code-generating tools (e.g., report writer).

478 Part Three Systems Design Methods

479 Part One The Context of Systems Development Projects

 1. What are some of the characteristics of
prototypes?

 2. How are outputs classifi ed?
 3. What is the difference between the summary

report and the exception report?
 4. What are some examples of external reports?
 5. What is the difference between tabular output

and zoned output?
 6. Why are printed reports needed in addition to

the screen outputs?
 7. What are some of the examples of pictorial

charts?

 8. Why should graphic outputs be used?
 9. What are some of the output design guidelines?
 10. What are the steps basic for designing output?
 11. What are the two most important kinds of criteria

that analysts should consider when they specify
physical output requirements? Why are they
important?

 12. What are some of the design issues that analysts
need to consider?

 13. What are preprinted forms for?
 14. What is the advantage of using frames when

displaying information on the Internet?
Review Questions

1

2

 1. One hundred years ago, if you were designing
a report, what different delivery methods and
media were available? What about 50 years ago?
Today? What do you think has been the biggest
change in reports over the past 100 years?

 2. You are working as a systems designer for the
county Department of Social Services. The
director of the county child protection agency
is concerned about the agency’s caseload and
the length of time that cases remain open. The
agency’s objective is to have no open cases older
than 60 days, and preferably none older than
30 days. The director wants a monthly report
showing the number of cases, by age, for each of
the 12 child protection workers in the agency.
What subclass of report should you design?
Should the output format be tabular or zoned?
Describe the data structure defi ning logical
requirements for the report. Use the format
described in the chapter.

 3. Use the information in the preceding question to
create a prototype of the report; use an automated
tool such as Microsoft Access (or if you prefer, you
can create a prototype the old-fashioned way).
Populate the report with several sample records,
in alphabetical order by worker last name.

 4. The director of the child protection agency is
pleased with the report, but would also like to see
it in graphic format. What chart type(s) would be
inappropriate? Why? What chart type(s) would be
appropriate for this type of report? Why? Which
one do you think would be the best one? Why?

 5. What subclass of report would you design for
the sales manager of a car dealership whose job
it is to review vehicle sales each week and year
to date? What data elements should be included

Problems and Exercises

in the report? What should you ask the sales
manager before you design the report?

 6. The sales manager also has to know, on a weekly
basis, who didn’t make their sales quota for the
previous week and/or for the year to date. What
subclass of report is needed in this situation?
What data elements would you include, and how
would you group them?

 7. Match the defi nitions or examples in the fi rst
column with the terms in the second column.

 A. On-demand Web-
enabled report
archival system

 B. ATM

 C. Traditional output
medium

 D. Report of Delinquent
Accounts

 E. Transition between
different data groups

 F. Report of Vehicles in
Inventory

 G. “Buy” button on
Web site

 H. Screen design tool
seldom used anymore

 I. Sales order

 J. Shows relationship
between two or
more series of data

 K. Quarterly Report
of Sales By Region

 L. Sales receipt

 1. Detailed report

 2. Display layout
chart

 3. External output

 4. Scatter chart

 5. Summary report

 6. Control break

 7. Zoned output

 8. Turnaround
output

 9. Exception
report

 10. DataWatch
Monarch/ES

 11. POS Terminal

 12. Microfi lm

Output Design and Prototyping Chapter Fourteen 479

 8. The sales manager has asked you to develop an

automated chart to show the company’s annual

sales by quarter for the past fi ve years. The

manager considers bar charts boring and wants

to use a pie chart, instead, to show the fi ve-year

sales report in an easy-to-read report. What

are your thoughts about the manager’s idea?

Explain.

 9. The director of the Child Protection Agency

is very pleased with the summary report that

you designed in Question 2. To help the child

protection workers manage and prioritize

their caseload, the director would now like

you to design a report that would go to each

worker, showing their open cases, including

the age of each case. Further, the report should

be a turnaround document, where the child

protection workers can provide status on each of

their open cases, including the estimated date of

completion. What subclass of report is needed?

What data elements are needed? In what order

should the cases be listed? Create a prototype

design for this report.

 10. Complete the sentences below.

 a. The purpose of outputs is to present

 to system users. Because they are

the most part of an information

system, system users and owners often base

the of an information system on

the outputs.

 b. In designing outputs, a good place to begin

is with the , because they identify

both the and the

method.

 c. Outputs can be categorized by two

characteristics: (1) by their and

, and (2) by their .

 d. In a report, often occur at

, which are used to transition from

one of data to the next one.

 e. In a tabular report, is infl uenced

by column , which generally should

be 3–5 .

 11. You are a systems designer working in the IT

division of a large manufacturing corporation

with plants throughout the country. The CIO

mentions to you in passing that the vice president

of marketing wants a new executive-level report

showing daily production by region and by offi ce

in order to review production levels and fi x

problems quickly. Your CIO tells you to have a

preliminary design and prototype ready the day

after tomorrow. On the basis of the information

you have been given, what type of report is

needed? Is it for internal or external use? Assuming

that the corporation’s information system already

captures the data needed for this report, what are

some of the remaining design issues?

 12. In the preceding scenario, what common tool

could you use if your organization doesn’t use

CASE tools or dedicated report-writing tools for

screen layout and prototyping? For an executive-

level report, what are the most critical principles

to apply in designing the output? (Remember,

your future with the company may depend

upon knowing and being able to apply these

principles.)

 13. You have volunteered to work on the Web site

of your local library. The library plans to develop

an online catalog of books that can be reserved

by library patrons from their home computers

via the Internet. Many of these patrons are senior

citizens. What are some of the screen design

issues that should be taken into consideration?

Projects and Research

 1. In the 1990s (and even before), there was a great

deal of discussion regarding the paperless offi ce.

Some industry pundits and futurists predicted

that within a short period of time, paper would

become a legacy product in many organizations. Yet

today the reality seems quite different and, in fact,

businesses are consuming and churning out more

paper than ever. Do some research on the Web for

both contemporary and past articles on this subject.

 a. Describe the articles that you found.

 b. Compare and contrast their viewpoints.

 c. Contact a large organization and a government

agency in your area. Do either consider the

paperless offi ce to be an objective? If so, what

are their plans for achieving it, and is progress

being made?

 d. What about your own organization or school?

 e. What is your own position on this subject? Do

you think a paperless offi ce is a viable concept?

Why or why not?

480 Part Three Systems Design Methods

 2. Designing a form or interface screen has been

compared to watching an Olympic gymnast: It

looks deceptively simple until you actually try to

do it yourself. Consider the following questions: a. On the basis of your own experience, as well

as your readings from this and other textbooks,

what makes one form or interface screen “good”

and another one “bad”?

 b. Pick a form or interface screen that you feel is

particularly horrible. Describe why.

 c. Redesign the form or screen into one that you

feel is “good.”

 d. Have a couple of fellow students or associates

compare and critique the “before” and “after”

versions of the form or screen. How did they

rate your “after” version compared to the

“before” version?

 e. Can you have a well-designed form or screen if

the data itself that is to be captured is not well

designed? Why or why not?

 f. In today’s global village, would a form or

interface screen design that is considered

good in one culture be considered universally

good? How much of an infl uence do cultural

differences have upon design?
 3. Although it is probably a cliché to say we are living

in a time of unprecedented technological change,

it is diffi cult to truly comprehend the enormous

changes that have taken place in a very short time

and their impact upon us. To help get a sense of

these changes, consider the following questions: a. Identify the different forms of output methods

developed in the past 1,000 years, and draw

them on a time line. How many output methods

did you identify, and how many of them were

commercially available in the last 50 years? In

the last 25? In the last 10?

 b. What is the earliest version of a turnaround

document that you can fi nd?

 c. According to your research, when did microfi lm

become widely available? What was its impact

upon private- and public-sector organizations?

 d. What about screen output? When did PC

monitors come into widespread use? What has

been their impact upon private- and public-

sector organizations?

 e. Of all the output methods in use today, which

one do you think had the most signifi cant

impact upon governments and cultures? Why?

 4. Many organizations have implemented a company

intranet. But it appears that relatively few (at least

as of this date) have integrated their intranet with

desktop productivity tools, such as Microsoft

 Offi ce, e-mail and calendaring, and the specifi c data

input/output applications used by employees. a. Contact several local private- and public-sector

organizations. Do they currently have an

intranet implemented?

 b. Describe how the intranets are being used

and what features they have. Are any of these

intranets integrated with desktop productivity

tools and/or applications used by the

organization?

 c. See if you can take a look at several of these

intranets. Are their interface screens well

designed? What, if any, are the differences

between intranets and Internet applications

that need to be taken into consideration when

designing the screen interfaces for an intranet?

 d. What if you had the opportunity to design a

fully integrated intranet for your organization?

What features and functionality would you

include?

 e. Create a prototype design for your intranet.
 5. In today’s global economy environment,

information on demand is the expected norm.

This is a very recent development that has had a

profound impact on organization and individuals.

Consider the following questions: a. In 1800, if a merchant company in Europe sent

a turnaround report to its agent in New York,

how long would the company expect that it

would take—at a minimum—to receive the

return report?

 b. What about in 1900?

 c. In 1950?

 d. In 2005—at a maximum?

 e. Describe what you believe to be the most

signifi cant impact this change in reporting

speed has had both on organizations and on

individuals.

 f. Is this extraordinary change in the speed of

reporting—and in expectations—good or

bad? For the organization? For an individual

employee?

Output Design and Prototyping Chapter Fourteen 481

Minicases

 1. Collect an example of a detailed report, a summary

report, and an exception report. Submit them,

along with a brief description of the information in

them, to your professor. What were the similarities

between the reports? The differences?

 2. An online form can be set up to “dump” the form

contents into an e-mail and send it to a specifi c

e-mail account. Find the code snippets to do this,

and create a simple online form that will send

contents to your e-mail address. Fill out and submit

your form at least one time. Forward the e-mail

you have received with form contents to your

professor, along with the URL of your form.

 3. Information should only be inputted into

an information system one time . After that,

information should be shared digitally across

departments, with no need for reentry of data.

Why is this? What type of common data formatting

problems do you think system designers run into

when they set up online forms (such as the one

you did in Question 2) that send data directly to a

database?

 4. Find an example of a really well designed output

(could be a form, report, e-mail, etc.). Then fi nd an

example of a poorly designed one. Present both

to your class. Lead a discussion on improving the

poorly designed example, using specifi c attributes

of excellence from the well-designed output. You

will be graded on your ability to engage the class

and work as a team member to improve the output

medium.

 1. Individual: College, career, and family (not to

mention all the other things we do) all take an

incredible amount of time and energy. Refl ect

for a moment either on your life as it is now or

how it may be in the future. How well are you

balancing life and career? How will you manage

future confl icts between them? What are your life

priorities? Do not submit any work. You may, as

you wish, discuss in a roundtable format.

 2. Individual: Part of being a good systems person

is reading and understanding people. Notice

someone who seems a little down or is having

a bad day. Do something nice for that person. It

doesn’t matter whether you know her or him.

 3. For students who are soon to graduate and are

job hunting: go to a stationery store and purchase

some elegant and appropriate stationery to write

thank-yous for interviews. As a team, develop

(1) a great thank-you letter (for a job interview)

and (2) a set of interview questions you think

you could be asked in an interview. Outside

of class, take time to do mock interviews with

friends or family.

Team and Individual Exercises

Suggested Readings

 Andres, C. Great Web Architecture. Foster City, CA: IDG

Books Worldwide, 1999. Books on effective Web interface

design are beginning to surface. The science of human

engineering for Web interfaces has not yet progressed

as far as client/server interfaces (e.g., Windows). Here

is an early title that explores many dimensions of Web

architecture and interfaces using real-world examples.

 Application Development Strategies (monthly periodical).

Arlington, VA: Cutter Information Corporation. This is our

favorite theme-oriented periodical that follows system

development strategies, methodologies, CASE, and other

relevant trends. Each issue focuses on a single theme.

This periodical will provide a good foundation for how to

develop prototypes.

 Galitz, W. O. User-Interface Screen Design. New York: John

Wiley & Sons, 1993. This is our favorite book on overall

user interface design.

 Shelly, G., T. Cashman, and H. Rosenblatt. Systems Analysis

and Design, 3rd ed. Cambridge, MA: Course Technology,

1998. We mention our competitors for their excellent

coverage of tabular, printed output design. They afford

many more pages of coverage and examples than we

could in our latest edition.

482 Part Three Systems Design Methods

15Input Design and
Prototyping

 Chapter Preview and Objectives

 In this chapter you will learn how to design computer inputs. It is the second of three

chapters that address the design of online systems using a graphical user interface for

either client/server or Web-based systems. You will know how to design inputs when

you can:

 ❚ Defi ne the appropriate format and media for a computer input.

 ❚ Explain the difference between data capture, data entry, and data input.

 ❚ Identify and describe several automatic data collection technologies.

 ❚ Apply human factors to the design of computer inputs.

 ❚ Design internal controls for computer inputs.

 ❚ Select proper screen-based controls for input attributes that are to appear on a GUI

input screen.

 ❚ Design a Web-based input interface.

 Output and input design represent something of a “chicken or egg” sequencing problem.

Which do you do fi rst? In this edition, we present output design fi rst. Classic system

de sign prefers this approach as something of a system validation test—design outputs

and then make sure the inputs are suffi cient to produce the outputs. In practice, this

sequenc ing of tasks becomes less important because modern systems analysis techniques

 suffi ciently predefi ne logical input and output requirements. You and your instructor may

safely swap Chapters 14 and 15 if you prefer.

484 Part Three Systems Design Methods

 Introduction

 Bob Martinez has been given the assignment of prototyping the Web-based member

order entry screen for the SoundStage Member Services system project (you can see

his work in Figures 15-11 and 15-12). This was clearly the most fun part of the system

project for Bob. A graphic design consulting fi rm had created the overall look and feel.

But it was up to Bob to create the actual prototype.

 He decided to use Visual Studio .NET just because he was comfortable with its

GUI designer. Bob was able to pretty quickly put together the Web pages so that they

looked as if they were a real shopping cart. Of course, it didn’t have any real program-

ming code. Whatever you searched for, you got The Matrix (Bob’s all-time favorite

movie), and the data grid shown at the bottom of Figure 15-11 had been fi lled in by

hand, not by the database. But the layout included all requirements that had previously

been identifi ed. And all the links worked, though they all went to an “Under Construc-

tion” page.

 Both SoundStage employees and selected members exercised the Web pages.

 Having gotten generally favorable feedback, Sandra is now having Bob refi ne and

 expand the prototype. Then it will go back to the users for more testing, and then

more refi nement, until they have a Web design that really can be programmed.

 Input Design Concepts and Guidelines

 Management and users make important decisions based on system outputs (Chap-

ter 14). These outputs are produced from data that is either input or retrieved from

 databases. And any data in the databases must have been fi rst input. In this chapter,

you are going to learn how to design computer inputs. Input design serves an impor-

tant goal—capture and get the data into a format suitable for the computer.

 Today most inputs are designed by rapidly constructing prototypes. These proto-

types may be simple computer-generated mock-ups, or they may be generated from

prototype database structures such as those developed for Microsoft Access. These

prototypes are rarely fully functional. They won’t contain security features, data edit-

ing, or data updates that will be necessary in the fi nal version of a system. Further-

more, in the interest of productivity, they may not include every button or control

feature that would have to be included in a production system.

 During requirements analysis, inputs were modeled as data fl ows that consist of

data attributes. Even in the most thorough of requirements analysis, we will miss re-

quirements. Input design may introduce new attributes or fi elds to the system. This is

especially true if output design introduced new attributes to the outputs—the inputs

must always be suffi cient to produce the outputs!

 We begin with a discussion of types of inputs. Inputs can be classifi ed according

to two characteristics: (1) how the data is initially captured, entered, and processed

and (2) the method and technology used to capture and enter the data. Figure 15-1

illustrates this taxonomy. The characteristics are discussed briefl y in the following

sections.

 > Data Capture, Data Entry, and Data Processing

 When you think of “input,” you usually think of input devices, such as keyboards and

mice. But input begins long before the data arrives at the device. To actually input busi-

ness data into a computer, the systems analyst may have to design source documents,

input screens, and methods and procedures for getting the data into the computer

(from customer to form to data entry clerk to computer).

Input Design and Prototyping Chapter Fifteen 485

F I G U R E 1 5 - 1 An Input Taxonomy

 Process Method Data Capture Data Entry Data Processing

Keyboard Data is usually captured on a business Data is entered via keyboard. This is OLD: Data can be collected into
 form that becomes the source the most common input method batch fi les (disk) for processing as a
 document for input. but also the most prone to errors. batch.

 Data can be collected real-time NEW: Data is processed as soon as
 (over the phone). it has been keyed.

Mouse Same as above. Used in conjunction with keyboard Same as above, but the use of a
 to simplify data entry. mouse is most commonly associ-

 Mouse serves as a pointing device ated with online and real-time

 for a screen. Can be with geo- processing.

 graphical user interfaces to reduce
 errors through point-and-click
 choices.

Touch screen Same as above. Data is entered on a touch screen On PCs, touch screen choices are
 display or handheld device. processed same as above.

 Data entry users either touch com- On handheld computers, data is
 mands and data choices or enter stored on the handheld for later
 data using handwriting recognition. processing as a remote batch.

Point of sale Data is captured as close to the Data is often entered directly by the Data is almost always processed
 point of sale (or transaction) as customer (e.g., ATM) or by an em- immediately as a transaction or
 humanly possible. No source ployee directly interacting with the inquiry.
 documents. customer (e.g., retail cash register).
 Input requires specialized, dedi-
 cated terminals that utilize some
 combination of the other tech-
 niques in this table.

Sound Data is captured as close to the Data is entered using touch-tones Data is almost always processed
 source as possible, even when the (typically from a telephone). immediately as a transaction or
 customer is remotely located (e.g., Usually requires fairly rigid com- inquiry.
 at home or place of employment). mand menu structure and limited
 input options.

Speech Same as sound. Data (and commands) is spoken. Data is almost always processed
 This technology is not as mature immediately as a transaction or
 and is much less reliable and com- inquiry.
 mon than other techniques.

Optical mark Data is recorded on optical scan Eliminates the need for data entry. Data is almost always processed as
 sheets as marks or precisely formed (Very commonly used in education a batch.
 letters, numbers, and punctuation. for test scoring, course evaluations,
 This is the oldest form of automatic and surveys.)
 data capture.

Magnetic ink Data is usually prerecorded on A magnetic ink reader reads the Data is almost always processed as
 forms that are subsequently com- magnetized data. a batch.

 pleted by the customer. The customer-added data must be
 The customer records additional entered using another input method.
 data on the form. This technique is used in applica-
 tions requiring high accuracy and
 security, the most common of
 which is bank checks (for check
 number, account number, bank ID).

Electromagnetic Data is recorded directly on the object Data is transmitted by radio frequency. Data is almost always processed
 to be described by data. immediately.

Smart card Data is recorded directly on a device Data is read by smart card readers. Data is almost always processed
 to be carried by the customer, immediately.
 employee, or other individual that is
 described by that data.

Biometric Unique human characteristics become Data is read by biometric sensors. Data is processed immediately.
 data. Primary applications are security and
 medical monitoring.

486 Part Three Systems Design Methods

 This brings us to our fi rst fundamental question. What is the difference between

data capture and data entry? Data happens! It accompanies business events called

 transactions. Examples include ORDERS, TIME CARDS, RESERVATIONS, and the like. We must

determine when and how to capture the data when “it happens.”

 Data capture is the identifi cation and acquisition of new data. When is easy! It’s

always best to capture the data as soon as possible after it originates. How is another

story! Historically, special paper forms called source documents were used. Source

documents are forms used to record business transactions in terms of data that de-

scribes those transactions.

 Display screens that can duplicate the appearance of almost any paper-based

form are gradually replacing the paper forms. This trend is being accelerated by Web-

based e-commerce and e-business. Still, business forms are commonly used as source

documents for data entry. Design of source documents requires care. The layout and

readability will affect the speed of data entry.

 Data entry is the process of translating the source data or document into a

 computer-readable format. Because data entry used to be 100 percent keyboard-

based, businesses employed armies of data entry clerks. As online computing became

more common, the responsibility for data entry shifted directly to system users. Today

another transformation is occurring. Thanks to personal computers and the Internet,

some data entry has shifted directly to the consumer. In all cases, data entry produces

input for data processing.

 Entered data must subsequently be processed—data processing. In this chapter,

we are not concerned with how the data is transformed into outputs. But we are inter-

ested in the timing of input processing. When does the input data get processed?

 Batch Processing Batch processing used to be the dominant form of data process-

ing. In batch processing , the entered data is collected into fi les called batches. Each

fi le is processed as a batch of many transactions. Contrary to popular belief, some

data is still processed in batches. Time cards are the classic example. Most batches

are recorded as disk fi les (hence the term key-to-disk). Some older systems may still

record batches on magnetic tape (key-to-tape).

 Online Processing Today most (but not all) information systems have been

converted to online processing. In online processing , the captured data is processed

immediately. Initially, data was entered at terminals. Today, that same data is captured

on PCs and workstations to take advantage of their ability to perform some of the

data validation and editing before it gets sent to the server computers. Because of

PCs, we rarely hear the term online processing anymore. We usually hear the term

 client/server, where the PC is the client.

 Most of today’s applications present the user with a PC-based graphical user

 interface (GUI). Microsoft Windows is the dominant GUI in today’s businesses. But the

emergence of the Web as a platform for Internet and intranet applications may make

a Web browser the most important user interface in the future. Microsoft Internet

Explorer and Mozilla Firefox are the dominant browser interfaces in today’s market.

This chapter will address input design techniques for both the Windows client/server

interface and the browser interface.

 Remote Batch Batch and online represent extremes on the processing spectrum. A

combination solution also exists—the remote batch. In remote batch processing ,

data is entered using online editing techniques; however, the data is collected into a

batch instead of being immediately processed. Later, the batch is processed.

 Modern remote batch can take several forms. A simple example uses a PC-based

front-end application to capture and store the data. The data can later be transmit-

ted across a network for batch processing. A more contemporary example of remote

batch processing uses disconnected laptop or handheld computers (or devices) to

 data capture the identifi ca-

tion and acquisition of new

data.

 source document a form

used to record data about a

transaction.

 data entry the process of

translating data into a

computer-readable format.

 batch processing a data

processing method whereby

data about many transactions

is collected as a single fi le

which is then processed.

 online processing a data

processing method whereby

data about a single transac-

tion is processed immediately.

 remote batch processing
 a data processing method

whereby data is entered

 online, collected as a batch,

and processed at a later time.

Input Design and Prototyping Chapter Fifteen 487

collect data for later processing. If you’ve recently received a package from UPS or

Federal Express, you’ve seen such devices used by the drivers to record pickups and

deliveries.

 Now that we’ve covered the basic data capture, data entry, and data processing tech-

niques, we can more closely examine the input methods shown as rows in Figure 15-1 .

 > Input Methods and Implementation

 Different input devices, such as keyboards and mice, are covered in most introductory

information systems courses. In this section, we are more interested in the method

and its implementation than in the technology. In particular, we are interested in how

the choice of a method affects data capture, entry, and processing as described in

the previous section. You should continue to study Figure 15-1 as we introduce these

methods.

 Keyboard Keyboard data entry remains the most common form of input. Unfor-

tunately, it requires the most data editing because people make mistakes keying

data from source documents. Fortunately, graphical user interfaces such as Micro-

soft Windows and Web browsers now make it possible to design online screens that

 reduce errors by forcing correct choices on the user. We will explore several useful

GUI controls for such interfaces in the next section.

 Mouse A mouse is a pointing device used in conjunction with graphical user inter-

faces. The mouse has made it easy to navigate online forms and click on commands

and input options. For example, the legitimate values for an attribute can be recorded

on a screen as “clickable” boxes or buttons that eliminate the need to key in that data.

This results in fewer data entry errors. We will explore mouse-based controls in our

input designs for this chapter.

 Touch Screen An emerging technology that will greatly impact input design in the

near future is the touch screen display. Such displays are common in handheld and

palm-top computers that are fi nding their way into countless information system

 applications. Such devices simplify many data collection activities in a warehouse and

on a manufacturing shop fl oor. Touch screen buttons can be programmed to collect

the data. Most such devices support handwriting recognition as well.

 Point of Sale Point-of-sale (POS) terminals have been with us for some time. They

have all but replaced old-fashioned cash registers. These terminals capture data at

the point of sale and provide time-saving ways to enter data, perform transactional

calculations, and produce some output. Like the handhelds just described, most can

scan and read bar codes to eliminate keying errors. Automatic teller machines (ATMs),

another form of POS terminal, are operated directly by the consumer.

 Sound and Speech Sound represents another form of input. You might have used

a touch-tone telephone-based system to register for this course. Such tone-based sys-

tems require special input/output technology that drives the design. Those systems

are beyond the scope of this book.

 A more sophisticated form of this input method uses voice recognition technol-

ogy to make it possible to input data. Currently this technology is relatively immature

and unreliable. It is best utilized to input commands, not data. But the time may come

when voice recognition technology replaces the keyboard as the principal means by

which we enter data.

 The remaining input methods are broadly classifi ed as automatic data capture

(ADC). With advancements in today’s input technology, we can eliminate much (and

 A Handheld
Computer

488 Part Three Systems Design Methods

sometimes all) human intervention associated with the input methods discussed in

the previous section. By eliminating human intervention we can decrease the time

delay and errors associated with human interaction.

 Optical Mark Optical mark recognition (OMR) technology for input has existed

for several decades. It is primarily batch processing–oriented. The classic example is

the optical mark forms used for objective-based questions (e.g., multiple choice) on

examinations. The technology is also useful in surveys and questionnaires or any other

application where the number of possible data values is relatively limited and highly

structured. Most applications that could benefi t from this input method have prob-

ably already exploited it.

 Optical character recognition (OCR) is less prevalent despite its maturity. It re-

quires that the user or customer carefully handwrite input data on a business form. If

the letters and numbers are properly scribed, an OCR reader can process the forms

without human intervention. Obviously, this depends on the handwriting of the user

or customer. But it does work. Columbia House Record Club used to use an OCR form

for customer responses to orders. Like most OCR applications, the number of fi elds to

be input was very small (reducing the possibility of errors). Processing methods must

be implemented for any inputs rejected due to illegibility.

 Today the most prevalent form of optical technology involves bar coding. Bar

codes are on almost every product we buy, but bar-coding technology is not limited to

retail sales. You can create bar codes for almost any business application. You can even

integrate bar codes into Windows -based applications, as shown in Figure 15-2 .

 F I G U R E 1 5 - 2

Bar Codes in a
 Windows Application

Input Design and Prototyping Chapter Fifteen 489

 Magnetic Ink Magnetic ink ADC technology is one you will likely recognize. It
 usually involves using magnetic stripe cards, but it also may include the use of mag-
netic ink character recognition (MICR). Over 1 billion magnetic stripe cards are in
use today! They have found their way into a number of business applications, such as
credit card transactions, building security access control, and employee attendance
tracking. MICR is most widely used in the banking industry.

 Electromagnetic Transmission Electromagnetic ADC technology is based on the
use of radio frequency to identify physical objects. This technology involves attach-
ing a tag and antenna to the physical object that is to be tracked. The tag contains
memory that is used to identify the object being tracked. The tag can be read by a
reader whenever the object resides within the electromagnetic fi eld generated by the
reader. This identifi cation technology is becoming very popular in applications that
involve tracking physical objects that are out of sight and on the move. For example,
electromagnetic ADC is being used for public transportation tracking and control,
tracking manufactured products, and tracking animals, to name a few.

 Smart Cards Smart card technology has the ability to store a massive amount of
information. Smart cards are similar to, but slightly thicker than, credit cards. They also
differ in that they contain a microprocessor, memory circuits, and a battery. Think of it
as a credit card with a computer on board. They represent a portable storage medium
from which input data can be obtained. While this technology is only beginning to
make inroads in the United States, smart cards are used on a daily basis by over 60 per-
cent of the French population. Smart card applications are particularly promising in
the area of health records, where a person’s blood type, vaccinations, and other past
medical history can be made readily available. Other uses may include such applica-
tions as passports, fi nancial information for point-of-sale transactions, and pay televi-
sion, to name a few. Another future application could be a combination debit card
that automatically maintains and displays your account balance. A smart card used in
a security application is shown in the margin.

 Biometric Biometric ADC technology is based on unique human characteristics or
traits. For example, an individual can be identifi ed by his or her unique fi ngerprint,
voice pattern, or pattern of certain veins (retina or wrist). Biometric ADC systems
consist of sensors that capture an individual’s characteristic or trait, digitize the image
pattern, and then compare the image to stored patterns for identifi cation. Biometric
ADC is popular because it offers the most accurate and reliable means for identifi ca-
tion. This technology is particularly popular for systems that require security access.

 > System User Issues for Input Design

 Because inputs originate with system users, human factors play a signifi cant role in
input design. Inputs should be as simple as possible and be designed to reduce the
possibility of incorrect data being entered. The needs of system users must be consid-
ered. With this in mind, several human factors should be evaluated.

 The volume of data to be input should be minimized. The more data that is input,
the greater the potential number of input errors and the longer it takes to input that
data. Thus, numerous considerations should be given to the data that is captured for
input. These general principles should be followed for input design:

 • Capture only variable data. Do not enter constant data. For instance, when
 deciding what elements to include in a SALES ORDER input, we need PART NUMBERS
for all parts ordered. However, do we need to input PART DESCRIPTIONS for those
parts? PART DESCRIPTION is probably stored in a database table. If we input PART
NUMBER, we can look up PART DESCRIPTION. Permanent (or semipermanent)
data should be stored in the database. Of course, inputs must be designed for
 maintaining those database tables.

 A Smart Card

490 Part Three Systems Design Methods

 • Do not capture data that can be calculated or stored in computer programs .

For example, if you input QUANTITY ORDERED and PRICE, you don’t need to input

 EXTENDED PRICE, which is equal to QUANTITY ORDERED ⫻ PRICE . Another example

is incorporating FEDERAL TAX WITHHOLDING data in tables (arrays) instead of

keying in that data every time.

 • Use codes for appropriate attributes . Codes were introduced earlier. Codes

can be translated in computer programs by using tables.

 If source documents are used to capture data, they should be easy for system

 users to complete and subsequently enter into the system. The following suggestions

may help:

 • Include instructions for completing the form . Remember that people don’t

like to have to read instructions printed on the back side of a form.

 (a) GOOD FLOW

(b) BAD FLOW

 F I G U R E 1 5 - 3

 Good and Bad Flow

in a Form

Input Design and Prototyping Chapter Fifteen 491

 • Minimize the amount of handwriting . Many people suffer from poor penman-

ship. The data entry clerk or CRT operator may misread the data and input incor-

rect data. Use check boxes wherever possible so that the system user only needs

to check the appropriate values.

 • Data to be entered (keyed) should be sequenced so that it can be read like

this book, top to bottom and left to right. Figure 15-3(a) demonstrates a good

fl ow. The system user should not have to move from right to left on a line or

jump around on the form, as shown in Figure 15-3(b) , to enter data.

 • When possible, use designs based on known metaphors . The classic example

of this is the personal fi nance application Quicken . The program’s ease of use

is greatly enhanced by its on-screen re-creation of the checkbook metaphor.

The user writes checks by fi lling in a graphical representation of the check.

And the check register looks exactly like its paper equivalent. Not all inputs

lend themselves to metaphors, but some are greatly enhanced by the imitation

(see Figure 15-4).

 • There are several other guidelines and issues specifi c to data input for GUI

screen designs. We’ll introduce these guidelines, as appropriate, when we

discuss GUI controls for input design later in this chapter, as well as in the

chapters on output design and user interface design.

 > Internal Controls—Data Editing for Inputs

 Internal controls are a requirement in all computer-based systems. Internal input con-

trols ensure that the data input to the computer is accurate and that the system is

protected against accidental and intentional errors and abuse, including fraud. The

following internal control guidelines are offered:

 1. The number of inputs should be monitored. This is especially true with the batch

method, because source documents may be misplaced, lost, or skipped.

 — In batch systems, data about each batch should be recorded on a batch

control slip. Data includes BATCH NUMBER, NUMBER OF DOCUMENTS, and CONTROL

TOTALS (e.g., total number of line items on the documents). These totals can

be compared with the output totals on a report after processing has been

completed. If the totals are not equal, the cause of the discrepancy must be

determined.

 F I G U R E 1 5 - 4

Metaphoric Screen
Design

492 Part Three Systems Design Methods

 — In batch systems, an alternative control would be one-for-one checks. Each

source document would be matched against the corresponding historical

report detail line that confi rms the document has been processed. This control

check may be necessary only when the batch control totals don’t match.

 — In online systems, each input transaction should be logged to a separate audit

fi le so that it can be recovered and reprocessed if there is a processing error or

if data is lost.

 2. Care must also be taken to ensure that the data is valid. Two types of errors can

infi ltrate the data: data entry errors and invalid data recorded by system users.

Data entry errors include copying errors, transpositions (typing 132 as 123), and

slides (keying 345.36 as 3453.6). The following techniques are widely used to

validate data:

 — Existence checks determine whether all required fi elds on the input have

actually been entered. Required fi elds should be clearly identifi ed as such on

the input screen.

 — Data-type checks ensure that the correct type of data is input. For example,

alphabetic data should not be allowed in a numeric fi eld.

 — Domain checks determine whether the input data for each fi eld falls within

the legitimate set or range of values defi ned for that fi eld. For instance, an

upper-limit range may be put on PAY RATE to ensure that no employee is paid at

a higher rate.

 — Combination checks determine whether a known relationship between two

fi elds is valid. For instance, if the VEHICLE MAKE is Pontiac, then the VEHICLE MODEL

must be one of a limited set of values that comprises cars manufactured by

Pontiac (Firebird, Grand Prix, and Bonneville, to name a few).

 — Self-checking digits determine data entry errors on primary keys. A check digit

is a number or character that is appended to a primary key fi eld. The check

digit is calculated by applying a formula, such as Modulus 11, to the actual

key. The check digit verifi es correct data entry in one of two ways. Some data

entry devices can automatically validate data by applying the same formula to

the data as it is entered by the system user. If the check digit entered doesn’t

match the check digit calculated, an error is displayed. Alternatively, computer

programs can also validate check digits by using readily available subroutines.

 — Format checks compare data entered against the known formatting

requirements for that data. For instance, some fi elds may require leading zeros,

while others don’t. Some fi elds use standard punctuation (e.g., Social Security

numbers or phone numbers). A value “A4898 DH” might pass a format check,

while a similar value “A489 ID8” would not.

 In Chapter 13, you learned that most database management systems perform data

validation checks similar to those described in the above list. So why do we need in-

put controls? Simple! Most applications today are networked. Erroneous data is both

a network traffi c bottleneck and a detractor for transaction throughput and response

time. It is always best to capture and correct input errors as close as possible to the

source—hence the emphasis on input controls and validation.

 GUI Controls for Input Design

 As mentioned earlier, most new applications being developed today include a graph-

ical user interface (GUI). Most are based on Microsoft Windows, but the pervasive

adoption of the Internet, combined with Web-based e-commerce, is quickly driving

some interfaces to the Web browser. While GUI designs provide a more user-friendly

interface, they also present more complex design issues than their predecessors.

This chapter will not attempt to address all the GUI design issues; entire books

Input Design and Prototyping Chapter Fifteen 493

have been written on the subject. Several of our favorites are listed in the Suggested

Readings.

 Rather, this chapter will focus on selecting the proper screen-based controls for

entering data on a GUI screen. Think of controls as “widgets” for building a user inter-

face. They are included in most contemporary application development environments

such as Microsoft’s Access and Visual Studio .NET, Sybase’s PowerBuilder, InPrise’s

 JBuilder, Symantec’s Visual Café, IBM’s Visual Age, and many others. Many of these

tools share controls (and code) via the repository. This approach is called repository-

based programming.

 Figure 15-5 illustrates access to a repository that contains input controls and code.

The approach is based on the object-oriented and component-based programming

 F I G U R E 1 5 - 5 Repository-Based
Prototyping and
Development

494 Part Three Systems Design Methods

techniques that have become pervasive in application development. This fi gure de-
picts controls that could be used by various systems analysts or programmers to
prototype an interface. The developers can, in a single location, defi ne most of the
properties and constraints for a reusable fi eld and the data validation code for that
fi eld. Once defi ned, the object or control can be used by any number of other systems
analysts and programmers in the organization. This repository-based approach guaran-
tees that every instance of the fi eld will be used in a consistent manner. Furthermore,
the repository entries can be changed if business rules dictate, and no additional
changes to the applications will be required.

 > Common GUI Controls for Inputs

 This section examines some of the most common controls used in GUI-based input
forms. We address the purpose, advantages, disadvantages, and guidelines for each
control. Given this understanding, we are then in a good position to make decisions
concerning which controls should be considered for each data attribute that will be
input on our screens. We will defer the transitions between our screen designs until
Chapter 16, “User Interface Design.”

 Refer to Figure 15-6 as a library of the most common screen-based controls for
input data. Each of the controls will be discussed. They are equally applicable to both
 Windows - and Web-based interfaces.

 Text Box 1 Perhaps the most common control used for input of data is the text
box. A text box consists of a rectangular-shape box that is usually accompanied by a
caption. This control requires that the user type the data inside the box. A text box
can allow for single or multiple lines of data characters to be entered. When a text box
contains multiple lines of data, scrolling features are also normally included.

 A text box is most appropriately used when the input data values are unlim-
ited in scope and the analyst is unable to provide the users with a meaningful list

 F I G U R E 1 5 - 6

Common GUI
Input Controls

Input Design and Prototyping Chapter Fifteen 495

of values from which they can select. For example, a single-line text box would be

an appropriate control for capturing a new customer’s last name because the pos-

sibilities for the customer’s last name are virtually impossible to predetermine. A text

box would also be appropriate for capturing data about shipping instructions that

describe a particular order placed by a customer. Once again, the possible values for

shipping instructions are virtually unlimited. In addition, the multiple-line text box

would be appropriate due to the unpredictable length of the shipping instructions. In

cases where the text box is not large enough to view the entire input data values, the

text box may use scrolling and word-wrap features.

 Numerous guidelines should be followed when using a text box on an input

screen. A text box should be accompanied by a descriptive, meaningful caption.

Avoid using abbreviations for captions. Only the fi rst character of the caption’s text

should be capitalized.

 The location of the caption is also signifi cant. The user should be able to clearly

associate the caption with the text box. Therefore, the caption should be located to

the left of the actual text box or left-aligned immediately above the text box. Finally,

it is also generally accepted that the caption be followed by a colon to help the user

visually distinguish the caption from the box.

 Generally, the size of the text box should be large enough for all characters of

fi xed-length input data to be entered and viewed by the user. When the length of the

data to be input is variable and could become quite long, the text box’s scrolling and

word-wrapping features should be applied.

 Radio Button 2 Radio buttons provide the user with an easy way to quickly

identify and select a particular value from a value set. A radio button con-

sists of a small circle and an associated textual description that correspond to

the value choice. The circle is located to the left of the textual description of

the value choice. Radio buttons normally appear in groups—one radio button

per value choice. When a user selects the appropriate choice from the value set,

the circle corresponding to that choice is partially fi lled to indicate it has been

 selected. When a choice is selected, any default or previously selected choice’s

circle is deselected. Radio buttons also give the user the fl exibility of selecting via

the keyboard or mouse.

 Radio buttons are most appropriate when a user may be expected to input data

that has a limited predefi ned set of mutually exclusive values. For example, a user

may be asked to input an ORDER TYPE and GENDER. Each of these has a limited, pre-

defi ned, mutually exclusive set of valid values. For example, when the users are to

input an ORDER TYPE, they might be expected to indicate one and only one value

from the value set “regular order,” “rush order,” or “standing order.” For GENDER, the

user would be expected to indicate one and only one value from the set “female,”

“male,” or “unknown.”

 There are several guidelines to consider when using radio buttons as a means for

data input. First, radio buttons should present the alternatives vertically aligned and

left-justifi ed to aid the user in browsing. If necessary, the choices can be presented

where they are aligned horizontally, but adequate spacing should be used to help visu-

ally distinguish the choices. Also, the group of choices should be visually grouped to

set them off from other input controls appearing on the screen. The grouping should

also contain an appropriate meaningful caption. For example, radio buttons for male,

female, and unknown might be vertically aligned and left-justifi ed with the heading/

caption “Gender” left-justifi ed above the set.

 The sequencing of the choices should also be given consideration. The larger the

number of choices, the more thought should be given to the ease of scanning and

identifying the choices. For example, in some cases it may be more natural for the

user to locate choices that are presented in alphabetical order. In other cases, the fre-

quency in which a value is selected may be important in regard to where it is located

in the set of choices.

496 Part Three Systems Design Methods

 Finally, it is not recommended that radio buttons be used to select the value for

an input data whose value is simply a yes/no (or on/off state). Instead, a check box

control should be considered.

 Check Box 3 As with text boxes and radio buttons, a check box also consists of

two parts. It consists of a square box followed by a textual description of the input

fi eld for which the user is to provide the yes/no value. Check boxes provide the

user with the fl exibility of selecting the value via the keyboard or mouse. An input

data fi eld whose value is yes is represented by a square that is fi lled with a “✓.” The

absence of a “✓” means the input fi eld’s value is no. The user simply toggles the input

fi eld’s value from one value/state to the other as desired.

 Often a user needs to input a data fi eld whose value set consists of a simple yes or no

value. For example, a user may be asked for a yes/no value for such items as the following

input data: CREDIT APPROVED? SENIOR CITIZEN? HAVE YOU EVER BEEN CONVICTED OF FRAUD? and MAY

WE CONTACT YOUR PREVIOUS EMPLOYER? In each situation a check box control could be used.

A check box control offers a visual and intuitive means for the user to input such data.

 The previous example represented a simplifi ed scenario for the use of a standalone

check box. On a single input screen it may be desirable to ask a user to enter values

for a number of related input fi elds having a yes/no value. For example, a reception-

ist at a health clinic may be entering data from a completed patient form. On a sec-

tion of that form, the patient may have been asked about a number of illnesses. The

patient may have been asked about his or her past medical history and instructed to

“check all that apply” from a list of types of various illnesses. If properly designed, the

receptionist’s input screen would represent each illness as a separate input fi eld using

a check box control. The controls would be physically associated into a group on the

screen. The group would also be given an appropriate heading/caption. Recognize

that even though the check boxes may be visually grouped on the screen, each check

box operates as a separate independent input fi eld.

 Following these recommended guidelines will improve the use of check box

controls. Make sure the textual description is meaningful to the user. Look for oppor-

tunities to group check boxes for related yes/no input fi elds and provide a descriptive

group heading.

 To aid in the user’s browsing and selecting from a group of check boxes, arrange

the group of check box controls so that they are aligned vertically and left-justifi ed.

If necessary, align horizontally and be sure to leave adequate space to visually sepa-

rate the controls from one another. Finally, provide further assistance to the user by

appropriately sequencing the input fi elds according to their textual description. In

most cases, where the number of check box controls is large, the sequencing should

be alphabetical. In cases where the text description represents dollar ranges or some

other measurement, the sequencing may be according to numerical order. In other

cases, such as those where a very limited number of controls are grouped, the basis for

sequencing may be according to the frequency that a given input data fi eld’s yes/no

value is selected. (All input data fi elds represented using a check box have a default

value—either checked or unchecked.)

 List Box 4 A list box is a control that requires that the user select a data item’s

value from a list of possible choices. The list box is rectangular and contains one or

more rows of possible data values. The values may appear as either a textual descrip-

tion or a graphical representation. List boxes having a large number of possible values

may include scroll bars for navigating through the list of choices.

 It is also common for a list box’s row to contain more than one column. For

example, a list box could simply contain rows having a single column of permissible

values for an input data item called JOB CODE. However, it may be asking too much to

expect the user to recognize what each job code actually represents. In this case, to

place the values of JOB CODE into a meaningful perspective, the list box could include

a second column containing the corresponding JOB TITLE for each job code.

Input Design and Prototyping Chapter Fifteen 497

 How does one choose between a radio button and a list box control? Both controls

are useful in ensuring that the user enters the correct value for a data item. Both are also

appropriate when it is desirable to have the value choices constantly visible to the user.

 The decision is normally driven by the number of possible values for the data

item and the amount of screen space available for the control. Scrolling capabilities

make list boxes appropriate for use in cases where there is limited screen space avail-

able and the input data item has a large number of predefi ned, mutually exclusive

values from which to choose.

 There are several guidelines to consider when using a list box as a means for

data input. A list box should be accompanied by a descriptive caption. Avoid using

abbreviations for captions, and capitalize only the fi rst character of the caption’s text.

It is also generally accepted that the caption be followed by a colon to help the user

visually distinguish the caption from the box.

 The location of the caption is also signifi cant. The user should be able to clearly

associate the caption with the list box. Therefore, the caption should appear left-

 justifi ed immediately above the actual list box.

 There are also several guidelines relating to the list box. First, it is recommended

that a list box contain a highlighted default value. Second, consider the size of the list

box. Generally, the width of the list box should be large enough for most characters

of fi xed-length input data to be entered and viewed by the user. The length of the box

should allow for at least three choices and be limited in size to containing about seven

choices. In both cases, scrolling features should be used to suggest that additional

choices are available to the user.

 If graphical representations are used for value choices, make sure the graphics are

meaningful and truly representative of the choice. If textual descriptions are used, use

mixed-case letters and ensure that the descriptions are meaningful. It is important that

these decisions or judgments be based on the perspective and opinions of the user!

 You should also give careful thought to the ease with which a user can scan

and identify the choices appearing in the list box. The list of choices should be left-

justifi ed to aid in browsing. Be sure to involve the user when addressing the order in

which choices will appear in the list. In some cases, it may be natural to the user if the

list of choices appears in alphabetical order. In other cases, the frequency in which a

value is selected may be important in regard to where it is located in the list.

 Drop-Down List 5 A drop-down list is another control that requires the user to

select a data item’s value from a list of possible choices. A drop-down list consists

of a rectangular selection fi eld with a small button connected to its side. The small

button contains the image of a downward-pointing arrow and bar. This button is

intended to suggest to the user the existence of a hidden list of possible values for

a data item.

 When requested, the hidden list appears to “drop or pull down” beneath the se-

lection fi eld to reveal itself to the user. The revealed list has characteristics similar to

the list box control mentioned in the previous section. When the user selects a value

from the list of choices, the selected value is displayed in the selection fi eld and the

list of choices once again becomes hidden from the user.

 A drop-down list should be used in cases where the data item has a large number

of predefi ned values and screen space availability prohibits the use of a list box. One

disadvantage of a drop-down list is that it requires extra steps by the user, in compari-

son to the previously mentioned controls.

 Many of the guidelines for using list boxes directly apply to drop-down lists. One

exception is the placement of the caption. The caption for a drop-down list is gener-

ally either left-aligned immediately above the selection fi eld portion of the control or

located to the left of the control.

 Combination Box 6 A combination box, often simply called a combo box, is a

control whose name refl ects the fact that it combines the capabilities of a text box

498 Part Three Systems Design Methods

and list box. A combo box gives the user the fl exibility of entering a data item’s value

(as with a text box) or selecting its value from a list (as with a list box).

 At fi rst glance, a combo box closely resembles a drop-down list control. Unlike the

drop-down list control, however, the rectangular box can serve as an entry fi eld for the

user to directly enter a data item’s value. Once the small button is selected, a hidden list is

revealed. The revealed list appears slightly indented beneath the rectangular entry fi eld.

 When the user selects a value from the list of choices, the selected value is

displayed in the entry fi eld and the list of choices once again becomes hidden from

the user.

 A combo box is most appropriately used where screen space is limited and it is

desirable to provide the user with the option of selecting a value from a list or typing

a value that may or may not appear as an option in the list.

 The same guidelines for using drop-down lists directly apply to combo boxes.

 Spin Box 7 A spin box is a screen-based control that consists of a single-line text

box followed immediately by two small buttons. The two buttons are vertically aligned.

The top button has an arrow pointing upward, and the bottom button has an arrow

pointing down. This control allows the user to enter data directly into the associated

text box or to select a value by clicking on the buttons to scroll (or “spin”) through

a list of values. The buttons have a unit of measure associated with them. When the

user clicks on one of the arrow buttons, a value will appear in the text box. The value

in the text box is manipulated by clicking on the arrow buttons. The upward point-

ing button will increase the value in the text box by a unit of measure, whereas the

downward pointing button will decrease the value in the text box by the same unit

of measure.

 A spin box is most appropriately used to allow the user to make an input selec-

tion by using the buttons to navigate through a small set of meaningful choices or by

directly keying the data value into the text box. The data values for a spin box should

be capable of being sequenced in a predictable manner.

 Spin boxes should contain a label or caption that clearly identifi es the input data

item. This label should be located to the left of the text box or left-aligned immediately

above the text box portion of the control. Finally, spin boxes should always contain a

default value in the text box portion of the control.

 Buttons 8 Strictly speaking, buttons are not input controls. They do not contribute

to the selection or input of actual data. Nonetheless, input form design is incomplete

without them. Buttons serve several purposes. They allow a user to commit all of

the data to be processed, or cancel a transaction, or get help. They can be used to

navigate between instances of the same form.

 Many more screen-based controls are available for designing graphical user inter-

faces. The above are the most common controls for capturing input data. There are

others, and you should become familiar with them and their proper usage for input-

ting data. In later chapters you will be exposed to several other controls used for other

purposes. Keep on top of developments in the area of GUI as new controls are sure

to be made available.

 > Advanced Input Controls

 Figures 15-7(a) and (b) illustrate additional controls for data input. These advanced

controls can be used in Windows interfaces to create a more sophisticated look and

feel. Equivalent controls are likely available for Web-based applications, but most Web-

based e-commerce applications aspire to simpler formats. We will not discuss these

controls in detail, but they are summarized as follows:

 • Drop-down calendar . A fi eld is illustrated in Figure 15-7(a) . Clicking the down

arrow next to the date creates the pop-up calendar shown in Figure 15-7(b) .

The familiar calendar is another example of metaphoric design.

Input Design and Prototyping Chapter Fifteen 499

 F I G U R E 1 5 - 7

Advanced GUI
Input Controls

500 Part Three Systems Design Methods

 • Slider edit calendar . This is a nonnumeric means of selecting a value.
 • Masked edit control . This control builds the format checks described earlier

right into the fi eld.
 • Ellipsis control. Clicking on the three dots causes a pop-up dialogue to appear

for data entry. It might be used for a fi eld that consists of several parts (such as
an address—street, city, state, and zip code).

 • Alternate numeric spinner . This is a different type of input spinner.
 • Internet hyperlink . Similar in function to a button, a hyperlink can be linked to

Web pages, but it can also be linked to other Windows forms. This is an effective
way to hide related input forms that do not apply to all or most users.

 • Check list box . This control is useful for combining several check boxes in
 situations where several boxes may be applicable.

 • Check tree list box . This control is useful for presenting data options that need
to be hierarchically organized into a treelike structure.

 How to Design and Prototype Inputs

 How do you design online inputs? Traditionally, designers were concerned with the
overall content, appearance, and functionality of the input screen—in relative isola-
tion of other screens that needed to be designed. The designers knew they would
simply design a subsequent set of menu screens from which the users would select
an option that would lead them to the appropriate input screen. Simple enough. How-
ever, given today’s graphical environments, there is an emphasis on developing an
overall system that blends well into the user’s workplace environment. This emphasis
rarely results in a hierarchical, menu-driven application interface that characterized
the more traditional text- or command-based applications of old.

 The following sections will demonstrate how the fi rst stage of input design is
completed. We will draw on examples from our SoundStage case study. We will exam-
ine both client/server, Windows -based inputs and Web-based, e-commerce inputs that
run in a browser. Later, in Chapter 16, we will integrate the outputs (from Chapter 14)
and inputs from this chapter into an overall user interface and dialogue.

 > Automated Tools for Input Design and Prototyping

 In the recent past, the primary tools for input design were record layout charts and
 display layout charts . Today, this “sketching” approach is not often practiced. It is a
tedious process that is not conducive to today’s preferred prototyping and rapid ap-
plication development strategies, which use automated tools to accelerate the design
process.

 Before the availability of automated tools, analysts could sketch only rough drafts
of inputs to get a feel for how system users wanted outputs to look or how the batch
records would be structured. With automated tools, we can develop more realistic
prototypes of these inputs.

 Arguably, the most commonly used automated tool for input design is the PC-
database application development environment. While Microsoft Access is not pow-
erful enough to develop most enterprise-level applications, you may be surprised
at how many designers use Access to prototype such applications. Given a database
structure (easily specifi ed in Access), you can quickly generate or create forms for
inputting data. You can include most of the GUI controls we described in this chap-
ter. The users can subsequently exercise those forms and tell you what works and
what doesn’t.

 Many CASE tools include facilities for report and screen layout and prototyping
using the project repository created during requirements analysis. System Architect ’s
screen design facility was previously demonstrated in Chapter 14, Figure 14-7.

Input Design and Prototyping Chapter Fifteen 501

 Most GUI-based programming languages, such as Visual Basic, can be easily used

to construct nonfunctional prototypes of inputs. The key term here is nonfunctional .

The forms will look real, but there will be no code for implementing any of the but-

tons or fi elds. That is the essence of rapid prototyping.

 > The Input Design Process

 Input design is not a complicated process. Some steps are essential, and others are

dictated by circumstances. The steps are:

 1. Identify system inputs and review logical requirements.

 2. Select appropriate GUI controls.

 3. Design, validate, and test inputs using some combination of:

 a. Layout tools (e.g., hand sketches, printer/display layout charts, or CASE).

 b. Prototyping tools (e.g., spreadsheet, PC DBMS, 4GL).

 4. If necessary, design the source document.

 In the following subsections, we examine these steps and illustrate a few examples

from the SoundStage project.

 Step 1: Identify System Inputs and Review Logical Requirements Input re-

quirements should have been defi ned during requirements analysis. Physical data fl ow

diagrams (or design units; both described in Chapter 12) are a good starting point for

input design. Those DFDs identify both the net outputs of the system (external agent

to process) and the implementation method.

 Your system development methodology and standards will determine whether

each of these net input data fl ows may also be described as a logical data fl ow in

a data dictionary or repository (see Chapter 8). The data structure for a data fl ow

specifi es the attributes or fi elds to be included in the output. If those requirements

are specifi ed in the relational algebraic notation, you can quickly determine which

fi elds repeat, which fi elds have optional values, and so on. Consider the following

data structure:

Data Structure Defi ning Logical Requirements Comment

ORDER ORDER NUMBER

 ORDER DATE

 CUSTOMER NUMBER

 CUSTOMER NAME

 CUSTOMER SHIP ADDRESS ADDRESS

 (CUSTOMER BILLING ADDRESS ADDRESS)

 1 {PRODUCT NUMBER

 QUANTITY ORDERED} N

 (DEFAULT CREDIT CARD NUMBER)

← Unique identifi er of the output.

← One of many fi elds that must take on a

value. Lack of parentheses indicates a

value is required.

← Pointer to a related defi nition.

← A group of fi elds that repeats 1 n times.

Parentheses indicate optional value.

← An optional fi eld, meaning one that does

not-have to have a value.

 In the absence of such precise requirements, there may exist discovery proto-

types that were created during requirements analysis. In either case, a good require-

ments statement should be available in some format.

 Input requirements specifi ed during requirements analysis for the SoundStage

case study were reviewed, and it was determined that three inputs pertained to the

subject VIDEOTAPE. It was also determined that a single input screen could be used to

support the three inputs— NEW VIDEO TITLE, DISCONTINUED VIDEO TITLE, and VIDEO TITLE

502 Part Three Systems Design Methods

UPDATE. The data content for the three inputs should capture or display the following

data:

 PRODUCT NUMBER

 UNIVERSAL PRODUCT CODE

 QUANTITY IN STOCK

 PRODUCT TYPE

 MANUFACTURER’S SUGGESTED RETAIL UNIT PRICE

 CLUB DEFAULT UNIT PRICE

 CURRENT SPECIAL UNIT PRICE

 CURRENT MONTH UNITS SOLD

 CURRENT YEAR UNITS SOLD

 TOTAL LIFETIME UNITS SOLD

 TITLE OF WORK

 CATALOG DESCRIPTION

 COPYRIGHT DATE

 CREDIT VALUE

 PRODUCER

 DIRECTOR

 VIDEO CATEGORY

 The attributes PRODUCT NUMBER, MONTHLY UNIT SALES, YEAR UNIT SALES , and TOTAL UNIT SALES

are not to be entered by the user. Rather, these attributes are to be automatically gener-

ated by the system. Also, for the TITLE COVER, the user will be expected to simply specify

a bitmap fi le that will contain an actual image of the new video title.

 Step 2: Select Appropriate GUI Controls Now that we have an idea of the content

for our input, we can address the proper screen-based control to use for each attri-

bute to appear on our screen. Using the repository-based programming approach, we

would fi rst check to see if such decisions and other attribute characteristics have al-

ready been made and recorded as repository entries. If so, we would simply reuse the

repository entries that correspond to the attributes we will use on our input screens.

In cases where there is no repository entry, we will have to simply create them.

 To choose the correct control for our attributes, we must begin by examining the

possible values for each attribute. Here are some preliminary decisions regarding our

input attributes identifi ed in the previous step:

 • PRODUCT NUMBER, CURRENT MONTH UNITS SOLD, CURRENT YEAR UNITS SOLD, TOTAL LIFETIME

UNITS SOLD, UNIVERSAL PRODUCT CODE, MANUFACTURER’S SUGGESTED RETAIL UNIT PRICE, CLUB

DEFAULT UNIT PRICE, CURRENT SPECIAL UNIT PRICE, PRODUCER, and DIRECTOR attributes

all have input data values that are unlimited in scope or noneditable. Since the

de signer is unable to provide the user with a meaningful list of values from which

to choose, a single-line text box was chosen. Since the attribute CATALOG DESCRIP-

TION also fi ts this criteria, a multiple-line text box (referred to as a “memo box”

by some products) was selected.

 • PRODUCT TYPE, LANGUAGE, VIDEO ENCODING, SCREEN ASPECT, and VIDEO MEDIA TYPE all

contain a limited predefi ned set of values. Therefore, it was determined that

radio buttons would be the preferred screen-based control for these input items.

 • It was determined that CLOSED CAPTION? is an input attribute that contains a yes/

no value. Therefore, a check box was selected as the control for this attribute.

 • QUANTITY IN STOCK, RUNNING TIME, COPYRIGHT DATE, and CREDIT VALUE contain data

values that can be sequenced in a predictable manner. Thus, a spin box with an

associated text box would be a good choice for these attributes.

 • The attributes VIDEO CATEGORY and VIDEO SUBCATEGORY contain a large number of

predefi ned values. With so many attributes to display on our screen, it was deter-

mined that a drop-down list would be the best control choice.

 • TITLE COVER presented an interesting challenge. Its value is actually a drive, direc-

tory, and name of a fi le that contains a bitmap image of the cover of the video

Input Design and Prototyping Chapter Fifteen 503

title. This attribute will make use of an advanced control called an image box to

store a picture of the video title cover. When this object is selected by the user,

a set of controls and special dialogue (user interaction) will be used to capture

the input for this item. We’ll illustrate this input later in step 3.

 Once again, there are many other screen-based controls that could be used to

input data. Our examples focus on the most commonly used controls. How well you

complete this activity will be a function of how knowledgeable you are about these

common controls and other more advanced controls.

 Step 3: Design, Validate, and Test Inputs This step involves developing proto-

type screens for users to review and test. Their feedback may result in the need to

return to steps 1 and 2 to add new attributes and address their characteristics.

 Let’s take a look at a couple of SoundStage screen prototypes. Figure 15-8 repre-

sents a possible prototype screen for handling NEW VIDEO TITLE, DISCONTINUED VIDEO TITLE,

and VIDEO TITLE UPDATE. The logo appearing in the upper-right portion of the screen was

included to adhere to a company standard—all screens must display the company

logo. The buttons also appearing in the upper center and right portion of the screen

were added because of the decision to combine the three inputs into a single screen.

 F I G U R E 1 5 - 8 Input Prototype for Video Title Maintenance

504 Part Three Systems Design Methods

They were needed to give the user the option of selecting the desired type of input
and record action. We will discuss these buttons and other command and navigation
controls and their use in Chapter 16.

 Note the following issues in Figure 15-8 :

 1 The PRODUCT NUMBER, MONTHLY UNIT SALES, YEAR UNIT SALES, and TOTAL UNIT SALES
are screened in a special color as a visual clue to the user that these fi elds are
locked and the user cannot enter data into them. These fi elds are automatically
generated by the system. Other fi elds appearing on the screen have a white
background as a visual clue that they can be edited.

 2 Edit masks were specifi ed for these input fi elds. The UNIVERSAL PRODUCT CODE fi eld
contains dashes in specifi ed locations. The user does not actually enter these
dashes. Rather, the user simply types in the numbers, and afterward the entire
content is redisplayed according to the specifi ed edit mask. The same is true
for the MANUFACTURER’S SUGGESTED RETAIL PRICE, CLUB DEFAULT UNIT PRICE, and CURRENT
SPECIAL UNIT PRICE fi elds. For example, in either of these three fi elds the user
could type the number 9 and press enter, and the content would be redisplayed
(according to the edit mask) with a dollar sign and decimal point.

 3 Each fi eld on a screen has been given a label that is meaningful to the users.
Feedback from users indicated “CC” was a commonly recognized abbreviation
for “closed caption.” Also, the users indicated that a label was not necessary for
 CATALOG DESCRIPTION.

 4 Related radio buttons have been arranged in a group box that contains a
descriptive label. Group boxes are frequently used to visually associate a variety
of controls that are related. For example, the fi elds inside the group box labeled
“Common Information” were grouped because the user associates these attributes
with any type of SoundStage product. Also, each label that corresponds to a radio
button option is not what is actually input and stored in the database. Rather, what
you see is the meaning of the value. The actual value that is stored is a code. For
example, the code value E would actually be stored instead of “English” if the user
selects the radio button labeled “English” for the attribute LANGUAGE .

 5 The multiple-line text box has a vertical scroll bar feature if the text fi lls the text
box. This is a visual clue that there is additional text not appearing inside the
 CATALOG DESCRIPTION fi eld.

 In prototyping input screens, you need to let the user exercise or test the screens.
Part of that experience should involve demonstrating how the user may obtain appro-
priate help or instructions. New versions of Microsoft products use what are called
“tooltips” to provide a brief description of buttons and boxes that appear on a screen.
The tooltip description displays when the user positions the mouse over the top of
the object. Also, the F1 key is universally accepted as initiating context-sensitive help.
A help button is another option. Whichever approach(es) you use, it is not necessary
to actually implement the help in a prototype.

 Finally, prototypes need not display all details to a user unless they are requested
(or triggered by a user action). For example, the drop-down list for Motion Picture
Association of America RATING code displays only a default value. However, the down-
ward-pointing arrow is a visual clue that a list box containing possible values exists.
The list box may be viewed by simply clicking on the downward pointing arrow. The
result of that action is illustrated in the margin.

 The previous example was fairly simple because it contained only data that might
be updated in one database table. But what if an input includes data to be updated in
more than one table? And suppose there is a one-to-many relationship between the ta-
bles. Consider MEMBER ORDER, which has a one-to-many relationship to MEMBER ORDERED
PRODUCTS. How do we design a single input to capture the data for both tables?

 Figure 15-9 represents a prototype screen for entering MEMBER and MEMBER ORDERED
PRODUCTS on a single form. The form is segmented into two windowpanes. MEMBER data
is in the top pane, and MEMBER ORDERED PRODUCT data is in the bottom pane. You may

 A Drop-Down
Menu

Input Design and Prototyping Chapter Fifteen 505

be wondering what happens if the number of MEMBER ORDERED PRODUCTS exceeds the

space allotted for that pane. In other words, where is the scroll bar for the bottom

pane? Many Windows GI controls are “intelligent.” If the number of rows in the bot-

tom pane exceeds the space, a vertical scroll bar will automatically appear.

 As one last Windows example, Figure 15-10 shows a single-screen design that

consolidates three different or similar inputs from our data fl ow diagrams: NEW MEM-

BER, MEMBER CANCELLATION, and MEMBER UPDATE. This form also uses the standard input

controls that we’ve discussed in this chapter. The consolidation of logical and physical

data fl ows into single-screen designs is very common.

 Step 4: If Necessary, Design the Source Document If a source document will

be used to capture data, we must also design that document. The source document is

for the system user. In its simplest form, the prototype may be a simple sketch or an

industrial artist’s rendition.

 A well-designed source document will be divided into zones. Some zones are

used for identifi cation; these include company name, form name, offi cial form number,

 F I G U R E 1 5 - 9

Input Prototype for
Member Order

 F I G U R E 15-10

Input Prototype for
Member Shopping

506 Part Three Systems Design Methods

date of last revision (an important attribute that is often omitted), and logos. Other

zones contain data that identifi es a specifi c occurrence of the form, such as form se-

quence number (possibly preprinted) and date. The largest portion of the document

is used to record transaction data. Data that occurs once and data that repeats should

be logically separated. Totals should be relegated to the lower portion of the form

because they are usually calculated and, therefore, not input. Many forms include an

authorization zone for signatures. Instructions should be placed in a convenient loca-

tion, preferably not on the back of the form.

 F I G U R E 1 5 - 1 1 Input Prototype for Web Shopping Cart

Input Design and Prototyping Chapter Fifteen 507

 Prototyping tools have become more advanced in recent years. Spreadsheet pro-
grams such as Microsoft’s Excel can make very realistic models of forms. These tools
give you outstanding control over font styles and sizes, graphics for logos, and the like.
Laser printers can produce excellent printouts of the prototypes.

 > Web-Based Inputs and E-Business

 The last input design considerations we want to address concern Web-based outputs.
The SoundStage project will add various e-commerce and e-business capabilities to
the Member Services information system. Some of these capabilities will require Web-
based inputs that must be designed.

 One logical output requirement for the project is Web-based MEMBER ORDER . We
just showed you the client/server version. Now let’s look at the Web-based version.
It is common to present a Web storefront (Figure 15-11 on page 506). In addition to
providing the member with information about SoundStage products (an output), the
member can click the “buy” button to initiate a purchase. That takes the member to
what has become a common metaphor screen in e-commerce applications, the shop-

ping cart screen (see Figure 15-12). Web interfaces tend to be somewhat more artistic
than Windows interfaces. Perhaps that is part of the appeal. The interface needs to be

 F I G U R E 1 5 - 1 2 Input Prototype for Web Shopping Cart

508 Part Three Systems Design Methods

visually appealing to entice the customer to purchase products in the absence of a
verbal sales pitch. In Figure 15-12 :

 1 The shopping cart “frame” is independent of the general navigation frame (on
the left). The latter allows the user to search and browse the entire Web site,
hopefully to fi nd additional products to add to the shopping cart.

 2 Buttons, text boxes, hyperlinks, drop-down boxes, and other common controls
are here applied to a Web interface instead of a Windows interface.

 3 A checkout hyperlink sends the member to the next “page” to complete the
transaction.

 The Web interface offers several advantages such as the automatic ability for members
to use their forward and backward buttons to navigate different inventory and order
pages at the Web site.

 Chapter Review

 1. Several concepts are important to input design. One
of the fi rst things you must learn are the difference
between data capture, data entry, and data process-
ing. Alternative input media and methods must also
be understood before designing the inputs. And
because accurate data input is so critical to success-
ful processing, fi le maintenance, and output, you
should also learn about human factors and internal
controls for input design.

 2. Data happens! It accompanies business events called
transactions. Examples include orders, time cards, res-
ervations, and the like. This is an important concept
because system designers must determine when and
how to capture the data. The designer must under-
stand the difference between the following:

 a. Data capture is the identifi cation and acquisition
of new data.

 b. A source document is a paper form used to re-
cord business transactions in terms of data that
describe those transactions.

 c. Data entry is the process of translating the
source data into a computer-readable format.
That format may be a magnetic disk, an optical
mark form, a magnetic tape, or a fl oppy diskette,
to name a few.

 3. Data must be processed using one of the following
techniques: a. In batch processing, the entered data is collected

into fi les called batches that are processed later.
 b. In online processing, the captured data is pro-

cessed immediately.
 c. In remote batch processing, data is entered using

online editing techniques; however, the data is
collected into batches for later processing.

 4. The systems analyst usually selects the method and
medium for all inputs. Input methods include:

 — Keyboard — Optical mark
 — Mouse — Magnetic ink
 — Touch screen — Electromagnetic signature
 — Point of sale — Smart cards
 — Sound and speech — Biometrics 5. Most new applications being developed today
consist of screens having a “graphical”-looking ap-
pearance. This type of appearance is referred to as a
graphical user interface (GUI).

 6. Inputs should be as simple as possible and de-
signed to reduce the possibility of incorrect data
being entered. Furthermore, the needs of data
entry clerks must also be considered. With this
in mind, system designers should understand
 human factors that should be evaluated during
input design.

 7. Input controls ensure that the data input to
the computer is accurate and that the system is
protected against accidental and intentional errors
and abuse, including fraud.

 8. When designing input screens for an application
that will contain a GUI appearance, the designer
must be careful to select the proper control
object for each input attribute. Each control
serves a specifi c purpose, has certain advantages
and disadvantages, and should be used according
to guidelines. Some of the most commonly used
screen-based controls for inputting data include
text box, radio button, check box, list box, drop-
down list, combination box, and spin box.

Review Questions
1

2

 1. What is the goal of input design?
 2. What is the relationship between source

documents and data entry?
 3. What is the next step after data is entered? What

are the different methods used for this step, and
how are they different in terms of the timing?

 4. What are the different input methods described in
the textbook?

 5. What is the difference between OMR and OCR?
 6. For biometric input, what and how is data entered

and processed into the information systems?
 7. Why is smart card technology able to store a

tremendous amount of information? What are
some examples of the applications of smart
card technology?

 8. Why are human factors important in input design?
What principles need to be considered in
input design?

 9. What are some of the techniques used to
validate data?

 10. Under what circumstances should we choose to
use radio buttons or check boxes?

 11. What are the similarities of a drop-down list and a
combo box?

 12. What are some advanced input controls suggested
in the textbook?

 13. What are the steps for input design process?
 14. What is a well-designed source document?
 15. What are the challenges facing Web interfaces

compared to Windows interfaces when designing
input suggested in the textbook?

Problems and Exercises

 1. The owner of a chain of fast-food sit-down
restaurants has hired your company to design a
method to get orders to customers faster, with less
labor, but without any loss of quality. Currently, the
fast-food restaurants use the conventional method
of having customers wait in line to order and pay;
then the order is printed out and given to the food
preparation specialist (chef). Can you think of how
technology might be used to meet these objectives?

 2. Look at the following portion of a data input
screen used by the technicians in a company to
order parts from the company warehouse. Is there
anything wrong with the design of this input
screen?

 ENTER TECHNICIAN #: ENTER TECHNICIAN NAME:
 ENTER PART #: ENTER PART DESCRIPTION:

 3. Point of sale (POS) terminals, such as those used
in ATMs, gas stations, and in stores, have become
extremely common due to their convenience and
versatility. But in terms of human interface design,
their input methods sometimes leave something
to be desired. What are the areas where you think
improvement is needed?

 4. Answer the following true/false questions: Qualify
or explain your answers as needed.

 a. System users tend to be confused by data entry
codes, and frequently enter the wrong code;
therefore, their use should be avoided.

 b. Batch processing is still a viable data processing
process.

 c. There is little correlation in terms of data
accuracy between the point at which data
originates and the length of time before the
data is captured.

 d. The computer mouse was invented in order to
optimize the use of graphical-user interfaces on
personal computers using Windows or Apple
operating systems.

 e. Using metaphor-based screen design is
considered too “cute” and unprofessional.

 f. Radio buttons are best used only when there
is a very small number of previously defi ned
values that have no commonality.

 5. Think about the best and the worst data input
screens that you have used, heard about, and/or
worked on. Using your own experience, as well as
this chapter, list at least fi ve input screen require-
ments and/or principles (other than the one
described in Question 3) that you consider to be
important. Explain why you selected each of them.

 6. You are designing an input screen for a client
treatment data system which will be used by a
county in your state. Alcohol and drug treatment
providers will enter demographic and treatment
data on their clients, then send it to the county
Department of Behavioral Health. The system will
run on a client/server network using a relational

Input Design and Prototyping Chapter Fifteen 509

DBMS. Business rules require an entry for all data
elements; there are no discretionary or optional
fi elds. Data will include a mixture of alphanumeric
data, numeric data used for calculations, and dates.
Some of the data fi elds will have interdependen-
cies between them, such as a fi eld for gender and
another fi eld for whether the client is pregnant.
Unique client identifi ers will be used as keys and
will be generated by the system.

 Where should you design the data input con-
trols and edits—at the client-side or server-side of
the network? Why? What types of edits and valida-
tion checks should be included?

 7. Match the defi nitions or examples in the fi rst col-
umn with the terms in the second column:

 A. Magnetic stripe card

 B. Single-line text box
with two vertically
aligned buttons

 C. FedEx pickup and
delivery data
processing method

 D. Text description of
value choice
associated with circle

 E. Voice recognition
 system
 F. Identifi cation and

acquisition of
new data

 G. Input device most prone
to data entry errors

 H. Paper form used to
record business
transaction(s)

 I. Example of
metaphor-based
screen design

 J. Optical mark forms
used for objective
question exams

 K. Nonnumeric method
for value selection

 L. Technique to
determine primary
key data entry errors

 M. Example of
repository-based
programming approach

 8. Text boxes may be the most frequently used con-
trol for data input in GUI interfaces. What conven-
tions and guidelines should the system designer
follow when designing input screens that include
text boxes?

 9. What basic questions should you ask yourself in
deciding on the best GUI control to use for each
data attribute to be captured and input? Provide
examples of data attributes, and instructions on
matching the data attribute with the GUI control
that is the best in that situation.

 10. Designs based on generic, easily identifi able meta-
phors are generally well received by system users,
particularly novice ones, because their familiarity
enhances the perception of ease-of-use and user-
friendliness. Your company wants to replace its
paper telephone message forms with an electronic
version that can be sent as an e-mail attachment.
Create a metaphoric screen design for one of the
common paper telephone message forms. (Hint:
This will not require a screen design tool, but can
be designed in Microsoft Word or Excel . Create
your own, rather than using one of the templates
that are commonly available.)

 1. Slider edit
calendar

 2. Data capture

 3. OMR

 4. Quicken

 5. Microsoft
 Visual Basic

 6. Type of ADC
technology

 7. Check digit
formula

 8. Radio button

 9. Remote batch
processing

 10. Biometric ADC
system

 11. Source
document

 12. Keyboard

 13. Spin box

 1. As the textbook mentions, many organizations
once employed huge numbers of clerks to
perform data entry. As personal computers
and online computing became more common,
system users began assuming responsibility for
data entry, and the ranks of data entry clerks
shrank dramatically in most organizations.
Today the explosive growth of the Internet is
having a similarly profound impact upon the
organizational structure of most large companies
and government agencies.

 a. Research the transformation of responsibility
for data entry, from data entry clerks to system
users, that occurred in the 1980s and 1990s.
Discuss the issues faced by these organizations
and their employees.

 b. Research the transformation that is taking
place today as the Internet facilitates the
growth of customer-based data entry. What
are the implications? What is the impact upon
companies’ organizational structure, their
employees, and their customers?

 Projects and Research

510 Part Three Systems Design Methods

Input Design and Prototyping Chapter Fifteen 511

 c. Research a large company or government

agency in your area. Compare its organizational

structure 25 years ago to 10 years ago and to

today. What relevant changes did you fi nd?

 d. Research articles in business and IT journals

regarding the impact technology is having upon

organizations in the private and public sectors.

What are some of the predictions regarding

what the next transformation in data entry

will be? Do you think these predictions will

come true?

 e. Overall, are we better off or worse off for these

changes?

 2. Voice recognition technology is used fairly

frequently for entering commands or responding

to automated questions data over the telephone.

Also, some technology experts predict that voice

recognition will one day replace keyboards for data

entry; currently there are very few applications that

use voice recognition technology for data entry.

Research recent developments in voice recognition

technology and respond to the questions below:

 a. What articles did you fi nd? What are their

viewpoints regarding voice recognition

technology?

 b. What is the current state of the art of voice

recognition technology?

 c. Do you think that voice recognition technology

has fi nally matured to the point where it can

soon be a viable option for keyboard data entry?

Or does it still need some further maturing?

Or does it represent a technological dead

end? Explain.

 d. If you have access to applications that include

voice recognition software for data or text entry

(or can download a free trial copy without

violating any licensing or usage restrictions), try

using them. How would you evaluate them?

 3. A number of emerging technologies are classifi ed

as automatic data capture (ADC) technologies.

In essence, they get people out of the data input

loop. One of these technologies is radio frequency

identifi cation (RFID) technology, which is quickly

becoming very common. Research RFID technology

and business applications on the Web and/or in

your school’s library.

 a. Explain how RFID devices work.

 b. How is RFID currently being used in the private

and public sectors?

 c. What are their main advantages? Their

disadvantages?

 d. What are some of the social, economic,

and political implications regarding RFID

technology?

 e. What will be some of the applications which

RFID technology will put to use 10 years

from now?

 4. Generally, one doesn’t have to look too far in most

organizations to fi nd a poorly designed source

document or data input screen, or both. Contact

a nonprofi t or similar type of organization and

volunteer to review their forms and data input

screens, and to redesign one or two of them.

 a. Describe the organization for which you did the

volunteer work.

 b. Did you fi nd any design problems in either

the source documents or the input screens?

Describe the design problems.

 c. Describe the source document and/or input

screen that you redesigned. Include a sample if

possible.

 d. What changes did you make, and what process

did you follow in making the changes? Include a

sample.

 e. What challenges did you face in redesigning the

form and/or screen?

 f. Was the organization pleased with your

redesign? Is it using the new form and screen?

 5. Your Web design company has been hired by a

supermarket chain to develop a short Web-based

survey on what customers like and don’t like about

the supermarket chain. The objective is to have an

employee in each store walking through the store

with a laptop and randomly choosing customers to

survey regarding their likes and dislikes. Customers

will be asked three to fi ve questions. Survey data

will be entered directly into the laptop via a Web-

based application.

 a. What are some of the high-level considerations

that need to be addressed before designing the

survey form?

 b. What questions would you include in

the survey?

 c. What other data would you include?

 d. Design a prototype of the form.

 e. Was this easier or harder to do than you

thought? Describe any challenges you faced that

you didn’t anticipate.

Minicases

 1. Input design affects not only the ease of use of a

system, but also the security. Find examples of how

systems can be crashed by the characters that are

input into text boxes. Find out how to address these

security loopholes or concerns. Prepare a short

paper on this material and present to the class.

 2. In minicase 2 from the previous chapter, you cre-

ated an online form. Did you appropriately use the

different methods for inputs, such as input boxes,

radio buttons, drop downs, and the like? What

would you change? Why?

 3. Make the changes you suggested in minicase 2.

Submit screen shots of the form both before and

after you made the changes. Be sure to include the

URL of your form, so that the professor can check

your work.

 4. Research input methods for blind users. Write a

short paper briefl y describing these input methods

and how you can integrate them into an informa-

tion system.

512 Part Three Systems Design Methods

 Team and Individual Exercises

 1. Roundtable discussion: How can we make

information systems and computers (in general)

easier to use? Give specifi c examples.

 2. Individual: By now, you have done a lot of group

work. Think back to the last time somebody lost

her or his temper or was frustrated. Was the impact

of the words said out of anger or frustration

magnifi ed if they were communicated via e-mail?

Do you think we should take more care in our

comments when they are written, or when the

other person cannot read our body language?

 3. Team or individual: It has been said that having

limited funds spurs creativity. Do you think this is

true? If so, how can a company or an individual

stay creative and mentally hungry as they become

more fi nancially stable.

 Suggested Readings

 Andres, C. Great Web Architecture . Foster City, CA: IDG Books

Worldwide, 1999. Books on effective Web interface de-

sign are beginning to surface. The science of human engi-

neering for Web interfaces has not yet progressed as far as

client/server interfaces (e.g., Windows). Here is an early

title that explores many dimensions of Web architecture

and interfaces using real-world examples.

 Application Development Strategies (monthly periodical).

Arlington, MA: Cutter Information Corporation. This is our

favorite theme-oriented periodical that follows system

development strategies, methodologies, CASE, and other

relevant trends. Each issue focuses on a single theme. This

periodical will provide a good foundation for how to de-

velop input prototypes.

 Dunlap, Duane. Understanding and Using ADC Technolo-

gies. A White Paper for the ADC Industry. A SCAN TECH

1995 Presentation. October 23, 1995, Chicago. We are in-

debted to our friend and colleague. Professor Dunlap is

a leader in the fi eld of ADC. This paper was the basis for

much of our discussion on the trends in ADC technology.

 Fitzgerald, Jerry. Internal Controls for Computerized In-

formation Systems . Redwood City, CA: Jerry Fitzgerald

& Associates, 1978. This is our reference standard on

the subject of designing internal controls into systems.

Fitzgerald advocates a unique and powerful matrix tool

for designing controls. This book goes far beyond any in-

troductory systems textbook; it is must reading.

 Galitz, W. O. User-Interface Screen Design . New York: John

Wiley & Sons, 1993. This is our favorite book on overall

user interface design. The author offers several fl ow-

charts of the decision process in applying GUI controls

to inputs.

 Kozar, Kenneth. Humanized Information Systems Analysis

and Design . New York: McGraw-Hill, 1989. A good user-

oriented treatment of input design.

User Interface Design Chapter Sixteen 513

16
 Chapter Preview and Objectives

 In this chapter you will learn how to design and prototype the user interface for a system.

The user interface should provide a friendly means by which the user can interact with

the application to process inputs and obtain outputs. In Chapters 14 and 15, you learned

how to design and prototype outputs and inputs. User interface design and prototyping

address the overall presentation of the application and may require revisions to the

preliminary output and input prototypes. Today there are two commonly encountered

interfaces: terminals (or microcomputers behaving as terminals) used in conjunction with

mainframes and the more common display monitors connected to microcomputers. There

are also several strategy styles for designing the user interface for systems. You will know

that you’ve mastered user interface design when you can:

 ❚ Distinguish between different types of computer users and design considerations

for each.

 ❚ Identify several important human engineering factors and guidelines and incorporate

them into a design of a user interface.

 ❚ Integrate output and input design into an overall user interface that establishes the

dialogue between users and computer.

 ❚ Understand the role of operating systems, Web browsers, and other technologies for

user interface design.

 ❚ Apply appropriate user interface strategies to an information system. Use a state

transition diagram to plan and coordinate a user interface for an information system.

 ❚ Describe how prototyping can be used to design a user interface.

User Interface Design

514 Part Three Systems Design Methods

Introduction

 Designing the user interface for the in-house client/server part of the SoundStage
Member Services system has been a longer process than Bob Martinez anticipated.
Some of the fi nal design is shown in Figures 16-17 , 16-18 , and 16-19 , but it didn’t start
out looking like that. Bob’s fi rst design used icons instead of text for all menu buttons.
For instance, a picture of a stack of papers indicated “Orders,” and a picture of balloons
indicated “Promotions.” But feedback from users testing the interface revealed that
many of them had no clue what those icons meant and wasted time trying to fi gure
them out. So a decision was made to switch to text labels. Various kinds of controls
were tested for the screens shown in Figures 16-18 and 16-19 . Each iteration went
through user testing, leading to revisions and more user testing. It was all a lot of work.
But Bob knew this work on the front end would be much less than the work of an-
swering thousands of phone calls from confused and upset users if they implemented
a user interface that was lacking.

 User Interface Design Concepts and Guidelines

 In the two previous chapters, we addressed output and input design. In this chapter,
we integrate output and input design into an overall user interface that establishes
the dialogue between users and computer. The dialogue determines everything, from
starting the system or logging into the system, to setting options and preferences, to
getting help. And the presentation of the outputs and inputs is also part of the interface.
We need to examine the screen-to-screen transitions that can occur. In client/server
applications (e.g., network-based Windows) and Web applications (e.g., Internet- or
intranet-based browsers), the user has many alternative paths through menus, hyper-
links, dialogues, and the like. This makes for very accommodating and friendly user
interfaces, but it greatly complicates design and programming.

 Today most user interfaces are designed by rapidly constructing prototypes. These
prototypes are generated using rapid application development environments such
as Microsoft’s Visual Studio, Borland’s JBuilder (for Java), or IBM’s VisualAge (for
various languages). These prototypes are rarely fully functional, but they do contain
enough functionality to demonstrate the interface. When we get to the construction
phase of the life cycle, programmers and analysts will complete the functionality.

 > Types of Computer Users

 SYSTEM USERS can be broadly classifi ed as either expert or novice—and either nondis-
cretionary or discretionary.

 An expert user is an experienced computer user who has spent considerable
time using specifi c application programs. The use of a computer is usually considered
nondiscretionary. In the mainframe computing era, this was called a dedicated user.
Expert users generally are comfortable with (but not necessarily experts in) the appli-
cation’s operating environment (e.g., Windows or a Web browser). They have invested
time in learning to use the computer. They will invest time in overcoming less-than-
friendly user interfaces. In general, they have memorized routine operations to an
extent that they neither seek nor want excessive computer feedback and instructions.
They want to be able to accomplish their task in as few actions and keystrokes as
possible.

The novice user (sometimes called a casual user) is a less experienced com-
puter user who will generally use a computer on a less frequent, or even occasional,
basis. The use of a computer may be viewed as discretionary (although this is be-
coming less and less true). Stated simply, the novice users need more help than the

expert user an experi-

enced computer user.

novice user an inexperi-

enced or casual computer

user.

User Interface Design Chapter Sixteen 515

expert users. Help takes many forms, including menus, dialogues, instructions, and
help screens. Most managers, despite their increasing computer literacy, fall into the
novice category. They are paid to recognize and solve problems, exploit opportunities,
and create plans and manage the vision—not to learn and use computers. Computers
are considered tools by modern managers. When the need arises, they want to realize
their benefi t as quickly as possible and move on.

 Expert and novice users are actually extremes on the continuum of all users. The
totally novice user who hasn’t used a computer is becoming less common. Few col-
lege curricula don’t require computer literacy for all majors, and students in all majors
have discovered the value of increased interdisciplinary computer expertise (some-
times called informatics). Novice users also usually graduate to expert users through
practice and experience. The net societal impact of the Internet is that more people
are becoming increasingly comfortable with computers—creating a class of users
that is less novice and more expert with each passing year. Is it any wonder that user
interface design is racing toward Web browser-like interfaces, even within Windows
applications?

 It is diffi cult to imagine today’s young students and professionals being uncom-
fortable with computers. Regardless, most of today’s systems are designed for the
novice system user but adapting to the expert user. The focus is on user friendliness
or human engineering.

 > Human Factors

 Before designing user interfaces, you may fi nd it useful to understand the elements
that frequently cause people to have diffi culty with computer systems. Our favorite
user interface design expert, Wilbert Galitz (see the Suggested Readings) offers the
following interface problems:

 • Excessive use of computer jargon and acronyms.
 • Nonobvious or less-than-intuitive design.
 • Inability to distinguish between alternative actions (“What do I do next?”).
 • Inconsistent problem-solving approaches.
 • Design inconsistency.

 According to Galitz, these problems result in confusion, panic, frustration, boredom,
misuse, abandonment, and other undesirable consequences.

 To solve these problems, Galitz offers the following overriding “commandments”
of user interface design:

 • Understand your users and their tasks. This becomes increasingly diffi cult as
we extend our information systems to implement business-to-consumer (B2C)
and business-to-business (B2B) functionality using the Internet.

 • Involve the user in interface design. Find out what the users like and dislike in
their current applications. Involve them in screen design and dialogue from the
beginning. This commandment is easily enabled with today’s PC-database and
rapid application development technology.

 • Test the system on actual users. Observation and listening are the key skills
here. After initial training, try to avoid excessive coaching and forcing users to
learn the system. Instead, observe their actions and mistakes, and listen to their
comments and questions to better understand their interaction with the user
interface.

 • Practice iterative design. The fi rst user interface will probably be unsatisfactory.
Expect any user interface design to go through multiple design iterations and
testing. When is the interface fi nished? Probably never! But Galitz suggests that
a good goal is that 95 percent of the typical users (be they novice or expert)
can perform intended tasks (be they routine or less common) without diffi culty
or help.

516 Part Three Systems Design Methods

 > Human Engineering Guidelines

 Given the type of user, a number of important human engineering factors should be
incorporated into the design:

 • The system user should always be aware of what to do next. The system
should always provide instructions on how to proceed, back up, exit, and the
like. Several situations require some type of feedback:

 — Tell the user what the system expects right now. This can take the form of
a simple message such as READY, TYPE COMMAND, SELECT ONE OR MORE OPTIONS, or
TYPE DATA.

 — Tell the user that data has been entered correctly . This can be as simple as
moving the cursor to the next fi eld in a form or displaying a message such as
 DATA OK.

 — Tell the user that data has not been entered correctly. Short, simple messages
about the correct format are preferred. Help functions can supplement these
messages with more extensive instructions and examples.

 — Explain to the user the reason for a delay in processing. Some actions require
several seconds or minutes to complete. Examples include sorting, indexing,
printing, and updating. Simple messages such as SORTING—PLEASE STAND BY, or
 INDEXING—THIS MAY TAKE A FEW MINUTES or PLEASE WAIT tell the user that the sys-
tem has not failed. The Windows hourglass or the Internet Explorer revolving
globe are iconic clues that processing is occurring.

 — Tell the user that a task was completed or was not completed. This is espe-
cially important in the case of delayed processing, but it is also important in
other situations. A message such as PRINTING COMPLETE or PRINTER NOT READY—
TRY AGAIN OR CONTACT YOUR NETWORK ADMINISTRATOR will suffi ce.

 • The screen should be formatted so that the various types of information,

instructions, and messages always appear in the same general display area.
This way, the system user knows approximately where to look for specifi c infor-
mation. In most windowing environments, standards often dictate the location
of status messages or pop-up dialogue windows.

 • Messages, instructions, or information should be displayed long enough to

allow the system user to read them. Most experts recommend that important
messages be displayed until the user acknowledges them.

 • Use display attributes sparingly. Display attributes, such as blinking, highlight-
ing, and reverse video, can be distracting if overused. Judicious use allows you to
call attention to something important—for example, the next fi eld to be entered,
a message, or an instruction.

 • Default values for fi elds and answers to be entered by the user should be

specifi ed. In windowing environments, valid values are frequently presented in
a separate window or dialogue box as a scrollable region. The default value, if
applicable, should usually be fi rst and clearly highlighted.

 • Anticipate the errors users might make. System users will make errors, even
when given the most obvious instructions. If it is possible for the user to ex-
ecute a dangerous action, let it be known (for example, a message or dialogue
box could read ARE YOU SURE YOU WANT TO DELETE THIS FILE?). An ounce of preven-
tion goes a long way!

 • With respect to errors, a user should not be allowed to proceed without

correcting an error. Instructions (and examples) on how to correct the error
should be displayed. The error can be highlighted with sound or color and then
explained in a pop-up window or dialogue box. A HELP option can be defi ned to
trigger display of additional instructions.

 • If the user does something that could be catastrophic, the keyboard should be

locked to prevent any further input, and an instruction to call the analyst or

technical support should be displayed.

User Interface Design Chapter Sixteen 517

 > Dialogue Tone and Terminology

 The overall fl ow of screens and messages is called a dialogue. The tone and termi-
nology of a dialogue are very important human factors in user interface design. With
respect to the tone of the dialogue, the following guidelines are offered:

 • Use simple, grammatically correct sentences. It is best to use conversational
English rather than formal, written English.

 • Don’t be funny or cute! When someone has to use the system 50 times a day,
the intended humor quickly wears off.

 • Don’t be condescending. Don’t insult the intelligence of the system user. For
instance, don’t offer repeated praise or rewards.

 With respect to the terminology used in a computer dialogue, the following sug-
gestions may prove helpful:

 • Don’t use computer jargon.
 • Avoid most abbreviations. Abbreviations assume that the user understands how

to translate them. Check fi rst!
 • Use simple terms. Use NOT CORRECT instead of INCORRECT. There is less chance of

misreading or misinterpretation.
 • Be consistent in your use of terminology. For instance, don’t use both EDIT and

 MODIFY to mean the same action.
 • Carefully phrase instructions—use appropriate action verbs. The following

recommendations should prove helpful:

 — Use SELECT or CHOOSE instead of PICK when referring to a list of options. Be sure
to indicate whether the user can select only one or more than one option
from the list of available options.

 — Use TYPE , not ENTER , to request the user to input specifi c data or instructions.
The term ENTER may be confused with the enter key.

 — Use PRESS , not HIT or DEPRESS , to refer to keyboard actions. Whenever possible,
refer to keys by the symbols or identifi ers that are actually printed on the keys.
For instance, the ↵ symbol is used on some keyboards to designate the RETURN
or ENTER key.

 — When referring to the on-screen mouse cursor, use the term POSITION THE
CURSOR , not POINT THE CURSOR .

 dialogue the overall fl ow of

screens and messages for a

application.

 User Interface Technology

 Most of today’s user interfaces are graphical. The basic structure of the graphical

user interface (or GUI) is provided within either the computer operating system
or the Internet browser of choice. In client/server information systems, the user
interface client is implemented to execute within the PC operating system. In In-

ternet and intranet information systems, the user interface is implemented to
execute within the PC’s Web browser (which, in turn, executes within the PC op-
erating system).

 > Operating Systems and Web Browsers

 The dominant GUI-based operating system for today’s client computers (as in a cli-
ent/server network) is Microsoft Windows (various versions). Apple’s Macintosh and
the various fl avors of UNIX (including Linux) also hold market share. For the growing
numbers of handheld and palm-top client computers, the current dominant operating
system is Palm’s Palm OS. Microsoft Windows Mobile also holds a percentage of that
market.

 Increasingly, the operating system is not the key technology factor in user
interface design. Internet and intranet applications run within a Web browser. Most

518 Part Three Systems Design Methods

browsers run in many operating systems, making it possible to design a user interface
that is less dependent on the computer itself. The advantages of this computer plat-

form independence should be obvious. Instead of writing a user interface for each
anticipated computing platform and operating system, you write it for one or two
browsers. As we go to press, the dominant Web browsers are Microsoft Internet

 Explorer and Mozilla Firefox, but version problems within browsers can exist in the
user community.

 In addition to the operating systems and browsers, the overall design of a user
interface is enhanced or restricted by the available features of the users’ display
monitor, keyboard, and pointing devices. Let’s briefl y examine some of the other
considerations.

 > Display Monitor

 The size of the display area is critical to user interface design. Not all displays are PC
monitors! A number of non-PC terminals still exist. Terminals are non-PC displays that
merely display data and information transmitted by a remote computer, usually a main-
frame. And while many terminals have been replaced by PCs, users are still frequently
forced to interface with the legacy mainframe applications using terminal emulators
that open a window on the screen that still displays information and instructions
in the original, pre- Windows terminal format. For these terminals and terminal emula-
tors, the two most common display areas were 25 lines by 80 columns and 25 lines
by 132 columns.

 Fortunately, the personal computer monitor has replaced most terminals, and
most newer and reengineered applications are being written to a graphical interface.
For PC monitors, we don’t measure the display in terms of lines and columns. And
while diagonal measures such as inches are often quoted, the more relevant mea-
sure is graphical resolution. Graphical resolution is measured in pixels, the number
of distinct points of light displayed on the screen. Today’s most common resolution is
1,024,000 horizontal pixels by 800,000 vertical pixels in a 17-inch diagonal display.
Larger display sizes support even more pixels; however, the designer should generally
design the user interface with the assumption of the lowest common or reasonable
denominator.

 Obviously, handheld and palm-top computers and specialized terminal displays
(such as those in cash registers and ATMs) support much smaller displays that must
be considered in user interface design.

 The manner in which the display area is shown to the user is controlled by both
the technical capabilities of the display and the operating system capabilities. Paging
and scrolling are the two most common approaches to showing the display area to the
user. Paging displays a complete screen of characters at a time. The complete display
area is known as a page (or screen). The page is replaced on demand by the next or
previous page, much like turning the pages of a book. Scrolling moves the displayed
information up or down on the screen, one line at a time. This is similar to the way
movie and television credits scroll up the screen at the end of a movie. Once again, PC
displays offer a wider range of paging and scrolling options.

 > Keyboards and Pointers

 Most (but not all) terminals and monitors are integrated with keyboards. The obvious
exception is palm computers such as the PalmPilot. The critical features of the key-
board include character set and function keys.

 The character set of most PC keyboards is fairly standard. These character sets can
be extended with software to support additional characters and symbols. For special-
ized terminals or workstations, the manufacturer can design custom keyboards. Most
keyboards contain special keys called function keys . PC keyboards usually have 12
such function keys. Terminals have been known to include as many as 32 function

 paging displaying a com-

plete screen of characters at

a time.

 scrolling displaying infor-

mation up or down a screen,

one line at a time.

User Interface Design Chapter Sixteen 519

keys. Function keys (usually labeled F1, F2, and so on) can be used to program certain
common, repetitive operations in a user interface (for example, HELP, EXIT, and UPDATE).
In an operating system, function keys are often predefi ned, but application developers
can customize them for specifi c systems. Function keys should be used consistently.
That is, any information system’s programs should consistently use the same function
keys for the same purposes. For example, F1 is commonly used as the help key in both
operating systems and applications.

 Most GUIs (including operating systems and browsers) use pointing devices in-
cluding mice, pens, and touch-sensitive screens. Obviously, the most common pointer
is the mouse. A mouse is a small hand-size device that sits on a fl at surface near the
terminal. It has a small roller on the underside. As you move the mouse on the fl at
surface, it causes the pointer to move across the screen. Buttons on the mouse allow
you to select objects or commands to which the cursor has been moved. Driven by
the need to scroll through Web pages and other documents, many mice now include
a wheel that allows a user to more easily scroll through pages and documents without
using the scroll bars.

 Pens are becoming important in applications that use handheld devices (such as
PalmPilots). Because such devices frequently don’t include keyboards, the user inter-
face may need to be designed to allow “typing” on a keyboard displayed on the screen
or using a handwriting standard such as Graffi ti or Jot. Prebuilt components exist to
implement these common features.

 As previously noted, the most common user interface is graphical—either Windows -
based or Web browser–based. The remainder of this chapter will focus on graphical user
interface design.

function keys a series

of special keyboard keys

used to program special

operations.

 mouse a device used to

cause a pointer to move

across a display screen.

 Graphical User Interface Styles and Considerations

 User interface design is the specifi cation of a dialogue or conversation between the
system user and the computer. This dialogue generally results in data input and infor-
mation output. There are several styles of graphical user interfaces. Traditionally these
styles were viewed as alternatives, but they are increasingly blended. This section pres-
ents an overview of several different styles or strategies used for designing graphical
user interfaces and how they are being incorporated into today’s applications. We will
demonstrate these styles with popular software applications.

 > Windows and Frames

 The basic construct of a GUI (both operating system– and browser-based) is the win-

dow. A window is a rectangular, bordered area. A title (and optionally a fi le name) is
displayed at the top of each window.

 A window can be smaller or larger than the actual display monitor’s viewable
area. It usually includes standardized controls in the upper right-hand corner to maxi-

mize itself to the display screen’s size, minimize itself to an icon (at the bottom of the
screen), toggle to a previous size, and exit (or close).

 The fi le, form, or document displayed within a window may or may not fi t in that
window. When the fi le, form, or document exceeds the window size, scroll bars on
the right-hand side and bottom of the window are used to navigate that fi le, form, or
document and indicate the current position of the cursor relative to the entire fi le,
form, or document.

 A window may be divided into zones called frames. Each frame can act inde-
pendently of the other frames in the same window, using features such as paging,
scrolling, display attributes, and color. Each frame can be defi ned to serve a different
purpose. Frames are common in both Windows and Web browsers.

 Within a window or frame, you can use all of the user interface controls that
were used in the previous two chapters (such as text boxes, radio buttons, check

520 Part Three Systems Design Methods

boxes, drop-down lists, buttons, etc.). Additionally, many other user interface types of
controls will be introduced later in the chapter.

 Finally, a window frequently has a task bar or tray across the bottom of the
 window. This task bar can be used to display messages, progress, or special tools (to
be discussed later).

 > Menu-Driven Interfaces

 The oldest and most commonly employed dialogue strategy is menu selection. Differ-
ent types of menus cater to novice and expert users. Menu-driven strategies require
that the user select an action from a menu of alternatives.

 Menu-driven dialogues actually predate GUIs. A typical pre-GUI hierarchical menu
is illustrated in Figure 16-1 . Menu options can be logically grouped into high-level
 options to simplify presentation. As shown in the fi gure, if the main menu option
 DISPLAY WARRANTY REPORTS is selected, the submenu WARRANTY SYSTEM REPORT MENU will
appear. Then, if the PART WARRANTY SUMMARY option is selected, the report customiza-
tion and report screens are displayed in sequence. There is no technical limit to how
deeply hierarchical menus can be nested. However, the deeper the nesting, the greater
the need for direct paths to deeply rooted menu options for the expert user, who may
fi nd navigating through multiple levels annoying (called screen thrashing). And most
users also require ways to escape back to the main or higher-level submenus without
backtracking through each of the original screens.

 menu driven a dialogue

strategy that requires that the

user select an action from a

menu of choices.

WARRANTY SYSTEM
MAIN MENU

1 PROCESS WARRANTY TRANSACTION
2 DISPLAY WARRANTY REPORTS
3 QUERY WARRANTY STATUS

 2

TYPE NUMBER OF DESIRED REPORT AND PRESS RETURN KEY.

WARRANTY SYSTEM
REPORT MENU

1 WARRANTY TRANSACTION REGISTER
2 PART WARRANTY SUMMARY
3 PROBLEM PART EXCEPTION REPORT

 2

TYPE NUMBER OF DESIRED REPORT AND PRESS RETURN KEY.
SYSTEM WILL ASK FOR ANSWERS TO APPROPRIATE QUESTIONS.

WARRANTY SYSTEM
PART WARRANTY SUMMARY

WHICH PART NUMBER FOR SUMMARY? (SEPARATE LISTED
PARTS WITH COMMAS AND THEN PRESS RETURN KEY.)

ANSWER THE FOLLOWING QUESTIONS:
PRESS F5 FOR HELP.

WARRANTY SYSTEM
PART WARRANTY REPORT

PRESS ANY KEY TO SEE NEXT PAGE
PRESS F1 KEY TO SEE PREVIOUS PAGE.
PRESS F3 KEY TO SEE FIRST PAGE AGAIN.

PART NUMBER 23254433 DESCRIPTION 3.5 HP LAWN ENGINE

WARRANTY CLAIMS:

THIS
MONTH

PRESS F6 TO RETURN TO REPORT MENU
PRESS F10 TO RETURN TO MAIN MENU

23254433,1325553,2211787,6663211,7015676,4544321

DO YOU WANT A PRINTED REPORT? (NO) YES
TYPE YOUR MAIL ROUTE CODE AND PRESS RETURN: 10023
DISPLAY REPORT AT TERMINAL? (NO) YES

LAST
MONTH

THIS
YEAR

LAST
YEAR

%
UP/DOWN

43 52 32 47 +69%

 F I G U R E 1 6 - 1

A Classical
Hierarchical Menu
Dialogue

User Interface Design Chapter Sixteen 521

 Pre-GUI hierarchical menus were relatively easy to design. A dialogue chart such
as the one shown in Figure 16-2 (taken from an earlier edition of our book) was used
to map the screen-to-screen transitions and ensure consistency and completeness. But
the arrival of graphical user interfaces greatly complicated menu design.

 Pull-Down and Cascading Menus In a GUI, menus are usually implemented with
pull-down and cascading menus from a menu bar as shown in Figure 16-3 (a). Each menu
option is actually a group of related commands and actions. A menu template is shown
in the margin. Many of these menu groups are common to many or all applications. For
example, Windows -based applications typically include the following menu groups:

Warranty

transaction

menu

Menu option ⫽ 1

1

Warranty

inquiry

menu

Menu option ⫽ 3

Menu option ⫽ 2

3

Warranty

report

menu

2

Warranty

system

main

menu

0

System

Part

warranty

report

2.1.1

Menu option ⫽ 1 Menu option ⫽ 3

Menu option ⫽ 2

Problem

part

report

questions

2.3

Warranty

tranx

register

questions

2.2

0

Part

warranty

report

questions

2.1

0

0,2 escapes

 F I G U R E 1 6 - 2

Sample Dialogue
Chart

522 Part Three Systems Design Methods

 Users can select a menu group using either the mouse or a keyboard shortcut (e.g.,
simultaneously pressing the Alt-key plus the underlined letter, called a mnemonic,
 shortcut, or hot key).

 Each menu group has its own pull-down menu. When the user selects a group
from the menu bar, a submenu is pulled down:

 Menu Template

 Notice that the submenu choices may be subgrouped by horizontal lines (e.g.,
grouping all SAVE or PRINT submenu commands). In some cases, a named submenu
action is followed by ellipses (three dots) indicating that a dialogue box (window)
(see Figure 16-3 b) will subsequently appear (pop up) to present additional options

 F I G U R E 1 6 - 3

(a) Pull-Down and
Cascading Menus
(b) Dialogue Box

(a)

or collect additional instructions. In other cases, a named submenu action will have a
small arrow indicating yet another submenu. This is called a cascading menu.

User Interface Design Chapter Sixteen 523

(b)

 Tear-Off and Pop-Up Menus Not all menus are relegated to the menu bar. Some
GUIs allow tear-off menus. With a tear-off menu, the user can select a drop-down
menu or cascaded menu, “drag it off” the menu bar, and relocate it elsewhere on the
screen. This is especially useful if the menu must be continually used. Only a copy of
the original menu is actually torn off.

 A pop-up menu is context-sensitive and dependent on a pointing device. Acti-
vated by the user’s clicking of the right mouse button, a menu pops up from nowhere
(see Figure 16-4). The menu that pops up depends on the location of the cursor on the
screen. The cursor may be pointing to a blank area, a fi eld, a cell, a word, or an object.
The right-button click will bring up a menu displaying only those actions that apply to
whatever is at that cursor location—hence the term context sensitive. Pop-up menus
may also cascade. Pop-up menus are primarily for expert users because there is no
visual clue to their presence.

 Toolbar and Iconic Menus Toolbars consist of icons (pictures) that represent
menu shortcuts for actions and commands that are normally embedded in the drop-
down and cascading menus (see Figure 16-5). In Windows applications, a toolbar of
commonly used actions is found immediately beneath the menu bar. The user can
click on any of these tools or icons to immediately invoke that action without going
through the menus. Toolbars can be created for any application. Application develop-
ers can provide users with some fl exibility for customizing those toolbars.

 While the default location for most toolbars is immediately under the menu
bar, many applications allow toolbars to be relocated to the left, right, or bottom of
the window at the convenience of the user. This is called docking the toolbar. Also,
some toolbars can be made to fl oat (or move) within any convenient location inside
the window.

 NOTE: In Web-based applications, the toolbar is provided by the browser and
cannot be customized to specifi c applications. The most important icons on the
browser toolbar are the PAGE FORWARD, PAGE BACKWARD , and HOME PAGE icons that are
standard to all Web-based Internet and intranet navigation.

524 Part Three Systems Design Methods

 Iconic menus use pictures to represent menu options in the main body of the
window. In Windows applications, these iconic menus are frequently used to provide
a control center (of main functions and activities) for a computer application or to
document the business steps in using a computer application. Figure 16-6 demon-
strates an iconic menu. Each button represents an intuitive menu choice.

 F I G U R E 1 6 - 5

Toolbars

 F I G U R E 1 6 - 4

Pop-Up Menus

User Interface Design Chapter Sixteen 525

 Iconic menus are very popular in Web-based applications because those applica-
tions run in the browser—browsers do not allow the developer to alter the menu com-
mands in the browser’s menu bar. Instead, Web applications frequently use clickable
pictures, icons, and buttons to represent the menu options.

 The popularity of Weblike interfaces is signifi cantly infl uencing Windows user
interface design. Most client/server information systems have implemented the client
user interface to emulate the user’s most commonly used PC tools such as the word
processor and spreadsheet. The user is familiar with those tools; therefore, it makes
sense to design other applications to mimic those menus, toolbars, dialogue boxes,
and the like. But the popularity of Web-based applications has given rise to a new
consumer-style interface.

 Like Web pages, consumer-style interfaces for Windows applications are some-
what more artistic. While menu bars may still be used, the primary look and feel of the
window is more Weblike; thus, it is more consumer-friendly. The interface consists of
clickable icons and buttons that replace more traditional Windows menu approaches.
When not overly complicated, this can be a friendlier “face” for Windows applications
than is traditionally seen in applications such as Microsoft Offi ce and Lotus Smart-

Suite. A consumer-style Windows interface is illustrated in Figure 16-7 .

 Hypertext and Hyperlink Menus Hypertext and hyperlinks are products of
 contemporary Web-based user interfaces. Hypertext and hyperlinks were originally cre-
ated to navigate within and between Web pages and sites. A word, term, or phrase is
marked as a hyperlink (usually formatted as underlined text, usually with color). Clicking
on the hyperlink navigates the user to the associated page (or bookmark in a page).

 This technology can be easily extended and adapted to implement menus in
Web-based Internet and intranet applications. Because these applications run in the
browser, and because the browser’s menu bar and commands are fi xed, we cannot
easily implement custom menus as we do in Windows applications. Instead, we
use hypertext and hyperlinks to implement those menus in the body of the Web
page. Each menu option is a hypertext phrase (or a hyperlinked icon or button)
that invokes actions or forms on other Web pages. Essentially, this approach cre-
ates hierarchical menu structures similar to those that were introduced earlier in

 F I G U R E 1 6 - 6

Iconic Menu

526 Part Three Systems Design Methods

 Figure 16-1 . It is something of an irony that menu design for Web-based applications
is being driven by an approach that returns to a style that was extensively used in
legacy mainframe applications!

 Hypertext and hyperlinks are no longer exclusive to Internet and intranet ap-
plications. Many contemporary Windows applications have embraced the popularity
of the Web by presenting a hybrid Windows / Web user interface. For example, Fig-
ure 16-8 demonstrates the user interface for Intuit’s Quicken, the popular personal
fi nance program. With its many hyperlinks, it looks like a Web page. While it does
include many optional Web-enabled features, it is actually a Windows application! The
fi rst clue is that it runs in its own window, not the browser’s window. It also has
its own Windows menu bar, complete with all the custom pull-down and cascading
menus that are common to Windows applications. We expect this hybrid interface to
become increasingly pervasive as businesses embrace the Internet and intranets as
the fundamental foundation for all information systems.

 > Instruction-Driven Interfaces

 Instead of menus, or in addition to menus, some applications are designed using a
dialogue based on an instruction set (also called a command language interface).
Because the user must learn the syntax of the instruction set, this approach is most
suitable for expert users. Three types of syntax can be defi ned. Determining which
type should be used depends on the available technology:

 • A language-based syntax is built around a widely accepted command language
that can be used by the user to invoke actions. Examples include Query by

Example (QBE) and Structured Query Language (SQL), both of which are
database languages that can be used by the end user to access data and create
custom reports.

 • A mnemonic syntax is built around commands defi ned for custom information
system applications. Users are provided with a screen console in which they
can enter commands that will invoke actions and responses from the computer
user. Ideally, the commands should be meaningful to the user (including any
 abbreviations allowed).

 F I G U R E 1 6 - 7

Consumer-Style
Interface

User Interface Design Chapter Sixteen 527

 • Natural language syntax allows users to enter questions and commands in
their native language. The system interprets these commands against a known
syntax and requests clarifi cation if it doesn’t understand what the user wants.

 Instruction-driven styles were common to legacy mainframe applications and early
DOS-based PC applications. But this style of interaction can still be found in today’s
graphical applications. For example, Microsoft’s Access database product contains a
query facility that allows the developer to visually (point and click) develop a query
(see Figure 16-9). The developer simply selects from database tables, columns, and
rows to include in a query, as shown in Figure 16-9 (a). Then, if desired, the developer
can view and edit the command-level SQL code that implements the query, as shown
in Figure 16-9 (b). Once again, the instruction set approach requires a degree of user
expertise, experience, and know-how.

 > Question-Answer Dialogues

 A question-answer dialogue style is primarily used to supplement either menu-driven
or instruction-driven dialogues. Users are prompted with questions to which they
supply answers. The simplest questions involve YES or NO answers—for instance:

 DO YOU WANT TO SEE ALL PARTS? [NO].

 F I G U R E 1 6 - 8

Hybrid Windows /
Web Interface

528 Part Three Systems Design Methods

 Notice how the user was offered a default answer! Questions can be more elaborate.
For example, the system could ask:

 WHICH PART NUMBER ARE YOU INTERESTED IN?

 This strategy requires that you consider all possible correct answers and deal with
the actions to be taken if incorrect answers are entered. Question-answer dialogue
is diffi cult because you must try to consider everything that the system user might
do wrong!

 Question-answer dialogues are very popular in Web-based applications. For example,
a car reservation system may ask a series of questions to defi ne what type of car and
rental agreement you require:

 WHERE DO YOU WANT TO PICK UP YOUR RENTAL VEHICLE?
 WHERE DO YOU PLAN TO RETURN YOUR RENTAL VEHICLE?
 WHAT IS THE PICKUP DATE AND TIME?
 WHAT IS THE RETURN DATE AND TIME?
 WHAT TYPE AND SIZE OF VEHICLE DO YOU NEED?
 DO YOU HAVE ANY PROMOTIONAL COUPONS? . . .

 A drop-down list of alternative answers may accompany each question. Together,
these questions and answers defi ne a business transaction.

(a)

(b)

 F I G U R E 1 6 - 9 Instruction-Driven Interface

User Interface Design Chapter Sixteen 529

 > Special Considerations for User Interface Design

 In addition to establishing a user interface style, analysts must address certain special
considerations for user interface design. How will users be recognized and authenti-
cated to use the system? Are there any security or privacy considerations to be accom-
modated in the user interface? Finally, how will users get help via the user interface?

 Internal Controls—Authentication and Authorization In most environments, sys-
tem users must be authenticated and authorized by the system before they are permitted
to perform certain actions. In other words, system users must “log into” the system. Most
log-ins require both a USER ID and a PASSWORD . System users should not be required to learn
and memorize multiple USER IDS and PASSWORDS . Ideally, they should be required to use the
same log-in as is used for their local area network account. (Windows XP, NT, and 2000
allow for this authentication to occur without the need to retype either fi eld.)

 Figure 16-10 (a) demonstrates the user interface for the SoundStage log-in. The
 USER ID and PASSWORD will be authenticated against the network accounts fi le. Notice
that the password is printed as asterisks as the user types it in, a common security and
privacy measure. Should the user ID or password fail to be authenticated, the security
authorization dialogue in Figure 16-10 (b) will be displayed.

 Authentication is only half of the solution. Once authenticated, the user’s access
and service privileges for this information system must be established. There are
many models for establishing and managing privileges. An important guideline is to
assign privileges to roles, not to individuals. In most businesses, people change jobs
 routinely—they are reassigned and promoted to new job responsibilities and roles.
Also, job descriptions and roles change from time to time. Finally, people leave the busi-
ness and some are terminated. For all of these reasons, privileges should be assigned to
roles. Then it is a simple matter of identifying the roles that any USER ID can assume.

(a)

(b)

 F I G U R E 16-10

(a) Authentication
Log-In Screen
(b) Authentication
Error Screen

530 Part Three Systems Design Methods

 For each role, the specifi c privileges that should be assigned to the role need
to be defi ned. Privileges may include permission to read specifi c tables or views;
permission to create, update, or delete records (rows) in specifi c tables or views;
permission to generate and view specifi c reports; permission to execute specifi c
transactions; and the like. Although not technically part of the interface, defi ning
these roles and permissions is needed both to design an appropriate log-in interface
and to functionally specify the complete authentication and authorization security
model for the system.

 With the emergence of e-commerce, consumers and other businesses must have
confi dence that we are who we claim to be. Consumers may be providing credit card
numbers and other private information for transmission over the Internet. For this
reason, SoundStage purchased a Web certifi cation to authenticate itself to its club
members and prospective members. At any time, using the browser interface, Sound-
Stage members can view the authentication certifi cate in Figure 16-11 . With this certi-
fi cation, the SoundStage Web site will display a “Secure Server Certifi cation” icon (see
margin—the padlock) that will tell consumers their data will be encrypted (securely
scrambled) to ensure that their credit card and personal data is not being intercepted
or accessed by others when passed along the network.

Online Help People want immediate, direct access to context-sensitive help, that is,
help that is smart enough to fi gure out what they might be trying to do. There is defi -
nitely a trend toward building help systems and tutorials directly into the application.
Online help becomes part of the user interface.

 The general-purpose help for an application is built into the Help menu for Win-

dows applications. For Web applications, help is usually built as separate pages, usually
“pop-up” pages in separate windows, so that the user can also remain focused on the
page that initiated the need for help.

Internet Browser
Security Indicator

 F I G U R E 1 6 - 1 1

Server Security
Certifi cate

User Interface Design Chapter Sixteen 531

 Today, HTML (Hypertext Markup Language) is gradually becoming the universal
language for constructing help systems for graphical user interfaces—both Web and
 Windows applications. For example, the entire help system for Microsoft Offi ce is now
written in HTML.

 The design, construction, and testing of a help system is simplifi ed by today’s auto-
mated tools. A complete help system includes a table of contents, numerous instructions,
examples, and a thorough index. Many help authoring packages, such as Macromedia’s
 RoboHelp, leverage the help author’s word processor to help with the planning, outlining,
writing, indexing, and hypertext-linking aspects of authoring a complete help system.

 A well-designed help system will implement a wide range of help elements. Per-
haps the most commonly encountered types of help are those that users must ini-
tiate. As mentioned earlier, the F1 function key is almost universally accepted as a
help request command. Likewise, a standard Help menu bar option is commonly used
to organize and present different types and levels of help in most Windows -based
 applications (commercial or custom-built). Finally, as is illustrated in Figure 16-12 , Win-

dows and Web-based interfaces frequently use tool tip controls to provide pop-up
help associated with specifi c tool and object icons. Tool tips appear when the user
momentarily positions the cursor over the icon (or object) on the screen. Tool tips are
appropriate for all icons because the user interface designer can never be assured that
the image or label appearing on an icon is going to be meaningful to the system user.

 Two additional and common help features particularly effective for the more
 novice user are help wizards and help agents (or assistants). As is illustrated in Fig-
ure 16-13 (a), a help wizard guides the users through complex processes by presenting
a sequence of dialogue boxes that require user input and system feedback. We call
your attention to the following:

 1 As is typical of help wizards, the dialogue usually includes a series of
instructions or questions for the user to respond to.

 2 The wizard contains explanations to aid in the user’s understanding and deci-
sion making.

 3 The wizard also provides a button for requesting more detailed help in complet-
ing the task.

 F I G U R E 16-12

Help Tool Tip

 Help Agent

Natural Language
Processing

532 Part Three Systems Design Methods

 4 The “Next” button suggests additional or subsequent steps to be supported by the
help wizard. (The “Next” button is usually changed to “Finish” once a sequence
of dialogue boxes is complete.) Figure 16-13 (b) shows the resulting screen and
subsequent step supported by the help wizard.

 Microsoft and third-party software control vendors actually sell wizards to help devel-
opers construct wizards!

 Agents are another technology with applications to help systems. Agents are
reusable software objects that can operate across different software applications and
even across networks. Microsoft’s help agent (referred to as an assistant) provides a
common help assistant in Offi ce applications. In its default form, it presents itself as
an animated paper clip (see margin). (Microsoft’s help agent can be programmed into

 F I G U R E 16-13

Help Wizard

 agent reusable software

 object that can operate

across different applications

and networks.

User Interface Design Chapter Sixteen 533

custom applications, both for Windows and for the Internet Explorer Web browser.)
A single user click on this help agent initiates help.

 The Microsoft help agent is complemented by natural language processing
 technology (see margin) that allows the user to write an inquiry in natural language
phrases that are interpreted by the agent to present the most likely help responses. The
user can then select one of those responses or enter into the more detailed help index.

 The overriding theme for designing a good help system is that the designer should
anticipate system user errors. When designing the user interface to report such errors,
the designer should always provide the system user with help to resolve the error.
After leaving any help session, users should always be returned to where they were in
the application before requesting or receiving the help.

 How to Design and Prototype a User Interface

 Today’s graphical environments create an emphasis on developing an overall system
that blends well into the user’s workplace environment. The following sections will
demonstrate how to design a user interface for a graphical environment. We will draw
on examples from the SoundStage case study. We will examine both client/server,
 Windows -based inputs and Web-based, e-commerce inputs that run in a browser.

 > Automated Tools for User Interface
Design and Prototyping

 The automated tools for supporting user interface design and prototyping are the
same as the tools we identifi ed in Chapters 14 and 15 for output and input design. The
most commonly used automated tool for user interface design is the PC-database ap-
plication development environment. Most PC-database products such as Microsoft’s
 Access are not powerful enough to develop most enterprise-level applications, but
they are more than adequate to use in prototyping an application’s user interface
screens. Given a database structure (easily specifi ed in Access), you can quickly gener-
ate or create forms for inputting data. You can include most of the GUI controls we
described in this chapter. The users can subsequently exercise those forms and tell
you what works and what doesn’t.

 Many CASE tools also include facilities for screen layout and prototyping using
the project repository created during requirements analysis. System Architect’s screen
design facility was previously demonstrated in Chapter 14, Figure 14-7.

 Most GUI-based application development environments, such as Microsoft’s
 Visual Studio, can be easily used to construct nonfunctional prototypes of user inter-
face screens. The key term here is nonfunctional. The forms will look real, but there
will be no code to implement any of the buttons or fi elds. That is the essence of rapid
prototyping. For example, Figure 16-14 demonstrates a Visual Studio dialogue for
building a simple menu.

 In Chapter 15 we introduced a number of input controls that could be included
in any window. The number of controls available to the interface designer is limited
only by the applications development environment that will be used to construct the
interface. Figure 16-15 illustrates a few additional controls that are available in the
 Visual Studio environment, including outlook bars, sortable columns with headings,
gauge controls, directory list boxes, and noninput drop-down lists.

 > The User Interface Design Process

 User interface design is not a complicated process. The basic steps involved are:

 1. Chart the user interface dialogue.
 2. Prototype the dialogue and user interface.

534 Part Three Systems Design Methods

 F I G U R E 16-14

 Visual Basic Menu
Construction

 F I G U R E 16-15

Additional User
Interface Controls

 3. Obtain user feedback.
 4. If necessary, return to step 1 or 2.

 In reality, the steps are not strictly sequential in practice. Instead, the steps are
 iterative—for example, as prototypes are developed, they are reviewed by the system

User Interface Design Chapter Sixteen 535

users, who provide feedback that may require revisions or a new prototype. In the
following subsections, we examine these steps in a single iteration and illustrate a few
examples from the SoundStage project.

 Step 1: Chart the Dialogue A typical user interface may involve many possible
screens (which may consist of several windows), perhaps hundreds! Each screen can
be designed and prototyped. But what about the coordination of these screens?

 Screens typically occur in a specifi c order. You may also be able to toggle among
the screens. Additionally, some screens may appear only under certain conditions. To
make matters even more diffi cult, some screens may occur repetitively until some
condition is fulfi lled. This sounds almost like a programming problem, doesn’t it? We
need a tool to coordinate the screens that can occur in a user interface. A state tran-

sition diagram (STD) is used to depict the sequence and variations of screens that
can occur when the system user sits at the terminal. (The authors are using the term
 screen in a general sense. When graphical interfaces are being designed, the term
may refer to an entire display screen, a window, or a dialogue box.) You can think of
it as a road map. Each screen is analogous to a city. Not all roads go through all cities.
Rectangles are used to represent display screens. Arrows represent the fl ow of control
and the triggering event causing the screen to become active or receive focus. The
rectangles describe only what can appear during the dialogue. The direction of the ar-
rows indicates the order in which these screens occur. A separate arrow, each with its
own label, is drawn for each direction because different actions trigger fl ow of control
from and to a given screen.

 Let’s examine a dialogue that is under construction for the SoundStage project
(see Figure 16-16). The partially completed SoundStage state transition diagram is be-
ing developed using a CASE product, Popkin’s System Architect. Note the following:

 1 The partial state transition diagram includes references to some of the
SoundStage input screens developed in Chapter 15.

 2 The diagram also includes references to some of the output screens designed in
Chapter 14.

 3 The MEMBER SERVICES SYSTEM screen will be a new screen that will need to be de-
signed and prototyped. This screen will serve as the application’s main window.

 state transition diagram
(STD) a tool used to depict

the sequence and variation of

screens that can occur during

a user session.

SOUNDSTAGE

OPTIONS

USER

SELECTS

MAINTENANCE

& OPTIONS

USER

SELECTS

REPORTS

USER

SELECTS

REPORT TYPE

& CREATE
REPORT

AND

GRAPH

OPTIONSUSER SELECTS

OK, CANCEL OR CLOSE
USER SELECTS

CANCEL OR CLOSE

USER

SELECTS

VIDEO

TITLES

USER

SELECTS

GRAPH

TYPE &

CREATE

USER

SELECTS

EXIT

OR GRAPH

PRINTED

USER

SELECTS

EXIT

OR REPORT

PRINTED

MEMBER

RESPONSES

TO VIDEO TITLE

SELECTION

(GRAPH)

USER

SELECTS

OK, CANCEL

OR EXIT

USER

CLICKS

ON

COVER

OPEN

(BITMAP FILE)

MEMBER

RESPONSES

TO VIDEO TITLE

SELECTION

(REPORT)

VIDEO

TITLES

USER

SELECTS

MEMBERSHIPS

USER

SELECTS

EXIT

USER

SELECTS

EXIT

MEMBERS

MEMBER

SERVICES

SYSTEM

LOGIN SUCCESSFUL

SECURITY

AUTHORIZATION

 F I G U R E 16-16

SoundStage Partial
State Transition
Diagram

536 Part Three Systems Design Methods

It will play a major role in providing the user with the ability to get access to
the system’s input and output screens, which were designed earlier. It will also
provide the user with the ability to complete a number of additional functions
(beyond input and output processing) that are commonly established during
user interface design. It will be accessible only when the users have fi rst been
provided with the SECURITY AUTHORIZATION screen and have successfully logged
into the system.

 4 The SOUNDSTAGE OPTIONS screen is another new screen to be created. This screen
will allow users to set various user options and defaults to be used during their
session—for example, selecting a printer, zooming, and many other options.

 State transition diagrams such as the one presented in Figure 16-16 can become
quite large, especially when all input, output, help, and other screens are added to the
diagram. Therefore, it is common to partition the diagram into a set of separate simpler
and easier-to-read diagrams.

 Step 2: Prototype the Dialogue and User Interface Recall that we have some
new screens to design and prototype. Some of these new screens were identifi ed to
bring together the application and its input and output screens that were designed
earlier. Some screens were identifi ed to provide the users with some fl exibility in cus-
tomizing the application’s interaction to suit their own preferences. Still others may
have been identifi ed to deal with system controls, such as backup and recovery.

 Let’s look at some new screens that were to be created for the SoundStage Mem-
ber Services System. System users would fi rst be presented with the authentication log-
in screen that was discussed earlier in the chapter (see Figure 16-10). According to the
state transition diagram, the successful log-in of a user results in the SoundStage Mem-
ber Services System main menu screen depicted in Figure 16-17 . Notice the following:

 1 The users and their access privileges are confi rmed. Based on the users’ access
privilege, certain functions will be enabled and disabled.

 2 Through a menu bar selection or through a vertical menu of buttons, the user
can complete common Member Services business operations. These buttons
will lead to screens that allow the user to process appropriate transactions via
input screens designed and prototyped earlier. Text labels were used for buttons
because the analyst was unable to establish icons (pictures) that all users could
readily identify with as a representation of the operations. The menu bar and
buttons contain hot keys to provide the user with the fl exibility of selecting via
the keyboard or mouse. A group box was used to visually associate the buttons
that represent related operations.

 3 The user has the ability to complete various routine maintenance operations.

 Via the menu bar of the MEMBER SERVICES SYSTEM screen, users can choose to set
 options for their work session. This new screen is depicted in Figure 16-18 .

 1 This screen utilizes tabs as a means of allowing the user to alter four related
sets of options.

 2 A slider control is used to allow the user to adjust the priority for background
queries. This control is often used for items whose values are best presented
as a spatial representation and when an approximate rather than precise value
is suffi cient.

 In reality, the analyst would need to prototype the content and appearance of the
“General,” “Print,” and “View” tabs as well as the “Database” tab. According to the state transi-
tion diagram, this screen will return control to the parent window, MEMBER SERVICES SYSTEM.

 According to the state transition diagram, system users are also to be provided
with the opportunity to specify report customization preferences. Figure 16-19
 depicts a prototype screen that allows SoundStage users to choose a particular report
(or graph) and customize its content.

User Interface Design Chapter Sixteen 537

 Study the state transition diagram and the screens that we just examined to see
how this portion of the overall system dialogue would work. By studying the entire
collection of screens, you may discover the need to revise some screens. Such issues
as color, naming consistencies of common buttons and menu options, and other look-
and-feel confl icts may need to be resolved. Once again, adherence to any standards
governing GUIs should be confi rmed.

 F IGURE 16-17

SoundStage Main
Menu

 F IGURE 16 -18

SoundStage Options
and Preferences
Screen

538 Part Three Systems Design Methods

 Step 3: Obtain User Feedback Exercising (or testing) the user interface is a key
advantage of all the prototyping environments we have alluded to throughout this
chapter. Exercising (or testing) the user interface means that system users experi-
ment with and test the interface design before extensive programming and actual
implementation of the working system. Analysts can observe this testing to improve
on the design.

 In the absence of prototyping tools, the analyst should at least simulate the dia-
logue by walking through the screen sketches with system users. User feedback is
essential in user interface design. The analyst should encourage the user to participate
in testing the application’s interface. Finally, the analyst should expect to revisit steps
1 and 2 as needed changes become known.

 F I G U R E 16-19

SoundStage Report
Customization
Dialogue Screen

 Chapter Review

 1. User interface design is concerned with the
dialogue between a user and the computer. It
is concerned with everything from starting the
system or logging into the system to the eventual
presentation of desired outputs and inputs.

 2. Most user interfaces are designed by rapidly
constructing prototypes using rapid application
development environments. Such prototypes are
rarely fully functional.

 3. Relative to user interface design, the system
 users can be broadly classifi ed as either expert
or novice:

 a. An expert user is an experienced computer
user who will spend considerable time

using specifi c application programs. The
use of a computer is usually considered
nondiscretionary.

 b. The novice user is a less experienced
computer user who will generally use
a computer on a less frequent, or even
occasional basis. The use of a computer may
be viewed as discretionary.

 4. Several human factors frequently cause people to
have diffi culty with computer systems, including
these interface problems:

 a. Excessive use of computer jargon and
acronyms.

User Interface Design Chapter Sixteen 539

 b. Nonobvious or less-than-intuitive design.
 c. Inability to distinguish between alternative

 actions (“What do I do next?”).
 d. Inconsistent problem-solving approaches.
 e. Design inconsistency.

 5. Galitz offers the following overriding “command-
ments” of user interface design:

 a. Understand your users and their tasks.
 b. Involve the users in interface design.
 c. Test the system on actual users.
 d. Practice iterative design.

 6. Given the type of user for a system, there are a
number of important human engineering factors
that should be incorporated into the design:

 a. The system user should always be aware of
what to do next.

 b. The screen should be formatted so that the
various types of information, instructions, and
messages always appear in the same general
display area.

 c. Messages, instructions, or information should
be displayed long enough to allow the system
user to read them.

 d. Use display attributes sparingly.
 e. Default values for fi elds and answers to be

entered by the user should be specifi ed.
 f. Anticipate the errors users might make.
 g. A user should not be allowed to proceed

without correcting an error.
 h. The system user should never get an operating

system message or fatal error.
 i. If the user does something that could be

catastrophic, the keyboard should be locked to
prevent any further input, and an instruction to
call the analyst or technical support should be
displayed.

 7. The overall fl ow of screens and messages is called
a dialogue. With respect to the tone of the dia-
logue, the following guidelines are offered:

 a. Use simple, grammatically correct sentences.
 b. Don’t be funny or cute.
 c. Don’t be condescending.

 With respect to the terminology used in a
computer dialogue, the following suggestions may
prove helpful:

 a. Don’t use computer jargon.
 b. Avoid most abbreviations.

 c. Use simple terms.
 d. Be consistent in your use of terminology.
 e. Carefully phrase instructions—use appropriate

action verbs.

 8. Most of today’s user interfaces are graphical. The
basic structure of the graphical user interface
(or GUI) is provided either within the computer
 operating system or in the Internet browser.

 9. The overall design of a user interface is enhanced
or restricted by the available features of the user’s
display monitor, keyboard, and pointing devices.

 10. There are several styles of graphical user inter-
faces, including menu-driven, instruction-driven,
and question-answer dialogues.

 11. Menu-driven strategies require that the user select
an action from a menu of alternatives. GUI menu
implementation may include:

 a. Pull-down and cascading menus.
 b. Tear-off and pop-up menus.
 c. Toolbar and iconic menus.
 d. Hypertext and hyperlink menus.

 12. Instruction-driven interfaces are designed using a
dialogue based on an instruction set. Three types
of syntax may be used for the instruction set:

 a. Language-based syntax, which is built around a
widely accepted command language that can
be used by the user to invoke actions.

 b. Mnemonic syntax, which is built around com-
mands defi ned for the custom information
system applications.

 c. Natural language syntax, which allows users to
enter questions and commands in their own
native language.

 13. A question-answer dialogue style is primarily used
to supplement either menu-driven or instruction-
driven dialogues. Users are prompted with ques-
tions to which they supply answers.

 14. Internal controls and online help are some special
considerations that should go into user interface
design.

 15. User interface design consists of three iterative
steps:

 a. Chart the user interface dialogue.
 b. Prototype the dialogue and user interface.
 c. Obtain user feedback.

540 Part Three Systems Design Methods

Review Questions
1

2

 1. Why should the system users be involved in the
process of designing user interfaces?

 2. Who are expert users? Why are they called expert?
 3. Why can some user interfaces cause users to feel

confused, panicky, or frustrated?
 4. What does it mean to test the system on actual

users?
 5. What should we do to ensure the system users are

aware of what to do in the system?
 6. How should the interfaces handle errors?
 7. What are some factors that should be considered

in terms of the terminology used in computer
dialogues?

 8. Why are Web browsers becoming more important
when designing applications?

 9. Explain paging and scrolling.
 10. What should we consider when we design

function keys for our applications?
 11. Why are pens used in applications?
 12. What is the relationship between windows and

frames?
 13. What are characteristics of a pop-up menu?
 14. What are steps of the user interface design

process?
 15. What is the tool used to facilitate the charting of

the dialogue?

Problems and Exercises

 1. Menu-driven interfaces, although older than GUI
interfaces, are still very common. What type of
user dialogue strategy does a menu-driven inter-
face employ? What is the main difference between
menu-driven interfaces and GUI interfaces? What is
the major advantage of a menu-driven interface, and
what is its major disadvantage?

 2. Answer the following true/false questions. Explain
your answers as necessary.

 a. Different action verbs should be used in screen
dialogue to describe required keyboard actions
in order to add variety and interest.

 b. Most managers are expert users, because they
need a high level of PC expertise in order to
manage effectively.

 c. Organizations should expect that expert
designers, who come highly recommended
and who are at the top of their pay scale, will
need to refi ne and modify their user interface
designs several times before the result will be
satisfactory to the organization.

 d. Windows user interface design often borrows
from Web interface styles and techniques.

 e. Applications need only one type of help menu
or dialogue.

 f. Users appreciate clever or humorous screen
messages.

 g. The process for designing user interfaces is
straightforward and easy to understand.

 3. In designing user interfaces, consideration must be
given to information security and privacy. Describe
some of the guidelines and considerations that

must be taken into account in building internal
 controls into the user interface design.

 4. Match the defi nitions or examples in the fi rst
 column with the terms in the second column:

 A. Frequently required
multiple level
menu navigation

 B. An application’s
overall sequence of
screens and messages

 C. Full screen approach
 to display area seen
by user at a time

 D. Information is moved
up or down one line
at a time

 E. Computer expertise
in multiple related
fi elds of study

 F. Windows screen
employing artistic
Web-like “face”

 G. Independent zones
within a window

 H. User interfaces that
are not dependent
upon a specifi c OS

 I. Graphic tool used
to show screen variation
and sequence

 J. Software to display
mainframe screen
format in a window

 1. Platform
independent

 2. Consumer-style
interface

 3. Terminal
emulators

 4. State transition
diagram

 5. Iconic menu

 6. Screen thrashing

 7. Mnemonic syntax

 8. B2C

 9. Dialogue

 10. Scrolling

 K. Command language
interface meaningful
to user

 L. Functionality based
upon business-to-
consumer transactions

 M. Pictorial representation
of menu option in main
window body

 5. It is not uncommon for an application to use
hundreds of screens, windows, and dialogue boxes
in its user interface. Coordinating the order and
conditions under which these appear can be a dif-
fi cult process that is prone to error. To help coor-
dinate and document this process, state transition
diagrams (STD) are used to illustrate the conditions
under which screens, windows, and dialogue boxes
appear, as well as their sequence.

 Take an application in your organization or at
school with which you are familiar. Create a state

transition diagram for a part of the system, using
 Figure 16-16 as an example.

 6. Assume that you are part of a project team that
has been hired by a company that is moving from
mainframe technology to client/server technology.
You are working on the user interface design. The
company wants this application to set the tone for
subsequent applications to be developed. You have
been given free rein to develop the conventions
and standards for the user interface screens that
will be used for the look-and-feel of this and subse-
quent applications. Create a one-page list of what
you believe to be the most important conventions
and standards.

 7. GUI and Web applications provide users with a
variety of paths through the different parts of the
application. The price paid for this user-friendliness
and accommodation is complicated design and
programming. Is it possible to have user-friendly
and accommodating interfaces that don’t require
complicated programming and design?

 11. Informatics

 12. Paging

 13. Frames

 Projects and Research

 1. The textbook references another author, Wilbert
Galitz. Galitz is one of a number of contemporary
writers (several of whom are referenced in the
suggested reading section) who are recognized as
leaders in the area of human interface design. Use
the Internet to research recent articles and forum
discussions on the topic of human interface design
and human engineering guidelines.

a. Describe the articles you found, including their
authors and viewpoints

b. Discuss and compare any contrasting viewpoints
you found on this topic.

c. What are the authors’ thoughts on the trend
towards Windows and browser interfaces
converging? Do they feel that eventually there
will be little, if any, distinction between the two?

d. What are their predictions, if any, regarding
technological innovations that may
fundamentally change human interface design in
the future?

e. On the basis of your research, do you feel that
research in the area of human engineering
and human interface designs is about as
sophisticated and advanced as it is going to get?
Why or why not?

 2. Automated screen design tools are becoming
increasingly powerful and sophisticated. Use the
Web to fi nd several of the leading design tools.
Go to their manufacturers’ Web sites and review

their features. If trial versions are available,
download them.

 a. What automated screen design tools did you
fi nd? Who manufactures them?

 b. Compare and contrast their features and
functionality. Describe their different features in
a matrix.

 c. If you were an independent designer, which one,
if any, would you choose? Why?

 d. Would you expect to see a signifi cant difference
in your productivity by using one of these tools?
How much of a difference?

 e. Do you feel that using these tools would
enhance or constrain your creativity? Explain
your answer.

 3. Frequently, there is talk of “redesigning” government
and making it operate more like private business.
This raises the question of whether there is a
fundamental difference between the public and
private sectors, and whether this may have an
impact upon how systems should be designed
differently, depending upon whether they are
intended for a government or a private sector
organization.

 a. Survey system designers in both the private and
public sectors. Ask them what their top issues
and problems are in terms of designing human
interfaces.

User Interface Design Chapter Sixteen 541

 b. What differences did you fi nd?
 c. What similarities?
 d. Do you think there is enough commonality such

that the same set of guidelines can apply to both
public- and private-sector agencies? Why or
why not?

 e. Given a choice and assuming that salary and
benefi ts were the same, would you rather be a
systems designer in a public agency? A private
agency? Why or why not?

 4. Designing interface screens for B2C and B2B Web
sites is considered by some to have a fundamentally
different objective compared with other types of
interface screens. Specifi cally, the purpose of these

Web sites is to entice consumers and businesses to
purchase their products or services.

 a. Research articles on this topic. What did you
fi nd, and what were the viewpoints?

 b. Summarize the difference in outlook, if any,
between designing conventional input/output
human interface screens and designing screens
for B2C and B2B Web sites.

 c. Do you agree with these viewpoints? Why or
why not?

 d. What type of background do you feel would be
more valuable for B2C and B2B Web sites—a back-
ground in systems design or one in marketing and
advertising? Explain your answer.

542 Part Three Systems Design Methods

Minicases

 There is a discussion, starting on page 515 on the
human factors and human engineering issues in
user interface design. The spirit of the discussion is
that it is imperative that we understand the people
who will be using the system and that we create a
system interface that they understand and can use.
But this is not an academic issue; it is a people-skills
and people-understanding issue.

 1. Interview someone you do not know well who is a
complete nontechie. Your goal is to understand that
person and his or her computer needs and wants.
Things you need to consider in your interview:

 a. Understand that person as a person: who are
they? What are their likes and dislikes? Do they
have a spouse? Children? What about sports?
Hobbies? Do they work inside or outside the
home? If you are interviewing them in their
own “space” (home, offi ce, etc.), take note of the
personal effects that are in view. What do these
things tell you about that person?

 b. Understand them as a computer user: What are
their experiences with computers? What types
of things have they used a computer for? What
 wouldn’t they use a computer for? Is there
something they fi nd computers particularly
useful for? Something that is particularly
frustrating?

 c. What is their body language telling you as you
ask these questions? Are they at ease with you?

Make a note of their reactions to you, how you
are dressed, what you have said, and your own
body language.

 2. Using the knowledge you gained from your in-
terview in minicase 1, design an interface for the
individual you interviewed. What interface design
modifi cations are you making so that the program
will fi t the individual? Explain in detail, and submit
the results to your professor.

 3. Meet with the person you interviewed in minicase
1 and present them with the design prototype
you created. Get their feedback on the design. Do
they like it? Could they navigate the pages? What
about the design of the inputs? Is there anything
they would change? What do they specifi cally like
and dislike about the interface you created? Again,
watch their body language. Are they telling you
everything? What is your body language telling
them? Be aware of your infl uence on the situation.
Document the interview and submit the results to
your professor.

 4. Based on your second interview (minicase 3), revise
your interface design. Then submit your work from
the previous three minicases and this revision in a
professional and complete deliverable to your pro-
fessor. Be sure to include a brief discussion of what
you learned from the person you interviewed, and
from this experience.

User Interface Design Chapter Sixteen 543

 Team and Individual Exercises

 1. Team or individual: Write down all of the common
computer/technical jargon you use when you
describe a system. As a team or individually, write
down a nontechnical, “anybody would understand”
version of each of the technical terms on your list.
Discuss in a roundtable format in class.

 2. Team: Consider the TV. What makes it so easy to
use? (Almost everybody seems able to watch it.) If

you were to redesign anything, what would it be,
and how would you redesign it?

 3. Individual: Introspect on your own strengths
and weaknesses. (a) Take a moment and relish
something positive about yourself. (b) Identify a
specifi c action you can take to address a weakness
that you have, and then take the required action.

 Suggested Readings

 Andres, Clay. Great Web Architecture. Foster City, CA: IDG

Books Worldwide. This is an interesting title. It uses a “de-

sign by example” approach based on input from “top Web

architects” to illustrate and discuss Web-based systems,

including many with e-commerce and e-business aspects.

This is not an academic title, but it is nonetheless inter-

esting.

 Galitz, Wilbert. User-Interface Screen Design. New York: Wiley

QED, 1993. Ignore the date. This book remains our favorite

user interface design book because it is so conceptually and

fundamentally sound. Galitz teaches workstation, PC, and

mainframe interface design here, based on well-thought-

out principles and guidelines. We can’t wait for the update.

Would that we could afford to develop an entire elective

course built around this outstanding book!

 Galitz, Wilbert. It’s Time to Clean Your Windows: Designing

GUIs That Work. New York: John Wiley & Sons, 1994. This

is another excellent book that provides an unbiased refer-

ence on designing graphical interfaces.

 Hix, Deborah, and H. Rex Hartson. Developing User Interfaces:

Ensuring Usability through Product & Process. New York:

John Wiley & Sons, 1993. John Wiley & Sons must have the

corner on user interface design books. These authors have

academic roots. The book is somewhat hard to read, but

nonetheless very well organized and written. We especially

like the integration with systems analysis and design.

 Horton, William K. Designing & Writing Online Documenta-

tion: Help Files to Hypertext. New York: John Wiley & Sons,

1990. We were able to provide only cursory coverage of

this important topic.

 Mandel, Theo. Elements of User Interface Design. New York:

John Wiley & Sons, 1997. Here is a somewhat newer and

very comprehensive book that includes some of the early

design foundations for the Web.

 Martin, Alexander, and David Eastman. The User Interface De-

sign Book for the Applications Programmer. New York:

John Wiley & Sons, 1996.

 Microsoft Corporation. Microsoft Windows User Experience:

Offi cial Guidelines for User Interface Developers and

Designers. Redmond, WA: Microsoft Press, 1999. This is the

offi cial standard for designing Windows user interfaces.

There are many insights to Microsoft’s intentions for maxi-

mizing the user experience.

 Schmeiser, Lisa. Web Design Templates Sourcebook. Indianap-

olis, IN: New Riders Publishing, 1997. This is not an aca-

demic title or even a traditional professional market title.

It caught our eye because it uses an HTML-based template

approach (over 300) to present designs that can ultimately

evolve into fi nished products. From our perspective, this

represents an intriguing twist on the prototyping model.

 Weinschenk, Susan, and Sarah C. Yeo. Guidelines for Enter-

prise-Wide GUI Design. New York: John Wiley & Sons,

1995. Clearly, John Wiley & Sons is the market’s leading

publisher for this subject.

544 Part Three Systems Design Methods

17Object-Oriented Design and
Modeling Using the UML

 Chapter Preview and Objectives

 This is the second of two chapters on object-oriented tools and techniques for systems

 development. This chapter focuses specifi cally on tools and techniques that are used

 during systems design. You will know object-oriented systems design when you can:

 ❚ Differentiate among entity, interface, control, persistence, and system classes.

 ❚ Understand the concepts of dependency and navigability.

 ❚ Defi ne visibility and explain its three levels.

 ❚ Understand the concept of object responsibility and how it is related to message

sending between object types.

 ❚ Describe the activities involved in object-oriented design.

 ❚ Differentiate between a design use-case narrative and an analysis use-case narrative.

 ❚ Describe CRC card modeling.

 ❚ Model class interactions with sequence diagrams.

 ❚ Construct a class diagram that refl ects design specifi cs.

 ❚ Model object states with state machine diagrams.

Object-Oriented Design and Modeling Using the UML Chapter Seventeen 545

 Introduction

 Chapters 12–16 showed Bob Martinez performing traditional structured design tasks
to design the SoundStage Member Services system. How would his tasks have been
different had the project followed an object-oriented approach?

 In an object-oriented approach the systems analysis would still have had to design
the application architecture as presented in Chapter 12, but it would have used dif-
ferent tools: namely, the component diagrams and deployment diagrams shown at the
end of this chapter. They would have designed the program logic and structure using
sequence diagrams, class diagrams, and state machine diagrams presented in this chap-
ter. Assuming the data would be stored in a relational database (as is the case with most
information systems), the tools presented in Chapter 13 would still be used, though
they would have had to take a few additional steps to map the entity objects and their
attributes to tables and fi elds in the database. They would also have still designed and
prototyped the user interface using techniques presented in Chapters 14–16. In fact,
activity diagrams with partitions are a useful tool for user interface design.

 Coming out of object-oriented analysis, Bob would have had activity diagrams,
system sequence diagrams, and a class diagram of entity objects and their attributes.
In the design phase, that class diagram has to be refi ned to include additional design
objects and the assignment of behaviors and their parameters to objects. That process
involves analyzing and designing object responsibilities and states using the tools
and concepts presented in this chapter. The completed design documents (class dia-
gram, sequence diagrams, machine state diagrams, etc.) could then be handed off to
teams of programmers, who would program the objects with the specifi ed behaviors
and attributes.

 The Design of an Object-Oriented System

 In Chapter 9 we learned about object classes. So how are these classes put together
into an application? What does an object-oriented system look like? In a pure object-
oriented environment every piece of code exists inside an object class—all the user
interface, all the program logic, everything. The application works by having classes
send and receive messages from other classes. The goal of object-oriented design

(OOD) is to specify the objects and messages of the system.
 Figure 17-1 shows programming code for a Web page created in C# .NET. This

Web page provides part of the user interface for the SoundStage system (notice the
Text boxes, Labels, and Buttons). Near the top of the code we see “public class Login.”
This indicates that all the user interface code exists inside a class. Near the bottom
of the screen, this user interface class creates an instance of the member class and
calls it the validateLogin behavior (method) of that class. An object-oriented system is
structured into at least three different types of object classes.

 > Entity Classes

 Entity classes usually correspond to items in real life (such as a MEMBER or ORDER)
and contain information, known as attributes, that describes the different instance
of the entity. They also encapsulate those behaviors (called methods) that maintain
their information or attributes. These are the kinds of object classes we defi ned in
Chapter 9. They are the heart of the system.

 > Interface Classes

 Users communicate with the system through the user interface, implemented
as interface classes . The use-case functionality that describes the user directly

 object-oriented design
(OOD) an approach used to

specify the software solution in

terms of collaborating objects,

their attributes, and their

methods.

 entity class an object class

that contains business-related

information and implements

the analysis classes.

 interface class an object

class that provides the

means by which an actor can

interface with the system.

Examples include a window,

dialogue box, or screen. For

nonhuman actors, an ap-

plication program interface

(API) is the interface class;

sometimes called a boundary

class.

546 Part Three Systems Design Methods

 interacting with the system should be placed in interface classes. The responsibility of
an interface class is twofold:

 1. It translates the user’s input into information that the system can understand
and use to process the business event.

 2. It takes data pertaining to a business event and translates the data for appro-
priate presentation to the user.

 Each actor or user needs its own interface class to communicate with the system.
In some cases, the user may need multiple interface classes. Take, for example, the ATM
machine. Not only is there a display for presenting information, but there are also a
card reader, money dispenser, and receipt printer. All of these would be considered
interface object classes.

 > Control Classes

 Control classes implement the business logic or business rules of the system. Gener-
ally, each use case is implemented with one or more control classes. Control classes
process messages from an interface class and respond to them by sending and receiv-
ing messages from the entity classes.

 An object-oriented system could be implemented with just these three kinds of
classes. But many methodologists include two other kinds of classes.

 > Persistence Classes

 The attributes of the entity classes are generally persistent, meaning they continue
to exist beyond when the system is running. The functionality to read and write at-
tributes in a database could be built into the entity classes. But if that functionality
is put into separate persistence (or data access) classes, the entity classes are kept
implementation neutral. That can allow the entity classes to be more reusable, a major
goal of object-oriented design.

 > System Classes

 A fi nal type of object class, the system class , isolates the other objects from operat-
ing system–specifi c functionality. If the system is ported to another operating system,
only these classes and perhaps the interface classes have to be changed.

 F I G U R E 1 7 - 1

An Object-Oriented
Application

 control class an object

class that contains applica-

tion logic. Examples of such

logic are business rules and

calculations that involve

multiple entity object classes.

Control classes coordinate

messages between interface

classes and entity classes

and the sequences in which

the messages occur.

 persistence class an

object class that provides

functionality to read and

write persistent attributes in a

database.

 system class an object

class that handles operating

system–specifi c functionality.

Object-Oriented Design and Modeling Using the UML Chapter Seventeen 547

 Why all these kinds of classes? Structuring the system this way makes the mainte-
nance and enhancement of those classes simpler and easier.

 > Design Relationships

 In object-oriented analysis, we concentrated on identifying the most common object
relationships: associations, aggregation/composition relationships, and generalization/
specialization relationships. In object-oriented design, it is necessary to model more
advanced relationships in order to accurately specify the software components. You
will learn these relationships in the following sections.

 Dependency Relationships A dependency relationship is used to model the as-
sociation between two classes in two instances: (1) to indicate that when a change
occurs in one class, it may affect the other class, and (2) to indicate the association
between a persistent class and a transient class. Interface classes are typically transient
and are modeled in this fashion. Draw your attention to Figure 17-2 . In this example
the ORDER DISPLAY WINDOW class is an interface class and is created to display the con-
tents of an order. It is dependent on the PLACE NEW ORDER HANDLER class to map order
information to it and to respond to events initiated from the interface. A dependency
relationship is illustrated with a dashed arrow line.

 Navigability As you learned in Chapter 9, by default, associations between classes
are bidirectional, meaning that classes of one kind can navigate (send messages) to
classes of the other kind. There may be times, though, when you want to limit the mes-
sage sending to only one direction. For example, let’s assume each system user must
have a password, which the user must change every 30 days. Let’s also assume that
when a user changes passwords, the new one can’t be a password he or she has used
in the past six months. The model for this scenario is depicted in Figure 17-3 . Given
a USER , you’ll want to fi nd that user’s current PASSWORD for authentication purposes
or to change the current password. Thus, the USER class would send a message to the
 PASSWORD class. In most cases it wouldn’t make sense that given a PASSWORD you would
want to identify the corresponding USER . Navigability is illustrated with an arrowhead
pointing only to the direction a message can be sent.

 > Attribute and Method Visibility

 How attributes and methods are accessed by other classes is defi ned by visibility .
The UML provides three levels of visibility:

 1. Public —denoted by the symbol “⫹.”
 2. Protected —denoted by the symbol “#.”
 3. Private —denoted by the symbol “⫺.”

 Public attributes can be accessed and public methods can be invoked by any other
methods in any other class. Protected attributes can be accessed and protected meth-
ods can be invoked by any method in the class in which the attribute or method is

Place New Order Handler
<<UI>>

Order Display Window F I G U R E 1 7 - 2

Dependency
Relationship
Example

 visibility the level of access

an external object has to an

attribute or method.

+changePassword()

-userID

User

-passwordCode : Char

-dateSet : Date

Password

1 1..6

specifies
 F I G U R E 1 7 - 3

Navigability
Example

548 Part Three Systems Design Methods

defi ned or in subclasses of that class. Private attributes can be accessed and private
methods can be invoked only by any method in the class in which the attribute or
method is defi ned. If a method needs to be invoked in response to a message sent
by another class, the method should be declared public. In most cases all attributes
should be declared private to enforce encapsulation. Figure 17-4 depicts an example
of denoting attribute and method visibility.

 > Object Responsibilities

 Recall that in object-oriented systems, objects encapsulate both data and behaviors.
In design, we focus on identifying the behaviors a system must support and, in turn,

+getStreet() : String

+getCity() : String

-street : String

-city : String

Address
 F I G U R E 1 7 - 4

Visibility Example

1: Message to

request display of a

customer’s order

information
2: Message to

request customer

information

3: Return customer

information

4: Message to

request all products

that an order

contains

6: Return detailed

product information

5: Message to

request detailed

product information

7: Return all product

information

8: Display customer

order

Customer Order

OrderCustomer

ProductMember Ordered Product

1

1..*

1 0..*

submits

0..* 1

is for

 F I G U R E 1 7 - 5 Object Responsibility

Object-Oriented Design and Modeling Using the UML Chapter Seventeen 549

 In performing OOA, we defi ned use cases and identifi ed objects based on ideal condi-
tions and independent of any hardware or software solution. During object-oriented
design, we want to refi ne those use cases and objects to refl ect the actual environ-
ment of our proposed solution.

 Object-oriented design includes the following activities:

 1. Refi ning the use-case model to refl ect the implementation environment.
 2. Modeling class interactions, behaviors, and states that support the use-case

scenario.
 3. Updating the class diagram to refl ect the implementation environment.

 In the following sections we will review each of these activities to learn what
steps, tools, and techniques are used to complete object-oriented design.

 > Refi ning the Use-Case Model

 In this iteration of use-case modeling, the use cases will be refi ned to include details
of how the actor (or user) will actually interface with the system and how the system
will respond to that stimulus to process the business event. The manner in which
the user accesses the system—via a menu, window, button, bar code reader, printer,
and so on—should be described in detail. The contents of windows, reports, and
 queries should also be specifi ed within the use case. While refi ning use cases is often
time-consuming and tedious, it is essential that they are completed. These use cases
will be the basis on which subsequent user manuals and test scripts are developed
during systems implementation. In addition, these use cases will be used by program-
mers to construct application programs during systems implementation.

 In the following steps we will adapt each use case to the implementation environ-
ment or “reality” and document the results. It is important that each use case be highly
detailed in describing the user interaction with the system. The refi ned use cases can
then be used by the user to validate systems design and by the programmer for pro-
cess and interface specifi cations.

 Step 1: Transforming the “Analysis” Use Cases to “Design” Use Cases In
Chapters 6 and 12 you learned how to do use-case modeling during systems analysis
to document user requirements for a given business scenario. In this step, we refi ne
each of those use cases to refl ect the physical aspects of the implementation environ-
ment for our new system.

 The Process of Object-Oriented Design

designing the object methods for performing those behaviors. Along with behaviors,
we determine the object’s responsibilities .

 In Chapter 9 you learned that objects have behaviors, or things that they can do.
In object-oriented design it is important to recognize that an object has responsibility.
Object responsibility is closely related to the concept of being able to send and/or
respond to messages. Draw your attention to Figure 17-5 . An ORDER object class has
been assigned the responsibility of displaying a customer’s order, but it needs help.
First, it collaborates with the CUSTOMER class to get the customer data. Next, it collabo-
rates with the MEMBER ORDERED PRODUCT class to get information about each product
being ordered. The MEMBER ORDERED PRODUCT class cannot fulfi ll the entire request itself,
so it needs to collaborate with the PRODUCT class to get detailed information about
each product. Thus, when each class receives a message requesting a service, it has an
obligation to respond to the message and fulfi ll the request.

 A class responsibility is not the same thing as a class method. A class responsibil-
ity is implemented by the creation of one or more methods that may have to collabo-
rate with other classes and methods, as presented above.

 method the software logic

that is executed in response

to a message.

 object responsibility the

obligation that an object has

to provide a service when re-

quested and thus collaborate

with other objects to satisfy

the request if required.

550 Part Three Systems Design Methods

Member Services System
Author(s): B. Martinez 11/21/06

1.00

Date:

Version:

Use Case Name: Place New Order Use Case Type

Use Case ID: MSS-SUC002.00

Priority: High

Source: Requirement — MSS-R1.00

Requirements Use Case — MSS-BUC002.00

Primary Business
Actor:

Primary System
Actor:

Club Member (Alias — Active Member, Member)

Club Member (Alias — Active Member, Member)

Other
Participating
Actors:

•
•

Warehouse (Alias — Distribution Center) (external receiver)

Accounts Receivable (external server)

Other
Interested
Stakeholders:

•
•
•

Marketing — interested in sales activity in order to plan new promotions.

Procurement — interested in sales activity in order to replenish inventory.

Management — interested in order activity in order to evaluate company performance and

customer (member) satisfaction.

Description:

The individual must be a registered user of the system.

The member must have logged in to the system, and the member home page is being displayed.

Precondition:

This use case is initiated when the member selects the option to enter a new order.Trigger:

Actor Action System ResponseTypical Course
of Events:

Business Requirements:
System Analysis:
System Design: √

Step 3: The member scrolls through the

available items by using the scroll bar buttons,

the [Page Up] and [Page Down] keys, or the

navigational controls specified in step 2. The

member selects the ones he or she wishes to

purchase by clicking the check box and entering

the quantity to be ordered.

Step 1: The member clicks on the place new

order icon (or link).

Step 5: The member verifies demographic

information (shipping and billing addresses). If

no changes are necessary, the member clicks the

[Continue] button.

Step 2: The system responds by displaying window

W11—Catalog Display, a list of SoundStage products.*

If the product list is greater than 50, which is the maximum

number to be displayed on one page, the system calculates the

number of pages required to display the products. The system

then provides the member with the necessary navigational

buttons, such as: [First], [Prev], [Next], [Last], and [1] [2] [3] [4],

and so on.

Step 4: Once the member has completed making selections,

the system retrieves the member’s demographic information

(shipping and billing addresses) and displays it in window

W02—Member Profile Display. The system also prompts the

member to make any required changes.

Step 6: For each product ordered, the system verifies the

product availability and determines an expected ship date,

determines the price to be charged to the member, and

determines the cost of the total order. If an item is not

immediately available, it indicates that the product is back-

ordered or that it has not been released for shipping (for

preorders). If an item is no longer available, that is indicated

also. The system then displays a summary of the order in window

W03—Order Summary Display. The system also prompts the

member to make any required changes.

This use case describes the event of a member submitting a new order for SoundStage

products via the World Wide Web. The member selects the items he or she wishes to

purchase. Once the member has completed shopping, the member’s demographic

information as well as account standing will be validated. Once the products are verified as

being in stock, a packing order is sent to the distribution center for it to prepare the shipment.

For any product not in stock, a back order is created. On completion, the member will be

sent an order confirmation.

1

2 3

4

 F I G U R E 1 7 - 6 Example of a Design Use Case

Object-Oriented Design and Modeling Using the UML Chapter Seventeen 551

 Figure 17-6 illustrates the refi nement of a portion of the Place New Order use
case that was originally defi ned during systems analysis. This version is identifi ed as a
design use case to distinguish it from the analysis version previously completed. We
want to keep the original analysis use cases separate from the refi ned design use cases
to allow maximum fl exibility in reusing use cases for variations of different physical
implementations. We draw your attention to the following refi nements to our use-case
description in Figure 17-6 :

1 Use-case type —To refl ect implementation details such as user interface con-
straints, tactical use cases called system design use cases are derived from the
system analysis use cases.

2 Window controls —In system design use cases, window controls such as icons,
links, check boxes, and buttons are explicitly stated.

3 Window names —The name of each user interface element (window name) is
stated. If additional information about a user interface element exists, it is good
practice to reference it. Otherwise, more detailed window specifi cations could
be added to the use case.

4 Navigation instructions —Directions on how the user navigates the user
 interface should be specifi ed.

 Step 2: Updating the Use-Case Model Diagram and Other Documentation
to Refl ect Any New Use Cases After all the system analysis use cases have been
transformed to system design use cases, it is quite possible that new use cases, use-
case dependencies, or even actors have been discovered. It is very important that we
keep our documentation accurate and current. Thus, in this step the use-case model
diagram, the use-case dependency diagram, and the actor and use-case glossaries
should be updated to refl ect any new information introduced in step 1.

 > Modeling Class Interactions, Behaviors, and
States That Support the Use-Case Scenario

 Step 1: Identify and Classify Use-Case Design Classes In the previous section,
we refi ned the use cases to refl ect the implementation environment. In this activity
we want to identify and categorize the design classes required by the functionality
that was specifi ed in each use case and identify the class interactions, their responsi-
bilities, and their behaviors. See Figure 17-7 .

F I G U R E 1 7 - 7 Interface, Control, and Entity Classes of Place New Order Use Case

 1 2 3

 Interface Classes Controller Classes Entity Classes

 W00-Member Home Page Place New Order Handler Billing Address

 W02-Member Profi le Display Shipping Address

 W03-Display Order Summary Email Address

 W04-Display Order Confi rmation Active Member

 W09-Member Account Status Display Member Order

 W11-Catalog Display Member Ordered Product

 W15-Product Detail Display Product

 Title

 Audio Title

 Game Title

 Video Title

 Transaction

552 Part Three Systems Design Methods

1 The Interface Classes column contains a list of classes mentioned in the use
case that the users directly interface with, such as screens, windows, card
 readers, and printers. The only way an actor or user can interface with a system
is via an interface class. Therefore, there should be at least one interface class
per actor or user.

2 The Controller Classes column contains a list of classes that encapsulate
 application logic or business rules. A use case should reveal one control class
per unique user or actor.

3 The Entity Classes column contains a list of classes that correspond to the
 business domain classes whose attributes were referenced in the use case.

 Step 2: Identify Class Attributes During both analysis and design, class attributes
can be discovered. In efforts to transform analysis use cases into design use cases,
we begin referencing the attributes in the use-case text. In this step, we examine
each use case for additional attributes that haven’t been previously identifi ed, and we
 update our class diagram to include those attributes.

 Step 3: Identify Class Behaviors and Responsibilities Once we have identi-
fi ed all the objects needed to support the functionality of the use case, we shift our
 attention to defi ning the specifi c behaviors and responsibilities. This step involves the
following tasks:

 • Analyze the use cases to identify required system behaviors.

 F I G U R E 1 7 - 8 Partial Summary of Place New Order Use-Case Behaviors

 Behaviors Automated/Manual Class Type

 Process new member order Manual/Automated Control

 Click icon to place new order Manual

 Retrieve product catalog information Automated Entity

 Display W11-Catalog Display window Automated Interface

 Scroll or page through catalog Manual

 Select product to be ordered and enter quantity Manual

 Retrieve member demographic information Automated Entity

 Display W02—Member Profi le Display window Automated Interface

 Verify member demographic information Manual

 Validate quantity amount Automated Entity

 Verify the product availability Automated Entity

 Determine an expected ship date Automated Entity

 Determine price of product Automated Entity

 Determine cost of the total order Automated Entity

 Display W03—Order Summary Display window Automated Interface

 Prompt user Automated Interface

 Verify order information Manual

 Check status of member account Automated Entity

 Prompt user for payment option Automated Interface

 Store order information Automated Entity

 Record back order information Automated Entity

 Generate order confi rmation Automated Entity

 Display W04—Order Confi rmation Display Automated Interface

 Click button or icon Manual

Object-Oriented Design and Modeling Using the UML Chapter Seventeen 553

 • Associate behaviors and responsibilities with classes.
 • Model classes that have complex behavior.
 • Examine the class diagram for additional behaviors.
 • Verify classifi cations.

 In Chapter 9 you learned that classes encapsulate data and behavior. Our fi rst
task in identifying the class behaviors and responsibilities is accomplished by once
again examining our use case. The use-case description is examined to identify all
 verb phrases . Verb phrases suggest behaviors that are required to complete a use-case
scenario. These verb phrases correlate to the system behaviors required to respond
to the business event of a club member placing a new order. Each use case should be
examined separately to identify behaviors associated with the use case.

 Once the behaviors have been identifi ed, our second task is to determine if the be-
haviors are manual or if they will be automated. If they are to be automated, they must
be assigned to the appropriate object that will have the responsibility of carrying out
that behavior. In Figure 17-8 , which summarizes the Place New Order use-case behav-
iors, each verb phrase or behavior is listed along with its automated or manual designa-
tion. The third column lists the object type with which each behavior is associated.

 In Figure 17-9 , we have condensed the behavior list to show only the behaviors
that need to be automated. Recall that the object types were defi ned earlier, in step 1.
We will use the list in Figure 17-9 as the source of behaviors to be allocated in the
next task.

 The next task is to identify which behaviors should be associated with which
class and to identify collaborations among those classes. One popular tool for that is
the class responsibility collaboration (CRC) card. 1 A CRC card for the MEMBER ORDER
class is shown in Figure 17-10 . A CRC card contains all use-case behaviors and respon-
sibilities that have been associated with that class.

 1 CRC cards were pioneered by Kent Beck and Ward Cunningham.

 F I G U R E 1 7 - 9 Condensed Behavior List for Place New Order Use Case

 Behaviors Class Type

 Process new member order Control

 Retrieve product catalog information Entity

 Display W11—Catalog Display window Interface

 Retrieve member demographic information Entity

 Display W02—Member Profi le Display window Interface

 Validate quantity amount Entity

 Verify the product availability Entity

 Determine an expected ship date Entity

 Determine price of product Entity

 Determine cost of the total order Entity

 Display W03—Order Summary Display window Interface

 Prompt user Interface

 Check status of member account Entity

 Prompt user for payment option Interface

 Store order information Entity

 Record back order information Entity

 Generate order conformation Entity

 Display W04—Order Confi rmation Display Interface

554 Part Three Systems Design Methods

 CRC cards can be developed and refi ned using an interactive process in which
the cards are divided among a group of systems analysts or users. They then move
through the steps of a use-case scenario, acting out the required collaborations using
a spongy ball. The facilitator starts out by tossing the ball to the person holding the
card of the class that is initially responsible for the scenario. That person describes
the logic required to fulfi ll that responsibility. If the class needs information it doesn’t
have or must modify information it doesn’t have, then the person tosses the ball to
the peson holding the card with that information. The toss indicates a needed col-
laboration between the two classes, which is noted on the cards. When the scenario
is completely acted out the ball is thrown back to the facilitator.

 Analysis of the use-case scenarios may not reveal all behaviors for any given object
type. On the other hand, by examining the class diagram, you may fi nd additional behav-
iors (not mentioned in the use-case scenarios) that need to be assigned to an object
class. For example, analyze the associations between the classes in Figure 17-12 . How
are those associations created or deleted? Which should be assigned that responsibility?
As a rule, the class that controls the relationship should be responsible for creating
or deleting the relationship. Draw your attention in Figure 17-12 to the association
 MEMBER ORDER and MEMBER ORDERED PRODUCT . By designing the system to have the MEMBER
ORDER class have a behavior to “add ordered product,” we have effectively given the
 MEMBER ORDER class control of creating this association. Also, recall from Chapter 9 that
there are four “implicit” behaviors that can be associated with any object class: the
abilities to create new instances, change its data or attributes, delete instances, and
display information about the object class. While examining the use cases to identify
and associate behaviors with object classes, we also focus on identifying the collabo-
ration or cooperation that is necessary between classes. In Figure 17-10 the MEMBER
ORDER class needs collaboration from the MEMBER ORDERED PRODUCT class to retrieve
information about each of the products being ordered. Remember, if a class needs an-
other class’s attribute to accomplish a behavior, the collaborating class needs to have
a behavior or method for providing that attribute.

 Identifying the collaboration of object types is necessary to ensure that all use-
case classes work in harmony to complete the processing required for the business
event that triggers the use-case scenario.

 Another tool for discovering and/or documenting class behaviors and responsibili-
ties is a sequence diagram . In Chapter 9 we looked at system sequence diagrams, a
high-level diagram that depicts the interaction between an actor and the system for a
use-case scenario. A full-sequence diagram depicts the interaction between all the ob-
ject classes involved in the scenario. A sequence diagram models the logic of a use case
(or portion of a use case) by depicting the interaction of messages between objects in
time sequence. The messages are arranged in time sequence from top to bottom.

 sequence diagram a UML

diagram that models the logic

of a use case by depicting

the interaction of messages

between objects in time

sequence.

 F I G U R E 1 7 - 1 0 CRC Card for MEMBER ORDER Class

 Object Name: Member Order

 Sub Object:

 Super Object: Transaction

 Behaviors and Responsibilities Collaborators

 Report order information Member Ordered Product

 Calculate subtotal cost

 Calculate total order cost

 Update order status

 Create Ordered Product

 Delete Ordered Product

Object-Oriented Design and Modeling Using the UML Chapter Seventeen 555

 A sequence diagram can be seen as a way to integrate the steps of a use case
with the objects of a class diagram. It can be used as a communication tool with
 programmers to specify what methods (behaviors) to call in implementing a use case.
 Figure 17-11 shows one scenario for what is essentially step 6 of the Place New Order
use case described in Figure 17-6 . Figure 17-11 illustrates the following sequence
 diagram notations:

1 Actor —the actor interacting with the user interface is shown with the use
case actor symbol. Sometimes the actor is left off for the sake of simplicity.
Sometimes the actor is represented with a box like the classes with a notation
 <<actor>>. The dashed vertical line extending downward from the actor
 indicates the life of the sequence.

2 Interface class —the box indicates the user interface class code. To make sure
there is no confusion as to what kind of class this is, <<interface>> is noted. As
with many things in UML, whatever communicates best is right. The colon (:)
is standard sequence diagram notation to indicate a running “instance” of the
class. The dashed vertical line extending downward from the class indicates the
life of the sequence.

3 Controller class —every use case will have one or more controller classes,
drawn with the same notation as the interface class and noted as
<<controller>>.

4 Entity classes —add boxes for each entity that needs to collaborate in the
 sequence of steps. Again, the colon (:) denotes an object instance, in other
words, a specifi c order, specifi c product, and so forth.

5 Messages —solid horizontal arrows indicate message inputs sent to the classes.
Each message calls the behavior (or method) of the class to which the arrow
points. The UML convention for messages is to begin the fi rst word with a
lowercase letter and append additional words with an initial uppercase letter
and no space. In parentheses, include any parameters that need to be passed,
following the same naming convention and separating individual parameters
with commas.

1
2

9

3

4

6

8
7

5

Member

:Product
<<interface>>

:Order Window

<<controller>>

:Place New Order
:Member Order :Member Ordered Product

Item Selections

addltem(item,quantity)

loop

Updated Order
Updated Order Info

extendedPrice

calcExtPrice(item)

calcTotal

qtyInStock

getPrice(productNumber)

calculateQtyInStock(productNumber)

addltem(productNumber,quantityOrdered)

 F I G U R E 1 7 - 1 1 Sequence Diagram for Step 6 of the Place New Order Use Case

556 Part Three Systems Design Methods

6 Activation bars —the bars that are set over the lifelines indicate the period
of time during which each object instance exists. If you are familiar with any
object-oriented programming language, you should recall instantiating objects
to work with them in your program. The activation bars indicate the lifetime of
an instance in RAM. Generally, objects are instantiated in response to messages.
Persistent objects will, of course, continue to exist as stored data.

7 Return messages —dashed horizontal arrows are return messages. Every behav-
ior should return something, at least a true/false message indicating whether
the behavior was successful. But for the sake of simplicity, return messages are
often assumed and left off the sequence diagram.

8 Self-call —an object can call its own method.

9 Frame —we saw in Chapter 9 how to use a frame box in a system sequence dia-
gram to indicate that one or more messages were optional (opt) steps. Here we
use a frame to indicate that the controller needs to loop through all the items.

 Let’s walk through the sequence diagram shown in Figure 17-11 . The Member makes
his or her selections using the on-screen tools provided in the ORDER WINDOW (which is
noted to be an interface class) . The ORDER WINDOW then passes those selections with an
item and quantity specifi cation for each to the Controller class. The CONTROLLER loops
through each of the items. The use case says that for each ordered item, the system must
verify product availability. To do that the CONTROLLER sends a message to PRODUCT, calling
its calculateQtyInStock method. We may have already identifi ed calculateQtyInStock as
a behavior of PRODUCT and so we can read it right off the class diagram and plug it in
here. If it isn’t a behavior already, then we can determine a need for its existence from
this sequence diagram and then add it to the class diagram. Why would this behavior
be assigned to PRODUCT ? We see from Figure 17-11 that PRODUCT has a quantityInStock at-
tribute, so it is the natural source of this information. PRODUCT returns quantityInStock to
the CONTROLLER . The use case includes verbiage to handle items not in stock, but we are
not following that scenario. This sequence diagram assumes all items are in stock.

 Each in-stock item must be added to the order. Should that be a responsibility of
 MEMBER ORDER or MEMBER ORDERED PRODUCT ? We see from Figure 17-12 that MEMBER ORDER
has a composition relationship to MEMBER ORDERED PRODUCT , making MEMBER ORDER re-
sponsible for the creation and deletion of instances. So we will have the CONTROLLER pass
this message to MEMBER ORDER . As it adds an item, MEMBER ORDER needs to recalculate its
total. So it calls one of its own methods (calcTotal). To do this calculation, it needs the
extended price (quantity times price) of the new item, so it calls calcExtPrice of MEMBER
ORDERED PRODUCT . That calculation needs price information, which is held by PRODUCT .
So MEMBER ORDERED PRODUCT creates an instance of PRODUCT to look up the price. The ex-
tended price can then be passed back to MEMBER ORDER , which passes the entire order to
the CONTROLLER . Finally, the CONTROLLER passes the order to the ORDER WINDOW for display.

 From this we can determine what behaviors should be assigned to what classes
and the parameters they will accept and return. Once the behaviors have been iden-
tifi ed, documented, and associated to specifi c classes, then the class diagram can be
updated to include those behaviors in the appropriate classes.

 Before we move on, let’s look at one other sequence diagram. Figure 17-13 shows
a simple sequence diagram for the abstract use case Search Product Catalog by Key-
word that is referred to in Alt-Step 3b of the Place New Order use case. When the
member selects the Search by Keyword option and enters a keyword, the interface
passes the request on to the controller. The controller calls the reportProduct method
of PRODUCT, passing along the keyword. PRODUCT returns a collection of products that
matches the keyword. If we were including persistence objects, we would show the
data read statement going to the database.

 The following are useful guidelines for constructing sequence diagrams:

 • Identify the scope of the sequence diagram. You may wish to depict an entire
use-case scenario or just one step.

 • Draw the actor and interface class if your scope includes that.

Object-Oriented Design and Modeling Using the UML Chapter Seventeen 557

 • List the use-case steps down the left-hand side.
 • Draw boxes for the controller class, and for each entity class that must collaborate

in the sequence, based on the attributes it has or behaviors already assigned to it.
 • Draw boxes for persistence and system classes if your scope includes that.
 • Draw necessary messages and point each of them to the class that will fulfi ll the

responsibility of responding to the message.

Customer

Potential Member Club Member

Billing Address
Email Address

Shipping Address

Active Member

Product

Member Ordered Product

-memberNumber

-memberLastName

-memberFirstName

-memberStatus

-memberDateOfLastOrder

-memberDaytimePhoneNumber

-memberBalanceDue

-memberBonusBalanceAvailable

-audioCategoryPreference

-dateEnrolled

-gameCategoryPreference

-gameMediaPreference

-numberOfCreditsEarned

-privacyCode

-videoCategoryPreference

-videoMediaPreference

has purchased

-productNumber

-UPC

-quantityInStock

-productType

-suggestedRetailPrice

-defaultUnitPrice

-currentSpecialUnitPrice

-currentMonthUnitsSold

-currentYearUnitsSold

-totalLifetimeUnitsSold

is associated with

Address

-streetAddress

-city

-state

-zipCode

is billed to

is shipped to

contains

-quantityOrdered

-quantityShipped

-quantityBackordered

-purchaseUnitPrice

-creditsEarned

0..*

0..*

0..*

1..*

0..*1

1..*

1..*

1

1

1 1

1

1

Member Order

-orderNumber

-orderCreationDate

-orderFillDate

-shippingInstructions

-orderSubTotal

-orderSalesTax

-orderShippingMethod

-orderShipping&HandlingCost

-orderStatus

-orderPrepaidAmount

-orderPrepaymentMethod

places

 F I G U R E 1 7 - 1 2 Partial Class Diagram for Place New Order Use Case

558 Part Three Systems Design Methods

 • Add activation bars to indicate the lifetime of each object instance.
 • Add return messages that are needed for clarity.
 • Add frames for loops, optional steps, alternate steps, and so on, as needed.

 We will revisit sequence diagrams a bit later in this chapter when discussing design
patterns.

 Step 4: Model Object States Our next task is to identify and model any object that has
complex behavior based on the changes of its state . All objects are said to have state—the
value of the object’s attributes at one point in time. An object changes state when the
value of one of its attributes changes. This change in state is triggered by a state transi-

tion event . Figure 17-14 shows the space shuttle resting on the launching pad in a state
of Pre-Launch . After the shuttle takes off (an event), it changes state (state transition), and
while it is in the air, it is in a state of Flight . We could have shown additional states such as
 Landed, Checkout, or Refurbish if the requirements specifi ed this. Many of the objects in
business systems have complex behaviors or go through many states and types of state.

:Product
<<controller>>

:Search Product Catalog by Keyword

<<interface>>

:Order Window

Member

Search by Keyword

search(keyword)

products

products

reportProduct(keyword)

 F I G U R E 1 7 - 1 3 Sequence Diagram for Search Product Catalog by Keyword Use Case

 object state a condition of

the object at one point in its

lifetime.

 state transition event an

occurrence that triggers a

change in an object’s state

through the updating of

one or more of its attributes’

values.

Possible "States" of the

Space Shuttle

"PRE-LAUNCH"
state

"FLIGHT"
state

"Takeoff"

 F I G U R E 17-14

Object State
Example

Object-Oriented Design and Modeling Using the UML Chapter Seventeen 559

 A state machine diagram models the life cycle of a single object. It depicts the dif-
ferent states an object can have, the events that cause the object to change state over time,
and the rules that govern the object’s transition between states. In other words, it specifi es
from which state an object is allowed to transition to another state and under what condi-
tions. A state machine diagram is constructed by performing the following activities:

 • Identify the initial and fi nal states (how is the object created and destroyed?).
 • Identify other states an object may have during its lifetime.
 • Identify triggers (events) that cause the object to leave a particular state.
 • Identify state transition paths (when the object’s state changes, what is the next

state the object will be in?).

 Figure 17-15 is a statechart diagram for the MEMBER ORDER object of the Member
Services system. It begins with an initial state (solid circle) and transitions through a

 state machine diagram a

UML diagram that depicts the

combination of states that an

object can assume during its

lifetime, the events that trigger

transitions between states,

and the rules governing the

objects transition. Also called

a statechart diagram or state

transition diagram.

Member Order final

state

Order Shipped

Order Released Order Filled

Order Invoiced

PendingIn Process

Order

Back-ordered

Order Closed

Order pending awaiting payment or additional member information

Order rejected based on Member's past history

Member order archived after 90 days

Invoice sent to member for payment

Response received from member

Order released to the warehouse

Order shipped to club member

Order filled by the warehouse

Not all product available

Final payment received

Order submitted
Member Order initial

state

Product

received

Member Order final

state

Constructed using Popkin Software's System Architect.

 F I G U R E 1 7 - 1 5 Member Order Statechart Diagram

560 Part Three Systems Design Methods

life cycle of different states (rounded-corner rectangles) until it reaches its fi nal state
(a solid circle inside of a hollow one). Each arrow represents an event that triggers the
 MEMBER ORDER to change from one state to another.

 State machine diagrams are not required for all objects. Typically, a state machine
diagram is constructed only for those objects that have clearly identifi able states and
complex behavior. In our experience, any object that has an attribute called status is a
good candidate for constructing a state machine diagram.

 Finally, our last task is to verify the results from the previous tasks. This consists of
conducting walkthroughs with the appropriate users. One verifi cation approach that
is commonly used is role playing. In role playing , the use-case scenarios are acted
out by the participants. The participants may assume the role of an actor or an object
type that collaborates to process a hypothetical business event. Message sending is
simulated by using an item such as a ball that is passed (or sometimes thrown) be-
tween the participants. Role playing is quite effective in discovering missing objects
and behaviors, as well as verifying the collaboration among objects.

 > Updating the Object Model to Refl ect the
Implementation Environment

 Once we have designed the objects and their required interactions, we can refi ne
our class diagram to represent software classes in the application. A design class

 diagram typically includes the following:

 • Classes.
 • Associations and gen/spec and aggregation relationships.
 • Attributes and attribute-type information.
 • Methods with parameters.
 • Navigability.
 • Dependencies.

 The following steps are used to transform the class diagram prepared in OOA to a
design class diagram:

 1. Add design objects to diagram. The entity, interface, and control objects that were
previously identifi ed should be added to the diagram. Because of diagram space
and readability considerations, only the major interface objects should be included.

 2. Add attributes and attribute-type information to design objects. OO program-
ming languages allow the common attribute types such as Integer, Date, Bool-
ean, and String(text), among others. OO languages also allow the defi nition of
complex attribute types such as Address, Social Security Number, and Telephone
Number; this is a powerful feature for a developer.

 3. Add attribute visibility. Attributes can be defi ned as public, protected, or private.
 4. Add methods to design objects. Defi ne methods to get and update the values of

all the attributes of each object. These types of methods are commonly referred
to as “setters” and “getters” methods. It is common to exclude these methods
from the design class diagram in order to save space and make the diagram more
readable, because they always exist by default. Also, include methods to imple-
ment any previously identifi ed responsibilities and behavior, such as creating or
deleting class instances or forming or breaking class associations. Please note
that method names are formatted based on the chosen programming language.
How you format a method name in Smalltalk is different than how you do so
in Java. In this textbook we will use the standard UML format of methodName

(parameterList) .
 5. Add method visibility. Methods can be defi ned as public, protected, or private.
 6. Add association navigability between classes. Add navigability arrows to unidi-

rectional associations to indicate the direction messages are sent between source
and target classes.

 role playing the act of

simulating object behavior

and collaboration by acting

out an object’s behaviors and

responsibilities.

 design class diagram a

diagram that depicts classes

that correspond to software

components that are used to

build the software application.

Object-Oriented Design and Modeling Using the UML Chapter Seventeen 561

 7. Add dependency relationships. For any user interface class appearing on the
diagram, draw a dependency line between it and the control object.

 Figure 17-16 is a partial view of the SoundStage Member Services design class diagram.
Please note the following:

1 Visibility has been specifi ed for each attribute. In this particular example all
 attributes are private, which is denoted by the symbol “−”.

2 Methods and their visibility have been specifi ed.

3 Navigability has been noted on some associations to indicate the passing of
messages that go only one way.

4 Interface classes have been added to show major user interface objects. In this
particular software package these are considered boundary objects and are
transitory in nature.

5 A control class has been added to coordinate interactions between interface
objects and entity objects. We have also given this control class the responsibility
of assigning new order numbers, which are sequentially assigned.

6 Interface objects are dependent on the control object.

<<actor>>

Active Member

- memberDateOfLastOrder : int

- memberDaytimePhoneNumber : int

- memberBalanceDue : float

- memberBonusBalanceAvailable : float

- audioCategoryPreference : char

- audioMediaPreference : char

- dateEnrolled : int

- gameCategoryPreference : char

- gameMediaPreference : char

- numberOfCreditsEarned : char

- privacyCode : char

- videoCategoryPreference : char

- videoMediaPreference : char

"+reportActiveMember"

"+reportStatus"(status)

"+isMember"

persistent

Member Order

- orderNumber : int

- orderCreationDate : int

- orderFillDate : int

- shippingInstructions : char

- orderSubTotal : int

- orderSalesTax : int

- orderShippingMethod : char

- orderShipping&HandlingCost : int

- orderStatus : char

- orderPrepaidAmount : int

- orderPrepaymentMethod : char

"+setStatus"(status)

"+caluateSalesTax"(state)

"+calculateTotal"

persistent

Product

- productNumber : char

- UPC : char

- quantityInStock : int

- suggestedRetailPrice : int

- defaultUnitPrice : int

- currentSpecialUnitPrice : int

- currentMonthUnitsSold : int

- currentYearUnitsSold : int

- totalLifetimeUnitsSold : int

"+reportProduct"

"+isProduct"

"+calculateQtyInStock"

persistent

Member Ordered Product

- quantityOrdered : int

- quantityShipped : int

- quantityBackordered : int

- purchaseUnitPrice : int

- creditsEarned : int

"+calculateExtendedCost"

"+calculateQuantityBackordered"

persistent

<<control>>

Place New Order Handler

- lastOrderNumber : int

"+enterNew Order"

"+assignOrderNumber"

persistent

<<boundary>>

W03 - Order Summary Display

transitory

<<boundary>>

W-11 Catalog Display

transitory

Used by

Used by

1

1..*

displays

1

1

Verifies

1

1 Captures

1

>

0..*

Has purchased 1

0..*

Sold as

0..*

1 Places

1

1..*

Sells

>

1

2

3

4
5

6

 F I G U R E 1 7 - 1 6 Partial Design Class Diagram for the Place New Order Use Case

562 Part Three Systems Design Methods

 1. The approach of using object-oriented techniques
for designing a system is referred to as object-
 oriented design.

 2. Object-oriented design is concerned with identi-
fying and classifying three class types, including
interface, entity, and control object types. Interface
and control object types are objects that are intro-
duced as a result of implementation decisions that
were made during systems design.

 a. Entity classes are identifi ed during systems
analysis and usually correspond to items in
real life and contain information, known as
attributes, that describes the different instances
of the entity.

 b. Interface classes are introduced to represent a
means through which the user will interface
with the system. The responsibility of the inter-
face class is twofold:

 i) It translates the user’s input into
information that the system can understand
and use to process the business event.

 ii) It takes data pertaining to a business event
and translates the data for appropriate
presentation to the user.

 c. Control classes are those that hold application
or business rule logic. Control classes serve
as the “traffi c cop” containing the application
logic or business rules of the event for
managing or directing the interaction between
the classes.

 3. An object-oriented system could be implemented
with the above three types of classes. But many
methodologists prefer to include two other types
of classes.

 a. Persistence classes provide functionality to
read and write entity class attributes to a
database.

 b. System classes isolate other classes from
operating system–specifi c functionality.

 4. In object-oriented design it is necessary to model
more advanced relationships in order to accurately
specify the software components:

 a. A dependency relationship is used to model
the association between two classes in two
instances: (1) to indicate that when a change
occurs in one class, it may affect the other class,
and (2) to indicate the association between a
persistent class and a transient class.

 b. By default, associations between classes are
bidirectional, meaning that objects of one kind
can navigate (send messages) to objects of
the other kind. There may be times, though,
when you want to limit the message sending to
only one direction. You specify navigability by
placing an arrowhead on the association in the
direction the message will be sent.

 c. How attributes and methods are accessed by
other objects is defi ned by visibility. The UML
provides three levels of visibility:

 i) Public—denoted by the symbol “+”.
 ii) Protected—denoted by the symbol “#”.
 iii) Private—denoted by the symbol “−”.

 5. Object responsibility is the obligation that an
 object has to provide a service when requested
and thus collaborate with other objects to satisfy
the request if required. Object responsibility is
closely related to the concept of objects being
able to send and/or respond to messages.

 6. Object-oriented design includes the following
activities:

 a. Refi ning the use-case model to refl ect the
implementation environment.

 b. Modeling class interactions, behaviors, and
states that support the use-case scenario.

 c. Updating the class diagram to refl ect the
implementation environment.

 7. In OOD, analysis use cases are refi ned into design
use cases to refl ect the physical aspects of the
implementation environment for the new system.

 8. During systems design, use-case descriptions
are examined to identify all action-verb phrases.
Action-verb phrases suggest behaviors required
to complete a use-case scenario. These behaviors
must be associated with a system object.

 9. A popular tool for documenting the behaviors and
collaborations of an object is the class responsibil-
ity collaboration (CRC) card.

 10. Another tool for discovering and/or documenting
class behaviors and responsibilities is a sequence
diagram. A sequence diagram models the logic of a
use case by depicting the interaction of messages
between classes in time sequence.

 11. A state machine diagram models the life cycle of a
single object. It depicts the different states a class
can have, the events that cause it to change state
over time, and the rules that govern its transition be-
tween states. In other words, it specifi es from which
state a class is allowed to transition to another state.

 Chapter Review

 12. A design class diagram represents the software
classes in the application. It consists of the
following:

 a. Classes.
 b. Associations and gen/spec and aggregation

relationships.

 c. Attributes and attribute-type information.
 d. Methods with parameters.
 e. Navigability.

 f. Dependencies.

Object-Oriented Design and Modeling Using the UML Chapter Seventeen 563

Review Questions

 1. What are the three kinds of objects used in object-
oriented design?

 2. Why are the three kinds of objects needed in
object-oriented design?

 3. What is navigability? Please give an example of a
navigability relationship.

 4. What is visibility in object-oriented design?
Explain the different levels of visibility.

 5. What is the key reason for object reusability?
 6. What are some of the methods developers use to

achieve object reusability?
 7. What are the main activities of object-oriented

design?
 8. What is the objective of refi ning the use-case

model in object design? Why is it important?

 9. What are some ways that we can use to identify
use-cases design objects—namely, interface
objects, control objects, and entity objects?

 10. What is the goal of constructing object robustness
diagrams? What are the components of the
diagrams?

 11. What should we look for in identifying the object
behaviors and responsibilities of the objects?

 12. What is the relationship between an object state
and state transition event?

 13. What are the steps needed to construct the state
chart diagram?

 14. What are the tools used to document the detailed
object interaction for the use cases?

 15. What does a design class diagram include?

Problems and Exercises

 1. What is the main rationale for using object-
oriented methods to develop systems? Why?

 2. A project developed in PL/1 is expected to take
30 months. Assuming the same ratios as those
shown in the table below, compare the duration,
level of effort, and software size between a project
developed in PL/1 and a project developed in an
object-oriented language comparable to Smalltalk.

Programming Project Duration Level of Software

 Language (calendar Effort (persosn- size (lines

 months) months) of code)

PL/1 30.0 240.0 41,800

OO Language 5.5 16.4 3,500

 3. True or false? Explain your answers as needed.

• A dependency relationship models a two-class
association in only two instances.

• To enforce encapsulation, attributes should
generally be declared private.

• An object that is supposed to collaborate with
other objects when necessary to provide a
requested service, but which is unable to do so,
is termed an irresponsible object.

• Interface objects are typically persistent.

• During the object-oriented design phase, the
object model is updated to refl ect the actual
implementation environment.

 4. What are the interface objects users may fi nd for
the following?

 a. Photo printer that doesn’t require a computer
to print pictures.

 b. Service station gas pump.
 c. Entrance/exit door in retail store.

 5. During the design phase in object-oriented design,
are any changes made to the use cases created
earlier? If so, what are these changes, and what is
their overall purpose?

 6. Select an application with which you are familiar.
Pick one of the processes in the application and
create an analysis use case; use the template
shown in Figure 17-7 . Then, using the guidelines
in this chapter, refi ne the use case and transform it
into a design use case. Highlight the areas that you
changed or added.

 7. After creating the design use case, analyze it in
order to identify and classify the use-case design
objects; use Figure 17-8 as an example. In general,

1

2

564 Part Three Systems Design Methods

you will probably have more entity objects than
interface objects, and you should have at least
one control object. Have a fellow student or
co-worker check your work to make sure it is
identifi ed and classifi ed correctly.

 8. What is the purpose of an object robustness
diagram? What are the symbols used in this
diagram, and what do they represent? Next, draw
an object robustness diagram based upon your use
case; use Figure 17-9 as an example.

 9. Now go back to the design use case you created.
Analyze this use case to identify the required

system behaviors; use the matrix shown in Figure
17-10 as an example. After identifying the use
case behaviors, determine if each behavior will
be automated or manual in the new system. If the
behavior is automated, then in the third column
assign the object type that will be responsible for
executing that behavior.

 10. Explain the purpose of the class responsibility
collaboration (CRC) card; then create a CRC card
for each object type identifi ed in your previous
exercises.

 Projects and Research

 1. Take the design use case you created and refi ned
in Problems and Exercises (or another one if
you prefer). Create a sequence diagram and class
diagram based upon this use case; use Figures 17-16
and 17-17 as examples. Have someone in your
organization or school who is knowledgeable in
using object-oriented design review your diagrams
and modify them as necessary.

 2. Envision the implementation for a hypothetical
system. Create the component diagrams and
deployment diagrams that describe the physical
architecture of the system software and hardware;
use Figures 17-18 and 17-19 as examples. Have
someone in your organization or school who
is knowledgeable in using object-oriented
implementation techniques review your diagrams
and modify them as necessary.

 3. Just as object-oriented analysis (OOA) led up
to and transitioned into object-oriented design

(OOD), so too does OOD lead up to and transition
into object-oriented programming. Although this
is not a class in programming, understanding the
basic concepts and constructs of object-oriented
programming (OOP) may be benefi cial to an overall
understanding of the object-oriented approach to
systems development. Research object-oriented
programming on the Web or in textbooks in order
to get an overview. How are the diagrams, use cases,
and other artifacts created in the object-oriented
analysis and design phases used by object-oriented
programming in the construction phase? Does
object-oriented programming introduce any new
diagrams or other constructs? What are the basic
steps and processes used by OOP during the
construction phase? What are some of the most
popular object-oriented programming languages in
use today?

Minicases

 1. Get Jim Conallen’s book Building Web Applications

with UML (Boston: Addison-Wesley, 2002):

 a. What are the differences between Web-based
UML and traditional UML, shown in Conallen’s
book?

 b. Wow Munchies, discussed in a previous chapter,
has decided to implement an e-commerce site. It
would like you to do the UML modeling for the
site. What UML modeling techniques will you
use? Why?

 2. In previous chapters, you interviewed a
government department and began designing a
new system for it. Return to the notes:

 a. Describe the system that you recommend it have.

 b. Using UML modeling, diagram the system
you are proposing. (Consider Use Case, Class,
Sequence, and State Machine diagrams.)

 c. Submit a deliverable to your professor, including
a discussion of the previous interviews and parts
2a and 2b of this minicase. You will be graded on
correctness, completeness, and professionalism.

 3. Using your work from minicase 2 and from
previous chapters, create a system prototype for
your government client. What language are you
using? Why? Submit your prototype on CD to your
professor, as well as a hard copy of your source
code, screen shots, a short discussion of any
assumptions you made, and a short discussion of the
business problem you are solving with the system.

Object-Oriented Design and Modeling Using the UML Chapter Seventeen 565

 Team and Individual Exercises

 1. Roundtable discussion: Now that you are almost
fi nished with this course, refl ect upon the fi eld of
systems analysis and design, and your experience.
Consider things such as these: What is systems
analysis and design? What attributes are important
in a person who is in this fi eld? What did you learn
from the course? If you had the opportunity to
change anything, what would it be?

 2. Throughout this course, you have been encouraged
to expand your creativity through a number of

exercises. Creativity and our ability to think freely
and outside the norm is imperative for real success
in many fi elds. Why?

 3. Team or individual: Think about instances when the
rules were wrong, ineffi cient, or just plain outdated.
Research and share with the class legal methods
for challenging the system and changing the rules.
It can be rules of government (laws), workplace,
or school.

 Suggested Readings

 Ambler, Scott W. The Object Primer. New York: Cambridge

University Press, 2001. Very good information about

documenting use cases and their use.

 Armour, Frank, and Granville Miller. Advance Use Case

Modeling. Boston: Addison-Wesley, 2001. This book presents

excellent coverage of the use-case modeling process.

 Booch, G. Object-Oriented Design with Applications. Redwood

City, CA: Benjamin Cummings, 1994. Many Booch concepts

were integrated into the UML.

 Coad, P., and E. Yourdon. Object-Oriented Analysis, 2nd

ed. Englewood Cliffs, NJ: Prentice Hall, 1991. This book

provides a very good overview of object-oriented concepts.

However, the object model techniques are somewhat

limited by comparison to UML and other object-oriented

modeling approaches.

 Eriksson, Hans-Erik, and Magnus Penker. UML Toolkit. New

York: John Wiley & Sons, 1998. This book provides detailed

coverage of the UML.

 Fowler, Martin. UML Distilled Third Edition, A Brief Guide

to the Standard Object Modeling Language. Reading,

MA: Addison-Wesley, 2003. This is a good short guide

introducing the concepts and notation of UML 2.0.

 Harman, Paul, and Mark Watson. Understanding UML: The

Developer’s Guide. San Francisco: Morgan Kaufmann

Publishers, 1997. This is an excellent reference book. The

examples were prepared using Popkin’s System Architect.

 Jacobson, Ivar; Magnus Christerson; Patrik Jonsson; and Gunnar

Overgaard. Object-Oriented Software Engineering: A Use

Case Driven Approach. Workingham, England: Addison-

Wesley, 1992. This book presents detailed coverage of how

to identify and document use cases.

 Larman, Craig. Applying UML and Patterns: An Introduction

to Object-Oriented Analysis and Design. Englewood Cliffs,

NJ: Prentice Hall, 1997. This is an excellent reference book

explaining the concepts of OO development utilizing the

UML.

 Martin, J., and J. Odell. Object-Oriented Analysis and Design.

Englewood Cliffs, NJ: Prentice Hall, 1992.

 Rumbaugh, James; Michael Blaha; William Premerlani; Frederick

Eddy; and William Lorensen. Object-Oriented Modeling

and Design. Englewood Cliffs, NJ: Prentice Hall, 1991. This

book presents detailed coverage of the object modeling

technique (OMT) and its application throughout the entire

systems development life cycle. Many OMT constructs are

now in the UML.

 Rumbaugh, James; Ivar Jacobson; and Grady Booch. The Unifi ed

Modeling Language Reference Manual. Reading, MA:

Addison-Wesley, 1999. This book presents detailed coverage

of the UML by the primary authors who created it.

 Rumbaugh, James; Ivar Jacobson; and Grady Booch. The Unifi ed

Modeling Language Users Guide. Reading, MA: Addison-

Wesley, 1999. This book presents detailed coverage of the

UML by the primary authors who created it.

 Taylor, David A. Object-Oriented Information Systems:

Planning and Implementation. New York: John Wiley &

Sons, 1992. This book is a very good entry-level resource

for learning the concepts of object-oriented technology

and techniques.

Systems Construction and Implementation Chapter Eighteen 567

Part Four
Beyond Systems Analysis and Design

Part Four introduces you to the fi nal

phases of systems development.

Chapter 18, “Systems Construction

and Implementation,” presents the

process of constructing the system

from physical design specifi cations

and the implementation of the

constructed system. It will examine

the tasks involved in the development,

installation, testing, and delivery of

the fi nal system into production.

568 Part Four Beyond Systems Analysis and Design

18Systems Construction and
Implementation

Chapter Preview and Objectives

 In this chapter you will learn more about the construction and implementation phases

of systems development. These two phases construct, test, install, and deliver the fi nal

system into operation. You will know that you understand the processes of constructing

and implementing a system when you can:

❚ Explain the purpose of the construction and implementation phases of the system’s life

cycle.

❚ Describe the system’s construction and implementation phases in terms of major tasks,

roles, inputs, and outputs.

❚ Explain several application program and system tests.

❚ Identify several system conversion strategies.

❚ Identify the chapters in this textbook that can help you actually perform the tasks of

systems construction and implementation.

 Although some of the techniques of systems construction and implementation are

introduced in this chapter, it is not the intent of this chapter to teach the techniques.

This chapter teaches only the process of construction and implementation.

Systems Construction and Implementation Chapter Eighteen 569

 Introduction

 Construction has fi nally begun on the SoundStage Member Services system. Bob
Martinez is an analyst/programmer, which means that he is expected to do some
programming as well as systems analysis. Tasked with writing code to implement
some of the use cases, Bob is seeing the advantage of all the analysis and design
work that has gone on before. From the repository of design documents, Bob can
draw essentially everything he needs to know to write his programs. His boss, Sandra,
insisted that he write test scripts before he began programming. Again, the use cases
told him what alternatives needed to be tested and what the results should be.

 Other members of the systems analysis team are working with database
programmers, application programmers, Web designers and administrators, software
vendors, technical writers, and an outside fi rm hired to perform systems testing. They
are racing to meet the deadline. But it is gratifying to see the system they designed
becoming a reality.

 systems construction the

development, installation,

and testing of system

components.

 systems implementation
 the installation and delivery

of the entire system into

production.

 What Is Systems Construction and Implementation?

 Let’s begin with defi nitions of systems construction and implementation. Systems

construction is the development, installation, and testing of system components.
Unfortunately, systems development is a common synonym. (We dislike that synonym
since it is more frequently used to describe the entire life cycle.) Systems implemen-

tation is the delivery of that system into production (meaning day-to-day operation).
 Figure 18-1 illustrates the construction and implementation phases. Notice that

the trigger for the systems construction phase is the approval of the physical design
specifi cations resulting from the design phase. Given the design specifi cations, we can
construct and test system components for that design. Eventually we will have built
the functional system. The functional system can then be implemented or delivered
as an operational system.

 This chapter examines each of these phases in detail.

The Construction Phase

 The purpose of the construction phase is to develop and test a functional system that
fulfi lls business and design requirements and to implement the interfaces between
the new system and existing production systems. Programming is generally recog-
nized as a major aspect of the construction phase. But with the trend toward system
solutions that involve acquiring or purchasing software packages, the implementation
and integration of software components is becoming an equally, if not more, common
and visible aspect of the construction phase.

 In this section you will learn about several tasks involved in the construction
phase of a typical systems development project. Figure 18-2 depicts the various
tasks for the construction phase. Let’s examine each construction phase task in
greater detail.

 > Task 6.1—Build and Test Networks (if Necessary)

 Recall that in the requirements analysis phase of systems analysis, we established net-
work requirements. Subsequently, during the design phase we developed distributed
data and process models. Using these technical design specifi cations to implement
the network architecture for an information system is a prerequisite for the remaining
construction and implementation activities.

P
R

O
B

L
E

M

A
N

A
LY

S
IS

2

R
E

Q
U

IR
E

M
E

N
T

S

A
N

A
LY

S
IS

3

L
O

G
IC

A
L

D
E

S
IG

N

4

D
E

C
IS

IO
N

A
N

A
LY

S
IS

5

P
H

Y
S

IC
A

L

D
E

S
IG

N

&

IN
T

E
G

R
A
T

IO
N

6

S
C

O
P

E

D
E

F
IN

IT
IO

N

1 D
o

c
u

m
e

n
ta

ti
o

n
D

o
c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

S
Y

S
T

E
M

O
P

E
R

A
T

IO
N

&

M
A

IN
T

E
N

A
N

C
E

L
if
e

-C
y
c
le

 S
ta

g
e

P
ro

b
le

m

S
ta

te
m

e
n

t

S
y
s
te

m

Im
p

ro
v
e

m
e

n
t

O
b

je
c
ti
v
e

s

B
u

s
in

e
s
s

R
e

q
u

ir
e

m
e

n
ts

S
ta

te
m

e
n

t

A
p

p
lic

a
ti
o

n

A
rc

h
it
e

c
tu

re

P
h

y
s

ic
a

l

D
e

s
ig

n
 S

p
e

c
if

ic
a

ti
o

n
s

F
u

n
c

ti
o

n
a

l

S
y

s
te

m

O
p

e
ra

ti
o

n
a

l

S
y

s
te

m

F
IN

IS
H

:

W
o

rk
in

g

B
u

s
in

e
s
s

S
o

lu
ti
o

n

S
T
A

R
T

:

P
ro

b
le

m
s
,

O
p

p
o

rt
u

n
it
ie

s
,

D
ir
e

c
ti
v
e

s
,

C
o

n
s
tr

a
in

ts
,

a
n

d
 V

is
io

n

L
o

g
ic

a
l

D
e

s
ig

n

D
o

c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n
D

o
c
u

m
e

n
ta

ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

S
Y

S
T

E
M

 O
W

N
E

R
S

 A
N

D
 U

S
E

R
S

B
U

S
IN

E
S

S
 C

O
M

M
U

N
IT

Y

S
ta

te
m

e
n

t

o
f
W

o
rk

S
c
o

p
e

 &
 V

is
io

n

S
y
s
te

m

P
ro

p
o

s
a

l

D
e

s
ig

n

P
ro

to
ty

p
e

s

T
ra

in
in

g

M
a

te
ri

a
ls

P
o

s
t-

A
u

d
it

R
e
v

ie
w

R
e

d
e

s
ig

n
e

d

B
u

s
in

e
s

s

P
ro

c
e

s
s

e
s

C
O

N
S

T
R

U
C

T
IO

N

&

T
E

S
T

IN
G

7

IN
S

T
A

L
L

A
T

IO
N

&

D
E

L
IV

E
R

Y

8

 F
I
G

U
R

E

1

8
-
1

T

h
e

C
o

n
te

x
t

o
f

S
y

st
em

s
C

o
n

st
ru

ct
io

n
 a

n
d

 I
m

p
le

m
en

ta
ti

o
n

570

B
u

il
d

 a
n

d

T
e

s
t

D
a

ta
b

a
s

e
s

6
.2

W
ri

te
 a

n
d

T
e

s
t

N
e
w

P
ro

g
ra

m
s

6
.4

F
u

n
c

ti
o

n
a

l

S
y

s
te

m

D
e

s
ig

n
 S

p
e

c
if

ic
a

ti
o

n
s

R
e

p
o

s
it
o

ryN
e

tw
o

rk

D
e

ta
ils

D
a

ta
b

a
s
e

S
c
h

e
m

a
s

T
H

E
 B

U
S

IN
E

S
S

 A
N

D
T

E
C

H
N

IC
A

L
 C

O
M

M
U

N
IT

Y

(
a

p
p

ro
v
a

l
to

 c
o

n
ti

n
u

e
 p

ro
je

c
t

a
ft

e
r

d
e

s
ig

n
 p

h
a

s
e

)

In
te

g
ra

ti
o

n

R
e

q
u

ir
e

m
e

n
ts

&
 P

ro
g
ra

m

D
o

c
u

m
e

n
ta

ti
o

n

T
e

c
h

n
ic

a
l
D

e
s
ig

n

S
ta

te
m

e
n

t,
 P

la
n

 F
o

r

P
ro

g
ra

m
m

in
g

,
a

n
d

T
e

s
t

D
a

ta

In
s

ta
ll

 a
n

d

T
e

s
t

N
e
w

S
o

ft
w

a
re

P
a

c
k

a
g

e
s

6
.3

S
o

ft
w

a
re

L
ib

ra
ry

R
e
v
is

e
d

 D
a

ta
b

a
s
e

S
c
h

e
m

a
s
 a

n
d

T
e

s
t

D
a

ta
 D

e
ta

ils

P
ro

d
u

c
ti
o

n

D
a

ta
b

a
s
e

N
e
w

D
a

ta
b

a
s
e

s

N
e

tw
o

rk

D
e

s
ig

n

R
e

q
u

ir
e

m
e

n
ts

S
a

m
p

le

D
a

ta

D
a

ta
b

a
s
e

S
tr

u
c
tu

re

T
E

C
H

N
O

L
O

G
Y

 I
N

D
U

S
T

R
Y

T
E

C
H

N
O

L
O

G
Y

 S
A

L
E

S
 R

E
P

R
E

S
E

N
T
A

T
IV

E
S

S
o

ft
w

a
re

P
a

c
k

a
g

e
s

a
n

d

D
o

c
u

m
e

n
ta

ti
o

n

S
o

ft
w

a
re

P
a

c
k
a

g
e

R
e

u
s
a

b
le

 S
o

ft
w

a
re

 C
o

m
p

o
n

e
n

ts

N
e
w

 P
ro

g
ra

m
s
 &

 R
e

u
s
a

b
le

 S
o

ft
w

a
re

 C
o

m
p

o
n

e
n

ts

P
ro

g
ra

m
 D

o
c
u

m
e

n
ta

ti
o

n

M
o

d
if
ie

d
 S

/W
 S

p
e

c
s

&
 N

e
w

 I
n

te
g
ra

ti
o

n

R
e

q
u

ir
e

m
e

n
ts

In
s

ta
ll

e
d

 N
e

tw
o

rk
B

u
il

d

a
n

d
 T

e
s

t

N
e

tw
o

rk
s

6
.1

 F
I
G

U
R

E

1

8
-
2

S

y
st

em
s

C
o

n
st

ru
ct

io
n

 T
as

k
s

571

572 Part Four Beyond Systems Analysis and Design

 In many cases, new or enhanced applications are built around existing networks.
If so, skip this task. However, if the new application calls for new or modifi ed net-
works, they must normally be implemented before building and testing databases and
writing or installing computer programs that will use those networks. Thus, the fi rst
task of the construction phase may be to build and test networks.

 This phase involves analysts, designers, and builders. A network designer and net-
work administrator assume the primary responsibility for completing this task. The
network designer is a specialist in the design of local and wide area networks and
their connectivity. The network administrator has the expertise for building and test-
ing network technology for the new system. He or she will also be familiar with net-
work architecture standards that must be adhered to for any possible new networking
technology. This person is also responsible for security. (The network designer and
network administrator may be the same person.) While the systems analyst may be in-
volved in the completion of this task, the analyst’s role is more that of a facilitator and
ensures that business requirements are not compromised by the network solution.

 > Task 6.2—Build and Test Databases

 Building and testing databases are unfamiliar tasks for many students, who are accus-
tomed to having an instructor provide them with the test databases. This task must im-
mediately precede other programming activities because databases are the resources
shared by the computer programs to be written. If new or modifi ed databases are
required for the new system, we can now build and test those databases.

 This task involves systems users, analysts, designers, and builders. The same sys-
tem specialist that designed the databases will assume the primary responsibility in
completing this task. System users may also be involved in this task by providing or
approving the test data to be used in the database. When the database to be built is
a noncorporate, applications-oriented database, the systems analyst often completes
this task. Otherwise, systems analysts mostly ensure business requirements compli-
ance. The database designer will often become the system builder responsible for the
completion of this activity. The task may involve database programmers to build and
populate the initial database and a database administrator to tune the database perfor-
mance, add security controls, and provide for backup and recovery.

 The primary inputs to this task are the database schema(s) specifi ed during
systems design. Sample data from production databases may be loaded into tables
for testing the databases. The fi nal product of this task is an unpopulated database

 structure for the new database. The term unpopulated means the database structure
is implemented but data has not been loaded into the database structure. As you’ll
soon see, programmers will eventually write programs to populate and maintain those
new databases. Revised database schema and test data details are also produced dur-
ing this task and placed in the project repository for future reference.

 > Task 6.3—Install and Test New Software
Packages (if Necessary)

 Some systems solutions may have required the purchase or lease of software pack-
ages. If so, once networks and databases for the new system have been built, we can
install and test the new software. This new software will subsequently be placed in
the software library.

 This activity typically involves systems analysts, designers, builders, and vendors
and consultants. This is the fi rst task in the life cycle that is specifi c to the applications
programmer. The systems analyst typically participates in the testing of the software
package by clarifying requirements. Likewise, the system designer may be involved
in this task to clarify integration requirements and program documentation that is to
be used in testing the software. Network administrators may be involved in actually

Systems Construction and Implementation Chapter Eighteen 573

 installing the software package on the network server. Finally, this task typically in-
volves participation from the software vendor and consultants who may assist in the
installation and testing process.

 The main input to this task is the new software packages and documentation that
are received from the system vendors. The applications programmer will complete
the installation and testing of the package according to integration requirements and
program documentation developed during system design. The principal deliverable of
this task is the installed and tested software package that is made available in the soft-
ware library. Any modifi ed software specifi cations and new integration requirements
that were necessary are documented and made available in the project repository to
provide a history and serve as future reference .

 > Task 6.4—Write and Test New Programs

 We are now ready to develop (or complete) any in-house programs for the new sys-
tem. Recall that prototype programs are frequently constructed in the design phase.
These prototypes are included as part of the technical design specifi cations for com-
pleting systems construction and implementation. However, these prototypes are
rarely fully functional or complete. Therefore, this activity may involve developing or
refi ning those programs.

 This task involves the systems analysts, designers, and builders. The systems an-
alyst typically clarifi es business requirements to be implemented by the programs.
The designer may have to clarify the program design, integration requirements, and
program documentation (developed during systems design) that is used in writing
and testing the programs. The system builders will assume the primary responsibil-
ity for this activity. The applications programmer (builder) is responsible for writing
and testing in-house software. Most large programming projects require a team effort.
One popular organization strategy is the use of chief programmer teams . The team
is managed by the chief programmer, a highly profi cient and experienced program-
mer who assumes overall responsibility for the program design strategy, standards,
and construction. The chief programmer oversees all coding and testing activities and
helps with the most diffi cult aspects of the programs. Other team members include
a backup chief programmer, program librarian, programmers, and specialists . The
applications programmer is often aided by an application or software tester who spe-
cializes in building and running test scripts that are consistently applied to programs
to test all possible events and responses.

 The primary inputs to this activity are the technical design statement, plan for
programming, and test data developed during systems design. Since any new pro-
grams or program components may have already been written and be in use by
other existing systems, the experienced applications programmer will know to fi rst
check for possible reusable software components available in the software library.
The principal deliverables of this activity are the new programs and reusable soft-
ware components that are placed in the software library. This activity also results in
program documentation that may need to be approved by a quality assurance group.
Some information systems shops have a quality assurance group staffed by special-
ists who review the fi nal program documentation for conformity to standards. This
group will provide appropriate feedback regarding quality recommendations and
requirements. The fi nal program documentation is then placed in the project reposi-
tory for future reference.

 Testing is an important skill that is often overlooked in academic courses on
computer programming. Testing should not be deferred until after the entire program
has been written! There are three levels of testing to be performed: stub testing, unit
or program testing, and systems testing. Stub testing is testing performed on indi-
vidual events or modules of a program. In other words, it is the testing of an isolated
subset of a program. Unit or program testing is testing in which all the events
and modules that have been coded and stub tested for a program are tested as an

 stub test a test performed

on a subset of a program.

 unit or program test a

test performed on an entire

program.

574 Part Four Beyond Systems Analysis and Design

integrated unit; it is the testing of an entire program. Systems testing ensures that
application programs written and tested in isolation work properly when they are
integrated into the total system. A system test plan should be developed and followed
for testing the system. One or more test scripts are developed for each functional and
nonfunctional requirement.

 Just because a single program works properly doesn’t mean that it works prop-
erly with other programs. The integrated set of programs should be run through a
systems test to make sure one program properly accepts, as input, the output of other
programs. Once the system test is complete and determined to be successful, we can
proceed to the implementation of the system.

 The Implementation Phase

 What’s left to do? New systems usually represent a departure from the way business
is currently done; therefore, the analyst must provide for a smooth transition from the
old system to the new system and help users cope with normal start-up problems.
Thus, the implementation phase delivers the production system into operation.

 The functional system from the construction phase is the key input to the
implementation phase (see Figure 18-1). The deliverable of the implementation phase
(and the project) is the operational system that will enter the operation and support
stage of the life cycle.

 In your information system framework, the implementation phase considers the
same building blocks as does the construction phase (see the chapter home page). In
this section you will learn about several tasks involved in the implementation phase for
a typical systems development project. Figure 18-3 depicts the various tasks for the im-
plementation phase. Let’s examine each implementation phase task in greater detail.

 > Task 7.1—Conduct System Test

 Now that the software packages and in-house programs have been installed and tested,
we need to conduct a fi nal system test. All software packages, custom-built programs,
and any existing programs that comprise the new system must be tested to ensure
that they all work together.

 This task involves analysts, owners, users, and builders. The systems analyst
 facilitates the completion of this task. The systems analyst typically communicates
testing problems and issues with the project team members. The system owners and
system users hold the ultimate authority on whether or not a system is operating cor-
rectly. System builders, of various specialties, are involved in the systems testing. For
example, applications programmers, database programmers, and networking special-
ists may need to resolve problems revealed during systems testing.

 The primary inputs to this task include the software packages, custom-built pro-
grams, and any existing programs comprising the new system. The system test is done
using the system test data that was developed earlier by the systems analyst. As with
previous tests that were performed, the system test may result in required modifi ca-
tions to programs, thus, once again, prompting the return to a construction phase task.
This iteration would continue until a successful system test was experienced.

 > Task 7.2—Prepare Conversion Plan

 Once a successful system test has been completed, we can begin preparations to
place the new system into operation. Using the design specifi cations for the new sys-
tem, the systems analyst will develop a detailed conversion plan. This plan will identify
databases to be installed, end-user training and documentation that need to be devel-
oped, and a strategy for converting from the old system to the new system.

 systems test a test per-

formed on an entire system.

C
o

n
d

u
c

t

S
y

s
te

m

T
e

s
t

7
.1

P
re

p
a

re

C
o

n
v

e
rs

io
n

P
la

n

7
.2

T
ra

in

S
y

s
te

m

U
s

e
rs

7
.4

O
p

e
ra

ti
o

n
a

l

S
y

s
te

m

F
A

S
T

R
e

p
o

s
it
o

ryS
y
s
te

m

T
e

s
t

D
a

ta

S
Y

S
T

E
M

 O
W

N
E

R
S

 A
N

D
 U

S
E

R
S

(O
R

 S
T

E
E

R
IN

G
 C

O
M

M
IT

T
E

E
)

T
H

E
 B

U
S

IN
E

S
S

 A
N

D
 T

E
C

H
N

IC
A

L

C
O

M
M

U
N

IT
Y

D
a

ta
b

a
s
e

S
c
h

e
m

a

A
p

p
ro

p
ri

a
te

D
o

c
u

m
e

n
ta

ti
o

n

In
s

ta
ll

D
a

ta
b

a
s

e
s

7
.3

N
e
w

D
a

ta
b

a
s
e

s

S
o

ft
w

a
re

L
ib

ra
ry

R
e

q
u

ir
e

d

M
o

d
if
ic

a
ti
o

n
s

to
 P

ro
g
ra

m
s

E
x
is

ti
n

g
 D

a
ta

C
o

n
v

e
rt

to

N
e
w

S
y

s
te

m

7
.5

C
o

n
v
e

rs
io

n

P
la

n

S
o

ft
w

a
re

 P
a

c
k
a

g
e

s
,

C
u

s
to

m
-B

u
ilt

 P
ro

g
ra

m
s
,

a
n

d

a
n
y
 E

x
is

ti
n

g
 P

ro
g
ra

m
s

S
u

c
c

e
s

s
fu

l

S
y

s
te

m

T
e

s
t

D
e

s
ig

n

S
p

e
c
if
ic

a
ti
o

n
s

C
o

n
v
e

rs
io

n
 P

la
n

P
ro

d
u

c
ti
o

n

D
a

ta
b

a
s
e

s

R
e

s
tr

u
c
tu

re
d

E
x
is

ti
n

g

D
a

ta

D
a

ta
b

a
s
e

S
tr

u
c
tu

re
d

U
s

e
r

T
ra

in
in

g

a
n

d

D
o

c
u

m
e

n
ta

ti
o

n

 F
I
G

U
R

E

1

8
-
3

S

y
st

em
s

Im
p

le
m

en
ta

ti
o

n
 T

as
k

s

575

576 Part Four Beyond Systems Analysis and Design

 The project manager facilitates the activity. Systems analyst, system designer, and
system builder roles are not typically involved unless deemed necessary by the proj-
ect manager. Finally, many organizations require that all project plans be formally pre-
sented to a steering body (sometimes called a steering committee) for fi nal approval.

 This activity is triggered by the completion of a successful system test. Using
the design specifi cations for the new system, a detailed conversion plan can be as-
sembled. The principal deliverable of this activity is the conversion plan.

 The conversion plan may include one of the following commonly used installa-
tion strategies:

 • Abrupt cut-over —On a specifi c date (usually a date that coincides with an offi cial
business period such as month, quarter, or fi scal year), the old system is termi-
nated and the new system is placed into operation. This is a high-risk approach
because there may still be major problems that won’t be uncovered until the
system has been in operation for at least one business period. On the other hand,
there are no transition costs. Abrupt cut-over may be necessary if, for instance, a
government mandate or business policy becomes effective on a specifi c date and
the system couldn’t be implemented before that date.

 • Parallel conversion —Under this approach, both the old and the new systems
are operated for some time period. This ensures that all major problems in the
new system have been solved before the old system is discarded. The fi nal cut-
over may be either abrupt (usually at the end of one business period) or gradual,
as portions of the new system are deemed adequate. This strategy minimizes the
risk of major fl aws in the new system causing irreparable harm to the business;
however, it also means the cost of running two systems over some period must
be incurred. Because running two editions of the same system on the computer
could place an unreasonable demand on computing resources, this may be pos-
sible only if the old system is largely manual.

 • Location conversion —When the same system will be used in numerous geograph-
ical locations, it is usually converted at one location fi rst (using either abrupt or
parallel conversion). As soon as that site has approved the system, it can be farmed
to the other sites. Other sites can be cut over abruptly because major errors have
been fi xed. Furthermore, other sites benefi t from the learning experiences of the
fi rst test site. The fi rst production test site is often called a beta test site.

 • Staged conversion —Like location conversion, staged conversion is a variation
on the abrupt and parallel conversions. A staged conversion is based on the
version concept introduced earlier. Each successive version of the new system
is converted as it is developed. Each version may be converted using the abrupt,
parallel, or location strategy.

 The conversion plan also typically includes a systems acceptance test plan. The sys-
tems acceptance test is the fi nal opportunity for end users, management, and infor-
mation systems operations management to accept or reject the system. A systems

acceptance test is a fi nal system test performed by end users using real data over an
extended time period. It is an extensive test that addresses three levels of acceptance
testing—verifi cation testing, validation testing, and audit testing:

 • Verifi cation testing runs the system in a simulated environment using simulated
data. This simulated test is sometimes called alpha testing. The simulated test is
primarily looking for errors and omissions regarding end-user and design specifi ca-
tions that were specifi ed in the earlier phases but not fulfi lled during construction.

• Validation testing runs the system in a live environment using real data. This is
sometimes called beta testing . During this validation, a number of items are tested:

 a. Systems performance. Is the throughput and response time for processing
adequate to meet a normal processing workload? If not, some programs may
have to be rewritten to improve effi ciency, or processing hardware may have
to be replaced or upgraded to handle the additional workload.

 systems acceptance test
 a test performed on the

fi nal system wherein users

 conduct verifi cation,

validation, and audit tests.

Systems Construction and Implementation Chapter Eighteen 577

 b. Peak workload processing performance . Can the system handle the work-
load during peak processing periods? If not, improved hardware and/or
software may be needed to increase effi ciency, or processing may need to be
rescheduled—that is, consider doing some of the less critical processing dur-
ing nonpeak periods.

 c. Human engineering test . Is the system as easy to learn and use as antici-
pated? If not, is it adequate? Can enhancements to human engineering be
deferred until after the system has been placed into operation?

 d. Methods and procedures test . During conversion, the methods and proce-
dures for the new system will be put to their fi rst real test. Methods and
 procedures may have to be modifi ed if they prove to be awkward and
 ineffi cient from the end users’ standpoint.

 e. Backup and recovery testing . All backup and recovery procedures should
be tested. This should include simulating a data loss disaster and testing the
time required to recover from that disaster. Also, a before-and-after compari-
son of the data should be performed to ensure that data was properly recov-
ered. It is crucial to test these procedures. Don’t wait until the fi rst disaster
to fi nd an error in the recovery procedures.

• Audit testing certifi es that the system is free of errors and is ready to be placed
into operation. Not all organizations require an audit. But many fi rms have an
independent audit or quality assurance staff that must certify a system’s accept-
ability and documentation before that system is placed into fi nal operation.
There are independent companies that perform systems and software certifi ca-
tion for end users’ organizations.

 > Task 7.3—Install Databases

 Recall that in a previous phase you built and tested databases. To place the system into
operation, you will need fully loaded (or “populated”) databases. Therefore, the next
task we’ll survey is installation of databases. The purpose of this task is to populate the
new system’s databases with existing data from the old system.

 At fi rst, this activity may seem trivial. But consider the implications of loading a
typical table, say, MEMBER . Tens or hundreds of thousands of records may have to be
loaded. Each must be input, edited, and confi rmed before the database table is ready
to be placed into operation.

 Systems builders play a primary role in this activity. The task will normally be
completed by application programmers who will write the special programs to ex-
tract data from existing databases and programs to populate the new databases. Sys-
tems analysts and designers may play a small role in completing this activity. Their
primary involvement will be the calculating of database sizes and estimating of the
time required to perform the installation. Finally, data entry personnel or hired help
may often be assigned to do data entry.

 Special programs will have to be written to populate the new databases. Existing
data from the production databases, coupled with the database schema(s) models and
database structures for the new databases, will be used to write computer programs
to populate the new databases with restructured existing data. The principal deliver-
able of this task is the restructured existing data that has been populated in the data-
bases for the new system.

 > Task 7.4—Train Users

 Change may be good, but it’s not always easy. Converting to a new system necessitates
that system users be trained and provided with documentation (user manuals) that
guides them through using the new system.

 audit test a test performed

to ensure a new system is

ready to be placed into

operation.

578 Part Four Beyond Systems Analysis and Design

 Training can be performed one on one; however, group training is generally pre-
ferred. It is a better use of your time, and it encourages group-learning possibilities. Think
about your education for a moment. You really learn more from your fellow students and
colleagues than from your instructors. Instructors facilitate learning and instruction, but
you master specifi c skills through practice with large groups where common problems
and issues can be addressed more effectively. Take advantage of the ripple effect of edu-
cation. The fi rst group of trainees can then train several other groups.

 The task is completed by the systems analyst and involves system owners and
users. Given appropriate documentation for the new system, the systems analysts will
provide end-user documentation (typically in the form of manuals) and training for
the system users. The system owners must support this activity. They must be willing
to approve the release time necessary for people to obtain the training needed to be-
come successful users of the new system. Remember, the system is for the user! User
involvement is also important in this activity because the end users will inherit the
successes and failures from this effort. Fortunately, users’ involvement during this task
is rarely overlooked. The most important aspect of their involvement is training and
advising the users. They must be trained to use equipment and to follow the proce-
dures required of the new system. But no matter how good the training is, users will
become confused at times. Or perhaps they will fi nd mistakes or limitations. Thus, it
is the responsibility of the analyst to help the users through the learning period until
they become comfortable with the new system.

 Given appropriate documentation for the new system, the systems analyst will pro-
vide the system users with the documentation and training needed to properly use the
new system. The principal deliverable of this task is user training and documentation.
Many organizations hire special systems analysts who do nothing but write user docu-
mentation and training guides. If you have a skill for writing clearly, the demand for your
services is out there! Figure 18-4 is a typical outline for a training manual. The Golden
Rule should apply to user manual writing: “Write unto others as you would have them
write unto you.” You are not a business expert. Don’t expect the reader to be a technical
expert. Every possible situation and its proper procedure must be documented.

 >Task 7.5—Convert to New System

 Conversion to the new system from the old system is a signifi cant milestone. After
conversion, the ownership of the system offi cially transfers from the analysts and
programmers to the end users. The analyst completes this task by carefully carrying
out the conversion plan. Recall that the conversion plan includes detailed installation

 F I G U R E 1 8 - 4 An Outline for a Training Manual

Training Manual End Users Guide Outline

 I. Introduction.

 II. Manual.

 A. The manual system (a detailed explanation of people’s jobs and standard
operating procedures for the new system).

 B. The computer system (how it fi ts into the overall work fl ow).

 1. Terminal/keyboard familiarization.

 2. First-time end users.

a. Getting started.

b. Lessons.

 C. Reference manual (for nonbeginners).

 III. Appendixes.

 A. Error messages.

Systems Construction and Implementation Chapter Eighteen 579

strategies to follow for converting from the existing to the new production informa-
tion system. This task also involves completing a systems audit.

 The task involves the systems owners, users, analysts, designers, and builders. The
project manager who will oversee the conversion process facilitates it. The system
owners provide feedback regarding their experiences with the overall project. They
may also provide feedback regarding the new system that has been placed into op-
eration. The system users will provide valuable feedback pertaining to the actual use
of the new system. They will be the source of the majority of the feedback used to
measure the system’s acceptance. The systems analysts, designers, and builders will
assess the feedback received from the system owners and users once the system is
in operation. In many cases, that feedback may stimulate actions to correct identifi ed
shortcomings. Regardless, the feedback will be used to help benchmark new systems
projects down the road.

 The key input to this activity is the conversion plan that was created in an earlier
implementation phase task. The principal deliverable is the operational system that is
placed into production in the business.

 Chapter Review

 1. Systems construction is the development, installa-
tion, and testing of system components.

 2. Systems implementation is the delivery of the sys-
tem into production (meaning day-to-day operation).

 3. The purpose of the construction phase is to de-
velop and test a functional system that fulfi lls busi-
ness and design requirements and to implement
the interfaces between the new system and existing
production systems.

 4. The construction phase consists of four tasks: build
and test networks, build and test databases, install
and test new software packages, and write and test
new programs.

 5. Three levels of testing are performed on new
programs:

 a. Stub testing is testing performed on individual
modules, whether they be main program,
subroutine, subprogram, block, or paragraph.

 b. Unit or program testing is testing in which all
the modules that have been coded and stub
tested are tested as an integrated unit.

 c. Systems testing ensures that application programs
written in isolation work properly when they are
integrated into the total system.

 6. The purpose of the implementation phase is to
smoothly convert from the old system to the
new system.

 7. The systems implementation consists of the follow-
ing activities: conducting a system test, preparing
a systems conversion plan, installing databases,
training system users, and converting from the old
system to the new system.

 8. There are several commonly used strategies for
converting from an existing to a new production

information system, including:

 a. Abrupt cut-over—On a specifi c date, the old
system is terminated and the new system is
placed into operation.

 b. Parallel conversion—Both the old and the
new systems are operated for some time
 period to ensure that all major problems in the
new system are solved before the old system
is discarded.

 c. Location conversion—When the same system
will be used in numerous geographical locations,
it is usually converted at one location and, fol-
lowing approval, farmed to the other sites.

 d. Staged conversion—Each successive version of
the new system is converted as it is developed.
Each version may be converted using the abrupt,
parallel, or location strategies.

 9. The systems acceptance test is the fi nal oppor-
tunity for end users, management, and informa-
tion systems operations management to accept
or reject the system. A systems acceptance test is
a fi nal system test performed by end users using
real data over an extended period. It is an exten-
sive test that addresses three levels of acceptance
testing—verifi cation testing, validation testing, and
audit testing:

 a. Verifi cation testing runs the system in a
simulated environment using simulated data.

 b. Validation testing runs the system in a live envi-
ronment using real data. This is sometimes called
beta testing.

 c. Audit testing certifi es that the system is free of
errors and is ready to be placed into operation.

580 Part Four Beyond Systems Analysis and Design

Review Questions
1

2

 1. What is the purpose and the major activity of the
construction phase?

 2. Who are the network designers and network
administrators?

 3. What are the tasks needed when building and
testing databases?

 4. Who are involved in the installation and testing of
new software packages? What are their jobs?

 5. What are chief programmer teams?
 6. What are the three kinds of testing suggested in

the textbook?
 7. Why is the implementation phase needed?
 8. Who are typically involved in conducting system

testing in the implementation phase?

 9. What are the four common conversion strategies?
 10. What are some potential problems of using abrupt

cut-over as a conversion strategy?
 11. What are some potential problems of using

parallel conversion as a conversion strategy?
 12. What is the difference between alpha testing and

beta testing?
 13. Who is the major player in installing databases?

What are the responsibilities?
 14. What are the responsibilities of the system

analysts when training users?
 15. Why is feedback essential even though the new

system is fully implemented and functional?

Problems and Exercises

 1. You are the lead analyst on the system-testing
team of a large enterprise system that will
touch virtually every business function in
the organization. Unfortunately, design and
construction ran behind schedule by about two
weeks. System testing is scheduled to take four
weeks of intensive effort, assuming no major
problems are found. Adding resources will not
shorten the time required. If you stay on plan,
implementation will be delayed by two weeks.
The system owner, who is the CEO, fi nds this
unacceptable and tells you: “What do you mean
that it is going to take a month to system test? I
need this system up in two weeks, not a day later.
If you fi nd any problems, they can be fi xed later!”
What do you do in this situation?

 2. Consider a variation of the preceding question.
You work as a testing analyst for a software de-
velopment contractor that has been engaged to
develop this enterprise system. If the project is
not completed on schedule, your company loses a
substantial bonus. Since design and construction
ran behind, you will have to cut system testing in
half. Your company is putting a great deal of im-
plicit pressure on you to compress testing so the
project can fi nish on schedule and the company
will receive its bonus. You have qualms that if
testing is compressed, some serious problems may
be missed, even with a risk-based testing strategy.
What do you do?

 3. You are a systems analyst who will be leading
a systems-testing team on another project. Your
company is adopting a new testing strategy; in the

past, the programmers who constructed the sys-
tem did the system testing themselves. Why was
this not a good idea?

 4. Who should you select for your systems-testing
team? What skills should they have?

 5. Are the following statements true or false? Explain
your answer as needed.

 a. Building and testing any databases that are
needed should occur after programming
activities are completed.

 b. Training of users should be done long before
actual implementation in order to ensure that
everybody receives training without being
rushed.

 c. The purpose of parallel conversion is to reduce
business risk.

 d. Testing is a highly structured activity that should
not be scheduled to commence until the entire
application program has been written.

 e. Systems development and systems construction
are frequently used as synonyms, but they may
not necessarily mean the same thing.

 6. As a systems analyst, you have been involved in a
project to develop an inventory-tracking system
for your business services offi ce. The project is
now coming to its fi nal stages and you have been
asked to write a training manual. Using the outline
shown in Figure 18-4 , write a portion of the usual
manual (a page or two) describing the manual
system or the computer system. Have one of your
fellow students or co-workers read and evaluate
for clarity the portion you wrote. Did she or he

Systems Construction and Implementation Chapter Eighteen 581

fi nd it understandable and clear? Did it provide
the appropriate level of detail that an end user
would need?

 7. During systems construction and implementation,
aren’t most of the activities technical in nature, so
that users don’t need to be involved except for
system testing?

 8. Match the terms in the fi rst column with the defi -
nitions or examples in the second column:

 1. Beta testing A. Production database
 without data loaded in
 2. Alpha testing B. Testing of throughput/
 response time under
 normal load
 3. Program testing C. Migrating completed
 system into produc-
 tion environment
 4. Audit testing D. Unanticipated sudden
 system shutdown
 testing
 5. System perfor- E. Application
 mance testing program–level code
 testing
 6. Unpopulated F. Independently
 database performed certifi cation-
 level testing
 7. Backup and G. Module-level testing of
 recovery testing code
 8. Peak performance H. Extensive verifi cation,
 testing validation, and audit

 testing

 9. Abrupt cut-off I. Environmental-level
 testing of application
 program(s)
 10. System J. Environmental-level
 implementation testing by users with
 simulated data
 11. Systems K. Live environmental-
 acceptance testing level testing by users
 with live data
 12. System testing L. Testing of through-
 put/response time
 under load spikes
 13. Stub testing M. Installation strategy
 type

 9. “The goal of human interface design is to create
a system that is intuitive to use. To require a users
manual is an admission of failure.” Respond to
this statement. Do you agree or disagree with it?
Explain why.

 10. Many organizations require a postimplementation
evaluation report (PIER), usually somewhere be-
tween six months and a year after implementation.
What purpose(s) does this serve?

 11. If a project is poorly designed and constructed, will
a well-planned and well-executed implementation
effort help the project to succeed? What about
the opposite situation? Will a well-designed and
well-constructed system overcome a poor
implementation effort?

Projects and Research

 1. A number of companies, such as Mercury Interactive
of Rational (now owned by IBM), offer automated
software-testing packages as stand-alone products or
as an integrated part of a larger suite. Research these
software packages on the Web and trade journals.
Download and try any trial versions you fi nd. In
addition, contact the software-testing staff in several
local organizations and interview them regarding
their software-testing methods.

 a. Describe your research—what products did
you fi nd?

 b. Compare and contrast their features and
functionality.

 c. Did the software testers you contacted use an
automated software testing tool? If so, was it a
home-grown tool or a commercial product? Did
they indicate any preference as to which one
they thought was best?

 d. If you were the testing manager and were
given the choice to purchase any automated
software-testing tool, which one would you
select? Or would you prefer to develop your
own homegrown automated testing program?
Explain your answer.

 e. What do you see as the primary advantages to
using an automated software-testing package?

 2. You are a systems analyst working on a major
project for an organization that has several hundred
employees in its headquarters offi ce and about a
dozen offi ces located in this country, in Canada,
and in Mexico. The objective of the project is to
implement an enterprise-wide mission-critical
information system. The project is now in the
construction and implementation phase, and you
have been assigned responsibility for selecting
the conversion strategy and for developing the

582 Part Four Beyond Systems Analysis and Design

conversion plan. Prepare a summary analysis of
the different installation strategies discussed in the
book, and recommend the one that you feel would
be most appropriate.

 3. Assuming that your recommendation is accepted
by management, draft a detailed conversion
plan that addresses the actual implementation
strategy for converting to the new system. After
you complete the draft plan, have it reviewed by
one or more IT staff members with experience in
developing conversion plans. Make any needed
changes and repeat the review process until the
consensus is that your plan is realistic and doable.

 4. The next step is to prepare the systems acceptance
test plan. Using the material in the textbook as a
general guideline, research on the Web some of the
more detailed components that go into acceptance
testing. Select some of the testing templates that
should be readily available, and modify them as
appropriate. Then draft the test plan and share
it with IT testing staff. Make sure that your plan
addresses any potential risks. Make any needed
changes and repeat the review process as necessary
with the testing staff until your plan is ready to put
into action.

 5. The textbook describes a traditional method
for delivering end-user training. Are there other

methods, which are Web-based, that may offer more
effective and/or effi cient methods for delivering
end-user training? Research some of the Web-based,
training methods that are becoming more widely
used. Then use the scenario described in Question
2 to develop a Web-based end-user training plan.
After you draft the plan, have some professional
trainers review it for completeness and feasibility
and make any needed changes. Then have some of
your fellow students or co-workers review your
training plan from the perspective of an end-user.
Were you able to develop a feasible plan?

 6. There is an unwritten principle that says that
no matter how much you plan for a system
implementation, something unanticipated will
almost always happen, often at the worst possible
moment. Interview several analysts in local
organizations who have expertise in implementing
systems. Ask them about their experiences, what
their worst horror story was, and what they
learned from it. Supplement these interviews with
research on contingency implementation planning.
Then use your anecdotal information and research
to put together a set of guidelines on planning
for and handling the unexpected during system
implementation.

Minicases

 1. Wow Munchies has a Web site, www.wowmunchies.

com , which is currently hosted on server
123coolhost at a Web-hosting company called Cool
Hosting. But Wow Munchies has decided to have
its Web pages updated and serviced by another
hosting company, Reliable Host, using the server
123reliable. The new hosting company pointed
the DNS for www.wowmunchies.com to server
123reliable before it had the Web pages loaded and

tested on its server. It takes 12–72 hours for the
DNS change to take place, and Reliable thought
it would have the Web pages up in the lag time.
It wasn’t able to. As a result, the DNS pointed to
the new server for several days before the new
site was functioning again. Wow Munchies lost an
estimated $200,000 in revenues as a result of the
sites downtime. Comment on what went wrong,
and how it could have been avoided.

Team and Individual Exercises

 1. Individual: Present one of the deliverables from
this class (any deliverable) to the class. Dress
professionally, and use an interesting presentation
technology. Remember to dress professionally,
speak slowly and clearly, and have fun. No one
knows your deliverable better than you!

 2. Professor/class: Weather permitting, have class
outside.

 3. Individual/class: Create a networking sheet of
contact information for everyone in the class (and
other students if they wish to join). Everyone who
submits information gets a copy. Keep in touch
after you leave school!

Suggested Readings

 Bell, P., and C. Evans. Mastering Documentation. New York:

John Wiley & Sons, 1989.

 Boehm, Barry. “Software Engineering.” IEEE Transactions

on Computers, C-25, December 1976. This classic paper

demonstrated the importance of catching errors and

omissions before programming begins.

 Brooks, F. P. The Mythical Man-Month. Reading, MA: Addison-

Wesley, 1995.

 Metzger, Philip W. Managing a Programming Project,

2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1981. This is

one of the few books to place emphasis solely on systems

implementation.

 Mosely, D. J. The Handbook of MIS Application Software

Testing. Englewood Cliffs, NJ: Yourdon Press, 1993.

Systems Construction and Implementation Chapter Eighteen 583

P
h
o
to

 C
re

d
it

P1-1

P1-1

BlackBerry PDA- ©McGraw-Hill Companies/Lars Niki, photographer

Handheld PDA-©McGraw-Hill Companies/Jill Braaten, photographer

584

All remaining images in this book were attained through the McGraw-Hill Digital Asset Library,

part of the Getty/PhotoDisc image library, owned by the MGH companies.

 Bold page numbers indicate locations of glossary defi nitions.

 A
 Abrupt cut-over, 576

 Abstract, report, 352

 Abstract class; see supertype

 abstract use case A use case that reduces redundancy

among two or more other use case by combining the common

steps found in those cases. Another use case uses or includes

the abstract use case. , 188 , 308–309, 314

 Acceptance testing, 142, 576–577

 activity diagram A diagram that can be used to

graphically depict the fl ow of a business process, the steps of

a use case, or the logic of an object behavior (method). , 277,

 309 , 314–317

 actor Anything that needs to interact with the system to

exchange information. , 186 –187

 external agents, 272

 glossary, 190, 191

 identifying, 190

 Actuate e.Reporting Suite, 464

 ADC; see Automatic data capture

 ADE; see application development environment

 Administrative format, 351, 352

 agent Reusable software object that can operate across

different applications and networks. , 532 –533

 Agent, external; see external agent

 aggregation A relationship in which one larger “whole”

class contains one or more smaller “parts” classes.

Conversely, a smaller “part” class is part of a “whole” larger

class. , 300 , 302, 327

 agile development A systems development strategy

wherein the system developers are given the fl exibility to select

from a variety of appropriate tools and techniques to best

accomplish the tasks at hand. Agile development is believed

to strike an optimal balance between productivity and quality

for systems development. , 18, 19 ; see also rapid application

development

 documentation in, 142

 methods, 57

 agile method The integration of various approaches

of systems analysis and design for application as deemed

appropriate to the problem being solved and the system being

developed. , 123

 Agile modeling, 48

 AIS; see Association for Information Systems

 AITP; see Association for Information Technology

Professionals

 Alphabetic codes, 229

 alternate key A candidate key that is not selected to

become the primary key. A synonym is secondary key. , 211 ;

see also secondary key

 Amazon.com, 12, 407

 Ambler , Scott W. , 33, 76, 205, 333, 565

 Amdocs, 22

 analysis paralysis A satirical term coined to describe a

common project condition in which excessive system modeling

dramatically slows progress toward implementation of the

intended system solution. , 48 , 267

 Analysis use-case model, 306–309

 Analysts; see systems analyst

 Anderson , John F. , 181

 Andres , C. , 482, 512, 543

 Andrews , D. C. , 181

 AOL, 19

 Apple Macintosh, 517

 application architecture A specifi cation

of the technologies to be used to implement

information systems. , 372 , 392

 data distribution, 418–420

 modeling, 372, 393, 416–417

 network architecture, 417, 418

 process distribution, 420

 application data model A data model

for a complete, single information system. , 222

 application development envi-
ronment (ADE) An integrated software

development tool that provides all the facili-

ties necessary to develop new application

software with maximum speed and quality. A

common synonym is integrated development

environment (IDE). , 71

 for rapid application development, 120–121

 use of, 514

 Application middleware, 413–414

 Application programs; see Programs

 application server A server that hosts application logic

and services for an information system. , 402 , 405

 Architected rapid application development, 48

 archival fi le A table containing master and transaction fi le

records that have been deleted from online storage. , 432

Armour, Frank, 190n, 205, 333, 565

Artemis International Solutions Corporation, 85

As-is system model, 57

 association A relationship between an actor and a use case

in which an interaction occurs between them. , 187

 in object models, 299–300, 301, 324–325

 Association for Information Systems (AIS), 162

 Association for Information Technology Professionals

(AITP), 162

 associative entity An entity that inherits its primary key

from more than one other entity. , 213 –214, 217

 ATMs; see Automated teller machines

 attribute A descriptive property or characteristic of an

entity. Synonyms include element, property, and fi eld. , 209

 attribute The data that represents characteristics of interest

about an object. , 295 ; see also fi eld

 compound, 209

 in data fl ows, 263–264

 data types, 209, 263–264

 default values, 210, 211

 derived, 238–239

 of design objects, 560

 discovery of, 552

 domains, 209, 210, 233, 263–264

 names, 231

 subsetting criteria, 211

 visibility, 547–548, 560

G
lossa

ry/
Ind

ex

585

586 Glossary/Index

 audit fi le A table containing records of updates to other

fi les. , 432

 audit test A test performed to ensure a new system is ready

to be placed into operation. , 577

 Automated teller machines (ATMs), 461, 487

 Automated tools

 application development environments; see application

development environment

 CASE; see computer-assisted software engineering

 help authoring, 531

 input design, 500–501, 507

 for joint requirements planning, 173

 methodology support, 68

 output design, 463–464

 process manager applications, 71

 project management, 71, 87

 repositories; see repository

 user interface design, 514, 533

 Automatic data capture (ADC), 487–489

 B
 backlog A repository of project proposals that cannot be

funded or staffed because they are a lower priority than those

that have been approved for system development. Note that

priorities change over time; therefore, a backlogged project

might be approved at some future date. , 43

 balancing A concept that requires that data fl ow diagrams at

different levels of detail refl ect consistency and completeness. , 279

 Bar codes, 412, 488

 Barnes and Noble, 13

 batch processing A data processing method whereby data

about many transactions is collected as a single fi le which is

then processed. , 486

 controls, 491–492

 inputs, 409–410, 486

 outputs, 409–410

 remote, 411, 486–487

 BEA Systems, 23, 402

 Beasley , Reyna A. , 113

 Beck , Kent , 553n

 Beck , Robert , Jr. , 79n, 83, 88n, 113

 behavior The set of things that an object can do and that cor-

respond to functions that act on the object's data (or attributes).

In object-oriented circles, an object's behavior is commonly

referred to as a method, operation, or service (we may use the

terms interchangeably throughout our discussion). , 295 , 552–555

 Bell , P. , 583

 Benefi ts

 intangible, 342

 tangible, 341

 Berdie , Douglas R. , 181

 Berstein , Phillip , 427

 Biometric technology, 489

 Black holes, 258

 Blaha , Michael , 333, 565

 Blanchard , Kenneth , 99, 113

 Block codes, 229

 blocking factor The number of logical records included in

a single read or write operation. , 431

 Bluetooth, 18

 Boar , Benard , 390

 body language The nonverbal information we

communicate. , 170 –171

 Boehm , Barry W. , 155

 Booch , Grady , 77, 333, 565

 Borland JBuilder, 71, 416, 514

 Boundary class; see interface class

 Bovee , Courtland L. , 361

 BPR; see business process redesign

 brainstorming A technique for generating ideas by

encouraging participants to offer as many ideas as possible in

a short period of time without any analysis until all the ideas

have been exhausted. , 175

 BroadVision, 22

 Brooks , Fred , 81n, 113, 202, 203, 205, 583

 Bruce , Thomas A. , 228n, 248, 453

 Bugs, 52

 Burrows , Hal , 113

 Business events; see event

 Business models; see logical model

 Business objects; see object

 Business Objects Crystal Reports, 464, 465

 business process redesign (BPR) The study, analysis,

and redesign of fundamental business processes to reduce costs

and/or improve value added to the business. , 16

 business process redesign (BPR) The application of

systems analysis methods to the goal of dramatically changing

and improving the fundamental business processes of an

organization, independent of information technology. , 123

 data fl ow diagrams used for, 252

 as driver for information systems, 16

 methods, 123

 business processes Tasks that respond to business events

(e.g., an order). Business processes are the work, procedures,

and rules required to complete the business tasks, independent

of any information technology used to automate or support

them. , 15

 Business requirements; see functional requirement ; system

requirement

 business requirements use case A use case created

during requirements analysis to capture the interactions

between a user and the system free of technology and

implementation details; also called an essential use case. , 190 ;

 see also use case

 identifying, 190–193

 narratives, 195–199

 Buttons, 498

 Buy.Com, 407

 C
 C#, 405

 C⫹⫹, 18

 Canceled projects, 40–41

 candidate key One of a number of keys that may serve as

the primary key of an entity. Also called candidate identifi er. , 211

 candidate systems matrix A tool used to document

similarities and differences between candidate systems. , 144,

145, 346 –349

 Capability Maturity Model (CMM) A standardized

framework for assessing the maturity level of an organization's

information systems development and management processes

and products. It consists of fi ve levels of maturity. , 35 –37, 87

Glossary/Index 587

 cardinality The minimum and maximum number of

occurrences of one entity that may be related to a single

occurrence of the other entity. , 212 , 213

 Carnegie Mellon University, Software Engineering Institute,

 35, 75

 CASE; see computer-assisted software engineering

 CASE repository A system developers' database where

developers can store system models, detailed descriptions and

specifi cations, and other products of systems development.

Synonyms include data dictionary and encyclopedia. , 69 , 71;

 see also repository

 Cash , William B. , Jr. , 182

 Cashman , T. , 482

 Catapult, Inc., 113

 cause-and-effect analysis A technique in which problems

are studied to determine their causes and effects. , 133 , 134

 Cell phones, 18

 centralized system A system in which all components are

hosted by a central, multiuser computer. , 399 , 414

 CGI (Computer Gateway Interface), 416

 change management A formal strategy wherein a

process is established to facilitate changes that occur during a

project. , 100– 101

 Change management systems, 101

 Charts, 461, 462

 Check boxes, 496

 Check digits, 492

 Child class; see subtype

 child entity A data entity that derives one or more attributes

from another entity, called the parent. In a one-to-many rela-

tionship the child is the entity on the “many” side. , 214 –216

 Chrissis, Mary Beth, 77

 Christerson, Magnus, 205, 333, 565

 class diagram A graphical depiction of a system's static

object structure, showing object classes that the system is

composed of as well as the relationships between those object

classes. , 324 –328

 Class responsibility collaboration (CRC) cards, 553–554

 Classes; see object class

 clean layering A design strategy that requires that

presentation, application, and data layers be physically

separated. , 415

 client server system A distributed computing solution in

which the presentation, presentation logic, application logic,

data manipulation, and data layers are distributed between

client PCs and one or more servers. , 401 –402

 distributed data, 403–405, 418–420

 distributed data and application, 405, 406

 distributed presentation, 402–403, 404, 414

 network architectures, 417

 software development environments, 414–416

 three-tiered, 405, 406, 415–416

 two-tiered, 403–405, 414–415

 closed-ended question A question that restricts answers

to either specifi c choices or short, direct responses. , 167

 CMM; see Capability Maturity Model

 Coad , P. , 333, 390, 565

 Cold Fusion, 16, 71

 Columbia House Record Club, 488

 Combination boxes, 497–498

 Combination checks, 492

 commercial application package A software

application that can be purchased and customized (within

limits) to meet the business requirements of a large number of

organizations or a specifi c industry. A synonym is commercial

off-the-shelf (COTS) system. , 62

 impact on systems development life cycle, 378–380, 385

 implementation, 385

 implementation strategy, 62–65

 installation, 572–573

 requests for proposals, 63, 382, 383

 system design phase, 378–381

 contract negotiations, 384–385

 decision analysis phase, 378–381

 procurement phase, 378–381

 proposal evaluation and ranking, 384

 proposal solicitation, 382

 technical criteria and options, 381

 validate vendor claims and performance, 382–383

 vendor debriefi ngs, 384–385

 testing, 572–573

 communications and collaboration system An

information system that enables more effective communications

between workers, partners, customers, and suppliers to enhance

their ability to collaborate. , 6, 7

 composite data fl ow A data fl ow that consists of other

data fl ows. , 259

 composition An aggregation relationship in which the

“whole” is responsible for the creation and destruction of its

“parts.” If the “whole” were to die, the “part” would die with

it. , 300 , 302

 compound attribute An attribute that consists of other

attributes. Synonyms in different data modeling languages are

numerous: concatenated attribute, composite attribute, and

data structure. , 209

 Computer Associates

 AllFusion Process Management Suite, 85

 Erwin, 68, 435, 439

 computer-assisted software engineering (CASE)

 The use of automated software tools that support the drawing

and analysis of system models and associated specifi cations.

Some CASE tools also provide prototyping and code generation

capabilities. , 68 ; see also System Architect

 data modeling, 223–225, 243

 database design, 435, 439, 441, 444

 database structure generation, 448

 facilities, 69–71

 forward engineering, 71

 input design, 500

 output design, 464

 process modeling, 267–269

 repositories, 69, 71

 reverse engineering, 71, 121–122

 system design models, 366

 user interface design, 403, 533

 Conallen, Jim, 564

 concatenated key A group of attributes that uniquely

identifi es an instance of an entity. Synonyms include composite

key and compound key. , 210 –211

 Conceptual design; see logical design

 Conceptual models; see logical model

 Conclusion, report, 352

588 Glossary/Index

 Concrete class; see subtype

 Connor , Denis , 390

 constraint Any factor, limitation, or restraint that may limit

a solution or the problem-solving process. , 46

 constraint Something that will limit your fl exibility in

defi ning a solution to your objectives. Essentially, constraints

cannot be changed. , 135

 Construction phase; see systems construction

 Consumer-style interfaces, 525, 526

 context data fl ow diagram A diagram that shows

the system as a “black box” and its main interfaces with its

environment. , 267

 context data fl ow diagram A process model used to

document the scope for a system. Also called environmental

model. , 270 –271

 context data model A data model that includes entities

and relationships but no attributes. , 222 , 226–228

 Context diagram, 57, 131–133, 190

 continuous process improvement (CPI) The

continuous monitoring of business processes to effect small

but measurable improvements in cost reduction and value

added. , 15

 control class An object class that contains application logic.

Examples of such logic are business rules and calculations

that involve multiple entity object classes. Control classes

coordinate messages between interface classes and entity

classes and the sequences in which the messages occur. , 546 ,

551–552

 control fl ow A condition or nondata event that triggers a

process. , 259

 Conventional fi les; see fi le

 converging data fl ow The merger of multiple data fl ows

into a single data fl ow. , 264 –266

 Conversion, 578–579

 planning, 574–577, 578–579

 strategies, 576

 Copi , I. R. , 292

 CORBA object-sharing standard, 402

 Corel Flow, 366

 Cost-benefi t analysis

 benefi ts, 340–342

 costs, 339–340, 341

 cost-effectiveness The result obtained by striking a

balance between the lifetime costs of developing, maintaining,

and operating an information system and the benefi ts derived

from that system. Cost-effectiveness is measured by cost-benefi t

analysis. , 40 , 342; see also economic feasibility

 Costs

 estimating, 341

 fi xed, 340

 operating, 339, 340

 opportunity, 344

 resource, 97–98

 systems development, 339–340

 variable, 340

 CPI; see continuous process improvement

 Crane , David B. , 79n, 83, 88n, 113

 CRC; see Class responsibility collaboration (CRC) cards

 creeping commitment A strategy in which feasibility and

risks are continuously reevaluated throughout a project. Project

budgets and deadlines are adjusted accordingly. , 40 –41, 335–337

 critical path The sequence of dependent tasks that determines

the earliest completion date for a project. , 97 , 105–107

 CRM; see customer relationship management

 cross life-cycle activity Any activity that overlaps

multiple phases of the system development process. Examples

include fact-fi nding, documentation, presentation, estimation,

feasibility analysis, project and process management, change

management, and quality management. , 52 –54

 Crystal Reports, 464, 465

 C/S Solutions' Risk ⫹, 85

 Cunningham , Ward , 553n

 Curtis, Bill, 77

 customer relationship management (CRM) A

software application that provides customers with access to

a business's processes from initial inquiry through postsale

service and support. , 19, 22 –23

 D
 D; see most likely duration

 data Raw facts about people, places, events, and things that

are of importance in an organization. Each fact is, by itself,

relatively meaningless. , 15

 data administrator A database specialist responsible for

data planning, defi nition, architecture, and management. , 434

 data analysis A technique used to improve a data model

for implementation as a database. , 235 , 438

 data architecture A defi nition of how fi les and databases

are to be developed. , 433 –434

 data attribute The smallest piece of data that has meaning

to the users and the business. , 263 ; see also attribute

 data capture The identifi cation and acquisition of new

data. , 486 ; see also Input design

 technologies, 411–412, 487–488

 validation checks, 491–492

 data conservation The practice of ensuring that a data

fl ow contains only data needed by the receiving process. ,

 262 –263

 data defi nition language (DDL) A language used by a

DBMS to defi ne a database or a view of a database. , 434

 Data dictionary; see repository

 Data distribution; see distributed data

 data entry The process of translating data into a computer-

readable format. , 486 ; see also Input design

 data fl ow Data that is input or output to or from a

process. , 259

 attributes, 263–264

 composite, 259

 conservation, 262–263

 control fl ows, 259

 converging, 264–266

 in data fl ow diagrams, 250, 258–263

 data structures, 259, 263

 describing, 279, 283

 notation, 263

 types, 263, 265

 diverging, 264–266

 input, 501

 logical, 397

 names, 260–262, 396

 output, 466

 physical, 396–397

Glossary/Index 589

 data fl ow diagram (DFD) A process model used to

depict the fl ow of data through a system and the work or

processing performed by the system. Synonyms are bubble

chart, transformation graph, and process model. , 250 ; see

also process modeling

 balancing, 279

 context, 267, 270–271

 data fl ows, 250, 258–263

 data stores, 250, 253

 differences from fl owcharts, 252

 event diagrams, 267

 external agents, 250, 252–253

 mechanical errors, 258

 physical; see physical data fl ow diagram

 primitive, 267, 279, 282

 processes, 250, 257–258, 393–394

 symbols, 250

 use in business process redesign, 252

 use of, 59, 119

 data manipulation language (DML) A DBMS

language used to create, read, update, and delete records. , 435

 Data mining, 434

 data modeling A data-centered technique used to model

business data requirements and design database systems that

fulfi ll those requirements. The most frequently encountered data

models are entity relationship diagrams. , 59 –60

 data modeling A technique for organizing and documenting

a system's data. Sometimes called database modeling. , 207 ; see

also entity ; entity relationship diagram ; normalization

 automated tools, 223–225, 243

 evaluation criteria, 234

 location views, 243–244

 process, 220, 222, 225

 analysis of model, 234–235, 438

 context data model, 222, 226–228

 entity discovery, 222, 223, 225–226

 fully-attributed data model, 222, 231–234

 key-based data model, 222, 228–231

 simplifi cation by inspection, 243

 reverse engineering, 224, 225

 strategic, 220–222

 in systems analysis phases, 222

 in systems design phase, 366–367, 368

 transformation into database schema, 222–223, 439–441

 Data partitioning, 408

 Data processing

 batch, 409–410, 486, 491–492

 online, 405, 410, 486

 remote batch, 411, 486

 Data replication, 408, 447–448

 data store Stored data intended for later use. Synonyms are

fi le and database. , 253

 in data fl ow diagrams, 250, 253

 entities and, 253, 279

 external, 270

 names, 253, 398

 physical, 398–399

 data structure A specifi c arrangement of data attributes

that defi ne a single instance of a data fl ow. , 263

 data fl ows, 259, 263

 describing, 279, 283

 importance, 263

 input data fl ows, 501

 notation, 263

 output data fl ows, 466

 types, 263, 265

 data type A property of an attribute that identifi es what type

of data can be stored in the attribute. , 209

 data type A class of data that can be stored in an

attribute. , 264

 physical, 441, 442

 validation checks, 492

 data warehouse A database that stores data extracted

from operational databases. , 434

 database A collection of interrelated fi les. , 430 ; see also

 data store ; relational database

 building and testing, 572

 capacity planning, 448

 compared to conventional fi les, 430

 designing; see Database design

 distributed data, 447–448

 installation, 577

 operational, 433–434

 personal, 434

 prototyping, 448

 use of, 432–433

 work group, 434

 database administrator (DBA) A specialist responsible

for database technology, design, construction, security, backup

and recovery, and performance tuning. , 9, 434

 database architecture The database technology used to

support data architecture. , 434 –436

 Database design; see also database schema

 automated tools, 435, 439, 441, 444

 data integrity, 444–445

 goals, 372, 374, 376, 439

 guidelines, 438–439

 prerequisites, 438, 439

 referential integrity, 445

 SQL code generation, 439, 448

 use of logical data model, 222–223, 439–441

 Database engines, 434

 database management system (DBMS) Special

software used to create, access, control, and manage a

database. , 434 –436; see also relational database

 data defi nition language (DDL), 434

 data manipulation language (DML), 435

 Database middleware, 414

 database schema A model or blueprint representing the

technical implementation of a database. , 439

 creation of, 372, 374, 376

 example, 368

 generated by System Architect, 441, 443, 444

 relational, 436, 437

 SQL code generation, 439, 448

 use of logical data model, 222–223, 439–441

 database server A server that hosts one or more

databases. , 402 , 405

 data-to-location-CRUD matrix A matrix that is used to

map data requirements to locations. , 244

 Data-type checks, 492

 DataWatch Monarch/ES, 463

590 Glossary/Index

 Davis , William S. , 181

 DBA; see database administrator

 DBMS; see database management system

 DDL; see data defi nition language

 Decision analysis phase, 143

 candidate solution analysis, 144–146

 candidate solution comparison, 146, 346–349

 candidate solution identifi cation, 143–144, 347

 commercial software acquisition, 378–381

 description, 48–50

 feasibility analysis, 144–146, 337–338, 346

 project plan updating, 146

 system solution recommendation, 147–148

 tasks, 143

 decision support system (DSS) An information system

that either helps to identify decision-making opportunities or

provides information to help make decisions. , 5, 6

 decision table A tabular form of presentation that specifi es

a set of conditions and their corresponding actions. , 158–159,

 284 –286

 decomposition The act of breaking a system into

subcomponents. , 255 –257

 decomposition diagram A tool used to depict the de-

composition of a system. Also called hierarchy chart. , 255 –257

 event, 275–276

 functional, 267, 271–272

 default value The value that will be recorded if a value is

not specifi ed by the user. , 210 , 211, 441

 degree The number of entities that participate in a

relationship. , 212 –213

 Dejoie , Roy , 181

 DeMarco , Tom , 76, 98, 113, 292, 393

 Dependency relationships, 547, 561

 depends on A relationship between use cases indicating

that one use case cannot be performed until another use case

has been performed. , 188– 189

 derived attribute An attribute whose value can be

calculated from other attributes or derived from the values of

other attributes. , 238 –239

 descriptive fi eld A nonkey fi eld. , 431

 design class diagram A diagram that depicts classes that

correspond to software components that are used to build the

software application. , 560 –561

 Design classes, 551–552, 560

 design unit A self-contained collection of processes, data

stores, and data fl ows that share similar design attributes. , 417 ,

420, 466

 Design use case, 549–551

 Designers; see system designer

 detailed report An internal output that presents

information with little or no fi ltering. , 455 , 457

 DFD; see data fl ow diagram

 dialogue The overall fl ow of screens and messages for an

application , 517 ; see also Menus ; User interface design

 directive A new requirement that's imposed by management,

government, or some external infl uence. , 41– 43

 Discount rates, 343–344

 discovery prototyping A technique used to identify

the users' business requirements by having them react

to a quick-and-dirty implementation of those require-

ments. , 121 , 142

 discovery prototyping The act of building a small-scale

representative or working model of the users' requirements in

order to discover or verify those requirements. , 171 –172; see

also prototyping

 Display monitors, 518

 distributed data A client/server system in which the data

and data manipulation layers are placed on servers and other

layers are placed on clients. Also called two-tiered client/server

computing. , 403 –405

 assignments, 418–420

 options, 419, 447–448

 replication, 408, 447–448

 distributed data and application A client/server

system in which the data and manipulation layers are placed on

their own server(s), the application logic is placed on its own

server, and the presentation logic and presentation are placed

on the clients. Also called three-tiered, or n-tiered, client/server

computing. , 405 , 406, 415–416

 distributed presentation A client/server system in which

presentation and presentation logic are shifted from the server

to reside on the client. , 402 –403, 404, 414

 distributed relational database management
system Software that implements distributed relational

databases. , 407 –409

 distributed system A system in which components are

distributed across multiple locations and computer networks. ,

 399 ; see also client server system

 architectures, 399–400

 fi le server architecture, 400–401, 404

 partitioning, 405, 408

 diverging data fl ow A data fl ow that splits into multiple

data fl ows. , 264 –266

 DML; see data manipulation language

 Document, source; see source document

 document fi le A table containing historical data. , 432

 Document interchange, 413

 documentation The ongoing activity of recording

facts and specifi cations for a system for current and future

reference. , 52

 in agile development, 142

 during development, 39

 existing, 160–162

 training manuals, 577, 578

 domain A property of an attribute that defi nes what values

the attribute can legitimately take on. , 209 , 210

 domain The legitimate values for an attribute. , 264

 of database fi elds, 441

 defi ning, 233

 validation checks, 492

 Domain integrity, 444–445

 Drop-down lists, 497

 DSS; see decision support system

 Duncan , William R. , 113

 Dunlap , Duane , 512

 Dunne , Peter , 181

 Duration, task, 91–93

 Dynasty, 416

 E
 EAI; see enterprise application integration

 Eastman , David , 543

Glossary/Index 591

 eBay, 407

 E-business; see electronic business

 E-commerce; see electronic commerce

 economic feasibility A measure of the cost-effectiveness

of a project or solution. , 144, 339

 net present value, 345–346

 payback analysis, 343–345

 return on investment, 345

 techniques, 342

 time value of money, 342–343

 ED; see expected duration

 Eddy , Frederick , 333, 565

 EDI; see electronic data interchange

 Edwards , Jeri , 428

 EIS; see executive information system

 Electromagnetic transmission, 489

 electronic business (e-business) The use of the

Internet to conduct and support day-to-day business

activities. , 11

 application architectures, 406–407

 input design, 507–508

 output design, 474–477

 procurement, 13

 electronic commerce (e-commerce) The buying and

selling of goods and services by using the Internet. , 11

 application architectures, 406–407

 business-to-business, 13

 business-to-consumer, 12–13

 input design, 507–508

 output design, 474–477

 security issues, 530

 shopping carts, 507–508

 electronic data interchange (EDI) The standardized

electronic fl ow of business transactions or data between

businesses. , 413

 elementary process Discrete, detailed activity or task

required to complete the response to an event. Also called

primitive process. , 257 , 283, 286

 E-mail, 19, 412–413, 461–463

 encapsulation The packaging of several items together into

one unit. , 295 –296

 Encyclopedia; see repository

 English, structured, 283–284, 285, 286

 Enhancement; see System enhancement

 enterprise application integration (EAI) The process

and technologies used to link applications to support the fl ow of

data and information between those applications. EAI solutions

are usually based on middleware. , 19, 23

 Enterprise applications, 19

 customer relationship management, 19, 22–23

 enterprise resource planning, 20–21, 62–63

 supply chain management, 19, 21–22

 Enterprise data model, 220–222

 enterprise resource planning (ERP) A software

application that fully integrates information systems that span

most or all of the basic, core business functions (including

transaction processing and management information for those

business functions). , 20– 21 , 62–63

 entity A class of persons, places, objects, events, or concepts

about which we need to capture and store data. , 208 –209

 associative, 213–214, 217

 attributes; see attribute

 child, 214–216

 data stores and, 253, 279

 defi nitions, 226

 discovery of, 222, 223, 225–226

 generalization, 220, 221, 231

 key, 210–211

 life history of, 275

 names, 225–226

 parent, 214–216

 relationships; see relationship

 strong (independent), 215

 supertypes and subtypes, 220, 231, 441

 use cases and, 275

 weak, 216

 entity class An object class that contains business-related

information and implements the analysis classes. , 545 ,

551–552

 entity instance A single occurrence of an entity. , 209

 entity relationship diagram (ERD) A data model

utilizing several notations to depict data in terms of the entities

and relationships described by that data. , 120, 207 –208 ; see

also data modeling

 Environmental model; see context data fl ow diagram

 E.piphany, 22

 ERD; see entity relationship diagram

 Eriksson, Hans-Erik, 333, 565

 Ernest, Kallman, 33

 ERP; see enterprise resource planning

 ESP; see external service provider

 Essential design; see logical design

 Essential models; see logical model

 estimation The calculated prediction of the costs and

effort required for system development. A somewhat facetious

synonym is guesstimation, usually meaning that the estimation

is based on experience or empirical evidence but is lacking in

rigor—in other words, a guess. , 52, 54

 ETrade, 407

 E-trade.com, 12

 Evans , C. , 583

 event A logical unit of work that must be completed as a

whole. Sometimes called a transaction. , 257

 business, 257

 external, 272

 physical data fl ow diagrams, 420, 421

 state, 272

 temporal, 187, 272

 Event decomposition diagrams, 275–276

 event diagram A data fl ow diagram for a single event

handler and the agents and data stores that provide inputs or

receive outputs. , 267

 event diagram A data fl ow diagram that depicts the

context for a single event. , 276 –278

 event handler A process that handles a given event in the

event-response list. , 267

 event partitioning A structured analysis strategy in which

a system is factored into subsystems based on business events

and responses to those events. , 267

 event-response list A list of the business events to which

the system must provide a response. Similar to a use-case list. ,

 267 , 272–275

592 Glossary/Index

 exception report An internal output that fi lters data to

present information that reports exceptions to some condition

or standard. , 458

 executive information system (EIS) An information

system that supports the planning and assessment needs of

executive managers. , 5, 7

 Executive summary, 352

 Existence checks, 492

 expectations management matrix A tool used

to understand the dynamics and impact of changing the

parameters of a project. , 101 –105

 expected duration (ED) The estimated amount of time

required to complete a task. , 92

 expert system An information system that captures the

expertise of workers and then simulates that expertise to the

benefi t of nonexperts. , 5–6, 7

 expert user An experienced computer user. , 514

 extension use case A use case consisting of steps ex-

tracted from a more complex use case in order to simplify the

original case and thus extend its functionality. The extension use

case extends the functionality of the original use case. , 187 –188,

308–309

 external agent An outside person, organization unit,

system, or organization that interacts with a system. Also called

external entity. , 252

 in context data fl ow diagrams, 270, 272

 in data fl ow diagrams, 250, 252–253

 events initiated by, 272

 names, 252–253

 physical, 398

 External events, 272

 external output An output that leaves the organization. ,

 458 , 469

 external service provider (ESP) A systems analyst,

system designer, or system builder who sells his or her expertise

and experience to other businesses to help those businesses

purchase, develop, or integrate their information systems

solutions; may be affi liated with a consulting or services

organization. , 10

 External users, 8

 Extranets, 17

 Extreme programming, 48

 F
 fact-fi nding The formal process of using research,

interviews, meetings, questionnaires, sampling, and other

techniques to collect information about system problems,

requirements, and preferences. It is also called information

gathering or data collection. , 52

 fact-fi nding The process of collecting information about

system problems, opportunities, solution requirements, and

priorities. Also called information gathering. , 122

 fact-fi nding The formal process of using research, meetings,

interviews, questionnaires, sampling, and other techniques to

collect information about system problems, requirements, and

preferences. It is also called information gathering or data

collection. , 158

 strategy, 176

 techniques, 122, 160; see also joint requirements

planning (JRP)

 discovery prototyping, 121, 142, 171–172

 interviews, 166–171

 observation of work environment, 163–164

 questionnaires, 164–166

 research and site visits, 162

 sampling existing documentation, 160–162

 Facts section, 352

 Factual format, 351–352

 fat client A personal computer, notebook computer, or work

station that is typically powerful. , 402 , 405

 feasibility A measure of how benefi cial the development of

an information system would be to an organization. , 52, 54

 feasibility The measure of how benefi cial or practical an

information system will be to an organization. , 335

 economic, 144, 339, 342

 operational, 144, 338

 schedule, 144, 339

 technical, 144, 338–339

 tests, 338–339

 feasibility analysis The activity by which feasibility is

measured and assessed. , 52

 feasibility analysis The process by which feasibility is

measured. , 335

 checkpoints during systems analysis, 335–337

 in decision analysis phase, 144–146

 evaluation of commercial software, 384

 feasibility analysis matrix A tool used to rank

candidate systems. , 146, 147, 349 , 350

 Feasibility assessment; see problem statement

 feature creep The uncontrolled addition of technical

features to a system. , 81

 Federal Express, 412, 487

 fi eld The smallest unit of meaningful data to be stored in a fi le

or database. , 430 –431

 data types, 441, 442

 in database schema, 440–441

 default values, 441

 domains, 441

 names, 441, 447

 sizes, 441

 fi le A collection of similar records. , 430

 fi le The set of all occurrences of a given record structure. ,

 432 ; see also data store

 archival, 432

 audit, 432

 compared to databases, 430

 document, 432

 master, 432

 sampling, 161–162

 table look-up, 432

 transaction, 432

 fi le server system A LAN in which a server hosts the data

of an information system. , 401 , 404

 Finkelstein, Clive, 248

 Firefox, 402, 486, 518

 fi rst normal form (1NF) An entity whose attributes have no

more than one value for a single instance of that entity. , 235 –238

 Fitzgerald , Ardra F. , 181

 Fitzgerald , Jerry , 181, 512

 fi xed cost A cost that occurs at a regular interval and at a

relatively fi xed rate. , 340

Glossary/Index 593

 fi xed-format questionnaire A questionnaire containing

questions that require selecting an answer from predefi ned

available responses. , 165

 Fixed-length record structures, 431

 Flowcharts, 59, 252

 foreign key A primary key of an entity that is used in

another entity to identify instances of a relationship. , 214 –215

 foreign key A fi eld that points to records in a different fi le

in a database. , 431 , 440

 referential integrity, 445

 role names, 447

 formal presentation A special meeting used to sell new

ideas and gain approval for new systems. , 353

 advantages and disadvantages, 353–354

 conducting, 356–357

 following up, 357

 preparing for, 354–355

 typical outline, 354–355

 visual aids, 355

 Format checks, 492

 forward engineering A CASE tool capability that can

generate initial software or database code directly from system

models. , 71

 forward scheduling A project scheduling approach that

establishes a project start date and then schedules forward from

that date. , 94

 Fowler , George , 181

 Fowler , Martin , 333, 565

 Frames, 519–520

 free-format questionnaire A questionnaire designed to

offer the respondent greater latitude in the answer. A question

is asked, and the respondent records the answer in the space

provided after the question. , 165

 Freund, John F., 181

 Friedlander, Phillip, 113

 Fully described data model, 222

 fully-attributed data model A data model that includes

all entities, attributes, relationships, subsetting criteria, and

precise cardinalities. , 222 , 231–234

 function A set of related and ongoing activities of a

business. , 257

 function keys A series of special keyboard keys used to

program special operations , 518– 519

 functional decomposition The act of breaking a system

into subcomponents. , 185

 functional decomposition diagram A diagram that

partitions the system into logical subsystems and/or functions. ,

 267 , 271–272

 functional requirement A description of activities and

services a system must provide. , 138

 functional requirement Something the information

system must do. , 155 ; see also requirements discovery

 prototyping, 142

 structuring, 141–142

 use cases, 139

 validation, 142

 Functional specifi cation; see requirements defi nition document

 G
 Galitz, Wilbert, 482, 512, 515, 541, 543

 Gane, Chris, 76, 181, 390, 393, 427

 Gantt, Henry L., 85

 Gantt chart A bar chart used to depict project tasks against

a calendar. , 85 –87

 intertask dependencies, 93–94

 recording progress, 100

 gap analysis A comparison of business and technical

requirements for a commercial application package against the

capabilities and features of a specifi c commercial application

package for the purpose of defi ning the requirements that

cannot be met. , 63

 Gause , Donald C. , 33, 153, 155n, 181

 generalization A concept wherein the attributes that are

common to several types of an entity are grouped into their own

entity. , 220 , 221, 231

 generalization/specialization A technique wherein

the attributes and behaviors that are common to several types

of object classes are grouped (or abstracted) into their own

class, called a supertype. The attributes and methods of the

supertype object class are then inherited by those object classes

(subtypes). Sometimes abbreviated as gen/spec. , 296 , 297

 benefi ts, 297–299

 identifying hierarchies, 325–327

 Gildersleeve , Thomas R. , 40n, 77, 170n, 181, 292, 361

 Globalization, 11

 Goldman , James , 427

 Gore , Marvin , 361

 graphic output An output that uses a pictorial chart to

convey information. , 461

 Graphical user interfaces (GUIs); see also User interface

design

 controls, 492–494, 519–520

 advanced, 498–500

 buttons, 498

 check boxes, 496

 combination boxes, 497–498

 drop-down lists, 497

 list boxes, 496–497

 radio buttons, 495–496

 selecting, 502–503

 spin boxes, 498

 text boxes, 494–495

 in Visual Studio, 533, 534

 distributed presentation, 402–403

 frames, 519–520

 menus; see Menus

 styles, 519

 use of, 486

 windows, 519–520

 Gray holes, 258

 Gregory , William , 248

 Grillo , John , 33

 Groupware technology, 19, 402

 Guengerich , Steve , 428

 GUI; see Graphical user interfaces

 H
 Hammer , Mike , 153

 Handheld computers, 18, 412, 487, 517

 Harkey , Dan , 428

 Harmon , Paul , 292, 333, 565

 Hartson , H. Rex , 543

594 Glossary/Index

 Hay , David C. , 248

 Help agents, 532–533

 Help authoring packages, 531

 Help systems, 530–533

 Help wizards, 531–532

 Hierarchical codes, 229

 Hierarchy chart; see decomposition diagram

 Hix , Deborah , 543

 Hoffer , Jeffrey , 453

 Horton , William K. , 543

 HP iPaq, 18

 HTML (Hypertext Markup Language), 402, 416, 531

 Human engineering guidelines, 516

 Human factors in user interface design

 commandments, 515

 guidelines, 516

 input design, 489–491

 problems, 515

 Hybrid Windows/Web user interface, 526, 527

 Hyperlinks, 463, 475, 525–526

 Hypertext, 525–526

 I
 i2 Technologies, 20

 IBM, 382, 434

 CICS, 402

 DB2 Universal Database, 402, 407, 434, 437

 enterprise application integration, 23

 Lotus Notes, 402, 412

 Rational, 366

 VisualAge, 416, 493, 514

 Websphere, 71, 121, 416

 Websphere Commerce Business, 402

 Iconic menus, 524–525

 Icons, 523

 identifying relationship A relationship in which the

parent entity's key is also part of the primary key of the child

entity. , 216

 IE; see information engineering

 Imaging, 413

 Implementation models; see physical design ; physical model

 Implementation phase; see systems implementation

 information Data that has been processed or reorganized

into a more meaningful form for someone. Information is

formed from combinations of data that hopefully have meaning

to the recipient. , 15

 information engineering (IE) A model-driven and

data-centered, but process-sensitive, technique for planning,

analyzing, and designing information systems. IE models are

pictures that illustrate and synchronize the system's data and

processes. , 119

 design methods, 366–367

 models, 48, 119–120, 208

 Information gathering; see fact-fi nding

 information system (IS) An arrangement of people,

data, processes, and information technology (IT) that interact

to collect, process, store, and provide as output the information

needed to support an organization. , 5

 business drivers

 business process redesign, 16

 collaboration and partnership, 14–15

 continuous improvement and total quality management,

 15–16

 electronic commerce and business, 11–13

 globalization, 11

 knowledge asset management, 15

 security and privacy, 14

 as capital investments, 40

 classes, 5–6

 stakeholder perspectives, 6, 7

 technology drivers

 collaborative technologies, 19

 enterprise applications, 19

 mobile and wireless technologies, 18

 networks and Internet, 16–18

 object technologies, 18

 information systems analysis Those development phases

in an information systems development project that primarily

focus on the business problem and requirements, independent of

any technology that can or will be used to implement a solution to

that problem. , 117 ; see also systems analysis

 information systems architecture A unifying

framework into which various stakeholders with different

perspectives can organize and view the fundamental building

blocks of information systems. , 39

 information technology (IT) A contemporary term that

describes the combination of computer technology (hardware

and software) with telecommunications technology (data,

image, and voice networks). , 5

 Information technology architecture, 39, 399

 information worker Any person whose job involves

creating, collecting, processing, distributing, and using

information. , 7

 inheritance In use cases, a relationship between actors

created to simplify the drawing when an abstract actor inherits

the role of multiple real actors. , 189

 inheritance The concept wherein methods and/or attributes

defi ned in an object class can be inherited or reused by another

object class. , 296 , 297

 Inprise JBuilder, 493

 Input design, 376–377; see also Graphical user interfaces

(GUIs); User interface design

 architectures

 batch processing, 409–410, 486

 document interchange, 413

 electronic data interchange, 413

 e-mail, 412–413

 imaging, 413

 keyless data entry, 411–412

 middleware, 413–414

 online processing, 410, 486

 pen input, 412

 remote batch, 411, 486–487

 work group technology, 412

 automated tools, 500–501, 507

 controls, 491–492

 implementation methods

 automatic data capture, 487–489

 biometric, 489

 electromagnetic transmission, 489

 keyboard, 487

 magnetic ink, 489

Glossary/Index 595

 mouse, 487

 optical mark recognition, 488

 point-of-sale terminals, 487

 smart cards, 489

 sound and speech, 487

 touch screen, 487

 input taxonomy, 484, 485

 process, 501

 design and validation, 503–505

 GUI control selection, 502–503

 logical requirements, 501–502

 source document design, 505–507

 user feedback, 503

 prototyping, 484, 500–501, 503–505

 types of input, 484–487

 user issues (human factors), 489–491

 Web-based inputs, 507–508

 Installation, system, 51

 Instant messaging, 19

 Instruction sets, 526–527

 Instruction-driven interfaces, 526–527, 528

 intangible benefi t A benefi t that is believed to be diffi cult

or impossible to quantify. , 342

 Integrated development environment (IDE); see application

development environment

 Integration; see systems integration

 intelligent key A business code whose structure

communicates data about an entity instance. , 228 –229

 interface class An object class that provides the means

by which an actor can interface with the system. Examples

include a window, dialogue box, or screen. For nonhuman

actors, an application program interface (API) is the

interface class; sometimes called a boundary class. , 545 –546,

551–552

 Interface design; see Input design ; Output design ; User

interface design

 internal output An output for system owners and users

within an organization. , 455 , 458

 Internal users, 8

 Internet; see also electronic business ; electronic commerce ;

 Web browsers

 application architectures based on, 406–407

 as driver for information systems, 16–18

 e-mail, 19, 412–413, 461–463

 importance, 406–407

 instant messaging, 19

 portals, 17, 407

 software development environments, 416

 Web services, 17

 interview A fact-fi nding technique whereby the systems

analyst collects information from individuals through face-to-

face interaction. , 166

 advantages and disadvantages, 166

 body language and proxemics, 170–171

 conducting, 169

 following up, 170

 guide, 167, 168

 listening in, 170

 preparation, 167–169

 questions, 167, 168

 selecting interviewees, 167

 structured, 167

 unstructured, 167

 intranet A server network that uses Internet technology to

integrate desktop, work group, and enterprise computing. , 16,

 407 , 416; see also Networks

 Introduction, report, 352

 Intuit; see Quicken

 Inversion entry; see subsetting criteria

 IS; see information system

 Ishikawa , Kaoru , 157

 Ishikawa diagram A graphical tool used to identify,

explore, and depict problems and the causes and effects of those

problems. It is often referred to as a cause-and-effect diagram

or a fi shbone diagram (because it resembles the skeleton of a

fi sh). , 157

 Isshiki , Koichiro R. , 384, 390

 IT; see information technology

 iterative development approach An approach to

systems analysis and design that completes that entire infor-

mation system in successive iterations. Each iteration does

some analysis, some design, and some construction. Synonyms

include incremental and spiral , 54, 57

 J
 Jacobsen , Ivar , 77, 184–185, 205, 272, 333, 565

 JAD; see Joint application development

 Java, 16, 18, 416

 JDBC (Javabean database connectivity), 414

 Johnson , Spencer , 99, 113

 Joint application development (JAD), 370; see also rapid

application development

 joint project planning (JPP) A strategy in which all

stakeholders attend an intensive workshop aimed at reaching

consensus agreement on project decisions. , 88 –89

 joint requirements planning (JRP) The use of

facilitated workshops to bring together all of the system

owners, users, and analysts and some systems designers

and builders to jointly perform systems analysis. JRP is

generally considered a part of a larger method called joint

application development (JAD), a more comprehensive

application of the JRP techniques to the entire systems

development process. , 122 –123

 joint requirements planning (JRP) A process whereby

highly structured group meetings are conducted for the purpose

of analyzing problems and defi ning requirements. , 172

 agenda, 175

 benefi ts, 176

 conducting sessions, 175–176

 data modeling and, 222, 223

 end product, 175–176

 facilitator, 172–173, 175

 locations, 173–174

 participants, 172–173, 175

 planning, 173–175

 room layout, 174–175

 sponsor, 172

 Jonsson , Patrik , 205, 333, 565

 Joslin , Edward O. , 384, 390

 JPP; see joint project planning

 JRP; see joint requirements planning

 Junctions, 259, 266

596 Glossary/Index

 K
 Kana, 22

 Kara , Daniel A. , 428

 Kawasaki, 157

 Keane, Inc., 99, 101

 Kennedy , John F. , 102

 Kernzer , Harold , 113

 key An attribute, or a group of attributes, that assumes a

unique value for each entity instance. It is sometimes called an

identifi er. , 210 ; see also foreign key

 alternate, 211

 candidate, 211

 concatenated, 210–211, 431

 intelligent, 228–229

 primary, 211

 secondary, 211, 431, 440

 selecting, 228–229

 of table, 431

 Key integrity, 444

 key-based data model A data model that includes

entities and relationships with precise cardinalities resolving

nonspecifi c relationships into associative entities, and also

including primary and alternate keys. , 222 , 228–231

 Keyboards, 487, 518–519

 Keyless data entry, 411–412

 knowledge Data and information that are further refi ned

based on the facts, truths, beliefs, judgments, experiences, and

expertise of the recipient. Ideally information leads to wisdom. , 15

 Knowledge asset management, 15

 knowledge worker Any worker whose responsibilities

are based on a specialized body of knowledge. , 8

 Kozar , Kenneth , 512

 L
 LAN; see local area network

 Language-based syntax, 526

 Lantz , Kenneth E. , 390

 Larman , Craig , 199n, 205, 333, 565

 Letters of transmittal, 352

 Leventhal , N. S. , 181

 Levine , Martin , 33

 Linderman , James , 33

 Linux, 517

 List boxes, 496–497

 Listening, 170

 local area network (LAN) A set of client computers

connected over a relatively short distance to one or more

servers. , 401

 Location conversion, 576

 Locations, data; see data-to-location-CRUD matrix

 Logical data modeling; see data modeling

 Logical design phase, 140–141

 acceptance test cases, 142

 description, 48

 functional requirements structuring, 141–142

 functional requirements validation, 142

 prototyping, 142

 tasks, 141

 logical design The translation of business user requirements

into a system model that depicts only the business requirements

and not any possible technical design or implementation of

those requirements. Common synonyms include conceptual

design and essential design, the latter of which refers to model-

ing the “essence” of a system, or the “essential requirements”

independent of any technology. The antonym of logical design is

physical design (defi ned later in this chapter). , 48

 logical model A pictorial representation that depicts what

a system is or does. Synonyms are essential model, conceptual

model, and business model. , 59

 Log-ins, 529–530

 London , Keith , 98, 113 , 181

 Lord , Kenniston W. , Jr. , 181

 Lorensen , William , 333, 565

 Lotus

 1-2-3, 463

 Notes, 402, 412

 SameTime, 19

 SmartSuite, 525

M
 McClure , Carma , 292

 McConnell , Steve , 77, 359

 McFadden , Fred , 453

 Machiavelli , Niccolo , 354

 McLeod , Graham , 98, 113

 McMenamin , Stephen M. , 257, 292

 McNealy , Scott , 16

 Macromedia

 Cold Fusion, 16, 71

 RoboHelp, 531

 Magnetic ink character recognition (MICR), 489

 Malloy , John T. , 356

 management information system (MIS) An

information system that provides for management-oriented

reporting based on transaction processing and operations of the

organization. , 5

 Mandel , Theo , 543

 Manugistics, 20

 Many-to-many relationship; see nonspecifi c relationship

 Mariga , Julie , 427

 Martin , Alexander , 543

 Martin , J. , 333, 565

 Martin , James , 208, 248, 292

 master fi le A table containing records that are relatively

permanent. , 432

 Matthies , Leslie H. , 292

 Mellor , Stephen J. , 248

 Menu bar, 521–522

 menu driven A dialogue strategy that requires that the user

select an action from a menu of choices. , 520

 Menus

 cascading, 522

 hypertext and hyperlinks, 525–526

 iconic, 524–525

 pop-up, 523

 pre-GUI, 520–521

 pull-down, 521–522

 tear-off, 523

 toolbars, 523

 Mercator Software, 23

 Merrill Lynch, 13

Glossary/Index 597

 message Communication that occurs when one object

invokes another object's method (behavior) to request

information or some action. , 300 , 303

 messaging or groupware server A server that hosts

services for groupware. , 402

 metadata Data about data. , 223 –224, 434

 method The software logic that is executed in response to a

message. , 549

 of design objects, 560

 visibility, 547–548

 Methodology; see system development methodology

 Methods and procedures section, 352

 Methodware; see process manager application

 Metzger , Philip W. , 583

 MICR; see Magnetic ink character recognition

 Micro Focus

 COBOL Workbench, 414

 Dialog Manager, 414

 Microfi che, 463

 Microfi lm, 463

 Microsoft; see also Windows

 Access, 121, 122, 401, 434, 436, 437, 464, 484, 493, 500,

527, 533

 collaboration with Oracle, 15

 COM⫹, 402

 Excel, 463, 507

 Exchange Server, 402, 412

 FoxPro, 401, 437–438

 help agents, 532–533

 Internet Explorer, 402, 486, 518

 MSN Messenger Service, 19

 Netmeeting, 19

 Offi ce, 525, 531, 532–533

 PowerPoint, 355

 SQL Server, 402, 407, 437

 Transact SQL, 437

 Visio, 366

 Visio Enterprise, 435

 Visual Basic, 501

 Visual Basic .NET, 18, 121, 122, 405

 Visual Studio .NET, 71, 493, 514, 533

 Windows, 402

 Windows Mobile, 412, 517

 Microsoft Project, 71, 85

 critical path analysis, 105–107

 Gantt charts, 85–87, 93, 100

 intertask dependencies, 93–94

 milestones, 93

 PERT charts, 86, 87

 recording progress, 100

 resource assignment, 95, 96

 scheduling, 94

 tasks, 91

 work breakdown structure, 90

 middleware Software (usually purchased) used to translate

and route data between different applications. , 23 , 71

 middleware Utility software that enables communication

between different processors in a system. , 413 –414

 milestone An event signifying the completion of a major

project deliverable. , 91 , 93

 Miller , Granville , 190n, 205, 333, 565

 Miller , Irwin , 181

 MIL-STD-498, 159

 MIS; see management information system

 Mitchell , Ian , 181

 Mnemonic syntax, 526

 Mobile technology, 18

 mobile user A user whose location is constantly changing but

who requires access to information systems from any location. , 8

 model A representation of either reality or vision. Since “a

picture is worth a thousand words,” most models use pictures

to represent the reality or vision. , 119 ; see also data modeling ;

 process modeling ; system model

 model-driven analysis A problem-solving approach that

emphasizes the drawing of pictorial system models to document

and validate existing and/or proposed systems. Ultimately,

the system model becomes the blueprint for designing and

constructing an improved system. , 118 –120

 model-driven design A system design approach that

emphasizes drawing system models to document technical and

implementation aspects of a system. , 366

 model-driven development A system development

strategy that emphasizes the drawing of system models to help

visualize and analyze problems, defi ne business requirements,

and design information systems. , 48, 57 –60

 modern structured design A system design technique

that decomposes the system's processes into manageable

components. , 366

 Mosely , D. J. , 583

 Moses , John , 181

 most likely duration (D) An estimated amount of

time required to complete a task, based on a weighted

average of optimistic, pessimistic, and expected

durations. , 92

 mouse A device used to cause a pointer to move across a

display screen. , 487, 519

 Mozilla Firefox, 402, 486, 518

 Multimedia outputs, 461

 multiplicity The minimum and maximum number of

occurrences of one object class for a single occurrence of the

related object class. , 300 , 301

 Multiprocess, 396

N
 Natural language syntax, 527

 net present value An analysis technique that compares

the annual discounted costs and benefi ts of alternative

solutions. , 345 –346

 network computing system A multitiered solution

in which the presentation and presentation logic layers

are implemented in client-side Web browsers using content

downloaded from a Web server. , 406 –407, 408

 Networks; see also Internet ; local area network

 architects, 9

 architectures, 417, 418

 building and testing, 569, 572

 as driver for information systems, 16–18

 intranets, 16, 407, 416

 Newcomer, Eric, 427

 Niku

 Open Workbench, 71

 Project Manager, 71, 85

598 Glossary/Index

 nonfunctional requirement A description of other

features, characteristics, and constraints that defi ne a

satisfactory system. , 138 –139

 nonfunctional requirement A property or quality the

system must have. Examples include security, ease-of-use,

performance, etc. , 155

 nonidentifying relationship A relationship in which

each participating entity has its own independent primary key. ,

 215 –216

 nonspecifi c relationship A relationship where many

instances of an entity are associated with many instances

of another entity. Also called many-to-many relationship. ,

 216 –219

 normalization A data analysis technique that organizes

data into groups to form nonredundant, stable, fl exible, and

adaptive entities. , 222, 235

 automated tools, 243

 fi rst normal form (1NF), 235–238

 as prerequisite for database design, 438

 second normal form (2NF), 235, 238, 239, 240

 third normal form (3NF), 235, 238–243

 Normalized data model, 222

 novice user An inexperienced or casual computer

user. , 514 –515

 NSA Report Web, 463

 N-tiered client server computing; see distributed data and

application

O
 object The encapsulation of the data (called properties)

that describes a discrete person, object, place, event, or thing,

with all of the processes (called methods) that are allowed to

use or update the data and properties. The only way to access

or update the object's data is to use the object's predefi ned

processes. , 120

 object Something that is or is capable of being seen, touched,

or otherwise sensed and about which users store data and

associate behavior. , 294– 295

 attributes, 295

 behaviors, 295

 discovery of, 319–324

 encapsulation, 295–296

 messages, 300, 303

 object class A set of object instances that share the same at-

tributes and behaviors. Often referred to simply as a class. , 296

 attributes, 547–548, 552, 560

 behaviors, 552–555

 collaborations, 553–554

 control classes, 546, 551–552

 design, 551–552, 560

 design class diagram, 560–561

 entity classes, 545, 551–552

 inheritance, 297

 interactions, 554–555

 interface classes, 545–546, 551–552

 life cycle, 558–560

 messages, 300, 303

 methods, 547–548, 560

 persistence, 546

 persistent, 327

 polymorphism, 303

 relationships; see object class relationship

 subtypes and supertypes, 297–299, 325–327

 system classes, 546

 transient, 327

 UML notation, 296–297

 Object class diagrams, 120, 121

 object class relationship A natural business association

that exists between one or more objects and classes. , 299 –300;

 see also generalization/specialization

 aggregation, 300, 302, 327

 composition, 300, 302

 dependencies, 547, 561

 discovery of, 324–325

 multiplicity, 300, 301

 navigability, 547, 560

 object instance Each specifi c person, place, thing, or event,

as well as the values for the attributes of that object. Sometimes

referred to simply as an object. , 295

 Object Management Group (OMG), 331

 object modeling A technique that attempts to merge

the data and process concerns into singular constructs

called objects. Object models are diagrams that document a

system in terms of its objects and their interactions. Object

modeling is the basis for object-oriented analysis and design

methodologies. , 60

 object modeling A technique for identifying objects within

the systems environment and identifying the relationships

between those objects. , 294 ; see also Unifi ed Modeling

Language (UML) ; use-case modeling

 concepts, 294

 notation, 296

 process, 306

 aggregation relationships, 327

 analysis use-case model, 306–309

 associations and multiplicity, 324–325

 class diagrams, 324–328

 fi nding business objects, 319–324

 functional description of system, 306

 generalization/specialization hierarchies, 325–327

 system sequence diagrams, 317–319

 use-case activities, 309, 314

 object responsibility The obligation that an object has

to provide a service when requested and thus collaborate

with other objects to satisfy the request if required. , 548 –549 ,

552–553

 object state A condition of the object at one point in its

lifetime. , 558 –560

 object technology A software technology that defi nes a

system in terms of objects that consolidate data and behavior

(into objects). Objects become reusable and extensible

components for the software developers. , 18

 Object/class matrix, 325

 objective A measure of success. It is something that you

expect to achieve, if given suffi cient resources. , 135

 object-oriented analysis (OOA) An approach used to

(1) study existing objects to see if they can be reused or adapted

for new uses and (2) defi ne new or modifi ed objects that will be

combined with existing objects into a useful business computing

application. , 294 ; see also Object modeling

 object-oriented analysis and design (OOAD) A

collection of tools and techniques for systems development that

Glossary/Index 599

will utilize object technologies to construct a system and its

software. , 18

 object-oriented approach A model-driven

technique that integrates data and process concerns into

constructs called objects. Object models are pictures that

illustrate the system's objects from various perspectives,

such as the structure, behavior, and interactions of the

objects. , 120

 object-oriented design (OOD) An approach used to

specify the software solution in terms of collaborating objects,

their attributes, and their methods. , 545

 models, 371

 process

 modeling class behaviors and responsibilities, 552–558

 object model updating, 560–561

 role playing, 560

 state machine diagrams, 559–560

 use-case model refi nement, 549–551

 relationships, 547

 use of, 370

 Object-oriented programming languages, 18

 observation A fact-fi nding technique wherein the systems

analyst either participates in or watches a person perform

activities to learn about the system. , 163 –164

 OCR; see Optical character recognition

 OD; see optimistic duration

 ODBC; see Open database connectivity (ODBC) tools

 Odell , J. , 333, 565

 offi ce automation system An information system that

supports the wide range of business offi ce activities that provide

for improved work fl ow between workers. , 6, 7

 OMG; see Object Management Group

 OMR; see Optical mark recognition

 Oncken , William , Jr. , 113

 Online help, 530–533

 online processing A data processing method whereby

data about a single transaction is processed immediately. ,

405, 410, 486

 OOA; see object-oriented analysis

 OOAD; see object-oriented analysis and design

 OOD; see object-oriented design

 Open database connectivity (ODBC) tools, 414

 open-ended question A question that allows

the interviewee to respond in any way that seems

appropriate. , 167

 Operating costs, 339, 340

 Operating systems, user interfaces, 517–518

 operational database A database that supports day-

to-day operations and transactions for an information system.

Also called transactional database. , 433 –434

 operational feasibility A measure of how well a solution

meets the identifi ed system requirements to solve the problems

and take advantage of the opportunities envisioned for the

system. , 144, 338

 opportunity A chance to improve the organization even in

the absence of an identifi ed problem. , 41 –43

 Opportunity costs, 344

 Optical character recognition (OCR), 411–412, 488

 Optical mark recognition (OMR), 411–412, 488

 optimistic duration (OD) The estimated minimum

amount of time needed to complete a task. , 92

 Oracle Corporation

 collaboration with Microsoft, 15

 Designer, 435

 Designer 2000, 68

 Developer, 71

 enterprise resource planning, 20

 Oracle database, 15, 402, 407, 434, 437

 PL/SQL, 437

 Oracle/PeopleSoft, 20, 22

 Orfali , Robert , 428

 Orr , Ken , 77

 Output design, 376; see also User interface design

 architectures

 batch processing, 409–410

 document interchange, 413

 electronic data interchange, 413

 e-mail, 412–413

 imaging, 413

 middleware, 413–414

 online processing, 410

 work group technology, 412

 automated tools, 463–464

 guidelines, 466

 preprinted forms, 410, 459, 469

 process

 design, 469, 471, 474

 logical requirements, 466–467

 physical output requirements, 467–469

 preprinted forms design, 469

 prototyping, 474

 user feedback, 474

 prototyping, 455, 463–464, 474

 Outputs; see also Reports

 distribution and audience, 455, 458

 external, 458, 469

 implementation methods, 458

 e-mail, 461–463

 hyperlinks, 463, 475

 microfi lm, 463

 multimedia, 461

 point-of-sale terminals, 461

 printed, 459–461

 screen, 461

 Web-based, 463, 474–477

 internal, 455, 458

 taxonomy, 456

 turnaround, 458, 469

 Overgaard, Gunnar, 205, 333, 565

 override A technique whereby a subclass (subtype) uses

an attribute or behavior of its own instead of an attribute or

behavior inherited from the class (supertype). , 303 , 304

P
 Packages; see commercial application package

 paging Displaying a complete screen of characters at a

time , 518

 Palm, 18, 412, 517

 Palmer , John F. , 257, 292

 Paradice , David , 181

 Parallel conversion, 576

 Parent class; see supertype

600 Glossary/Index

 parent entity A data entity that contributes one or more

attributes to another entity, called the child. In a one-to-many

relationship the parent is the entity on the “one” side. , 214 –216

 Parrington, Norman, 181

 partitioning The act of determining how to best distribute

or duplicate application components across a network. , 405 ,

408

 Paulk , Mark C. , 77

 payback analysis A technique for determining if and

when an investment will pay for itself. , 343 –345

 payback period The period of time that will elapse before

accrued benefi ts overtake accrued costs. , 343

 PD; see pessimistic duration

 PDFD; see physical data fl ow diagram

 Penker , Magnus , 333, 565

 Pens, 412, 519

 persistence class An object class that provides

functionality to read and write persistent attributes in a

database. , 546

 persistent class A class that describes an object that

outlives the execution of the program that created it. , 327

 Personal data assistants (PDAs); see Handheld computers

 Personal databases, 434

 Person/machine boundaries, 420, 422

 PERT chart A graphical network model used to depict the

interdependencies between a project's tasks. , 85 , 87, 105–107

 pessimistic duration (PD) The estimated maximum

amount of time needed to complete a task. , 92

 physical data fl ow diagram A process model used to

communicate the technical implementation characteristics of an

information system. , 372 , 393 ; see also data fl ow diagram

 application architecture modeling, 372, 393, 416–417

 data fl ows, 396–397

 data stores, 398–399

 design units, 417, 420, 466

 drawing, 416

 event, 420, 421

 example, 372, 375

 external agents, 398

 input design using, 501

 network architecture, 417, 418

 output design using, 466

 person/machine boundaries, 420, 422

 processes, 393–396

 use of, 399

 Physical data fl ows, 396–397

 Physical data stores, 398–399

 physical design The translation of business user

requirements into a system model that depicts a technical

implementation of the users' business requirements. Common

synonyms include technical design or, in describing the output,

implementation model. The antonym of physical design is

logical design (defi ned earlier in this chapter). , 50 ; see also

 system design

 physical model A technical pictorial representation

that depicts what a system is or does and how the system

is implemented. Synonyms are implementation model and

technical model. , 59

 Physical processes, 393–396

 PIECES framework, 42, 43, 155, 338

 Platform independence, 517–518

 PMBOK; see Project Management Body of Knowledge

 PMI; see Project Management Institute

 Point-of-sale (POS) terminals, 461, 487

 policy A set of rules that govern how a process is to be

completed. , 284

 polymorphism Literally meaning “many forms,” the

concept that different objects can respond to the same message

in different ways. , 303

 Popkin; see System Architect

 Portals, 17, 407

 POS; see Point-of-sale (POS) terminals

 Preliminary study; see problem statement

 Premerlani, William, 333, 565

 Prescott, Mary, 453

 present value The current value of a dollar at any time in

the future. , 344

 presentation The ongoing activity of communicating

fi ndings, recommendations, and documentation for review by

interested users and managers. Presentations may be either

written or verbal. , 52 ; see also formal presentation ; Reports,

written

 Presentation middleware, 413

 Primary elements (of reports), 351

 primary key A candidate key that will most commonly be

used to uniquely identify a single entity instance. , 211

 primary key A fi eld or group of fi elds that uniquely

identifi es a record. , 431 , 440

 Primavera Project Planner and Project Manager, 85

 primitive diagram A data fl ow diagram that depicts the

elementary processes, data stores, and data fl ows for a single

event. , 267 , 279, 282

 Printed outputs, 459–461; see also Reports

 Privacy, 14

 problem An undesirable situation that prevents the

organization from fully achieving its mission, vision, goals,

and/or objectives. , 41 –43

 Problem analysis phase, 129

 business process analysis, 133–135

 communication of fi ndings, 136–137

 data modeling, 222

 description, 46–47

 feasibility analysis, 337

 goal, 129

 problem and opportunity analysis, 133

 problem domain, 129–133

 process modeling, 267

 project plan updating, 135–136

 system improvement objectives, 135

 tasks, 129, 130

 Problem discovery and analysis, 157

 problem statement A statement and categorization of

problems, opportunities, and directives; may also include

constraints and an initial vision for the solution. Synonyms

include preliminary study and feasibility assessment. , 46 , 126

 Problem-solving, 38

 process Work performed by a system in response to incoming

data fl ows or conditions. A synonym is transform. , 254

 business, 15

 in data fl ow diagrams, 250, 253–255

 decision tables, 284–286

 decomposition, 255–257

Glossary/Index 601

 distribution, 420

 elementary, 257, 283, 286

 implementation methods, 394–395

 instructions (logic), 283–286

 logical, 257–258, 393–394

 manual, 420, 423

 multi-, 396

 names, 394, 395, 396

 person/machine boundaries, 420, 422

 physical, 393–396

 systems as, 254–255

 process management The ongoing activity that defi nes,

improves, and coordinates the use of an organization's chosen

methodology (the “process”) and standards for all system

development projects. , 25

 process management An ongoing activity that

documents, teaches, oversees the use of, and improves an

organization's chosen methodology (the “process”) for systems

development. Process management is concerned with phases,

activities, deliverables, and quality standards that should be

consistently applied to all projects. , 39 –40, 54

 process management The activity of documenting,

managing, and continually improving the process of systems

development. , 80

 process manager application An automated tool that

helps to document and manage a methodology and routes, its

deliverables, and quality management standards. An emerging

synonym is methodware. , 71

 process modeling A process-centered technique

popularized by the structured analysis and design

methodology that used models of business process

requirements to derive effective software designs for a system.

Structured analysis introduced a modeling tool called the

data fl ow diagram to illustrate the fl ow of data through a

series of business processes. Structured design converted data

fl ow diagrams into a process model called structure charts

to illustrate a top-down software structure that fulfi lls the

business requirements. , 59

 process modeling A technique used to organize and document

a system's processes. , 250 ; see also data fl ow diagram (DFD)

 automated tools, 267–269

 for business process redesign, 252

 event-driven, 267

 process, 266–269

 balancing, 279

 context data fl ow diagrams, 270–271

 event decomposition diagrams, 275–276

 event diagrams, 276–278

 event-response lists, 272–275

 functional decomposition diagrams, 267, 271–272

 primitive diagrams, 267, 279, 282

 system diagrams, 278, 280–281

 use-case lists, 272–275

 reverse engineering, 266

 in systems analysis phases, 267

 Procurement phase, 378–381

 Programmers, 9

 Programming; see systems construction

 Programs

 modules, 366

 testing, 573–574

 project A sequence of activities that must be completed on

time, within budget, and according to specifi cation. , 79 –80

 budgets, 97–98, 128

 canceling, 40–41

 failures, 54, 80–83, 184

 impetus for, 41–43

 launching, 128

 resources, 94–95

 schedule, 94, 97–98, 105–107, 128

 scope, 89, 100–101, 124

 scope creep, 46, 81

 sponsors, 129

 success criteria, 80

 Project charters, 124, 128–129

 project management The activity of defi ning, planning,

directing, monitoring, and controlling a project to develop an

acceptable system within the allotted time and budget. , 25

 project management The process of scoping, planning,

staffi ng, organizing, directing, and controlling a project to

develop an information system at minimum cost, within a

specifi ed time frame, and with acceptable quality. , 40 , 54

 project management The process of scoping, planning,

staffi ng, organizing, directing, and controlling the development

of an acceptable system at a minimum cost within a specifi ed

time frame. , 80

 activities

 change management, 100–101

 direction of team effort, 98–99

 expectations management, 101–105

 intertask dependency specifi cation, 93–94

 progress reporting, 99–100

 resource assignment, 94–97

 result assessment, 107

 schedule adjustments, 105–107

 scope negotiation, 89

 task duration estimation, 91–93

 task identifi cation, 89–91

 budgets, 97–98, 128

 functions, 83–85

 life cycle, 87–89

 schedules, 94, 97–98

 tools and techniques, 85–87

 Project Management Body of Knowledge (PMBOK), 83

 Project Management Institute (PMI), 83, 111

 project manager An experienced professional who accepts

responsibility for planning, monitoring, and controlling projects

with respect to schedule, budget, deliverables, customer

satisfaction, technical standards, and system quality. , 10 –11

 project manager The person responsible for supervising a

systems project from initiation to conclusion. Successful project

managers possess a wide range of technical, management,

leadership, and communication skills. , 79

 competencies, 82–83

 leadership hints, 98

 project manager application An automated tool that

helps to plan system development activities (preferably using

the approved methodology), estimate and assign resources

(including people and costs), schedule activities and resources,

monitor progress against schedule and budget, control and

modify schedule and resources, and report project progress. , 71 ,

87; see also Microsoft Project

602 Glossary/Index

 Project requests, 125

 Project teams

 development stages, 98

 recruiting members, 95

 resource assignment, 94–97

 roles, 95

 prototype A small-scale, representative, or working,

model of the users' requirements or a proposed design for an

information system. Any given prototype may omit certain

functions or features until such a time as the prototype has

suffi ciently evolved into an acceptable implementation of

requirements. , 60

 prototype A small-scale, incomplete, but working sample of

a desired system. , 120

 database, 448

 reverse engineering, 121–122

 Prototyping; see also discovery prototyping

 advantages and disadvantages, 368–369

 input design, 484, 500–501, 503–505

 output design, 455, 463–464, 474

 source documents, 507

 use in system design, 367–370

 use in systems analysis, 120, 142, 171–172

 user interface design, 514, 533, 536–537

 proxemics The relationship between people and the space

around them. , 171

Q
 QBE; see Query by Example

 Quality management, 15–16

 Query by Example (QBE), 526

 Question-answer dialogues, 527–528

 questionnaires A document that allows the analyst to

collect information and opinions from respondents. , 164 –166

 Quicken, 491, 526

R
 RAD; see rapid application development

Radio buttons, 495–496

 randomization A sampling technique characterized by

having no predetermined pattern or plan for selecting sample

data. , 162

 rapid application development (RAD) A system

development strategy that emphasizes speed of development

through extensive user involvement in the rapid, iterative, and

incremental construction of a series of functioning prototypes

of a system that eventually evolves into the fi nal system (or a

version). , 60 –62

 rapid application development (RAD) A systems

design approach that utilizes structured, prototyping, and JAD

techniques to quickly develop systems. , 370

 analysis techniques, 120

 automated tool support, 120–121

 logical modeling, 48

 timeboxing, 62, 139

 rapid architected analysis An approach that attempts to

derive system models (as described earlier in this section) from

existing systems or discovery prototypes. , 121 –122

 Rational ROSE, 68

 Rational Unifi ed Process (RUP), 48

 Rawles , Phillip , 427

 record A collection of fi elds arranged in a predetermined

format. , 431 , 448

 recursive relationship A relationship that exists between

instances of the same entity. , 213

 referential integrity T he assurance that a foreign-key

value in one table has a matching primary-key value in the

related table. , 445

 Reingruber , Michael , 248

 relational database A database that implements data as

a series of two-dimensional tables that are related via foreign

keys. , 436 ; see also table

 distributed, 407–409

 examples, 437–438

 schema, 436, 437, 439–441

 SQL commands, 436–437

 relationship A natural business association between one or

more entities. , 212

 cardinality, 212, 213

 degree, 212–213

 identifying, 216

 multiple, 228

 names, 212, 226

 N -ary, 213–214

 nonidentifying, 215–216

 nonspecifi c (many-to-many), 216–219

 recursive, 213

 Relationships in use-case modeling, 187–189

 associations, 187

 depends on, 188–189

 extends, 187–188

 inheritance, 189

 uses (includes), 188

 Relationships of objects and classes; see object class

relationship

 remote batch processing A data processing method

whereby data is entered online, collected as a batch, and

processed at a later time. , 411, 486 –487

 remote user A user who is not physically located on

the premises but who still requires access to information

systems. , 8

 Renaud , Paul , 428

 Replication, 408, 447–448

 Reports; see also Outputs

 customized, 469, 471, 473, 474

 design tools, 464, 465

 detailed, 455, 457

 exception, 458

 formats, 469, 474

 prototypes, 469, 471, 473, 474

 summary, 458

 Reports, written

 administrative format, 351, 352

 factual format, 351–352

 length, 351

 letters of transmittal, 352

 organization of, 351–352

 writing, 352–353

 repository A database and/or fi le directory where system de-

velopers store all documentation, knowledge, and artifacts for one

or more information systems or projects. A repository is usually

automated for easy information storage, retrieval, and sharing. , 52

Glossary/Index 603

 repository A location (or set of locations) where systems

analysts, systems designers, and system builders keep all of

the documentation associated with one or more systems or

projects. , 117 ; see also CASE repository

 data models stored in, 223–224

 implementation alternatives, 117

 Repository-based programming, 493–494, 502

 request for proposal (RFP) A formal document that

communicates business, technical, and support requirements for

an application software package to vendors that may wish to

compete for the sale of that application package and services. ,

 63 , 382 , 383

 request for quotation (RFQ) A formal document that

communicates business, technical, and support requirements

for an application software package to a single vendor that

has been determined as being able to supply that application

package and services. , 63 , 382

 Requirements analysis phase, 137–138

 communication of requirements statement, 140

 data modeling, 222

 description, 47–48

 ongoing requirements management, 140

 prioritization of requirements, 139

 project plan updating, 140

 requirements identifi cation, 138–139

 tasks, 138

 requirements defi nition document A formal

document that communicates the requirements of a proposed

system to key stakeholders and serves as a contract for the

systems project. Synonyms include requirements statement,

requirements specifi cation, and functional specifi cation. , 159

 requirements discovery The process, used by systems

analysts, of identifying or extracting system problems and

solution requirements from the user community. , 122

 requirements discovery The process and techniques

used by systems analysts to identify or extract system problems

and solution requirements from the user community. , 155 ; see

also fact-fi nding ; joint requirements planning (JRP) ; use-

case modeling

 methods, 122–123

 process

 analysis of requirements, 159

 documentation, 158–159

 fact-fi nding, 158

 problem discovery and analysis, 157

 requirements management, 159–160

 requirements management The process of managing

change to the requirements. , 140, 159– 160

 resource leveling A strategy for correcting resource

overallocations. , 97

 return-on-investment (ROI) analysis A technique that

compares the lifetime profi tability of alternative solutions. , 345

 reverse engineering A CASE tool capability that can

automatically generate initial system models from software or

database code. , 71

 reverse engineering The use of technology that reads

the program code for an existing database, application

program, and/or user interface and automatically generates the

equivalent system model. , 121

 CASE tool support, 71, 121–122

 data models, 224, 225

 process models, 266

 of prototypes, 121–122

 reverse scheduling A project scheduling strategy that

establishes a project deadline and then schedules backward

from that date. , 94

 RFP; see request for proposal

 RFQ; see request for quotation

 RIM Blackberry, 18

 risk management The process of identifying, evaluating,

and controlling what might go wrong in a project before it

becomes a threat to the successful completion of the project or

implementation of the information system. Risk management is

driven by risk analysis or assessment. , 41

 Robertson , James , 182, 257, 292

 Robertson , Suzanne , 182, 257, 292

 RoboHelp, 531

 Roetzheim , William H. , 113

 role name A foreign key name that refl ects the purpose it

serves in a table. , 447

 role playing The act of simulating object behavior

and collaboration by acting out an object's behaviors and

responsibilities. , 560

 Rosenblatt , H. , 482

 Rumbaugh , James , 77, 333, 565

 RUP; see Rational Unifi ed Process

S
 Salvendy , G. , 182

 sampling The process of collecting a representative sample

of documents, forms, and records. , 161 –162

 SAP AG, 20, 22

 Sarson , Trish , 393, 427

 schedule feasibility A measure of how reasonable a

project timetable is. , 144, 339

 Schema; see database schema

 Schlaer , Sally , 248

 Schmeiser , Lisa , 543

 SCM; see supply chain management

 scope The boundaries of a project—the areas of a business

that a project may (or may not) address. , 89 , 100–101, 124

 scope creep A common phenomenon wherein the

requirements and expectations of a project increase, often

without regard to the impact on budget and schedule. , 46

 scope creep The unexpected and gradual growth of

requirements during an information systems project. , 81

 Scope defi nition phase, 123–124

 baseline problem and opportunity identifi cation, 124–126

 baseline project worthiness, 127

 baseline schedule and budget, 128

 baseline scope negotiation, 127

 description, 46

 feasibility analysis, 337

 project manager role, 89

 project plan communication, 128–129

 tasks, 124

 Scott , Kendall , 333

 Screen inputs; see Input design ; User interface design

 Screen outputs, 461; see also Graphical user interfaces (GUIs) ;

 Output design

 designs, 469, 472, 474

 prototypes, 474

604 Glossary/Index

 Screen scrapers, 403

 Screens; see Display monitors

 Scripting languages, 16

 scrolling Displaying information up or down a screen, one

line at a time. , 518

 SCT, 20

 SDE; see software development environment

 second normal form (2NF) an entity whose non-

primary-key attributes are dependent on the full primary key. ,

 235 , 238, 239, 240

 Secondary elements (of reports), 351, 352

 secondary key A fi eld that identifi es a single record or a

subset of related records. , 431 , 440; see also alternate key

 Security

 business issues, 14

 of e-commerce, 530

 log-ins, 529–530

 privileges, 529–530

 Self-checking digits, 492

 sequence diagram A UML diagram that models the logic

of a use case by depicting the interaction of messages between

objects in time sequence. , 554 –558; see also system sequence

diagram

 Serial codes, 229

 Servers; see also client server system

 application, 402, 405

 database, 402, 405

 messaging or groupware, 402

 transaction, 402

 Web, 402, 406

 Shelly , G. , 482

 Shopping carts, 507–508

 Siebel, 22

 Signifi cant position codes, 229

 Silver , Denise , 153, 182, 390

 slack time The amount of delay that can be tolerated between

the starting time and the completion time of a task without

causing a delay in the completion date of a project. , 97 , 105

 Slider control, 536

 Smalltalk, 18

 Smart cards, 489

 Smith , Derek , 98, 113

 Smith , Patrick , 428

 Smith , Randi Sigmund , 361

 software development environment (SDE) A

language and tool kit for developing applications. , 414 –416

 Software Engineering Institute, Carnegie Mellon University,

 35, 75

 Software packages; see Automated tools ; commercial

application package

 Sound inputs, 487

 source document A form used to record data about a

transaction. , 486

 designing, 490–491, 505–507

 prototyping, 507

 Specialization; see generalization/specialization

 Speech inputs, 487

 Spin boxes, 498

 Spreadsheets, 463, 507

 SQL (Structured Query Language)

 commands, 436

 database generation, 439, 448

 triggers, 436–437

 use by end users, 526

 SSA, 20

 Staged conversion, 576

 stakeholder Any person who has an interest in an existing

or proposed information system. Stakeholders may include both

technical and nontechnical workers. They may also include

both internal and external workers. , 7

 Stallings , Warren D. , Jr. , 181

 Standish Group, 184, 185, 203

 State events, 272

 state machine diagram A UML diagram that depicts

the combination of states that an object can assume during

its lifetime, the events that trigger transitions between states,

and the rules governing the object's transition. Also called a

statechart diagram or state transition diagram. , 559 –560

 state transition diagram (STD) A tool used to depict

the sequence and variation of screens that can occur during a

user session. , 535 –536

 state transition event An occurrence that triggers a

change in an object's state through the updating of one or more

of its attributes' values. , 558

 Statechart diagram; see state machine diagram

 statement of work A contract with management and the

user community to develop or enhance an information system;

defi nes vision, scope, constraints, high-level user requirements,

schedule, and budget. Synonyms include project charter, project

plan, and service-level agreement. , 46

 statement of work A narrative description of the work to

be performed as part of a project. Common synonyms include

scope statement, project defi nition, project overview, and

document of understanding. , 89

 States, object; see object state

 STD; see state transition diagram

 steering body A committee of executive business and

system managers that studies and prioritizes competing

project proposals to determine which projects will return the

most value to the organization and thus should be approved

for continued systems development. Also called a steering

committee. , 128

 steering committee An administrative body of system

owners and information technology executives that prioritizes

and approves candidate system development projects. , 43

 Steiner , James B. , 181

 Stewart , Charles J. , 182

 stored procedures A program embedded in a table that

can be called from an application program. , 437

 Strategic data modeling, 220–222

 stratifi cation A systematic sampling technique that

attempts to reduce the variance of estimates by spreading

out the sampling—for example, choosing documents or

records by formula—and by avoiding very high or very low

estimates. , 162

 Structure charts, 59, 366, 367

 structured analysis A model-driven, process-centered

technique used to either analyze an existing system or defi ne

Glossary/Index 605

business requirements for a new system, or both. The models

are pictures that illustrate the system's component pieces:

processes and their associated inputs, outputs, and fi les. , 119 ;

 see also data modeling ; process modeling

 Structured analysis and design, 48, 59, 267, 393

 Structured English A language syntax for specifying the

logic of a process. , 283 –284, 285, 286

 structured interview An interview in which the

interviewer has a specifi c set of questions to ask of the

interviewee. , 167

 Structured methods, 18, 48

 Structured programming, 284, 366

 Structured Query Language; see SQL

 Strunk , William , Jr. , 353

 Stuart , Ann , 361

 stub test A test performed on a subset of a program. , 573

 Stubbe , John , 361

 subsetting criteria An attribute(s) whose fi nite values

divide entity instances into subsets. Sometimes called inversion

entry. , 211

 subtype An entity whose instances may inherit common

attributes from its entity supertype. , 220 , 231, 441

 subtype An object class that inherits attributes and

behaviors from a supertype class and then may contain other

attributes and behaviors that are unique to it. Also referred

to as child class and, if it exists at the lowest level of the

inheritance hierarchy, as concrete class. , 297 , 325–327

 summary report An internal output that categorizes

information for managers. , 458

 Sun Computer, 16

 supertype An entity whose instances store attributes

that are common to one or more entity subtypes. , 220 ,

231, 441

 supertype An entity that contains attributes and behaviors

that are common to one or more class subtypes. Also referred to

as abstract or parent class. , 297 , 325–327

 supply chain management (SCM) A software

application that optimizes business processes for raw

material procurement through fi nished product distribution

by directly integrating the logistical information systems of

organizations with those of their suppliers and distributors. ,

 19, 21 –22

 Sybase Corporation

 Powerbuilder, 71, 121, 405, 493

 Sybase database, 407, 434, 437

 Symantec Visual Café, 493

 system A group of interrelated components that function

together to achieve a desired result. , 5

 as process, 254–255

 system analysis The study of a business problem

domain to recommend improvements and specify the business

requirements and priorities for the solution. , 25 –26; see also

 systems analysis

 system analysis use case A use case that documents

the interaction between the system user and the system. It is

highly detailed in describing what is required but is free of

most implementation details and constraints. , 308

 narratives, 308, 310–313

 transformation into design use case, 549–551

 System Architect (Popkin), 68

 data modeling, 225, 226

 database design, 435, 439, 441, 444

 elementary process descriptions, 286

 process modeling, 268–269, 279

 screen design, 464, 500, 533

 state transition diagrams, 535–536

 system design models, 366

 system builder A technical specialist who constructs

information systems and components based on the design

specifi cations generated by the system designers. , 9 –10

 system class An object class that handles operating system-

specifi c functionality. , 546

 system design The specifi cation or construction of

a technical, computer-based solution for the business

requirements identifi ed in a system analysis. (Note:

Increasingly, the design takes the form of a working

prototype.) , 26

 system design The specifi cation of a detailed computer-

based solution. , 365

 approaches, 365

 model-driven approaches, 366

 automated tools, 366

 information engineering, 366–367

 modern structured design, 366

 object-oriented design, 370, 371, 545

 physical design phase, 50

 prototyping, 367–370

 rapid application development strategy, 370

 strategies, 370

 tasks for commercial software integration

 context, 378, 379

 contract negotiations, 384–385

 decision analysis phase, 378–381

 procurement phase, 378–381

 proposal evaluation and ranking, 384

 proposal solicitation, 382

 task diagram, 380–381

 technical criteria and options, 381

 vendor claims and performance validation,

382–383

 vendor debriefi ngs, 384–385

 tasks for in-house development

 application architecture, 372, 392

 context, 372, 373

 database design, 222–223, 372, 374, 376

 design specifi cations packaging, 377–378

 project plan updating, 378

 task diagram, 372, 374

 user interface design, 376–377

 system designer A technical specialist who translates

system users' business requirements and constraints into

technical solutions. She or he designs the computer databases,

inputs, outputs, screens, networks, and software that will meet

the system users' requirements. , 9

 system development methodology A formalized

approach to the systems development process; a standardized

process that includes the activities, methods, best practices,

deliverables, and automated tools to be used for information

606 Glossary/Index

systems development. , 36 ; see also rapid application

development (RAD)

 agile, 18, 48, 57

 automated tools, 68

 classifi cation of, 54–57

 comparison to system life cycle, 37–38

 examples, 38

 model-driven, 48, 57–60

 phases and activities, 38

 structured methods, 18, 48

 underlying principles, 38–41

 use of, 36

 system development process A set of activities,

methods, best practices, deliverables, and automated tools that

stakeholders use to develop and maintain information systems

and software. , 23 ; see also systems development process

 problem-solving steps, 23–24

 stages, 23–24

 system diagram A data fl ow diagram that merges event

diagrams for the entire system or part of the system. , 267 , 278,

280–281

 System enhancement, 27

 system implementation The construction, installation,

testing, and delivery of a system into production (meaning

day-to-day operation). , 26 –27; see also systems

implementation

 system initiation The initial planning for a project to

defi ne initial business scope, goals, schedule, and budget. , 25

 system life cycle The factoring of the lifetime of an

information system into two stages, (1) systems development

and (2) systems operation and maintenance—fi rst you build

it; then you use and maintain it. Eventually, you cycle back to

redevelopment of a new system. , 37 –38

 system model A picture of a system that represents

reality or a desired reality. System models facilitate improved

communication between system users, system analysts, system

designers, and system builders. , 48

 system owner An information system's sponsor and

executive advocate, usually responsible for funding the project of

developing, operating, and maintaining the information system. , 7

 system proposal A report or presentation of a recom-

mended solution. , 147–148, 351 ; see also Reports, written

 System recovery, 52

 system requirement Something that the information

system must do or a property that it must have. Also called a

business requirement. , 155 ; see also Requirements analysis

phase ; requirements discovery

 costs of errors, 155, 157

 desirable, 139

 functional; see functional requirement

 mandatory, 139

 nonfunctional, 138–139, 155

 PIECES classifi cation, 155, 156

 system sequence diagram A diagram that depicts the

interaction between an actor and the system for a use case

scenario. , 317 –319; see also sequence diagram

 system support The ongoing technical support for users of

a system, as well as the maintenance required to deal with any

errors, omissions, or new requirements that may arise. , 52

 activities, 52

 entropy of system, 41

 projects, 27, 65, 68

 system enhancement, 27

 system recovery, 52

 System use case; see system analysis use case

 system user A “customer” who will use or is affected by an

information system on a regular basis — capturing, validating,

entering, responding to, storing, and exchanging data and

information. , 7– 8

 documentation for, 577, 578

 external, 8

 feedback on user interface design, 474, 503, 538

 internal, 8

 training, 577–578

 types, 514–515

 systems acceptance test A test performed on the fi nal

system wherein users conduct verifi cation, validation, and audit

tests. , 142, 576 –577

 systems analysis A problem-solving technique that

decomposes a system into its component pieces for the purpose

of studying how well those component parts work and interact

to accomplish their purpose. , 117

 approaches, 118

 accelerated, 120–122

 information engineering, 119–120

 model-driven, 118–120

 object-oriented, 120

 traditional, 119–120

 decision analysis phase, 143

 candidate solution analysis, 144–146

 candidate solution comparison, 146, 346–349

 candidate solution identifi cation, 143–144, 347

 feasibility analysis, 144–146, 337–338, 346

 project plan updating, 146

 system solution recommendation, 147–148

 tasks, 143

 logical design phase, 140–141

 acceptance test cases, 142

 functional requirements structuring, 141–142

 functional requirements validation, 142

 prototyping, 142

 tasks, 141

 problem analysis phase, 129

 business process analysis, 133–135

 communication of fi ndings, 136–137

 data modeling, 222

 feasibility analysis, 337

 goal, 129

 problem and opportunity analysis, 133

 problem domain, 129–133

 process modeling, 267

 project plan updating, 135–136

 system improvement objectives, 135

 tasks, 130

 requirements analysis phase, 137–138

 communication of requirements statement, 140

 data modeling, 222

 ongoing requirements management, 140

 prioritization of requirements, 139

 project plan updating, 140

 requirements identifi cation, 138–139

 tasks, 138

Glossary/Index 607

 requirements discovery; see requirements discovery

 scope defi nition; see Scope defi nition phase

 systems analyst A specialist who studies the problems

and needs of an organization to determine how people, data,

processes, and information technology can best accomplish

improvements for the business. , 10

 job titles, 10

 relations with other stakeholders, 7, 10

 systems construction The development, installation, and

testing of system components. , 569

 database building and testing, 572

 network building and testing, 569, 572

 phase description, 50–51

 programming and testing, 573–574

 software package installation and testing, 572–573

 tasks, 569, 571

 systems design A complementary problem-solving

technique (to systems analysis) that reassembles a system's

component pieces back into a complete system—hopefully,

an improved system. This may involve adding, deleting, and

changing pieces relative to the original system. , 117 ; see also

 system design

 Systems development methodology; see system development

methodology

 systems development process A set of activities,

methods, best practices, deliverables, and automated tools that

stakeholders (from Chapter 1) use to develop and continuously

improve information systems and software (from Chapter 1). ,

 35 ; see also system development process

 alternative routes, 54–57

 building blocks, 43, 45

 Capability Maturity Model, 35–37, 87

 commercial application package implementation strategy,

 62–65

 cross life-cycle activities, 52–54

 hybrid strategies, 65, 66

 impetus for projects, 41–43

 iterative approach, 54

 phases, 43, 44

 construction and testing, 50–51

 decision analysis, 48–50

 installation and delivery, 51

 logical design, 48

 physical design and integration, 50

 problem analysis, 46–47

 requirements analysis, 47–48

 scope defi nition, 46, 123–124

 systems analysis, 117, 123

 sequential approach, 54

 standardized, 36

 system design strategies, 370

 system maintenance, 65, 67, 68

 waterfall approach, 54

 systems implementation The installation and delivery

of the entire system into production. , 569

 conversion, 578–579

 conversion plan, 574–577, 578–579

 database installation, 577

 system testing, 574

 tasks, 574, 575

 user training, 577–578

 systems integration The process of building a unifi ed

information system out of diverse components of purchased

software, custom-built software, hardware, and networking. , 19

 Systems support; see system support

 systems test A test performed on an entire system. , 574

T
 table The relational database equivalent of a fi le. , 432

 indexes, 440

 key, 431, 440

 names, 439–440

 records, 431, 448

 relational, 436

 sizes, 448

 stored procedures, 437

 triggers, 436–437

 table look-up fi les A table containing relatively static

data that can be shared. , 432

 Tabs, 536

 tabular output An output that presents information as

columns of text and numbers. , 459 , 469, 470–471

 tangible benefi t A benefi t that can be easily quantifi ed. ,

 341

 Task diagrams, 124

 Tasks; see also Gantt chart

 dependencies, 93–94

 durations, 91–93

 identifi cation, 89–91

 PERT charts, 85, 87, 105–107

 primitive, 91

 summary, 91

 Taylor , David A. , 333, 565

 Teams; see Project teams

 Technical design; see physical design

 technical feasibility A measure of the practicality of a

technical solution and the availability of technical resources

and expertise. , 144, 338 –339

 Technical models; see physical model

 temporal event A system event that is triggered by time. ,

 187 , 272

 Teorey , Toby, 248, 453

 Testing

 acceptance, 142, 576–577

 audit, 577

 commercial packages, 572–573

 databases, 572

 networks, 572

 stub, 573

 systems, 574

 unit or program, 573–574

 user interface, 538

 validation, 576–577

 verifi cation, 576

 Text boxes, 494–495

 Theby , Stephen E. , 428

 Thill , John V. , 361

 thin client A personal computer that does not have to be very

powerful. , 401 –402

 third normal form (3NF) An entity whose non-primary-

key attributes are not dependent on any other non-primary-key

attributes. , 235 , 238–243

608 Glossary/Index

 Three-tiered client server computing; see distributed data and

application

 TIBCO Software, 23

 Time value of money, 342–343

 timeboxing The imposition of a nonextendable period of

time, usually 60 to 90 days, by which the fi rst (or next) version

of a system must be delivered into operation. , 62

 timeboxing A technique that delivers information systems

functionality and requirements through versioning. The

development team selects the smallest subset of the system

that, if fully implemented, will return immediate value to the

system owners and users. That subset is developed, ideally with a

time frame of six to nine months or less. Subsequently, value-added

versions of the system are developed in similar time frames. , 139

 Tool tips, 531

 Toolbars, 523

 total quality management (TQM) A comprehensive

approach to facilitating quality improvements and management

within a business. , 15 –16

 Touch screens, 487

 TPS; see transaction processing system

 TQM; see total quality management

 Training, user, 577–578

 transaction fi le A table containing records that describe

business events. , 432

 transaction processing system (TPS) An information

system that captures and processes data about business

transactions. , 5 , 405

 transaction server A server that hosts services which

ensure that all database updates for a transaction succeed or

fail as a whole. , 402

 Transactions; see event

 Transform; see process

 transient object class A class that describes an object

that is created temporarily by the program and lives only

during that program's execution. , 327

 transitive dependency When the value of a nonkey

attribute is dependent on the value of another nonkey attribute

other than by derivation. , 240 –243

 trigger A program embedded within a table and is automati-

cally invoked by updates to another table. , 436 –437

 turnaround output An external output that may reenter

the system as an input. , 458 , 460, 469

 Two-tiered client server computing; see distributed data

U
 Unifi ed Modeling Language (UML) A set of modeling

conventions that is used to specify or describe a software

system in terms of objects. , 294

 associations, 300, 301

 diagrams

 activity diagrams, 277, 309, 314–317

 class diagrams, 324–328

 list, 304, 305

 object class diagrams, 120, 121

 sequence diagrams, 554–558

 state machine diagrams, 559–560

 system sequence diagrams, 317–319

 syntax, 296–297, 299

 unit or program test A test performed on an entire

program. , 573 –574

 U.S. Department of Labor, 7

 U.S. government, MIL-STD-498, 159

 U.S. Navy, 85

 UNIX, 517

 unstructured interview An interview that is conducted

with only a general goal or subject in mind and with few, if any,

specifi c questions. The interviewer counts on the interviewee to

provide a framework and direct the conversation. , 167

 UPS, 412, 487

 Uris , Auren , 361

 use case A business scenario or event for which the system

must provide a defi ned response. Use cases evolved out of

object-oriented analysis; however, their use has become

common in many other methodologies for systems analysis and

design. , 139

 use case A behaviorally related sequence of steps (a

scenario), both automated and manual, for the purpose of

completing a single business task. , 186

 use case An analysis tool for fi nding and identifying business

events and responses. , 272

 abstract, 188, 308–309, 314

 actors, 186–187, 190

 business requirements, 190–193

 course of events, 196–199

 dependencies, 200

 design, 549–551

 discovery of, 190–193, 272

 entities and, 275

 extension, 187–188, 308–309

 glossary, 193–194

 names, 191–192, 195

 ranking, 199–200

 system analysis, 308, 549

 types, 195–196

 use-case dependency diagram A graphical depiction

of the dependencies among use cases. , 200

 use-case diagram A diagram that depicts the

interactions between the system and external systems and

users. In other words, it graphically describes who will use

the system and in what ways the user expects to interact with

the system. , 185

 construction, 194–195

 refi ning, 307–308

 Use-case list, 267, 272–275

 use-case modeling The process of modeling a system's

functions in terms of business events, who initiated the events,

and how the system responds to those events. , 184

 design classes, 551–552

 design using, 549–551

 development of, 184–185

 objective, 190

 process, 190

 actor identifi cation, 190

 analysis use-case model, 306–309

 business requirements use cases, 190–193

 diagram construction, 194–195

 use-case narratives, 195–199

 project management and, 199–200

 relationships, 187–189

 use-case narrative A textual description of the business

event and how the user will interact with the system to

accomplish the task. , 185, 186

 course of events, 196–199

Glossary/Index 609

 developing, 195–199

 for system analysis use cases, 308, 310–313

 use-case ranking and priority matrix A tool

used to evaluate use cases and determine their priority. , 199 –200

 User data, 434

 User dialogue; see also dialogue ; Menus

 Windows, 519–520

 User interface design, 376–377; see also Graphical user

interfaces (GUIs); Input design; Output design

 architectures, 409

 automated tools, 403, 514, 533

 character, 402

 concepts, 514

 consumer-style, 525, 526

 controls, 519–520, 533

 dialogue tone and terminology, 517

 guidelines, 515

 help systems, 530–533

 human factors

 commandments, 515

 guidelines, 516

 input design, 489–491

 problems, 515

 hybrid Windows/Web, 526, 527

 instruction-driven interfaces, 526–527, 528

 internal controls, 529–530

 log-ins, 529–530

 menus; see Menus

 problems, 515

 process, 533–535

 dialogue charting, 535–536

 prototyping, 536–537

 testing, 538

 user feedback, 538

 prototyping, 514, 533, 536–537

 question-answer dialogues, 527–528

 technology

 display monitors, 518

 keyboards, 518–519

 operating systems, 517–518

 pointing devices, 519

 User manuals, 577, 578

 user-centered development A process of systems

development based on understanding the needs of the stakeholders

and the reasons why the system should be developed. , 184

 Users; see system user

V
 Validation testing, 576–577

 variable cost A cost that occurs in proportion to some

usage factor. , 340

 Variable-length record structures, 431

 Vendors; see commercial application package

 Verifi cation testing, 576

 Virtual businesses, 406–407

 visibility The level of access an external object has to an

attribute or method. , 547 –548, 560

 Visible Systems, Visible Analyst, 68, 366

 Visio, 366

 Visio Enterprise, 435

 Visual Basic, 501

 Visual Basic .NET, 18, 121, 122, 405

 Visual Studio .NET, 71, 493, 514, 533

 Vitalari, Nicholas P., 43n, 292

 Voice recognition, 487

W
 Walton , Donald , 182, 361

 waterfall development approach An approach to

systems analysis and design that completes each phase one

after another and only once. , 54

 Watson , Mark , 292, 333, 565

 WBS; see work breakdown structure

 Web browsers; see also Internet

 toolbars, 523

 as user interface

 growing use of, 406–407

 iconic menus, 525

 input design, 486, 525

 platform independence, 517–518

 Web server A server that hosts internet or intranet

Web sites. , 402 , 406

 Web services, 17

 Web-based inputs, 507–508

 Web-based outputs, 463, 474–477

 Web-enabled applications, 434; see also electronic business

 Weber , Charles V. , 77

 Weinberg , Gerald M. , 33, 153, 155n, 181, 182

 Weinschenk , Susan , 543

 Wetherbe , James , 43, 75, 77, 153, 292, 361

 White , E. B. , 353

 Whole-part relationships; see aggregation

 Windows

 advanced input controls, 498–500

 market dominance, 518

 user dialogue, 519–520

 user interface, 486, 492

 Windows Mobile, 412, 517

 Wireless technology, 18

 Wood , Jane , 153, 182, 390

 work breakdown structure (WBS) A graphical tool

used to depict the hierarchical decomposition of a project into

phases, activities, and tasks. , 89 –91

 Work group databases, 434

 Work group technology, 412

 work sampling A fact-fi nding technique that involves

a large number of observations taken at random intervals. , 164

 Written reports; see Reports, written

 Wysocki , Robert K. , 79n, 83, 88n, 113

X
 xHTML (Extensible Hypertext Markup Language), 16

 XML (Extensible Markup Language), 16, 402, 416

 X/Windows, 402

Y
 Yeo , Sarah C. , 543

 Yourdon , Edward , 153, 257, 267, 292, 333, 390, 565

Z
 Zachman , John A. , 153, 390

 zoned output An output that presents text and numbers in

designated areas of a form or screen. , 459 –461

	Title
	Contents
	PART ONE The Context of Systems Development Projects
	1 THE CONTEXT OF SYSTEMS ANALYSIS AND DESIGN METHODS
	Introduction
	The Product—Information System
	The People—System Stakeholders
	Systems Owners
	Systems Users
	Systems Designers
	Systems Builders
	Systems Analysts
	External Service Providers
	The Project Manager

	Business Drivers for Today’s Information Systems
	Globalization of the Economy
	Electronic Commerce and Business
	Security and Privacy
	Collaboration and Partnership
	Knowledge Asset Management
	Continuous Improvement and Total Quality Management
	Business Process Redesign

	Technology Drivers for Today’s Information Systems
	Networks and the Internet
	Mobile and Wireless Technologies
	Object Technologies
	Collaborative Technologies
	Enterprise Applications

	The Process—System Development Process
	System Initiation
	System Analysis
	System Design
	System Implementation
	System Support and Continuous Improvement

	2 INFORMATION SYSTEMS DEVELOPMENT
	Introduction
	The Process of Systems Development
	The Capability Maturity Model
	Life Cycle versus Methodology
	Underlying Principles for Systems Development

	A Systems Development Process
	Where Do Systems Development Projects Come From?
	The Systems Development Phases
	Cross Life-Cycle Activities
	Sequential versus Iterative Development

	Alternative Routes and Strategies
	The Model-Driven Development Strategy
	The Rapid Application Development Strategy
	The Commercial Application Package Implementation Strategy
	Hybrid Strategies
	System Maintenance

	Automated Tools and Technology
	Computer-Assisted Systems Engineering
	Application Development Environments
	Process and Project Managers

	3 PROJECT MANAGEMENT
	Introduction
	What Is Project Management?
	The Causes of Failed Projects
	The Project Management Body of Knowledge

	The Project Management Life Cycle
	Activity 1—Negotiate Scope
	Activity 2—Identify Tasks
	Activity 3—Estimate Task Durations
	Activity 4—Specify Intertask Dependencies
	Activity 5—Assign Resources
	Activity 6—Direct the Team Effort
	Activity 7—Monitor and Control Progress
	Activity 8—Assess Project Results and Experiences

	PART TWO Systems Analysis Methods
	4 SYSTEMS ANALYSIS
	Introduction
	What Is Systems Analysis?
	Systems Analysis Approaches
	Model-Driven Analysis Approaches
	Accelerated Systems Analysis Approaches
	Requirements Discovery Methods
	Business Process Redesign Methods
	Systems Analysis Strategies

	The Scope Defi nition Phase
	Task 1.1—Identify Baseline Problems and Opportunities
	Task 1.2—Negotiate Baseline Scope
	Task 1.3—Assess Baseline Project Worthiness
	Task 1.4—Develop Baseline Schedule and Budget
	Task 1.5—Communicate the Project Plan

	The Problem Analysis Phase
	Task 2.1—Understand the Problem Domain
	Task 2.2—Analyze Problems and Opportunities
	Task 2.3—Analyze Business Processes
	Task 2.4—Establish System Improvement Objectives
	Task 2.5—Update or Refi ne the Project Plan
	Task 2.6—Communicate Findings and Recommendations

	The Requirements Analysis Phase
	Task 3.1—Identify and Express System Requirements
	Task 3.2—Prioritize System Requirements
	Task 3.3—Update or Refi ne the Project Plan
	Task 3.4—Communicate the Requirements Statement
	Ongoing Requirements Management

	The Logical Design Phase
	Task 4.1a—Structure Functional Requirements
	Task 4.1b—Prototype Functional Requirements (alternative)
	Task 4.2—Validate Functional Requirements
	Task 4.3—Defi ne Acceptance Test Cases

	The Decision Analysis Phase
	Task 5.1—Identify Candidate Solutions
	Task 5.2—Analyze Candidate Solutions
	Task 5.3—Compare Candidate Solutions
	Task 5.4—Update the Project Plan
	Task 5.5—Recommend a System Solution

	5 FACT-FINDING TECHNIQUES FOR REQUIREMENTS DISCOVERY
	Introduction
	An Introduction to Requirements Discovery
	The Process of Requirements Discovery
	Problem Discovery and Analysis
	Requirements Discovery
	Documenting and Analyzing Requirements
	Requirements Management

	Fact-Finding Techniques
	Sampling of Existing Documentation, Forms, and Files
	Research and Site Visits
	Observation of the Work Environment
	Questionnaires
	Interviews
	How to Conduct an Interview
	Discovery Prototyping
	Joint Requirements Planning

	A Fact-Finding Strategy

	6 MODELING SYSTEM REQUIREMENTS WITH USE CASES
	Introduction
	An Introduction to Use-Case Modeling
	System Concepts for Use-Case Modeling
	Use Cases
	Actors
	Relationships

	The Process of Requirements Use-Case Modeling
	Step 1: Identify Business Actors
	Step 2: Identify Business Requirements Use Cases
	Step 3: Construct Use-Case Model Diagram
	Step 4: Document Business Requirements Use-Case Narratives

	Use Cases and Project Management
	Ranking and Evaluating Use Cases
	Identifying Use-Case Dependencies

	7 DATA MODELING AND ANALYSIS
	Introduction
	What Is Data Modeling?
	System Concepts for Data Modeling
	Entities
	Attributes
	Relationships

	The Process of Logical Data Modeling
	Strategic Data Modeling
	Data Modeling during Systems Analysis
	Looking Ahead to Systems Design
	Automated Tools for Data Modeling

	How to Construct Data Models
	Entity Discovery
	The Context Data Model
	The Key-Based Data Model
	Generalized Hierarchies
	The Fully Attributed Data Model

	Analyzing the Data Model
	What Is a Good Data Model?
	Data Analysis
	Normalization Example

	Mapping Data Requirements to Locations

	8 PROCESS MODELING
	Introduction
	An Introduction to Process Modeling
	System Concepts for Process Modeling
	External Agents
	Data Stores
	Process Concepts
	Data Flows

	The Process of Logical Process Modeling
	How to Construct Process Models
	The Context Data Flow Diagram
	The Functional Decomposition Diagram
	The Event-Response or Use-Case List
	Event Decomposition Diagrams
	Event Diagrams
	The System Diagram(s)
	Primitive Diagrams
	Completing the Specifi cation

	9 OBJECT-ORIENTED ANALYSIS AND MODELING USING THE UML
	An Introduction to Object-Oriented Modeling
	System Concepts for Object Modeling
	Objects, Attributes, Methods, and Encapsulation
	Classes, Generalization, and Specialization
	Object Class Relationships
	Messages and Message Sending
	Polymorphism

	The UML Diagrams
	The Process of Object Modeling
	Modeling the Functional Description of the System
	Constructing the Analysis Use-Case Model
	Modeling the Use-Case Activities
	Guidelines for Constructing Activity Diagrams
	Drawing System Sequence Diagrams
	Guidelines for Constructing System Sequence Diagrams
	Finding and Identifying the Business Objects
	Organizing the Objects and Identifying Their Relationships

	10 FEASIBILITY ANALYSIS AND THE SYSTEM PROPOSAL
	Introduction
	Feasibility Analysis and the System Proposal
	Feasibility Analysis—A Creeping Commitment Approach
	Systems Analysis—Scope Defi nition Checkpoint
	Systems Analysis—Problem Analysis Checkpoint
	Systems Design—Decision Analysis Checkpoint

	Six Tests for Feasibility
	Operational Feasibility
	Technical Feasibility
	Schedule Feasibility
	Economic Feasibility

	Cost-Benefi t Analysis Techniques
	How Much Will the System Cost?
	What Benefi ts Will the System Provide?
	Is the Proposed System Cost-Effective?

	Feasibility Analysis of Candidate Systems
	Candidate Systems Matrix
	Feasibility Analysis Matrix

	The System Proposal
	Written Report
	Formal Presentation

	PART THREE Systems Design Methods
	11 SYSTEMS DESIGN
	Introduction
	What Is Systems Design?
	Systems Design Approaches
	Model-Driven Approaches
	Rapid Application Development
	Systems Design Strategies

	Systems Design for In-House Development—The “Build” Solution
	Task 5.1—Design the Application Architecture
	Task 5.2—Design the System Database(s)
	Task 5.3—Design the System Interface
	Task 5.4—Package Design Specifi cations
	Task 5.5—Update the Project Plan

	Systems Design for Integrating Commercial Software—The “Buy” Solution
	Task 4.1—Research Technical Criteria and Options
	Task 4.2—Solicit Proposals or Quotes from Vendors
	Task 5A.1—Validate Vendor Claims and Performances
	Task 5A.2—Evaluate and Rank Vendor Proposals
	Task 5A.3—Award (or Let) Contract and Debrief Vendors
	Impact of Buy Decision on Remaining Life-Cycle Phases

	12 APPLICATION ARCHITECTURE AND MODELING
	Introduction
	Application Architecture
	Physical Data Flow Diagrams
	Physical Processes
	Physical Data Flows
	Physical External Agents
	Physical Data Stores

	Information Technology Architecture
	Distributed Systems
	Data Architectures—Distributed Relational Databases
	Interface Architectures—Inputs, Outputs, and Middleware
	Process Architectures—The Software Development Environment

	Modeling the Application Architecture of an Information System
	Drawing Physical Data Flow Diagrams
	The Network Architecture
	Data Distribution and Technology Assignments
	Process Distribution and Technology Assignments
	The Person/Machine Boundaries

	13 DATABASE DESIGN
	Introduction
	Database Concepts for the Systems Analyst
	Fields
	Records
	Files and Tables
	Databases

	Prerequisite for Database Design— Normalization
	Modern Database Design
	Goals and Prerequisites to Database Design
	The Database Schema
	Data and Referential Integrity
	Roles
	Database Distribution and Replication
	Database Prototypes
	Database Capacity Planning
	Database Structure Generation

	14 OUTPUT DESIGN AND PROTOTYPING
	Introduction
	Output Design Concepts and Guidelines
	Distribution and Audience of Outputs
	Implementation Methods for Outputs

	How to Design and Prototype Outputs
	Automated Tools for Output Design and Prototyping
	Output Design Guidelines
	The Output Design Process
	Web-Based Outputs and E-Business

	15 INPUT DESIGN AND PROTOTYPING
	Introduction
	Input Design Concepts and Guidelines
	Data Capture, Data Entry, and Data Processing
	Input Methods and Implementation
	System User Issues for Input Design
	Internal Controls—Data Editing for Inputs

	GUI Controls for Input Design
	Common GUI Controls for Inputs
	Advanced Input Controls

	How to Design and Prototype Inputs
	Automated Tools for Input Design and Prototyping
	The Input Design Process
	Web-Based Inputs and E-Business

	16 USER INTERFACE DESIGN
	Introduction
	User Interface Design Concepts and Guidelines
	Types of Computer Users
	Human Factors
	Human Engineering Guidelines
	Dialogue Tone and Terminology

	User Interface Technology
	Operating Systems and Web Browsers
	Display Monitor
	Keyboards and Pointers

	Graphical User Interface Styles and Considerations
	Windows and Frames
	Menu-Driven Interfaces
	Instruction-Driven Interfaces
	Question-Answer Dialogues
	Special Considerations for User Interface Design

	How to Design and Prototype a User Interface
	Automated Tools for User Interface Design and Prototyping
	The User Interface Design Process

	17 OBJECT-ORIENTED DESIGN AND MODELING USING THE UML
	Introduction
	The Design of an Object-Oriented System
	Entity Classes
	Interface Classes
	Control Classes
	Persistence Classes
	System Classes
	Design Relationships
	Attribute and Method Visibility
	Object Responsibilities

	The Process of Object-Oriented Design
	Refi ning the Use-Case Model
	Modeling Class Interactions, Behaviors, and States That Support the Use-Case Scenario
	Updating the Object Model to Refl ect the Implementation Environment

	PART FOUR Beyond Systems Analysis and Design
	18 SYSTEMS CONSTRUCTION AND IMPLEMENTATION
	Introduction
	What Is Systems Construction and Implementation?
	The Construction Phase
	Task 6.1—Build and Test Networks (if Necessary)
	Task 6.2—Build and Test Databases
	Task 6.3—Install and Test New Software Packages (if Necessary)
	Task 6.4—Write and Test New Programs

	The Implementation Phase
	Task 7.1—Conduct System Test
	Task 7.2—Prepare Conversion Plan
	Task 7.3—Install Databases
	Task 7.4—Train Users
	Task 7.5—Convert to New System

	Photo Credits
	Glossary/Index

